NASA Astrophysics Data System (ADS)
Đorđević, J.; Pavlićević, N.; Bošković, M.; Janjić, J.; Glišić, M.; Starčević, M.; Baltić, M. Ž.
2017-09-01
Because of the importance of different packaging methods for the extension of fish shelf life, as a highly perishable food, the aim of the present study was to examine the effect of vacuum and modified atmosphere packaging on the total Enterobacteriaceae and lactic acid bacteria counts of cold-smoked Salmon trout (Oncorhynchus mykiss) stored at 3°C during six weeks. Trout fillets were vacuumed packaged (VP) or packaged in one of two different modified atmospheres, with gas ratio of 50%CO2/50%N2 (MAP1) and 90%CO2/10%N2 (MAP2) and analysed on days 0, 7, 14, 21, 28, 35 and 42. Both the total Enterobacteriaceae and total lactic acid bacteria counts increased in the trout fillets in all packaging types during storage. A significantly lower total Enterobacteriaceae count was determined in the MAP fish compared to the VP fish, with the weakest growth rate and lowest numbers attained in MAP2 fillets. The lactic acid bacteria count was higher in trout packaged in MAP compared to VP, with the highest number in the MAP with 90% CO2 (MAP2).
Muhlisin; Panjono; Kim, Dong Soo; Song, Yeong Rae; Lee, Sung-Jin; Lee, Jeong Koo; Lee, Sung Ki
2014-01-01
This study was conducted to observe the effects of gas composition in modified atmosphere packaging (MAP) on the shelf-life of Longissimus dorsi of Korean Native Black Pigs-Duroc Crossbred (KNP×D) during refrigerated storage. Muscle sample was obtained from the left side of carcass of seven months old of KNP×D barrow. The sample was sliced into 1 cm in thickness, placed on trays (two slices/tray) and filled with different gas composition, i.e. 0:20:80/O2:CO2:N2 (MAP1), 30:20:50/O2:CO2:N2 (MAP2) and 70:20:10/O2:CO2:N2 (MAP3). Other slices of sample were vacuum packed (VP) as a control. All packs were stored at 5±1°C. At 12 d of storage, pH value of MAP2 and MAP3 were higher (p<0.05) than that of MAP1 and pH value of MAP1 was higher (p<0.05) than that of VP. At 6 d of storage, redness (a*) value of MAP2 and MAP3 were higher (p<0.05) than that of VP and MAP1 and, at 9 and 12 d of storage, redness value of MAP3 was higher (p<0.05) than that of VP, MAP1, and MAP2. At 3, 6, 9, and 12 d of storage, the 2-thiobarbituric acid reactive substances (TBARS) value of MAP3 was higher than that of MAP2 and TBARS value of MAP2 was higher than that of VP and MAP1. At 3, 6, 9, and 12 d of storage, volatile basic nitrogen values of MAP2 and MAP3 were higher (p<0.05) than those of VP and MAP1. At 3 d of storage, total aerobic plate counts of MAP2 and MAP3 were higher (p<0.05) than those of VP and MAP1 and, at 6 d of storage, total aerobic plate counts of MAP3 was higher (p<0.05) than that of MAP1 and MAP2. However, there was no significant different total aerobic plate count among MAP1, MAP2, and MAP3 at 9 and 12 d of storage. There was no significant different total anaerobic plate count among MAP1, MAP2, and MAP3 during storage. It is concluded that the MAP containing 30:20:50/O2:CO2:N2 gas composition (MAP2) might be ideal for better meat quality for KNP×D meat. PMID:25083110
Liu, Chenglong; Zhang, Yimin; Yang, Xiaoyin; Liang, Rongrong; Mao, Yanwei; Hou, Xu; Lu, Xiao; Luo, Xin
2014-06-01
The objectives were to compare the effects of packaging methods on color stability, metmyoglobin-reducing-activity (MRA), total-reducing-activity and NADH concentration of different bovine muscles and to explore potential mechanisms in the enhanced color stability by carbon monoxide modified atmosphere packaging (CO-MAP, 0.4% CO/30% CO2/69.6% N2). Steaks from longissimus lumborum (LL), psoas major (PM) and longissimus thoracis (LT) packaged in CO-MAP, high-oxygen modified atmosphere packaging (HiOx-MAP, 80% O2/20% CO2) or vacuum packaging were stored for 0day, 4days, 9days, and 14days or stored for 9days then displayed in air for 0day, 1day, or 3days. The CO-MAP significantly increased red color stability of all muscles, and especially for PM. The PM and LT were more red than LL in CO-MAP, whereas PM had lowest redness in HiOx-MAP. The content of MetMb in CO-MAP was lower than in HiOx-MAP. Steaks in CO-MAP maintained a higher MRA compared with those in HiOx-MAP during storage. After opening packages, the red color of steaks in CO-MAP deteriorated more slowly compared with that of steaks in HiOx-MAP. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rödenbeck, C.; Bakker, D. C. E.; Gruber, N.; Iida, Y.; Jacobson, A. R.; Jones, S.; Landschützer, P.; Metzl, N.; Nakaoka, S.; Olsen, A.; Park, G.-H.; Peylin, P.; Rodgers, K. B.; Sasse, T. P.; Schuster, U.; Shutler, J. D.; Valsala, V.; Wanninkhof, R.; Zeng, J.
2015-08-01
Using measurements of the surface-ocean CO2 partial pressure (pCO2) and 14 different pCO2 mapping methods recently collated by the Surface Ocean pCO2 Mapping intercomparison (SOCOM) initiative, variations in regional and global sea-air CO2 fluxes have been investigated. Though the available mapping methods use widely different approaches, we find relatively consistent estimates of regional pCO2 seasonality, in line with previous estimates. In terms of interannual variability (IAV), all mapping methods estimate the largest variations to occur in the Eastern equatorial Pacific. Despite considerable spead in the detailed variations, mapping methods with closer match to the data also tend to be more consistent with each other. Encouragingly, this includes mapping methods belonging to complementary types - taking variability either directly from the pCO2 data or indirectly from driver data via regression. From a weighted ensemble average, we find an IAV amplitude of the global sea-air CO2 flux of 0.31 PgC yr-1 (standard deviation over 1992-2009), which is larger than simulated by biogeochemical process models. On a decadal perspective, the global CO2 uptake is estimated to have gradually increased since about 2000, with little decadal change prior to 2000. The weighted mean total ocean CO2 sink estimated by the SOCOM ensemble is consistent within uncertainties with estimates from ocean-interior carbon data or atmospheric oxygen trends.
Comparison of CO2 Emissions Data for 30 Cities from Different Sources
NASA Astrophysics Data System (ADS)
Nakagawa, Y.; Koide, D.; Ito, A.; Saito, M.; Hirata, R.
2017-12-01
Many sources suggest that cities account for a large proportion of global anthropogenic greenhouse gas emissions. Therefore, in search for the best ways to reduce total anthropogenic greenhouse gas emissions, a focus on the city emission is crucial. In this study, we collected CO2 emissions data in 30 cities during 1990-2015 and evaluated the degree of variance between data sources. The CO2 emissions data were obtained from academic papers, municipal reports, and high-resolution emissions maps (CIDIACv2016, EDGARv4.2, ODIACv2016, and FFDASv2.0). To extract urban CO2 emissions from the high-resolution emissions maps, urban fraction ranging from 0 to 1 was calculated for each 1×1 degree grid cell using the global land cover data (SYNMAP). Total CO2 emissions from the grid cells in which urban fraction occupies greater than or equal to 0.9 were regarded as urban CO2 emissions. The estimated CO2 emissions varied greatly depending on the information sources, even in the same year. There was a large difference between CO2 emissions collected from academic papers, municipal reports, and those extracted from high-resolution emissions maps. One reason is that they use different city boundaries. That is, the city proper (i.e. the political city boundary) is often defined as the city boundary in academic papers and municipal reports, whereas the urban area is used in the high-resolution emissions maps. Furthermore, there was a large variation in CO2 emissions collected from academic papers and municipal reports. These differences may be due to the difference in the assumptions such as allocation ratio of CO2 emissions to producers and consumers. In general, the consumption-based assignment of emissions gives higher estimates of urban CO2 emission in comparison with production-based assignment. Furthermore, there was also a large variation in CO2 emissions extracted from high-resolution emissions maps. This difference would be attributable to differences in information used in the spatial disaggregation of emissions. To identify the CO2 emissions from cities, it is necessary to determine common definitions of city boundaries, allocation ratio of CO2 emissions to consumption and production, and refined approach of the spatial disaggregation of CO2 emissions in high-resolution emissions maps.
Structure analysis of simulated molecular clouds with the Δ-variance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertram, Erik; Klessen, Ralf S.; Glover, Simon C. O.
Here, we employ the Δ-variance analysis and study the turbulent gas dynamics of simulated molecular clouds (MCs). Our models account for a simplified treatment of time-dependent chemistry and the non-isothermal nature of the gas. We investigate simulations using three different initial mean number densities of n 0 = 30, 100 and 300 cm -3 that span the range of values typical for MCs in the solar neighbourhood. Furthermore, we model the CO line emission in a post-processing step using a radiative transfer code. We evaluate Δ-variance spectra for centroid velocity (CV) maps as well as for integrated intensity and columnmore » density maps for various chemical components: the total, H 2 and 12CO number density and the integrated intensity of both the 12CO and 13CO (J = 1 → 0) lines. The spectral slopes of the Δ-variance computed on the CV maps for the total and H 2 number density are significantly steeper compared to the different CO tracers. We find slopes for the linewidth–size relation ranging from 0.4 to 0.7 for the total and H 2 density models, while the slopes for the various CO tracers range from 0.2 to 0.4 and underestimate the values for the total and H 2 density by a factor of 1.5–3.0. We demonstrate that optical depth effects can significantly alter the Δ-variance spectra. Furthermore, we report a critical density threshold of 100 cm -3 at which the Δ-variance slopes of the various CO tracers change sign. We thus conclude that carbon monoxide traces the total cloud structure well only if the average cloud density lies above this limit.« less
Structure analysis of simulated molecular clouds with the Δ-variance
Bertram, Erik; Klessen, Ralf S.; Glover, Simon C. O.
2015-05-27
Here, we employ the Δ-variance analysis and study the turbulent gas dynamics of simulated molecular clouds (MCs). Our models account for a simplified treatment of time-dependent chemistry and the non-isothermal nature of the gas. We investigate simulations using three different initial mean number densities of n 0 = 30, 100 and 300 cm -3 that span the range of values typical for MCs in the solar neighbourhood. Furthermore, we model the CO line emission in a post-processing step using a radiative transfer code. We evaluate Δ-variance spectra for centroid velocity (CV) maps as well as for integrated intensity and columnmore » density maps for various chemical components: the total, H 2 and 12CO number density and the integrated intensity of both the 12CO and 13CO (J = 1 → 0) lines. The spectral slopes of the Δ-variance computed on the CV maps for the total and H 2 number density are significantly steeper compared to the different CO tracers. We find slopes for the linewidth–size relation ranging from 0.4 to 0.7 for the total and H 2 density models, while the slopes for the various CO tracers range from 0.2 to 0.4 and underestimate the values for the total and H 2 density by a factor of 1.5–3.0. We demonstrate that optical depth effects can significantly alter the Δ-variance spectra. Furthermore, we report a critical density threshold of 100 cm -3 at which the Δ-variance slopes of the various CO tracers change sign. We thus conclude that carbon monoxide traces the total cloud structure well only if the average cloud density lies above this limit.« less
The growth of Listeria monocytogenes in cheese packed under a modified atmosphere.
Whitley, E; Muir, D; Waites, W M
2000-01-01
The effect of modified atmosphere Packaging (MAP) on the growth of Listeria monocytogenes in mould ripened cheeses was studied at refrigeration temperatures (2-8.3 degrees C) over a storage period of 6 weeks. Control experiments in cling film with no atmospheric modification produced a lag time before growth of up to 1 week and rapid subsequent growth. MAP with a CO2 concentration of less than 20% allowed growth to occur but when O2 was incorporated; the lag time was reduced from 3 to 2 weeks and subsequent growth was also faster, producing an increase in cell numbers of 1.4 log cycles over the incubation period. N2-MAP in the absence of O2 increased the lag time to 3 weeks and slowed growth, while the inclusion of CO2 extended the lag to 3 weeks and slowed subsequent growth even more. In MAP with 80:10:10 (v/v/v) N2:CO2:O2, there was a lag period of 2-3 weeks before growth of L. monocytogenes occurred, while the total viable aerobic count (TVAC) decreased by 2-3 log cycles and the total Lactobacillus count showed little change. It was concluded that MAP was not suitable for preventing the growth of L. monocytogenes in such cheeses.
NASA Astrophysics Data System (ADS)
Yasunaka, Sayaka; Murata, Akihiko; Watanabe, Eiji; Chierici, Melissa; Fransson, Agneta; van Heuven, Steven; Hoppema, Mario; Ishii, Masao; Johannessen, Truls; Kosugi, Naohiro; Lauvset, Siv K.; Mathis, Jeremy T.; Nishino, Shigeto; Omar, Abdirahman M.; Olsen, Are; Sasano, Daisuke; Takahashi, Taro; Wanninkhof, Rik
2016-09-01
We produced 204 monthly maps of the air-sea CO2 flux in the Arctic north of 60°N, including the Arctic Ocean and its adjacent seas, from January 1997 to December 2013 by using a self-organizing map technique. The partial pressure of CO2 (pCO2) in surface water data were obtained by shipboard underway measurements or calculated from alkalinity and total inorganic carbon of surface water samples. Subsequently, we investigated the basin-wide distribution and seasonal to interannual variability of the CO2 fluxes. The 17-year annual mean CO2 flux shows that all areas of the Arctic Ocean and its adjacent seas were net CO2 sinks. The estimated annual CO2 uptake by the Arctic Ocean was 180 TgC yr-1. The CO2 influx was strongest in winter in the Greenland/Norwegian Seas (>15 mmol m-2 day-1) and the Barents Sea (>12 mmol m-2 day-1) because of strong winds, and strongest in summer in the Chukchi Sea (∼10 mmol m-2 day-1) because of the sea-ice retreat. In recent years, the CO2 uptake has increased in the Greenland/Norwegian Sea and decreased in the southern Barents Sea, owing to increased and decreased air-sea pCO2 differences, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieging, John H.; Revelle, Melissa; Peters, William L.
2014-09-01
We mapped the NGC 1333 section of the Perseus Molecular Cloud in the J = 2-1 emission lines of {sup 12}CO and {sup 13}CO over a 50' × 60' region (3.4 × 4.1 pc at the cloud distance of 235 pc), using the Arizona Radio Observatory Heinrich Hertz Submillimeter Telescope. The angular resolution is 38'' (0.04 pc) and velocity resolution is 0.3 km s{sup –1}. We compare our velocity moment maps with known positions of young stellar objects (YSOs) and (sub)millimeter dust continuum emission. The CO emission is brightest at the center of the cluster of YSOs, but is detectedmore » over the full extent of the mapped region at ≥10 × rms. The morphology of the CO channel maps shows a kinematically complex structure, with many elongated features extending from the YSO cluster outward by ∼1 pc. One notable feature appears as a narrow serpentine structure that curves and doubles back, with a total length of ∼3 pc. The {sup 13}CO velocity channel maps show evidence for many low-density cavities surrounded by partial shell-like structures, consistent with previous studies. Maps of the velocity moments show localized effects of bipolar outflows from embedded YSOs, as well as a large-scale velocity gradient around the central core of YSOs, suggestive of large-scale turbulent cloud motions determining the location of current star formation. The CO/{sup 13}CO intensity ratios show the distribution of the CO opacity, which exhibits a complex kinematic structure. Identified YSOs are located mainly at the positions of greatest CO opacity. The maps are available for download as FITS files.« less
Wang, Taojun; Zhao, Liang; Sun, Yanan; Ren, Fazheng; Chen, Shanbin; Zhang, Hao; Guo, Huiyuan
2016-11-01
Changes in the microbiota of lamb were investigated under vacuum packaging (VP) and under 20% CO2/80% N2 (LC), 60% CO2/40% N2 (MC), and 100% CO2 (HC) modified atmosphere packaging (MAP) during chilled storage. Viable counts were monitored, and the total microbial communities were assessed by high-throughput sequencing. The starting community had the highest microbial diversity, after which Lactococcus and Carnobacterium spp. outcompeted during the 28-day storage. The relative abundances of Brochothrix spp. in the LC atmosphere were much higher than those of the other groups on days 7 and 28. The bacterial inhibiting effect of the MAP environments on microbial growth was positively correlated with the CO2 concentration. The HC atmosphere inhibited microbial growth and delayed changes in the microbial community composition, extending the lamb's shelf life by approximately 7days compared with the VP atmosphere. Lamb packaged in the VP atmosphere had a more desirable colour but a higher weight loss than lamb packaged in the MAP atmospheres. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sakowska, A; Guzek, D; Głąbska, D; Wierzbicka, A
2016-11-01
This study investigated the influence of carbon monoxide (CO) exposure time (0, 7, 14, and 21days) and concentration in gas mixture on depth of penetration and the surface color of raw and cooked striploin steaks. Seven packaging treatments were evaluated: vacuum, vacuum after 48h of exposure to 0.1%, 0.3% or 0.5% CO (mixed with 30% CO2 and 69.5-69.9% N2), and modified atmosphere packaging (MAP) containing the same gas mixtures. CO penetration depth increased as exposure times and CO concentration in gas mixtures increased (p<0.05). However, the carboxymyoglobin that formed did not always turn brown during thermal treatment. In cooked samples treated with 0.3% and 0.5% CO-MAP, a red carboxymyoglobin border was visible at the cross section, whereas other CO packaging treatments had its partial or total browning. To create a red color in raw and avoid a red boarder in cooked beef, up to 0.5% CO in vacuum packages and only 0.1% for MAP can be recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pump, Bettina; Schou, Morten; Gabrielsen, Anders; Norsk, Peter
1999-01-01
Previous results from our laboratory have shown that vasodilatation in the legs prevents mean arterial pressure (MAP) from increasing during water immersion. Therefore, we tested the hypothesis that vasodilatation in the legs is necessary for the hypotensive effects to occur during a moderate antiorthostatic posture change. Ten healthy males underwent a 5 min posture change from upright seated to horizontal supine (SUP) and back to seated again with (OCCL-SUP) and without simultaneous total arterial (154 ± 1 mmHg) thigh occlusion, and a control seated period, also with and without arterial occlusion. Cardiac output (CO) was measured by a non-invasive foreign (N2O) gas rebreathing technique. MAP (brachial auscultation) decreased during SUP from 94 ± 3 to 84 ± 2 mmHg (P < 0.0001) and total peripheral vascular resistance (TPR = MAP/CO, n = 8) decreased by 15 ± 4 % (P < 0.001). During OCCL-SUP, MAP decreased from 98 ± 2 to 90 ± 2 mmHg (P < 0.005) and TPR decreased by 14 ± 3 % (P < 0.01). In conclusion, vasodilatation in the legs is not necessary for the decrease in MAP to occur during a moderate antiorthostatic manoeuvre. Therefore, vasodilatation in more central vascular beds (e.g. abdomen) can alone account for the hypotensive effects. PMID:10457077
Luzardo, S; Woerner, D R; Geornaras, I; Engle, T E; Delmore, R J; Hess, A M; Belk, K E
2016-06-01
Two studies were conducted to evaluate the influence of packaging and production system (PS) on retail display life color (L*, a*, and b*), fatty acid profile (% of total fatty acids), lipid oxidation (thiobarbituric acid reactive substances; mg malondialdehyde/kg of muscle), vitamin E content (µg/g of muscle), and odor (trained panelists) during storage of LM. Four (or 3) different packaging treatments were applied to LM from steers fattened on grazing systems (Uruguayan) or on high-concentrate diets (U.S.). From fabrication to application of treatments, Uruguayan LM were vacuum packaged for air shipment and U.S. LM were also vacuum packaged and kept in a cooler until Uruguayan samples arrived. Treatments were applied 7 d after slaughter. In Exp. 1, treatments were vacuum packaging (VP), low-oxygen (O) modified atmosphere packaging (MAP) with nitrogen (N2) and carbon dioxide (MAP/CO), low-O MAP with N2 plus CO and carbon monoxide (MAP/CO), and VP plus an application of peroxyacetic acid (VP/PAA). In Exp. 2 block 1, treatments were VP, MAP/CO, and VP with ethyl-arginate HCl incorporated into the film as an antimicrobial agent (VP/AM). In Exp. 2 block 2, treatments were VP, MAP/CO, MAP/CO, and VP/AM. After 35 d storage, steaks were evaluated during simulated retail display for up to 6 d. In Exp. 1, Uruguayan steaks under MAP/CO had greater ( < 0.05) a* values than VP/PAA and MAP/CO on d 6 of display. For U.S. beef, the MAP/CO had the reddest lean color ( < 0.05) compared with the other 3 packaging treatments on d 6 of display in Exp. 1. Packaging × PS × time interaction was significant ( < 0.05) in Exp. 1. In Exp. 2, MAP/CO in Uruguayan steaks also had the greatest a* values on d 6 of display, but no differences ( > 0.05) were detected among both VP and MAP/CO in U.S. steaks at this time. No significant ( > 0.05) packaging × PS × time interaction was observed in Exp. 2. Only PS (both experiments) and time (Exp. 1) affected ( < 0.05) L* values. In both experiments, U.S. steaks had greater ( < 0.05) L* values than Uruguayan steaks. Vitamin E content in Uruguayan steaks was greater ( < 0.05) than in U.S. steaks. Packaging × PS, PS × time, and packaging × PS × time interactions were not significant ( > 0.05) for any of the fatty acids. Beef from Uruguayan had lower ( < 0.05) SFA and MUFA and greater ( < 0.05) PUFA and n-6 and n-3 fatty acid percentages than U.S. beef. Complexity of fresh meat postmortem chemistry warrants a more comprehensive approach to maximize shelf life.
Mapping CO2 emission in highly urbanized region using standardized microbial respiration approach
NASA Astrophysics Data System (ADS)
Vasenev, V. I.; Stoorvogel, J. J.; Ananyeva, N. D.
2012-12-01
Urbanization is a major recent land-use change pathway. Land conversion to urban has a tremendous and still unclear effect on soil cover and functions. Urban soil can act as a carbon source, although its potential for CO2 emission is also very high. The main challenge in analysis and mapping soil organic carbon (SOC) in urban environment is its high spatial heterogeneity and temporal dynamics. The urban environment provides a number of specific features and processes that influence soil formation and functioning and results in a unique spatial variability of carbon stocks and fluxes at short distance. Soil sealing, functional zoning, settlement age and size are the predominant factors, distinguishing heterogeneity of urban soil carbon. The combination of these factors creates a great amount of contrast clusters with abrupt borders, which is very difficult to consider in regional assessment and mapping of SOC stocks and soil CO2 emission. Most of the existing approaches to measure CO2 emission in field conditions (eddy-covariance, soil chambers) are very sensitive to soil moisture and temperature conditions. They require long-term sampling set during the season in order to obtain relevant results. This makes them inapplicable for the analysis of CO2 emission spatial variability at the regional scale. Soil respiration (SR) measurement in standardized lab conditions enables to overcome this difficulty. SR is predominant outgoing carbon flux, including autotrophic respiration of plant roots and heterotrophic respiration of soil microorganisms. Microbiota is responsible for 50-80% of total soil carbon outflow. Microbial respiration (MR) approach provides an integral CO2 emission results, characterizing microbe CO2 production in optimal conditions and thus independent from initial difference in soil temperature and moisture. The current study aimed to combine digital soil mapping (DSM) techniques with standardized microbial respiration approach in order to analyse and map CO2 emission and its spatial variability in highly urbanized Moscow region. Moscow region with its variability of bioclimatic conditions and high urbanization level (10 % from the total area) was chosen as an interesting case study. Random soil sampling in different soil zones (4) and land-use types (3 non-urban and 3 urban) was organized in Moscow region in 2010-2011 (n=242). Both topsoil (0-10 cm) and subsoil (10-150 cm) were included. MR for each point was analysed using standardized microbial (basal) respiration approach, including the following stages: 1) air dried soil samples were moisturised up to 55% water content and preincubated (7 days, 22° C) in a plastic bag with air exchange; 2) soil MR (in μg CO2-C g-1) was measured as the rate of CO2 production (22° C, 24 h) after incubating 2g soil with 0.2 μl distilled water; 3) the MR results were used to estimate CO2 emission (kg C m-2 yr-1). Point MR and CO2 emission results obtained were extrapolated for the Moscow region area using regression model. As a result, two separate CO2 maps for topsoil and subsoil were created. High spatial variability was demonstrated especially for the urban areas. Thus standardized MR approach combined with DSM techniques provided a unique opportunity for spatial analysis of soil carbon temporal dynamics at the regional scale.
THE CO-TO-H{sub 2} CONVERSION FACTOR AND DUST-TO-GAS RATIO ON KILOPARSEC SCALES IN NEARBY GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandstrom, K. M.; Walter, F.; Leroy, A. K.
2013-11-01
We present ∼kiloparsec spatial resolution maps of the CO-to-H{sub 2} conversion factor (α{sub CO}) and dust-to-gas ratio (DGR) in 26 nearby, star-forming galaxies. We have simultaneously solved for α{sub CO} and the DGR by assuming that the DGR is approximately constant on kiloparsec scales. With this assumption, we can combine maps of dust mass surface density, CO-integrated intensity, and H I column density to solve for both α{sub CO} and the DGR with no assumptions about their value or dependence on metallicity or other parameters. Such a study has just become possible with the availability of high-resolution far-IR maps frommore » the Herschel key program KINGFISH, {sup 12}CO J = (2-1) maps from the IRAM 30 m large program HERACLES, and H I 21 cm line maps from THINGS. We use a fixed ratio between the (2-1) and (1-0) lines to present our α{sub CO} results on the more typically used {sup 12}CO J = (1-0) scale and show using literature measurements that variations in the line ratio do not affect our results. In total, we derive 782 individual solutions for α{sub CO} and the DGR. On average, α{sub CO} = 3.1 M{sub ☉} pc{sup –2} (K km s{sup –1}){sup –1} for our sample with a standard deviation of 0.3 dex. Within galaxies, we observe a generally flat profile of α{sub CO} as a function of galactocentric radius. However, most galaxies exhibit a lower α{sub CO} value in the central kiloparsec—a factor of ∼2 below the galaxy mean, on average. In some cases, the central α{sub CO} value can be factors of 5-10 below the standard Milky Way (MW) value of α{sub CO,{sub MW}} = 4.4 M{sub ☉} pc{sup –2} (K km s{sup –1}){sup –1}. While for α{sub CO} we find only weak correlations with metallicity, the DGR is well-correlated with metallicity, with an approximately linear slope. Finally, we present several recommendations for choosing an appropriate α{sub CO} for studies of nearby galaxies.« less
The effect on turkey meat shelf life of modified-atmosphere packaging with an argon mixture.
Fraqueza, M J; Barreto, A S
2009-09-01
There is a lack of knowledge related to the action of Ar on microbial development and prevention of oxidation when applied to raw meat under modified-atmosphere package (MAP). The aim of this study was to evaluate the effect of an anaerobic gas mixture with Ar on spoilage flora growth, color, and lipid oxidation stability of turkey meat under MAP stored at 0 degrees C. Breast muscles samples were collected on different working days from turkey carcasses (BUT9 and BIG6), fast-cooled in a tunnel (-2 degrees C, 2 m.s(-1), 90% RH) for 2 h and selected to be deboned according current practices in industrial slaughterhouses. The breasts were cut into slices that were individually packaged under aerobiosis (P0) and in 4 different modified atmospheres containing different gas mixtures as (P1) 100% N2, (P2) 50% Ar-50% N2, (P3) 50% Ar-50% CO2, and (P4) 50% N2-50% CO2. All samples were stored at 0+/-1 degrees C in the dark for between 12 and 25 d. Meat samples packaged in P0 were analyzed for their microbial and physicochemical characteristics on d 0, 5, and 12 of storage and then extended to 19 and 25 d when samples were under MAP. The microbial shelf life period extension of MAP sliced turkey meat compared with aerobic packaging (5-d shelf life) is 1 wk more for P1 and P2 mixtures, 2 wk for P4, and 3 wk for P3. The Ar-CO2 mixture was more efficient in delaying flora development than CO2-N2 with 1 log difference on the 25th day of storage, for total psychrotrophic counts, total anaerobic counts, and Brochothrix thermosphacta. The presence of Ar on gas mixtures did not seem to have any additional protective effect on lipid turkey meat oxidation.
Optimization of CO2 Surface Flux using GOSAT Total Column CO2: First Results for 2009-2010
NASA Astrophysics Data System (ADS)
Basu, S.; Houweling, S.
2011-12-01
Constraining surface flux estimates of CO2 using satellite measurements has been one of the long-standing goals of the atmospheric inverse modeling community. We present the first results of inverting GOSAT total column CO2 measurements for obtaining global monthly CO2 flux maps over one year (June 2009 to May 2010). We use the SRON RemoTeC retrieval of CO2 for our inversions. The SRON retrieval has been shown to have no bias when compared to TCCON total column measurements, and latitudinal gradients of the retrieved CO2 are consistent with gradients deduced from the surface flask network [Butz et al, 2011]. This makes this retrieval an ideal candidate for atmospheric inversions, which are highly sensitive to spurious gradients. Our inversion system is analogous to the CarbonTracker (CT) data assimilation system; it is initialized with the prior CO2 fluxes of CT, and uses the same atmospheric transport model, i.e., TM5. The two major differences are (a) we add GOSAT CO2 data to the inversion in addition to flask data, and (b) we use a 4DVAR optimization system instead of a Kalman filter. We compare inversions using (a) only GOSAT total column CO2 measurements, (b) only surface flask CO2 measurements, and (c) the joint data set of GOSAT and surface flask measurements. We validate GOSAT-only inversions against the NOAA surface flask network and joint inversions against CONTRAIL and other aircraft campaigns. We see that inverted fluxes from a GOSAT-only inversion are consistent with fluxes from a stations-only inversion, reaffirming the low biases in SRON retrievals. From the joint inversion, we estimate the amount of added constraints upon adding GOSAT total column measurements to existing surface layer measurements.
Sivarajan, M; Lalithapriya, U; Mariajenita, Peter; Vajiha, B Aafrin; Harini, K; Madhushalini, D; Sukumar, M
2017-08-01
This study investigates the integrated approach of spice extracts and modified atmospheric packaging (MAP) chicken meat preservation. Specifically, extracts from clove (CL), cinnamon (CI) individually and in combination (3% w/w) along with MAP (30% CO2/70% N2 and 10% O2/30% CO2/60% N2) were used to increase the shelf life of fresh chicken meat stored at 4°C. The parameters evaluated as shelf life indications are microbiological (total viable count, Pseudomonas spp., lactic acid bacteria (LAB), and Enterobacteriaceae), physicochemical (pH, Lipid oxidation, color changes) and Sensory attributes. Microbial population were reduced by 2.5 to 5 log cfu/g, with the greater impact being accomplished by the blend of clove and cinnamon extract with 30% CO2/70% N2 MAP. Thiobarbituric values for all treated and MAP packed samples remained lower than 1 mg malondialdehyde (MDA)/kg all through the 24 day storage period. pH values varied from 5.5 for fresh sample on day 0 to 7.11 (day 25) on combined extract treated and MAP packaged samples. The estimations of the color parameters L*, a*, and b* were well maintained in oxygen deficient MAP. Finally, sensory investigation demonstrated that combined clove and cinnamon extract of 3% conferred acceptable sensory attributes to the samples on day 24 of storage. These results indicate the extended shelf life of chicken meat from 4 days to 24 days for samples when coated with 3% of combined clove and cinnamon extract and packaged under MAP without oxygen. These pooled extracts along with MAP displayed expanded the usability and the organoleptic qualities of chicken meat. © 2017 Poultry Science Association Inc.
Lewicki, Jennifer L.; Bergfeld, Deborah; Cardellini, Carlo; Chiodini, Giovanni; Granieri, Domenico; Varley, Nick; Werner, Cynthia A.
2005-01-01
We present a comparative study of soil CO2 flux (FCO2">FCO2) measured by five groups (Groups 1–5) at the IAVCEI-CCVG Eighth Workshop on Volcanic Gases on Masaya volcano, Nicaragua. Groups 1–5 measured FCO2 using the accumulation chamber method at 5-m spacing within a 900 m2 grid during a morning (AM) period. These measurements were repeated by Groups 1–3 during an afternoon (PM) period. Measured FCO2 ranged from 218 to 14,719 g m−2 day−1. The variability of the five measurements made at each grid point ranged from ±5 to 167%. However, the arithmetic means of fluxes measured over the entire grid and associated total CO2 emission rate estimates varied between groups by only ±22%. All three groups that made PM measurements reported an 8–19% increase in total emissions over the AM results. Based on a comparison of measurements made during AM and PM times, we argue that this change is due in large part to natural temporal variability of gas flow, rather than to measurement error. In order to estimate the mean and associated CO2 emission rate of one data set and to map the spatial FCO2 distribution, we compared six geostatistical methods: arithmetic and minimum variance unbiased estimator means of uninterpolated data, and arithmetic means of data interpolated by the multiquadric radial basis function, ordinary kriging, multi-Gaussian kriging, and sequential Gaussian simulation methods. While the total CO2 emission rates estimated using the different techniques only varied by ±4.4%, the FCO2 maps showed important differences. We suggest that the sequential Gaussian simulation method yields the most realistic representation of the spatial distribution of FCO2, but a variety of geostatistical methods are appropriate to estimate the total CO2 emission rate from a study area, which is a primary goal in volcano monitoring research.
Brooks, J C; Alvarado, M; Stephens, T P; Kellermeier, J D; Tittor, A W; Miller, M F; Brashears, M M
2008-02-01
Two separate studies, one with pathogen-inoculated product and one with noninoculated product, were conducted to determine the safety and spoilage characteristics of modified atmosphere packaging (MAP) and traditional packaging of ground beef patties. Ground beef patties were allotted to five packaging treatments (i) control (foam tray with film overwrap; traditional), (ii) high-oxygen MAP (80% 02, 20% CO2), (iii) high-oxygen MAP with added rosemary extract, (iv) low-oxygen carbon monoxide MAP (0.4% CO, 30% CO2, 69.6% N2), and (v) low-oxygen carbon monoxide MAP with added rosemary extract. Beef patties were evaluated for changes over time (0, 1, 3, 5, 7, 14, and 21 days) during lighted display. Results indicated low-oxygen carbon monoxide gas flush had a stabilizing effect on meat color after the formation of carboxymyoglobin and was effective for preventing the development of surface discoloration. Consumers indicated that beef patties packaged in atmospheres containing carbon monoxide were more likely to smell fresh at 7, 14, and 21 days of display, but the majority would probably not consume these products after 14 days of display because of their odor. MAP suppressed the growth of psychrophilic aerobic bacteria when compared with control packages. Generally, control packages had significantly higher total aerobic bacteria and Lactobacillus counts than did modified atmosphere packages. In the inoculated ground beef (approximately 10(5) CFU/g) in MAP, Escherichia coli O157 populations ranged from 4.51 to 4.73 log CFU/g with no differences among the various packages, but the total E. coli O157:H7 in the ground beef in the control packages was significantly higher at 5.61 log CFU/g after 21 days of storage. On days 14 and 21, the total Salmonella in the ground beef in control packages was at 5.29 and 5.27 log CFU/g, respectively, which was significantly higher than counts in the modified atmosphere packages (3.99 to 4.31 log CFU/g on day 14 and 3.76 to 4.02 log CFU/g on day 21). Data from these studies indicate that MAP suppresses pathogen growth compared with controls and that spoilage characteristics developed in MAP packages.
Lind, Mårten; Källman, Thomas; Chen, Jun; Ma, Xiao-Fei; Bousquet, Jean; Morgante, Michele; Zaina, Giusi; Karlsson, Bo; Elfstrand, Malin; Lascoux, Martin; Stenlid, Jan
2014-01-01
A consensus linkage map of Picea abies, an economically important conifer, was constructed based on the segregation of 686 SNP markers in a F1 progeny population consisting of 247 individuals. The total length of 1889.2 cM covered 96.5% of the estimated genome length and comprised 12 large linkage groups, corresponding to the number of haploid P. abies chromosomes. The sizes of the groups (from 5.9 to 9.9% of the total map length) correlated well with previous estimates of chromosome sizes (from 5.8 to 10.8% of total genome size). Any locus in the genome has a 97% probability to be within 10 cM from a mapped marker, which makes the map suited for QTL mapping. Infecting the progeny trees with the root rot pathogen Heterobasidion parviporum allowed for mapping of four different resistance traits: lesion length at the inoculation site, fungal spread within the sapwood, exclusion of the pathogen from the host after initial infection, and ability to prevent the infection from establishing at all. These four traits were associated with two, four, four and three QTL regions respectively of which none overlapped between the traits. Each QTL explained between 4.6 and 10.1% of the respective traits phenotypic variation. Although the QTL regions contain many more genes than the ones represented by the SNP markers, at least four markers within the confidence intervals originated from genes with known function in conifer defence; a leucoanthocyanidine reductase, which has previously been shown to upregulate during H. parviporum infection, and three intermediates of the lignification process; a hydroxycinnamoyl CoA shikimate/quinate hydroxycinnamoyltransferase, a 4-coumarate CoA ligase, and a R2R3-MYB transcription factor. PMID:25036209
NASA Astrophysics Data System (ADS)
Rodríguez, F.; Thomas, G. E.; Wong, T.; García, E.; Melián, G.; Padron, E.; Asensio-Ramos, M.; Hernández, P. A.; Perez, N. M.
