Sample records for total clay content

  1. Effects of clay minerals on diethyl phthalate degradation in Fenton reactions.

    PubMed

    Chen, Ning; Fang, Guodong; Zhou, Dongmei; Gao, Juan

    2016-12-01

    Phthalate esters are a group of plasticizers, which are commonly detected in China's soils and surface water. Fenton reactions are naturally occurring and widely applied in the degradation of contaminants. However, limited research was considered the effects of clay minerals on contaminants degradation with OH oxidation. In this study, batch experiments were conducted to investigate the degradation of diethyl phthalate (DEP) in Fenton reactions in the presence of clay minerals, and the effects of clay type, Fe content in clay structure. The results showed the clay adsorption inhibited total degradation of DEP, and Fe content in clay structure played an important role in DEP degradation, including in solution and adsorbed in clay minerals. Clay minerals with less Fe content (<3%) quenched OH radical, while nontronite with Fe content 19.2% improved OH radical generation and accelerated DEP degradation in solution. The degradation of clay-adsorbed DEP was much slower than DEP in solution. Six main products of DEP degradation were identified, including monoethyl phthalate, phthalate acid, hydroxyl diethyl phthalate, etc. This study implied that phthalate ester's degradation would be much slower in natural water than expected in the presence of clay minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A Case Study of Petroleum Degradation in Different Soil Textural Classes.

    PubMed

    Kogbara, Reginald B; Ayotamuno, Josiah M; Worlu, Daniel C; Fubara-Manuel, Isoteim

    2016-01-01

    Patents have been granted for a number of techniques for petroleum biodegradation including use of micro-organisms for degradation of hydrocarbon-based substances and for hydrocarbon degradation in oil reservoirs, but there is a dearth of information on hydrocarbon degradation in different soil textures. Hence, this work investigated the effects of different soil textures on degradation of petroleum hydrocarbons during a six-week period. Five soil textural classes commonly found in Port Harcourt metropolis, Nigeria, namely sand, loamy sand, sandy loam, silty clay and clay, were employed. The soils were contaminated with the same amount of crude oil and then remediated by biostimulation. Selected soil properties were monitored over time. Bacterial numbers declined significantly in the fine soil textures after petroleum contamination, but were either unaffected or increased significantly in the coarser soil textures. Hydrocarbon losses ranged from 42% - 99%; the sandy loam had the highest, while the clay soil had the least total hydrocarbon content (THC) reduction. The total heterotrophic bacterial (THB) counts generally corroborated the THC results. Fold increase in bacterial numbers due to remediation treatment decreased with increasing clay content. The results suggest that higher sand than clay content of soil favours faster hydrocarbon degradation. Hydrocarbon degradation efficiency increased with silt content among soil groupings such as fine and coarse soils but not necessarily with increasing silt content of soil. Thus, there seems to be cut-off sand and clay contents in soil at which the effect of the silt content becomes significant.

  3. Alumosilicate ceramic proppants based on natural refractory raw materials

    NASA Astrophysics Data System (ADS)

    Vakalova, T. V.; Devyashina, L. P.; Burihina, M. A.; Kisner, A. S.; Pashenko, N. V.

    2017-12-01

    The sintering-strengthening effect of the additions of the highly ferrous bauxite (with Fe2O3 content of 20-25 % in the calcined state) in the compositions with refractory clays was established. It was found that in the temperature range 1350-1500°C the additions of bauxite in amounts of 10-40% have a fluxing effect due to the iron oxide introduced with bauxite in compositions with clay. An increasing the bauxite additive in the amount of 50-70% ensures its strengthening effect by increasing the total content of the mullite of the prismatic habit in the firing products of composites with clay. Preliminary clay and bauxite calcination at 900 °C and an increase in the content of bauxite additive up to 50-70% in compositions with clay allow to produce aluminosilicate proppants with a bulk density of 1.62-1.65 g/cm3 and compressive strength up to 52 MPa.

  4. Integrating auxiliary data and geophysical techniques for the estimation of soil clay content using CHAID algorithm

    NASA Astrophysics Data System (ADS)

    Abbaszadeh Afshar, Farideh; Ayoubi, Shamsollah; Besalatpour, Ali Asghar; Khademi, Hossein; Castrignano, Annamaria

    2016-03-01

    This study was conducted to estimate soil clay content in two depths using geophysical techniques (Ground Penetration Radar-GPR and Electromagnetic Induction-EMI) and ancillary variables (remote sensing and topographic data) in an arid region of the southeastern Iran. GPR measurements were performed throughout ten transects of 100 m length with the line spacing of 10 m, and the EMI measurements were done every 10 m on the same transect in six sites. Ten soil cores were sampled randomly in each site and soil samples were taken from the depth of 0-20 and 20-40 cm, and then the clay fraction of each of sixty soil samples was measured in the laboratory. Clay content was predicted using three different sets of properties including geophysical data, ancillary data, and a combination of both as inputs to multiple linear regressions (MLR) and decision tree-based algorithm of Chi-Squared Automatic Interaction Detection (CHAID) models. The results of the CHAID and MLR models with all combined data showed that geophysical data were the most important variables for the prediction of clay content in two depths in the study area. The proposed MLR model, using the combined data, could explain only 0.44 and 0.31% of the total variability of clay content in 0-20 and 20-40 cm depths, respectively. Also, the coefficient of determination (R2) values for the clay content prediction, using the constructed CHAID model with the combined data, was 0.82 and 0.76 in 0-20 and 20-40 cm depths, respectively. CHAID models, therefore, showed a greater potential in predicting soil clay content from geophysical and ancillary data, while traditional regression methods (i.e. the MLR models) did not perform as well. Overall, the results may encourage researchers in using georeferenced GPR and EMI data as ancillary variables and CHAID algorithm to improve the estimation of soil clay content.

  5. Hydraulic and mechanical behavior of landfill clay liner containing SSA in contact with leachate.

    PubMed

    Zhang, Qian; Lu, Haijun; Liu, Junzhu; Wang, Weiwei; Zhang, Xiong

    2018-05-01

    Sewage sludge ash (SSA) produced by municipal sludge can be used as a modified additive for clay liner, and improves the working performance of landfill clay liner in contact with leachate. Under the action of landfill leachate, the permeability, shear strength, phase composition, and pore structure of the modified clay are investigated through the flexible wall permeability test, triaxial shear test, thermal gravimetric and differential thermal analysis, and low-temperature nitrogen adsorption test, respectively. The hydraulic conductivity of the modified clay containing 0-5% SSA is in the range of 3.94 × 10 -8 -1.16 × 10 -7  cm/s, and the pollutant concentration of the sample without SSA was higher than others. The shear strength of the modified clay is more than that of the traditional clay liner, the cohesion rate of modified clay increases from 32.5 to 199.91 kPa, and the internal friction angle decreases from 32.5° to 15.6°. Furthermore, the weight loss rates of the samples are 15.69%, 17.92%, 18.06%, and 20.68%, respectively, when the SSA content increases from 0% to 5%. The total pore volume and average pore diameter of the modified clay decrease with the increase in the SSA content, respectively. However, the specific area of the modified clay increases with the increase in the SSA content.

  6. Critical evaluation of the use of the hydroxyapatite as a stabilizing agent to reduce the mobility of Zn and Ni in sewage sludge amended soils.

    PubMed

    Zupancic, Marija; Bukovec, Peter; Milacic, Radmila; Scancar, Janez

    2006-01-01

    The leachability of zinc (Zn) and nickel (Ni) was investigated in various soil types amended with sewage sludge and sewage sludge treated with hydroxyapatite. Sandy, clay and peat soils were investigated. For leachability tests, plastic columns (diameter 9 cm, height 50 cm) were filled with moist samples up to a height of 25 cm. Sewage sludge (1 kg) was mixed with 4.6 kg of clay and sandy soils and with 6.7 kg of peat soil. For sewage sludge mixtures treated with hydroxyapatite, 0.5 kg of the hydroxyapatite was added to 1 kg of the sewage sludge. Neutral (pH 7) and acid precipitation (pH 3.5) were applied. Acid precipitation was prepared from concentrated HNO(3), H(2)SO(4) and fresh doubly distilled water. The amount of precipitation corresponded to the average annual precipitation for the city of Ljubljana, Slovenia. It was divided into eight equal portions and applied sequentially on the top of the columns. The results indicated that the leachabilities of Zn in sewage sludge amended peat and clay soils were low (below 0.3% of total Zn content) and of Ni in sewage sludge amended sandy, clay and peat soil below 1.9% of total Ni content. In sewage sludge amended sandy soil, the leachability of Zn was higher (11% of Zn content). The pH of precipitation had no influence on the leachability of either metal. Treatment of sewage sludge with hydroxyapatite efficiently reduced the leachability of Zn in sewage sludge amended sandy soil (from 11% to 0.2% of total Zn content). In clay and peat sewage sludge amended soils, soil characteristics rather than hydroxyapatite treatment dominate Zn mobility.

  7. The effect of soil type on the bioremediation of petroleum contaminated soils.

    PubMed

    Haghollahi, Ali; Fazaelipoor, Mohammad Hassan; Schaffie, Mahin

    2016-09-15

    In this research the bioremediation of four different types of contaminated soils was monitored as a function of time and moisture content. The soils were categorized as sandy soil containing 100% sand (type I), clay soil containing more than 95% clay (type II), coarse grained soil containing 68% gravel and 32% sand (type III), and coarse grained with high clay content containing 40% gravel, 20% sand, and 40% clay (type IV). The initially clean soils were contaminated with gasoil to the concentration of 100 g/kg, and left on the floor for the evaporation of light hydrocarbons. A full factorial experimental design with soil type (four levels), and moisture content (10 and 20%) as the factors was employed. The soils were inoculated with petroleum degrading microorganisms. Soil samples were taken on days 90, 180, and 270, and the residual total petroleum hydrocarbon (TPH) was extracted using soxhlet apparatus. The moisture content of the soils was kept almost constant during the process by intermittent addition of water. The results showed that the efficiency of bioremediation was affected significantly by the soil type (Pvalue < 0.05). The removal percentage was the highest (70%) for the sandy soil with the initial TPH content of 69.62 g/kg, and the lowest for the clay soil (23.5%) with the initial TPH content of 69.70 g/kg. The effect of moisture content on bioremediation was not statistically significant for the investigated levels. The removal percentage in the clay soil was improved to 57% (within a month) in a separate experiment by more frequent mixing of the soil, indicating low availability of oxygen as a reason for low degradation of hydrocarbons in the clay soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Retention and loss of water extractable carbon in soils: effect of clay properties.

    PubMed

    Nguyen, Trung-Ta; Marschner, Petra

    2014-02-01

    Clay sorption is important for organic carbon (C) sequestration in soils, but little is known about the effect of different clay properties on organic C sorption and release. To investigate the effect of clay content and properties on sorption, desorption and loss of water extractable organic C (WEOC), two experiments were conducted. In experiment 1, a loamy sand alone (native) or mixed with clay isolated from a surface or subsoil (78 and 96% clay) resulting in 90, 158 and 175 g clay kg(-1) soil. These soil treatments were leached with different WEOC concentrations, and then CO2 release was measured for 28 days followed by leaching with reverse osmosis water at the end of experiment. The second experiment was conducted to determine WEOC sorption and desorption of clays isolated from the loamy sand (native), surface soil and subsoil. Addition of clays isolated from surface and subsoil to sandy loam increased WEOC sorption and reduced C leaching and cumulative respiration in percentage of total organic C and WEOC added when expressed per g soil and per g clay. Compared to clays isolated from the surface and subsoil, the native clay had higher concentrations of illite and exchangeable Ca(2+), total organic C and a higher CEC but a lower extractable Fe/Al concentration. This indicates that compared to the clay isolated from the surface and the subsoil, the native clay had fewer potential WEOC binding sites because it had lower Fe/Al content thus lower number of binding sites and the existing binding sites are already occupied native organic matter. The results of this study suggest that in the soils used here, the impact of clay on WEOC sorption and loss is dependent on its indigenous organic carbon and Fe and/or Al concentrations whereas clay mineralogy, CEC, exchangeable Ca(2+) and surface area are less important. © 2013.

  9. [Factors affecting the DAPI fluorescence direct count in the tidal river sediment].

    PubMed

    Chen, Chen; Huang, Shan; Wu, Qun-he; Li, Rui-yi; Zhang, Ren-duo

    2010-08-01

    The factors affecting the DAPI (4', 6-diamidino-2-phenylidole) fluorescence direct count in the tidal river sediment were examined. Sediment samples were collected from the Guangzhou section of the Pearl River. Besides sediment texture and organic matter, an improved staining procedure and the involved parameters were analyzed. Results showed that the procedure with the sediment with 2000 fold dilution and ultrasonic water bath for 10 min, and with a final DAPI concentration of 10 microg x mL(-1) and staining time for more than 30 min produced the optimum results of DAPI direct count in the sediment. The total bacterial number was correlated to the proportion of the non-nucleoid-containing cells to the total bacterial number (r = 0.587, p = 0.004). The organic matter content also correlated to the ration. The clay content had a strong correlation with the organic matter, through which the clay content also affected the ratio. A multiple regression analysis between the ration versus the organic matter, the total bacterial number, and the clay content showed that the regression equation fit the measure values satisfactorily (r = 0.694). These results indicated that the above factors needed to be considered in the applications of the DAPI fluorescence direct counting method to the tidal river sediment.

  10. Changes in carbon stability and microbial activity in size fractions of micro-aggregates in a rice soil chronosequence under long term rice cultivation

    NASA Astrophysics Data System (ADS)

    Pan, Genxing; Liu, Yalong; Wang, Ping; Li, Lianqinfg; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Bian, Rongjun; Ding, Yuanjun; Ma, Chong

    2016-04-01

    Recent studies have shown soil carbon sequestration through physical protection of relative labile carbon intra micro-aggregates with formation of large sized macro-aggregates under good management of soil and agricultural systems. While carbon stabilization had been increasingly concerned as ecosystem properties, the mechanisms underspin bioactivity of soil carbon with increased carbon stability has been still poorly understood. In this study, topsoil samples were collected from rice soils derived from salt marsh under different length of rice cultivation up to 700 years from eastern China. Particle size fractions (PSF) of soil aggregates were separated using a low energy dispersion protocol. Carbon fractions in the PSFs were analyzed either with FTIR spectroscopy. Soil microbial community of bacterial, fungal and archaeal were analyzed with molecular fingerprinting using specific gene primers. Soil respiration and carbon gain from amended maize as well as enzyme activities were measured using lab incubation protocols. While the PSFs were dominated by the fine sand (200-20μm) and silt fraction (20-2μm), the mass proportion both of sand (2000-200μm) and clay (<2μm) fraction increased with prolonged rice cultivation, giving rise to an increasing trend of mean weight diameter of soil aggregates (also referred to aggregate stability). Soil organic carbon was found most enriched in coarse sand fraction (40-60g/kg), followed by the clay fraction (20-24.5g/kg), but depleted in the silt fraction (~10g/kg). Phenolic and aromatic carbon as recalcitrant pool were high (33-40% of total SOC) in both coarse sand and clay fractions than in both fine sand and silt fractions (20-29% of total SOC). However, the ratio of LOC/total SOC showed a weak decreasing trend with decreasing size of the aggregate fractions. Total gene content in the size fractions followed a similar trend to that of SOC. Bacterial and archaeal gene abundance was concentrated in both sand and clay fractions but that of fungi in sand fraction, and sharply decreased with the decreasing size of aggregate fraction. Gene abundance of archaeal followed a similar trend to that of bacterial but showing an increasing trend with prolonged rice cultivation in both sand and clay fractions. Change in community diversity with sizes of aggregate fractions was found of fungi and weakly of bacterial but not of archaeal. Soil respiration ratio (Respired CO2-C to SOC) was highest in silt fraction, followed by the fine sand fraction but lowest in sand and clay fractions in the rice soils cultivated over 100 years. Again, scaled by total gen concentration, respiration was higher in silt fraction than in other fractions for these rice soils. For the size fractions other than clay fraction, soil gene concentration, Archaeal gen abundance, normalized enzyme activity and carbon sequestration was seen increased but SOC- and gene- scaled soil respiration decreased, more or less with prolonged rice cultivation. As shown with regression analysis, SOC content was positively linearly correlated to recalcitrant carbon proportion but negatively linearly correlated to labile carbon, in both sand and clay fractions. However, soil respiration was found positively logarithmically correlated to total DNA contents and bacterial gen abundance in both sand and clay fractions. Total DNA content was found positively correlated to SOC and labile carbon content, recalcitrant carbon proportion and normalized enzyme activity but negatively to soil respiration, in sand fraction only. Our findings suggested that carbon accumulation and stabilization was prevalent in both sand and clay fraction, only the coarse sand fraction was found responsible for bioactivity dynamics in the rice soils. Thus, soil carbon sequestration was primarily by formation of the macro-aggregates, which again mediated carbon stability and bioactivity in the rice soils under long term rice cultivation.

  11. Tc(VII) and Cr(VI) Interaction with Naturally Reduced Ferruginous Smectite from a Redox Transition Zone.

    PubMed

    Qafoku, Odeta; Pearce, Carolyn I; Neumann, Anke; Kovarik, Libor; Zhu, Mengqiang; Ilton, Eugene S; Bowden, Mark E; Resch, Charles T; Arey, Bruce W; Arenholz, Elke; Felmy, Andrew R; Rosso, Kevin M

    2017-08-15

    Fe(II)-rich clay minerals found in subsurface redox transition zones (RTZs) can serve as important sources of electron equivalents limiting the transport of redox-active contaminants. While most laboratory reactivity studies are based on reduced model clays, the reactivity of naturally reduced field samples remains poorly explored. Characterization of the clay size fraction of a fine-grained unit from the RTZ interface at the Hanford site, Washington, including mineralogy, crystal chemistry, and Fe(II)/(III) content, indicates that ferruginous montmorillonite is the dominant mineralogical component. Oxic and anoxic fractions differ significantly in Fe(II) natural content, but Fe TOTAL remains constant, demonstrating no Fe loss during its reduction-oxidation cyclings. At native pH of 8.6, the anoxic fraction, despite its significant Fe(II), ∼23% of Fe TOTAL , exhibits minimal reactivity with TcO 4 - and CrO 4 2- and much slower reaction kinetics than those measured in studies with biologically/chemically reduced model clays. Reduction capacity is enhanced by added/sorbed Fe(II) (if Fe(II) SORBED > 8% clay Fe(II) LABILE ); however, the kinetics of this conceptually surface-mediated reaction remain sluggish. Surface-sensitive Fe L-edge X-ray absorption spectroscopy shows that Fe(II) SORBED and the resulting reducing equivalents are not available in the outermost few nanometers of clay surfaces. Slow kinetics thus appear related to diffusion-limited access to electron equivalents retained within the clay mineral structure.

  12. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals.

    PubMed

    Joe-Wong, Claresta; Brown, Gordon E; Maher, Kate

    2017-09-05

    Hexavalent chromium is a water-soluble pollutant, the mobility of which can be controlled by reduction of Cr(VI) to less soluble, environmentally benign Cr(III). Iron(II/III)-bearing clay minerals are widespread potential reductants of Cr(VI), but the kinetics and pathways of Cr(VI) reduction by such clay minerals are poorly understood. We reacted aqueous Cr(VI) with two abiotically reduced clay minerals: an Fe-poor montmorillonite and an Fe-rich nontronite. The effects of ionic strength, pH, total Fe content, and the fraction of reduced structural Fe(II) [Fe(II)/Fe(total)] were examined. The last variable had the largest effect on Cr(VI) reduction kinetics: for both clay minerals, the rate constant of Cr(VI) reduction varies by more than 3 orders of magnitude with Fe(II)/Fe(total) and is described by a linear free energy relationship. Under all conditions examined, Cr and Fe K-edge X-ray absorption near-edge structure spectra show that the main Cr-bearing product is a Cr(III)-hydroxide and that Fe remains in the clay structure after reacting with Cr(VI). This study helps to quantify our understanding of the kinetics of Cr(VI) reduction by Fe(II/III)-bearing clay minerals and may improve predictions of Cr(VI) behavior in subsurface environments.

  13. Influence of soil types and osmotic pressure on growth and 137Cs accumulation in blackgram (Vigna mungo L.).

    PubMed

    Win, Khin Thuzar; Oo, Aung Zaw; Bellingrath-Kimura, Sonoko Dorothea

    2017-04-01

    A pot experiment was conducted to study the effects of soil types and osmotic levels on growth and 137 Cs accumulation in two blackgram varieties differing in salinity tolerance grown in Fukushima contaminated soils. The contamination levels of the sandy clay loam and clay soil were 1084 and 2046 Bq kg -1 DW, respectively. The 137 Cs activity was higher in both plants grown on the sandy clay loam than on the clay soil regardless of soil 137 Cs activity concentration. No significant differences were observed in all measured growth parameters between the two varieties under optimal water conditions for both types of soil. However, the growth, leaf water contents and 137 Cs activity concentrations in both plants were lower in both soil types when there was water stress induced by addition of polyethylene glycol. Water stress-induced reduction in total leaf area and total biomass, in addition to leaf relative water content, were higher in salt sensitive 'Mut Pe Khaing To' than in salt tolerant 'U-Taung-2' plants for both soil types. Varietal difference in decreased 137 Cs uptake under water stress was statically significant in the sandy clay loam soil, however, it was not in the clay soil. The transfer of 137 Cs from soil to plants (i.e., root, stem and leaf) was higher for the sandy clay loam for both plants when compared with those of the clay soil. The decreased activity of 137 Cs in the above ground samples (leaf and stem) in both plants in response to osmotic stress suggested that plant available 137 Cs decreased when soil water is limited by osmotic stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Experimentally Derived Mechanical and Flow Properties of Fine-grained Soil Mixtures

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Peets, C. S.; Flemings, P. B.; Day-Stirrat, R. J.; Germaine, J. T.

    2009-12-01

    As silt content in mudrocks increases, compressibility linearly decreases and permeability exponentially increases. We prepared mixtures of natural Boston Blue Clay (BBC) and synthetic silt in the ratios of 100:0, 86:14, 68:32, and 50:50, respectively. To recreate natural conditions yet remove variability and soil disturbance, we resedimented all mixtures to a total stress of 100 kPa. We then loaded them to approximately 2.3 MPa in a CRS (constant-rate-of-strain) uniaxial consolidation device. The analyses show that the higher the silt content in the mixture, the stiffer the material is. Compression index as well as liquid and plastic limits linearly decrease with increasing silt content. Vertical permeability increases exponentially with porosity as well as with silt content. Fabric alignment determined through High Resolution X-ray Texture Goniometry (HRXTG) expressed as maximum pole density (m.r.d.) decreases with silt content at a given stress. However, this relationship is not linear instead there are two clusters: the mixtures with higher clay contents (100:0, 84:16) have m.r.d. around 3.9 and mixtures with higher silt contents (68:32, 50:50) have m.r.d. around 2.5. Specific surface area (SSA) measurements show a positive correlation to the total clay content. The amount of silt added to the clay reduces specific surface area, grain orientation, and fabric alignment; thus, it affects compression and fluid flow behavior on a micro- and macroscale. Our results are comparable with previous studies such as kaolinite / silt mixtures (Konrad & Samson [2000], Wagg & Konrad [1990]). We are studying this behavior to understand how fine-grained rocks consolidate. This problem is important to practical and fundamental programs. For example, these sediments can potentially act as either a tight gas reservoir or a seal for hydrocarbons or geologic storage of CO2. This study also provides a systematic approach for developing models of permeability and compressibility behavior needed as inputs for basin modeling.

  15. Performance of Kaolin Clay on the Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Abdullah, M. E.; Jaya, R. P.; Shahafuddin, M. N. A.; Yaacob, H.; Ibrahim, M. H. Wan; Nazri, F. M.; Ramli, N. I.; Mohammed, A. A.

    2018-05-01

    This paper investigates the performance of concrete pavement containing kaolin clay with their engineering properties and to determine the optimum kaolin clay content. The concrete used throughout the study was designed as grade 30 MPa strength with constant water to cement ratio of 0.49. The compressive strength, flexural strength and water absorption test was conducted in this research. The concrete mix designed with kaolin clay as cement replacement comprises at 0%, 5%, 10% and 15% by the total weight of cement. The results indicate that the strength of pavement concrete decreases as the percentage of kaolin clay increases. It also shows that the water absorption increases with the percentage of cement replacement. However, 5% kaolin clay is found to be the optimum level to replace cement in a pavement concrete.

  16. [Distribution of soil organic carbon, total nitrogen, total phosphorus and water stable aggregates of cropland with different soil textures on the Loess Plateau, Northwest China].

    PubMed

    Ge, Nan Nan; Shi, Yun; Yang, Xian Long; Zhang, Qing Yin; Li, Xue Zhang; Jia, Xiao Xu; Shao, Ming An; Wei, Xiao Rong

    2017-05-18

    In this study, combined with field investigation and laboratory analyses, we assessed the distribution of soil organic carbon, nitrogen, phosphorous contents and their stoichiometric ratios, and the distribution of soil water stable aggregates along a soil texture gradient in the cropland of the Loess Plateau to understand the effect of soil texture and the regulation of soil aggregates on soil fertility in cropland. The results showed that, with the change from fine soils to coarse soils along the texture gradient (loam clay→ clay loam→ sandy loam), the contents of macroaggregates, organic carbon, nitrogen, phosphorous and their stoichiometric ratios decreased, while pH value and microaggregates content showed an opposite changing pattern. The contents of macroaggregates, organic carbon, nitrogen, phosphorous, and C/P and N/P were significantly increased, but pH value and microaggregates content were significantly decreased with increasing the soil clay content. Furthermore, the contents of organic carbon, nitrogen, phosphorous, and C/P and N/P increased with the increase of macroaggregates content. These results indicated that soil fertility in croplands at a regional scale was mainly determined by soil texture, and was regulated by soil macroaggregates.

  17. Hillslope Chromatography in Savannas

    NASA Astrophysics Data System (ADS)

    Hartshorn, A.; Khomo, L.; Chadwick, O.; Rogers, K.; Kurtz, A.; Heimsath, A.

    2005-12-01

    In semiarid ecosystems, vegetation patterns are controlled in part by soil water availability. Along hillslopes in Kruger National Park, South Africa, water availability is strongly dependent on soil texture and textural differences with depth, which are a function of landscape position (convergent or divergent crests, midslopes, and footslopes) and parent material. We are studying weathering and landscape development on the western side of the park, which is underlain by granitic gneisses. Hillslopes in the park are often described as catenas, where rainfall catalyzes chemical weathering and drives the downslope transport of clays and weathering products, forming a predictable sequence of soil types. Sandy crest soils grade to midslope soils where sandy surface horizons overlie clayey subsurface horizons; footslopes generally have higher volumetric clay contents. The boundary between the sandy and clayey soils is of ecological significance because this is the location where run-on from upslope landscape positions is diverted to the surface, initiating overland flow and reducing infiltration. In a geochemical sense these hillslopes can be thought of as chromatographic columns that accentuate differential solute mobility along the long (~1-2 km) potential flowpaths. We use the compound topographic index (a terrain attribute that indexes soil wetness by dividing the upslope contributing area by the slope) to predict the redistribution of clays across these semiarid hillslopes and hope to demonstrate that landscape positions occupying comparable plan and profile curvatures contain clay and organic carbon in proportion to contributing area. Thus far, we have derived contributing area values for 40 soil pits using LiDAR-based digital elevation models and then tested how well contributing area and other terrain attributes predicted clay and carbon content for 218 horizons at these 40 locations. Depth-weighted soil clay ranged from 3 to 25% and total soil carbon ranged from 0.1 to 2.1%. Our preliminary results suggest that greater contributing area only produces greater soil clay content up to a threshold clay content, after which clay illuviation and in situ clay production slows following the diversion of water to the surface.

  18. Factors of soil diversity in the Batumi delta (Georgia)

    NASA Astrophysics Data System (ADS)

    Turgut, Bülent; Ateş, Merve

    2017-01-01

    The aim of this study was to determine certain basic properties of soils in the Batumi delta (southwestern Georgia) to determine the relationships of studied properties and to identify differences with regards to these properties between different sampling sites in the delta that were selected based on the delta morphology. In this context, a total of 125 soil samples were collected from five different sampling sites, and the clay, silt and sand content of the samples were determined along with their mean weight diameter (MWD) values, aggregate stability (AS) values, amount of water retained under -33 (FC) and -1500 kPa (WP) pressure and organic matter (OM) content. Correlation analysis indicated that clay content and OM were positively correlated with MWD, and OM was positively correlated with AS. However, the sand content was found to be negatively correlated with MWD. In addition, clay, silt and OM content were positive correlated with FC and WP. Variance analysis results determined statistically significant differences between the sampling sites with respect to all of the evaluated properties. The active delta section of the study area was characterized by high sand content, while the lower delta plain was characterized by high OM and AS values, and the upper delta plain was characterized by high MWD values, high FC and WP moisture content levels and high clay and silt content. In conclusion, it was demonstrated that the examined properties were significantly affected by the different morphological positions and usages of these different areas. These results may help with the management of agricultural lands in the Batumi delta, which has never been studied before.

  19. Mineralogy and instrumental neutron activation analysis of seven National Bureau of Standards and three Instituto de Pesquisas Tecnologicas clay reference samples

    USGS Publications Warehouse

    Hosterman, John W.; Flanagan, F.J.; Bragg, Anne; Doughten, M.W.; Filby, R.H.; Grimm, Catherine; Mee, J.S.; Potts, P.J.; Rogers, N.W.

    1987-01-01

    The concentrations of 3 oxides and 29 elements in 7 National Bureau of Standards (NBS) and 3 Instituto de Pesquisas Techno16gicas (IPT) reference clay samples were etermined by instrumental neutron activation analysis. The analytical work was designed to test the homogeneity of constituents in three new NBS reference clays, NBS-97b, NBS-98b, and NBS-679. The analyses of variance of 276 sets of data for these three standards show that the constituents are distributed homogeneously among bottles of samples for 94 percent of the sets of data. Three of the reference samples (NBS-97, NBS-97a, and NBS-97b) are flint clays; four of the samples (NBS-98, NBS-98a, NBS-98b, and IPT-32) are plastic clays, and three of the samples (NBS-679, IPT-28, and IPT-42) are miscellaneous clays (both sedimentary and residual). Seven clays are predominantly kaolinite; the other three clays contain illite and kaolinite in the approximate ratio 3:2. Seven clays contain quartz as the major nonclay mineral. The mineralogy of the flint and plastic clays from Missouri (NBS-97a and NBS-98a) differs markedly from that of the flint and plastic clays from Pennsylvania (NBS-97, NBS-97b, NBS-98, and NBS-98b). The flint clay NBS-97 has higher average chromium, hafnium, lithium, and zirconium contents than its replacement, reference sample NBS-97b. The differences between the plastic clay NBS-98 and its replacement, NBS-98b, are not as pronounced. The trace element contents of the flint and plastic clays from Missouri, NBS-97a and NBS-98a, differ significantly from those of the clays from Pennsylvania, especially the average rare earth element (REE) contents. The trace element contents of clay sample IPT-32 differ from those of the other plastic clays. IPT-28 and IPT-42 have some average trace element contents that differ not only between these two samples but also from all the other clays. IPT-28 has the highest summation of the average REE contents of the 10 samples. The uranium content of NBS-98a, 46 parts per million, is very much higher than that of the other clays. Plots of average REE contents of the flint and plastic clays, normalized to chondritic abundances, show that the clays from Missouri differ from the same types of clay from Pennsylvania. The plot of REE contents for the miscellaneous clays shows that the normalized means for the elements lanthanum through samarium for IPT-28 are much greater than those for the other miscellaneous clays. The means for the elements europium through lutetium are similar for all three miscellaneous clays.

  20. The Effects of Iron Oxidation State on Clay Swelling,

    DTIC Science & Technology

    1983-03-07

    swelling, montmorillonite , nontronite, smectite, water, DLVO theory, surface charge, dissolution, methods, aluminum, silicon, inert atmosphere. 2G...that many physical properties of bulk water are changed when it is adsorbed between layers of Na4- montmorillonite (e.g., Oster and Low, 1964; Kolaian...Na+- montmorillonite accounted for about 13% of the total water content in the free-swelling state. We can therefore express the total water content

  1. The Alberhill and other clay deposits of Temescal Canyon, Riverside County, California

    USGS Publications Warehouse

    Daviess, Steven Norman; Bramlette, M.N.

    1953-01-01

    Clay is mined in open pits by several companies in the Alberhill district, and the refractory clays of relatively high alumina sediment are used largely for fire brick. The Alberhill Coal and Clay Company is the largest operator and has produced a little over 2,000,000 tons of clay, of which nearly half was the refractory type. The clay occurs at the contact of the lower Tertiary and the Mesozoic basement complex. The weathered surface of basement rocks includes much clay of high iron and low alumina content, and the better clay occurs in the basal Tertiary sediments. The clay deposits vary rather abruptly in thickness and quality, and only local lenses contain workable deposits. Structural deformation makes dips of 10 to 20 degrees common and the clay strata therefore pitch under excessive overburden in short distances. Extensive deposits of thick alluvial fan deposits cover the clay-bearing strata over most of the area, and add to the overburden problems. The apparent lack of clay deposits of good quality that would total several million tons of ore, and the geological conditions that would make exploration and mining difficult and expensive make this district unpromising.

  2. Gravel-Sand-Clay Mixture Model for Predictions of Permeability and Velocity of Unconsolidated Sediments

    NASA Astrophysics Data System (ADS)

    Konishi, C.

    2014-12-01

    Gravel-sand-clay mixture model is proposed particularly for unconsolidated sediments to predict permeability and velocity from volume fractions of the three components (i.e. gravel, sand, and clay). A well-known sand-clay mixture model or bimodal mixture model treats clay contents as volume fraction of the small particle and the rest of the volume is considered as that of the large particle. This simple approach has been commonly accepted and has validated by many studies before. However, a collection of laboratory measurements of permeability and grain size distribution for unconsolidated samples show an impact of presence of another large particle; i.e. only a few percent of gravel particles increases the permeability of the sample significantly. This observation cannot be explained by the bimodal mixture model and it suggests the necessity of considering the gravel-sand-clay mixture model. In the proposed model, I consider the three volume fractions of each component instead of using only the clay contents. Sand becomes either larger or smaller particles in the three component mixture model, whereas it is always the large particle in the bimodal mixture model. The total porosity of the two cases, one is the case that the sand is smaller particle and the other is the case that the sand is larger particle, can be modeled independently from sand volume fraction by the same fashion in the bimodal model. However, the two cases can co-exist in one sample; thus, the total porosity of the mixed sample is calculated by weighted average of the two cases by the volume fractions of gravel and clay. The effective porosity is distinguished from the total porosity assuming that the porosity associated with clay is zero effective porosity. In addition, effective grain size can be computed from the volume fractions and representative grain sizes for each component. Using the effective porosity and the effective grain size, the permeability is predicted by Kozeny-Carman equation. Furthermore, elastic properties are obtainable by general Hashin-Shtrikman-Walpole bounds. The predicted results by this new mixture model are qualitatively consistent with laboratory measurements and well log obtained for unconsolidated sediments. Acknowledgement: A part of this study was accomplished with a subsidy of River Environment Fund of Japan.

  3. Phosphorus contents and phosphorous sorption in soils of the Gilgel Gibe catchment, SW Ethiopia

    NASA Astrophysics Data System (ADS)

    Behn, Christian; Janssen, Manon; Geda Adela, Yalemsew; Lennartz, Bernd

    2013-04-01

    The Gilgel Gibe reservoir, located on the edge of the Ethiopian Plateau, is threatened by siltation and nutrient imports, with phosphate concentrations being more than 50-fold higher than WHO guidelines. Phosphorus reaches the reservoir mainly adsorbed to eroded soil particles. At the same time, P availability for plant production is generally limited in strongly weathered volcanic soils due to their high P sorption capacity. The objectives of this study are therefore to determine the P contents and the P sorption capacity of the soils in the catchment, and to evaluate the influence of slope position and land use. Six catenas surrounding the reservoir (120 to 440 m long), either used as pasture or as arable land, were investigated. Topsoil samples were taken at three slope positions. Parent materials were basalt and rhyolite. Soil texture was clay, the clay content ranged between 41 and 88 %. The soils were moderately to very strongly acid with pH values of 4.6 to 5.9. Plant-available P (double lactate method), total P, Fe and Al (aqua regia digestion) as well as dithionite and oxalate extractable P, Al and Fe contents were determined. Batch experiments were conducted with 7 P concentrations ranging from 0 to 500 mg/l, and the adsorption isotherms will be evaluated using Freundlich and Langmuir models. First results showed that total P contents ranged between 0.2 and 0.5 g/kg soil. Total Fe and Al contents were extremely high with values of 36 to 85 and 29 to 80 g/kg soil, respectively. P contents were significantly correlated with Fe (r=0.68) and clay (r=0.65) contents (P<0.01), which highlights the effect of the parent material. No plant-available P, however, was found in any of the soils, demonstrating the poor growth conditions. P sorption also mainly depended on the soil's Fe content. An influence of slope position or land use on either P content or P sorption capacity could not be detected.

  4. Soil clay content underlies prion infection odds

    PubMed Central

    David Walter, W.; Walsh, Daniel P.; Farnsworth, Matthew L.; Winkelman, Dana L.; Miller, Michael W.

    2011-01-01

    Environmental factors—especially soil properties—have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. PMID:21326232

  5. Soil clay content underlies prion infection odds.

    PubMed

    David Walter, W; Walsh, Daniel P; Farnsworth, Matthew L; Winkelman, Dana L; Miller, Michael W

    2011-02-15

    Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings.

  6. Frictional Properties of the Nankai Trough Accretionary Mud Samples Collected from 1000-3000 mbsf at IODP Site C0002

    NASA Astrophysics Data System (ADS)

    Kanagawa, K.; Hoshino, K.; Abe, K.; Sawai, M.

    2016-12-01

    We conducted triaxial friction experiments on the Nankai Trough accretionary mud samples collected from 1000-3000 mbsf (meters below seafloor) at IODP Site C0002 off Kii Peninsula, at confining pressures of 44-83 MPa, pore water pressures of 32-50 MPa and temperatures of 51-98°C equivalent to their in situ conditions, and at axial displacement rates changed stepwise among 0.1, 1 and 10 µm/s, in order to investigate their frictional properties changing with depth. XRD analyses of tested mud samples revealed that the content of total clay minerals tends to increase with depth from 30 to 60 wt%, while the smectite fraction in total clay minerals decreases with depth from 0.75 to 0.3. Because the temperature at 3000 mbsf reaches 100°C, this decrease in smectite fraction with depth is likely due to the progress of smectite dehydration with increasing temperature. Friction experiments on tested mud samples revealed that the steady-state friction coefficient at an axial displacement rate of 1 µm/s tends to decrease with depth from 0.5 to 0.3, according to the increasing content of total clay minerals with depth. Velocity dependence of steady-state friction also tends to decrease with depth, likely reflecting a decrease in smectite fraction in total clay minerals. Although velocity dependence of steady-state friction is mostly positive at depths down to 3000 mbsf, it is locally neutral or negative at depths deeper than 2000 mbsf, implying that faulting at these depths is conditionally stable and possibly accompanied by slow slip events.

  7. Tc(VII) and Cr(VI) Interaction with Naturally Reduced Ferruginous Smectite from a Redox Transition Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Odeta; Pearce, Carolyn I.; Neumann, Anke

    Fe(II)-rich clay minerals found in subsurface redox transition zones (RTZs) can serve as important source of electron equivalents limiting the transport of redox active contaminants. While most laboratory reactivity studies are based on reduced model clays, the reactivity of naturally reduced clays in field samples remains poorly explored. Characterization of the clay size fraction of a fine-grained unit from RTZ interface at the Hanford site, Washington, including mineralogy, crystal chemistry, and Fe(II)/(III) content, indicates that ferruginous montmorillonite is the dominant mineralogical component. Oxic and anoxic fractions differ significantly in Fe(II) concentration, but FeTOTAL remains constant demonstrating no Fe loss duringmore » reduction-oxidation cycling. At its native pH of 8.6, the anoxic fraction despite its significant Fe(II) (~23% of FeTOTAL), exhibits minimal reactivity with TcO4- and CrO42- and much slower reaction kinetics than that measured in studies with biologically/chemically reduced model clays. Reduction capacity is enhanced by added Fe(II) (if Fe(II)SORBED >8% clay Fe(II)LABILE), however the kinetics of this conceptually surface-mediated reaction remain sluggish. Surface-sensitive Fe L-edge X-ray absorption spectroscopy shows that Fe(II)SORBED and the resulting reducing equivalents are not available in the outermost few nanometers of clay surfaces. Slow kinetics thus appear related to diffusion-limited access to electron equivalents retained within clay mineral.« less

  8. Total Hg, methyl Hg and other toxic heavy metals in a northern Gulf of Mexico estuary: Louisiana Pontchartrain basin.

    PubMed

    Delaune, R D; Gambrell, R P; Jugsujinda, Aroon; Devai, Istavan; Hou, Aixin

    2008-07-15

    Concentration of total Hg, methyl Hg, and other heavy metals were determined in sediment collected along a salinity gradient in a Louisiana Gulf Coast estuary. Surface sediment was collected at established coordinates (n = 292) along a salinity gradient covering Lake Maurepas, Lake Pontchartrain, Lake Borgne and the Chandeleur Sound located in the 12,170 km(2) Pontchartrain basin estuary southeastern coastal Louisiana. Lake Maurepas sediment with lower salinity contained higher levels of methyl Hg (0.80 microg/kg) than Lake Pontchartrain (0.55 microg/kg). Lake Maurepas sediment also had higher levels of total Hg (98.0 microg/kg) as compared to Lake Pontchartrain (67.0 microg/kg). Average total Hg content of Lake Borgne and the Chandeleur Sound sediment was 24.0 microg/kg dry sediment and methyl Hg content averaged 0.21 microg/kg dry sediment. Methyl Hg content of sediment was positively correlated with total Hg, organic matter and clay content of sediment. Methyl Hg was inversely correlated with salinity, sediment Eh and sand content. Total Hg and methyl Hg decreased with increase in salinity in the order of Lake Maurepas > Lake Pontchartrain > Lake Borgne/ the Chandeleur Sound. Lake Maurepas containing several times higher amount of methyl Hg in sediment as compared to Lake Pontchartrain and Lake Borgne and the Chandeleur Sound is an area that could serve as potential source of mercury to the aquatic food chain. Methyl Hg content of sediment in the estuary could be predicted by the equation: Methyl Hg = 0.11670-0.0625 x Salinity + 0.05349 x O.M. + 0.00513 x Total Hg - 0.00250 x Clay. Concentrations of other toxic heavy metals (Pb, Cd, Ni, Cu and Zn) in sediment were not elevated and was statistically correlated with sediment texture and iron and aluminum content of sediment.

  9. Physical and chemical characterization of Devonian gas shale. Quarterly status report, October 1-December 31, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zielinski, R.E.; Nance, S.W.

    On shale samples from the WV-6 (Monongalia County, West Virginia) well, mean total gas yield was 80.4 ft/sup 3//ton. Mean hydrocarbon gas yield was 5.7 ft/sup 3//ton, 7% of total yield. Methane was the major hydrocarbon component and carbon dioxide the major nonhydrocarbon component. Oil yield was negligible. Clay minerals and organic matter were the dominant phases of the shale. Illite averages 76% of the total clay mineral content. This is detrital illite. Permeation of methane, parallel to the bedding direction for select samples from WV-5 (Mason County, West Virginia) well ranges from 10/sup -4/ to 10/sup -12/ darcys. Themore » permeability of these shales is affected by orgaic carbon content, density, particle orientation, depositional facies, etc. Preliminary studies of Devonian shale methane sorption rates suggest that these rates may be affected by shale porosity, as well as absorption and adsorption processes. An experimental system was designed to effectively simulate sorption of methane at natural reservoir conditions. The bulk density and color of select shales from Illinois, Appalachian and Michigan Basins suggest a general trend of decreasing density with increasing organic content. Black and grayish black shales have organic contents which normally exceed 1.0 wt %. Medium dark gray and gray shales generally have organic contents less than 1.0 wt %.« less

  10. Micro-structure and Swelling Behaviour of Compacted Clayey Soils: A Quantitative Approach

    NASA Astrophysics Data System (ADS)

    Ferber, Valéry; Auriol, Jean-Claude; David, Jean-Pierre

    In this paper, the clay aggregate volume and inter-aggregate volume in compacted clayey soils are quantified, on the basis of simple hypothesis, using only their water content and dry density. Swelling tests on a highly plastic clay are then interpreted by describing the influence of the inter-aggregate volume before swelling on the total volume of samples after swelling. This approach leads to a linear relation between these latter parameters. Based on these results, a description of the evolution of the microstructure due to imbibition can be proposed. Moreover, this approach enables a general quantification of the influence of initial water content and dry density on the swelling behaviour of compacted clayey soils.

  11. Soil clay content underlies prion infection odds

    USGS Publications Warehouse

    David, Walter W.; Walsh, D.P.; Farnsworth, Matthew L.; Winkelman, D.L.; Miller, M.W.

    2011-01-01

    Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  12. Examination and Manipulation of Clay Aggregates - Initial Inquiry

    DTIC Science & Technology

    2011-06-06

    and the first conclusions in the examination and testing of clay aggregates composed of montmorillonite clay and a polysaccharide (xanthan gum, also...and the first conclusions in the examination and testing of clay aggregates composed of montmorillonite clay and a polysaccharide (xanthan gum, also...PSU and the X-gum content from 0% to 10% of the mineral content of the clay (by weight). Montmorillonite was used in all the suspensions prepared

  13. ON THE GEOCHEMISTRY OF NIOBIUM AND TANTALUM IN CLAYS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pachadzhanov, D.N.

    1963-10-01

    With the aid of the spectral method with a preliminary enrichment in tannin, the niobium and tantalum content was determined in some humid and arid clays of the Russian platform. The investigated samples were composed of 354 specimens. The average content of niobium in humid clays is 0.0020%, of tantalum 0.00024% (the Nb/Ta ratio is 8.4) and in arid clays is respectively the content of niobium 0.00133% and the content of tantalum 0.00009% (the Nb/Ta ratio is 14.8). The average value of the content of niobium content for all studied clays is 0.00183% and of the tantalum content 0.00020%, themore » Nb/Ta ratio being 9.1. In clays an interconnection of niobium with tantalum, as well as with aluminium, titanium, zirconium, and hafnium was observed. However, on the background of this connection some separation of the named elements is noted. A tendency for the Nb/Ta ratio shift from the region of matter removal towards the center of the marine basin was observed. The study of niobium and tantalum distribution over different clay fractions showed that one part of elements is connected with zircon and titanium minerals in aleuosand fraction (0.1-- 0.01 mm). Another, approximately similar part is contained in the proper clay fraction (<0. 01 mm), the tantalum somewhat more concentrating in the aleurosand fraction and niobium in the clay fraction. (P.C.H.)« less

  14. Clay-mineral assemblages from some levels of K-118 drill core of Maha Sarakham evaporites, northeastern Thailand

    NASA Astrophysics Data System (ADS)

    Suwanich, Parkorn

    Clay-mineral assemblages in Middle Clastic, Middle Salt, Lower Clastic, Potash Zone, and Lower Salt, totalling 13 samples from K-118 drill core, in the Maha Sarakham Formation, Khorat Basin, northeastern Thailand were studied. The clay-size particles were separated from the water-soluble salt by water leaching. Then the samples were leached again in the EDTA solution and separated into clay-size particles by using the timing sedimentation. The EDTA-clay residues were divided and analyzed by using the XRD and XRF method. The XRD peaks show that the major-clay minerals are chlorite, illite, and mixed-layer corrensite including traces of rectorite? and paragonite? The other clay-size particles are quartz and potassium feldspar. The XRF results indicate Mg-rich values and moderate MgAl atom ratio values in those clay minerals. The variable Fe, Na, and K contents in the clay-mineral assemblages can explain the environment of deposition compared to the positions of the samples from the core. Hypothetically, mineralogy and the chemistry of the residual assemblages strongly indicate that severe alteration and Mg-enrichment of normal clay detritus occurred in the evaporite environment through brine-sediment interaction. The various Mg-enrichment varies along the various members reflecting whether sedimentation is near or far from the hypersaline brine.

  15. Relation between Soil Order and Sorptive Capacity for Dissolved Organic Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heal, Katherine R; Brandt, Craig C; Mayes, Melanie

    2012-01-01

    Soils have historically been considered a temporary sink for organic C, but deeper soils may serve as longer term C sinks due to the sorption of dissolved organic C (DOC) onto Fe- and clay-rich mineral soil particles. This project provides an improved understanding and predictive capability of the physical and chemical properties of deep soils that control their sorptive capacities for DOC. Two hundred thirteen subsurface soil samples (72 series from five orders) were selected from the eastern and central United States. A characterized natural DOC source was added to the soils, and the Langmuir sorption equation was fitted tomore » the observed data by adjusting the maximum DOC sorption capacity (Q{sub max}) and the binding coefficient (k). Different isotherm shapes were observed for Ultisols, Alfisols, and Mollisols due to statistically significant differences in the magnitude of k, while Q{sub max} was statistically invariant among these three orders. Linear regressions were performed on the entire database and as a function of soil order to correlate Langmuir fitted parameters with measured soil properties, e.g., pH, clay content, total organic C (TOC), and total Fe oxide content. Together, textural clay and Fe oxide content accounted for 35% of the variation in Q{sub max} in the database, and clay was most important for Alfisols and Ultisols. The TOC content, however, accounted for 27% of the variation in Q{sub max} in Mollisols. Soil pH accounted for 45% of the variation in k for the entire database, 41% for Mollisols, and 22% for Alfisols. Our findings demonstrate that correlations between Langmuir parameters and soil properties are different for different soil orders and that k is a more sensitive parameter for DOC sorption than is Q{sub max} for temperate soils from the central and eastern United States.« less

  16. X-ray Diffraction and Rietveld Refinement in Deferrified Clays for Forensic Science.

    PubMed

    Prandel, Luis V; Melo, Vander de F; Brinatti, André M; Saab, Sérgio da C; Salvador, Fábio A S

    2018-01-01

    Soil vestiges might provide information about a crime scene. The Rietveld method with X-ray diffraction data (RM-XRD) is a nondestructive technique that makes it possible to characterize minerals present in the soils. Soil clays from the metropolitan region of Curitiba (Brazil) were submitted to DCB treatment and analyzed using XRD with CuK α radiation in the step-scan mode (0.02° 2θ/5 s). The GSAS+EXPGUI software was used for RM refinement. The RM-XRD results, together with the principal component analysis (PCA) (52.6% total variance), showed the kaolinite predominance in most analyzed samples and the highest quartz contents in "site 1." Higher anatase, and gibbsite and muscovite contents influenced discrimination, mainly in "site 3" and "site 1," respectively. These results were enough to discriminate clays of four sites and two horizons using a reduced amount of sample showing that the technique can be applied to the investigation into soil vestiges. © 2017 American Academy of Forensic Sciences.

  17. Heterogeneity of organic matter distribution in relation to a transgressive systems tract: Kimmeridge Clay (Jurassic), England

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbin, J.P.; Muller, C.; Geyssant, J.

    1991-03-01

    The Kimmeridge clay has been drilled in four continuously cored boreholes put down to sample the organic carbon content of the formation. Three of them sited in the Cleveland basin (Yorkshire) prove over 200 m of strata ranging from Mutabilis to Pectinatus zones; the fourth, completing a 35 km transect, proves the lower part of the Kimmeridge clay of the thinner Eastern England shelf. The results show the total organic carbon content (TOC) increasing by 50% when traced from shelf into the basin where deeper bathymetry and more rapid sedimentation have favored preservation of organic matter. The study of stratigraphicalmore » variation of % TOC enables evaluation of fundamental problems of these cycles in which organic matter is one of the major constituents. Such cycles exist throughout the Jurassic and Lower-Middle Cretaceous sequences but a transgressive systems tract such as that of the Kimmeridgian Stage enables the phenomenon to be studied in detail.« less

  18. Continental Shelf Sediments of Sarawak, Malaysian Borneo.

    PubMed

    Morni, Wan Zabidii Wan; Ab Rahim, Siti Akmar Khadijah; Masron, Tarmiji; Rumpet, Richard; Musel, Jamil; Hassan, Ruhana

    2017-01-01

    Sediment distributions in deep sea influence the benthic community structure and thus play an important role in shaping the marine ecosystem. Several studies on sediment characteristics had been conducted in South China Sea (SCS), but only limited to coastal areas of regions within SCS territories. Therefore, this study was carried out to analyze the benthic sediment profile in an area beyond 12 nautical miles off the coast of Sarawak, southern SCS. Sediment samples were collected from 31 stations, comprising three depth ranges: (I) 20-50 m, (II) 50-100 m, and (III) 100-200 m. The total organic matter (TOM) contents were determined and subjected to dry and wet sieving methods for particle size analysis. TOM contents in the deep area (>50 m) were significantly higher ( p = 0.05) and positively correlated ( r = 0.73) with silt-clay fraction. About 55% and 82% of stations in strata II and III, respectively, were dominated by silt-clay fractions (<63  μ m mean diameter), coherent with TOM data. In addition, sediments in the deep area (>50 m) tend to be poorly sorted, very fine skewed, and platykurtic. Unlike data obtained 20 years ago which reported high content of silt-clay (58%), this study recorded a lower content (35%); therefore, changes in sediment load had been observed in southern SCS.

  19. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.

    PubMed

    Gorski, Christopher A; Klüpfel, Laura E; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B

    2013-01-01

    Structural Fe in clay minerals is an important redox-active species in many pristine and contaminated environments as well as in engineered systems. Understanding the extent and kinetics of redox reactions involving Fe-bearing clay minerals has been challenging due to the inability to relate structural Fe(2+)/Fe(total) fractions to fundamental redox properties, such as reduction potentials (EH). Here, we overcame this challenge by using mediated electrochemical reduction (MER) and oxidation (MEO) to characterize the fraction of redox-active structural Fe (Fe(2+)/Fe(total)) in smectites over a wide range of applied EH-values (-0.6 V to +0.6 V). We examined Fe(2+)/Fe(total )- EH relationships of four natural Fe-bearing smectites (SWy-2, SWa-1, NAu-1, NAu-2) in their native, reduced, and reoxidized states and compared our measurements with spectroscopic observations and a suite of mineralogical properties. All smectites exhibited unique Fe(2+)/Fe(total) - EH relationships, were redox active over wide EH ranges, and underwent irreversible electron transfer induced structural changes that were observable with X-ray absorption spectroscopy. Variations among the smectite Fe(2+)/Fe(total) - EH relationships correlated well with both bulk and molecular-scale properties, including Fe(total) content, layer charge, and quadrupole splitting values, suggesting that multiple structural parameters determined the redox properties of smectites. The Fe(2+)/Fe(total) - EH relationships developed for these four commonly studied clay minerals may be applied to future studies interested in relating the extent of structural Fe reduction or oxidation to EH-values.

  20. Sedimentological and geochemical investigations to understand source of sediments and processes of recent past in Schirmacher Oasis, East Antarctica

    NASA Astrophysics Data System (ADS)

    Choudhary, Shabnam; Tiwari, Anoop Kumar; Nayak, G. N.; Bejugam, Purnima

    2018-03-01

    Three sediment cores collected from GL-1, V-1(Vetehiya) and L-6 lakes of Schirmacher Oasis, East Antarctica were studied for sediment components (sand, silt, clay, total organic carbon, total nitrogen, TOC/TN ratio and biogenic silica), major elements (Aluminium, Iron and Manganese) and trace metals (Chromium, Zinc, Lead, Cobalt, Cadmium and Nickel). High sand content in all the three cores revealed the release of coarser sediments through mechanical weathering in fluvio-glacial environment. Relatively, high biogenic silica along with high total organic carbon associated with high clay in some sections indicated high primary productivity due to the warming and exposure of the lakes to the ice-melt water influx. TOC/TN ratio for all the cores was found to be < 10 which indicated that the major source of organic matter was autochthonous. Metals were found to be strongly associated with clay and organic carbon in core V-1, with sand and clay in core L-6 while, with silt and organic matter in core GL-1 indicating their role in regulating the distribution of metals. Cadmium in lake GL-1 was found to be associated with total organic carbon and showed largely biogenic origin, while, Cd and Pb in lakes L-6 and V-1 were found to be of anthropogenic origin. All the other metals showed signatures of lithogenic origin.

  1. Influence of Clay Content, Mineralogy and Fabric On Radar Frequency Response of Aquifer Materials

    NASA Astrophysics Data System (ADS)

    West, L. J.; Handley, K.

    High frequency electromagnetic methods such as ground penetrating radar (GPR) and time domain reflectometry (TDR) are widely employed to measure water saturation in the vadose zone and water filled porosity in the saturated zone. However, previous work has shown that radar frequency dielectric properties are strongly influenced by clay as well as by water content. They have also shown that that the dielectric response of clay minerals is strongly frequency dependent, and that even a small proportion of clay such as that present in many sandstone aquifers can have a large effect at typi- cal GPR frequencies (around 100MHz). Hence accurate water content/porosity deter- mination requires clay type and content to be taken into account. Reported here are dielectric measurements on clay-sand mixtures, aimed at investigating the influence of clay mineralogy, particle shape, and the geometrical arrangement of the mixture constituents on GPR and TDR response. Dielectric permittivity (at 50-1000MHz) was measured for mixtures of Ottawa Sand and various clay minerals or clay size quartz rock flour, using a specially constructed dielectric cell. Both homogeneous and layered mixtures were tested. The influence of pore water salinity, clay type, and particle arrangement on the dielectric response is interpreted in terms of dielectric dispersion mechanisms. The appropriateness of var- ious dielectric mixing rules such as the Complex Refractive Index Method (CRIM) for determination of water content or porosity from field GPR and TDR data are dis- cussed.

  2. Predicting runoff of suspended solids and particulate phosphorus for selected Louisiana soils using simple soil tests.

    PubMed

    Udeigwe, Theophilus K; Wang, Jim J; Zhang, Hailin

    2007-01-01

    This study was conducted to evaluate the relationships among total suspended solids (TSS) and particulate phosphorus (PP) in runoff and selected soil properties. Nine Louisiana soils were subjected to simulated rainfall events, and runoff collected and analyzed for various parameters. A highly significant relationship existed between runoff TSS and runoff turbidity. Both runoff TSS and turbidity were also significantly related to runoff PP, which on average accounted for more than 98% of total P (TP) in the runoff. Runoff TSS was closely and positively related to soil clay content in an exponential fashion (y=0.10e0.01x, R2=0.91, P<0.001) while it was inversely related to soil electrical conductivity (EC) (y=0.02 x(-3.95), R2=0.70, P<0.01). A newly-devised laboratory test, termed "soil suspension turbidity" (SST) which measures turbidity in a 1:200 soil/water suspension, exhibited highly significant linear relationships with runoff TSS (y=0.06x-4.38, R2=0.82, P<0.001) and PP (y=0.04x+2.68, R2=0.85, P<0.001). In addition, SST alone yielded similar R2 value to that of combining soil clay content and EC in a multiple regression, suggesting that SST was able to account for the integrated effect of clay content and electrolytic background on runoff TSS. The SST test could be used for assessment and management of sediment and particulate nutrient losses in surface runoff.

  3. Relationship between apparent soil electrical conductivity (ECa) and soil attributes at an experimental parcel under pasture in a region of Galicia, Spain

    NASA Astrophysics Data System (ADS)

    Marinho, M. D.; Paz-Gonzalez, A.; Dafonte, J. D.; Armesto, M. V.; Raposo, J. R.

    2012-12-01

    Spatial characterization of the variability of soil properties is a central point in site-specific agricultural management and precision agriculture. Geospatial measures of geophysical attributes are useful not only to rapidly characterize the spatial variability of soil properties but also for soil sampling optimization. This work reports partial results obtained at an experimental parcel under pasture located at Castro de Ribeira do Lea (Lugo/ Galicia/ Spain). An ECa automated survey was conducted in September 2011 employing an EM-38 DD (Geonics Ltd.) installed in a nonmetallic car, according to parallel lines spaced 10m one from each other and oriented at the east-west direction. The ECa values were recorded every second with a field computer and the locations were geo-referenced using a GPS. The entire survey was carried out in 1hour and 45 minutes and corrections due to differences in temperature were made. A total of 9.581 ECa registers were retained, configuring a sampling intensity of approximately 1 register per 1.5 m2. Employing the software ESAP 2.35 and the computational tool ESAP-RSSD, eighty positions were selected at the field to extract disturbed and undisturbed soil samples at two depths: 0.0-0.2m, 0.2-0.4m. Ten physical attributes (clay, silt, total sand, coarse sand and fine sand contents, soil bulk density, particle density, total porosity, soil water content, percentage of gravels) and 17 chemical attributes (soil organic matter-SOM, pH, P, K, Ca, Mg, Al, H+Al, Sum of bases-S, Cation exchange capacity-CEC, Base saturation-V%, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were determined. The relationship between the geophysical variables and the soil attributes was performed using statistical and spatial analysis. There were significant correlations (p<0.01) between the geophysical variables and the textural attributes clay, silt, total sand and coarse sand contents. The biggest correlation (0.5623) was between ECa-V (vertical component) and clay content. Also, significant correlations (p<0.05) were found between the ECa-V and soil bulk density, total porosity, percentage of gravels and soil water content. Considering the chemical attributes, significant correlations (p< 0.01) were found between ECa-V and SOM and Cd, and between ECa-H (horizontal component) and SOM and Fe. Other significant correlations (p<0.05) were found between ECa-V and 6 soil chemical attributes: P, Ca, S, Fe, Ni and Pb. The biggest correlation was between ECa-V and SOM (-0.5942). In resume, clay content, SOM, Cd and Fe are the soil attributes better correlated with the observed variation of the ECa at the field. Additional analysis should be performed to compare the spatial patterns of these soil attributes and the ECa as a tool to proper define management zones in the area.

  4. Fluoride content of clay minerals and argillaceous earth materials

    USGS Publications Warehouse

    Thomas, Josephus; Glass, H.D.; White, W.A.; Trandel, R.M.

    1977-01-01

    A reliable method, utilizing a fluoride ion-selective electrode, is described for the determination of fluoride in clays and shales. Interference by aluminum and iron is minimal. The reproducibility of the method is about ±5% at different levels of fluoride concentration.Data are presented for various clay minerals and for the <2-µm fractions of marine and nonmarine clays and shales. Fluoride values range from 44 ppm (0.0044%) for nontronite from Colfax, WA, to 51,800 ppm (5.18%) for hectorite from Hector, CA. In general, clays formed under hydrothermal conditions are relatively high in fluoride content, provided the hydrothermal waters are high in fluoride content. Besides hectorite, dickite from Ouray, CO, was found to contain more than 50 times as much fluoride (6700 ppm) as highly crystalline geode kaolinite (125 ppm). The clay stratum immediately overlying a fluorite mineralized zone in southern Illinois was found to have a higher fluoride content than the same stratum in a nonmineralized zone approximately 1 mile away. Nonmarine shales in contact with Australian coals were found to be lower in fluoride content than were marine shales in contact with Illinois coals.It is believed that, in certain instances, peak shifts on DTA curves of similar clay minerals are the result of significant differences in their fluoride content.

  5. Cesium-137 Fallout in Indiana Soil

    NASA Astrophysics Data System (ADS)

    Whitman, Richard T.

    Atomic weapons testing during the Cold War and accidents at nuclear power plants have resulted in the release of radioactive fallout over great distances. Little is known about levels of fallout deposited in Indiana. The reported study sampled soil in all 92 Indiana counties to determine the present level of cesium-137 from the 2 to 12 centimeter depth from previous nuclear tests and other nuclear releases. A total of 67 samples were collected from forested areas and 25 from grasslands, both undisturbed since 1940, along with four controls from crawl spaces. Greater Cs-137 retention occurred in the forested areas at approximately a 2:1 ratio. Other parameters investigated included soil clay content, rate of rainfall, and soil pH. Each variable was examined for possible statistical correlation with Cs-137 retention. Both clay content and combined clay content/rainfall were significantly (p < 0.05) correlated with soil Cs-137 levels. The four controls showed very low values of Cs-137 indicating the movement of sub-micron sized fallout into areas considered safe from fallout. The Cs-137 data from this study will serve as a reliable baseline of Cs-137 levels in the event of a future release of fallout.

  6. Indicative capacity of NDVI in predictive mapping of the properties of plow horizons of soils on slopes in the south of Western Siberia

    NASA Astrophysics Data System (ADS)

    Gopp, N. V.; Nechaeva, T. V.; Savenkov, O. A.; Smirnova, N. V.; Smirnov, V. V.

    2017-11-01

    The informativeness of NDVI for predictive mapping of the physical and chemical properties of plow horizons of soils on different slope positions within the first (280-310 m a.s.l.) and second (240-280 m a.s.l.) altitudinal steps has been examined. This index is uninformative for mapping soil properties in small hollows, whose factual width is less than the Landsat image resolution (30 m). In regression models, NDVI index explains 52% of variance in the content of humus; 35 and 24% of variance in the contents of total and nitrate nitrogen; 19 and 29% of variance in the contents of total and available phosphorus; 25 and 50% of variance in the contents of exchangeable calcium and manganese; and 30 and 29% of variance in the contents of fine silt and soil water, respectively. On the basis of the models obtained, prognostic maps of the soil properties have been developed. Spatial distribution patterns of NDVI calculated from Landsat 8 images (30-m resolution) serve as the cartographic base and the main indicator of the soil properties. The NDVI values and the contents of humus, physical clay (<0.01 mm) and fine silt particles, total and nitrate nitrogen, total phosphorus, and exchangeable calcium and manganese in the soils of the first altitudinal step are higher than those in the soils of the second altitudinal step. An opposite tendency has been found for the available phosphorus content: in the soils of the second altitudinal step and the hollow, its content is higher than that in the soils of the first altitudinal step by 1.8 and 2.4 times, respectively. Differences in the pH of soil water suspensions, easily available phosphorus, and clay in the soils of the compared topographic positions (first and second altitudinal steps and the hollow) are statistically unreliable.

  7. Joint inversions of three types of electromagnetic data explicitly constrained by seismic observations: results from the central Okavango Delta, Botswana

    NASA Astrophysics Data System (ADS)

    Kalscheuer, Thomas; Blake, Sarah; Podgorski, Joel E.; Wagner, Frederic; Green, Alan G.; Maurer, Hansruedi; Jones, Alan G.; Muller, Mark; Ntibinyane, Ongkopotse; Tshoso, Gomotsang

    2015-09-01

    The Okavango Delta of northern Botswana is one of the world's largest inland deltas or megafans. To obtain information on the character of sediments and basement depths, audiomagnetotelluric (AMT), controlled-source audiomagnetotelluric (CSAMT) and central-loop transient electromagnetic (TEM) data were collected on the largest island within the delta. The data were inverted individually and jointly for 1-D models of electric resistivity. Distortion effects in the AMT and CSAMT data were accounted for by including galvanic distortion tensors as free parameters in the inversions. By employing Marquardt-Levenberg inversion, we found that a 3-layer model comprising a resistive layer overlying sequentially a conductive layer and a deeper resistive layer was sufficient to explain all of the electromagnetic data. However, the top of the basal resistive layer from electromagnetic-only inversions was much shallower than the well-determined basement depth observed in high-quality seismic reflection images and seismic refraction velocity tomograms. To resolve this discrepancy, we jointly inverted the electromagnetic data for 4-layer models by including seismic depths to an interface between sedimentary units and to basement as explicit a priori constraints. We have also estimated the interconnected porosities, clay contents and pore-fluid resistivities of the sedimentary units from their electrical resistivities and seismic P-wave velocities using appropriate petrophysical models. In the interpretation of our preferred model, a shallow ˜40 m thick freshwater sandy aquifer with 85-100 Ωm resistivity, 10-32 per cent interconnected porosity and <13 per cent clay content overlies a 105-115 m thick conductive sequence of clay and intercalated salt-water-saturated sands with 15-20 Ωm total resistivity, 1-27 per cent interconnected porosity and 15-60 per cent clay content. A third ˜60 m thick sandy layer with 40-50 Ωm resistivity, 10-33 per cent interconnected porosity and <15 per cent clay content is underlain by the basement with 3200-4000 Ωm total resistivity. According to an interpretation of helicopter TEM data that cover the entire Okavango Delta and borehole logs, the second and third layers may represent lacustrine sediments from Paleo Lake Makgadikgadi and a moderately resistive freshwater aquifer comprising sediments of the recently proposed Paleo Okavango Megafan, respectively.

  8. Dynamics of the microaggregate composition of chernozem in relation to changes in the content of organic matter

    NASA Astrophysics Data System (ADS)

    Kryshchenko, V. S.; Zamulina, I. V.; Rybyanets, T. V.; Kravtsova, N. E.; Biryukova, O. A.; Golozubov, O. M.

    2016-06-01

    Monitoring of soil dispersivity and humus state has been performed in the stationary profile of ordinary chernozem in the Botanic Garden of the Southern Federal University in 2009-2014. The contents of physical clay and sand are almost stable in time, which indicates a quasi-static (climax) equilibrium in the soil. Another (reversible dynamic) process occurs simultaneously: seasonal and annual variation in the mass fractions of clay and silt in physical clay. Variations of humus content in the whole soil and in its physical clay are also observed on the background of seasonal changes in precipitation and temperature. A procedure has been developed for the analysis of the polydisperse soil system with consideration for the quasi-static and dynamic equilibriums. A two-vector coordinate system has been introduced, which consists of scales for changes in the contents of physical clay and physical sand in 100 g of soil and changes in the fractions of clay and silt in 100 g of physical clay. Co-measurements of two dispersivity series of soil samples—actual dynamic and calculated under quasi-static equilibrium (ideal)—have been performed. Dynamic equilibrium coefficients, which cumulatively reflect the varying proportions of physical clay and physical sand in the soil and the mass fractions of clay and silt in physical clay, have been calculated.

  9. Clay minerals, metallic oxides and oxy-hydroxides and soil organic carbon distribution within soil aggregates in temperate forest soils

    NASA Astrophysics Data System (ADS)

    Gartzia-Bengoetxea, Nahia; Fernández-Ugalde, Oihane; Virto, Iñigo; Arias-González, Ander

    2017-04-01

    Soil mineralogy is of primary importance for key environmental services provided by soils like carbon sequestration. However, current knowledge on the effects of clay mineralogy on soil organic carbon (SOC) stabilization is based on limited and conflicting data. In this study, we investigated the relationship between clay minerals, metallic oxides and oxy-hydroxides and SOC distribution within soil aggregates in mature Pinus radiata D.Don forest plantations. Nine forest stands located in the same geographical area of the Basque Country (North of Spain) were selected. These stands were planted on different parent material (3 on each of the following: sandstone, basalt and trachyte). There were no significant differences in climate and forest management among them. Moreover, soils under these plantations presented similar content of clay particles. We determined bulk SOC storage, clay mineralogy, the content of Fe-Si-Al-oxides and oxyhydroxides and the distribution of organic C in different soil aggregate sizes at different soil depths (0-5 cm and 5-20 cm). The relationship between SOC and abiotic factors was investigated using a factor analysis (PCA) followed by stepwise regression analysis. Soils developed on sandstone showed significantly lower concentration of SOC (29 g C kg-1) than soils developed on basalts (97 g C kg-1) and trachytes (119 g C kg-1). The soils on sandstone presented a mixed clay mineralogy dominated by illite, with lesser amounts of hydroxivermiculite, hydrobiotite and kaolinite, and a total absence of interstratified chlorite/vermiculite. In contrast, the major crystalline clay mineral identified in the soils developed on volcanic rocks was interstratified chlorite/vermiculite. Nevertheless, no major differences were observed between basaltic and trachytic soils in the clay mineralogy. The selective extraction of Fe showed that the oxalate extractable iron was significantly lower in soils on sandstone (3.7%) than on basalts (11.2%) and trachytes (8.2%) with no significant differences between the last two. On the other hand, ditionithe extractable iron was significantly different among all soils with the following content: sandstone (13%) < trachytes (23%) < basalts (27%). Short-range order inorganic phases of Al and Fe were significantly higher in soils developed on volcanic parent materials. The distribution of organic C in soil aggregates revealed that as much as 50% of the organic C was concentrated in mega (20-10 mm and 10-5 mm) and large-(5-2 mm) aggregates in soils developed in sandstones, while 25% and 36% of the total organic C was found in theses aggregates in basaltic and trachytic soils respectively. Basaltic soils showed significantly higher proportion of organic C (>20%) in microaggregates (0.25-0.053 mm) and silt+clay size aggregates (< 0.053 mm) than the other two soils (<10%). The regression analysis revealed that short-range order minerals influence the amount of SOC via microaggregation and that chlorite-vermiculite mixed layer minerals had a significant influence on the amount of SOC relating this stabilization mechanism to macroagregation. This study highlights that dynamic models of SOC turnover in acid soils from temperate forest should include proxies for clay mineralogy and for the content of Fe and Al oxides and oxy-hydro-oxides.

  10. [Contents of different soil fluorine forms in North Anhui and their affecting factors].

    PubMed

    Yu, Qun-ying; Ci, En; Yang, Lin-zhang

    2007-06-01

    By the method of consecutive extraction, this paper studied the contents and vertical distribution of soil fluorine (F) forms in North Anhui, with their relations to the soil physical and chemical properties analyzed. The results showed that the soil total F (T-F) content in North Anhui was ranged from 265.8 mg . kg(-1) to 612.8 mg . kg(-1), with an average of 423.7 mg . kg(-1), and decreased in the sequence of vegetable soil > fluvo-aquic soil > paddy soil > shajiang black soil > yellow brown soil. Among the T-F, residual F (Res-F) was the main form, occupying > 95% of total F, followed by water soluble F (Ws-F), being about 1.5% of the total, and organic-F (Or-F), Fe and Mn oxide-F (Fe/Mn-F) and exchangeable-F (Ex-F) only had very small amount. The Ws-F content in test soils ranged from 1.35 mg . kg(-1) to 17.98 mg . kg(-1), with a mean value of 6.62 mg . kg(-1). Vegetable soil, fluvo-aquic soil and shajiang black soil had a relatively higher content of Ws-F, while yellow brown soil was in adverse. Soil pH and the contents of soil organic matter, total and available phosphorus, and physical clay were the main factors affecting the contents of various F forms. Soil Ws-F was significantly positively correlated with soil pH and soil total and available phosphorus, soil Ex-F was significantly positively correlated with soil clay ( < 0.01 mm and <0.001 mm), soil Fe/Mn-F was significantly positively correlated with soil total phosphorus, and soil Or-F had a significant positive correlation with soil organic matter. Soil Ws-F content also had a close connection to the parent material. The soil developed from shallow lacustrine and marsh sediments usually had the highest Ws-F content, followed by those developed from Huang River alluvial deposit, Q3 loess, Huaihe River alluvial deposit, and light-texture yellow brown soil, with the mean Ws-F content being 9.05, 8.12, 2.97, 2.05 and 1.91 mg . kg(-1), respectively. The contents of soil Or-F and Fe/Mn-F decreased with increasing soil depth, and those of T-F and Ws-F in vegetable soil were higher in upper than in deeper soil layers.

  11. Preparation of PEO/Clay Nanocomposites Using Organoclay Produced via Micellar Adsorption of CTAB

    PubMed Central

    Gürses, Ahmet; Ejder-Korucu, Mehtap; Doğar, Çetin

    2012-01-01

    The aim of this study was the preparation of polyethylene oxide (PEO)/clay nanocomposites using organoclay produced via micellar adsorption of cethyltrimethyl ammonium bromide (CTAB) and their characterisation by X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectra, and the investigation of certain mechanical properties of the composites. The results show that the basal distance between the layers increased with the increasing CTAB/clay ratio as parallel with the zeta potential values of particles. By considering the aggregation number of CTAB micelles and interlayer distances of organo-clay, it could be suggested that the predominant micelle geometry at lower CTAB/clay ratios is an ellipsoidal oblate, whereas, at higher CTAB/clay ratios, sphere-ellipsoid transition occurs. The increasing tendency of the exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. FT-IR spectra show that the intensity of Si-O stretching vibrations of the organoclays (1050 cm−1) increased, especially in the ratios of 1.0 g/g clay and 1.5 g/g clay with the increasing CTAB content. It was observed that the mechanical properties of the composites are dependent on both the CTAB/clay ratios and clay content of the composites. PMID:23365515

  12. Continental Shelf Sediments of Sarawak, Malaysian Borneo

    PubMed Central

    Masron, Tarmiji; Rumpet, Richard; Musel, Jamil

    2017-01-01

    Sediment distributions in deep sea influence the benthic community structure and thus play an important role in shaping the marine ecosystem. Several studies on sediment characteristics had been conducted in South China Sea (SCS), but only limited to coastal areas of regions within SCS territories. Therefore, this study was carried out to analyze the benthic sediment profile in an area beyond 12 nautical miles off the coast of Sarawak, southern SCS. Sediment samples were collected from 31 stations, comprising three depth ranges: (I) 20–50 m, (II) 50–100 m, and (III) 100–200 m. The total organic matter (TOM) contents were determined and subjected to dry and wet sieving methods for particle size analysis. TOM contents in the deep area (>50 m) were significantly higher (p = 0.05) and positively correlated (r = 0.73) with silt-clay fraction. About 55% and 82% of stations in strata II and III, respectively, were dominated by silt-clay fractions (<63 μm mean diameter), coherent with TOM data. In addition, sediments in the deep area (>50 m) tend to be poorly sorted, very fine skewed, and platykurtic. Unlike data obtained 20 years ago which reported high content of silt-clay (58%), this study recorded a lower content (35%); therefore, changes in sediment load had been observed in southern SCS. PMID:29075660

  13. Effects of preparation methods on the structure and mechanical properties of wet conditioned starch/montmorillonite nanocomposite films.

    PubMed

    Müller, Péter; Kapin, Éva; Fekete, Erika

    2014-11-26

    TPS/Na-montmorillonite nanocomposite films were prepared by solution and melt blending. Clay content changed between 0 and 25 wt% based on the amount of dry starch. Structure, tensile properties, and water content of wet conditioned films were determined as a function of clay content. Intercalated structure and VH-type crystallinity of starch were found for all the nanocomposites independently of clay and plasticizer content or preparation method, but at larger than 10 wt% clay content nanocomposites prepared by melt intercalation contained aggregated particles as well. In spite of the incomplete exfoliation clay reinforces TPS considerably. Preparation method has a strong influence on mechanical properties of wet conditioned films. Mechanical properties of the conditioned samples prepared by solution homogenization are much better than those of nanocomposites prepared by melt blending. Water, which was either adsorbed or bonded in the composites in conditioning or solution mixing process, respectively, has different effect on mechanical properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Soil clay content controls the turnover of slow soil carbon across Chinese cropland

    NASA Astrophysics Data System (ADS)

    Feng, W.; Jiang, J.; Li, J.

    2017-12-01

    Improving the prediction of changes in global soil organic carbon (SOC) lies in accurate estimate of C inputs to soils and SOC turnover time. Since C inputs to soils in cropland can be estimated due to well documented data of crop yields, SOC turnover rate becomes critical for accurate prediction of changes in SOC. The laboratory incubation is widely used but cannot well represent the turnover of slow soil C that accounts for the majority of total SOC, while the long-term observation of temporal changes in SOC stock offers an opportunity to estimate the turnover of slow soil C. Using time series data of SOC stock of twenty long-term agricultural trials that have initiated since 1990 in China, we estimated SOC turnover rates based on changes in soil C pool size and aimed to identify the dominant controls on SOC turnover rate across Chinese cropland. We used the two-pool first-order kinetic soil C model and the inverse modeling with Markov chain the Monte Carlo algorithm, and estimated humification coefficient (h) of C inputs to soils, turnover rates of fast and slow soil C pools, and the transfer coefficient between these two soil C pools. The preliminary results show that the turnover rate of slow soil C is positively correlated with climate (i.e. mean annual temperature and precipitation) but negatively correlated with the clay content, demonstrating that the clay content is important in regulating SOC turnover rates. The ratio of humification coefficient to C turnover rate (h/k) that indicates soil C sequestration efficiency, is negatively correlated with climate and positively correlated with the clay content. In addition, the quantity of C inputs is correlated with h/k and the turnover rate of slow soil C, suggesting that the quantity of C inputs plays an important role in mediating C sequestration efficiency. Further results will inform us the main controls on SOC turnover in Chinese cropland. Keywords: SOC; turnover; long-term trial; temporal change; clay content; inverse modeling

  15. Engineering Characteristics of Chemically Treated Water-Repellent Kaolin

    PubMed Central

    Choi, Youngmin; Choo, Hyunwook; Yun, Tae Sup; Lee, Changho; Lee, Woojin

    2016-01-01

    Water-repellent soils have a potential as alternative construction materials that will improve conventional geotechnical structures. In this study, the potential of chemically treated water-repellent kaolin clay as a landfill cover material is explored by examining its characteristics including hydraulic and mechanical properties. In order to provide water repellency to the kaolin clay, the surface of clay particle is modified with organosilanes in concentrations (CO) ranging from 0.5% to 10% by weight. As the CO increases, the specific gravity of treated clay tends to decrease, whereas the total organic carbon content of the treated clay tends to increase. The soil-water contact angle increases with an increase in CO until CO = 2.5%, and then maintains an almost constant value (≈134.0°). Resistance to water infiltration is improved by organosilane treatment under low hydrostatic pressure. However, water infiltration resistance under high hydrostatic pressure is reduced or exacerbated to the level of untreated clay. The maximum compacted dry weight density decreases with increasing CO. As the CO increases, the small strain shear modulus increases, whereas the effect of organosilane treatment on the constrained modulus is minimal. The results indicate that water-repellent kaolin clay possesses excellent engineering characteristics for a landfill cover material. PMID:28774098

  16. Interphase vs confinement in starch-clay bionanocomposites.

    PubMed

    Coativy, Gildas; Chevigny, Chloé; Rolland-Sabaté, Agnès; Leroy, Eric; Lourdin, Denis

    2015-03-06

    Starch-clay bionanocomposites containing 1-10% of natural montmorillonite were elaborated by melt processing in the presence of water. A complex macromolecular dynamics behavior was observed: depending on the clay content, an increase of the glass transition temperature and/or the presence of two overlapped α relaxation peaks were detected. Thanks to a model allowing the prediction of the average interparticle distance, and its comparison with the average size of starch macromolecules, it was possible to associate these phenomena to different populations of macromolecules. In particular, it seems that for high clay content (10%), the slowdown of segmental relaxation due to confinement of the starch macromolecules between the clay tactoïds is the predominant phenomenon. While for lower clay contents (3-5%), a significant modification of chain relaxation seems to occur, due to the formation of an interphase by the starch macromolecules in the vicinity of clay nanoparticles coexisting with the bulk polymer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Spatially resolved nanoscale observations of soil carbon multidecadal persistence

    NASA Astrophysics Data System (ADS)

    Lutfalla, S.; Chenu, C.; Bernard, S.; Le Guillou, C.; Barré, P.

    2015-12-01

    Assessing how mineral surfaces, especially at small scale, can protect soil organic carbon (SOC) from biodegradation is crucial. The question we address in this work is whether different mineral species lead to different organo-mineral interactions and stabilize different quantities of SOM and different types of SOC. Here we used the unique opportunity offered by long term bare fallows (BF) to study in situ C dynamics in several fine fractions of a silty loam soil. With no vegetation i.e. no external input of fresh C, the plant-free soil of the Versailles 42 Plots (INRA, France) has been progressively enriched in persistent SOC during the 80 years of BF. Contrasted mineral phases of the clay size fraction were isolated by size fractionation on samples from 5 different dates (0, 10, 22, 52, and 79 years after the beginning of the BF, four field replicates per date). Four fractions were studied: total clays (< 2 μm), and three sub fractions in the clay (fine clay: 0 - 0.05 μm, intermediate clay: 0.05 - 0.2 μm, and coarse clay: 0.2 - 2 μm). X-ray diffraction analyses showed contrasted mineralogies in the fine and intermediate clay (smectite and mixed layered illite/smectite) as opposed to the coarse clay (smectite, illite, kaolinite and mixed layered I/S). We performed CHN elemental analysis and synchrotron based spectroscopy and microscopy (NEXAFS bulk and STXM at the carbon K edge of 280 eV, CLS Saskatoon, Canada) to study the dynamics, the distribution and the chemical speciation of the SOC in these fractions. The quantity of C appears to be stabilized after 50 years of BF, even though the dynamics are different for the three clay fractions. Indeed, coarse and intermediate clays have the same final C content but coarse clays lose more C. Fine clay experiences the highest C losses and displays the highest final C content suggesting that fine clays contained more labile C and more persistent C. In all fractions, C:N ratios are really low (below 8) and are decreasing with time, evidencing the dominant presence of microbial SOC. STXM-NEXAFS data shows that, in the fine and intermediate clay fractions, during the first 50 years of BF all mineral particles are associated with SOC. On the contrary, in the coarse clays, SOC displays more diversity: the chemical signature is more diverse and mineral particles not associated with SOC appear more quickly.

  18. Clay Chemistry's Influence on the Average Carbon Content and Particle Size at the Ninety-Six Historical Site, South Carolina

    NASA Astrophysics Data System (ADS)

    Lintz, L.; Werts, S. P.

    2014-12-01

    The Ninety-Six National Historic Site is located in Greenwood County, SC. Recent geologic mapping of this area has revealed differences in soil properties over short distances within the park. We studied the chemistry of the clay minerals found within the soils to see if there was a correlation between the amounts of soil organic carbon contained in the soil and particle size in individual soil horizons. Three different vegetation areas, including an old field, a deciduous forest, and a pine forest were selected to see what influence vegetation type had on the clay chemistry and carbon levels as well. Four samples containing the O, A, and B horizons were taken from each location and we studied the carbon and nitrogen content using an elemental analyzer, particle size using a Laser Diffraction Particle Size Analyzer, and clay mineralogy with powder X-ray diffraction of each soil sample. Samples from the old field and pine forest gave an overall negative correlation between carbon content and clay percentage, which is against the normal trend for Southern Piedmont Ultisols. The deciduous forest samples gave no correlation at all between its carbon content and clay percentage. Together, all three locations show the same negative relationship, while once separated into vegetation type and A and B horizons it shows even more abnormal relationships of negative while several show no correlation (R2= 0.007403- 0.56268). Using powder XRD, we ran clay samples from each A and B horizon for the clay mineralogy. All three vegetation areas had the same results of containing quartz, kaolinite, and Fe oxides, therefore, clay chemistry is not a reason behind the abnormal trend of a negative correlation between average carbon content and clay percentage. Considering that all three locations have the same climate, topography, and parent material of metagranite, it could be reasonable to assume these results are a factor of environmental and biological influences rather than clay type.

  19. Relationship between apparent soil electrical conductivity (ECa) and soil attributes at an experimental parcel under pasture in a region of Galicia, Spain.

    NASA Astrophysics Data System (ADS)

    Marinho, Mara de A.; Dafonte, Jorge D.; Armesto, Montserrat V.; Paz-González, Antonio; Raposo, Juan R.

    2013-04-01

    Spatial characterization of the variability of soil properties is a central point in site-specific agricultural management and precision agriculture. Geospatial measures of geophysical attributes are useful not only to rapidly characterize the spatial variability of soil properties but also for soil sampling optimization. This work reports partial results obtained at an experimental parcel under pasture located at Castro de Ribeira do Lea (Lugo/ Galicia/ Spain). An ECa automated survey was conducted in September 2011 employing an EM-38 DD (Geonics Ltd.) installed in a nonmetallic car, according to parallel lines spaced 10m one from each other and oriented at the east-west direction. The ECa values were recorded every second with a field computer and the locations were geo-referenced using a GPS. The entire survey was carried out in 1hour and 45 minutes and corrections due to differences in temperature were made. A total of 9.581 ECa registers were retained, configuring a sampling intensity of approximately 1 register per 1.5 m2. Employing the software ESAP 2.35 and the computational tool ESAP-RSSD, eighty positions were selected at the field to extract disturbed and undisturbed soil samples at two depths: 0.0-0.2m, 0.2-0.4m. Ten physical attributes (clay, silt, total sand, coarse sand and fine sand contents, soil bulk density, particle density, total porosity, soil water content, percentage of gravels) and 17 chemical attributes (soil organic matter-SOM, pH, P, K, Ca, Mg, Al, H+Al, Sum of bases-S, Cation exchange capacity-CEC, Base saturation-V%, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were determined. The relationship between the geophysical variables and the soil attributes was performed using statistical and spatial analysis. There were significant correlations (p<0.01) between the geophysical variables and the textural attributes clay, silt, total sand and coarse sand contents. The biggest correlation (0.5623) was between ECa-V (vertical component) and clay content. Also, significant correlations (p<0.05) were found between the ECa-V and soil bulk density, total porosity, percentage of gravels and soil water content. Considering the chemical attributes, significant correlations (p< 0.01) were found between ECa-V and SOM and Cd, and between ECa-H (horizontal component) and SOM and Fe. Other significant correlations (p<0.05) were found between ECa-V and 6 soil chemical attributes: P, Ca, S, Fe, Ni and Pb. The biggest correlation was between ECa-V and SOM (-0.5942). In resume, clay content, SOM, Cd and Fe are the soil attributes better correlated with the observed variation of the ECa at the field. Additional analysis should be performed to compare the spatial patterns of these soil attributes and the ECa as a tool to proper define management zones in the area. Acknowledgements: This work was funded in part by Spanish Ministry of Science and Innovation (MICINN) in the frame of project CGL2009-13700-C02. Financial support from CAPES/GOV., Brazil, is also acknowledged by Prof. M. de A. Marinho.

  20. Evaluation of free water and water activity measurements as functional alternatives to total moisture content in broiler excreta and litter samples.

    PubMed

    van der Hoeven-Hangoor, E; Rademaker, C J; Paton, N D; Verstegen, M W A; Hendriks, W H

    2014-07-01

    Litter moisture contents vary greatly between and within practical poultry barns. The current experiment was designed to measure the effects of 8 different dietary characteristics on litter and excreta moisture content. Additionally, free water content and water activity of the excreta and litter were evaluated as additional quality measures. The dietary treatments consisted of nonstarch polysaccharide content (NSP; corn vs. wheat), particle size of insoluble fiber (coarse vs. finely ground oat hulls), viscosity of a nonfermentable fiber (low- and high-viscosity carboxymethyl cellulose), inclusion of a clay mineral (sepiolite), and inclusion of a laxative electrolyte (MgSO4). The 8 treatments were randomly assigned to cages within blocks, resulting in 12 replicates per treatment with 6 birds per replicate. Limited effects of the dietary treatments were noted on excreta and litter water activity, and indications were observed that this measurement is limited in high-moisture samples. Increasing dietary NSP content by feeding a corn-based diet (low NSP) compared with a wheat-based diet (high NSP) increased water intake, excreta moisture and free water, and litter moisture content. Adding insoluble fibers to the wheat-based diet reduced excreta and litter moisture content, as well as litter water activity. Fine grinding of the oat hulls diminished the effect on litter moisture and water activity. However, excreta moisture and free water content were similar when fed finely or coarsely ground oat hulls. The effects of changing viscosity and adding a clay mineral or laxative deviated from results observed in previous studies. Findings of the current experiment indicate a potential for excreta free water measurement as an additional parameter to assess excreta quality besides total moisture. The exact implication of this parameter warrants further investigation. © 2014 Poultry Science Association Inc.

  1. Tillage and crop residue management methods had minor effects on the stock and stabilization of topsoil carbon in a 30-year field experiment.

    PubMed

    Singh, Pooja; Heikkinen, Jaakko; Ketoja, Elise; Nuutinen, Visa; Palojärvi, Ansa; Sheehy, Jatta; Esala, Martti; Mitra, Sudip; Alakukku, Laura; Regina, Kristiina

    2015-06-15

    We studied the effects of tillage and straw management on soil aggregation and soil carbon sequestration in a 30-year split-plot experiment on clay soil in southern Finland. The experimental plots were under conventional or reduced tillage with straw retained, removed or burnt. Wet sieving was done to study organic carbon and soil composition divided in four fractions: 1) large macroaggregates, 2) small macroaggregates, 3) microaggregates and 4) silt and clay. To further estimate the stability of carbon in the soil, coarse particulate organic matter, microaggregates and silt and clay were isolated from the macroaggregates. Total carbon stock in the topsoil (equivalent to 200 kg m(-2)) was slightly lower under reduced tillage (5.0 kg m(-2)) than under conventional tillage (5.2 kg m(-2)). Reduced tillage changed the soil composition by increasing the percentage of macroaggregates and decreasing the percentage of microaggregates. There was no evidence of differences in the composition of the macroaggregates or carbon content in the macroaggregate-occluded fractions. However, due to the higher total amount of macroaggregates in the soil, more carbon was bound to the macroaggregate-occluded microaggregates in reduced tillage. Compared with plowed soil, the density of deep burrowing earthworms (Lumbricus terrestris) was considerably higher under reduced tillage and positively associated with the percentage of large macroaggregates. The total amount of microbial biomass carbon did not differ between the treatments. Straw management did not have discernible effects either on soil aggregation or soil carbon stock. We conclude that although reduced tillage can improve clay soil structure, generally the chances to increase topsoil carbon sequestration by reduced tillage or straw management practices appear limited in cereal monoculture systems of the boreal region. This may be related to the already high C content of soils, the precipitation level favoring decomposition and aggregate turnover in the winter with topsoil frost. Copyright © 2015. Published by Elsevier B.V.

  2. Effects of shrub encroachment on soil organic carbon in global grasslands.

    PubMed

    Li, He; Shen, Haihua; Chen, Leiyi; Liu, Taoyu; Hu, Huifeng; Zhao, Xia; Zhou, Luhong; Zhang, Pujin; Fang, Jingyun

    2016-07-08

    This study aimed to evaluate the effect of shrub encroachment on soil organic carbon (SOC) content at broad scales and its controls. We conducted a meta-analysis using paired control data of shrub-encroached grassland (SEG) vs. non-SEG collected from 142 studies worldwide. SOC contents (0-50 cm) were altered by shrub encroachment, with changes ranging from -50% to + 300%, with an effect size of 0.15 (p < 0.01). The SOC contents increased in semi-arid and humid regions, and showed a greater rate of increase in grassland encroached by leguminous shrubs than by non-legumes. The SOC content decreased in silty and clay soils but increased in sand, sandy loam and sandy clay loam. The SOC content increment was significantly positively correlated with precipitation and temperature as well as with soil bulk density but significantly negatively correlated with soil total nitrogen. We conclude the main effects of shrub encroachment would be to increase topsoil organic carbon content. As structural equation model revealed, soils properties seem to be the primary factors responsible for the extent of the changes, coarse textured soils having a greater capacity than fine textured soils to increase the SOC content. This increased effect appears to be secondarily enhanced by climate and plant elements.

  3. The role of organic matter and clay content in sediments for bioavailability of pyrene.

    PubMed

    Spasojević, Jelena; Maletić, Snežana; Rončević, Srđan; Grgić, Marko; Krčmar, Dejan; Varga, Nataša; Dalmacija, Božo

    2018-01-01

    Evaluation of the bioavailable fractions of organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) is extremely important for assessing their risk to the environment. This available fraction, which can be solubilised and/or easily extracted, is believed to be the most accessible for bioaccumulation, biosorption and/or transformation. Sediment organic matter (OM) and clay play an important role in the biodegradation and bioavailability of PAHs. The strong association of PAHs with OM and clay in sediments has a great influence not only on their distribution but also on their long-term environmental impact. This paper investigates correlations between bioavailability and the clay and OM contents in sediments. The results show that OM is a better sorbent for pyrene (chosen as a model PAH) and that increasing the OM content reduces the bioavailable fraction. A mathematical model was used to predict the kinetic desorption, and these results showed that the sediment with the lowest content of OM had an F fast value of 24%, whereas sediment with 20% OM gave a value of 9%. In the experiments with sediments with different clay contents, no clear dependence between clay and rate constants of the fast desorbing fractions was observed, which can be explained by the numerous possible interactions at the molecular level.