2017-12-01
The North East Rift zone of Tenerife Island (NERZ, 210 km2) is one of the three major volcanic rift-zones of the island. The most recent eruptive activity along the NERZ took place in the 1704-1705 period with eruptions of Siete Fuentes, Fasnia and Arafo volcanoes. Since fumarolic activity is nowadays absent at the NERZ, soil CO2 degassing monitoring represent a potential geochemical tool for its volcanic surveillance. The aim of this study is to report the results of the last CO2 efflux survey performed in June 2017, with 658 sampling sites. In-situ measurements of CO2 efflux from the surface environment of the NERZ were performed by means of a portable non-dispersive infrared spectrophotometer (NDIR) following the accumulation chamber method. To quantify the total CO2 emission, soil CO2 efflux spatial distribution maps were constructed using Sequential Gaussian Simulation (SGS) as interpolation method. The diffuse CO2 emission values ranged between 0 - 41.1 g m-2 d-1. The probability plot technique applied to the data allowed to distinguish two different geochemical populations; background (B) and peak (P) represented by 81.8% and 18.2% of the total data, respectively, with geometric means of 3.9 and 15.0 g m-2 d-1, respectively. The average map constructed with 100 equiprobable simulations showed an emission rate of 1,361±35 t d-1. This value relatively higher than the background average of CO2 emission estimated on 415 t d-1 and slightly higher than the background range of 148 t d-1 (-1σ) and 1,189 t d-1 (+1σ) observed at the NERZ. This study reinforces the importance of performing soil CO2 efflux surveys as an effective surveillance volcanic tool in the NERZ.
Meredith, H; Valdramidis, V; Rotabakk, B T; Sivertsvik, M; McDowell, D; Bolton, D J
2014-12-01
Studies were undertaken to investigate the effect of different modified atmospheric packaging (MAP) gaseous combinations on Campylobacter and the natural microflora on poultry fillets. Skinless chicken fillets were stored in gaseous mixtures of 10%, 30%, 50%, 70% and 90% CO2 balanced with N2, 80:20% O2:N2 and 40:30:30% CO2:O2:N2 and control conditions (air) at 2 °C. Samples were analysed periodically for (previously inoculated) Campylobacter, total viable counts (TVC) (mesophiles), TVC (psychrophiles), Enterobacteriaceae, Pseudomonas and lactic acid bacteria (LAB) over 17 days of storage. The carbon dioxide solubility was determined by monitoring the changes in the headspace volume over time using a buoyancy technique and performing calculations based on volumetric measurements and the Henry's constant. Henry's constant was also used to estimate the oxygen solubility in the chicken fillets. The presence of O2 in the MAP gaseous mixtures increased the rate of Campylobacter decline on poultry fillets but in general the counts obtained in aerobic versus anaerobic packs were not significantly (P > 0.05) different. CO2 inhibited the growth of TVC, TEC, LAB and Pseudomonas but only at MAP gaseous combinations containing 50-90% CO2 where concentrations of up to 2000 ppm CO2 were recorded in the fillets after 5 days. Under these conditions a shelf-life in excess of 17 days at 2 °C was obtained. Although, dissolved O2, at levels of 33 ppm in 80:20% O2:N2 packs after 3 days, reduced Campylobacter, it also favoured the growth of the other microbes on the chicken. The optimum gaseous mixture for achieving the combined objectives of reducing Campylobacter and extending shelf was therefore 40:30:30 CO2:O2:N2, which achieved a shelf-life in excess of 14 days. Copyright © 2014 Elsevier Ltd. All rights reserved.
MOLECULAR OUTFLOWS FROM THE PROTOCLUSTER SERPENS SOUTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Fumitaka; Higuchi, Aya; Sugitani, Kohji
2011-08-20
We present the results of CO (J = 3-2) and HCO{sup +} (J = 4-3) mapping observations toward a nearby embedded cluster, Serpens South, using the ASTE 10 m telescope. Our CO (J = 3-2) map reveals that many outflows are crowded in the dense cluster-forming clump that can be recognized as an HCO{sup +} clump with a size of {approx}0.2 pc and mass of {approx}80 M{sub sun}. The clump contains several subfragments with sizes of {approx}0.05 pc. By comparing the CO (J = 3-2) map with the 1.1 mm dust continuum image taken by AzTEC on ASTE, we findmore » that the spatial extents of the outflow lobes are sometimes anti-correlated with the distribution of the dense gas, and some of the outflow lobes apparently collide with the dense gas. The total outflow mass, momentum, and energy are estimated to be 0.6 M{sub sun}, 8 M{sub sun} km s{sup -1}, and 64 M{sub sun} km{sup 2} s{sup -2}, respectively. The energy injection rate due to the outflows is comparable to the turbulence dissipation rate in the clump, implying that the protostellar outflows can maintain the supersonic turbulence in this region. The total outflow energy seems only about 10% of the clump gravitational energy. We conclude that the current outflow activity is not enough to destroy the whole cluster-forming clump, and therefore star formation is likely to continue for several or many local dynamical times.« less
Muhlisin; Kang, Sun Moon; Choi, Won Hee; Lee, Keun Taik; Cheong, Sung Hee; Lee, Sung Ki
2013-01-01
The effect of modified atmosphere packaging (MAP; 30% CO2+70% N2 or 100% N2) and an additive mixture (500 ppm rosemary extract, 3,000 ppm sodium acetate and 1,500 ppm calcium lactate) on the quality of pre-cooked hamburger patties during storage at 5°C for 14 d was evaluated. The addition of the additive mixture reduced aerobic and anaerobic bacteria counts in both 30% CO2-MAP (30% CO2+70% N2) and 100% N2-MAP (p<0.05). The 30% CO2-MAP was more effective to suppress the microbial growth than 100% N2-MAP, moreover the 30% CO2-MAP combined with additive mixture resulted in the lowest bacterial counts. The hamburger patties with additive mixture showed lower CIE L* and CIE a*, and higher CIE b* than those with no additive mixture. The 30% CO2-MAP tended to decrease the TBARS during storage regardless of the addition of additives. The use of 30% CO2-MAP in combination with additives mixture was effective for maintaining the quality and extending the shelf-life of pre-cooked hamburger patties. PMID:25049716
The right place for the right job in the photovoltaic life cycle.
Kawajiri, Kotaro; Genchi, Yutaka
2012-07-03
The potential for photovoltaic power generation (PV) to reduce primary energy consumption (PEC) and CO(2) emissions depends on the physical locations of each stage of its life cycle. When stages are optimally located, CO(2) emissions are reduced nearly ten times as much as when each stage is located in the country having the largest current market share. The usage stage contributes the most to reducing CO(2) emissions and PEC, and total CO(2) emissions actually increase when PV is installed in countries having small CO(2) emissions from electricity generation. Global maps of CO(2) reduction potential indicate that Botswana and Gobi in Mongolia are the optimal locations to install PV due to favorable conditions for PV power generation and high CO(2) emissions from current electricity generation. However, the small electricity demand in those countries limits the contribution to global CO(2) reduction. The type of PVs has a small but significant effect on life cycle PEC and CO(2) emissions.
Al-Nehlawi, A; Saldo, J; Vega, L F; Guri, S
2013-05-01
The effects of an aerobic modified atmosphere packaging (MAP) (70% CO2, 15% O2 and 15% N2) with and without a CO2 3-h soluble gas stabilization (SGS) pre-treatment of chicken drumsticks were determined for various package and product quality characteristics. The CO2 dissolved into drumsticks was determined. The equilibrium between CO2 dissolved in drumsticks and CO2 in head space was reached within 48h after packaging, showing highest values of CO2 in SGS pre-treated samples. This greater availability of CO2 resulted in lower counts of TAB and Pseudomonas in SGS than in MAP drumsticks. Package collapse was significantly reduced in SGS samples. The average of CO2 dissolved in the MAP treatment was 567mg CO2kg(-1) of chicken and, 361mg CO2kg(-1) of chicken during the MAP treatment, in SGS pre-treated samples. This difference could be the quantity of CO2 dissolved during SGS pre-treatment. These results highlight the advantages of using SGS versus traditional MAP for chicken products preservation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yang, Xiaoyin; Wu, Shuang; Hopkins, David L; Liang, Rongrong; Zhu, Lixian; Zhang, Yimin; Luo, Xin
2018-08-01
This study investigated the proteome basis for color stability variations in beef steaks packaged under two modified atmosphere packaging (MAP) methods: HiOx-MAP (80% O 2 /20% CO 2 ) and CO-MAP (0.4% CO/30% CO 2 /69.6% N 2 ) during 15 days of storage. The color stability, pH, and sarcoplasmic proteome analysis of steaks were evaluated on days 0, 5, 10 and 15 of storage. Proteomic results revealed that the differential expression of the sarcoplasmic proteome during storage contributed to the variations in meat color stability between the two MAP methods. Compared with HiOx-MAP steaks, some glycolytic and energy metabolic enzymes important in NADH regeneration and antioxidant processes, antioxidant peroxiredoxins (thioredoxin-dependent peroxide reductase, peroxiredoxin-2, peroxiredoxin-6) and protein DJ-1 were more abundant in CO-MAP steaks. The over-expression of these proteins could induce CO-MAP steaks to maintain high levels of metmyoglobin reducing activity and oxygen consumption rate, resulting in CO-MAP steaks exhibiting better color stability than HiOx-MAP steaks during storage. Copyright © 2018 Elsevier Ltd. All rights reserved.
Total quality index of Agaricus bisporus mushrooms packed in modified atmosphere.
Djekic, Ilija; Vunduk, Jovana; Tomašević, Igor; Kozarski, Maja; Petrovic, Predrag; Niksic, Miomir; Pudja, Predrag; Klaus, Anita
2017-07-01
The aim of this study was to develop a total quality index and examine the effects of modified atmosphere packaging (MAP) on the quality of Agaricus bisporus mushrooms stored for 22 days at 4 °C. Mushrooms were packaged under three MAPs: high nitrogen packaging (HNP), low carbon dioxide packaging (LCP) and low oxygen packaging (LOP). Passive MAP with air inside initially was used as the atmosphere treatment (AIR). This research revealed two phases in quality deterioration of A. bisporus mushrooms. During the first week, most of the quality parameters were not statistically different. Thereafter, odor intensities were stronger for all four types of packaging. Color difference and browning index values showed significantly lower color changes for AIR and LOP compared with HNP and LCP mushrooms. The best total quality index was calculated for LOP, followed by LCP and AIR. The findings of this study are useful with respect to examining two-component MAPs, separating the limiting factors (O 2 and CO 2 ) and evaluating quality deterioration effects and the total quality index of A. bisporus mushrooms. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Hammerling, Dorit M.; Michalak, Anna M.; Kawa, S. Randolph
2012-01-01
Satellite observations of CO2 offer new opportunities to improve our understanding of the global carbon cycle. Using such observations to infer global maps of atmospheric CO2 and their associated uncertainties can provide key information about the distribution and dynamic behavior of CO2, through comparison to atmospheric CO2 distributions predicted from biospheric, oceanic, or fossil fuel flux emissions estimates coupled with atmospheric transport models. Ideally, these maps should be at temporal resolutions that are short enough to represent and capture the synoptic dynamics of atmospheric CO2. This study presents a geostatistical method that accomplishes this goal. The method can extract information about the spatial covariance structure of the CO2 field from the available CO2 retrievals, yields full coverage (Level 3) maps at high spatial resolutions, and provides estimates of the uncertainties associated with these maps. The method does not require information about CO2 fluxes or atmospheric transport, such that the Level 3 maps are informed entirely by available retrievals. The approach is assessed by investigating its performance using synthetic OCO-2 data generated from the PCTM/ GEOS-4/CASA-GFED model, for time periods ranging from 1 to 16 days and a target spatial resolution of 1deg latitude x 1.25deg longitude. Results show that global CO2 fields from OCO-2 observations can be predicted well at surprisingly high temporal resolutions. Even one-day Level 3 maps reproduce the large-scale features of the atmospheric CO2 distribution, and yield realistic uncertainty bounds. Temporal resolutions of two to four days result in the best performance for a wide range of investigated scenarios, providing maps at an order of magnitude higher temporal resolution relative to the monthly or seasonal Level 3 maps typically reported in the literature.
Galeano, Carlos H.; Fernandez, Andrea C.; Franco-Herrera, Natalia; Cichy, Karen A.; McClean, Phillip E.; Vanderleyden, Jos; Blair, Matthew W.
2011-01-01
Map-based cloning and fine mapping to find genes of interest and marker assisted selection (MAS) requires good genetic maps with reproducible markers. In this study, we saturated the linkage map of the intra-gene pool population of common bean DOR364×BAT477 (DB) by evaluating 2,706 molecular markers including SSR, SNP, and gene-based markers. On average the polymorphism rate was 7.7% due to the narrow genetic base between the parents. The DB linkage map consisted of 291 markers with a total map length of 1,788 cM. A consensus map was built using the core mapping populations derived from inter-gene pool crosses: DOR364×G19833 (DG) and BAT93×JALO EEP558 (BJ). The consensus map consisted of a total of 1,010 markers mapped, with a total map length of 2,041 cM across 11 linkage groups. On average, each linkage group on the consensus map contained 91 markers of which 83% were single copy markers. Finally, a synteny analysis was carried out using our highly saturated consensus maps compared with the soybean pseudo-chromosome assembly. A total of 772 marker sequences were compared with the soybean genome. A total of 44 syntenic blocks were identified. The linkage group Pv6 presented the most diverse pattern of synteny with seven syntenic blocks, and Pv9 showed the most consistent relations with soybean with just two syntenic blocks. Additionally, a co-linear analysis using common bean transcript map information against soybean coding sequences (CDS) revealed the relationship with 787 soybean genes. The common bean consensus map has allowed us to map a larger number of markers, to obtain a more complete coverage of the common bean genome. Our results, combined with synteny relationships provide tools to increase marker density in selected genomic regions to identify closely linked polymorphic markers for indirect selection, fine mapping or for positional cloning. PMID:22174773
NGC 2024: Multi-wavelength Infrared and Radio Observations
NASA Technical Reports Server (NTRS)
Smith, H. A.; Fischer, J.; Geballe, T. R.; Thronson, H. A., Jr.; Johnston, K. J.; Schwartz, P. R.; Wilson, T. L.; Crutcher, R. M.; Henkel, C.; Bieging, J.
1984-01-01
A series of far-infrared maps obtained on the KAO find the total IR luminosity of NGC 2024 is to the 4th power L, and show a peak in flux density and optical depth about 1' south of IRS 2. High resolution spectra of IRS 2 in Brackett alfa and Pfund gamma indicate the presence of an optically thick wind with M approx. 7 x 10 to the minus 7 power M sub yr to minus 1 power, from which we infer that IRS 2 is unable to supply the luminosity observed. A six centimeter continuum map peaks near the location of the far-infrared peak and confirms it as a likely site for a source to provide this luminosity. Maps in HCN, CS, and H2CO show the gas is dense in the direction of the far IR peak. Velocity analysis shows the H2 region created by the far IR source and IRS 2 forms an expanding bubble in front of which the H2CO is seen in absorption, and which is bounded in the south and behind by dense material.
NASA Astrophysics Data System (ADS)
Rödenbeck, C.; Bakker, D. C. E.; Gruber, N.; Iida, Y.; Jacobson, A. R.; Jones, S.; Landschützer, P.; Metzl, N.; Nakaoka, S.; Olsen, A.; Park, G.-H.; Peylin, P.; Rodgers, K. B.; Sasse, T. P.; Schuster, U.; Shutler, J. D.; Valsala, V.; Wanninkhof, R.; Zeng, J.
2015-12-01
Using measurements of the surface-ocean CO2 partial pressure (pCO2) and 14 different pCO2 mapping methods recently collated by the Surface Ocean pCO2 Mapping intercomparison (SOCOM) initiative, variations in regional and global sea-air CO2 fluxes are investigated. Though the available mapping methods use widely different approaches, we find relatively consistent estimates of regional pCO2 seasonality, in line with previous estimates. In terms of interannual variability (IAV), all mapping methods estimate the largest variations to occur in the eastern equatorial Pacific. Despite considerable spread in the detailed variations, mapping methods that fit the data more closely also tend to agree more closely with each other in regional averages. Encouragingly, this includes mapping methods belonging to complementary types - taking variability either directly from the pCO2 data or indirectly from driver data via regression. From a weighted ensemble average, we find an IAV amplitude of the global sea-air CO2 flux of 0.31 PgC yr-1 (standard deviation over 1992-2009), which is larger than simulated by biogeochemical process models. From a decadal perspective, the global ocean CO2 uptake is estimated to have gradually increased since about 2000, with little decadal change prior to that. The weighted mean net global ocean CO2 sink estimated by the SOCOM ensemble is -1.75 PgC yr-1 (1992-2009), consistent within uncertainties with estimates from ocean-interior carbon data or atmospheric oxygen trends.
NASA Astrophysics Data System (ADS)
Padilla, Germán D.; Evans, Bethany J.; Provis, Aaron R.; Asensio, María; Alonso, Mar; Calvo, David; Hernández, Pedro; Pérez, Nemesio M.
2017-04-01
Tenerife together and Gran Canaria are the central islands of the Canarian archipelago, which have developed a central volcanic complex characterized by the eruption of differentiated magmas. Tenerife is the largest of the Canary Islands (2100 km2) and at present, the North-West Rift-Zone (NWRZ) is one of the most active volcanic structures of the three volcanic rift-zone of the island, which has hosted two historical eruptions (Arenas Negras in 1706 and Chinyero in 1909). In order to monitor the volcanic activity of NWRZ, since the year 2000, 49 soil CO2 efflux surveys have been performed at NWRZ (more than 300 observation sites each one) to evaluate the temporal an spatial variations of CO2 efflux and their relationships with the volcanic-seismic activity. Measurements were performed in accordance with the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. To quantify the total CO2 emission from the studied area, 100 simulations for each survey have been performed. We report herein the results of the last diffuse CO2 efflux surveys at the NWRZ undertaken in July and October 2016 to constrain the total CO2 output from the studied area. During July and October 2016 surveys, soil CO2 efflux values ranged from non-detectable up to 32.4 and 53.7 g m-2 d-1, respectively. The total diffuse CO2 output released to atmosphere were estimated at 255 ± 9 and 338 ± 18 t d-1, respectively, values higher than the background CO2 emission estimated on 144 t d-1. Since 2000, soil CO2 efflux values have ranged from non-detectable up to 141 g m-2 d-1, with the highest values measured in May 2005 whereas total CO2 output ranged between 52 and 867 t d-1. Long-term variations in the total CO2 output have shown a temporal correlation with the onsets of seismic activity at Tenerife, supporting unrest of the volcanic system, as is also suggested by anomalous seismic activity recorded in the studied area during April 22-29, 2004 and also during October 2-3, 2016. Spatial distribution of soil CO2 efflux values also showed changes in magnitude and amplitude, with higher CO2 efflux values measured along a trending WNW-ESE zone. Subsurface magma movement is proposed as a cause for the observed changes in the total output of diffuse CO2 emission as well as for the spatial distribution of soil CO2 efflux. The increasing trend of total CO2 output suggests increasing pressurization of the volcanic-hydrothermal system, a mechanism capable of triggering dyke intrusion along the NWRZ of Tenerife in the near future or futures changes in the seismicity. This study demonstrates the importance of performing soil CO2 efflux surveys as an effective surveillance volcanic tool.
A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2
NASA Astrophysics Data System (ADS)
Lauvset, Siv K.; Key, Robert M.; Olsen, Are; van Heuven, Steven; Velo, Anton; Lin, Xiaohua; Schirnick, Carsten; Kozyr, Alex; Tanhua, Toste; Hoppema, Mario; Jutterström, Sara; Steinfeldt, Reiner; Jeansson, Emil; Ishii, Masao; Perez, Fiz F.; Suzuki, Toru; Watelet, Sylvain
2016-08-01
We present a mapped climatology (GLODAPv2.2016b) of ocean biogeochemical variables based on the new GLODAP version 2 data product (Olsen et al., 2016; Key et al., 2015), which covers all ocean basins over the years 1972 to 2013. The quality-controlled and internally consistent GLODAPv2 was used to create global 1° × 1° mapped climatologies of salinity, temperature, oxygen, nitrate, phosphate, silicate, total dissolved inorganic carbon (TCO2), total alkalinity (TAlk), pH, and CaCO3 saturation states using the Data-Interpolating Variational Analysis (DIVA) mapping method. Improving on maps based on an earlier but similar dataset, GLODAPv1.1, this climatology also covers the Arctic Ocean. Climatologies were created for 33 standard depth surfaces. The conceivably confounding temporal trends in TCO2 and pH due to anthropogenic influence were removed prior to mapping by normalizing these data to the year 2002 using first-order calculations of anthropogenic carbon accumulation rates. We additionally provide maps of accumulated anthropogenic carbon in the year 2002 and of preindustrial TCO2. For all parameters, all data from the full 1972-2013 period were used, including data that did not receive full secondary quality control. The GLODAPv2.2016b global 1° × 1° mapped climatologies, including error fields and ancillary information, are available at the GLODAPv2 web page at the Carbon Dioxide Information Analysis Center (CDIAC; doi:10.3334/CDIAC/OTG.NDP093_GLODAPv2).
N'Diaye, Amidou; Haile, Jemanesh K; Fowler, D Brian; Ammar, Karim; Pozniak, Curtis J
2017-01-01
Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called 'large p, small n' problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers). While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez). Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase making map expansion unavoidable. Therefore, we suggest developers improve linkage mapping algorithms for efficient analysis of high-throughput data. This study outlines a practical strategy to estimate the IF due to the proportion of co-segregating markers and outlines a method to scale the length of the map accordingly.
N’Diaye, Amidou; Haile, Jemanesh K.; Fowler, D. Brian; Ammar, Karim; Pozniak, Curtis J.
2017-01-01
Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called ‘large p, small n’ problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers). While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez). Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase making map expansion unavoidable. Therefore, we suggest developers improve linkage mapping algorithms for efficient analysis of high-throughput data. This study outlines a practical strategy to estimate the IF due to the proportion of co-segregating markers and outlines a method to scale the length of the map accordingly. PMID:28878789
Local CO2-induced swelling of shales
NASA Astrophysics Data System (ADS)
Pluymakers, Anne; Dysthe, Dag Kristian
2017-04-01
In heterogeneous shale rocks, CO2 adsorbs more strongly to organic matter than to the other components. CO2-induced swelling of organic matter has been shown in coal, which is pure carbon. The heterogeneity of the shale matrix makes an interesting case study. Can local swelling through adsorption of CO2 to organic matter induce strain in the surrounding shale matrix? Can fractures close due to CO2-induced swelling of clays and organic matter? We have developed a new generation of microfluidic high pressure cells (up to 100 bar), which can be used to study flow and adsorption phenomena at the microscale in natural geo-materials. The devices contain one transparent side and a shale sample on the other side. The shale used is the Pomeranian shale, extracted from 4 km depth in Poland. This formation is a potential target of a combined CO2-storage and gas extraction project. To answer the first question, we place the pressure cell under a Veeco NT1100 Interferometer, operated in Vertical Scanning Interferometry mode and equipped with a Through Transmissive Media objective. This allows for observation of local swelling or organic matter with nanometer vertical resolution and micrometer lateral resolution. We expose the sample to CO2 atmospheres at different pressures. Comparison of the interferometry data and using SEM-EDS maps plus optical microscopy delivers local swelling maps where we can distinguish swelling of different mineralogies. Preliminary results indicate minor local swelling of organic matter, where the total amount is both time- and pressure-dependent.
Modeling the Effect of Modified Atmospheres on Conidial Germination of Fungi from Dairy Foods
Nguyen Van Long, Nicolas; Vasseur, Valérie; Couvert, Olivier; Coroller, Louis; Burlot, Marion; Rigalma, Karim; Mounier, Jérôme
2017-01-01
Modified atmosphere packaging (MAP) is commonly applied to extend food shelf-life. Despite growth of a wide variety of fungal contaminants has been previously studied in relation to modified-atmospheres, few studies aimed at quantifying the effects of dioxygen (O2) and carbon dioxide (CO2) partial pressures on conidial germination in solid agar medium. In the present study, an original culture method was developed, allowing microscopic monitoring of conidial germination under modified-atmospheres in static conditions. An asymmetric model was utilized to describe germination kinetics of Paecilomyces niveus, Mucor lanceolatus, Penicillium brevicompactum, Penicillium expansum, and Penicillium roquefoti, using two main parameters, i.e., median germination time (τ) and maximum germination percentage (Pmax). These two parameters were subsequently modeled as a function of O2 partial pressure ranging from 0 to 21% and CO2 partial pressure ranging from 0.03 to 70% (8 tested levels for both O2 and CO2). Modified atmospheres with residual O2 or CO2 partial pressures below 1% and up to 70%, respectively, were not sufficient to totally inhibit conidial germination,. However, O2 levels < 1% or CO2 levels > 20% significantly increased τ and/or reduced Pmax, depending on the fungal species. Overall, the present method and results are of interest for predictive mycology applied to fungal spoilage of MAP food products. PMID:29163403
Wang, Tianxing; Shi, Jiancheng; Jing, Yingying; Zhao, Tianjie; Ji, Dabin; Xiong, Chuan
2014-01-01
Global warming induced by atmospheric CO2 has attracted increasing attention of researchers all over the world. Although space-based technology provides the ability to map atmospheric CO2 globally, the number of valid CO2 measurements is generally limited for certain instruments owing to the presence of clouds, which in turn constrain the studies of global CO2 sources and sinks. Thus, it is a potentially promising work to combine the currently available CO2 measurements. In this study, a strategy for fusing SCIAMACHY and GOSAT CO2 measurements is proposed by fully considering the CO2 global bias, averaging kernel, and spatiotemporal variations as well as the CO2 retrieval errors. Based on this method, a global CO2 map with certain UTC time can also be generated by employing the pattern of the CO2 daily cycle reflected by Carbon Tracker (CT) data. The results reveal that relative to GOSAT, the global spatial coverage of the combined CO2 map increased by 41.3% and 47.7% on a daily and monthly scale, respectively, and even higher when compared with that relative to SCIAMACHY. The findings in this paper prove the effectiveness of the combination method in supporting the generation of global full-coverage XCO2 maps with higher temporal and spatial sampling by jointly using these two space-based XCO2 datasets. PMID:25119468
The cerebrovascular response to carbon dioxide in humans
Battisti-Charbonney, A; Fisher, J; Duffin, J
2011-01-01
Abstract Carbon dioxide (CO2) increases cerebral blood flow and arterial blood pressure. Cerebral blood flow increases not only due to the vasodilating effect of CO2 but also because of the increased perfusion pressure after autoregulation is exhausted. Our objective was to measure the responses of both middle cerebral artery velocity (MCAv) and mean arterial blood pressure (MAP) to CO2 in human subjects using Duffin-type isoxic rebreathing tests. Comparisons of isoxic hyperoxic with isoxic hypoxic tests enabled the effect of oxygen tension to be determined. During rebreathing the MCAv response to CO2 was sigmoidal below a discernible threshold CO2 tension, increasing from a hypocapnic minimum to a hypercapnic maximum. In most subjects this threshold corresponded with the CO2 tension at which MAP began to increase. Above this threshold both MCAv and MAP increased linearly with CO2 tension. The sigmoidal MCAv response was centred at a CO2 tension close to normal resting values (overall mean 36 mmHg). While hypoxia increased the hypercapnic maximum percentage increase in MCAv with CO2 (overall means from 76.5 to 108%) it did not affect other sigmoid parameters. Hypoxia also did not alter the supra-threshold MCAv and MAP responses to CO2 (overall mean slopes 5.5% mmHg-1 and 2.1 mmHg mmHg−1, respectively), but did reduce the threshold (overall means from 51.5 to 46.8 mmHg). We concluded that in the MCAv response range below the threshold for the increase of MAP with CO2, the MCAv measurement reflects vascular reactivity to CO2 alone at a constant MAP. PMID:21521758
Kiermeier, Andreas; Tamplin, Mark; May, Damian; Holds, Geoff; Williams, Michelle; Dann, Alison
2013-12-01
Packaging fresh lamb in a vacuum (VAC) versus a 100% CO2 modified atmosphere (MAP) may influence product shelf-life and the bacterial communities. While VAC is a common packing method and 100% CO2 MAP is used in some countries, there is little information about how these different techniques affect the growth of spoilage bacteria and sensory attributes of lamb. The aim of this study was to assess changes in microbiological and organoleptic properties, and determine differences in microbial communities by terminal restriction fragment length polymorphism (TRFLP) and 454 pyrosequencing, in bone-in (BI) and bone-out (BO) MAP- and VAC-packed lamb shoulders stored at -0.3 °C over 12 wk. VAC and MAP lamb shoulders were acceptable in sensory test scores over 12 wk of storage at -0.3 °C, despite total viable count (TVC) and lactic acid bacteria (LAB) levels increasing to 8 log10 CFU/cm(2) for VAC lamb and 4-6 log10 CFU/cm(2) for MAP lamb. Similar to the sensory results, there were no significant differences in microbial communities between BI and BO product. However, types of bacteria were different between VAC and MAP packaging. Specifically, while VAC shoulder became dominated by Carnobacterium spp. in the middle of the storage period, the MAP shoulder microbial population remained similar from the start until later storage times. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Christen, A.; Crawford, B.; Ketler, R.; Lee, J. K.; McKendry, I. G.; Nesic, Z.; Caitlin, S.
2015-12-01
Measurements of long-lived greenhouse gases in the urban atmosphere are potentially useful to constrain and validate urban emission inventories, or space-borne remote-sensing products. We summarize and compare three different approaches, operating at different scales, that directly or indirectly identify, attribute and quantify emissions (and uptake) of carbon dioxide (CO2) in urban environments. All three approaches are illustrated using in-situ measurements in the atmosphere in and over Vancouver, Canada. Mobile sensing may be a promising way to quantify and map CO2 mixing ratios at fine scales across heterogenous and complex urban environments. We developed a system for monitoring CO2 mixing ratios at street level using a network of mobile CO2 sensors deployable on vehicles and bikes. A total of 5 prototype sensors were built and simultaneously used in a measurement campaign across a range of urban land use types and densities within a short time frame (3 hours). The dataset is used to aid in fine scale emission mapping in combination with simultaneous tower-based flux measurements. Overall, calculated CO2 emissions are realistic when compared against a spatially disaggregated scale emission inventory. The second approach is based on mass flux measurements of CO2 using a tower-based eddy covariance (EC) system. We present a continuous 7-year long dataset of CO2 fluxes measured by EC at the 28m tall flux tower 'Vancouver-Sunset'. We show how this dataset can be combined with turbulent source area models to quantify and partition different emission processes at the neighborhood-scale. The long-term EC measurements are within 10% of a spatially disaggregated scale emission inventory. Thirdly, at the urban scale, we present a dataset of CO2 mixing ratios measured using a tethered balloon system in the urban boundary layer above Vancouver. Using a simple box model, net city-scale CO2 emissions can be determined using measured rate of change of CO2 mixing ratios, estimated CO2 advection and entrainment fluxes. Daily city-scale emissions totals predicted by the model are within 32% of a spatially scaled municipal greenhouse gas inventory. In summary, combining information from different approaches and scales is a promising approach to establish long-term emission monitoring networks in cities.
Postural Change Alters Autonomic Responses to Breath-Holding
Taneja, Indu; Medow, Marvin S.; Clarke, Debbie; Ocon, Anthony; Stewart, Julian M.
2011-01-01
We used breath-holding during inspiration as a model to study the effect of pulmonary stretch on sympathetic nerve activity. Twelve healthy subjects (7 females, 5 males; 19–27 yrs) were tested while they performed an inspiratory breath-hold, both supine and during a 60° head-up tilt (HUT 60). Heart rate (HR), mean arterial blood pressure (MAP), respiration, muscle sympathetic nerve activity (MSNA), oxygen saturation (SaO2) and end tidal carbon dioxide (ETCO2) were recorded. Cardiac output (CO) and total peripheral resistance (TPR) were calculated. While breath-holding, ETCO2 increased significantly from 41±2 to 60±2 Torr during supine (p<0.05) and 38±2 Torr to 58±2 during HUT60 (p<0.05); SaO2 decreased from 98±1.5% to 95±1.4% supine, and from 97±1.5% to 94±1.7% during HUT60 (p=NS). MSNA showed three distinctive phases - a quiescent phase due to pulmonary stretch associated with decreased MAP, HR, CO and TPR; a second phase of baroreflex-mediated elevated MSNA which was associated with recovery of MAP and HR only during HUT60; CO and peripheral resistance returned to baseline while supine and HUT60; a third phase of further increased MSNA activity related to hypercapnia and associated with increased TPR. Breath-holding results in initial reductions of MSNA, MAP and HR by the pulmonary stretch reflex followed by increased sympathetic activity related to the arterial baroreflex and chemoreflex. PMID:20012144
Bacterial communities of fresh goat meat packaged in modified atmosphere.
Carrizosa, Elia; Benito, María José; Ruiz-Moyano, Santiago; Hernández, Alejandro; Villalobos, Maria Del Carmen; Martín, Alberto; Córdoba, María de Guía
2017-08-01
The objective of this work was to study the growth and development of fortuitous flora and food pathogens in fresh goat meat packaged under modified atmospheres containing two different concentrations of CO 2 . Meat samples were stored at 10 °C under two different modified-atmosphere packing (MAP) conditions: treatment A had 45% CO 2 + 20% O 2 + 35% N 2 and treatment B had 20% CO 2 + 55% O 2 + 25% N 2 . During 14 days of storage, counts of each bacterial group and dominant species identification by 16S rRNA gene sequencing were performed to determine the microbial diversity present. The MAP condition used for treatment A was a more effective gas mixture for increasing the shelf life of fresh goat meat, significantly reducing the total number of viable bacteria and enterobacteria counts. Members of the Enterobacteriaceae family were the most common contaminants, although Hafnia alvei was dominant in treatment A and Serratia proteamaculans in treatment B. Identification studies at the species level showed that different microorganisms develop under different storage conditions, reflecting the importance of gas composition in the modified atmosphere on the bacterial community. This work provides new insights into the microbial changes of goat meat storage under different MAP conditions, which will be beneficial for the meat industry. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Box, Elgene O.
1988-01-01
The estimation of the seasonal dynamics of biospheric-carbon sources and sinks to be used as an input to global atmospheric CO2 studies and models is discussed. An ecological biosphere model is given and the advantages of the model are examined. Monthly maps of estimated biospheric carbon source and sink regions and estimates of total carbon fluxes are presented for an equilibrium terrestrial biosphere. The results are compared with those from other models. It is suggested that, despite maximum variations of atmospheric CO2 in boreal latitudes, the enormous contributions of tropical wet-dry regions to global atmospheric CO2 seasonality can not be ignored.
Imaging diffuse clouds: bright and dark gas mapped in CO
NASA Astrophysics Data System (ADS)
Liszt, H. S.; Pety, J.
2012-05-01
Aims: We wish to relate the degree scale structure of galactic diffuse clouds to sub-arcsecond atomic and molecular absorption spectra obtained against extragalactic continuum background sources. Methods: We used the ARO 12 m telescope to map J = 1-0 CO emission at 1' resolution over 30' fields around the positions of 11 background sources occulted by 20 molecular absorption line components, of which 11 had CO emission counterparts. We compared maps of CO emission to sub-arcsec atomic and molecular absorption spectra and to the large-scale distribution of interstellar reddening. Results: 1) The same clouds, identified by their velocity, were seen in absorption and emission and atomic and molecular phases, not necessarily in the same direction. Sub-arcsecond absorption spectra are a preview of what is seen in CO emission away from the continuum. 2) The CO emission structure was amorphous in 9 cases, quasi-periodic or wave-like around B0528+134 and tangled and filamentary around BL Lac. 3) Strong emission, typically 4-5 K at EB - V ≤ 0.15 mag and up to 10-12 K at EB - V ≲ 0.3 mag was found, much brighter than toward the background targets. Typical covering factors of individual features at the 1 K km s-1 level were 20%. 4) CO-H2 conversion factors as much as 4-5 times below the mean value N(H2)/WCO = 2 × 1020 H2 cm-2 (K km s-1)-1 are required to explain the luminosity of CO emission at/above the level of 1 K km s-1. Small conversion factors and sharp variability of the conversion factor on arcminute scales are due primarily to CO chemistry and need not represent unresolved variations in reddening or total column density. Conclusions: Like Fermi and Planck we see some gas that is dark in CO and other gas in which CO is overluminous per H2. A standard CO-H2 conversion factor applies overall owing to balance between the luminosities per H2 and surface covering factors of bright and dark CO, but with wide variations between sightlines and across the faces of individual clouds. Based on observations obtained with the ARO Kitt Peak 12 m telescope.Appendices are available in electronic form at http://www.aanda.org
Spatiotemporal variability of carbon dioxide and methane in a eutrophic lake
NASA Astrophysics Data System (ADS)
Loken, Luke; Crawford, John; Schramm, Paul; Stadler, Philipp; Stanley, Emily
2017-04-01
Lakes are important regulators of global carbon cycling and conduits of greenhouse gases to the atmosphere; however, most efflux estimates for individual lakes are based on extrapolations from a single location. Within-lake variability in carbon dioxide (CO2) and methane (CH4) arises from differences in water sources, physical mixing, and local transformations; all of which can be influenced by anthropogenic disturbances and vary at multiple temporal and spatial scales. During the 2016 open water season (March - December), we mapped surface water concentrations of CO2 and CH4 weekly in a eutrophic lake (Lake Mendota, WI, USA), which has a predominately agricultural and urban watershed. In total we produced 26 maps of each gas based on 10,000 point measurements distributed across the lake surface. Both gases displayed relatively consistent spatial patterns over the stratified period but exhibited remarkable heterogeneity on each sample date. CO2 was generally undersaturated (global mean: 0.84X atmospheric saturation) throughout the lake's pelagic zone and often differed near river inlets and shorelines. The lake was routinely extremely supersaturated with CH4 (global mean: 105X atmospheric saturation) with greater concentrations in littoral areas that contained organic-rich sediments. During fall mixis, both CO2 and CH4 increased substantially, and concentrations were not uniform across the lake surface. CO2 and CH4 were higher on the upwind side of the lake due to upwelling of enriched hypolimnetic water. While the lake acted as a modest sink for atmospheric CO2 during the stratified period, the lake released substantial amounts of CO2 during turnover and continually emitted CH4, offsetting any reduction in atmospheric warming potential from summertime CO2 uptake. These data-rich maps illustrate how lake-wide surface concentrations and lake-scale efflux estimates based on single point measurements diverge from spatially weighted calculations. Both gases are not well represented by a sample collected at lake's central buoy, and thus, extrapolations from a single sampling location may not be adequate to assess lake-wide CO2 and CH4 dynamics in human-dominated landscapes.
NASA Astrophysics Data System (ADS)
Remy, Q.; Grenier, I. A.; Marshall, D. J.; Casandjian, J. M.
2018-03-01
Aim. H I 21-cm and 12CO 2.6-mm line emissions trace the atomic and molecular gas phases, respectively, but they miss most of the opaque H I and diffuse H2 present in the dark neutral medium (DNM) at the transition between the H I-bright and CO-bright regions. Jointly probing H I, CO, and DNM gas, we aim to constrain the threshold of the H I-H2 transition in visual extinction, AV, and in total hydrogen column densities, NHtot. We also aim to measure gas mass fractions in the different phases and to test their relation to cloud properties. Methods: We have used dust optical depth measurements at 353 GHz, γ-ray maps at GeV energies, and H I and CO line data to trace the gas column densities and map the DNM in nearby clouds toward the Galactic anticentre and Chamaeleon regions. We have selected a subset of 15 individual clouds, from diffuse to star-forming structures, in order to study the different phases across each cloud and to probe changes from cloud to cloud. Results: The atomic fraction of the total hydrogen column density is observed to decrease in the (0.6-1) × 1021 cm-2 range in NHtot (AV ≈ 0.4 mag) because of the formation of H2 molecules. The onset of detectable CO intensities varies by only a factor of 4 from cloud to cloud, between 0.6 × 1021 cm-2 and 2.5 × 1021 cm-2 in total gas column density. We observe larger H2 column densities than linearly inferred from the CO intensities at AV > 3 mag because of the large CO optical thickness; the additional H2 mass in this regime represents on average 20% of the CO-inferred molecular mass. In the DNM envelopes, we find that the fraction of diffuse CO-dark H2 in the molecular column densities decreases with increasing AV in a cloud. For a half molecular DNM, the fraction decreases from more than 80% at 0.4 mag to less than 20% beyond 2 mag. In mass, the DNM fraction varies with the cloud properties. Clouds with low peak CO intensities exhibit large CO-dark H2 fractions in molecular mass, in particular the diffuse clouds lying at high altitude above the Galactic plane. The mass present in the DNM envelopes appears to scale with the molecular mass seen in CO as MHDNM = 62 ± 7 MH2CO0.51 ± 0.02 across two decades in mass. Conclusions: The phase transitions in these clouds show both common trends and environmental differences. These findings will help support the theoretical modelling of H2 formation and the precise tracing of H2 in the interstellar medium.
Li, Miaoyun; Wang, Haibiao; Sun, Lingxia; Zhao, Gaiming; Huang, Xianqing
2016-04-01
The objective of this study was to predict the total viable counts (TVC) and total volatile basic nitrogen (TVB-N) in pork using an electronic nose (E-nose), and to assess the freshness of chilled pork during storage using different packaging methods, including pallet packaging (PP), vacuum packaging (VP), and modified atmosphere packaging (MAP, 40% O2 /40% CO2 /20% N2 ). Principal component analysis (PCA) was used to analyze the E-nose signals, and the results showed that the relationships between the freshness of chilled pork and E-nose signals could be distinguished in the loadings plots, and the freshness of chilled pork could be distributed along 2 first principal components. Multiple linear regression (MLR) was used to correlate TVC and TVB-N to E-nose signals. High F and R2 values were obtained in the MLR output of TVB-N (F = 32.1, 21.6, and 24.2 for PP [R2 = 0.93], VP [R2 = 0.94], and MAP [R2 = 0.95], respectively) and TVC (F = 34.2, 46.4, and 7.8 for PP [R2 = 0.98], VP [R2 = 0.89], and MAP [R2 = 0.85], respectively). The results of this study suggest that it is possible to use the E-nose technology to predict TVB-N and TVC for assessing the freshness of chilled pork during storage. © 2016 Institute of Food Technologists®
Shelf-Life of Boiled Salted Duck Meat Stored Under Normal and Modified Atmosphere.
Zhai, Yang; Huang, Jichao; Khan, Iftikhar Ali; Guo, Yuchen; Huang, Ming; Zhou, Guanghong
2018-01-01
The objective of this study was to investigate the physicochemical properties and changes in the microbial counts of boiled salted duck (BSD) meat packed under various conditions. BSD meat was stored under normal atmosphere (C) and two modified atmosphere packaging (MAP) conditions: M1 (N 2 , 100%) and M2 (CO 2 /N 2 , 30%/70%) at 4 °C. Microbiological quality, pH, redness, lipid oxidation, headspace gas composition, and water activity of BSD meat were measured. The results showed that the time to reach the maximum acceptable total viable counts (TVC, 4.9 log CFU/g) was 12, 18, and 21 d in C, M1, and M2 samples, respectively. Significant difference in the redness values was observed in all treatments during storage. The redness value of C group was significantly lower than that in M1 and M2 groups at the end of storage. The thiobarbituric acid-reactive substances (TBARS) values under MAP were 0.24 to 0.26 mg MDA/kg meat at the end of storage, lower (P < 0.05) than that in C group (0.78 mg MDA/kg meat). The water activity in M2 group was the lowest among all 3 groups. The CO 2 concentration in M2 decreased significantly during storage. Our study demonstrates that packaging with 30% CO 2 and 70% N 2 (M2) could extend the shelf-life of BSD meat to 21 d during storage at 4 °C, suggesting that MAP can be a practical approach to extend the shelf-life and maintain the quality of BSD products. This study evaluated the application of MAP for a cooked duck product. Our results showed that MAP can be utilized to extend the shelf-life. This technology may be used for preservation of other cooked meat products. © 2017 Institute of Food Technologists®.
Yang, Xiaoyin; Niu, Lebao; Zhu, Lixian; Liang, Rongrong; Zhang, Yimin; Luo, Xin
2016-07-01
This study was conducted to compare the shelf-life of beef steaks stored in different packaging conditions: overwrapped (OW) packaging and 2 modified atmosphere packaging systems (MAP): 80% O2 MAP (80% O2 /20% CO2 ) and 50% O2 MAP (50% O2 /40% CO2 /10% N2 ). Steaks were stored at 2 °C for 20 d. Headspace gas composition, microbial counts, color stability, pH, purge loss, and lipid oxidation were monitored. Among the packaging types, 50% O2 MAP was superior to OW packaging and 80% O2 MAP in delaying bacterial growth and extending shelf-life to 20 d. 50% O2 MAP also gave steaks an acceptable color during storage. No significant differences were observed in color stability of steaks packaged in both 50% O2 MAP and 80% O2 MAP. This study reveals 50% O2 MAP is a realistic alternative to preserve beef steaks efficiently. © 2016 Institute of Food Technologists®
Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.
2001-01-01
We report the results of eight soil CO2 efflux surveys by the closed circulation chamber method at the Horseshoe Lake tree kill (HLTK) - the largest tree kill on Mammoth Mountain. The surveys were undertaken from 1995 to 1999 to constrain total HLTK CO2 emissions and to evaluate occasional efflux surveys as a surveillance tool for the tree kills. HLTK effluxes range from 1 to > 10,000 g m -2 day -1 (grams CO2 per square meter per day); they are not normally distributed. Station efflux rates can vary by 7-35% during the course of the 8- to 16-h surveys. Disturbance of the upper 2 cm of ground surface causes effluxes to almost double. Semivariograms of efflux spatial covariance fit exponential or spherical models; they lack nugget effects. Efflux contour maps and total CO2 emission rates based on exponential, spherical, and linear kriging models of survey data are nearly identical; similar results are also obtained with triangulation models, suggesting that the kriging models are not seriously distorted by the lack of normal efflux distributions. In addition, model estimates of total CO2 emission rates are relatively insensitive to the measurement precision of the efflux rates and to the efflux value used to separate magmatic from forest soil sources of CO2. Surveys since 1997 indicate that, contrary to earlier speculations, a termination of elevated CO2 emissions at the HLTK is unlikely anytime soon. The HLTK CO2 efflux anomaly fluctuated greatly in size and intensity throughout the 1995-1999 surveys but maintained a N-S elongation, presumably reflecting fault control of CO2 transport from depth. Total CO2 emission rates also fluctuated greatly, ranging from 46 to 136 t day-1 (metric tons CO2 per day) and averaging 93 t day-1. The large inter-survey variations are caused primarily by external (meteorological) processes operating on time scales of hours to days. The externally caused variations can mask significant changes occurring at depth; a striking example is the masking of a degassing event generated at depth and detected by a soil gas sensor network in September 1997 while an efflux survey was in progress. Thus, occasional efflux surveys are not an altogether effective surveillance tool for the HLTK, and making them effective by greatly increasing their frequency may not be practical. Published by Elsevier Science B.V.
Planck 2013 results. XIII. Galactic CO emission
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Dempsey, J. T.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Fukui, Y.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Handa, T.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hily-Blant, P.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Moore, T. J. T.; Morgante, G.; Morino, J.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nakajima, T.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Okuda, T.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Thomas, H. S.; Toffolatti, L.; Tomasi, M.; Torii, K.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yamamoto, H.; Yoda, T.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
Rotational transition lines of CO play a major role in molecular radio astronomy as a mass tracer and in particular in the study of star formation and Galactic structure. Although a wealth of data exists for the Galactic plane and some well-known molecular clouds, there is no available high sensitivity all-sky survey of CO emission to date. Such all-sky surveys can be constructed using the Planck HFI data because the three lowest CO rotational transition lines at 115, 230 and 345 GHz significantly contribute to the signal of the 100, 217 and 353 GHz HFI channels, respectively. Two different component separation methods are used to extract the CO maps from Planck HFI data. The maps obtained are then compared to one another and to existing external CO surveys. From these quality checks the best CO maps, in terms of signal to noise ratio and/or residual contamination by other emission, are selected. Three different sets of velocity-integrated CO emission maps are produced with different trade-offs between signal-to-noise, angular resolution, and reliability. Maps for the CO J = 1 → 0, J = 2 → 1, and J = 3 → 2 rotational transitions are presented and described in detail. They are shown to be fully compatible with previous surveys of parts of the Galactic plane as well as with undersampled surveys of the high latitude sky. The Planck HFI velocity-integrated CO maps for the J = 1 → 0, J = 2 → 1, and J = 3 →2 rotational transitions provide an unprecedented all-sky CO view of the Galaxy. These maps are also of great interest to monitor potential CO contamination of the Planck studies of the cosmological microwave background.
Quality changes of cuttlefish stored under various atmosphere modifications and vacuum packaging.
Bouletis, Achilleas D; Arvanitoyannis, Ioannis S; Hadjichristodoulou, Christos; Neofitou, Christos; Parlapani, Foteini F; Gkagtzis, Dimitrios C
2016-06-01
Seafood preservation and its shelf life prolongation are two of the main issues in the seafood industry. As a result, and in view of market globalization, research has been triggered in this direction by applying several techniques such as modified atmosphere packaging (MAP), vacuum packaging (VP) and active packaging (AP). However, seafood such as octopus, cuttlefish and others have not been thoroughly investigated up to now. The aim of this research was to determine the optimal conditions of modified atmosphere under which cuttlefish storage time and consequently shelf life time could be prolonged without endangering consumer safety. It was found that cuttlefish shelf life reached 2, 2, 4, 8 and 8 days for control, VP, MAP 1, MAP 2 and MAP 3 (20% CO2 -80% N2 , 50% CO2 -50% N2 and 70% CO2 -30% N2 for MAP 1, 2 and 3, respectively) samples, respectively, judging by their sensorial attributes. Elevated CO2 levels had a strong microbiostatic effect, whereas storage under vacuum did not offer significant advantages. All physicochemical attributes of MAP-treated samples were better preserved compared to control. Application of high CO2 atmospheres such as MAP 2 and MAP 3 proved to be an effective strategy toward preserving the characteristics and prolonging the shelf life of fresh cuttlefish and thereby improving its potential in the market. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Babić Milijašević, J.; Milijašević, M.; Đinović-Stojanović, J.; Vranić, D.
2017-09-01
The aim of our research was to examine the influence of packaging in modified atmosphere and vacuum on the total volatile basic nitrogen (TVB-N) content in muscle of rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio), as well as to determine the most suitable gas mixtures for packing of these freshwater species. Three sample groups of trout and carp cuts were investigated. The two groups were packaged in modified atmosphere with different gas ratios: 90%CO2+10%N2 (MAP 1) and 60%CO2+40%N2 (MAP 2), whereas the third group of fish cuts were vacuum packaged. During trials, the trout and carp cuts were stored in refrigerator at 3°C±0.5°C. Determination of TVB-N was performed on 1, 4, 7, 9, 12 and 14 days of storage. The obtained results indicate that the investigated mixtures of gases and vacuum had a significant influence on the values of TVB-N in trout and carp cuts. The lowest increase in TVB-N was established in trout and carp cuts packaged in MAP 1, whereas the highest increase was established in vacuum packaged cuts. Based on the obtained results, it can be concluded that the gas mixture consisting of 90% CO2 and 10% N2 was the most suitable for packaging of fresh trout and carp cuts in terms of TVB-N value.
NASA Technical Reports Server (NTRS)
Hausback, Brian P.; Strong, Mel; Farrar, Chris; Pieri, David
1998-01-01
Elevated cold CO2 emissions from the flank of Mammoth Mountain volcano on the southwest rim of the Long Valley Caldera, eastern California, have been the cause of over 100 acres of dead trees in that area since 1990. The source of the CO2 gas is thought to be from one or more magmatic intrusion(s) beneath Mammoth Mountain and is probably related to a period of seismic unrest that began in 1989. The gas rises to the surface probably from depths of a few kilometers, along faults and fracture zones. The gas is at ambient temperature and diffuses from the soil rather than discharging from distinct vents. Typically, soil gas concentrations in tree-kill areas range from 10% to over 90% CO2 by volume, as compared to normal background of < 1% in healthy forest. The gas composition is predominantly CO2 mixed with air (sulfur gases are not elevated), and C and He isotopic ratios are consistent with a magmatic origin for the gas. The total CO2 emission has been estimated at 1200 tons/day, comparable to the emissions at Kilauea. Some of the dead trees are as old as 250 years, suggesting that similar anomalous gas discharge has not occurred over the previous few hundred years. The delta C-13/12 ratio in the Mammoth Mountain CO2 emission averages about -4.5 (PDB standard). This is consistent with a mantle source for the carbon. However, the large volume of the emission suggests that not all of the CO2 is necessarily being generated from the 1989 intrusion. The voluminous gas could be leaking from a vapor-rich zone, capped by an impermeable layer, that was supplied CO2 from degassing of many small magma bodies that intruded beneath the mountain over a period of decades or centuries. Earthquakes in 1989 could have fractured the capping layer and provided pathways for the escape Of CO2 to the surface. Alternatively, some of the CO2 could be derived from contact metamorphism of carbonate rocks intruded by magma. Carbonate-bearing Paleozoic roof pendents crop out in close proximity to Mammoth Mountain. It is possible that similar rocks could occur at depth beneath Mammoth Mountain, and could have contributed CO2 from thermal decomposition caused from recent intrusions. We hope to determine the C-13/12 ratio of a suite of samples to demonstrate if the carbonate rocks could be the source of at least part of the 1990-97 CO2 emission. To better understand the behavior of the CO2 gas, we have used hyperspectral imagery data of Mammoth Mountain acquired from the Airborne Visual/Infrared Imaging Spectrometer (AVIRIS) to map out areas of dead trees. The areas of tree kill have increased in size from about 50 acres in 1994 to about 100 acres in 1997. Tree kill is the major surface manifestation of the carbon dioxide flux at Mammoth Mountain, is widely dispersed, and has been cursorily mapped by regular field mapping techniques in the area. Initial investigations using airborne digital imagery from the Thematic Mapper Simulator (NS001) and AVIRIS instruments have shown extremely encouraging results for complete delineation of the vegetation anomalies. The most successful maps (when compared with ground truth) were developed using AVIRIS data with spectral angle mapper and matched filter algorithms with a data set that was reduced to maximum variance via the minimum noise fraction transformation. The result of this work is a series of maps that show the tree kill areas occurring in an halo-pattern surrounding the base of Mammoth Mountain. We are applying these same techniques to earlier AVIRIS images of Mammoth Mountain to examine the progression of the tree kill areas over time. Temporal maps of the tree kill areas may assist in constructing a picture of the structure beneath Mammoth Mountain.
Yang, Xiaoyin; Zhang, Yimin; Zhu, Lixian; Han, Mingshan; Gao, Shujuan; Luo, Xin
2016-07-01
The objective of this study was to investigate the effects of modified atmosphere packaging (MAP) systems on shelf-life and quality of beef steaks with high marbling. Four packaging types were used including 80% O2 MAP (80% O2+20% CO2), 50% O2 MAP (50% O2+30% CO2+20% N2), carbon monoxide MAP (0.4% CO+30% CO2+69.6% N2) and vacuum packaging (VP). Steaks were displayed under simulated retail conditions at 4°C for 12days. Purge loss, pH, color stability, oxidative stability and microbial counts were monitored. Aerobically packaged steaks exhibited a bright-red color at the first 4days. However, discoloration and oxidation became major factors limiting their shelf-life to 8days. Compared with aerobic packaging, anaerobic packaging extended shelf-life of heavily marbled beef steaks, due to better color stability, together with lower oxidation and microbial populations. Among all packaging methods, CO-MAP had the best preservation for steaks, with more red color than other packaging types. Copyright © 2016 Elsevier Ltd. All rights reserved.
Color stability of ground beef packaged in a low carbon monoxide atmosphere or vacuum.
Jeong, Jong Youn; Claus, James R
2011-01-01
Ground beef was either packaged in an atmosphere of 0.4% CO, 30% CO₂, and 69.6% N₂ (CO-MAP) or vacuum. After storage (48 h, 2-3°C), packages of CO-MAP and vacuum were opened and overwrapped with polyvinyl chloride. Other CO-MAP and vacuum packages were left intact. Packages were initially displayed for 7 days (2-3°C). Intact packages were further displayed up to 35 days before being opened and displayed (1 or 3 days). Intact CO-MAP packaged ground beef was always more red than intact vacuum-packaged ground beef. Color was relatively stable for both types of intact packages over 35 days of display. Upon opening CO-MAP packaged ground beef, the red color decreased slower than in ground beef from vacuum packages. Published by Elsevier Ltd.
Geochemical variation of groundwater in the Abruzzi region: earthquakes related signals?
NASA Astrophysics Data System (ADS)
Cardellini, C.; Chiodini, G.; Caliro, S.; Frondini, F.; Avino, R.; Minopoli, C.; Morgantini, N.
2009-12-01
The presence of a deep and inorganic source of CO2 has been recently recognized in Italy on the basis of the deeply derived carbon dissolved in the groundwater. In particular, the regional map of CO2 Earth degassing shows that two large degassing structures affect the Tyrrhenian side of the Italian peninsula. The northern degassing structure (TRDS, Tuscan Roman degassing structure) includes Tuscany, Latium and part of Umbria regions (~30000 km2) and releases > 6.1 Mt/y of deeply derived CO2. The southern degassing structure (CDS, Campanian degassing structure) affects the Campania region (~10000 km2) and releases > 3.1 Mt/y of deeply derived CO2. The total CO2 released by TRDS and CDS (> 9.2 Mt/y) is globally significant, being ~10% of the estimated present-day total CO2 discharge from sub aerial volcanoes of the Earth. The comparison between the map of CO2 Earth degassing and of the location of the Italian earthquakes highlights that the anomalous CO2 flux suddenly disappears in the Apennine in correspondence of a narrow band where most of the seismicity concentrates. A previous conceptual model proposed that in this area, at the eastern borders of TRDS and CDS plumes, the CO2 from the mantle wedge intrudes the crust and accumulate in structural traps generating over-pressurized reservoirs. These CO2 over-pressurized levels can play a major role in triggering the Apennine earthquakes, by reducing fault strength and potentially controlling the nucleation, arrest, and recurrence of both micro and major (M>5) earthquakes. The 2009 Abruzzo earthquakes, like previous seismic crises in the Northern Apennine, occurred at the border of the TRDS, suggesting also in this case a possible role played by deeply derived fluids in the earthquake generation. In order to investigate this process, detailed hydro-geochemical campaigns started immediately after the main shock of the 6th of April 2009. The surveys include the main springs of the area which were previously studied in detail, during a campaign performed ten years ago, constituting a pre-crisis reference case. The new data includes the determination of the main dissolved ions, the dissolved gases (CO2, CH4, N2, Ar, He) and the stable isotopes of the water (H, O), CO2 (13C) and He (3He/4He). All the springs collected in 2009 show a systematic increase in the content of the deeply derived CO2 dissolved in the aquifers, respect to the 1997. The origin of this regional variation is still under investigation. A monthly sampling of the main spring has been programmed in order to differentiate the variation derived by seasonal processes from eventual signals linked to seismic processes. The first results will be presented and discussed.
NASA Astrophysics Data System (ADS)
Nakaoka, S.; Telszewski, M.; Nojiri, Y.; Yasunaka, S.; Miyazaki, C.; Mukai, H.; Usui, N.
2013-09-01
This study uses a neural network technique to produce maps of the partial pressure of oceanic carbon dioxide (pCO2sea) in the North Pacific on a 0.25° latitude × 0.25° longitude grid from 2002 to 2008. The pCO2sea distribution was computed using a self-organizing map (SOM) originally utilized to map the pCO2sea in the North Atlantic. Four proxy parameters - sea surface temperature (SST), mixed layer depth, chlorophyll a concentration, and sea surface salinity (SSS) - are used during the training phase to enable the network to resolve the nonlinear relationships between the pCO2sea distribution and biogeochemistry of the basin. The observed pCO2sea data were obtained from an extensive dataset generated by the volunteer observation ship program operated by the National Institute for Environmental Studies (NIES). The reconstructed pCO2sea values agreed well with the pCO2sea measurements, with the root-mean-square error ranging from 17.6 μatm (for the NIES dataset used in the SOM) to 20.2 μatm (for independent dataset). We confirmed that the pCO2sea estimates could be improved by including SSS as one of the training parameters and by taking into account secular increases of pCO2sea that have tracked increases in atmospheric CO2. Estimated pCO2sea values accurately reproduced pCO2sea data at several time series locations in the North Pacific. The distributions of pCO2sea revealed by 7 yr averaged monthly pCO2sea maps were similar to Lamont-Doherty Earth Observatory pCO2sea climatology, allowing, however, for a more detailed analysis of biogeochemical conditions. The distributions of pCO2sea anomalies over the North Pacific during the winter clearly showed regional contrasts between El Niño and La Niña years related to changes of SST and vertical mixing.
NASA Astrophysics Data System (ADS)
Nakaoka, S.; Telszewski, M.; Nojiri, Y.; Yasunaka, S.; Miyazaki, C.; Mukai, H.; Usui, N.
2013-03-01
This study produced maps of the partial pressure of oceanic carbon dioxide (pCO2sea) in the North Pacific on a 0.25° latitude × 0.25° longitude grid from 2002 to 2008. The pCO2sea values were estimated by using a self-organizing map neural network technique to explain the non-linear relationships between observed pCO2sea data and four oceanic parameters: sea surface temperature (SST), mixed layer depth, chlorophyll a concentration, and sea surface salinity (SSS). The observed pCO2sea data was obtained from an extensive dataset generated by the volunteer observation ship program operated by the National Institute for Environmental Studies. The reconstructed pCO2sea values agreed rather well with the pCO2sea measurements, the root mean square error being 17.6 μatm. The pCO2sea estimates were improved by including SSS as one of the training parameters and by taking into account secular increases of pCO2sea that have tracked increases in atmospheric CO2. Estimated pCO2sea values accurately reproduced pCO2sea data at several stations in the North Pacific. The distributions of pCO2sea revealed by seven-year averaged monthly pCO2sea maps were similar to Lamont-Doherty Earth Observatory pCO2sea climatology and more precisely reflected oceanic conditions. The distributions of pCO2sea anomalies over the North Pacific during the winter clearly showed regional contrasts between El Niño and La Niña years related to changes of SST and vertical mixing.
Sharp, Jody; Azar, Toni; Lawson, David
2006-03-01
We compared CO(2), Ar, and N(2) for inducing unconsciousness and euthanasia of Sprague-Dawley rats. We determined time to unconsciousness and monitored heart rate (HR) and mean arterial blood pressure (MAP) by radiotelemetry to assess stress, recovery after exposure, and time of death. Unconsciousness (mean +/- standard error) occurred 24 +/- 3, 87 +/- 8, and 93 +/- 8 s after short-term exposure to CO(2), Ar, and N(2), respectively. During exposure, CO(2) depressed HR, whereas Ar and N(2) increased HR. Upon removal from the chamber, rats' HR rapidly normalized after CO(2) or N(2) but remained elevated for 60 min after Ar. During exposure, all agents depressed MAP, which returned to resting levels 10 to 50 min after rats' removal from the chamber. For euthanasia, CO(2) at approximately 100% induced unconsciousness in 37 +/- 3 s, increased and then depressed MAP and HR, and caused death at 188 +/- 15 s. CO(2) at approximately 30% induced unconsciousness in 150 +/- 15 s, decreased HR and MAP, and induced death at 440 +/- 9 s. Ar at approximately 100% increased MAP but decreased HR, induced unconsciousness with hyperreflexia at 54 +/- 4 s, and caused death at 197 +/- 20 s. N(2) at approximately 100% decreased MAP but not HR and produced unconsciousness with hyperreflexia at 164 +/- 17 s and death at 426 +/- 28 s. We conclude that CO(2) effectively produced unconsciousness and euthanasia, but we were unable to ascertain distress. Ar also appears effective but produced hyperreflexia and tachycardia. N(2) was ineffective.
Intra-seasonal mapping of CO2 flux in rangelands of northern Kazakhstan at one-kilometer resolution
Wylie, B.K.; Gilmanov, T.G.; Johnson, D.A.; Saliendra, Nicanor Z.; Akshalov, K.; Tieszen, L.L.; Reed, B.C.; Laca, Emilio
2004-01-01
Algorithms that establish relationships between variables obtained through remote sensing and geographic information system (GIS) technologies are needed to allow the scaling up of site-specific CO2 flux measurements to regional levels. We obtained Bowen ratio-energy balance (BREB) flux tower measurements during the growing seasons of 1998-2000 above a grassland steppe in Kazakhstan. These BREB data were analyzed using ecosystem light-curve equations to quantify 10-day CO2 fluxes associated with gross primary production (GPP) and total respiration (R). Remotely sensed, temporally smoothed normalized difference vegetation index (NDVIsm) and environmental variables were used to develop multiple regression models for the mapping of 10-day CO2 fluxes for the Kazakh steppe. Ten-day GPP was estimated (R 2 = 0.72) by day of year (DOY) and NDVIsm, and 10-day R was estimated (R2 = 0.48) with the estimated GPP and estimated 10-day photosynthetically active radiation (PAR). Regression tree analysis estimated 10-day PAR from latitude, NDVIsm, DOY, and precipitation (R2 = 0.81). Fivefold cross-validation indicated that these algorithms were reasonably robust. GPP, R, and resulting net ecosystem exchange (NEE) were mapped for the Kazakh steppe grassland every 10 days and summed to produce regional growing season estimates of GPP, R, and NEE. Estimates of 10-day NEE agreed well with BREB observations in 2000, showing a slight underestimation in the late summer. Growing season (May to October) mean NEE for Kazakh steppe grasslands was 1.27 Mg C/ha in 2000. Winter flux data were collected during the winter of 2001-2002 and are being analyzed to close the annual carbon budget for the Kazakh steppe. ?? 2004 Springer-Verlag New York, LLC.
Reducing tourist carbon footprint through strategic mapping of the existing hotel stock - Attica
NASA Astrophysics Data System (ADS)
Pieri, Stella Panayiota; Stamos, Athanasios; Tzouvadakis, Ioannis
2016-09-01
The tourist carbon footprint (TCF) is the measure of the total amount of carbon dioxide (CO 2) tourists emit by travelling from origin to destination and by participating in tourism - and leisure - related activities considering all relevant sources, sinks and storage within the spatial boundary of the destination. This paper presents a method of assessing the part of TCF associated with tourist transport at the tourist destination and proposes iso-pollutant contours as the most effective method of mapping TFC in relation to hotel location by using the prefecture of Attica in Greece as an example. The paper demonstrates for the first time how important is hotel location as a determinant factor of TCF and also proposes measures to reduce CO 2 emissions through the implementation of policies that are environmentally friendly and are aiming to facilitate the transport of the tourists and promote the use of public transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. L. Lewicki; G. E. Hilley; L. Dobeck
A set of CO2 flux, geochemical, and hydrologic measurement techniques was used to characterize the source of and quantify gaseous and dissolved CO2 discharges from the area of Soda Springs, southeastern Idaho. An eddy covariance system was deployed for approximately one month near a bubbling spring and measured net CO2 fluxes from - 74 to 1147 g m- 2 d- 1. An inversion of measured eddy covariance CO2 fluxes and corresponding modeled source weight functions mapped the surface CO2 flux distribution within and quantified CO2 emission rate (24.9 t d- 1) from a 0.05 km2 area surrounding the spring. Soilmore » CO2 fluxes (< 1 to 52,178 g m- 2 d- 1) were measured within a 0.05 km2 area of diffuse degassing using the accumulation chamber method. The estimated CO2 emission rate from this area was 49 t d- 1. A carbon mass balance approach was used to estimate dissolved CO2 discharges from contributing sources at nine springs and the Soda Springs geyser. Total dissolved inorganic carbon (as CO2) discharge for all sampled groundwater features was 57.1 t d- 1. Of this quantity, approximately 3% was derived from biogenic carbon dissolved in infiltrating groundwater, 35% was derived from carbonate mineral dissolution within the aquifer(s), and 62% was derived from deep source(s). Isotopic compositions of helium (1.74–2.37 Ra) and deeply derived carbon (d13C approximately 3‰) suggested contribution of volatiles from mantle and carbonate sources. Assuming that the deeply derived CO2 discharge estimated for sampled groundwater features (approximately 35 t d- 1) is representative of springs throughout the study area, the total rate of deeply derived CO2 input into the groundwater system within this area could be ~ 350 t d- 1, similar to CO2 emission rates from a number of quiescent volcanoes.« less
A Herschel [C ii] Galactic plane survey. I. The global distribution of ISM gas components
NASA Astrophysics Data System (ADS)
Pineda, J. L.; Langer, W. D.; Velusamy, T.; Goldsmith, P. F.
2013-06-01
Context. The [C ii] 158 μm line is an important tool for understanding the life cycle of interstellar matter. Ionized carbon is present in a variety of phases of the interstellar medium (ISM), including the diffuse ionized medium, warm and cold atomic clouds, clouds in transition from atomic to molecular, and dense and warm photon dominated regions. Aims: Velocity-resolved observations of [C ii] are the most powerful technique available to disentangle the emission produced by these components. These observations can also be used to trace CO-dark H2 gas and determine the total mass of the ISM. Methods: The Galactic Observations of Terahertz C+ (GOT C+) project surveys the [C ii] 158 μm line over the entire Galactic disk with velocity-resolved observations using the Herschel/HIFI instrument. We present the first longitude-velocity maps of the [C ii] emission for Galactic latitudes b = 0°, ±0.5°, and ±1.0°. We combine these maps with those of H i, 12CO, and 13CO to separate the different phases of the ISM and study their properties and distribution in the Galactic plane. Results: [C ii] emission is mostly associated with spiral arms, mainly emerging from Galactocentric distances between 4 and 10 kpc. It traces the envelopes of evolved clouds as well as clouds that are in the transition between atomic and molecular. We estimate that most of the observed [C ii] emission is produced by dense photon dominated regions (~47%), with smaller contributions from CO-dark H2 gas (~28%), cold atomic gas (~21%), and ionized gas (~4%). Atomic gas inside the Solar radius is mostly in the form of cold neutral medium (CNM), while the warm neutral medium gas dominates the outer galaxy. The average fraction of CNM relative to total atomic gas is ~43%. We find that the warm and diffuse CO-dark H2 is distributed over a larger range of Galactocentric distances (4-11 kpc) than the cold and dense H2 gas traced by 12CO and 13CO (4-8 kpc). The fraction of CO-dark H2 to total H2 increases with Galactocentric distance, ranging from ~20% at 4 kpc to ~80% at 10 kpc. On average, CO-dark H2 accounts for ~30% of the molecular mass of the Milky Way. When the CO-dark H2 component is included, the radial distribution of the CO-to-H2 conversion factor is steeper than that when only molecular gas traced by CO is considered. Most of the observed [C ii] emission emerging from dense photon dominated regions is associated with modest far-ultraviolet fields in the range χ0 ≃ 1 - 30. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Ramaswami, A.; Tong, K.; Fang, A.; Lal, R.; Nagpure, A.; Li, Y.; Yu, H.; Jiang, D.; Russell, A. G.; Shi, L.; Chertow, M.; Wang, Y.; Wang, S.
2016-12-01
Urban activities in China contribute significantly to global greenhouse gas (GHG) emissions and to local air pollution-related health risks. Co-location analysis can help inform the potential for energy- and material-exchanges across homes, businesses, infrastructure and industries co-located in cities. Such co-location dependent urban-industrial symbiosis strategies offer a new pathway toward urban energy efficiency and health that have not previously been quantified. Key examples includes the use of waste industrial heat in other co-located industries, and in residential-commercial district heating-cooling systems of cities. To quantify the impact of these strategies: (1) We develop a new data-set of 637 Chinese cities to assess the potential for efficiency and symbiosis across co-located homes, businesses, industries and the energy and construction sectors in the different cities. (2) A multi-scalar urban systems model quantifies trans-boundary CO2 impacts as well as local health benefits of these uniquely urban, co-location-dependent strategies. (3) CO2 impacts are aggregated across the 637 Chinese cities (home to 701 million people) to quantify national CO2 mitigation potential. (4) The local health benefits are modeled specific to each city and mapped geospatially to identify areas where co-benefits between GHG mitigation and health are maximized. Results: A first order conservative analysis of co-location dependent urban symbiosis indicates potential for reducing 6% of China's national total CO2 emissions in a relatively short time period, yielding a new pathway not previously considered in China's energy futures models. The magnitude of these reductions (6%) was similar in magnitude to sector specific industrial, power sector and buildings efficiency strategeies that together contributed 9% CO2 reduction aggregated across the nation. CO2 reductions mapped to the 637 cities ranged from <1% to 40%, depending upon co-location patterns, climate and other features of the cities. The modeled reductions in fossil-fuel use yield reductions in PM-2.5 emissions from <1% to 73%, depending on the city, and avoided annual mortality >40,000 premature deaths (avoided) across all cities. These results demonstrate the contribution urban symbiosis on decarbonization and health co-benefits.