  4. Temperature dependence of soil water potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, A.M.O.; Yong, R.N.; Cheung, S.C.H.

    1992-12-01

    To understand the process of coupled heat and water transport, the relationship between temperature and soil water potential must be known. Two clays, Avonlea bentonite and Lake Agassiz clay, are being considered as the clay-based sealing materials for the Canadian nuclear fuel waste disposal vault. Avonlea bentonite is distinguished from Lake Agassiz clay by its high sealing potential in water. A series of experiments was performed in which the two clays were mixed with equal amounts of sand and were compacted to a dry density of 1.67 Mg/m[sup 3] under various moisture contents and temperatures. A psychrometer was placed withinmore » the compacted clay-sand to measure the soil water potential based on the electromotive force measured by the psychrometer. The results indicate that the soil water potential at a particular temperature is higher for both clay-sand mixtures than predicted by the change in the surface tension of water; this effect is much more prominent in the Avonlea bentonite and at low moisture contents. The paper presents empirical equations relating the soil water potential with the moisture content and temperature of the two clay-sand mixtures. 24 refs., 8 figs., 2 tabs.« less

  5. Soil fertility and plant diversity enhance microbial performance in metal-polluted soils.

    PubMed

    Stefanowicz, Anna M; Kapusta, Paweł; Szarek-Łukaszewska, Grażyna; Grodzińska, Krystyna; Niklińska, Maria; Vogt, Rolf D

    2012-11-15

    This study examined the effects of soil physicochemical properties (including heavy metal pollution) and vegetation parameters on soil basal respiration, microbial biomass, and the activity and functional richness of culturable soil bacteria and fungi. In a zinc and lead mining area (S Poland), 49 sites were selected to represent all common plant communities and comprise the area's diverse soil types. Numerous variables describing habitat properties were reduced by PCA to 7 independent factors, mainly representing subsoil type (metal-rich mining waste vs. sand), soil fertility (exchangeable Ca, Mg and K, total C and N, organic C), plant species richness, phosphorus content, water-soluble heavy metals (Zn, Cd and Pb), clay content and plant functional diversity (based on graminoids, legumes and non-leguminous forbs). Multiple regression analysis including these factors explained much of the variation in most microbial parameters; in the case of microbial respiration and biomass, it was 86% and 71%, respectively. The activity of soil microbes was positively affected mainly by soil fertility and, apparently, by the presence of mining waste in the subsoil. The mining waste contained vast amounts of trace metals (total Zn, Cd and Pb), but it promoted microbial performance due to its inherently high content of macronutrients (total Ca, Mg, K and C). Plant species richness had a relatively strong positive effect on all microbial parameters, except for the fungal component. In contrast, plant functional diversity was practically negligible in its effect on microbes. Other explanatory variables had only a minor positive effect (clay content) or no significant influence (phosphorus content) on microbial communities. The main conclusion from this study is that high nutrient availability and plant species richness positively affected the soil microbes and that this apparently counteracted the toxic effects of metal contamination. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Investigation of quartz diagenesis in mudstones of the Spraberry and Wolfcamp Formations

    NASA Astrophysics Data System (ADS)

    Eakin, A.; Reece, J. S.

    2016-12-01

    Here we present preliminary core analysis of the diagenetic variability existing within a siliceous mudstone facies of the Permian Spraberry and Wolfcamp Formations in the Midland Basin, Texas. Within this mudstone facies, the carbonate content varies from absent in several Wolfcamp Formation samples to >40 wt. % in the Spraberry Formation. A normalized ratio of quartz to clay content with carbonate removed reveals a systematic decrease in quartz content with increasing clay content. This relationship is typical of rocks with variable amounts of detrital quartz content. However, in this siliceous mudstone facies, the abundance of detrital quartz silt grains does not vary widely. Additionally, for the same clay content, the Wolfcamp Formation shows a higher concentration of quartz than the Spraberry Formation. Scanning electron microscopy (SEM) reveals the presence of microcrystalline quartz cement that likely accounts for the increased quartz content in the Wolfcamp Formation. This research tests the hypothesis that the increased quartz cement in the Wolfcamp Formation may occur at the expense of the carbonate cement present in the overlying Spraberry Formation. Furthermore, the deviation in quartz content for the same clay concentration only occurs once the ratio of quartz to clay content increases beyond 1.2. This ratio may represent a threshold of detrital quartz in the clay matrix required to have enough porosity and nucleation surface area for authigenic quartz growth. The presence of matrix cement may impact the mechanical properties to favor fracturing and cataclasis over more ductile deformation. This would enhance development of secondary porosity, while also increasing permeability through the connection of primary pores. Acquiring a fundamental understanding of diagenesis in the Spraberry and Wolfcamp Formations will aid in better prediction of mechanical behavior during drilling and optimized resource recovery.

  7. Soil texture analysis revisited: Removal of organic matter matters more than ever

    PubMed Central

    Schjønning, Per; Watts, Christopher W.; Christensen, Bent T.; Munkholm, Lars J.

    2017-01-01

    Exact estimates of soil clay (<2 μm) and silt (2–20 μm) contents are crucial as these size fractions impact key soil functions, and as pedotransfer concepts based on clay and silt contents are becoming increasingly abundant. We examined the effect of removing soil organic matter (SOM) by H2O2 before soil dispersion and determination of clay and silt. Soil samples with gradients in SOM were retrieved from three long-term field experiments each with uniform soil mineralogy and texture. For soils with less than 2 g C 100 g-1 minerals, clay estimates were little affected by SOM. Above this threshold, underestimation of clay increased dramatically with increasing SOM content. Silt contents were systematically overestimated when SOM was not removed; no lower SOM threshold was found for silt, but the overestimation was more pronounced for finer textured soils. When exact estimates of soil particles <20 μm are needed, SOM should always be removed before soil dispersion. PMID:28542416

  8. Soil texture analysis revisited: Removal of organic matter matters more than ever.

    PubMed

    Jensen, Johannes Lund; Schjønning, Per; Watts, Christopher W; Christensen, Bent T; Munkholm, Lars J

    2017-01-01

    Exact estimates of soil clay (<2 μm) and silt (2-20 μm) contents are crucial as these size fractions impact key soil functions, and as pedotransfer concepts based on clay and silt contents are becoming increasingly abundant. We examined the effect of removing soil organic matter (SOM) by H2O2 before soil dispersion and determination of clay and silt. Soil samples with gradients in SOM were retrieved from three long-term field experiments each with uniform soil mineralogy and texture. For soils with less than 2 g C 100 g-1 minerals, clay estimates were little affected by SOM. Above this threshold, underestimation of clay increased dramatically with increasing SOM content. Silt contents were systematically overestimated when SOM was not removed; no lower SOM threshold was found for silt, but the overestimation was more pronounced for finer textured soils. When exact estimates of soil particles <20 μm are needed, SOM should always be removed before soil dispersion.

  9. The distribution of organic carbon fractions in a typical loess-paleosol profile and its paleoenvironmental significance

    PubMed Central

    Hu, Feinan; Huo, Na; Shang, Yingni; Chang, Wenqian

    2018-01-01

    Background The loess-paleosol sequence on the Loess Plateau has been considered an important paleoclimatic archive to study global climatic and environmental changes in the Quaternary. So far, little attention has been paid to the characteristics of soil organic carbon fractions in loess-paleosol sequences, which may provide valuable information for exploring the evolution of climate and environment in the Quaternary on the Loess Plateau. Methods In order to explore the significance of mineral-associated organic carbon to total organic carbon (MOC/TOC) ratios in the loess-paleosol sequence for reconstructing paleoenvironmental and paleoclimatic evolution in the Quaternary on the Loess Plateau, we selected a typical loess-paleosol profile in Chunhua county, Xianyang city, Shaanxi province, as the research object. The content of total organic carbon (TOC) and MOC/TOC ratio in each loess and paleosol layers of the Chunhua loess-paleosol profile were analyzed, together with the paleoclimatic proxies, such as soil grain size, CaCO3 content and their correlations with organic carbon parameters. Results The main results were as follows: (1) the total content of soil organic carbon and MOC/TOC ratios were generally higher in paleosol layers than in the underlying loess layers of the Chunhua loess-paleosol profile. Compared to total organic carbon content, MOC/TOC ratios changed more obviously in soil layers below a paleosol layer S8; (2) soil clay content and median grain size (Md (ϕ)) were higher in paleosol than in the underlying loess, while CaCO3 content showed an opposite tendency. In the Chunhua profile, the distribution characteristics of the three paleoclimatic proxies showed good indications of paleoclimate changes in the Quaternary; (3) in the Chunhua loess-paleosol profile, MOC/TOC ratios were positively correlated with clay content and median grain size (ϕ), while negatively correlated with CaCO3 content, and the correlations were more significant in soil layers below S8. Discussion Our results indicated that MOC/TOC ratios in the Chunhua loess-paleosol profile correlated with the cold dry-warm wet paleoclimatic cycle in the Quaternary. The high MOC/TOC ratios in the loess-paleosol profile might reflect warm and humid climate, while lower ratios indicated relatively cold and dry climate. That is because when the climate changed from warm-humid to cold-dry, the vegetation coverage and pedogenesis intensity decreased, which increased soil CaCO3 content and decreased soil clay content and Md (ϕ), leading to decreased MOC/TOC ratios. Compared to TOC, MOC/TOC ratios had greater significance in indicating paleoenvironmental evolution in the Quaternary on the Loess Plateau. Therefore, investigating MOC/TOC ratios in loess-paleosol profile can offer new evidence to reconstructing paleoenvironmental changes, and also provide a basis for predicting responses of soil organic carbon pools to vegetation and climate changes in the future. PMID:29666763

  10. Responses of soil physical and chemical properties to karst rocky desertification evolution in typical karst valley area

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Zhou, Dequan; Bai, Xiaoyong; zeng, Cheng; Xiao, Jianyong; Qian, Qinghuan; Luo, Guangjie

    2018-01-01

    In order to reveal the differences of soil physical and chemical properties and their response mechanism to the evolution of KRD. The characteristics of soil physical and chemical properties of different grades of KRD were studied by field sampling method to research different types of KRD in the typical karst valley of southern China. Instead of using space of time, to explore the response and the mechanisms of the soil physical and chemical properties at the different evolution process. The results showed that: (1) There were significant differences in organic matter, pH, total nitrogen, total phosphorus, total potassium, sediment concentration, clay content and AWHC in different levels of KRD environment. However, these indicators are not with increasing desertification degree has been degraded, but improved after a first degradation trends; (2) The correlation analysis showed that soil organic matter, acid, alkali, total nitrogen, total phosphorus, total potassium and clay contents were significantly correlated with other physical and chemical factors. They are the key factors of soil physical and chemical properties, play a key role in improving soil physical and chemical properties and promoting nutrient cycling; (3) The principal component analysis showed that the cumulative contribution rate of organic matter, pH, total nitrogen, total phosphorus, total potassium and sediment concentration was 80.26%, which was the key index to evaluate rocky desertification degree based on soil physical and chemical properties. The results have important theoretical and practical significance for the protection and restoration of rocky desertification ecosystem in southwest China.

  11. Preparation and properties of recycled HDPE/clay hybrids

    Treesearch

    Yong Lei; Qinglin Wu; Craig M. Clemons

    2007-01-01

    Hybrids based on recycled high density polyethylene (RHDPE) and organic clay were made by melt compounding. The influence of blending method, compatibilizers, and clay content on clay intercalation and exfoliation, RHDPE crystallization behavior, and the mechanical properties of RHDPE/clay hybrids were investigated. Both maleated polyethylene (MAPE) and titanate could...

  12. Soil organic carbon sequestration as affected by afforestation: the Darab Kola forest (north of Iran) case study.

    PubMed

    Kooch, Yahya; Hosseini, Seyed Mohsen; Zaccone, Claudio; Jalilvand, Hamid; Hojjati, Seyed Mohammad

    2012-09-01

    Following the ratification of the Kyoto Protocol, afforestation of formerly arable lands and/or degraded areas has been acknowledged as a land-use change contributing to the mitigation of increasing atmospheric CO(2) concentration in the atmosphere. In the present work, we study the soil organic carbon sequestration (SOCS) in 21 year old stands of maple (Acer velutinum Bioss.), oak (Quercus castaneifolia C.A. Mey.), and red pine (Pinus brutia Ten.) in the Darab Kola region, north of Iran. Soil samples were collected at four different depths (0-10, 10-20, 20-30, and 30-40 cm), and characterized with respect to bulk density, water content, electrical conductivity, pH, texture, lime content, total organic C, total N, and earthworm density and biomass. Data showed that afforested stands significantly affected soil characteristics, also raising SOCS phenomena, with values of 163.3, 120.6, and 102.1 Mg C ha(-1) for red pine, oak and maple stands, respectively, vs. 83.0 Mg C ha(-1) for the control region. Even if the dynamics of organic matter (OM) in soil is very complex and affected by several pedo-climatic factors, a stepwise regression method indicates that SOCS values in the studied area could be predicted using the following parameters, i.e., sand, clay, lime, and total N contents, and C/N ratio. In particular, although the chemical and physical stabilization capacity of organic C by soil is believed to be mainly governed by clay content, regression analysis showed a positive correlation between SOCS and sand (R = 0.86(**)), whereas a negative correlation with clay (R = -0.77(**)) was observed, thus suggesting that most of this organic C occurs as particulate OM instead of mineral-associated OM. Although the proposed models do not take into account possible changes due to natural and anthropogenic processes, they represent a simple way that could be used to evaluate and/or monitor the potential of each forest plantation in immobilizing organic C in soil (thus reducing atmospheric C concentration), as well as to select more appropriate species during forestation plan management at least in the north of Iran.

  13. The Influence of SAND’s Gradation and Clay Content of Direct Sheart Test on Clayey Sand

    NASA Astrophysics Data System (ADS)

    Wibisono, Gunawan; Agus Nugroho, Soewignjo; Umam, Khairul

    2018-03-01

    The shear strength of clayey-sand can be affected by several factors, e.g. gradation, density, moisture content, and the percentage of clay and sand fraction. The same percentage of clay and sand fraction in clayey-sand mixtures may have different shear strengths due to those factors. This research aims to study the effect of clay content on sand that cause the change of its shear strength. Samples consisted of different clay and sand fractions were reconstituted at a certain moisture content. Sand fractions varied from well-graded to poorly-graded sand. Shear strength was measured in terms of the direct shear test. Prior to the test, surcharge loads were applied to represent overburden pressures. Shear strength results and their components (i.e. Cohesion and internal angle of friction) were correlated with physical properties of samples (i.e. grading coefficient of curvature, coefficient of uniformity, and density). Results showed that samples classified as well-graded and dense sand had higher shear strength. In the other hand, the shear strengths decreased when the mixtures became poorly-graded and less dense. The inclusion of the clay fraction increased cohesion component and decreased internal angle of friction.

  14. Impact of vineyard abandonment and natural recolonization on metal content and availability in Mediterranean soils.

    PubMed

    de Santiago-Martín, Ana; Vaquero-Perea, Cristina; Valverde-Asenjo, Inmaculada; Quintana Nieto, Jose R; González-Huecas, Concepción; Lafuente, Antonio L; Vázquez de la Cueva, Antonio

    2016-05-01

    Abandonment of vineyards after uprooting has dramatically increased in last decades in Mediterranean countries, often followed by vegetation expansion processes. Inadequate management strategies can have negative consequences on soil quality. We studied how the age and type of vegetation cover and several environmental characteristics (lithology, soil properties, vineyard slope and so on) after vineyard uprooting and abandonment contribute to the variation patterns in total, HAc (acetic acid-method, HAc) and EDTA-extractable (ethylenediaminetetraacetic acid-method) concentrations of Cd, Cu, Pb and Zn in soils. We sampled 141 points from vineyards and abandoned vineyard Mediterranean soils recolonized by natural vegetation in recent decades. The contribution of several environmental variables (e.g. age and type of vegetation cover, lithology, soil properties and vineyard slope) to the total and extractable concentrations of metals was evaluated by canonical ordination based on redundancy analysis, considering the interaction between both environmental and response variables. The ranges of total metal contents were: 0.01-0.15 (Cd), 2.6-34 (Cu), 6.6-30 (Pb), and 29-92mgkg(-1) (Zn). Cadmium (11-100%) had the highest relative extractability with both extractants, and Zn and Pb the lowest. The total and EDTA-extractable of Cd, Pb and Zn were positively related to the age of abandonment, to the presence of Agrostis castellana and Retama sphaerocarpa, and to the contents of Fe-oxides, clay and organic matter (OM). A different pattern was noted for Cu, positively related to vineyard soils. Soil properties successfully explained HAc-extractable Cd, Cu, Pb and Zn but the age and type of vegetation cover lost significance. Clay content was negatively related to HAc-extractable Cu and Pb; and OM was positively related to HAc-Cd and Zn. In conclusion, the time elapsed after vineyard uprooting, and subsequent land abandonment, affects the soil content and availability of metals, and this impact depended on the colonizing plant species and soil properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Clay-Alcohol-Water Dispersions: Anomalous Viscosity Changes Due to Network Formation of Clay Nanosheets Induced by Alcohol Clustering.

    PubMed

    Kimura, Yuji; Haraguchi, Kazutoshi

    2017-05-16

    Clay-alcohol-water ternary dispersions were compared with alcohol-water binary mixtures in terms of viscosity and optical absorbance. Aqueous clay dispersions to which lower alcohols (ethanol, 1-propanol, 2-propanol, and tert-butanol) were added exhibited significant viscosity anomalies (maxima) when the alcohol content was 30-55 wt %, as well as optical absorbance anomalies (maxima). The maximum viscosity (η max ) depended strongly on the clay content and varied between 300 and 8000 mPa·s, making it remarkably high compared with the viscosity anomalies (2 mPa·s) observed in alcohol-water binary mixtures. The alcohol content at η max decreased as the hydrophobicity of the alcohol increased. The ternary dispersions with viscosity anomalies exhibited thixotropic behaviors. The effects of other hydrophilic solvents (glycols) and other kinds of clays were also clarified. Based on these findings and the average particle size changes, the viscosity anomalies in the ternary dispersions were explained by alcohol-clustering-induced network formation of the clay nanosheets. It was estimated that 0.9, 1.7, and 2.5 H 2 O molecules per alcohol molecule were required to stabilize the ethanol, 2-propanol, and tert-butanol, respectively, in the clay-alcohol-water dispersions.

  16. Adsorption and desorption of glyphosate in Mollisols and Ultisols soils of Argentina

    NASA Astrophysics Data System (ADS)

    Gomez Ortiz, Ana Maria; Okada, Elena; Costa, Jose Luis; Bedmar, Francisco

    2017-04-01

    Glyphosate is the most used pesticide in Argentina. About 200 million liters of its commercial product are annually applied, representing nearly 60% of the total amount of the commercialized pesticides. This massive use is attributed to the widespread adoption of no-till management combined with genetically modified crops that are glyphosate resistant (e.g. soybean, maize, cotton). In this way, the use of glyphosate has created great concern regarding the potential negative impacts it may have in the environment. The adsorption-desorption process of glyphosate was studied in three Argentinean soils (two Mollisols and one Ultisol) with contrasting properties: organic carbon (1.3-3.4%), clay (14.7-78.5%), pH (5.4-6.3), P Bray (7.6-29.6 mg/kg), total Fe (0.81-8.4%), and Al3+ (0.11-0.69 meq/100 g). Glyphosate adsorption isotherms were modeled using the Freundlich equation to estimate the adsorption coefficient (Kf). In general, glyphosate adsorption was high and the Kf values varied from 115.6 to 1612 (R2 = 0.94-0.99). The main factors controlling adsorption were clay content, total Fe, Al3+, P Bray and soil pH. Decreased hysteresis desorption was found in one of the Mollisols soils with the lowest contents of Al3+, Fe, and clay, as well as high pH and P Bray. In that soil, 12.2% of glyphosate was desorbed after three washing steps indicating a higher potential environmental risk. Results of this study contribute to the knowledge about glyphosate retention in soils and allows the identification of behavior patterns of this extensively applied herbicide in different edaphic scenarios. This is of major importance for the development of decision making tools and criteria to reduce the potential negative impacts on soil and groundwater resources.

  17. Characterisation of the wall-slip during extrusion of heavy-clay products

    NASA Astrophysics Data System (ADS)

    Kocserha, I.; Gömze, A. L.; Kulkov, S.; Kalatur, E.; Buyakova, S. P.; Géber, R.; Buzimov, A. Y.

    2017-01-01

    During extrusion through the extrusion die, heavy-clay compounds are usually show plug flow with extensive slip at the wall of the die. In this study, the viscosity and the thickness of the slip layer were investigated. For the examination a brick-clay from Malyi (Hungary) deposit was applied as a raw material. The clay was characterised by XRPD, BET, SEM and granulometry. As the slip layer consists of suspension of the fine clay fraction so the clay minerals content of the clay (d<2µm) was separated by the help of sedimentation. The viscosity of suspension with different water content was measured by means of rotational viscosimeter. The thickness of the slip layer was calculated from the measured viscosity and other data obtained from an earlier study with capillary rheometer. The calculated thickness value showed a tendency to reach a limit value by increasing the extrusion speed.

  18. California Bearing Ratio (CBR) test on stabilization of clay with lime addition

    NASA Astrophysics Data System (ADS)

    Hastuty, I. P.; Roesyanto; Limbong, M. N.; Oberlyn, S. J.

    2018-02-01

    Clay is a type of soil with particles of certain minerals giving plastic properties when mixed with water. Soil has an important role in a construction, besides as a building material in a wide variety of civil engineering works, soil is also used as supporting foundation of the building. Basic properties of clay are rock-solid in dry and plastic with medium water content. In high water content, clay becomes sticky like (cohesive) and soften. Therefore, clay stabilization is necessary to repair soil’s mechanical properties. In this research, lime is use as a stabilizer that contains the Ca+ element to bond bigger particles. Lime used is slaked lime Ca(OH)2. Clay used has liquid limitation (LL) value of 47.33%, plasticity index of 29.88% and CBR value 6.29. The results explain about 10% lime mixture variation gives the optimum stabilized clay with CBR value of 8.75%.

  19. Pore characteristics and their emergent effect on water adsorption and transport in clays using small-angle neutron scattering with contrast variation

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hartl, M.; Wang, Y.; Hjelm, R.

    2013-12-01

    In nuclear waste management, clays are canonical materials in the construction of engineered barriers. They are also naturally occurring reactive minerals which play an important role in retention and colloidal facilitated reactive transport in subsurface systems. Knowledge of total and accessible porosity in clays is crucial in determining fluids transport behavior in clays. It will provide fundamental insight on the performance efficiency of specific clays as a barrier material and their role in regulating radionuclide transport in subsurface environments. The aim of the present work is to experimentally investigate the change in pore characteristics of clays as function of moisture content, and to determine their pore character in relation to their water retention capacity. Recent developments in small-angle neutron scattering (SANS) techniques allow quantitative measurement of pore morphology and size distribution of various materials in their pristine state under various sample environments (exposure to solution, high temperature, and so on). Furthermore, due to dramatic different neutron scattering properties of hydrogen and deuterium, one can readily use contrast variation, which is the isotopic labeling with various ratios of H and D (e.g. mixture of H2O/D2O) to highlight or suppress features of the sample. This is particularly useful in the study of complex pore system such as clays. In this study, we have characterized the pore structures for a number of clays including clay minerals and field samples which are relevant to high-level waste systems under various sample environments (e.g., humidity, temperature and pressure) using SANS. Our results suggest that different clays show unique pore features under various sample environments. To distinguish between accessible/non-accessible pores and the nature of pore filling (e.g. the quantity of H2O adsorbed by clays, and the distribution of H2O in relation to pore character) to water, clays were exposed for various periods to a specific humidity (e.g., relative humidity: RH=100%, RH=75%). The humidity is controlled by using saturated aqueous solutions, consisting of specific H2O/D2O mixtures. Our results have shown distinct variations in water adsorption and moisture diffusivity among clays. Our results allow us to obtain on the pore scale porosity changes due to water movement in clays. As emergent transport property, nano- to micro-scale structural characterization is crucial in providing insights into pore-scale transport processes, which are pertinent to upscale continuum model development involving flow and transport at low water content, flow and phase behavior under confinement, and low-permeability media.

  20. Seismic Velocities Contain Information About Depth, Lithology, Fluid Content, and Microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berge, P A; Bonner, B P

    2002-01-03

    Recent advances in field and laboratory methods for measuring elastic wave velocities provide incentive and opportunity for improving interpretation of geophysical data for engineering and environmental applications. Advancing the state-of-the-art of seismic imaging requires developing petrophysical relationships between measured velocities and the hydrogeology parameters and lithology. Our approach uses laboratory data and rock physics methods. Compressional (Vp) and shear (Vs) wave velocities, Vp/Vs ratios, and relative wave amplitudes show systematic changes related to composition, saturation, applied stress (analogous to depth), and distribution of clay for laboratory ultrasonic measurements on soils. The artificial soils were mixtures of Ottawa sand and amore » second phase, either Wyoming bentonite or peat moss used to represent clay or organic components found in natural soils. Compressional and shear wave velocities were measured for dry, saturated, and partially-saturated conditions, for applied stresses between about 7 and 100 kPa, representing approximately the top 5 m of the subsurface. Analysis of the results using rock physics methods shows the link between microstructure and wave propagation, and implications for future advances in seismic data interpretation. For example, we found that Vp in dry sand-clay mixtures initially increases as clay cements the sand grains and fills porosity, but then Vp decreases when the clay content is high enough that the clay matrix controls the elastic response of the material. Vs decreases monotonically with increasing clay content. This provides a method for using Vp/Vs ratios to estimate clay content in a dry soil.« less

  1. Beyond clay: Towards an improved set of variables for predicting soil organic matter content

    USGS Publications Warehouse

    Rasmussen, Craig; Heckman, Katherine; Wieder, William R.; Keiluweit, Marco; Lawrence, Corey R.; Berhe, Asmeret Asefaw; Blankinship, Joseph C.; Crow, Susan E.; Druhan, Jennifer; Hicks Pries, Caitlin E.; Marin-Spiotta, Erika; Plante, Alain F.; Schadel, Christina; Schmiel, Joshua P.; Sierra, Carlos A.; Thompson, Aaron; Wagai, Rota

    2018-01-01

    Improved quantification of the factors controlling soil organic matter (SOM) stabilization at continental to global scales is needed to inform projections of the largest actively cycling terrestrial carbon pool on Earth, and its response to environmental change. Biogeochemical models rely almost exclusively on clay content to modify rates of SOM turnover and fluxes of climate-active CO2 to the atmosphere. Emerging conceptual understanding, however, suggests other soil physicochemical properties may predict SOM stabilization better than clay content. We addressed this discrepancy by synthesizing data from over 5,500 soil profiles spanning continental scale environmental gradients. Here, we demonstrate that other physicochemical parameters are much stronger predictors of SOM content, with clay content having relatively little explanatory power. We show that exchangeable calcium strongly predicted SOM content in water-limited, alkaline soils, whereas with increasing moisture availability and acidity, iron- and aluminum-oxyhydroxides emerged as better predictors, demonstrating that the relative importance of SOM stabilization mechanisms scales with climate and acidity. These results highlight the urgent need to modify biogeochemical models to better reflect the role of soil physicochemical properties in SOM cycling.

  2. Beyond clay - using selective extractions to improve predictions of soil carbon content

    NASA Astrophysics Data System (ADS)

    Rasmussen, C.; Berhe, A. A.; Blankinship, J. C.; Crow, S. E.; Druhan, J. L.; Heckman, K. A.; Keiluweit, M.; Lawrence, C. R.; Marin-Spiotta, E.; Plante, A. F.; Schaedel, C.; Schimel, J.; Sierra, C. A.; Thompson, A.; Wagai, R.; Wieder, W. R.

    2016-12-01

    A central component of modern soil carbon (C) models is the use of clay content to scale the relative partitioning of decomposing plant material to respiration and mineral stabilized soil C. However, numerous pedon to plot scale studies indicate that other soil mineral parameters, such as Fe- or Al-oxyhydroxide content and specific surface area, may be more effective than clay alone for predicting soil C content and stabilization. Here we directly address the following question: Are there soil physicochemical parameters that represent mineral C association and soil C content that can replace or be used in conjunction with clay content as scalars in soil C models. We explored the relationship of soil C content to a number of soil physicochemical and physiographic parameters using the National Cooperative Soil Survey database that contains horizon level data for > 62,000 pedons spanning global ecoregions and geographic areas. The data indicated significant variation in the degree of correlation among soil C, clay and Fe-/Al-oxyhydroxides with increasing moisture variability. Specifically, dry, water-limited systems (PET/MAP > 1) presented strong positive correlations between clay and soil C, that decreased significantly to little or no correlation in wet, energy-limited systems (PET/MAP < 1). In contrast, the correlation of soil C to oxalate extractable Al+Fe increased significantly with increasing moisture availability. This pattern was particularly well expressed for subsurface B horizons. Multivariate analyses indicated similar patterns, with clear climate and ecosystem level variation in the degree of correlation among soil C and soil physicochemical properties. The results indicate a need to modify current soil C models to incorporate additional C partitioning parameters that better account for climate and ecoregion variability in C stabilization mechanisms.

  3. Application of Nucleic Acid-Based Tools for Monitoring Monitored Natural Attenuation (MNA), Biostimulation and Bioaugmentation at Chlorinated Solvent Sites

    DTIC Science & Technology

    2011-02-01

    TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................... ii...gallons. In 1978, the lagoons were emptied by pumping the contents into the A-Block Lagoon (SWMU 22), a ESTCP ER-0518 Final Report 25...feet bgs, but deeper at some locations, the clay content increased significantly. In approximately 20 to 30 feet above bedrock, sandy clay and clayey

  4. Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: binary and ternary mixtures of quartz, illite, and montmorillonite

    USGS Publications Warehouse

    Tembe, Sheryl; Lockner, David A.; Wong, Teng-Fong

    2010-01-01

    We investigated the frictional sliding behavior of simulated quartz-clay gouges under stress conditions relevant to seismogenic depths. Conventional triaxial compression tests were conducted at 40 MPa effective normal stress on saturated saw cut samples containing binary and ternary mixtures of quartz, montmorillonite, and illite. In all cases, frictional strengths of mixtures fall between the end-members of pure quartz (strongest) and clay (weakest). The overall trend was a decrease in strength with increasing clay content. In the illite/quartz mixture the trend was nearly linear, while in the montmorillonite mixtures a sigmoidal trend with three strength regimes was noted. Microstructural observations were performed on the deformed samples to characterize the geometric attributes of shear localization within the gouge layers. Two micromechanical models were used to analyze the critical clay fractions for the two-regime transitions on the basis of clay porosity and packing of the quartz grains. The transition from regime 1 (high strength) to 2 (intermediate strength) is associated with the shift from a stress-supporting framework of quartz grains to a clay matrix embedded with disperse quartz grains, manifested by the development of P-foliation and reduction in Riedel shear angle. The transition from regime 2 (intermediate strength) to 3 (low strength) is attributed to the development of shear localization in the clay matrix, occurring only when the neighboring layers of quartz grains are separated by a critical clay thickness. Our mixture data relating strength degradation to clay content agree well with strengths of natural shear zone materials obtained from scientific deep drilling projects.

  5. The Effects Of Physical And Biological Cohesion On Bedforms

    NASA Astrophysics Data System (ADS)

    Parsons, D. R.; Schindler, R.; Baas, J.; Hope, J. A.; Malarkey, J.; Paterson, D. M.; Peakall, J.; Manning, A. J.; Ye, L.; Aspden, R.; Alan, D.; Bass, S. J.

    2014-12-01

    Most coastal sediments consist of complex mixtures of cohesionless sands, physically-cohesive clays and extra cellular polymeric substances (EPS) that impart biological cohesion. Yet, our ability to predict bedform dimensions in these substrates is reliant on predictions based exclusively on cohesionless sand. We present findings from the COHBED project - which explicitly examines how bedform dynamics are modified by natural cohesion. Our experimental results show that for ripples, height and length are inversely proportional to initial clay content and bedforms take longer to appear, with no ripples when clay content exceeds 18%. When clay is replaced by EPS the development time and time of first appearance of ripples both increase by two orders of magnitude, with no bedforms above 0.125% EPS. For dunes, height and length are also inversely proportional to initial substrate clay content, resulting in a transition from dunes to ripples normally associated with velocity decreases. Addition of low EPS concentrations into the substrate results in yet smaller bedforms at the same clay contents and at high EPS concentrations, biological cohesion supersedes all electrostatic bonding, and bedform size is no longer related to mud content. The contrast in physical and biological cohesion effects on bedform development result from the disparity between inter-particle electrostatic bonding of clay particles and EPS grain coating and strands that physically link sediments together, which effects winnowing rates as bedforms evolve. These findings have wide ranging implications for bedform predictions in both modern and ancient environments. Coupling of biological and morphological processes not only requires an understanding of how bedform dimensions influence biota and habitat, but also how benthic species can modify bedform dimensions. Consideration of both aspects provides a means in which fluid dynamics, sediment transport and ecosystem energetics can be linked to yield improved predictions of morphological and habitat adjustment.

  6. Clay mineralogy and its palaeoclimatic significance in the Luochuan loess-palaeosols over ˜1.3 Ma, Shaanxi, northwestern China

    NASA Astrophysics Data System (ADS)

    Won, Changdok; Hong, Hanlie; Cheng, Feng; Fang, Qian; Wang, Chaowen; Zhao, Lulu; Churchman, Gordon Jock

    2018-03-01

    To understand climate changes recorded in the Luochuan loess-palaeosols, Shaanxi province, northwestern China, clay mineralogy was studied using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and scanning electron microscopy (SEM) methods. XRD results show that clay mineral compositions in the Luochuan loess-palaeosols are dominantly illite, with minor chlorite, kaolinite, smectite, and illite-smectite mixed-layer clays (I/S). Illite is the most abundant species in the sediments, with a content of 61%-83%. The content of chlorite ranges from 5%-22%, and the content of kaolinite ranges from 5%-19%. Smectite (or I/S) occurs discontinuously along the loess profile, with a content of 0-8%. The Kübler index of illite (IC) ranges from 0.255°-0.491°, and the illite chemical index (ICI) ranges from 0.294-0.394. The CIA values of the loesspalaeosols are 61.9-69.02, and the R3+/(R3+ + R2+ + M+) values are 0.508-0.589. HRTEM observations show that transformation of illite to illite-smectite has occurred in both the loess and palaeosol, suggesting that the Luochuan loess-palaeosols have experienced a certain degree of chemical weathering. The Luochuan loess-palaeosols have the same clay mineral assemblage along the profile. However, the relative contents of clay mineral species, CIA, ICI, and IC values fluctuate frequently along the profile, and all these parameters display a similar trend. Moreover, climate changes suggested by the clay index are consistent with variations in the deep-sea δ18O records and the magnetic susceptibility value, and thus, climate changes in the Luochuan region have been controlled by global climate change.

  7. Photoinduced charge separation in a colloidal system of exfoliated layered semiconductor controlled by coexisting aluminosilicate clay.

    PubMed

    Nakato, Teruyuki; Yamada, Yoshimi; Miyamoto, Nobuyoshi

    2009-02-05

    We investigated photoinduced charge separation occurring in a multicomponent colloidal system composed of oxide nanosheets of photocatalytically active niobate and photochemically inert clay and electron accepting methylviologen dications (MV2+). The inorganic nanosheets were obtained by exfoliation of layered hexaniobate and hectorite clay. The niobate and clay nanosheets were spatially separated in the colloidally dispersed state, and the MV2+ molecules were selectively adsorbed on the clay platelets. UV irradiation of the colloids led to electron transfer from the niobate nanosheets to the MV2+ molecules adsorbed on clay. The photoinduced electron transfer produced methylviologen radical cations (MV*+), which was characterized by high yield and long lifetime. The yield and stability of the MV*+ species were found to depend strongly on the clay content of the colloid: from a few mol % to approximately 70 mol % of the yield and several tens of minutes to more than 40 h of the lifetime. The contents of the niobate nanosheets and MV2+ molecules and the aging of the colloid also affected the photoinduced charge separation. In the absence of MV2+ molecules in the colloid, UV irradiation induced electron accumulation in the niobate nanosheets. The stability of the electron-accumulated state also depended on the clay content. The variation in the photochemical behavior is discussed in relation to the viscosity of the colloid.

  8. Effect of clay content on morphology and processability of electrospun keratin/poly(lactic acid) nanofiber.

    PubMed

    Isarankura Na Ayutthaya, Siriorn; Tanpichai, Supachok; Sangkhun, Weradesh; Wootthikanokkhan, Jatuphorn

    2016-04-01

    This research work has concerned the development of volatile organic compounds (VOCs) removal filters from biomaterials, based on keratin extracted from chicken feather waste and poly(lactic acid) (PLA) (50/50%w/w) blend. Clay (Na-montmorillonite) was also added to the blend solution prior to carrying out an electro-spinning process. The aim of this study was to investigate the effect of clay content on viscosity, conductivity, and morphology of the electrospun fibers. Scanning electron micrographs showed that smooth and bead-free fibers were obtained when clay content used was below 2 pph. XRD patterns of the electrospun fibers indicated that the clay was intercalated and exfoliated within the polymers matrix. Percentage crystallinity of keratin in the blend increased after adding the clay, as evidenced from FTIR spectra and DSC thermograms. Transmission electron micrographs revealed a kind of core-shell structure with clay being predominately resided within the keratin rich shell and at the interfacial region. Filtration performance of the electrospun keratin/PLA fibers, described in terms of pressure drop and its capability of removing methylene blue, were also explored. Overall, our results demonstrated that it was possible to improve process-ability, morphology and filtration efficiency of the electrospun keratin fibers by adding a suitable amount of clay. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Pyrolysis of attapulgite clay blended with yak dung enhances pasture growth and soil health: Characterization and initial field trials.

    PubMed

    Rafiq, Muhammad Khalid; Joseph, Stephen D; Li, Fei; Bai, Yanfu; Shang, Zhanhuan; Rawal, Aditya; Hook, James M; Munroe, Paul R; Donne, Scott; Taherymoosavi, Sara; Mitchell, David R G; Pace, Ben; Mohammed, Mohanad; Horvat, Joseph; Marjo, Christopher E; Wagner, Avital; Wang, Yanlong; Ye, Jun; Long, Rui-Jun

    2017-12-31

    Recent studies have shown that the pyrolysis of biomass combined with clay can result in both lower cost and increase in plant yields. One of the major sources of nutrients for pasture growth, as well as fuel and building materials in Tibet is yak dung. This paper reports on the initial field testing in a pasture setting in Tibet using yak dung, biochar, and attapulgite clay/yak dung biochars produced at ratios of 10/90 and 50/50 clay to dung. We found that the treatment with attapulgite clay/yak dung (50/50) biochar resulted in the highest pasture yields and grass nutrition quality. We also measured the properties and yields of mixtures of clay/yak dung biochar used in the field trials produced at 400°C and 500°C to help determine a possible optimum final pyrolysis temperature and dung/clay ratio. It was observed that increasing clay content increased carbon stability, overall biochar yield, pore size, carboxyl and ketone/aldehyde functional groups, hematite and ferrous/ferric sulphate/thiosulphate concentration, surface area and magnetic moment. Decreasing clay content resulted in higher pH, CEC, N content and an enhanced ability to accept and donate electrons. The resulting properties were a complex function of both processing temperature and the percentage of clay for the biochars processed at both 400°C and 500°C. It is possible that the increase in yield and nutrient uptake in the field trial is related to the higher concentration of C/O functional groups, higher surface area and pore volume and higher content of Fe/O/S nanoparticles of multiple oxidation state in the 50/50 clay/dung. These properties have been found to significantly increase the abundance of beneficial microorganisms and hence improve the nutrient cycling and availability in soil. Further field trials are required to determine the optimum pyrolysis production conditions and application rate on the abundance of beneficial microorganisms, yields and nutrient quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Development of a new medium frequency EM device: Mapping soil water content variations using electrical conductivity and dielectric permittivity

    NASA Astrophysics Data System (ADS)

    Kessouri, P.; Buvat, S.; Tabbagh, A.

    2012-12-01

    Both electrical conductivity and dielectric permittivity of soil are influenced by its water content. Dielectric permittivity is usually measured in the high frequency range, using GPR or TDR, where the sensitivity to water content is high. However, its evaluation is limited by a low investigation depth, especially for clay rich soils. Electrical conductivity is closely related not only to soil water content, but also to clay content and soil structure. A simultaneous estimation of these electrical parameters can allow the mapping of soil water content variations for an investigation depth close to 1m. In order to estimate simultaneously both soil electrical conductivity and dielectric permittivity, an electromagnetic device working in the medium frequency range (between 100 kHz and 10 MHz) has been designed. We adopted Slingram geometry for the EM prototype: its PERP configuration (vertical transmission loop Tx and horizontal measuring loop Rx) was defined using 1D ground models. As the required investigation depth is around 1m, the coil spacing was fixed to 1.2m. This prototype works in a frequency range between 1 and 5 MHz. After calibration, we tested the response of prototype to objects with known properties. The first in situ measurements were led on experimental sites with different types of soils and different water content variations (artificially created or natural): sandy alluvium on a plot of INRA (French National Institute for Agricultural Research) in Orléans (Centre, France), a clay-loam soil on an experimental site in Estrée-Mons (Picardie, France) and fractured limestone at the vicinity of Grand (Vosges, France). In the case of the sandy alluvium, the values of dielectric permittivity measured are close to those of HF permittivity and allow the use of existing theoretical models to determine the soil water content. For soils containing higher amount of clay, the coupled information brought by the electrical conductivity and the dielectric permittivity is used. Variations of water content detected by the EM prototype are confirmed by additional DC electrical profiling and direct mass water content measurements along depth. For the clay-loam soil, containing more than 20% of clay, the relative dielectric permittivity values, ranging from 63 to 138, are much higher than those expected in the high frequency range (above 20 MHz, the highest measured permittivity is equal to 81 for water). In the medium frequency range, those values are very likely due to interfacial polarization. This effect, also known as Maxwell-Wagner polarization, should increase with the soil clay content. The first measuring trial is coherent with the gravimetric water content as well as DC electrical profiling measurements. For a clay rich soil, the EM prototype is able to detect water content variations for an investigation depth close to 1m with both electrical conductivity and dielectric permittivity in the medium frequency range. Other field experiments are scheduled to confirm these results on other types of soils.

  11. Numerous nanopores developed in organo-clay complexes during the shale formations

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Wang, T.; Lu, H.; Liao, J.

    2017-12-01

    Shale gas as new energy resource is either stored in nano pores and microfractures or absorbed on the surface of kerogen and clay aggregate (Chalmers et al., 2012). Nano pores developed in organic matters is very important, because these organic pores have better connectivity than inorganic pores (Loucks et al., 2012) and can form an effective pore system where shale gas flows dominantly (Curtis et al., 2010). In order to figure out how the organic pores is affected by shale compositions, we conduct in-situ FE-SEM and EDS analysis on organic-rich Longmaxi shales. The data indicate that 1) organic matter, mixed with clay minerals, can form an organo-clay complex containing many nanopores; 2)furthermore, larger organic pores are developed in organo-clay complexes with higher clay content than in those with lower clay content(Wang et al., 2017). It seems that the presence of organo-clay complex raises the heterogeneous than pure organic matters. Organo-clay complex may bring in lots of intergranular nanopores between organic matter and clay minerals. Another potential interpretation is that clay minerals may influence kerogen thermal decomposition, generation of hydrocarbons and thus the development of organic pores. The presence of numerous nanopores in organo-clay complexes may promote the connectivity of the pore network and enhance the hydrocarbon production efficiency for shale gas field.

  12. Infrared analysis of clay bricks incorporated with spent shea waste from the shea butter industry.

    PubMed

    Adazabra, A N; Viruthagiri, G; Shanmugam, N

    2017-04-15

    The peculiar challenge of effective disposing abundant spent shea waste and the excellent compositional variation tolerance of clay material offered an impetus to examine the incorporation of spent shea waste into clay material as an eco-friendly disposal route in making clay bricks. For this purpose, the chemical constituent, mineralogical compositions and thermal behavior of both clay material and spent shea waste were initially characterized from which modelled brick specimens incorporating 5-20 wt% of the waste into the clay material were prepared. The clay material showed high proportions of SiO 2 (52.97 wt%) and Al 2 O 3 (27.10 wt%) indicating their rich kaolinitic content: whereas, the inert nature of spent shea waste was exhibited by their low oxide content. The striking similarities in infrared absorption bands of pristine clay material and clay materials incorporated with 15 wt% of spent shea waste showed that the waste incorporation had no impact on bond formation of the clay bricks. Potential performance benefits of developing bricks from clay material incorporated with spent shea waste included improved fluxing agents, economic sintering and making of sustainable bricks. Consequently, the analytical results authenticate the incorporation of spent shea waste into clay materials for various desired benefits aside being an environmental correct route of its disposal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Assessment of the mechanical properties of sisal fiber-reinforced silty clay using triaxial shear tests.

    PubMed

    Wu, Yankai; Li, Yanbin; Niu, Bin

    2014-01-01

    Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

  14. Effect of organic matter properties, clay mineral type and thermal maturity on gas adsorption in organic-rich shale systems

    USGS Publications Warehouse

    Zhang, Tongwei; Ellis, Geoffrey S.; Ruppel, Stephen C.; Milliken, Kitty; Lewan, Mike; Sun, Xun; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    A series of CH4 adsorption experiments on natural organic-rich shales, isolated kerogen, clay-rich rocks, and artificially matured Woodford Shale samples were conducted under dry conditions. Our results indicate that physisorption is a dominant process for CH4 sorption, both on organic-rich shales and clay minerals. The Brunauer–Emmett–Teller (BET) surface area of the investigated samples is linearly correlated with the CH4 sorption capacity in both organic-rich shales and clay-rich rocks. The presence of organic matter is a primary control on gas adsorption in shale-gas systems, and the gas-sorption capacity is determined by total organic carbon (TOC) content, organic-matter type, and thermal maturity. A large number of nanopores, in the 2–50 nm size range, were created during organic-matter thermal decomposition, and they significantly contributed to the surface area. Consequently, methane-sorption capacity increases with increasing thermal maturity due to the presence of nanopores produced during organic-matter decomposition. Furthermore, CH4 sorption on clay minerals is mainly controlled by the type of clay mineral present. In terms of relative CH4 sorption capacity: montmorillonite ≫ illite – smectite mixed layer > kaolinite > chlorite > illite. The effect of rock properties (organic matter content, type, maturity, and clay minerals) on CH4 adsorption can be quantified with the heat of adsorption and the standard entropy, which are determined from adsorption isotherms at different temperatures. For clay-mineral rich rocks, the heat of adsorption (q) ranges from 9.4 to 16.6 kJ/mol. These values are considerably smaller than those for CH4 adsorption on kerogen (21.9–28 kJ/mol) and organic-rich shales (15.1–18.4 kJ/mol). The standard entropy (Δs°) ranges from -64.8 to -79.5 J/mol/K for clay minerals, -68.1 to -111.3 J/mol/K for kerogen, and -76.0 to -84.6 J/mol/K for organic-rich shales. The affinity of CH4 molecules for sorption on organic matter is stronger than for most common clay minerals. Thus, it is expected that CH4 molecules may preferentially occupy surface sites on organic matter. However, active sites on clay mineral surfaces are easily blocked by water. As a consequence, organic-rich shales possess a larger CH4-sorption capacity than clay-rich rocks lacking organic matter. The thermodynamic parameters obtained in this study can be incorporated into model predictions of the maximum Langmuir pressure and CH4- sorption capacity of shales under reservoir temperature and pressure conditions.

  15. Geotechnical characterization of mined clay from Appalachian Ohio: challenges and implications for the clay mining industry.

    PubMed

    Moran, Anthony R; Hettiarachchi, Hiroshan

    2011-07-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  16. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    PubMed

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  17. Geotechnical Characterization of Mined Clay from Appalachian Ohio: Challenges and Implications for the Clay Mining Industry

    PubMed Central

    Moran, Anthony R.; Hettiarachchi, Hiroshan

    2011-01-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling. PMID:21845150

  18. Progress report on sediment analyses at selected faunal monitoring sites in north-central and northeastern Florida Bay

    USGS Publications Warehouse

    Scott, T.M.; Means, G.H.; Brewster-Wingard, G. L.

    1997-01-01

    Florida Bay is a shallow, subtropical lagoon at the southern tip of the Florida peninsula. The 2200 square kilometer, triangular-shaped area is the site of modern carbonate sediment formation and deposition. The intricate ecosystem of the bay has undergone significant changes as the result of natural influences and human intervention. The purpose of this study is to investigate carbonate sediment characteristics and distribution in conjunction with faunal and floral to determine the substrate preferences of associated fauna and flora. The modern data provide the proxy data for down-core analyses of sediments, fauna and flora in order to document ecosystem changes in the bay. Selected sediment samples collected during 1996 from 18 sites in the northeastern and central bay were analyzed for insoluble residues, organic content, total carbonate, and percent of silt and clay sized particles. Insoluble residues range from 0.8% of the sediment in a shell lag to 11.5% with an average of 5.1%. Organic content ranged from a minimum of 1.43% of the sediment to 18.05% with an average of 7.6%. The total carbonate content ranged from 72.56% to 97.81%, averaging 87.98%. The percent silt and clay sized particles ranged from 13.75% to 63.62% for the samples analyzed. The insoluble residue content shows a general trend of decreasing insoluble residues from the northeastern bay toward the southwest. Organic content is variable throughout the bay and does not show a regional trend. Several sites show a trend of higher organic content in the samples collected in February as compared to those collected in July. Lithologic examination indicated that, in addition to the carbonate mud (less than 63mm), sample components included whole and fragmented mollusks, foraminifers, bryozoans, ostracods, and organic matter. The insoluble residues consisted of quartz sand and silt, clays and siliceous fossils. A component of the insoluble residues may be dust derived from Africa and transported to southern Florida by the prevailing winds. This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  19. Use of borehole geophysical logs for improved site characterization at Naval Weapons Industrial Reserve Plant, Dallas, Texas

    USGS Publications Warehouse

    Anaya, Roberto; Braun, Christopher L.; Kuniansky, Eve L.

    2000-01-01

    A shallow alluvial aquifer at the Naval Weapons Industrial Reserve Plant near Dallas, Texas, has been contaminated by organic solvents used in the fabrication and assembly of aircraft and aircraft parts. Natural gamma-ray and electromagnetic-induction log data collected during 1997 from 162 wells were integrated with existing lithologic and cone-penetrometer test log data to improve characterization of the subsurface alluvium at the site. The alluvium, consisting of mostly fine-grained, low-permeability sediments, was classified into low, intermediate, and high clay-content sediments on the basis of the gamma-ray logs. Low clay-content sediments were interpreted as being relatively permeable, whereas high clay-content sediments were interpreted as being relatively impermeable. Gamma-ray logs, cone-penetrometer test logs, and electromagnetic-induction logs were used to develop a series of intersecting sections to delineate the spatial distribution of low, intermediate, and high clay-content sediments and to delineate zones of potentially contaminated sediments. The sections indicate three major sedimentary units in the shallow alluvial aquifer at NWIRP. The lower unit consists of relatively permeable, low clay-content sediments and is absent over the southeastern and northwestern part of the site. Permeable zones in the complex, discontinuous middle unit are present mostly in the western part of the site. In the eastern and southeastern part of the site, the upper unit has been eroded away and replaced by fill material. Zones of potentially contaminated sediments are generally within the uppermost clay layer or fill material. In addition, the zones tend to be local occurrences.

  20. Mineralogy and thermal properties of clay from Slatina (Ub, Serbia)

    NASA Astrophysics Data System (ADS)

    Milosevic, Maja; Logar, Mihovil; Kaludjerovic, Lazar; Jelic, Ivana

    2017-04-01

    The "Slatina" deposit, Ub, Serbia was opened in 1965 and represents one of few deposits exploited by "Kopovi" a.d., Ub, company. Deposit is composed of clay layers belonging to Neogene sediments that are widespread transgressive over granitoid rocks of Cer mountain and Paleozoic and Mesozoic sediments. Clay is mostly of illite-montmorillonite-kaolinite type and they are generally used as ceramic materials while some of the layers are used as fire-resistant materials. In this study we present mineralogical and thermal characterization of two samples to determine their application as industrial materials. Chemical and mineral composition was determined using inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray diffraction (XRD) on powder and oriented samples, infrared spectroscopy (IR) and granulometry. Cationic exchange capacity (CEC) and specific surface area (SSA) was determined using spectrophotometry and methylene blue (MB). Thermal properties where determined by gravimetry (120, 350, 600 and 1000 oC) and differential thermal analysis (DTA). Quantitative mineral composition obtained by Rietveld refinement of combined chemical and XRD data shows that the sample 1(SC) is mainly smectite-illite (45%) and kaolinite (14%) clay with 19% of quartz, 10% feldspars and 7% of limonite, while sample 2(SV) is smectite-illite (43%) and kaolinite (11%) clay with 10% of quartz, 15% feldspars and 7% of limonite. Both samples have low content of impurities (carbonate minerals). Medium grain size (μm) goes from 1.02 (SSA = 104 m2/g) for sample 1(SC) to 0.71 (SSA = 117 m2/g) for sample 2(SV) while their CEC is 12.7 and 14.9 mmol/100g for 1(SC) and 2(SV) respectively. IR spectra of the samples shows larger amount of smectite clays with quartz and carbonate minerals for both samples which is in accordance with XRD data. DTA data shows couple of events that are endothermic. First one (100-200 oC) is associated with loss of moisture and constitutive water, second (300-400 oC) with iron hydroxide minerals, third (500-600 oC) with smectite clay content with smaller separate bands of kaolinite clays while events between 800-900 oC correspond to carbonate minerals. Loss of mass after gravimetry measurement at given temperatures shows that the samples have significant amount of water in their structure (≈3 wt% (120 oC)) with larger weight loss at 600 oC (3.06 and 3.37 wt%) while total weight loss is 9.12 and 9.08 wt% for 1(SC) and 2(SV) respectively. The studied clays from "Slatina" deposit have a medium content of smectite-illite minerals with smaller amount of kaolinite mineral together with quartz and feldspars. Based on their mineral composition and characteristics, possible application should be in different types of ceramic and construction industries. REFERENCES - M. Milošević, M. Logar, B. Dojčinović, A. Rosić and S. Erić, 2016, Diffuse reflectance spectra of methylene blue adsorbed on different types of clay samples, Clay Minerals, (2016) 5, 1-15

  1. The phosphorus speciations in the sediments up- and down-stream of cascade dams along the middle Lancang River.

    PubMed

    Liu, Qi; Liu, Shiliang; Zhao, Haidi; Deng, Li; Wang, Cong; Zhao, Qinghe; Dong, Shikui

    2015-02-01

    We detected the longitudinal variability of phosphorus speciations and its relation to metals and grain size distribution of sediments in three cascade canyon reservoirs (Xiaowan, Manwan and Dachaoshan) along Lancang River, China. Five phosphorus speciations including loosely bound P (ex-P), reductant soluble P (BD-P), metal oxide-bound P (NaOH-P) calcium-bound P (HCl-P) and residual-P were extracted and quantified. Results showed that in Manwan Reservoir HCl-P accounted for the largest part of total phosphorus (TP) (49.69%), while in Xiaowan and Dachaoshan reservoirs, NaOH-P was the most abundant speciation which accounted for 57.21% and 55.19% of total phosphorus respectively. Higher contents of bio-available phosphorus in Xiaowan and Dachaoshan reservoirs suggested a high rate of P releasing from sediments. Results also showed ex-P and HCl-P had positive correlation with Ca. Total phosphorus was positively correlated with Fe. The silt/clay contents of the sediments had close relationship with ex-P (r=0.413, p<0.05), NaOH-P (r=0.428, p<0.05) and BAP (r=0.458, p<0.05). The concentration of Ca, Mn and silt/clay speciation in the sediments explained 40%, 10% and 4% of the spatial variation of phosphorus speciations, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors—Air Gap Effect

    PubMed Central

    Bore, Thierry; Wagner, Norman; Delepine Lesoille, Sylvie; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-01-01

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling. PMID:27096865

  3. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors--Air Gap Effect.

    PubMed

    Bore, Thierry; Wagner, Norman; Lesoille, Sylvie Delepine; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-04-18

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling.

  4. Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Michael E.; Dong, Hailiang; Kukkadapu, Ravi K.

    2011-07-01

    99Technetium (99Tc) is a fission product of uranium-235 and plutonium-239 and poses a high environmental hazard due to its long half-life (t1/2 = 2.13 x 105 y), abundance in nuclear wastes, and environmental mobility under oxidizing conditions [i.e., Tc(VII)]. Under reducing conditions, Tc(VII) can be reduced to insoluble Tc(IV). Ferrous iron [Fe(II)], either in aqueous form or in mineral form, has been used to reduce Tc(VII) to Tc(IV). However, the reactivity of Fe(II) from clay minerals, other than nontronite, toward immobilization of Tc(VII) and its role in retention of reduced Tc(IV) have not been investigated. In this study the reactivitymore » of a suite of clay minerals toward Tc(VII) reduction and immobilization was evaluated. The clay minerals chosen for this study included five members in the smectite-illite (S-I) series, (montmorillonite, nontronite, rectorite, mixed layered I-S, and illite), chlorite, and palygorskite. Fe-oxides were removed from these minerals with a modified dithionite-citrate-bicarbonate (DCB) procedure. The total Fe content of these clay minerals, after Fe-oxide removal, ranged from 0.7 to 30.4% by weight, and the Fe(III)/Fe(total) ratio ranged from 44.9 to 98.5%. X-ray diffraction (XRD) and Mössbauer spectroscopy results showed that after Fe oxide removal the clay minerals were free of Fe-oxides. Scanning electron microscopy (SEM) revealed that little dissolution occurred during the DCB treatment. Bioreduction experiments were performed in bicarbonate buffer (pH-7) with Fe(III) in the clay minerals as the sole electron acceptor, lactate as the sole electron donor, and Shewanella Putrifaciens CN32 cells as mediators. In select tubes, anthraquinone-2,6-disulfate (AQDS) was added as electron shuttle to facilitate electron transfer. The extent of Fe(III) bioreduction was the highest for chlorite (~43 wt%) and the lowest for palygorskite (~4.17 wt%). In the S-I series, NAu-2 was the most reducible (~31 %) and illite the least (~0.4 %). The extent and initial rate of bioreduction were positively correlated with the percent smectite in the S-I series (i.e., layer expandability). Fe(II) in the bioreduced clay minerals subsequently was used to reduce Tc(VII) to Tc(IV) in PIPES buffer. Similar to the trend of bioreduction, in the S-I series, reduced smectite showed the highest reactivity toward Tc(VII), and reduced illite exhibited the least. The initial rate of Tc(VII) reduction, after normalization to clay and Fe(II) concentrations, was positively correlated with the percent smectite in the S-I series. Fe(II) in chlorite and palygorskite was also reactive toward Tc(VII) reduction. These data demonstrate that crystal chemical parameters (layer expandability, Fe and Fe(II) contents, and surface area etc.) play important roles in controlling the extent and rate of bioreduction and the reactivity toward Tc(VII) reduction. Reduced Tc(IV) resides within clay mineral matrix, and this association could minimize any potential of reoxidation over long term.« less

  5. Pyrogenic Carbon in soils: a literature-based inventory and a global estimation of its content in soil organic carbon and stocks

    NASA Astrophysics Data System (ADS)

    Reisser, Moritz; Purves, Ross; Schmidt, Michael W. I.; Abiven, Samuel

    2016-08-01

    Pyrogenic carbon (PyC) is considered one of the most stable components in soil and can represent more than 30% of total soil organic carbon (SOC). However, few estimates of global PyC stock or distribution exist and thus PyC is not included in any global carbon cycle models, despite its potential major relevance for the soil pool. To obtain a global picture, we reviewed the literature for published PyC content in SOC data. We generated the first PyC database including more than 560 measurements from 55 studies. Despite limitations due to heterogeneous distribution of the studied locations and gaps in the database, we were able to produce a worldwide PyC inventory. We found that global PyC represent on average 13.7% of the SOC and can be even up to 60%, making it one of the largest groups of identifiable compounds in soil, together with polysaccharides. We observed a consistent range of PyC content in SOC, despite the diverse methods of quantification. We tested the PyC content against different environmental explanatory variables: fire and land use (fire characteristics, land use, net primary productivity), climate (temperature, precipitation, climatic zones, altitude) and pedogenic properties (clay content, pH, SOC content). Surprisingly, soil properties explain PyC content the most. Soils with clay content higher than 50% contain significantly more PyC (> 30% of the SOC) than with clay content lower than 5% (< 6% of the SOC). Alkaline soils contain at least 50% more PyC than acidic soils. Furthermore, climatic conditions, represented by climatic zone or mean temperature or precipitation, correlate significantly with the PyC content. By contrast, fire characteristics could only explain PyC content, if site-specific information was available. Datasets derived from remote sensing did not explain the PyC content. To show the potential of this database, we used it in combination with other global datasets to create a global worldwide PyC content and a stock estimation, which resulted in around 200Pg PyC for the uppermost 2 meters. These modelled estimates indicated a clear mismatch between the location of the current PyC studies and the geographical zones where we expect high PyC stocks.

  6. Electrical resistivity characteristics of diesel oil-contaminated kaolin clay and a resistivity-based detection method.

    PubMed

    Liu, Zhibin; Liu, Songyu; Cai, Yi; Fang, Wei

    2015-06-01

    As the dielectric constant and conductivity of petroleum products are different from those of the pore water in soil, the electrical resistivity characteristics of oil-contaminated soil will be changed by the corresponding oil type and content. The contaminated soil specimens were manually prepared by static compaction method in the laboratory with commercial kaolin clay and diesel oil. The water content and dry density of the first group of soil specimens were controlled at 10 % and 1.58 g/cm(3). Corresponding electrical resistivities of the contaminated specimens were measured at the curing periods of 7, 14, and 28 and 90, 120, and 210 days on a modified oedometer cell with an LCR meter. Then, the electrical resistivity characteristics of diesel oil-contaminated kaolin clay were discussed. In order to realize a resistivity-based oil detection method, the other group of oil-contaminated kaolin clay specimens was also made and tested, but the initial water content, oil content, and dry density were controlled at 0~18 %, 0~18 %, 1.30~1.95 g/cm(3), respectively. Based on the test data, a resistivity-based artificial neural network (ANN) was developed. It was found that the electrical resistivity of kaolin clay decreased with the increase of oil content. Moreover, there was a good nonlinear relationship between electrical resistivity and corresponding oil content when the water content and dry density were kept constant. The decreasing velocity of the electrical resistivity of oil-contaminated kaolin clay was higher before the oil content of 12 % than after 12 %, which indicated a transition of the soil from pore water-controlled into oil-controlled electrical resistivity characteristics. Through microstructural analysis, the decrease of electrical resistivity could be explained by the increase of saturation degree together with the collapse of the electrical double layer. Environmental scanning electron microscopy (ESEM) photos indicated that the diesel oil in kaolin clay normally had three kinds of effects including oil filling, coating, and bridging. Finally, a resistivity-based ANN model was established based on the database collected from the experiment data. The performance of the model was proved to be reasonably accepted, which puts forward a possible simple, economic, and effective tool to detect the oil content in contaminated clayey soils just with four basic parameters: wet density, dry density, measured moisture content, and electrical resistivity.

  7. Heavy metal content and potential health risk of geophagic white clay from the Kumasi Metropolis in Ghana.

    PubMed

    Nkansah, Marian Asantewah; Korankye, Mavis; Darko, Godfred; Dodd, Matt

    2016-01-01

    Geophagia is the craving for non-food substances and commonly practiced among pregnant women and children. Consumption of geophagic clay samples can have serious implications on the health of the consumers as a result of the presence of toxic metals such as Pb, As, Hg and Cd. This study sought to determine the levels of heavy metals in the studied geophagic clay samples and to determine the potential risks of heavy metals as cumulative carcinogenic and non-carcinogenic risks to the health of the consumers via oral (ingestion) and dermal exposure routes. A total of thirty (30) white clay samples were analysed using Niton Thermo scientific XRF Analyser (Mobile Test S, NDTr-XL3t-86956, com 24). The clay samples were found to contain essential elements such as Ca, Fe, K and Zn as well as toxic metals such as As and Pb. There were isolated cases of the presence of Hg and all samples had Cd levels below detection. Health risk indices such as hazard quotient and cancer risk were calculated and the results indicated that consumers are likely to suffer from cancer through ingestion of geophagic clay. Bioaccessibility studies were done on zinc and it did not indicate any potential toxicity due to zincs essential nature. The levels of heavy metals in some of the geophagic clay consumed by some residents in the Kumasi were high compared to the Permitted Maximum Tolerable Daily Intake (PMTDI) by (WHO/FAO) and may pose potential health threat over time.

  8. Modification of clay barriers with a cationic surfactant to improve the retention of pesticides in soils.

    PubMed

    Rodríguez-Cruz, M S; Sánchez-Martín, M J; Andrades, M S; Sánchez-Camazano, M

    2007-01-10

    In this work, the efficiency of reactive clay barriers in the immobilisation of organic pesticides in a sandy soil was studied. Reactive barriers were prepared by modification of montmorillonite, kaolinite and palygorskite clay minerals, and of a clayey soil with the cationic surfactant octadecyltrimethylammonium bromide (ODTMA). Percolation curves of the pesticides linuron, atrazine and metalaxyl of different hydrophobic character, were obtained in columns packed with a natural sandy soil with these barriers intercalated under saturated flow conditions. The cumulative curves in the unmodified soil indicated a leaching of pesticides greater than 85% of the total amount of compound added. After barrier intercalation, the breakthrough curves (BTC) indicated a dramatic decrease in the amounts of linuron leached in all columns and a significant modification of the leaching kinetics of atrazine and metalaxyl. Retardation factors, R, of the pesticides in the columns were significantly correlated with the organic matter content (OM) derived from the ODTMA of the organo clay/soil barriers (r2>or=0.78). Significant correlations were also found between these R factors and the pore volume values corresponding to the maximum peaks of the BTCs (r2=0.83; p<0.01) or the total volumes leached (r2=0.44; p<0.05) for the pesticides atrazine and metalaxyl. The results obtained point to the interest in the use of reactive clay barriers for almost complete immobilisation of hydrophobic pesticides or for decreasing the leaching of moderately hydrophobic pesticides coming from point-like sources of pollution. These barriers would avoid the generation of elevated concentrations of these compounds in the soils due to their rapid washing.

  9. Effects of clay dispersion on aquifer storage and recovery in coastal aquifers

    USGS Publications Warehouse

    Konikow, Leonard F.; August, L.L.; Voss, C.I.

    2001-01-01

    Cyclic injection, storage, and withdrawal of freshwater in brackish aquifers is a form of aquifer storage and recovery (ASR) that can beneficially supplement water supplies in coastal areas. A 1970s field experiment in Norfolk, Virginia, showed that clay dispersion in the unconsolidated sedimentary aquifer occurred because of cation exchange on clay minerals as freshwater displaced brackish formation water. Migration of interstitial clay particles clogged pores, reduced permeability, and decreased recovery efficiency, but a calcium preflush was found to reduce clay dispersion and lead to a higher recovery efficiency. Column experiments were performed in this study to quantify the relations between permeability changes and clay mineralogy, clay content, and initial water salinity. The results of these experiments indicate that dispersion of montmorillonite clay is a primary contributor to formation damage. The reduction in permeability by clay dispersion may be expressed as a linear function of chloride content. Incorporating these simple functions into a radial, cross-sectional, variable-density, ground-water flow and transport model yielded a satisfactory simulation of the Norfolk field test - and represented an improvement over the model that ignored changes in permeability. This type of model offers a useful planning and design tool for ASR operations in coastal clastic aquifer systems.

  10. Field trip guidebook on environmental impact of clays along the upper Texas coast

    NASA Technical Reports Server (NTRS)

    Garcia, Theron D.; Ming, Douglas W.; Tuck, Lisa Kay

    1991-01-01

    The field trip was prepared to provide an opportunity to see first hand some the environmental hazards associated with clays in the Houston, Texas area. Because of the very high clay content in area soils and underlying Beaumont Formation clay, Houston is a fitting location to host the Clay Mineral Society. Examinations were made of (1) expansive soils, (2) subsidence and surface faulting, and (3) a landfill located southeast of Houston at the Gulf Coast Waste Disposal Authority where clay is part of the liner material.

  11. Assessment of the Mechanical Properties of Sisal Fiber-Reinforced Silty Clay Using Triaxial Shear Tests

    PubMed Central

    Wu, Yankai; Li, Yanbin; Niu, Bin

    2014-01-01

    Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment. PMID:24982951

  12. Influence of red alder on chemical properties of a clay loam soil in western Washington.

    Treesearch

    D.S. DeBell; M.A. Radwan; J.M. Kraft

    1983-01-01

    Chemical characteristics of mineral soil beneath red alder (Alnus rubra Bong.) stands of various ages were studied. Total nitrogen (N) of the 0-to 20-centimeter (0- to 8-inch) soil layer increased with stand age, and pH of both the 0- to 20-centimeter and 20- to 50-centimeter (8- to 20-inch) layers decreased with stand age. Contents of some mineral...

  13. Contrasting nitrate adsorption in Andisols of two coffee plantations in Costa Rica.

    PubMed

    Ryan, M C; Graham, G R; Rudolph, D L

    2001-01-01

    Fertilizer use in coffee plantations is a suspected cause of rising ground water nitrate concentrations in the ground water-dependent Central Valley of Costa Rica. Nitrate adsorption was evaluated beneath two coffee (Coffea arabica L.) plantations in the Central Valley. Previous work at one site had identified unsaturated zone nitrate retardation relative to a tritium tracer. Differences in nitrate adsorption were assessed in cores to 4 m depth in Andisols at this and one other plantation using differences in KCl- and water-extractable nitrate as an index. Significant adsorption was confirmed at the site of the previous tracer test, but not at the second site. Anion exchange capacity, X-ray diffraction data, extractable Al and Si, and soil pH in NaF corroborated that differences in adsorption characteristics were related to subtle differences in clay mineralogy. Soils at the site with significant nitrate adsorption showed an Al-rich allophane clay content compared with a more weathered, Si-rich allophane and halloysite clay mineral content at the site with negligible adsorption. At the site with significant nitrate adsorption, nitrate occupied less than 10% of the total anion adsorption capacity, suggesting that adsorption may provide long-term potential for mitigation or delay of nitrate leaching. Evaluation of nitrate sorption potential of soil at local and landscape scales would be useful in development of nitrogen management practices to reduce nitrate leaching to ground water.

  14. Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors

    NASA Astrophysics Data System (ADS)

    Cao, Zhe; Liu, Guangdi; Zhan, Hongbin; Li, Chaozheng; You, Yuan; Yang, Chengyu; Jiang, Hang

    2016-11-01

    Understanding the pore networks of unconventional tight reservoirs such as tight sandstones and shales is crucial for extracting oil/gas from such reservoirs. Mercury injection capillary pressure (MICP) and N2 gas adsorption (N2GA) are performed to evaluate pore structure of Chang-7 tight sandstone. Thin section observation, scanning electron microscope, grain size analysis, mineral composition analysis, and porosity measurement are applied to investigate geological control factors of pore structure. Grain size is positively correlated with detrital mineral content and grain size standard deviation while negatively related to clay content. Detrital mineral content and grain size are positively correlated with porosity, pore throat radius and withdrawal efficiency and negatively related to capillary pressure and pore-to-throat size ratio; while interstitial material is negatively correlated with above mentioned factors. Well sorted sediments with high debris usually possess strong compaction resistance to preserve original pores. Although many inter-crystalline pores are produced in clay minerals, this type of pores is not the most important contributor to porosity. Besides this, pore shape determined by N2GA hysteresis loop is consistent with SEM observation on clay inter-crystalline pores while BJH pore volume is positively related with clay content, suggesting N2GA is suitable for describing clay inter-crystalline pores in tight sandstones.

  15. Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors

    PubMed Central

    Cao, Zhe; Liu, Guangdi; Zhan, Hongbin; Li, Chaozheng; You, Yuan; Yang, Chengyu; Jiang, Hang

    2016-01-01

    Understanding the pore networks of unconventional tight reservoirs such as tight sandstones and shales is crucial for extracting oil/gas from such reservoirs. Mercury injection capillary pressure (MICP) and N2 gas adsorption (N2GA) are performed to evaluate pore structure of Chang-7 tight sandstone. Thin section observation, scanning electron microscope, grain size analysis, mineral composition analysis, and porosity measurement are applied to investigate geological control factors of pore structure. Grain size is positively correlated with detrital mineral content and grain size standard deviation while negatively related to clay content. Detrital mineral content and grain size are positively correlated with porosity, pore throat radius and withdrawal efficiency and negatively related to capillary pressure and pore-to-throat size ratio; while interstitial material is negatively correlated with above mentioned factors. Well sorted sediments with high debris usually possess strong compaction resistance to preserve original pores. Although many inter-crystalline pores are produced in clay minerals, this type of pores is not the most important contributor to porosity. Besides this, pore shape determined by N2GA hysteresis loop is consistent with SEM observation on clay inter-crystalline pores while BJH pore volume is positively related with clay content, suggesting N2GA is suitable for describing clay inter-crystalline pores in tight sandstones. PMID:27830731

  16. Distribution and possible immobilization of lead in a forest soil (Luvisol) profile.

    PubMed

    Sipos, Péter; Németh, Tibor; Mohai, Ilona

    2005-02-01

    Geochemical analyses using a sequential extraction method and lead adsorption studies were carried out in order to characterize the distribution and adsorption of lead on each genetic horizon of a Luvisol profile developed on a pelagic clayey aleurolite. Clay illuviation is the most important pedogenic process in the profile studied. Its clay mineralogy is characterized by chlorite/vermiculite species with increasing chlorite component downward. The amount of carbonate minerals strongly increases in the lower part of the profile resulting in an abrupt rise in soil pH within a small distance. The Pb content of the soil profile exceeds the natural geochemical background only in the Ao horizon, and its amount decreases with depth in the profile without correcting for differences in bulk density, suggesting the binding of Pb to soil organic matter. According to the sequential extraction analysis the organic matter and carbonate content of the soil have the most significant effect on lead distribution. This effect varies in the different soil horizons. Lead adsorption experiments were carried out on whole soil samples, soil clay fractions, as well as on their carbonate and organic matter free variant. The different soil horizons adsorb lead to different extents depending on their organic matter, clay mineral and carbonate content; and the mineralogical features of soil clays significantly affect their lead adsorption capacity. The clay fraction adsorbs 25% more lead than the whole soil, while in the calcareous subsoil a significant proportion of lead is precipitated due to the alkaline conditions. 10 and 5% of adsorbed Pb can be leached with distilled water in the organic matter and clay mineral dominated soil horizons, respectively. These results suggest that soil organic matter plays a decisive role in the adsorption of Pb, but the fixation by clay minerals is stronger.

  17. Physical Quality Indicators and Mechanical Behavior of Agricultural Soils of Argentina.

    PubMed

    Imhoff, Silvia; da Silva, Alvaro Pires; Ghiberto, Pablo J; Tormena, Cássio A; Pilatti, Miguel A; Libardi, Paulo L

    2016-01-01

    Mollisols of Santa Fe have different tilth and load support capacity. Despite the importance of these attributes to achieve a sustainable crop production, few information is available. The objectives of this study are i) to assess soil physical indicators related to plant growth and to soil mechanical behavior; and ii) to establish relationships to estimate the impact of soil loading on the soil quality to plant growth. The study was carried out on Argiudolls and Hapludolls of Santa Fe. Soil samples were collected to determine texture, organic matter content, bulk density, water retention curve, soil resistance to penetration, least limiting water range, critical bulk density for plant growth, compression index, pre-consolidation pressure and soil compressibility. Water retention curve and soil resistance to penetration were linearly and significantly related to clay and organic matter (R2 = 0.91 and R2 = 0.84). The pedotransfer functions of water retention curve and soil resistance to penetration allowed the estimation of the least limiting water range and critical bulk density for plant growth. A significant nonlinear relationship was found between critical bulk density for plant growth and clay content (R2 = 0.98). Compression index was significantly related to bulk density, water content, organic matter and clay plus silt content (R2 = 0.77). Pre-consolidation pressure was significantly related to organic matter, clay and water content (R2 = 0.77). Soil compressibility was significantly related to initial soil bulk density, clay and water content. A nonlinear and significantly pedotransfer function (R2 = 0.88) was developed to predict the maximum acceptable pressure to be applied during tillage operations by introducing critical bulk density for plant growth in the compression model. The developed pedotransfer function provides a useful tool to link the mechanical behavior and tilth of the soils studied.

  18. Physical Quality Indicators and Mechanical Behavior of Agricultural Soils of Argentina

    PubMed Central

    Pires da Silva, Alvaro; Ghiberto, Pablo J.; Tormena, Cássio A.; Pilatti, Miguel A.; Libardi, Paulo L.

    2016-01-01

    Mollisols of Santa Fe have different tilth and load support capacity. Despite the importance of these attributes to achieve a sustainable crop production, few information is available. The objectives of this study are i) to assess soil physical indicators related to plant growth and to soil mechanical behavior; and ii) to establish relationships to estimate the impact of soil loading on the soil quality to plant growth. The study was carried out on Argiudolls and Hapludolls of Santa Fe. Soil samples were collected to determine texture, organic matter content, bulk density, water retention curve, soil resistance to penetration, least limiting water range, critical bulk density for plant growth, compression index, pre-consolidation pressure and soil compressibility. Water retention curve and soil resistance to penetration were linearly and significantly related to clay and organic matter (R2 = 0.91 and R2 = 0.84). The pedotransfer functions of water retention curve and soil resistance to penetration allowed the estimation of the least limiting water range and critical bulk density for plant growth. A significant nonlinear relationship was found between critical bulk density for plant growth and clay content (R2 = 0.98). Compression index was significantly related to bulk density, water content, organic matter and clay plus silt content (R2 = 0.77). Pre-consolidation pressure was significantly related to organic matter, clay and water content (R2 = 0.77). Soil compressibility was significantly related to initial soil bulk density, clay and water content. A nonlinear and significantly pedotransfer function (R2 = 0.88) was developed to predict the maximum acceptable pressure to be applied during tillage operations by introducing critical bulk density for plant growth in the compression model. The developed pedotransfer function provides a useful tool to link the mechanical behavior and tilth of the soils studied. PMID:27099925

  19. The dielectric properties of soil-water mixtures at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1979-01-01

    Recent measurements on the dielectric constants of soil-water mixtures show the existence of two frequency regions in which the dielectric behavior of these mixtures was quite different. At the frequencies of 1.4 GHz to 5 GHz, there were strong evidences that the variations of the dielectric (epsilon) with water content (W) depended on soil type. While the real part of epsilon for sandy soils rose rapidly with the increase in W, epsilon for the high-clay content soils rose only slowly with W. As a consequence, epsilon was generally higher for the sandy soils than for the high-clay content soils at a given W. On the other hand, most of the measurements at frequencies 1 GHz indicated the increase of epsilon with W independent of soil types. At a given W, epsilon' (sandy soil) approximately equals epsilon (high-clay content soil) within the precision of the measurements. These observational features can be satisfactorily interpreted in terms of a simple dielectric relaxation model, with an appropriate choice of the mean relaxation frequency f(m) and the range of the activation energy (beta). It was found that smaller f(m) and larger beta were required for the high-clay content soils than the sandy soils in order to be consistent with the measured data.

  20. Rigid palm oil-based polyurethane foam reinforced with diamine-modified montmorillonite nanoclay

    NASA Astrophysics Data System (ADS)

    Haziq Dzulkifli, Mohd; Yazid Yahya, Mohd; Majid, Rohah A.

    2017-05-01

    This paper presents work on organically-modified montmorillonite (MMT) nanoclay embedded in rigid palm oil-based polyurethane (PU) foam. MMT was modified with organic surfactant diamino propane (DAP). PU foam was fabricated in closed mold, and the amount of DAP-MMT was varied in each foam formulation. The obtained foam was tested for its microstructure and morphology. Appearance of peaks from infra-red spectra corresponding to N-H, C=O, and C-N confirms the formation of PU networks. Scanning electron microscopy (SEM) revealed fine, closed-cellular structure at low clay loading; increasing DAP-MMT content induced larger cell sizes with blowholes. X-ray diffraction (XRD) indicates fully-exfoliated clays at 1 wt. % and partial-exfoliation at 3 wt. % clay loading, suggesting clumping of clays as DAP-MMT content increased.

  1. Creep and Sliding in Clay Slopes: Mutual Effects of Interlayer Swelling and Ice Jacking.

    DTIC Science & Technology

    1983-04-24

    calcite and feldspar constituents. Therefore a swelling clay with low diagenetic lithification (matrix forming) e fects. Therefore, the clay shows...were determined quantitatively (Tab. 2). The CEC depends mainly on the montmorillonite content and shows values up to 86 meq/lOOg, which Indicates...high montmorillonite clays. First freezing tests have been performed within a freezer. After freezing, three typical zones within the samples can be

  2. Effects of Using Pozzolan and Portland Cement in the Treatment of Dispersive Clay

    PubMed Central

    Vakili, A. H.; Selamat, M. R.; Moayedi, H.

    2013-01-01

    Use of dispersive clay as construction material requires treatment such as by chemical addition. Treatments to dispersive clay using pozzolan and Portland cement, singly and simultaneously, were carried out in this study. When used alone, the optimum amount of pozzolan required to treat a fully dispersive clay sample was 5%, but the curing time to reduce dispersion potential, from 100% to 30% or less, was 3 month long. On the other hand, also when used alone, a 3% cement content was capable of reducing dispersion potential to almost zero percent in only 7 days; and a 2% cement content was capable of achieving similar result in 14 days. However, treatment by cement alone is costly and could jeopardize the long term performance. Thus, a combined 5% pozzolan and 1.5% cement content was found capable of reducing dispersion potential from 100% to zero percent in 14 days. The results indicate that although simultaneous treatment with pozzolan and cement would extend the required curing time in comparison to treatment by cement alone of a higher content, the task could still be carried out in a reasonable period of curing time while avoiding the drawbacks of using either pozzolan or cement alone. PMID:23864828

  3. Effects of using pozzolan and Portland cement in the treatment of dispersive clay.

    PubMed

    Vakili, A H; Selamat, M R; Moayedi, H

    2013-01-01

    Use of dispersive clay as construction material requires treatment such as by chemical addition. Treatments to dispersive clay using pozzolan and Portland cement, singly and simultaneously, were carried out in this study. When used alone, the optimum amount of pozzolan required to treat a fully dispersive clay sample was 5%, but the curing time to reduce dispersion potential, from 100% to 30% or less, was 3 month long. On the other hand, also when used alone, a 3% cement content was capable of reducing dispersion potential to almost zero percent in only 7 days; and a 2% cement content was capable of achieving similar result in 14 days. However, treatment by cement alone is costly and could jeopardize the long term performance. Thus, a combined 5% pozzolan and 1.5% cement content was found capable of reducing dispersion potential from 100% to zero percent in 14 days. The results indicate that although simultaneous treatment with pozzolan and cement would extend the required curing time in comparison to treatment by cement alone of a higher content, the task could still be carried out in a reasonable period of curing time while avoiding the drawbacks of using either pozzolan or cement alone.

  4. Effect of soil properties on pure and formulated mesotrione adsorption onto vertisol (Limagne plane, Puy-de-Dôme, France).

    PubMed

    Alekseeva, Tatiana; Kolyagin, Yury; Sancelme, Martine; Besse-Hoggan, Pascale

    2014-09-01

    The fate of ionisable pesticides in the environment is complex as it is importantly related to many soil properties: pH, mineralogy, organic matter content and other soil characteristics. The adsorption of a weak acid herbicide, mesotrione, was studied in detail on whole and peroxide-treated vertisol topsoil and also on its granulometric fractions (clay, silt, sand) to evaluate the role of mineralogy and different organic matter pools. The soil studied is alkaline silty loam with smectite as the main clay mineral. It contains 1.7% organic carbon, mostly stabilized as a complex with smectite. Humus is of fulvic type. Mesotrione adsorption occurs on both mineral and organic constituents. Adsorption is weak and mesotrione can be easily and totally desorbed. As shown with (13)C NMR experiments, adsorption best correlates with the alkyl and carboxylic carbon content, and occurs on both bound and free organic matter. No difference of mesotrione sorption was observed with the formulation Callisto®. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Fe isotope composition of the Quaternary Red Clay in Southeast China and its paleo-environmental implications

    NASA Astrophysics Data System (ADS)

    Hu, Xue-Feng; Xue, Yong

    2015-04-01

    Fe has four stable isotopes, 54Fe (5.84%), 56Fe (91.76%), 57Fe (2.12%) and 58Fe (0.28%). The occurrence of Fe isotopic fractionation during the weathering and pedogenic processes might have some significant paleo-environmental implications. The Quaternary Red Clay (QRC), widely distributed to the south of the Yangtze River, is regarded as a potential archive to record the paleoclimatic changes in subtropical China since the Middle Pleistocene. The composition of Fe isotopes in a profile of the QRC in Langxi County, Anhui Province, Southeast China, was analyzed by the MC-ICP-MS method in this study. The results were as follows: (1) δ56Fe of the Yellow-brown Earth (YBE), the uppermost layer of the profile, only slightly fluctuates between 0.10‰ ~ 0.12‰. That of the Uniform Red Clay (URC) was stable and 0.03‰ in content. That of the Reticulate Red Clay (RRC) in the lower part of the profile, however, was instable and fluctuates between -0.06‰ ~ 0.05‰. (2) The reticulate (net-like) pattern of the RRC was formed by the partial leaching of Fe in the red clay possibly due to long-term frequent fluctuations of groundwater table. The white veins of the RRC were deficiency in both total Fe (Fet) and free Fe (Fed), but the red ones were not. A significant difference of δ56Fe between the white and red veins of the RRC was found. δ56Fe of the white veins, 0.35‰ on average, was significantly higher than that of the red veins, -0.09‰ on average. This suggests that lighter Fe isotopes were preferentially removed during the formation of the reticulate pattern. (3) The content of free Fe oxides in soil is evaluated by the CBD-extracted method. δ56Fe of the CBD-extracted fraction of the red clay samples, -0.083‰ on average, is significantly lower than that of the residual fraction, 0.361‰ on average, suggesting that lighter Fe isotopes were preferentially released from primary minerals to form Fe oxides in the red clay. (4) δ56Fe of the entire profile was negatively significantly correlated with Fet and Fed contents (r2=0.3009 and 0.5105, respectively), which also suggests that Fe in the QRC becomes heavier after the preferential leaching of lighter Fe during the intensive weathering and reticulating processes. In short, the Fe isotopes were only weakly fractionated in the red clay formation under an aerobic condition. When the RRC was formed, however, a large amount of lighter Fe isotopes were preferentially removed under an anaerobic condition and heavier Fe were relatively accumulated in the residues. Therefore, heavier Fe in the red clay may imply a warm and humid climate and luxuriant vegetation during the Middle Pleistocene. The Fe isotope composition of soils or paleosols is a promising factor to interpret pedogenic processes and indicate paleo-environmental changes.

  6. Fraction distribution and risk assessment of heavy metals in waste clay sediment discharged through the phosphate beneficiation process in Jordan.

    PubMed

    Al-Hwaiti, Mohammad Salem; Brumsack, Hans Jurgen; Schnetger, Bernhard

    2015-07-01

    Heavy metal contamination of clay waste through the phosphate beneficiation process is a serious problem faced by scientists and regulators worldwide. Through the beneficiation process, heavy metals naturally present in the phosphate rocks became concentrated in the clay waste. This study evaluated the concentration of heavy metals and their fractions in the clay waste in order to assess the risk of environmental contamination. A five-step sequential extraction method, the risk assessment code (RAC), effects range low (ERL), effects range medium (ERM), the lowest effect level (LEL), the severe effect level (SEL), the redistribution index (U tf), the reduced partition index (I), residual partition index (I R), and the Nemerow multi-factor index (PC) were used to assess for clay waste contamination. Heavy metals were analyzed using high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). Correlation analyses were carried out to better understand the relationships between the chemical characteristics and the contents of the different phase fractions. Concentrations of Cd and Cu confirmed that both were bound to the exchangeable fraction (F1) and the carbonate fraction (F2), presenting higher mobility, whereas Pb was most abundant in the Fe-Mn oxide fraction (F3) and organic matter fraction (F4). The residual fraction (F5) contained the highest concentrations (>60%) of As, Cr, Mo, V, and Zn, with lower mobility. Application of the RAC index showed that Cd and Cu should be considered a moderate risk, whereas As, Cr, Mo, Pb, and Zn presented a low risk. Cadmium and Cu contents in mobile fractions F1 and F2 were higher than ERL but lower than ERM. On the other hand, As, Pb, and Zn contents of mobile fractions F1 and F2 were lower than ERL and ERM guideline values. Moreover, total Pb concentrations in the clay waste were below the lowest effect level (LEL) threshold value period, Cr and Zn values in the clay waste were determined to have exceeded the severe effect level (SEL) limit values, whereas Cd and Cu level ranges between LEL and SEL indicate moderate contamination. I R values of heavy metals in the clay waste confirmed that Cd and Cu were bound to the exchangeable and carbonate fractions and presented higher mobility, whereas As, Cr, Mo, Pb, V, and Zn were bound to organic or residual fractions and consequently exhibit lower mobility. A Nemerow multi-factor index revealed that the mine site contains high levels of Cd, Cu, V, and Zn pollution. As and Cr were found at a moderate level of contamination, whereas Pb was present at a safe level of contamination. The order of the comprehensive contamination indices was Cd > Cu > Mo > Zn > V > Cr > As > Pb, indicating that the assessment of clay waste, especially with Cd and Cu, should be undertaken to control heavy metal contamination in adjacent urban and mine areas at the Eshidiya mines.

  7. Specific Features of Profile Distribution and Crystallochemistry of Phyllosilicates in Soils of the Cisbaikal Forest-Steppe

    NASA Astrophysics Data System (ADS)

    Chizhikova, N. P.; Gamzikov, G. P.; Chechetko, E. S.

    2018-01-01

    The mineralogical composition of agrogray, dark gray, and agro-dark gray soils (Luvic Greyzemic Retic Phaeozems); agro-dark gray residual-calcareous soils (Calcaric Cambic Phaeozems); clay-illuvial agrochernozems (Luvic Chernic Phaeozems); and agrochernozems with migrational-mycelial carbonates (Haplic Chernozems) developed in the forest-steppe of Central Siberia within the Irkutsk Depression has been studied. The clay (<1 μm) fraction separated from these soils consists of mixed-layer minerals with alternating layers of hydromica, smectite, vermiculite, and chlorite; the proportions between them change within the soil profiles. The clay fraction also contains hydromicas, kaolinite, chlorite, and some admixture of the fine-dispersed quartz. Each type of the soils is characterized by its own distribution pattern of clay material with specific alternation of layers in the mixed-layer formations. Mixed-layer minerals of the chlorite-vermiculite type predominate in the upper horizons of texture-differentiated soils. Down the soil profile, the content of mixed-layer mica-smectitic minerals increases. In the clay fraction of arable dark gray-humus soils with residual carbonates, the distribution of the clay fraction and major mineral phases in the soil profile is relatively even. An increased content of well-crystallized kaolinite is typical of these soils. The parent material of agrochernozems has a layered character: the upper horizons are generally depleted of clay, and the middle-profile and lower horizons are characterized by the considerable kaolinite content. In general, the clay material of soils of the Tulun-Irkutsk forest-steppe differs considerably from the clay material of foreststeppe soils developed from loesslike and mantle loams in the European part of Russia. In particular, this difference is seen in the proportions between major mineral phases and between biotitic and muscovitic components, as well as in the degree of crystallinity and behavior of kaolinite and chlorite.

  8. Soil Nitrification and N2O Production: the connection with N concentration and Soil Water Content

    NASA Astrophysics Data System (ADS)

    Zhu-Barker, X.; Horwath, W. R.

    2016-12-01

    The development of mitigation strategies to reduce nitrous oxide (N2O) emission from soils is dependent on explicating the biophysical factors affecting different N2O production pathways. Ammonia oxidation and heterotrophic denitrification are the main pathways of N2O production, depending on soil conditions such as soil moisture content, oxygen (O2) content and N substrate. Many researchers have reported that N2O production increased as substrate concentration and soil moisture content increased. However, less understood is how N fertilizer concentration and moisture content interact to affect N2O production pathways. To investigate interaction and its effect on O2 consumption, we incubated three agricultural soils (clay, sandy loam, and peat) with different concentrations of (NH4)2SO4 (0-1000 µg N g-1) under 50 %, 75%, and 100% of water holding capacity. All treatments received 15N -KNO3 to bring the concentrations of NO3-_N in soils to 50 mg kg-1 soil and the NO3- pool to an enrichment of 10 atom% 15N. In all soils, the total amount of O2 consumption and N2O production increased as soil ammonical N concentration increased. The increased soil moisture significantly promoted N2O production in sandy loam and clay loam soils, compared to the peat soil. These results indicate that N2O production increased as substrate concentration increased likely due to the onset of O2 limitation caused by ammonia oxidation.

  9. Optimization Method of a Low Cost, High Performance Ceramic Proppant by Orthogonal Experimental Design

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Tian, Y. M.; Wang, K. Y.; Li, G.; Zou, X. W.; Chai, Y. S.

    2017-09-01

    This study focused on optimization method of a ceramic proppant material with both low cost and high performance that met the requirements of Chinese Petroleum and Gas Industry Standard (SY/T 5108-2006). The orthogonal experimental design of L9(34) was employed to study the significance sequence of three factors, including weight ratio of white clay to bauxite, dolomite content and sintering temperature. For the crush resistance, both the range analysis and variance analysis reflected the optimally experimental condition was weight ratio of white clay to bauxite=3/7, dolomite content=3 wt.%, temperature=1350°C. For the bulk density, the most important factor was the sintering temperature, followed by the dolomite content, and then the ratio of white clay to bauxite.

  10. Global Distribution of Pyrogenic Carbon

    NASA Astrophysics Data System (ADS)

    Reisser, Moritz; Abiven, Samuel; Schmidt, Michael W. I.

    2016-04-01

    Pyrogenic Carbon (PyC) is ubiquitous in the environment and represents presumably one of the most stable compounds of the total organic carbon. Due to its persistence in the soil, it might play an important role in the global carbon cycle. In order to model future CO2 emissions from soils it is thus crucial to know where and how much of PyC exists on a global scale. Yet, only rough estimates for global PyC stocks in soils could be made, and even less is known about the distribution across ecosystems. Therefore we propose here literature analysis of data on PyC concentrations and stocks worldwide. We extracted PyC values in soils from the literature (n = 600) and analysed the percentage of PyC in the soil organic carbon (SOC) as a function of climate (temperature, precipitation), soil parameters (pH, clay content), fire characteristics (fire frequency and fire regime) and land use. Overall, the average contribution of PyC to SOC was 13 %, ranging from 0.1 % up to 60 %. We observed that the PyC content was significantly higher with high clay content, higher pH, and in cultivated land as compared to forest and grassland. We did not observe any relationships between fire activity, frequency or intensity and PyC % at a global scale. When the fire regime was monitored on site (only 12 % of the data we collected), we observed higher PyC concentrations with higher fire frequencies. We hypothesise that the resolution of global fire datasets is neither temporally nor spatially high enough to explain the very local fire history of the soil samples. Data points were not homogeneously distributed on the globe, but rather aggregated in places like Central Europe, the Russian Steppe or North America. Therefore, a global interpolation is not directly possible. We modelled PyC concentrations, based on the five most significant parameters, which were clay content, pH, mean annual temperature and precipitation as well as land use. We then predicted worldwide PyC using global datasets existing for these five variables. We present a global map of PyC concentrations as well as it stocks. In arid ecosystems, where SOC is generally low, stocks of PyC are also low, even though concentrations can be very high. On the other hand, stocks are mostly very large in temperate and boreal ecosystems, even if concentrations are rather low, because total SOC stocks are very high there. Integrating our modelled data, we result in a total global stock of about 230 Pg PyC, corresponding to about 10 % of the total soil organic carbon stock. This value lies well in range with current rule-of-thump estimates of previous studies.