NASA Astrophysics Data System (ADS)
Salas, W.; Torbick, N.
2017-12-01
Rice greenhouse gas (GHG) emissions in production hot spots have been mapped using multiscale satellite imagery and a processed-based biogeochemical model. The multiscale Synthetic Aperture Radar (SAR) and optical imagery were co-processed and fed into a machine leanring framework to map paddy attributes that are tuned using field observations and surveys. Geospatial maps of rice extent, crop calendar, hydroperiod, and cropping intensity were then used to parameterize the DeNitrification-DeComposition (DNDC) model to estimate emissions. Results, in the Red River Detla for example, show total methane emissions at 345.4 million kgCH4-C equivalent to 11.5 million tonnes CO2e (carbon dioxide equivalent). We further assessed the role of Alternative Wetting and Drying and the impact on GHG and yield across production hot spots with uncertainty estimates. The approach described in this research provides a framework for using SAR to derive maps of rice and landscape characteristics to drive process models like DNDC. These types of tools and approaches will support the next generation of Monitoring, Reporting, and Verification (MRV) to combat climate change and support ecosystem service markets.
NASA Astrophysics Data System (ADS)
Velusamy, T.
2010-07-01
The 1.9 THz [CII] observations provide a powerful probe of warm diffuse clouds, because they can observe them in emission and are useful as a tracer of their molecular H2 not directly traced by CO or other means. HIFI observations of [CII] provide a high resolution of 12 arcsec, better than that for single dish CO (> 30 arcsec) maps, and much better than HI (>30 arcsec). Thus with HIFI we have an opportunity probe the small scale structures in diffuse clouds in the inner Galaxy at distances > 3 kpc. To study the structure of diffuse ISM gas at small scales we propose HIFI maps of 1.9 THz (158 micron) [CII] line emission in a selection of 16 lines of sight (LOSs) towards the inner Galaxy, which are also being observed as part of the GOT C+ survey of [CII] in the Galactic plane. GOT C+ provides mainly single point spectra without any spatial data. Maps of [CII] will constrain better the cloud properties and models when combining [CII] and HI data. The proposed OTF X map will be along the longitude and latitude centered on 18 selected GOT C+ LOS over a length of 3 arcmin in each direction, which is adequate enough to provide sufficient spatial information on the small scale structures at larger distances (>3 kpc) and to characterize the CII filling factor in the larger beams of the ancillary (HI, CO, and CI data). The [CI] 609 & 370micron and the 12CO(7-6) (which lies within the CI band) are excellent diagnostics of the physical conditions of transition clouds and PDRs. We will use the ratio of the [CI] lines to constrain the kinetic temperature and volume density of the CII/CI/CO transition zones in molecular clouds using radiative transfer codes. We also propose OTF X maps in both the [CI] lines for all CII target LOSs. We anticipate fully resolved structural data in [CII] on at least 300 velocity resolved clouds along with their [CI] emissions. We request a total of 33.2 hrs of HIFI observing time.
NASA Astrophysics Data System (ADS)
Pedone, Maria; Aiuppa, Alessandro; Giudice, Gaetano; Grassa, Fausto; Chiodini, Giovanni; Valenza, Mariano
2014-05-01
Near-infrared room-temperature Tunable Diode Lasers (TDL) have recently found increased usage in atmospheric chemistry and air monitoring research, but applications in Volcanology are still limited to a few examples. Here, we explored the potentiality of a commercial infrared laser unit (GasFinder 2.0 from Boreal Laser Ltd) to measurement of volcanic CO2 flux emissions. Our field tests were conducted at Campi Flegrei (near Pozzuoli, Southern Italy), where the GasFinder was used (during three campaigns in October 2012, January 2013 and May 2013) to repeatedly measure the path-integrated concentrations of CO2 along cross-sections of the atmospheric plumes of the two main fumarolic fields in the area (Solfatara and Pisciarelli). By using ad-hoc designed field-set-up and a tomographic post-processing routine, we resolved, for each of the 2 manifestations, the contour maps of CO2 concentrations in their atmospheric plumes, from the integration of which (and after multiplication by the plumes' transport speeds) the CO2 fluxes were finally obtained [1]. The so-calculated fluxes average of 490 tons/day, which agrees well with independent evaluations of Aiuppa et al. (2013) [2] (460 tons/day on average), and support a significant contribution of fumaroles to the total CO2 budget. The cumulative (fumarole [this study] +soil [2]) CO2 output from Campi Flegrei is finally evaluated at 1600 tons/day. The application of lasers to volcanic gas studies is still an emerging (though intriguing) research field, and requires more testing and validation experiments. We conclude that TDL technique may valuably assist CO2 flux quantification at a number of volcanic targets worldwide. [1] Pedone M. et al. (2013) Gold2013:abs:5563, Goldschmidt Conference, session 11a. [2] Aiuppa A. et al. (2013) Geochemistry Geophysics Geosystems. doi: 10.1002/ggge.20261. [3] Chiodini G. et al. (2010) Journal of Geophysical Research, Volume 115, B03205. doi:10.1029/2008JB006258.
Kudachikar, V B; Kulkarni, S G; Prakash, M N Keshava
2011-06-01
Banana (Musa sp var. 'Robusta') stored under active and passive modified atmosphere packaging (MAP) at 12 ± 1°C and 85-90% RH for 2 seasons were evaluated for fruit quality and shelf-life. A steady state of about 8.6 and 8.2% of CO2 and 2.8 and 2.6% of O2 in passive MAP and MAP+GK (Green Keeper) packages, respectively, were established after 3 weeks of storage. Passive MAP and MAP+GK treatments of banana resulted in reduction in physiological loss in weight (PLW) of 0.7 and 0.8% after 5 and 7 weeks of storage, respectively as against 5% PLW in openly kept green banana after 3 weeks. Both MAP and MAP+GK treatments delayed colour, texture, pulp to peel ratio and total soluble solids (TSS) content as compared to openly kept control banana. Results indicated that the shelf life of fruits packed under MAP and MAP+GK could be extended up to 5 and 7 weeks, respectively as compared to 3 weeks for openly kept control fruits. Sensory quality of fully ripe fruits of both passive MAP and MAP+GK treatments, 5 days after ethrel dip was very good. Thus, MAP+GK at 12 ± 1°C and 85-90% RH could be commercially used for long term storage and long distance transportation of banana with maximum shelf-life of 7 weeks.
72. MISSISSIPPI, MONROE CO. MAP OF MONROE COUNTY, ca. 1925 ...
72. MISSISSIPPI, MONROE CO. MAP OF MONROE COUNTY, ca. 1925 Broad side of map of Monroe Co., 'Compliments of Home Mortgage & Realty Co., Amory, Miss.' Orig. scale: ca. 1 in. to 2 mi. No date. Property of Helen (Mrs. Sam L.) Crawford, Hamilton, Ms. Sarcone Photography, Columbus, Ms., Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS
NASA Astrophysics Data System (ADS)
Sun, G.; Moncelsi, L.; Viero, M. P.; Silva, M. B.; Bock, J.; Bradford, C. M.; Chang, T.-C.; Cheng, Y.-T.; Cooray, A. R.; Crites, A.; Hailey-Dunsheath, S.; Uzgil, B.; Hunacek, J. R.; Zemcov, M.
2018-04-01
Intensity mapping provides a unique means to probe the epoch of reionization (EoR), when the neutral intergalactic medium was ionized by energetic photons emitted from the first galaxies. The [C II] 158 μm fine-structure line is typically one of the brightest emission lines of star-forming galaxies and thus a promising tracer of the global EoR star formation activity. However, [C II] intensity maps at 6 ≲ z ≲ 8 are contaminated by interloping CO rotational line emission (3 ≤ J upp ≤ 6) from lower-redshift galaxies. Here we present a strategy to remove the foreground contamination in upcoming [C II] intensity mapping experiments, guided by a model of CO emission from foreground galaxies. The model is based on empirical measurements of the mean and scatter of the total infrared luminosities of galaxies at z < 3 and with stellar masses {M}* > {10}8 {M}ȯ selected in the K-band from the COSMOS/UltraVISTA survey, which can be converted to CO line strengths. For a mock field of the Tomographic Ionized-carbon Mapping Experiment, we find that masking out the “voxels” (spectral–spatial elements) containing foreground galaxies identified using an optimized CO flux threshold results in a z-dependent criterion {m}{{K}}AB}≲ 22 (or {M}* ≳ {10}9 {M}ȯ ) at z < 1 and makes a [C II]/COtot power ratio of ≳10 at k = 0.1 h/Mpc achievable, at the cost of a moderate ≲8% loss of total survey volume.
NASA Astrophysics Data System (ADS)
Bieging, John H.; Patel, Saahil; Peters, William L.; Toth, L. Viktor; Marton, Gábor; Zahorecz, Sarolta
2016-09-01
We present the results of a program to map the Sh2-235 molecular cloud complex in the CO and 13CO J = 2 - 1 transitions using the Heinrich Hertz Submillimeter Telescope. The map resolution is 38″ (FWHM), with an rms noise of 0.12 K brightness temperature, for a velocity resolution of 0.34 km s-1. With the same telescope, we also mapped the CO J = 3 - 2 line at a frequency of 345 GHz, using a 64 beam focal plane array of heterodyne mixers, achieving a typical rms noise of 0.5 K brightness temperature with a velocity resolution of 0.23 km s-1. The three spectral line data cubes are available for download. Much of the cloud appears to be slightly sub-thermally excited in the J = 3 level, except for in the vicinity of the warmest and highest column density areas, which are currently forming stars. Using the CO and 13CO J = 2 - 1 lines, we employ an LTE model to derive the gas column density over the entire mapped region. Examining a 125 pc2 region centered on the most active star formation in the vicinity of Sh2-235, we find that the young stellar object surface density scales as approximately the 1.6-power of the gas column density. The area distribution function of the gas is a steeply declining exponential function of gas column density. Comparison of the morphology of ionized and molecular gas suggests that the cloud is being substantially disrupted by expansion of the H II regions, which may be triggering current star formation.
Carbon Dioxide Evasion from Boreal Lakes: Drivers, Variability and Revised Global Estimate
NASA Astrophysics Data System (ADS)
Hastie, A. T.; Lauerwald, R.; Weyhenmeyer, G. A.; Sobek, S.; Verpoorter, C.; Regnier, P. A. G.
2016-12-01
Carbon dioxide evasion (FCO2) from lakes and reservoirs is established as an important component of the global carbon (C) cycle, a fact reflected by the inclusion of these waterbodies in the most recent IPCC assessment report. In this study we developed a statistical model driven by environmental geodata, to predict CO2 partial pressure (pCO2) in boreal lakes, and to create the first high resolution map (0.5°) of boreal (50°- 70°) lake pCO2. The resulting map of pCO2 was combined with lake area (lakes >0.01km2) from the recently developed GLOWABO database (Verpoorter et al., 2014) and estimates of gas transfer velocity k, to produce the first high resolution map of boreal lake FCO2. Before training our model, the geodata as well as approximately 27,000 samples of `open water' (excluding periods of ice cover) pCO2 from the boreal region, were gridded at 0.5° resolution and log transformed where necessary. A multilinear regression was used to derive a prediction equation for log10 pCO2 as a function of log10 lake area, net primary productivity (NPP), precipitation, wind speed and soil pH (r2= 0.66), and then applied in ArcGIS to build the map of pCO2. After validation, the map of boreal lake pCO2 was used to derive a map of boreal lake FCO2. For the boreal region we estimate an average, lake area weighted, pCO2 of 930 μatm and FCO2 of 170 (121-243) Tg C yr-1. Our estimate of FCO2 will soon be updated with the incorporation of the smallest lakes (<0.01km2). Despite the current exclusion of the smallest lakes, our estimate is higher than the highest previous estimate of approximately 110 Tg C yr-1 (Aufdenkampe et al, 2011). Moreover, our empirical approach driven by environmental geodata can be used as the basis for estimating future FCO2 from boreal lakes, and their sensitivity to climate change.
Jin, Ya; Bu, Shujie; Zhang, Jun; Yuan, Qi; Manabe, Takashi; Tan, Wen
2014-07-01
A human plasma sample was subjected to nondenaturing micro 2DE and a gel area (5 mm × 18 mm) that includes high-density lipoprotein (HDL) was cut into 1 mm × 1 mm squares, then the proteins in the 90 gel pieces were analyzed by quantitative LC-MS/MS. Grid-cutting of the gel was employed to; (i) ensure the total analysis of the proteins in the area, (ii) standardize the conditions of analysis by LC-MS/MS, (iii) reconstruct the protein distribution patterns from the quantity data. Totally 154 proteins were assigned in the 90 gel pieces and the quantity distribution of each was reconstructed as a color density pattern (a native protein map). The map of apolipoprotein (Apo) A-I showed a wide apparent mass distribution characteristic to HDL and was compared with the maps of the other 153 proteins. Eleven proteins showed maps of wide distribution that overlapped with the map of Apo A-I, and all have been reported to be the components of HDL. Further, seven minor proteins associated with HDL were detected at the gel positions of high Apo A-I quantity. These results for the first time visualized the localization of HDL apolipoproteins on a nondenaturing 2DE gel and strongly suggested their interactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CO line ratios in molecular clouds: the impact of environment
NASA Astrophysics Data System (ADS)
Peñaloza, Camilo H.; Clark, Paul C.; Glover, Simon C. O.; Klessen, Ralf S.
2018-04-01
Line emission is strongly dependent on the local environmental conditions in which the emitting tracers reside. In this work, we focus on modelling the CO emission from simulated giant molecular clouds (GMCs), and study the variations in the resulting line ratios arising from the emission from the J = 1-0, J = 2-1, and J = 3-2 transitions. We perform a set of smoothed particle hydrodynamics simulations with time-dependent chemistry, in which environmental conditions - including total cloud mass, density, size, velocity dispersion, metallicity, interstellar radiation field (ISRF), and the cosmic ray ionization rate (CRIR) - were systematically varied. The simulations were then post-processed using radiative transfer to produce synthetic emission maps in the three transitions quoted above. We find that the cloud-averaged values of the line ratios can vary by up to ±0.3 dex, triggered by changes in the environmental conditions. Changes in the ISRF and/or in the CRIR have the largest impact on line ratios since they directly affect the abundance, temperature, and distribution of CO-rich gas within the clouds. We show that the standard methods used to convert CO emission to H2 column density can underestimate the total H2 molecular gas in GMCs by factors of 2 or 3, depending on the environmental conditions in the clouds.
NASA Astrophysics Data System (ADS)
Saad, Nabil; Fleck, Derek; Hoffnagle, John
2016-04-01
Emissions of Natural gas, and methane (CH4) specifically, have come under increased scrutiny by virtue of methane's 28-36x greenhouse warming potential compared to carbon dioxide (CO2) while accounting for 10% of the total greenhouse gas emissions in the US. Large uncontrolled leaks, such as the recent Aliso Canyon leak, originating from uncapped wells, coal mines and storage facilities have increased the total global contribution of methane missions even further. Determining the specific fingerprint of methane sources, by quantifying δ13C values and C2:C1 ratios, provides the means to understand methane producing processes and allows for sources of methane to be mapped and classified through these processes; i.e. biogenic vs. thermogenic, wet vs dry. In this study we present a fully developed Cavity Ring-Down Spectrometer (CRDS) that precisely measures 12CH4 concentration and its 13CH4 isotope concentration, yielding δ13C measurements, C2H6 concentration, along with CO2 and H2O. This provides real-time continuous measurements without an upfront separation requirement or multiple analyses to derive the origin of the gas samples. The highly sensitive analyzer allows for measurements of scarce molecules down to sub-ppb 1-σ precision in 5 minutes of measurement: with CH4 <0.1ppb, δ13C <1‰ C2H6 <1ppb and CO2 <1ppm. To complement this work, we provide the analysis of different methane sources providing a 2-dimensional mapping of methane sources as functions of δ13C and C2:C1 ratios, which can be thought of as a modified Bernard Plot. This dual ratio mapping can be used to discriminate between naturally occurring biogenic methane sources, naturally occurring enriched thermogenic sources, and natural gas distribution sources. This also shows future promise in aiding gas and oil exploration, in distinguishing oil vs coal gases, as well as a valuable tool in the development of methane sequestration.
Modeling Carbon Dioxide Vibrational Frequencies in Ionic Liquids: II. Spectroscopic Map.
Daly, Clyde A; Berquist, Eric J; Brinzer, Thomas; Garrett-Roe, Sean; Lambrecht, Daniel S; Corcelli, Steven A
2016-12-15
The primary challenge for connecting molecular dynamics (MD) simulations to linear and two-dimensional infrared measurements is the calculation of the vibrational frequency for the chromophore of interest. Computing the vibrational frequency at each time step of the simulation with a quantum mechanical method like density functional theory (DFT) is generally prohibitively expensive. One approach to circumnavigate this problem is the use of spectroscopic maps. Spectroscopic maps are empirical relationships that correlate the frequency of interest to properties of the surrounding solvent that are readily accessible in the MD simulation. Here, we develop a spectroscopic map for the asymmetric stretch of CO 2 in the 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 C 1 im][PF 6 ]) ionic liquid (IL). DFT is used to compute the vibrational frequency of 500 statistically independent CO 2 -[C 4 C 1 im][PF 6 ] clusters extracted from an MD simulation. When the map was tested on 500 different CO 2 -[C 4 C 1 im][PF 6 ] clusters, the correlation coefficient between the benchmark frequencies and the predicted frequencies was R = 0.94, and the root-mean-square error was 2.7 cm -1 . The calculated distribution of frequencies also agrees well with experiment. The spectroscopic map required information about the CO 2 angle, the electrostatics of the surrounding solvent, and the Lennard-Jones interaction between the CO 2 and the IL. The contribution of each term in the map was investigated using symmetry-adapted perturbation theory calculations.
A CO J = 3-2 map of M51 with HARP-B: radial properties of the spiral structure
NASA Astrophysics Data System (ADS)
Vlahakis, C.; van der Werf, P.; Israel, F. P.; Tilanus, R. P. J.
2013-08-01
We present the first complete CO J = 3-2 map of the nearby grand-design spiral galaxy M51 (NGC 5194), at a spatial resolution of ˜600 pc, obtained with the HARP-B instrument on the James Clerk Maxwell Telescope. The map covers the entire optical galaxy disc and out to the companion NGC 5195, with CO J = 3-2 emission detected over an area of ˜9 arcmin × 6 arcmin (˜21 × 14 kpc). We describe the CO J = 3-2 integrated intensity map and combine our results with maps of CO J = 2-1, CO J = 1-0 and other data from the literature to investigate the variation of the molecular gas, atomic gas and polycyclic aromatic hydrocarbon (PAH) properties of M51 as a function of distance along the spiral structure on sub-kiloparsec scales. We find that for the CO J = 3-2 and CO J = 2-1 transitions, there is a clear difference between the variation of arm and interarm emission with galactocentric radius, with the interarm emission relatively constant with radius and the contrast between arm and interarm emission decreasing with radius. For the CO J = 1-0 line and H I emission, the variation with radius shows a similar trend for the arm and interarm regions, and the arm-interarm contrast appears relatively constant with radius. We investigate the variation of CO line ratios (J = 3-2/2-1, J = 2-1/1-0 and J = 3-2/1-0) as a function of distance along the spiral structure. Line ratios are consistent with the range of typical values for other nearby galaxies in the literature. The highest CO J = 3-2/J = 2-1 line ratios are found in the central ˜1 kiloparsec and in the spiral arms and the lowest line ratios in the interarm regions. We find no clear evidence of a trend with radius for the spiral arms, but for the interarm regions there appears to be a trend for all CO line ratios to increase with radius. We find a strong relationship between the ratio of CO J = 3-2 intensity to stellar-continuum-subtracted 8 μm PAH surface brightness and the CO J = 3-2 intensity that appears to vary with radius.
Luzardo, S; Woerner, D R; Geornaras, I; Hess, A M; Belk, K E
2016-06-01
Two studies were conducted to evaluate the influence of packaging during storage of strip loins (to simulate export shipment) from steers fattened on intensive grazing systems (Uruguay; UR) or on a high-concentrate diet (United States; US) on retail display life microbial growth. Four or 3 different packaging treatments were applied to UR and US strip loin roasts or steaks during 35 d of storage; treatments were applied 7 d following slaughter. After 35 d of storage, the samples were evaluated during simulated retail display for up to 6 d. In Exp. 1, the treatments were vacuum packaging (VP), low-oxygen modified atmosphere packaging (MAP) with N and CO (MAP/CO), low-oxygen MAP with N plus CO and CO, and VP plus an application of peroxyacetic acid (VP/PAA). In Exp. 2, block 1, the treatments were VP, MAP/CO, and VP with ethyl--lauroyl--arginate HCl incorporated into the film as an antimicrobial agent (VP/AM). In Exp. 2, block 2, the treatments were VP, MAP/CO, MAP/CO, and VP/AM. For retail display, VP treatments were sliced and repackaged in PVC overwrap, and MAP treatments were actually PVC overwrap trays that were removed from a master bag with the prescribed gas treatment. Regardless of production system and packaging treatment, mesophilic and psychrotrophic counts of 6.9 to 7.8 and 6.7 to 7.7 log10 CFU/cm, respectively, were obtained at the end of retail display, except for US samples in Exp. 2 (5.5 to 6.3 log CFU/cm). No differences ( > 0.05) were detected for spp. counts among packaging treatments in US steaks at the end of the display time in Exp.1, whereas, for UR steaks, both MAP treatments had lower ( < 0.05) spp. counts than VP treatments. spp. counts were lower ( < 0.05) in the MAP/CO treatment than in the other 3 treatments in US samples on d 6 of retail display for Exp. 2. At the end of display time and for Exp. 1, US steaks under MAP/CO had greater ( < 0.05) lactic acid bacteria (LAB) counts than samples in both VP treatments; no differences ( > 0.05) among packaging were detected for UR steaks. Both MAP and VP/AM treatments in the US samples for Exp. 2 had lower ( < 0.05) LAB counts on d 6 of display than the VP treatment, but no differences ( > 0.05) were found among packaging treatments for the UR samples. To maximize shelf life (storage and display life) of exported fresh beef, it is critical to minimize bacterial populations during processing and storage.
NASA Astrophysics Data System (ADS)
Liang, J.; Gurney, K. R.; O'Keeffe, D.; Patarasuk, R.; Hutchins, M.; Rao, P.
2017-12-01
Spatially-resolved fossil fuel CO2 (FFCO2) emissions are used not only in complex atmospheric modeling systems as prior scenarios to simulate concentrations of CO2 in the atmosphere, but to improve understanding of relationships with socioeconomic factors in support of sustainability policymaking. We present a comparison of ODIAC, a top-down global gridded FFCO2 emissions dataset, and Hesita, a bottom-up FFCO2 emissions dataset, in four US cities, including Los Angles, Indianapolis, Salt Lake City and Baltimore City. ODIAC was developed by downscaling national total emissions to 1km-by-1km grid cells using satellite nightlight imagery as proxy. Hesita was built from the ground up by allocating sector-specific county-level emissions to urban-level spatial surrogates including facility locations, road maps, building footprints/parcels, railroad maps and shipping lanes. The differences in methodology and data sources could lead to large discrepancies in FFCO2 estimates at the urban scale, and these discrepancies need to be taken into account in conducting atmospheric modeling or socioeconomic analysis. This comparison work is aimed at quantifying the statistical and spatial difference between the two FFCO2 inventories. An analysis of the difference in total emissions, spatial distribution and statistical distribution resulted in the following findings: (1) ODIAC agrees well with Hestia in total FFCO2 emissions estimates across the four cities with a difference from 3%-20%; (2) Small-scale areal and linear spatial features such as roads and buildings are either entirely missing or not very well represented in ODIAC, since nightlight imagery might not be able to capture these information. This might further lead to underestimated on-road FFCO2 emissions in ODIAC; (3) The statistical distribution of ODIAC is more concentrated around the mean with much less samples in the lower range. These phenomena could result from the nightlight halo and saturation effects; (4) The grid-cell cumulative emissions of ODIAC appear in good agreement with that of Hestia, implying the two inventories have similar overall spatial structures at the city scale.
CO2 Emissions from the Los Angeles Basin During Spring of 2010 - Measurements vs. Model
NASA Astrophysics Data System (ADS)
Newman, S.; Jeong, S.; Fischer, M. L.; Xu, X.; Gurney, K. R.; Alvarez, S. L.; Rappenglueck, B.; Haman, C. L.; Lefer, B. L.; Miller, C. E.; Yung, Y. L.
2011-12-01
More than half of the world's population now lives in urban areas, contributing large fluxes of greenhouse gas to the atmosphere. Quantifying the spatiotemporal distribution of these emissions is critical for providing independent verification of future mitigation activities. We have used high precision measurements of CO2 and CO to determine the contribution of fossil fuel combustion (ffCO2 mixing ratio) to the total CO2 emissions in the Los Angeles basin during the CalNex-LA ground campaign of May-June 2010 in Pasadena. The ratio of COxs/CO2xs (the excess of each species above free tropospheric levels) varies significantly by time of day, giving a proxy for the fraction of ffCO2/CO2xs. Using an emission ratio for CO/CO2 for fossil fuel combustion of 0.011±0.002 (Wunch et al., 2009, Geophys Res Lett 36, L15810), we determined that burning of fossil fuels contributed ~50% overnight - 100% during midday of the total local contribution, resulting in ffCO2 of 13 - 23 ppm, respectively. These values compare very well with those calculated from Δ14C for measurements of two samples aggregated from 7-8 flask samples collected at 14:00 PST on alternate days during the first and second half of the CalNex-LA campaign: 17 and 24 ppm ffCO2, respectively. We then compared the measured values of ffCO2 with predictions combining a diurnally averaged version of the Vulcan 2.0 ffCO2 emission inventory (http://www.purdue.edu/eas/carbon/vulcan/index.php) and mesoscale transport computed with the Weather Research and Forecast (WRF) and Stochastic Time-Inverted Lagrangian Transport (STILT) models. To evaluate transport model uncertainty, we compared predicted and measured planetary boundary layer height (PBLH) and found WRF predictions compared favorably with ceilometer measurements made during the day at the Pasadena site. Initial comparison of the diurnal cycle of ffCO2 determined by the CO/CO2 ratios to that predicted with a temporally constant map of diurnal mean emissions shows the prediction to have a larger diurnal amplitude than the measurements, suggesting that the diurnal cycle of emitted ffCO2 compensates for daytime dilution in the PBL.
Formaldehyde in the Diffuse Interstellar Cloud MBM40
NASA Astrophysics Data System (ADS)
Joy, Mackenzie; Magnani, Loris A.
2018-06-01
MBM40, a high-latitude molecular cloud, has been extensively studied using different molecular tracers. It appears that MBM40 is composed of a relatively dense, helical filament embedded in a more diffuse substrate of low density molecular gas. In order to study the transition between the two regimes, this project presents the first high-resolution mapping of MBM40 using the 110-111 hyperfine transition of formaldehyde (H2CO) at 4.83 GHz. We used H2CO spectra obtained with the Arecibo telescope more than a decade ago to construct this map. The results can be compared to previous maps made from the CO(1-0) transition to gain further understanding of the structure of the cloud. The intensity of the H2CO emission was compared to the CO emission. Although a correlation exists between the H2CO and CO emissivity, there seems to be a saturation of H2CO line strength for stronger CO emissivity. This is probably a radiative transfer effect of the CO emission. We have also found that the velocity dispersion of H2CO in the lower ridge of the cloud is significantly lower than in the rest of the cloud. This may indicate that this portion of the cloud is a coherent structure (analogous to an eddy) in a turbulent flow.
NASA Astrophysics Data System (ADS)
Ito, Akinori; Ito, Akihiko; Akimoto, Hajime
2007-06-01
We estimate the emissions of carbon monoxide (CO) and black carbon (BC) from open vegetation fires in the Southern Hemisphere Africa from 1998 to 2005 using satellite information in conjunction with a biogeochemical model. Monthly burned areas at a 0.5-degree resolution are estimated from the Visible InfraRed Scanner (VIRS) fire count product and the MODerate resolution Imaging Spectroradiometer (MODIS) burned area data set associated with the MODIS tree cover imagery in grasslands and woodlands. The monthly fuel load distributions are derived from a 0.5-degree terrestrial carbon cycle model in conjunction with satellite data. The monthly maps of combustion factors and emission factors are estimated using empirical models that predict the effects of fuel conditions on these factors in grasslands and woodlands. Our annually averaged effective CO and BC emissions per area burned are 27 g CO m-2 and 0.17 g BC m-2 which are consistent with the products of fuel consumption and emission factors typically measured in southern Africa. The CO and BC emissions from open vegetation burning in southern Africa range from 45 Tg CO yr-1 and 0.26 Tg BC yr-1 for 2002 to 75 Tg CO yr-1 and 0.42 Tg BC yr-1 for 1998. The monthly averaged burned areas from VIRS fire counts peak earlier than modeled CO emissions. This characteristic delay between burned areas and emissions is mainly explained by significant changes in combustion factors for woodlands in our model. Consequently, the peaks in CO and BC emissions from our bottom-up approach are identical to those from previous top-down estimates using the Measurement Of the Pollution In The Troposphere (MOPITT) and the Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) data.
Impaired carotid baroreflex control of arterial blood pressure in multiple sclerosis.
Huang, Mu; Allen, Dustin R; Keller, David M; Fadel, Paul J; Frohman, Elliot M; Davis, Scott L
2016-07-01
Multiple sclerosis (MS), a progressive neurological disease, can lead to impairments in the autonomic control of cardiovascular function. We tested the hypothesis that individuals with relapsing-remitting MS (n = 10; 7 females, 3 males; 13 ± 4 yr from diagnosis) exhibit impaired carotid baroreflex control of blood pressure and heart rate compared with sex, age, and body weight-matched healthy individuals (CON: n = 10; 7 females, 3 males). At rest, 5-s trials of neck pressure (NP; +40 Torr) and neck suction (NS; -60 Torr) were applied to simulate carotid hypotension and hypertension, respectively, while mean arterial pressure (MAP; finger photoplethysmography), heart rate (HR), cardiac output (CO; Modelflow), and total vascular conductance (TVC) were continuously measured. In response to NP, there was a blunted increase in peak MAP responses (MS: 5 ± 2 mmHg) in individuals with MS compared with healthy controls (CON: 9 ± 3 mmHg; P = 0.005), whereas peak HR responses were not different between groups. At the peak MAP response to NP, individuals with MS demonstrated an attenuated decrease in TVC (MS, -10 ± 4% baseline vs. CON, -15 ± 4% baseline, P = 0.012), whereas changes in CO were similar between groups. Following NS, all cardiovascular responses (i.e., nadir MAP and HR and percent changes in CO and TVC) were not different between MS and CON groups. These data suggest that individuals with MS have impaired carotid baroreflex control of blood pressure via a blunted vascular conductance response resulting in a diminished ability to increase MAP in response to a hypotensive challenge. Copyright © 2016 the American Physiological Society.
Impaired carotid baroreflex control of arterial blood pressure in multiple sclerosis
Huang, Mu; Allen, Dustin R.; Keller, David M.; Fadel, Paul J.; Frohman, Elliot M.
2016-01-01
Multiple sclerosis (MS), a progressive neurological disease, can lead to impairments in the autonomic control of cardiovascular function. We tested the hypothesis that individuals with relapsing-remitting MS (n = 10; 7 females, 3 males; 13 ± 4 yr from diagnosis) exhibit impaired carotid baroreflex control of blood pressure and heart rate compared with sex, age, and body weight-matched healthy individuals (CON: n = 10; 7 females, 3 males). At rest, 5-s trials of neck pressure (NP; +40 Torr) and neck suction (NS; −60 Torr) were applied to simulate carotid hypotension and hypertension, respectively, while mean arterial pressure (MAP; finger photoplethysmography), heart rate (HR), cardiac output (CO; Modelflow), and total vascular conductance (TVC) were continuously measured. In response to NP, there was a blunted increase in peak MAP responses (MS: 5 ± 2 mmHg) in individuals with MS compared with healthy controls (CON: 9 ± 3 mmHg; P = 0.005), whereas peak HR responses were not different between groups. At the peak MAP response to NP, individuals with MS demonstrated an attenuated decrease in TVC (MS, −10 ± 4% baseline vs. CON, −15 ± 4% baseline, P = 0.012), whereas changes in CO were similar between groups. Following NS, all cardiovascular responses (i.e., nadir MAP and HR and percent changes in CO and TVC) were not different between MS and CON groups. These data suggest that individuals with MS have impaired carotid baroreflex control of blood pressure via a blunted vascular conductance response resulting in a diminished ability to increase MAP in response to a hypotensive challenge. PMID:27075533
The OCO-3 Mission : Updated Overview of Science Objectives and Status
NASA Astrophysics Data System (ADS)
Eldering, A.; Bennett, M. W.; Basilio, R. R.
2016-12-01
The Orbiting Carbon Observatory 3 (OCO-3) will continue global CO2 and solar-induced chlorophyll fluorescence (SIF) using the flight spare instrument from OCO-2. The instrument is currently being tested, and will be packaged for installation on the International Space Station (ISS) (launch readiness in early 2018.) This talk will focus on the science objectives as well as updated simulations to predict quality of OCO-3 science data products. The low-inclination ISS orbit lets OCO-3 sample the tropics and sub-tropics across the full range of daylight hours with dense observations at northern and southern mid-latitudes (+/- 52º). The combination of these dense CO2 and SIF measurements provides continuity of data for global flux estimates as well as a unique opportunity to address key deficiencies in our understanding of the global carbon cycle. The instrument utilizes an agile, 2-axis pointing mechanism (PMA), providing the capability to look towards the bright reflection from the ocean and validation targets. The PMA also allows for a snapshot mapping mode to collect dense datasets over 100km by 100km areas. Measurements over urban centers could aid in making estimates of fossil fuel CO2 emissions. This is critical because the largest urban areas (25 megacities) account for 75% of the global total fossil fuel CO2 emissions, and rapid growth (> 10% per year) is expected in developing regions over the coming 10 years. Similarly, the snapshot mapping mode can be used to sample regions of interest for the terrestrial carbon cycle. For example, snapshot maps of 100km by 100km could be gathered in the Amazon or key agricultural regions. In addition, there is potential to utilize data from ISS instruments ECOSTRESS (ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station) and GEDI (Global Ecosystem Dynamics Investigation), which measure other key variables of the control of carbon uptake by plants, to complement OCO-3 data in science analysis.
High-Resolution Mapping of Biomass Burning Emissions in Three Tropical Regions.
Shi, Yusheng; Matsunaga, Tsuneo; Yamaguchi, Yasushi
2015-09-15
Biomass burning in tropical regions plays a significant role in atmospheric pollution and climate change. This study quantified a comprehensive monthly biomass burning emissions inventory with 1 km high spatial resolution, which included the burning of vegetation, human waste, and fuelwood for 2010 in three tropical regions. The estimations were based on the available burned area product MCD64A1 and statistical data. The total emissions of all gases and aerosols were 17382 Tg of CO2, 719 Tg of CO, 30 Tg of CH4, 29 Tg of NOx, 114 Tg of NMOC (nonmethane organic compounds), 7 Tg of SO2, 10 Tg of NH3, 79 Tg of PM2.5 (particulate matter), 45 Tg of OC (organic carbon), and 6 Tg of BC (black carbon). Taking CO as an example, vegetation burning accounted for 74% (530 Tg) of the total CO emissions, followed by fuelwood combustion and human waste burning. Africa was the biggest emitter (440 Tg), larger than Central and South America (113 Tg) and South and Southeast Asia (166 Tg). We also noticed that the dominant fire types in vegetation burning of these three regions were woody savanna/shrubland, savanna/grassland, and forest, respectively. Although there were some slight overestimations, our results are supported by comparisons with previously published data.
Mangaraj, S; K Goswami, T; Mahajan, P V
2015-07-01
MAP is a dynamic system where respiration of the packaged product and gas permeation through the packaging film takes place simultaneously. The desired level of O2 and CO2 in a package is achieved by matching film permeation rates for O2 and CO2 with respiration rate of the packaged product. A mathematical model for MAP of fresh fruits applying enzyme kinetics based respiration equation coupled with the Arrhenious type model was developed. The model was solved numerically using MATLAB programme. The model was used to determine the time to reach to the equilibrium concentration inside the MA package and the level of O2 and CO2 concentration at equilibrium state. The developed model for prediction of equilibrium O2 and CO2 concentration was validated using experimental data for MA packaging of apple, guava and litchi.
NASA Astrophysics Data System (ADS)
Asensio-Ramos, María; Alonso, Mar; Sharp, Emerson; Woods, Hannah; Barrancos, José; Pérez, Nemesio M.
2016-04-01
We report herein the latest results of a diffuse CO2 efflux survey at El Hierro volcanic system carried out during the summer period of 2015 to constrain the total CO2 output from the studied area a during post-eruptive period. El Hierro Island (278 km2) is the youngest and the SW-most of the Canary Islands. On July 16, 2011, a seismic-volcanic crisis started with the occurrence of more than 11,900 seismic events and significant deformation along the island. On October 10, 2011, the dominant character of seismicity changed dramatically from discrete earthquakes to continuous tremor, a clear indication that magma was rapidly approaching the surface immediately before the onset of the eruption, October 12. Eruption was declared over on 5 March, 2012. In order to monitor the volcanic activity of El Hierro Island, from 1998 to 2015 diffuse CO2 emission studies have been performed at El Hierro volcanic system in a yearly basis (˜600 observation sites) according to the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. To quantify the total CO2 emission from the studied area, 100 simulations for each survey have been performed. During the eruption period, soil CO2 efflux values range from non-detectable (˜0.5 g m-2 d-1) up to 457 g m-2 d-1, reaching in November 27, 2011, the maximum CO2 output estimated value of all time series, 2,398 t d-1, just before the episodes of maximum degassing observed as vigorous bubbling at the sea surface and an increment in the amplitude of the tremor signal. During the 2015 survey, soil CO2 efflux values ranged from non-detectable up to 41 g m-2 d-1. The spatial distribution of diffuse CO2 emission values seemed to be controlled by the main volcano structural features of the island. The total diffuse CO2 output released to atmosphere was estimated at 575 ± 24 t d-1, value slightly higher that the background CO2 emission estimated at 422 t d-1 (Melián et al., 2014). The above data demonstrate that discrete surveys of diffuse CO2 emission provide important information to optimize the early warning system in volcano monitoring programs and to monitor the evolution of an ongoing volcanic eruption, even though it is a submarine eruption. References: Melián et al., 2014. J. Geophys. Res. DOI: 10.1002/2014JB011013.
Xu, Zhe; Chen, Sisi; Yang, Chun; Huang, Shenghai; Shen, Meixiao; Wang, Yuanyuan
2018-01-01
To investigate the repeatability and reproducibility of mapping the entire corneal thickness using spectral domain optical coherence tomography (SD-OCT). Thirty normal eyes, 30 post-laser in situ keratomileusis (LASIK) surgery eyes, and 30 keratoconus eyes were analyzed. A custom-built long scan depth SD-OCT device was used to obtain entire corneal images. Ten-millimeter-diameter corneal thickness maps were generated by an automated segmentation algorithm. Intraclass correlation coefficients of repeatability (ICC1) and reproducibility (ICC2), and coefficients of repeatability (CoR1) and reproducibility (CoR2), were calculated to quantify the precision and accuracy of corneal pachymetry measurements using the Bland-Altman method. For SD-OCT measurements in healthy subjects, CoR1 and CoR2 were less than 5.00 and 5.53 μm. ICC1 and ICC2 were more than 0.997 and 0.996. For SD-OCT measurements in LASIK patients, CoR1 and CoR2 were less than 5.09 and 5.34 μm. ICC1 and ICC2 were more than 0.997 and 0.996. For SD-OCT measurements in keratoconus patients, CoR1 and CoR2 were less than 11.57 and 10.92 μm. ICC1 and ICC2 were more than 0.995 and 0.996. The measurements of corneal pachymetric mapping by long scan depth SD-OCT can be assessed over the entire corneal area with good repeatability and reproducibility. © 2017 S. Karger AG, Basel.
Observations of CO isotopic emission and the far-infrared continuum of Centaurus A
NASA Technical Reports Server (NTRS)
Eckart, A.; Cameron, M.; Rothermel, H.; Wild, W.; Zinnecker, H.; Olberg, M.; Rydbeck, G.; Wiklind, T.
1990-01-01
Researchers present maps of the CO-12(1=0) line and the 100 micron and 50 micron far-infrared emission of Centaurus A, as well as measurements of the CO-12(2-1), CO-13(1-0), and the C-18O(1-0) lines at selected positions. The observations were taken with the Swedish-ESO Submillimeter Telescope (SEST) and the CPC instrument on board the Infrared Astronomy Satellite (IRAS). The millimeter data show that the bulk molecular material is closely associated with the dust lane and contained in a disk of about 180 seconds diameter and a total molecular mass of about 2 x 10 to the 8th power solar mass. The total molecular mass of the disk and bulge is of the order of 3 x 10 to the 8th power solar mass. The molecular gas in the nucleus is warm with a kinetic temperature of the order of 15 K and a number density of 10 to the 3rd power to 3 x 10 to the 4th power cm(-3). Absorption features in the CO-12 and CO-13 lines against the nuclear continuum emission indicate that the properties of giant molecular clouds are comparable to those of the Galaxy. The far-infrared data show that to a good approximation the dust temperature is constant across the dust lane at a value of about 42 K. The ratio between the far-infrared luminosity and the total molecular mass is 18 solar luminosity/solar mass and close to the mean value obtained for isolated galaxies. A comparison of the CO-12(1-0) and the far-infrared data indicates that a considerable amount of the far-infrared emission is not intimately associated with massive star formation.
Ou, Jinpei; Liu, Xiaoping; Li, Xia; Li, Meifang; Li, Wenkai
2015-01-01
Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program's (DMSP) Operational Linescan System (OLS) have been useful for mapping global fossil fuel carbon dioxide (CO2) emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions). Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS) for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales.
Ou, Jinpei; Liu, Xiaoping; Li, Xia; Li, Meifang; Li, Wenkai
2015-01-01
Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program’s (DMSP) Operational Linescan System (OLS) have been useful for mapping global fossil fuel carbon dioxide (CO2) emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions). Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS) for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales. PMID:26390037
Jain, Vishal; Rasane, Prasad; Jha, Alok; Sharma, Nitya; Gautam, Anuj
2015-07-01
Kalakand, a popular traditional milk sweet of Indian sub-continent, was packaged under air and modified atmospheric packaging (MAP) conditions (98 % N2, 98 % CO2 and 50 % N2: 50 % CO2). The samples were stored at 10, 25 and 37 °C and evaluated for various physico-chemical, microbial, textural and sensory changes, in order to establish the applicability of MAP for storage of Kalakand. It could be established that the MAP conditions of 50 % N2: 50 % CO2and storage at 10 °C, were the most suitable conditions for preserving the Kalakand for upto 60 days.
Hempel, A; O'Sullivan, M G; Papkovsky, D B; Kerry, J P
2013-07-01
The objective of this study was to determine the percentage oxygen consumption of fresh, respiring ready-to-eat (RTE) mixed leaf salad products (Iceberg salad leaf, Caesar salad leaf, and Italian salad leaf). These were held under different modified atmosphere packaging (MAP) conditions (5% O2 , 5% CO2 , 90% N2 (MAPC-commercial control), 21% O2 , 5% CO2 , 74% N2 (MAP 1), 45% O2 , 5% CO2 , 50% N2 (MAP 2), and 60% O2 , 5% CO2 , 35% N2 (MAP 3)) and 4 °C for up to 10 d. The quality and shelf-life stability of all packaged salad products were evaluated using sensory, physiochemical, and microbial assessment. Oxygen levels in all MAP packs were measured on each day of analysis using optical oxygen sensors allowing for nondestructive assessment of packs. Analysis showed that with the exception of control packs, oxygen levels for all MAP treatments decreased by approximately 10% after 7 d of storage. Oxygen levels in control packs were depleted after 7 d of storage. This appears to have had no detrimental effect on either the sensory quality or shelf-life stability of any of the salad products investigated. Additionally, the presence of higher levels of oxygen in modified atmosphere packs did not significantly improve product quality or shelf-life stability; however, these additional levels of oxygen were freely available to fresh respiring produce if required. This study shows that the application of optical sensors in MAP packs was successful in nondestructively monitoring oxygen level, or changes in oxygen level, during refrigerated storage of RTE salad products. © 2013 Institute of Food Technologists®
The X CO Conversion Factor from Galactic Multiphase ISM Simulations
NASA Astrophysics Data System (ADS)
Gong, Munan; Ostriker, Eve C.; Kim, Chang-Goo
2018-05-01
{CO}(J=1{--}0) line emission is a widely used observational tracer of molecular gas, rendering essential the X CO factor, which is applied to convert CO luminosity to {{{H}}}2 mass. We use numerical simulations to study how X CO depends on numerical resolution, non-steady-state chemistry, physical environment, and observational beam size. Our study employs 3D magnetohydrodynamics (MHD) simulations of galactic disks with solar neighborhood conditions, where star formation and the three-phase interstellar medium (ISM) are self-consistently regulated by gravity and stellar feedback. Synthetic CO maps are obtained by postprocessing the MHD simulations with chemistry and radiation transfer. We find that CO is only an approximate tracer of {{{H}}}2. On parsec scales, W CO is more fundamentally a measure of mass-weighted volume density, rather than {{{H}}}2 column density. Nevertheless, < {X}{{CO}} > =(0.7{\\textstyle {--}}1.0)× {10}20 {{{cm}}}-2 {{{K}}}-1 {{{km}}}-1 {{s}}, which is consistent with observations and insensitive to the evolutionary ISM state or radiation field strength if steady-state chemistry is assumed. Due to non-steady-state chemistry, younger molecular clouds have slightly lower < {X}CO}> and flatter profiles of X CO versus extinction than older ones. The {CO}-dark {{{H}}}2 fraction is 26%–79%, anticorrelated with the average extinction. As the observational beam size increases from 1 to 100 pc, < {X}CO}> increases by a factor of ∼2. Under solar neighborhood conditions, < {X}CO}> in molecular clouds is converged at a numerical resolution of 2 pc. However, the total CO abundance and luminosity are not converged even at the numerical resolution of 1 pc. Our simulations successfully reproduce the observed variations of X CO on parsec scales, as well as the dependence of X CO on extinction and the CO excitation temperature.
Carbon Isotope Discrimination in C3 Land Plants is Independent of Atmospheric PCO2
NASA Astrophysics Data System (ADS)
Kohn, M. J.
2015-12-01
The δ13C of terrestrial C3 plant tissues and soil organic matter is important for understanding the carbon cycle, inferring past climatic and ecological conditions, and predicting responses of vegetation to future climate change. Plant δ13C depends on the δ13C of atmospheric CO2 and mean annual precipitation (MAP), but an unresolved decades-long debate centers on whether terrestrial C3 plant δ13C responds to pCO2. Here, the pCO2-dependence of C3 land plant δ13C was tested using isotopic records from low- and high-pCO2 times spanning historical through Eocene data. Historical data do not resolve a clear pCO2-effect (-1.2±1.0 to 0.59±0.34‰/100 ppmv), and organic carbon records of the Pleistocene-Holocene transition implicate changes in MAP and ecosystems, rather than pCO2, as the major driver of δ13C changes. Fossil collagen and tooth enamel data constrain pCO2-effects most tightly to -0.03±0.13 and -0.03±0.24‰/100 ppmv between 200 and 700 ppmv. Combining all constraints yields a preferred value of 0.0±0.2‰/100 ppmv (2 s.e.), i.e. there is effectively no pCO2 effect. Recent models of pCO2-dependence imply unrealistic MAP for Cenozoic records.
Multi-transition study of the peculiar merger Arp 299
NASA Astrophysics Data System (ADS)
Jiao, Qian; Zhu, Ming
2017-08-01
We present a multi-transition study to investigate the physical properties of dust and molecular gas in the archetypical merger Arp 299 by using data including James Clerk Maxwell Telescope (JCMT) 850 and 450 μm observations, Herschel 500, 350, 250, 160 and 70 μm continuum maps, as well as the CO(3-2), CO(4-3) low-J CO lines and CO(11-10), CO(13-12), CO(14-13) high-J CO lines. The CO(3-2) and CO(4-3) lines are observed by JCMT, and the CO(11-10), CO(13-12), CO(14-13) lines are available on the Herschel Science Archive. The resolution of the Herschel Spectral and Photometric Imaging Receiver (SPIRE) Fourier transform spectrometer (FTS) CO(11-10) data is similar to that of the JCMT CO(3-2) line, while the resolution of the SPIRE/FTS CO(13-12) and Photodetector Array Camera and Spectrometer (PACS) CO(14-13) data is similar to that of JCMT CO(4-3), allowing us to obtain accurate line ratios of {I}{{CO}({{11-10}})}/{I}{{CO}({{3-2}})}, {I}{{CO}({{13-12}})}/{I}{{CO}({{4-3}})} and {I}{{CO}({{14-13}})}/{I}{{CO}({{4-3}})}. By modeling the spectral energy distribution of the continuum data, we conclude that two components (cold and warm) exist in the dust, with the warm component occupying a small percent of the total dust mass. We further use a radiative transfer analysis code, RADEX, to calculate the density, temperature and column density of warm gas in the central region, which shows that the kinetic temperature {T}{{kin}} is in the range 110 to 150 K and hydrogen density n({{{H}}}{{2}}) is in the range {10}4.7-{10}5.5{{{cm}}}{{-3}}. We show that the hot dust is located in the central region of IC 694 with a radius of ˜ 4″ and estimate that the warm gas mass is in the range 3.8× {10}7{M}⊙ to 7.7× {10}7{M}⊙ , which contains 5.0%-15.0% of the total H2 mass for the region of IC 694. We also calculate the star formation rate of the galaxy in particular, which is much higher than that of the Milky Way.
Materials Science Research Rack-1 Fire Suppressant Distribution Test Report
NASA Technical Reports Server (NTRS)
Wieland, P. O.
2002-01-01
Fire suppressant distribution testing was performed on the Materials Science Research Rack-1 (MSRR-1), a furnace facility payload that will be installed in the U.S. Lab module of the International Space Station. Unlike racks that were tested previously, the MSRR-1 uses the Active Rack Isolation System (ARIS) to reduce vibration on experiments, so the effects of ARIS on fire suppressant distribution were unknown. Two tests were performed to map the distribution of CO2 fire suppressant throughout a mockup of the MSRR-1 designed to have the same component volumes and flowpath restrictions as the flight rack. For the first test, the average maximum CO2 concentration for the rack was 60 percent, achieved within 45 s of discharge initiation, meeting the requirement to reach 50 percent throughout the rack within 1 min. For the second test, one of the experiment mockups was removed to provide a worst-case configuration, and the average maximum CO2 concentration for the rack was 58 percent. Comparing the results of this testing with results from previous testing leads to several general conclusions that can be used to evaluate future racks. The MSRR-1 will meet the requirements for fire suppressant distribution. Primary factors that affect the ability to meet the CO2 distribution requirements are the free air volume in the rack and the total area and distribution of openings in the rack shell. The length of the suppressant flowpath and degree of tortuousness has little correlation with CO2 concentration. The total area of holes in the rack shell could be significantly increased. The free air volume could be significantly increased. To ensure the highest maximum CO2 concentration, the PFE nozzle should be inserted to the stop on the nozzle.
Global CO2 Distributions over Land from the Greenhouse Gases Observing Satellite (GOSAT)
NASA Technical Reports Server (NTRS)
Hammerling, Dorit M.; Michalak, Anna M.; O'Dell, Christopher; Kawa, Randolph S.
2012-01-01
January 2009 saw the successful launch of the first space-based mission specifically designed for measuring greenhouse gases, the Japanese Greenhouse gases Observing SATellite (GOSAT). We present global land maps (Level 3 data) of column-averaged CO2 concentrations (X(sub CO2)) derived using observations from the GOSAT ACOS retrieval algorithm, for July through December 2009. The applied geostatistical mapping approach makes it possible to generate maps at high spatial and temporal resolutions that include uncertainty measures and that are derived directly from the Level 2 observations, without invoking an atmospheric transport model or estimates of CO2 uptake and emissions. As such, they are particularly well suited for comparison studies. Results show that the Level 3 maps for July to December 2009 on a lO x 1.250 grid, at six-day resolution capture much of the synoptic scale and regional variability of X(sub CO2), in addition to its overall seasonality. The uncertainty estimates, which reflect local data coverage, X(sub CO2) variability, and retrieval errors, indicate that the Southern latitudes are relatively well-constrained, while the Sahara Desert and the high Northern latitudes are weakly-constrained. A probabilistic comparison to the PCTM/GEOS-5/CASA-GFED model reveals that the most statistically significant discrepancies occur in South America in July and August, and central Asia in September to December. While still preliminary, these results illustrate the usefulness of a high spatiotemporal resolution, data-driven Level 3 data product for direct interpretation and comparison of satellite observations of highly dynamic parameters such as atmospheric CO2.
Caia, George L.; Efimova, Olga V.; Velayutham, Murugesan; El-Mahdy, Mohamed A.; Abdelghany, Tamer M.; Kesselring, Eric; Petryakov, Sergey; Sun, Ziqi; Samouilov, Alexandre; Zweier, Jay L.
2014-01-01
In vivo mapping of alterations in redox status is important for understanding organ specific pathology and disease. While electron paramagnetic resonance imaging (EPRI) enables spatial mapping of free radicals, it does not provide anatomic visualization of the body. Proton MRI is well suited to provide anatomical visualization. We applied EPR/NMR co-imaging instrumentation to map and monitor the redox state of living mice under normal or oxidative stress conditions induced by secondhand cigarette smoke (SHS) exposure. A hybrid co-imaging instrument, EPRI (1.2 GHz) / proton MRI (16.18 MHz), suitable for whole-body co-imaging of mice was utilized with common magnet and gradients along with dual EPR/NMR resonators that enable co-imaging without sample movement. The metabolism of the nitroxide probe, 3–carbamoyl–proxyl (3-CP), was used to map the redox state of control and SHS-exposed mice. Co-imaging allowed precise 3D mapping of radical distribution and reduction in major organs such as the heart, lungs, liver, bladder and kidneys. Reductive metabolism was markedly decreased in SHS-exposed mice and EPR/NMR co-imaging allowed quantitative assessment of this throughout the body. Thus, in vivo EPR/NMR co-imaging enables in vivo organ specific mapping of free radical metabolism and redox stress and the alterations that occur in the pathogenesis of disease. PMID:22296801
NASA Astrophysics Data System (ADS)
Caia, George L.; Efimova, Olga V.; Velayutham, Murugesan; El-Mahdy, Mohamed A.; Abdelghany, Tamer M.; Kesselring, Eric; Petryakov, Sergey; Sun, Ziqi; Samouilov, Alexandre; Zweier, Jay L.
2012-03-01
In vivo mapping of alterations in redox status is important for understanding organ specific pathology and disease. While electron paramagnetic resonance imaging (EPRI) enables spatial mapping of free radicals, it does not provide anatomic visualization of the body. Proton MRI is well suited to provide anatomical visualization. We applied EPR/NMR co-imaging instrumentation to map and monitor the redox state of living mice under normal or oxidative stress conditions induced by secondhand cigarette smoke (SHS) exposure. A hybrid co-imaging instrument, EPRI (1.2 GHz)/proton MRI (16.18 MHz), suitable for whole-body co-imaging of mice was utilized with common magnet and gradients along with dual EPR/NMR resonators that enable co-imaging without sample movement. The metabolism of the nitroxide probe, 3-carbamoyl-proxyl (3-CP), was used to map the redox state of control and SHS-exposed mice. Co-imaging allowed precise 3D mapping of radical distribution and reduction in major organs such as the heart, lungs, liver, bladder and kidneys. Reductive metabolism was markedly decreased in SHS-exposed mice and EPR/NMR co-imaging allowed quantitative assessment of this throughout the body. Thus, in vivo EPR/NMR co-imaging enables in vivo organ specific mapping of free radical metabolism and redox stress and the alterations that occur in the pathogenesis of disease.
HERACLES: THE HERA CO LINE EXTRAGALACTIC SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroy, Adam K.; Walter, Fabian; Bigiel, Frank
2009-06-15
We present the Heterodyne Receiver Array CO Line Extragalactic Survey, an atlas of CO emission from 18 nearby galaxies that are also part of The H I Nearby Galaxy Survey and the Spitzer Infrared Nearby Galaxies Survey. We used the HERA multipixel receiver on the IRAM 30-m telescope to map the CO J = 2 {yields} 1 line over the full optical disk (defined by the isophotal radius r {sub 25}) of each target, at 13'' angular resolution and 2.6 km s{sup -1} velocity resolution. Here we describe the observations and reduction of the data and show channel maps, azimuthallymore » averaged profiles, integrated intensity maps, and peak intensity maps. The implied H{sub 2} masses range from 7 x 10{sup 6} to 6 x 10{sup 9} M {sub sun}, with four low metallicity dwarf irregular galaxies yielding only upper limits. In the cases where CO is detected, the integrated H{sub 2}-to-H I ratios range from 0.02 to 1.13 and H{sub 2}-to-stellar mass ratios from 0.01 to 0.25. Exponential scale lengths of the CO emission for our targets are in the range 0.8-3.2 kpc, or 0.2 {+-} 0.05r {sub 25}. The intensity-weighted mean velocity of CO matches that of H I very well, with a 1{sigma} scatter of only 6 km s{sup -1}. The CO J = 2 {yields} 1/J = 1 {yields} 0 line ratio varies over a range similar to that found in the Milky Way and other nearby galaxies, {approx}0.6-1.0, with higher values found in the centers of galaxies. The typical line ratio, {approx}0.8, could be produced by optically thick gas with an excitation temperature of {approx}10 K.« less
NASA Astrophysics Data System (ADS)
Pando L., C. L.; Acosta, G. A. Luna; Meucci, R.; Ciofini, M.
1995-02-01
We show that the four-level model for the CO 2 laser with modulated losses behaves in a qualitatively similar way as the highly dissipative Hénon map. The ubiquity of elements of the universal sequence, their related symbolic dynamics, and the presence of reverse bifurcations of chaotic bands in the model are reminiscent of the logistic map which is the limit of the Hénon map when the Jacobian equals zero. The coexistence of attractors, its dynamics related to contraction of volumes in phase space and the associated return maps can be correlated with those of the highly dissipative Hénon map.
NASA Technical Reports Server (NTRS)
Way, J. B.; Rignot, E.; McDonald, K.; Adams, P.; Viereck, L.
1993-01-01
Changes in the seasonal CO(sub 2) flux of the boreal forests may result from increased atmospheric CO(sub 2) concentrations and associated atmospheric warming. To monitor this potential change, a combination of remote sensing information and ecophysiological models are required. In this paper we address the use of synthetic aperture radar (SAR) data to provide some of the input to the ecophysiological models: forest type, freeze/thaw state which limits the growing season for conifers, and leaf on/off state which limits the growing season for deciduous species. AIRSAR data collected in March 1988 during an early thaw event and May 1991 during spring breakup are used to generate species maps and to determine the sensitivity of SAR to canopy freeze/thaw transitions. These data are also used to validate a microwave scattering model which is then used to determine the sensitivity of SAR to leaf on/off and soil freeze/thaw transitions. Finally, a CO(sub 2) flux algorithm which utilizes SAR data and an ecophysiological model to estimate CO(sub 2) flux is presented. CO(sub 2) flux maps are generated from which areal estimates of CO(sub 2) flux are derived.
Jin, Ya; Zhang, Jun; Yuan, Qi; Manabe, Takashi; Tan, Wen
2015-08-01
Soluble proteins of human bronchial smooth muscle cells (HBSMC) were separated by nondenaturing micro 2DE and a 30 mm × 40 mm area of the CBB-stained slab gel (1.0 mm thick) was cut into 1.1 mm × 1.1 mm squares, then the proteins in the 972 gel pieces (squares) were applied to quantitative LC-MS/MS. Grid-cutting of the gel was employed to; (i) ensure the total analysis of the proteins in the area, (ii) standardize the conditions of analysis by LC-MS/MS, (iii) reconstruct the protein distribution patterns from the quantity data [1]. Totally 4323 proteins were identified in successfully analyzed 967 squares and the quantity distribution of each was reconstructed as a color density pattern (a native protein map). The quantity of the proteins distributed from 3.6% to 1 × 10(-5) % of the total protein quantity in the grid area. Each protein map was characterized by several features, including the position of quantity peak square, number of detected squares, and degree of concentration (focused or dispersed). About 4% of the proteins were detected in 100 or more squares, suggesting that they might be ubiquitous and interacting with other proteins. In contrast, many proteins showed more concentrated quantity distribution and the quantity peak positions of 565 proteins with a defined degree of concentration were summarized into a quantity peak map. These results for the first time visualized the distribution patterns of cellular proteins on a nondenaturing 2D gel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gong, Wen-Bing; Li, Lei; Zhou, Yan; Bian, Yin-Bing; Kwan, Hoi-Shan; Cheung, Man-Kit; Xiao, Yang
2016-06-01
To provide a better understanding of the genetic architecture of fruiting body formation of Lentinula edodes, quantitative trait loci (QTLs) mapping was employed to uncover the loci underlying seven fruiting body-related traits (FBRTs). An improved L. edodes genetic linkage map, comprising 572 markers on 12 linkage groups with a total map length of 983.7 cM, was constructed by integrating 82 genomic sequence-based insertion-deletion (InDel) markers into a previously published map. We then detected a total of 62 QTLs for seven target traits across two segregating testcross populations, with individual QTLs contributing 5.5 %-30.2 % of the phenotypic variation. Fifty-three out of the 62 QTLs were clustered in six QTL hotspots, suggesting the existence of main genomic regions regulating the morphological characteristics of fruiting bodies in L. edodes. A stable QTL hotspot on MLG2, containing QTLs for all investigated traits, was identified in both testcross populations. QTLs for related traits were frequently co-located on the linkage groups, demonstrating the genetic basis for phenotypic correlation of traits. Meta-QTL (mQTL) analysis was performed and identified 16 mQTLs with refined positions and narrow confidence intervals (CIs). Nine genes, including those encoding MAP kinase, blue-light photoreceptor, riboflavin-aldehyde-forming enzyme and cyclopropane-fatty-acyl-phospholipid synthase, and cytochrome P450s, were likely to be candidate genes controlling the shape of fruiting bodies. The study has improved our understanding of the genetic architecture of fruiting body formation in L. edodes. To our knowledge, this is the first genome-wide QTL detection of FBRTs in L. edodes. The improved genetic map, InDel markers and QTL hotspot regions revealed here will assist considerably in the conduct of future genetic and breeding studies of L. edodes.
NASA Astrophysics Data System (ADS)
Xu, C.; Shyu, J. B. H.; Xu, X.
2014-07-01
The 12 January 2010 Port-au-Prince, Haiti, earthquake (Mw= 7.0) triggered tens of thousands of landslides. The purpose of this study is to investigate the correlations of the occurrence of landslides and the thicknesses of their erosion with topographic, geologic, and seismic parameters. A total of 30 828 landslides triggered by the earthquake covered a total area of 15.736 km2, distributed in an area more than 3000 km2, and the volume of landslide accumulation materials is estimated to be about 29 700 000 m3. These landslides are of various types, mostly belonging to shallow disrupted landslides and rock falls, but also include coherent deep-seated landslides and rock slides. These landslides were delineated using pre- and post-earthquake high-resolution satellite images. Spatial distribution maps and contour maps of landslide number density, landslide area percentage, and landslide erosion thickness were constructed in order to analyze the spatial distribution patterns of co-seismic landslides. Statistics of size distribution and morphometric parameters of co-seismic landslides were carried out and were compared with other earthquake events in the world. Four proxies of co-seismic landslide abundance, including landslides centroid number density (LCND), landslide top number density (LTND), landslide area percentage (LAP), and landslide erosion thickness (LET) were used to correlate co-seismic landslides with various environmental parameters. These parameters include elevation, slope angle, slope aspect, slope curvature, topographic position, distance from drainages, lithology, distance from the epicenter, distance from the Enriquillo-Plantain Garden fault, distance along the fault, and peak ground acceleration (PGA). A comparison of these impact parameters on co-seismic landslides shows that slope angle is the strongest impact parameter on co-seismic landslide occurrence. Our co-seismic landslide inventory is much more detailed than other inventories in several previous publications. Therefore, we carried out comparisons of inventories of landslides triggered by the Haiti earthquake with other published results and proposed possible reasons for any differences. We suggest that the empirical functions between earthquake magnitude and co-seismic landslides need to be updated on the basis of the abundant and more complete co-seismic landslide inventories recently available.
NASA Astrophysics Data System (ADS)
Xu, C.; Shyu, J. B. H.; Xu, X.-W.
2014-02-01
The 12 January 2010 Port-au-Prince, Haiti, earthquake (Mw 7.0) triggered tens of thousands of landslides. The purpose of this study is to investigate the correlations of the occurrence of landslides and their erosion thicknesses with topographic factors, seismic parameters, and their distance from roads. A total of 30 828 landslides triggered by the earthquake covered a total area of 15.736 km2, distributed in an area more than 3000 km2, and the volume of landslide accumulation materials is estimated to be about 29 700 000 m3. These landslides are of various types, mostly belonging to shallow disrupted landslides and rock falls, but also include coherent deep-seated landslides and rock slides. These landslides were delineated using pre- and post-earthquake high-resolutions satellite images. Spatial distribution maps and contour maps of landslide number density, landslide area percentage, and landslide erosion thickness were constructed in order to analyze the spatial distribution patterns of co-seismic landslides. Statistics of size distribution and morphometric parameters of co-seismic landslides were carried out and were compared with other earthquake events in the world. Four proxies of co-seismic landslide abundance, including landslides centroid number density (LCND), landslide top number density (LTND), landslide area percentage (LAP), and landslide erosion thickness (LET) were used to correlate co-seismic landslides with various landslide controlling parameters. These controlling parameters include elevation, slope angle, slope aspect, slope curvature, topographic position, distance from drainages, lithology, distance from the epicenter, distance from the Enriquillo-Plantain Garden fault, distance along the fault, and peak ground acceleration (PGA). A comparison of these impact parameters on co-seismic landslides shows that slope angle is the strongest impact parameter on co-seismic landslide occurrence. Our co-seismic landslide inventory is much more detailed than other inventories in several previous publications. Therefore, we carried out comparisons of inventories of landslides triggered by the Haiti earthquake with other published results and proposed possible reasons of any differences. We suggest that the empirical functions between earthquake magnitude and co-seismic landslides need to update on the basis of the abundant and more complete co-seismic landslide inventories recently available.
NASA Astrophysics Data System (ADS)
Hussain, S.; Davis, T.
2012-12-01
Static and dynamic reservoir characterization was done on high resolution P-wave seismic data in Delhi Field, LA to study the complex stratigraphy of the Holt-Bryant sands and to delineate the CO2 flow path. The field is undergoing CO2 injection for enhanced oil recovery. The seismic data was bandwidth extended by Geotrace to decrease the tuning thickness effect. Once the authenticity of the added frequencies in the data was determined, the interpretation helped map thin Tuscaloosa and Paluxy sands. Cross-equalization was done on the baseline and monitor surveys to remove the non-repeatable noise in the data. Acoustic impedance (AI) inversion was done on the baseline and monitor surveys to map the changes in AI with CO2 injection in the field. Figure 1 shows the AI percentage change at Base Paluxy. The analysis helped identify areas that were not being swept by CO2. Figure 2 shows the CO2 flow paths in Tuscaloosa formation. The percentage change of AI with CO2 injection and pressure increase corresponded with the fluid substitution modeling results. Time-lapse interpretation helped in delineating the channels, high permeability zones and the bypassed zones in the reservoir.; Figure 1: P-impedance percentage difference map with a 2 ms window centered at the base of Paluxy with the production data from June 2010 overlain; the black dashed line is the oil-water contact; notice the negative impedance change below the OWC. The lighter yellow color shows area where Paluxy is not being swept completely. ; Figure 2: P-impedance percentage difference map at TUSC 7 top; the white triangles are TUSC 7 injectors and the white circles are TUSC 7 producers; the black polygons show the flow paths of CO2.
Large scale IRAM 30 m CO-observations in the giant molecular cloud complex W43
NASA Astrophysics Data System (ADS)
Carlhoff, P.; Nguyen Luong, Q.; Schilke, P.; Motte, F.; Schneider, N.; Beuther, H.; Bontemps, S.; Heitsch, F.; Hill, T.; Kramer, C.; Ossenkopf, V.; Schuller, F.; Simon, R.; Wyrowski, F.
2013-12-01
We aim to fully describe the distribution and location of dense molecular clouds in the giant molecular cloud complex W43. It was previously identified as one of the most massive star-forming regions in our Galaxy. To trace the moderately dense molecular clouds in the W43 region, we initiated W43-HERO, a large program using the IRAM 30 m telescope, which covers a wide dynamic range of scales from 0.3 to 140 pc. We obtained on-the-fly-maps in 13CO (2-1) and C18O (2-1) with a high spectral resolution of 0.1 km s-1 and a spatial resolution of 12''. These maps cover an area of ~1.5 square degrees and include the two main clouds of W43 and the lower density gas surrounding them. A comparison to Galactic models and previous distance calculations confirms the location of W43 near the tangential point of the Scutum arm at approximately 6 kpc from the Sun. The resulting intensity cubes of the observed region are separated into subcubes, which are centered on single clouds and then analyzed in detail. The optical depth, excitation temperature, and H2 column density maps are derived out of the 13CO and C18O data. These results are then compared to those derived from Herschel dust maps. The mass of a typical cloud is several 104 M⊙ while the total mass in the dense molecular gas (>102 cm-3) in W43 is found to be ~1.9 × 106 M⊙. Probability distribution functions obtained from column density maps derived from molecular line data and Herschel imaging show a log-normal distribution for low column densities and a power-law tail for high densities. A flatter slope for the molecular line data probability distribution function may imply that those selectively show the gravitationally collapsing gas. Appendices are available in electronic form at http://www.aanda.orgThe final datacubes (13CO and C18O) for the entire survey are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A24
Łopacka, Joanna; Półtorak, Andrzej; Wierzbicka, Agnieszka
2017-02-01
This paper reports the impact of modified atmosphere gas compositions with different concentrations of CO 2 /O 2 /N 2 on physicochemical traits of beef steaks from M. longissimus lumborum and M. gluteus medius. Samples were stored at +2°C for 12days. The gas compositions were as follows: (i) 50% O 2 /20% CO 2 /30% N 2 (MAP1), (ii) 65% O 2 /20% CO 2 /15% N 2 (MAP2) and (iii) 80% O 2 /20% CO 2 (MAP3). Packaging atmosphere did not affect CIEL*a*b* colour coordinates, which were affected by storage time and by muscle type. Lipid oxidation in M. longissimus lumborum was affected by packaging treatment; however packaging treatment×storage time interaction affected lipid oxidation significantly. Results showed that reduction of oxygen from the commercially used 80% to 50% does not negatively impact colour properties and state of myoglobin, but significantly lowers oxidative deterioration of M. longissimus lumborum at the end of storage. Copyright © 2016. Published by Elsevier Ltd.
Generative Topographic Mapping of Conformational Space.