  11. Priming effects and enzymatic activity in Israeli soils under treated wastewater and freshwater irrigation

    NASA Astrophysics Data System (ADS)

    Anissimova, Marina; Heinze, Stefanie; Chen, Yona; Tarchitzky, Jorge; Marschner, Bernd

    2014-05-01

    Irrigation of soils with treated wastewater (TWW) directly influences microbial processes of soil. TWW contains easily decomposable organic material, which can stimulate the activity of soil microorganisms and, as a result, lead to the excessive consumption of soil organic carbon pool. We investigated the effects of irrigation with TWW relative to those of irrigation with freshwater (FW) on the microbial parameters in soils with low (7%) and medium (13%) clay content in a lysimeter experiment. The objectives of our study were to (i) determine the impact of water quality on soil respiration and enzymatic activity influenced by clay content and depth, and (ii) work out the changes in the turnover of soil organic matter (PE, priming effects). Samples were taken from three soil depths (0-10, 10-20, and 40-60 cm). Soil respiration and PE were determined in a 21-days incubation experiment after addition of uniformly 14C-labeled fructose. Activity of 10 extracellular enzymes (EEA, from C-, N-, P-, and S-cycle), phenol oxidase and peroxidase activity (PO+PE), and dehydrogenase activity (DHA) were assayed. Microbial Community-Level Physiological Profiles (CLPP) using four substrates, and microbial biomass were determined. The results showed that the clay content acted as the main determinative factor. In the soil with low clay content the water quality had a greater impact: the highest PE (56%) was observed in the upper layer (0-10cm) under FW irrigation; EEA of C-, P-, and S-cycles was significantly higher in the upper soil layer under TWW irrigation. Microbial biomass was higher in the soil under TWW irrigation and decreased with increasing of depth (50 μg/g soil in the upper layer, 15 μg/g soil in the lowest layer). This tendency was also observed for DHA. Contrary to the low clay content, in the soil with medium clay content both irrigation types caused the highest PE in the lowest layer (65% under FW irrigation, 48% under TWW irrigation); the higher substrate mineralization (10%) and the highest phosphatase activity (in the case of FW irrigation) was observed. The PO+PE activity was two to three times higher than in the soil with low clay content and increased clearly with increasing of soil depth. The last tendency was also valid generally for the enzymes of C-, N-, and P-cycles under both types of irrigation. The upper layer in the soil under TWW irrigation was characterized by the highest microbial biomass value (74 μg/g soil). DHA in all soil depths under both types of irrigation was significantly higher than in the corresponding depths of soil with low clay content. CLPP data showed the highest consumption of ascorbic acid and D-glucosamine hydrochloride in comparison to consumption of D-glucose and L-glutamine in both irrigation types.

  12. Comparison of Pore Fractal Characteristics Between Marine and Continental Shales

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Yao, Yanbin; Liu, Dameng; Cai, Yidong; Cai, Jianchao

    Fractal characterization offers a quantitative evaluation on the heterogeneity of pore structure which greatly affects gas adsorption and transportation in shales. To compare the fractal characteristics between marine and continental shales, nine samples from the Lower Silurian Longmaxi formation in the Sichuan basin and nine from the Middle Jurassic Dameigou formation in the Qaidam basin were collected. Reservoir properties and fractal dimensions were characterized for all the collected samples. In this study, fractal dimensions were originated from the Frenkel-Halsey-Hill (FHH) model with N2 adsorption data. Compared to continental shale, marine shale has greater values of quartz content, porosity, specific surface area and total pore volume but lower level of clay minerals content, permeability, average pore diameter and methane adsorption capacity. The quartz in marine shale is mostly associated with biogenic origin, while that in continental shale is mainly due to terrigenous debris. The N2 adsorption-desorption isotherms exhibit that marine shale has fewer inkbottle-shaped pores but more plate-like and slit-shaped pores than continental shale. Two fractal dimensions (D1 and D2) were obtained at P/Po of 0-0.5 and 0.5-1. The dimension D2 is commonly greater than D1, suggesting that larger pores (diameter >˜ 4nm) have more complex structures than small pores (diameter <˜ 4nm). The fractal dimensions (both D1 and D2) positively correlate to clay minerals content, specific surface area and methane adsorption capacity, but have negative relationships with porosity, permeability and average pore diameter. The fractal dimensions increase proportionally with the increasing quartz content in marine shale but have no obvious correlation with that in continental shale. The dimension D1 is correlative to the TOC content and permeability of marine shale at a similar degree with dimension D2, while the dimension D1 is more sensitive to those of continental shale than dimension D2. Compared with dimension D2, for two shales, dimension D1 is better associated with the content of clay minerals but has worse correlations with the specific surface area and average pore diameter.

  13. Wave-induced ripple development in mixed clay-sand substrates

    NASA Astrophysics Data System (ADS)

    Wu, Xuxu; Parsons, Daniel; Baas, Jaco H.; Mouazé, Dominique; McLelland, Stuart; Amoudry, Laurent; Eggenhuisen, Jorris; Cartigny, Matthieu; Ruessink, Gerben

    2016-04-01

    This paper reports on a series of experiments that aim to provide a fuller understanding of ripple development within clay-sand mixture substrates under oscillatory flow conditions. The work was conducted in the Total Environment Simulator at the University of Hull and constituted 6 separate runs, in which 5 runs were conducted under identical sets of regular waves (an additional run was conducted under irregular waves, but is not discussed in present paper). The bed content was systematically varied in its composition ranging from a pure sand bed through to a bed comprising 7.4% clay. A series of state-of-the-art measurements were employed to quantify interactions of near-bed hydrodynamics, sediment transport, and turbulence over rippled beds formed by wave action, during and after, each run. The experimental results demonstrate the significant influence of the amount of cohesive clay materials in the substrate on ripple evolution under waves. Most importantly, addition of clay in the bed dramatically slowed down the rate of ripple development and evolution. The equilibrium time of each run increased exponentially from 30 minutes under the control conditions of a pure sand bed, rising to ~350 minutes for the bed with the highest fraction of clay. The paper discusses the slower ripple growth rates with higher cohesive fractions, via an influence on critical shear, but highlights that the end equilibrium size of ripples is found to be independent of increasing substrate clay fraction. The suspended particles mass (SPM) concentration indicates that clay particles were suspended and winnowed by wave action. Additionally, laser granulometry of the final substrates verified that ripple crests were composed of pure sand layers that were absent at ripple troughs, reflecting a relatively higher winnowing efficiency at wave ripples crest. The winnowing process and its efficiency is inexorably linked to wave ripple development and evolution. The implications of the results for sediment dynamics in mixed-bed substrates are highlighted and discussed.

  14. Phosphorus leaching from loamy sand and clay loam topsoils after application of pig slurry.

    PubMed

    Liu, Jian; Aronsson, Helena; Bergström, Lars; Sharpley, Andrew

    2012-12-01

    Appropriate management of animal waste is essential for guaranteeing good water quality. A laboratory leaching study with intact soil columns was performed to investigate the risk of phosphorus (P) leaching from a clay loam and a loamy sand. The columns (0.2 m deep) were irrigated before and after application of pig slurry on the surface or after incorporation, or application of mineral P, each at a rate of 30 kg P ha(-1). The two soils had different initial P contents (i.e. the ammonium lactate-extractable P was 65 and 142 mg kg(-1) for the clay loam and loamy sand, respectively), but had similar P sorption characteristics (P sorption index 3.0) and degree of P saturation (17-21%). Concentrations of dissolved reactive P (DRP) and total P (TP) before P application were significantly higher in leachate from the loamy sand (TP 0.21 mg L(-1)) than from the clay loam (TP 0.13 mg L(-1)), but only increased significantly after P application to the clay loam. The highest concentrations were found when slurry was surface-applied (DRP 1.77 mg L(-1)), while incorporation decreased the DRP concentration by 64% in the clay loam. Thus moderate slurry application to a sandy soil with low P saturation did not pose a major risk of P leaching. However, application of P increased the risk of P leaching from the clay loam, irrespective of application method and despite low P saturation. The results show the importance of considering soil texture and structure in addition to soil chemical characteristics in risk assessments of P leaching. Structured soils such as the clay loam used in this study are high risk soils and application of P to bare soil during wet periods, e.g. in autumn or spring, should be followed by incorporation or avoided completely.

  15. Effectiveness Study of Drinking Water Treatment Using Clays/Andisol Adsorbent in Lariat Heavy Metal Cadmium (Cd) and Bacterial Pathogens

    NASA Astrophysics Data System (ADS)

    Pranoto; Inayati; Firmansyah, Fathoni

    2018-04-01

    Water is a natural resource that is essential for all living creatures. In addition, water also caused of disease affecting humans. The existence of one of heavy metal pollutants cadmium (Cd) in the body of water is an environmental problem having a negative impact on the quality of water resources. Adsorption is one of the ways or methods that are often used for the treatment of wastewater. Clay and allophanic soil were used as Cd adsorbent by batch method. Ceramic filter was used to reduce Cd concentration in the ground water. This study aims to determine the effect of the composition of clay and Allophane, activation temperature and contact time on the adsorption capacity of Cd in the model solution. The optimum adsorption condition and the effectiveness of drinking water treatment in accordance with Regulation of the Minister of Health using clay/Andisol adsorbents in ensnare heavy metals Cd and bacterial pathogens. Identification and characterization of adsorbent is done by using NaF, Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), specific surface area and total acidity specific. The Cd metal concentrations were analysed by atomic absorption spectroscopy. Adsorption isotherms determined by Freundlich and Langmuir equations. Modified water purification technology using ceramic filters are made with a mixture of clay and Andisol composition. The results showed samples of clay and Andisol containing minerals. The optimum condition of adsorption was achieved at 200 °C of activation temperature, 60 minutes of contact time and the 60:40 of clay:Andisol adsorbent composition. Freundlich isotherm represented Cd adsorption on the clay/Andisol adsorbent with a coefficient of determination (R2=0.99) and constant (k=1.59), higher than Langmuir (R2=0.89). The measurement results show the water purification technology using ceramic filters effectively reduce E. coli bacterial and Cd content in the water.

  16. Desorption and mobility mechanisms of co-existing polycyclic aromatic hydrocarbons and heavy metals in clays and clay minerals.

    PubMed

    Saeedi, Mohsen; Li, Loretta Y; Grace, John R

    2018-05-15

    The effects of soil components such as clay minerals and as humic acids, as well as co-existing metals and polycyclic aromatic hydrocarbons, on desorption and mobility are examined. Three types of artificially blended clay and clay mineral mixtures (pure kaolinite, kaolinite + sand and kaolinite + sand + bentonite), each with different humic acid content, were tested for desorption and mobility of acenaphthene, fluorene and fluoranthene by three extracting solutions CaCl 2 (0.01 M) and EDTA (0.01M) with non-ionic surfactants (Tween 80 and Triton X100). Heavy metals (Ni, Pb and Zn) were also studied for desorption and mobility. The influence of co-present metals on simultaneous desorption and mobility of PAHs was investigated as well. The results showed that <10% of metals in the clay mineral mixtures were mobile. Combined EDTA and non-ionic solutions can enhance the desorption and mobility of PAHs to >80% in clay mineral mixtures containing no sand, while in the same soils containing ∼40% sand, the desorption exceeded 90%. Heavy metals, as well as increasing humic acids content in the clay mineral mixtures, decreased the desorption and mobility of PAHs, especially for soils containing no sand, and for fluoranthene compared with fluorene and acenaphthene. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Nitrate transport and transformation processes in unsaturated porous media

    USGS Publications Warehouse

    Tindall, James A.; Petrusak, Robin L.; McMahon, Peter B.

    1995-01-01

    A series of experiments was conducted on two contrasting agricultural soils to observe the influence of soil texture, preferential flow, and plants on nitrate transport and denitrification under unsaturated conditions. Calcium nitrate fertilizer was applied to the surface of four large undisturbed soil cores (30 cm diameter by 40 cm height). Two of the cores were a structured clay obtained from central Missouri and two were an unstructured fine sand obtained from central Florida. The cores were irrigated daily and maintained at a matric potential of -20 kPa, representative of soil tension in the rooting zone of irrigated agricultural fields. Volumetric water content (θ), concentration of nitrate-N in the soil solution, and nitrous oxide flux at the surface, 10, 20, and 30 cm were monitored daily. Leaching loss of surface-applied N03− -N was significant in both the sand and the clay. In unplanted sand cores, almost all of the applied nitrate was leached below 30 cm within 10 days. Gaseous N loss owing to denitrification was no greater than 2% of the nitrate-N applied to the unplanted sand cores and, in general, was less than 1 %. Although leaching was somewhat retarded in the clay cores, about 60% of the applied nitrate-N was leached from the unplanted clay soil in 5–6 weeks. Under unsaturated conditions, the clay had little to no tendency to denitrify despite the greater moisture content of the clay and retarded leaching of nitrate in the clay. The planted sand cores had surprisingly large gaseous N loss owing to denitrification, as much as 17% of the nitrate-N. Results from both the clay and sand experiments show that the dynamics of nitrate transport and transformation in unsaturated soils are affected by small, localized variations in the soil moisture content profile, the gaseous diffusion coefficient of the soil, the rate at which the nitrate pulse passes through the soil, the solubility of N2O and N2 and the diffusion of the gasses through the soil solution, and development of a water content profile in the soil. Limited dentrification in the clay soil was due to a limited volume of soil available for infiltration after internal catchment and the development of denitrifying conditions resulting from the presence of an extensive macropore system.

  18. Rare earth elements in German soils - A review.

    PubMed

    Mihajlovic, Julia; Rinklebe, Jörg

    2018-08-01

    Rare earth elements (REEs) are increasingly used in high-tech industry, agriculture, and healthcare technologies what leads to their release into soils and waters, and to the transfer into plants what may have negative impacts on human health and the environment. The toxicity and potential mobilization of REEs in soils can be assessed by their content and geochemical behavior along with soil properties. However, those interactions are so far not reviewed in German soils although such a review is important for a better understanding and prediction of the potential mobilization and toxicity. Therefore, this review summarizes the recent knowledge about REE contents and potential mobilization in different soil profiles in Germany. We found that the REE content tends to decrease in dependence on the parent material in the following order: Carbonatite > basalt > orthogneiss > clay slate > loess > sandstone > Pleistocene and Holocene sediments > organic material. Also, we used data of earlier studies, summarized and newly evaluated those data aiming to quantify the factors influencing the total REE content in German soil profiles. The contents of REEs in soil profiles of different parent material showed significant relations with content of clay, carbonate, organic matter, aluminium, iron, and manganese. Geochemical fractionation results suggest that the bioavailability of REEs is relatively low while the residual fraction is relatively high in German soils. In soils, where water fluctuations are important, the redox potential is a key factor controlling the mobilization of REEs also via related changes of pH. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Degradation of Nylon-6/Clay Nanocomposites in NO(x)

    NASA Astrophysics Data System (ADS)

    Shelley, J. S.; Devries, K. L.

    2000-04-01

    Nylon-6 is an important engineering polymer that, in its fully spherulitic (bulk) form, has many applications in gears, rollers, and other long life cycle components. In 1993, Toyota commercialized a nylon-6/clay nanocomposite out of which it produced the timing belt cover for the 1993 Camry. Although these hybrid nanocomposites show significant improvements in their mechanical response characteristics, including yield strength and heat distortion temperature, little is known about the degradation of these properties due to environmental pollutants like NOx. Nylon-6 fibers are severely degraded by interaction with NOx and other pollutants, showing a strong synergism between applied load and environmental degradation. While the nanocomposites show a significant reduction in permeability of gases and water due to the incorporation of lamellar clay, their susceptibility to non-diffusional mechano-chemical degradation is unknown. The fracture toughness of these nylon-6/day nanocomposites increases, not as a function of clay content, but as a function of the volume of nylon-6 polymer chains influenced by the clay lamellar surfaces. Both the clay and the constrained volume offer the nanocomposites some protection from the deleterious effects of NOx. The time-to-failure at a given stress intensity factor as a function of clay content and constrained volume will be discussed along with fracture toughness of the materials.

  20. Predicting radiocaesium sorption characteristics with soil chemical properties for Japanese soils.

    PubMed

    Uematsu, Shinichiro; Smolders, Erik; Sweeck, Lieve; Wannijn, Jean; Van Hees, May; Vandenhove, Hildegarde

    2015-08-15

    The high variability of the soil-to-plant transfer factor of radiocaesium (RCs) compels a detailed analysis of the radiocaesium interception potential (RIP) of soil, which is one of the specific factors ruling the RCs transfer. The range of the RIP values for agricultural soils in the Fukushima accident affected area has not yet been fully surveyed. Here, the RIP and other major soil chemical properties were characterised for 51 representative topsoils collected in the vicinity of the Fukushima contaminated area. The RIP ranged a factor of 50 among the soils and RIP values were lower for Andosols compared to other soils, suggesting a role of soil mineralogy. Correlation analysis revealed that the RIP was most strongly and negatively correlated to soil organic matter content and oxalate extractable aluminium. The RIP correlated weakly but positively to soil clay content. The slope of the correlation between RIP and clay content showed that the RIP per unit clay was only 4.8 mmol g(-1) clay, about threefold lower than that for clays of European soils, suggesting more amorphous minerals and less micaceous minerals in the clay fraction of Japanese soils. The negative correlation between RIP and soil organic matter may indicate that organic matter can mask highly selective sorption sites to RCs. Multiple regression analysis with soil organic matter and cation exchange capacity explained the soil RIP (R(2)=0.64), allowing us to map soil RIP based on existing soil map information. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Origin and evolution of phyllosilicate deformation bands in the poorly lithified sandstones of the Rio do Peixe Basin, NE Brazil

    NASA Astrophysics Data System (ADS)

    Nogueira, Francisco; Nicchio, Matheus; Balsamo, Fabrizio; Bezerra, Francisco; Souza, Jorge; Carvalho, Bruno; Storti, Fabrizio

    2017-04-01

    In this work we describe the genetic processes and the microstructural evolution of phylossilicate deformation bands developed in poorly lithified, high porosity sandstones of the Rio do Peixe Basin, Northeast Brazil. The studied deformation bands occur in damage zones of NE-SW and NW-SE transtensional faults that exhibit well developed anastomosed clusters, with a thickness varying from tens of centimeters to 1 meter. The Host rocks are arkosic to lithic arkosic coarse sandstones to fine conglomerate and with less than 1% of clay content in the matrix. Based on (i) field observations, (ii) clay amount in deformation band cores and (iii) clay mineral arrangements in deformation bands cores, we identified two types of phyllosilicate deformation bands: (1) clay smearing deformation bands and (2) phyllosilicate deformation bands formed by clay authigenesis. The former occur only in fault zones that cut across clay-rich layers and are characterized by 45-50% of clay content. Single element chemical analysis indicates that the composition of clay minerals in clay smearing deformation bands is similar to that of clay-rich layers in the host rocks. The dominant deformation mechanism is particulate flow, which produces preferential alignments of grains and clay minerals. Only subordinate cataclasis occurs. Based on microstructural fabrics, three evolutionary stages can be identified for phyllosilicate deformation bands formed by clay authigenesis. The first one is characterized by preferentially cataclasis and weathering of feldspars. Clay concentration is relatively low, reaching 15-20%, with preferential concentration where crushed feldspar abundance is higher. The second stage is characterized by clay migration within deformation bands, to form continuous films with more than 20-25% of clay concentration. In the last stage clay mineral fabric re-organization occurs, forming well a developed S-C foliation. Clay concentration exceeds 35%. Single element chemical analysis indicates that the only external element present in phyllosilicate deformation bands formed by clay authigenesis is iron oxide. This feature suggests formation at very shallow depth, in the vadose zone where fluid flow preferentially occurs by capillarity in deformation band cores. Petrophysical analysis shows that both types of phyllosilicate deformation bands have high sealing potential. Clay smearing deformation bands reduce rock permeability by three orders of magnitude whereas phyllosilicate deformation bands formed by authigenesis causes permeability reduction of about two orders of magnitude with respect to the corresponding host rock.

  2. Clay deposits of the Tierra Colorado district, southern Orange County, California

    USGS Publications Warehouse

    Daviess, Steven Norman; Bramlette, M.N.

    1953-01-01

    The clay of this district is being mined for fire brick by the Vitrofrax Corporation. Much of the clay contains 35 percent or more of alumina and between 1 and 2 percent of iron oxide. Production is largely from an underground mine as the best clay deposit known in the district occurs on the side of a steep hill with more than 100 feet of sandstone overlying most of it. The good clay deposits occur at the base of an Eocene sandstone formation, and overlie mottled clays with a high iron content that are residual deposits formed on an old weathered surface. Mapping indicates that the clay deposits are very lenticular, though all occur at the same stratigraphic position, and they grade laterally into sandy clay and quartz sand. Topographic relief and the dip of the strata preclude finding large areas where the clay strata have relatively little overburden.

  3. Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative

    PubMed Central

    Tiyip, Tashpolat; Ding, Jianli; Zhang, Dong; Liu, Wei; Wang, Fei; Tashpolat, Nigara

    2017-01-01

    Effective pretreatment of spectral reflectance is vital to model accuracy in soil parameter estimation. However, the classic integer derivative has some disadvantages, including spectral information loss and the introduction of high-frequency noise. In this paper, the fractional order derivative algorithm was applied to the pretreatment and partial least squares regression (PLSR) was used to assess the clay content of desert soils. Overall, 103 soil samples were collected from the Ebinur Lake basin in the Xinjiang Uighur Autonomous Region of China, and used as data sets for calibration and validation. Following laboratory measurements of spectral reflectance and clay content, the raw spectral reflectance and absorbance data were treated using the fractional derivative order from the 0.0 to the 2.0 order (order interval: 0.2). The ratio of performance to deviation (RPD), determinant coefficients of calibration (Rc2), root mean square errors of calibration (RMSEC), determinant coefficients of prediction (Rp2), and root mean square errors of prediction (RMSEP) were applied to assess the performance of predicting models. The results showed that models built on the fractional derivative order performed better than when using the classic integer derivative. Comparison of the predictive effects of 22 models for estimating clay content, calibrated by PLSR, showed that those models based on the fractional derivative 1.8 order of spectral reflectance (Rc2 = 0.907, RMSEC = 0.425%, Rp2 = 0.916, RMSEP = 0.364%, and RPD = 2.484 ≥ 2.000) and absorbance (Rc2 = 0.888, RMSEC = 0.446%, Rp2 = 0.918, RMSEP = 0.383% and RPD = 2.511 ≥ 2.000) were most effective. Furthermore, they performed well in quantitative estimations of the clay content of soils in the study area. PMID:28934274

  4. Glaciomarine sedimentation and bottom current activity on the north-western and northern continental margins of Svalbard during the late Quaternary

    NASA Astrophysics Data System (ADS)

    Chauhan, Teena; Noormets, Riko; Rasmussen, Tine L.

    2016-04-01

    Palaeo-bottom current strength of the West Spitsbergen Current (WSC) and the influence of the Svalbard-Barents Sea Ice Sheet (SBIS) on the depositional environment along the northern Svalbard margins are poorly known. Two gravity cores from the southern Yermak Plateau and the upper slope north of Nordaustlandet, covering marine isotope stage (MIS) 1 to MIS 5, are investigated. Five lithofacies, based on grain size distribution, silt/clay ratio, content and mean of sortable silt (SS), are distinguished to characterise the contourite-dominated sedimentary environments. In addition, depositional environments are described using total organic carbon (TOC), total sulphur (TS) and calcium carbonate (CaCO3) contents of sediments. Facies A, containing coarse SS, suggests strong bottom current activity and good bottom water ventilation conditions as inferred from low TOC content. This facies was deposited during the glacial periods MIS 4, MIS 2 and during the late Holocene. Facies B is dominated by fine SS indicating weak bottom current and poor ventilation (cf. high TOC content of 1.2-1.6%), and correlates with the MIS 4/3 and MIS 2/1 transition periods. With an equal amount of clay and sand, fine SS and high content of TOC, facies C indicates reduced bottom current strength for intervals with sediment supply from proximal sources such as icebergs, sea ice or meltwater discharge. This facies was deposited during the last glacial maximum. Facies D represents mass-flow deposits on the northern Svalbard margin attributed to the SBIS advance at or near the shelf edge. Facies E sediments indicating moderate bottom current strength were deposited during MIS 5 and MIS 3, and during parts of MIS 2. This first late Quaternary proxy record of the WSC flow and sedimentation history from the northern Svalbard margin suggests that the oceanographic conditions and ice sheet processes have exerted first-order control on sediment properties.

  5. Heavy metal contamination of the soils used for stocking raw materials in the former ILVA iron-steel industrial plant of Bagnoli (southern Italy).

    PubMed

    Adamo, P; Arienzo, M; Bianco, M R; Terribile, F; Violante, P

    2002-08-05

    The total contents and the chemical and mineralogical forms of the metals Fe, Al, Cu, Co, Cr, Pb, Zn, Ni and Mn in the horizons of a soil profile, representative of an area devoted to stocking raw materials in the dismantled iron-steel industrial plant of ILVA of Bagnoli (Naples), were studied by physical and chemical methods. The geological setting of the study area is the result of volcanic activity in the Phlegrean Fields, a group of polygenic volcanoes to the west of Naples, which give rise to the parent soil material. Soil morphology appeared to be strongly disturbed by the occurrence and stratification of materials used in the industrial process. Fine sediments illuviation down the profile resulted in the occurrence of silt and clay coatings. The total contents of Cu, Co, Cr, Pb, Zn and Ni, in the whole soil samples, especially in the surface layers, were above the regulatory levels (Cu 120, Co 20, Cr 150, Pb 100, Zn 150, Ni 120 mg kg(-1)) stated by the Italian Ministry of Environment for soils in public, private and residential areas, and below the levels (Cu 600, Co 250, Cr 800, Pb 1000, Zn 1500, Ni 500 mg kg(-1)) outlined for soils and subsoils of industrial and commercial areas (Gazzetta Ufficiale della Repubblica Italiana, 1999). Speciation of heavy metals and the determination of the different chemical pools in the fraction < 2 mm identified the large presence of elements trapped in the mineralogical structure of oxides and silicates and occluded in easily reducible manganese or iron oxides. A constant amount of Cu was associated with organic compounds. A significant amount of Zn (> 20%) was extracted in diluted acetic acid solution, indicating that the element was present in a more readily and potentially available form. In the clay fraction (< 2 microm) heavy metals were associated with both amorphous and crystalline iron forms. The presence of iron-rich clay coatings was evident in the illuvial pores of deeper horizons. Enrichment in Cu, Co, Cr and Zn of the coatings was observed. Possible translocation of metals down through the soil profile mainly bound to fine particles of relatively inert forms of iron is hypothesised. The dispersion in water of the clay fraction resulted in an average percentage dispersion of approximately 20% with a peak of 41.7% at 68-72 cm depth. Magnetite, goethite, hematite, calcite and quartz mixed with K-feldspars, clynopyroxenes and mica occurred in the coarse sand fractions (2-0.2 mm) of the soil samples from all the surface horizons. Talcum and goethite together with clay minerals at 1.4 nm, kaolinite and illite were found in the clays (< 2 microm).

  6. A model for predicting embankment slope failures in clay-rich soils; A Louisiana example

    NASA Astrophysics Data System (ADS)

    Burns, S. F.

    2015-12-01

    A model for predicting embankment slope failures in clay-rich soils; A Louisiana example It is well known that smectite-rich soils significantly reduce the stability of slopes. The question is how much smectite in the soil causes slope failures. A study of over 100 sites in north and south Louisiana, USA, compared slopes that failed during a major El Nino winter (heavy rainfall) in 1982-1983 to similar slopes that did not fail. Soils in the slopes were tested for per cent clay, liquid limits, plasticity indices and semi-quantitative clay mineralogy. Slopes with the High Risk for failure (85-90% chance of failure in 8-15 years after construction) contained soils with a liquid limit > 54%, a plasticity index over 29%, and clay contents > 47%. Slopes with an Intermediate Risk (55-50% chance of failure in 8-15 years) contained soils with a liquid limit between 36-54%, plasticity index between 16-19%, and clay content between 32-47%. Slopes with a Low Risk chance of failure (< 5% chance of failure in 8-15 years after construction) contained soils with a liquid limit < 36%, a plasticity index < 16%, and a clay content < 32%. These data show that if one is constructing embankments and one wants to prevent slope failure of the 3:1 slopes, check the above soil characteristics before construction. If the soils fall into the Low Risk classification, construct the embankment normally. If the soils fall into the High Risk classification, one will need to use lime stabilization or heat treatments to prevent failures. Soils in the Intermediate Risk class will have to be evaluated on a case by case basis.

  7. [Dynamics of soil physical properties and biological soil crust during the vegetation restoration process of abandoned croplands in the Ordos Plateau, China].

    PubMed

    Cai, Wen Tao; Li, He Yi; Lai, Li Ming; Zhang, Xiao Long; Guan, Tian Yu; Zhou, Ji Hua; Jiang, Lian He; Zheng, Yuan Run

    2017-03-18

    A series of typical abandoned croplands in the regions of Ruanliang and Yingliang in the Ordos Plateau, China, were selected, and dynamics of the surface litter, biological soil crust and soil bulk density, soil texture, and soil moisture in different soil layers were investigated. The results showed that in the abandoned cropland in Ruanliang, the clay particle content and surface litter of the surface soil layer (0-10 cm) increased during the restoration process, while that of soil bulk density substantially decreased and soil water content slightly increased in the surface soil. In the medium soil layer (10-30 cm), the clay particle content increased and the soil water content slightly decreased. In the deep soil layer (30-50 cm), there was a relatively large variation in the physical properties. In the abandoned cropland in Yingliang, the coverage of litter and the coverage and thickness of the biological soil crust increased during the abandonment process. The surface soil bulk density, soil clay particle content and soil water content remained constant in 0-10 cm soil layer, while the physical properties varied substantially in 10-40 cm soil layer. The shallow distribution of the soil water content caused by the accumulation of the litter and clay particles on the soil surface might be the key reason of the replacement of the semi-shrub Artemisia ordosica community with a perennial grass community over the last 20 years of the abandoned cropland in Ruanliang. The relatively high soil water content in the shallow layer and the development of the biological soil crust might explain why the abandoned cropland in Yingliang was not invaded by the semi-shrub A. ordosica during the restoration process.

  8. Study of gamma spectrometry laboratory measurement in various sediment and vulcanic rocks

    NASA Astrophysics Data System (ADS)

    Nurhandoko, Bagus Endar B.; Kurniadi, Rizal; Rizka Asmara Hadi, Muhammad; Rizal Komara, Insan

    2017-01-01

    Gamma-ray spectroscopy is the quantitative study of the energy spectra of gamma-ray sources. This method is powerful to characterize some minerals, especially to differentiate rocks which contains among Potassium, Uranium, dan Thorium. Rock contains radioactive material which produce gamma rays in various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be used as indicator for mineral content of rock. Some sediment and vulcanic rock have been collected from East Java Basin. Samples are ranging from Andesite vulcanics, Tuff, Shale, various vulcanic clay and Alluvial clay. We present some unique characteristics of gamma spectrometry in various sedimentar and vulcanic rocks of East Java Basins. Details contents of gamma ray spectra give enrichments to characterize sample of sediment and vulcanic in East Java. Weathered vulcanic clay has lower counting rate of gamma ray than alluvial deltaic clay counting rate. Therefore, gamma spectrometrometry can be used as tool for characterizing the enviroment of clay whether vulcanic or alluvial-deltaic. This phenomena indicates that gamma ray spectrometry can be as tool for characterizing the clay whether it tends to Smectite or Illite

  9. Cadmium Contents of Soils, Durum, and Bread Wheats in Harran Plain, Southeast Turkey

    NASA Astrophysics Data System (ADS)

    Büyükkılıç, Asuman; Mermut, Ahmet; Faz Cano, Angel; Carmona Garces, Doria

    2010-05-01

    Turkey is growing significant amount of durum wheat (Triticum turgidum durum - (Desf.)Husn) which is widely used for making pasta, spaghetti, noodles etc. Objective of this study were to: 1) determine Cd concentrations of the soils, durum and bread wheats grown in the Harran plain, southeast Turkey and 2) evaluate this element in terms of food safety. Soil samples from the selected 16 profiles, grains, roots, and leaves of durum and bread wheats were taken for analyses. Total Cd contents of the soils were below the threshold values. The soils in the northern part of the plain have more than 0.2 ppm of Cd. Carbonate and clay contents are > 15% and 40% respectively and have substantial amounts of Fe-oxy-hydroxides. Three phosphorus fertilizer samples, frequently used in the area, had > 2 ppm of Cd. As expected, the amounts of Cd in bread wheat were lower than durum wheat. However, the Cd contents in durum wheat grains in the area studied were < 50 ?g kg-1 which is less than those in Canada (> 100 ?g kg-1) and similar to the drum grains from Italy. Some samples in Italy even had 71 ?g kg-1. These were attributed to the presence of high amounts of carbonates, Fe-oxy-hydroxides, and clay in the soils we studied. In the surface soil, Zn contents were between 21.5 and 72.8 mg kg-1.This could be another reason for lower contents of Cd in our durum wheat. Our study confirms that durum wheat grown in the Harran plain southeast Turkey has a better quality, therefore advantageous; in terms of food safety from the standpoint of Cd contents.

  10. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2007-01-01

    The article offers information on ball clay. Among the companies that mine ball clay in the U.S. are H.C. Spinks Clay, Kentucky-Tennessee Clay and Old Hickory Clay. In 2006, an estimated 1.2 million tons of the mineral was sold or used domestically and exported. Forty-percent of the total sales is accounted for ceramic floor and wall tile followed by sanitaryware and miscellaneous ceramics. Its average value was $ 45 per ton in 2006.

  11. The Evaluation of Basal Respiration for Various Soil Textures in Ecologically Sensitive Area

    NASA Astrophysics Data System (ADS)

    Huličová, P.; Kotorová, D.; Fazekašová, D.; Hynšt, J.

    2017-10-01

    The present contribution was focused on monitoring changes in the soil basal respiration in different textures of soil in the dry polder Beša. The research was conducted between 2012 and 2014 on soil type Fluvisol locations on three soil textures: clay - loam soil, clayey soil and clay soil in three soil depths. The basal respiration (BR) has been determine by soil CO2 production measuring from incubated soil samples in serum bottles in laboratory condition. Release Co2 has been analysed by gas chromatography. Content of clay particles were in the range 52.18 % to 81.31%, indicating the high difference between the minimum and maximum content. By using of multiple LSD-test we recorded statistically significant impact of clay on basal respiration. Results confirm the values of basal respiration with the depth of the soil profile decreased.

  12. Effects of debris-flow composition on runout and erosion

    NASA Astrophysics Data System (ADS)

    Haas, T. D.; Kleinhans, M. G.

    2016-12-01

    Predicting debris-flow runout is of major importance for hazard mitigation. Apart from topography and volume, runout depends on debris-flow composition (i.e., particle-size distribution and water content), but how is poorly understood. Moreover, debris flows can grow greatly in size by entrainment of bed material, enhancing their volume and thereby runout and hazardous impact. Debris-flow erosion rates also depend on debris-flow composition, but the relation between the two is largely unexplored. Composition thus strongly affects the dynamics of debris flows. We experimentally investigate the effects of composition on debris-flow runout and erosion. We find a clear optimum in the relations of runout with coarse-material fraction and clay fraction. Increasing coarse material concentration leads to larger runout. However, excess coarse material results in a large accumulation of coarse debris at the flow front and enhances diffusivity, increasing frontal friction and decreasing runout. Increasing clay content initially enhances runout, but too much clay leads to very viscous flows, reducing runout. We further find that debris-flow runout depends at least as much on composition as on topography. In general, erosion depth increases with basal shear stress in our experiments, while there is no correlation with grain collisional stress. There are substantial differences in the scour caused by different types of debris flows. Mean and maximum erosion depths generally become larger with increasing water fraction and grain size and decrease with increasing clay content. However, the erodibility of the very coarse-grained experimental debris flows is unrelated to basal shear stress. This relates to the relatively large influence of grain-collisional stress to the total bed stress in these flows (30-50%). The relative effect of grain-collisional stress is low in the other experimental debris flows (<5%) causing erosion to be largely controlled by basal shear stress. These results show that the erosive behaviour of debris flows may change from basal-shear stress dominated to grain-collisional stress dominated in increasingly coarse-grained debris flows. In short, this study improves our understanding of the effects of debris-flow composition on runout and erosion.

  13. Clay mineral type effect on bacterial enteropathogen survival in soil.

    PubMed

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific. © 2013.

  14. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    PubMed Central

    Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.

    2016-01-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2–53 μm) and sand (53–2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg−1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg−1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation. PMID:27251365

  15. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    NASA Astrophysics Data System (ADS)

    Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.

    2016-06-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg-1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg-1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.

  16. Effects of rock mineralogy and pore structure on stress-dependent permeability of shale samples

    PubMed Central

    Al Ismail, Maytham I.; Zoback, Mark D.

    2016-01-01

    We conducted pulse-decay permeability experiments on Utica and Permian shale samples to investigate the effect of rock mineralogy and pore structure on the transport mechanisms using a non-adsorbing gas (argon). The mineralogy of the shale samples varied from clay rich to calcite rich (i.e. clay poor). Our permeability measurements and scanning electron microscopy images revealed that the permeability of the shale samples whose pores resided in the kerogen positively correlated with organic content. Our results showed that the absolute value of permeability was not affected by the mineral composition of the shale samples. Additionally, our results indicated that clay content played a significant role in the stress-dependent permeability. For clay-rich samples, we observed higher pore throat compressibility, which led to higher permeability reduction at increasing effective stress than with calcite-rich samples. Our findings highlight the importance of considering permeability to be stress dependent to achieve more accurate reservoir simulations especially for clay-rich shale reservoirs. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597792

  17. Influence of nanoclay on interlaminar shear strength and fracture toughness of glass fiber reinforced nanocomposites

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, M. S.; Chithirai Pon Selvan, M.; Sampath, P. S.; Raja, K.; Balasundaram, K.

    2018-04-01

    Multilayer glass fiber reinforced polymer (GFRP) laminates filled with nanoclay was manufactured with compression moulding machine. In the present work, five kinds of nanoclay (Cloisite 25A) loadings viz. 2, 4, 6, 8 and 10% on weight basis of epoxy resin were employed to modify the interlaminar shear strength (ILSS), critical energy release rate (GIc) and impact energy properties of GFRP laminates. Experimental results obtained from ILSS test on clay filled GFRP confirm that the superior strength was attained at low clay content of 155.10 MPa. Furthermore, the mode I interlaminar fracture toughness test conducted on DCB specimens revealed that the commanding improvement of GIc was obtained at 2 wt.% clay content level. On the other hand, both ILSS and fracture toughness was getting reduced at higher clay loadings. At last, the impact strength of the test samples was investigated by using Izod impact test apparatus and observed that the impact energy was increased by 44.39% for 2 wt.% and followed by 24.87% for 4 wt.% clay loadings.

  18. Influence of nanosize clay platelets on the mechanical properties of glass fiber reinforced polyester composites.

    PubMed

    Jawahar, P; Balasubramanian, M

    2006-12-01

    Glass fiber reinforced polyester composite and hybrid nanoclay-fiber reinforced composites were prepared by hand lay-up process. The mechanical behavior of these materials and the changes as a result of the incorporation of both nanosize clay and glass fibers were investigated. Composites were prepared with a glass fibre content of 25 vol%. The proportion of the nanosize clay platelets was varied from 0.5 to 2.5 vol%. Hybrid clay-fiber reinforced polyester composite posses better tensile, flexural, impact, and barrier properties. Hybrid clay-fiber reinforced polyester composites also posses better shear strength, storage modulus, and glass transition temperature. The optimum properties were found to be with the hybrid laminates containing 1.5 vol% nanosize clay.

  19. Effect of the platinum content on the microstructure and micropore size distribution of Pt/alumina-pillared clays.

    PubMed

    Barrera-Vargas, M; Valencia-Rios, J; Vicente, M A; Korili, S A; Gil, A

    2005-12-15

    The aim of this work is to study the effect of the platinum content (0-1.8 wt % Pt) on the microstructure of an alumina-pillared clay. For this purpose, the nitrogen physisorption data at -196 degrees C, the micropore size distributions of the supported platinum catalysts, and the hydrogen chemisorption results at 30 degrees C have been analyzed and compared. The preparation of the catalysts has modified the textural properties of the Al-pillared clay support, giving rise to a loss of surface area and micropore volume. After reduction at 420 degrees C, the presence of dispersed metallic platinum with mean crystallite size in the 22-55 A range has been found by hydrogen adsorption. Comparison of all results reveals that the platinum species block the micropore entrances by steric hindrance to nitrogen access as the platinum content increases.

  20. Clay-catalyzed reactions of coagulant polymers during water chlorination

    USGS Publications Warehouse

    Lee, J.-F.; Liao, P.-M.; Lee, C.-K.; Chao, H.-P.; Peng, C.-L.; Chiou, C.T.

    2004-01-01

    The influence of suspended clay/solid particles on organic-coagulant reactions during water chlorination was investigated by analyses of total product formation potential (TPFP) and disinfection by-product (DBP) distribution as a function of exchanged clay cation, coagulant organic polymer, and reaction time. Montmorillonite clays appeared to act as a catalytic center where the reaction between adsorbed polymer and disinfectant (chlorine) was mediated closely by the exchanged clay cation. The transition-metal cations in clays catalyzed more effectively than other cations the reactions between a coagulant polymer and chlorine, forming a large number of volatile DBPs. The relative catalytic effects of clays/solids followed the order Ti-Mont > Fe-Mont > Cu-Mont > Mn-Mont > Ca-Mont > Na-Mont > quartz > talc. The effects of coagulant polymers on TPFP follow the order nonionic polymer > anionic polymer > cationic polymer. The catalytic role of the clay cation was further confirmed by the observed inhibition in DBP formation when strong chelating agents (o-phenanthroline and ethylenediamine) were added to the clay suspension. Moreover, in the presence of clays, total DBPs increased appreciably when either the reaction time or the amount of the added clay or coagulant polymer increased. For volatile DBPs, the formation of halogenated methanes was usually time-dependent, with chloroform and dichloromethane showing the greatest dependence. ?? 2003 Elsevier Inc. All rights reserved.

  1. Clay minerals trap hydrogen in the Earth's crust: Evidence from the Cigar Lake uranium deposit, Athabasca

    NASA Astrophysics Data System (ADS)

    Truche, Laurent; Joubert, Gilles; Dargent, Maxime; Martz, Pierre; Cathelineau, Michel; Rigaudier, Thomas; Quirt, David

    2018-07-01

    Hydrogen (H2)-rich fluids are observed in a wide variety of geologic settings including gas seeps in serpentinized ultramafic rocks, sub-seafloor hydrothermal vents, fracture networks in crystalline rocks from continental and oceanic crust, and volcanic gases. Natural hydrogen sources can sustain deep microbial ecosystems, induce abiotic hydrocarbons synthesis and trigger the formation of prebiotic organic compounds. However, due to its extreme mobility and small size, hydrogen is not easily trapped in the crust. If not rapidly consumed by redox reactions mediated by bacteria or suitable mineral catalysts it diffuses through the rocks and migrates toward the surface. Therefore, H2 is not supposed to accumulate in the crust. We challenge this view by demonstrating that significant amount of H2 may be adsorbed by clay minerals and remain trapped beneath the surface. Here, we report for the first time H2 content in clay-rich rocks, mainly composed of illite, chlorite, and kaolinite from the Cigar Lake uranium ore deposit (northern Saskatchewan, Canada). Thermal desorption measurements reveal that H2 is enriched up to 500 ppm (i.e. 0.25 mol kg-1 of rock) in these water-saturated rocks having a very low total organic content (<0.5 wt%). Such hydrogen uptake is comparable and even exceeds adsorbed methane capacities reported elsewhere for pure clay minerals or shales. Sudoite (Al-Mg di-trioctahedral chlorite) is probably the main mineral responsible for H2 adsorption in the present case. The presence of multiple binding sites in interlinked nanopores between crystal layers of illite-chlorite particles offers the ideal conditions for hydrogen sorption. We demonstrate that 4 to 17% of H2 produced by water radiolysis over the 1.4-Ga-lifetime of the Cigar Lake uranium ore deposit has been trapped in the surrounding clay alteration haloes. As a result, sorption processes on layered silicates must not be overlooked as they may exert an important control on the fate and mobility of H2 in the crust. Furthermore, the high capacity of clay minerals to sorb molecular hydrogen may also open up new opportunities for exploration of unexpected energy resources and for H2 storage based on geo-inspired materials.

  2. Clay with Desiccation Cracks is an Advection Dominated Environment

    NASA Astrophysics Data System (ADS)

    Baram, S.; Kurtzman, D.; Sher, Y.; Ronen, Z.; Dahan, O.

    2012-04-01

    Heavy clay sediments are regarded "safe" from the hydrological point of view due to their low hydraulic conductivities. However, the formation of desiccation cracks in dispersive clays may dramatically change their bulk hydraulic properties. The impact of desiccation cracks on water percolation, dissolved salts and contaminants transport and redox related reactions (microbial ammonium oxidation and denitrification) were investigated in 6 -12 m clay layer near a diary farm waste lagoon. The study implemented unique vadose-zone monitoring systems that enable in-situ measurements of the temporal variation of the sediment's water content along with frequent sampling of the sediment's pore water along the entire vadose zone (> 30 m). Results from four years of continuous measurements showed quick rises in sediment water content following rain events and temporal wastewater overflows. The percolation pattern indicated dominance of preferential flow through a desiccation-cracks network crossing the entire clay sediment layer. High water-propagation velocities (0.4 - 23.6 m h-1) were observed, indicating that the desiccation-crack network remains open and serves as a preferential flow pathway year-round, even at high sediment water content (~0.50 m3 m-3). The rapid percolation bypassed the most bio-geo-active parts of the soil, transporting even highly sorptive contaminants (testosterone and estrogen) in to the deep sections of the vadose zone, accelerating the underlying groundwater contamination. The ammonium and nitrate concentrations in the vadose zone and the high number of nitrifying and denitrifying bacteria (~108 gene copies gdry-sediemt-1, each) found in the sediment indicated that the entire vadose zone is aerated even at high water content conditions (~0.55 m3 m-3). The dissolved salts concentration in the pore-water and the δ2H-H2O and δ18O-H2O values of the pore-water substantially increased with depth (becoming less depleted) in the clay sediment, indicating deep soil evaporation. Daily fluctuation of the air temperature in the desiccation cracks supported thermally induced air convection within the cracks void and could explain the deep soil salinization process. Combination of all the abovementioned observations demonstrated that the formation of desiccation cracks network in dispersive clay sediments generates a bulk advection dominated environment for both air and water flow, and that the reference to clay sediments as "hydrologically safe" should to be reconsidered.

  3. Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.

    PubMed

    Kim, Donghyun; Lee, Hoik; Sohn, Daewon

    2014-08-01

    A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.

  4. Limiting nitrogen and veterinary pharmaceutical input into groundwater: combining hydrogeophysics and soil science

    NASA Astrophysics Data System (ADS)

    Noell, Ursula; Stadler, Susanne

    2017-04-01

    The EU Interreg project TOPSOIL investigates opportunities to improve surface and groundwater quality as well as water management strategies under the consideration of climate adaptation challenges. Within the framework of the project, we investigate the transport behavior of percolation water in the unsaturated zone, the migration of nitrogen and veterinary pharmaceuticals in soils, and - together with different stakeholders (e.g. farmers, water supply companies) - develop common strategies to minimize the migration of these substances into the groundwater. In our study we focus on distinguishing preferential and diffuse flow using soil scientific and geophysical methods. During the first investigation campaign, we combined soil sampling with radiometry and electrical conductivity overview measurements on the typical sandy soil of the studied area south of Oldenburg, Germany. We used the CMD explorer for the electromagnetic mapping (horizontal and vertical dipoles, intercoil spacing of 1.48/2.82/4.49 m, investigations depths of appr. 0 - 6 m) and the radiometry detector comprised five sodium-iodide crystals each with a volume of 4 litres. The spectral data are evaluated for potassium (1.37 - 1.57 MeV), uranium (Bi-214) (1.66 - 1.86MeV) and thorium (T-208) (2.41 - 2.81MeV) and total counts (0.41-2.81MeV). A total of 292 soil samples were taken from 46 ram coring profiles (depth range: 0 to 3 m) and analyzed for soil chemical parameters and water content. The first evaluation showed a good correlation between conductivity and radiometry measurements. While the uranium and thorium values are generally low, the potassium values possibly reflect higher clay contents as do the higher conductivity values. The geophysical overview measurements were used to select the locations for soil sampling and we specifically targeted presumably clay-rich as well as clay-poor areas for sampling.

  5. Distribution, diversity and abundance of bacterial laccase-like genes in different particle size fractions of sediments in a subtropical mangrove ecosystem.

    PubMed

    Luo, Ling; Zhou, Zhi-Chao; Gu, Ji-Dong

    2015-10-01

    This study investigated the diversity and abundance of bacterial lacasse-like genes in different particle size fractions, namely sand, silt, and clay of sediments in a subtropical mangrove ecosystem. Moreover, the effects of nutrient conditions on bacterial laccase-like communities as well as the correlation between nutrients and, both the abundance and diversity indices of laccase-like bacteria in particle size fractions were also studied. Compared to bulk sediments, Bacteroidetes, Caldithrix, Cyanobacteria and Chloroflexi were dominated in all 3 particle-size fractions of intertidal sediment (IZ), but Actinobacteria and Firmicutes were lost after the fractionation procedures used. The diversity index of IZ fractions decreased in the order of bulk > clay > silt > sand. In fractions of mangrove forest sediment (MG), Verrucomicrobia was found in silt, and both Actinobacteria and Bacteroidetes appeared in clay, but no new species were found in sand. The declining order of diversity index in MG fractions was clay > silt > sand > bulk. Furthermore, the abundance of lacasse-like bacteria varied with different particle-size fractions significantly (p < 0.05), and decreased in the order of sand > clay > silt in both IZ and MG fractions. Additionally, nutrient availability was found to significantly affect the diversity and community structure of laccase-like bacteria (p < 0.05), while the total organic carbon contents were positively related to the abundance of bacterial laccase-like genes in particle size fractions (p < 0.05). Therefore, this study further provides evidence that bacterial laccase plays a vital role in turnover of sediment organic matter and cycling of nutrients.

  6. Geotechnical and mineralogical characteristics of marl deposits in Jordan

    NASA Astrophysics Data System (ADS)

    Shaqour, Fathi M.; Jarrar, Ghaleb; Hencher, Steve; Kuisi, Mostafa

    2008-10-01

    Marls and marly limestone deposits cover most of Northern Jordan, where Amman City and its suburbs are located. These deposits serve as foundations for most buildings and roads as well as fill material for structural back filling, especially road bases and sub-bases. The present study aims at investigating the geotechnical characteristics and mineral composition of the marl units of these deposits through field investigations and laboratory testing. Using X-ray diffraction technique along with chemical analysis, representative samples of marl horizons were tested for mineral composition, and for a set of index and geotechnical properties including: specific gravity, grain size, Atterberg limits, Proctor compaction and shear strength properties. The test results show a positive linear relationship as expected between the clay content and both liquid and plastic limits. The tests results also show an inverse linear relationship between the clay content and the maximum dry density in both standard and modified compaction. This is attributed to the adsorption of water by the clay minerals. The relationship is more prominent in the case of modified compaction test. The results also indicate a similar relationship for the angle of internal friction. No clear correlation between cohesion and clay content was apparent.

  7. Strategy for Extracting DNA from Clay Soil and Detecting a Specific Target Sequence via Selective Enrichment and Real-Time (Quantitative) PCR Amplification ▿

    PubMed Central

    Yankson, Kweku K.; Steck, Todd R.

    2009-01-01

    We present a simple strategy for isolating and accurately enumerating target DNA from high-clay-content soils: desorption with buffers, an optional magnetic capture hybridization step, and quantitation via real-time PCR. With the developed technique, μg quantities of DNA were extracted from mg samples of pure kaolinite and a field clay soil. PMID:19633108

  8. Satellite-derived mineral mapping and monitoring of weathering, deposition and erosion

    PubMed Central

    Cudahy, Thomas; Caccetta, Mike; Thomas, Matilda; Hewson, Robert; Abrams, Michael; Kato, Masatane; Kashimura, Osamu; Ninomiya, Yoshiki; Yamaguchi, Yasushi; Collings, Simon; Laukamp, Carsten; Ong, Cindy; Lau, Ian; Rodger, Andrew; Chia, Joanne; Warren, Peter; Woodcock, Robert; Fraser, Ryan; Rankine, Terry; Vote, Josh; de Caritat, Patrice; English, Pauline; Meyer, Dave; Doescher, Chris; Fu, Bihong; Shi, Pilong; Mitchell, Ross

    2016-01-01

    The Earth’s surface comprises minerals diagnostic of weathering, deposition and erosion. The first continental-scale mineral maps generated from an imaging satellite with spectral bands designed to measure clays, quartz and other minerals were released in 2012 for Australia. Here we show how these satellite mineral maps improve our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map shows how kaolinite has developed over tectonically stable continental crust in response to deep weathering during northwardly migrating tropical conditions from 45 to 10 Ma. The same clay composition map, in combination with one sensitive to water content, enables the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust such as the Lake Eyre Basin. Cutting across these clay patterns are sandy deserts that developed <10 Ma and are well mapped using another satellite product sensitive to the particle size of silicate minerals. This product can also be used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The accuracy and information content of these satellite mineral maps are validated using published data. PMID:27025192

  9. Impact of treated wastewater on growth, respiration and hydraulic conductivity of citrus root systems in light and heavy soils.

    PubMed

    Paudel, Indira; Cohen, Shabtai; Shaviv, Avi; Bar-Tal, Asher; Bernstein, Nirit; Heuer, Bruria; Ephrath, Jhonathan

    2016-06-01

    Roots interact with soil properties and irrigation water quality leading to changes in root growth, structure and function. We studied these interactions in an orchard and in lysimeters with clay and sandy loam soils. Minirhizotron imaging and manual sampling showed that root growth was three times lower in the clay relative to sandy loam soil. Treated wastewater (TWW) led to a large reduction in root growth with clay (45-55%) but not with sandy loam soil (<20%). Treated wastewater increased salt uptake, membrane leakage and proline content, and decreased root viability, carbohydrate content and osmotic potentials in the fine roots, especially in clay. These results provide evidence that TWW challenges and damages the root system. The phenology and physiology of root orders were studied in lysimeters. Soil type influenced diameter, specific root area, tissue density and cortex area similarly in all root orders, while TWW influenced these only in clay soil. Respiration rates were similar in both soils, and root hydraulic conductivity was severely reduced in clay soil. Treated wastewater increased respiration rate and reduced hydraulic conductivity of all root orders in clay but only of the lower root orders in sandy loam soil. Loss of hydraulic conductivity increased with root order in clay and clay irrigated with TWW. Respiration and hydraulic properties of all root orders were significantly affected by sodium-amended TWW in sandy loam soil. These changes in root order morphology, anatomy, physiology and hydraulic properties indicate rapid and major modifications of root systems in response to differences in soil type and water quality. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Monitoring water content in Opalinus Clay within the FE-Experiment: Test application of dielectric water content sensors

    NASA Astrophysics Data System (ADS)

    Sakaki, T.; Vogt, T.; Komatsu, M.; Müller, H. R.

    2013-12-01

    The spatiotemporal variation of water content in the near field rock around repository tunnels for radioactive waste in clay formations is one of the essential quantities to be monitored for safety assessment in many waste disposal programs. Reliable measurements of water content are important not only for the understanding and prediction of coupled hydraulic-mechanic processes that occur during tunnel construction and ventilation phase, but also for the understanding of coupled thermal-hydraulic-mechanical (THM) processes that take place in the host rock during the post closure phase of a repository tunnel for spent fuel and high level radioactive waste (SF/HLW). The host rock of the Swiss disposal concept for SF/HLW is the Opalinus Clay formation (age of approx. 175 Million years). To better understand the THM effects in a full-scale heater-engineered barrier-rock system in Opalinus Clay, a full-scale heater test, namely the Full-Scale Emplacement (FE) experiment, was initiated in 2010 at the Mont Terri underground rock laboratory in north-western Switzerland. The experiment is designed to simulate the THM evolution of a SF/HLW repository tunnel based on the Swiss disposal concept in a realistic manner during the construction, emplacement, backfilling, and post-closure phases. The entire experiment implementation (in a 50 m long gallery with approx. 3 m diameter) as well as the post-closure THM evolution will be monitored using a network of several hundred sensors. The sensors will be distributed in the host rock, the tunnel lining, the engineered barrier, which consists of bentonite pellets and blocks, and on the heaters. The excavation is completed and the tunnel is currently being ventilated. Measuring water content in partially saturated clay-rich high-salinity rock with a deformable grain skeleton is challenging. Therefore, we use the ventilation phase (before backfilling and heating) to examine the applicability of commercial water content sensors and to design custom-made TDR sensors. The focus of this study is mainly on dielectric-based commercial water content sensors. Unlike soils for which the sensors were originally designed, it requires significantly more attention to properly install it onto rock (i.e., a good contact with the sensor and rock). The results will be used to select and design the instrumentation set-up for monitoring water content during the heating phase where sensors have to withstand harsh conditions (high salinity, high temperature, high pressures, high clay content and long term monitoring up to 10 years). The sensor tests are beneficial also in the sense that the water content data generated during these tests provide insights into drainage processes after tunnel construction and seasonal water content variations in the near field rock around the test gallery. We will present results from the tests and measurements performed during the first year.

  11. Utilization of mango seed starch in manufacture of bioplastic reinforced with microparticle clay using glycerol as plasticizer

    NASA Astrophysics Data System (ADS)

    Maulida; Kartika, T.; Harahap, M. B.; Ginting, M. H. S.

    2018-02-01

    Bioplastics are plastics that can be used just like conventional plastics but will disintegrate by the activity of microorganisms into water and carbon dioxide. Starch is a natural polymer material that can used for bioplastic production. The addition of reinforcing particles has been shown to improve the mechanical properties of bioplastics. The aim of this research is to know the potency of mango seed starch and microparticle clay as filler and glycerol concentration as plasticizer on tensile strength and elongation at break, functional group (FTIR) and surface morphology (SEM). In this study used mango seed starch size of 5 grams, with the variation of clay filler mass of 0; 3; 6 and nine wt%, while the mass of glycerol with a variation of 0; 20; 25; 30; And 35% wt. The heating temperature of the bioplastics solution used was 80.53 °C. The resulting bioplastics was analyzed for their physical and chemical properties, including FTIR, SEM, tensile strength, elongation at break. The FTIR analysis shows that no new functional groups was formed. From the analysis of mango starch content obtained 62.82%, 44.0% amylopectin content, amylose content 14.82%, and water content 12.65%. In this study obtained bioplastics with the best conditions on the use of 6% clay and 25% glycerol, with a tensile strength of 5.657MPa, percent elongation at breakup 43.431%.

  12. Concentrations of polychlorinated dibenzo-p-dioxins in processed ball clay from the United States.

    PubMed

    Ferrario, Joseph; Byrne, Christian; Schaum, John

    2007-04-01

    Processed ball clays commonly used by the ceramic art industry in the United States were collected from retail suppliers and analyzed for the presence and concentration of the 2,3,7,8-Cl substituted polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs). The average PCDD toxic equivalent (TEQ) concentrations of these processed ball clays was approximately 800 pg/g (TEQ-WHO) with characteristic congener profiles and isomer distributions similar to patterns of previously analyzed raw and processed ball clays. The PCDF concentrations were below the average limit of detection (LOD) of 0.5 pg/g. Correlation analyses reveal no significant relationship between total organic carbon (TOC) and either individual, homologues, and total tetra-through octa-chlorinated PCDD congeners, or TEQ concentrations of the processed ball clays. The results are consistent with earlier studies on levels of PCDDs in ball clays. Data from earlier studies indicated that dioxins may be released to the environment during the processing of raw clay or the firing process used in commercial ceramic facilities. The presence of dioxin in the clays also raises concerns about potential occupational exposure for individuals involved in the mining/processing of ball clay, ceramics manufacturing and ceramic artwork.

  13. Clay preference and particle transport behavior of Formosan subterranean termites (Isoptera: Rhinotermitidae): a laboratory study.

    PubMed

    Wang, Cai; Henderson, Gregg

    2014-12-01

    Although preference and utilization of clay have been studied in many higher termites, little attention has been paid to lower termites, especially subterranean termites. The Formosan subterranean termite, Coptotermes formosanus Shiraki, can modify its habitat by using clay to fill tree cavities. Here, the biological significance of clay on C. formosanus was investigated. Choice tests showed that significantly more termites aggregated in chambers where clay blocks were provided, regardless of colony group, observation period, or nutritional condition (fed or starved). No-choice tests showed that clay had no observable effect on survivorship, live or dry biomass, water content, and tunneling activity after 33-35 d. However, clay appeared to significantly decrease filter paper consumption (dry weight loss). Active particle (sand, paper, and clay) transport behavior was observed in both choice and no-choice tests. When present, clay was preferentially spread on the substrate, attached to the smooth surfaces of the containers, and used to line sand tunnels. Mechanisms and potential application of clay attraction are discussed. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  14. Effects of four different phosphorus-locking materials on sediment and water quality in Xi'an moat.

    PubMed

    Wang, Guanbai; Wang, Yi; Guo, Yu; Peng, Dangcong

    2017-01-01

    To lower phosphorus concentration in Xi'an moat, four different phosphorus-locking materials, namely, calcium nitrate, sponge-iron, fly ash, and silica alumina clay, were selected in this experiment to study their effects on water quality and sediment. Results of the continuous 68-day experiment showed that calcium nitrate was the most effective for controlling phosphorus concentration in overlying and interstitial water, where the efficiency of locking phosphorus was >97 and 90 %, respectively. Meanwhile, the addition of calcium nitrate caused Fe/Al-bound phosphorus (Fe/Al-P) content in sediment declining but Ca-bound phosphorus (Ca-P) and organic phosphorus (OP) content ascending. The phosphorus-locking efficiency of sponge-iron in overlying and interstitial water was >72 and 66 %, respectively. Meanwhile, the total phosphorus (TP), OP, Fe/Al-P, and Ca-P content in sediment increased by 33.8, 7.7, 23.1, and 23.1 %, respectively, implying that under the action of sponge-iron, the locked phosphorus in sediment was mainly inorganic form and the phosphorus-locking efficiency of sponge-iron could be stable and persistent. In addition, the phosphorus-locking efficiency of fly ash was transient and limited, let alone silica alumina clay had almost no capacity for phosphorus-locking efficiency. Therefore, calcium nitrate and sponge-iron were excellent phosphorus-locking agents to repair the seriously polluted water derived from an internal source.

  15. The impact of river infiltration on the chemistry of shallow groundwater in a reclaimed water irrigation area.

    PubMed

    Yin, Shiyang; Wu, Wenyong; Liu, Honglu; Bao, Zhe

    2016-10-01

    Reclaimed water reuse is an effective method of alleviating agricultural water shortages, which entails some potential risks for groundwater. In this study, the impacts of wastewater reuse on groundwater were evaluated by combination of groundwater chemistry and isotopes. In reclaimed water infiltration, salt composition was affected not only by ion exchange and dissolution equilibrium but also by carbonic acid equilibrium. The dissolution and precipitation of calcites and dolomites as well as exchange and adsorption between Na and Ca/Mg were simultaneous, leading to significant changes in Na/Cl, (Ca+Mg)/Cl, electrical conductivity (EC) and sodium adsorption ratio (SAR). The reclaimed water was of the Na-Mg-Ca-HCO 3 -Cl type, and groundwater recharged by reclaimed water was of the Na-Mg-HCO 3 and Mg-Na-HCO 3 types. The hydrogeological conditions characterized by sand-clay alternation led to both total nitrogen (TN) and total phosphorus (TP) removal efficiencies >95%, and there was no significant difference in those contents between aquifers recharged by precipitation and reclamation water. >40years of long-term infiltration and recharge from sewage and reclaimed water did not cause groundwater contamination by nitrogen, phosphorus and heavy metals. These results indicate that characteristics of the study area, such as the lithologic structure with sand-clay alternation, relatively thick clay layer, and relatively large groundwater depth have a significant role in the high vulnerability. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Rock Physics and Petrographic Parameters Relationship Within Siliciclastic Rocks: Quartz Sandstone Outcrop Study Case

    NASA Astrophysics Data System (ADS)

    Syafriyono, S.; Caesario, D.; Swastika, A.; Adlan, Q.; Syafri, I.; Abdurrokhim, A.; Mardiana, U.; Mohamad, F.; Alfadli, M. K.; Sari, V. M.

    2018-03-01

    Rock physical parameters value (Vp and Vs) is one of fundamental aspects in reservoir characterization as a tool to detect rock heterogenity. Its response is depend on several reservoir conditions such as lithology, pressure and reservoir fluids. The value of Vp and Vs is controlled by grain contact and contact stiffness, a function of clay mineral content and porosity also affected by mineral composition. The study about Vp and Vs response within sandstone and its relationship with petrographic parameters has become important to define anisotrophy of reservoir characteristics distribution and could give a better understanding about local diagenesis that influence clastic reservoir properties. Petrographic analysis and Vp-Vs calculation was carried out to 12 core sample which is obtained by hand-drilling of the outcrop in Sukabumi area, West Java as a part of Bayah Formation. Data processing and interpretation of sedimentary vertical succession showing that this outcrop comprises of 3 major sandstone layers indicating fluvial depositional environment. As stated before, there are 4 petrographic parameters (sorting, roundness, clay mineral content, and grain contact) which are responsible to the differences of shear wave and compressional wave value in this outcrop. Lithology with poor-sorted and well- roundness has Vp value lower than well-sorted and poor-roundness (sub-angular) grain. For the sample with high clay content, Vp value is ranging from 1681 to 2000 m/s and could be getting high until 2190 to 2714 m/s in low clay content sample even though the presence of clay minerals cannot be defined neither as matrix nor cement. The whole sample have suture grain contact indicating telogenesis regime whereas facies has no relationship with Vp and Vs value because of the different type of facies show similar petrographic parameters after diagenesis.

  17. The stability of clay using Portland cement and calsium carbide residue with California bearing ratio (cbr) value

    NASA Astrophysics Data System (ADS)

    Puji Hastuty, Ika; Roesyanto; Novia Sari, Intan; Simanjuntak, Oberlyn

    2018-03-01

    Clay is a type of soil which is often used for stabilization. This is caused by its properties which are very hard in dry conditions and plastic in the medium content of water. However, at a higher level of water, clay will be cohesive and very lenient causing a large volume change due to the influence of water and also causing the soil to expand and shrink for a short period of time. These are the reasons why stabilization is needed in order to increase bearing capacity value of the clay. Stabilization is one of the ways to the conditon of soil that has the poor index properties, for example by adding chemical material to the soil. One of the chemical materials than can be added to the soil is calsium carbide residue. The purpose of this research is to know the fixation of index properties as the effect of adding 2% PC and calsium carbide residue to the clay, and to know the bearing capacity value of CBR (California Bearing Ratio) as the effect of adding the stabilization agent and to know the optimum content of adding calsium carbide residue. The result of the research shows that the usage of 2% cement in the soil that has CBR value 5,76%, and adding 2% cement and 9% calsium carbide residue with a period of curing 14 days has the lagerst of CBR value that is 9,95%. The unsoaked CBR value shows the increase of CBR value upto the mixture content of calsium carbide residue 9% and, decreases at the mixture content of calsium carbide residue 10% and 11%.

  18. Nitrous oxide production from soils amended with biogas residues and cattle slurry.

    PubMed

    Abubaker, J; Odlare, M; Pell, M

    2013-07-01

    The amount of residues generated from biogas production has increased dramatically due to the worldwide interest in renewable energy. A common way to handle the residues is to use them as fertilizers in crop production. Application of biogas residues to agricultural soils may be accompanied with environmental risks, such as increased NO emission. In 24-d laboratory experiments, NO dynamics and total production were studied in arable soils (sandy, clay, and organic) amended with one of two types of anaerobically digested biogas residues (BR-A and BR-B) generated from urban and agricultural waste and nondigested cattle slurry (CS) applied at rates corresponding to 70 kg NH-N ha. Total NO-N losses from the sandy soil were higher after amendment with BR-B (0.32 g NO-N m) than BR-A or CS (0.02 and 0.18 g NO-N m, respectively). In the clay soil, NO-N losses were very low for CS (0.02 g NO-N m) but higher for BR-A and BR-B (0.25 and 0.15 g NO-N m, respectively). In the organic soil, CS gave higher total NO-N losses (0.31 g NO-N m) than BR-A or BR-B (0.09 and 0.08 g NO-N m, respectively). Emission peaks differed considerably between soils, occurring on Day 1 in the organic soil and on Days 11 to 15 in the sand, whereas in the clay the peak varied markedly (Days 1, 6, and 13) depending on residue type. In all treatments, NH concentration decreased with time, and NO concentration increased. Potential ammonium oxidation and potential denitrification activity increased significantly in the amended sandy soil but not in the organic soil and only in the clay amended with CS. The results showed that fertilization with BR can increase NO emissions and that the size is dependent on the total N and organic C content of the slurry and on soil type. In conclusion, the two types of BR and the CS are not interchangeable regarding their effects on NO production in different soils, and, hence, matching fertilizer type to soil type could reduce NO emissions. For instance, it could be advisable to avoid fertilization of organic soils with CS containing high amounts or organic C and instead use BR. In clay soil, however, the risk of NO emissions could be lowered by choosing a CS. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Effect of different crops on soil organic matter and biological activity in Oxisols under three different crops

    NASA Astrophysics Data System (ADS)

    Toledo, Diana Marcela; Arzuaga, Silvia; Dalurzo, Humberto; Zornoza, Raúl; Vazquez, Sara

    2015-04-01

    The objective of this work was to evaluate changes in soil organic matter in Oxisols under different crops compared to native rainforest, and to assess if acid phosphatase activity (APA) could be a good indicator for SOC changes and soil quality. The experimental design consisted of four completely randomized blocks with four treatments: subtropical rainforest (F); yerba mate crop (I) (Ilex paraguariensis SH.); citrus crop (C) (Citrus unshiu Marc); and tobacco crop (T) (Nicotiana tabacum L.). Soil samples were taken at 0-10; 10-20 and 20-30 cm depths. The variables measured were soil organic carbon (SOC), APA, clay content, pH, total nitrogen (Nt), available phosphorus (P) and CO2 emissions. All data were analyzed by ANOVA to assess the effects of land-use changes. The treatment means were compared through Duncan's multiple range tests (p<0.05). The relationship between variables was determined with a simple correlation analysis and with a multiple linear regression analysis through the stepwise method. These soils showed an acid reaction and their clay content was over 650 g kg-1 for the three depths. SOC and N contents were higher in native soils, intermediate for the citrus crop, and lower under both tobacco and yerba mate crops. CO2 emissions were higher in the rainforest (47.32 kg ha-1 of CO2) than in cultivated soils, which indicates that biological activity is enhanced in rainforest soils where substrates for soil biota and fauna are more readily available. The variability of 76% in APA was explained by total nitrogen, which is closely related to soil organic matter, and by available P. Conversion of subtropical rainforests into agricultural lands reduced SOC content and acid phosphatase activity, thereby lowering soil quality. In this study, acid phosphatase activity proved to be a sensitive indicator to detect changes from pristine to cropped soils, but it failed to distinguish differences among crop systems.

  20. Background radioactivity in sediments near Los Alamos, New Mexico.

    PubMed

    McLin, Stephen G

    2004-07-26

    River and reservoir sediments have been collected annually by Los Alamos National Laboratory since 1974 and 1979, respectively. These background samples are collected from five river stations and four reservoirs located throughout northern New Mexico and southern Colorado. Analyses include 3H, 90Sr, 137Cs, total U, 238Pu, 239,240Pu, 241Am, gross alpha, gross beta, and gross gamma radioactivity. Surprisingly, there are no federal or state regulatory standards in the USA that specify how to compute background radioactivity values on sediments. Hence, the sample median (or 0.50 quantile) is proposed for this background because it reflects central data tendency and is distribution-free. Estimates for the upper limit of background radioactivity on river and reservoir sediments are made for sampled analytes using the 0.95 quantile (two-tail). These analyses also show that seven of ten analytes from reservoir sediments are normally distributed, or are normally distributed after a logarithmic or square root transformation. However, only three of ten analytes from river sediments are similarly distributed. In addition, isotope ratios for 137Cs/238Pu, 137Cs/239,240Pu, and 239,240Pu/238Pu from reservoir sediments are independent of clay content, total organic carbon/specific surface area (TOC/SSA) and cation exchange capacity/specific surface area (CEC/SSA) ratios. These TOC/SSA and CEC/SSA ratios reflect sediment organic carbon and surface charge densities that are associated with radionuclide absorption, adsorption, and ion exchange reactions on clay mineral structures. These latter ratio values greatly exceed the availability of background radionuclides in the environment, and insure that measured background levels are a maximum. Since finer-grained reservoir sediments contain larger clay-sized fractions compared to coarser river sediments, they show higher background levels for most analytes. Furthermore, radioactivity values on reservoir sediments have remained relatively constant since the early 1980s. These results suggest that clay contents in terrestrial sediments are often more important at concentrating background radionuclides than many other environmental factors, including geology, climate and vegetation. Hence, reservoirs and floodplains represent ideal radionuclide sampling locations because fine-grained materials are more easily trapped here. Ultimately, most of these differences still reflect spatial and temporal variability originating from global atmospheric nuclear weapons testing and disintegration of nuclear-powered satellites upon atmospheric reentry. Copyright 2004 Elsevier B.V.

  1. [Carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand land.

    PubMed

    Ma, Jian Ye; Tong, Xiao Gang; Li, Zhan Bin; Fu, Guang Jun; Li, Jiao; Hasier

    2016-11-18

    The aim of this study was to investigate the effects of carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand Land, soil samples were collected from quicksand land, semifixed sand and fixed sand lands that were established by the shrub for 20-55 year-old and the arbor for 20-50 year-old at sand control region of Yulin in Northern Shaanxi Province. The dynamics and sequestration rate of soil organic carbon (SOC) associated with sand, silt and clay were measured by physical fractionation method. The results indicated that, compared with quicksand area, the carbon content in total SOC and all soil particle-sized fractions at bothsand-fixing sand forest lands showed a significant increasing trend, and the maximum carbon content was observed in the top layer of soils. From quicksand to fixed sand land with 55-year-old shrub and 50-year-old arbor, the annual sequestration rate of carbon stock in 0-5 cm soil depth was same in silt by 0.05 Mg·hm -2 ·a -1 . The increase rate of carbon sequestration in sand was 0.05 and 0.08 Mg·hm -2 ·a -1 , and in clay was 0.02 and 0.03 Mg·hm -2 ·a -1 at shrubs and arbors land, respectively. The increase rate of carbon sequestration in 0-20 cm soil layer for all the soil particles was averagely 2.1 times as that of 0-5 cm. At the annual increase rate of carbon, the stock of carbon in sand, silt and clay at the two fixed sand lands were increased by 6.7, 18.1 and 4.4 times after 50-55 year-old reversion of quicksand land to fixed sand. In addition, the average percentages that contributed to accumulation of total SOC by different particles in 0-20 cm soil were in the order of silt carbon (39.7%)≈sand carbon (34.6%) > clay carbon (25.6%). Generally, the soil particle-sized fractions had great carbon sequestration potential during reversion of desertification in Mu Us Sand Land, and the slit and sand were the main fractions for carbon sequestration at both fixed sand lands.

  2. Incorporation of digestate selectively affects physical, chemical and biochemical properties along with CO2 emissions in two contrasting agricultural soils in the Mediterranean area.

    NASA Astrophysics Data System (ADS)

    Badagliacca, Giuseppe; Petrovičová, Beatrix; Zumbo, Antonino; Romeo, Maurizio; Gullì, Tommaso; Martire, Luigi; Monti, Michele; Gelsomino, Antonio

    2017-04-01

    Soil incorporation of digestate represents a common practice to dispose the solid residues from biogas producing plants. Although the digestate constitutes a residual biomass rich in partially decomposed organic matter and nutrients, whose content is often highly variable and unbalanced, its potential fertilizer value can vary considerably depending on the recipient soil properties. The aim of the work was to assess short-term changes in the fertility status of two contrasting agricultural soils in Southern Italy (Calabria), olive grove on a clay acid soil (Typic Hapludalfs) and citrus grove on a sandy loam slightly calcareous soil (Typic Xerofluvents), respectively located along the Tyrrhenian or the Ionian coast. An amount of 30 t ha-1 digestate was incorporated into the soil by ploughing. Unamended tilled soil was used as control. The following soil physical, chemical and biochemical variables were monitored during the experimental period: aggregate stability, pH, electrical conductivity, organic C, total N, Olsen-P, N-NH4+, N-NO3-, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and the mineralization quotient (qM). Moreover, in the olive grove soil CO2 emissions have been continuously measured at field scale for 5 months after digestate incorporation. Digestate application in both site exerted a significant positive effect on soil aggregate stability with a greater increase in clay than in sandy loam soil. Over the experimental period, digestate considerably affected the nutrient availability, namely Olsen-P, N-NH4+, N-NO3-, along with the electrical conductivity. The soil type increased significantly the soil N-NH4+ content, which was always higher in the olive than in citrus grove soil. N-NO3- content was markedly increased soon after the organic amendment, followed by a seasonal decline more evident in the sandy loam soil. Moreover, soil properties as CaCO3 content and the pH selectively affected the Olsen-P dynamics. No appreciable variation was recorded in total C and N pools. Interestingly, amendment with digestate altered the soil microbial community size in both soils as MBC and MBN were increased, although the response was more evident in the clay soil (olive) than in the sandy loam (citrus) one. The considerably higher qM observed in the clay soil suggests that the C mineralization was selectively stimulated in this soil. This finding was confirmed by the increase of CO2 emissions. As a whole our results show that digestate application selectively stimulated soil C dynamics and determined an unbalanced nutrient release, strongly depending on the soil physical-chemical properties. The use of digestate can therefore represent an interesting strategy for managing the soil fertility in Mediterranean agroecosystem soils, provided that digestate and recipient soil properties are carefully taken into account.

  3. Distributions of clay minerals in surface sediments of the middle Bay of Bengal: Source and transport pattern

    NASA Astrophysics Data System (ADS)

    Li, Jingrui; Liu, Shengfa; Shi, Xuefa; Feng, Xiuli; Fang, Xisheng; Cao, Peng; Sun, Xingquan; Wenxing, Ye; Khokiattiwong, Somkiat; Kornkanitnan, Narumol

    2017-08-01

    The clay mineral contents in 110 surface sediment samples collected from the middle of the Bay of Bengal were analyzed by X-ray diffraction (XRD) to investigate the provenance and transport patterns. The illite content was highest, followed by chlorite, kaolinite and then smectite, with average weight percent distributions of 52%, 22%, 14% and 12%, respectively. Illite and chlorite had similar distribution pattern, with higher contents in the northern and central areas and lower contents in the southern area, whereas smectite showed the opposite distribution pattern. Kaolinite show no obvious higher or lower areas and the southern ;belt; was one of the highest content areas. Based on the spatial distribution characteristics and cluster analysis results, the study area can be classified into two provinces. Province I covers the southwestern area and contains high concentrations of illite and smectite sediments. Province II covers most sites and is also characterized by high concentrations of illite, but the weight percent of smectite is only half of that of province I. According to a quantitative estimate using end-member clay minerals contents, the relative contributions from the Himalayan source and the Indian source are 63% and 37% on average, respectively. Integrative analysis indicates that the hydrodynamic environment in the study area, especially the turbidity and surface monsoonal circulation, plays an important role in the spatial distribution and dispersal of the clay fraction in the sediments. The sediments in province I are mainly from the Indian source transported by the East Indian Coastal Current (EICC) and the surface monsoon circulation with minor contributions from the Himalayan source while the sediments in province II are mainly from the Himalayan source transported by turbidity and surface monsoonal circulation with little contribution from Indian river materials.

  4. The methods of geomorphometry and digital soil mapping for assessing spatial variability in the properties of agrogray soils on a slope

    NASA Astrophysics Data System (ADS)

    Gopp, N. V.; Nechaeva, T. V.; Savenkov, O. A.; Smirnova, N. V.; Smirnov, V. V.

    2017-01-01

    The relationships between the morphometric parameters (MPs) of topography calculated on the basis of digital elevation model (ASTER GDEM, 30 m) and the properties of the plow layer of agrogray soils on a slope were analyzed. The contribution of MPs to the spatial variability of the soil moisture reached 42%; to the content of physical clay (<0.01 mm particles), 59%; to the humus content, 46%; to the total nitrogen content, 31%; to the content of nitrate nitrogen, 28%; to the content of mobile phosphorus, 40%; to the content of exchangeable potassium, 45%; to the content of exchangeable calcium, 67%; to the content of exchangeable magnesium, 40%; and to the soil pH, 42%. A comparative analysis of the plow layer within the eluvial and transitional parts of the slope was performed with the use of geomorphometric methods and digital soil mapping. The regression analysis showed statistically significant correlations between the properties of the plow layer and the MPs describing surface runoff, geometric forms of surface, and the soil temperature regime.

  5. Mineralogical Composition of Particle-Size Fractions of Solonetzes from the North Crimean Lowland

    NASA Astrophysics Data System (ADS)

    Chizhikova, N. P.; Khitrov, N. B.; Tronza, G. E.; Kol'tsov, S. A.; Varlamov, E. B.; Chechetko, E. S.; Churilin, N. A.

    2017-12-01

    Data on the mineralogical composition of clay (<1 μm), fine silt (1-5 μm), medium silt (5-10 μm), and coarser (>10 μm) fractions of meadow solonchakous solonetzes (Calcic Gypsic Salic Stagnic Solonetz (Albic, Siltic, Columnic, Cutanic, Differentic)) developing from loesslike loam and clay in the North Crimean Lowland are presented. Fractions >5 μm constitute nearly 50% of the soil mass and are characterized by the same mineralogical composition in the entire profile; they consist of quartz, plagioclases, potassium feldspars, and micas (biotite and muscovite). The eluvial-illuvial redistribution of clay in the course of solonetzic process is accompanied by changes in the portion of mixed-layer minerals and hydromicas in the upper part of the profile; a larger part of the smectitic phase is transformed into the superdisperse state. In the eluvial SEL horizon and in the illuvial BSN horizon, the clay fraction is impoverished in smectitic phase and enriched in trioctahedral hydromicas. Upon calculation of the content of clay minerals per bulk soil mass, the distribution of mixed-layer minerals is either eluvial, or eluvial-illuvial, whereas the distribution of hydromicas has an illuvial pattern without distinct eluvial minimum in the SEL horizons. The eluvial-illuvial distribution pattern of clay minerals in solonetzes of the North Crimean Lowland is compared with the distribution pattern of clay minerals in solonetzes of the West Siberian Lowland. Coefficients characterizing differentiation of solonetzes by the contents of particular mineral components are suggested.

  6. Creep and Sliding in Clay Slopes: Mutual Effects of Interlayer Swelling and Ice Jacking.

    DTIC Science & Technology

    1983-08-24

    project, swelling and freezing, have been treated as well. The extent of swell heave of the montmorillonite clay under investigation depends on the...the amount of clay size particles: up to 70% and the amount of montmorillonite : up to 35%. 1.2. Grain Size Distribution Twelve hydrometer tests were...in physical conditions and exhibit swelling again upon subsequent wetting. Another important swelling parameter is the montmorillonite content, that

  7. Mercury content of Illinois soils

    USGS Publications Warehouse

    Dreher, G.B.; Follmer, L.R.

    2004-01-01

    For a survey of Illinois soils, 101 cores had been collected and analyzed to determine the current and background elemental compositions of Illinois soils. Mercury and other elements were determined in six samples per core, including a surface sample from each core. The mean mercury content in the surface samples was 33 ?? 20 ??g/kg soil, and the background content was 20 ?? 9 ??g/kg. The most probable sources of mercury in these soils were the parent material, and wet and dry deposition of Hg0 and Hg2+ derived from coal-burning power plants, other industrial plants, and medical and municipal waste incinerators. Mercury-bearing sewage sludge or other fertilizers applied to agricultural fields could have been the local sources of mercury. Although the mercury content correlated with organic carbon content or clay content in individual cores, when all the data were considered, there was no strong correlation between mercury and either the organic carbon or the clay-size content.

  8. [Development and succession of artificial biological soil crusts and water holding characteristics of topsoil].

    PubMed

    Wu, Li; Chen, Xiao-Guo; Zhang, Gao-Ke; Lan, Shu-Bin; Zhang, De-Lu; Hu, Chun-Xiang

    2014-03-01

    In order to understand the improving effects of cyanobacterial inoculation on water retention of topsoil in desert regions, this work focused on the development and succession of biological soil crusts and water holding characteristics of topsoil after cyanobacterial inoculation in Qubqi Desert. The results showed that after the artificial inoculation of desert cyanobacteria, algal crusts were quickly formed, and in some microenvironments direct succession of the algal crusts to moss crusts occurred after 2-3 years. With the development and succession of biological soil crusts, the topsoil biomass, polysaccharides content, crust thickness and porosity increased, while the soil bulk density decreased. At the same time, with crust development and succession, the topsoil texture became finer and the percents of fine soil particles including silt and clay contents increased, while the percents of coarse soil particles (sand content) decreased proportionately. In addition, it was found that with crust development and succession, the water holding capacity and water content of topsoil showed an increasing trend, namely: moss crust > algal crusts > shifting sand. The water content (or water holding capacity) in algal and moss crusts were 1.1-1.3 and 1.8-2.2 times of those in shifting sand, respectively. Correlation analysis showed that the water holding capacity and water content of topsoil were positively correlated with the crust biomass, polysaccharides content, thickness, bulk density, silt and clay content; while negatively correlated with the porosity and sand content. Furthermore, stepwise regression analysis showed that the main factor affecting water content was the clay content, while that affecting water holding capacity was the porosity.

  9. Characterizing and Quantifying Emissions and Transport of Fugitive Dust Emissions Due to Department of Defense Activities

    DTIC Science & Technology

    2015-09-19

    response to shear stress (τ, N m-2) induced by the PI-SWERL®, the viscosity of the fluid exerts a torque (N m-1) that eventually balances with τ. The...Engelbrecht et al. (2012) from CCSEM measurements, report that these silicate mineral particles are largely coated by a veneer of clay minerals and fine...content does not, by itself, contribute to the high emissions observed at YTC. The presence of high clay content can constrain the emissions by

  10. Reactions in Portland cement-clay mixtures : final report.

    DOT National Transportation Integrated Search

    1970-01-01

    This study was an extension of earlier work by Sherwood and Noble to determine the nature of the clay content of common Virginia soils and the strength development of those soils in cement mixtures. In addition attempts were made (1) to study the rel...

  11. 46 CFR Table II to Part 150 - Grouping of Cargoes

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... solutions Clay slurry Corn syrup Dextrose solution 2,4-Dichlorophenoxyacetic acid, Diethanolamine salt... lignosulfonate solution (free alkali content 1% or less) Caramel solutions Clay slurry Coal slurry Corn syrup... Coal tar, high temperature Coal tar pitch Decahydronaphthalene Degummed C9 (DOW) Diphenyl, Diphenyl...

  12. The relation of sediment texture to macro- and microplastic abundance in intertidal zone

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, H.; Bangun, A. P.; Muhtadi, A.

    2018-02-01

    The intertidal zone is a waters area directly affected by the contamination of plastic debris from land and sea. The aim of this research were to analyze the relation of sediment texture to macro- and micro plastic abundance and also to determine appropriate management strategy. This research was conducted in intertidal zone Jaring Halus Village Langkat Regency North Sumatera Province on February-April 2017. Plastic debris was collected using quadrat transect. Sediment was collected with correct, up to a depth of least 30 cm. Abundance of micro plastic in Station 1 were positively tolerated with clay (0.509), and silt (0.787) and negatively correlations with sand (0.709) Station 2 were positively correlations with sand (0.645) and negatively correlations with clay (0.575), and silt (0.626) Station 3 were positively correlations with clay (0.435), and silt (0.466) and negatively correlations with sand (0.599). The abundance of microplastic was positively correlations with the abundance of microplastic (0.765). Microplastic density is directly proportional to the content of clay and dust. The higher the clay and dust content the higher the micro plastic density.

  13. Gas barrier properties of bio-inspired Laponite-LC polymer hybrid films.

    PubMed

    Tritschler, Ulrich; Zlotnikov, Igor; Fratzl, Peter; Schlaad, Helmut; Grüner, Simon; Cölfen, Helmut

    2016-05-26

    Bio-inspired Laponite (clay)-liquid crystal (LC) polymer composite materials with high clay fractions (>80%) and a high level of orientation of the clay platelets, i.e. with structural features similar to the ones found in natural nacre, have been shown to exhibit a promising behavior in the context of reduced oxygen transmission. Key characteristics of these bio-inspired composite materials are their high inorganic content, high level of exfoliation and orientation of the clay platelets, and the use of a LC polymer forming the organic matrix in between the Laponite particles. Each single feature may be beneficial to increase the materials gas barrier property rendering this composite a promising system with advantageous barrier capacities. In this detailed study, Laponite/LC polymer composite coatings with different clay loadings were investigated regarding their oxygen transmission rate. The obtained gas barrier performance was linked to the quality, respective Laponite content and the underlying composite micro- and nanostructure of the coatings. Most efficient oxygen barrier properties were observed for composite coatings with 83% Laponite loading that exhibit a structure similar to sheet-like nacre. Further on, advantageous mechanical properties of these Laponite/LC polymer composites reported previously give rise to a multifunctional composite system.

  14. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys, Old Hickory Clay Co. and Unimin Corp. — mined ball clay in five U.S. states in 2012. Production, on the basis of preliminary data, was 900 kt (992,000 st), with an estimated value of $42.3 million. This was a slight increase in tonnage from 886 kt (977,000 st), with a value of $40.9 million in 2011. Tennessee was the leading ball clay producing state, with 63 percent of domestic production, followed by Texas, Mississippi, Kentucky and Indiana. Reported ball clay production from Indiana probably was fire clay rather than ball clay. About 69 percent of total ball clay production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  15. A microstructural study of SAFOD gouge from actively creeping San Andreas Fault zone; Implications for shear localization models

    NASA Astrophysics Data System (ADS)

    Blackburn, E. D.; Hadizadeh, J.; Babaie, H. A.

    2009-12-01

    The prevailing models of shear localization in fault gouges are mainly based on experimental aggregates that necessarily neglect the effects of chemical and mechanical maturation with time. The SAFOD cores have provided a chance to test whether cataclasis as a deformation mechanism and factors such as porosity and particle size, critical in some existing shear localization models continue to be critical in mature gouges. We studied a core sample from 3194m MD in the SAFOD phase 3, which consists of intensely foliated shale-siltstone cataclasites in contact with less deformed shale. Microstructures were studied in 3 perpendicular planes with reference to foliation using high resolution scanning electron microscopy, cathodoluminescence imaging, X-ray fluorescence mapping, and energy dispersive X-ray spectroscopy. The cataclastic foliation, recognizable at length scales >100 μm, is primarily defined by bands of clay gouge with distinct microstructure, clay content, and porosity. Variations in elemental composition and porosity of the clay gouge were measured continuously across the foliation. Prominent features within the foliation bands include lens-shaped clusters of highly brecciated and veined siltstone fragments, pyrite smears, and pyrite-cemented cataclasites. The microstructural relations and chemical data provide clear evidence of multiple episodes of veining and deformation with some possibility of relative age determination for the episodes. There is evidence of syn-deformation hydrothermal changes including growth and brittle shear of pyrite, alteration of host shale clays to illite-smectite clays and Fe-rich smectite. Evidence of grain-boundary corrosion of non-clay mineral fragments suggests pressure solution creep. The gouge porosity estimates varied from 0-18% (about 3% in less deformed shale) with the highest value in the bands with abundant siltstone fragments. The banding is mechanically significant since it pervasively segregates the gouge into regions of low clay content, high-porosity and regions of low-porosity, high clay content. It appears from our data that shear localization in the gouge involves pressure solution as well as cataclastic flow assisted by alteration-softening. While the porous bands are potential conduits for fluid flow and could be sites for pressure solution creep, the clay-rich bands could serve as sites of shear localization due to their lower dilatancy rate. A better understanding of interaction between the two deformation mechanisms might shed light on the nature of microearthquake activity in the creeping segment of the SAF.

  16. To Identify the Important Soil Properties Affecting Dinoseb Adsorption with Statistical Analysis

    PubMed Central

    Guan, Yiqing; Wei, Jianhui; Zhang, Danrong; Zu, Mingjuan; Zhang, Liru

    2013-01-01

    Investigating the influences of soil characteristic factors on dinoseb adsorption parameter with different statistical methods would be valuable to explicitly figure out the extent of these influences. The correlation coefficients and the direct, indirect effects of soil characteristic factors on dinoseb adsorption parameter were analyzed through bivariate correlation analysis, and path analysis. With stepwise regression analysis the factors which had little influence on the adsorption parameter were excluded. Results indicate that pH and CEC had moderate relationship and lower direct effect on dinoseb adsorption parameter due to the multicollinearity with other soil factors, and organic carbon and clay contents were found to be the most significant soil factors which affect the dinoseb adsorption process. A regression is thereby set up to explore the relationship between the dinoseb adsorption parameter and the two soil factors: the soil organic carbon and clay contents. A 92% of the variation of dinoseb sorption coefficient could be attributed to the variation of the soil organic carbon and clay contents. PMID:23737715

  17. Origin of nickel in water solution of the chalk aquifer in the north of France and influence of geochemical factors

    NASA Astrophysics Data System (ADS)

    Bernard, Daniel; El Khattabi, Jamal; Lefevre, Emilie; Serhal, Hani; Bastin-Lacherez, Sabine; Shahrour, Isam

    2008-01-01

    In the north of France, high registers of nickel are sometimes recorded within the chalk aquifer. In a confined context, the presence of pyrite in the covering clays or in the marcasite nodules encrusted in the clay may constitute a natural source of trace metals. With an objective of sanitary control, the limits of chemical contents regulating the quality of water destined for human consumption have been lowered by the European Framework Directive in the field of water policy (2000/60/EC). As a result, nickel limits have been reduced from 50 to 20 μg/l. The analyses, carried out on three water catchment fields in our area of study, were centred on variable parameters (Eh, O2(d), pH, Conductivity, T°), major elements (SO4, NO3) and metals (Fe, Ni, Mn, Co). The acquired data enabled us to identify from one hand, the conditions which are presented within the site, special thanks to the evolution of nitrate and iron contents and on the other hand, the natural origin (geological) of nickel for two of the three sites studied based essentially on the evaluation of the Nickel/Cobalt ratio. Thus, on the first site, the evolution of nickel content and nitrate content showed the influence of the phenomenon of denitrification on the re-mobilisation of the nickel. Whereas on the second site, a high variation of total iron content and oxygen dissolved in solution highlighted a particular phenomenon of oxidation of the pyrite through molecular oxygen. Finally, the correlation with the sulphates clearly showed behaviour of the nickel, once released, that was entirely dependent on the phenomenon of adsorption on the iron and manganese hydroxides.

  18. U.S. Geological survey program on toxic waste--ground-water contamination; proceedings of the Second technical meeting, Cape Cod, Massachusetts, October 21-25, 1985

    USGS Publications Warehouse

    Ragone, S.E.