Horvath, Dragos; Baskin, Igor; Marcou, Gilles; Varnek, Alexandre
2017-10-01
Herein, Generative Topographic Mapping (GTM) was challenged to produce planar projections of the high-dimensional conformational space of complex molecules (the 1LE1 peptide). GTM is a probability-based mapping strategy, and its capacity to support property prediction models serves to objectively assess map quality (in terms of regression statistics). The properties to predict were total, non-bonded and contact energies, surface area and fingerprint darkness. Map building and selection was controlled by a previously introduced evolutionary strategy allowed to choose the best-suited conformational descriptors, options including classical terms and novel atom-centric autocorrellograms. The latter condensate interatomic distance patterns into descriptors of rather low dimensionality, yet precise enough to differentiate between close favorable contacts and atom clashes. A subset of 20 K conformers of the 1LE1 peptide, randomly selected from a pool of 2 M geometries (generated by the S4MPLE tool) was employed for map building and cross-validation of property regression models. The GTM build-up challenge reached robust three-fold cross-validated determination coefficients of Q 2 =0.7…0.8, for all modeled properties. Mapping of the full 2 M conformer set produced intuitive and information-rich property landscapes. Functional and folding subspaces appear as well-separated zones, even though RMSD with respect to the PDB structure was never used as a selection criterion of the maps. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
1980-07-01
Lfl 0 0.0 0ř 1 1ř 2Ŕ 2ř 3Ŕ 35 X (MILES) Figure 8. Map of Aircraf Line Sources at JFK 29 Table 8. Summary of Aircraft Emission for Hour 19 at JFK ... Airport Emissions (103 lbs) Location CO THC NOx Runways 0.08 0.05 0.52 Taxiways 3.94 2.30 0.15 Queue 1.21 0.64 0.05 Terminal 0.60 0.28 0.04 Total on
Xiao, Ying; Wen, Jian; Bai, Yanxia; Duan, Na; Jing, G X
2014-01-01
To investigate the effects of isoflurane and propofol on mean arterial pressure (MAP), cochlear blood flow (CoBF), distortion-product otoacoustic emission (DPOAE), and the ultrastructure of outer hair cells (OHCs) in guinea pig cochleae. Forty-eight male guinea pigs were randomly assigned to one of six treatment groups. Groups 1 to 3 were infused (i.v.) with a loading dose of propofol (5 mg/kg) for 5 min and three maintenance doses (10, 20, or 40 mg kg-1·h-1, respectively) for 115 min. Groups 4 to 6 were inhaled with isoflurane at concentrations of 1.15 vol%, 2.30 vol% or 3.45 vol% respectively for 120 min. CoBF and MAP were recorded prior to and at 5 min intervals during drug administration. DPOAE was measured before, immediately after, and 1 h after administration. Following the final DPOAE test, cochleae were examined using scanning electron microscopy. Propofol treatment reduced MAP in a dose-dependent manner. CoBF and DPOAE showed increases at propofol maintenance doses of 10 and 20 mg kg-1·h-1. Inhalation of isoflurane at concentrations of 2.30 vol% and 3.45 vol% reduced MAP and CoBF. DPOAE amplitude increased following inhalation of 1.15 vol% isoflurane, but decreased following inhalations of 2.30 vol% and 3.45 vol%. Cochlear structure was changed following inhalation of either 2.30 vol% or 3.45 vol% isoflurane. Propofol could decrease MAP and increase both CoBF and DPOAE without affecting OHC structure. Inhalation of isoflurane at concentrations >2.30 vol% decreased CoBF and DPOAE, and produced injury to OHCs.
NASA Astrophysics Data System (ADS)
Yasunaka, Sayaka; Siswanto, Eko; Olsen, Are; Hoppema, Mario; Watanabe, Eiji; Fransson, Agneta; Chierici, Melissa; Murata, Akihiko; Lauvset, Siv K.; Wanninkhof, Rik; Takahashi, Taro; Kosugi, Naohiro; Omar, Abdirahman M.; van Heuven, Steven; Mathis, Jeremy T.
2018-03-01
We estimated monthly air-sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014. This was done by mapping partial pressure of CO2 in the surface water (pCO2w) using a self-organizing map (SOM) technique incorporating chlorophyll a concentration (Chl a), sea surface temperature, sea surface salinity, sea ice concentration, atmospheric CO2 mixing ratio, and geographical position. We applied new algorithms for extracting Chl a from satellite remote sensing reflectance with close examination of uncertainty of the obtained Chl a values. The overall relationship between pCO2w and Chl a was negative, whereas the relationship varied among seasons and regions. The addition of Chl a as a parameter in the SOM process enabled us to improve the estimate of pCO2w, particularly via better representation of its decline in spring, which resulted from biologically mediated pCO2w reduction. As a result of the inclusion of Chl a, the uncertainty in the CO2 flux estimate was reduced, with a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C yr-1. Seasonal to interannual variation in the CO2 influx was also calculated.
A Broad Bank Lidar for Precise Atmospheric CO2 Column Absorption Measurement from Space
NASA Technical Reports Server (NTRS)
Georgieva, E. M.; Heaps, W. S.; Huang, W.
2010-01-01
Accurate global measurement of carbon dioxide column with the aim of discovering and quantifying unknown sources and sinks has been a high priority for the last decade. In order to uncover the "missing sink" that is responsible for the large discrepancies in the budget the critical precision for a measurement from space needs to be on the order of 1 ppm. To better understand the CO2 budget and to evaluate its impact on global warming the National Research Council (NRC) in its recent decadal survey report (NACP) to NASA recommended a laser based total CO2 mapping mission in the near future. That's the goal of Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission - to significantly enhance the understanding of the role of CO2 in the global carbon cycle. Our current goal is to develop an ultra precise, inexpensive new lidar system for column measurements of CO2 changes in the lower atmosphere that uses a Fabry-Perot interferometer based system as the detector portion of the instrument and replaces the narrow band laser commonly used in lidars with a high power broadband source. This approach reduces the number of individual lasers used in the system and considerably reduces the risk of failure. It also tremendously reduces the requirement for wavelength stability in the source putting this responsibility instead on the Fabry- Perot subsystem.
Non-Volcanic release of CO2 in Italy: quantification, conceptual models and gas hazard
NASA Astrophysics Data System (ADS)
Chiodini, G.; Cardellini, C.; Caliro, S.; Avino, R.
2011-12-01
Central and South Italy are characterized by the presence of many reservoirs naturally recharged by CO2 of deep provenance. In the western sector, the reservoirs feed hundreds of gas emissions at the surface. Many studies in the last years were devoted to (i) elaborating a map of CO2 Earth degassing of the region; (ii) to asses the gas hazard; (iii) to develop methods suitable for the measurement of the gas fluxes from different types of emissions; (iv) to elaborate the conceptual model of Earth degassing and its relation with the seismic activity of the region and (v) to develop physical numerical models of CO2 air dispersion. The main results obtained are: 1) A general, regional map of CO2 Earth degassing in Central Italy has been elaborated. The total flux of CO2 in the area has been estimated in ~ 10 Mt/a which are released to the atmosphere trough numerous dangerous gas emissions or by degassing spring waters (~ 10 % of the CO2 globally estimated to be released by the Earth trough volcanic activity). 2) An on line, open access, georeferenced database of the main CO2 emissions (~ 250) was settled up (http://googas.ov.ingv.it). CO2 flux > 100 t/d characterise 14% of the degassing sites while CO2 fluxes from 100 t/d to 10 t/d have been estimated for about 35% of the gas emissions. 3) The sites of the gas emissions are not suitable for life: the gas causes many accidents to animals and people. In order to mitigate the gas hazard a specific model of CO2 air dispersion has been developed and applied to the main degassing sites. A relevant application regarded Mefite d'Ansanto, southern Apennines, which is the largest natural emission of low temperature CO2 rich gases, from non-volcanic environment, ever measured in the Earth (˜2000 t/d). Under low wind conditions, the gas flows along a narrow natural channel producing a persistent gas river which has killed over a period of time many people and animals. The application of the physical numerical model allowed us to define the zones which potentially can be affected by dangerous CO2 concentration at breathing height for humans. 4) Many evidences indicate that at depth, in the seismic zone of the Apennines, the gas can be stored in over-pressurized reservoirs. Such gas reservoirs have been taught to have played a major role in triggering the seismicity of the last two main crises occurred in the area (Colfiorito 1997 and L'Aquila 2009).
NASA Astrophysics Data System (ADS)
Gövdeli, Nezafet; Karakaş, Duran
2018-07-01
Quantum chemical calculations at B3LYP/LANL2DZ/6-31G(d) level were made on anti-eclipsed, anti-staggered, syn-eclipsed, syn-staggered conformers of hypothetical Fischer type Mo(CO)5[C(OEt)Me] and Mo(CO)5[C(OMe)Et] carbene complexes in the gas phase. The most stable conformer of the complexes was found to be anti-staggered according to the total energy values calculated at given level. Structural parameters, vibration spectra, charge distributions, molecular orbital energy diagrams, contour diagrams of frontier orbitals, molecular electrostatic potential maps and some electronic structure descriptors were obtained for the most stable conformers. NMR spectra of the most stable conformers were calculated at GIAO/B3LYP/LANL2DZ level. The most stable conformer geometry was found to be distorted octahedral. IR and NMR spectra of the complexes are consistent with their geometry. HOMOs of the complexes were found to be center-atomic character and LUMOs were carbene-carbon character. From the calculated charge analysis and molecular electrostatic potential maps, it is found that carbene-carbon acts as electrofil and metal center nucleophile. It is suggested that the catalytic properties of the carbene complexes may be due to the fact that the carbene-carbon behave as electrophile and metal center nucleophile. Some electronic structure descriptors of the complexes were calculated and the molecular properties were estimated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Way, J.B.; Rignot, E.; McDonald, K.
1993-06-01
Changes in the seasonal CO[sub 2] flux of the boreal forests may result from increased atmospheric CO[sub 2] concentrations and associated atmospheric warming. To monitor this potential change, a combination of remote sensing information and ecophysiological models are required. In this paper we address the use of synthetic aperture radar (SAR) data to provide some of the input to the ecophysiological models: forest type, freeze/thaw state which limits the growing season for conifers, and leaf on/off state which limits the growing season for deciduous species. AIRSAR data collected in March 1988 during an early thaw event and May 1991 duringmore » spring breakup are used to generate species maps and to determine the sensitivity of SAR to canopy freeze/thaw transitions. These data are also used to validate a microwave scattering model which is then used to determine the sensitivity of SAR to leaf on/off and soil freeze/thaw transitions. Finally, a CO[sub 2] flux algorithm which utilizes SAR data and an ecophysiological model to estimate CO[sub 2] flux is presented. CO[sub 2] flux maps are generated from which areal estimates of CO[sub 2] flux are derived. This work was carried out at the Jet Propulsion Laboratory under contract to the NASA.« less
Measuring Carbon Footprint of Flexible Pavement Construction Project in Indonesia
NASA Astrophysics Data System (ADS)
Hatmoko, Jati Utomo Dwi; Hidayat, Arif; Setiawati, Apsari; Prasetyo, Stefanus Catur Adi
2018-02-01
Road infrastructure in Indonesia is mainly dominated by flexible pavement type. Its construction process, however, has raised concerns in terms of its environment impacts. This study aims to track and measure the carbon footprint of flexible pavement. The objectives are to map the construction process in relation to greenhouse gas (GHG) emissions, to quantify them in terms of carbon dioxide equivalents (CO2e) as generated by the process of production and transportation of raw materials, and the operation of plant off-site and on-site project. Data collection was done by having site observations and interviews with project stakeholders. The results show a total emissions of 70.888 tonnes CO2e, consisting of 34.248 tonnes CO2e (48.31%) off-site activities and 36.640 tonnes CO2e (51.687%) on-site activities. The two highest CO2e emissions were generated by the use of plant for asphalt concrete laying activities accounted 34.827 tonnes CO2e (49.130%), and material transportation accounted 24.921 (35.155%). These findings provide a new perspective of the carbon footprint in flexible pavement and suggest the urgent need for the use of more efficient and environmentally friendly plant in construction process as it shows the most significant contribution on the CO2e. This study provides valuable understanding on the environmental impact of typical flexible pavement projects in Indonesia, and further can be used for developing green road framework.
NASA Astrophysics Data System (ADS)
Kontunen-Soppela, S.; Parviainen, J.; Ruhanen, H.; Brosché, M.; Keinanen, M.; Thakur, R. C.; Kolehmainen, M.; Kangasjarvi, J.; Oksanen, E.; Karnosky, D. F.; Vapaavuori, E.
2009-12-01
Forest trees are exposed to increasing concentrations of O3 and CO2 simultaneously. The rise of concentration in these gases causes changes in the gene expression of trees, which can be small in acclimated trees, but yet pivotal for the metabolism of the trees. We have studied the response of paper birch (Betula papyrifera) leaf gene expression to elevated O3 and CO2 concentrations during leaf maturation and senescence. The hypotheses were:(1) Elevated O3 induces oxidative stress in leaves. During long O3-exposure repair mechanisms are activated. Because chemical defense requires energy and carbon uptake is reduced, leaf senescence is activated earlier. Alternatively, the senescence-associated processes, remobilization and storage of carbohydrates and nutrients, may not be completed. (2) In the combination of elevated CO2+O3, the O3-caused damages are not seen or they are smaller, due to closure of the stomata under elevated CO2 and decreased O3 uptake by the leaves. On the other hand, elevated CO2 may provide energy and increase defense chemicals, enabling leaves to repair the O3-caused damages. Gene expression responses of paper birch leaves to elevated O3 and CO2 were studied with microarray analyses. Samples were collected from the long-term O3 and CO2 fumigation experiment Aspen FACE in Rhinelander, WI, USA (http://aspenface.mtu.edu/). The site contains 12 FACE rings receiving CO2, O3, CO2+O3, and ambient air (controls). Birches have been exposed to elevated CO2 (550ppm) and O3 (1.5X ambient) since 1998. Leaf samples were collected in July, August and September 2004. The cDNA-microarrays used for hybridizations consisted of Populus euphratica ESTs representing ca 6500 different genes. In order to detect similar gene expression patterns within samplings and treatments, the microarray data was analyzed with multivariate methods; clustering with Self-Organizing Map, finding optimal cluster grouping by K-means clustering and visualizing the results with Sammon's mapping. Most of the alterations in the gene expression in comparison to ambient rings were caused by O3, alone and in combination with elevated CO2. O3 reduced photosynthesis and carbon assimilation and induced defense to oxidative stress resulting in earlier leaf senescence. Transport and proteolysis gene expressions were activated, indicating that at least some remobilization of nutrients for storage was completed. The combined CO2+O3 treatment resembled the O3 treatment, indicating that elevated CO2 is not able to totally alleviate the harmful effects of elevated O3. Some specific gene expression changes in the combined O3+CO2 treatment showed that experiments with O3 or CO2-exposure alone are not sufficient to predict plant responses to these gases together, and that field experiments with multiple variables are essential in order to understand responses to future environmental conditions.
Puybasset, L; Béa, M L; Simon, L; Ghaleh, B; Giudicelli, J F; Berdeaux, A
1995-08-01
Acute and chronic administration of nitric oxide (NO) synthase (NOS) inhibitors increase mean arterial blood pressure (MAP) in rats but their hemodynamic effects in other species remain unknown. Moreover, the role of NO in the control of exercise-induced vasodilation is still debated. To answer these questions, six dogs were instrumented for the continuous measurement of cardiac output (CO, electromagnetic flow probe on the aorta), MAP (aortic catheter) and left ventricular pressure (Konigsberg gauge). Total peripheral resistance (TPR) was calculated as MAP/CO ratio and dP/dt was used as an index of cardiac inotropism. The dogs were treated from day 0 (D0) to 7 (D7) by the NOS inhibitor, N omega-nitro-L-arginine (L-NNA), 20 mg/kg/day (IV). Such a dose regimen resulted in NOS inhibition evidenced (a) in vivo by a reduction of the hypotensive responses to graded doses of acetylcholine and bradykinin, (b) ex vivo by a decrease in the relaxation of the femoral artery to acetylcholine (EC 50 = 2.2 +/- 0.6 10(-7) M after L-NNA vs 2.2 +/- 0.8 10(-8) M in controls). One month after instrumentation, the dogs being conscious, MAP measured at rest remained unchanged following one week L-NNA treatment (from 90 +/- 2 at D0 to 91 +/- 5 mmHg at D7). However, TPR increased (from 3,600 +/- 290 at D0 to 6,300 +/- 510 dyn.s.cm-5 at D7) and CO decreased (from 2.1 +/- 0.2 at D0 to 1.2 +/- 0.1 l/min at D7) (all p < 0.01), partly as the result of a marked bradycardia (from 100 +/- 7 at D0 to 60 +/- 7 beats/min at D7). L-NNA induced-increase in TPR was completely reversed by a bolus injection of nitroglycerin (10 micrograms/kg). During treadmill exercise (12 km/h), heart rate (251 +/- 9 at D0 vs 226 +/- 11 beats/min at D7), CO (6.3 +/- 0.9 at D0 vs 4.3 +/- 0.7 l/min at D7) and stroke volume remained significantly lower, and TPR significantly higher (1,662 +/- 278 at D0 vs 2,621 +/- 489 dyn.s.cm-5 at D7) after L-NNA than in the control state. Thus, NOS inhibition in resting conscious dogs by L-NNA markedly increases peripheral resistance but does not increase arterial pressure. In addition, L-NNA blunts both exercise-induced peripheral vasodilation and increase in cardiac output, despite metabolic vasodilation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieging, John H.; Peters, William L.; Patel, Saahil
We present the results of a program to map the Sh2-235 molecular cloud complex in the CO and {sup 13}CO J = 2 − 1 transitions using the Heinrich Hertz Submillimeter Telescope. The map resolution is 38″ (FWHM), with an rms noise of 0.12 K brightness temperature, for a velocity resolution of 0.34 km s{sup −1}. With the same telescope, we also mapped the CO J = 3 − 2 line at a frequency of 345 GHz, using a 64 beam focal plane array of heterodyne mixers, achieving a typical rms noise of 0.5 K brightness temperature with a velocity resolution of 0.23 km s{sup −1}.more » The three spectral line data cubes are available for download. Much of the cloud appears to be slightly sub-thermally excited in the J = 3 level, except for in the vicinity of the warmest and highest column density areas, which are currently forming stars. Using the CO and {sup 13}CO J = 2 − 1 lines, we employ an LTE model to derive the gas column density over the entire mapped region. Examining a 125 pc{sup 2} region centered on the most active star formation in the vicinity of Sh2-235, we find that the young stellar object surface density scales as approximately the 1.6-power of the gas column density. The area distribution function of the gas is a steeply declining exponential function of gas column density. Comparison of the morphology of ionized and molecular gas suggests that the cloud is being substantially disrupted by expansion of the H ii regions, which may be triggering current star formation.« less
Condensation and vaporization studies of CH3OH and NH3 ices: Major implications for astrochemistry
NASA Technical Reports Server (NTRS)
Sandford, Scott A.; Allamandola, Louis J.
1993-01-01
In an extension of previously reported work on ices containing H2O, CO, CO2, SO2, H2S, and H2, we present measurements of the physical and infrared spectral properties of ices containing CH3OH and NH3. The condensation and sublimation behavior of these ice systems is discussed and surface binding energies are presented for all of these molecules. The surface binding energies can be used to calculate the residence times of the molecules on grain surfaces as a function of temperature. It is demonstrated that many of the molecules used to generate radio maps of and probe conditions in dense clouds, for example CO and NH3, will be significantly depleted from the gas phase by condensation onto dust grains. Attempts to derive total column densities solely from radio maps that do not take condensation effects into account may vastly underestimate the true column densities of any given species. Simple CO condensation onto and vaporization off of grains appears to be capable of explaining the observed depletion of gas phase CO in cold, dense molecular cores. This is not the case for NH3, however, where thermal considerations alone predict that all of the NH3 should be condensed onto grains. The fact that some gas phase NH3 is observed indicates that additional desorption processes must be involved. The surface binding energies of CH3OH, in conjunction with this molecule's observed behavior during warm up in H2O-rich ices, is shown to provide an explanation of the large excess of CH3OH seen in many warm, dense molecular cores. The near-infrared spectrum and associated integrated band strengths of CH3OH-containing ice are given, as are middle infrared absorption band strengths for both CH3OH and NH3.
Höll, Linda; Behr, Jürgen; Vogel, Rudi F
2016-12-01
Modified atmosphere packaging (MAP) is widely used in food industry to extend the microbiological shelf-life of meat. Typically, poultry meat has been packaged in a CO2/N2 atmosphere (with residual low O2). Recently, some producers use high O2 MAP for poultry meat to empirically reach comparable shelf lifes. In this work, we compared spoilage microbiota of skinless chicken breast in high (80% O2, 20% CO2) and low O2 MAP (65% N2 and 35% CO2). Two batches of meat were incubated in each atmosphere for 14 days at 4 °C and 10 °C. Atmospheric composition of each pack and colony forming units (25 °C, 48 h, BHI agar) of poultry samples were determined at seven timepoints. Identification of spoilage organisms was carried out by MALDI-TOF MS. Brochothrix thermosphacta, Carnobacterium sp. and Pseudomonas sp. were the main organisms found after eight days at 4 °C and 10 °C in high O2 MAP. In low O2 MAP, the main spoilage microbiota was represented by species Hafnia alvei at 10 °C, and genera Carnobacterium sp., Serratia sp., and Yersinia sp. at 4 °C. High O2 MAP is suggested as preferential gas because were less detrimental and pathogens like Yersinia were not observed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Atmospheric CO2 effect on stable carbon isotope composition of terrestrial fossil archives.
Hare, Vincent J; Loftus, Emma; Jeffrey, Amy; Ramsey, Christopher Bronk
2018-01-17
The 13 C/ 12 C ratio of C 3 plant matter is thought to be controlled by the isotopic composition of atmospheric CO 2 and stomatal response to environmental conditions, particularly mean annual precipitation (MAP). The effect of CO 2 concentration on 13 C/ 12 C ratios is currently debated, yet crucial to reconstructing ancient environments and quantifying the carbon cycle. Here we compare high-resolution ice core measurements of atmospheric CO 2 with fossil plant and faunal isotope records. We show the effect of pCO 2 during the last deglaciation is stronger for gymnosperms (-1.4 ± 1.2‰) than angiosperms/fauna (-0.5 ± 1.5‰), while the contributions from changing MAP are -0.3 ± 0.6‰ and -0.4 ± 0.4‰, respectively. Previous studies have assumed that plant 13 C/ 12 C ratios are mostly determined by MAP, an assumption which is sometimes incorrect in geological time. Atmospheric effects must be taken into account when interpreting terrestrial stable carbon isotopes, with important implications for past environments and climates, and understanding plant responses to climate change.
Domínguez, Irene; Lafuente, María T; Hernández-Muñoz, Pilar; Gavara, Rafael
2016-10-15
Controlling storage atmosphere is a key factor for delaying postharvest fruit quality loss. The objective of this study is to evaluate its influence on physico-chemical, sensorial and nutritional quality attributes of two tomato fruit cultivars (Delizia and Pitenza) that respectively have a short- and long-storage life. To that end, the effect of two types of bags with different gas permeability, combined or not with an ethylene sorbent, on tomato organoleptic and nutritional properties were compared during fruit storage at 13°C. CO2 and O2 were critical factors for controlling tomato postharvest behaviour. Weight loss, firmness, color and visual quality were only affected by bag permeability just as total sugar content and acidity for Pitenza tomatoes. (trans)-2-Hexenal also appears to be related with CO2 and O2 levels. Lycopene, total phenols (TP) and ascorbic acid (AA) contents were also affected by the packaging form and the storage length. Ethylene removal in combination with MAP led to a higher content in TP and AA in the short-life tomato cultivar. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bono, Gioacchino; Okpala, Charles Odilichukwu R; Alberio, Giuseppina R A; Messina, Concetta M; Santulli, Andrea; Giacalone, Gabriele; Spagna, Giovanni
2016-04-15
The combined effects of freezing and modified atmosphere packaging (MAP) (100% N2 and 50% N2+50% CO2) on some quality characteristics of Giant Red Shrimp (GRS) (Aristaeomorpha foliacea) was studied during 12-month storage. In particular, the quality characteristics determined proximal and gas compositions, melanosis scores, pH, total volatile basic-nitrogen (TVB-N), thiobarbituric acid (TBA) as well as free amino acid (FAA). In addition, the emergent data were compared to those subject to vacuum packaging as well as conventional preservative method of sulphite treatment (SUL). Most determined qualities exhibited quantitative differences with storage. By comparisons, while pH and TVB-N statistically varied between treatments (P<0.05) and TBA that ranged between ∼0.15 and 0.30 mg MDA/kg appeared least at end of storage for 100% N2 treated-group, the latter having decreased melanosis scores showed such treatments with high promise to keep the colour of GRS sample hence, potential replacement for SUL group. By comparisons also, while some individual FAA values showed increases especially at the 100% N2-treated group, the total FAAs statistically differed with storage (P<0.05). The combination of freezing and MAP treatments as preservative treatment method shows high promise to influence some quality characteristics of GRS samples of this study. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Effect of Molecular Contamination on the Emissivity Spectral Index in Orion A
NASA Astrophysics Data System (ADS)
Coudé, Simon; Bastien, Pierre; Drabek, Emily; Johnstone, Doug; Hatchell, Jennifer
2013-07-01
The emissivity spectral index is a critical component in the study of the physical properties of dust grains in cold and optically thin interstellar star forming regions. Since submillimeter astronomy is an ideal tool to measure the thermal emission of those dust grains, it can be used to characterize this important parameter. We present the SCUBA-2 shared risks observations at 450 μm and 850 μm of the Orion A molecular cloud obtained at the James-Clerk-Maxwell telescope. Previous studies showed that molecular emission lines can also contribute significantly to the measured fluxes in those continuum bands. We use HARP 12CO 3-2 maps to evaluate the total molecular line contamination in the SCUBA-2 maps and its effect on the determination of the spectral index in highly contaminated areas. With the corrected fluxes, we have obtained new spectral index maps for different regions of the well-known integral-shaped filament. This work is part of an ongoing effort to characterize the properties of star forming regions in the Gould belt with the new instruments available at the JCMT.
Raco, Brunella; Battaglini, Raffaele; Lelli, Matteo
2010-07-01
Landfill gas (LFG) tends to escape from the landfill surface even when LFG collecting systems are installed. Since LFG leaks are generally a noticeable percentage of the total production of LFG, the optimisation of the collection system is a fundamental step for both energy recovery and environmental impact mitigation. In this work, we suggest to take into account the results of direct measurements of gas fluxes at the air-cover interface to achieve this goal. During the last 5 years (2004-2009), 11 soil gas emission surveys have been carried out at the Municipal Solid Waste landfill of Legoli (Peccioli municipality, Pisa Province, Italy) by means of the accumulation chamber method. Direct and simultaneous measurements of CH(4) and CO(2) fluxes from the landfill cover (about 140,000 m(2)) have been performed to estimate the total output of both gases discharged into the atmosphere. Three different data processing have been applied and compared: Arithmetic mean of raw data (AMRD), sequential Gaussian conditional simulations (SGCS) and turning bands conditional simulations (TBCS). The total amount of LFG (captured and not captured) obtained from processing of direct measurements has been compared with the corresponding outcomes of three different numerical models (LandGEM, IPCC waste model and GasSim). Measured fluxes vary from undetectable values (<0.05 mol m(-2) day(-1) for CH(4) and <0.02 mol m(-2) day(-1) for CO(2)) to 246 mol m(-2) day(-1) for CH(4) and 275 mol m(-2) day(-1) for CO(2). The specific CH(4) and CO(2) fluxes (flux per surface unit) vary from 1.8 to 7.9 mol m(-2) day(-1) and from 2.4 to 7.8 mol m(-2) day(-1), respectively. The three different estimation methodologies (AMRD, SGCS and TBCS) used to evaluate the total output of diffused CO(2) and CH(4) fluxes from soil provide similar estimations, whereas there are some mismatches between these results and those of numerical LFG production models. Isoflux maps show a non-uniform spatial distribution, with high-flux zones not always corresponding with high-temperature areas shown by thermographic images. The average value estimated over the 5-year period for the Legoli landfill is 245 mol min(-1) for CH(4) and 379 mol min(-1) for CO(2), whereas the volume percentage of CH(4) in the total gas discharged into the atmosphere varies from 29% to 51%, with a mean value of 39%. The estimated yearly emissions from the landfill cover is about 1.29 x 10(8) mol annum(-1) (2,100 t year(-1)) of CH(4) and 1.99 x 10(8) mol annum(-1) (8,800 t year(-1)) of CO(2). Considering that the CH(4) global warming potential is 63 times greater than that of CO(2) (20 a time horizon, Lashof and Ahuja 1990), the emission of methane corresponds to 130,000 t annum(-1) of CO(2). The importance of these studies is to provide data for the worldwide inventory of CH(4) and CO(2) emissions from landfills, with the ultimate aim of determining the contribution of waste disposal to global warming. This kind of studies could be extended to other gas species, like the volatile organic compounds.
Evaluation of arterial blood gases and arterial blood pressures in brachycephalic dogs.
Hoareau, G L; Jourdan, G; Mellema, M; Verwaerde, P
2012-01-01
Brachycephalic dogs (BD) are prone to congenital upper airway obstruction (brachycephalic syndrome, BS). In humans suffering from sleep apnea, upper airway obstruction is known to cause hypertension. There is no information regarding the influence of BS in dogs on cardiorespiratory physiology. BD are prone to lower P(a) O(2), higher P(a) CO (2), and hypertension compared with meso- or dolicocephalic dogs (MDD). Eleven BD and 11 MDD. After a questionnaire was completed by the owner, a physical examination was performed. Height and thoracic circumferences were measured. Arterial blood gases, electrolyte concentrations, and packed cell volume (PCV) were measured. Systolic (SAP), mean (MAP), and diastolic (DAP) arterial blood pressure recordings were performed. A total of 7 French and 4 English bulldogs met the inclusion criteria. The control group consisted in 6 Beagles, 2 mixed breed dogs, 1 Staffordshire Bull Terrier, 1 Parson Russell Terrier, and 1 Australian Cattle Dog. Statistically, BD had lower P(a) O(2), higher P(a) CO2, and higher PCV when compared with controls (86.2 ± 15.9 versus 100.2 ± 12.6 mmHg, P = .017; 36.3 ± 4.6 versus 32.7 ± 2.6 mmHg, P = .019; 48.2 ± 3.5 versus 44.2 ± 5.4%, P = .026, respectively). Also, they had significantly higher SAP (177.6 ± 25.0 versus 153.5 ± 21.7 mmHg, P = .013), MAP (123.3 ± 17.1 versus 108.3 ± 12.2 mmHg, P = .014), and DAP (95.3 ± 19.2 versus 83.0 ± 11.5 mmHg, P = .042). BD with a P(a) CO (2) >35 mmHg were significantly older than those with a P(a) CO (2) ≤35 mmHg (58 ± 16 and 30 ± 11 months, P = .004). Results of this study suggest that some BD are prone to lower P(a) O(2), higher P(a) CO (2), and hypertension when compared with MDD. Age may be a contributing factor. Copyright © 2012 by the American College of Veterinary Internal Medicine.
Pournis, Nikolaos; Papavergou, Aikaterini; Badeka, Anastasia; Kontominas, Michael G; Savvaidis, Ioannis N
2005-10-01
The present work evaluated the quality and freshness characteristics and the effect of modified atmosphere packaging (MAP) on the shelf-life extension of refrigerated Mediterranean mullet using microbiological, biochemical, and sensory analyses. Fresh open sea red mullet (Mullus surmuletus) were packaged in four different atmospheres: M1, 10%/20%/70% (O2/ CO2/N2); M2, 10%/40%/50% (O2/CO2/N2); M3, 10%/60%/30% (O2/CO2/N2); identical fish samples were packaged in air. All fish were kept under refrigeration (4 +/- 0.5 degrees C) for 14 days. Of the three gas atmospheres, the 10%/40%/50% (M2) and 10%/ 60%/30% (M3) gas mixtures were the most effective for inhibiting growth of aerobic microflora in mullet samples until day 10 of refrigerated storage. H2S-producing bacteria and pseudomonads were part of the mullet microflora and their growth was partly inhibited under MAP conditions. Between these two bacterial groups, H2S-producing bacteria (including Shewanella putrefaciens) were dominant toward the end of the storage period, regardless of the packaging conditions. Brochothrix thermosphacta and lactic acid bacteria were found to be members of the final microbial flora of MAP and air-packaged mullet, whereas the Enterobacteriaceae population was lower than other bacterial groups. Of the chemical freshness indices determined, thiobarbituric acid values were variable in mullet samples irrespective of packaging conditions indicative of no specific oxidative rancidity trend. Based on sensorial data and aerobic plate count, trimethylamine nitrogen and total volatile basic nitrogen limit values in the range of ca. 15 to 23 and 52 to 60 mg N/100 g of fish muscle were obtained, respectively, for mullet packaged under modified atmosphere and air. Sensory analyses (odor and taste attributes) showed that the limit of sensorial acceptability was reached after ca. 6 days for the samples packaged in air, 8 days for the M1 and M3 samples, and after 10 days for the M2 samples. Respective shelf-life extension for fresh whole mullet was ca. 2 days (M1 and M3 gas mixtures), and 4 days (M2 gas mixture).
WIDE FIELD CO MAPPING IN THE REGION OF IRAS 19312+1950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakashima, Jun-ichi; Ladeyschikov, Dmitry A.; Sobolev, Andrej M.
2016-07-01
We report the results of wide field CO mapping in the region of IRAS 19312+1950. This Infrared Astronomical Satellite ( IRAS ) object exhibits SiO/H{sub 2}O/OH maser emission, and is embedded in a chemically rich molecular component, the origin of which is still unknown. In order to reveal the entire structure and gas mass of the surrounding molecular component for the first time, we have mapped a wide region around IRAS 19312+1950 in the {sup 12}CO J = 1–0, {sup 13}CO J = 1–0 and C{sup 18}O J = 1–0 lines using the Nobeyama 45 m telescope. In conjunction withmore » archival CO maps, we investigated a region up to 20′ × 20′ in size around this IRAS object. We calculated the CO gas mass assuming local thermal equilibrium, the stellar velocity through the interstellar medium assuming an analytic model of bow shock, and the absolute luminosity, using the latest archival data and trigonometric parallax distance. The derived gas mass (225 M {sub ⊙}–478 M {sub ⊙}) of the molecular component and the relatively large luminosity (2.63 × 10{sup 4} L {sub ☉}) suggest that the central SiO/H{sub 2}O/OH maser source is a red supergiant rather than an asymptotic giant branch (AGB) star or post-AGB star.« less
NASA Astrophysics Data System (ADS)
Gulyaeva, T. L.; Arikan, F.; Stanislawska, I.
2017-07-01
In addition to multi-scale spatio-temporal trends that shape the ionosphere variability, the ionosphere responds to the disturbances that are solar, geomagnetic and seismic in origin. In this study, post-seismic ionospheric disturbances are investigated retrospectively from 1999 to 2015 using two different sets of ionospheric maps of the F2 layer critical frequency, foF2. One set of foF2 maps is obtained by assimilating Global Ionospheric Maps (GIM) of Total Electron Content (TEC) into IRI-Plas model (IRI-Plas-foF2). Another set of hourly foF2 maps is obtained using PRIME-251 mapping technique (PRIME-foF2) by the assimilation of ionosonde foF2 data into IRI-CCIR model. The geomagnetic storms affecting the ionosphere are determined with relevant thresholds of geomagnetic AE, aa, ap, ap(τ) and Dst indices. It is observed that more than 60% of the earthquakes occur in the Equatorial Ionization Anomaly (EIA) region within the belt of geomagnetic latitudes ±40° N and geographic longitudes 90-190° E. The co-seismic foF2 disturbances, DfoF2, are identified for the cells of the map if an instant foF2 value is outside of pre-defined bounds of foF2 median (μ) and standard deviation (σ), μ ± 1σ, in the map fragment of 1000 km radius around the earthquake hypocenter. The results of positive ionospheric disturbances, DfoF2p, and negative disturbances, DfoF2n, in the EIA region during the 12 h after earthquake differ with respect to geomagnetic quiet and storm conditions, nighttime and daytime, magnitude and depth of the earthquake. The maximum spatial variability (for more than 50% of map cells in the vicinity of hypocenter) is observed with positive disturbances (DfoF2p) for the earthquakes that occurred during daytime at a depth of 70-300 km.
Investigation into the disparate origin of CO 2 and H 2O outgassing for comet 67P
NASA Astrophysics Data System (ADS)
Fink, Uwe; Doose, Lyn; Rinaldi, Giovanna; Capaccioni, Fabrizio; Bockelee-Morvan, Dominique; VIRTIS Team
2016-10-01
We present an investigation of the emission intensity of CO2 and H2O and their distribution in the coma of 67P/ Churyumov-Gerasimenko obtained by the VIRTIS-M imaging spectrometer on the Rosetta mission. We analyze 4 data cubes from Feb. 28, and 7 data cubes from April 27, 2015. For both data sets the spacecraft was at a sufficiently large distance from the comet to allow images of the whole nucleus and the surrounding coma.We find that unlike water which has a reasonably predictable behavior and correlates well with the solar illumination, CO2 outgasses mostly in local regions or spots. Furthermore for the data on April 27, the CO2 evolves almost exclusively from the southern hemisphere, a region of the comet that has not received solar illumination since the comet's last perihelion passage. Because CO2 and H2O have such disparate origins, deriving mixing ratios from local column density measurements cannot provide a meaningful measurement of the CO2/H2O ratio in the coma of the comet. We obtain total production rates of H2O and CO2 by integrating the band intensity in an annulus surrounding the nucleus and obtain pro-forma production rate CO2/H2O mixing ratios of ~5.0% and ~2.5% for Feb. 28 and April 27 respectively. Because of the highly variable nature of the CO2 evolution we do not believe that these numbers are diagnostic of the comets bulk CO2/H2O composition. We believe that our investigation provides an explanation for the large observed variations reported in the literature for the CO2/H2O production rate ratios. Our mixing ratio maps indicate that, besides the difference in vapor pressure of the two gases, this ratio depends on the comet's geometric shape, illumination and past orbital history.Our annulus measurement for the total water production for Feb. 28 at 2.21AU from the sun is 2.5x1026 molecules/s while for April 27 at 1.76 AU it is 4.65x1026. We find that about 83% of the H2O resides in the illuminated portion of our annulus and about 17% on the night side. A rough estimate of the water surface evaporation rate of the illuminated nucleus for April 27 yields about 5x1019 molecules/s m2.