    1988-01-01

    This study characterizes the clay minerals in sediments associated with a plume of creosote-contaminated groundwater. The plume of contaminated groundwater near Pensacola, FL, is in shallow, permeable, Miocene to Holocene quartz sand and flows southward toward Pensacola Bay. Clay-size fractions were separated from 41 cores, chiefly split-spoon samples at 13 drill sites. The most striking feature of the chemical analyses of the clay fractions from uncontaminated site 2 and contaminated sites 4,5,6, and 7 is the variability of iron oxide (species in some samples as Fe2O3); total iron oxide abundance is lowest (2.5%) in uncontaminated sample 2-40, but is > 4.5% (4.5 to 8.5%) in the remaining assemblages. One feature suggesting interaction between the indigenous clays and the waste plume is the presence of nontronite-rich smectite. Nontronite commonly has been identified as the product of hydrothermal alteration and deep-sea weathering of submarine basalts; it is not a common constituent of Cenozoic Gulf Coast sediments. At the Pensacola site, relatively abundant nontronitic smectite is confined to contaminated sands or associated muds; it is least abundant or absent in sands and muds peripheral to the waste plume. The geochemistry of the waste plume, its substantial dissolved, (chiefly ferrous iron), mildly acidic (pH 5-6), and low redox composition, provides an environment similar to that previously determined for the low-temperature synthesis of nontronite. Data from clay-size fractions confirm conclusions that neoformed pyrite in some grain coatings occurs in an assemblage with excess iron over that required in the pyrite. Continuing studies to evaluate these tentative conclusions include: (1) chemical analysis of clay fractions from remaining sites to further examine the apparent relation between iron content and abundance of nontronitic smectite; (2) clay separation and analysis, and pore fluid extraction (squeezing or ultracentrifugation) and analysis from a continuous core through the mud lens to determine pore fluid composition (presence or absence of waste fluid), and character of associated clay minerals; and (3) clay separation and analysis in both permeable sands and the intervening mud lens that are clearly outside the limits of the waste plume to further document the effects of the plume. (See also W90-00022) (Lantz-PTT)

  19. Evaluation of theoretical and empirical water vapor sorption isotherm models for soils

    NASA Astrophysics Data System (ADS)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per; de Jonge, Lis W.

    2016-01-01

    The mathematical characterization of water vapor sorption isotherms of soils is crucial for modeling processes such as volatilization of pesticides and diffusive and convective water vapor transport. Although numerous physically based and empirical models were previously proposed to describe sorption isotherms of building materials, food, and other industrial products, knowledge about the applicability of these functions for soils is noticeably lacking. We present an evaluation of nine models for characterizing adsorption/desorption isotherms for a water activity range from 0.03 to 0.93 based on measured data of 207 soils with widely varying textures, organic carbon contents, and clay mineralogy. In addition, the potential applicability of the models for prediction of sorption isotherms from known clay content was investigated. While in general, all investigated models described measured adsorption and desorption isotherms reasonably well, distinct differences were observed between physical and empirical models and due to the different degrees of freedom of the model equations. There were also considerable differences in model performance for adsorption and desorption data. While regression analysis relating model parameters and clay content and subsequent model application for prediction of measured isotherms showed promise for the majority of investigated soils, for soils with distinct kaolinitic and smectitic clay mineralogy predicted isotherms did not closely match the measurements.

  20. Quantifying the clay content with borehole depth and impact on reservoir flow

    NASA Astrophysics Data System (ADS)

    Sarath Kumar, Aaraellu D.; Chattopadhyay, Pallavi B.

    2017-04-01

    This study focuses on the application of reservoir well log data and 3D transient numerical model for proper optimization of flow dynamics and hydrocarbon potential. Fluid flow through porous media depends on clay content that controls porosity, permeability and pore pressure. The pressure dependence of permeability is more pronounced in tight formations. Therefore, preliminary clay concentration analysis and geo-mechanical characterizations have been done by using wells logs. The assumption of a constant permeability for a reservoir is inappropriate and therefore the study deals with impact of permeability variation for pressure-sensitive formation. The study started with obtaining field data from available well logs. Then, the mathematical models are developed to understand the efficient extraction of oil in terms of reservoir architecture, porosity and permeability. The fluid flow simulations have been done using COMSOL Multiphysics Software by choosing time dependent subsurface flow module that is governed by Darcy's law. This study suggests that the reservoir should not be treated as a single homogeneous structure with unique porosity and permeability. The reservoir parameters change with varying clay content and it should be considered for effective planning and extraction of oil. There is an optimum drawdown for maximum production with varying permeability in a reservoir.

  1. Effect of soil texture and chemical properties on laboratory-generated dust emissions from SW North America

    NASA Astrophysics Data System (ADS)

    Mockford, T.; Zobeck, T. M.; Lee, J. A.; Gill, T. E.; Dominguez, M. A.; Peinado, P.

    2012-12-01

    Understanding the controls of mineral dust emissions and their particle size distributions during wind-erosion events is critical as dust particles play a significant impact in shaping the earth's climate. It has been suggested that emission rates and particle size distributions are independent of soil chemistry and soil texture. In this study, 45 samples of wind-erodible surface soils from the Southern High Plains and Chihuahuan Desert regions of Texas, New Mexico, Colorado and Chihuahua were analyzed by the Lubbock Dust Generation, Analysis and Sampling System (LDGASS) and a Beckman-Coulter particle multisizer. The LDGASS created dust emissions in a controlled laboratory setting using a rotating arm which allows particle collisions. The emitted dust was transferred to a chamber where particulate matter concentration was recorded using a DataRam and MiniVol filter and dust particle size distribution was recorded using a GRIMM particle analyzer. Particle size analysis was also determined from samples deposited on the Mini-Vol filters using a Beckman-Coulter particle multisizer. Soil textures of source samples ranged from sands and sandy loams to clays and silts. Initial results suggest that total dust emissions increased with increasing soil clay and silt content and decreased with increasing sand content. Particle size distribution analysis showed a similar relationship; soils with high silt content produced the widest range of dust particle sizes and the smallest dust particles. Sand grains seem to produce the largest dust particles. Chemical control of dust emissions by calcium carbonate content will also be discussed.

  2. Effects of clay minerals and organic matter in formulated sediments on the bioavailability of sediment-associated uranium to the freshwater midge, Chironomus dilutus.

    PubMed

    Crawford, Sarah E; Liber, Karsten

    2015-11-01

    It is well established that bioavailability influences metal toxicity in aquatic ecosystems. However, the factors and mechanisms that influence uranium (U) bioavailability and toxicity in sediment have not been thoroughly evaluated, despite evidence that suggests different sediment components can influence the sorption and interaction of some metals. Given that dissolved U is generally accepted as being the primary bioavailable fraction of U, it is hypothesized that adsorption and interaction of U with different sediment components will influence the bioavailability of U in sediment. We investigated the effects of key sediment physicochemical properties on the bioavailability of U to a model freshwater benthic invertebrate, Chironomus dilutus. Several 10-day spiked sediment bioaccumulation experiments were performed, exposing C. dilutus larvae to a variety of formulated sediments spiked with different concentrations of U (5, 50 and/or 200 mg U/kg d.w.). Mean accumulation of U in C. dilutus larvae decreased significantly from 1195 to 10 mg U/kg d.w. as kaolin clay content increased from 0% to 60% in sediment spiked with 50 mg U/kg d.w. Similarly, higher organic matter content also resulted in a significant reduction of U bioaccumulation in C. dilutus larvae, indicating a reduction in U bioavailability. Concentrations of U in both the overlying water and sediment pore water displayed a strong positive relationship to U bioaccumulation in C. dilutus larvae (r(2) = 0.77, p<0.001 and r(2) = 0.57, p < 0.001, respectively) for all experiments, while total U concentrations in the sediment had a poor relationship to U bioaccumulation (r(2) = 0.10, p = 0.028). Results from this research confirm that sediment clay and organic matter content play a significant role in altering U bioavailability, which is important in informing risk assessments of U contaminated sites and in the development of site-specific sediment quality guidelines for U. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A new locality of palygorskite-rich clay from the southeastern Yucatán: a potential material source for environmental applications

    NASA Astrophysics Data System (ADS)

    Krekeler, Mark P. S.; Kearns, Lance E.

    2009-08-01

    A palygorskite unit was discovered in a road cut of undifferentiated Tertiary limestone between the villages of El Pariso and San Roman (18°49.309N, 88°37.861W) in the southeastern Yucatán Peninsula, Mexico. This is the southern most locality of a clay-rich sedimentary unit reported in the literature for the Tertiary carbonates of the Yucatán Peninsula. This occurrence indicates a much wider range of palygorskite-rich clay deposition than previously recognized. The lithology is 99% clay and 1% sand to silt size diagenetic quartz grains. The clay consists of approximately 85% palygorskite, 15% montmorillonite and trace amounts of titanium oxides. EDS analyses on palygorskite are largely consistent with sedimentary palygorskites from other coastal marine settings, however palygorskite has a low total Fe content (average = 0.40 wt% expressed as Fe2O3) compared to many other sedimentary palygorskites. Montmorillonite chemical compositions are typical and compared to the palygorskite have substantially higher Fe2O3 concentrations (average = 3.90 wt%). The low percentage of coarse grains in the lithology combined with a high proportion of palygorskite and lack of detrimental trace minerals suggest the deposit is of industrial grade; however, it has limited reserves (6,000 m3). The unit could be potentially used in a wide array of environmental applications which are needed in the region including liners for landfills and constructed wetlands. The unit is in a geographic location which would serve the expanding economy of the region. This resource has the potential to have great impact on the quality of the local environment and the economy of a region under great environmental threat.

  4. Potential role of soil properties in the spread of CWD in western Canada.

    PubMed

    Kuznetsova, Alsu; McKenzie, Debbie; Banser, Pamela; Siddique, Tariq; Aiken, Judd M

    2014-01-01

    Chronic wasting disease (CWD) is a horizontally transmissible prion disease of free ranging deer, elk and moose. Recent experimental transmission studies indicate caribou are also susceptible to the disease. CWD is present in southeast Alberta and southern Saskatchewan. This CWD-endemic region is expanding, threatening Manitoba and areas of northern Alberta and Saskatchewan, home to caribou. Soil can serve as a stable reservoir for infectious prion proteins; prions bound to soil particles remain infectious in the soils for many years. Soils of western Canada are very diverse and the ability of CWD prions to bind different soils and the impact of this interaction on infectivity is not known. In general, clay-rich soils may bind prions avidly and enhance their infectivity comparable to pure clay mineral montmorillonite. Organic components of soils are also diverse and not well characterized, yet can impact prion-soil interaction. Other important contributing factors include soil pH, composition of soil solution and amount of metals (metal oxides). In this review, properties of soils of the CWD-endemic region in western Canada with its surrounding terrestrial environment are described and used to predict bioavailability and, thus, potential spread of CWD. The major soils in the CWD-endemic region of Alberta and Saskatchewan are Chernozems, present in 60% of the total area; they are generally similar in texture, clay mineralogy and soil organic matter content, and can be characterized as clay loamy, montmorillonite (smectite) soils with 6-10% organic carbon. The greatest risk of CWD spread in western Canada relates to clay loamy, montmorillonite soils with humus horizon. Such soils are predominant in the southern region of Alberta, Saskatchewan and Manitoba, but are less common in northern regions of the provinces where quartz-illite sandy soils with low amount of humus prevail.

  5. Fundamental investigations of clay/polymer nanocomposites and applications in co-extruded microlayered systems

    NASA Astrophysics Data System (ADS)

    Decker, Jeremy John

    The second and fourth generations of hydroxylated dendritic polyesters (HBP2, HBP4) were combined with unmodified sodium montmorillonite clay (Na +MMT) in water to generate a broad range of polymer clay nanocomposites from 0 to 100% wt/wt Na+MMT. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to investigate intercalation states of the clay galleries. It was shown that interlayer spacings were independent of generation number and changed over the composition range from 0.5 nm to 3.5 nm in 0.5 nm increments that corresponded to a flattened HBP conformation within the clay tactoids. The HBP4/Na+MMT systems were investigated to study the vitrified Rigid Amorphous Fraction (RAF) induced by the clay surfaces. Differential Scanning Calorimetry (DSC) showed changes in heat capacity, Delta Cp, at Tg, that decreased with clay content, until completely suppressed at 80 wt% Na+MMT due to confinement. RAF was quantified from these changes in heat capacity and verified by the analysis of orthopositronium lifetime temperature scans utilizing positron annihilation lifetime spectroscopy (PALS): verifying the glassy nature of the RAF at elevated temperatures. Mathematical relationships allowed for correlation of the interlayer spacings with DeltaC p. RAF formation correlated to intercalated HBP4, and external surfaces of the clay tactoids. The interdiffusion of a polymer pair in microlayers was exploited to increase the concentration of nanoclay particles. When microlayers of a nanocomposite composed of organically modified montmorillonite (M2(HT)2 ) inside maleic anhydride grafted linear low-density polyethylene (LLDPE-g-MA) and low-density polyethylene (LDPE) were taken into the melt, the greater mobility of the linear LLDPE-g-MA chains compared to the branched LDPE chains caused shrinkage of the nanocomposite microlayers, concentrating the M 2(HT)2 contained within. Analysis of the clay morphology within these layers demonstrated an increase in clay particle lengths and aspect ratios, which was attributed to the growth of skewed aggregates during concentration. The melt induced clay concentration and increased clay particle dimensions caused significant decreases in the permeability of the nanocomposite microlayers and reduced the overall permeability of the multilayered films. Morphology and transport behavior of these microlayered films were compared to a series of bulk nanocomposites using a second LLDPE-g-MA containing M 2(HT)2 with varying clay content.

  6. Characterization and inventory of PCDD/F emissions from the ceramic industry in China.

    PubMed

    Lu, Mang; Wang, Guoxiang; Zhang, Zhongzhi; Su, Youming

    2012-04-03

    The ceramic industry is considered to be a potential source of dioxins (polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), considering the widespread distribution of dioxins in kaolinitic clays. Nevertheless, studies on the emission of dioxins from the ceramic industry are still very scarce. In this study, raw clays and stack gases from six typical ceramic plants in China were collected and analyzed to estimate the emission of dioxins from the ceramic industry. Dioxin profiles in raw clays were characterized by the domination of the congener octachlorodibenzo-p-dioxin (OCDD), and the contents of other congeners declined with the decreasing degree of chlorination. During the ceramic firing process, a considerable amount (16.5-25.1 wt % of the initial quantity in raw clays) of the dioxins was not destroyed and was released to the atmosphere. Dechlorination of OCDD generated a broad distribution within the PCDD congeners including a variety of non-2,3,7,8-substituted ones with the mass abundance of 0.4-3.6%. Based on the mean concentrations measured in this study, the inventory of PCDD/Fs from the manufacturing of ceramics on the Chinese scale was estimated to be 7.94 kg/year; the corresponding value on the I-TEQ basis is 133.6 g I-TEQ/year. This accounts for about 1.34% (I-TEQ basis) of the total emission of dioxins to the environment in China. The results suggest that the ceramic industry is a significant source of dioxins in the environment.

  7. The nanosphere iron mineral(s) in Mars soil

    NASA Technical Reports Server (NTRS)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these 'Mars-soil analogs' were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxyl mineral such as 'green rust', or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable meaghemite (gamma-Fe203) by mild heat treatment and then to nanophase hematite (aplha-Fe203) by extensive heat treatment. Their chemical reactivity offers a plausible mechanism for the somewhat puzzling observations of the Viking biology experiments. Their unique chemical reactivities are attributed to the combined catalytic effects of the iron oxide/oxyhydroxide and silicate phase surfaces. The mode of formation of these (nanophase) iron oxides on Mars is still unknown.

  8. Classroom Instruction: The Influences of Marie Clay

    ERIC Educational Resources Information Center

    McNaughton, Stuart

    2014-01-01

    Marie Clay's body of work has influenced classroom instruction in direct and indirect ways, through large overarching themes in our pedagogical content knowledge as well as specific smart practices. This paper focuses on her the contributions to our thinking about instruction which come from two broad theoretical concepts; emergent literacy…

  9. Effects of simulated clay gouges on the sliding behavior of Tennessee sandston

    NASA Astrophysics Data System (ADS)

    Shimamoto, Toshihiko; Logan, John M.

    1981-06-01

    The effects of simulated fault gouge on the sliding behavior of Tennessee sandstone are studied experimentally with special reference to the stabilizing effect of clay minerals mixed into the gouge. About 30 specimens with gouge composed of pure clays, of homogeneously mixed clay and anhydrite, or of layered clay and anhydrite, along a 35° precut are deformed dry in a triaxial apparatus at a confining pressure of 100 MPa, with a shortening rate of about 5 · 10 -4/sec, and at room temperature. Pure clay gouges exhibit only stable sliding, and the ultimate frictional strength is very low for bentonite (mont-morillonite), intermediate for chlorite and illite, and considerably higher for kaolinite. Anhydrite gouge shows violent stick-slip at 100 MPa confining pressure. When this mineral is mixed homogeneously with clays, the frictional coefficient of the mixed gouge, determined at its ultimate frictional strength, decreases monotonically with an increase in the clay content. The sliding mode changes from stick-slip to stable sliding when the frictional coefficient of the mixed clay-anhydrite gouge is lowered down below 90-95% of the coefficient of anhydrite gouge. The stabilizing effect of clay in mixed gouge is closely related to the ultimate frictional strength of pure clays; that is, the effect is conspicuous only for a mineral with low frictional strength. Only 15-20% of bentonite suppresses the violent stick-slip of anhydrite gouge. In contrast, violent stick-slip occurs even if the gouge contains as much as 75% of kaolinite. The behavior of illite and chlorite is intermediate between that of kaolinite and bentonite. Bentonite—anhydrite two-layer gouge exhibits stable sliding even when the bentonite content is only 5%. Thus, the presence of a thin, clay-rich layer in a fault zone stabilizes the behavior much more effectively than do the clay minerals mixed homogeneously with the gouge. This result brings out the mechanical significance of internal structures of a fault zone in understanding the effects of intrafault materials on the fault motion. Based on the present experimental results incorporated with some other experimental data, it is argued that although the stabilizing effect of montmorillonite and vermiculite is indeed remarkable at room temperature, the effect should be much less pronounced at elevated temperatures, due perhaps to the dewatering of the clays. In most geological environments where shallow earthquakes occur, the stabilizing effect of clays is probably not so conspicuous as to completely suppress the unstable motion of a fault.

  10. Mineralogy and fluid content of sediments entering the Costa Rica subduction zone - Results from Site U1414, IODP Expedition 344

    NASA Astrophysics Data System (ADS)

    Charpentier, D.; Buatier, M.; Kutterolf, S.; Straub, S. M.; Nascimento, D.; Millan, C.

    2013-12-01

    Subduction zones are characterized by the largest thrust earthquakes, as quantified by both rupture area and seismic moment release. Offshore Costa Rica, the oceanic Cocos Plate subducts under the Caribbean plate forming the southern end of the Middle America trench. A high convergence rate and almost complete subduction of incoming sediments make the Costa Rica convergent margin an extremely dynamic environment. The Costa Rica Seismogenesis Project (CRISP) is designed to understand the processes that control nucleation and seismic rupture of large earthquakes at erosional subduction zones. Site U1414 of IODP Exp.344 was drilled to investigate the material from the incoming Cocos Plate. A key parameter of incoming plate is fluid content and release because it impacts deformation within the subduction complex. The deposition, compaction and diagenesis of sedimentary rocks control the distribution of fluids, fluid pressures and fluid flow patterns within subduction zones. We therefore decided to characterize sediment composition and quantify the different types of water at Site U1414. Mineralogical investigations were performed using optical and electronic microscope observations, X Ray Diffraction (on bulk and clay fractions), Cation Exchange Capacity measurements, carbon analyses (to determine carbonate contents), and sequenced extractions in NaOH (to quantify the biogenic opal content). Fluid characteristics were approached by thermal gravimetric analyses. The entire sedimentary sequence was recovered at Site U1414 and can be divided into three major sedimentary units. The first one is a hemipelagic silty clay to clay with a gradual increase of calcareous nannofossils. The dominant mineral is smectite associated in the clay fractions with kaolinite and zeolites. Small amounts of biogenic opal have been analyzed. Other minerals like quartz, feldspar and calcite are also present. The second unit is composed of nannofossil-rich calcareous ooze. The proportion of biosilica is variable and can attain 15 wt.%. Smectite and zeolites are present in smaller amount. The third unit is a lithified sandstone. Biosilica and smectite are absent, but zeolites are still present in this unit. Fluid content that can be released varies from about 15 wt.% to 40 wt.%. In shallow levels a significant proportion is pore water fluid, whereas in deeper levels water stored within minerals comprises a greater proportion of the total fluid budget. The presence of smectite yields to fluid release by dehydration and dehydroxylation at temperatures less than approximately 100°C and 500°C respectively. Transformation of biogenic opal to diagenetic silice goes to completion at temperatures of 50-100°C. It seems to be an importance source of fluid in the second unit, whereas in unit three it is zeolite water.

  11. Hyperspectral Technique for Detecting Soil Parameters

    NASA Astrophysics Data System (ADS)

    Garfagnoli, F.; Ciampalini, A.; Moretti, S.; Chiarantini, L.

    2011-12-01

    In satellite and airborne remote sensing, hyperspectral technique has become a very powerful tool, due to the possibility of rapidly realizing chemical/mineralogical maps of the studied areas. Many studies are trying to customize the algorithms to identify several geo-physical soil properties. The specific objective of this study is to investigate those soil characteristics, such as clay mineral content, influencing degradation processes (soil erosion and shallow landslides), by means of correlation analysis, in order to examine the possibility of predicting the selected property using high-resolution reflectance spectra and images. The study area is located in the Mugello basin, about 30 km north of Firenze (Tuscany, Italy). Agriculturally suitable terrains are assigned mainly to annual crops, marginally to olive groves, vineyards and orchards. Soils mostly belong to Regosols and Cambisols orders. An ASD FieldSpec spectroradiometer was used to obtain reflectance spectra from about 80 dried, crushed and sieved samples under controlled laboratory conditions. Samples were collected simultaneously with the flight of SIM.GA hyperspectral camera from Selex Galileo, over an area of about 5 km2 and their positions were recorded with a differential GPS. The quantitative determination of clay minerals content was performed by means of XRD and Rietveld refinement. Different chemometric techniques were preliminarily tested to correlate mineralogical records with reflectance data. A one component partial least squares regression model yielded a preliminary R2 value of 0.65. A slightly better result was achieved by plotting the absorption peak depth at 2210 versus total clay content (band-depth analysis). The complete SIM.GA hyperspectral geocoded row dataset, with an approximate pixel resolution of 0.6 m (VNIR) and 1.2 m (SWIR), was firstly transformed into at sensor radiance values, by applying calibration coefficients and parameters from laboratory measurements to non-georeferred VNIR/SWIR DN values. Then, airborne imagery needed to be corrected for the influence of the atmosphere, solar illumination, sensor viewing geometry and terrain geometry information, for the retrieval of inherent surface reflectance properties. The geocoded products were obtained for each flight line by using a procedure developed in IDL Language and PARGE (PARametric Geocoding) software. When all compensation parameters were applied to hyperspectral data or to the final thematic map, orthorectified, georeferred and coregistered VNIR to SWIR images or maps were available for GIS application and 3D view as well as for the retrieval of different geophysical parameters by means of inversion algorithms. The experimental fitting of laboratory data on mineral content is used for airborne data inversion, whose results are in agreement with laboratory records, demonstrating the possibility to use this methodology for digital mapping of soil properties. In this study, we established a complete procedure for mapping clay content areal variations in agricultural soils starting form airborne hyperspectral imagery.

  12. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    PubMed

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. © The Author(s) 2014.

  13. The role of clay minerals in the preservation of organic matter in sediments of Qinghai Lake, NW China

    USGS Publications Warehouse

    Yu, Bingsong; Dong, Hailiang; Jiang, Hongchen; Lv, Guo; Eberl, Dennis D.; Li, Shanying; Kim, Jinwook

    2009-01-01

    The role of saline lake sediments in preserving organic matter has long been recognized. In order to further understand the preservation mechanisms, the role of clay minerals was studied. Three sediment cores, 25, 57, and 500 cm long, were collected from Qinghai Lake, NW China, and dissected into multiple subsamples. Multiple techniques were employed, including density fractionation, X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), total organic carbon (TOC) and carbon compound analyses, and surface area determination. The sediments were oxic near the water-sediment interface, but became anoxic at depth. The clay mineral content was as much as 36.8%, consisting mostly of illite, chlorite, and halloysite. The TEM observations revealed that organic matter occurred primarily as organic matter-clay mineral aggregates. The TOC and clay mineral abundances are greatest in the mid-density fraction, with a positive correlation between the TOC and mineral surface area. The TOC of the bulk sediments ranges from 1 to 3% with the non-hydrocarbon fraction being predominant, followed by bitumen, saturated hydrocarbon, aromatic hydrocarbons, and chloroform-soluble bitumen. The bimodal distribution of carbon compounds of the saturated hydrocarbon fraction suggests that organic matter in the sediments was derived from two sources: terrestrial plants and microorganisms/algae. Depthrelated systematic changes in the distribution patterns of the carbon compounds suggest that the oxidizing conditions and microbial abundance near the water-sediment interface promote degradation of labile organic matter, probably in adsorbed form. The reducing conditions and small microbial biomass deeper in the sediments favor preservation of organic matter, because of the less labile nature of organic matter, probably occurring within clay mineral-organic matter aggregates that are inaccessible to microorganisms. These results have important implications for our understanding of mechanisms of organic matter preservation in saline lake sediments.

  14. Deformation and Fabric in Compacted Clay Soils

    NASA Astrophysics Data System (ADS)

    Wensrich, C. M.; Pineda, J.; Luzin, V.; Suwal, L.; Kisi, E. H.; Allameh-Haery, H.

    2018-05-01

    Hydromechanical anisotropy of clay soils in response to deformation or deposition history is related to the micromechanics of platelike clay particles and their orientations. In this article, we examine the relationship between microstructure, deformation, and moisture content in kaolin clay using a technique based on neutron scattering. This technique allows for the direct characterization of microstructure within representative samples using traditional measures such as orientation density and soil fabric tensor. From this information, evidence for a simple relationship between components of the deviatoric strain tensor and the deviatoric fabric tensor emerge. This relationship may provide a physical basis for future anisotropic constitutive models based on the micromechanics of these materials.

  15. Soil-solution speciation of Cd as affected by soil characteristics in unpolluted and polluted soils.

    PubMed

    Meers, Erik; Unamuno, Virginia; Vandegehuchte, Michiel; Vanbroekhoven, Karolien; Geebelen, Wouter; Samson, Roeland; Vangronsveld, Jaco; Diels, Ludo; Ruttens, Ann; Du Laing, Gijs; Tack, Filip

    2005-03-01

    Total metal content by itself is insufficient as a measure to indicate actual environmental risk. Understanding the mobility of heavy metals in the soil and their speciation in the soil solution is of great importance for accurately assessing environmental risks posed by these metals. In a first explorative study, the effects of general soil characteristics on Cd mobility were evaluated and expressed in the form of empirical formulations. The most important factors influencing mobility of Cd proved to be pH and total soil content. This may indicate that current legislation expressing the requirement for soil sanitation in Flanders (Belgium) as a function of total soil content, organic matter, and clay does not successfully reflect actual risks. Current legal frameworks focusing on total content, therefore, should be amended with criteria that are indicative of metal mobility and availability and are based on physicochemical soil properties. In addition, soil-solution speciation was performed using two independent software packages (Visual Minteq 2.23 and Windermere Humic Aqueous model VI [WHAM VI]). Both programs largely were in agreement in concern to Cd speciation in all 29 soils under study. Depending on soil type, free ion and the organically complexed forms were the most abundant species. Additional inorganic soluble species were sulfates and chlorides. Minor species in solution were in the form of nitrates, hydroxides, and carbonates, the relative importance of which was deemed insignificant in comparison to the four major species.

  16. Aquitard characteristics of clay-rich till deposits in East Anglia, Eastern England

    NASA Astrophysics Data System (ADS)

    Hiscock, K. M.; Tabatabai Najafi, M.

    2011-08-01

    SummaryAn extensive area of Quaternary glacial deposits (Lowestoft Till) of Elsterian (Anglian) age overlies the regionally important Cretaceous Chalk aquifer in East Anglia in Eastern England. The glacial deposits act as an aquitard potentially affording protection from surface-derived, mainly agricultural contaminants. However, there has been little previous research on the physical and chemical characteristics of the glacial tills and contained pore waters in East Anglia to demonstrate this benefit. Hence, this study presents the results from the drilling of two boreholes in northern and southern East Anglia (at Morley and Cowlinge, respectively) and the construction of a high-pressure squeezing rig to obtain pore water for major and minor ion, stable isotope (δ 18O, δ 2H) and dissolved organic carbon analysis. Special features of the mechanical squeezing rig included a high diameter-to-length ratio of the squeezer, dual seepage faces and a unique pore water collection system designed to eliminate the risk of alteration of in situ pore water redox characteristics. The hydrochemistry of the pore waters is found to be controlled by: (i) incongruent carbonate dissolution given the high proportion of chalk clasts contained in the till; (ii) cation exchange in the unweathered, clay-rich till; and (iii) pyrite oxidation associated with the mineralogy of both the chalk and clay material content that comprises the till matrix. The clay material is sourced from Upper Jurassic clays (Oxford and Kimmeridge Clay Formations) found to the west of the region. These clays are also considered to be the source of organic material contributing relatively high concentrations of dissolved organic carbon (above 2 mg/L) found in till pore waters below the soil zone. Concentrations of dissolved inorganic constituents increase with depth with a high total dissolved solids (TDS) content in excess of 1500 mg/L measured in the unweathered till below a depth of 5 m below ground level, with the highest concentrations (maximum of 3738 mg/L) associated with low-permeability, clay-rich till. The stable isotope composition of the pore waters, with mean values for δ 18O and δ 2H of -7.01‰ and -51.7‰ at Cowlinge and -6.44‰ and 49.9‰ at Morley, respectively, are similar to local meteoric water and indicate that groundwater recharge of the tills has occurred during the Holocene in the last 10,000 years. Overall, the physical and chemical characteristics of the Lowestoft Till suggest only limited groundwater recharge of the order of 10 mm/a or less in interfluve areas where the till deposits are greater than 15 m thick; although higher rates are expected where the till becomes more sand-rich, for example at valley margins and also northwards in East Anglia where the Lowestoft Till is influenced by the component of Anglian ice that advanced from the north, containing sand material derived from the floor of the North Sea Basin.

  17. Creep and Sliding in Clays Slopes: Mutual Effects of Interlayer Swelling and Ice Jacking.

    DTIC Science & Technology

    1984-01-11

    chlorite 14% (6-21%) calcite 6,5% (1 - 15%) kaolinite 2% ( 1- 5%) dolomite 0,5% (0 - 4%) montmorillonite 23% (15-35%) Non clay phases 19% (15-30%) Clay...iconcretions, 200 mm coal lenses RE 3 4 Calcite N Quartz Feldspar Illite-muscovite Z Chlorite E Kaolinite montmori 1 loni te Fig. 10: Mineral content... montmorillonite , belong to a fluviatile fresh water cycle and are possibly influenced by volcanic ash falls. The series under investigation belongs to the upper

  18. Soil-Water Characteristic Curves of Red Clay treated by Ionic Soil Stabilizer

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2009-12-01

    The relationship of red clay particle with water is an important factor to produce geological disaster and environmental damage. In order to reduce the role of adsorbed water of red clay in WuHan, Ionic Soil Stabilizer (ISS) was used to treat the red clay. Soil Moisture Equipment made in U.S.A was used to measure soil-water characteristic curve of red clay both in natural and stabilized conditions in the suction range of 0-500kPa. The SWCC results were used to interpret the red clay behavior due to stabilizer treatment. In addition, relationship were compared between the basic soil and stabilizer properties such as water content, dry density, liquid limit, plastic limit, moisture absorption rate and stabilizer dosages. The analysis showed that the particle density and specific surface area increase, the dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. After treatment with the ISS, the geological disasters caused by the adsorbed water of red clay can be effectively inhibited.

  19. Sorption and Transport of Ranitidine in Natural Soils

    NASA Astrophysics Data System (ADS)

    Gaynor, A. J.; Vulava, V. M.

    2013-12-01

    Increasing levels of pharmaceuticals and their degradants are being discovered in natural water systems all over the world. These chemicals are reported to be discharged from wastewater treatment plants, sewage overflow, and leaking septic tanks. Ranitidine is an example of one such pharmaceutical chemical found in municipal drinking water, streams, and streambed sediments. It is a histamine H2-receptor antagonist, which inhibits the production of stomach acid and is commonly used to treat peptic ulcers and gastro esophageal reflux disease. Ranitidine is a complex organic compound; it is acidic, highly polar, and has two pKa values of approximately 8.2 and 2.7 because of the amine functional groups. When administered orally 25 - 30% of unchanged ranitidine has been shown to expel through urine. The objective of this research is to establish sorption and transport patterns of ranitidine in natural soils and to determine which soil properties influence these patterns the most. Laboratory experiments were preformed on A-horizon and B-horizon soil samples collected from the relatively undisturbed Francis Marion National Forest, a managed forest near Charleston, SC. The soils were characterized for chemical and physical properties: ranges of clay content = 6-20%, total organic content = 1-8%, and pH = 3.6-4.9. Kinetic reaction rates and equilibrium sorption isotherms were measured using batch experiments, whereas column experiments were used to quantify transport behavior. The reaction rates were -0.22/day and -0.33/day for organic-rich and clay-rich soils, respectively. The kinetic reaction rates were used to determine equilibration times for further equilibrium batch reactor experiments, which have soil solutions spiked with concentrations of ranitidine ranging from 0.1 mg/L to 100 mg/L. The concentration remaining in solution (C, mg/L) was plotted against the concentration in the soil (q, mg/kg) to create sorption isotherms. Ranitidine was more strongly sorbed to B-horizon than to A-horizon soils, implying a strong preference for soils higher in clay content. Freundlich model (q = Kf Cn, where Kf and n are fitting parameters) fit the sorption isotherms. Glass chromatography columns packed with soil were used for column experiments. Ranitidine tracer was injected into saturated soil columns and the breakthrough tracer concentrations were plotted as a function of time. The shape of these breakthrough curves indicated that there were two distinct sorption sites on soils - organic matter and clay minerals - which influenced tracer transport. A two-region, nonequilibrium transport code was used to model the breakthrough curves. These experiments indicate that ranitidine sorbs more strongly to clay-rich soils than to organic-rich soils. The presence of amine functional groups in ranitidine's chemical structure results in its acidic behavior in the soil solution. In acidic solutions, the cationic form of ranitidine likely forms ionic bonds with negatively charged clay surfaces. Other components of ranitidine are likely to form covalent bonds with organic matter. The data shows the complex nature of ranitidine in interactions with environmental surfaces.

  20. Diffusional Transport of Organic Solutes in Subsurface Clay Lenses and Layers

    NASA Astrophysics Data System (ADS)

    Demond, A. H.; Ayral, D.; Goltz, M. N.

    2009-12-01

    The storage of organic solvents in clay lenses and layers in the subsurface creates long-term contaminant sources. Because of the low hydraulic conductivities of clay, it is thought that organic movement into clay lenses occurs through the process of diffusion. The ratio of the effective diffusion coefficient in the porous medium and the diffusion coefficient in bulk water is usually given by the tortuosity factor which accounts for the reduced area and the increased path length in the porous medium. However, there is field evidence which suggests that the concentrations in these lenses exceed that which can be accounted for by simple diffusion. There are reports, for example, of tortuosity factors greater than 1.0, which theoretically is not possible. Clays such as montmorillonite or bentonite shrink and swell depending on water content, and similar behavior can occur in the presence of organic solvents. In fact, research has shown that the basal spacing of bentonite can decrease by 50% when permeated with heptane. Such contraction of the clay structure can lead to the formation of cracks and macropores, with a concomitant alteration of the diffusional pathways that solutes follow. Models formulated for diffusional transport in soil are available to calculate the tortuosity factor as a function of water content. In addition, models are available to simulate phenomena in which the diffusion coefficient is concentration dependent. However, calculations of diffusional transport using such models show that they may not adequately reflect the impact of the alteration of the clay structure. However, modeling the transport of organic solutes in clay as a dual-domain system with some minimal advective transport in macropores can yield tortuosity factors greater than 1.0. Thus, it appears the cracking of clay in contact with organic solvents and a resultant advective component to transport of the solute may be an explanation of field observations.

  1. Variability of the soil-to-plant radiocaesium transfer factor for Japanese soils predicted with soil and plant properties.

    PubMed

    Uematsu, Shinichiro; Vandenhove, Hildegarde; Sweeck, Lieve; Van Hees, May; Wannijn, Jean; Smolders, Erik

    2016-03-01

    Food chain contamination with radiocaesium (RCs) in the aftermath of the Fukushima accident calls for an analysis of the specific factors that control the RCs transfer. Here, soil-to-plant transfer factors (TF) of RCs for grass were predicted from the potassium concentration in soil solution (mK) and the Radiocaesium Interception Potential (RIP) of the soil using existing mechanistic models. The mK and RIP were (a) either measured for 37 topsoils collected from the Fukushima accident affected area or (b) predicted from the soil clay content and the soil exchangeable potassium content using the models that had been calibrated for European soils. An average ammonium concentration was used throughout in the prediction. The measured RIP ranged 14-fold and measured mK varied 37-fold among the soils. The measured RIP was lower than the RIP predicted from the soil clay content likely due to the lower content of weathered micas in the clay fraction of Japanese soils. Also the measured mK was lower than that predicted. As a result, the predicted TFs relying on the measured RIP and mK were, on average, about 22-fold larger than the TFs predicted using the European calibrated models. The geometric mean of the measured TFs for grass in the affected area (N = 82) was in the middle of both. The TFs were poorly related to soil classification classes, likely because soil fertility (mK) was obscuring the effects of the soil classification related to the soil mineralogy (RIP). This study suggests that, on average, Japanese soils are more vulnerable than European soils at equal soil clay and exchangeable K content. The affected regions will be targeted for refined model validation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Retention of contaminants Cd and Hg adsorbed and intercalated in aluminosilicate clays: A first principles study

    NASA Astrophysics Data System (ADS)

    Crasto de Lima, F. D.; Miwa, R. H.; Miranda, Caetano R.

    2017-11-01

    Layered clay materials have been used to incorporate transition metal (TM) contaminants. Based on first-principles calculations, we have examined the energetic stability and the electronic properties due to the incorporation of Cd and Hg in layered clay materials, kaolinite (KAO) and pyrophyllite (PYR). The TM can be (i) adsorbed on the clay surface as well as (ii) intercalated between the clay layers. For the intercalated case, the contaminant incorporation rate can be optimized by controlling the interlayer spacing of the clay, namely, pillared clays. Our total energy results reveal that the incorporation of the TMs can be maximized through a suitable tuning of vertical distance between the clay layers. Based on the calculated TM/clay binding energies and the Langmuir absorption model, we estimate the concentrations of the TMs. Further kinetic properties have been examined by calculating the activation energies, where we found energy barriers of ˜20 and ˜130 meV for adsorbed and intercalated cases, respectively. The adsorption and intercalation of ionized TM adatoms were also considered within the deprotonated KAO surface. This also leads to an optimal interlayer distance which maximizes the TM incorporation rate. By mapping the total charge transfers at the TM/clay interface, we identify a net electronic charge transfer from the TM adatoms to the topmost clay surface layer. The effect of such a charge transfer on the electronic structure of the clay (host) has been examined through a set of X-ray absorption near edge structure (XANES) simulations, characterizing the changes of the XANES spectra upon the presence of the contaminants. Finally, for the pillared clays, we quantify the Cd and Hg K-edge energy shifts of the TMs as a function of the interlayer distance between the clay layers and the Al K-edge spectra for the pristine and pillared clays.

  3. Clay-Enriched Silk Biomaterials for Bone Formation

    PubMed Central

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  4. Total content and bioavailability of plant essential nutrients and heavy metals in top-soils of an industrialized area of Northwestern Greece

    NASA Astrophysics Data System (ADS)

    Barouchas, Pantelis; Avramidis, Pavlos; Salachas, Georgios; Koulopoulos, Athanasios; Christodoulopoulou, Kyriaki; Liopa-Tsakalidi, Aglaia

    2017-04-01

    Thirty surface soil samples from northwestern Greece in the Ptolemais-Kozani basin, were collected and analyzed for their total content in thirteen elements (Al, Ca, Fe, K, Mg, Mn, Na, P, Cd, Cr, Cu, Ni, Pb, Zn) by ICP-AES and bioavailable content from a plant nutrition scope of view for (Ca, Fe, K, Mg, Mn, Na, P, Zn) by AAS and colorimetric techniques. Particle size distribution, Cation Exchange Capacity (CEC) and the magnetic susceptibility, in a low and a high frequency (at 47kHz and 0.47kHz), of soil samples were measured also in order to correlate the results. Total carbonates were tested by the pressure technique (BD Inventions, FOGII digital soil calcimeter). The concentrations of these elements were compared with international standards and guidelines. The results indicated that Cu, Cd, Zn and Pb are found enriched in the top soils of the study area, mainly as a consequence of natural processes from the surrounding rocks. Moreover, the bioavailability of some of these elements with a plant nutrition interest was tested and results indicate that they do not pose an immediate threat to the environment or crops as it all demonstrated values in an adequate range. Magnetic susceptibility in low and high frequency was correlated with clay content.

  5. Novel Proximal Sensing for Monitoring Soil Organic C Stocks and Condition.

    PubMed

    Viscarra Rossel, Raphael A; Lobsey, Craig R; Sharman, Chris; Flick, Paul; McLachlan, Gordon

    2017-05-16

    Soil information is needed for environmental monitoring to address current concerns over food, water and energy securities, land degradation, and climate change. We developed the Soil Condition ANalysis System (SCANS) to help address these needs. It integrates an automated soil core sensing system (CSS) with statistical analytics and modeling to characterize soil at fine depth resolutions and across landscapes. The CSS's sensors include a γ-ray attenuation densitometer to measure bulk density, digital cameras to image the measured soil, and a visible-near-infrared (vis-NIR) spectrometer to measure iron oxides and clay mineralogy. The spectra are also modeled to estimate total soil organic carbon (C), particulate, humus, and resistant organic C (POC, HOC, and ROC, respectively), clay content, cation exchange capacity (CEC), pH, volumetric water content, available water capacity (AWC), and their uncertainties. Measurements of bulk density and organic C are combined to estimate C stocks. Kalman smoothing is used to derive complete soil property profiles with propagated uncertainties. The SCANS provides rapid, precise, quantitative, and spatially explicit information about the properties of soil profiles with a level of detail that is difficult to obtain with other approaches. The information gained effectively deepens our understanding of soil and calls attention to the central role soil plays in our environment.

  6. Do acid volatile sulfides (AVS) influence the accumulation of sediment-bound metals to benthic invertebrates under natural field conditions?

    PubMed

    De Jonge, Maarten; Dreesen, Freja; De Paepe, Josefina; Blust, Ronny; Bervoets, Lieven

    2009-06-15

    The present study evaluates the influence of acid volatile sulfides (AVS) on accumulation of sediment-bound metals in benthic invertebrates under natural field conditions. Natural sediments, pore water, surface water, and two species of widespread benthic invertebrates (Chironomus gr. thummi and Tubifex tubifex) were collected from 17 historical polluted Flemish lowland rivers and measured for metal concentrations. Different sediment characteristics were determined (AVS, organic matter, clay content) and multiple regression was used to study their relationship with accumulated metals in the invertebrates. Physical and chemical analysis of the field samples indicated low metal concentrations in the water and pore water, but very high metal concentrations in the sediment and the invertebrates, especially for Pb (5.99 micromol/ g). In general, metal accumulation in chironomids and tubificid worms was most strongly correlated with total metal concentrations in the sediment and sediment metal concentrations normalized for organic matter and clay content. Following the results of the linear regression model, AVS did not turn out to be a significant variable in describing variation in metal accumulation. Our study clearly demonstrates that, in addition to the results gained from experiments under lab conditions, benthic invertebrates can accumulate metals from unspiked field sediments even when there's an excess of AVS.

  7. Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis

    NASA Astrophysics Data System (ADS)

    Lim, A. J. M. S.; Syazwani, R. N.; Wijeyesekera, D. C.

    2016-07-01

    Understanding the engineering properties of the mineralogy and microfabic of clayey soils is very complex and thus very difficult for soil characterization. Micromechanics of soils recognize that the micro structure and mineralogy of clay have a significant influence on its engineering behaviour. To achieve a more reliable quantitative evaluation of clay mineralogy, a proper sample preparation technique for quantitative clay mineral analysis is necessary. This paper presents the quantitative evaluation of elemental analysis and chemical characterization of oriented and random oriented clay particles using X-ray spectroscopy. Three different types of clays namely marine clay, bentonite and kaolin clay were studied. The oriented samples were prepared by placing the dispersed clay in water and left to settle on porous ceramic tiles by applying a relatively weak suction through a vacuum pump. Images form a Scanning Electron Microscope (SEM) was also used to show the comparison between the orientation patterns of both the sample preparation techniques. From the quantitative analysis of the X-ray spectroscopy, oriented sampling method showed more accuracy in identifying mineral deposits, because it produced better peak intensity on the spectrum and more mineral content can be identified compared to randomly oriented samples.

  8. [Fluorine speciation and its distribution characteristics in selected agricultural soils of North China Plain].

    PubMed

    Yi, Chun-Yao; Wang, Bing-Guo; Jin, Meng-Gui

    2013-08-01

    The objectives of this study were to study fluorine speciation and its distribution characteristics in the cultivated soils of wheat-corn fields at the typical areas, the North China Plain. The fluorine contents in cultivated soils and profile soils were measured by consecutive extraction. The results showed that the soil total fluorine (T-F) content at typical areas in the North China Plain ranged from 338.31 mg x kg(-1) to 781.67 mg x kg(-1), with a mean of 430.46 mg x kg(-1). The soil fluorine speciation with the highest content was Residual-Fluorine (Res-F), with a mean of 402.73 mg x kg(-1). The average content of Water soluble Fluorine (Ws-F) was 14.39 mg x kg(-1). The result indicated that the cultivated soil in the study area was at a relatively high fluoride pollution level, which may be harmful to human health and the ecological environment. The contents of Organic Fluorine (Or-F) and Fe/Mn Oxide-Fluorine (Fe/ Mn-F) were also quite high, with a mean of 8.90 mg x kg(-1) and 4.10 mg x kg(-1), respectively. The exchangeable fluorine (Ex-F) only had a very small amount of 0.33 mg x kg(-1). Soil Ws-F was positively correlated with soil pH and CEC, while it was negatively correlated with the percentage of soil clay. The content of soil Fe/Mn-F was positively correlated with soil pH, CEC and the sand grain content percentage, while it was negatively correlated with the clay grain content percentage. The soil pH value had the most significant influence on the water soluble fluorine (Ws-F) and Fe/Mn Oxide-Fluorine (Fe/Mn-F), and the soil CEC had the most significant influence on the soil total fluorine (T-F) and residual-Fluorine (Res-F) by stepwise regression analysis. In the soil profiles, the T-F content appeared as peaks and valleys representing the change of the soil lithology in the vadose zone. The Ws-F in the soil profiles mainly changed in the depth of 0-100 cm near the surface soil and was little influenced by the soil lithology. But it was strongly influenced by the soil pH, and was positively correlated with the soil pH. This study can provide a scientific evidence for soil fluorine pollution, prevention and a theoretical basis for soil fluorine mobility and its influence on ecology and environment.

  9. Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils.

    PubMed

    Cébron, Aurélie; Beguiristain, Thierry; Bongoua-Devisme, Jeanne; Denonfoux, Jérémie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Parisot, Nicolas; Peyret, Pierre; Leyval, Corinne

    2015-09-01

    The high organic pollutant concentration of aged polycyclic aromatic hydrocarbon (PAH)-contaminated wasteland soils is highly recalcitrant to biodegradation due to its very low bioavailability. In such soils, the microbial community is well adapted to the pollution, but the microbial activity is limited by nutrient availability. Management strategies could be applied to modify the soil microbial functioning as well as the PAH contamination through various amendment types. The impact of amendment with clay minerals (montmorillonite), wood sawdust and organic matter plant roots on microbial community structure was investigated on two aged PAH-contaminated soils both in laboratory and 1-year on-site pot experiments. Total PAH content (sum of 16 PAHs of the US-EPA list) and polar polycyclic aromatic compounds (pPAC) were monitored as well as the available PAH fraction using the Tenax method. The bacterial and fungal community structures were monitored using fingerprinting thermal gradient gel electrophoresis (TTGE) method. The abundance of bacteria (16S rRNA genes), fungi (18S rRNA genes) and PAH degraders (PAH-ring hydroxylating dioxygenase and catechol dioxygenase genes) was followed through qPCR assays. Although the treatments did not modify the total and available PAH content, the microbial community density, structure and the PAH degradation potential changed when fresh organic matter was provided as sawdust and under rhizosphere influence, while the clay mineral only increased the percentage of catechol-1,2-dioxygenase genes. The abundance of bacteria and fungi and the percentage of fungi relative to bacteria were enhanced in soil samples supplemented with wood sawdust and in the plant rhizospheric soils. Two distinct fungal populations developed in the two soils supplemented with sawdust, i.e. fungi related to Chaetomium and Neurospora genera and Brachyconidiellopsis and Pseudallescheria genera, in H and NM soils respectively. Wood sawdust amendment favoured the development of PAH-degrading bacteria holding Gram-negative PAH-ring hydroxylating dioxygenase, catechol-1,2-dioxygenase and catechol-2,3-dioxygenase genes. Regarding the total community structure, bacteria closely related to Thiobacillus (β-Proteobacteria) and Steroidobacter (γ-Proteobacteria) genera were favoured by wood sawdust amendment. In both soils, plant rhizospheres induced the development of fungi belonging to Ascomycota and related to Alternaria and Fusarium genera. Bacteria closely related to Luteolibacter (Verrucomicrobia) and Microbacterium (Actinobacteria) were favoured in alfalfa and ryegrass rhizosphere.

  10. Aminocyclopyrachlor sorption-desorption and leaching from three Brazilian soils.

    PubMed

    Francisco, Jeane G; Mendes, Kassio F; Pimpinato, Rodrigo F; Tornisielo, Valdemar L; Guimarães, Ana C D

    2017-07-03

    This study aimed to evaluate the sorption-desorption and leaching of aminocyclopyrachlor from three Brazilian soils. The sorption-desorption of 14 C-aminocyclopyrachlor was evaluated using the batch method and leaching was assessed in glass columns. The Freundlich model showed an adequate fit for the sorption-desorption of aminocyclopyrachlor. The Freundlich sorption coefficient [K f (sorption) ] ranged from 0.37 to 1.34 µmol (1-1/n) L 1/n kg -1 and showed a significant positive correlation with the clay content of the soil, while the K f (desorption) ranged from 3.62 to 5.36 µmol (1-1/n) L 1/n kg -1 . The K f (desorption) values were higher than their respective K f (sorption) , indicating that aminocyclopyrachlor sorption is reversible, and the fate of this herbicide in the environment can be affected by leaching. Aminocyclopyrachlor was detected at all depths (0-30 cm) in all the studied soils, where leaching was influenced by soil texture. The total herbicide leaching from the sandy clay and clay soils was <0.06%, whereas, ∼3% leached from the loamy sand soil. The results suggest that aminocyclopyrachlor has a high potential of leaching, based on its low sorption and high desorption capacities. Therefore, this herbicide can easily contaminate underground water resources.

  11. Habitat-specific divergence of phenolic defenses in Protium subserratum (Burseraceae)

    USDA-ARS?s Scientific Manuscript database

    The procyanidin (PC) content of leaves from several populations of clay, brown-sand and white-sand ecotypes of P. subserratum at several sites across more than 100 km of Amazonian Peru was examined. Leaves from P. subserratum trees growing in brown-sand (BS), clay soil (CS) and white-sand (WS) habit...

  12. Transport and retention of surfactant- and polymer-stabilized engineered silver nanoparticles in silicate-dominated aquifer material.

    PubMed

    Adrian, Yorck F; Schneidewind, Uwe; Bradford, Scott A; Simunek, Jirka; Fernandez-Steeger, Tomas M; Azzam, Rafig

    2018-05-01

    Packed column experiments were conducted to investigate the transport and blocking behavior of surfactant- and polymer-stabilized engineered silver nanoparticles (Ag-ENPs) in saturated natural aquifer media with varying content of material < 0.063 mm in diameter (silt and clay fraction), background solution chemistry, and flow velocity. Breakthrough curves for Ag-ENPs exhibited blocking behavior that frequently produced a delay in arrival time in comparison to a conservative tracer that was dependent on the physicochemical conditions, and then a rapid increase in the effluent concentration of Ag-ENPs. This breakthrough behavior was accurately described using one or two irreversible retention sites that accounted for Langmuirian blocking on one site. Simulated values for the total retention rate coefficient and the maximum solid phase concentration of Ag-ENPs increased with increasing solution ionic strength, cation valence, clay and silt content, decreasing flow velocity, and for polymer-instead of surfactant-stabilized Ag-ENPs. Increased Ag-ENP retention with ionic strength occurred because of compression of the double layer and lower magnitudes in the zeta potential, whereas lower velocities increased the residence time and decreased the hydrodynamics forces. Enhanced Ag-ENP interactions with cation valence and clay were attributed to the creation of cation bridging in the presence of Ca 2+ . The delay in breakthrough was always more pronounced for polymer-than surfactant-stabilized Ag-ENPs, because of differences in the properties of the stabilizing agents and the magnitude of their zeta-potential was lower. Our results clearly indicate that the long-term transport behavior of Ag-ENPs in natural, silicate dominated aquifer material will be strongly dependent on blocking behavior that changes with the physicochemical conditions and enhanced Ag-ENP transport may occur when retention sites are filled. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China

    USGS Publications Warehouse

    Zheng, Lingyun; Liu, Gaisheng; Chou, C.-L.; Qi, C.; Zhang, Y.

    2007-01-01

    The rare earth elements (REEs) in coals are important because of: (a) REE patterns can be an indicator of the nature of source rocks of the mineral matter as well as sedimentary environments; (b) REEs abundance in coal may have industrial-significance. In this study, a total of thirty-four samples of Permian coal, partings, roof, and floor were collected from the Huaibei Coalfield, Anhui Province, China. Abundances of rare earth elements (REEs) and other elements in the samples were determined by inductively coupled-plasma mass spectrometry (ICP-MS) and inductively coupled-plasma atomic emission spectrometry (ICP-AES). The results show that the REEs are enriched in coals in the Huaibei Coalfield as compared with Chinese and U.S. coals and the world coal average. Coals in the Lower Shihezi Formation (No. 7, 5, and 4 Coals) and Upper Shihezi Formation (No. 3) have higher REE abundances than the coals in Shanxi Formation (No. 10). Magmatic intrusion resulted in high enrichment of REEs concentrations in No. 5 and 7 Coals. The REE abundances are positively correlated with the ash content. The mineral matter in these coals is mainly made up of clay minerals and carbonates. The REEs are positively correlated with lithophile elements including Si, Al, Ti, Fe, and Na, which are mainly distributed in clay minerals, indicating that REEs are contained mainly in clay minerals. The REE abundances in coals normalized by the ash are higher than that in partings. REEs abundances of coals cannot be accounted for by the REE content in the mineral matter, and some REEs associated with organic matter in coals. ?? 2007 Elsevier Ltd. All rights reserved.

  14. Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature interlayer cation, and charge location effects

    DOE PAGES

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Jove-Colon, Carlos F.; ...

    2015-08-27

    In this study, the swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion–surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for amore » montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion–surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.« less

  15. Effect of temperature and aging time on the rheological behavior of aqueous poly(ethylene glycol)/Laponite RD dispersions.

    PubMed

    Morariu, Simona; Bercea, Maria

    2012-01-12

    The viscoelastic properties of 2% poly(ethylene glycol) aqueous solutions containing Laponite RD from 1% to 4% were investigated by oscillatory and flow measurements in the temperature range of 15-40 °C. The enhancement of the clay content from mixture causes the increase of the viscoelastic moduli and the change of the flow from liquid-like behavior (Maxwellian fluid) to a solid-like one at a set temperature. The longest relaxation times (τ(1)) of the mixtures with low clay concentrations (1% and 2%) are not affected by changes in temperature unlike the samples having high content of clay at which τ(1) increases above 30 °C and below 17.5 °C. The characteristic behavior of the mixtures with the high clay concentration could be explained by considering the effect of Brownian motion on the network structure formed in these dispersions as well as by the poor solubility of poly(ethylene glycol) in water at high temperatures. The flow activation energy was determined and discussed. An abrupt increase of the flow activation energy was evidenced between 2% and 3% Laponite RD. The rheological measurements carried out at different rest times showed a decrease of the gelation time from 1 week to 2 h when the clay concentration increases from 2% to 4%. The aging kinetics of poly(ethylene glycol)/Laponite RD/water mixtures, investigated at 25 °C, revealed the increase of the viscosity-rate kinetic constant by increasing the clay concentration.

  16. An experimental study of the effects of adsorbing and non-adsorbing gases on friction and permeability evolution in clay-rich fault gouge

    NASA Astrophysics Data System (ADS)

    Lisabeth, H. P.; Zoback, M. D.

    2017-12-01

    Understanding the flow of fluids through fractures in clay-rich rocks is fundamental to a number of geoengineering enterprises, including development of unconventional hydrocarbon resources, nuclear waste storage and geological carbon sequestration. High clay content tends to make rocks plastic, low-porosity and anisotropic. In addition, some gasses adsorb to clay mineral surfaces, resulting in swelling and concomitant changes in physical properties. These complexities can lead to coupled behaviors that render prediction of fluid behavior in the subsurface difficult. We present the results of a suite of triaxial experiments on binary mixtures of quartz and illite grains to separate and quantify the effects of hydrostatic pressure, differential stress, clay content and gas chemistry on the evolution of mechanical and hydraulic characteristics of the gouge material during deformation. Tests are run on saw-cut samples prepared with gouge at 20 MPa confining pressure, 10 MPa pore pressure and at room temperature. Argon or carbon dioxide is used as pore fluid. Sample permeability, stress and strain are monitored continuously during hydrostatic and axial deformation. We find that pressure and shearing both lead to reductions in permeability. Adsorbing gas leads to swelling and promotes permeability reduction, but appears to have no effect on frictional properties. These results indicate that the seal integrity of clay-rich caprocks may not be compromised by shear deformation, and that depletion and shear deformation of unconventional reservoirs is expected to result in production declines.

  17. Distribution and removal of organochlorine pesticides in waste clay bricks from an abandoned manufacturing plant using low-temperature thermal desorption technology.

    PubMed

    Cong, Xin; Li, Fasheng; Kelly, Ryan M; Xue, Nandong

    2018-04-01

    The distribution of pollutants in waste clay bricks from an organochlorine pesticide-contaminated site was investigated, and removal of the pollutants using a thermal desorption technology was studied. The results showed that the contents of HCHs in both the surface and the inner layer of the bricks were slightly higher than those of DDTs. The total pore volume of the bricks was 37.7 to 41.6% with an increase from external to internal surfaces. The removal efficiency by thermal treatment was within 62 to 83% for HCHs and DDTs in bricks when the temperature was raised from 200 to 250 °C after 1 h. HCHs were more easily removed than DDTs with a higher temperature. Either intraparticle or surface diffusion controls the desorption processes of pollutants in bricks. It was feasible to use the polluted bricks after removal of the pollutants by low-temperature thermal desorption technology.

  18. Postpyrogenic Polycyclic Soils in the Forests of Yakutia and Transbaikal region

    NASA Astrophysics Data System (ADS)

    Chevychelov, A. P.; Shakhmatova, E. Y.

    2018-02-01

    Periodical forest fires are typical natural events under the environmental and climatic conditions of central and southern Yakutia and Transbaikal region of Russia. Strong surface fires activate exogenous geomorphological processes. As a result, soils with polycyclic profiles are developed in the trans-accumulative landscape positions. These soils are specified by the presence of two-three buried humus horizons with abundant charcoal under the modern humus horizon. This indicates that these soils have been subjected to two-three cycles of zonal pedogenesis during their development. The buried pyrogenic humus horizons accumulate are enriched in humus; nitrogen; total and oxalate-extractable iron; exchangeable bases (Ca+2 and Mg+2); and the fractions of coarse silt, physical clay (<0.01 mm), and clay (<0.001 mm) particles in comparison with the neighboring mineral horizons of the soil profile. The humus of buried pyrogenic horizons is characterized by the increased content of humic acids, particularly, those bound with mobile sesquioxides (HA-1) and calcium (HA-2) and by certain changes in the type of humus.

  19. EPR and rheological study of hybrid interfaces in gold-clay-epoxy nanocomposites.

    PubMed

    Angelov, Verislav; Velichkova, Hristiana; Ivanov, Evgeni; Kotsilkova, Rumiana; Delville, Marie-Hélène; Cangiotti, Michela; Fattori, Alberto; Ottaviani, Maria Francesca

    2014-11-11

    With the aim to obtain new materials with special properties to be used in various industrial and biomedical applications, ternary "gold-clay-epoxy" nanocomposites and their nanodispersions were prepared using clay decorated with gold nanoparticles (AuNPs), at different gold contents. Nanocomposites structure was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Rheology and electron paramagnetic resonance (EPR) techniques were used in order to evaluate the molecular dynamics in the nanodispersions, as well as dynamics at interfaces in the nanocomposites. The percolation threshold (i.e., the filler content related to the formation of long-range connectivity of particles in the dispersed media) of the gold nanoparticles was determined to be ϕp = 0.6 wt % at a fixed clay content of 3 wt %. The flow activation energy and the relaxation time spectrum illustrated the presence of interfacial interactions in the ternary nanodispersions around and above the percolation threshold of AuNPs; these interfacial interactions suppressed the global molecular dynamics. It was found that below ϕp the free epoxy polymer chains ratio dominated over the chains attracted on the gold surfaces; thus, the rheological behavior was not significantly changed by the presence of AuNPs. While, around and above ϕp, the amount of the bonded epoxy polymer chains on the gold surface was much higher than that of the free chains; thus, a substantial increase in the flow activation energy and shift in the spectra to higher relaxation times appeared. The EPR signals of the nanocomposites depended on the gold nanoparticle contents and the preparation procedure thus providing a fingerprint of the different nanostructures. The EPR results from spin probes indicated that the main effect of the gold nanoparticles above ϕp, was to form a more homogeneous, viscous and polar clay-epoxy mixture at the nanoparticle surface. The knowledge obtained from this study is applicable to understand the role of interfaces in ternary nanocomposites with different combinations of nanofillers.

  20. Petrography and geochemistry of the Middle Devonian coal from Luquan, Yunnan Province, China

    USGS Publications Warehouse

    Dai, S.; Han, D.; Chou, C.-L.

    2006-01-01

    Coals from Luquan, Yunnan Province, China, have high contents of cutinite and microsporinite, with an average of 55 and 33.5 vol%, respectively, (on a mineral-free basis). The coals are classified as cutinitic liptobiolith, sporinite-rich durain, cutinite-rich durain, and sporinitic liptobiolith. These four liptinite-rich coals are often interlayered within the coal bed section and vary transversely within the coal bed. The vitrinite content varies from as low as 1.6-20.5% (mineral-free basis), and it is dominated by collodetrinite, collotelinite, and corpogelinite. The maceral composition may be attributed to the type of the peat-forming plant communities. Moreover, the Luquan coals are characterized by high contents of volatile matter, hydrogen, and oxygen, and the high values of the atomic hydrogen to carbon ratio as a result of the maceral composition. As compared with the common Chinese coals and the upper continental crust, the Luquan coals are enriched in Li, B, Cu, Ga, Se, Rb, Mo, Ba, Pb, Bi, and U, with averages of 99.9, 250, 111, 24.4, 4.55, 130, 58.8, 1276, 162, 3.85, and 34.1 ??g/g, respectively. The SEM-EDX results show that V, Cr, Ga, and Rb occur mainly in clay minerals, and Cu and Pb are associated with clay minerals and pyrite, and Mo and U are mainly in clay minerals and organic matter. Barite and clay minerals are the main carrier of barium. The high B and U contents are probably resulted from deep seawater influence during coal formation. ?? 2005 Elsevier Ltd. All rights reserved.

  1. Bioavailability of iron in geophagic earths and clay minerals, and their effect on dietary iron absorption using an in vitro digestion/Caco-2 cell model.

    PubMed

    Seim, Gretchen L; Ahn, Cedric I; Bodis, Mary S; Luwedde, Flavia; Miller, Dennis D; Hillier, Stephen; Tako, Elad; Glahn, Raymond P; Young, Sera L

    2013-08-01

    Geophagy, the deliberate consumption of earth, is strongly associated with iron (Fe) deficiency. It has been proposed that geophagy may be practiced as a means to improve Fe status by increasing Fe intakes and, conversely, that geophagy may cause Fe deficiency by inhibiting Fe absorption. We tested these hypotheses by measuring Fe concentration and relative bioavailable Fe content of 12 samples of geophagic earth and 4 samples of pure clay minerals. Further, we assessed the impact of these samples on the bioavailability of Fe from an Fe-rich test meal (cooked white beans, WB). Fe concentrations were measured with inductively coupled plasma atomic emission spectroscopy. Fe bioavailability was determined using an in vitro digestion/Caco-2 cell model in which ferritin formation was used as an index of Fe bioavailability. Geophagic earth and clay mineral samples were evaluated with this model, both alone and in combination with WB (1 : 16 ratio, sample : WB). Median Fe concentration of the geophagic earth was 3485 (IQR 2462, 14 ,571) μg g⁻¹ and mean Fe concentration in the clay minerals was 2791 (±1782) μg g⁻¹. All specimens had Fe concentrations significantly higher (p ≤ 0.005) than the Fe concentration of WB (77 μg g⁻¹). Ferritin formation (i.e. Fe uptake) in cells exposed to geophagic earths and clay minerals was significantly lower than in cells exposed to WB (p ≤ 0.05) and Fe uptake responses of 11 of the 16 samples were not significantly different from the blank, indicating no bioavailable Fe. When samples were combined with WB, 5 of 16 had mean ferritin levels that were significantly lower (p ≤ 0.05, one tail) than the WB alone, indicating that the samples inhibited Fe uptake from the WB. None of the ferritin responses of cells exposed to both WB and earth/clay were significantly higher than WB alone. Thus, although geophagic earths and mineral clays are high in total Fe, very little of this Fe is bioavailable. Further, some geophagic earth and clay mineral samples inhibit Fe absorption from foods. In vivo research is warranted to confirm these observations and to determine if geophagic earth samples can be a source of Fe and/or inhibit Fe absorption.

  2. Bioavailability of iron in geophagic earths and clay minerals, and their effect on dietary iron absorption using an in vitro digestion/Caco-2 cell model

    PubMed Central

    Seim, Gretchen L.; Ahn, Cedric I.; Bodis, Mary S.; Luwedde, Flavia; Miller, Dennis D.; Hillier, Stephen; Tako, Elad; Glahn, Raymond P.; Young, Sera L.

    2014-01-01

    Geophagy, the deliberate consumption of earth, is strongly associated with iron (Fe) deficiency. It has been proposed that geophagy may be practiced as a means to improve Fe status by increasing Fe intakes and, conversely, that geophagy may cause Fe deficiency by inhibiting Fe absorption. We tested these hypotheses by measuring Fe concentration and relative bioavailable Fe content of 12 samples of geophagic earth and 4 samples of pure clay minerals. Further, we assessed the impact of these samples on the bioavailability of Fe from an Fe-rich test meal (cooked white beans, WB). Fe concentrations were measured with inductively coupled plasma atomic emission spectroscopy. Fe bioavailability was determined using an in vitro digestion/Caco-2 cell model in which ferritin formation was used as an index of Fe bioavailability. Geophagic earth and clay mineral samples were evaluated with this model, both alone and in combination with WB (1:16 ratio, sample:WB). Median Fe concentration of the geophagic earth was 3485 (IQR 2462, 14571) μg/g and mean Fe concentration in the clay minerals was 2791 (± 1782) μg/g. All specimens had Fe concentrations significantly higher (p ≤ 0.005) than the Fe concentration of WB (77 μg/g). Ferritin formation (i.e. Fe uptake) in cells exposed to geophagic earths and clay minerals was significantly lower than in cells exposed to WB (p ≤ 0.05) and Fe uptake responses of 11 of the 16 samples were not significantly different from the blank, indicating no bioavailable Fe. When samples were combined with WB, 5 of 16 had mean ferritin levels that were significantly lower (p ≤ 0.05, one tail) than the WB alone, indicating that the samples inhibited Fe uptake from the WB. None of the ferritin responses of cells exposed to both WB and earth/clay were significantly higher than WB alone. Thus, although geophagic earths and mineral clays are high in total Fe, very little of this Fe is bioavailable. Further, some geophagic earth and clay mineral samples inhibit Fe absorption from foods. In vivo research is warranted to confirm these observations and to determine if geophagic earth samples can be a source of Fe and/or inhibit Fe absorption. PMID:23787405

  3. Borehole geophysical logs at Naval Weapons Industrial Reserve Plant, Dallas, Texas

    USGS Publications Warehouse

    Braun, Christopher L.; Anaya, Roberto; Kuniansky, Eve L.

    2000-01-01

    A shallow alluvial aquifer at the Naval Weapons Industrial Reserve Plant near Dallas, Texas, has been contaminated by organic solvents used in the fabrication and assembly of aircraft and aircraft parts. Natural gamma-ray and electromagnetic-induction borehole geophysical logs were obtained from 162 poly vinyl-chloride-cased wells at the plant and were integrated with existing lithologic data to improve site characterization of the subsurface alluvium. Software was developed for filtering and classifying the log data and for processing, analyzing, and creating graphical output of the digital data. The alluvium consists of mostly fine-grained low-permeability sediments; however for this study, the alluvium was classified into low, intermediate, and high clay-content sediments on the basis of the gamma-ray logs. The low clay-content sediments were interpreted as being relatively permeable, whereas the high clay-content sediments were interpreted as being relatively impermeable. Simple statistics were used to identify zones of potentially contaminated sediments on the basis of the gamma-ray log classifications and the electromagnetic-induction log conductivity data.

  4. Assessment of Filter Materials for Removal of Contaminants From Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2007-12-01

    Fertilizer nutrients and pesticides applied on farm fields, especially in the Midwest U.S., are commonly intercepted by buried agricultural drainage pipes and then discharged into local streams and lakes, oftentimes resulting in an adverse environmental impact on these surface water bodies. Low cost filter materials have the potential to remove nutrient and pesticide contaminants from agricultural drainage waters before these waters are released from the farm site. Batch tests were conducted to find filter materials potentially capable of removing nutrient (nitrate and phosphate) and pesticide (atrazine) contaminants from subsurface drainage waters. For each batch test, stock solution (40 g) and filter material (5 g) were combined in 50 mL Teflon centrifuge tubes and mixed with a rotator for 24 hours. The stock solution contained 50 mg/L nitrate-N, 0.25 mg/L phosphate-P, 0.4 mg/L atrazine, 570 mg/L calcium sulfate, and 140 mg/L potassium chloride. Calcium sulfate and potassium chloride were added so that the stock solution would contain anions and cations normally found in agricultural drainage waters. There were six replicate batch tests for each filter material. At the completion of each test, solution was removed from the centrifuge tube and analyzed for nitrate-N, phosphate-P, and atrazine. A total of 38 filter materials were tested, which were divided into five classes; high carbon content substances, high iron content substances, high aluminum content substances, surfactant modified clay/zeolite, and coal combustion products. Batch test results generally indicate, that with regard to the five classes of filter materials; high carbon content substances adsorbed atrazine very effectively; high iron content substances worked especially well removing almost all of the phosphate present; high aluminum content substances lowered phosphate levels; surfactant modified clay/zeolite substantially reduced both nitrate and atrazine; and coal combustion products significantly decreased phosphate amounts. For the 38 specific filter materials evaluated, based on a 60 percent contaminant reduction level, 12 materials removed nitrate, 26 materials removed phosphate, and 21 materials removed atrazine. Furthermore, 2 materials removed zero contaminants, 16 materials removed one contaminant, 17 materials removed two contaminants, and 3 of the materials removed all three contaminants. The most effective filter materials proved to be a steam activated carbon, a zero valent iron and sulfer modified iron mixture, and a surfactant modified clay. The findings of this study indicate that there are a variety of filter materials, either separately or in combination, which have the potential to treat agricultural drainage waters.

  5. Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces.

    PubMed

    Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2014-01-01

    Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon have gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150 μm compared to particles <150 μm. As particle size reduces below 150 μm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. soil organic matter pools and quality are sensitive to global climate change in tropical forests from India

    NASA Astrophysics Data System (ADS)

    Mani, Shanmugam; Merino, Agustín; García-Oliva, Felipe; Riotte, Jean; Sukumar, Raman

    2016-04-01

    Soil organic carbon (SOC) storage and quality are some of the most important factors determining ecological process in tropical forests, which are especially sensitive to global climate change (GCC). In India, the GCC scenarios expect increasing of drought period and wildfire, which may affect the SOC, and therefore the capacity of forest for C sequestration. The aim of the study was to evaluate the amount of soil C and its quality in the mineral soil across precipitation gradient with different factors (vegetation, pH, soil texture and bedrock composition) for generate SOC predictions under GCC. Six soil samples were collected (top 10 cm depth) from 19 1-ha permanent plots in the Mudumalai Wildlife Sanctuary of southern India, which are characterised by four types of forest vegetation (i.e. dry thorn, dry deciduous, moist deciduous and semi-evergreen forest) distributed along to rainfall gradient. The driest sites are dominated by sandy soils, while the soil clay proportion increased in the wet sites. Total organic C (Leco CN analyser), and the SOM quality was assessed by Differential Scanning Calorimetry (DSC) and Solid-state 13CCP-MAS NMR analyses. Soil organic C was positively correlated with precipitation (R2 = 0.502, p<0.01) and with soil clay content (R2 =0.15, p<0.05), and negatively with soil sand content (R2=0.308, p<0.001) and with pH (R2=0.529, p<0.01); while the C/N was only found positive correlation with clay (R2= 0.350, p<0.01). The driest sites (dry thorn forest) has the lowest proportion of thermal combustion of recalcitrant organic matter (Q2,375-475 °C) than the other sites (p<0.05) and this SOC fraction correlated positively with rainfall (R2=0.27, p=0.01). The Q2 model with best fit included rainfall, pH, sand, clay, C and C/N (R2=0.52, p=0.01). Principal component analysis explains 77% of total variance. The sites on the fist component are distributed along the rainfall gradient. These results suggest that the 50% of variance was explained by precipitation and therefore vegetation type. Consequently, the drier sites has a lower C pools with a higher proportion of labile SOC fraction. As a consequence, we expect if the rainfall decreased by GCC could increase SOC mineralization, and therefore reducing the capacity of C sequestration within soil profile.

  7. Investigating the Influence of Clay Mineralogy on Stream Bank Erodibility

    NASA Astrophysics Data System (ADS)

    Ambers, R. K.; Stine, M. B.

    2005-12-01

    Soil scientists concerned with erosion of agricultural fields and geotechnical engineers concerned with the mechanical behavior of soils under different conditions have both examined the role of clay mineralogy in controlling soil/sediment properties. Fluvial geomorphologists studying stream channel erosion and stability have focused more on the effects of particle-size distribution, vegetation and rooting. The clay mineralogy of bed and bank sediment has the potential to influence cohesiveness and erodibility, however. The goal of this study is to determine the influence of clay mineralogy on the erodibility of natural stream bank sediment, utilizing techniques drawn from pedology and soil mechanics. Bank samples were collected from eleven sites in small watersheds in central and western Virginia. To obtain sediment containing a range of different clay minerals, watersheds with different types of bedrock were chosen for sampling. Rock types included mafic to felsic metamorphic and igneous rocks, shale, sandstone, and limestone. Where stream bank materials were clearly stratified, different layers were sampled separately. X-ray diffraction of the clay-fraction of the sediment indicates the presence of kaolinite, illite, vermiculite, and mixed-layer clay minerals in various abundances in the different samples. Clay content is 9-46%, as determined by the hydrometer method, and textures range from silty clay and silt loam to clay loam and sandy loam. Organic mater contents range from 1-5% by the loss-on-ignition method. Bulk density of intact sediment samples averages 1.5 g/cc. Liquid limits range from 23-41 with one sample having a value of 65; plasticity indices range from 15-22. While these tests predict that the samples would show a range of mechanical behaviors, the channel morphology at the sampling sites was not strikingly different, all having steep cut banks eroded primarily by scour with no evidence of mass movement and most having a width/depth ratio around 4.5. The ASTM pinhole test for identifying dispersive clay soils is being adapted to measure erodibility of intact and remolded sediment samples in the laboratory to look for more subtle differences in behavior under erosive conditions. Factors such as the extent and method of sample compaction are being taken into account in order to standardize the method.

  8. Adsorption and Desorption of Cesium in Clay Minerals: Effects of Natural Organic Matter and pH

    NASA Astrophysics Data System (ADS)

    Yoon, Hongkyu; Ilgen, Anastasia; Mills, Melissa; Lee, Moo; Seol, Jeung Gun; Cho, Nam Chan; Kang, Hyungyu

    2017-04-01

    Cesium (Cs) released into the environment (e.g., Fukushima accident) poses significant environmental concerns and remediation challenges. A majority of Cs in the environment have remained within the surface soils due to the strong adsorption affinity of Cs towards clay minerals. Different clay minerals have different bonding sites, resulting in various adsorption mechanisms at nanometer scale. For example, the illite commonly has a basal spacing of 1.0 nm, but becomes wider to 1.4 nm once other cations exchange with K in the interlayer site. Cs adsorbs into these expanded wedged zone strongly, which can control its mobility in the environment. In addition, natural organic matter (NOM) in the surface soils can interact with clay minerals, which can modify the mechanisms of Cs adsorption on the clay minerals by blocking specific adsorption sites and/or providing Cs adsorption sites on NOM surface. In this work, three representative clay minerals (illite, vermiculite, montmorillonite) and humic acid (HA) are used to systematically investigate the adsorption and desorption behavior of Cs. We performed batch adsorption experiments over a range of Cs concentrations on three clay minerals with and without HA, followed by sequential desorption batch testing. We tested desorption efficiency as a function of initial adsorbed Cs concentration, HA content, sodium concentration, and pH. The sequential extraction results are compared to the structural changes in clay minerals, measured using extended X-ray absorption fine structure spectroscopy (EXAFS) and aberration-corrected (scanning) transmission electron microscopy (TEM) - energy dispersive X-ray spectroscopy (EDX). Hence, this work aims to identify the mechanisms of Cs fixation at the nanometer (or atomic-) scale as a function of the clay mineral properties (e.g. expandability, permanent surface charge) and varying organic matter content at different pH values and to enhance our atomic-scale mechanistic understanding of the clay mineral interactions with cesium in the presence of NOM. The expandability of clay minerals and effect of HA addition on Cs adsorption and desorption are highlighted to address the efficiency of Cs removal schemes from contaminated soils. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Impact of Rotylenchulus reniformis on Cotton Yield as Affected by Soil Texture and Irrigation

    PubMed Central

    Herring, Stephanie L.; Heitman, Joshua L.

    2010-01-01

    The effects of soil type, irrigation, and population density of Rotylenchulus reniformis on cotton were evaluated in a two-year microplot experiment. Six soil types, Fuquay sand, Norfolk sandy loam, Portsmouth loamy sand, Muck, Cecil sandy loam, and Cecil sandy clay, were arranged in randomized complete blocks with five replications. Each block had numerous plots previously inoculated with R. reniformis and two or more noninoculated microplots per soil type, one half of which were irrigated in each replicate for a total of 240 plots. Greatest cotton lint yields were achieved in the Muck, Norfolk sandy loam, and Portsmouth loamy sand soils. Cotton yield in the Portsmouth loamy sand did not differ from the Muck soil which averaged the greatest lint yield per plot of all soil types. Cotton yield was negatively related to R. reniformis PI (initial population density) in all soil types except for the Cecil sandy clay which had the highest clay content. Supplemental irrigation increased yields in the higher yielding Muck, Norfolk sandy loam, and Portsmouth loamy sand soils compared to the lower yielding Cecil sandy clay, Cecil sandy loam, and Fuquay sand soils. The Portsmouth sandy loam was among the highest yielding soils, and also supported the greatest R. reniformis population density. Cotton lint yield was affected more by R. reniformis Pi with irrigation in the Portsmouth loamy sand soil with a greater influence of Pi on lint yield in irrigated plots than other soils. A significant first degree PI × irrigation interaction for this soil type confirms this observation. PMID:22736865

  10. Impact of Rotylenchulus reniformis on Cotton Yield as Affected by Soil Texture and Irrigation.

    PubMed

    Herring, Stephanie L; Koenning, Stephen R; Heitman, Joshua L

    2010-12-01

    The effects of soil type, irrigation, and population density of Rotylenchulus reniformis on cotton were evaluated in a two-year microplot experiment. Six soil types, Fuquay sand, Norfolk sandy loam, Portsmouth loamy sand, Muck, Cecil sandy loam, and Cecil sandy clay, were arranged in randomized complete blocks with five replications. Each block had numerous plots previously inoculated with R. reniformis and two or more noninoculated microplots per soil type, one half of which were irrigated in each replicate for a total of 240 plots. Greatest cotton lint yields were achieved in the Muck, Norfolk sandy loam, and Portsmouth loamy sand soils. Cotton yield in the Portsmouth loamy sand did not differ from the Muck soil which averaged the greatest lint yield per plot of all soil types. Cotton yield was negatively related to R. reniformis PI (initial population density) in all soil types except for the Cecil sandy clay which had the highest clay content. Supplemental irrigation increased yields in the higher yielding Muck, Norfolk sandy loam, and Portsmouth loamy sand soils compared to the lower yielding Cecil sandy clay, Cecil sandy loam, and Fuquay sand soils. The Portsmouth sandy loam was among the highest yielding soils, and also supported the greatest R. reniformis population density. Cotton lint yield was affected more by R. reniformis Pi with irrigation in the Portsmouth loamy sand soil with a greater influence of Pi on lint yield in irrigated plots than other soils. A significant first degree PI × irrigation interaction for this soil type confirms this observation.

  11. Impact of monovalent cations on soil structure. Part II. Results of two Swiss soils

    NASA Astrophysics Data System (ADS)

    Farahani, Elham; Emami, Hojat; Keller, Thomas

    2018-01-01

    In this study, we investigated the impact of adding solutions with different potassium and sodium concentrations on dispersible clay, water retention characteristics, air permeability, and soil shrinkage behaviour using two agricultural soils from Switzerland with different clay content but similar organic carbon to clay ratio. Three different solutions (including only Na, only K, and the combination of both) were added to soil samples at three different cation ratio of soil structural stability levels, and the soil samples were incubated for one month. Our findings showed that the amount of readily dispersible clay increased with increasing Na concentrations and with increasing cation ratio of soil structural stability. The treatment with the maximum Na concentration resulted in the highest water retention and in the lowest shrinkage capacity. This was was associated with high amounts of readily dispersible clay. Air permeability generally increased during incubation due to moderate wetting and drying cycles, but the increase was negatively correlated with readily dispersible clay. Readily dispersible clay decreased with increasing K, while readily dispersible clay increased with increasing K in Iranian soil (Part I of our study). This can be attributed to the different clay mineralogy of the studied soils (muscovite in Part I and illite in Part II).

  12. Borehole petrophysical chemostratigraphy of Pennsylvanian black shales in the Kansas subsurface

    USGS Publications Warehouse

    Doveton, J.H.; Merriam, D.F.

    2004-01-01

    Pennsylvanian black shales in Kansas have been studied on outcrop for decades as the core unit of the classic Midcontinent cyclothem. These shales appear to be highstand condensed sections in the sequence stratigraphic paradigm. Nuclear log suites provide several petrophysical measurements of rock chemistry that are a useful data source for chemostratigraphic studies of Pennsylvanian black shales in the subsurface. Spectral gamma-ray logs partition natural radioactivity between contributions by U, Th, and K sources. Elevated U contents in black shales can be related to reducing depositional environments, whereas the K and Th contents are indicators of clay-mineral abundance and composition. The photoelectric factor log measurement is a direct function of aggregate atomic number and so is affected by clay-mineral volume, clay-mineral iron content, and other black shale compositional elements. Neutron porosity curves are primarily a response to hydrogen content. Although good quality logs are available for many black shales, borehole washout features invalidate readings from the nuclear contact devices, whereas black shales thinner than tool resolution will be averaged with adjacent beds. Statistical analysis of nuclear log data between black shales in successive cyclothems allows systematic patterns of their chemical and petrophysical properties to be discriminated in both space and time. ?? 2004 Elsevier B.V. All rights reserved.

  13. Timescales of carbon turnover in soils with mixed crystalline mineralogies

    NASA Astrophysics Data System (ADS)

    Khomo, Lesego; Trumbore, Susan; Bern, Carleton R.; Chadwick, Oliver A.

    2017-01-01

    Organic matter-mineral associations stabilize much of the carbon (C) stored globally in soils. Metastable short-range-order (SRO) minerals such as allophane and ferrihydrite provide one mechanism for long-term stabilization of organic matter in young soil. However, in soils with few SRO minerals and a predominance of crystalline aluminosilicate or Fe (and Al) oxyhydroxide, C turnover should be governed by chemisorption with those minerals. Here, we correlate mineral composition from soils containing small amounts of SRO minerals with mean turnover time (TT) of C estimated from radiocarbon (14C) in bulk soil, free light fraction and mineral-associated organic matter. We varied the mineral amount and composition by sampling ancient soils formed on different lithologies in arid to subhumid climates in Kruger National Park (KNP), South Africa. Mineral contents in bulk soils were assessed using chemical extractions to quantify Fe oxyhydroxides and SRO minerals. Because of our interest in the role of silicate clay mineralogy, particularly smectite (2 : 1) and kaolinite (1 : 1), we separately quantified the mineralogy of the clay-sized fraction using X-ray diffraction (XRD) and measured 14C on the same fraction. Density separation demonstrated that mineral associated C accounted for 40-70 % of bulk soil organic C in A and B1 horizons for granite, nephelinite and arid-zone gabbro soils, and > 80 % in other soils. Organic matter strongly associated with the isolated clay-sized fraction represented only 9-47 % of the bulk soil C. The mean TT of C strongly associated with the clay-sized fraction increased with the amount of smectite (2 : 1 clays); in samples with > 40 % smectite it averaged 1020 ± 460 years. The C not strongly associated with clay-sized minerals, including a combination of low-density C, the C associated with minerals of sizes between 2 µm and 2 cm (including Fe oxyhydroxides as coatings), and C removed from clay-sized material by 2 % hydrogen peroxide had TTs averaging 190 ± 190 years in surface horizons. Summed over the bulk soil profile, we found that smectite content correlated with the mean TT of bulk soil C across varied lithologies. The SRO mineral content in KNP soils was generally very low, except for the soils developed on gabbros under more humid climate that also had very high Fe and C contents with a surprisingly short, mean C TTs. In younger landscapes, SRO minerals are metastable and sequester C for long timescales. We hypothesize that in the KNP, SRO minerals represent a transient stage of mineral evolution and therefore lock up C for a shorter time. Overall, we found crystalline Fe-oxyhydroxides (determined as the difference between Fe in dithionate citrate and oxalate extractions) to be the strongest predictor for soil C content, while the mean TT of soil C was best predicted from the amount of smectite, which was also related to more easily measured bulk properties such as cation exchange capacity or pH. Combined with previous research on C turnover times in 2 : 1 vs. 1 : 1 clays, our results hold promise for predicting C inventory and persistence based on intrinsic timescales of specific carbon-mineral interactions.

  14. Woody plant roots fail to penetrate a clay-lined landfill: Managment implications

    NASA Astrophysics Data System (ADS)

    Robinson, George R.; Handel, Steven N.

    1995-01-01

    In many locations, regulatory agencies do not permit tree planting above landfills that are sealed with a capping clay, because roots might penetrate the clay barrier and expose landfill contents to leaching. We find, however, no empirical or theoretical basis for this restriction, and instead hypothesize that plant roots of any kind are incapable of penetrating the dense clays used to seal landfills. As a test, we excavated 30 trees and shrubs, of 12 species, growing over a clay-lined municipal sanitary landfill on Staten Island, New York. The landfill had been closed for seven years, and featured a very shallow (10 to 30-cm) soil layer over a 45-cm layer of compacted grey marl (Woodbury series) clay. The test plants had invaded naturally from nearby forests. All plants examined—including trees as tall as 6 m—had extremely shallow root plates, with deformed tap roots that grew entirely above and parallel to the clay layer. Only occasional stubby feeder roots were found in the top 1 cm of clay, and in clay cracks at depths to 6 cm, indicating that the primary impediment to root growth was physical, although both clay and the overlying soil were highly acidic. These results, if confirmed by experimental research should lead to increased options for the end use of many closed sanitary landfills.

  15. Soil properties affect the toxicities of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the enchytraeid worm Enchytraeus crypticus.

    PubMed

    Kuperman, Roman G; Checkai, Ronald T; Simini, Michael; Phillips, Carlton T; Kolakowski, Jan E; Lanno, Roman

    2013-11-01

    The authors investigated individual toxicities of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the potworm Enchytraeus crypticus using the enchytraeid reproduction test. Studies were designed to generate ecotoxicological benchmarks that can be used for developing ecological soil-screening levels for ecological risk assessments of contaminated soils and to identify and characterize the predominant soil physicochemical parameters that can affect the toxicities of TNT and RDX to E. crypticus. Soils, which had a wide range of physicochemical parameters, included Teller sandy loam, Sassafras sandy loam, Richfield clay loam, Kirkland clay loam, and Webster clay loam. Analyses of quantitative relationships between the toxicological benchmarks for TNT and soil property measurements identified soil organic matter content as the dominant property mitigating TNT toxicity for juvenile production by E. crypticus in freshly amended soil. Both the clay and organic matter contents of the soil modulated reproduction toxicity of TNT that was weathered and aged in soil for 3 mo. Toxicity of RDX for E. crypticus was greater in the coarse-textured sandy loam soils compared with the fine-textured clay loam soils. The present studies revealed alterations in toxicity to E. crypticus after weathering and aging TNT in soil, and these alterations were soil- and endpoint-specific. © 2013 SETAC.

  16. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks.

    PubMed

    Xiao, Zhao; Ling, Tung-Chai; Kou, Shi-Cong; Wang, Qingyuan; Poon, Chi-Sun

    2011-08-01

    Utilization of construction and demolition (C&D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However, the presence of large quantities of crushed clay brick in some the C&D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Effects of sedimentation on soil physical and chemical properties and vegetation characteristics in sand dunes at the Southern Dongting Lake region, China

    PubMed Central

    Pan, Ying; Zhang, Hao; Li, Xu; Xie, Yonghong

    2016-01-01

    Sedimentation is recognized as a major factor determining the ecosystem processes of lake beaches; however, the underlying mechanisms, especially in freshwater sand dunes, have been insufficiently studied. To this end, nine belt transects from nine freshwater sand dunes, classified into low (<23.7 m), medium (25.4–26.0 m), and high-elevation groups (>28.1 m) based on their elevations in 1972, were sampled to investigate differences in sedimentation rate and soil and vegetation characteristics in Southern Dongting Lake, China. Sedimentation rate, soil sand content, and soil pH increased, whereas soil clay, fine silt, moisture (MC), organic matter (OM), total N, and total K content, in addition to the growth and biodiversity of sand dune plants generally decreased with decreasing belt transect elevation. Regression analyses revealed that the negative effects of sedimentation on the ecosystem functions of sand dunes could be attributed to higher fine sand content in deposited sediments and stronger inhibition of plant growth. These results are consistent with previous studies performed in coastal sand dunes, which highlights the importance of sedimentation in determining ecological processes. PMID:27808154

  18. Effects of sedimentation on soil physical and chemical properties and vegetation characteristics in sand dunes at the Southern Dongting Lake region, China

    NASA Astrophysics Data System (ADS)

    Pan, Ying; Zhang, Hao; Li, Xu; Xie, Yonghong

    2016-11-01

    Sedimentation is recognized as a major factor determining the ecosystem processes of lake beaches; however, the underlying mechanisms, especially in freshwater sand dunes, have been insufficiently studied. To this end, nine belt transects from nine freshwater sand dunes, classified into low (<23.7 m), medium (25.4-26.0 m), and high-elevation groups (>28.1 m) based on their elevations in 1972, were sampled to investigate differences in sedimentation rate and soil and vegetation characteristics in Southern Dongting Lake, China. Sedimentation rate, soil sand content, and soil pH increased, whereas soil clay, fine silt, moisture (MC), organic matter (OM), total N, and total K content, in addition to the growth and biodiversity of sand dune plants generally decreased with decreasing belt transect elevation. Regression analyses revealed that the negative effects of sedimentation on the ecosystem functions of sand dunes could be attributed to higher fine sand content in deposited sediments and stronger inhibition of plant growth. These results are consistent with previous studies performed in coastal sand dunes, which highlights the importance of sedimentation in determining ecological processes.

  19. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments

    USGS Publications Warehouse

    Bergamaschi, B.A.; Tsamakis, E.; Keil, R.G.; Eglinton, T.I.; Montlucon, D.B.; Hedges, J.I.

    1997-01-01

    A C-rich sediment sample from the Peru Margin was sorted into nine hydrodynamically-determined grain size fractions to explore the effect of grain size distribution and sediment surface area on organic matter content and composition. The neutral monomeric carbohydrate composition, lignin oxidation product yields, total organic carbon, and total nitrogen contents were determined independently for each size fraction, in addition to sediment surface area and abundance of biogenic opal. The percent organic carbon and percent total nitrogen were strongly related to surface area in these sediments. In turn, the distribution of surface area closely followed mass distribution among the textural size classes, suggesting hydrodynamic controls on grain size also control organic carbon content. Nevertheless, organic compositional distinctions were observed between textural size classes. Total neutral carbohydrate yields in the Peru Margin sediments were found to closely parallel trends in total organic carbon, increasing in abundance among grain size fractions in proportion to sediment surface area. Coincident with the increases in absolute abundance, rhamnose and mannose increased as a fraction of the total carbohydrate yield in concert with surface area, indicating these monomers were preferentially represented in carbohydrates associated with surfaces. Lignin oxidation product yields varied with surface area when normalized to organic carbon, suggesting that the terrestrially-derived component may be diluted by sorption of marine derived material. Lignin-based parameters suggest a separate source for terrestrially derived material associated with sand-size material as opposed to that associated with silts and clays. Copyright ?? 1997 Elsevier Science Ltd.

  20. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments

    NASA Astrophysics Data System (ADS)

    Bergamaschi, Brian A.; Tsamakis, Elizabeth; Keil, Richard G.; Eglinton, Timothy I.; Montluçon, Daniel B.; Hedges, John I.

    1997-03-01

    A C-rich sediment sample from the Peru Margin was sorted into nine hydrodynamically-determined grain size fractions to explore the effect of grain size distribution and sediment surface area on organic matter content and composition. The neutral monomeric carbohydrate composition, lignin oxidation product yields, total organic carbon, and total nitrogen contents were determined independently for each size fraction, in addition to sediment surface area and abundance of biogenic opal. The percent organic carbon and percent total nitrogen were strongly related to surface area in these sediments. In turn, the distribution of surface area closely followed mass distribution among the textural size classes, suggesting hydrodynamic controls on grain size also control organic carbon content. Nevertheless, organic compositional distinctions were observed between textural size classes. Total neutral carbohydrate yields in the Peru Margin sediments were found to closely parallel trends in total organic carbon, increasing in abundance among grain size fractions in proportion to sediment surface area. Coincident with the increases in absolute abundance, rhamnose and mannose increased as a fraction of the total carbohydrate yield in concert with surface area, indicating these monomers were preferentially represented in carbohydrates associated with surfaces. Lignin oxidation product yields varied with surface area when normalized to organic carbon, suggesting that the terrestrially-derived component may be diluted by sorption of marine derived material. Lignin-based parameters suggest a separate source for terrestrially derived material associated with sand-size material as opposed to that associated with silts and clays.

  1. Highly Transparent and Self-Extinguishing Nanofibrillated Cellulose-Monolayer Clay Nanoplatelet Hybrid Films.

    PubMed

    Ming, Siyi; Chen, Gang; He, Jiahao; Kuang, Yudi; Liu, Yu; Tao, Ruiqiang; Ning, Honglong; Zhu, Penghui; Liu, Yingyao; Fang, Zhiqiang

    2017-08-29

    A viable solution toward "green" optoelectronics is rooted in our ability to fabricate optoelectronics on transparent nanofibrillated cellulose (NFC) film substrates. However, the flammability of transparent NFC film poses a severe fire hazard in optoelectronic devices. Despite many efforts toward enhancing the fire-retardant features of transparent NFC film, making NFC film fire-retardant while maintaining its high transparency (≥90%) remains an ambitious objective. Herein, we combine NFC with NFC-dispersed monolayer clay nanoplatelets as a fire retardant to prepare highly transparent NFC-monolayer clay nanoplatelet hybrid films with a superb self-extinguishing behavior. Homogeneous and stable monolayer clay nanoplatelet dispersion was initially obtained by using NFC as a green dispersing agent with the assistance of ultrasonication and then used to blend with NFC to prepare highly transparent and self-extinguishing hybrid films by a water evaporation-induced self-assembly process. As the content of monolayer clay nanoplatelets increased from 5 wt % to 50 wt %, the obtained hybrid films presented enhanced self-extinguishing behavior (limiting oxygen index sharply increased from 21% to 96.5%) while retaining a ∼90% transparency at 600 nm. More significantly, the underlying mechanisms for the high transparency and excellent self-extinguishing behavior of these hybrid films with a clay nanoplatelet content of over 30 wt % were unveiled by a series of characterizations such as SEM, XRD, TGA, and limiting oxygen index tester. This work offers an alternative environmentally friendly, self-extinguishing, and highly transparent substrate to next-generation optoelectronics, and is aimed at providing a viable solution to environmental concerns that are caused by ever-increasing electronic waste.

  2. Impact of clay minerals on sulfate-reducing activity in aquifers

    USGS Publications Warehouse

    Wong, D.; Suflita, J.M.; McKinley, J.P.; Krumholz, L.R.

    2004-01-01

    Previous studies have shown that sulfate-reduction activity occurs in a heterogeneous manner throughout the terrestrial subsurface. Low-activity regions are often observed in the presence of clay minerals. Here we report that clays inhibit sulfate reduction activity in sediments and in a pure culture of Desulfovibriovulgaris. Clay minerals including bentonite and kaolinite inhibited sulfate reduction by 70–90% in sediments. Intact clays and clay colloids or soluble components, capable of passing through a 0.2-µm filter, were also inhibitory to sulfate-reducing bacteria. Other adsorbent materials, including anion or cation exchangers and a zeolite, did not inhibit sulfate reduction in sediments, suggesting that the effect of clays was not due to their cation-exchange capacity. We observed a strong correlation between the Al2O3content of clays and their relative ability to inhibit sulfate reduction in sediments (r2 = 0.82). This suggested that inhibition might be a direct effect of Al3+ (aq) on the bacteria. We then tested pure aluminum oxide (Al2O3) and showed it to act in a similar manner to clay. As dissolved aluminum is known to be toxic to a variety of organisms at low concentrations, our results suggest that the effects of clay on sulfate-reducing bacteria may be directly due to aluminum. Thus, our experiments provide an explanation for the lack of sulfate-reduction activity in clay-rich regions and presents a mechanism for the effect.

  3. Mineralogy and geochemistry of the Lokoundje alluvial clays from the Kribi deposits, Cameroonian Atlantic coast: Implications for their origin and depositional environment

    NASA Astrophysics Data System (ADS)

    Ndjigui, Paul-Désiré; Onana, Vincent Laurent; Sababa, Elisé; Bayiga, Elie Constantin

    2018-07-01

    The Lokoundje alluvial clay deposits are located at the left floodplain of the Lokoundje River, towards the estuary in the Kribi region. The mineralogical and geochemical features of the Lokoundje River fine-grained sediments have been reported using XRD, XRF, ICP-MS, and IR instruments in order to understand their provenance and depositional history. The Lokoundje watershed covers a surface area of about 5381 km2. The basement of this watershed is made up of gneisses, amphibolites, migmatites, charnockites, and pyroxenites from the Nyong and Ntem units, in the NW border of the Congo craton. The alluvial materials are about 100 cm thick and cover a total area of 1.4 km2. They are mainly plastic clays with silty-clayey texture and four colors (yellow, red yellow, white, and light grey). The mineral assemblage is composed of kaolinite, quartz, illite, gibbsite, goethite, rutile, and interstratified illite-vermiculite. The infra-red data associated with those of XRD portray the disordering of kaolinite. These materials are mostly constituted by SiO2 (44.33-69.19 wt%, av. = 51.17 wt% with n = 18) and Al2O3 (20.69-30.26 wt%, av. = 26.07 wt%) with very low Fe2O3 contents (1-7.71 wt%, av. = 3.35 wt%). The SiO2/Al2O3 ratio range between 1.46 and 4.1 (av. = 2.06). The alkali contents (Na2O + K2O) are below 5 wt%. ICV, CIA, PIA, and SiO2/Al2O3 portray high degree of chemical weathering in the source area as well as the maturity of sediments. The trace element behavior is quite different probably due to the mixed source rocks; Ba, Sr, Zn have high contents while several elements such as Th and U show low contents. The REE contents are also variable; their concentrations vary between 92 and 1065 ppm (av. = 307 ppm). The mineral assemblage associated with the geochemical data reveal that REE are mainly housed in clay minerals. The behavior of REE is also marked by the abundance of LREE (LREE/HREE = 19.69-34.62). The REE chondrite-normalized spectra confirm the LREE-abundance and exhibit negative Eu anomalies. The PAAS-normalized patterns reveal slight positive Eu anomalies and negative Ce anomalies. The (La/Yb)N values (3.30-8.43, av. = 5.71) display low degree of REE-fractionation in the Lokoundje watershed. The morphological, mineralogical, and geochemical features reveal that the fine-grained sediments derive from the intense weathering of mixed source. The disordering of kaolinite confirms that sediments were sorted during a long transportation before their deposition under oxic conditions (U/Th < 1.25; V/Cr < 2) in the floodplains near the Atlantic coast.

  4. Manganese Deposits in the Artillery Mountains Region, Mohave County, Arizona

    USGS Publications Warehouse

    Lasky, S.G.; Webber, B.N.

    1944-01-01

    The manganese deposits of the Artillery Mountains region lie within an area of about 25 square miles between the Artillery and Rawhide Mountains, on the west side of the Bill Williams River in west-central Arizona. The richest croppings are on the northeast side of this area, among the foothills of the Artillery Mountains. They are 6 to 10 miles from Alamo. The nearest shipping points are Congress, about 50 miles to the east, and Aguila, about 50 miles to the southeast. The principal manganese deposits are part of a sequence of alluvial fan and playa material, probably of early Pliocene age, which were laid down in a fault basin. They are overlain by later Pliocene (?) basalt flows and sediments and by Quaternary basalt and alluvium. The Pliocene (?) rocks are folded into a shallow composite S1ncline ttat occupies the valley between the Artillery and Rawhide Mountains, and the folded rocks along either side of the valley, together with the overlying Quaternary basalt, are broken by faults that have produced a group of horsts, grabens, and step-fault blocks. The manganiferous beds, lie at two zones, 750 to 1,000 feet apart stratigraphically, each of which is locally as much as 300 to 400 feet thick. The main, or upper, zone contains three kinds of ore - sandstone ore, clay ore, and 'hard' ore. The sandstone and clay ores differ from the associated barren sandstone and clay, with which they are interlayered and into which they grade, primarily in containing a variable proportion of amorphous manganese oxides, besides iron oxides and clayey material such as are present in the barren beds. The 'hard' ore is sandstone that has been impregnated with opal and calcite and in which the original amorphous manganese oxides have been largely converted to psilomelane and manganite. The average manganese content of the sandstone and clay ores is between 3 and 4 percent and that of the 'hard' ore is between 6 and 7 percent. The ore contains an average of 3 percent of iron, 0.08 percent of phosphorus, 1.1 percent of barium, and minute quantities of copper, lead, and zinc. Although the manganese content of the sandstone and clay ore may change abruptly from bed to bed, the content within any individual bed changes gradually, and for any large volume of ore both the nanganese and iron content are remarkably uniform. Explorations to June 1941 consisted chiefly of 49 holes diamond-drilled in the upper zone on the Artillery Mountains side of the area. The district is estimated to contain an assured minimum of 200,000,000 tons of material having an average manganese content of 3 to 4 percent. About 20,000,000 tons of this total contains 5 percent or more of manganese, and 2,000,000 to 3,000,000 tons contains 10 percent or more. To what extent these deposits can be utilized is a metallurgical and economic problem. Although the clay and sandstone ores, as well as the 'hard' ore, are present in large tonnages, the 'hard' ore is the only kind that combines minable tonnage with promising grade. About 15,000,000 tons of 'hard' ore is present; about 500,000 tons of this contains 15 percent or more of manganese and averages 17 percent, and somewhat over 2,000,000 tons contains 10 percent or more and averages nearly 13 percent. Except for closer drilling to determine such things as the tonnage, grade, spacing, and form of the richer shoots with greater accuracy before beginning to mine them, further explorations are not recommended, for any new ore found is likely to be similar, both in grade and kind, to that already discovered.

  5. Spatial prediction of Soil Organic Carbon contents in croplands, grasslands and forests using environmental covariates and Generalized Additive Models (Southern Belgium)

    NASA Astrophysics Data System (ADS)

    Chartin, Caroline; Stevens, Antoine; van Wesemael, Bas

    2015-04-01

    Providing spatially continuous Soil Organic Carbon data (SOC) is needed to support decisions regarding soil management, and inform the political debate with quantified estimates of the status and change of the soil resource. Digital Soil Mapping techniques are based on relations existing between a soil parameter (measured at different locations in space at a defined period) and relevant covariates (spatially continuous data) that are factors controlling soil formation and explaining the spatial variability of the target variable. This study aimed at apply DSM techniques to recent SOC content measurements (2005-2013) in three different landuses, i.e. cropland, grassland, and forest, in the Walloon region (Southern Belgium). For this purpose, SOC databases of two regional Soil Monitoring Networks (CARBOSOL for croplands and grasslands, and IPRFW for forests) were first harmonized, totalising about 1,220 observations. Median values of SOC content for croplands, grasslands, and forests, are respectively of 12.8, 29.0, and 43.1 g C kg-1. Then, a set of spatial layers were prepared with a resolution of 40 meters and with the same grid topology, containing environmental covariates such as, landuses, Digital Elevation Model and its derivatives, soil texture, C factor, carbon inputs by manure, and climate. Here, in addition to the three classical texture classes (clays, silt, and sand), we tested the use of clays + fine silt content (particles < 20 µm and related to stable carbon fraction) as soil covariate explaining SOC variations. For each of the three land uses (cropland, grassland and forest), a Generalized Additive Model (GAM) was calibrated on two thirds of respective dataset. The remaining samples were assigned to a test set to assess model performance. A backward stepwise procedure was followed to select the relevant environmental covariates using their approximate p-values (the level of significance was set at p < 0.05). Standard errors were estimated for each of the three models. The backward stepwise procedure selected coordinates, elevation and clays + fine silt content as environment covariates to model SOC variation in cropland soils; latitude, precipitation, and clays + fine silt content (< 20 µm) for grassland soils; and latitude, elevation, topographic position index and clays + fine silt content (< 20 µm) for forest soils. The validation of the models gave a R² of 0.62 for croplands, 0.38 for grasslands, and 0.35 for forests. These results will be developed and discussed based on implications of natural against anthropogenic drivers on SOC distribution for these three landuses. To finish, a map combining detailed information of SOC content for agricultural soils and forests was for the first time computed for the Walloon region.

  6. Effects of land use, climate, topography and soil properties on regional soil organic carbon and total nitrogen in the upstream watershed of Miyun Reservoir, North China.

    PubMed

    Wang, Shufang; Wang, Xiaoke; Ouyang, Zhiyun

    2012-01-01

    Soil organic carbon (SOC) and total nitrogen (TN) contents as well as their relationships with site characteristics are of profound importance in assessing current regional, continental and global soil C and N stocks and potentials for C sequestration and N conservation to offset anthropogenic emissions of greenhouse gases. This study investigated contents and distribution of SOC and TN under different land uses, and the quantitative relationships between SOC or TN and site characteristics in the Upstream Watershed of Miyun Reservoir, North China. Overall, both SOC and TN contents in natural secondary forests and grasslands were much higher than in plantations and croplands. Land use alone explained 37.2% and 38.4% of variations in SOC and TN contents, respectively. The optimal models for SOC and TN, achieved by multiple regression analysis combined with principal component analysis (PCA) to remove the multicollinearity among site variables, showed that elevation, slope, soil clay and water contents were the most significant factors controlling SOC and TN contents, jointly explaining 70.3% of SOC and 67.1% of TN contents variability. Only does additional 1.9% and 3% increase in the interpretations of SOC and TN contents variability respectively when land use was added to regressions, probably due to environment factors determine land use. Therefore, environmental variables were more important for SOC and TN variability than land use in the study area, and should be taken into consideration in properly evaluating effects of future land use changes on SOC and TN on a regional scale.

  7. Ultra-thin clay layers facilitate seismic slip in carbonate faults.

    PubMed

    Smeraglia, Luca; Billi, Andrea; Carminati, Eugenio; Cavallo, Andrea; Di Toro, Giulio; Spagnuolo, Elena; Zorzi, Federico

    2017-04-06

    Many earthquakes propagate up to the Earth's surface producing surface ruptures. Seismic slip propagation is facilitated by along-fault low dynamic frictional resistance, which is controlled by a number of physico-chemical lubrication mechanisms. In particular, rotary shear experiments conducted at seismic slip rates (1 ms -1 ) show that phyllosilicates can facilitate co-seismic slip along faults during earthquakes. This evidence is crucial for hazard assessment along oceanic subduction zones, where pelagic clays participate in seismic slip propagation. Conversely, the reason why, in continental domains, co-seismic slip along faults can propagate up to the Earth's surface is still poorly understood. We document the occurrence of micrometer-thick phyllosilicate-bearing layers along a carbonate-hosted seismogenic extensional fault in the central Apennines, Italy. Using friction experiments, we demonstrate that, at seismic slip rates (1 ms -1 ), similar calcite gouges with pre-existing phyllosilicate-bearing (clay content ≤3 wt.%) micro-layers weaken faster than calcite gouges or mixed calcite-phyllosilicate gouges. We thus propose that, within calcite gouge, ultra-low clay content (≤3 wt.%) localized along micrometer-thick layers can facilitate seismic slip propagation during earthquakes in continental domains, possibly enhancing surface displacement.

  8. Behavior of nonplastic silty soils under cyclic loading.

    PubMed

    Ural, Nazile; Gunduz, Zeki

    2014-01-01

    The engineering behavior of nonplastic silts is more difficult to characterize than is the behavior of clay or sand. Especially, behavior of silty soils is important in view of the seismicity of several regions of alluvial deposits in the world, such as the United States, China, and Turkey. In several hazards substantial ground deformation, reduced bearing capacity, and liquefaction of silty soils have been attributed to excess pore pressure generation during dynamic loading. In this paper, an experimental study of the pore water pressure generation of silty soils was conducted by cyclic triaxial tests on samples of reconstituted soils by the slurry deposition method. In all tests silty samples which have different clay percentages were studied under different cyclic stress ratios. The results have showed that in soils having clay content equal to and less than 10%, the excess pore pressure ratio buildup was quicker with an increase in different cyclic stress ratios. When fine and clay content increases, excess pore water pressure decreases constant cyclic stress ratio in nonplastic silty soils. In addition, the applicability of the used criteria for the assessment of liquefaction susceptibility of fine grained soils is examined using laboratory test results.

  9. Behavior of Nonplastic Silty Soils under Cyclic Loading

    PubMed Central

    Ural, Nazile; Gunduz, Zeki

    2014-01-01

    The engineering behavior of nonplastic silts is more difficult to characterize than is the behavior of clay or sand. Especially, behavior of silty soils is important in view of the seismicity of several regions of alluvial deposits in the world, such as the United States, China, and Turkey. In several hazards substantial ground deformation, reduced bearing capacity, and liquefaction of silty soils have been attributed to excess pore pressure generation during dynamic loading. In this paper, an experimental study of the pore water pressure generation of silty soils was conducted by cyclic triaxial tests on samples of reconstituted soils by the slurry deposition method. In all tests silty samples which have different clay percentages were studied under different cyclic stress ratios. The results have showed that in soils having clay content equal to and less than 10%, the excess pore pressure ratio buildup was quicker with an increase in different cyclic stress ratios. When fine and clay content increases, excess pore water pressure decreases constant cyclic stress ratio in nonplastic silty soils. In addition, the applicability of the used criteria for the assessment of liquefaction susceptibility of fine grained soils is examined using laboratory test results. PMID:24672343

  10. Inversion of soil electrical conductivity data to estimate layered soil properties

    USDA-ARS?s Scientific Manuscript database

    CBulk apparent soil electrical conductivity (ECa) sensors respond to multiple soil properties, including clay content, water content, and salt content (i.e., salinity). They provide a single sensor value for an entire soil profile down to a sensor-dependent measurement depth, weighted by a nonlinear...

  11. Use of vertical temperature gradients for prediction of tidal flat sediment characteristics

    USGS Publications Warehouse

    Miselis, Jennifer L.; Holland, K. Todd; Reed, Allen H.; Abelev, Andrei

    2012-01-01

    Sediment characteristics largely govern tidal flat morphologic evolution; however, conventional methods of investigating spatial variability in lithology on tidal flats are difficult to employ in these highly dynamic regions. In response, a series of laboratory experiments was designed to investigate the use of temperature diffusion toward sediment characterization. A vertical thermistor array was used to quantify temperature gradients in simulated tidal flat sediments of varying compositions. Thermal conductivity estimates derived from these arrays were similar to measurements from a standard heated needle probe, which substantiates the thermistor methodology. While the thermal diffusivities of dry homogeneous sediments were similar, diffusivities for saturated homogeneous sediments ranged approximately one order of magnitude. The thermal diffusivity of saturated sand was five times the thermal diffusivity of saturated kaolin and more than eight times the thermal diffusivity of saturated bentonite. This suggests that vertical temperature gradients can be used for distinguishing homogeneous saturated sands from homogeneous saturated clays and perhaps even between homogeneous saturated clay types. However, experiments with more realistic tidal flat mixtures were less discriminating. Relationships between thermal diffusivity and percent fines for saturated mixtures varied depending upon clay composition, indicating that clay hydration and/or water content controls thermal gradients. Furthermore, existing models for the bulk conductivity of sediment mixtures were improved only through the use of calibrated estimates of homogeneous end-member conductivity and water content values. Our findings suggest that remotely sensed observations of water content and thermal diffusivity could only be used to qualitatively estimate tidal flat sediment characteristics.

  12. Extractable Al and Si compounds in pale-podzolic soils of the Central Forest Reserve: Contents and distribution along the profile and by size fractions

    NASA Astrophysics Data System (ADS)

    Sokolova, T. A.; Tolpeshta, I. I.; Izosimova, Yu. G.

    2017-06-01

    The profile distributions of oxalate- and pyrophosphate-soluble Al compounds and oxalate-soluble Si compounds in the main horizons of pale-podzolic soils of the Central Forest Reserve and the fractions <1. 1-5, and >5 μm have been considered. In the clay-eluvial part of soil profile, the content of these compounds is differentiated by the eluvial-illuvial type with a clear accumulation in the EL horizon compared to the AEL horizon. This distribution is largely ensured by their differentiation in the clay and fine silt fractions, while an accumulative distribution of mobile Al compounds is observed in fractions >5 μm. The high correlation between the Al and Si contents in the Tamm extracts from the clay and fine silt fractions with the (Alox-Alpy)/Siox molar ratios, which are in the range of 1-3 in the EL horizon, confirms that mobile compounds are accumulated in these fractions in the form of amorphous aluminosilicates. In the AEL and EL horizons, an additional amount of Al can pass into the oxalate solution from the fine fractions due to the dissolution of Al hydroxide interlayers of soil chlorites. The eluvial-illuvial distribution of mobile Al and Si compounds typical for Al-Fe-humus podzols within the clay-illuvial part of profiles of the soils under study can be considered as an example of superimposed evolution.

  13. Evaluation of clay content in soils for pavement engineering applications using GPR

    NASA Astrophysics Data System (ADS)

    Tosti, Fabio; Patriarca, Claudio; Benedetto, Andrea; Slob, Evert C.; Lambot, Sébastien

    2013-04-01

    Clay content significantly influences the mechanical behavior of soils, thereby playing an important role in many fields of applications such as civil engineering, geology and agriculture. In the area of pavement engineering, clay content in structural bearing courses of pavement frequently causes damages and defects, such as transversal and longitudinal cracks, or other faults. The main consequence is a lowering of both the road safety and operability, with the number of expected accidents increasing. In this study, ground-penetrating radar (GPR) laboratory tests were carried out to predict the clay amount in pavement structural layers under different clay and moisture conditions. GPR data processing is performed using two different methods. The first method is based on the Fresnel theory and focuses on the Rayleigh scattering of the radar waves. The approach is based on a different scattering of the various components of the frequency spectrum, mostly depending on both the soil texture and variation in soil moisture content. For the application of this method, we used a pulse radar with ground-coupled, 500 MHz centre-frequency antennas in a common offset, bistatic configuration. The transmitter and receiver were linked by optic fiber electronic modules. The second method is based on full-waveform inversion of the ultra wideband radar data. In particular, a specific radar-antenna electromagnetic model is used to filter out antenna effects and antenna-medium interactions from the raw radar data and retrieve the response of the soil only, expressed in terms of a layered medium Green's function. To estimate the medium geometrical and electrical values, an optimization inverse problem is formulated. For the application of that second method, we used a vector network analyzer (VNA) as continuous-wave stepped-frequency radar system to acquire data in the 500-3000 MHz frequency range. A doubled-ridged broadband horn antenna operating in far-field conditions was used as transmitter and receiver, and was connected to the radar using a high-quality coaxial cable. Typical road materials for subgrade and sub-base courses were used. In particular, three types of soils classified, respectively, as A1,A2,A3 by AASHTO were used and adequately compacted in electrically and hydraulically isolated boxes. A copper sheet was laid at the bottom of the experimental boxes to control the bottom boundary conditions in the electromagnetic model. Basically, two significant cases were considered for each soil type, taking into account the 0% and the 25% by weight of bentonite clay, respectively. Water was gradually added and GPR measurements were carried out for all moisture steps until the maximum saturation level was reached. Concerning the Rayleigh scattering method, analyses show a high consistency of the results with respect to our expectations. A negative correlation between the shift of the frequency spectrum peaks and the clay amount was demonstrated, by virtue of its strong hygroscopic properties. Similarly, the full-waveform inversion technique allowed to measure reliable electric parameters. Generally, different responses (e.g. electric conductivity and permittivity) of the 0% clay-member cases compared to those of the analogous clayey soil samples highlight the large potentiality of both methods for the detection of clay.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haydary, J., E-mail: juma.haydary@stuba.sk; Susa, D.; Dudáš, J.

    Highlights: ► Pyrolysis of aseptic packages was carried out in a laboratory flow reactor. ► Distribution of tetrapak into the product yields was obtained. ► Composition of the pyrolysis products was estimated. ► Secondary thermal and catalytic decomposition of tars was studied. ► Two types of catalysts (dolomite and red clay marked AFRC) were used. - Abstract: Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizingmore » of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H{sub 2}, CO, CH{sub 4}, CO{sub 2} and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work.« less

  15. Reconstruction of a digital core containing clay minerals based on a clustering algorithm.

    PubMed

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  16. Clays causing adhesion with tool surfaces during mechanical tunnel driving

    NASA Astrophysics Data System (ADS)

    Spagnoli, G.; Fernández-Steeger, T.; Stanjek, H.; Feinendegen, M.; Post, C.; Azzam, R.

    2009-04-01

    During mechanical excavation with a tunnel boring machine (TBM) it is possible that clays stick to the cutting wheel and to other metal parts. The resulting delays in the progress of construction work, cause great economic damage and often disputes between the public awarding authorities and executing companies. One of the most important factors to reduce successfully the clay adhesion is the use of special polymers and foams. But why does the clay stick to the metal parts? A first step is to recognize which kind of clay mineralogy shows serious adhesion problems. The mechanical properties of clay and clay suspensions are primarily determined by surface chemistry and charge distribution at the interfaces, which in turn affect the arrangement of the clay structure. As we know, clay is a multi-phase material and its behaviour depends on numerous parameters such as: clay mineralogy, clay fraction, silt fraction, sand fraction, water content, water saturation, Atterberg limits, sticky limit, activity, cation exchange capacity, degree of consolidation and stress state. It is therefore likely that adhesion of clay on steel is also affected by these clay parameters. Samples of clay formations, which caused problems during tunnel driving, will be analyzed in laboratory. Mineralogical analyses (diffractometry, etc.) will be carried out to observe which minerals are responsible for adherence problems. To manipulate the physical properties, batch tests will be carried out in order to eliminate or reduce the adhesion on tool surfaces through variation of the zeta potential. Second step is the performance of vane shear tests on clay samples. Different pore fluid (distilled water, pure NaCl solution, ethanol and methanol) will be used to study the variation of the mechanical behaviour of clay depending on the dielectric constant of the fluids. This project is funded by the German Federal Ministry of Education and Research (BMBF) and the DFG (German Research Foundation) in the frame of the programme GEOTECHNOLOGIEN.

  17. Petrophysical analysis of geophysical logs of the National Drilling Company-U.S. Geological Survey ground-water research project for Abu Dhabi Emirate, United Arab Emirates

    USGS Publications Warehouse

    Jorgensen, Donald G.; Petricola, Mario

    1994-01-01

    A program of borehole-geophysical logging was implemented to supply geologic and geohydrologic information for a regional ground-water investigation of Abu Dhabi Emirate. Analysis of geophysical logs was essential to provide information on geohydrologic properties because drill cuttings were not always adequate to define lithologic boundaries. The standard suite of logs obtained at most project test holes consisted of caliper, spontaneous potential, gamma ray, dual induction, microresistivity, compensated neutron, compensated density, and compensated sonic. Ophiolitic detritus from the nearby Oman Mountains has unusual petrophysical properties that complicated the interpretation of geophysical logs. The density of coarse ophiolitic detritus is typically greater than 3.0 grams per cubic centimeter, porosity values are large, often exceeding 45 percent, and the clay fraction included unusual clays, such as lizardite. Neither the spontaneous-potential log nor the natural gamma-ray log were useable clay indicators. Because intrinsic permeability is a function of clay content, additional research in determining clay content was critical. A research program of geophysical logging was conducted to determine the petrophysical properties of the shallow subsurface formations. The logging included spectral-gamma and thermal-decay-time logs. These logs, along with the standard geophysical logs, were correlated to mineralogy and whole-rock chemistry as determined from sidewall cores. Thus, interpretation of lithology and fluids was accomplished. Permeability and specific yield were calculated from geophysical-log data and correlated to results from an aquifer test. On the basis of results from the research logging, a method of lithologic and water-resistivity interpretation was developed for the test holes at which the standard suite of logs were obtained. In addition, a computer program was developed to assist in the analysis of log data. Geohydrologic properties were estimated, including volume of clay matrix, volume of matrix other than clay, density of matrix other than clay, density of matrix, intrinsic permeability, specific yield, and specific storage. Geophysical logs were used to (1) determine lithology, (2) correlate lithologic and permeable zones, (3) calibrate seismic reprocessing, (4) calibrate transient-electromagnetic surveys, and (5) calibrate uphole-survey interpretations. Logs were used at the drill site to (1) determine permeability zones, (2) determine dissolved-solids content, which is a function of water resistivity, and (3) design wells accordingly. Data and properties derived from logs were used to determine transmissivity and specific yield of aquifer materials.

  18. Evaluation of Resuspension from Propeller Wash in DoD Harbors

    DTIC Science & Technology

    2016-09-01

    contaminants) concentrations in the total, sand , silt, clay, and dissolved fractions. Information in the middle represents the filtration sequence...April 2012 in San Diego Bay. Each metal is provided as the percentage fraction for clay (grey), silt (green), sand (red) and total (blue), the same...middle), and sand (bottom) concentrations for the three locations (see Figure 6-33

  19. Effects of ghost shrimp on zinc and cadmium in sediments from Tampa Bay, FL

    USGS Publications Warehouse

    Klerks, P.L.; Felder, D.L.; Strasser, K.; Swarzenski, P.W.

    2007-01-01

    This study investigated the effects that ghost shrimp have on the distribution of metals in sediment. We measured levels of HNO3-extractable zinc and cadmium in surface sediment, in ghost shrimp burrow walls and in sediment ejected by the ghost shrimp from their burrows, at five sandy intertidal sites in Tampa Bay. Ghost shrimp densities and their rate of sediment ejection were also quantified, as were sediment organic content and silt + clay content. Densities of ghost shrimp (Sergio trilobata and Lepidophthalmus louisianensis) averaged 33/m2 at our sites, and they ejected sediment at an average rate of 28 g/burrow/day. Levels of both Zn and Cd were significantly higher in burrow walls than in surface sediments. Sediment ejected by the shrimp from their burrows had elevated levels of Zn (relative to surface sediments) at one of the sites. Sediment organic content and silt + clay content were higher in burrow-wall sediments than in ejected sediment, which in turn tended to have values above those of surface sediments. Differences in levels of HNO3-extractable Zn and Cd among sediment types may be a consequence of these sediments differing in other physiochemical characteristics, though the differences in metal levels remained statistically significant for some sites after correcting for differences in organic content and silt + clay content. We conclude that the presence of ghost shrimp burrows contributes to spatial heterogeneity of sedimentary metal levels, while the ghost shrimp bioturbation results in a significant flux of metals to the sediment surface and is expected to decrease heterogeneity of metal levels in sedimentary depth profiles.

  20. Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.

    Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ 13C org~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significantmore » neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological ( in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.« less

  1. Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone

    DOE PAGES

    Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.; ...

    2015-10-07

    Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ 13C org~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significantmore » neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological ( in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.« less

  2. Bromine accumulation in acidic black colluvial soils

    NASA Astrophysics Data System (ADS)

    Martínez Cortizas, Antonio; Ferro Vázquez, Cruz; Kaal, Joeri; Biester, Harald; Costa Casais, Manuela; Taboada Rodríguez, Teresa; Rodríguez Lado, Luis

    2016-02-01

    Recent investigations showed that bromine is incorporated to soil organic matter (SOM), its content increasing with humification. But few research was done on its long-term accumulation and the role played by pedogenetic processes, as those involved in organic matter stabilization. We investigated bromine content and distribution in four deep, acidic, organic-rich, Holocene soils from an oceanic area of Western Europe. Bromine concentrations (93-778 μg g-1) in the silt + clay (<50 μm) fraction were on average 3-times higher than those (17-250 μg g-1) in the fine earth (<2 mm), the former containing almost all bromine (90 ± 5%). Inventories were between 148 and 314 g m-2, indicating a rather large variability in a small area, and total estimated retention was low (6-16%). The degree of SOM bromination, expressed as the Br/C molar ratio, varied between 0.03 and 1.20 mmol Br/mol C. The ratio was highly correlated (n = 23, r2 0.88, p < 0.01) with the age of the SOM for the last ∼12 ka. Partial least squares modeling indicates that bromine concentration depends on the amount of organic matter stabilized as aluminium-OM associations, and to a lesser extent on soil acidity (pH) and iron-OM associations. Thus, at scales of thousands of years, bromine accumulation in acidic soils is linked to the pool of metal-clay-stabilized organic matter.

  3. Prediction of gas production using well logs, Cretaceous of north-central Montana

    USGS Publications Warehouse

    Hester, T.C.

    1999-01-01

    Cretaceous gas sands underlie much of east-central Alberta and southern Saskatchewan, eastern Montana, western North Dakota, and parts of South Dakota and Wyoming. Estimates of recoverable biogenic methane from these rocks in the United States are as high as 91 TCF. In northern Montana, current production is localized around a few major structural features, while vast areas in between these structures are not being exploited. Although the potential for production exists, the lack of commercial development is due to three major factors: 1) the lack of pipeline infrastructure; 2) the lack of predictable and reliable rates of production; and 3) the difficulty in recognizing and selecting potentially productive gas-charged intervals. Unconventional (tight), continuous-type reservoirs, such as those in the Cretaceous of the northern Great Plains, are not well suited for conventional methods of formation evaluation. Pay zones frequently consist only of thinly laminated intervals of sandstone, silt, shale stringers, and disseminated clay. Potential producing intervals are commonly unrecognizable on well logs, and thus are overlooked. To aid in the identification and selection of potential producing intervals, a calibration system is developed here that empirically links the 'gas effect' to gas production. The calibration system combines the effects of porosity, water saturation, and clay content into a single 'gas-production index' (GPI) that relates the in-situ rock with production potential. The fundamental method for isolating the gas effect for calibration is a crossplot of neutron porosity minus density porosity vs gamma-ray intensity. Well-log and gas-production data used for this study consist of 242 perforated intervals from 53 gas-producing wells. Interval depths range from about 250 to 2400 ft. Gas volumes in the peak calendar year of production range from about 4 to 136 MMCF. Nine producing formations are represented. Producing-interval data show that porosity and gas production are closely linked to clay volume. Highest porosities and maximum gas production occur together at an intermediate clay content of about 12% (60 API). As clay volume exceeds 35% (130 API), minimum porosity required for production increases rapidly, and the number of potential producing intervals declines. Gas production from intervals where clay volume exceeds 50% is rare. Effective porosities of less than about 8% are probably inadequate for commercial gas production in these rocks regardless of clay content.

  4. Mineralogy of selected sedimentary interbeds at or near the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Reed, Michael F.; Bartholomay, Roy C.

    1994-01-01

    The U.S. Geological Survey (USGS) Project Office at the Idaho National Engineering Laboratory (INEL), in cooperation with the U.S. Department of Energy and Idaho State University, analyzed 66 samples from sedimentary interbed cores during a 38-month period beginning in October 1990 to determine bulk and clay mineralogy. These cores had been collected from 19 sites in the Big Lost River Basin, 2 sites in the Birch Creek Basin, and 1 site in the Mud Lake Basin, and were archived at the USGS lithologic core library at the INEL. Mineralogy data indicate that the core samples from the Big Lost River Basin have larger mean and median percentages of quartz, total feldspar, and total clay minerals, but smaller mean and median percentages of calcite than the core samples from the Birch Creek Basin. Core samples from the Mud Lake Basin have abundant quartz, total feldspar, calcite, and total clay minerals.

  5. Dust deposits on Mars: The 'parna' analog

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Williams, Steven H.

    1994-01-01

    Parna is an Autralian aboriginal word meaning 'sandy dust'. It has been applied to deposits of clay, silt, and sand which were initially transported by the wind as aggregates, or pellets, of sand size. Parna is distinguished by its silt and clay content, which in some cases exceeds 85% of the total volume of the deposit. Much of the fine-grained playa silt and clay is incorporated into the parna as sand-sized aggregates, which greatly facilitate their transportation and reworking by the wind. Rain following aggregate emplacement can cause their disintegration, rendering the parna immobile by the wind, yet some pellets can survive several wetting/drying episodes. Parna deposits on Earth occur both as dune forms and as sheet deposits which mantle older terrains. In both cases the deposits are typically derived from lacustrine (lake) beds, such as playas. There is substantial evidence to suggest that bodies of water existed on Mars in the past. Thus, the potential is high for lacustrine deposits and the formation of parna on Mars. Although no parna dunes have been identified, it is suggested that the deposits derived from White Rock (-8 deg, 335 deg W), near Mamers Valles (34 deg, 343 deg W), and elsewhere on Mars may represent sheet parna. Data obtained from Mars-94/96 missions and potential landed spacecraft may provide additional evidence for the existence of parna on Mars.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    D`Agostino, A.E.; Jordan, D.W.; Jordan, D.W.

    Shanmugam and Moiola (1995) put forth a new interpretation of sandstone depositional processes in the Jackfork Group exposed in the spillway at DeGray Lake, near Arkadelphia, Arkansas. Their novel interpretation of deposition dominated by sandy, matrix-supported debris flows is at odds with nearly every other investigation of the Jackfork to date. One key to their interpretation is their contention that the Jackfork sandstones have a high matrix content (as high as 25%). The high matrix content is critical to their arguments about the textural characteristics and flow properties of debris flows vs. turbidites. In our guidebook, we presented a largemore » volume of petrographic data collected from samples taken from the Jackfork exposed on the east and west sides of the Spillway at DeGray Lake (and other locations as well). D`Agostino performed nearly al of the petrographic analyses presented in that guidebook. We disagree strongly with the reinterpretations of Shanmugam and Moiola and believe we can confidently address issues of petrography and matrix content. Specifically, we wish to address four points: (1) the amount of petrographic sampling done by Shanmugam and Moiola (1995); i.e., sampling density in a 327-m- (1072-ft) thick section, (2) overall matrix content of Jackfork sandstones, and Shanmugam and Moiola`s misrepresentation of our data, plus their apparent unfamiliarity with pertinent published data on the petrography of the Jackfork, (3) the distinction among authigenic clay, density in a 327-m- (1072-ft-) thick section, (2) overall matrix content of Jackfork sandstones, and Shanmugam and Moiola`s misrepresentation of our data, plus their apparent unfamiliarity with pertinent published data on the petrography of the Jackfork, (3) the distinction among authigenic clay, detrital clay, and other matrix materials, which Shanmugam and Moiola do not adequately discuss, and (4) the relationship of matrix content to their own facies classification scheme.« less

  7. [Spatial characteristics of grain size of surface sediments in mangrove wetlands in Gaoqiao of Zhanjiang, Guangdong province of South China].

    PubMed

    Zhu, Yao-Jun; Bourgeois, C; Lin, Guang-Xuan; Wu, Xiao-Dong; Guo, Ju-Lan; Guo, Zhi-Hua

    2012-08-01

    Mangrove wetland is an important type of coastal wetlands, and also, an important sediment trap. Sediment is an essential medium for mangrove recruitment and development, which records the environmental history of mangrove wetlands and can be used for the analysis of material sources and the inference of the materials depositing process, being essential to the ecological restoration and conservation of mangrove. In this paper, surface sediment samples were collected along a hydrodynamic gradient in Gaoqiao, Zhanjiang Mangrove National Nature Reserve in 2011. The characteristics of the surface sediments were analyzed based on grain size analysis, and the prediction surfaces were generated by the geo-statistical methods with ArcGIS 9.2 software. A correlation analysis was also conducted on the sediment organic matter content and the mangrove community structure. In the study area, clay and silt dominated the sediment texture, and the mean content of sand, silt, and clay was (27.8 +/- 15.4)%, (40.3 +/- 15.4)%, and (32.1 +/- 11.4)%, respectively. The spatial gradient of the sediment characteristics was expressed in apparent interpolation raster. With increasing distance from the seawall, the sediment sand content increased, clay content decreased, and silt content was relatively stable at a certain level. There was a positive correlation between the contents of sediment organic matter and silt, and a negative correlation between the contents of sediment organic matter and sand. Much more sediment organic matter was located at the high tide area with weak tide energy. There existed apparent discrepancies in the characteristics of the surface sediments in different biotopes. The sediment characteristics had definite correlations with the community structure of mangroves, reflecting the complicated correlations between the hydrodynamic conditions and the mangroves.

  8. Using Remote Sensing Data to Evaluate Surface Soil Properties in Alabama Ultisols

    NASA Technical Reports Server (NTRS)

    Sullivan, Dana G.; Shaw, Joey N.; Rickman, Doug; Mask, Paul L.; Luvall, Jeff

    2005-01-01

    Evaluation of surface soil properties via remote sensing could facilitate soil survey mapping, erosion prediction and allocation of agrochemicals for precision management. The objective of this study was to evaluate the relationship between soil spectral signature and surface soil properties in conventionally managed row crop systems. High-resolution RS data were acquired over bare fields in the Coastal Plain, Appalachian Plateau, and Ridge and Valley provinces of Alabama using the Airborne Terrestrial Applications Sensor multispectral scanner. Soils ranged from sandy Kandiudults to fine textured Rhodudults. Surface soil samples (0-1 cm) were collected from 163 sampling points for soil organic carbon, particle size distribution, and citrate dithionite extractable iron content. Surface roughness, soil water content, and crusting were also measured during sampling. Two methods of analysis were evaluated: 1) multiple linear regression using common spectral band ratios, and 2) partial least squares regression. Our data show that thermal infrared spectra are highly, linearly related to soil organic carbon, sand and clay content. Soil organic carbon content was the most difficult to quantify in these highly weathered systems, where soil organic carbon was generally less than 1.2%. Estimates of sand and clay content were best using partial least squares regression at the Valley site, explaining 42-59% of the variability. In the Coastal Plain, sandy surfaces prone to crusting limited estimates of sand and clay content via partial least squares and regression with common band ratios. Estimates of iron oxide content were a function of mineralogy and best accomplished using specific band ratios, with regression explaining 36-65% of the variability at the Valley and Coastal Plain sites, respectively.

  9. Removal of nitrogen by a layered soil infiltration system during intermittent storm events.

    PubMed

    Cho, Kang Woo; Song, Kyung Guen; Cho, Jin Woo; Kim, Tae Gyun; Ahn, Kyu Hong

    2009-07-01

    The fates of various nitrogen species were investigated in a layered biological infiltration system under an intermittently wetting regime. The layered system consisted of a mulch layer, coarse soil layer (CSL), and fine soil layer (FSL). The effects of soil texture were assessed focusing on the infiltration rate and the removal of inorganic nitrogen species. The infiltration rate drastically decreased when the uniformity coefficient was larger than four. The ammonium in the synthetic runoff was shown to be removed via adsorption during the stormwater dosing and nitrification during subsequent dry days. Stable ammonium adsorption was observed when the silt and clay content of CSL was greater than 3%. This study revealed that the nitrate leaching was caused by nitrification during dry days. Various patterns of nitrate flushing were observed depending on the soil configuration. The washout of nitrate was more severe as the silt/clay content of the CSL was greater. However, proper layering of soil proved to enhance the nitrate removal. Consequently, a strictly sandy CSL over FSL with a silt and clay content of 10% was the best configuration for the removal of ammonium and nitrate.

  10. Spatial Dependence of Physical Attributes and Mechanical Properties of Ultisol in a Sugarcane Field.

    PubMed

    Tavares, Uilka Elisa; Rolim, Mário Monteiro; de Oliveira, Veronildo Souza; Pedrosa, Elvira Maria Regis; Siqueira, Glécio Machado; Magalhães, Adriana Guedes

    2015-01-01

    This study investigates the effect of conventional tillage and application of the monoculture of sugar cane on soil health. Variables like density, moisture, texture, consistency limits, and preconsolidation stress were taken as indicators of soil quality. The measurements were made at a 120 × 120 m field cropped with sugar cane under conventional tillage. The objective of this work was to characterize the soil and to study the spatial dependence of the physical and mechanical attributes. Then, undisturbed soil samples were collected to measure bulk density, moisture content and preconsolidation stress and disturbed soil samples for classification of soil texture, and consistency limits. The soil texture indicated that soil can be characterized as sandy clay soil and a sandy clay loam soil, and the consistency limits indicated that the soil presents an inorganic low plasticity clay. The preconsolidation tests tillage in soil moisture content around 19% should be avoided or should be chosen a management of soil with lighter vehicles in this moisture content, to avoid risk of compaction. Using geostatistical techniques mapping was possible to identify areas of greatest conservation soil and greater disturbance of the ground.

  11. Permeability-Porosity Relationships of Subduction Zone Sediments

    NASA Astrophysics Data System (ADS)

    Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I.

    2008-12-01

    Permeability-porosity relationships for sediments from Northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on their sediment type and grain size distribution. Greater correlation was observed between permeability and porosity for siliciclastic sediments, diatom oozes, and nannofossil chalk than for nannofossil oozes. For siliciclastic sediments, grouping of sediments by clay content yields relationships that are generally consistent with results from other marine settings and suggest decreasing permeability for a given porosity as clay content increases. Correction of measured porosities for smectite content generally improves the quality of permeability-porosity relationships. The relationship between permeability and porosity for diatom oozes may be controlled by the amount of clay present in the ooze, causing diatom oozes to behave similarly to siliciclastic sediments. For a given porosity the nannofossil oozes have higher permeability values by 1.5 orders of magnitude than the siliciclastic sediments. However, the use of a permeability-porosity relation may not be appropriate for unconsolidated carbonates such as nannofossil oozes. This study provided insight to the effects of porosity correction for smectite, variations in lithology and grain size in permeability-porosity relationships. However, further progress in delineating controls on permeability will require more careful and better documented permeability tests on characterized samples.

  12. Spatial Dependence of Physical Attributes and Mechanical Properties of Ultisol in a Sugarcane Field

    PubMed Central

    Tavares, Uilka Elisa; Monteiro Rolim, Mário; Souza de Oliveira, Veronildo; Maria Regis Pedrosa, Elvira; Siqueira, Glécio Machado; Guedes Magalhães, Adriana

    2015-01-01

    This study investigates the effect of conventional tillage and application of the monoculture of sugar cane on soil health. Variables like density, moisture, texture, consistency limits, and preconsolidation stress were taken as indicators of soil quality. The measurements were made at a 120 × 120 m field cropped with sugar cane under conventional tillage. The objective of this work was to characterize the soil and to study the spatial dependence of the physical and mechanical attributes. Then, undisturbed soil samples were collected to measure bulk density, moisture content and preconsolidation stress and disturbed soil samples for classification of soil texture, and consistency limits. The soil texture indicated that soil can be characterized as sandy clay soil and a sandy clay loam soil, and the consistency limits indicated that the soil presents an inorganic low plasticity clay. The preconsolidation tests tillage in soil moisture content around 19% should be avoided or should be chosen a management of soil with lighter vehicles in this moisture content, to avoid risk of compaction. Using geostatistical techniques mapping was possible to identify areas of greatest conservation soil and greater disturbance of the ground. PMID:26167528

  13. [Effects of Different Residue Part Inputs of Corn Straws on CO2 Efflux and Microbial Biomass in Clay Loam and Sandy Loam Black Soils].

    PubMed

    Liu, Si-yi; Liang, Ai-zhen; Yang, Xue-ming; Zhang, Xiao-ping; Jia, Shu-xia; Chen, Xue-wen; Zhang, Shi-xiu; Sun, Bing-jie; Chen, Sheng-long

    2015-07-01

    The decomposed rate of crop residues is a major determinant for carbon balance and nutrient cycling in agroecosystem. In this study, a constant temperature incubation study was conducted to evaluate CO2 emission and microbial biomass based on four different parts of corn straw (roots, lower stem, upper stem and leaves) and two soils with different textures (sandy loam and clay loam) from the black soil region. The relationships between soil CO2 emission, microbial biomass and the ratio of carbon (C) to nitrogen (N) and lignin of corn residues were analyzed by the linear regression. Results showed that the production of CO2 was increased with the addition of different parts of corn straw to soil, with the value of priming effect (PE) ranged from 215. 53 µmol . g-1 to 335. 17 µmol . g -1. Except for corn leaves, the cumulative CO2 production and PE of clay loam soil were significantly higher than those in sandy loam soil. The correlation of PE with lignin/N was obviously more significant than that with lignin concentration, nitrogen concentration and C/N of corn residue. The addition of corn straw to soil increased the contents of MBC and MBN and decreased MBC/MBN, which suggested that more nitrogen rather than carbon was conserved in microbial community. The augmenter of microbial biomass in sandy loam soil was greater than that in clay loam soil, but the total dissolved nitrogen was lower. Our results indicated that the differences in CO2 emission with the addition of residues to soils were primarily ascribe to the different lignin/N ratio in different corn parts; and the corn residues added into the sandy loam soil could enhance carbon sequestration, microbial biomass and nitrogen holding ability relative to clay loam soil.

  14. Modelling Pesticide Leaching At Column, Field and Catchment Scales I. Analysis of Soil Variability At Field and Catchment Scales

    NASA Astrophysics Data System (ADS)

    Gärdenäs, A.; Jarvis, N.; Alavi, G.

    The spatial variability of soil characteristics was studied in a small agricultural catch- ment (Vemmenhög, 9 km2) at the field and catchment scales. This analysis serves as a basis for assumptions concerning upscaling approaches used to model pesticide leaching from the catchment with the MACRO model (Jarvis et al., this meeting). The work focused on the spatial variability of two key soil properties for pesticide fate in soil, organic carbon and clay content. The Vemmenhög catchment (9 km2) is formed in a glacial till deposit in southernmost Sweden. The landscape is undulating (30 - 65 m a.s.l.) and 95 % of the area is used for crop production (winter rape, winter wheat, sugar beet and spring barley). The climate is warm temperate. Soil samples for or- ganic C and texture were taken on a small regular grid at Näsby Farm, (144 m x 144 m, sampling distance: 6-24 m, 77 points) and on an irregular large grid covering the whole catchment (sampling distance: 333 m, 46 points). At the field scale, it could be shown that the organic C content was strongly related to landscape position and height (R2= 73 %, p < 0.001, n=50). The organic C content of hollows in the landscape is so high that they contribute little to the total loss of pesticides (Jarvis et al., this meeting). Clay content is also related to landscape position, being larger at the hilltop locations resulting in lower near-saturated hydraulic conductivity. Hence, macropore flow can be expected to be more pronounced (see also Roulier & Jarvis, this meeting). The variability in organic C was similar for the field and catchment grids, which made it possible to krige the organic C content of the whole catchment using data from both grids and an uneven lag distance.

  15. Fractal Feature of Particle-Size Distribution in the Rhizospheres and Bulk Soils during Natural Recovery on the Loess Plateau, China

    PubMed Central

    Song, Zilin; Zhang, Chao; Liu, Guobin; Qu, Dong; Xue, Sha

    2015-01-01

    The application of fractal geometry to describe soil structure is an increasingly useful tool for better understanding the performance of soil systems. Only a few studies, however, have focused on the structure of rhizospheric zones, where energy flow and nutrient recycling most frequently occur. We used fractal dimensions to investigate the characteristics of particle-size distribution (PSD) in the rhizospheres and bulk soils of six croplands abandoned for 1, 5, 10, 15, 20, and 30 years on the Loess Plateau of China and evaluated the changes over successional time. The PSDs of the rhizospheres and the fractal dimensions between rhizosphere soil and bulk soils during the natural succession differed significantly due to the influence of plant roots. The rhizospheres had higher sand (0.05–1.00 mm) contents, lower silt (<0.002 mm) contents, and lower fractal dimensions than the bulk soils during the early and intermediate successional stages (1–15 years). The fractal dimensions of the rhizosphere soil and bulk soil ranged from 2.102 to 2.441 and from 2.214 to 2.459, respectively, during the 30-year restoration. Rhizospheric clay and silt contents and fractal dimension tended to be higher and sand content tended to be lower as abandonment age increased, but the bulk soils had the opposite trend. Linear regression analysis indicated that the fractal dimensions of both the rhizospheres and bulk soils were significantly linearly correlated with clay, sand, organic-carbon, and total-nitrogen contents, with R 2 ranging from 0.526 to 0.752 (P<0.001). In conclusion, PSD differed significantly between the rhizosphere soil and bulk soil. The fractal dimension was a sensitive and useful index for quantifying changes in the properties of the different soil zones. This study will greatly aid the application of the fractal method for describing soil structure and nutrient status and the understanding of the performance of rhizospheric zones during ecological restoration. PMID:26368339

  16. Seasonal Effects on the Relationships Between Soil Water Content, Pore Water Pressure and Shear Strength and Their Implications for Slope Stability

    NASA Astrophysics Data System (ADS)

    Hughes, P. N.

    2015-12-01

    A soil's shear resistance is mainly dependent upon the magnitude of effective stress. For small to medium height slopes (up to 10m) in clay soils the total stress acting along potential failure planes will be low, therefore the magnitude of effective stress (and hence soil shear strength) will be dominated by the pore-water pressure. The stability of slopes on this scale through periods of increased precipitation is improved by the generation of negative pore pressures (soil suctions) during preceding, warmer, drier periods. These negative pore water pressures increase the effective stress within the soil and cause a corresponding increase in shearing resistance. The relationships between soil water content and pore water pressure (soil water retention curves) are known to be hysteretic, but for the purposes of the majority of slope stability assessments in partially saturated clay soils, these are assumed to be consistent with time. Similarly, the relationship between shear strength and water content is assumed to be consistent over time. This research presents a laboratory study in which specimens of compacted Glacial Till (typical of engineered slopes within the UK) were subjected to repeated cycles of wetting and drying to simulate seasonal cycles. At predetermined water contents, measurements of soil suction were made using tensiometer and dewpoint potentiometer methods. The undrained shear strength of the specimens was then measured using triaxial strength testing equipment. Results indicate that repeated wetting and drying cycles caused a change in the soil water retention behaviour. A reduction in undrained shear strength at corresponding water contents along the wetting and drying paths was also observed. The mechanism for the change in the relationship is believed to be a deterioration in the soil physical structure due to shrink/swell induced micro-cracking. The non-stationarity of these relationships has implications for slope stability assessment.

  17. Effects of organoclay to miscibility, mechanical and thermal properties of poly(lactic acid) and propylene-ethylene copolymer blends

    NASA Astrophysics Data System (ADS)

    Wacharawichanant, S.; Ounyai, C.; Rassamee, P.

    2017-07-01

    The effects of propylene-ethylene copolymer (PEC or PEC3300) and clay surface modified with 25-30 wt% of trimethylstearyl ammonium (Clay-TSA) on morphology, thermal and mechanical properties of poly(lactic acid) (PLA) were investigated. The morphology analysis showed PLA/PEC3300 blends clearly demonstrated a two-phase separation of dispersed phase and the matrix phase and the addition of Clay-TSA could improve the miscibility of PLA and PEC3300 blends due to the decreased of the domain sizes of dispersed PEC3300 phase in the polymer matrix. From X-ray diffraction analysis showed the intercalation of PLA chains inside the Clay-TSA and this result implied that Clay-TSA platelets acted as an effective compatibilizer. The tensile properties showed the strain at break of PLA was improved after adding PEC3300 while Young’s modulus, tensile strength and storage modulus decreased. The addition of Clay-TSA could improve Young’s modulus of PLA/PEC3300 blends. The addition of Clay-TSA 7 phr showed the maximum of Young’s modulus of PLA/PEC3300/Clay-TSA composites. The thermal properties found that the addition of PEC3300 and Clay-TSA did not change significantly on the glass transition temperature and melting point temperature of PLA. The percent of crystallinity of PLA decreased with increasing PEC content. The thermal stability of PLA improved after adding PEC3300.

  18. The effect of EDTA on Helianthus annuus uptake, selectivity, and translocation of heavy metals when grown in Ohio, New Mexico and Colombia soils.

    PubMed

    Turgut, Cafer; Pepe, M Katie; Cutright, Teresa J

    2005-02-01

    The use of two EDTA concentrations for enhancing the bioavailability of cadmium, chromium, and nickel in three natural soils (Ohio, New Mexico and Colombia) was investigated. The resulting uptake, translocation and selectivity with Helianthus annuus after mobilization were also examined. In general, plants grown in the sandy-loam Ohio soil had a higher uptake that resulted in a selectivity and total metal content of Cd>Cr>Ni and 0.73 mg and Cr>Cd>Ni and 0.32 mg for 0.1 and 0.3 g kg-1 EDTA, respectively. With the silty-loam New Mexico soil, although the total metal uptake was not statistically different the EDTA level did alter the selectivity; Cd>Cr>Ni (0.1 g kg-1 EDTA) and Cd>Cr>Ni (0.3 g kg-1 EDTA). Conversely, with the Colombian (sandy clay loam) soil increasing the EDTA level resulted in a higher total metal uptake (0.62 mg) than the 0.1 g kg-1 (0.59 mg) treatment. For all three soils, the translocation of Cd was limited. Evaluating the mobile metal fraction with and without EDTA determined that the chelator was capable of overcoming mass transfer limitations associated with the expandable clay fraction in the soils. Root wash results and root biomass concentrations indicated that Cd sorption was occurring. Therefore limited Cd translocation was attributed to insufficient phytochelatin levels.

  19. Olive mill wastewater stabilization in open-air ponds: impact on clay-sandy soil.

    PubMed

    Jarboui, Raja; Sellami, Fatma; Kharroubi, Adel; Gharsallah, Néji; Ammar, Emna

    2008-11-01

    The aim of this work was to study the natural biodegradation of the stored olive mill wastewater (OMW) in ponds and the infiltration as well as the impact on soil of the effluent in the evaporation pond used for the storage over the past eight years. For this, two approaches were considered. First, a laboratory-scale column was used for the infiltration of OMW through soil (clay and sand) to predict the effect of the clayey soil in reducing OMW pollution. Second, the ponds including the effluent annually stored and having this clayey structure were investigated. At the laboratory-scale, a modification of OMW contents was noticed, with the elimination of 95% of total suspended solids (TSS), 60% of chemical oxygen demand (COD), 40% of total organic carbon (TOC), 50% of total P, 50% of phenols and 40% of minerals (K+, Mg++ and Na+). The experimented soil was able to restrain the considerable effects of OMW pollution. In the ponds, the granulometric characteristics, the physico-chemical and the biological parameters of the soil profile from the contaminated pond were compared to those of a control soil, located near the contaminated pond. Property modifications of the contaminated soil were noted, especially pH, electrical conductivity, COD and microflora. These changes can be explained by the infiltration of OMW constituents, which were noticed in the soil layers, especially phenolic compounds that have a negative effect on the ground water.

  20. Oxygen isotope fractionation effects in soil water via interaction with cations (Mg, Ca, K, Na) adsorbed to phyllosilicate clay minerals

    NASA Astrophysics Data System (ADS)

    Oerter, Erik; Finstad, Kari; Schaefer, Justin; Goldsmith, Gregory R.; Dawson, Todd; Amundson, Ronald

    2014-07-01

    In isotope-enabled hydrology, soil and vadose zone sediments have been generally considered to be isotopically inert with respect to the water they host. This is inconsistent with knowledge that clay particles possessing an electronegative surface charge and resulting cation exchange capacity (CEC) interact with a wide range of solutes which, in the absence of clays, have been shown to exhibit δ18O isotope effects that vary in relation to the ionic strength of the solutions. To investigate the isotope effects caused by high CEC clays in mineral-water systems, we created a series of monominerallic-water mixtures at gravimetric water contents ranging from 5% to 32%, consisting of pure deionized water of known isotopic composition with homoionic (Mg, Ca, Na, K) montmorillonite. Similar mixtures were also created with quartz to determine the isotope effect of non-, or very minimally-, charged mineral surfaces. The δ18O value of the water in these monominerallic soil analogs was then measured by isotope ratio mass spectrometry (IRMS) after direct headspace CO2 equilibration. Mg- and Ca-exchanged homoionic montmorillonite depleted measured δ18O values up to 1.55‰ relative to pure water at 5% water content, declining to 0.49‰ depletion at 30% water content. K-montmorillonite enriched measured δ18O values up to 0.86‰ at 5% water content, declining to 0.11‰ enrichment at 30% water. Na-montmorillonite produces no measureable isotope effect. The isotope effects observed in these experiments may be present in natural, high-clay soils and sediments. These findings have relevance to the interpretation of results of direct CO2-water equilibration approaches to the measurement of the δ18O value of soil water. The adsorbed cation isotope effect may bear consideration in studies of pedogenic carbonate, plant-soil water use and soil-atmosphere interaction. Finally, the observed isotope effects may prove useful as molecular scale probes of the nature of mineral-water interactions.

  1. Particle size and X-ray analysis of Feldspar, Calvert, Ball, and Jordan soils

    NASA Technical Reports Server (NTRS)

    Chapman, R. S.

    1977-01-01

    Pipette analysis and X-ray diffraction techniques were employed to characterize the particle size distribution and clay mineral content of the feldspar, calvert, ball, and jordan soils. In general, the ball, calvert, and jordan soils were primarily clay size particles composed of kaolinite and illite whereas the feldspar soil was primarily silt-size particles composed of quartz and feldspar minerals.

  2. Pedogenic formation of montmorillonite from a 2:1-2:2 intergrade clay mineral

    USGS Publications Warehouse

    Malcolm, R.L.; Nettleton, W.D.; McCracken, R.J.

    1968-01-01

    Montmorillonite was found to be the dominant clay mineral in surface horizons of certain soils of the North Carolina Coastal Plain whereas a 2:1-2:2 intergrade clay mineral was dominant in subjacent horizons. In all soils where this clay mineral sequence was found, the surface horizon was low in pH (below 4⋅5) and high in organic matter content. In contrast, data from studies of other soils of this region (Weed and Nelson, 1962) show that: (1) montmorillonite occurs infrequently; (2) maximum accumulation of the 2:1-2:2 intergrade normally occurs in the surface horizon and decreases with depth in the profile; (3) organic matter contents are low; and (4) pH values are only moderately acid (pH 5-6).It is theorized that the montmorillonite in the surface horizon of the soils studied originated by pedogenic weathering of the 2:1-2:2 intergrade clay mineral. The combined effects of low pH (below 4⋅5) and high organic matter content in surface horizons are believed to be the agents responsible for this mineral transformation. The protonation and solubilization (reverse of hydrolysis) of Al-polymers in the interlayer of expansible clay minerals will occur at or below pH 4⋅5 depending on the charge and steric effects of the interlayer. A low pH alone may cause this solubilization and thus mineral transformation, but in the soils studied the organic matter is believed to facilitate and accelerage the transformation. The intermediates of organic matter decomposition provide an acid environment, a source of protons, and a source of watersoluble mobile organic substances (principally fulvic acids) which have the ability to complex the solubilized aluminum and move it down the profile. This continuous removal of solubilized aluminum would provide for a favorable gradient for aluminum solubilization.The drainage class or position in a catena is believed to be less important than the chemical factors in formation of montmorillonite from 2:1-2:2 intergrade, because montmorillonite is present in all drainage classes if the surface horizon is low in pH and high in organic matter.

  3. Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (northeastern China).

    PubMed

    Yutong, Zong; Qing, Xiao; Shenggao, Lu

    2016-07-01

    This study examines the distribution, mobility, and potential environmental risks of heavy metals in various particle size fractions of urban soils. Representative urban topsoils (ten) collected from Anshan, Liaoning (northeastern China), were separated into six particle size fractions and their heavy metal contents (Cr, Cu, Cd, Pb, and Zn) were determined. The bioaccessibility and leachability of heavy metals in particle size fractions were evaluated using the toxicity characteristic leaching procedure (TCLP) and ethylenediaminetetraacetic acid (EDTA) extraction, respectively. The results indicated that the contents of five heavy metals (Cd, Cr, Cu, Pb and Zn) in the size fractions increased with the decrease of particle size. The clay fraction of <2 μm had the highest content of heavy metals, indicating that the clay fraction was polluted by heavy metals more seriously than the other size fractions in urban topsoils. Cr also concentrated in the coarse fraction of 2000-1000 μm, indicating a lithogenic contribution. However, the dominant size fraction responsible for heavy metal accumulation appeared to belong to particle fraction of 50-2 μm. The lowest distribution factors (DFs) of heavy metals were recorded in the 2000- to 1000-μm size fraction, while the highest in the clay fraction. The DFs of heavy metals in the clay fraction followed Zn (3.22) > Cu (2.84) > Pb (2.61) > Cr (2.19) > Cd (2.05). The enrichment factor suggested that the enrichment degree of heavy metal increased with the decrease of the particle size, especially for Cd and Zn. The TCLP- and EDTA-extractable concentrations of heavy metals in the clay fraction were relatively higher than those in coarse particles. Cd bioavailability was higher in the clay fraction than in other fractions or whole soils. In contrast, Cr exhibits similar bioaccessibilities in the six size fractions of soils. The results suggested that fine particles were the main sources of potentially toxic metals in urban soils. The variation of heavy metals in various size fractions should be taken into account in environment assessments.

  4. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance.

    PubMed

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-12-05

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m 2 and ~78 kW/m 2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.

  5. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance

    NASA Astrophysics Data System (ADS)

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-12-01

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.

  6. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance

    PubMed Central

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-01-01

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay. PMID:27917901

  7. Quality evaluation of processed clay soil samples.

    PubMed

    Steiner-Asiedu, Matilda; Harrison, Obed Akwaa; Vuvor, Frederick; Tano-Debrah, Kwaku

    2016-01-01

    This study assessed the microbial quality of clay samples sold on two of the major Ghanaian markets. The study was a cross-sectional assessing the evaluation of processed clay and effects it has on the nutrition of the consumers in the political capital town of Ghana. The items for the examination was processed clay soil samples. Staphylococcus spp and fecal coliforms including Klebsiella, Escherichia, and Shigella and Enterobacterspp were isolated from the clay samples. Samples from the Kaneshie market in Accra recorded the highest total viable counts 6.5 Log cfu/g and Staphylococcal count 5.8 Log cfu/g. For fecal coliforms, Madina market samples had the highest count 6.5 Log cfu/g and also recorded the highest levels of yeast and mould. For Koforidua, total viable count was highest in the samples from the Zongo market 6.3 Log cfu/g. Central market samples had the highest count of fecal coliforms 4.6 Log cfu/g and yeasts and moulds 6.5 Log cfu/g. "Small" market recorded the highest staphylococcal count 6.2 Log cfu/g. The water activity of the clay samples were low, and ranged between 0.65±0.01 and 0.66±0.00 for samples collected from Koforidua and Accra respectively. The clay samples were found to contain Klebsiella spp. Escherichia, Enterobacter, Shigella spp. staphylococcus spp., yeast and mould. These have health implications when consumed.

  8. Evaluation of the effect of synthetic fibers and non-woven geotextile reinforcement on the stability of heavy clay embankments : technical summary.

    DOT National Transportation Integrated Search

    2004-07-01

    The objectives of this study were to evaluate the effects of soil density, moisture content, fiber content, and confining pressure on the shear strength of the clayey-fiber matrix, and of soil moisture content and confining pressure on the interface ...

  9. Clay mineralogical record on the upper continental slope of the northwestern South China Sea since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    CHEN, Q.; Liu, Z.; Stattegger, K.

    2012-12-01

    Clay mineralogy of two gravity cores (18428 and 18429) on the upper continental slope of the northwestern South China Sea was investigated in order to understand terrigenous sediment sources and to evaluate the contribution from the Red River since the Late Glacial Maximum. Planktonic foraminiferal oxygen isotope and carbonate stratigraphies suggest that Core 18428 is constrained in Holocene while Core 18429 covers the period of MIS 1-2. Clay mineral assemblages of two cores are composed mainly of smectite (18-57%) and illite (21-41%), with minor chlorite (12-21%) and kaolinite (8-26%). In despite of relatively constant values of illite crystallinity, ranging among 0.14°-0.20° Δ2θ, the time series variation in clay mineral distributions indicates a strong glacial-interglacial shift. Contents of illite, chlorite, and kaolinite (Core 18429) in the Holocene are lower than in the glacial period, and vice versa for the smectite content. The provenance analysis based on clay mineralogy suggests the Red River as a predominant sedimentary source of illite, chlorite, and kaolinite during all the depositional period of MIS 1-2. The sea level change actually controlled the variations of clay mineral assemblages on the upper slope since the Last Glacial Maximum. When the sea level was low during the last glacial period, more terrigenous sediments from the Red River could reach the continental slope in the northwestern South China Sea. However, when the sea level is closed to the present situation during the Holocene, most of Red River sediments could be trapped in the Gulf of Tonkin, instead of draining in the deep South China Sea.

  10. Fingerprinting: Modelling and mapping physical top soil properties with the Mole

    NASA Astrophysics Data System (ADS)

    Loonstra, Eddie; van Egmond, Fenny

    2010-05-01

    The Mole is a passive gamma ray soil sensor system. It is designed for the mobile collection of radioactive energy stemming from soil. As the system is passive, it only measures energy that reaches the surface of soil. In general, this energy comes from upto 30 to 40 cm deep, which can be considered topsoil. The gathered energy spectra are logged every second, are processed with the method of Full Spectrum Analysis. This method uses all available spectral data and processes it with a Chi square optimalisation using a set of standard spectra into individual nuclide point data. A standard spectrum is the measured full spectrum of a specific detector derived when exposed to 1 Bq/kg of a nuclide. With this method the outcome of the surveys become quantitative.The outcome of a field survey with the Mole results in a data file containing point information of position, Total Counts and the decay products of 232Th, 238U, 40K and 137Cs. Five elements are therefor available for the modelling of soil properties. There are several ways for the modelling of soil properties with sensor derived gamma ray data. The Mole generates ratio scale output. For modelling a quantitative deterministic approach is used based on sample locations. This process is called fingerprinting. Fingerprinting is a comparison of the concentration of the radioactive trace elements and the lab results (pH, clay content, etc.) by regression analysis. This results in a mathematical formula describing the relationship between a dependent and independent property. The results of the sensor readings are interpolated into a nuclide map with GIS software. With the derived formula a soil property map is composed. The principle of fingerprinting can be applied on large geographical areas for physical soil properties such as clay, loam or sand (50 micron), grain size and organic matter. Collected sample data of previous field surveys within the same region can be used for the prediction of soil properties elsewhere when adding a relatively small number of new calibration samples. For this purpose stratification of data is necessary. All radioactive trace elements play a part in the fingerprinting process for the mapping of physical soil properties. Clay content is best predicted with 232Th. It has a general R2 of 0.75 up to 0,9. The correlation is positive and basically linear. The variation of loam (or sand) content is very well described by 232Th or the combination of 232Th and 238U. It has a comparable R2 to clay. Grain size can be well modelled with 40K, probably due to the fact that this nuclide is positively correlated with matter. 40K is therefor negatively correlated to grain size. The R2 is good: 0,7 to 0,8 on average. The combination of 40K and 137Cs is generally applied for modelling organic matter content with a quality comparable with that of grain size models. Finally, Total Counts turns out to be a very useful parameter for the identification of different types of parent material and of unnatural or non-parent material. Passive gamma ray soil sensors as the Mole are very suitable for high resolution mapping of physical soil properties. The FSA method has the advantage that data from previous surveys becomes applicable in the fingerprinting procedure of new fields. Being able to model the physical soil properties with gamma ray sensors opens the possibility to run pedotransfer function models for a particular survey.

  11. Timescales of carbon turnover in soils with mixed crystalline mineralogies

    USGS Publications Warehouse

    Khomo, Lesego; Trumbore, Susan E.; Bern, Carleton R.; Chadwick, Oliver A.

    2017-01-01

    Organic matter–mineral associations stabilize much of the carbon (C) stored globally in soils. Metastable short-range-order (SRO) minerals such as allophane and ferrihydrite provide one mechanism for long-term stabilization of organic matter in young soil. However, in soils with few SRO minerals and a predominance of crystalline aluminosilicate or Fe (and Al) oxyhydroxide, C turnover should be governed by chemisorption with those minerals. Here, we correlate mineral composition from soils containing small amounts of SRO minerals with mean turnover time (TT) of C estimated from radiocarbon (14C) in bulk soil, free light fraction and mineral-associated organic matter. We varied the mineral amount and composition by sampling ancient soils formed on different lithologies in arid to subhumid climates in Kruger National Park (KNP), South Africa. Mineral contents in bulk soils were assessed using chemical extractions to quantify Fe oxyhydroxides and SRO minerals. Because of our interest in the role of silicate clay mineralogy, particularly smectite (2 : 1) and kaolinite (1 : 1), we separately quantified the mineralogy of the clay-sized fraction using X-ray diffraction (XRD) and measured 14C on the same fraction. Density separation demonstrated that mineral associated C accounted for 40–70 % of bulk soil organic C in A and B1 horizons for granite, nephelinite and arid-zone gabbro soils, and > 80 % in other soils. Organic matter strongly associated with the isolated clay-sized fraction represented only 9–47 % of the bulk soil C. The mean TT of C strongly associated with the clay-sized fraction increased with the amount of smectite (2 : 1 clays); in samples with > 40 % smectite it averaged 1020 ± 460 years. The C not strongly associated with clay-sized minerals, including a combination of low-density C, the C associated with minerals of sizes between 2 µm and 2 cm (including Fe oxyhydroxides as coatings), and C removed from clay-sized material by 2 % hydrogen peroxide had TTs averaging 190 ± 190 years in surface horizons. Summed over the bulk soil profile, we found that smectite content correlated with the mean TT of bulk soil C across varied lithologies. The SRO mineral content in KNP soils was generally very low, except for the soils developed on gabbros under more humid climate that also had very high Fe and C contents with a surprisingly short, mean C TTs. In younger landscapes, SRO minerals are metastable and sequester C for long timescales. We hypothesize that in the KNP, SRO minerals represent a transient stage of mineral evolution and therefore lock up C for a shorter time. Overall, we found crystalline Fe-oxyhydroxides (determined as the difference between Fe in dithionate citrate and oxalate extractions) to be the strongest predictor for soil C content, while the mean TT of soil C was best predicted from the amount of smectite, which was also related to more easily measured bulk properties such as cation exchange capacity or pH. Combined with previous research on C turnover times in 2 : 1 vs. 1 : 1 clays, our results hold promise for predicting C inventory and persistence based on intrinsic timescales of specific carbon–mineral interactions.

  12. [X-ray diffraction and infrared spectrum analysis of fault gouge in Wenchuan seismic belt].

    PubMed

    Wang, Zheng-Yang; Cao, Jian-Jin; Luo, Song-Ying; Liao, Yi-Peng

    2014-05-01

    Wenchuan earthquake produced a series of co-seismic surface ruptures in Leigu and Zhaojiagou, and we collected samples of co-seismic fault gouge in the surface ruptures as well as the old gouge in the fault of Nanba. Testing The new and old fault gouge was tested with X-ray diffraction and infrared absorption spectra, and its characteristics such as mineral compositions, clay mineral contents and combinations were comprehensively analyzed. The results display obvious differences between the new and old fault gouge, showing that the old fault gouge is mainly composed of wall rock debris or milled powders, while the main components of new fault gouge are clay minerals. The assemblage of clay minerals composition shows that the environment of the fault activity was mainly warm and humid, and the clay minerals were mainly transformed by low temperature and low pressure dynamic metamorphism. And this also partly indicates that the latest way of the fault activity in this area may be a creeping. However the previous researches on the fault gouge of Wenchuan earthquake fault zone are mainly focused on its mechanical properties as well as its texture and structure, the research in this paper is to determine the physical and chemical environment of fault activity through the mineral compositions and clay mineral contents in the fault gouge characteristics, and this research has important scientific significance to the researches on the evolution of the fault environment and the activity mechanism of the earthquake.

  13. Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers.

    PubMed

    Bortolin, Adriel; Aouada, Fauze A; Mattoso, Luiz H C; Ribeiro, Caue

    2013-08-07

    In this work, we synthesized a novel series of hydrogels composed of polyacrylamide (PAAm), methylcellulose (MC), and calcic montmorillonite (MMt) appropriate for the controlled release of fertilizers, where the components presented a synergistic effect, giving very high fertilizer loading in their structure. The synthesized hydrogel was characterized in relation to morphological, hydrophilic, spectroscopic, structural, thermal, and kinetic properties. After those characterizations, the application potential was verified through sorption and desorption studies of a nitrogenated fertilizer, urea (CO(NH2)2). The swelling degree results showed that the clay loading considerably reduces the water absorption capability; however, the hydrolysis process favored the urea adsorption in the hydrogel nanocomposites, increasing the load content according to the increase of the clay mass. The FTIR spectra indicated that there was incorporation of the clay with the polymeric matrix of the hydrogel and that incorporation increased the water absorption speed (indicated by the kinetic constant k). By an X-ray diffraction technique, good nanodispersion (intercalation) and exfoliation of the clay platelets in the hydrogel matrix were observed. Furthermore, the presence of the montmorillonite in the hydrogel caused the system to liberate the nutrient in a more controlled manner than that with the neat hydrogel in different pH ranges. In conclusion, excellent results were obtained for the controlled desorption of urea, highlighting the hydrolyzed hydrogels containing 50% calcic montmorillonite. This system presented the best desorption results, releasing larger amounts of nutrient and almost 200 times slower than pure urea, i.e., without hydrogel. The total values of nutrients present in the system show that this material is potentially viable for application in agriculture as a nutrient carrier vehicle.

  14. The nanophase iron mineral(s) in Mars soil

    NASA Technical Reports Server (NTRS)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron oxide/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these "Mars-soil analogs" were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging, specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The clay acted as an effective matrix, both chemically and sterically, preventing the major part of the synthesized iron oxides from ripening, i.e., growing and developing larger crystals. The precipitated iron oxides appear as isodiametric or slightly elongated particles in the size range 1-10 nm, having large specific surface area. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxy mineral such as "green rust," or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable maghemite (gamma-Fe2O3) by mild heat treatment and then to nanophase hematite (alpha-Fe2O3) by extensive heat treatment. After mild heating, the iron-enriched clay became slightly magnetic, to the extent that it adheres to a hand-held magnet, as was observed with Mars soil. The chemical reactivity of the iron-enriched clays strongly resembles, and offers a plausible mechanism for, the somewhat puzzling observations of the Viking biology experiments. Their unique chemical reactivities are attributed to the combined catalytic effects of the iron oxide/oxyhydroxides and silicate phase surfaces. The reflectance spectrum of the clay-iron preparations in the visible range is generally similar to the reflectance curves of bright regions on Mars. This strengthens the evidence for the predominance of nanophase iron oxides/oxyhydroxides in Mars soil. The mode of formation of these nanophase iron oxides on Mars is still unknown. It is puzzling that despite the long period of time since aqueous weathering took place on Mars, they have not developed from their transitory stage to well-crystallized end-members. The possibility is suggested that these phases represent a continuously on-going, extremely slow weathering process.

  15. Influence of Clay Platelet Spacing on Oxygen Permeability of Thin Film Assemblies

    NASA Astrophysics Data System (ADS)

    Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime

    2010-03-01

    Thin films of anionic natural montmorrilonite clay and various polyelectrolytes have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient in an effort to show the influence of clay platelet spacing on thin film permeability. After polymer-clay layers have been sequentially deposited, the resulting transparent films exhibit a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall forms an extremely tortuous path for a molecule to traverse, creating channels perpendicular to the concentration gradient that increase the molecule's diffusion length and delay its transmission. To a first approximation, greater clay spacing (i.e., reduced clay concentration) produces greater oxygen barrier. Oxygen transmission rates below 0.005 cm^3/m^2.day have been achieved for films with only eight clay layers (total thickness of only 200 nm). With optical transparencies greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.

  16. Impact of clay mineral on air oxidation of PAH-contaminated soils.

    PubMed

    Biache, Coralie; Kouadio, Olivier; Lorgeoux, Catherine; Faure, Pierre

    2014-09-01

    This work investigated the impact of a clay mineral (bentonite) on the air oxidation of the solvent extractable organic matters (EOMs) and the PAHs from contaminated soils. EOMs were isolated from two coking plant soils and mixed with silica sand or bentonite. These samples, as well as raw soils and bentonite/soil mixtures, were oxidized in air at 60 and 100 °C for 160 days. Mineralization was followed by measuring the CO2 produced over the experiments. EOM, polycyclic aromatic compound (PAC), including PAH, contents were also determined. Oxidation led to a decrease in EOM contents and PAH concentrations, these diminutions were enhanced by the presence of bentonite. Transfer of carbon from EOM to insoluble organic matter pointed out a condensation phenomenon leading to a stabilization of the contamination. Higher mineralization rates, observed during the oxidation of the soil/bentonite mixtures, seem to indicate that this clay mineral had a positive influence on the transformation of PAC into CO2.

  17. Geological and taphonomic context for the new hominin species Homo naledi from the Dinaledi Chamber, South Africa

    PubMed Central

    Dirks, Paul HGM; Berger, Lee R; Roberts, Eric M; Kramers, Jan D; Hawks, John; Randolph-Quinney, Patrick S; Elliott, Marina; Musiba, Charles M; Churchill, Steven E; de Ruiter, Darryl J; Schmid, Peter; Backwell, Lucinda R; Belyanin, Georgy A; Boshoff, Pedro; Hunter, K Lindsay; Feuerriegel, Elen M; Gurtov, Alia; Harrison, James du G; Hunter, Rick; Kruger, Ashley; Morris, Hannah; Makhubela, Tebogo V; Peixotto, Becca; Tucker, Steven

    2015-01-01

    We describe the physical context of the Dinaledi Chamber within the Rising Star cave, South Africa, which contains the fossils of Homo naledi. Approximately 1550 specimens of hominin remains have been recovered from at least 15 individuals, representing a small portion of the total fossil content. Macro-vertebrate fossils are exclusively H. naledi, and occur within clay-rich sediments derived from in situ weathering, and exogenous clay and silt, which entered the chamber through fractures that prevented passage of coarser-grained material. The chamber was always in the dark zone, and not accessible to non-hominins. Bone taphonomy indicates that hominin individuals reached the chamber complete, with disarticulation occurring during/after deposition. Hominins accumulated over time as older laminated mudstone units and sediment along the cave floor were eroded. Preliminary evidence is consistent with deliberate body disposal in a single location, by a hominin species other than Homo sapiens, at an as-yet unknown date. DOI: http://dx.doi.org/10.7554/eLife.09561.001 PMID:26354289

  18. Effect of surface hydrophobicity on the formation and stability of oxygen nanobubbles.

    PubMed

    Pan, Gang; Yang, Bo

    2012-06-04

    The formation mechanism of a nanoscale gas state is studied on inorganic clay surfaces modified with hexamethyldisilazane, which show different contact angles in ethanol-water solutions. As the dissolved oxygen becomes oversaturated due to the decrease in ethanol-water ratio, oxygen nanoscale gas state are formed and stabilized on the hydrophobic surfaces so that the total oxygen content in the suspension is increased compared to the control solution without the particles. However, the total oxygen content in the suspension with hydrophilic surfaces is lower than the control solution without the particles because the hydrophilic particle surfaces destabilize the nanobubbles on the surfaces by spreading and coagulating them into microbubbles that quickly escape from the suspension solution. No significant correlation was observed between the nanobubble formation and the shape or roughness of the surfaces. Our results suggest that a nanoscale gas state can be formed on both hydrophobic and hydrophilic particle surfaces, but that the stability of the surface nanoscale gas state can vary greatly depending on the hydrophobicity of the solid surfaces. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Geological and technological characterization of the Late Jurassic-Early Cretaceous clay deposits (Jebel Ammar, northeastern Tunisia) for ceramic industry

    NASA Astrophysics Data System (ADS)

    Ben M'barek-Jemaï, Moufida; Sdiri, Ali; Ben Salah, Imed; Ben Aissa, Lassaad; Bouaziz, Samir; Duplay, Joelle

    2017-05-01

    Late Jurassic-Lower Cretaceous clays of the Jebel Ammar study site were used as raw materials for potential applications in ceramic industry. Physico-chemical characterization of the collected samples was performed using atomic absorption spectroscopy, X-ray diffraction, thermogravimetry and dilatometry (Bugot's curve). Geotechnical study was also undertaken by the assessment of plasticity and liquidity limits. It was found that high concentrations of silica, alumina with SiO2/Al2O3 ratio characterized the studied clays; its high amounts of CaO and Fe2O3 in the Late Jurassic clays indicated their calcareous nature. In addition, technological tests indicated moderate to low plasticity values for the Late Jurassic and Lower Cretaceous clays, respectively. Clay fraction (<2 μm) reached 50% of the natural clay in some cases. Mineralogical analysis showed that Jurassic clays were dominated by smectite, illite and kaolinite, as clay mineral species; calcite was the main associated mineral. Lower Cretaceous clays were mainly composed of abundant illite accompanied by well-crystallized smectite and kaolinite. Kaolinite gradually increased upwards, reaching 70% of the total clay fraction (i.e. <2 μm). Quartz, calcite and feldspar were the main non-clay minerals. Based on these analyses, the clays meet technological requirements that would allow their use in the ceramic industry and for the manufacturing of ceramic tiles.

  20. Morphology and Structure of Amino-fatty Acid Intercalated Montmorillonite

    NASA Astrophysics Data System (ADS)

    Reyes, Larry; Sumera, Florentino

    2015-04-01

    Natural clays and its modified forms have been studied for their wide range of applications, including polymer-layered silicate, catalysts and adsorbents. For nanocomposite production, montmorillonite (MMT) clays are often modified with organic surfactants to favor its intermixing with the polymer matrix. In the present study, Na+-montmorillonite (Na+-MMT) was subjected to organo-modification with a protonated 12-aminolauric acid (12-ALA). The amount of amino fatty acid surfactants loaded was 25, 50, 100 and 200% the cation exchange capacity (CEC) of Na+-MMT (25CEC-AMMT, 50CEC-AMMT, 100CEC-AMMT and 200CEC-AMMT). Fatty acid-derived surfactants are an attractive resource of intercalating agents for clays due to their renewability and abundance. X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were performed to determine the occurrence of intercalation of 12-ALA and their molecular structure in the clay's silicates. XRD analysis revealed that the interlayer spacing between the alumino-silicate layers increased from 1.25 nm to 1.82 nm with increasing ALA content. The amino fatty acid chains were considered to be in a flat monolayer structure at low surfactant loading, and a bilayered to a pseudotrilayered structure at high surfactant loading. On the other hand, FTIR revealed that the alkyl chains adopt a gauche conformation, indicating their disordered state based on their CH2symmetric and asymmetric vibrations. Thermogravimetric analyses (TGA) allows the determination of the moisture and organic content in clays. Here, TGA revealed that the surfactant in the clay was thermally stable, with Td ranging from 353° C to 417° C. The difference in the melting behavior of the pristine amino fatty acids and confined fatty acids in the interlayer galleries of the clay were evaluated by Differential Scanning Calorimerty (DSC). The melting temperatures (Tm) of the amino fatty acid in the clay were initially found to be higher than those of the free amino fatty acid, but decreased with increasing surfactant loading. This suggested that the amino fatty acid may be tethered to the clay structure via ionic interaction and/or ion-dipole attraction. Significant changes in the clay morphology, particle size and surface charge were observed after organo-modification. Scanning electron microscopy (SEM) revealed that the organo-clays have a disordered and flaky morphology, while the unmodified MMT appeared to be dispersed spherical grains. The effective (Z) diameter of Na+-MMT was found to be ~520 nm, but increased up to ~937 nm upon intercalation of 12-ALA. The zeta potential (ξ) of the clay materials, on the other hand, ranged from -33 mV for undmodified MMT to -16 mv (200CEC-AMMT clay). The possible occupational hazards of working with nanoclays should also be explored. Presently, the MTT-dye reduction assay was performed to determine cell viability of mouse monocyte-macrophages (J774A.1) after direct exposure to the clays. The cytotoxicity of the clays exhibited a chemistry and dose dependent response, with unmodified Na+-MMT as the most cytotoxic while the organo-clays exhibited low toxicity. These results demonstrated the successful intercalation of the surfactant for the production of organophilic clay materials for a wide range of applications.

  1. Effect of the behavior and availability of heavy metals on the characteristics of the coastal soils developed from alluvial deposits.

    PubMed

    Li, Jinling; He, Ming; Sun, Shouqin; Han, Wei; Zhang, Youchi; Mao, Xiaohui; Gu, Yifan

    2009-09-01

    An investigation of the behavior and availability of heavy metals (HMs), i.e., Cu, Zn, Ni, Pb, Cr, and Cd, based on the analysis of correlation between HMs and physical and chemical properties of coastal soils developed from alluvial deposits in Shanghai, China, has been conducted, in order to reveal the effect of the soil formation and development and the unsuited human activities on the activities and mobility of HMs in agricultural soils. The results showed that (1) the soils still meet the needs of plant growth due to the moderate fertility with a soil texture of silty loam although the content of organic matters is lower, (2) total heavy metal content had a increase trend from the inland area to the coastal area, indicating the impact of alluvial deposits related to the soil formation on the distribution of HMs; (3) a significant positive correlation was found between HMs and some soil properties (i.e., clay content, cation exchange capacity, organic matters, total Phosphorous content, etc.), indicating that the regulation of these properties could give some great effect on the behavior and availability of HMs; (4) the positive correlation among Cu, Zn, Ni, and Cd, and between Pb and Cr is very significant, suggesting the most similar, if not the same, origins of HMs; These findings are helpful to the soil remediation, fertility adjustment, and plant cultivation.

  2. To what extent clay mineralogy affect soil aggregation? Insights from fractionation analyses conducted on soils under different land-uses.

    NASA Astrophysics Data System (ADS)

    Fernandez-Ugalde, O.; Barré, P.; Hubert, F.; Virto, I.; Girardin, C.; Ferrage, E.; Caner, L.; Chenu, C.

    2012-04-01

    Aggregation is a key process for soil functioning as it influences C storage, vulnerability to erosion and water holding capacity. While the influence of soil C content or tillage on aggregation has been documented, much less is known about the role of soil mineralogy. The aim of this study is to determine quantitatively if different clay minerals of a temperate soil contribute differently to aggregation and if their contribution is modulated by soil management. We compared the aggregate-size distribution of three cropping systems in a silt loam soil in Versailles (France): organic cropping system (ORG, tilled yearly), direct seeding mulch-based cropping system (DMC, tilled every 4 years), both from a long-term trial, and a nearby grassland. Soil samples from 0-5 cm were wet-sieved to 5 mm and air-dried before aggregate-size separation. For each aggregate class, fraction <2 µm was separated and analysed using X-ray diffraction. Organic C content was determined both in aggregates and <2-µm fractions. C content was lower in ORG than in the two other treatments. The proportion of large-macroaggregates (500-5000 µm) was greater in DMC and grassland; while microaggregates (50-250 µm) showed greater proportions in ORG. In the three treatments, microaggregates had the greatest amount of clays, with preferential accumulation of smectitic phases. In grassland, clays from all aggregated fractions showed more smectitic phases than free-clay fraction. The results indicate that smectitic phases contributed particularly to the microaggregates dynamics. Their contribution to aggregation was lower for larger aggregate sizes where the influence of organic matter was preponderant. Moreover, it was observed that cultivation (ORG and DMC treatments) reduced the relative enrichment of smectitic phases in stable aggregates which makes them more vulnerable to slaking erosion and alters their physico-chemical functions.

  3. Color variations of the Quaternary Red Clay in southern China and its paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Hu, Xue-Feng; Du, Yan; Guan, Chun-Lei; Xue, Yong; Zhang, Gan-Lin

    2014-04-01

    The red clay and red weathering crust are widely distributed in southern China. To study the possible relationship between soil color and paleoclimatic environment, three color parameters, lightness (L*), redness (a*) and yellowness (b*), of twelve Quaternary Red Clay (QRC) profiles in southern China were measured using a colorimeter. Colors of the QRC profiles vary vertically: a* and b* generally increase downward and L* decreases downwards. Colors of the QRC also show spatial variation: a* and b* generally increase towards the equator; whereas L* increases away from it. Both a* and b* are positively significantly correlated with clay (< 2 μm) content, free Fe (Fed), Fed/Fet ratios and other soil weathering indices of the QRC (ρ < 0.05), and the correlations between a* and the weathering indices are much stronger than those between b* and the indices. a* mainly reflects hematite content in soils. Compared with magnetic susceptibility (χ), a* of the QRC is a more promising paleoclimatic indicator, although it is sometimes disturbed by uneven parent materials and dissolution of hematite by water logging. The upward decrease of a* of the QRC profiles reflects a cooling and drying paleoclimate since the end of the Last Interglacial, and the spatial variation of a* coincides with more optimum hydrothermal conditions in lower-latitude areas of southern China.

  4. A New Epoxy-Based Layered Silicate Nanocomposite Using a Hyperbranched Polymer: Study of the Curing Reaction and Nanostructure Development.

    PubMed

    Cortés, Pilar; Fraga, Iria; Calventus, Yolanda; Román, Frida; Hutchinson, John M; Ferrando, Francesc

    2014-03-04

    Polymer layered silicate (PLS) nanocomposites have been prepared with diglycidyl ether of bisphenol-A (DGEBA) epoxy resin as the matrix and organically modified montmorillonite (MMT) as the clay nanofiller. Resin-clay mixtures with different clay contents (zero, two, five and 10 wt%) were cured, both isothermally and non-isothermally, using a poly(ethyleneimine) hyperbranched polymer (HBP), the cure kinetics being monitored by differential scanning calorimetry (DSC). The nanostructure of the cured nanocomposites was characterized by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), and their mechanical properties were determined by dynamic mechanical analysis (DMA) and impact testing. The results are compared with an earlier study of the structure and properties of the same DGEBA-MMT system cured with a polyoxypropylene diamine, Jeffamine. There are very few examples of the use of HBP as a curing agent in epoxy PLS nanocomposites; here, it is found to enhance significantly the degree of exfoliation of these nanocomposites compared with those cured with Jeffamine, with a corresponding enhancement in the impact energy for nanocomposites with the low clay content of 2 wt%. These changes are attributed to the different cure kinetics with the HBP, in which the intra-gallery homopolymerization reaction is accelerated, such that it occurs before the bulk cross-linking reaction.

  5. Paleoecological interpretation of a middle Pennsylvanian coal bed in the central Appalachian basin, U.S.A.

    USGS Publications Warehouse

    Eble, C.F.; Grady, W.C.

    1990-01-01

    At least 180 small spore species assignable to 62 miospore genera have been identified from the Middle Pennsylvanian Hernshaw coal bed in southern West Virginia, and its stratigraphic equivalent, the Fire Clay coal bed, in eastern Kentucky. The established natural affinities of a majority of these miospore taxa indicate that the Hernshaw-Fire Clay peat swamp supported a diverse flora consisting of arborescent and "herbaceous" lycopods, ferns (tree-like and small varities), calamities and cordaites. Four floral groupings are recognized in the Hernshaw-Fire Clay coal bed. The inferred paleoecology and vertical stratification of each of these four floral groupings is similar in structure to the "phasic" floral communities found in modern domed peat systems, suggesting that the ancient Hernshaw-Fire Clay peat swamp was a domed deposit. Compositional characteristics (petrographic make up, ash yield and sulfur content) associated with the four groupings are consistent with, and support this interpretation. Where uninterrupted by inorganic partings, the Hernshaw-Fire Clay coal bed commonly contains basal coal layers dominated by Lycospora-bearing arborescent lycopods, with successive increments showing a progression to a more fern- and "herbaceous"-lycopod-dominant flora in younger layers. These observations are corroborated by petrographic analyses, which show the bed to be compositionally stratified. Increments dominated by Lycospora have high vitrinite contents, in contrast to increments containing increased percentages of fern- and "herbaceous"-lycopod-affiliated taxa that are enriched in inertinite macerals. The volcanic ash fall, preserved as the flint-clay parting in the Hernshaw-Fire Clay coal bed, had a considerable effect on the development of the ancient Hernshaw-Fire Clay peat swamp. Besides interrupting peat formation, the presence of an inorganic substrate represent a major change in edaphic conditions within the swamp. This disruption is demonstrated by a change in palynflora and by the establishment and proliferation of some plant groups, notably cordaites and calamites, that may have been better adapted to growth on mineral soils. These palynologic and petrographic relationships, thought to be indicative of a domed peat-swamp origin, are not confined to the Hernshaw-Fire Clay coal bed, but appear to be characteristic of many coal beds in the Appalachian basin, and also of coal beds in other basins. ?? 1990.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyoncu, R.S.; Boyer, J.P.; Snyder, M.J.