Summo, Carmine; Pasqualone, Antonella; Paradiso, Vito Michele; Centomani, Isabella; Centoducati, Gerardo; Caponio, Francesco
2016-01-15
Conflicting results about the effect of modified atmosphere packaging (MAP) rich in CO2 on the quality of different kinds of meat products are present in the literature. In this study, the degree of lipid degradation and the sensory characteristics of ripened sausages packed in modified atmosphere at three different carbon dioxide (CO2) concentrations were evaluated during 5 months of storage. The degree of hydrolytic degradation of the lipid fraction was found to decrease with increasing CO2 concentration. Similarly, oxidative phenomena occurred at a lower rate when the CO2 concentration increased. The variations in CO2 concentration influenced the perception of rancid flavor in the examined sausages. An increase in CO2 concentration in MAP slowed down the evolution of lipid oxidation owing to the minor extent of hydrolytic degradation, whose products have pro-oxidant activity. This effect was more evident in the first 2 months of storage. © 2015 Society of Chemical Industry.
Crock, J.G.; Severson, R.C.; Gough, L.P.
1992-01-01
Recent investigations on the Kenai Peninsula had two major objectives: (1) to establish elemental baseline concentrations ranges for native vegetation and soils; and, (2) to determine the sampling density required for preparing stable regional geochemical maps for various elements in native plants and soils. These objectives were accomplished using an unbalanced, nested analysis-of-variance (ANOVA) barbell sampling design. Hylocomium splendens (Hedw.) BSG (feather moss, whole plant), Picea glauca (Moench) Voss (white spruce, twigs and needles), and soil horizons (02 and C) were collected and analyzed for major and trace total element concentrations. Using geometric means and geometric deviations, expected baseline ranges for elements were calculated. Results of the ANOVA show that intensive soil or plant sampling is needed to reliably map the geochemistry of the area, due to large local variability. For example, producing reliable element maps of feather moss using a 50 km cell (at 95% probability) would require sampling densities of from 4 samples per cell for Al, Co, Fe, La, Li, and V, to more than 15 samples per cell for Cu, Pb, Se, and Zn.Recent investigations on the Kenai Peninsula had two major objectives: (1) to establish elemental baseline concentrations ranges for native vegetation and soils; and, (2) to determine the sampling density required for preparing stable regional geochemical maps for various elements in native plants and soils. These objectives were accomplished using an unbalanced, nested analysis-of-variance (ANOVA) barbell sampling design. Hylocomium splendens (Hedw.) BSG (feather moss, whole plant), Picea glauca (Moench) Voss (white spruce, twigs and needles), and soil horizons (02 and C) were collected and analyzed for major and trace total element concentrations. Using geometric means and geometric deviations, expected baseline ranges for elements were calculated. Results of the ANOVA show that intensive soil or plant sampling is needed to reliably map the geochemistry of the area, due to large local variability. For example, producing reliable element maps of feather moss using a 50 km cell (at 95% probability) would require sampling densities of from 4 samples per cell Al, Co, Fe, La, Li, and V, to more than 15 samples per cell for Cu, Pb, Se, and Zn.
Moradshahi, A; Vines, H M; Black, C C
1977-02-01
The effects of temperature, O(2), and CO(2) on titratable acid content and on CO(2) exchange were measured in detached pineapple (Ananas comosus) leaves during the daily 15-hour light period. Comparative measurements were made in air and in CO(2)-free air. Increasing the leaf temperature from 20 to 35 C decreased the total CO(2) uptake in air and slightly increased the total CO(2) released into CO(2)-free air. Between 25 and 35 C, the activation energy for daily acid loss was near 12 kcal mol(-1), but at lower temperatures the activation energy was much greater.Increasing O(2) or decreasing the CO(2) concentration decreased the total CO(2) fixation in air, whereas the total CO(2) released in CO(2)-free air was increased. The total acid content remained constant at 20 C, but it decreased progressively with increasing temperature both in air and in CO(2)-free air. The total acid content at 30 C remained constant in 2% O(2) irrespective of CO(2) concentration. The total acid content decreased in 21 and 50% O(2) as the CO(2) increased from 0 to 300, and 540 mul/l of CO(2). The data indicate that photorespiration is present in pineapple. The lack of acid loss in 2% O(2) suggests that light deacidification is dependent upon respiration and that higher O(2) concentrations are required to saturate deacidification.
Condensation and Vaporization Studies of CH3OH and NH3 Ices: Major Implications for Astrochemistry
NASA Technical Reports Server (NTRS)
Sandford, Scott A.; Allamandola, Louis J.
1993-01-01
In an extension of previously reported work on ices containing H20, CO, CO2, SO2, H2S, and H2, We present measurements of the physical and infrared spectral properties of ices containing CH30H and NH3.The condensation and sublimation behavior of these ice systems is discussed and surface binding energies are presented for all of these molecules. The surface binding energies can be used to calculate the residence times of the molecules on grain surfaces as a function of temperature. It is demonstrated that many of the molecules used to generate radio maps of and probe conditions in dense clouds, for example CO and NH3, will be significantly depleted from the gas phase by condensation onto dust grains. Attempts to derive total column densities solely from radio maps that do not take condensation effects into account may vastly underestimate the true column densities of any given species. Simple CO condensation onto and vaporization off of grains appears to be capable of explaining the observed 87 of gas phase CO in cold, dense molecular cores. This is not the case for NH3, however, where thermal considerations alone predict that all of the NH3 should be condensed onto grains. The fact that some gas phase NH3 is observed indicates that additional desorption processes must be involved. The surface binding energies of CH3OH, in conjunction with this molecule's observed behavior during warm up in H2O-rich ices, is shown to provide an explanation of the large excess of CH3OH seen in many warm, dense molecular cores. The near-infrared spectrum and associated integrated band strengths of CH3OH-containing ice are given, as are middle infrared absorption band strengths for both CH3OH and NH3.
An Isometric Mapping Based Co-Location Decision Tree Algorithm
NASA Astrophysics Data System (ADS)
Zhou, G.; Wei, J.; Zhou, X.; Zhang, R.; Huang, W.; Sha, H.; Chen, J.
2018-05-01
Decision tree (DT) induction has been widely used in different pattern classification. However, most traditional DTs have the disadvantage that they consider only non-spatial attributes (ie, spectral information) as a result of classifying pixels, which can result in objects being misclassified. Therefore, some researchers have proposed a co-location decision tree (Cl-DT) method, which combines co-location and decision tree to solve the above the above-mentioned traditional decision tree problems. Cl-DT overcomes the shortcomings of the existing DT algorithms, which create a node for each value of a given attribute, which has a higher accuracy than the existing decision tree approach. However, for non-linearly distributed data instances, the euclidean distance between instances does not reflect the true positional relationship between them. In order to overcome these shortcomings, this paper proposes an isometric mapping method based on Cl-DT (called, (Isomap-based Cl-DT), which is a method that combines heterogeneous and Cl-DT together. Because isometric mapping methods use geodetic distances instead of Euclidean distances between non-linearly distributed instances, the true distance between instances can be reflected. The experimental results and several comparative analyzes show that: (1) The extraction method of exposed carbonate rocks is of high accuracy. (2) The proposed method has many advantages, because the total number of nodes, the number of leaf nodes and the number of nodes are greatly reduced compared to Cl-DT. Therefore, the Isomap -based Cl-DT algorithm can construct a more accurate and faster decision tree.
Remote sensing the sea surface CO2 of the Baltic Sea using the SOMLO methodology
NASA Astrophysics Data System (ADS)
Parard, G.; Charantonis, A. A.; Rutgerson, A.
2015-06-01
Studies of coastal seas in Europe have noted the high variability of the CO2 system. This high variability, generated by the complex mechanisms driving the CO2 fluxes, complicates the accurate estimation of these mechanisms. This is particularly pronounced in the Baltic Sea, where the mechanisms driving the fluxes have not been characterized in as much detail as in the open oceans. In addition, the joint availability of in situ measurements of CO2 and of sea-surface satellite data is limited in the area. In this paper, we used the SOMLO (self-organizing multiple linear output; Sasse et al., 2013) methodology, which combines two existing methods (i.e. self-organizing maps and multiple linear regression) to estimate the ocean surface partial pressure of CO2 (pCO2) in the Baltic Sea from the remotely sensed sea surface temperature, chlorophyll, coloured dissolved organic matter, net primary production, and mixed-layer depth. The outputs of this research have a horizontal resolution of 4 km and cover the 1998-2011 period. These outputs give a monthly map of the Baltic Sea at a very fine spatial resolution. The reconstructed pCO2 values over the validation data set have a correlation of 0.93 with the in situ measurements and a root mean square error of 36 μatm. Removing any of the satellite parameters degraded this reconstructed CO2 flux, so we chose to supply any missing data using statistical imputation. The pCO2 maps produced using this method also provide a confidence level of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of available data, and we expect to be able to produce even more accurate reconstructions in coming years, given the predicted acquisition of new data.
Campus, Marco; Bonaglini, Elia; Cappuccinelli, Roberto; Porcu, Maria Cristina; Tonelli, Roberto; Roggio, Tonina
2011-04-01
A Quality Index Method (QIM) scheme was developed for modified atmosphere packaging (MAP) packed gilthead seabream, and the effect of MAP gas mixtures (60% CO2 and 40% N2; 60% CO2, 30% O2, and 10% N2), temperature (2, 4, and 8 °C), and time of storage on QI scores was assessed. QI scores were crossed with sensory evaluation of cooked fish according to a modified Torry scheme to establish the rejection point. In order to reduce redundant parameters, a principal component analysis was applied on preliminary QIM parameters scores coming from the best performing MAP among those tested. The final QIM scheme consists of 13 parameters and a maximum demerit score of 25. The maximum storage time was found to be 13 d at 4 °C for MAP 60% CO2 and 40% N2. Storage at 2 °C do not substantially improved sensory parameters scores, while storage under temperature abuse (8 °C) accelerated drastically the rate of increase of QI scores and reduced the maximum storage time to 6 d.
NASA Astrophysics Data System (ADS)
Ahn, Hyun-Joo; Kim, Jae-Hyun; Jo, Cheorun; Lee, Ju-Woon; Yook, Hong-Sun; Kim, Hee-Yun; Byun, Myung-Woo
2004-09-01
This study is to investigate the combined effects of irradiation and a modified atmospheric packaging (MAP) on the color, nitrosoheme pigments (NO-Mb), residual nitrite and N-nitrosodimethylamine (NDMA) in sausage during storage. Sausage with air, vacuum, CO 2, N 2, or CO 2/N 2 packaging was irradiated at 5 kGy. Irradiation reduced the red color of sausage, and a vacuum or MAP was effective in minimizing the loss of redness. The reduction of NO-Mb was observed by irradiation, while the MAP was more effective in maintaining the NO-Mb than the aerobic ones. Residual nitrite was reduced by irradiation, and the contents were lower under vacuum or MAP than aerobic ones. NDMA was significantly reduced by irradiation.
Ployngam, Trasida; Katz, Stephen S; Collister, John P
2010-01-01
1. We have shown previously that the chronic hypotensive effect of the angiotensin II AT1 receptor antagonist losartan is mediated, in part, by the subfornical organ (SFO). However, the neural pathway(s) mediating this central effect of losartan downstream from the SFO has not been completely elucidated. 2. The present study was designed to test the hypothesis that the median preoptic nucleus (MnPO) is a crucial part of the neural pathway necessary for the chronic hypotensive effect of losartan. To test this hypothesis, male Sprague-Dawley rats were subjected to either Sham or electrolytic lesion of the MnPO (MnPOx). Rats were instrumented with radiotelemetric transducers and aortic flow probes for the continuous measurement of mean arterial pressure (MAP) and heart rate and cardiac output (CO), respectively. Total peripheral resistance (TPR) was calculated as MAP/CO. After 3 days of baseline measurements, rats were infused intraperitoneally with losartan (10 mg/kg per day) via an osmotic minipump at a rate of 5 microL/min. 3. The data revealed that, by Day 9 of losartan treatment, MAP had decreased 34 +/- 2 mmHg in MnPOx rats (n = 9), whereas the MAP of Sham-lesioned rats (n = 8) had only decreased 24 +/- 3 mmHg. These findings were accompanied by a greater decrease in TPR in MnPOx compared with Sham rats (-0.464 vs-0.237 mmHg/mL per min, respectively), whereas CO remained unchanged throughout the study protocol. 4. These results do not support the hypothesis that an intact MnPO is necessary to mediate the full chronic hypotensive effect of losartan in normal rats. Instead, they appear to suggest that the MnPO may play an important role in buffering the profound hypotension induced by losartan.
Gravitational star formation thresholds and gas density in three galaxies
NASA Technical Reports Server (NTRS)
Oey, M. S.; Kennicutt, R. C., Jr.
1990-01-01
It has long been held that the star formation rate (SFR) may be described as a power law of the gas density, p(exp n), as given by Schmidt (1959). However, this relation has as yet remained poorly defined and is likewise poorly understood. In particular, most studies have been investigations of global gas and star formation properties of galaxies, due to lack of adequate high-resolution data for detailed studies of individual galaxies. The three spiral galaxies in this study have published maps of both H2 (as traced by CO), and HI, thereby enabling the authors to investigate the relationship between total gas surface density and SFR. The purpose of the present investigation is the comparison of spatially-resolved total surface gas density in three galaxies (NGC 6946, M51, and M83) to sigma sub c as given by the above model. CO, HI and H alpha data for NGC 6946 were taken from Tacconi-Garman (1988), and for M51 and M83 from Lord (1987). The authors used a CO-H2 conversion of N(H2)/I sub CO(exp cos i = 2.8 x 10(exp 20) atoms cm(-2)/(K kms(-1), and summed the H2 and HI data for each galaxy to obtain the total hydrogen gas density. This total was then multiplied by a factor of 1.36 to include the contribution of helium to the total surface gas density. The authors assumed distances to NGC 6946, M51, and M83 to be 6.0, 9.6, and 8.9 Mpc respectively, with inclination angles of 30, 20, and 26 degrees. H alpha flux was used as the measure of SFR for NGC 6946, and SFR for the remaining two galaxies was taken directly from Lord as computed from H alpha measurements. The results of these full-disk studies thus show a remarkable correlation between the total gas density and the threshold densities given by the gravitational stability criterion. In particular, the threshold density appears to mark a lower boundary to the range of gas densities in these galaxies, which may have consequence in determining appropriate models for star formation and gas dynamics. More evidence is required to verify this result, and the authors are currently undertaking a high-resolution study of the nearby spiral M33 and other galaxies to further investigate this problem.
Arvanitoyannis, Ioannis S; Bouletis, Achilleas D; Papa, Eirini A; Gkagtzis, Dimitrios C; Hadjichristodoulou, Christos; Papaloucas, C
2011-12-01
Fresh rocket "Eruca Sativa" and lettuce "Lollo Verde" leaves were stored with the addition of olive oil and wine vinegar "Aceto balsamico di Modena" under modified atmosphere packaging (MAP) (5% O(2)/10% CO(2)/85% N(2) for MAP A and 2% O(2)/5% CO(2)/93% N(2) for MAP B). The microbial (mesophilic, psychrotrophic bacteria and Enterobacteriacae), physical (color and firmness) and sensory parameters of samples were studied in relation to storage time (up to 10 days at 5 ± 1 °C). The effect of wine vinegar and the application of both MAP treatments reduced the growth of all bacteria populations (p < 0.05). Samples with olive oil stored under MAP A gave the best score for overall impression (3 and 2.1 for MAP A and B respectively at the 9th day of storage) while the addition of vinegar limited sensory shelf-life to 3 days (p < 0.05). Firmness was negatively affected by wine vinegar while samples with olive oil stored under MAP A maintained firmness close to normal. Color attributes were maintained better under both MAP treatments (p < 0.05). Copyright © 2011 Elsevier Ltd. All rights reserved.
Nuhkat, Maris; Wang, Cun; Wang, Yuh-Shuh; Hõrak, Hanna; Valk, Ervin; Pechter, Priit; Sindarovska, Yana; Tang, Jing; Xiao, Chuanlei; Xu, Yang; Gerst Talas, Ulvi; García-Sosa, Alfonso T.; Kangasjärvi, Saijaliisa; Maran, Uko; Remm, Maido; Roelfsema, M. Rob G.; Hu, Honghong; Kangasjärvi, Jaakko; Loog, Mart; Schroeder, Julian I.; Kollist, Hannes; Brosché, Mikael
2016-01-01
Plant gas exchange is regulated by guard cells that form stomatal pores. Stomatal adjustments are crucial for plant survival; they regulate uptake of CO2 for photosynthesis, loss of water, and entrance of air pollutants such as ozone. We mapped ozone hypersensitivity, more open stomata, and stomatal CO2-insensitivity phenotypes of the Arabidopsis thaliana accession Cvi-0 to a single amino acid substitution in MITOGEN-ACTIVATED PROTEIN (MAP) KINASE 12 (MPK12). In parallel, we showed that stomatal CO2-insensitivity phenotypes of a mutant cis (CO2-insensitive) were caused by a deletion of MPK12. Lack of MPK12 impaired bicarbonate-induced activation of S-type anion channels. We demonstrated that MPK12 interacted with the protein kinase HIGH LEAF TEMPERATURE 1 (HT1)—a central node in guard cell CO2 signaling—and that MPK12 functions as an inhibitor of HT1. These data provide a new function for plant MPKs as protein kinase inhibitors and suggest a mechanism through which guard cell CO2 signaling controls plant water management. PMID:27923039
Winds of change - a molecular outflow in NGC 1377?. The anatomy of an extreme FIR-excess galaxy
NASA Astrophysics Data System (ADS)
Aalto, S.; Muller, S.; Sakamoto, K.; Gallagher, J. S.; Martín, S.; Costagliola, F.
2012-10-01
Aims: Our goal was to investigate the molecular gas distribution and kinematics in the extreme far-infrared (FIR) excess galaxy NGC 1377 and to address the nature and evolutionary status of the buried source. Methods: We used high- (0''65 × 0''52, (65 × 52 pc)) and low- (4''88 × 2''93) resolution SubMillimeter Array (SMA) observations to image the 12CO and 13CO 2-1 line emission. Results: We find bright, complex 12CO 2-1 line emission in the inner 400 pc of NGC 1377. The 12CO 2-1 line has wings that are tracing a kinematical component that appears to be perpendicular to the component traced by the line core. Together with an intriguing X-shape of the integrated intensity and dispersion maps, this suggests that the molecular emission of NGC 1377 consists of a disk-outflow system. Lower limits to the molecular mass and outflow rate are Mout(H2) > 1 × 107 M⊙ and Ṁ > 8 M⊙ yr-1. The age of the proposed outflow is estimated to be 1.4 Myr, the extent to be 200 pc and the outflow speed to be Vout = 140 km s-1. The total molecular mass in the SMA map is estimated to Mtot(H2) = 1.5 × 108 M⊙ (on a scale of 400 pc) while in the inner r = 29 pc the molecular mass is Mcore(H2) = 1.7 × 107 M⊙ with a corresponding H2 column density of N(H2) = 3.4 × 1023 cm-2 and an average 12CO 2-1 brightness temperature of 19 K. 13CO 2-1 emission is found at a factor 10 fainter than 12CO in the low-resolution map while C18O 2-1 remains undetected. We find weak 1 mm continuum emission of 2.4 mJy with spatial extent less than 400 pc. Conclusions: Observing the molecular properties of the FIR-excess galaxy NGC 1377 allows us to probe the early stages of nuclear activity and the onset of feedback in active galaxies. The age of the outflow supports the notion that the current nuclear activity is young - a few Myr. The outflow may be powered by radiation pressure from a compact, dust enshrouded nucleus, but other driving mechanisms are possible. The buried source may be an active galactic nucleus (AGN) or an extremely young (1 Myr) compact starburst. Limitations on size and mass lead us to favor the AGN scenario, but additional studies are required to settle this question. In either case, the wind with its implied mass outflow rate will quench the nuclear power source within the very short time of 5-25 Myr. It is possible, however, that the gas is unable to escape the galaxy and may eventually fall back onto NGC 1377 again.
Carbon Monoxide Distributions and Atmosphere Transports over Southern Africa. Pt-2
NASA Technical Reports Server (NTRS)
Garstang, Michael; Swap, Robert J.; Piketh, Stuart; Mason, Simon; Connors, Vickie
1999-01-01
Sources and transports of CO as measured by the Measurement of Air Pollution from Space (MAPS) over a substantial sector of the southern hemisphere between South America and southern Africa are described by air parcel trajectories based upon European Center for Medium Range Weather Forecasts (ECMWF) model data fields. Observations, made by NASA Shuttle astronauts during the October 1994 mission, of vegetation fires suggest a direct relationship between in situ biomass burning, at least over South America and southern Africa, and coincident tropospheric measurements of CO. Results of this paper indicate that the transport of CO from the surface to the levels of maximum MAPS sensitivity (about 450 hPa) over these regions is not of a direct nature due largely to the well stratified atmospheric environment. The atmospheric transport of CO from biomass burning within this region is found to occur over intercontinental scales over numbers of days to more than a week. Three distinct synoptic circulation and transport classes are found to have occurred over southern Africa during the October 1994 MAPS experiment: (1) transport from South America and Africa to southern Africa associated with elevated MAPS measured CO (> 150 ppbv); (2) weakening anticyclonic transport from South America associated with moderate CO (< 150 ppbv and > 105 ppbv); and (3) transport from the high southern latitudes associated with low CO (<105 ppbv).
Influence of modified atmosphere packaging on 'Star Ruby' grapefruit phytochemicals.
Chaudhary, Priyanka R; Jayaprakasha, G K; Porat, Ron; Patil, Bhimanagouda S
2015-01-28
Modified atmosphere packaging (MAP) can extend the shelf life of salads, vegetables, and fruits by generating a storage environment with low O2, high CO2, and high humidity. The current study investigates the effect of modified atmosphere and humidity generated by two plastic films, microperforated bags (MIPBs) and macroperforated bags (MAPBs), on the levels of phytochemicals present in 'Star Ruby' grapefruits (Citrus paradisi, Macf.) stored for 16 weeks at 10 °C. Control fruits were stored without any packaging film. Juice samples were analyzed every 4 weeks for ascorbic acid, carotenoids, limonoids, flavonoids, and furocoumarins and assessed for quality parameters. MAP significantly reduced weight loss compared to control grapefruits. Control fruits had more β-carotene, lycopene, and furocoumarin compared with the fruits in MAP. Flavonoid content was highest in fruits stored in MAPB (P < 0.05), while fruits stored in MIPB showed no significant difference in flavonoid content compared to control (P > 0.05). The MAP treatments did not significantly affect ascorbic acid, limonoids, or fruit quality parameters, including total soluble solids, acidity, ripening ratio, decay and disorders, fruit taste, and off-flavors after 16 weeks of storage. These results suggest that MAP can be used to maintain the quality of 'Star Ruby' grapefruit with no detrimental effect on health-promoting phytochemicals.
Gu, Wenwen; Chen, Ying; Li, Yu
2017-08-01
Based on the experimental subcooled liquid vapor pressures (P L ) of 17 polychlorinated naphthalene (PCN) congeners, one type of three-dimensional quantitative structure-activity relationship (3D-QSAR) models, comparative molecular similarity indices analysis (CoMSIA), was constructed with Sybyl software. Full factor experimental design was used to obtain the final regulation scheme for PCN, and then carry out modification of PCN-2 to significantly lower its P L . The contour maps of CoMSIA model showed that the migration ability of PCN decreases when the Cl atoms at the 2-, 3-, 4-, 5-, 6-, 7- and 8-positions of PCNs are replaced by electropositive groups. After modification of PCN-2, 12 types of new modified PCN-2 compounds were obtained with lnP L values two orders of magnitude lower than that of PCN-2. In addition, there are significant differences between the calculated total energies and energy gaps of the new modified compounds and those of PCN-2.
Evaluation of NASA's Carbon Monitoring System (CMS) Flux Pilot: Terrestrial CO2 Fluxes
NASA Astrophysics Data System (ADS)
Fisher, J. B.; Polhamus, A.; Bowman, K. W.; Collatz, G. J.; Potter, C. S.; Lee, M.; Liu, J.; Jung, M.; Reichstein, M.
2011-12-01
NASA's Carbon Monitoring System (CMS) flux pilot project combines NASA's Earth System models in land, ocean and atmosphere to track surface CO2 fluxes. The system is constrained by atmospheric measurements of XCO2 from the Japanese GOSAT satellite, giving a "big picture" view of total CO2 in Earth's atmosphere. Combining two land models (CASA-Ames and CASA-GFED), two ocean models (ECCO2 and NOBM) and two atmospheric chemistry and inversion models (GEOS-5 and GEOS-Chem), the system brings together the stand-alone component models of the Earth System, all of which are run diagnostically constrained by a multitude of other remotely sensed data. Here, we evaluate the biospheric land surface CO2 fluxes (i.e., net ecosystem exchange, NEE) as estimated from the atmospheric flux inversion. We compare against the prior bottom-up estimates (e.g., the CASA models) as well. Our evaluation dataset is the independently derived global wall-to-wall MPI-BGC product, which uses a machine learning algorithm and model tree ensemble to "scale-up" a network of in situ CO2 flux measurements from 253 globally-distributed sites in the FLUXNET network. The measurements are based on the eddy covariance method, which uses observations of co-varying fluxes of CO2 (and water and energy) from instruments on towers extending above ecosystem canopies; the towers integrate fluxes over large spatial areas (~1 km2). We present global maps of CO2 fluxes and differences between products, summaries of fluxes by TRANSCOM region, country, latitude, and biome type, and assess the time series, including timing of minimum and maximum fluxes. This evaluation shows both where the CMS is performing well, and where improvements should be directed in further work.
Landslides triggered by the January 12, 2010 Port-au-Prince, Haiti Mw 7.0 earthquake
NASA Astrophysics Data System (ADS)
Xu, Chong
2014-05-01
The January 12, 2010 Port-au-Prince, Haiti earthquake (Mw 7.0) triggered tens of thousands of landslides. The purpose of this study is to investigate correlations of the occurrence of landslides and its erosion thickness with topographic factors, seismic parameters, and distance from roads. A total of 30,828 landslides triggered by the earthquake cover a total area of 15.736 km2, and the volume of landslide accumulation materials is estimated to be about 30,000,000 m3, and throughout an area more than 3,000 km2. These landslides are of various types, mainly in shallow disrupted landslides and rock falls, and also including coherent deep-seated landslides, shallow disrupted landslides, rock falls, and rock slides. These landslides were delineated using pre- and post-earthquake high-resolutions satellite images. Spatial distribution maps and contour maps of landslide number density, landslide area percentage, and landslide erosion thickness were respectively constructed in order to more intuitive to discover the spatial distribution patterns of the co-seismic landslides. Statistics of size distribution and morphometric parameters of the co-seismic landslides were carried out and were compared with other earthquake events. Four proxies of co-seismic landslides abundances, including landslides centroid number density (LCND), landslide top number density (LTND), landslide area percentage (LAP), and landslide erosion thickness (LET) were used to correlate the co-seismic landslides with various landslide controlling parameters. These controlling parameters include elevation, slope angle, slope aspect, slope curvature, topographic position, distance from drainages, stratum/lithology, distance from the epicenter, distance from the Enriquillo-Plantain Garden fault, distance along the fault, and peak ground acceleration (PGA). Comparing of controls of impact parameters on co-seismic landslides show that slope angle is the strongest impact parameter on co-seismic landslides occurrence. In addition, it should be noted that the co-seismic landslides of our inventories is much more detailed than other inventories in several previous publications. Therefore, comparisons of inventories of landslides triggered by the Haiti earthquake with other published results were carried out and the reasons of such differences were presented. We suggest it should not be limited by past empirical functions between earthquake magnitude and co-seismic landslides or it is necessary to update the past empirical functions based on more and more latest and complete co-seismic landslide inventories. This research was supported by the National Science Foundation of China (41202235)
Gene networks associated with conditional fear in mice identified using a systems genetics approach
2011-01-01
Background Our understanding of the genetic basis of learning and memory remains shrouded in mystery. To explore the genetic networks governing the biology of conditional fear, we used a systems genetics approach to analyze a hybrid mouse diversity panel (HMDP) with high mapping resolution. Results A total of 27 behavioral quantitative trait loci were mapped with a false discovery rate of 5%. By integrating fear phenotypes, transcript profiling data from hippocampus and striatum and also genotype information, two gene co-expression networks correlated with context-dependent immobility were identified. We prioritized the key markers and genes in these pathways using intramodular connectivity measures and structural equation modeling. Highly connected genes in the context fear modules included Psmd6, Ube2a and Usp33, suggesting an important role for ubiquitination in learning and memory. In addition, we surveyed the architecture of brain transcript regulation and demonstrated preservation of gene co-expression modules in hippocampus and striatum, while also highlighting important differences. Rps15a, Kif3a, Stard7, 6330503K22RIK, and Plvap were among the individual genes whose transcript abundance were strongly associated with fear phenotypes. Conclusion Application of our multi-faceted mapping strategy permits an increasingly detailed characterization of the genetic networks underlying behavior. PMID:21410935
Offshore Storage Resource Assessment - Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Bill; Ozgen, Chet
The DOE developed volumetric equation for estimating Prospective Resources (CO 2 storage) in oil and gas reservoirs was utilized on each depleted field in the Federal GOM. This required assessment of the in-situ hydrocarbon fluid volumes for the fields under evaluation in order to apply the DOE equation. This project utilized public data from the U.S. Department of the Interior, Bureau of Ocean Energy Management (BOEM) Reserves database and from a well reputed, large database (250,000+ wells) of GOM well and production data marketed by IHS, Inc. IHS interpreted structure map files were also accessed for a limited number ofmore » fields. The databases were used along with geological and petrophysical software to identify depleted oil and gas fields in the Federal GOM region. BOEM arranged for access by the project team to proprietary reservoir level maps under an NDA. Review of the BOEM’s Reserves database as of December 31, 2013 indicated that 675 fields in the region were depleted. NITEC identified and rank these 675 fields containing 3,514 individual reservoirs based on BOEM’s estimated OOIP or OGIP values available in the Reserves database. The estimated BOEM OOIP or OGIP values for five fields were validated by an independent evaluation using available petrophysical, geologic and engineering data in the databases. Once this validation was successfully completed, the BOEM ranked list was used to calculate the estimated CO 2 storage volume for each field/reservoir using the DOE CO 2 Resource Estimate Equation. This calculation assumed a range for the CO 2 efficiency factor in the equation, as it was not known at that point in time. NITEC then utilize reservoir simulation to further enhance and refine the DOE equation estimated range of CO 2 storage volumes. NITEC used a purpose built, publically available, 4-component, compositional reservoir simulator developed under funding from DOE (DE-FE0006015) to assess CO 2-EOR and CO 2 storage in 73 fields/461 reservoirs. This simulator was fast and easy to utilize and provided a valuable enhanced assessment and refinement of the estimated CO 2 storage volume for each reservoir simulated. The user interface was expanded to allow for calculation of a probability based assessment of the CO 2 storage volume based on typical uncertainties in operating conditions and reservoir properties during the CO 2 injection period. This modeling of the CO 2 storage estimates for the simulated reservoirs resulted in definition of correlations applicable to all reservoir types (a refined DOE equation) which can be used for predictive purposes using available public data. Application of the correlations to the 675 depleted fields yielded a total CO 2 storage capacity of 4,748 MM tons. The CO 2 storage assessments were supplemented with simulation modeling of eleven (11) oil reservoirs that quantified the change in the stored CO 2 storage volume with the addition of CO 2-EOR (Enhanced Oil Recovery) production. Application of CO 2-EOR to oil reservoirs resulted in higher volumes of CO 2 storage.« less
Indonesian Geomagnetic Maps for Epoch 2015.0 to cover of Indonesian Regions
NASA Astrophysics Data System (ADS)
Syirojudin, M.; Murjaya, J.; Zubaidah, S.; Hasanudin; Ahadi, S.; Efendi, N.; Suroyo, T.
2018-03-01
In compliance with the resolutions of IAGA (International Association of Geomagnetism and Aeronomy), Since 1960’s, every five years BMKG or Meteorology, Climatology and Geophysics Agency of Indonesia made geomagnetic field maps based on actual measurements in 53 repeat stations. It’s the map for more accurate result of Geomagnetic maps Epoch 2015.0, the number of repeat stations has been increased to 68 locations. Analysis data was conducted by spatial analyses using collocated co-kriging and kriging with external drift to map the observation data in five components, such as Declination (D), Inclination (I), Vertical (Z), Horizontal (H), and Total Geomagnetic Field (F). The data reduction used one permanent observatory i.e., Kupang Geophysical Observatory, as a reference standard. The results of this Geomagnetic Maps, that the contour lines of Indonesian geomagnetic declination in range -1 to 4.5 degree, Inclination component are -5 to -37 degree, Vertical component are -4000 to -28000 nT, Horizontal component are 36000 to 42000 nT, and Total Geomagnetic Field are 39000 to 46000 nT. In conclusion, Indonesian Geomagnetic Maps for Epoch 2015.0 can be used to compute geomagnetic data around Indonesian regions until next 5 years.
Sensors for Food Safety and Security
NASA Astrophysics Data System (ADS)
Papkovsky, Dmitri B.
Active packaging of food products is aimed at extending shelf life, preserving and improving quality, taste characteristics and appearance of a product. Modified atmosphere packaging (MAP) have become widely used with oxygen sensitive foods, as it enables to inhibit or delay undesirable processes inside packs such as oxidation of lipids and hemecontaining pigments, enzymatic degradation, microbial spoilage, etc. In MAP process, the package container with food is flushed with a mixture of CO2, N2, and O2 gases to replace air, and then sealed. The function of CO2 is to decrease the growth rate of micro-organisms, N2 displaces O2 and also prevents the packaging from collapsing when some of the CO2 is absorbed by moisture in the product1. The majority of MAP foods are packed under the atmosphere with considerably reduced oxygen levels, while products such as raw meat, fruit and vegetables require high concentration of oxygen to keep their appearance and/or shelf life.
Zhu, Yingchun; Ma, Lizhen; Yang, Hua; Xiao, Yan; Xiong, Youling L
2016-09-01
Controlled freezing-point storage (CFPS) is an emerging preservative technique desirable for fish. In the present study, catfish fillets were stored at -0.7°C under different packaging atmospheres: air (AP), vacuum (VP), and 60% CO2/40% N2 (MAP). Chemical, microbiological, and sensory analyses were performed during storage. Results showed the following descending order of chemical changes (degradation of nucleotides, conversion of protein to volatile-based nitrogen and biogenic amines, and production of trimethylamine nitrogen), as well as loss of sensory properties: 4°C AP>-0.7°C AP≈4°C VP>-0.7°C VP≈4°C MAP>-0.7°C MAP. The chemical changes were well-correlated with microbial growth suggesting the microbiological pathways. Hence, CFPS at -0.7°C in combination with high-CO2 MAP can effectively maintain the quality of fresh catfish meat compared to traditional preservation methods. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Barrancos, José; Cook, Jenny; Phillips, Victoria; Asensio-Ramos, María; Melián, Gladys; Hernández, Pedro A.; Pérez, Nemesio M.
2016-04-01
Landfills are authentic chemical and biological reactors that introduce in the environment a wide amount of gas pollutants (CO2, CH4, volatile organic compounds, etc.) and leachates. Even after years of being closed, a significant amount of landfill gas could be released to the atmosphere through the surface in a diffuse form, also known as non-controlled emission. The study of the spatial-temporal distribution of diffuse emissions provides information of how a landfill degassing takes place. The main objective of this study was to estimate the diffuse uncontrolled emission of CH4 into the atmosphere from the closed Arico's landfill (0.3 km2) in Tenerife Island, Spain. To do so, a non-controlled biogenic gas emission survey of nearly 450 sampling sites was carried out during August 2015. Surface gas sampling and surface landfill CO2 efflux measurements were carried out at each sampling site by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. Landfill gases, CO2 and CH4, were analyzed using a double channel VARIAN 4900 micro-GC. The CH4 efflux was computed combining CO2 efflux and CH4/CO2 ratio in the landfill's surface gas. To quantify the total CH4 emission, CH4 efflux contour map was constructed using sequential Gaussian simulation (sGs) as interpolation method. The total diffuse CH4 emission was estimated in 2.2 t d-1, with CH4 efflux values ranging from 0-922 mg m-2 d-1. This type of studies provides knowledge of how a landfill degasses and serves to public and private entities to establish effective systems for extraction of biogas. This aims not only to achieve higher levels of controlled gas release from landfills resulting in a higher level of energy production but also will contribute to minimize air pollution caused by them.