    Partial data on the characterization of Well 0-1 (Christian County, Kentucky) shales were first reported in the Fifth Quarterly Technical Progress Report on January 1978. This report presents all the characterization data and its analysis on the 0-1 shales. Coring of Well 0-1 was accomplished in October 1976. A total of 17 samples were obtained, 13 for Battelle and 4 for other DOE Contractors. Methane is almost the sole hydrocarbon gas present in these shales, with higher chain hydrocarbon gases nearly nonexistent. An apparent increase in hydrocarbon gas contents with shale depth is observed. Other organic contents (in the formmore » of carbon and hydrogen) also show an increase with increasing shale depth. An increase in hydrocarbon gas contents with carbon and hydrogen contents is also noticeable. Natural gas, carbon and hydrogen contents all vary inversely with bulk densities. 0-1 shales show low mercury intrusion porosities and very low to negligible gas permeabilities. Lithology of these shales is very similar to those previously reported, quartz being the most abundant single mineral. Illite and kaolin are the major clay minerals with a number of carbonates (nahcolite, sortite, siderite) present in moderate quantities. Pyrite is also observed in significant quantities.« less

  7. Adsorption coefficients for TNT on soil and clay minerals

    NASA Astrophysics Data System (ADS)

    Rivera, Rosángela; Pabón, Julissa; Pérez, Omarie; Muñoz, Miguel A.; Mina, Nairmen

    2007-04-01

    To understand the fate and transport mechanisms of TNT from buried landmines is it essential to determine the adsorption process of TNT on soil and clay minerals. In this research, soil samples from horizons Ap and A from Jobos Series at Isabela, Puerto Rico were studied. The clay fractions were separated from the other soil components by centrifugation. Using the hydrometer method the particle size distribution for the soil horizons was obtained. Physical and chemical characterization studies such as cation exchange capacity (CEC), surface area, percent of organic matter and pH were performed for the soil and clay samples. A complete mineralogical characterization of clay fractions using X-ray diffraction analysis reveals the presence of kaolinite, goethite, hematite, gibbsite and quartz. In order to obtain adsorption coefficients (K d values) for the TNT-soil and TNT-clay interactions high performance liquid chromatography (HPLC) was used. The adsorption process for TNT-soil was described by the Langmuir model. A higher adsorption was observed in the Ap horizon. The Freundlich model described the adsorption process for TNT-clay interactions. The affinity and relative adsorption capacity of the clay for TNT were higher in the A horizon. These results suggest that adsorption by soil organic matter predominates over adsorption on clay minerals when significant soil organic matter content is present. It was found that, properties like cation exchange capacity and surface area are important factors in the adsorption of clayey soils.

  8. Shear Strength of Remoulding Clay Samples Using Different Methods of Moulding

    NASA Astrophysics Data System (ADS)

    Norhaliza, W.; Ismail, B.; Azhar, A. T. S.; Nurul, N. J.

    2016-07-01

    Shear strength for clay soil was required to determine the soil stability. Clay was known as a soil with complex natural formations and very difficult to obtain undisturbed samples at the site. The aim of this paper was to determine the unconfined shear strength of remoulded clay on different methods in moulding samples which were proctor compaction, hand operated soil compacter and miniature mould methods. All the samples were remoulded with the same optimum moisture content (OMC) and density that were 18% and 1880 kg/m3 respectively. The unconfined shear strength results of remoulding clay soils for proctor compaction method was 289.56kPa with the strain 4.8%, hand operated method was 261.66kPa with the strain 4.4% and miniature mould method was 247.52kPa with the strain 3.9%. Based on the proctor compaction method, the reduction percentage of unconfined shear strength of remoulded clay soil of hand operated method was 9.66%, and for miniature mould method was 14.52%. Thus, because there was no significant difference of reduction percentage of unconfined shear strength between three different methods, so it can be concluded that remoulding clay by hand operated method and miniature mould method were accepted and suggested to perform remoulding clay samples by other future researcher. However for comparison, the hand operated method was more suitable to form remoulded clay sample in term of easiness, saving time and less energy for unconfined shear strength determination purposes.

  9. Experimental study of clay-hydrocarbon interactions relevant to the biodegradation of the Deepwater Horizon oil from the Gulf of Mexico.

    PubMed

    Warr, Laurence N; Friese, André; Schwarz, Florian; Schauer, Frieder; Portier, Ralph J; Basirico, Laura M; Olson, Gregory M

    2016-11-01

    Adding clay to marine oil pollution represents a promising approach to enhance bacterial hydrocarbon degradation in nutrient poor waters. In this study, three types of regionally available clays (Ca-bentonite, Fuller's Earth and kaolin) were tested to stimulate the biodegradation of source and weathered oil collected from the Deepwater Horizon spill. The weathered oil showed little biodegradation prior to experimentation and was extensively degraded by bacteria in the laboratory in a similar way as the alkane-rich source oil. For both oils, the addition of natural clay-flakes showed minor enhancement of oil biodegradation compared to the non-clay bearing control, but the clay-oil films did limit evaporation. Only alkanes of a molecular weight (MW) > 420 showed significant reduction by enhanced biodegradation following natural clay treatment. In contrast, all fertilized clay flakes showed major bacterial degradation of the oil, with a 6-10 times reduction in alkane content, and an up to 8 fold increase in the rate of O2 consumption. Compared to the control, such treatment showed particular reduction of longer chained alkanes (MW > 226). The application of natural and fertilized clay flakes also showed selective reduction of PAHs, mainly in the MW range of 200-300, but without significant change in the toxicity indices measured. These results imply that a large variety of clays may be used to boost oil biodegradation by aiding attachment of fertilizing nutrients to the oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation

    NASA Astrophysics Data System (ADS)

    Liu, Yalong; Wang, Ping; Ding, Yuanjun; Lu, Haifei; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Filley, Timothy; Zhang, Xuhui; Zheng, Jinwei; Pan, Genxing

    2016-12-01

    While soil organic carbon (SOC) accumulation and stabilization has been increasingly the focus of ecosystem properties, how it could be linked to soil biological activity enhancement has been poorly assessed. In this study, topsoil samples were collected from a series of rice soils shifted from salt marshes for 0, 50, 100, 300 and 700 years from a coastal area of eastern China. Soil aggregates were fractioned into different sizes of coarse sand (200-2000 µm), fine sand (20-200 µm), silt (2-20 µm) and clay (< 2 µm), using separation with a low-energy dispersion protocol. Soil properties were determined to investigate niche specialization of different soil particle fractions in response to long-term rice cultivation, including recalcitrant and labile organic carbon, microbial diversity of bacterial, archaeal and fungal communities, soil respiration and enzyme activity. The results showed that the mass proportion both of coarse-sand (2000-200 µm) and clay (< 2 µm) fractions increased with prolonged rice cultivation, but the aggregate size fractions were dominated by fine-sand (200-20 µm) and silt (20-2 µm) fractions across the chronosequence. SOC was highly enriched in coarse-sand fractions (40-60 g kg-1) and moderately in clay fractions (20-25 g kg-1), but was depleted in silt fractions (˜ 10 g kg-1). The recalcitrant carbon pool was higher (33-40 % of SOC) in both coarse-sand and clay fractions than in fine-sand and silt fractions (20-29 % of SOC). However, the ratio of labile organic carbon (LOC) to SOC showed a weakly decreasing trend with decreasing size of aggregate fractions. Total soil DNA (deoxyribonucleic acid) content in the size fractions followed a similar trend to that of SOC. Despite the largely similar diversity between the fractions, 16S ribosomal gene abundance of bacteria and of archaeal were concentrated in both coarse-sand and clay fractions. Being the highest generally in coarse-sand fractions, 18S rRNA gene abundance of fungi decreased sharply but the diversity gently, with decreasing size of the aggregate fractions. The soil respiration quotient (ratio of respired CO2-C to SOC) was the highest in the silt fraction, followed by the fine-sand fraction, but the lowest in coarse-sand and clay fractions in the rice soils cultivated over 100 years, whereas the microbial metabolic quotient was lower in coarse-sand-sized fractions than in other fractions. Soil respiration was higher in the silt fraction than in other fractions for the rice soils. For the size fractions other than the clay fraction, enzyme activity was increased with prolonged rice cultivation, whereas soil respiration appeared to have a decreasing trend. Only in the coarse-sand fraction was both microbial gene abundance and enzyme activity well correlated to SOC and LOC content, although the chemical stability and respiratory of SOC were similar between coarse-sand and clay fractions. Thus, biological activity was generally promoted with LOC accumulation in the coarse-sand-sized macroaggregates of the rice soils, positively responding to prolonged rice cultivation management. The finding here provides a mechanistic understanding of soil organic carbon turnover and microbial community succession at fine scale of soil aggregates that have evolved along with anthropogenic activity of rice cultivation in the field.

  11. Rheological properties of purified illite clays in glycerol/water suspensions

    NASA Astrophysics Data System (ADS)

    Dusenkova, I.; Malers, J.; Berzina-Cimdina, L.

    2015-04-01

    There are many studies about rheological properties of clay-water suspensions, but no published investigations about clay-glycerol suspensions. In this work apparent viscosity of previously purified illite containing clay fraction < 2 μm and glycerol/water suspensions were investigated. Carbonates were removed by dissolution in hydrochloric and citric acids and other non-clay minerals were almost totally removed by centrifugation. All obtained suspensions behaved as shear-thinning fluids with multiple times higher viscosity than pure glycerol/water solutions. Reduction of clay fraction concentration by 5% decreased the apparent viscosity of 50% glycerol/water suspensions approximately 5 times. There was basically no difference in apparent viscosity between all four 50% glycerol/water suspensions, but in 90% glycerol/water suspensions samples from Iecava deposit showed slightly higher apparent viscosity, which could be affected by the particle size distribution.

  12. Clay-starch combination for micropollutants removal from wastewater treatment plant effluent.

    PubMed

    Mohd Amin, M F; Heijman, S G J; Rietveld, L C

    2016-01-01

    In this study, a new, more effective and cost-effective treatment alternative is investigated for the removal of pharmaceuticals from wastewater treatment plant effluent (WWTP-eff). The potential of combining clay with biodegradable polymeric flocculants is further highlighted. Flocculation is viewed as the best method to get the optimum outcome from clay. In addition, flocculation with cationic starch increases the biodegradability and cost of the treatment. Clay is naturally abundantly available and relatively inexpensive compared to conventional adsorbents. Experimental studies were carried out with existing naturally occurring pharmaceutical concentrations found and measured in WWTP-eff with atrazine spiking for comparison between the demineralised water and WWTP-eff matrix. Around 70% of the total measured pharmaceutical compounds were removable by the clay-starch combination. The effect of clay with and without starch addition was also highlighted.

  13. Fractional calculus applied to the analysis of spectral electrical conductivity of clay-water system.

    PubMed

    Korosak, Dean; Cvikl, Bruno; Kramer, Janja; Jecl, Renata; Prapotnik, Anita

    2007-06-16

    The analysis of the low-frequency conductivity spectra of the clay-water mixtures is presented. The frequency dependence of the conductivity is shown to follow the power-law with the exponent n=0.67 before reaching the frequency-independent part. When scaled with the value of the frequency-independent part of the spectrum the conductivity spectra for samples at different water content values are shown to fit to a single master curve. It is argued that the observed conductivity dispersion is a consequence of the anomalously diffusing ions in the clay-water system. The fractional Langevin equation is then used to describe the stochastic dynamics of the single ion. The results indicate that the experimentally observed dielectric properties originate in anomalous ion transport in clay-water system characterized with time-dependent diffusion coefficient.

  14. Pesticide adsorption in relation to soil properties and soil type distribution in regional scale.

    PubMed

    Kodešová, Radka; Kočárek, Martin; Kodeš, Vít; Drábek, Ondřej; Kozák, Josef; Hejtmánková, Kateřina

    2011-02-15

    Study was focused on the evaluation of pesticide adsorption in soils, as one of the parameters, which are necessary to know when assessing possible groundwater contamination caused by pesticides commonly used in agriculture. Batch sorption tests were performed for 11 selected pesticides and 13 representative soils. The Freundlich equations were used to describe adsorption isotherms. Multiple-linear regressions were used to predict the Freundlich adsorption coefficients from measured soil properties. Resulting functions and a soil map of the Czech Republic were used to generate maps of the coefficient distribution. The multiple linear regressions showed that the K(F) coefficient depended on: (a) combination of OM (organic matter content), pH(KCl) and CEC (cation exchange capacity), or OM, SCS (sorption complex saturation) and salinity (terbuthylazine), (b) combination of OM and pH(KCl), or OM, SCS and salinity (prometryne), (c) combination of OM and pH(KCl), or OM and ρ(z) (metribuzin), (d) combination of OM, CEC and clay content, or clay content, CEC and salinity (hexazinone), (e) combination of OM and pH(KCl), or OM and SCS (metolachlor), (f) OM or combination of OM and CaCO(3) (chlorotoluron), (g) OM (azoxystrobin), (h) combination of OM and pH(KCl) (trifluralin), (i) combination of OM and clay content (fipronil), (j) combination of OM and pH(KCl), or OM, pH(KCl) and CaCO(3) (thiacloprid), (k) combination of OM, pH(KCl) and CEC, or sand content, pH(KCl) and salinity (chlormequat chloride). Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Spatial variability of soil total and DTPA-extractable cadmium caused by long-term application of phosphate fertilizers, crop rotation, and soil characteristics.

    PubMed

    Jafarnejadi, A R; Sayyad, Gh; Homaee, M; Davamei, A H

    2013-05-01

    Increasing cadmium (Cd) accumulation in agricultural soils is undesirable due to its hazardous influences on human health. Thus, having more information on spatial variability of Cd and factors effective to increase its content on the cultivated soils is very important. Phosphate fertilizers are main contamination source of cadmium (Cd) in cultivated soils. Also, crop rotation is a critical management practice which can alter soil Cd content. This study was conducted to evaluate the effects of long-term consumption of the phosphate fertilizers, crop rotations, and soil characteristics on spatial variability of two soil Cd species (i.e., total and diethylene triamine pentaacetic acid (DTPA) extractable) in agricultural soils. The study was conducted in wheat farms of Khuzestan Province, Iran. Long-term (27-year period (1980 to 2006)) data including the rate and the type of phosphate fertilizers application, the respective area, and the rotation type of different regions were used. Afterwards, soil Cd content (total or DTPA extractable) and its spatial variability in study area (400,000 ha) were determined by sampling from soils of 255 fields. The results showed that the consumption rate of di-ammonium phosphate fertilizer have been varied enormously in the period study. The application rate of phosphorus fertilizers was very high in some subregions with have extensive agricultural activities (more than 95 kg/ha). The average and maximum contents of total Cd in the study region were obtained as 1.47 and 2.19 mg/kg and DTPA-extractable Cd as 0.084 and 0.35 mg/kg, respectively. The spatial variability of Cd indicated that total and DTPA-extractable Cd contents were over 0.8 and 0.1 mg/kg in 95 and 25 % of samples, respectively. The spherical model enjoys the best fitting and lowest error rate to appraise the Cd content. Comparing the phosphate fertilizer consumption rate with spatial variability of the soil cadmium (both total and DTPA extractable) revealed the high correlation between the consumption rate of P fertilizers and soil Cd content. Rotation type was likely the main effective factor on variations of the soil DTPA-extractable Cd contents in some parts (eastern part of study region) and could explain some Cd variation. Total Cd concentrations had significant correlation with the total neutralizing value (p < 0.01), available P (p < 0.01), cation exchange capacity (p < 0.05), and organic carbon (p < 0.05) variables. The DTPA-extractable Cd had significant correlation with OC (p < 0.01), pH, and clay content (p < 0.05). Therefore, consumption rate of the phosphate fertilizers and crop rotation are important factors on solubility and hence spatial variability of Cd content in agricultural soils.

  16. Quality evaluation of processed clay soil samples

    PubMed Central

    Steiner-Asiedu, Matilda; Harrison, Obed Akwaa; Vuvor, Frederick; Tano-Debrah, Kwaku

    2016-01-01

    Introduction This study assessed the microbial quality of clay samples sold on two of the major Ghanaian markets. Methods The study was a cross-sectional assessing the evaluation of processed clay and effects it has on the nutrition of the consumers in the political capital town of Ghana. The items for the examination was processed clay soil samples. Results Staphylococcus spp and fecal coliforms including Klebsiella, Escherichia, and Shigella and Enterobacterspp were isolated from the clay samples. Samples from the Kaneshie market in Accra recorded the highest total viable counts 6.5 Log cfu/g and Staphylococcal count 5.8 Log cfu/g. For fecal coliforms, Madina market samples had the highest count 6.5 Log cfu/g and also recorded the highest levels of yeast and mould. For Koforidua, total viable count was highest in the samples from the Zongo market 6.3 Log cfu/g. Central market samples had the highest count of fecal coliforms 4.6 Log cfu/g and yeasts and moulds 6.5 Log cfu/g. “Small” market recorded the highest staphylococcal count 6.2 Log cfu/g. The water activity of the clay samples were low, and ranged between 0.65±0.01 and 0.66±0.00 for samples collected from Koforidua and Accra respectively. Conclusion The clay samples were found to contain Klebsiella spp. Escherichia, Enterobacter, Shigella spp. staphylococcus spp., yeast and mould. These have health implications when consumed. PMID:27642456

  17. Bioremediating Oil Spills in Nutrient Poor Ocean Waters Using Fertilized Clay Mineral Flakes: Some Experimental Constraints

    PubMed Central

    Warr, Laurence N.; Friese, André; Schwarz, Florian; Schauer, Frieder; Portier, Ralph J.; Basirico, Laura M.; Olson, Gregory M.

    2013-01-01

    Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity. PMID:23864952

  18. Bioremediating oil spills in nutrient poor ocean waters using fertilized clay mineral flakes: some experimental constraints.

    PubMed

    Warr, Laurence N; Friese, André; Schwarz, Florian; Schauer, Frieder; Portier, Ralph J; Basirico, Laura M; Olson, Gregory M

    2013-01-01

    Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity.

  19. Burnt clay magnetic properties and palaeointensity determination

    NASA Astrophysics Data System (ADS)

    Avramova, Mariya; Lesigyarski, Deyan

    2014-05-01

    Burnt clay structures found in situ are the most valuable materials for archaeomagnetic studies. From these materials the full geomagnetic field vector described by inclination, declination and intensity can be retrieved. The reliability of the obtained directional results is related to the precision of samples orientation and the accuracy of characteristic remanence determination. Palaeointensity evaluations depend on much more complex factors - stability of carried remanent magnetization, grain-size distribution of magnetic particles and mineralogical transformations during heating. In the last decades many efforts have been made to shed light over the reasons for the bad success rate of palaeointensity experiments. Nevertheless, sometimes the explanation of the bad archaeointensity results with the magnetic properties of the studied materials is quite unsatisfactory. In order to show how difficult is to apply a priory strict criteria for the suitability of a given collection of archaeomagnetic materials, artificial samples formed from four different baked clays are examined. Two of the examined clay types were taken from clay deposits from different parts of Bulgaria and two clays were taken from ancient archaeological baked clay structures from the Central part of Bulgaria and the Black sea coast, respectively. The samples formed from these clays were repeatedly heated in known magnetic field to 700oC. Different analyses were performed to obtain information about the mineralogical content and magnetic properties of the samples. The obtained results point that all clays reached stable magnetic mineralogy after the repeated heating to 700oC, the main magnetic mineral is of titano/magnetite type and the magnetic particles are predominantly with pseudo single domain grain sizes. In spite that, the magnetic properies of the studied clays seem to be very similar, reliable palaeointensity results were obtained only from the clays coming from clay deposits. The palaeointensity experiments for the samples formed from the ancient baked clays completely failed to give relibable results.

  20. Mineralogy and geochemistry of atmospheric particulates in western Iran

    NASA Astrophysics Data System (ADS)

    Ahmady-Birgani, Hesam; Mirnejad, Hassan; Feiznia, Sadat; McQueen, Ken G.

    2015-10-01

    This study investigates the mineralogy and physico-chemical properties of atmospheric particulates collected at Abadan (southwestern Iran) near the Persian Gulf coast and Urmia (northwestern Iran) during ambient and dust events over 6 months (winter 2011; spring 2012). Particle sizes collected were: TSP (total suspended particulates); PM10 (particulates <10 μm); and PM2.5 (particulates <2.5 μm). Minerals were identified using X-ray diffraction (XRD); particle morphology and composition were examined by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDX). Major minerals detected are calcite, quartz, clay minerals and gypsum, with relative abundance related to sampling site, collection period, wind direction, sampling head, and total sample amount. The anomalously high calcite content appears a characteristic feature originated from calcareous soils of the region. SEM observations indicated a wide range of particle morphologies over the 1-50 μm size range, with spherical, platy, cubic, elongate and prismatic shapes and rounding from angular to rounded. Energy dispersive X-ray analysis of TSP samples from both sites for non-dusty periods indicated that the sampled mineral suite contained Al, Mg, Na, Cl, P, S, Ca, K, Fe, Ti, and Si, mostly reflecting calcite, quartz, aluminosilicates, clays, gypsum and halite. Additionally, As, Pb, Zn, Mn, Sc, Nd, W, Ce, La, Ba and Ni were detected in TSP, PM10 and PM2.5 samples collected during dust events.

  1. Effect of teapot materials on the chemical composition of oolong tea infusions.

    PubMed

    Liao, Zih-Hui; Chen, Ying-Jie; Tzen, Jason Tze-Cheng; Kuo, Ping-Chung; Lee, Maw-Rong; Mai, Fu-Der; Rairat, Tirawat; Chou, Chi-Chung

    2018-01-01

    The flavor and quality of tea are widely believed to be associated with the pot in which the tea is made. However, this claim is mostly by experiences and lacks solid support from scientific evidence. The current study investigated and compared the chemical compositions of oolong tea made with six different teapot materials, namely Zisha, Zhuni, stainless steel, ceramic, glass and plastic. For each tea sample, polyphenols and caffeine were examined by HPLC-UV, volatile compounds by GC/MS, amino acids by LC/MS and minerals by ICP-MS. The results suggested that tea infusions from Zisha and Zhuni pots contain higher levels of EGC, EGCG and total catechins and less caffeine than those from ceramic, glass and plastic pots and tend to have the lowest total mineral contents, potassium and volatile compounds in tea soup. The statistical differences were not all significant among Zisha, Zhuni and stainless steel pots. Based on the overall chemical composition of the tea infusion, Yixing clay pots (Zisha and Zhuni) produce tea infusions that are presumably less bitter and more fragrant and tend to contain more healthful compounds than tea infusions from other pots. The results could partially explain why Yixing clay pots are among the most popular teapots. The beneficial effects of long-term repeated use of these teapots warrants further study. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Proximal Gamma-Ray Spectroscopy to Predict Soil Properties Using Windows and Full-Spectrum Analysis Methods

    PubMed Central

    Mahmood, Hafiz Sultan; Hoogmoed, Willem B.; van Henten, Eldert J.

    2013-01-01

    Fine-scale spatial information on soil properties is needed to successfully implement precision agriculture. Proximal gamma-ray spectroscopy has recently emerged as a promising tool to collect fine-scale soil information. The objective of this study was to evaluate a proximal gamma-ray spectrometer to predict several soil properties using energy-windows and full-spectrum analysis methods in two differently managed sandy loam fields: conventional and organic. In the conventional field, both methods predicted clay, pH and total nitrogen with a good accuracy (R2 ≥ 0.56) in the top 0–15 cm soil depth, whereas in the organic field, only clay content was predicted with such accuracy. The highest prediction accuracy was found for total nitrogen (R2 = 0.75) in the conventional field in the energy-windows method. Predictions were better in the top 0–15 cm soil depths than in the 15–30 cm soil depths for individual and combined fields. This implies that gamma-ray spectroscopy can generally benefit soil characterisation for annual crops where the condition of the seedbed is important. Small differences in soil structure (conventional vs. organic) cannot be determined. As for the methodology, we conclude that the energy-windows method can establish relations between radionuclide data and soil properties as accurate as the full-spectrum analysis method. PMID:24287541

  3. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    This report describes work performed during the second year of the project ''Modified reverse osmosis system for treatment of produced waters.'' We performed two series of reverse osmosis experiments using very thin bentonite clay membranes compacted to differing degrees. The first series of 10 experiments used NaCl solutions with membranes that ranged between 0.041 and 0.064mm in thickness. Our results showed compaction of such ultra-thin clay membranes to be problematic. The thickness of the membranes was exceeded by the dimensional variation in the machined experimental cell and this is believed to have resulted in local bypassing of the membrane withmore » a resultant decrease in solute rejection efficiency. In two of the experiments, permeate flow was varied as a percentage of the total flow to investigate results of changing permeate flow on solute rejection. In one experiment, the permeate flow was varied between 2.4 and 10.3% of the total flow with no change in solute rejection. In another experiment, the permeate flow was varied between 24.6 and 52.5% of the total flow. In this experiment, the solute rejection rate decreased as the permeate occupied greater fractions of the total flow. This suggests a maximum solute rejection efficiency for these clay membranes for a permeate flow of between 10.3 and 24.6% of the total; flow. Solute rejection was found to decrease with increasing salt concentration and ranged between 62.9% and 19.7% for chloride and between 61.5 and 16.8% for sodium. Due to problems with the compaction procedure and potential membrane bypassing, these rejection rates are probably not the upper limit for NaCl rejection by bentonite membranes. The second series of four reverse osmosis experiments was conducted with a 0.057mm-thick bentonite membrane and dilutions of a produced water sample with an original TDS of 196,250 mg/l obtained from a facility near Loco Hill, New Mexico, operated by an independent. These experiments tested the separation efficiency of the bentonite membrane for each of the dilutions. We found that membrane efficiency decreased with increasing solute concentration and with increasing TDS. The rejection of SO{sub 4}{sup 2-} was greater than Cl{sup -}. This may be because the SO{sub 4}{sup 2-} concentration was much lower than the Cl{sup -} concentration in the waters tested. The cation rejection sequence varied with solute concentration and TDS. The solute rejection sequence for multi-component solutions is difficult to predict for synthetic membranes; it may not be simple for clay membranes either. The permeate flows in our experiments were 4.1 to 5.4% of the total flow. This suggests that very thin clay membranes may be useful for some separations. Work on development of a spiral-wound clay membrane module found that it is difficult to maintain compaction of the membrane if the membrane is rolled and then inserted in the outer tube. A different design was tried using a cylindrical clay membrane and this also proved difficult to assemble with adequate membrane compaction. The next step is to form the membrane in place using hydraulic pressure on a thin slurry of clay in either water or a nonpolar organic solvent such as ethanol. Technology transfer efforts included four manuscripts submitted to peer-reviewed journals, two abstracts, and chairing a session on clays as membranes at the Clay Minerals Society annual meeting.« less

  4. Soil properties of crocker formation and its influence on slope instability along the Ranau-Tambunan highway, Sabah

    NASA Astrophysics Data System (ADS)

    Azlan, Noran Nabilla Nor; Simon, Norbert; Hussin, Azimah; Roslee, Rodeano

    2016-11-01

    The Crocker formation on the study area consists of an inter-bedded shale and sandstone. The intense deformation and discontinuity on sandstone and shale beds of the arenaceous Crocker Formation makes them easily exposed to weathering and instability. In this study, a total of 15 selected slopes representing highly weathered material of stable and unstable conditions were studied to identify the characteristics of soil material on both conditions and how these characteristics will lead to instability. Physical properties analysis of soil material were conducted on 5 samples from stable slopes and 10 samples from failed slopes collected along the Ranau-Tambunan highway (RTM), Sabah. The analysis shows that the Crocker Formation consists mainly of poorly graded materials of sandy SILT with low plasticity (MLS) and PI value ranges from 1%-14. The failures materials are largely consist of low water content (0.94%-2.03%), higher finer texture material (11%-71%), intermediate liquid limit (21%-44%) and low plastic limit (20%-30%) while stable material consist of low water content (1.25%-1.80%), higher coarser texture material (43%-78%), low liquid limit (25%-28%) and low plastic limit (22%-25%). Specific gravity shows a ranges value of 2.24-2.60 for both slope conditions. The clay content in failed slope samples exhibit a slightly higher percentage of clay indicating a higher plasticity value compared to stable slopes. Statistical analysis was carried out to examine the association between landslide occurrences with soil physical properties in both stable and unstable slopes. The significant of both slope condition properties association to landslide occurrences was determined by mean rank differences. The study reveals that the grain size and plasticity of soil have contributed largely to slope instability in the study area.

  5. Progressing towards more quantitative analytical pyrolysis of soil organic matter using molecular beam mass spectroscopy of whole soils and added standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddix, Michelle L.; Magrini-Bair, Kim; Evans, Robert J.

    Soil organic matter (SOM) is extremely complex. It is composed of hundreds of different organic substances and it has been difficult to quantify these diverse substances in a dynamic-ecosystem functioning standpoint. Analytical pyrolysis has been used to compare chemical differences between soils, but its ability to measure the absolute amount of a specific compound in the soil is still in question. Our objective was to assess whether utilizing pyrolysis-molecular beam mass spectroscopy (py-MBMS) to define the signature of known reference compounds (adenine, indole, palmitic acid, etc.) and biological samples (chitin, fungi, cellulose, etc.) separately and when added to whole soilsmore » it was possible to make py-MBMS more quantitative. Reference compounds, spanning a wide variety of compound categories, and biological samples, expected to be present in SOM, were added to three soils from Colorado, Ohio, and Massachusetts that have varying total C, % clay, and clay type. Py-MBMS, a rapid analysis technique originally developed to analyze complex biomolecules, flash pyrolyzes soil organic matter to form products that are often considered characteristic of the original molecular structure. Samples were pyrolyzed at 550 degrees C by py-MBMS. All samples were weighed and %C and %N determined both before and after pyrolysis to evaluate mass loss, C loss, and N loss for the samples.An average relationship of r2 = 0.76 (P = 0.005) was found for the amount of cellulose added to soil at 25, 50, and 100% of soil C relative to the ion intensity of select mass/charge of the compound.There was a relationship of r2 = 0.93 (P < 0.001) for the amount of indole added to soil at 25, 50, and 100% of soil C and the ion intensity of the associated mass variables (mass/charge). Comparing spectra of pure compounds with the spectra of the compounds added to soil and isolated clay showed that interference could occur based on soil type and compound with the Massachusetts soil with high C (55.8 g C kg-1) and low % clay (5.4%) having the least interference and the Colorado soil with low C (14.6 g C kg-1) and a moderate smectite clay content of 14% having the greatest soil interference. Due to soil interference from clay type and content and varying optimum temperatures of pyrolysis for different compounds it is unlikely that analytical pyrolysis can be quantitative for all types of compounds. Select compound categories such as carbohydrates have the potential to be quantified in soil with analytical pyrolysis due to the fact that they: 1) almost fully pyrolyzed, 2) were represented by a limited number of m/z, and 3) had a strong relationship with the amount added and the total ion intensity produced. The three different soils utilized in this study had similar proportions of C pyrolyzed in the whole soil (54-57%) despite differences in %C and %clay between the soils. Mid-infrared spectroscopic analyses of the soil before and after pyrolysis showed that pyrolysis resulted in reductions in the 3400, 2930-2870, 1660 and 1430 cm-1 bands. These bands are primarily representative of O-H and N-H bonds, C-H stretch, and ..delta.. (CH2) in polysaccharides/lipid and are associated with mineralizable SOM. The incorporation of standards into routine analytical pyrolysis allowed us to assess the quantitative potential of py-MBMS along with the effect of the mineral matrix, which we believe is applicable to all forms of analytical pyrolysis.« less

  6. The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent.

    PubMed

    Pawlett, Mark; Ritz, Karl; Dorey, Robert A; Rocks, Sophie; Ramsden, Jeremy; Harris, Jim A

    2013-02-01

    Nanosized zero-valent iron (nZVI) is an effective land remediation tool, but there remains little information regarding its impact upon and interactions with the soil microbial community. nZVI stabilised with sodium carboxymethyl cellulose was applied to soils of three contrasting textures and organic matter contents to determine impacts on soil microbial biomass, phenotypic (phospholipid fatty acid (PLFA)), and functional (multiple substrate-induced respiration (MSIR)) profiles. The nZVI significantly reduced microbial biomass by 29 % but only where soil was amended with 5 % straw. Effects of nZVI on MSIR profiles were only evident in the clay soils and were independent of organic matter content. PLFA profiling indicated that the soil microbial community structure in sandy soils were apparently the most, and clay soils the least, vulnerable to nZVI suggesting a protective effect imparted by clays. Evidence of nZVI bactericidal effects on Gram-negative bacteria and a potential reduction of arbuscular mycorrhizal fungi are presented. Data imply that the impact of nZVI on soil microbial communities is dependent on organic matter content and soil mineral type. Thereby, evaluations of nZVI toxicity on soil microbial communities should consider context. The reduction of AM fungi following nZVI application may have implications for land remediation.

  7. [Effects of Land Use Type on Soil Microbial Biomass Carbon and Nitrogen in Water-Stable Aggregates in Jinyun Mountain].

    PubMed

    Li, Zeng-quan; Jiang, Chang-sheng; Hao, Qing-ju

    2015-11-01

    In this study, four land use types including subtropical evergreen broad-leaved forest (abbreviation: forest), sloping farmland, orchard and abandoned land were selected to collect soil samples from 0 to 60 cm depth at the same altitude in Jinyun Mountain. Four sizes of large macroaggregates (> 2 mm), small macroaggregates (0.25-2 mm), microaggregates (0.053-0.25 mm) and silt + clay (< 0.053 mm) were achieved by wet sieving method and the contents of microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) in each aggregate fraction were measured to study the impacts of the different land use types on MBC and MBN in soil aggregates. The results showed that the contents of MBC and MBN in all aggregates in the four land use types decreased with the increasing soil depth. Except large macroaggregetes, the contents of MBC and MBN in the other three soil aggregates decreased when the forest was reclamated into orchard and sloping farmland. MBC and MBN contents in large macroaggregates, small macroaggregates and microaggregates all increased when the sloping farmland was abandoned. The storages of organic carbon and nitrogen in soil depth of 0-60 cm in the four proportions were calculated by the equivalent soil mass method. The results revealed that MBC storages in the other three sizes except silt + clay were higher in the forest than those in orchard and sloping land. And MBC storages in the all aggregates were higher in the abandoned land than those in the sloping land. MBN storages in small macroaggregates and microaggregates were higher in the forest than those in orchard and sloping land. And MBN storages in the other three aggregates except silt + clay were higher in the abandoned land than those in the sloping land. Generally speaking, the storages of MBC in soil aggregates of forest and abandoned land were higher than in orchard and sloping land, MBN storage in soil aggregates of forest was nearly equal to the storage in orchard. However, the storages of MBN in soil aggregates of forest and abandoned land were higher than those in sloping land. The results showed that the reclamation of the forest resulted in the loss of MBC and MBN in soil aggregates of sloping land. However, the abandon of the sloping land contributed to the acumulation of MBC and MBN in soil aggregates. In the process of land use change, the direction and quantity of change in MBC in the soil aggregates were not consistent with those of the total soil organic carbon, which meant the microbial quotient in soil aggregates was not suitable for using to evaluate the impact of land use change on soil quality, using the total organic carbon as an index to express the sensitivity of the land use change may be better.

  8. Microbiologically Influenced Corrosion

    DTIC Science & Technology

    2015-11-05

    high in water content, are less corrosive owing to their elevated viscosity and resulting low conductivity (᝺-7 S/cm) [30]. Asphaltenes and resins...wet surface to a water-wet surface. Sludge deposits are combinations of hydrocarbons, sand, clay , corTosion prod- ucts, and biomass that can reach 50...fine clay sun·ounded by a film of water. Under low flow conditions, these particles precipitate and form a sludge deposit. 27.4 TESTING 27 .4.1 A

  9. Changes in the HOAr isotope composition of clays during retrograde alteration

    USGS Publications Warehouse

    Wilson, M.R.; Kyser, T.K.; Mehnert, H.H.; Hoeve, J.

    1987-01-01

    K-Ar ages of illite alteration associated with Middle Proterozoic Athabasca unconformity-type U deposits in Saskatchewan range from 414 to 1493 Ma. The K-Ar ages correlate with water contents and ??D values such that illites with young K-Ar ages have ??D values as low as -169 and water contents as high as 7.7 wt.% whereas illites with older ages have ??D values near -70 and water contents near 4 wt.%. Water extracted at 400??C from illites with low ??D values and high water contents has low ??D and ??18O values similar to those of modern meteoric water suggesting that some of the illites associated with the original deposition of the ore underwent varying degrees of retrograde alteration. The alteration is initiated by hydration of sites in the interlayer region of the illite which results in the partial resetting of the K-Ar ages and introduction of excess structural water in the form of interlamellar water. The interlamellar water is enriched in 18O by about 7 per mil relative to the water that physically surrounded the clay particle. Further alteration decreases the ??D value and increases the ??18O value of the illite by isotopic exchange between the mineral and the interlamellar water. Although the chemical compositions and XRD patterns of the altered illites indicate that no detectable smectite component is present in the samples, the isotopic results suggest that the altered illites may be an early precursor in the formation of mixed-layer illite/smectite by retrograde alteration of pure illite. The wide variation of ??D values of chlorite and kaolinite from these U deposits is analogous to that of the illite suggesting that retrograde alteration of clays by meteoric water can be substantial. The general association of altered clays with areas containing the highest concentrations of U is probably related to localized permeability within the ore zone. ?? 1987.

  10. Insightful understanding of the role of clay topology on the stability of biomimetic hybrid chitosan-clay thin films and CO2-dried porous aerogel microspheres.

    PubMed

    Frindy, Sana; Primo, Ana; Qaiss, Abou El Kacem; Bouhfid, Rachid; Lahcini, Mohamed; Garcia, Hermenegildo; Bousmina, Mosto; El Kadib, Abdelkrim

    2016-08-01

    Three natural clay-based microstructures, namely layered montmorillonite (MMT), nanotubular halloysite (HNT) and micro-fibrillar sepiolite (SP) were used for the synthesis of hybrid chitosan-clay thin films and porous aerogel microspheres. At a first glance, a decrease in the viscosity of the three gel-forming solutions was noticed as a result of breaking the mutual polymeric chains interaction by the clay microstructure. Upon casting, chitosan-clay films displayed enhanced hydrophilicity in the order CS

  11. Effects of fines content on hydraulic conductivity and morphology of laterite soil as hydraulic barrier

    NASA Astrophysics Data System (ADS)

    Bello Yamusa, Yamusa; Yunus, Nor Zurairahetty Mohd; Ahmad, Kamarudin; Rahman, Norhan Abd; Sa'ari, Radzuan

    2018-03-01

    Laterite soil was investigated to find out the effects of fines content and to identify the micro-structural and molecular characteristics to evaluate its potentiality as a compacted soil landfill liner material. Tests were carried out on natural soil and reconstituted soil by dry weight of soil samples to determine the physical and engineering properties of the soil. All tests were carried out on the samples by adopting the British Standard 1377:1990. The possible mechanisms that contributed to the clay mineralogy were analyzed using spectroscopic and microscopic techniques such as field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) and X-ray diffractometry (XRD). The laterite soil was found to contain kaolinite as the major clay minerals. A minimum of 50% fines content of laterite soil met the required result for hydraulic barriers in waste containment facilities.

  12. The influences of selected soil properties on Pb availability and its transfer to wheat (Triticum aestivum L.) in a polluted calcareous soil.

    PubMed

    Safari, Yaser; Delavar, Mohammad-Amir; Zhang, Chaosheng; Esfandiarpour-Boroujeni, Isa; Owliaie, Hamid-Reza

    2015-12-01

    Accumulated anthropogenic heavy metals in the surface layer of agricultural soils may be transferred through the food chain via plant uptake processes. The objectives of this study were to assess the spatial distribution of lead (Pb) in the soils and wheat plants and to determine the soil properties which may affect the Pb transferring from soil to wheat plants in Zanjan Zinc Town area, northwestern Iran. A total of 110 topsoil samples (0-20 cm) were systematically collected from an agricultural area near a large metallurgical factory for the analyses of physico-chemical properties and total and bioavailable Pb concentrations. Furthermore, a total of 65 wheat samples collected at the same soil sampling locations were analyzed for Pb concentration in different plant parts. The results showed that elevated Pb concentrations were mostly found in soils located surrounding the industrial source of pollution. The bioavailable Pb concentration in the studied soils was up to 128.4 mg kg(-1), which was relatively high considering the observed soil alkalinity. 24.6% of the wheat grain samples exceeded the FAO/WHO maximum permitted concentration of Pb in wheat grain (0.2 mg kg(-1)). Correlation analyses revealed that soil organic matter, soil pH, and clay content showed insignificant correlation with Pb concentration in the soil and wheat grains, whereas calcium carbonate content showed significantly negative correlations with both total and bioavailable Pb in the soil, and Pb content in wheat grains, demonstrating the strong influences of calcium carbonate on Pb bioavailability in the polluted calcareous soils.

  13. Correlations between soil characteristics and radioactivity content of Vojvodina soil.

    PubMed

    Forkapic, S; Vasin, J; Bikit, I; Mrdja, D; Bikit, K; Milić, S

    2017-01-01

    During the years 2001 and 2010, the content of 238 U, 226 Ra, 232 Th, 40 K and 137 Cs in agricultural soil and soil geochemical characteristics were measured on 50 locations in Northern Province of Serbia - Vojvodina. The locations for sampling were selected so that they proportionately represent all geomorphologic units in the region. The content of clay and humus varied within wide limits depending on soil type and influence the activity concentrations of radionuclides. In this paper we analyzed correlations between radionuclides content and geochemical characteristics of the soil. Possible influence of fertilizers on 238 U content in soil was discussed. The main conclusion is that measured maximal activity concentrations for 238 U (87 Bq/kg), 226 Ra (44.7 Bq/kg), 232 Th (55.5 Bq/kg) and 137 Cs (29 Bq/kg) at 30 cm depth could not endanger the safety of food production. The process of genesis of soil and cultivation mode plays a dominant role on the characteristics of the soil. The most significant correlation was found between the activity concentrations of 40 K and clay content in agricultural soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Clay hydration/dehydration in dry to water-saturated supercritical CO2: Implications for caprock integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loring, John S.; Schaef, Herbert T.; Thompson, Christopher J.

    2013-01-01

    Injection of supercritical CO2 (scCO2) for the geologic storage of carbon dioxide will displace formation water, and the pore space adjacent to overlying caprocks could eventually be dominated by dry to water-saturated scCO2. Wet scCO2 is highly reactive and capable of carbonating and hydrating certain minerals, whereas anhydrous scCO2 can dehydrate water-containing minerals. Because these geochemical processes affect solid volume and thus porosity and permeability, they have the potential to affect the long-term integrity of the caprock seal. In this study, we investigate the swelling and shrinkage of an expandable clay found in caprock formations, montmorillonite (Ca-STx-1), when exposed tomore » variable water-content scCO2 at 50 °C and 90 bar using a combination of in situ probes, including X-ray diffraction (XRD), in situ magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR), and in situ attenuated total reflection infrared spectroscopy (ATR-IR). We show that the extent of montmorillonite clay swelling/shrinkage is dependent not only on water hydration/dehydration, but also on CO2 intercalation reactions. Our results also suggest a competition between water and CO2 for interlayer residency where increasing concentrations of intercalated water lead to decreasing concentrations of intercalated CO2. Overall, this paper demonstrates the types of measurements required to develop fundamental knowledge that will enhance modeling efforts and reduce risks associated with subsurface storage of CO2.« less

  15. Sequence-stratigraphic controls on sandstone diagenesis: An example from the Williams Fork formation, Piceance Basin, Colorado

    NASA Astrophysics Data System (ADS)

    Aboktef, Adel

    This study documents the distribution of diagenetic alterations in Williams Fork fluvial sandstones, assess sequence stratigraphic controls on diagenetic features, and addresses diagenetic impacts on porosity. Petrographic point counts of 220 thin sections from six wells forms the database. The near absence of potassium feldspar and volcanic rock fragments in the lower Williams Fork interval and increasing plagioclase content upward represent changes in sediment provenance rather than stratigraphic variability in diagenesis. The lower Williams Fork sands are from sedimentary sources whereas middle and upper Williams Fork sands include input from magmatic arcs and basement uplifts. Compaction, early and late cementation, dissolution, and replacement by calcite or clay minerals combined to alter Williams Fork sandstones. Infiltration of clays occurred prior to any burial. Chlorite, quartz, non-ferroan calcite, compaction and dissolution features, and kaolinite formed during eo-diagenesis at <70°C. More quartz, compaction and dissolution features, plus albite, illite, mixed-layer illite/smectite, ferroan calcite, and dolomite formed in the meso-diagenetic realm (>70°C). Four of these features show spatial variability with respect to systems tracts. Infiltrated clays are concentrated in lowstand systems tracts (LST) and highstand systems tracts (HST) because accommodation space rose slow or fell during deposition of those sands, which led to prolonged sand body exposure on floodplain and ample opportunities for downward percolation of mud during flood events. Concentration of pseudomatrix (mud intraclasts) in HST and LST deposits resulted from floodplain erosion when base-level fell with decreasing accommodation space. Authigenic chlorite formed in the HST and transgressive systems tracts (TST) of the upper half of the Williams Fork Formation because volcanic clasts are abundant in that interval. Quartz overgrowths are more likely to exceed 7% in TST deposits for reasons that are unknown. High total clay content (infiltrated, grain coatings, pseudomatrix) does inhibit quartz overgrowths in all systems tracts. Williams Fork sandstones form low-permeability tight-gas reservoirs. Primary porosity was almost entirely destroyed by compaction and cementation. Reservoir rock resulted from one of two pathways. Eogenetic authigenic chlorite and/or calcite inhibited quartz cementation, minimized compaction and protected some primary porosity. Alternately, dissolution of framework grains or cements created secondary porosity. The later pathway tends to be the more dominant.

  16. Soil formation in the Tsauchab Valley, Namibia

    NASA Astrophysics Data System (ADS)

    Eden, Marie; Bens, Oliver; Ramisch, Arne; Schwindt, Daniel; Völkel, Jörg

    2016-04-01

    The BMBF-funded project GeoArchives (Spaces) investigates soils and sediments in Southern Africa. A focus area lies on the Tsauchab Valley (Namibia), South of the Naukluft mountain range (24°26'40'' S, 16°10'40'' E). On a gently sloping alluvial fan facing East towards the river, the surface is characterized by a desert pavement covering soils used as farmland. The landscape units were mapped and the area at the lower slope of a hill was divided into three units: a rinsing surface and a gravel plain, separated by a channel. On these surfaces soil profiles were excavated. Profile description followed the German system (Bodenkundliche Kartieranleitung KA 5) and disturbed samples were taken at various depths and analysed in the lab. Undisturbed soil cores with a volume of 100 cm³ were taken just below the surface at a depth of ~1-6 cm. Lab analyses included texture and gravel content, colour, pH, electrical conductivity, carbonates, CNS, cation exchange capacity, pedogenic oxides, main and trace elements (XRF), and clay mineral distribution (XRD). Undisturbed samples were used to determine soil water retention curve, air permeability and bulk density. The profiles revealed moderately developed cambic soils rich in clay minerals and with total carbon contents ranging up to 1.8 %, bearing shrubs and after episodic rainfall a dense grass vegetation. Their genesis is discussed and interpreted in the context of the landscape and climate history of this semi-desert environment.

  17. Implications of Microstructural Studies of the SAFOD Gouge for the Strength and Deformation Mechanisms in the Creeping Segment of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Hadizadeh, J.; Gratier, J. L.; Mittempergher, S.; Renard, F.; Richard, J.; di Toro, G.; Babaie, H. A.

    2010-12-01

    The San Andreas Fault zone (SAF) in the vicinity of the San Andreas Fault Observatory at Depth (SAFOD)in central California is characterized by an average 21 mm/year aseismic creep and strain release through repeating M<3 earthquakes. Seismic inversion studies indicate that the ruptures occur on clusters of stationary patches making up 1% or less of the total fault surface area. The existence of these so-called asperity patches, although not critical in determining the fault strength, suggests interaction of different deformation mechanisms. What are the deformation mechanisms, and how do the mechanisms couple and factor into the current strength models for the SAF? The SAFOD provides core samples and geophysical data including cores from two shear zones where the main borehole casing is deforming. The studies so far show a weak fault zone with about 200m of low-permeability damage zone without anomalous temperature or high fluid pressure (Zoback et al. EOS 2010). To answer the above questions, we studied core samples and thin sections ranging in measured depths (MD) from 3059m to 3991m including gouge from borehole casing deformation zones. The methods of study included high resolution scanning and transmission electron microscopy, cathodoluminescence imaging, X-ray fluorescence mapping, and energy dispersive X-ray spectroscopy. The microstructural and analytical data suggest that deformation is by a coupling of cataclastic flow and pressure solution accompanied by widespread alteration of feldspar to clay minerals and other neomineralizations. The clay contents of the gouge and streaks of serpentinite are not uniformly distributed, but weakness of the creeping segment is likely to be due to intrinsically low frictional strength of the fault material. This conclusion, which is based on the overall ratio of clay/non-clay constituents and the presence of talc in the actively deforming zones, is consistent with the 0.3-0.45 coefficient of friction for the drill cuttings tested by others. We also considered weakening by diffusion-accommodated grain boundary sliding. There are two main trends in the microstructural data that provide a basis for explaining the creep rate and seismic activity: 1. Clay content of the gouge including serpentinite and talc increases toward the 1-3m wide borehole casing deformation zones, which are expected to be deforming at above the average creep rate 2. Evidence of pressure solution creep and fracture sealing is more abundant in the siltstone cataclasites than in the shale. Such rocks could act as rigid inclusions that are repeatedly loaded to seismic failure by creep of the surrounding clay gouge. Regular cycles of fracture and restrengthening by fracture sealing in and around the inclusions are thus expected. The inclusions may be viewed as asperity patches (or cluster of patches) that predominantly deform by pressure solution at below the average creep rate.

  18. The Activity Profile of Young Tennis Athletes Playing on Clay and Hard Courts: Preliminary Data.

    PubMed

    Adriano Pereira, Lucas; Freitas, Victor; Arruda Moura, Felipe; Saldanha Aoki, Marcelo; Loturco, Irineu; Yuzo Nakamura, Fábio

    2016-04-01

    The aim of this study was to compare the kinematic characteristics of tennis matches between red clay and hard courts in young tennis players. Eight young tennis players performed two tennis matches on different court surfaces. The match activities were monitored using GPS units. The distance covered in different velocity ranges and the number of accelerations were analyzed. The paired t test and inference based on magnitudes were used to compare the match physical performance between groups. The total distance (24% of difference), high-intensity running distance (15 - 18 km/h) (30% of difference), the number of high-intensity activities (44% of difference), the body load (1% of difference), and accelerations >1.5 g (1.5-2 g and >2 g 7.8 and 8.1 % of difference, respectively) were significantly greater in clay court than hard court matches ( p < 0.05). Matches played on the red clay court required players to cover more total and high-intensity running distances and engage in more high-intensity activities than the matches played on the hard court. Finally, on the clay court the body load and the number of accelerations performed (>1.5 g) were possibly higher than on the hard court.

  19. Assessment of the pollution and ecological risk of lead and cadmium in soils.

    PubMed

    Wieczorek, Jerzy; Baran, Agnieszka; Urbański, Krzysztof; Mazurek, Ryszard; Klimowicz-Pawlas, Agnieszka

    2018-03-27

    The aim of the study was to assess the content, distribution, soil binding capacity, and ecological risk of cadmium and lead in the soils of Malopolska (South Poland). The investigation of 320 soil samples from differently used land (grassland, arable land, forest, wasteland) revealed a very high variation in the metal content in the soils. The pollution of soils with cadmium and lead is moderate. Generally, a point source of lead and cadmium pollution was noted in the study area. The highest content of cadmium and lead was found in the northwestern part of the area-the industrial zones (mining and metallurgical activity). These findings are confirmed by the arrangement of semivariogram surfaces and bivariate Moran's correlation coefficients. Among the different types of land use, forest soils had by far the highest mean content of bioavailable forms of both metals. The results showed a higher soil binding capacity for lead than for cadmium. However, for both metals, extremely high (class 5) accumulation capacities were dominant. Based on the results, the investigated soils had a low (Pb) and moderate (Cd) ecological risk on living components. Soil properties, such as organic C, pH, sand, silt, and clay content, correlated with the content of total and bioavailable forms of metals in the soils. The correlations, despite being statistically significant, were characterized by very low values of correlation coefficient (r = 0.12-0.20, at p ≤ 0.05). Therefore, the obtained data do not allow to define any conclusions as to the relationships between these soil properties. However, it must be highlighted that there was a very strong positive correlation between the total content of cadmium and lead and their bioavailable forms in the soils.

  20. Molecular dynamics studies of polyurethane nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Strankowska, J.; Piszczyk, Ł.; Strankowski, M.; Danowska, M.; Szutkowski, K.; Jurga, S.; Kwela, J.

    2013-10-01

    Polyurethane PEO-based hydrogels have a broad range of biomedical applicability. They are attractive for drug-controlled delivery systems, surgical implants and wound healing dressings. In this study, a PEO based polyurethane hydrogels containing Cloisite® 30B, an organically modified clay mineral, was synthesized. Structure of nanocomposite hydrogels was determined using XRD technique. Its molecular dynamics was studied by means of NMR spectroscopy, DMA and DSC analysis. The mechanical properties and thermal stability of the systems were improved by incorporation of clay and controlled by varying the clay content in polymeric matrix. Molecular dynamics of polymer chains depends on interaction of Cloisite® 30B nanoparticles with soft segments of polyurethanes. The characteristic nanosize effect is observed.

  1. Dynamic mechanical properties and anisotropy of synthetic shales with different clay minerals under confining pressure

    NASA Astrophysics Data System (ADS)

    Gong, Fei; Di, Bangrang; Wei, Jianxin; Ding, Pinbo; Shuai, Da

    2018-03-01

    The presence of clay minerals can alter the elastic behaviour of reservoir rocks significantly as the type of clay minerals, their volume and distribution, and their orientation control the shale's intrinsic anisotropic behaviours. Clay minerals are the most abundant materials in shale, and it has been proven extremely difficult to measure the elastic properties of natural shale by means of a single variable (in this case, the type of clay minerals), due to the influences of multiple factors, including water, TOC content and complex mineral compositions. We used quartz, clay (kaolinite, illite and smectite), carbonate and kerogen extract as the primary materials to construct synthetic shale with different clay minerals. Ultrasonic experiments were conducted to investigate the anisotropy of velocity and mechanical properties in dry synthetic and natural shale as a function of confining pressure. Velocities in synthetic shale are sensitive to the type of clay minerals, possibly due to the different structures of the clay minerals. The velocities increase with confining pressure and show higher rate of velocity increase at low pressures, and P-wave velocity is usually more sensitive than S-wave velocity to confining pressure according to our results. Similarly, the dynamic Young's modulus and Poisson's ratio increase with applied pressure, and the results also reveal that E11 is always larger than E33 and ν31 is smaller than ν12. Velocity and mechanical anisotropy decrease with increasing stress, and are sensitive to stress and the type of clay minerals. However, the changes of mechanical anisotropy with applied stress are larger compared with the velocity anisotropy, indicating that mechanical properties are more sensitive to the change of rock properties.

  2. Anti-inflammatory, anti-bacterial, and cytotoxic activity of fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio-; Ramírez-Apan, María Teresa; Gómez-Vidales, Virginia; Palacios, Eduardo; Montoya, Ascención; Ronquillo de Jesús, Elba

    2015-05-01

    Produced worldwide at 1.2m tons per year, fibrous clays are used in the production of pet litter, animal feed stuff to roof parcels, construction and rheological additives, and other applications needing to replace long-fiber length asbestos. To the authors' knowledge, however, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the anti-inflammatory, anti-bacterial, and cytotoxic activity by sepiolite (Vallecas, Spain) and palygorskite (Torrejon El Rubio, Spain). The anti-inflammatory activity was determined using the 12-O-tetradecanoylphorbol-13-acetate (TPA) and myeloperoxidase (MPO) methods. Histological cuts were obtained for quantifying leukocytes found in the epidermis. Palygorkite and sepiolite caused edema inhibition and migration of neutrophils ca. 68.64 and 45.54%, and 80 and 65%, respectively. Fibrous clays yielded high rates of infiltration, explained by cleavage of polysomes and exposure of silanol groups. Also, fibrous clays showed high inhibition of myeloperoxidase contents shortly after exposure, but decreased sharply afterwards. In contrast, tubular clays caused an increasing inhibition of myeloperoxidase with time. Thus, clay structure restricted the kinetics and mechanism of myeloperoxidase inhibition. Fibrous clays were screened in vitro against human cancer cell lines. Cytotoxicity was determined using the protein-binding dye sulforhodamine B (SRB). Exposing cancer human cells to sepiolite or palygorskite showed growth inhibition varying with cell line. This study shows that fibrous clays served as an effective anti-inflammatory, limited by chemical transfer and cellular-level signals responding exclusively to an early exposure to clay, and cell viability decreasing significantly only after exposure to high concentrations of sepiolite. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils

    PubMed Central

    Vogel, Cordula; Mueller, Carsten W.; Höschen, Carmen; Buegger, Franz; Heister, Katja; Schulz, Stefanie; Schloter, Michael; Kögel-Knabner, Ingrid

    2014-01-01

    The sequestration of carbon and nitrogen by clay-sized particles in soils is well established, and clay content or mineral surface area has been used to estimate the sequestration potential of soils. Here, via incubation of a sieved (<2 mm) topsoil with labelled litter, we find that only some of the clay-sized surfaces bind organic matter (OM). Surprisingly, <19% of the visible mineral areas show an OM attachment. OM is preferentially associated with organo-mineral clusters with rough surfaces. By combining nano-scale secondary ion mass spectrometry and isotopic tracing, we distinguish between new labelled and pre-existing OM and show that new OM is preferentially attached to already present organo-mineral clusters. These results, which provide evidence that only a limited proportion of the clay-sized surfaces contribute to OM sequestration, revolutionize our view of carbon sequestration in soils and the widely used carbon saturation estimates. PMID:24399306

  4. Assessing the interactions of a natural antibacterial clay with model Gram-positive and Gram-negative human pathogens

    NASA Astrophysics Data System (ADS)

    Londono, S. C.; Williams, L. B.

    2013-12-01

    The emergence of antibiotic resistant bacteria and increasing accumulations of antibiotics in reclaimed water, drive the quest for new natural antimicrobials. We are studying the antibacterial mechanism(s) of clays that have shown an ability to destroy bacteria or significantly inhibit their growth. One possible mode of action is from soluble transition metal species, particularly reduced Fe, capable of generating deleterious oxygen radical species. Yet another possibility is related to membrane damage as a consequence of physical or electrostatic interaction between clay and bacteria. Both mechanisms could combine to produce cell death. This study addresses a natural antibacterial clay from the NW Amazon basin, South America (AMZ clay). Clay mineralogy is composed of disordered kaolinite (28.9%), halloysite (17.8%) illite (12%) and smectite (16.7%). Mean particle size is 1.6μm and total and specific surface area 278.82 and 51.23 m2/g respectively. The pH of a suspension (200mg/ml) is 4.1 and its Eh is 361mV after 24h of equilibration. The ionic strength of the water in equilibrium with the clay after 24 h. is 6 x10-4M. These conditions, affect the element solubility, speciation, and interactions between clay and bacteria. Standard microbiological methods were used to assess the viability of two model bacteria (Escherichia coli and Bacillus subtilis) after incubation with clay at 37 degC for 24 hrs. A threefold reduction in bacterial viability was observed upon treatment with AMZ clay. We separated the cells from the clay using Nycodenz gradient media and observed the mounts under the TEM and SEM. Results showed several membrane anomalies and structural changes that were not observed in the control cells. Additionally, clay minerals appeared in some places attached to cell walls. Experiments showed that exchanging AMZ clay with KCl caused loss of antibacterial property. Among the exchangeable -and potentially toxic- ions we measured Al+3, Cu+2, Zn+2, Ba+2 and Co+2. Besides being toxic at high concentrations, these species affect the electrophoretic interactions between clay and bacteria surfaces. Additionally, the cation exchange neutralizes the clay surface charge thus modifying further the behavior of particles in suspension. Therefore, we evaluated the clay and bacteria zeta potential (ζ) as an index for possible electrostatic forces and modeled the total interactions using DLVO theory. We suspended the particles in water equilibrated with clay (leachate). Results show that at pH 4, the ζ of clays is -14 mV while it is -3mV for bacteria. The divalent ions and trivalent Aluminum, present in the AMZ leachate, compress the thickness of the double layer (hydration shell) thus decreasing electrostatic repulsion and allowing particles to come closer. The proximity of particles increases the probability of attractive forces to bind clays and cells. In summary, results indicate that a process other than simple chemical transfer from clay to bacteria is operating. The electrostatic attraction and physical proximity may enhance the toxic action of metals and interfere with the membrane properties or processes.

  5. Soil type and texture impacts on soil organic carbon accumulation in a sub-tropical agro-ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonçalves, Daniel Ruiz Potma; Sa, Joao Carlos de Moraes; Mishra, Umakant

    Soil organic carbon (C) plays a fundamental role in tropical and subtropical soil fertility, agronomic productivity, and soil health. As a tool for understand ecosystems dynamics, mathematical models such as Century have been used to assess soil's capacity to store C in different environments. However, as Century was initially developed for temperate ecosystems, several authors have hypothesized that C storage may be underestimated by Century in Oxisols. We tested the hypothesis that Century model can be parameterized for tropical soils and used to reliably estimate soil organic carbon (SOC) storage. The aim of this study was to investigate SOC storagemore » under two soil types and three textural classes and quantify the sources and magnitude of uncertainty using the Century model. The simulation for SOC storage was efficient and the mean residue was 10 Mg C ha -1 (13%) for n = 91. However, a different simulation bias was observed for soil with <600 g kg -1 of clay was 16.3 Mg C ha -1 (18%) for n = 30, and at >600 g kg -1 of clay, was 4 Mg C ha -1 (5%) for n = 50, respectively. The results suggest a non-linear effect of clay and silt contents on C storage in Oxisols. All types of soil contain nearly 70% of Fe and Al oxides in the clay fraction and a regression analysis showed an increase in model bias with increase in oxides content. Consequently, inclusion of mineralogical control of SOC stabilization by Fe and Al (hydro) oxides may improve results of Century model simulations in soils with high oxides contents« less

  6. Microstructural controls on the macroscopic behavior of geo-architected rock samples

    NASA Astrophysics Data System (ADS)

    Mitchell, C. A.; Pyrak-Nolte, L. J.

    2017-12-01

    Reservoir caprocks, are known to span a range of mechanical behavior from elastic granitic units to visco-elastic shale units. Whether a rock will behave elastically, visco-elastically or plastically depends on both the compositional and textural or microsctructural components of the rock, and how these components are spatially distributed. In this study, geo-architected caprock fabrication was performed to develop synthetic rock to study the role of rock rheology on fracture deformations, fluid flow and geochemical alterations. Samples were geo-architected with Portland Type II cement, Ottawa sand, and different clays (kaolinite, illite, and Montmorillonite). The relative percentages of these mineral components are manipulated to generate different rock types. With set protocols, the mineralogical content, texture, and certain structural aspects of the rock were controlled. These protocols ensure that identical samples with the same morphological and mechanical characteristics are constructed, thus overcoming issues that may arise in the presence of heterogeneity and high anisotropy from natural rock samples. Several types of homogeneous geo-architected rock samples were created, and in some cases the methods were varied to manipulate the physical parameters of the rocks. Characterization of rocks that the samples exhibit good repeatability. Rocks with the same mineralogical content generally yielded similar compressional and shear wave velocities, UCS and densities. Geo-architected rocks with 10% clay in the matrix had lower moisture content and effective porosities than rocks with no clay. The process by which clay is added to the matrix can strongly affect the resulting compressive strength and physical properties of the geo-architected sample. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).

  7. Soil moisture and excavation behaviour in the Chaco leaf-cutting ant (Atta vollenweideri): digging performance and prevention of water inflow into the nest.

    PubMed

    Pielström, Steffen; Roces, Flavio

    2014-01-01

    The Chaco leaf-cutting ant Atta vollenweideri is native to the clay-heavy soils of the Gran Chaco region in South America. Because of seasonal floods, colonies are regularly exposed to varying moisture across the soil profile, a factor that not only strongly influences workers' digging performance during nest building, but also determines the suitability of the soil for the rearing of the colony's symbiotic fungus. In this study, we investigated the effects of varying soil moisture on behaviours associated with underground nest building in A. vollenweideri. This was done in a series of laboratory experiments using standardised, plastic clay-water mixtures with gravimetric water contents ranging from relatively brittle material to mixtures close to the liquid limit. Our experiments showed that preference and group-level digging rate increased with increasing water content, but then dropped considerably for extremely moist materials. The production of vibrational recruitment signals during digging showed, on the contrary, a slightly negative linear correlation with soil moisture. Workers formed and carried clay pellets at higher rates in moist clay, even at the highest water content tested. Hence, their weak preference and low group-level excavation rate observed for that mixture cannot be explained by any inability to work with the material. More likely, extremely high moistures may indicate locations unsuitable for nest building. To test this hypothesis, we simulated a situation in which workers excavated an upward tunnel below accumulated surface water. The ants stopped digging about 12 mm below the interface soil/water, a behaviour representing a possible adaptation to the threat of water inflow field colonies are exposed to while digging under seasonally flooded soils. Possible roles of soil water in the temporal and spatial pattern of nest growth are discussed.

  8. Identification and characterization of hydrothermally altered zones in granite by combining synthetic clay content logs with magnetic mineralogical investigations of drilled rock cuttings

    NASA Astrophysics Data System (ADS)

    Meller, Carola; Kontny, Agnes; Kohl, Thomas

    2014-10-01

    Clay minerals as products of hydrothermal alteration significantly influence the hydraulic and mechanical properties of crystalline rock. Therefore, the localization and characterization of alteration zones by downhole measurements is a great challenge for the development of geothermal reservoirs. The magnetite bearing granite of the geothermal site in Soultz-sous-Forêts (France) experienced hydrothermal alteration during several tectonic events and clay mineral formation is especially observed in alteration halos around fracture zones. During the formation of clay minerals, magnetite was oxidized into hematite, which significantly reduces the magnetic susceptibility of the granite from ferrimagnetic to mostly paramagnetic values. The aim of this study was to find out if there exists a correlation between synthetic clay content logs (SCCLs) and measurements of magnetic susceptibility on cuttings in the granite in order to characterize their alteration mineralogy. Such a correlation has been proven for core samples of the EPS1 reference well. SCCLs were created from gamma ray and fracture density logs using a neural network. These logs can localize altered fracture zones in the GPK1-4 wells, where no core material is available. Mass susceptibility from 261 cutting samples of the wells GPK1-GPK4 was compared with the neural network derived synthetic logs. We applied a combination of temperature dependent magnetic susceptibility measurements with optical and electron microscopy, and energy dispersive X-ray spectroscopy to discriminate different stages of alteration. We found, that also in the granite cuttings an increasing alteration grade is characterized by an advancing oxidation of magnetite into hematite and a reduction of magnetic susceptibility. A challenge to face for the interpretation of magnetic susceptibility data from cuttings material is that extreme alteration grades can also display increased susceptibilities due to the formation of secondary magnetite. Low magnetic susceptibility can also be attributed to primary low magnetite content, if the granite facies changes. In order to interpret magnetic susceptibility from cuttings, contaminations with iron from wear debris of the drilling tools must be eliminated. Provided that the magnetic mineralogy of the granite is known in detail, this method in combination with petrographic investigations is suited to indicate and characterize hydrothermal alteration and the appearance of clay.

  9. Estimating spatial variations in water content of clay soils from time-lapse electrical conductivity surveys

    USDA-ARS?s Scientific Manuscript database

    Soil water content (theta) is one of the most important drivers for many biogeochemical fluxes at different temporal and spatial scales. Hydrogeophysical non-invasive sensors that measure the soil apparent electrical conductivity (ECa) have been widely used to infer spatial and temporal patterns of...

  10. Factors affecting transport of bacteria and microspheres through biochar-amended soils

    USDA-ARS?s Scientific Manuscript database

    We have investigated the role of biochar feedstock type (poultry litter extract and pine chips), biochar pyrolysis temperature (350 and 700 oC), biochar application rate (1, 2, and 10%), soil moisture content (saturated and 50% saturation), soil texture (1 and 12 % clay content), and surface propert...

  11. Formation and Coloring Mechanism of Typical Aluminosilicate Clay Minerals for CoAl2O4 Hybrid Pigment Preparation

    PubMed Central

    Zhang, Anjie; Mu, Bin; Wang, Xiaowen; Wen, Lixin; Wang, Aiqin

    2018-01-01

    Different kinds of aluminosilicate minerals were employed to fabricate CoAl2O4 hybrid pigment for studying its formation and coloring mechanism. It revealed that the color of the obtained hybrid pigments was determined by the content of Al2O3 and lightness of clay minerals. The higher the Al2O3 content and the lightness of clay minerals, the better the color parameters of hybrid pigments. During the preparation of hybrid pigments, CoAl2O4 nanoparticles were confined to be loaded on the surface of the aluminosilicate minerals, which effectively prevented from the aggregation and the size increase of CoAl2O4 nanoparticles. What's more, aluminosilicate mineral might be an ideal natural aluminum source to compensate the aluminum loss due to the dissolution of Al(OH)3 at alkaline medium during precursor preparation, keeping an optimum molar ratio of Co2+/Al3+ for formation of spinel CoAl2O4 pigments in the process of high-temperature crystallization. PMID:29725589

  12. Formation and Coloring Mechanism of Typical Aluminosilicate Clay Minerals for CoAl2O4 Hybrid Pigment Preparation.

    PubMed

    Zhang, Anjie; Mu, Bin; Wang, Xiaowen; Wen, Lixin; Wang, Aiqin

    2018-01-01

    Different kinds of aluminosilicate minerals were employed to fabricate CoAl 2 O 4 hybrid pigment for studying its formation and coloring mechanism. It revealed that the color of the obtained hybrid pigments was determined by the content of Al 2 O 3 and lightness of clay minerals. The higher the Al 2 O 3 content and the lightness of clay minerals, the better the color parameters of hybrid pigments. During the preparation of hybrid pigments, CoAl 2 O 4 nanoparticles were confined to be loaded on the surface of the aluminosilicate minerals, which effectively prevented from the aggregation and the size increase of CoAl 2 O 4 nanoparticles. What's more, aluminosilicate mineral might be an ideal natural aluminum source to compensate the aluminum loss due to the dissolution of Al(OH) 3 at alkaline medium during precursor preparation, keeping an optimum molar ratio of Co 2+ /Al 3+ for formation of spinel CoAl 2 O 4 pigments in the process of high-temperature crystallization.

  13. Relative contributions of wind and water erosion to total soil loss and its effect on soil properties in sloping croplands of the Chinese Loess Plateau.

    PubMed

    Tuo, Dengfeng; Xu, Mingxiang; Gao, Guangyao

    2018-08-15

    Wind and water erosion are two dominant types of erosion that lead to soil and nutrient losses. Wind and water erosion may occur simultaneously to varying extents in semi-arid regions. The contributions of wind and water erosion to total erosion and their effects on soil quality, however, remains elusive. We used cesium-137 ( 137 Cs) inventories to estimate the total soil erosion and used the Revised Universal Soil Loss Equation (RUSLE) to quantify water erosion in sloping croplands. Wind erosion was estimated from the subtraction of the two. We also used 137 Cs inventories to calculate total soil erosion and validate the relationships of the soil quality and erosion at different slope aspects and positions. The results showed that wind erosion (1460tkm -2 a -1 ) on northwest-facing slope was responsible for approximately 39.7% of the total soil loss, and water erosion (2216tkm -2 a -1 ) accounted for approximately 60.3%. The erosion rates were 58.8% higher on northwest- than on southeast-facing slopes. Northwest-facing slopes had lower soil organic carbon, total nitrogen, clay, and silt contents than southeast-facing slopes, and thus, the 137 Cs inventories were lower, and the total soil erosions were higher on the northwest-facing slopes. The variations in soil physicochemical properties were related to total soil erosion. The lowest 137 Cs inventories and nutrient contents were recorded at the upper positions on the northwest-facing slopes due to the successive occurrence of more severe wind and water erosion at the same site. The results indicated that wind and water could accelerate the spatial variability of erosion rate and soil properties and cause serious decreases in the nutrient contents in sloping fields. Our research could help researchers develop soil strategies to reduce soil erosion according to the dominant erosion type when it occurs in a hilly agricultural area. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Unraveling the antibacterial mode of action of a clay from the Colombian Amazon.

    PubMed

    Londono, Sandra Carolina; Williams, Lynda B

    2016-04-01

    Natural antibacterial clays can inhibit growth of human pathogens; therefore, understanding the antibacterial mode of action may lead to new applications for health. The antibacterial modes of action have shown differences based on mineralogical constraints. Here we investigate a natural clay from the Colombian Amazon (AMZ) known to the Uitoto natives as a healing clay. The physical and chemical properties of the AMZ clay were compared to standard reference materials: smectite (SWy-1) and kaolinite (API #5) that represent the major minerals in AMZ. We tested model Gram-negative (Escherichia coli ATCC #25922) and Gram-positive (Bacillus subtilis ATCC #6633) bacteria to assess the clay's antibacterial effectiveness against different bacterial types. The chemical and physical changes in the microbes were examined using bioimaging and mass spectrometry of clay digests and aqueous leachates. Results indicate that a single dose of AMZ clay (250 mg/mL) induced a 4-6 order of magnitude reduction in cell viability, unlike the reference clays that did not impact bacterial survival. AMZ clay possesses a relatively high specific surface area (51.23 m(2)/g) and much higher total surface area (278.82 m(2)/g) than the reference clays. In aqueous suspensions (50 mg clay/mL water), soluble metals are released and the minerals buffer fluid pH between 4.1 and 4.5. We propose that the clay facilitates chemical interactions detrimental to bacteria by absorbing nutrients (e.g., Mg, P) and potentially supplying metals (e.g., Al) toxic to bacteria. This study demonstrates that native traditional knowledge can direct scientific studies.

  15. Peptide formation in the prebiotic era - Thermal condensation of glycine in fluctuating clay environments

    NASA Technical Reports Server (NTRS)

    Lahav, N.; White, D.; Chang, S.

    1978-01-01

    As geologically relevant models of prebiotic environments, systems consisting of clay, water, and amino acids were subjected to cyclic variations in temperature and water content. Fluctuations of both variables produced longer oligopeptides in higher yields than were produced by temperature fluctuations alone. The results suggest that fluctuating environments provided a favorable geological setting in which the rate and extent of chemical evolution would have been determined by the number and frequency of cycles.

  16. A New Epoxy-Based Layered Silicate Nanocomposite Using a Hyperbranched Polymer: Study of the Curing Reaction and Nanostructure Development

    PubMed Central

    Cortés, Pilar; Fraga, Iria; Calventus, Yolanda; Román, Frida; Hutchinson, John M.; Ferrando, Francesc

    2014-01-01

    Polymer layered silicate (PLS) nanocomposites have been prepared with diglycidyl ether of bisphenol-A (DGEBA) epoxy resin as the matrix and organically modified montmorillonite (MMT) as the clay nanofiller. Resin-clay mixtures with different clay contents (zero, two, five and 10 wt%) were cured, both isothermally andnon-isothermally, using a poly(ethyleneimine) hyperbranched polymer (HBP), the cure kinetics being monitored by differential scanning calorimetry (DSC). The nanostructure of the cured nanocomposites was characterized by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), and their mechanical properties were determined by dynamic mechanical analysis (DMA) and impact testing. The results are compared with an earlier study of the structure and properties of the same DGEBA-MMT system cured with a polyoxypropylene diamine, Jeffamine. There are very few examples of the use of HBP as a curing agent in epoxy PLS nanocomposites; here, it is found to enhance significantly the degree of exfoliation of these nanocomposites compared with those cured with Jeffamine, with a corresponding enhancement in the impact energy for nanocomposites with the low clay content of 2 wt%. These changes are attributed to the different cure kinetics with the HBP, in which the intra-gallery homopolymerization reaction is accelerated, such that it occurs before the bulk cross-linking reaction. PMID:28788542

  17. Application of digital soil mapping in Argentina: An example using apparent soil electrical conductivity

    NASA Astrophysics Data System (ADS)

    Domenech, Marisa; Castro Franco, Mauricio; Costa, Jose Luis; Aparicio, Virginia

    2017-04-01

    Apparent soil electrical conductivity (ECa) has been used to capture soil data in several Argentinean Pampas locations. The aim of this study was to generate digital soil mapping on the basis of understanding the relation among ECa and soil properties in three farming fields of the southeast Buenos Aires province. We carried out a geostatistical analysis using ECa data obtained at two depths 0-30cm (ECa_30cm) and 0-90cm (ECa_90cm). Then, two zones derived from ECa measurements were delimited in each field. A soil-sampling scheme was applied in each zone using two depths: 0-30cm and 30-90cm. Texture, Organic Matter Content (OMC), cation-exchange capacity (CEC), pH, saturated paste electrical conductivity (ECe) and effective depth were analyzed. The relation between zones and soil properties were studied using nested factor ANOVA. Our results indicated that clay content and effective depth showed significant differences among ECa_30 zones in all fields. In Argentine Pampas, the presence of petrocalcic horizons limits the effective soil depth at field scale. These horizons vary in depth, structure, hardness and carbonates content. In addition, they influence the spatial pattern of clay content. The relation among other physical and chemical soil properties was not consistent. Two soil unit maps were delimited in each field. These results might support irrigation management due to clay content and effective depth would be controlling soil water storage. Our findings highlight the high accuracy use of soil sensors in developing digital soil mapping at field scale, irrigation management zones, precision agriculture and hydrological modeling in Pampas region conditions.

  18. Pharmaceuticals' sorptions relative to properties of thirteen different soils.

    PubMed

    Kodešová, Radka; Grabic, Roman; Kočárek, Martin; Klement, Aleš; Golovko, Oksana; Fér, Miroslav; Nikodem, Antonín; Jakšík, Ondřej

    2015-04-01

    Transport of human and veterinary pharmaceuticals in soils and consequent ground-water contamination are influenced by many factors, including compound sorption on soil particles. Here we evaluate the sorption isotherms for 7 pharmaceuticals on 13 soils, described by Freundlich equations, and assess the impact of soil properties on various pharmaceuticals' sorption on soils. Sorption of ionizable pharmaceuticals was, in many cases, highly affected by soil pH. The sorption coefficient of sulfamethoxazole was negatively correlated to soil pH, and thus positively related to hydrolytic acidity and exchangeable acidity. Sorption coefficients for clindamycin and clarithromycin were positively related to soil pH and thus negatively related to hydrolytic acidity and exchangeable acidity, and positively related to base cation saturation. The sorption coefficients for the remaining pharmaceuticals (trimethoprim, metoprolol, atenolol, and carbamazepine) were also positively correlated with the base cation saturation and cation exchange capacity. Positive correlations between sorption coefficients and clay content were found for clindamycin, clarithromycin, atenolol, and metoprolol. Positive correlations between sorption coefficients and organic carbon content were obtained for trimethoprim and carbamazepine. Pedotransfer rules for predicting sorption coefficients of various pharmaceuticals included hydrolytic acidity (sulfamethoxazole), organic carbon content (trimethoprimand carbamazepine), base cation saturation (atenolol and metoprolol), exchangeable acidity and clay content (clindamycin), and soil active pH and clay content (clarithromycin). Pedotransfer rules, predicting the Freundlich sorption coefficients, could be applied for prediction of pharmaceutical mobility in soils with similar soil properties. Predicted sorption coefficients together with pharmaceutical half-lives and other imputes (e.g., soil-hydraulic, geological, hydro-geological, climatic) may be used for assessing potential ground-water contamination. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Field and laboratory analysis of hillslope debris flows in Switzerland

    NASA Astrophysics Data System (ADS)

    Hürlimann, Marcel; McArdell, Brian W.; Rickli, Christian

    2014-05-01

    Hillslope or open-slope debris flows are unconfined flows that originate by shallow failures in colluvium or other unconsolidated material. The most common triggering factor is rainfall, sometimes combined with snowmelt. Hillslope debris flows can reach high velocity and runout distances up to several hundreds of meters. Although these facts confirm the important hazard of hillslope debris flows, little research has been performed on this type of mass movement. Thus, the present study intends to improve the knowledge on the characteristics of the initial failure as well as on the runout mechanisms. Two major tasks were carried out to achieve this major goal. First, detailed inventories of hill-slope debris flows in Switzerland during the last two decades were analysed. The datasets include field observations and measurements on morphometrics, hydrology and geology of more than 500 events. Second, laboratory tests were carried out to study the effect of the water content, the clay amount and the volume on the post-failure behaviour of the flow. The investigation of the inventories show that hill-slope debris flows mostly starts as translational slides of up to 400 - 500 m3 at a terrain slope angle between 25 to 45º. The initial failure has normally a mean thickness from 0.2 to 1.5m, a width between a few meters and 30 m and a length of 5 to 50 m. The maximum runout distance of the event is mostly less than 200 m, but there are also some events with distances of up to 500 m. These data were used to dimension the experimental set-up, with a scale factor of 20 and represented by a 7.5m long and 30º inclined laboratory slope. Flow velocity and flow depth were measured using point lasers installed at different positions along the slope and a high-speed camera, while the final deposit was documented using laser scanning techniques. First results with mixtures of 4 and 10 dm3, using clay amounts between 5 and 20% and water contents ranging from 22 to 32% show that even small changes of the clay amount and the water content strongly alters the behaviour of the flow and directly influence the maximum runout. The relationship between total runout distance and water content is best fit by a power law, which is consistent with previous studies. The results of this on-going study improve the understanding of the initiation and kinematics of hill-slope debris flows and provides useful inputs for a correct hazard assessment of this type of mass movements.

  20. Investigation of Wyoming Bentonite Hydration in Dry to Water-Saturated Supercritical CO2: Implications for Caprock Integrity

    NASA Astrophysics Data System (ADS)

    Loring, J. S.; Chen, J.; Thompson, C.; Schaef, T.; Miller, Q. R.; Martin, P. F.; Ilton, E. S.; Qafoku, O.; Felmy, A. R.; Rosso, K. M.

    2012-12-01

    The effectiveness of geologic sequestration as an enterprise for CO2 storage depends partly on the reactivity of supercritical CO2 (scCO2) with caprock minerals. Injection of scCO2 will displace formation water, and the pore space adjacent to overlying caprocks could eventually be dominated by dry to water-saturated scCO2. Caprock formations have high concentrations of clay minerals, including expandable montmorillonites. Water-bearing scCO2 is highly reactive and capable of hydrating or dehydrating clays, possibly leading to porosity and permeability changes that directly impact caprock performance. Dehydration will cause montmorillonite clay minerals in caprocks to contract, thereby decreasing solid volume and possibly increasing caprock permeability and porosity. On the other hand, water intercalation will cause these clays to expand, thereby increasing solid volume and possibly leading to self-sealing of caprock fractures. Pacific Northwest National Laboratory's Carbon Sequestration Initiative is developing capabilities for studying wet scCO2-mineral reactions in situ. Here, we introduce novel in situ infrared (IR) spectroscopic instrumentation that enables quantitative titrations of reactant minerals with water in scCO2. Results are presented for the infrared spectroscopic titrations of Na-, Ca-, and Mg-saturated Wyoming betonites with water over concentrations ranging from zero to scCO2 saturated. These experiments were carried out at 50°C and 90 bar. Transmission IR spectroscopy was used to measure concentrations of water dissolved in the scCO2 or intercalated into the clays. The titration curves evaluated from the transmission-IR data are compared between the three types of clays to assess the effects of the cation on water partitioning. Single-reflection attenuated total reflection (ATR) IR spectroscopy was used to collect the spectrum of the clays as they hydrate at every total water concentration during the titration. Clay hydration is evidenced by increases in absorbance of the OH stretching and HOH bending modes of the intercalated waters. The ATR-IR data also indicate that CO2 is intercalated in the clay. The asymmetric stretching band of the CO2 molecules that are intercalated in the clay is narrower than that stretching band of bulk scCO2, which indicates that the spectral contribution from rotational fine structure is minimal and the intercalated CO2 is rotationally constrained. A chemometrics analysis of the complete set of ATR-IR spectra spanning the range of total water concentrations covered in the titration finds that there are at least two types of intercalated waters, two types of intercalated CO2 molecules, and the concentrations of these intercalated waters and CO2 molecules are correlated. These quantitative data, when coupled with in situ XRD results that predict interlayer spacing and clay volume, demonstrate that water and CO2 intercalation processes in expandable montmorillonite clays could lead to porosity and permeability changes that directly impact caprock performance.

  1. Sugar-influenced water diffusion, interaction, and retention in clay interlayer nanopores probed by theoretical simulations and experimental spectroscopies

    NASA Astrophysics Data System (ADS)

    Aristilde, Ludmilla; Galdi, Stephen M.; Kelch, Sabrina E.; Aoki, Thalia G.

    2017-08-01

    Understanding the hydrodynamics in clay nanopores is important for gaining insights into the trapping of water, nutrients, and contaminants in natural and engineered soils. Previous investigations have focused on the interlayer organization and molecular diffusion coefficients (D) of cations and water molecules in cation-saturated interlayer nanopores of smectite clays. Little is known, however, about how these interlayer dynamic properties are influenced by the ubiquitous presence of small organic compounds such as sugars in the soil environment. Here we probed the effects of glucose molecules on montmorillonite interlayer properties. Molecular dynamics simulations revealed re-structuring of the interlayer organization of the adsorptive species. Water-water interactions were disrupted by glucose-water H-bonding interactions. ;Dehydration; of the glucose-populated nanopore led to depletion in the Na solvation shell, which resulted in the accumulation of both Na ions (as inner-sphere complexes) and remaining hydrated water molecules at the mineral surface. This accumulation led to a decrease in both DNa and Dwater. In addition, the reduction in Dglucose as a function of increasing glucose content can be explained by the aggregation of glucose molecules into organic clusters H-bonded to the mineral surface on both walls of the nanopore. Experimental nuclear magnetic resonance and X-ray diffraction data were consistent with the theoretical predictions. Compared to clay interlayers devoid of glucose, increased intensities and new peaks in the 23Na nuclear magnetic resonance spectra confirmed increasing immobilization of Na as a function of increasing glucose content. And, the X-ray diffraction data indicated a reduced collapse of glucose-populated interlayers exposed to decreasing moisture conditions, which led to the maintenance of hydrated clay nanopores. The coupling of theoretical and experimental findings sheds light on the molecular to nanoscale mechanisms that control the enhanced trapping of water molecules and solutes within sugar-enriched clay nanopores.

  2. Geochemical Fate and Transport of Diphenhydramine and Cetirizine in Soil

    NASA Astrophysics Data System (ADS)

    Wireman, R.; Rutherford, C. J.; Vulava, V. M.; Cory, W. C.

    2015-12-01

    Pharmaceuticals compounds presence in natural soils and water around the world has become a growing concern. These compounds are being discharged into the environment through treated wastewater or municipal sludge applications. The main goal of this study is determine their geochemical fate in natural soils. In this study we investigated sorption and transport behavior of diphenhydramine (DPH) and cetirizine (CTZ) in natural soils. These two commonly-used antihistamines are complex aromatic hydrocarbons with polar functional groups. Two clean acidic soils (pH~4.5) were used for these studies - an A-horizon soil that had higher organic matter content (OM, 7.6%) and a B-horizon soil that had lower OM (1.6%), but higher clay content (5.1%). Sorption isotherms were measured using batch reactor experiments. Data indicated that sorption was nonlinear and that it was stronger in clay-rich soils. The pKa's of DPH and CTZ are 8.98 and 8.27 respectively, i.e., these compounds are predominantly in cationic form at soil pH. In these forms, they preferentially sorb to negatively charged mineral surfaces (e.g., clay) present in the soils. Soil clay mineral characterization indicated that kaolinite was the dominant clay mineral present along with small amount of montmorillonite. The nonlinear sorption isotherms were fitted with Freundlich model. Transport behavior of both compounds was measured using glass chromatography columns. As expected both DPH and CTZ were strongly retained in the clay-rich soil as compared with OM-rich soil. The asymmetrical shape of the breakthrough curves indicated that there were likely two separate sorption sites in the soil, each with different reaction rates with each compound. A two-region advection-dispersion transport code was used to model the transport breakthrough curves. There was no evidence of transformation or degradation of the compounds during our sorption and transport studies.

  3. Forest Gaps Alter the Total Phenol Dynamics in Decomposing Litter in an Alpine Fir Forest

    PubMed Central

    Li, Han; Xu, Liya; Wu, Fuzhong; Yang, Wanqin; Ni, Xiangyin; He, Jie; Tan, Bo; Hu, Yi

    2016-01-01

    The total phenol content in decomposing litter not only acts as a crucial litter quality indicator, but is also closely related to litter humification due to its tight absorption to clay particles. However, limited attention has been focused on the total phenol dynamics in foliar litter in relation to forest gaps. Here, the foliar litter of six representative tree species was incubated on the forest floor from the gap center to the closed canopy of an alpine Minjiang fir (Abies faxoniana) forest in the upper reaches of the Yangtze River and eastern Tibetan Plateau. The dynamics of total phenol concentration in the incubated litter was measured from November 2012 to October 2014. Over two-year incubation, 78.22% to 94.06% of total phenols were lost from the foliar litter, but 52.08% to 86.41% of this occurred in the first year. Forest gaps accelerated the loss of total phenols in the foliar litter in the winter, although they inhibited the loss of total phenols during the growing season in the first year. In comparison with the effects of forest gaps, the variations of litter quality among different species were much stronger on the dynamics of total phenols in the second year. Overall, the loss of total phenols in the foliar litter was slightly higher in both the canopy gap and the expanded gap than in the gap center and under the closed canopy. The results suggest that the predicted decline in snow cover resulting from winter warming or vanishing gaps caused by forest regeneration will retard the loss of total phenol content in the foliar litter of alpine forest ecosystems, especially in the first decomposition year. PMID:26849120

  4. The influence of total suction on the brittle failure characteristics of clay shales

    NASA Astrophysics Data System (ADS)

    Amann, F.; Linda, W.; Zimmer, S.; Thoeny, R.

    2013-12-01

    Clay shale testing is challenging and the results obtained from standard laboratory tests may not always reflect the strength of the clay shale in-situ. This is to a certain extend associated with the sensitivity of these rock types to desaturation processes during drilling, sample storage, and sample preparation. In this study the relationship between total suction, uniaxial compressive strength and Brazilian tensile (BTS) strength of cylindrical samples of Opalinus Clay was established in a systematic manner. Unconfined uniaxial compression and BTS tests were performed utilizing a servo-controlled testing procedure. Total suctions in the specimens was generated in air tight desiccators using supersaturated saline solutions which establish a relative humidity ranging from 20% to 99%. For unconfined compressive strength tests loading of the specimens occurred parallel to bedding. For BTS tests loading was either oriented normal or perpendicular to bedding. Both, the crack initiation and volumetric strain reversal threshold values were determined using volumetric and radial stress-strain methods. The results of BTS tests show that the tensile strength normal and perpendicular to bedding increases by a factor of approximately 3 when total suction is increased from 0 to 90 MPa (i.e. saturation decreases from 1.0 to 0.7) . Beyond 90 MPa total suction no further increase in tensile strength was observed, most probably due to shrinkage cracks which alter the tensile strength of the clay shale. Results obtained from UCS tests suggest that higher total suctions result in higher UCS values. Between total suctions of 0 to 90 MPa, the strength increase is almost linear (i.e. the UCS increases by a factor of 1.5 MPa). Beyond 90 MPa total suction no further strength increase was observed. A similar trend can be observed for crack initiation and crack damage values. In the same range of total suction the crack initiation stress increases by a factor of 5 (from 2 MPa to 10 MPa), and the crack damage stress increases by a factor of 2 (from 6 to 12 MPa). In addition to UCS tests, the water retention curve of intact and disturbed specimens was established. Here, results indicate that the drying path remains nearly unaffected by mechanical damage. However, the wetting path is considerably affected by mechanical damage.

  5. February 2011 sensitive clay landslides in eastern Turkey

    NASA Astrophysics Data System (ADS)

    Akçar, N.; Yavuz, V.; Ivy-Ochs, S.; Fredin, O.; Schlunegger, F.

    2016-12-01

    The Çöllolar open pit mine is situated in the northwestern sector of the Elbistan basin, which is an intramontane basin located at a mean elevation of about 1200 m in the eastern Turkey. The basement rock in the basin is karstic limestone, which is overlain by a thick layer of clay (>100 m), followed by 20-50 m thick lignite series that is overlain by the 20-50 m thick gyttja sequence. These deposits are overlain by Quaternary deposits, comprising the top surfaces of the terraces of the Hurman River, which drains the surface and ground water from the surrounding hills to the northeast towards the center of the Elbistan basin. The lignite series in the basin has been excavated since early 1970's. In February 2011, two landslides in which 10 workers were killed, occurred in the Çöllolar mine. Of the two landslides, the 2nd and largest which covers an area of ca. 2.3 km2, was caused by the collapse of the northeastern wall of the open-pit mine. The failure was made of successive rearward collapses with the debris flowing into the open-pit. In this study, we focus on the sensitivity of the clays within the Quaternary deposits that seems led to instability and the trigger of the landslides based on the flow style of the movement and nature of the failure. To reveal these factors, we employed six boreholes and collected 64 undisturbed, 41 disturbed and 10 surface samples for the sedimentological and geotechnical analysis. Our results from this study show that Quaternary deposits are heterogeneous and have variable clay content. Mineralogically, most of these clays belong to the smectite group with high swelling potential. They are high plastic clays with high consolidation ratio. They have high shear and remolded shear strengths, thus low to medium sensitivity. Their sensitivity increases dramatically with increasing water content. During our analysis, we encountered a soft clay layer, which showed an over consolidation ratio of 10 and a strain softening response. This response is typical for quick clays. This indicates that the landslide was caused by the liquefaction of this layer within the thick sequence of this part of the Elbistan basin. In brief, we conclude that massive failures at the Çöllolar coalfield are unique examples of sensitive clay landslides occurred in a subtropical arid region beyond the extent of Quaternary glaciations.

  6. Fractal features of soil particle size distribution under different land-use patterns in the alluvial fans of collapsing gullies in the hilly granitic region of southern China

    PubMed Central

    Deng, Yusong; Cai, Chongfa; Xia, Dong; Ding, Shuwen; Chen, Jiazhou

    2017-01-01

    Collapsing gullies are among the most severe soil erosion problems in the tropical and subtropical areas of southern China. However, few studies have examined the relationship of soil particle size distribution (PSD) changes with land-use patterns in the alluvial fans of collapsing gullies. Recently, the fractal method has been applied to estimate soil structure and has proven to be an effective tool in analyzing soil properties and their relationships with other eco-environmental factors. In this study, the soil fractal dimension (D), physico-chemical properties and their relationship with different land-use patterns in alluvial fans were investigated in an experiment that involved seven collapsing gully areas in seven counties of southern China. Our results demonstrated that different land-use patterns of alluvial fans had a significant effect on soil physico-chemical properties. Compared to grasslands and woodlands, farmlands and orchards generally contained more fine soil particles (silt and clay) and fewer coarse particles, whereas significant differences were found in the fractal dimension of soil PSD in different land-use patterns. Specifically, the soil fractal dimension was lower in grasslands and higher in orchards relative to that of other land-use patterns. The average soil fractal dimension of grasslands had a value that was 0.08 lower than that of orchards. Bulk density was lower but porosity was higher in farmlands and orchards. Saturated moisture content was lower in woodlands and grasslands, but saturated hydraulic conductivity was higher in all four land-use patterns. Additionally, the fractal dimension had significant linear relationships with the silt, clay and sand contents and soil properties and exhibited a positive correlation with the clay (R2 = 0.976, P<0.001), silt (R2 = 0.578, P<0.01), organic carbon (R2 = 0.777, P<0.001) and saturated water (R2 = 0.639, P<0.01) contents but a negative correlation with gravel content (R2 = 0.494, P<0.01), coarse sand content (R2 = 0.623, P<0.01) and saturated hydraulic conductivity (R2 = 0.788, P<0.001). However, the fractal dimension exhibited no significant correlation with pH, bulk density or total porosity. Furthermore, the second-degree polynomial equation was found to be more adequate for describing the correlations between soil fractal dimension and particle size distribution. The results of this study demonstrate that a fractal dimension analysis of soil particle size distribution is a useful method for the quantitative description of different land-use patterns in the alluvial fans of collapsing gullies in southern China. PMID:28301524

  7. High heterogeneity in soil composition and quality in different mangrove forests of Venezuela.

    PubMed

    Otero, X L; Méndez, A; Nóbrega, G N; Ferreira, T O; Meléndez, W; Macías, F

    2017-09-18

    Mangrove forests play an important role in biogeochemical cycles of metals, nutrients, and C in coastal ecosystems. However, these functions could be strongly affected by the mangrove soil degradation. In this study, we performed an intensive sampling characterizing mangrove soils under different types of environment (lagoon/gulf) and vegetation (Rhizophora/Avicennia/dead mangrove) in the Venezuelan coast. To better understand the spatial heterogeneity of the composition and characteristics of the soils, a wide range of the soil attributes were analyzed. In general, the soils were anoxic (Eh < 200 mV), with a neutral pH and low concentration in toxic metals; nevertheless, they varied widely in the soil and its quality-defining parameters (e.g., clay contents, total organic carbon, Fe, Al, toxic trace metals). It is noteworthy that the mangroves presented a low Fe Pyrite content due to a limitation in the Fe oxyhydroxide contents, especially in soils with higher organic C content (TOC > 15%). Finally, the dead mangrove showed significantly lower amounts of TOC and fibers (in comparison to the well-preserved mangrove forest), which indicates that the C pools in mangrove soils are highly sensitive also to natural impact, such as ENSO.

  8. Reservoir characteristics of coal-shale sedimentary sequence in coal-bearing strata and their implications for the accumulation of unconventional gas

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhu, Yanming; Liu, Yu; Chen, Shangbin

    2018-04-01

    Shale gas and coalbed methane (CBM) are both considered unconventional natural gas and are becoming increasingly important energy resources. In coal-bearing strata, coal and shale are vertically adjacent as coal and shale are continuously deposited. Research on the reservoir characteristics of coal-shale sedimentary sequences is important for CBM and coal-bearing shale gas exploration. In this study, a total of 71 samples were collected, including coal samples (total organic carbon (TOC) content >40%), carbonaceous shale samples (TOC content: 6%-10%), and shale samples (TOC content <6%). Combining techniques of field emission scanning electron microscopy (FE-SEM), x-ray diffraction, high-pressure mercury intrusion porosimetry, and methane adsorption, experiments were employed to characterize unconventional gas reservoirs in coal-bearing strata. The results indicate that in the coal-shale sedimentary sequence, the proportion of shale is the highest at 74% and that of carbonaceous shale and coal are 14% and 12%, respectively. The porosity of all measured samples demonstrates a good positive relationship with TOC content. Clay and quartz also have a great effect on the porosity of shale samples. According to the FE-SEM image technique, nanoscale pores in the organic matter of coal samples are much more developed compared with shale samples. For shales with low TOC, inorganic minerals provide more pores than organic matter. In addition, TOC content has a positive relationship with methane adsorption capacity, and the adsorption capacity of coal samples is more sensitive than the shale samples to temperature.

  9. A mineralogical and granulometric study of Cayambe volcano debris avalanche deposit

    NASA Astrophysics Data System (ADS)

    Detienne, M.; Delmelle, P.; Guevara, A.; Samaniego, P.; Bustillos, J.; Sonnet, P.; Opfergelt, S.

    2013-12-01

    Volcano flank/sector collapse represents one of the most catastrophic volcanic hazards. Various volcanic and non-volcanic processes are known to decrease the stability of a volcanic cone, eventually precipitating its gravitational failure. Among them, hydrothermal alteration of volcanic rocks leading to clay mineral formation is recognized as having a large negative impact on rock strength properties. Furthermore, the presence of hydrothermal clays in the collapsing mass influences the behavior of the associated volcanic debris avalanche. In particular, clay-containing debris avalanches seem to travel farther and spread more widely than avalanches of similar volume but which do not incorporate hydrothermally-altered materials. However, the relationship between hydrothermal alteration, flank collapse and debris avalanche behavior is not well understood. The objective of this study is to better determine the volume and composition of hydrothermal clay minerals in the poorly characterized debris avalanche deposit (DAD) of Cayambe composite volcano, located in a densely populated area ~70 km northeast of Quito, Ecuador. Cayambe DAD originated from a sector collapse, which occurred less than 200 ka ago. The DAD is 10-20 m thick and has an estimated total volume of ~0.85 Km3. The H/L ratio (where H is the vertical drop and L is the travel distance of the avalanche) for Cayambe DAD is ~0.095, suggesting a high mobility. In the medial-distal zone, at 9-20 km from its source, the DAD consists of an unstratified and unsorted matrix supporting millimetric to metric clasts. It has a matrix facies (i.e. rich in particles < 2 mm) enriched in hydrothermally-altered materials. Preliminary results of granulometry measurements indicate that the matrix corresponds to ~55 wt.% of the deposit and suggest that the DAD behaved as a cohesive debris flow. Analysis of 13 matrix samples reveals a large variability in particle size distribution. This may reflect poor mixing of the collapsed material during transport. The clay fraction content in the matrix ranges from 15 to 30 wt.%, and does not show a relationship with the sample position in the DAD. Mineralogical determinations are in progress and will be presented.

  10. Classification problems of Mount Kenya soils

    NASA Astrophysics Data System (ADS)

    Mutuma, Evans; Csorba, Ádám; Wawire, Amos; Dobos, Endre; Michéli, Erika

    2017-04-01

    Soil sampling on the agricultural lands covering 1200 square kilometers in the Eastern part of Mount Kenya was carried out to assess the status of soil organic carbon (SOC) as a soil fertility indicator, and to create an up-to-date soil classification map. The geology of the area consists of volcanic rocks and recent superficial deposits. The volcanic rocks are related to the Pliocene time; mainly: lahars, phonolites, tuffs, basalt and ashes. A total of 28 open profiles and 49 augered profiles with 269 samples were collected. The samples were analyzed for total carbon, organic carbon, particle size distribution, percent bases, cation exchange capacity and pH among other parameters. The objective of the study was to evaluate the variability of SOC in different Reference Soil Groups (RGS) and to compare the determined classification units with the KENSOTER database. Soil classification was performed based on the World Reference Base (WRB) for Soil Resources 2014. Based on the earlier surveys, geological and environmental setting, Nitisols were expected to be the dominant soils of the sampled area. However, this was not the case. The major differences to earlier survey data (KENSOTER database) are the presence of high activity clays (CEC value range 27.6 cmol/kg - 70 cmol/kg), high silt content (range 32.6 % - 52.4 %) and silt/clay ratio (range of 0.6 - 1.4) keeping these soils out of the Nitisols RSG. There was good accordance in the morphological features with the earlier survey but failed the silt/clay ratio criteria for Nitisols. This observation calls attention to set new classification criteria for Nitisols and other soils of warm, humid regions with variable rate of weathering to avoid difficulties in interpretation. To address the classification problem, this paper further discusses the taxonomic relationships between the studied soils. On the contrary most of the diagnostic elements (like the presence Umbric horizon, Vitric and Andic properties) and the some qualifiers (Humic, Dystric, Clayic, Skeletic, Leptic, etc) represent useful information for land use and management in the area.

  11. Lithology and base of the surficial aquifer system, Palm Beach County, Florida

    USGS Publications Warehouse

    Miller, Wesley L.

    1987-01-01

    The surficial aquifer system is a major source of freshwater in Palm Beach County. In 1982, public supply withdrawals from the aquifer system totaled 33,543 million gallons, 77.5% of total public supply withdrawals. To evaluate the aquifer system and its geologic framework, a cooperative study with Palm Beach County was begun in 1982 by the U.S. Geological Survey. The surficial aquifer system in Palm Beach County is composed primarily of sand, sandstone, shell, silt, calcareous clay (marl), and limestone deposited during the Pleistocene and Pliocene epochs. In the western two-thirds of Palm Beach County, sediments in the aquifer system are poorly consolidated sand, shell, and sandy limestone. Owing to interspersed calcareous clays and silt and very poorly sorted materials, permeabilities in this zone of the aquifer system are relatively low. Two other zones of the aquifer system are found in the eastern one-third of the county where the sediments are appreciably more permeable than in the west due to better sorting and less silt and clay content. The location of more detailed lithologic logs for wells in these sections, along with data from nearby wells, allowed enhanced interpretation and depiction of the lithology which had previously been generalized. The most permeable zone of the aquifer system in this area is characterized by highly developed secondary porosity where infiltrating rainwater and solution by groundwater have removed calcitic-cementing materials from the sediments to produce interconnected cavities. Increased permeability in the aquifer system is generally coincident with the eastern boundary of the overlying organic soils and Lake Flirt Marl. Lithologic logs of wells in Palm Beach County indicate that sediments forming the aquifer system were deposited directly on the erosional surface of the Hawthorn Formation in some areas. In other locations in the county, lithologic logs indicate that the base of the aquifer system was formed by fluvial deposits containing erosional materials from the Tamiami and Hawthorn Formations and Caloosahatchee Marl. (Lantz-PTT)

  12. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China.

    PubMed

    Cai, Andong; Feng, Wenting; Zhang, Wenju; Xu, Minggang

    2016-05-01

    Mineral-associated organic carbon (MOC), that is stabilized by fine soil particles (i.e., silt plus clay, <53 μm), is important for soil organic carbon (SOC) persistence and sequestration, due to its large contribution to total SOC (TSOC) and long turnover time. Our objectives were to investigate how climate, soil type, soil texture, and agricultural managements affect MOC contributions to TSOC in China. We created a dataset from 103 published papers, including 1106 data points pairing MOC and TSOC across three major land use types: cropland, grassland, and forest. Overall, the MOC/TSOC ratio ranged from 0.27 to 0.80 and varied significantly among soil groups in cropland, grassland, and forest. Croplands and forest exhibited significantly higher median MOC/TSOC ratios than in grassland. Moreover, forest and grassland soils in temperate regions had higher MOC/TSOC ratios than in subtropical regions. Furthermore, the MOC/TSOC ratio was much higher in ultisol, compared with the other soil types. Both the MOC content and MOC/TSOC ratio were positively correlated with the amount of fine fraction (silt plus clay) in soil, highlighting the importance of soil texture in stabilizing organic carbon across various climate zones. In cropland, different fertilization practices and land uses (e.g., upland, paddy, and upland-paddy rotation) significantly altered MOC/TSOC ratios, but not in cropping systems (e.g., mono- and double-cropping) characterized by climatic differences. This study demonstrates that the MOC/TSOC ratio is mainly driven by soil texture, soil types, and related climate and land uses, and thus the variations in MOC/TSOC ratios should be taken into account when quantitatively estimating soil C sequestration potential of silt plus clay particles on a large scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments

    NASA Astrophysics Data System (ADS)

    Yang, Shou Ye; Jung, Hoi Soo; Choi, Man Sik; Li, Cong Xian

    2002-07-01

    Thirty-four samples from the Changjiang and Huanghe were analyzed to characterize their rare earth element (REE) compositions. Although REE concentrations in the Changjiang sediments are higher than those of the Huanghe sediments, the former are less variable. Bulk samples and acid-leachable fractions have convex REE patterns and middle REE enrichments relative to upper continental crust, whereas flat patterns are present in the residual fractions. Source rock composition is the primary control on REE composition, and weathering processes play a minor role. Grain size exerts some influence on REE composition, as demonstrated by the higher REE contents of clay minerals in sediments from both rivers. Heavy minerals contribute about 10-20% of the total REE in the sediments. Apatite is rare in the river sediments, and contributes less than 2% of the REE content, but other heavy minerals such as sphene, allanite and zircon are important reservoirs of residual REE fractions. The Fe-Mn oxides phase accounts for about 14% of bulk REE content in the Changjiang sediments, which could be one of the more important factors controlling REE fractionation in the leachable fraction.

  14. Fate of organic carbon from different waste materials in cropland soils

    NASA Astrophysics Data System (ADS)

    Paetsch, Lydia; Mueller, Carsten; Rumpel, Cornelia; Houot, Sabine; Kögel-Knabner, Ingrid

    2015-04-01

    Organic amendments are widely used to enhance the fertility of cropland soils. However, there is only scarce knowledge about the long term impact of added organic matter (OM) on the soil organic carbon (SOC) pool. Therefore, we analyzed a long-term field experiment in Feucherolles (France), which regularly received three different composts (home sorted bio-waste mixed with green waste (BIO), municipal solid waste (MSW) and a mixture of green waste and sewage sludge (GWS) and cattle manure since 1998. With these organic materials approximately 4 Mg total OC were added to the soil in two year intervals. The experiment was fully randomized with 4 replicates for each amendment. In September 2013 we took samples from the surface soil (0-5 cm of Ap horizon) of all 4 treatments and the unamended control. To study the chemical alteration and the fate of the added OC into different soil compartments, we fractionated the soils by physical means using a combined density and particle size protocol. Carbon and N content were determined in bulk soils, amendments as well as in size fractions (fPOM, oPOM <20µm and oPOM >20µm, sand, silt and a combined fine silt-clay fraction). Chemical composition was determined by solid-state 13C CPMAS NMR spectroscopy. We found significant higher C contents for the oPOM small and sand fraction of BIO treated soil and for the clay fraction of GWS treated soils (p<0.05). Nitrogen contents were significantly higher for BIO treated soils in bulk soil, fPOM, oPOM small and for GWS treated soils in bulk soil, fPOM and oPOM. The NMR measurements revealed that only the chemical composition of the fPOM differed according to the treatment; towards the more altered fractions as the oPOM small, the compositional differences leveled out and became almost homogeneous. Furthermore, the NMR measurements indicate a similar OC composition within the independent field replicates regarding the different amendments and fractions. As previously shown, N was found to be concentrated in the clay fractions, but interestingly we were able to show this also for the oPOM small. Proteins and peptides, as indicated by the broad resonance between 30 and 55 ppm, clearly point to the presence of microbial products and residues in this fraction.

  15. [Effect of Long-term Fertilizer Application on the Stability of Organic Carbon in Particle Size Fractions of a Paddy Soil in Zhejiang Province, China].

    PubMed

    Mao, Xia-li; Lu, Kou-ping; Sun, Tao; Zhang, Xiao-kai; He, Li-zhi; Wang, Hai-long

    2015-05-01

    Effects of chemical fertilizers and organic manure on the soil organic carbon (SOC) content in particle size fractions of paddy soil were investigated in a 17-year long-term fertilization field experiment in Zhejiang Province, China. The inherent chemical composition of silt- and clay-associated SOC was evaluated with solid-state 13C-NMR spectroscopy. Compared to CK (no fertilizer treatment), NPKRS (NPK fertilizers plus rice straw) , NPKOM (NPK fertilizers plus organic manure) , NPK (NPK fertilizers) and OM (organic manure alone) treatments significantly (P <0. 05) increased the SOC content of sand- (2-0.02 mm), silt- (0.02-0.002 mm) and clay-sized (< 0.002 mm) fractions. However, no significant difference was observed in the accumulation of silt- and clay-associated SOC between CK and rice straw (RS) treatments. Besides, in comparison with plots applied with NPK fertilizers alone, combined application of organic amendments and NPK fertilizers facilitated the storage of newly sequestered SOC in silt- and clay-sized fractions, which could be more conducive to the stability of SOC. Based on 13C-NMR spectra, both silt and clay fractions were composed of Alkyl-C, O-alkyl-C, Aromatic-C and carbonyl-C. Changes in the relative proportion of different C species were observed between silt and clay fractions: the clay fraction had relatively more Alkyl-C, carbonyl-C and less O-alkyl-C, Aromatic-C than those in the silt fraction. This might be ascribed to the fact that the organic matter complexed with clay was dominated by microbial products, whereas the silt appeared to be rich in aromatic residues derived from plants. The spectra also showed that the relative proportion of different C species was modified by fertilization practices. In comparison with organic amendments alone, the relative proportion of Alkyl-C was decreased by 9.1%-11.9% and 13.7%-19.9% under combined application of organic amendments and chemical fertilizers, for silt and clay, respectively, and that of O-alkyl-C was increased by 2.9%-6.3% and 13.4%-22.1%, respectively. These results indicated that NPKOM and NPKRS treatments reduced the decomposition rate of SOC. The aromaticity, hydrophobicity and, hence, chemical recalcitrance of silt- and clay-associated SOC in the NPK fertilizer treatments were lower than those of the organically amended plots and unfertilized treatments, indicating decreased recalcitrance of SOC against decomposition. We concluded that long-term application of organic manure combined with chemical fertilizers, either through increased accumulation of both recalcitrant compounds and carbohydrates or reduced decomposition of organic matter, was a sustainable strategy for facilitating carbon accumulation of the paddy soil investigated in this study.

  16. Dioctahedral Phyllosilicates Versus Zeolites and Carbonates Versus Zeolites Competitions as Constraints to Understanding Early Mars Alteration Conditions

    NASA Astrophysics Data System (ADS)

    Viennet, Jean-Christophe; Bultel, Benjamin; Riu, Lucie; Werner, Stephanie C.

    2017-11-01

    Widespread occurrence of Fe,Mg-phyllosilicates has been observed on Noachian Martian terrains. Therefore, the study of Fe,Mg-phyllosilicate formation, in order to characterize early Martian environmental conditions, is of particular interest to the Martian community. Previous studies have shown that the investigation of Fe,Mg-smectite formation alone helps to describe early Mars environmental conditions, but there are still large uncertainties in terms of pH range, oxic/anoxic conditions, etc. Interestingly, carbonates and/or zeolites have also been observed on Noachian surfaces in association with the Fe,Mg-phyllosilicates. Consequently, the present study focuses on the dioctahedral/trioctahedral phyllosilicate/carbonate/zeolite formation as a function of various CO2 contents (100% N2, 10% CO2/90% N2, and 100% CO2), from a combined approach including closed system laboratory experiments for 3 weeks at 120°C and geochemical simulations. The experimental results show that as the CO2 content decreases, the amount of dioctahedral clay minerals decreases in favor of trioctahedral minerals. Carbonates and dioctahedral clay minerals are formed during the experiments with CO2. When Ca-zeolites are formed, no carbonates and dioctahedral minerals are observed. Geochemical simulation aided in establishing pH as a key parameter in determining mineral formation patterns. Indeed, under acidic conditions dioctahedral clay minerals and carbonate minerals are formed, while trioctahedral clay minerals are formed in basic conditions with a neutral pH value of 5.98 at 120°C. Zeolites are favored from pH ≳ 7.2. The results obtained shed new light on the importance of dioctahedral clay minerals versus zeolites and carbonates versus zeolites competitions to better define the aqueous alteration processes throughout early Mars history.

  17. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao Zhao; Faculty of Architecture, Civil Engineering and Environment Engineering and Mechanics, Sichuan University; Ling, Tung-Chai

    2011-08-15

    Highlights: > Solved the scientific and technological challenges impeding use of waste rubble derived from earthquake, by providing an alternative solution of recycling the waste in moulded concrete block products. > Significant requirements for optimum integration on the utilization of the waste aggregates in the production of concrete blocks are investigated. > A thorough understanding of the mechanical properties of concrete blocks made with waste derived from earthquake is reported. - Abstract: Utilization of construction and demolition (C and D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However,more » the presence of large quantities of crushed clay brick in some the C and D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates.« less

  18. Soil respiration characteristics in different land uses and response of soil organic carbon to biochar addition in high-latitude agricultural area.

    PubMed

    Ouyang, Wei; Geng, Xiaojun; Huang, Wejia; Hao, Fanghua; Zhao, Jinbo

    2016-02-01

    The farmland tillage practices changed the soil chemical properties, which also impacted the soil respiration (R s ) process and the soil carbon conservation. Originally, the farmland in northeast China had high soil carbon content, which was decreased in the recent decades due to the tillage practices. To better understand the R s dynamics in different land use types and its relationship with soil carbon loss, soil samples at two layers (0-15 and 15-30 cm) were analyzed for organic carbon (OC), total nitrogen (TN), total phosphorus (TP), total carbon (TC), available nitrogen (AN), available phosphorus (AP), soil particle size distribution, as well as the R s rate. The R s rate of the paddy land was 0.22 (at 0-15 cm) and 3.01 (at 15-30 cm) times of the upland. The average concentrations of OC and clay content in cultivated areas were much lower than in non-cultivated areas. The partial least squares analysis suggested that the TC and TN were significantly related to the R s process in cultivated soils. The upland soil was further used to test soil CO2 emission response at different biochar addition levels during 70-days incubation. The measurement in the limited incubation period demonstrated that the addition of biochar improved the soil C content because it had high concentration of pyrogenic C, which was resistant to mineralization. The analysis showed that biochar addition can promote soil OC by mitigating carbon dioxide (CO2) emission. The biochar addition achieved the best performance for the soil carbon conservation in high-latitude agricultural area due to the originally high carbon content.

  19. Radiological characterization of clay mixed red mud in particular as regards its leaching features.

    PubMed

    Hegedűs, Miklós; Sas, Zoltán; Tóth-Bodrogi, Edit; Szántó, Tamás; Somlai, János; Kovács, Tibor

    2016-10-01

    The reuse of industrial by-products such as red mud is of great importance. In the case of the building material industry the reuse of red mud requires a cautious attitude, since the enhanced radionuclide content of red mud can have an effect on human health. The natural radionuclide content of red mud from the Ajka red mud reservoir and the clay sample from a Hungarian brick factory were determined by gamma spectrometry. It was found that maximum 27.8% red mud content can be added to fulfil the conditions of the EU-BSS. The effect of heat treatment was investigated on a red mud-clay mixture and it was found that in the case of radon and thoron exhalation the applied heat reduced remarkably the exhalation capacities. The leaching features of red mud and different mixtures were studied according to the MSZ-21470-50 Hungarian standard, the British CEN/TS 14429 standard and the Tessier sequential extraction method. The Tessier method and the MSZ-21470-50 standard are suitable for the characterization of materials; however, they do not provide enough information for waste deposition purposes. To this end, we propose using the CEN/TS 14429 method, because it is easy to use, and gives detailed information about the material's behaviour under different pH conditions, however, further measurements are necessary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effects of leachate on geotechnical characteristics of sandy clay soil

    NASA Astrophysics Data System (ADS)

    Harun, N. S.; Ali, Z. Rahman; Rahim, A. S.; Lihan, T.; Idris, R. M. W.

    2013-11-01

    Leachate is a hazardous liquid that poses negative impacts if leaks out into environments such as soil and ground water systems. The impact of leachate on the downgraded quality in terms of chemical characteristic is more concern rather than the physical or mechanical aspect. The effect of leachate on mechanical behaviour of contaminated soil is not well established and should be investigated. This paper presents the preliminary results of the effects of leachate on the Atterberg limit, compaction and shear strength of leachate-contaminated soil. The contaminated soil samples were prepared by mixing the leachate at ratiosbetween 0% and 20% leachate contents with soil samples. Base soil used was residual soil originated from granitic rock and classified as sandy clay soil (CS). Its specific gravity ranged between 2.5 and 2.64 with clay minerals of kaolinite, muscovite and quartz. The field strength of the studied soil ranged between 156 and 207 kN/m2. The effects of leachate on the Atterberg limit clearly indicated by the decrease in liquid and plastic limit values with the increase in the leachate content. Compaction tests on leachate-contaminated soil caused the dropped in maximum dry density, ρdry and increased in optimum moisture content, wopt when the amount of leachate was increased between 0% and 20%. The results suggested that leachate contamination capable to modify some geotechnical properties of the studied residual soils.

  1. Subglacial till formation: Microscale processes within the subglacial shear zone

    NASA Astrophysics Data System (ADS)

    Hart, Jane K.

    2017-08-01

    This was a study of subglacial deformation till genesis from a modern temperate glacier, at Skálafellsjökull, Iceland. Detailed microscale properties of till samples (from Scanning Electron Microscope [SEM] and thin section analysis) were examined from a glacial site with in situ subglacial process monitoring and an exposed subglacial surface in the foreland. Two lithofacies were examined, a grey sandy till derived from the ash and basalt, and a silty reddish brown till derived from oxidized paleosols and/or tephra layers. These also represented a clay-content continuum from low (0.3%) to high (22.3%). The evolution from debris to subglacial till was investigated. This included a reduction in grain-size (21% for grey lithology, 13% reddish brown lithology), and reduction in rounding (RA) (32% for the grey lithology, 26% for the reddish brown lithology), and the quantification and analysis of the different grain erosion/comminution processes in the resultant till. It was shown that the microstructures within a till were dependent on shear strain and glaciological conditions (deformation history). The low clay content tills were dominated by linear structures (lineations and boudins, and anisotropic microfabric) whilst the higher clay content tills were dominated by rotational structures (turbates and plaster, and isotropic microfabric). These results are important in our understanding of the formation of both modern and Quaternary tills and informs our reconstruction of past glacial dynamics.

  2. Sulfurized carbohydrates: an important sedimentary sink for organic carbon?

    NASA Astrophysics Data System (ADS)

    Sinninghe Damsté, Jaap S.; Kok, Marika D.; Köster, Jürgen; Schouten, Stefan

    1998-12-01

    In contrast to the general belief that carbohydrate carbon (C CHO) is preferentially degraded and is not extensively preserved in the sedimentary record, it is shown here that C CHO forms a large fraction of the organic matter (OM) of the total organic carbon (TOC)-rich upper Jurassic Kimmeridge Clay Formation as a result of early diagenetic sulfurization, a previously unrecognized pathway of OM preservation. This is evident from both changes in the molecular composition of the insoluble OM and from δ 13C TOC shifts of 6‰ with varying C CHO contents. Furthermore, experiments simulating the natural sulfurization of the C CHO-rich alga Phaeocystis spp. demonstrated that sulfurization can indeed lead to a substantial preservation of C CHO with a molecular fingerprint identical to that of the Kimmeridge Clay and many other Recent and ancient marine OM-rich sediments. These results imply that preservation of C CHO can exert a fundamental control on δ 13C TOC in OM-rich sediments, complicating the interpretation of δ 13C TOC records with regard to estimating terrestrial versus aquatic OM fractions, reconstruction of past atmospheric CO 2 levels and global carbon budget models.

  3. Cadmium background concentrations to establish reference quality values for soils of São Paulo State, Brazil.

    PubMed

    de Oliveira, Vinicius Henrique; de Abreu, Cleide Aparecida; Coelho, Ricardo Marques; Melo, Leônidas Carrijo Azevedo

    2014-03-01

    Proper assessment of soil cadmium (Cd) concentrations is essential to establish legislative limits. The present study aimed to assess background Cd concentrations in soils from the state of São Paulo, Brazil, and to correlate such concentrations with several soil attributes. The topsoil samples (n = 191) were assessed for total Cd contents and for other metals using the USEPA 3051A method. The background concentration was determined according to the third quartile (75th). Principal component analysis, Spearman correlation, and multiple regressions between Cd contents and other soil attributes (pH, cation exchange capacity (CEC), clay content, sum of bases, organic matter, and total Fe, Al, Zn, and Pb levels) were performed. The mean Cd concentration of all 191 samples was 0.4 mg kg(-1), and the background concentration was 0.5 mg kg(-1). After the samples were grouped by parent material (rock origin) and soil type, the background Cd content varied, i.e., soils from igneous, metamorphic, and sedimentary rocks harbored 1.5, 0.4, and 0.2 mg kg(-1) of Cd, respectively. The background Cd content in Oxisols (0.8 mg kg(-1)) was higher than in Ultisols (0.3 mg kg(-1)). Multiple regression demonstrated that Fe was primarily attributed to the natural Cd contents in the soils (R (2) = 0.79). Instead of a single Cd background concentration value representing all São Paulo soils, we propose that the concentrations should be specific for at least Oxisols and Ultisols, which are the primary soil types.

  4. An experimental study on stabilization of Pekan clay using polyethylene and polypropylene

    NASA Astrophysics Data System (ADS)

    Zukri, Azhani; Nazir, Ramli; Mender, Fatin Nabilah

    2017-10-01

    Many countries are expressing concern over the growing issues of polyethylene terephthalate (PET) bottles and polypropylene (PP) products made by the household sector. The rapid increase in the generation of plastic waste all around the world is due to the economic development and population growth. PP is the world's second-most widely produced synthetic plastic, after polyethylene. Statistics show that nearly 50% of the municipal solid waste in Malaysia comes from the institutional, industrial, residential, and construction waste. This paper presents the results of an investigation on the utilisation of fibres as products of PET bottles and PP products in order to improve the engineering properties of clay soil in Pekan. The soil samples were taken from Kampung Tanjung Medang, Pekan, Pahang. The basic properties of the clay soil were determined as follows; optimum moisture content: 32.5%, maximum dry density: 13.43 kN/m3, specific gravity: 2.51, liquid limit: 74.67%, plastic limit: 45.98%, and plasticity index: 28.69%. This investigation concentrates on the shear strength of the reinforced clay soils with PET and PP in random orientation. The reinforced soil samples were subjected to unconfined compression test (UCT) to differentiate their shear strength with that of the unreinforced soil. The tests found that the waste fibres (PET and PP) improved the strength properties of the Pekan clayey soils. The unconfined compressive strength (UCS) value increased with the increasing percentage of PET fibre and reached the optimum content at 10% reinforcement, where it showed the highest improvement of 365 kN/m2 from 325 kN/m2 and depleted when the optimum content reached 20% reinforcement. For PP fibre, the reinforced soil showed the highest UCS at 20% reinforcement with the improvement of 367 kN/m2. The study concluded that the PET and PP fibres can be utilised successfully as reinforcement materials for the stabilisation of clayey soils. The use of these waste compounds as alternative materials for clay soil stabilisation is reasonable and cost effective since they are constantly available.

  5. Preparation, characterization and application in deep catalytic ODS of the mesoporous silica pillared clay incorporated with phosphotungstic acid.

    PubMed

    Li, Baoshan; Liu, Zhenxing; Liu, Jianjun; Zhou, Zhiyuan; Gao, Xiaohui; Pang, Xinmei; Sheng, Huiting

    2011-10-15

    Mesoporous silica pillared clay (SPC) materials with different contents of H(3)PW(12)O(40) (HPW) heteropoly acid were synthesized by introducing HPW into clay interlayer template in an acidic suspension using sol-gel method. Samples with similar HPW loadings were also prepared by impregnation method using SPC as the support. The results of the characterizations showed that HPW was dispersed more homogeneously in the encapsulated samples than in the impregnated samples. The encapsulated materials exhibited better catalytic performance than the impregnated samples in oxidative desulfurization of dibenzothiophene-containing model oil. The sulfur removal reached up to 98.6% for the model oil under the experiential conditions. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Preserving Library Value through the Shifting Tides of Technology

    ERIC Educational Resources Information Center

    Breeding, Marshall

    2012-01-01

    The core mission of libraries has always centered on making content and related services available to patrons. The form in which that content is delivered has changed continually. The most ancient libraries or archives organized clay tablets or cylinders written in cuneiform. Centuries ago, the transition from scrolls to codices must have been…

  7. Role of organic matter on boron adsorption-desorption hysteresis of soils

    USDA-ARS?s Scientific Manuscript database

    In this study we evaluated the boron (B) adsorption/desorption reaction in six soils and examined the extent to which organic matter content, as well as incubation time affected B release. Six soils varying in initial pH, clay content, and were selected for the study. Adsorption experiments were c...

  8. Dielectric characterization of Bentonite clay at various moisture contents and with mixtures of biomass in the microwave spectrum

    USDA-ARS?s Scientific Manuscript database

    This study assesses the potential for using bentonite as a microwave absorber for microwave-assisted biomass pyrolysis based on the dielectric properties. Dielectric properties of bentonite at different moisture contents were measured using a coaxial line dielectric probe and vector network analyzer...

  9. Using Multivariate Geostatistics to Assess Patterns of Spatial Dependence of Apparent Soil Electrical Conductivity and Selected Soil Properties

    PubMed Central

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Valcárcel Armesto, Montserrat; Silva, Ênio Farias França e

    2014-01-01

    The apparent soil electrical conductivity (ECa) was continuously recorded in three successive dates using electromagnetic induction in horizontal (ECa-H) and vertical (ECa-V) dipole modes at a 6 ha plot located in Northwestern Spain. One of the ECa data sets was used to devise an optimized sampling scheme consisting of 40 points. Soil was sampled at the 0.0–0.3 m depth, in these 40 points, and analyzed for sand, silt, and clay content; gravimetric water content; and electrical conductivity of saturated soil paste. Coefficients of correlation between ECa and gravimetric soil water content (0.685 for ECa-V and 0.649 for ECa-H) were higher than those between ECa and clay content (ranging from 0.197 to 0.495, when different ECa recording dates were taken into account). Ordinary and universal kriging have been used to assess the patterns of spatial variability of the ECa data sets recorded at successive dates and the analyzed soil properties. Ordinary and universal cokriging methods have improved the estimation of gravimetric soil water content using the data of ECa as secondary variable with respect to the use of ordinary kriging. PMID:25614893

  10. Using multivariate geostatistics to assess patterns of spatial dependence of apparent soil electrical conductivity and selected soil properties.

    PubMed

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Valcárcel Armesto, Montserrat; França e Silva, Ênio Farias

    2014-01-01

    The apparent soil electrical conductivity (ECa) was continuously recorded in three successive dates using electromagnetic induction in horizontal (ECa-H) and vertical (ECa-V) dipole modes at a 6 ha plot located in Northwestern Spain. One of the ECa data sets was used to devise an optimized sampling scheme consisting of 40 points. Soil was sampled at the 0.0-0.3 m depth, in these 40 points, and analyzed for sand, silt, and clay content; gravimetric water content; and electrical conductivity of saturated soil paste. Coefficients of correlation between ECa and gravimetric soil water content (0.685 for ECa-V and 0.649 for ECa-H) were higher than those between ECa and clay content (ranging from 0.197 to 0.495, when different ECa recording dates were taken into account). Ordinary and universal kriging have been used to assess the patterns of spatial variability of the ECa data sets recorded at successive dates and the analyzed soil properties. Ordinary and universal cokriging methods have improved the estimation of gravimetric soil water content using the data of ECa as secondary variable with respect to the use of ordinary kriging.

  11. Compositional characteristics of the Fire Clay coal bed in a portion of eastern Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hower, J.C.; Andrews, W.M. Jr.; Rimmer, S.M.

    The Fire Clay (Hazard No. 4) coal bed (Middle Pennsylvanian Breathitt Formation) is one of the most extensively mined coal in eastern Kentucky. The coal is used for metallurgical and steam end uses and, with its low sulfur content, should continue to be a prime steam coal. This study focuses on the petrology, mineralogy, ash geochemistry, and palynology of the coal in an eight 7.5-min quadrangle area of Leslie, Perry, Knott, and Letcher counties.

  12. Influence of natural organic matter on the adsorption of metal ion onto clay particles

    USGS Publications Warehouse

    Schmitt, D.; Taylor, Howard E.; Aiken, G.R.; Roth, D.A.; Frimmel, F.H.

    2002-01-01

    The influence of natural organic matter (NOM) on the adsorption of Al, Fe, Zn, and Pb onto clay minerals was investigated. Adsorption experiments were carried out at pH = 5 and pH = 7 in the presence and absence of NOM. In general, the presence of NOM decreased the adsorption of metal ions onto the clay particles. Al and Fe were strongly influenced by NOM, whereas Zn and Pb adsorption was only slightly altered. The interaction of the metal ions with the minerals and the influence of NOM on this interaction was investigated by coupling SdFFF with an inductively coupled plasma mass spectrometer (ICPMS) or an inductively coupled plasma atomic emission spectrometer (ICPAES). Quantitative atomization of the clay particles in the ICP was confirmed by comparing elemental content determined by direct injection of the clay into the ICPMS with values from acid digestion. Particle sizes of the clays were found to be between 0.1 and 1 μm by sedimentation field-flow fractionation (SdFFF) with UV detection. Aggregation of particles due to metal adsorption was observed using SdFFF-ICPMS measurements. This aggregation was dependent on the specific metal ion and decreased in the presence of NOM and at higher pH value.

  13. Quantification of Biogenic Magnetite by Synchrotron X-ray Microscopy During the PETM

    NASA Astrophysics Data System (ADS)

    Wang, H.; Wang, J.; Kent, D. V.; Chen-Wiegart, Y. C. K.

    2014-12-01

    Exceptionally large biogenic magnetite crystals, including spearhead-like and spindle-like ones up to 4 microns, have been reported in clay-rich sediments recording the ~56 Ma Paleocene-Eocene thermal maximum (PETM) and carbon isotope excursion (CIE) in a borehole at Ancora, NJ and along with magnetotactic bacteria (MTB) chains, were suggested [Schumann et al. 2008 PNAS; Kopp et al. 2009 Paleoceanography] to account for the distinctive single domain (SD) rock magnetic properties of these sediments [Lanci et al. 2002 JGR]. However, because uncalibrated magnetic extraction techniques were used to provide material for TEM imaging of the biogenic magnetite, it is difficult to quantitatively analyze their concentration in the bulk clay. In this study, we use a synchrotron transmission X-ray microscope to image bulk CIE clay. We first take mosaic images of sub-millimeter-sized bulk clay samples, in which we can identify many of the various types of giant biogenic magnetite crystals, as well as several other types of iron minerals, such as pyrite framboids, siderite, and detrital magnetite. However, limited by the instrument resolution (~50 nm), we are not able to identify MTB chains let alone isolated magnetic nanoparticles that may be abundant the clay. To quantitatively estimate the concentration of the giant biogenic magnetite, we re-deposited the bulk clay sample in an alcohol solution on a silicon nitride membrane for 2D X-ray scans. After scanning a total area of 0.55 mm2 with average clay thickness of 4 μm, we identified ~40 spearheads, ~5 spindles and a few elongated rods and estimated their total magnetization as SD particles to be less than about 10% of the mass normalized clay for the scanned area. This result suggests that the giant biogenic magnetite is not a major source of the SD signal for the clay and is in good agreement with rock magnetic analyses using high-resolution first-order reversal curves and thermal fluctuation tomography on bulk CIE clay showing that most of the magnetite occurs as isolated, near-equant SD particles [Wang et al. 2013 PNAS]. This would also exclude a significant contribution from MTB chains and points to a non-biogenic origin, such as a comet impact plume condensate, for the magnetic nanoparticles [Kent et al. 2003 EPSL] in the very rapidly deposited CIE clays [Wright & Schaller 2014 PNAS].

  14. Mechanical reinforcement and environmental effects on a nylon-6/clay nanocomposite

    NASA Astrophysics Data System (ADS)

    Shelley, J. Stebbins

    2000-10-01

    Hybridization, or modifying the organic polymers with inorganic constituents, is one method of achieving mechanical property improvements in polymeric materials while preserving processing characteristics. Toyota Central Research developed, and Ube Industries commercialized, one such hybrid nanocomposite: nylon-6/montmorillonite clay. This dissertation explores mechanisms of reinforcement in these nylon-6/clay nanocomposites and studies their degradation by atmospheric pollutants. A 100% improvement in modulus, 77% improvement in yield stress, and 54°C improvement in heat distortion temperature over nylon-6 were observed in extruded 5 wt% clay nanocomposite sheets. Infrared absorption spectrography and dynamic mechanical analysis were used to investigate the mechanisms of reinforcement in these nanocomposites. The improved mechanical properties, increased heat distortion temperature, reduced diffusion rate, and lower susceptibility to degradation in NO x observed where attributed to constraint of polymer chain motion by interaction with clay lamellae. Changes in the loss tangent peak in the glass transition region of the dynamic mechanical data provide an estimate of the volume of chains constrained by complexation of their mid-chain amide oxygen groups with the charged clay lamellae. X-ray analysis, optical microscopy, and light scattering were used to study changes in crystallization due to this complexation. Photomicrographs indicate that the morphology of the crystallites change from spherulitic to planar with the addition of clay. Decreases in diffusion rates of water and total water absorption were demonstrated in immersion experiments. Complexation of nylon-6 with 5 wt% clay reduces the total absorption of water by over 16%. The plane stress fracture toughness of extruded 5 wt% clay nanocomposite was 46% greater than that of nylon-6. The degradation of the nanocomposites in calcium chloride solution and NOx was examined through post exposure residual tensile and stress cracking experiments. CaCl 2 solution degraded the mechanical responses of the nanocomposite materials in proportion to the amount of water absorbed. NOx exposure degraded the mechanical performance regardless of the constraining effect of clay lamellae and the reduced diffusion rate in the nanocomposites. The stress cracking response of the nanocomposite in NOx (apparently not diffusion driven) resulted in a 650% increase in the time to failure of 5 wt% clay nanocomposites over unmodified nylon-6 for the same normalized stress intensity factor.

  15. Factors affecting trace element content in periurban market garden subsoil in Yunnan Province, China.

    PubMed

    Zu, Yanqun; Bock, Laurent; Schvartz, Christian; Colinet, Gilles; Li, Yuan

    2011-01-01

    Field investigations were conducted to measure subsoil trace element content and factors influencing content in an intensive periurban market garden in Chenggong County, Yunnan Province, South-West China. The area was divided into three different geomorphological units: specifically, mountain (M), transition (T) and lacustrine (L). Mean trace element content in subsoil were determined for Pb (58.2 mg/kg), Cd (0.89 mg/kg), Cu (129.2 mg/kg), and Zn (97.0 mg/kg). Strong significant relationships between trace element content in topsoil and subsoil were observed. Both Pb and Zn were accumulated in topsoil (RTS (ratio of mean trace element in topsoil to subsoil) of Pb and Zn > or =1.0) and Cd and Cu in subsoil (RTS of Cd and Cu < or = 1.0). Subsoil trace element content was related to relief, stoniness, soil color, clay content, and cation exchange capacity. Except for 7.5 YR (yellow-red) color, trace element content increased with color intensity from brown to reddish brown. Significant positive relationships were observed between Fe content and that of Pb and Cu. Trace element content in mountain unit subsoil was higher than in transition and lacustrine units (M > T > L), except for Cu (T > M > L). Mean trace element content in calcareous subsoil was higher than in sandstone and shale. Mean trace element content in clay texture subsoil was higher than in sandy and sandy loam subsoil, and higher Cu and Zn content in subsoil with few mottles. It is possible to model Pb, Cd, Cu, and Zn distribution in subsoil physico-chemical characteristics to help improve agricultural practice.

  16. The Activity Profile of Young Tennis Athletes Playing on Clay and Hard Courts: Preliminary Data

    PubMed Central

    Adriano Pereira, Lucas; Freitas, Victor; Arruda Moura, Felipe; Saldanha Aoki, Marcelo; Loturco, Irineu

    2016-01-01

    Abstract The aim of this study was to compare the kinematic characteristics of tennis matches between red clay and hard courts in young tennis players. Eight young tennis players performed two tennis matches on different court surfaces. The match activities were monitored using GPS units. The distance covered in different velocity ranges and the number of accelerations were analyzed. The paired t test and inference based on magnitudes were used to compare the match physical performance between groups. The total distance (24% of difference), high-intensity running distance (15 - 18 km/h) (30% of difference), the number of high-intensity activities (44% of difference), the body load (1% of difference), and accelerations >1.5 g (1.5-2 g and >2 g 7.8 and 8.1 % of difference, respectively) were significantly greater in clay court than hard court matches (p < 0.05). Matches played on the red clay court required players to cover more total and high-intensity running distances and engage in more high-intensity activities than the matches played on the hard court. Finally, on the clay court the body load and the number of accelerations performed (>1.5 g) were possibly higher than on the hard court. PMID:28149359

  17. Improved cell disruption of Pichia pastoris utilizing aminopropyl magnesium phyllosilicate (AMP) clay.

    PubMed

    Kim, Sun-Il; Wu, Yuanzheng; Kim, Ka-Lyun; Kim, Geun-Joong; Shin, Hyun-Jae

    2013-06-01

    An efficient method for Pichia cell disruption that employs an aminopropyl magnesium phyllosilicate (AMP) clay-assisted glass beads mill is presented. AMP clay is functionalized nanocomposite resembling the talc parent structure Si8Mg6O20(OH)4 that has been proven to permeate the bacterial membrane and cause cell lysis. The recombinant capsid protein of cowpea chlorotic mottle virus (CCMV) expressed in Pichia pastoris GS115 was used as demonstration system for their ability of self-assembly into icosahedral virus-like particles (VLPs). The total protein concentration reached 4.24 mg/ml after 4 min treatment by glass beads mill combined with 0.2 % AMP clay, which was 11.2 % higher compared to glass beads mill only and the time was half shortened. The stability of purified CCMV VLPs illustrated AMP clay had no influence on virus assembly process. Considering the tiny amount added and simple approach of AMP clay, it could be a reliable method for yeast cell disruption.

  18. Impacts of different N management regimes on nitrifier and denitrifier communities and N cycling in soil microenvironments

    PubMed Central

    Kong, Angela Y. Y.; Hristova, Krassimira; Scow, Kate M.; Six, Johan

    2011-01-01

    Real-time quantitative PCR assays, targeting part of the ammonia-monooxygenase (amoA), nitrous oxide reductase (nosZ), and 16S rRNA genes were coupled with 15N pool dilution techniques to investigate the effects of long-term agricultural management practices on potential gross N mineralization and nitrification rates, as well as ammonia-oxidizing bacteria (AOB), denitrifier, and total bacterial community sizes within different soil microenvironments. Three soil microenvironments [coarse particulate organic matter (cPOM; >250 μm), microaggregate (53–250 μm), and silt-and-clay fraction (<53 μm)] were physically isolated from soil samples collected across the cropping season from conventional, low-input, and organic maize-tomato systems (Zea mays L.- Lycopersicum esculentum L.). We hypothesized that (i) the higher N inputs and soil N content of the organic system foster larger AOB and denitrifier communities than in the conventional and low-input systems, (ii) differences in potential gross N mineralization and nitrification rates across the systems correspond with AOB and denitrifier abundances, and (iii) amoA, nosZ, and 16S rRNA gene abundances are higher in the microaggregates than in the cPOM and silt-and-clay microenvironments. Despite 13 years of different soil management and greater soil C and N content in the organic compared to the conventional and low-input systems, total bacterial communities within the whole soil were similar in size across the three systems (~5.15×108 copies g−1 soil). However, amoA gene densities were ~2 times higher in the organic (1.75×108 copies g−1 soil) than the other systems at the start of the season and nosZ gene abundances were ~2 times greater in the conventional (7.65×107 copies g−1 soil) than in the other systems by the end of the season. Because organic management did not consistently lead to larger AOB and denitrifier communities than the other two systems, our first hypothesis was not corroborated. Our second hypothesis was also not corroborated because canonical correspondence analyses revealed that AOB and denitrifier abundances were decoupled from potential gross N mineralization and nitrification rates and from inorganic N concentrations. Our third hypothesis was supported by the overall larger nitrifier, denitrifier, and total bacterial communities measured in the soil microaggregates compared to the cPOM and silt-and-clay. These results suggest that the microaggregates are microenvironments that preferentially stabilize C, and concomitantly promote the growth of nitrifier and denitrifier communities, thereby serving as potential hotspots for N2O losses. PMID:21339865

  19. Soil carbon stabilization and turnover at alley-cropping systems, Eastern Germany

    NASA Astrophysics Data System (ADS)

    Medinski, T.; Freese, D.

    2012-04-01

    Alley-cropping system is seen as a viable land-use practice for mitigation of greenhouse gas CO2, energy-wood production and soil carbon sequestration. The extent to which carbon is stored in soil varies between ecosystems, and depends on tree species, soil types and on the extent of physical protection of carbon within soil aggregates. This study investigates soil carbon sequestration at alley-cropping systems presented by alleys of fast growing tree species (black locust and poplar) and maize, in Brandenburg, Eastern Germany. Carbon accumulation and turnover are assessed by measuring carbon fractions differing in decomposition rates. For this purpose soil samples were fractionated into labile and recalcitrant soil-size fractions by wet-sieving: macro (>250 µm), micro (53-250 µm) and clay + silt (<53 µm), followed by determination of organic carbon and nitrogen by gas-chromatography. Soil samples were also analysed for the total C&N content, cold-water extractable OC, and microbial C. Litter decomposition was evaluated by litter bags experiment. Soil CO2 flux was measured by LiCor automated device LI-8100A. No differences for the total and stable (clay+silt, <53 µm) carbon fraction were observed between treatment. While cold water-extractable carbon was significantly higher at maize alley compared to black locust alley. This may indicate faster turnover of organic matter at maize alley due to tillage, which influenced greater incorporation of plant residues into the soil, greater soil respiration and microbial activity.

  20. High copper content in vineyard soils promotes modifications in photosynthetic parameters and morphological changes in the root system of 'Red Niagara' plantlets.

    PubMed

    Ambrosini, Vítor Gabriel; Rosa, Daniel José; Bastos de Melo, George Wellington; Zalamena, Jovani; Cella, Cesar; Simão, Daniela Guimarães; Souza da Silva, Leandro; Pessoa Dos Santos, Henrique; Toselli, Moreno; Tiecher, Tadeu Luis; Brunetto, Gustavo

    2018-05-08

    High copper (Cu) soil contents, due to the continuous vineyard application of Cu fungicides throughout the years, may impair the growth of the shoot and modify the structure of the root system. The current study aimed to investigate the threshold levels of available Cu in the soil causing toxicity effects in young grapevine plants of 'Red Niagara' cultivated in clay soils. Grapevine plantlets were cultivated in pots containing vineyard devoted soils with increasing contents of available Cu (25, 80, 100 and 165 mg kg -1 ), for 53 days. Photosynthesis and transpiration rates, and the quantum yield of photosystem II (Fv/Fm) were evaluated during the cultivation period. At the end of the experiment, the plant nutrient and leaf chlorophyll were determined, along with the anatomical analysis of the root system structure and plant dry matter determination. Higher levels of available Cu in the soil increased the apoplastic, symplastic and total fraction of the metal in the roots, reducing the other nutrients, especially in the shoots. Photosynthesis, transpiration rates and Fv/Fm were also reduced. Higher levels of Cu led to anatomical changes in the roots, that increased diameter, number of layers in the cortex, vascular cylinder and total root areas. It also resulted in reduced dry matter production by grapevines. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Asteroid impact vs. Deccan eruptions: The origin of low magnetic susceptibility beds below the Cretaceous-Paleogene boundary revisited

    NASA Astrophysics Data System (ADS)

    Abrajevitch, Alexandra; Font, Eric; Florindo, Fabio; Roberts, Andrew P.

    2015-11-01

    The respective roles of an asteroid impact and Deccan Traps eruptions in biotic changes at the Cretaceous-Paleogene (K-Pg) boundary are still debated. In many shallow marine sediments from around the world, the K-Pg boundary is marked by a distinct clay layer that is often underlain by a several decimeter-thick low susceptibility zone. A previous study of the Gubbio section, Italy (Lowrie et al., 1990), attributed low magnetization intensity in this interval to post-depositional dissolution of ferrimagnetic minerals. Dissolution was thought to be a consequence of downward infiltration of reducing waters that resulted from rapid accumulation of organic matter produced by mass extinctions after the K-Pg event. We compare the magnetic properties of sediments from the Gubbio section with those of the Bidart section in southern France. The two sections are similar in their carbonate lithology and the presence of a boundary clay and low susceptibility zone. When compared to background Cretaceous sediments, the low susceptibility zone in both sections is marked by an absence of biogenic magnetite, a decrease in total ferrimagnetic mineral content, and a preferential loss of magnetite with respect to hematite - features that are consistent with reductive dissolution. However, unlike the Gubbio section, where the low susceptibility zone starts immediately below the boundary clay, the low susceptibility zone and the clay layer at Bidart are separated by a ∼4-cm carbonate interval that contains abundant biogenic magnetite. Such separation casts doubt on a causal link between the impact and sediment bleaching. More likely, the low susceptibility layer marks a different environmental event that preceded the impact. An episode of increased atmospheric and oceanic acidity associated with Deccan Traps volcanism that occurred well before the K-Pg impact is argued here to account for the distinct magnetic properties of the low susceptibility intervals.

  2. [Heavy metal concentration in Nanjing urban soils and their affecting factors].

    PubMed

    Lu, Ying; Gong, Zitong; Zhang, Ganlin; Zhang, Bo

    2004-01-01

    The concentration and source of heavy metals in Nanjing urban soils and their relationships with soil properties were studied. The results indicated that the soils in Nanjing urban were not obviously polluted by Fe, Ni, Co and V, but polluted by Mn, Cr, Cu, Zn, and Pb to a certain extent. The heavy metals were irregularly distributed in soil profiles. Fe, Ni, Co, and V were originated from soil materials, but Cu, Zn, Pb, and Cr were anthropogenic input. Probably, Mn had different origins in different soils. There were positive correlations among Fe, Cr, Ni, Co, and V concentration, and among Cu, Zn, Pb, and Cr concentration. The Fe, Co, V, and Ni concentration were positively correlated with soil clay content and CEC, and the Cu, Zn and Pb concentration were negatively correlated with clay content. There were positive correlations between Cu, Zn, Pb and Cr concentration and organic C content, and between Pb concentration and soil pH.

  3. Using DTPA-extractable soil fraction to assess the bioconcentration factor of plants in phytoremediation of urban soils

    NASA Astrophysics Data System (ADS)

    Rodríguez-Bocanegra, Javier; Roca, Núria; Tume, Pedro; Bech, Jaume

    2017-04-01

    Urban soils may be highly contaminated with potentially toxic metals, as a result of intensive anthropogenic activities. Developing cities are increasing the number of lands where is practiced the urban agriculture. In this way, it is necessary to assess the part of heavy metals that is transferred to plants in order to a) know the potential health risk that represent soils and b) know the relation soil-plant to assess the ability of these plants to remove heavy metals from soil. Nowadays, to assess the bioconcentration factor (BF) of plants in phytoremediation, the pseudototal o total concentration has been used by many authors. Two different urban soils with similar pH and carbonates content but with different pollution degree were phytoremediated with different plant species. Urban soil from one Barcelona district (Spain), the most contaminated soil, showed an extractability of Cu, Pb and Zn of 9.6, 6.7 and 5.8% of the total fraction respectively. The soil from Talcahuano city (Chile), with contents of heavy metals slightly above the background upper limit, present values of 15.5, 13.5 and 12% of the total fraction of studied heavy metals. Furthermore, a peri-urban analysed soil from Azul (Argentina) also showed an elevated extractability with values of 24, 13.5 and 14% of the Cu, Pb and Zn contents respectively. These soils presented more extractability than other disturbed soils, like for example, soils from mine areas. The urban soils present more developed soil with an interaction between solution and solid phase in polluted systems. The most important soil surface functional groups include the basal plane of phyllosilicates and metal hydroxyls at edge sites of clay minerals, iron oxyhydroxides, manganese oxyhydroxides and organic matter. The interaction between solution and solid phase in polluted urban systems tends to form labile associations and pollutants are more readily mobilized because their bonds with soil particles are weaker. Clay and organic carbon content are generally considered the most important factors when evaluating the heavy metal content of soils. Therefore, it could be essential to find a soil extractant with the capacity of isolate and extract heavy metals from this soil phase. The extraction methods, e.g. DTPA, have been widely and successfully applied in the study of nutrients elements deficiency in agricultural crops. These extraction methods could be some excellent methods of assessment of potential bioaccumulation capacity of phytoremediation plants in polluted cases. BF-DTPA FRACTION index was >1 in all plants that grew in the urban soil from Talcahuano (Chile), and in too many cases, it was >1 in soil from Sants district (Spain). However, these values were slightly <1 using BF-TOTAL FRACTION index. Thus, so many plants would be being considered non hyperaccumulator plants when the reality is that these plants are uptaking hazardous trace elements in significant quantities. The bioavailable fraction should be considered to define bioconcentration factor as the fraction to assess the potential likelihood of heavy metal mobility and availability with all the implications for toxicity problems.

  4. Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky

    USGS Publications Warehouse

    Hower, J.C.; Ruppert, L.F.; Eble, C.F.

    1999-01-01

    The Fire Clay coal bed in the Central Appalachian basin region contains a laterally-persistent tonstein that is found in the coal throughout most of its areal extent. The tonstein contains an array of minerals, including sanidine, ??-quartz, anatase and euhedral zircon, thhat constitutes strong evidence for a volcanic origin of the parting. For this study, five samples of the tonstein and four sets of coal samples underlying the tonstein were collected from five sites in eastern Kentucky. Inductively coupled plasma-mass spectroscopy (ICP-MS) analysis of the tonstein and underlying coal collected from four sites in eastern Kentucky show that although Zr concentrations are high in the tonstein (570-1820 ppm on a coal-ash basis (cab)), they are highest in the coal directly underlying the tonstein (2870-4540 ppm (cab)). A similar enrichment pattern is observed in the concentration of Y plus the sum of the rare earth elements (Y + ??REE): total Y + ??REE concentrations in the five tonstein samples range from 511 to 565 ppm (cab). However, Y + ??REE contents are highest in the coals directly underlying the tonsteins: values range from 1965 to 4198 ppm (cab). Scanning electron microscopy of samples from coal which directly underlies two of the tonstein samples show that REE-rich phosphate, tentatively identified as monazite, commonly infills cracks in clays and cells in clarain and vitrain. Zircon is rare and commonly subhedral. On the basis of coal chemistry and grain morphology, we suggest that volcanic components in the tonstein were leached by ground water. The leachate, rich in Y and REE precipitated as authigenic mineral phases in the underlying coal.The Fire Clay coal bed in the Central Appalachian basin region contains a laterally-persistent tonstein that is found in the coal throughout most of its areal extent. The tonstein contains an array of minerals, including sanidine, ??-quartz, anatase and euhedral zircon, that constitutes strong evidence for a volcanic origin of the parting. For this study, five samples of the tonstein and four sets of coal samples underlying the tonstein were collected from five sites in eastern Kentucky. Inductively coupled plasma-mass spectroscopy (ICP-MS) analysis of the tonstein and underlying coal collected from four sites in eastern Kentucky show that although Zr concentrations are high in the tonstein (570-1820 ppm on a coal-ash basis (cab)), they are highest in the coal directly underlying the tonstein (2870-4540 ppm (cab)). A similar enrichment pattern is observed in the concentration of Y plus the sum of the rare earth elements (Y+???REE): total Y+???REE concentrations in the five tonstein samples range from 511 to 565 ppm (cab). However, Y+???REE contents are highest in the coals directly underlying the tonsteins: values range from 1965 to 4198 ppm (cab). Scanning electron microscopy of samples from coal which directly underlies two of the tonstein samples show that REE-rich phosphate, tentatively identified as monazite, commonly infills cracks in clays and cells in clarain and vitrain. Zircon is rare and commonly subhedral. On the basis of coal chemistry and grain morphology, we suggest that volcanic components in the tonstein were leached by ground water. The leachate, rich in Y and REE precipitated as authigenic mineral phases in the underlying coal.

  5. Tertiary carbonate-dissolution cycles on the Sierra Leone Rise, eastern equatorial Atlantic Ocean

    USGS Publications Warehouse

    Dean, W.E.; Gardner, J.V.; Cepek, P.

    1981-01-01

    Most of the Tertiary section on Sierra Leone Rise off northwest Africa consists of chalk, marl, and limestone that show cyclic alterations of clay-rich and clay-poor beds about 20-60 cm thick. On the basis of biostratigraphic accumulation rates, the cycles in Oligocene and Miocene chalk have periods which average about 44,000 years, and those in Eocene siliceous limestone have periods of 4000-27,000 years. Several sections were sampled in detail to further define the cycles in terms of content of CaCO3, clay minerals, and relative abundances of calcareous nannofossils. Extending information gained by analyses of Pleistocene cores from the continental margin of northwest Africa to the Tertiary cycles on Sierra Leone Rise, both dilution by noncarbonate material and dissolution of CaCO3 could have contributed to the observed relative variations in clay and CaCO3. However, dissolution of CaCO3 as the main cause of the carbonate-clay cycles on the Sierra Leone Rise, rather than dilution by clay, is suggested by the large amount of change (several thousand percent) in terrigenous influx required to produce the observed variations in amount of clay and by the marked increase in abundance of dissolution-resistant discoasters relative to more easily dissolved coccoliths in low-carbonate parts of cycles. The main cause of dissolution of CaCO3 was shoaling of the carbonate compensation depth (CCD) during the early Neogene and climatically induced fluctuations in the thickness of Antarctic Bottom Water. ?? 1981.

  6. Heteroagglomeration of zinc oxide nanoparticles with clay mineral modulates the bioavailability and toxicity of nanoparticle in Tetrahymena pyriformis.

    PubMed

    Gupta, Govind Sharan; Senapati, Violet Aileen; Dhawan, Alok; Shanker, Rishi

    2017-06-01

    The extensive use of zinc oxide nanoparticles (ZnO NPs) in cosmetics, sunscreens and healthcare products increases their release in the aquatic environment. The present study explored the possible interaction of ZnO NPs with montmorillonite clay minerals in aqueous conditions. An addition of ZnO NPs on clay suspension significantly (p<0.05) increases the hydrodymic size of clay particles from 1652±90nm to 2158±13nm due to heteroagglomeration. The electrokinetic measurements showed a significant (p<0.05) difference in the electrophoretic mobilities of bare (-1.80±0.03μmcm/Vs) and ZnO NPs-clay association (-1.37±0.03μmcm/Vs) that results to the electrostatic interaction between ZnO NPs and clay particles. The attenuated total reflectance Fourier transform infrared spectroscopy analysis of ZnO NPs-clay association demonstrated the binding of ZnO NPs with the Si-O-Al region on the edges of clay particles. The increase in size of ZnO NPs-clay heteroagglomerates further leads to their sedimentation at 24h. Although, the stability of ZnO NPs in the clay suspension was decreased due to heteroagglomeration, but the bioavailability and toxicity of ZnO NPs-clay heteroagglomerates in Tetrahymena pyriformis was enhanced. These observations provide an evidence on possible mechanisms available in natural environment that can facilitate nanoparticles entry into the organisms present in lower trophic levels of the food web. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Quantitative mineralogy of the Yukon River system: Changes with reach and season, and determining sediment provenance

    USGS Publications Warehouse

    Eberl, D.D.

    2004-01-01

    The mineralogy of Yukon River basin sediment has been studied by quantitative X-ray diffraction. Bed, beach, bar, and suspended sediments were analyzed using the RockJock computer program. The bed sediments were collected from the main stem and from selected tributaries during a single trip down river, from Whitehorse to the Yukon River delta, during the summer of 2001. Beach and bar sediments were collected from the confluence region of the Tanana and Yukon Rivers during the summer of 2003. Suspended sediments were collected at three stations on the Yukon River and from a single station on the Tanana River at various times during the summers of 2001 through 2003, with the most complete set of samples collected during the summer of 2002. Changes in mineralogy of Yukon River bed sediments are related to sediment dilution or concentration effects from tributary sediment and to chemical weathering during transport. Carbonate minerals compose about 2 wt% of the bed sediments near Whitehorse, but increase to 14 wt% with the entry of the White River tributary above Dawson. Thereafter, the proportion of carbonate minerals decreases downstream to values of about 1 to 7 wt% near the mouth of the Yukon River. Quartz and feldspar contents of bed sediments vary greatly with the introduction of Pelly River and White River sediments, but thereafter either increase irregularly (quartz from 20 to about 50 wt%) or remain relatively constant (feldspar at about 35 wt%) with distance downstream. Clay mineral content increases irregularly downstream from about 15 to about 30 wt%. The chief clay mineral is chlorite, followed by illite + smectite; there is little to no kaolinite. The total organic carbon content of the bed sediments remains relatively constant with distance for the main stem (generally 1 to 2 wt%, with one exception), but fluctuates for the tributaries (1 to 6 wt%). The mineralogies of the suspended sediments and sediment flow data were used to calculate the amount of mineral dissolution during transport between Eagle and Pilot Station, a distance of over 2000 km. We estimate that approximately 3 wt% of the quartz, 15 wt% of the feldspar (1 wt% of the alkali and 25 wt% of the plagioclase), and 26 wt% of the carbonates (31 wt% of the calcite and 15 wt% of the dolomite) carried by the river dissolve in this reach. The mineralogies of the suspended sediments change with the season. For example, during the summer of 2002 the quartz content varied by 20 wt%, with a minimum in mid-summer. The calcite content varied by a similar amount, and had a maximum corresponding to the quartz minimum. These modes are related to the relative amount of sediment flowing from the White River system, which is relatively poor in quartz, but rich in carbonate minerals. Suspended total clay minerals varied by as much as 25 wt%, with maxima in mid July, and suspended feldspar varied up to 10 wt%. Suspended sediment data from the summers of 2001 and 2003 support the 2002 trends. A calculation technique was developed to determine theproportion of various sediment sources in a mixed sediment by unmixing its quantitative mineralogy. Results from this method indicate that at least three sediment sources can be identified quantitatively with good accuracy. With this technique, sediment mineralogies can be used to calculate the relative flux of sediment from different tributaries, thereby identifying sediment provenance.

  8. Physicochemical effects on uncontaminated kaolinite due to electrokinetic treatment using inert electrodes.

    PubMed

    Liaki, Christina; Rogers, Christopher D F; Boardman, David I

    2008-07-01

    To determine the consequences of applying electrokinetics to clay soils, in terms of mechanisms acting and resulting effects on the clay, tests were conducted in which an electrical gradient was applied across controlled specimens of English China Clay (ECC) using 'inert' electrodes and a 'Reverse Osmosis' water feed to the electrodes (i.e., to mimic electrokinetic stabilisation without the stabiliser added or electrokinetic remediation without the contaminant being present). The specimens in which electromigration was induced over time periods of 3, 7, 14 and 28 days were subsequently tested for Atterberg Limits, undrained shear strength using a hand shear vane, water content, pH, conductivity and zeta potential. Water flowed through the system from anode to cathode and directly affected the undrained shear strength of the clay. Acid and alkali fronts were created around the anode and cathode, respectively, causing changes in the pH, conductivity and zeta potential of the soil. Variations in zeta potential were linked to flocculation and dispersion of the soil particles, thus raising or depressing the Liquid Limit and Plastic Limit, and influencing the undrained shear strength. Initial weakening around the anode and cathode was replaced by a regain of strength at the anode once acidic conditions had been created, while highly alkaline conditions at the cathode induced a marked improvement in strength. A novel means of indicating strength improvement by chemical means, i.e., free from water content effects, is presented to assist in interpretation of the results.

  9. Efficiency of urease and nitrification inhibitors in reducing ammonia volatilization from diverse nitrogen fertilizers applied to different soil types and wheat straw mulching.

    PubMed

    San Francisco, Sara; Urrutia, Oscar; Martin, Vincent; Peristeropoulos, Angelos; Garcia-Mina, Jose Maria

    2011-07-01

    Some authors suggest that the absence of tillage in agricultural soils might have an influence on the efficiency of nitrogen applied in the soil surface. In this study we investigate the influence of no-tillage and soil characteristics on the efficiency of a urease inhibitor (N-(n-butyl)thiophosphoric triamide, NBPT) and a nitrification inhibitor (diciandiamide, DCD) in decreasing ammonia volatilization from urea and ammonium nitrate (AN), respectively. The results indicate that ammonia volatilization in soils amended with urea was significantly higher than in those fertilized with AN. Likewise, the main soil factors affecting ammonia volatilization from urea are clay and sand soil contents. While clay impedes ammonia volatilization, sand favours it. The presence of organic residues on soil surface (no-tillage) tends to increase ammonia volatilization from urea, although this fact depended on soil type. The presence of NBPT in urea fertilizer significantly reduced soil ammonia volatilization. This action of NBPT was negatively affected by acid soil pH and favoured by soil clay content. The presence of organic residues on soil surface amended with urea increased ammonia volatilization, and was particularly high in sandy compared with clay soils. Application of NBPT reduced ammonia volatilization although its efficiency is reduced in acid soils. Concerning AN fertilization, there were no differences in ammonia volatilization with or without DCD in no-tillage soils. Copyright © 2011 Society of Chemical Industry.

  10. Engineered clay-shredded tyre mixtures as barrier materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Tabbaa, A.; Aravinthan, T.

    1997-12-31

    An engineered clay consisting of kaolin and bentonite was mixed with shredded tyre in various weight percentages and examined for use as a constituent in a landfill liner. The clay-tyre mixtures properties in terms of compaction, unconfined compressive strength, permeability to water and paraffin, leachability, stress-strain behaviour, free swell behaviour and swelling pressure were investigated. The results show that the dry density and strength reduced with the addition of tyre and also with increased tyre content but that good interaction was developed between the clay and tyre. The strain at failure increased showing reinforcing effect of the tyre. The permeabilitymore » to paraffin was considerably reduced compared to that to water due to the presence of the tyre which caused high swelling pressures to develop. The leachability results indicate initial high concentrations leaching out of the soil-tyre mixtures which will be subjected to dilution in the environment. This work adds evidence to the potential advantages of using soil-tyre mixtures as a landfill liner material.« less

  11. Clay-mineral suites, sources, and inferred dispersal routes: Southern California continental shelf

    USGS Publications Warehouse

    Hein, J.R.; Dowling, J.S.; Schuetze, A.; Lee, H.J.

    2003-01-01

    Clay mineralogy is useful in determining the distribution, sources, and dispersal routes of fine-grained sediments. In addition, clay minerals, especially smectite, may control the degree to which contaminants are adsorbed by the sediment. We analyzed 250 shelf sediment samples, 24 river-suspended-sediment samples, and 12 river-bed samples for clay-mineral contents in the Southern California Borderland from Point Conception to the Mexico border. In addition, six samples were analyzed from the Palos Verdes Headland in order to characterize the clay minerals contributed to the offshore from that point source. The <2 ??m-size fraction was isolated, Mg-saturated, and glycolated before analysis by X-ray diffraction. Semi-quantitative percentages of smectite, illite, and kaolinite plus chlorite were calculated using peak areas and standard weighting factors. Most fine-grained sediment is supplied to the shelf by rivers during major winter storms, especially during El Nin??o years. The largest sediment fluxes to the region are from the Santa Ynez and Santa Clara Rivers, which drain the Transverse Ranges. The mean clay-mineral suite for the entire shelf sediment data set (26% smectite, 50% illite, 24% kaolinite+chlorite) is closely comparable to that for the mean of all the rivers (31% smectite, 49% illite, 20% kaolinite+chlorite), indicating that the main source of shelf fine-grained sediments is the adjacent rivers. However, regional variations do exist and the shelf is divided into four provinces with characteristic clay-mineral suites. The means of the clay-mineral suites of the two southernmost provinces are within analytical error of the mineral suites of adjacent rivers. The next province to the north includes Santa Monica Bay and has a suite of clay minerals derived from mixing of fine-grained sediments from several sources, both from the north and south. The northernmost province clay-mineral suite matches moderately well that of the adjacent rivers, but does indicate some mixing from sources in adjacent provinces.

  12. Diverse Responses of Belowground Internal Nitrogen Cycling to Increasing Aridity

    NASA Astrophysics Data System (ADS)

    Kou, D.; Peng, Y.; Wang, G.; Ding, J.; Chen, Y.; Yang, G.; Fang, K.; Liu, L.; Zhang, B.; Müller, C.; Zhang, J.; Yang, Y.

    2017-12-01

    Belowground microbial nitrogen (N) dynamics play key roles in regulating structure and function of terrestrial ecosystems, however, our understanding on their responses to global change remains limited. This gap is particularly true for drylands, which constitute the largest biome in terrestrial ecosystems and are sensitive to predicted increase in aridity. Here, responding patterns and controls of six gross N transformation rates were explored along an aridity gradient in Tibetan drylands. Our results showed that gross N rates responded diversely to the changing aridity. Both mineralization (MN) and ammonium immobilization (INH4) declined as aridity increased. Aridity affected MN through its association with plant cover, clay content, soil organic matter (SOM), dissolved organic nitrogen (DON) and total microbial biomass, while regulated INH4 mainly through its effects on SOM and NH4+. Autotrophic nitrification (ONH4) exhibited a bell-shaped pattern along the gradient with a tipping point at aridity index = 0.47. Such a pattern was induced by aridity effects on the abundance of ammonia oxidizing archaea (AOA) and ammonia supplying capacity. Different from above N transformations, rates of nitrate immobilization (INO3) and dissimilatory nitrate reduction to ammonium (DNRA) had no responses to changing aridity, largely regulated by soil DON availability and clay content, respectively. Overall, these results suggest that predicted increase in aridity will exert different effects on various soil internal N cycling processes. The diverse patterns point to different responses of ecosystem N cycle with respect to aridity, and thus potentially have profound impact on structure and function of dryland ecosystems.

  13. Sorption and desorption of glyphosate in Mollisols and Ultisols soils of Argentina.

    PubMed

    Gómez Ortiz, Ana Maria; Okada, Elena; Bedmar, Francisco; Costa, José Luis

    2017-10-01

    In Argentina, glyphosate use has increased exponentially in recent years as a result of the widespread adoption of no-till management combined with genetically modified glyphosate-resistant crops. This massive use of glyphosate has created concern about its potential environmental impact. Sorption-desorption of glyphosate was studied in 3 Argentinean soils with contrasting characteristics. Glyphosate sorption isotherms were modeled using the Freundlich equation to estimate the sorption coefficient (K f ). Glyphosate sorption was high, and the K f varied from 115.6 to 1612 mg 1-1/n L 1/n /kg. Cerro Azul soil had the highest glyphosate sorption capacity as a result of a combination of factors such as higher clay content, cation exchange capacity, total iron, and aluminum oxides, and lower available phosphorus and pH. Desorption isotherms were also modeled using the Freundlich equation. In general, desorption was very low (<12%). The low values of hysteresis coefficient confirm that glyphosate strongly sorbs to the soils and that it is almost an irreversible process. Anguil soil had a significantly higher desorption coefficient (K fd ) than the other soils, associated with its lower clay content and higher pH and phosphorus. Glyphosate high sorption and low desorption to the studied soils may prevent groundwater contamination. However, it may also affect its bioavailability, increasing its persistence and favoring its accumulation in the environment. The results of the present study contribute to the knowledge and characterization of glyphosate retention in different soils. Environ Toxicol Chem 2017;36:2587-2592. © 2017 SETAC. © 2017 SETAC.

  14. Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning

    PubMed Central

    Wessén, Ella; Söderström, Mats; Stenberg, Maria; Bru, David; Hellman, Maria; Welsh, Allana; Thomsen, Frida; Klemedtson, Leif; Philippot, Laurent; Hallin, Sara

    2011-01-01

    Characterization of spatial patterns of functional microbial communities could facilitate the understanding of the relationships between the ecology of microbial communities, the biogeochemical processes they perform and the corresponding ecosystem functions. Because of the important role the ammonia-oxidizing bacteria (AOB) and archaea (AOA) have in nitrogen cycling and nitrate leaching, we explored the spatial distribution of their activity, abundance and community composition across a 44-ha large farm divided into an organic and an integrated farming system. The spatial patterns were mapped by geostatistical modeling and correlations to soil properties and ecosystem functioning in terms of nitrate leaching were determined. All measured community components for both AOB and AOA exhibited spatial patterns at the hectare scale. The patchy patterns of community structures did not reflect the farming systems, but the AOB community was weakly related to differences in soil pH and moisture, whereas the AOA community to differences in soil pH and clay content. Soil properties related differently to the size of the communities, with soil organic carbon and total nitrogen correlating positively to AOB abundance, while clay content and pH showed a negative correlation to AOA abundance. Contrasting spatial patterns were observed for the abundance distributions of the two groups indicating that the AOB and AOA may occupy different niches in agro-ecosystems. In addition, the two communities correlated differently to community and ecosystem functions. Our results suggest that the AOA, not the AOB, were contributing to nitrate leaching at the site by providing substrate for the nitrite oxidizers. PMID:21228891

  15. [Influence of a new phosphoramide urease inhibitor on urea-N transformation in different texture soil].

    PubMed

    Zhou, Xuan; Wu, Liang Huan; Dai, Feng

    2016-12-01

    Addition of urease inhibitors is one of the important measures to increase nitrogen (N) use efficiency of crop, due to retardant of urea hydrolysis and reduction of ammonia volatilization loss. An incubation experiment was conducted to investigate the urease inhibition effect of a new phosphoramide urease inhibitor, NPPT (N-(n-propyl) thiophosphoric triamide) in different texture soils under dark condition at 25 ℃, and NBPT (N-(n-butyl) thiophosphoric triamide) was obtained to compare the inhibition effect on urease in different soil textures by different dosages of urea adding. Results showed that the effective reaction time of urea was less than 9 d in the loamy and clay soil. Addition of inhibitors for retardation of urea hydrolysis was more than 3 d. In sandy soil, urea decomposition was relatively slow, and adding inhibitor significantly inhibited soil urease acti-vity, and reduced NH 4 + -N content. During the incubation time, the inhibition effect of high dosage urea in the soil was better than that of low dosage. At day 6, the urease inhibition rate of NBPT and NPPT (N 250 mg·kg -1 ) were 56.3% and 53.0% in sandy soil, 0.04% and 0.3% in loamy soil, 4.1% and 6.2% in clay soil; the urease inhibition rate of NBPT and NPPT (N 500 mg·kg -1 ) were 59.4% and 65.8% in sandy soil, 14.5% and 15.1% in loamy soil, 49.1% and 48.1% in clay soil. The urease inhibition effects in different texture soil were in order of sandy soil > clay soil> loamy soil. The soil NH 4 + -N content by different inhibitors during incubation time increased at first and then decreased, while soil NO 3 - -N content and apparent nitrification rate both showed rising trends. Compared with urea treatment, addition of urease inhibitors (NBPT and NPPT) significantly increased urea-N left in the soil and reduced NH 4 + -N content. In short, new urease inhibitor NPPT in different texture is an effective urease inhibitor.

  16. A waveguide-on-access-tube (WOAT) TDR sensor for deep soil water content and bulk EC

    USDA-ARS?s Scientific Manuscript database

    A waveguide-on-access-tube (WOAT) TDR sensor was invented and the design optimized through a combination of electromagnetic modeling and several rounds of prototyping and testing in air, water, mixtures of water and ethylene glycol, sand, and silty clay loam soils over a range of water contents and ...

  17. Analysis of the `Biarez Favre' and `Burland' models for the compressibility of remoulded clays

    NASA Astrophysics Data System (ADS)

    Favre, Jean-Louis; Hattab, Mahdia

    2008-01-01

    This study aims at comparing the prediction by the Biarez and Favre model as well as by the more recent Burland one, established for reconstituted normally consolidated clays submitted to oedometric loading. The former, proposed in the 1970s, uses the liquidity index IL, and while the latter introduces a parameter, Iv, which is a normalised void index based on two characteristic void ratios ( e100* and e1000*) corresponding to the oedometric curve of σv=100 kPa and σv=1000 kPa. The aim of these models is to predict the compressibility parameters based on the identification of parameters represented by the Atterberg limits ( wL, wP, Ip) as well as of other physical parameters such as the void ratio e or the natural water content wnat, taking into account the effective overburden pressure σv. These models, which represent the intrinsic properties of clays under compression, are compared with two experimental curves, the first one representing remoulded and reconstituted clay, and the other one a deepwater clay sediment taken from the Gulf of Guinea at a depth of 700 m.

  18. Statistical analysis of the factors that influenced the mechanical properties improvement of cassava starch films

    NASA Astrophysics Data System (ADS)

    Monteiro, Mayra; Oliveira, Victor; Santos, Francisco; Barros Neto, Eduardo; Silva, Karyn; Silva, Rayane; Henrique, João; Chibério, Abimaelle

    2017-08-01

    In order to obtain cassava starch films with improved mechanical properties in relation to the synthetic polymer in the packaging production, a complete factorial design 23 was carried out in order to investigate which factor significantly influences the tensile strength of the biofilm. The factors to be investigated were cassava starch, glycerol and modified clay contents. Modified bentonite clay was used as a filling material of the biofilm. Glycerol was the plasticizer used to thermoplastify cassava starch. The factorial analysis suggested a regression model capable of predicting the optimal mechanical property of the cassava starch film from the maximization of the tensile strength. The reliability of the regression model was tested by the correlation established with the experimental data through the following statistical analyse: Pareto graph. The modified clay was the factor of greater statistical significance on the observed response variable, being the factor that contributed most to the improvement of the mechanical property of the starch film. The factorial experiments showed that the interaction of glycerol with both modified clay and cassava starch was significant for the reduction of biofilm ductility. Modified clay and cassava starch contributed to the maximization of biofilm ductility, while glycerol contributed to the minimization.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefeuvre, F.E.; Wrolstad, K.H.; Zou, Ke Shan

    Total and Unocal estimated sand-shale ratios in gas reservoirs from the upper Tertiary clastics of Myanmar. They separately used deterministic pre-stack and statistical post-stack seismic attribute analysis calibrated at two wells to objectively extrapolate the lithologies and reservoir properties several kilometers away from the wells. The two approaches were then integrated and lead to a unique distribution of the sands and shales in the reservoir which fit in the known regional geological model. For the sands, the fluid distributions (gas and brine) were also estimated as well as the porosity, water saturation, thickness and clay content of the sands. Thismore » was made possible by using precise elastic modeling based on the Biot-Gassmann equation in order to integrate the effects of reservoir properties on seismic signatures.« less

  20. Mineral, chemical and textural relationships in rhythmic-bedded, hydrocarbon-productive chalk of the Niobrara Formation, Denver Basin, Colorado ( USA).

    USGS Publications Warehouse

    Pollastro, R.M.; Martinez, C.J.

    1985-01-01

    The types of hydrocarbons produced from these chalks are determined by the level of thermal maturity associated with present-day burial or paleoburial conditions. Detailed analyses of deeply-buried chalk from core of the Smoky Hill Chalk Member of the Niobrara Formation in the Champlin Petroleum 2 Boxelder Farms well combined with core data from other Niobrara wells have helped identify many depositional and diagenetic relationships. Porosity of the chalk is proportional to maximum burial depth and inversely proportional to the amount of non-carbonate material (acid- insoluble residue content) in the chalk. Total organic carbon content in the chalk is proportional to the amount of acid-insoluble residue and relative abundance of pyrite in the acid-insoluble fraction. Quartz is inversely proportional to the amount of insoluble material, and the amount of clay tends to increase as insolubles increase, suggesting that detritus in these chalks is greatly influenced by reworked, altered, volcanic products rather than siliceous clastics.-from Authors

  1. How will climate change affect vine behaviour in different soils?

    NASA Astrophysics Data System (ADS)

    Leibar, Urtzi; Aizpurua, Ana; Morales, Fermin; Pascual, Inmaculada; Unamunzaga, Olatz

    2014-05-01

    Various agricultural sectors are sensitive to projected climate change. In this sense, the strong link between climate and grapevine phenology and berry quality suggests a relevant impact. Within the concept of terroir, climate is a factor that influences ripening of a specific variety and resulting wine style. Furthermore, the effect of soil on grape potential is complex, because the soil acts on grapevine water and nutrient supply, and influences root zone temperature. The aim of this work was to evaluate the effect of climate change (increased CO2, higher temperature and lower relative humidity), soil texture and irrigation on the physiology, yield and berry quality of grapevine (Vitis vinifera L.) cv. Tempranillo. A greenhouse experiment was carried out with potted, own-rooted fruit-bearing cuttings. Three factors were studied: a) climate change (700 μmol CO2 mol-1 air, 28/18°C and 45/65% day/night relative humidity) vs. current conditions (375 μmol CO2 mol-1 air, 24/14ºC and 33/53% day/night relative humidity), b) soil texture (9, 18 and 36% soil clay content) and c) irrigation; well-irrigated (20-35% of soil water content) vs. water deficit (60% of the water applied to the irrigated plants). Berries were harvested at ripeness (21-23 ºBrix). Climate change shortened the time between veraison and full maturity up to 9 days and reduced the number of berries per bunch. Grapes grown under climate change conditions had higher pH and lower acidity (due to malic and tartaric acids), anthocyanins content and colour intensity. Water-deficit delayed ripening up to 10 days and reduced final leaf area and root weight. Berries from water stressed plants had an increased skin/pulp ratio and pH, and lower acidity (malic acid) and polyphenol content. Regarding soil texture, plants grown in the soil with lower clay content increased root fresh weight and had higher total anthocyanins content. There were no interactions between factors. In conclusion, both climate change and water-deficit had a clear influence on the grape phenological development and composition, whilst soil affected root configuration and anthocyanins concentration. Effects of climate change and water availability on different soil conditions should be considered to take full advantage or mitigate the consequences of the future climate conditions.

  2. Application of Spectral Gamma Ray for Lithofacies and Paleo-environmental Interpretation: A Case Study from the Late Ordovician Glaciogenic Deposits, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alqubalee, Abdullah; Abdullatif, Osman; Babalola, Lamidi

    2017-04-01

    This study is an integral part of multidisciplinary research being carried out on the Late Ordovician Sarah Formation in the Rub' Al-Khali Basin, Saudi Arabia. Sarah Formation proved to be important target for tight gas reservoir in Saudi Arabia. This study integrates lithofacies characteristics and spectral Gamma Ray of core samples so as to identify and differentiate among different depositional environments. Thorium (Th, ppm) and potassium (K, %) are acquired with approximately a reading point per inch using high-resolution Spectral Core Gamma. The cores description and analysis from six exploratory wells revealed four depositional environments ranging from the glaciofluvial, glaciolacustrine delta, subglacial to the nearshore environments. Based on lithofacies and geochemical analysis of the core samples, four groups of lithofacies including sandstone (G1), claystone and/or argillaceous sandstone (G2), calcareous and/or evaporitic sandstone (G3), and diamictites (G4) were recognized in each well. The bivariate plots of Th and K were used to delineate the minerals contents in each core and environment. The results showed that the G1 facies of the nearshore and glaciofluvial environments are characterized by similar distribution patterns of these elements exhibiting lower clay minerals variations than that in the other groups of lithofacies. These patterns consist of two mineral groups, the first one includes illite and montmorillonite clay minerals while the second one includes mica, glauconite, and feldspar. By contrast, G1 and G2 lithofacies of the glaciolacustrine delta environment are characterized by a range of clay minerals. However, G3 of this environment exhibits similar pattern of the nearshore and the glaciofluvial environments This is because the grains of G3 are cemented by anhydrite rather than by clays. Based on the lithological characteristic, matrix-supported and clast-supported diamictites were identified in the subglacial environment. The differences between these two lithofacies were clearly detected using Th/K plot. Both diamictites are characterized by a range of minerals including illite, mixed layer clays, glauconite, and feldspar. The matrix-supported diamictites contain higher proportions of these minerals. This study indicates that the relationship between Th and K can be used to predict the types of lithofacies and clay contents in different glaciogenic depositional environments. In addition, it can be used to predict the relative amounts of the clay minerals in each lithofacies. In turn, identifying the types and the amounts of clay minerals in lithofacies facilitate the prediction of reservoir quality and eventually lead to enhancement of their development and productivity.

  3. Evaluation of Resuspension from Propeller Wash in DoD Harbors

    DTIC Science & Technology

    2016-09-01

    sand , silt, clay, and dissolved fractions. Information in the middle represents the filtration sequence, information to the left are...San Diego Bay. Each metal is provided as the percentage fraction for clay (grey), silt (green), sand (red) and total (blue), the same pattern is...middle), and sand (bottom) concentrations for the three locations (see Figure 6-33

  4. Vertical Migration Potential of Metal Contaminants at Small Arms Firing Ranges, Camp Edwards Military Reservation, Massachusetts.

    DTIC Science & Technology

    1998-03-01

    halloysite on lead concentration in solution 57 Figure 41. Solubility of lead carbonate as a function of pH for a total activity aH2C03...Effects of adsorption by halloysite (a clay) on lead concentration in solution. Contours are equilibrium lead concentrations at different clay

  5. Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc, and mercury in soil and soil solution in view of ecotoxicological effects.

    PubMed

    de Vries, Wim; Lofts, Steve; Tipping, Ed; Meili, Markus; Groenenberg, Jan E; Schütze, Gudrun

    2007-01-01

    Risk assessment for metals in terrestrial ecosystems, including assessments of critical loads, requires appropriate critical limits for metal concentrations in soil and soil solution. This chapter presents an overview of methodologies used to derive critical (i) reactive and total metal concentrations in soils and (ii) free metal ion and total metal concentrations in soil solution for Cd, Pb, Cu, Zn, and Hg, taking into account the effect of soil properties related to ecotoxicological effects. Most emphasis is given to the derivation of critical free and total metal concentrations in soil solution, using available NOEC soil data and transfer functions relating solid-phase and dissolved metal concentrations. This approach is based on the assumption that impacts on test organisms (plants, microorganisms, and soil invertebrates) are mainly related to the soil solution concentration (activity) and not to the soil solid-phase content. Critical Cd, Pb, Cu, Zn, and Hg concentrations in soil solution vary with pH and DOC level. The results obtained are generally comparable to those derived for surface waters based on impacts to aquatic organisms. Critical soil metal concentrations, related to the derived soil solution limits, can be described as a function of pH and organic matter and clay content, and varying about one order of magnitude between different soil types.

  6. Nutrient concentrations and their relations to the biotic integrity of wadeable streams in Wisconsin

    USGS Publications Warehouse

    Robertson, Dale M.; Graczyk, David J.; Garrison, Paul J.; Wang, Lizhu; LaLiberte, Gina; Bannerman, Roger

    2006-01-01

    Excessive nutrient (phosphorus and nitrogen) loss from watersheds is frequently associated with degraded water quality in streams. To reduce this loss, agricultural performance standards and regulations for croplands and livestock operations are being proposed by various States. In addition, the U.S. Environmental Protection Agency is establishing regionally based nutrient criteria that can be refined by each State to determine whether actions are needed to improve a stream's water quality. More confidence in the environmental benefits of the proposed performance standards and nutrient criteria will be possible with a better understanding of the biotic responses to a range of nutrient concentrations in different environmental settings. The U.S. Geological Survey and the Wisconsin Department of Natural Resources collected data from 240 wadeable streams throughout Wisconsin to: 1) describe how nutrient concentrations and biotic-community structure vary throughout the State; 2) determine which environmental characteristics are most strongly related to the distribution of nutrient concentrations; 3) determine reference water-quality and biotic conditions for different areas of the State; 4) determine how the biotic community of streams in different areas of the State respond to changes in nutrient concentrations; 5) determine the best regionalization scheme to describe the patterns in reference conditions and the responses in water quality and the biotic community; and 6) develop new indices to estimate nutrient concentrations in streams from a combination of biotic indices. The ultimate goal of this study is to provide the information needed to guide the development of regionally based nutrient criteria for Wisconsin streams. For total nitrogen (N) and suspended chlorophyll (SCHL) concentrations and water clarity, regional variability in reference conditions and in the responses in water quality to changes in land use are best described by subdividing wadeable streams into two categories: streams in areas with high clay-content soils (Environmental Phosphorus Zone 3, EPZ 3) and streams throughout the rest of the State. The regional variability in the response in total phosphorus (P) concentrations is also best described by subdividing the streams into these two categories; however, little consistent variability was found in reference P concentrations in streams throughout the State. Reference P concentrations are smilar throughout the State (0.03-0.04 mg/L). Reference N concentrations are divided into two categories: 0.6-0.7 mg/L in all streams except those in areas with high clay-content soils, where 0.4 mg/L is more appropriate. Reference SCHL concentrations are divided into two categories: 1.2-1.7 ?g/L in all streams except those in areas with high clay-content soils, where 1.0 ?g/L may be more appropriate. Reference water clarity is divided into two categories: streams in areas with high clay-content soils with a lower reference water clarity (Secchi tube depth, SD, of about 110 cm) and streams throughout the rest of the State (SD greater than or equal to about 115 cm). For each category of the biotic community (SCHL and benthic chlorophyll a concentrations (BCHL), periphytic diatoms, macroinvertebrates, and fish), a few biotic indices were more related to differences in nutrient concentrations than were others. For each of the indices more strongly related to nutrient concentrations, reference conditions were obtained by determining values corresponding to the worst 75th percentile value from a subset of minimally impacted streams (streams having reference nutrient concentrations). By examining the biotic community in streams having either reference P or N concentrations but not both, the relative importance of these two nutrients was determined. For SCHL, P was the more important limiting nutrient; however, for BCHL and all macroinvertebrate indices, it appears that N was the more important nutrient when concent

  7. Effects of clay after a grain challenge on milk composition and on ruminal, blood, and fecal pH in Holstein cows.

    PubMed

    Sulzberger, S A; Kalebich, C C; Melnichenko, S; Cardoso, F C

    2016-10-01

    Oral supplementation of clay has been reported to function as buffer in dairy cows. However, its effects on rumen, blood, and fecal pH have varied among studies. Our objective was to determine the effects of 3 concentrations of dietary clay supplementation after a grain challenge. Ten multiparous rumen-cannulated Holstein cows [body weight (mean ± standard deviation)=648±12kg] with 142±130 (60 to 502) days in milk were assigned to 1 of 5 treatments in a replicated 5×5 Latin square design balanced to measure carryover effects. Periods (21d) were divided into an adaptation phase (d 1 to 18, with regular total mixed ration fed ad libitum) and a measurement phase (d 19 to 21). Feed was restricted on d 18 to 75% of the average of the total mixed ration fed from d 15 to 17 (dry matter basis), and on d 19 cows received a grain challenge. The challenge consisted of 20% finely ground wheat administered into the rumen via a rumen cannula, based on the average dry matter intake obtained on d 15 to 17. Treatments were POS (no clay plus a grain challenge), 3different concentrations of clay (0.5, 1, or 2% of dietary dry matter intake), and control (C; no clay and no grain challenge). Statistical analysis was performed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). Contrasts 1 (POS vs. C) and 2 (POS vs. the average of 0.5, 1, or 2%) were compared, along with linear and quadratic treatment effects. Rumen, fecal, and blood pH, along with blood metabolites, were measured at 0, 4, 8, 12, 16, 20, 24, 36, and 48h relative to the grain challenge. Cows fed POS had lower rumen pH [(mean ± standard error) 6.03±0.06] than cows fed C (6.20±0.06). Cow fed POS had lower fecal pH (6.14±0.04) than cows fed C (6.38±0.04). We observed a linear treatment effect for rumen pH and fecal pH. Fecal pH (6.22±0.04) was higher for cows fed clay (contrast 2) then for cows fed POS (6.14±0.04). We also observed a treatment difference (contrast 2) for negative incremental area under the curve, pH below 5.6 × h/d, (0.5% clay=7.93±0.83, 1% clay=8.56±0.83, and 2% clay=7.79±0.83) compared with POS (11.0±0.83). Cows fed clay tended to have higher milk yield (0.5% clay=28.8±3.4kg, 1% clay=30.2±3.4kg, and 2% clay=29.1±3.4kg, contrast 2), and had higher 3.5% fat-corrected milk (0.5% clay=29.9±3.5kg, 1% clay=34.1±3.5kg, and 2% clay=33.1±3.4kg), and higher energy-corrected milk (0.5% clay=29.1±3.3kg, 1% clay=32.8±3.4kg, and 2% clay=31.6±3.3kg) than cows fed POS (27.7±3.4kg, 28.0±3.4kg, 27.7±3.3kg, respectively). In conclusion, cows fed clay had higher rumen pH, energy-corrected milk, fat-corrected milk, and a trend for milk yield than cows fed POS. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Stabilization Of Marine Clay Using Biomass Silica-Rubber Chips Mixture

    NASA Astrophysics Data System (ADS)

    Marto, Aminaton; Ridzuan Jahidin, Mohammed; Aziz, Norazirah Abdul; Kasim, Fauziah; Zurairahetty Mohd. Yunus, Nor

    2016-11-01

    Marine clay is found widely along the coastal area and had caused expensive solutions in the construction of coastal highways. Hence, soil stabilization was suggested by some consultant to increase the strength of this soil in order to meet the highway construction requirement and also to achieve the specification for the development. Biomass Silica (BS), particularly the SH85 as a non-traditional stabilisation method, has been gaining more interest from the engineers recently. Rubber chips (RC), derived from waste rubber tyres, are considered ‘green’ element and had been used previously in some geotechnical engineering works. This paper presents the effect of using BS and RC as a mixture (BS-RC mixture), to increase the strength of marine clay for highway construction. Samples of marine clay, obtained from the West Coast Expressway project at Teluk Intan, Perak, were oven dried and grind to fine-grained sized. The marine clay was mixed with 9 % by weight proportion of BS- RC; that were 8%-l% and 7%-2%, respectively. For comparison purposes the result of BS-RC was compared to the result of stabilization by using 9% BS only. Laboratory tests were then carried out to determine the Atterberg limits and compaction characteristics of the untreated and treated marine clay. The Unconfined Compressive Strength (UCS) of the untreated and treated marine clays, compacted at the optimum moisture content was later obtained. The treated marine clay was tested at 0, 3 and 7 days curing periods. The results show that the Plasticity Index of BS-RC treated marine clay was lower than the untreated marine clay. From the UCS test results, it is shown that BS-RC mixtures had significantly improved the strength of marine clay. With the same percentage of 9% BS-RC, the increased of BS from 7% to 8% increased the UCS further to about six times more than untreated marine clay soils in 7 days curing period. The strength gained by using BS-RC at 8%-1% is slightly below the strength by using 9% BS only. From the experimental results, it is shown that BS, in the form of SH85, admixed with rubber chips could significantly improve the strength of marine clay soils.

  9. Preparation of affordable and multifunctional clay-based ceramic filter matrix for treatment of drinking water.

    PubMed

    Shivaraju, H Puttaiah; Egumbo, Henok; Madhusudan, P; Anil Kumar, K M; Midhun, G

    2018-02-01

    Affordable clay-based ceramic filters with multifunctional properties were prepared using low-cost and active ingredients. The characterization results clearly revealed well crystallinity, structural elucidation, extensive porosity, higher surface area, higher stability, and durability which apparently enhance the treatment efficiency. The filtration rates of ceramic filter were evaluated under gravity and the results obtained were compared with a typical gravity slow sand filter (GSSF). All ceramic filters showed significant filtration rates of about 50-180 m/h, which is comparatively higher than the typical GSSF. Further, purification efficiency of clay-based ceramic filters was evaluated by considering important drinking water parameters and contaminants. A significant removal potential was achieved by the clay-based ceramic filter with 25% and 30% activated carbon along with active agents. Desired drinking water quality parameters were achieved by potential removal of nitrite (98.5%), nitrate (80.5%), total dissolved solids (62%), total hardness (55%), total organic pollutants (89%), and pathogenic microorganisms (100%) using ceramic filters within a short duration. The remarkable purification and disinfection efficiencies were attributed to the extensive porosity (0.202 cm 3  g -1 ), surface area (124.61 m 2  g -1 ), stability, and presence of active nanoparticles such as Cu, TiO 2 , and Ag within the porous matrix of the ceramic filter.

  10. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents

    NASA Astrophysics Data System (ADS)

    Karup, Dan; Moldrup, Per; Paradelo, Marcos; Katuwal, Sheela; Norgaard, Trine; Greve, Mogens H.; de Jonge, Lis W.

    2016-09-01

    Solute transport through the soil matrix is non-uniform and greatly affected by soil texture, soil structure, and macropore networks. Attempts have been made in previous studies to use infiltration experiments to identify the degree of preferential flow, but these attempts have often been based on small datasets or data collected from literature with differing initial and boundary conditions. This study examined the relationship between tracer breakthrough characteristics, soil hydraulic properties, and basic soil properties. From six agricultural fields in Denmark, 193 intact surface soil columns 20 cm in height and 20 cm in diameter were collected. The soils exhibited a wide range in texture, with clay and organic carbon (OC) contents ranging from 0.03 to 0.41 and 0.01 to 0.08 kg kg- 1, respectively. All experiments were carried out under the same initial and boundary conditions using tritium as a conservative tracer. The breakthrough characteristics ranged from being near normally distributed to gradually skewed to the right along with an increase in the content of the mineral fines (particles ≤ 50 μm). The results showed that the mineral fines content was strongly correlated to functional soil structure and the derived tracer breakthrough curves (BTCs), whereas the OC content appeared less important for the shape of the BTC. Organic carbon was believed to support the stability of the soil structure rather than the actual formation of macropores causing preferential flow. The arrival times of 5% and up to 50% of the tracer mass were found to be strongly correlated with volumetric fines content. Predicted tracer concentration breakthrough points as a function of time up to 50% of applied tracer mass could be well fitted to an analytical solution to the classical advection-dispersion equation. Both cumulative tracer mass and concentration as a function of time were well predicted from the simple inputs of bulk density, clay and silt contents, and applied tracer mass. The new concept seems promising as a platform towards more accurate proxy functions for dissolved contaminant transport in intact soil.

  11. Predicting subsurface uranium transport: Mechanistic modeling constrained by experimental data

    NASA Astrophysics Data System (ADS)

    Ottman, Michael; Schenkeveld, Walter D. C.; Kraemer, Stephan

    2017-04-01

    Depleted uranium (DU) munitions and their widespread use throughout conflict zones around the world pose a persistent health threat to the inhabitants of those areas long after the conclusion of active combat. However, little emphasis has been put on developing a comprehensive, quantitative tool for use in remediation and hazard avoidance planning in a wide range of environments. In this context, we report experimental data on U interaction with soils and sediments. Here, we strive to improve existing risk assessment modeling paradigms by incorporating a variety of experimental data into a mechanistic U transport model for subsurface environments. 20 different soils and sediments from a variety of environments were chosen to represent a range of geochemical parameters that are relevant to U transport. The parameters included pH, organic matter content, CaCO3, Fe content and speciation, and clay content. pH ranged from 3 to 10, organic matter content from 6 to 120 g kg-1, CaCO3 from 0 to 700 g kg-1, amorphous Fe content from 0.3 to 6 g kg-1 and clay content from 4 to 580 g kg-1. Sorption experiments were then performed, and linear isotherms were constructed. Sorption experiment results show that among separate sets of sediments and soils, there is an inverse correlation between both soil pH and CaCO¬3 concentration relative to U sorptive affinity. The geological materials with the highest and lowest sorptive affinities for U differed in CaCO3 and organic matter concentrations, as well as clay content and pH. In a further step, we are testing if transport behavior in saturated porous media can be predicted based on adsorption isotherms and generic geochemical parameters, and comparing these modeling predictions with the results from column experiments. The comparison of these two data sets will examine if U transport can be effectively predicted from reactive transport modeling that incorporates the generic geochemical parameters. This work will serve to show whether a more mechanistic approach offers an improvement over statistical regression-based risk assessment models.

  12. The effect of clay nanoparticles as reinforcement on mechanical properties of bioplastic base on cassava starch

    NASA Astrophysics Data System (ADS)

    Harunsyah; Sariadi; Raudah

    2018-01-01

    Plastics have been used widely for packaging material since long time ago. However, environmentally friendly plastics or plastics whose raw materials come from natural polymers are still very low in development. Efforts have been conducted to develop environmental friendly plastic from renewable resources such as biopolymer. The aim of this paper is to study the influence of clay nanoparticles as reinforcment on the mechanical properties of bioplastic were prepared by solution-casting method. The content of clay nanoparticles in the bioplastic was varied from 0.2%, 0.4%, 0.6%, 0.8% and 1.0% (w/w) by weight of starch. Structural characterization was done by Fourier Transform Infrared Spectroscopy. Surface morphologies of the plastic film were examined by scanning electron microscope.The result showed that the Tensile strength was improved significantly with the addition of clay nanoparticles. The maximum tensile strength obtained was 24.18 M.Pa on the additional of clay nanoparticles by 0.6% and plasticizer by 25%. Based on data of FTIR, the produced bioplastic did not change the group function and it can be concluded that the interaction in bioplastic produced was only a physical interaction. The bioplastic based on cassava starch-clay nanoparticles and plasticizer glycerin showed that interesting mechanical properties being transparent, clear, homogeneous, flexible and easy to be handled.

  13. Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah

    USGS Publications Warehouse

    Solum, J.G.; van der Pluijm, B.A.; Peacor, D.R.

    2005-01-01

    Pronounced changes in clay mineral assemblages are preserved along the Moab Fault (Utah). Gouge is enriched up to ???40% in 1Md illite relative to protolith, whereas altered protolith in the damage zone is enriched ???40% in illite-smectite relative to gouge and up to ???50% relative to protolith. These mineralogical changes indicate that clay gouge is formed not solely through mechanical incorporation of protolith, but also through fault-related authigenesis. The timing of mineralization is determined using 40Ar/39Ar dating of size fractions of fault rocks with varying detrital and authigenic clay content. We applied Ar dating of illite-smectite samples, as well as a newer approach that uses illite polytypes. Our analysis yields overlapping, early Paleocene ages for neoformed (1Md) gouge illite (63??2 Ma) and illite-smectite in the damage zone (60??2 Ma), which are compatible with results elsewhere. These ages represent the latest period of major fault motion, and demonstrate that the fault fabrics are not the result of recent alteration. The clay fabrics in fault rocks are poorly developed, indicating that fluids were not confined to the fault zone by preferentially oriented clays; rather we propose that fluids in the illite-rich gouge were isolated by adjacent lower permeability, illite-smectite-bearing rocks in the damage zone. ?? 2005 Elsevier Ltd. All rights reserved.

  14. Quantifying the Spatial and Seasonal Hydrodynamics of Subsurface Soil Salinity and Selenium Mobilization in the Pariette Watershed, Uintah Basin, UT

    NASA Astrophysics Data System (ADS)

    Amakor, X. N.; Jacobson, A. R.; Cardon, G. E.; Grossl, P. R.

    2011-12-01

    A recent water quality report recognized concentrations of salts and selenium above total maximum daily loads (TMDLs) in the Pariette Wetlands located in the Uintah Basin, Utah. Since the wetlands are located in the Pacific Migratory Flyway and frequented by numerous water fowl, the elevated levels of total dissolved solids and Se are of concern. To determine whether it possible to manage the mobilization of salts and associated contaminants through the watershed soils into the Pariette Wetlands, knowledge of the spatio-temporal dynamics and distribution of these contaminants is required. Thus, the objective of this study is to characterize the spatio-temporal mobilization of salts and total selenium in the Pariette Draw watershed. Intensive soil information is being collected along the streams feeding the wetlands from fields representing the dominant land-uses in the watershed (irrigated agricultural fields, fallow salt-crusted fields, oil and natural gas extraction fields) using both the noninvasive electromagnetic induction (EMI) sensing technique (EM38DD) and the invasive time-domain reflectometry (TDR). At each site, ground truth samples were collected from optimally determined points generated using the ESAP-RSSD program based on the bulk soil electrical conductivity survey information. Stable soil properties affecting the measurement of salinity (e.g., clay content, organic matter content, cation exchange capacity, bulk density) were also characterized at these points. Parameters affected by fluctuations in soil moisture content (e.g., pH, electrical conductivity of saturation paste extract (ECe), dissolved organic carbon (DOC), and total selenium in the dissolved saturation extract) are being measured repeatedly over a minimum of 1 year. Based on regression models of collocated EMI, TDR and ECe measurements, the dense survey data are transformed into ECe. Geostatistical kriging methods are applied to the transformed ECe and volumetric water content to reveal the complex spatio-temporal patterns of salinity, water content, and total selenium (based on the association between ECe and total Se) across portions of the watershed. Temporal changes are being compared using the paired t-test. Here we present the spatio-temporal correlations among the properties and over the sampling times for the 2011 summer and fall seasons with an initial evaluation of the underlying processes contributing to the elevated contaminant loads at the wetlands. Additional measurements will be made in 2012 to capture the effects of early spring snowmelt and runoff.

  15. Effect of Fly-Ash Cenospheres on Properties of Clay-Ceramic Syntactic Foams

    PubMed Central

    Rugele, Kristine; Lehmhus, Dirk; Hussainova, Irina; Peculevica, Julite; Lisnanskis, Marks; Shishkin, Andrei

    2017-01-01

    A low-density clay ceramic syntactic foam (CSF) composite material was successfully synthesized from illitic clay added by fly ash cenospheres (CS) using the semi-dry formation method. The content of CS varied in the range of 10, 30, 50 and 60 vol %. Furthermore, reference samples without cenospheres were produced for property comparison. The materials comprising different amount of the additives were fired at temperatures of 600, 950, 1000, 1050, 1100, 1150 and 1200 °C. Firing times were kept constant at 30 min. Processing characteristics of the materials were evaluated in terms of density achieved and shrinkage observed as functions of both the CS content and the sintering temperature. The compressive strength and water uptake were determined as application-oriented properties. Except for the reference and the low CS level samples, the materials show an increase in strength with the increase in firing temperature, and a decrease of mechanical reliability with a decrease in density, which is typical for porous materials. Exceptions are the samples with no or low (10 vol %) content of cenospheres. In this case, the maximum strength is obtained at an intermediate sintering temperature of 1100 °C. At a low density (1.10 and 1.25 g/cm3), the highest levels of strength are obtained after sintering at 1200 °C. For nominal porosity levels of 50 and 60 vol %, 41 and 26 MPa peak stresses, respectively, are recorded under compressive load. PMID:28773190

  16. Transport and fate of engineered silver nanoparticles in aquifer media

    NASA Astrophysics Data System (ADS)

    Adrian, Y.; Schneidewind, U.; Azzam, R.

    2016-12-01

    Engineered silver nanoparticles (AgNPs) are used in various consumer and medical products due to their antimicrobial properties. Their transport behavior in the environment is still under investigation. Previous studies have been focusing on the transport of AgNPs in test systems with pure quartz sand or top soil materials, but studies investigating aquifer material are rare. However, the protection of groundwater resources is an important part in the protection of human health and the assurance of future economic activities. Therefore, expert knowledge regarding the transport, behavior and fate of engineered nanoparticles as potential contaminants in aquifers is essential. The transport and retention behavior of two commercially available engineered AgNPs (one stabilized with a polymere and one with a surfactant) in natural silicate-dominated aquifer material was investigated in saturated laboratory columns. For the experiments a mean grain size diameter of 0.7 mm was chosen with varying silt and clay contents to investigate their effect on the transport behavior of the AgNPs. Typical flow velocities were chosen to represent natural conditions. Particle concentration in the effluent was measured using ICP-MS and the finite element code HYDRUS-1D was used to model the transport and retention processes. The size of the silver nanoparticles in the effluent was analyzed using Flow Field-Flow Fractionation. The obtained results show that silt and clay contents as well as the stabilization of the AgNPs control the transport and retention of AgNPs. Increasing breakthrough was observed with decreasing clay and silt content.

  17. Clay:organic-carbon and organic carbon as determinants of the soil physical properties: reassessment of the Complexed Organic Carbon concept

    NASA Astrophysics Data System (ADS)

    Matter, Adrien; Johannes, Alice; Boivin, Pascal

    2016-04-01

    Soil Organic Carbon (SOC) is well known to largely determine the soil physical properties and fertility. Total porosity, structural porosity, aeration, structural stability among others are reported to increase linearly with increasing SOC in most studies. Is there an optimal SOC content as target in soil management, or is there no limit in physical fertility improvement with SOC? Dexter et al. (2008) investigated the relation between clay:SOC ratio and the physical properties of soils from different databases. They observed that the R2 of the relation between SOC and the physical properties were maximized when considering the SOC fraction limited to a clay:SOC ratio of 10. They concluded that this fraction of the SOC was complexed, and that the additional SOC was not influencing the physical properties as strongly as the complexed one. In this study, we reassessed this approach, on a database of 180 undisturbed soil samples collected from cambiluvisols of the Swiss Plateau, on an area of 2400 km2, and from different soil uses. The physical properties were obtained with Shrinkage Analysis, which involved the parameters used in Dexter et al., 2008. We used the same method, but detected biases in the statistical approach, which was, therefore, adapted. We showed that the relation between the bulk density and SOC was changing with the score of visual evaluation of the structure (VESS) (Ball et al., 2007). Therefore, we also worked only on the "good" structures according to VESS. All shrinkage parameters were linearly correlated to SOC regardless of the clay:SOC ratio, with R2 ranging from 0.45 to 0.8. Contrarily to Dexter et al. (2008), we did not observed an optimum in the R2 of the relation when considering a SOC fraction based on the clay:SOC ratio. R2 was increasing until a Clay:SOC of about 7, where it reached, and kept, its maximum value. The land use factor was not significant. The major difference with the former study is that we worked on the same soil group, on a large range of texture, with less sandy soils and accounting for structural state. Our results show that, on this soil group, any SOC increase almost linearly increases the physical properties and, therefore, the physical fertility and the ecological functions of the soil, regardless of the clay:SOC ratio. When considering the whole SOC instead of a fraction, we show that the 10 clay:SOC ratio, however corresponds to a good structure according to VESS and optimal physical values. Therefore, we think reaching a clay:SOC ratio of 10 must be considered as an objective for farmers and advisers. Ball, B.C., T. Batey, and L.J. Munkholm. 2007. Field assessment of soil structural quality - a development of the Peerlkamp test. Soil Use Manag. 23(4): 329-337. Dexter, A.R., G. Richard, D. Arrouays, E.A. Czyz, C. Jolivet, and O. Duval. 2008. Complexed organic matter controls soil physical properties. Geoderma 144(3-4): 620-627.

  18. Transport and deposition of carbon at catchment scale: stabilization mechanisms approach

    NASA Astrophysics Data System (ADS)

    Martínez-Mena, María; Almagro, María; Díaz-Pereira, Elvira; García-Franco, Noelia; Boix-Fayos, Carolina

    2016-04-01

    Terrestrial sedimentation buries large amounts of organic carbon (OC) annually, contributing to the terrestrial carbon sink. The temporal significance of this sink will strongly depend on the attributes of the depositional environment, but also on the characteristics of the OC reaching these sites and its stability upon deposition. The fate of the redistributed OC will ultimately depend on the mechanisms of its physical and chemical protection against decomposition, its turnover rates and the conditions under which the OC is stored in sedimentary settings. This framework is more complex in Mediterranean river basins where sediments are often redistributed under a range of environmental conditions in ephemeral, intermittent and perennial fluvial courses, sometimes within the same catchment. The OC stabilization mechanisms and their relations with aggregation at different transport and sedimentary deposits is under those conditions highly uncertain. The main objective of this work was to characterize the stabilization and mineralization of OC in sediments in transit (suspended load), at a range of depositional settings (alluvial bars, reservoir sediments) and soils from the source areas in a sub-catchment (111 km2) at the headwaters of the Segura catchment in South East Spain. In order to obtain a deeper knowledge on the predominant stabilization mechanism corresponding to each erosional phase, the following organic carbon fractionation method was carried out: Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. As a further step, an oxidation of the OC occluded in silt plus clay fraction and that of the free silt plus clay fraction was performed to estimate the oxidant resistant OC pool. Measured OC in these fractions can be related to three functional pools: active (free particulate organic matter), slow (carbon associated to clay and silt or stabilized in aggregates) and passive (oxidation-resistant OC). In addition, the potential mineralized C (incubation method) in each deposit and soil was determined. Preliminary results indicate a higher OC content in the suspended sediments in transit and in the reservoir deposited sediments than in the alluvial bars, being in all sediments the total OC content lower than in the source soils. Slow and passive pools prevailed in suspended sediments and in reservoir sediments compared to alluvial bars, indicating different OC stabilization mechanisms. In addition, in the alluvial bars, mineralization rates were higher in bars located in channels with ephemeral flow conditions and vegetated areas than in bars located in channels with perennial flow conditions.

  19. Clay fractions from a soil chronosequence after glacier retreat reveal the initial evolution of organo-mineral associations

    NASA Astrophysics Data System (ADS)

    Dümig, Alexander; Häusler, Werner; Steffens, Markus; Kögel-Knabner, Ingrid

    2012-05-01

    Interactions between organic and mineral constituents prolong the residence time of organic matter in soils. However, the structural organization and mechanisms of organic coverage on mineral surfaces as well as their development with time are still unclear. We used clay fractions from a soil chronosequence (15, 75 and 120 years) in the foreland of the retreating Damma glacier (Switzerland) and from mature soils outside the proglacial area (>700 and <3000 years) to elucidate the evolution of organo-mineral associations during initial soil formation. The chemical composition of the clay-bound organic matter (OM) was assessed by solid-state 13C NMR spectroscopy while the quantities of amino acids and neutral sugar monomers were determined after acid hydrolysis. The mineral phase was characterized by X-ray diffraction, oxalate extraction, specific surface area by N2 adsorption (BET approach), and cation exchange capacity at pH 7 (CECpH7). The last two methods were applied before and after H2O2 treatment. We found pronounced shifts in quantity and quality of OM during aging of the clay fractions, especially within the first one hundred years of soil formation. The strongly increasing organic carbon (OC) loading of clay-sized particles resulted in decreasing specific surface areas (SSA) of the mineral phases and increasing CECpH7. Thus, OC accumulation was faster than the supply of mineral surfaces and cation exchange capacity was mainly determined by the OC content. Clay-bound OC of the 15-year-old soils showed high proportions of carboxyl C and aromatic C. This may point to remnants of ancient OC which were inherited from the recently exposed glacial till. With increasing age (75 and 120 years), the relative proportions of carboxyl and aromatic C decreased. This was associated with increasing O-alkyl C proportions, whereas accumulation of alkyl C was mainly detected in clay fractions from the mature soils. These findings from solid-state 13C NMR spectroscopy are in line with the increasing amounts of microbial-derived carbohydrates with soil age. The large accumulation of proteins, which was comparable to those of carbohydrates, and the very low C/N ratios of H2O2-resistant OM indicated strong and preferential associations between proteinaceous compounds and mineral surfaces. In the acid soils, poorly crystalline Fe oxides were the main providers of mineral surface area and important for the stabilization of OM during aging of the clay fractions. This was indicated by (I) the strong correlations between oxalate soluble Fe and both, SSA of H2O2-treated clay fractions and OC content, and (II) the low formation of expandable clays due to small extents of mineral weathering. Our chronosequence approach provided new insights into the evolution of organo-mineral interactions in acid soils. The formation of organo-mineral associations started with the sorption of proteinaceous compounds and microbial-derived carbohydrates on mineral surfaces which were mainly provided by ferrihydrite. The sequential accumulation of different organic compounds and the large OC loadings point to multiple accretion of OM in distinct zones or layers during the initial evolution of clay fractions.

  20. Performance of different substrates in constructed wetlands planted with E. crassipes treating low-strength sewage under subtropical conditions.

    PubMed

    Lima, M X; Carvalho, K Q; Passig, F H; Borges, A C; Filippe, T C; Azevedo, J C R; Nagalli, A

    2018-07-15

    The present study aimed to assess removal potential of chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), total ammonia nitrogen (TAN), total phosphorus (TP) and acetylsalicylic acid (ASA) in synthetic wastewater simulating low-strength sewage by sequencing-batch mode constructed wetlands (CWs). Six CWs with three substrates (gravel, light expanded clay and clay bricks) and one CW of each substrate was planted with E. crassipes to verify the feasibility of using a floating macrophyte in CWs and verify the best optimized substrate. Results showed that the presence of E. crassipes enhanced the removal of COD for systems with gravel, increasing the removal efficiency from 37% in the unplanted system (CW G-U ) to 60% in the planted system (CW G-P ). The vegetated CW with clay bricks (CW B-P ) presented the best performance for both TKN and TAN removal, with maximum removal efficiencies of 68% and 35%, respectively. Phosphorus was observed to be efficiently removed in systems with clay bricks, both planted (CW B-U ) and unplanted (CW B-P ), with mean removal efficiencies of 82% and 87%, respectively, probably via adsorption. It was also observed that after 296days of operation, no desorption or increase on phosphorus in effluent samples were observed, thus indicating that the material was not yet saturated and phosphorus probably presents a strong binding to the media. ASA removal efficiency varied from 34% to 92% in CWs, probably due to plant uptake through roots and microbial biodegradation. Plant direct uptake varied from 4 to 74% of the total nitrogen and from 26 to 71% of the total phosphorus removed in CW G-P , CW C-P and CW B-P . E. crassipes was able to uptake up to 4.19g of phosphorus in CW C-P and 11.84g of nitrogen in CW B-P . The findings on this study suggest that E. crassipes could be used in CWs and clay bricks could significantly enhance phosphorus removal capacity in CWs. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Integrating proximal soil sensing techniques and terrain indexes to generate 3D maps of soil restrictive layers in the Palouse region, Washington, USA

    NASA Astrophysics Data System (ADS)

    Poggio, Matteo; Brown, David J.; Gasch, Caley K.; Brooks, Erin S.; Yourek, Matt A.

    2015-04-01

    In the Palouse region of eastern Washington and northern Idaho (USA), spatially discontinuous restrictive layers impede rooting growth and water infiltration. Consequently, accurate maps showing the depth and spatial extent of these restrictive layers are essential for watershed hydrologic modeling appropriate for precision agriculture. In this presentation, we report on the use of a Visible and Near-Infrared (VisNIR) penetrometer fore optic to construct detailed maps of three wheat fields in the Palouse region. The VisNIR penetrometer was used to deliver in situ soil reflectance to an Analytical Spectral Devices (ASD, Boulder, CO, USA) spectrometer and simultaneously acquire insertion force. With a hydraulic push-type soil coring systems for insertion (e.g. Giddings), we collected soil spectra and insertion force data along 41m x 41m grid points (2 fields) and 50m x 50m grid points (1 field) to ≈80cm depth, in addition to interrogation points at 36 representative instrumented locations per field. At each of the 36 instrumented locations, two soil cores were extracted for laboratory determination of clay content and bulk density. We developed calibration models of soil clay content and bulk density with spectra and insertion force collected in situ, using partial least squares regression 2 (PLSR2). Applying spline functions, we delineated clay and bulk density profiles at each points (grid and 24 locations). The soil profiles were then used as inputs in a regression-kriging model with terrain indexes and ECa data (derived from an EM38 field survey, Geonics, Mississauga, Ontario, Canada) as covariates to generate 3D soil maps. Preliminary results show that the VisNIR penetrometer can capture the spatial patterns of restrictive layers. Work is ongoing to evaluate the prediction accuracy of penetrometer-derived 3D clay content and restriction layer maps.

  2. Soil Moisture and Excavation Behaviour in the Chaco Leaf-Cutting Ant (Atta vollenweideri): Digging Performance and Prevention of Water Inflow into the Nest

    PubMed Central

    Pielström, Steffen; Roces, Flavio

    2014-01-01

    The Chaco leaf-cutting ant Atta vollenweideri is native to the clay-heavy soils of the Gran Chaco region in South America. Because of seasonal floods, colonies are regularly exposed to varying moisture across the soil profile, a factor that not only strongly influences workers' digging performance during nest building, but also determines the suitability of the soil for the rearing of the colony's symbiotic fungus. In this study, we investigated the effects of varying soil moisture on behaviours associated with underground nest building in A. vollenweideri. This was done in a series of laboratory experiments using standardised, plastic clay-water mixtures with gravimetric water contents ranging from relatively brittle material to mixtures close to the liquid limit. Our experiments showed that preference and group-level digging rate increased with increasing water content, but then dropped considerably for extremely moist materials. The production of vibrational recruitment signals during digging showed, on the contrary, a slightly negative linear correlation with soil moisture. Workers formed and carried clay pellets at higher rates in moist clay, even at the highest water content tested. Hence, their weak preference and low group-level excavation rate observed for that mixture cannot be explained by any inability to work with the material. More likely, extremely high moistures may indicate locations unsuitable for nest building. To test this hypothesis, we simulated a situation in which workers excavated an upward tunnel below accumulated surface water. The ants stopped digging about 12 mm below the interface soil/water, a behaviour representing a possible adaptation to the threat of water inflow field colonies are exposed to while digging under seasonally flooded soils. Possible roles of soil water in the temporal and spatial pattern of nest growth are discussed. PMID:24748382

  3. Evaluation of Turf-Grass and Prairie-Vegetated Rain Gardens in a Clay and Sand Soil, Madison, Wisconsin, Water Years 2004-08

    USGS Publications Warehouse

    Selbig, William R.; Balster, Nicholas

    2010-01-01

    The U.S. Geological Survey, in cooperation with a consortium of 19 cities, towns, and villages in Dane County, Wis., undertook a study to compare the capability of rain gardens with different vegetative species and soil types to infiltrate stormwater runoff from the roof of an adjacent structure. Two rain gardens, one planted with turf grass and the other with native prairie species, were constructed side-by-side in 2003 at two locations with different dominant soil types, either sand or clay. Each rain garden was sized to a ratio of approximately 5:1 contributing area to receiving area and to a depth of 0.5 foot. Each rain garden, regardless of vegetation or soil type, was capable of storing and infiltrating most of the runoff over the 5-year study period. Both rain gardens in sand, as well as the prairie rain garden in clay, retained and infiltrated 100 percent of all precipitation and snowmelt events during water years 2004-07. The turf rain garden in clay occasionally had runoff exceed its confining boundaries, but was still able to retain 96 percent of all precipitation and snowmelt events during the same time period. Precipitation intensity and number of antecedent dry days were important variables that influenced when the storage capacity of underlying soils would become saturated, which resulted in pooled water in the rain gardens. Because the rooftop area that drained runoff to each rain garden was approximately five times larger than the area of the rain garden itself, evapotranspiration was a small percentage of the annual water budget. For example, during water year 2005, the maximum evapotranspiration of total influent volume ranged from 21 percent for the turf rain garden in clay to 25 percent for the turf rain garden in sand, and the minimum ranged from 12 percent for the prairie rain garden in clay to 19 percent for the prairie rain garden in sand. Little to no runoff left each rain garden as effluent and a small percentage of runoff returned to the atmosphere through evapotranspiration; therefore, the remainder was considered recharge. During water year 2005, recharge was 81 to 75 percent of total influent volume for the prairie- and turf-rain gardens in sand and 87 to 78 percent for the prairie- and turf-rain gardens in clay, respectively. Maximum recharge volumes ranged from 90 to 94 percent of the total influent volume in the turf and prairie rain gardens in sand and occurred during water year 2004. Maximum recharge in the turf and prairie rain gardens in clay ranged from 89 percent during water year 2007 to 98 percent during water year 2004. Median infiltration rates were an order of magnitude greater for rain gardens planted in sand than for those in clay, regardless of vegetation type. Under similar soil conditions, rain gardens planted with turf grass had lower median infiltration rates than those planted with prairie species. Median infiltration rates were 0.28 and 0.88 inches per hour in the turf and prairie rain gardens in clay, respectively, and 2.5 and 4.2 inches per hour in the turf and prairie rain gardens in sand, respectively. In general, infiltration rates were greater during spring (April and May) and summer (June through August) months. Of the six observed exceedences of the storage capacity of the turf rain garden in clay between April-November during 2004-07, five were predicted by use of a combination of the normalized surface storage volume, the median infiltration rate, and an estimate of specific yield for soils under the rain garden to a depth equal to the uppermost limiting layer. By use of the same criteria, in water year 2008, when the contributing drainage area to the prairie rain garden in clay was doubled, all four observed exceedences of the total storage capacity were predicted. The accuracy of the predictions of when the total storage capacity of the rain gardens would be exceeded indicates that by applying measurements of the appropriate soil properties to rain g

  4. Physicochemical Properties Influencing Presence of Burkholderia pseudomallei in Soil from Small Ruminant Farms in Peninsular Malaysia

    PubMed Central

    Panchadcharam, Chandrawathani; Zakaria, Zunita; Abdul Aziz, Saleha

    2016-01-01

    Soil is considered to be a major reservoir of Burkholderia pseudomallei in the environment. This paper investigates soil physicochemical properties that may influence presence of B. pseudomallei in soil samples from small ruminant farms in Peninsular Malaysia. Soil samples were collected from the farms and cultured for B. pseudomallei. The texture, organic matter and water contents, pH, elemental contents, cation exchange capacities, carbon, sulfur and nitrogen contents were determined. Analysis of soil samples that were positive and negative for B. pseudomallei using multivariable logistic regression found that the odds of bacterial isolation from soil was significantly higher for samples with higher contents of iron (OR = 1.01, 95%CI = 1.00–1.02, p = 0.03), water (OR = 1.28, 95%CI = 1.05–1.55, p = 0.01) and clay (OR = 1.54, 95%CI = 1.15–2.06, p = 0.004) compared to the odds of isolation in samples with lower contents of the above variables. These three factors may have favored the survival of B. pseudomallei because iron regulates expression of respiratory enzymes, while water is essential for soil ecology and agent’s biological processes and clay retains water and nutrients. PMID:27635652

  5. Estimation of anisotropy parameters in organic-rich shale: Rock physics forward modeling approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herawati, Ida, E-mail: ida.herawati@students.itb.ac.id; Winardhi, Sonny; Priyono, Awali

    Anisotropy analysis becomes an important step in processing and interpretation of seismic data. One of the most important things in anisotropy analysis is anisotropy parameter estimation which can be estimated using well data, core data or seismic data. In seismic data, anisotropy parameter calculation is generally based on velocity moveout analysis. However, the accuracy depends on data quality, available offset, and velocity moveout picking. Anisotropy estimation using seismic data is needed to obtain wide coverage of particular layer anisotropy. In anisotropic reservoir, analysis of anisotropy parameters also helps us to better understand the reservoir characteristics. Anisotropy parameters, especially ε, aremore » related to rock property and lithology determination. Current research aims to estimate anisotropy parameter from seismic data and integrate well data with case study in potential shale gas reservoir. Due to complexity in organic-rich shale reservoir, extensive study from different disciplines is needed to understand the reservoir. Shale itself has intrinsic anisotropy caused by lamination of their formed minerals. In order to link rock physic with seismic response, it is necessary to build forward modeling in organic-rich shale. This paper focuses on studying relationship between reservoir properties such as clay content, porosity and total organic content with anisotropy. Organic content which defines prospectivity of shale gas can be considered as solid background or solid inclusion or both. From the forward modeling result, it is shown that organic matter presence increases anisotropy in shale. The relationships between total organic content and other seismic properties such as acoustic impedance and Vp/Vs are also presented.« less

  6. Mineralogical impact on long-term patterns of soil nitrogen and phosphorus enzyme activities

    NASA Astrophysics Data System (ADS)

    Mikutta, Robert; Turner, Stephanie; Meyer-Stüve, Sandra; Guggenberger, Georg; Dohrmann, Reiner; Schippers, Axel

    2014-05-01

    Soil chronosequences provide a unique opportunity to study microbial activity over time in mineralogical diverse soils of different ages. The main objective of this study was to test the effect of mineralogical properties, nutrient and organic matter availability over whole soil pro-files on the abundance and activity of the microbial communities. We focused on microbio-logical processes involved in nitrogen and phosphorus cycling at the 120,000-year Franz Josef soil chronosequence. Microbial abundances (microbial biomass and total cell counts) and enzyme activities (protease, urease, aminopeptidase, and phosphatase) were determined and related to nutrient contents and mineralogical soil properties. Both, microbial abundances and enzyme activities decreased with soil depth at all sites. In the organic layers, microbial biomass and the activities of N-hydrolyzing enzymes showed their maximum at the intermediate-aged sites, corresponding to a high aboveground biomass. In contrast, the phosphatase activity increased with site age. The activities of N-hydrolyzing enzymes were positively correlated with total carbon and nitrogen contents, whereas the phosphatase activity was negatively correlated with the phosphorus content. In the mineral soil, the enzyme activities were generally low, thus reflecting the presence of strongly sorbing minerals. Sub-strate-normalized enzyme activities correlated negatively to clay content as well as poorly crystalline Al and Fe oxyhydroxides, supporting the view that the evolution of reactive sec-ondary mineral phases alters the activity of the microbial communities by constraining sub-strate availability. Our data suggest a strong mineralogical influence on nutrient cycling par-ticularly in subsoil environments.

  7. Monitoring of organic contaminants in sediments using low field proton nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Rupert, Yuri

    2016-04-01

    The effective monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. Recent geophysical methods such as electrical resistivity, complex conductivity, and ground penetrating radar have been successfully applied to characterize organic contaminants in the subsurface and to monitor remediation process both in laboratory and in field. Low field proton nuclear magnetic resonance (NMR) is a geophysical tool sensitive to the molecular-scale physical and chemical environment of hydrogen-bearing fluids in geological materials and shows promise as a novel method for monitoring contaminant remediation. This laboratory research focuses on measurements on synthetic samples to determine the sensitivity of NMR to the presence of organic contaminants and improve understanding of relationships between NMR observables, hydrological properties of the sediments, and amount and state of contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL) has been selected as a representative organic contaminant. Three types of porous media (pure silica sands, montmorillonite clay, and various sand-clay mixtures with different sand/clay ratios) were prepared as synthetic sediments. NMR relaxation time (T2) and diffusion-relaxation (D - T2) correlation measurements were performed in each sediment saturated with water and toluene mixed fluid at assorted concentrations (0% toluene and 100% water, 1% toluene and 99% water, 5% toluene and 95% water, 25% toluene and 75% water, and 100% toluene and 0% water) to 1) understand the effect of different porous media on the NMR responses in each fluid mixture, 2) investigate the role of clay content on T2 relaxation of each fluid, 3) quantify the amount hydrocarbons in the presence of water in each sediment, and 4) resolve hydrocarbons from water in D - T2 map. Relationships between the compositions of porous media, hydrocarbon concentration, and hydraulic properties of sediments will be presented and discussed. A minimum toluene detection limit has been established, and influences on NMR signals from increasing contaminant concentration have been investigated as well. It is evident in our data that the dominant control of porous media on NMR responses relies on clay content in the sand-clay mixture.

  8. Hydroxyapatite clay for gap filling and adequate bone ingrowth.

    PubMed

    Maruyama, M; Terayama, K; Ito, M; Takei, T; Kitagawa, E

    1995-03-01

    In uncemented total hip arthroplasty, a complete filling of the gap between femoral prosthesis and the host bone is difficult and defects would remain, because the anatomy of the reamed intramedullary canal cannot fit the prosthesis. Therefore, it seems practical to fill the gap with a clay containing hydroxyapatite (HA), which has an osteoconductive character. The clay (HA clay) is made by mixing HA granules (size 0.1 mm or more) having a homogeneous pore distribution and a porosity of 35-48 vol%, and a viscous substance such as a saline solution of sodium alginate (SSSA). In the first experiment, the ratio of HA granules and sodium alginate in SSSA is set for the same handling properties of HA clay and polymethylmethacrylate bone cement (standard viscosity) before hardening. As a result, the ratio is set for 55 wt% of HA in the clay and 12.5 wt% of sodium alginate in SSSA (i.e., HA:sodium alginate:saline solution = 9.8:1:7). In the second study, the gap between the femoral stem and bone model is completely filled with HA clay. However, the gap is not filled only with HA granules or HA granules mixed with saline solution. In the third animal experiment, using an unloaded model, histology shows that HA clay has an osteoconductive property bridging the gap between the implant and the cortical bone without any adverse reaction. HA clay is considered a useful biomaterial to fill the gap with adequate bone ingrowth.

  9. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    PubMed

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  10. Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine.

    PubMed

    Cerqueira, Beatriz; Vega, Flora A; Silva, Luis F O; Andrade, Luisa

    2012-04-01

    Open cast mining has a strong impact on the environment, the intensity depending on the morphology of the deposit and on the nature of the minerals. At Touro mine (NW Spain) there is a large area covered by tailings, one of which, called the "sedimentation bank", was used to deposit sludge resulting from the extraction of copper in the flotation plant. Three zones were selected and the soils were sampled to analyse the changes brought about by vegetation on the chemical and mineralogical properties of the soils developed over the sedimentation bank and its development over time. The vegetation increased the pH, contents of organic material, nitrogen, clay and free oxides of Fe and Al, and the cationic exchange capacity of the soils. The decrease in the sulphide content, benefited by the vegetation process, led to a reduction in the total content of Cr and Cu. The vegetation also contributed towards the alteration of the primary minerals. The transformation of jarosite, the formation of nanocrystals of hematite, goethite, hydroxypolymers, and amorphous minerals that contained Cu, Cr and Pb were observed. Nevertheless the high Cu and Cr contents indicate that it is advisable to change the restoration process. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Hyperspectral Data Processing and Mapping of Soil Parameters: Preliminary Data from Tuscany (Italy)

    NASA Astrophysics Data System (ADS)

    Garfagnoli, F.; Moretti, S.; Catani, F.; Innocenti, L.; Chiarantini, L.

    2010-12-01

    Hyperspectral imaging has become a very powerful remote sensing tool for its capability of performing chemical and physical analysis of the observed areas. The objective of this study is to retrieve and characterize clay mineral content of the cultivated layer of soils, from both airborne hyperspectral and field spectrometry surveys in the 400-2500 nm spectral range. Correlation analysis is used to examine the possibility to predict the selected property using high-resolution reflectance spectra and images. The study area is located in the Mugello basin, about 30 km north of Firenze (Tuscany, Italy). Agriculturally suitable terrains are assigned mainly to annual crops, marginally to olive groves, vineyards and orchards. Soils mostly belong to Regosols and Cambisols orders. About 80 topsoil samples scattered all over the area were collected simultaneously with the flight of SIM.GA hyperspectral camera from Selex Galileo. The quantitative determination of clay minerals content in soil samples was performed by means of XRD and Rietveld refinement. An ASD FieldSpec spectroradiometer was used to obtain reflectance spectra from dried, crushed and sieved samples under controlled laboratory conditions. Different chemometric techniques (multiple linear regression, vertex component analysis, partial least squares regression and band depth analysis) were preliminarily tested to correlate mineralogical records with reflectance data. A one component partial least squares regression model yielded a preliminary R2 value of 0.65. A similar result was achieved by plotting the absorption peak depth at 2210 versus total clay mineral content (band-depth analysis). A complete hyperspectral geocoded reflectance dataset was collected using SIM.GA hyperspectral image sensor from Selex-Galileo, mounted on board of the University of Firenze ultra light aircraft. The approximate pixel resolution was 0.6 m (VNIR) and 1.2 m (SWIR). Airborne SIM.GA row data were firstly transformed into at-sensor radiance values, where calibration coefficients and parameters from laboratory measurements are applied to non-georeferred VNIR/SWIR DN values. Then, geocoded products are retrieved for each flight line by using a procedure developed in IDL Language and PARGE (PARametric Geocoding) software. When all compensation parameters are applied to hyperspectral data or to the final thematic map, orthorectified, georeferred and coregistered VNIR to SWIR images or maps are available for GIS application and 3D view. Airborne imagery has to be corrected for the influence of the atmosphere, solar illumination, sensor viewing geometry and terrain geometry information, for the retrieval of inherent surface reflectance properties. Then, different geophysical parameters can be investigated and retrieved by means of inversion algorithms. The experimental fitting of laboratory data on mineral content is used for airborne data inversion, whose results are in agreement with laboratory records, demonstrating the possibility to use this methodology for digital mapping of soil properties.

  12. Further studies on the problems of geomagnetic field intensity determination from archaeological baked clay materials

    NASA Astrophysics Data System (ADS)

    Kostadinova-Avramova, M.; Kovacheva, M.

    2015-10-01

    Archaeological baked clay remains provide valuable information about the geomagnetic field in historical past, but determination of the geomagnetic field characteristics, especially intensity, is often a difficult task. This study was undertaken to elucidate the reasons for unsuccessful intensity determination experiments obtained from two different Bulgarian archaeological sites (Nessebar - Early Byzantine period and Malenovo - Early Iron Age). With this aim, artificial clay samples were formed in the laboratory and investigated. The clay used for the artificial samples preparation differs according to its initial state. Nessebar clay was baked in the antiquity, but Malenovo clay was raw, taken from the clay deposit near the site. The obtained artificial samples were repeatedly heated eight times in known magnetic field to 700 °C. X-ray diffraction analyses and rock-magnetic experiments were performed to obtain information about the mineralogical content and magnetic properties of the initial and laboratory heated clays. Two different protocols were applied for the intensity determination-Coe version of Thellier and Thellier method and multispecimen parallel differential pTRM protocol. Various combinations of laboratory fields and mutual positions of the directions of laboratory field and carried thermoremanence were used in the performed Coe experiment. The obtained results indicate that the failure of this experiment is probably related to unfavourable grain sizes of the prevailing magnetic carriers combined with the chosen experimental conditions. The multispecimen parallel differential pTRM protocol in its original form gives excellent results for the artificial samples, but failed for the real samples (samples coming from previously studied kilns of Nessebar and Malenovo sites). Obviously the strong dependence of this method on the homogeneity of the used subsamples hinders its implementation in its original form for archaeomaterials. The latter are often heterogeneous due to variable heating conditions in the different parts of the archaeological structures. The study draws attention to the importance of multiple heating for the stabilization of grain size distribution in baked clay materials and the need of elucidation of this question.

  13. Influence of extractable soil manganese on oxidation capacity of different soils in Korea

    NASA Astrophysics Data System (ADS)

    Chon, Chul-Min; Kim, Jae Gon; Lee, Gyoo Ho; Kim, Tack Hyun

    2008-08-01

    We examined the relationship between soil oxidation capacity and extractable soil manganese, iron oxides, and other soil properties. The Korean soils examined in this study exhibited low to medium Cr oxidation capacities, oxidizing 0.00-0.47 mmol/kg, except for TG-4 soils, which had the highest capacity for oxidizing added Cr(III) [>1.01 mmol/kg of oxidized Cr(VI)]. TG and US soils, with high Mn contents, had relatively high oxidation capacities. The Mn amounts extracted by dithionite-citrate-bicarbonate (DCB) (Mnd), NH2OH·HCl (Mnh), and hydroquinone (Mnr) were generally very similar, except for the YS1 soils, and were well correlated. Only small proportions of either total Mn or DCB-extractable Mn were extracted by NH2OH·HCl and hydroquinone in the YS1 soils, suggesting inclusion of NH2OH·HCl and hydroquinone-resistant Mn oxides, because these extractants are weaker reductants than DCB. No Cr oxidation test results were closely related to total Mn concentrations, but Mnd, Mnh, and Mnr showed a relatively high correlation with the Cr tests ( r = 0.655-0.851; P < 0.01). The concentrations of Mnd and Mnh were better correlated with the Cr oxidation tests than was the Mnr concentration, suggesting that the oxidation capacity of our soil samples can be better explained by Mnd and Mnh than by Mnr. The first component in principal components analysis indicated that extractable soil Mn was a main factor controlling net Cr oxidation in the soils. Total soil Mn, Fe oxides, and the clay fraction are crucial for predicting the mobility of pollutants and heavy metals in soils. The second principal component indicated that the presence of Fe oxides in soils had a significant relationship with the clay fraction and total Mn oxide, and was also related to heavy-metal concentrations (Zn, Cd, and Cu, but not Pb).

  14. Controlling parameters of fluorescent tracer sorption on soils and sediments

    NASA Astrophysics Data System (ADS)

    Bork, Marcus; Graf-Rosenfellner, Markus; Lange, Jens; Lang, Friederike

    2017-04-01

    Fluorescent dyes like uranine (UR) and sulforhodamine B (SRB) have been widely used, especially for tracing hydrological processes. In the recent past, efforts have intensified to use fluorescent tracers also in soils, for example as proxies for organic pollutants. However, the sorption properties of both organic pollutants and fluorescent tracers have to be exactly known to succeed. Yet existing knowledge for soils is still incomplete and poorly standardized. For this reason, we carried out laboratory batch experiments to determine sorption isotherms of UR and SRB with varying pH, soil texture and organic carbon content (OC). As sorbents we used a sandy sediment with low OC, a silty loamy topsoil with 2.8 %-OC and a similar textured subsoil containing 0.6 %-OC. For both tracers six concentration steps each were prepared and shaken with the suspended sorbent for 42 h using a sorbent:solution ratio of 1:5. During the equilibration, the pH was repeatedly adjusted to 5.5, 6.5, and 7.5 by adding hydrochloric acid (HCl) or sodium hydroxide (NaOH). Subsequently, the tracer-sorbent-suspension was centrifuged and the fluorescence of the tracer in the supernatant was measured. In order to examine the influence of OC and the clay fraction on the tracer sorption, batch-experiments at pH 7.5 were also conducted with manipulated sorbents: top- and subsoil samples were treated with H2O2 to remove organic matter and the clay mineral montmorillonite was added to the sandy sediment to achieve final clay contents of 0.1 %, 0.5 %, 1 %, 2 %, 2.5 %, 5 % and 10 % clay. We observed a negative relationship between the linear sorption coefficient Kd and pH, which was stronger for UR than for SRB. Increasing numbers of negative sorption sites and functional groups of both tracers and sorbents with increasing pH might be the reason for this observation. Besides the pH-value, quantity and quality of clay and OC had a crucial influence on the sorption of UR and SRB in soils and sediment. As expected, increasing clay content, which is associated with an increasing specific surface and therefore more sorption sites, led to an increasing sorption of UR and SRB. Here, after the addition of 4 % of the clay mineral montmorillonite, nearly 100 % of both tracers were sorbed. Furthermore, OC influenced the sorption of UR and SRB in different ways: while the sorption of UR increased, the sorption of SRB decreased with increasing OC. In conclusion, the sorption behaviour of the fluorescent tracers UR and SRB in soils is very complex, and for appropriate application, the physico-chemical properties of the respective soils or sediments have to be considered. These conditions essentially determine if the respective tracer shows a conservative or non-conservative behaviour. With these aspects in mind, applying SRB and UR has the potential to be a cheap and fast method to estimate the fate of pollutants in soils or sediments.

  15. Growth and Yields of 5-Year-Old Planted Hardwoods On Sharkey Clay Soil

    Treesearch

    Roger M. Krinard; Harvey E. Kennedy

    1981-01-01

    Yields of five hardwood species at age 5, planted at 10- by 10-foot spacing on Sharkey clay soil, were ranked cottonwood>sycamore>green ash>sweet-gum~Nuttall oak. By species, per acre volume of stemwood ranged from 29 to 446 cubic feet and total above-ground dry tree weight ranged from 1.08 to 7.68 tons.

  16. Clay minerals behaviour in thin sandy clay-rich lacustrine turbidites (Lake Hazar, Turkey)

    NASA Astrophysics Data System (ADS)

    El Ouahabi, Meriam; Hubert-Ferrari, Aurelia; Lamair, Laura; Hage, Sophie

    2017-04-01

    Turbidites have been extensively studied in many different areas using cores or outcrop, which represent only an integrated snapshot of a dynamic evolving flow. Laboratory experiments provide the missing relationships between the flow characteristics and their deposits. In particular, flume experiments emphasize that the presence of clay plays a key role in turbidity current dynamics. Clay fraction, in small amount, provides cohesive strength to sediment mixtures and can damp turbulence. However, the degree of flocculation is dependent on factors such as the amount and size of clay particles, the surface of clay particles, chemistry and pH conditions in which the clay particles are dispersed. The present study focuses on thin clayey sand turbidites found in Lake Hazar (Turkey) occurring in stacked thin beds. Depositional processes and sources have been previously studied and three types were deciphered, including laminar flows dominated by cohesion, transitional, and turbulence flow regimes (Hage et al., in revision). For the purpose of determine the clay behavior in the three flow regimes, clay mineralogical, geochemical measurements on the cores allow characterising the turbidites. SEM observations provide further information regarding the morphology of clay minerals and other clasts. The study is particularly relevant given the highly alkaline and saline water of the Hazar Lake. Clay minerals in Hazar Lake sediments include kaolinite (1:1-type), illite and chlorite (2:1-type). Hazar lake water is alkaline having pH around 9.3, in such alkaline environment, a cation-exchange reaction takes place. Furthermore, in saline water (16‰), salts can act as a shield and decrease the repulsive forces between clay particle surfaces. So, pH and salt content jointly impact the behaviour of clays differently. Since the Al-faces of clay structures have a negative charge in basic solutions. At high pH, all kaolinite surfaces become negative-charged, and then kaolinite particles are dispersed, and the suspension is stabilized supported by our SEM observations. In alkaline water, kaolinite reveals a lower degree of consolidation. While, alkaline water has no measurable effect on illite and chlorite surface properties due to the absence of modifications in charge. Illite and chlorite form with other clasts clusters or aggregate structures in suspension when the particle interactions are dominated by attractive energies were formed. The aggregate structure plays a major part in the flow behavior of clay suspensions. Flocs will immobilize the suspending medium, and give rise to increasing viscosity and yield strength of the suspension. S. Hage, A. Hubert-Ferrari, L. Lamair, U. Avşar, M. El Ouahabi, M. Van Daele, F. Boulvain, M.A. Bahri, A. Seret, Al. Plenevaux. Flow dynamics at the origin of thin sandy clay-rich lacustrine turbidites: Examples from Lake Hazar, Turkey, submitted to Sedimentology, in revision.

  17. Depositional environments of the Jurassic Maghara main coal seam in north central Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Edress, Nader Ahmed Ahmed; Opluštil, Stanislav; Sýkorová, Ivana

    2018-04-01

    Twenty-eight channel samples with a cumulative thickness of about 4 m collected from three sections of the Maghara main coal seam in the middle Jurassic Safa Formation have been studied for their lithotype and maceral compositions to reconstruct the character of peat swamp, its hydrological regime and the predominating type of vegetation. Lithotype composition is a combination of dully lithotypes with duroclarain (19% of total cumulative thickness), clarodurain (15%), black durain (15%), and shaly coal (15%) and bright lithotypes represented by clarain (23%), vitrain (12%) and a small proportion of wild fire-generated fusain (1%). Maceral analyses revealed the dominance of vitrinite (70.6% on average), followed by liptinite (25.2%) and inertinite (8.1%). Mineral matter content is ∼9% on average and consists of clay, quartz and pyrite concentrate mostly at the base and the roof of the seam. Dominantly vitrinite composition of coal and extremely low fire- and oxidation-borne inertinite content, together with high Gelification Indices imply predomination of waterlogged anoxic conditions in the precursing mire with water tables mostly above the peat surface throughout most of the time during peat swamp formation. Increases in collotelinite contents and Tissue Preservation Index up the section, followed by a reversal trend in upper third of the coal section, further accompanied by a reversal trend in collodetrinite, liptodetrinite, alginite, sporinite and clay contents records a transition from dominately limnotelmatic and limnic at the lower part to dominately limnotelmatic with increase telmatic condition achieved in the middle part of coal. At the upper part of coal seam an opposite trend marks the return to limnic and limnotelmatic conditions in the final phases of peat swamp history and its subsequent inundation. The proportion of arborescent (mostly coniferous) and herbaceous vegetation varied throughout the section of the coal with tendency of increasing density of arborescent vegetation to the middle part of the coal seam section. The intercalation of coal in shallow marine strata implies that peat swamp precursor formed in a coastal setting, probably on delta plain or lagoon. Its formation was controlled by water table changes driven by sea level fluctuations that created an accommodation space necessary for preservation of peat.

  18. Intensities of groundwater pollution and salinization in Asian coastal cities

    NASA Astrophysics Data System (ADS)

    Onodera, S. I.; Saito, M.; Tomozawa, Y.; Shimizu, Y.; Admajaya, F. T.

    2017-12-01

    To confirm groundwater pollution and salinization intensities in various coastal Asian cities, we compared hydrogeological and chemical data at Osaka, Manila, Bangkok, and Jakarta as a mega-city and at Okayama and Marugame in western Japan as a small city. The groundwater depressions with heavy use caused intrusions of surface pollutants to deeper zone, that is, the expansion and diffusion of pollution. In addition, groundwater pollution originated from old sewage systems was found, especially in Osaka which is a developed city. Groundwater salinization was caused by seawater intrusion and leaching of saline component in sediment under the condition with lower hydraulic head at the deep groundwater than the sea level with urbanization. The former process is the contribution of present seawater, on the other hand the later is the contribution of palaeo-seawater in alluvial clay layer. The saline content in groundwater were 3.0x1010 t in Bangkok, 2.2x108 t in Osaka, 5.2x107 t in Jakarta, and 3.6x106 t in Manila, respectively. The subject area is one order wider in Bangkok than in Osaka, and two orders wider than in Manila and Jakarta. Such huge saline accumulation in Bangkok would be due to the lowest groundwater potential in present as well as the largest subject area. Deeper groundwater potential in Osaka has recovered since 1970, whereas those in Manila and Jakarta are declining. In addition, we estimated the palaeo-seawater content under the mega-cities as total pore volume in the alluvial clay. These values were estimated to be 5.5x109 t in Bangkok, 2.1x108 t in Osaka, 9.0x107 t in Jakarta, and 8.0x107 t in Manila, respectively. The comparative results of accumulative contents and palaeo-values indicated that accumulative contents were more than the others in Bangkok and Osaka. These results suggest that seawater intrusion occurred as well as palaeo-water leaching in these cities. In addition, that shows the urbanization period is important to salinization intensity.

  19. Ground ice conditions in Salluit, Northern Quebec

    NASA Astrophysics Data System (ADS)

    Allard, M.; Fortier, R.; Calmels, F.; Gagnon, O.; L'Hérault, E.

    2011-12-01

    Salluit in Northern Québec (ca. 1300 inhabitants) faces difficult ground ice conditions for its development. The village is located in a U-shaped valley, along a fjord that was deglaciated around 8000 cal BP. The post-glacial marine limit is at the current elevation of 150 m ASL. Among the mapped surficial geology units, three contain particularly ice-rich permafrost: marine clays, till and silty colluviums. A diamond drill was used to extract 10 permafrost cores down to 23 m deep. In addition, 18 shallow cores (to 5 m deep) were extracted with a portable drill. All the frozen cores were shipped to Québec city where ground ice contents were measured and cryostructures were imaged by CT-Scanning. Water contents, grain-size and pore water salinity were measured. Refraction seismic profiles were run to measure the depth to bedrock. GPR and electrical resistivity surveys helped to map ice-rich areas. Three cone penetration tests (CPT) were run in the frozen clays to depths ranging from 8 to 21 m. Maximum clay thickness is ca. 50 m deep near the shoreline. The cone penetration tests and all the cores in clays revealed large amounts of both segregated and aggradational ice (volumetric contents up to 93% over thicknesses of one meter) to depths varying between 2.5 and 4 m, below which the ice content decreases and the salinity increases (values measured up to 42 gr/L between 4.5 and 6 m deep). Chunks of organic matter buried below the actual active layer base indicate past cryoturbations under a somewhat warmer climate, most probably associated with intense frost boil action, as widely observed today. The stony till has developed large quantities of segregation ice which can be seen in larger concentrations and as thicker lenses under boulders and in matrix rich (≥ 50% sand and silt) parts of the glacial sediment. As digging for a sewage pond was undertaken in winter 2008 by blasting, the clast-influenced cryostructure of the till could be observed in cuts and in large chunks of permafrost. Volumetric ice contents between 30 and 70% were measured in the till. In addition, low lying areas where till thickness exceeds ca 5 m contain polygons with ice wedges up to 2 m wide. Colluviums on slopes laid by sheet flow have been accumulating on two sectors of the study area, the source material being eroded clay at higher elevations; these slope sediments contain alternating layers of buried organics (C-14 date of 2300 BP at base of the sequence), silt and lenses of aggradational ice. Although the surface geophysical methods (electrical resistivity,GPR) were essential for mapping ice rich permafrost, the detailed appraisal of ground ice conditions was made truly possible by drilling and extracting intact cores. The use of the Cat-scan method proved very efficient for the precise and rapid measurement of ground ice contents and for imaging cryostructures on a large number of samples, thus providing exact information on permafrost composition and for interpreting permafrost history. The Salluit study also involves climate monitoring, thermal analysis and modeling, and intense community consultations.

  20. Ecological risk assessment: influence of texture on background concentration of microelements in soils of Russia.

    NASA Astrophysics Data System (ADS)

    Beketskaya, Olga

    2010-05-01

    In Russia quality standards of contaminated substances values in environment consist of ecological and sanitary rate-setting. The sanitary risk assessment base on potential risk that contaminants pose to protect human beings. The main purpose of the ecological risk assessment is to protect ecosystem. To determine negative influence on living organisms in the sanitary risk assessment in Russia we use MPC. This value of contaminants show how substances affected on different part of environment, biological activity and soil processes. The ecological risk assessment based on comparison compounds concentration with background concentration for definite territories. Taking into account high interval of microelements value in soils, we suggest using statistic method for determination of concentration levels of chemical elements concentration in soils of Russia. This method is based on determination middle levels of elements content in natural condition. The top limit of middle chemical elements concentration in soils is value, which exceed middle regional background level in three times standard deviation. The top limit of natural concentration excess we can explain as anthropogenic impact. At first we study changing in the middle content value of microelements in soils of geographic regions in European part of Russia on the basis of cartographical analysis. Cartographical analysis showed that the soil of mountainous and mountain surrounding regions is enriched with microelements. On the plain territory of European part of Russia for most of microelements was noticed general direction of increasing their concentration in soils from north to south, also in the same direction soil clay content rise for majority of soils. For all other territories a clear connection has been noticed between the distribution of sand sediment. By our own investigation and data from scientific literature data base was created. This data base consist of following soil properties: texture, organic matter content, concentration of microelements and pH value. On the basis of this data base massive of data for Forest-steppe and Steppe regions was create, which was divided by texture. For all data statistics method was done and was calculated maximum level natural microelements content for soils with different texture (?+3*δ). As a result of our statistic calculation we got middle and the top limit of background concentration of microelements in sandy and clay soils (conditional border - sandy loam) of two regions. We showed, that for all territory of European part of Russia and for Forest-steppe and Steppe regions separately middle content and maximum level natural microelements concentrations (?+3*σ) are higher in clay soils, rather then in sandy soils. Data characterizing soils, in different regions, of similar texture differs less than the data collected for sandy and clay soils of the same region. After all this calculation we can notice, that data of middle and top limit of background microelements concentration in soils, based on statistic method, can be used in the aim of ecological risk assessment. Using offered method allow to calculate top limit of background concentration for sandy and clay soils for large-scale geographic regions, exceeding which will be evidence of anthropogenic contamination of soil.

  1. Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia

    NASA Astrophysics Data System (ADS)

    Telles, Everaldo De Carvalho ConceiçÃ.£O.; de Camargo, PlíNio Barbosa; Martinelli, Luiz A.; Trumbore, Susan E.; da Costa, Enir Salazar; Santos, Joaquim; Higuchi, Niro; Oliveira, Raimundo Cosme

    2003-06-01

    Stable and radiocarbon isotopes were used to investigate the role of soil clay content in the storage and dynamics of soil carbon in tropical forest soils. Organic matter in clay-rich Oxisols and Ultisols contains at least two distinct components: (1) material with light δ13C signatures and turnover times of decades or less; and (2) clay-associated, 13C-enriched, carbon with turnover times of decades at the surface to millennia at depths >20 cm. Soil texture, in this case clay content, exerts a major control on the amount of slowly cycling carbon and therefore influences the storage and dynamics of carbon in tropical forest soils. Soils in primary tropical forest have been proposed as a potentially large sink for anthropogenic carbon. Comparison of carbon stocks in Oxisols sampled near Manaus, Brazil, shows no measurable change in organic carbon stocks over the past 20 years. Simple models estimating the response of soil carbon pools to a sustained 0.5% yr-1 increase in productivity result in C storage rates of 0.09 to 0.13 MgC ha-1 yr-1 in soil organic matter, with additional potential storage of 0.18 to 0.27 MgC ha-1 yr-1 in surface litter and roots. Most storage occurs in organic matter pools with turnover times less than a decade. Export of carbon in dissolved form from upland terra firme Oxisols likely accounts for <0.2 MgC ha-1 yr-1, but more work is required to assess the export potential for periodically inundated Spodosols.

  2. Effect of organo clay on curing, mechanical and dielectric properties of NR/SBR blends

    NASA Astrophysics Data System (ADS)

    Ravikumar, K.; Joseph, Reji; Ravichandran, K.

    2018-04-01

    Natural rubber (NR) and styrene butadiene rubber (SBR) based elastomeric blends reinforced with organically modified Sodium bentonite clay were prepared by two roll mills. Vulcanization parameters such as minimum and maximum torque values scorch and cure times are measured by Oscillating Disc Rheometer. Mechanical properties such as Tensile strength, modulus at 100%, 200% and 300% elongation and elongation at break and Hardness were measured by Universal testing machine and Durometer Shore A hardness meter respectively. Dielectric properties such as dielectric constant (ε’), dissipation factor (tanδ) and volume resistivity (ρv) were measured at room temperature. The curing studies show that torque values are increasing in NR/SBR blends by increase NR content. The scorch and optimum cure time in NR/SBR blends reinforced organo modified clay was found through increase in the SBR content. This may be due to better processing safety of the NR/SBR blends reinforced with organo modified clay. Mechanical properties show that addition of SBR in blends, tensile strength, elongation modulus increases, but 100% modulus slightly increases and no change was observed in Hardness. Dielectric studies show that dielectric constant of NR and SBR rubbers are almost same, it may due to their non-polar nature. But addition of SBR in NR/SBR blend, dielectric constant gradually increases and maximum value observed at 50/50 ratio. But no considerable change was observed in dissipation factor. Frequency dependant resistivity shows that volume resistivity was not changed with respect to frequency up to 3.5 kHz and beyond that the frequency dependence resistivity was found.

  3. [Black carbon content and distribution in different particle size fractions of forest soils in the middle part of Great Xing'an Mountains, China.

    PubMed

    Xu, Jia Hui; Gao, Lei; Cui, Xiao Yang

    2017-10-01

    Soil black carbon (BC) is considered to be the main component of passive C pool because of its inherent biochemical recalcitrance. In this paper, soil BC in the middle part of Great Xing'an Mountains was quantified, the distribution of BC in different particle size fractions was analyzed, and BC stabilization mechanism and its important role in soil C pool were discussed. The results showed that BC expressed obvious accumulation in surface soil, accounting for about 68.7% in the whole horizon (64 cm), and then decreased with the increasing soil depth, however, BC/OC showed an opposite pattern. Climate conditions redistributed BC in study area, and the soil under cooler and moister conditions would sequester more BC. BC proportion in different particle size fractions was in the order of clay>silt>fine sand>coarse sand. Although BC content in clay was the highest and was enhanced with increasing soil depth, BC/OC in clay did not show a marked change. Thus, the rise of BC/OC was attributed to the preservation of BC particles in the fine sand and silt fractions. Biochemical recalcitrance was the main stabilization mechanism for surface BC, and with the increasing soil depth, the chemical protection from clay mineral gradually played a predominant role. BC not only was the essential component of soil stable carbon pool, but also took up a sizable proportion in particulate organic carbon pool. Therefore, the storage of soil stable carbon and the potential of soil carbon sequestration would be enhanced owing to the existence of BC.

  4. Using Layer-by-Layer Coating and Nanocomposite Technologies to Improve the Barrier Properties of Polymeric Materials

    NASA Astrophysics Data System (ADS)

    Soltani, Iman

    Means for improving barrier properties of polymers against gases, particularly for promoting their applications as packaging materials, are divided into surface coating and embedding nanoparticles in the bulk of the polymeric membranes. In this research, we mainly investigated improvement in barrier properties of polymers against oxygen and carbon dioxide, through layer-by-layer (LBL) coating and bulk nanocomposite methods. Initially, we studied the morphology of layer-by-layer assemblies comprising alternating layers of polyelectrolyte (PE) and natural montmorillonite (MMT) platelets, where polyethyleneterephthalate ionomer was used as our proposed alternative PE, to be compared with already examined polyethyleneimine. For both investigated PEs, while microscopic images showed the formation of tortuous networks of galleries between subsequent layers of oriented clay platelets parallel to the substrate surface, x-ray diffractometry (XRD) traces pointed to the intercalation of PE layers between clay platelets. As a confirmation of forming tortuous networks between oriented and high aspect ratio clay platelets to increase the path length of diffusing gas species dramatically, LBL-coated polystyrene-based membranes demonstrated pronounced decreases in permeability of oxygen and carbon dioxide (e.g. about the scale of 500 times decrease in permeability, with only five cycles of bilayer deposition). Before LBL deposition, the surface of the hydrophobic polymeric substrate was pretreated with oxygen plasma to improve its interaction with the coating. In the next study, previously LBL-coated samples were melt pressed in a cyclic manner to embed and to crush the coating inside the polystyrene-based matrix, aiming the exfoliated polymer-clay nanocomposites. The morphological investigations by transmission electron microscopy (TEM) revealed the tortuous internal structure of crushed LBL assemblies' portions, mainly comprising swollen intercalated stacks of clay, as well as flocculated exfoliated tactoids of a few clay platelets, down to about 2nm thickness. Moreover, XRD traces confirmed this increase in intercalation and exfoliation of clay platelets. Following ahead, dynamic mechanical thermal analysis (DMA) revealed significant increases in the storage and loss moduli values for our PNCs over those of pristine polystyrenebased matrix, hypothesizing the occurrence of substantial interactions between clay and the polymeric matrix, induced by intervening effect of PE interlayers. Also, permeation experiments showed noticeable improvement in gas barrier properties of processed PNCs. Considering the low content of clay particles and their limited level of global dispersions throughout the matrix, it may theorize the significant efficiency of high aspect ratio and tortuous LBL assemblies portions, oriented (induced by cycling pressing into thin films) perpendicular to the permeants' path routes. Thus, it might act almost as scavenging hubs against transport of diffusing gases. Finally, using PVAc, as the matrix, with this novel two-step approach of preparing PNCs, showed relatively higher clay content, when prepared with similar coating conditions. Also, DMA and permeation experiments pointed to significant improvements in mechanical and gas barrier properties of the PNCs, prepared by only 25 times melt pressing steps. Additionally, XRD traces postulated occurrence of noticeable irregularities in the interdistance of clay platelets. So, it is conjectured that semi-hydrophilic PVAc matrix promotes stronger interactions with clay particles, compared with those of polystyrene-based PNCs. However, moderate global dispersion of clay throughout the matrix points to the insufficient efficiency of repetitive melt pressing procedure to apply intensive enough stresses on samples, in order to overcome internal cohesion in LBL assemblies, which established initial intercalation and exfoliation in the otherwise aggregately clustered natural clay platelets. In addition, it is postulated that possibly occurring slight thermal degradations induce adverse results on the dispersion level and aforementioned properties of PNCs, processed over extended times.

  5. Mercury anomaly, Deccan volcanism and the end-Cretaceous mass extinction

    NASA Astrophysics Data System (ADS)

    Font, Eric; Adatte, Thierry; Nobrega Sial, Alcides; Drude de Lacerda, Luiz; Keller, Gerta; Punekar, Jahnavi

    2016-04-01

    The contribution of the Deccan Traps volcanism in the Cretaceous-Palaeogene (KPg) crisis is still a matter of debate. Particularly, the global geochemical effects of Deccan volcanism in the marine sedimentary record are still poorly resolved. Here, we investigate the mercury (Hg) content of the Bidart (France) section, where an interval of low magnetic susceptibility (MS) located just below the KPg boundary was hypothesized to result from paleoenvironmental perturbations linked to paroxysmal Deccan phase-2. Results show mercury concentrations over two orders of magnitude higher from ~80 cm below up to ~50 cm above the KPg boundary (max. 46.6 ppb) and coincident with the low MS interval. Increase in Hg contents shows no correlation with clay or total organic carbon contents, suggesting that the mercury anomalies resulted from higher input of atmospheric Hg species into the marine realm, rather than organic matter scavenging and/or increased run-off. The Hg anomalies correlate with high shell fragmentation and dissolution effects in planktic foraminifera suggesting correlative changes in marine biodiversity. This discovery represents an unprecedented piece of evidence of the nature and importance of the Deccan-related environmental changes at the onset of the KPg mass extinction. Funded by IDL (FCT UID/GEO/50019/2013)

  6. Nonlinear behavior of PP/PS blends with and without clay under large amplitude oscillatory shear (LAOS) flow

    NASA Astrophysics Data System (ADS)

    Salehiyan, Reza; Song, Hyeong Yong; Hyun, Kyu

    2015-05-01

    Dynamic oscillatory measurement, i.e., small amplitude oscillatory shear (SAOS) and large amplitude oscillatory shear (LAOS) test was used to investigate linear and non-linear viscoelastic properties of Polypropylene (PP)/Polystyrene (PS) blends with and without 5 wt.% clay (C20A). Fourier transform (FT-Rheology), Lissajous curves and stress decomposition methods were used to analyze non-linear responses under LAOS flow. Composition effects of blends were investigated prior to compatibilization effects. Elevated concentrations of dispersed phase (PS) increased the moduli G'(ω) from SAOS test and G*( γ 0) from LAOS test of the blends as well as strain thinning behavior. Interestingly, addition of 5 wt.% clay (C20A) boosted moduli of the blends as well as led to similar strain thinning behaviors among the PP/PS/C20A blends, except for the (90/10) PP/PS blend. The latter did not show improved rheological properties despite morphological improvements, as shown by SEM. Results from SEM and improved rheological properties of PP/PS/C20A blends revealed the compatibilization effects of clay (C20A) particles regardless of size reduction mechanisms. Third relative intensities ( I 3/1) from FT-rheology were found to be sensitive to clay (C20A) additions for the (70/30) and (30/70) PP/PS blends. Similarly, Lissajous curves could detect changes upon clay (C20A) addition, specifically at lower strain amplitudes whereupon addition of 5 wt.% clay resulted in the closed loops of Lissajous curves showing a more ellipsoidal shape due to increased elasticity in the blends. However, detection of these changes at larger strain amplitudes was more challenging. Therefore, stress decomposition (SD) method was applied for more precise characterization as it decomposes the total stress (σ) into elastic stress (σ') and viscous stress (σ″). Using SD method, elastic stress was more distorted, especially, strain hardening, while the total stress response remained almost unchanged at larger strain amplitudes.

  7. Adsorption of hydrogen gas and redox processes in clays.

    PubMed

    Didier, Mathilde; Leone, Laura; Greneche, Jean-Marc; Giffaut, Eric; Charlet, Laurent

    2012-03-20

    In order to assess the adsorption properties of hydrogen gas and reactivity of adsorbed hydrogen, we measured H(2)(g) adsorption on Na synthetic montmorillonite-type clays and Callovo-Oxfordian (COx) clayrock using gas chromatography. Synthetic montmorillonites with increasing structural Fe(III) substitution (0 wt %, 3.2 wt %, and 6.4 wt % Fe) were used. Fe in the synthetic montmorillonites is principally present as structural Fe(III) ions. We studied the concomitant reduction of structural Fe(III) in the clays using (57)Fe Mössbauer spectrometry. The COx, which mainly contains smectite/illite and calcite minerals, is also studied together with the pure clay fraction of this clayrock. Experiments were performed with dry clay samples which were reacted with hydrogen gas at 90 and 120 °C for 30 to 45 days at a hydrogen partial pressure close to 0.45 bar. Results indicate that up to 0.11 wt % of hydrogen is adsorbed on the clays at 90 °C under 0.45 bar of relative pressure. (57)Fe Mössbauer spectrometry shows that up to 6% of the total structural Fe(III) initially present in these synthetic clays is reduced upon adsorption of hydrogen gas. No reduction is observed with the COx sample in the present experimental conditions.

  8. An Exploratory Study: Assessment of Modeled Dioxin in ...

    EPA Pesticide Factsheets

    The purpose of this project is to investigate the potential dioxin exposure to artists/hobbyists who use ball clay to make pottery and related products. This project will focus on artists working in a ceramics studio where exposure could occur via three pathways: particle inhalation, incidental ingestion and dermal contact. Levels of clay will be measured in the studio air, deposition surfaces and skin of artists. It is anticipated that no samples will need to be analyzed for dioxin. Rather, all samples will be analyzed for total clay levels and theoretical dioxin exposures would be estimated using information on historical measurements of dioxin levels in ball clay. Data gathering completed in 2004, internal review of report completed in Summer 2005, external peer review completed in 2007, final in 2008. See www.epa.gov/ncea for final report The purpose of this project is to investigate the potential dioxin exposure to artists/hobbyists who use ball clay to make pottery and related products.

  9. Adaptability of laser diffraction measurement technique in soil physics methodology

    NASA Astrophysics Data System (ADS)

    Barna, Gyöngyi; Szabó, József; Rajkai, Kálmán; Bakacsi, Zsófia; Koós, Sándor; László, Péter; Hauk, Gabriella; Makó, András

    2016-04-01

    There are intentions all around the world to harmonize soils' particle size distribution (PSD) data by the laser diffractometer measurements (LDM) to that of the sedimentation techniques (pipette or hydrometer methods). Unfortunately, up to the applied methodology (e. g. type of pre-treatments, kind of dispersant etc.), PSDs of the sedimentation methods (due to different standards) are dissimilar and could be hardly harmonized with each other, as well. A need was arisen therefore to build up a database, containing PSD values measured by the pipette method according to the Hungarian standard (MSZ-08. 0205: 1978) and the LDM according to a widespread and widely used procedure. In our current publication the first results of statistical analysis of the new and growing PSD database are presented: 204 soil samples measured with pipette method and LDM (Malvern Mastersizer 2000, HydroG dispersion unit) were compared. Applying usual size limits at the LDM, clay fraction was highly under- and silt fraction was overestimated compared to the pipette method. Subsequently soil texture classes determined from the LDM measurements significantly differ from results of the pipette method. According to previous surveys and relating to each other the two dataset to optimizing, the clay/silt boundary at LDM was changed. Comparing the results of PSDs by pipette method to that of the LDM, in case of clay and silt fractions the modified size limits gave higher similarities. Extension of upper size limit of clay fraction from 0.002 to 0.0066 mm, and so change the lower size limit of silt fractions causes more easy comparability of pipette method and LDM. Higher correlations were found between clay content and water vapor adsorption, specific surface area in case of modified limit, as well. Texture classes were also found less dissimilar. The difference between the results of the two kind of PSD measurement methods could be further reduced knowing other routinely analyzed soil parameters (e.g. pH(H2O), organic carbon and calcium carbonate content).

  10. On the relation between fluvio-deltaic flood basin geomorphology and the wide-spread occurrence of arsenic pollution in shallow aquifers.

    PubMed

    Donselaar, Marinus E; Bhatt, Ajay G; Ghosh, Ashok K

    2017-01-01

    Pollution of groundwater with natural (geogenic) arsenic occurs on an enormous, world-wide scale, and causes wide-spread, serious health risks for an estimated more than hundred million people who depend on the use of shallow aquifers for drinking and irrigation water. A literature review of key studies on arsenic concentration levels yields that Holocene fluvial and deltaic flood basins are the hotspots of arsenic pollution, and that the dominant geomorphological setting of the arsenic-polluted areas consists of shallow-depth meandering-river deposits with sand-prone fluvial point-bar deposits surrounded by clay-filled (clay plug) abandoned meander bends (oxbow lakes). Analysis of the lithofacies distribution and related permeability contrasts of the geomorphological elements in two cored wells in a point bar and adjacent clay plug along the Ganges River, in combination with data of arsenic concentrations and organic matter content reveals that the low-permeable clay-plug deposits have a high organic matter content and the adjacent permeable point-bar sands show high but spatially very variable arsenic concentrations. On the basis of the geomorphological juxtaposition, the analysis of fluvial depositional processes and lithofacies characteristics, inherent permeability distribution and the omnipresence of the two geomorphological elements in Holocene flood basins around the world, a generic model is presented for the wide-spread arsenic occurrence. The anoxic deeper part (hypolimnion) of the oxbow lake, and the clay plugs are identified as the loci of reactive organic carbon and microbial respiration in an anoxic environment that triggers the reductive dissolution of iron oxy-hydroxides and the release of arsenic on the scale of entire fluvial floodplains and deltaic basins. The adjacent permeable point-bar sands are identified as the effective trap for the dissolved arsenic, and the internal permeability heterogeneity is the cause for aquifer compartmentalization, with large arsenic concentration differences between neighboring compartments. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Invasion Potential of Two Tropical Physalis Species in Arid and Semi-Arid Climates: Effect of Water-Salinity Stress and Soil Types on Growth and Fecundity.

    PubMed

    Ozaslan, Cumali; Farooq, Shahid; Onen, Huseyin; Bukun, Bekir; Ozcan, Selcuk; Gunal, Hikmet

    2016-01-01

    Invasive plants are recognized for their impressive abilities to withstand adverse environmental conditions however, all invaders do not express the similar abilities. Therefore, survival, growth, nutrient uptake and fecundity of two co-occurring, invasive Physalis species were tested under water and salinity stresses, and different soil textures in the current study. Five different water stress levels (100, 75, 50, 25, and 12.5% pot water contents), four different soil salinity levels (0, 3, 6, and 12 dSm-1) and four different soil textures (67% clay, 50% clay, silt clay loam and sandy loam) were included in three different pot experiments. Both weeds survived under all levels of water stress except 12.5% water contents and on all soil types however, behaved differently under increasing salinity. The weeds responded similarly to salinity up till 3 dSm-1 whereas, P. philadelphica survived for longer time than P. angulata under remaining salinity regimes. Water and salinity stress hampered the growth and fecundity of both weeds while, soil textures had slight effect. Both weeds preferred clay textured soils for better growth and nutrient uptake however, interactive effect of weeds and soil textures was non-significant. P. angulata accumulated higher K and Na while P. philadelphica accrued more Ca and Mg as well as maintained better K/Na ratio. P. angulata accumulated more Na and P under salinity stress while, P. philadelphica accrued higher K and Mg, and maintained higher K/Na ratio. Collectively, highest nutrient accumulation was observed under stress free conditions and on clay textured soils. P. philadelphica exhibited higher reproductive output under all experimental conditions than P. angulata. It is predicted that P. philadelphica will be more problematic under optimal water supply and high salinity while P. angulata can better adapt water limited environments. The results indicate that both weeds have considerable potential to further expand their ranges in semi-arid regions of Turkey.

  12. Invasion Potential of Two Tropical Physalis Species in Arid and Semi-Arid Climates: Effect of Water-Salinity Stress and Soil Types on Growth and Fecundity

    PubMed Central

    Ozaslan, Cumali; Bukun, Bekir; Ozcan, Selcuk

    2016-01-01

    Invasive plants are recognized for their impressive abilities to withstand adverse environmental conditions however, all invaders do not express the similar abilities. Therefore, survival, growth, nutrient uptake and fecundity of two co-occurring, invasive Physalis species were tested under water and salinity stresses, and different soil textures in the current study. Five different water stress levels (100, 75, 50, 25, and 12.5% pot water contents), four different soil salinity levels (0, 3, 6, and 12 dSm-1) and four different soil textures (67% clay, 50% clay, silt clay loam and sandy loam) were included in three different pot experiments. Both weeds survived under all levels of water stress except 12.5% water contents and on all soil types however, behaved differently under increasing salinity. The weeds responded similarly to salinity up till 3 dSm-1 whereas, P. philadelphica survived for longer time than P. angulata under remaining salinity regimes. Water and salinity stress hampered the growth and fecundity of both weeds while, soil textures had slight effect. Both weeds preferred clay textured soils for better growth and nutrient uptake however, interactive effect of weeds and soil textures was non-significant. P. angulata accumulated higher K and Na while P. philadelphica accrued more Ca and Mg as well as maintained better K/Na ratio. P. angulata accumulated more Na and P under salinity stress while, P. philadelphica accrued higher K and Mg, and maintained higher K/Na ratio. Collectively, highest nutrient accumulation was observed under stress free conditions and on clay textured soils. P. philadelphica exhibited higher reproductive output under all experimental conditions than P. angulata. It is predicted that P. philadelphica will be more problematic under optimal water supply and high salinity while P. angulata can better adapt water limited environments. The results indicate that both weeds have considerable potential to further expand their ranges in semi-arid regions of Turkey. PMID:27741269

  13. Sorption and Transport of Pharmaceutical chemicals in Organic- and Mineral-rich Soils

    NASA Astrophysics Data System (ADS)

    Vulava, V. M.; Schwindaman, J.; Murphey, V.; Kuzma, S.; Cory, W.

    2011-12-01

    Pharmaceutical, active ingredients in personal care products (PhACs), and their derivative compounds are increasingly ubiquitous in surface waters across the world. Sorption and transport of four relatively common PhACs (naproxen, ibuprofen, cetirizine, and triclosan) in different natural soils was measured. All of these compounds are relatively hydrophobic (log KOW>2) and have acid/base functional groups, including one compound that is zwitterionic (cetirizine.) The main goal of this study was to correlate organic matter (OM) and clay content in natural soils and sediment with sorption and degradation of PhACs and ultimately their potential for transport within the subsurface environment. A- and B-horizon soils were collected from four sub-regions within a pristine managed forested watershed near Charleston, SC, with no apparent sources of anthropogenic contamination. These four soil series had varying OM content (fOC) between 0.4-9%, clay mineral content between 6-20%, and soil pH between 4.5-6. The A-horizon soils had higher fOC and lower clay content than the B-horizon soils. Sorption isotherms measured from batch sorption experimental data indicated a non-linear sorption relationship in all A- and B-horizon soils - stronger sorption was observed at lower PhAC concentrations and lower sorption at higher concentrations. Three PhACs (naproxen, ibuprofen, and triclosan) sorbed more strongly with higher fOC A-horizon soils compared with the B-horizon soils. These results show that soil OM had a significant role in strongly binding these three PhACs, which had the highest KOW values. In contrast, cetirizine, which is predominantly positively charged at pH below 8, strongly sorbed to soils with higher clay mineral content and least strongly to higher fOC soils. All sorption isotherms fitted well to the Freundlich model. For naproxen, ibuprofen, and triclosan, there was a strong and positive linear correlation between the Freundlich adsorption constant, Kf, and fOC, again indicating that these PhACs preferentially partition into the soil OM. Such a correlation was absent for cetirizine. Breakthrough curves of PhACs measured in homogeneous packed soil columns indicated that PhAC transport was affected by chemical nonequilibrium processes depending on the soil and PhAC chemistry. The shape of the breakthrough curves indicated that there were two distinct sorption sites - OM and clay minerals - which influence nonequilibrium transport of these compounds. The retardation factor estimated using the distribution coefficient, Kd, measured from the sorption experiments was very similar to the measured value. While the sorption and transport data do not provide mechanistic information regarding the nature of PhAC interaction with chemical reactive components within geological materials, they do provide important information regarding potential fate of such compounds in the environment. The results also show the role that soil OM and mineral surfaces play in sequestering or transporting these chemicals. These insights have implications to the quality of the water resources in our communities.

  14. Sorption of As(V) on aluminosilicates treated with Fe(II) nanoparticles.

    PubMed

    Dousová, Barbora; Grygar, Tomás; Martaus, Alexandr; Fuitová, Lucie; Kolousek, David; Machovic, Vladimír

    2006-10-15

    Adsorption of arsenic on clay surfaces is important for the natural and simulated removal of arsenic species from aqueous environments. In this investigation, three samples of clay minerals (natural metakaoline, natural clinoptilolite-rich tuff, and synthetic zeolite) in both untreated and Fe-treated forms were used for the sorption of arsenate from model aqueous solution. The treatment of minerals consisted of exposing them to concentrated solution of Fe(II). Within this process the mineral surface has been laden with Fe(III) oxi(hydroxides) whose high affinity for the As(V) adsorption is well known. In all investigated systems the sorption capacity of Fe(II)-treated sorbents increased significantly in comparison to the untreated material (from about 0.5 to >20.0 mg/g, which represented more than 95% of the total As removal). The changes of Fe-bearing particles in the course of treating process and subsequent As sorption were investigated by the diffuse reflectance spectroscopy and the voltammetry of microparticles. IR spectra of treated and As(V)-saturated solids showed characteristic bands caused by Fe(III)SO(4), Fe(III)O, and AsO vibrations. In untreated As(V)-saturated solids no significant AsO vibrations were observed due to the negligible content of sorbed arsenate.

  15. 2,4-Dichlorophenoxyacetic acid (2,4-D) sorption and degradation dynamics in three agricultural soils.

    PubMed

    Boivin, Arnaud; Amellal, Samira; Schiavon, Michel; van Genuchten, Martinus Th

    2005-11-01

    The fate and transport of 2,4-dichlorophenoxyacetic acid (2,4-D) in the subsurface is affected by a complex, time-dependent interplay between sorption and mineralization processes. 2,4-D is biodegradable in soils, while adsorption/desorption is influenced by both soil organic matter content and soil pH. In order to assess the dynamic interactions between sorption and mineralization, 2,4-D mineralization experiments were carried using three different soils (clay, loam and sand) assuming different contact times. Mineralization appeared to be the main process limiting 2,4-D availability, with each soil containing its own 2,4-D decomposers. For the clay and the loamy soils, 45 and 48% of the applied dose were mineralized after 10 days. By comparison, mineralization in the sandy soil proceeded initially much slower because of longer lag times. While 2,4-D residues immediately after application were readily available (>93% was extractable), the herbicide was present in a mostly unavailable state (<2% extractable) in all three soils after incubation for 60 days. We found that the total amount of bound residue decreased between 30 and 60 incubation days. Bioaccumulation may have led to reversible immobilization, with some residues later becoming more readily available again to extraction and/or mineralization.

  16. [Mechanism of tritium persistence in porous media like clay minerals].

    PubMed

    Wu, Dong-Jie; Wang, Jin-Sheng; Teng, Yan-Guo; Zhang, Ke-Ni

    2011-03-01

    To investigate the mechanisms of tritium persistence in clay minerals, three types of clay soils (montmorillonite, kaolinite and illite) and tritiated water were used in this study to conduct the tritium sorption tests and the other related tests. Firstly, the ingredients, metal elements and heat properties of clay minerals were studied with some instrumental analysis methods, such as ICP and TG. Secondly, with a specially designed fractionation and condensation experiment, the adsorbed water, the interlayer water and the structural water in the clay minerals separated from the tritium sorption tests were fractionated for investigating the tritium distributions in the different types of adsorptive waters. Thirdly, the location and configuration of tritium adsorbed into the structure of clay minerals were studied with infrared spectrometry (IR) tests. And finally, the forces and mechanisms for driving tritium into the clay minerals were analyzed on the basis of the isotope effect of tritium and the above tests. Following conclusions have been reached: (1) The main reason for tritium persistence in clay minerals is the entrance of tritium into the adsorbed water, the interlayer water and the structural water in clay minerals. The percentage of tritium distributed in these three types of adsorptive water are in the range of 13.65% - 38.71%, 0.32% - 5.96%, 1.28% - 4.37% of the total tritium used in the corresponding test, respectively. The percentages are different for different types of clay minerals. (2) Tritium adsorbed onto clay minerals are existed in the forms of the tritiated hydroxyl radical (OT) and the tritiated water molecule (HTO). Tritium mainly exists in tritiated water molecule for adsorbed water and interlayer water, and in tritiated hydroxyl radical for structural water. (3) The forces and effects driving tritium into the clay minerals may include molecular dispersion, electric charge sorption, isotope exchange and tritium isotope effect.

  17. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis.

    PubMed

    Kang, Chunxi; Wu, Pingxiao; Li, Yuewu; Ruan, Bo; Li, Liping; Tran, Lytuong; Zhu, Nengwu; Dang, Zhi

    2015-11-01

    Laboratory batch experiments were conducted to investigate the role of clay minerals, e.g., kaolinite and vermiculite, in microbial Cr(VI) reduction by Pseudomonas aeruginosa under growth condition in glucose-amended mediums as a method for treating Cr(VI)-contaminated subsurface environment such as soil. Our results indicated that glucose could acted as an essential electron donor, and clay minerals significantly enhanced microbial Cr(VI) reduction rates by improving the consumption rate of glucose and stimulating the growth and propagation of P. aeruginosa. Cr(VI) bioreduction by both free cells and clay minerals-amended cells followed the pseudo-first-order kinetic model, with the latter one fitting better. The mass balance analyses and X-ray photoelectron spectroscopy analysis found that Cr(VI) was reduced to Cr(III) and the adsorption of total chromium on clay minerals-bacteria complex was small, implying that Cr(VI) bioremoval was not mainly due to the adsorption of Cr(VI) onto cells or clay minerals or clay minerals-cells complex but mainly due to the Cr(VI) reduction capacity of P. aeruginosa under the experimental conditions studied (e.g., pH 7). Atomic force microscopy revealed that the addition of clay minerals (e.g. vermiculite) decreased the surface roughness of Cr(VI)-laden cells and changed the cell morphology and dimension. Fourier transform infrared spectroscopy revealed that organic matters such as aliphatic species and/or proteins played an important role in the combination of cells and clay minerals. Scanning electron microscopy confirmed the attachment of cells on the surface of clay minerals, indicating that clay minerals could provide a microenvironment to protect cells from Cr(VI) toxicity and serve as growth-supporting materials. These findings manifested the underlying influence of clay minerals on microbial reduction of Cr(VI) and gave an understanding of the interaction between pollutants, the environment and the biota.

  18. Nutrient and Antinutrient Compositions and Heavy Metal Uptake and Accumulation in S. nigrum Cultivated on Different Soil Types

    PubMed Central

    Ogundola, Adijat Funke; Bvenura, Callistus

    2018-01-01

    Solanum nigrum cultivated on different soil texture types, sandy clay loam, silty clay loam, clay loam, loam, and control soils, were evaluated for proximate compositions, antinutrients, vitamins, and mineral composition with plant age using standard analytical methods. Accumulation of trace elements using translocation factor was studied to determine their toxic levels in plant tissues. Data were analysed by ANOVA and results expressed as means and standard deviation. Ash content, crude fibre, protein, alkaloid, phytate, and saponin ranged between 11.4 and 12%, 19.24 and 19.95%, 34.23 and 38.98, 42.08 and 45.76 mg/ml, 0.84 and 1.17%, and 94.10 and 97.00%, respectively. Vitamins A, C, and B were present in high quantity. Macro- and micronutrients recorded showed that S. nigrum is a potential reservoir of minerals. Accumulation of micronutrients was observed to be the highest at the flowering stage between the 4th and 5th weeks after transplanting. Plants cultivated on clay loam, silty clay loam, and loam soils accumulated elevated nutritional compositions and abundant antinutrients. However, the accumulated trace metals in the plants are within the recommended safe levels. All nutrient values are in the recommended requirements for daily consumption. PMID:29576752

  19. Mineralogical Characterization of the Miocene Olcese Formation, Southern San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Lopez, K. A.; Baron, D.; Guo, J.; Woolford, J. M.

    2016-12-01

    The early to middle Miocene Olcese Formation in the southern San Joaquin Valley of California consists of shallow marine shelf sands in its lower and upper parts, and non-marine, frequently pumiceous sands in its middle part, and varies in thickness up to 1800 ft. There is little known as to the origin, nature, quantity, and distribution of clay minerals throughout the formation. This study examined 95 sidewall core samples from three wells, as well as 388 cutting samples from four wells and 12 samples from 3 outcrops. Well samples were from depths between 1,800 and 4,000 ft. Qualitative and quantitative mineralogy including clay minerals of the sidewall samples and selected cutting samples was determined by powder X-ray diffraction (XRD). XRD analyses were supplemented by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) and petrographic microscopy of selected samples. The main minerals of bulk samples include composite clay, quartz, potassium feldspar/plagioclase, calcite, and clinoptilolite. Content of composite clay varies between 17% and 51%. The clay-size fraction is predominantly composed of smectite, illite, kaolinite and chlorite with smectite being the most abundant. Smectite and clinoptilolite may be the alteration products of deeper burial of volcanic materials. The formation permeability could be significantly lowered by these authigenic minerals.

  20. Comparative mineral chemistry and textures of SAFOD fault gouge and damage-zone rocks

    USGS Publications Warehouse

    Moore, Diane E.

    2014-01-01

    Creep in the San Andreas Fault Observatory at Depth (SAFOD) drillhole is localized to two foliated gouges, the central deforming zone (CDZ) and southwest deforming zone (SDZ). The gouges consist of porphyroclasts of serpentinite and sedimentary rock dispersed in a foliated matrix of Mg-smectite clays that formed as a result of shearing-enhanced reactions between the serpentinite and quartzofeldspathic rocks. The CDZ takes up most of the creep and exhibits differences in mineralogy and texture from the SDZ that are attributable to its higher shearing rate. In addition, a ∼0.2-m-wide sector of the CDZ at its northeastern margin (NE-CDZ) is identical to the SDZ and may represent a gradient in creep rate across the CDZ. The SDZ and NE-CDZ have lower clay contents and larger porphyroclasts than most of the CDZ, and they contain veinlets and strain fringes of calcite in the gouge matrix not seen elsewhere in the CDZ. Matrix clays in the SDZ and NE-CDZ are saponite and corrensite, whereas the rest of the CDZ lacks corrensite. Saponite is younger than corrensite, reflecting clay crystallization under declining temperatures, and clays in the more actively deforming portions of the CDZ have better equilibrated to the lower-temperature conditions.

Top