A Mobile Sensor Network to Map CO2 in Urban Environments
NASA Astrophysics Data System (ADS)
Lee, J.; Christen, A.; Nesic, Z.; Ketler, R.
2014-12-01
Globally, an estimated 80% of all fuel-based CO2 emissions into the atmosphere are attributable to cities, but there is still a lack of tools to map, visualize and monitor emissions to the scales at which emissions reduction strategies can be implemented - the local and urban scale. Mobile CO2 sensors, such as those attached to taxis and other existing mobile platforms, may be a promising way to observe and map CO2 mixing ratios across heterogenous urban environments with a limited number of sensors. Emerging modular open source technologies, and inexpensive compact sensor components not only enable rapid prototyping and replication, but also are allowing for the miniaturization and mobilization of traditionally fixed sensor networks. We aim to optimize the methods and technologies for monitoring CO2 in cities using a network of CO2 sensors deployable on vehicles and bikes. Our sensor technology is contained in a compact weather-proof case (35.8cm x 27.8cm x 11.8cm), powered independently by battery or by car, and includes the Li-Cor Li-820 infrared gas analyzer (Licor Inc, lincoln, NB, USA), Arduino Mega microcontroller (Arduino CC, Italy) and Adafruit GPS (Adafruit Technologies, NY, USA), and digital air temperature thermometer which measure CO2 mixing ratios (ppm), geolocation and speed, pressure and temperature, respectively at 1-second intervals. With the deployment of our sensor technology, we will determine if such a semi-autonomous mobile approach to monitoring CO2 in cities can determine excess urban CO2 mixing ratios (i.e. the 'urban CO2 dome') when compared to values measured at a fixed, remote background site. We present results from a pilot study in Vancouver, BC, where the a network of our new sensors was deployed both in fixed network and in a mobile campaign and examine the spatial biases of the two methods.
Relationships between air pollution and preterm birth in California.
Huynh, Mary; Woodruff, Tracey J; Parker, Jennifer D; Schoendorf, Kenneth C
2006-11-01
Air pollution from vehicular emissions and other combustion sources is related to cardiovascular and respiratory outcomes. However, few studies have investigated the relationship between air pollution and preterm birth, a primary cause of infant mortality and morbidity. This analysis examined the effect of fine particulate matter (PM(2.5)) and carbon monoxide (CO) on preterm birth in a matched case-control study. PM(2.5) and CO monitoring data from the California Air Resources Board were linked to California birth certificate data for singletons born in 1999-2000. Each birth was mapped to the closest PM monitor within 5 miles of the home address. County-level CO measures were utilised to increase sample size and maintain a representative population. After exclusion of implausible birthweight-gestation combinations, preterm birth was defined as birth occurring between 24 and 36 weeks' gestation. Each of the 10 673 preterm cases was matched to three controls of term (39-44 weeks) gestation with a similar date of last menstrual period. Based on the case's gestational age, CO and PM(2.5) exposures were calculated for total pregnancy, first month of pregnancy, and last 2 weeks of pregnancy. Exposures were divided into quartiles; the lowest quartile was the reference. Because of the matched design, conditional logistic regression was used to adjust for maternal race/ethnicity, age, parity, marital status and education. High total pregnancy PM(2.5) exposure was associated with a small effect on preterm birth, after adjustment for maternal factors (adjusted odds ratio [AOR] = 1.15, [95% CI 1.07, 1.24]). The odds ratio did not change after adjustment for CO. Results were similar for PM(2.5) exposure during the first month of pregnancy (AOR = 1.21, 95% CI [1.12, 1.30]) and the last 2 weeks of pregnancy (AOR = 1.17, 95% CI [1.09, 1.27]). Conversely, CO exposure at any time during pregnancy was not associated with preterm birth (AORs from 0.95 to 1.00). Maternal exposure to PM(2.5), but not CO, is associated with preterm birth. This analysis did not show differences by timing of exposure, although more detailed examination may be needed.
VizieR Online Data Catalog: Ophiuchus molecular cloud CO observations (White+, 2015)
NASA Astrophysics Data System (ADS)
White, G. J.; Drabek-Maunder, E.; Rosolowsky, E.; Ward-Thompson, D.; Davis, C. J.; Gregson, J.; Hatchell, J.; Etxaluze, M.; Stickler, S.; Buckle, J.; Johnstone, D.; Friesen, R.; Sadavoy, S.; Natt, K. V.; Currie, M.; Richer, J. S.; Pattle, K.; Spaans, M.; di, Francesco J.; Hogerheijde, M. R.
2017-05-01
The HARP (Heterodyne Array Receiver Programme) receiver contains an array of 16 heterodyne detectors, arranged in a 4x4 footprint on the sky. HARP was used to make maps in the CO, 13CO, and C18O J=3-2 lines, where it has a beamsize of 14 arcsec at 345GHz (corresponding to a linear size of 0.008pc at the Ophiuchus cloud). The molecular line observations were made up of 3.2h of CO data taken in 2008 February and March and 16.6h of 13CO and C18O observations taken during 2008 March, July, and August. The maps were observed using the standard on-the-fly mapping mode, and referenced against an off-source reference position at RA(J2000)=16:38:00.6, Dec(J2000)=-25:36:42.0, which had been verified to show no line emission from examination of 60s position-switched 'stare' observation in CO. The CO data were taken with the AutoCorrelation Spectrometer and Imaging System (ACSIS) using its 250 MHz dual subband mode that provided 4096 channels, each with a velocity resolution ~0.05km/s per channel. The 13CO/C18O data were taken simultaneously with each other, with each subband having a central rest frequency of 330.587 or 329.330GHz, respectively, providing a velocity resolution ~0.055km/s. All of the isotopologue maps were then further convolved to a resolution of 0.1km/s. To support the JCMT observations, a deep United Kingdom Infrared Telescope (UKIRT) image of the Oph region was obtained using a near-IR K-band filter, and a matching narrow-band H2 image. (1 data file).
NASA Astrophysics Data System (ADS)
Drewicz, A.; Kohn, M. J.
2017-12-01
The mid-Miocene Climatic Optimum (MMCO; 13.75-16.9 Ma), represents the warmest period in Earth's history during the last 35 Ma, and is distinguished by low ice volume and high ocean water temperatures. The MMCO has been associated with high atmospheric CO2 (pCO2) similar to levels anticipated in the next century. Thus, understanding MMCO climate may help enlighten predictions of future climate change. Here, using new stable oxygen and carbon isotopes of fossil ungulate tooth enamel from before, during, and after the MMCO, we show that high pCO2 corresponds with warm-wet conditions, whereas low pCO2 corresponds with cool-dry conditions. We specifically show that mean annual precipitation (MAP), as inferred from tooth enamel δ13C values and corrected for atmospheric δ13C values (Δ13C), increased with increasing pCO2. Values of Δ13C > 19.5 ‰ in the lower John Day ( 27 Ma) and Mascall ( 15.3 Ma) localities imply relatively high mean annual precipitation (MAP = 550-850 mm/yr). Values of Δ 13C < 18.5 ‰ at 18 Ma and at four levels between 15 and 3 Ma imply low MAP (≤250 mm/yr), similar to modern climate. High MAP values generally correlate with high pCO2 levels, as inferred from marine records, implicating pCO2 as a principal driver of MAP in the Pacific Northwest. A climate oscillation model best explains our δ 13C data, such that warm-wet conditions during high pCO2 events alternated with cool-dry conditions during low pCO2 events on timescales of 100 kyr. The MMCO may have been more dynamic than originally considered, with wet-warm and cool-dry cycles reflecting Milankovitch cycles. High δ18O values in specimens from the John Day (21.8±0.6 ‰ V-SMOW) and Mascall (21.3±0.5 ‰) Formations may reflect lower elevations for the upwind Cascade Range prior to 7 Ma, or its proximity to the coast compared to more inland sites (δ18O = 17.7±0.9 to 19.6±1.1 ‰). Unusually high δ18O values of Dromomeryx sp. from Red Basin (27.4±0.6 ‰) most likely reflect drought tolerance. Climate models predict that as global atmospheric CO2 levels continue to increase, the Pacific Northwest will become wetter and warmer. Data collected in this study are from time periods geologically close to our own, and corroborate thes
High resolution sub-millimetre mapping of starburst galaxies: Comparison with CO emission
NASA Technical Reports Server (NTRS)
Smith, P. A.; Brand, P. W. J. L.; Puxley, Phil J.; Mountain, C. M.; Nakai, Naomasa
1990-01-01
Researchers present first results from a program of submillimeter continuum mapping of starburst galaxies, and comparison of their dust and CO emission. This project was prompted by surprising results from the first target, the nearby starburst M82, which shows in the dust continuum a morphology quite unlike that of its CO emission, in contrast to what might be expected if both CO and dust are accurately tracing the molecular hydrogen. Possible explanations for this striking difference are discussed. In the light of these results, the program has been extended to include sub-mm mapping of the nearby, vigorously star forming spirals, M83 and Maffei 2. The latter were also observed extensively in CO, in order to study excitation conditions in its central regions. The James Clerk Maxwell Telescope was used in these studies.
Ban, Zhaojun; Feng, Jianhua; Wei, Wenwen; Yang, Xiangzheng; Li, Jilan; Guan, Junfeng; Li, Jiang
2015-08-01
Edible coating has been an innovation within the bioactive packaging concept. The comparative analysis upon the effect of edible coating, sodium chlorite (SC) and their combined application on quality maintenance of minimally processed pomelo (Citrus grandis) fruits during storage at 4 °C was conducted. Results showed that the combination of edible coating and SC dipping delayed the microbial development whereas the sole coating or dipping treatment was less efficient. The synergetic application of edible coating and SC treatment under modified atmosphere packaging (MAP, 10% O2 , 10% CO2 ) was able to maintain the total soluble solids level and ascorbic acid content, while reduce the weight loss as well as development of mesophiles and psychrotrophs. Nonetheless, the N, O-carboxymethyl chitosan solely coated samples showed significantly higher level of weight loss during storage with comparison to the untreated sample. Furthermore, the combined application of edible coating and SC dipping under active MAP best maintained the sensory quality of minimally processed pomelo fruit during storage. © 2015 Institute of Food Technologists®
The Orbiting Carbon Observatory Mission: Watching the Earth Breathe Mapping CO2 from Space
NASA Technical Reports Server (NTRS)
Boain, Ron
2007-01-01
Approach: Collect spatially resolved, high resolution spectroscopic observations of CO2 and O2 absorption in reflected sunlight. Use these data to resolve spatial and temporal variations in the column averaged CO2 dry air mole fraction, X(sub CO2) over the sunlit hemisphere. Employ independent calibration and validation approaches to produce X(sub CO2) estimates with random errors and biases no larger than 1-2 ppm (0.3-0.5%) on regional scales at monthly intervals.
Measuring the Epoch of Reionization using [CII] Intensity Mapping with TIME-Pilot
NASA Astrophysics Data System (ADS)
Crites, Abigail; Bock, James; Bradford, Matt; Bumble, Bruce; Chang, Tzu-Ching; Cheng, Yun-Ting; Cooray, Asantha R.; Hailey-Dunsheath, Steve; Hunacek, Jonathon; Li, Chao-Te; O'Brient, Roger; Shirokoff, Erik; Staniszewski, Zachary; Shiu, Corwin; Uzgil, Bade; Zemcov, Michael B.; Sun, Guochao
2017-01-01
TIME-Pilot (the Tomographic Ionized carbon Intensity Mapping Experiment) is a new instrument designed to probe the epoch of reionization (EoR) by measuring the 158 um ionized carbon emission line [CII] from redshift 5 - 9. TIME-Pilot will also probe the molecular gas content of the universe during the epoch spanning the peak of star formation (z ~ 1 -3) by making an intensity mapping measurement of the CO transitions in the TIME-Pilot band (CO(3-2), CO(4-3), CO(5-4), and CO(6-5)). I will describe the instrument we are building which is an R of ~100 spectrometer sensitive to the 200-300 GHz radiation. The camera is designed to measure the line emission from galaxies using an intensity mapping technique. This instrument will allow us to detect the [CII] clustering fluctuations from faint galaxies during EoR and compare these measurements to predicted [CII] amplitudes from current models. The CO measurements will allow us to constrain models for galaxies at lower redshift. The [CII] intensity mapping measurements that will be made with TIME-Pilot and detailed measurements made with future more sensitive mm-wavelength spectrometers are complimentary to 21-cm measurements of the EoR and complimentary to direct detections of high redshift galaxies with HST, ALMA, and, in the future, JWST.
Buried CO2 Ice traces in South Polar Layered Deposits of Mars detected by radar sounder
NASA Astrophysics Data System (ADS)
Castaldo, L.; Mège, D.; Orosei, R.; Séjourné, A.
2014-12-01
SHARAD (SHAllow RADar) is the subsurface sounding radar provided by the Italian Space Agency (ASI) as a facility instrument to NASA's 2005 Mars Reconnaissance Orbiter (MRO). The Reduced Data Record of SHARAD data covering the area of the South Polar Layered Deposits (SPLD), has been used. The elaboration and interpretation of the data, aimed to estimate electromagnetic properties of surface layers, has been performed in terms of permittivity. The theory of electromagnetic scattering from fractal surfaces, and the estimation of geometric parameters from topographic data by Mars Orbiter Laser Altimeter (MOLA) which was one of five instruments on board the Mars Global Surveyor (MGS) spacecraft, has been used. A deep analysis of inversion has been made on all Mars and extended to the South Polar Caps in order to extract the area with a permittivity constant of CO2 ice. Several corrections have been applied to the data, moreover the calibration of the signal requires the determination of a constant that takes into account the power gain due to the radar system and the surface in order to compensate the power losses due to the orbitographic phenomena. The determination of regions with high probability of buried CO2 ice in the first layer of the Martian surface, is obtained extracting the real part of the permittivity constant of the CO2 ice (~2), estimated by other means. The permittivity of CO2ice is extracted from the Global Permittivity Map of Mars using the global standard deviation of itself as following: ɛCO2ice=ɛCO2ice+ Σ (1)where Σ=±std(ɛMapMars)/2Figure 1(a) shows the south polar areas where the values of the permittivity point to the possibility of a CO2 ice layer. Figure 1(b) is the corresponding geologic map. The comparison between the two maps indicates that the area with probable buried CO2 overlaps Hesperian and Amazonian polar units (Hp, Hesperian plains-forming deposits marked by narrow sinuous, anabranching ridges and irregular depressions, and Apu, Amazonian layered plateaus). From this analysis, the south polar cap could be covered by a thin frozen carbon dioxide coating. The perennial south polar cap is probably made of frozen carbon dioxide ca. 8 meters thick.
de Miguel, Marina; de Maria, Nuria; Guevara, M Angeles; Diaz, Luis; Sáez-Laguna, Enrique; Sánchez-Gómez, David; Chancerel, Emilie; Aranda, Ismael; Collada, Carmen; Plomion, Christophe; Cabezas, José-Antonio; Cervera, María-Teresa
2012-10-04
Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS) through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15) belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest.
2012-01-01
Background Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS) through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15) belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. Results We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. Conclusions This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest. PMID:23036012
NASA Astrophysics Data System (ADS)
Cormier, D.; Bigiel, F.; Jiménez-Donaire, M. J.; Leroy, A. K.; Gallagher, M.; Usero, A.; Sandstrom, K.; Bolatto, A.; Hughes, A.; Kramer, C.; Krumholz, M. R.; Meier, D. S.; Murphy, E. J.; Pety, J.; Rosolowsky, E.; Schinnerer, E.; Schruba, A.; Sliwa, K.; Walter, F.
2018-04-01
Carbon monoxide (CO) provides crucial information about the molecular gas properties of galaxies. While 12CO has been targeted extensively, isotopologues such as 13CO have the advantage of being less optically thick and observations have recently become accessible across full galaxy discs. We present a comprehensive new data set of 13CO(1-0) observations with the IRAM 30-m telescope of the full discs of nine nearby spiral galaxies from the EMPIRE survey at a spatial resolution of ˜1.5 kpc. 13CO(1-0) is mapped out to 0.7 - 1 r25 and detected at high signal-to-noise ratio throughout our maps. We analyse the 12CO(1-0)-to-13CO(1-0) ratio (ℜ) as a function of galactocentric radius and other parameters such as the 12CO(2-1)-to-12CO(1-0) intensity ratio, the 70-to-160 μm flux density ratio, the star formation rate surface density, the star formation efficiency, and the CO-to-H2 conversion factor. We find that ℜ varies by a factor of 2 at most within and amongst galaxies, with a median value of 11 and larger variations in the galaxy centres than in the discs. We argue that optical depth effects, most likely due to changes in the mixture of diffuse/dense gas, are favoured explanations for the observed ℜ variations, while abundance changes may also be at play. We calculate a spatially resolved 13CO(1-0)-to-H2 conversion factor and find an average value of 1.0 × 1021 cm-2 (K km s-1)-1 over our sample with a standard deviation of a factor of 2. We find that 13CO(1-0) does not appear to be a good predictor of the bulk molecular gas mass in normal galaxy discs due to the presence of a large diffuse phase, but it may be a better tracer of the mass than 12CO(1-0) in the galaxy centres where the fraction of dense gas is larger.
Connecting CO intensity mapping to molecular gas and star formation in the epoch of galaxy assembly
Li, Tony Y.; Wechsler, Risa H.; Devaraj, Kiruthika; ...
2016-01-29
Intensity mapping, which images a single spectral line from unresolved galaxies across cosmological volumes, is a promising technique for probing the early universe. Here we present predictions for the intensity map and power spectrum of the CO(1–0) line from galaxies atmore » $$z\\sim 2.4$$–2.8, based on a parameterized model for the galaxy–halo connection, and demonstrate the extent to which properties of high-redshift galaxies can be directly inferred from such observations. We find that our fiducial prediction should be detectable by a realistic experiment. Motivated by significant modeling uncertainties, we demonstrate the effect on the power spectrum of varying each parameter in our model. Using simulated observations, we infer constraints on our model parameter space with an MCMC procedure, and show corresponding constraints on the $${L}_{\\mathrm{IR}}$$–$${L}_{\\mathrm{CO}}$$ relation and the CO luminosity function. These constraints would be complementary to current high-redshift galaxy observations, which can detect the brightest galaxies but not complete samples from the faint end of the luminosity function. Furthermore, by probing these populations in aggregate, CO intensity mapping could be a valuable tool for probing molecular gas and its relation to star formation in high-redshift galaxies.« less
Müller, Philipp; Meffert, Matthias; Störmer, Heike; Gerthsen, Dagmar
2013-12-01
A fast method for determination of the Co-valence state by electron energy loss spectroscopy in a transmission electron microscope is presented. We suggest the distance between the Co-L3 and Co-L2 white-lines as a reliable property for the determination of Co-valence states between 2+ and 3+. The determination of the Co-L2,3 white-line distance can be automated and is therefore well suited for the evaluation of large data sets that are collected for line scans and mappings. Data with a low signal-to-noise due to short acquisition times can be processed by applying principal component analysis. The new technique was applied to study the Co-valence state of Ba0.5Sr0.5Co0.8Fe0.2O3-d (BSCF), which is hampered by the superposition of the Ba-M4,5 white-lines on the Co-L2,3 white-lines. The Co-valence state of the cubic BSCF phase was determined to be 2.2+ (±0.2) after annealing for 100 h at 650°C, compared to an increased valence state of 2.8+ (±0.2) for the hexagonal phase. These results support models that correlate the instability of the cubic BSCF phase with an increased Co-valence state at temperatures below 840°C.
Extended shelf life of soy bread using modified atmosphere packaging.
Fernandez, Ursula; Vodovotz, Yael; Courtney, Polly; Pascall, Melvin A
2006-03-01
This study investigated the use of modified atmosphere packaging (MAP) to extend the shelf life of soy bread with and without calcium propionate as a chemical preservative. The bread samples were packaged in pouches made from low-density polyethylene (LDPE) as the control (film 1), high-barrier laminated linear low-density polyethylene (LLDPE)-nylon-ethylene vinyl alcohol-nylon-LLDPE (film 2), and medium-barrier laminated LLDPE-nylon-LLDPE (film 3). The headspace gases used were atmosphere (air) as control, 50% CO2-50% N2, or 20% CO2-80% N2. The shelf life was determined by monitoring mold and yeast (M+Y) and aerobic plate counts (APC) in soy bread samples stored at 21 degrees C +/- 3 degrees C and 38% +/- 2% relative humidity. At 0, 2, 4, 6, 8, 10, and 12 days of storage, soy bread samples were removed, and the M+Y and APC were determined. The preservative, the films, and the headspace gases had significant effects on both the M+Y counts and the APC of soy bread samples. The combination of film 2 in the 50% CO2-50% N2 or 20% CO2-80% N2 headspace gases without calcium propionate as the preservative inhibited the M+Y growth by 6 days and the APC by 4 days. It was thus concluded that MAP using film 2 with either the 50% CO2-50% N2 or 20% CO2-80% N2 was the best combination for shelf-life extension of the soy bread without the need for a chemical preservative. These MAP treatments extended the shelf life by at least 200%.
Barz, Anne; Noack, Anika; Baumgarten, Peter; Seifert, Volker; Forster, Marie-Therese
2018-04-01
Evidence for cerebral reorganization after resection of low-grade glioma has mainly been obtained by serial intraoperative cerebral mapping. Noninvasively collected data on cortical plasticity in tumor patients over a surgery-free period are still scarce. The present study therefore aimed at evaluating motor cortex reorganization by navigated transcranial magnetic stimulation (nTMS) in patients after perirolandic glioma surgery. nTMS was performed preoperatively and postoperatively in 20 patients, separated by 26.1 ± 24.8 months. Further nTMS mapping was conducted in 14 patients, resulting in a total follow-up period of 46.3 ± 25.4 months. Centers of gravity (CoGs) were calculated for every muscle representation area, and Euclidian distances between CoGs over time were defined. Results were compared with data from 12 healthy individuals, who underwent motor cortex mapping by nTMS in 2 sessions. Preoperatively and postoperatively pooled CoGs from the area of the dominant abductor pollicis brevis muscle and of the nondominant leg area differed significantly compared with healthy individuals (P < 0.05). Most remarkably, during the ensuing follow-up period, a reorganization of all representation areas was observed in 3 patients, and a significant shift of hand representation areas was identified in further 3 patients. Complete functional recovery of postoperative motor deficits was exclusively associated with cortical reorganization. Despite the low potential of remodeling within the somatosensory region, long-term reorganization of cortical motor function can be observed. nTMS is best suited for a noninvasive evaluation of this reorganization. Copyright © 2018 Elsevier Inc. All rights reserved.
Calcium carbonate in human gallstones and total CO2 in bile.
Sutor, D J; Wilkie, L I
1978-01-01
Measurement of total CO2 concentrations in bile from patients undergoing cholecystectomy because of gallstones has shown that the presence of calcium carbonate in the stones can be associated with a raised total CO2 concentration in the common duct bile. In bile from functioning and poorly-functioning gallbladders, total CO2 was nearly always related to pH irrespective of stone composition. PMID:631643
Effects of extended aging and modified atmospheric packaging on beef top loin steak color.
English, A R; Mafi, G G; VanOverbeke, D L; Ramanathan, R
2016-04-01
The objective of this study was to evaluate the effects of extended aging and modified atmospheric packaging on beef LM color. Using a randomized complete block design, each beef longissimus lumborum muscle ( = 10; USDA Choice, 3 d postmortem) was equally divided into 3 sections and randomly assigned to 1 of 3 aging periods (21, 42, or 62 d at 2°C). After respective aging, each loin section was cut into four 2.5-cm-thick steaks and randomly assigned to 1 of 3 packaging types (PVC, HiOx-MAP [80% oxygen and 20% carbon dioxide], or CO-MAP [0.4% carbon monoxide, 69.6% nitrogen, and 30% carbon dioxide]). The steaks were displayed under continuous fluorescent lighting for 6 d, and surface color was determined daily using a HunterLab Miniscan XE Plus spectrophotometer and a visual panel. The fourth steak was used to characterize oxygen consumption (OC), lipid oxidation, and metmyoglobin reducing activity (MRA) on 21, 42, and 62 d (before display). On d 6 display, MRA, OC, and lipid oxidation also were measured. An increase in aging time decreased ( < 0.0001) muscle pH. Loin sections aged for 42 and 62 d had a lower ( < 0.0002) pH compared with loin sections aged for 21 d. An aging period × packaging × display time interaction ( < 0.0001) resulted for a* values (redness), chroma, and visual color (muscle color and surface discoloration). As aging time increased, HiOx-MAP had the most discoloration ( < 0.0001) compared with other packaging types on d 6. At all aging periods, steaks packaged in CO-MAP had greater ( < 0.0001) MRA on d 6 than PVC and HiOx-MAP, whereas steaks packaged in HiOx-MAP had the least MRA ( < 0.0001). There were no differences ( = 0.34) in thiobarbituric acid reactive substances values between steaks aged for 21 and 42 d when steaks were packaged in CO-MAP and displayed for 6 d. However, steaks packaged in HiOx-MAP and displayed 6 d had greater ( < 0.0001) lipid oxidation than CO-MAP. Steaks packaged in HiOx-MAP had a lower ( < 0.0001) OC compared with PVC and CO-MAP when aged for 42 and 62 d. There were no differences ( = 0.49) in OC between steaks packaged in PVC and HiOx-MAP when aged for 21 d and displayed 6 d. The results indicate that extended aging is detrimental to color stability when packaged in PVC and HiOx-MAP. However, steaks in CO-MAP had stable red color during display. Decreased color stability in PVC and HiOx-MAP could be associated, in part, with decreased MRA and OC.
NASA Astrophysics Data System (ADS)
Romanova, Emma; Bulokhov, Anton; Arshinova, Marina
2017-04-01
The geoecological state of landscapes is determined by the type and intensity of anthropogenic impacts, the ability of geosystems to sustain them and the number of population living within a particular landscape unit. The main sources of CO2 emissions are thermal power plants, industrial facilities, transport and waste utilization. In Great Britain 163 enterprises produce 254.7 MMT CO2Eq. and 20 enterprises in Ireland - 17.8 MMT CO2Eq. Total transport emissions are 122 MMT CO2Eq. Utilization of solid wastes collected on the British Isles produces about 4.2 MMT CO2Eq. The spatial pattern of CO2 sources within the landscapes is particularly mosaic. Among the indicators which characterize the capacity of landscapes to neutralize wastes the assimilation potential (AP) is particularly important. The neutralization is based on the process of sequestration of gaseous substances, i.e. their accumulation in leaves, branches and stocks during respiration and growth of trees and in water bodies by aquatic organisms. Thus the AP is calculated basing on the area of forests and wetlands which perform the regulating services in landscapes. Total absorbing capacity of forests of the British Isles is 6.805 MMT CO2Eq. Inland waters cover 0.01% of the territory and their assimilating role is minor. The evaluation procedure includes several analytical steps: 1) inventory of the volumes of CO2 emissions by all anthropogenic sources within the borders of natural geosystems; 2) calculation of the area of CO2 assimilation in landscapes and the maximum possible volumes of CO2 sequestration; 3) comparison of the volumes of emissions and the assimilation potential of each landscape, classification of landscapes into debtors (with the deficit of AP) and creditors (with surplus AP); 4) calculation of population in each landscape; 5) risk assessment for the inhabitants living within landscapes-debtors; 6) classification and mapping of landscapes according to their geoecological state. The assimilation potential of landscapes-creditors is higher, than it is necessary for the neutralization of CO2 emissions; they are capable of the positive biotic regulation of carbon cycle. But the most landscapes in England are debtors - their AP is sometimes well below the amount of CO2 emissions, so they cannot neutralize wastes completely any more. Such geosystems reach critical thresholds of environmental services exploitation, their biota turns from a carbon pool into a source of its drain, thus endangering the regulatory abilities of landscapes. The geoecological situation in these geocomplexes creates the risk of serious diseases for inhabitants, and such landscapes are considered as unfavorable for living. According to the calculations to neutralize all CO2 emissions produced within the British Isles they need an area 16 times larger than the available one. Hence the transition to a low-carbon energy regime to mitigate CO2 emission within landscapes-debtors is a most actual challenge.
Molecular jet of IRAS 04166+2706
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liang-Yao; Shang, Hsien; Su, Yu-Nung
2014-01-01
The molecular outflow from IRAS 04166+2706 was mapped with the Submillimeter Array at a 350 GHz continuum and CO J = 3-2 at an angular resolution of ∼1''. The field of view covers the central arcminute, which contains the inner four pairs of knots of the molecular jet. On the channel map, conical structures are clearly present in the low-velocity range (|V – V {sub 0}| < 10 km s{sup –1}), and the highly collimated knots appear in the extremely high velocity range (50 >|V – V {sub 0}| > 30 km s{sup –1}). The higher angular resolution of ∼1''more » reveals the first blue-shifted knot (B1) that was missing in previous Plateau de Bure Interferometer observation of Santiago-García et al. at an offset of ∼6'' to the northeast of the central source. This identification completes the symmetric sequence of knots in both the blue- and red-shifted lobes of the outflow. The innermost knots R1 and B1 have the highest velocities within the sequence. Although the general features appear to be similar to previous CO J = 2-1 images in Santiago-García et al., the emission in CO J = 3-2 almost always peaks further away from the central source than that of CO J = 2-1 in the red-shifted lobe of the channel maps. This gives rise to a gradient in the line-ratio map of CO J = 3-2/J = 2-1 from head to tail within a knot. A large velocity gradient analysis suggests that the differences may reflect a higher gas kinetic temperature at the head. We also explore possible constraints imposed by the nondetection of SiO J = 8-7.« less
High-resolution mapping of motor vehicle carbon dioxide emissions
NASA Astrophysics Data System (ADS)
McDonald, Brian C.; McBride, Zoe C.; Martin, Elliot W.; Harley, Robert A.
2014-05-01
A fuel-based inventory for vehicle emissions is presented for carbon dioxide (CO2) and mapped at various spatial resolutions (10 km, 4 km, 1 km, and 500 m) using fuel sales and traffic count data. The mapping is done separately for gasoline-powered vehicles and heavy-duty diesel trucks. Emission estimates from this study are compared with the Emissions Database for Global Atmospheric Research (EDGAR) and VULCAN. All three inventories agree at the national level within 5%. EDGAR uses road density as a surrogate to apportion vehicle emissions, which leads to 20-80% overestimates of on-road CO2 emissions in the largest U.S. cities. High-resolution emission maps are presented for Los Angeles, New York City, San Francisco-San Jose, Houston, and Dallas-Fort Worth. Sharp emission gradients that exist near major highways are not apparent when emissions are mapped at 10 km resolution. High CO2 emission fluxes over highways become apparent at grid resolutions of 1 km and finer. Temporal variations in vehicle emissions are characterized using extensive day- and time-specific traffic count data and are described over diurnal, day of week, and seasonal time scales. Clear differences are observed when comparing light- and heavy-duty vehicle traffic patterns and comparing urban and rural areas. Decadal emission trends were analyzed from 2000 to 2007 when traffic volumes were increasing and a more recent period (2007-2010) when traffic volumes declined due to recession. We found large nonuniform changes in on-road CO2 emissions over a period of 5 years, highlighting the importance of timely updates to motor vehicle emission inventories.
Genetics and mapping of a new anthracnose resistance locus in Andean common bean Paloma.
de Lima Castro, Sandra Aparecida; Gonçalves-Vidigal, Maria Celeste; Gilio, Thiago Alexandre Santana; Lacanallo, Giselly Figueiredo; Valentini, Giseli; da Silva Ramos Martins, Vanusa; Song, Qijian; Galván, Marta Zulema; Hurtado-Gonzales, Oscar P; Pastor-Corrales, Marcial Antonio
2017-04-18
The Andean cultivar Paloma is resistant to Mesoamerican and Andean races of Colletotrichum lindemuthianum, the fungal pathogen that causes the destructive anthracnose disease in common bean. Remarkably, Paloma is resistant to Mesoamerican races 2047 and 3481, which are among the most virulent races of the anthracnose pathogen. Most genes conferring anthracnose resistance in common bean are overcome by these races. The genetic mapping and the relationship between the resistant Co-Pa gene of Paloma and previously characterized anthracnose resistance genes can be a great contribution for breeding programs. The inheritance of resistance studies for Paloma was performed in F 2 population from the cross Paloma (resistant) × Cornell 49-242 (susceptible) inoculated with race 2047, and in F 2 and F 2:3 generations from the cross Paloma (resistant) × PI 207262 (susceptible) inoculated with race 3481. The results of these studies demonstrated that a single dominant gene confers the resistance in Paloma. Allelism tests performed with multiple races of C. lindemuthianum showed that the resistance gene in Paloma, provisionally named Co-Pa, is independent from the anthracnose resistance genes Co-1, Co-2, Co-3, Co-4, Co-5, Co-6, Co-12, Co-13, Co-14, Co-15 and Co-16. Bulk segregant analysis using the SNP chip BARCBean6K_3 positioned the approximate location of Co-Pa in the lower arm of chromosome Pv01. Further mapping analysis located the Co-Pa gene at a 390 kb region of Pv01 flanked by SNP markers SS82 and SS83 at a distance of 1.3 and 2.1 cM, respectively. The results presented here showed that Paloma cultivar has a new dominant gene conferring resistance to anthracnose, which is independent from those genes previously described. The linkage between the Co-Pa gene and the SS82 and SS83 SNP markers will be extremely important for marker-assisted introgression of the gene into elite cultivars in order to enhance resistance.
Osés, S M; Diez, A M; Gómez, E M; Wilches-Pérez, D; Luning, P A; Jaime, I; Rovira, J
2015-12-01
Escherichia coli and Listeria monocytogenes microbial challenge tests were performed on fresh suckling-lamb meat. Hind leg slices were chilly stored under two modified atmosphere packaging (MAP) environments (A: 15%O2/60%CO2/25%N2, B: 15%O2/30%CO2/55%N2) and vacuum packaging (V). Only E. coli was reduced between 0.72-1.25 log cfu/g from day 1 to day 4 by the combined use of MAP/V, chilling storage and the growth of native lactic acid bacteria. However, L. monocytogenes was not inhibited by the application of V or MAP. Even do, in inoculated samples, this pathogen increased between 1.2-2.7 log cfu/g throughout the study. Consequently, a second experiment that combined the effects of MAP/V and a protective culture (Leuconostoc pseudomesenteroides PCK 18) against L. monocytogenes was designed. Two different levels of protective cultures were assayed (4 and 6 log cfu/g). Lc. pseudomesenteroides PCK 18 was able to control the growth of L. monocytogenes when the differences between them are higher than 2 log cfu/g. Moreover, when high level of protective culture was used a significant reduction of L. monocytogenes counts were noticed in samples packaged in 60% of CO2 along the storage period, although sensory properties were also affected. Copyright © 2015 Elsevier Ltd. All rights reserved.
Channavajhala, Padma L; Wu, Leeying; Cuozzo, John W; Hall, J Perry; Liu, Wei; Lin, Lih-Ling; Zhang, Yuhua
2003-11-21
Kinase suppressor of Ras (KSR) is an integral and conserved component of the Ras signaling pathway. Although KSR is a positive regulator of the Ras/mitogen-activated protein (MAP) kinase pathway, the role of KSR in Cot-mediated MAPK activation has not been identified. The serine/threonine kinase Cot (also known as Tpl2) is a member of the MAP kinase kinase kinase (MAP3K) family that is known to regulate oncogenic and inflammatory pathways; however, the mechanism(s) of its regulation are not precisely known. In this report, we identify an 830-amino acid novel human KSR, designated hKSR-2, using predictions from genomic data base mining based on the structural profile of the KSR kinase domain. We show that, similar to the known human KSR, hKSR-2 co-immunoprecipitates with many signaling components of the Ras/MAPK pathway, including Ras, Raf, MEK-1, and ERK-1/2. In addition, we demonstrate that hKSR-2 co-immunoprecipitates with Cot and that co-expression of hKSR-2 with Cot significantly reduces Cot-mediated MAPK and NF-kappaB activation. This inhibition is specific to Cot, because Ras-induced ERK and IkappaB kinase-induced NF-kappaB activation are not significantly affected by hKSR-2 co-expression. Moreover, Cot-induced interleukin-8 production in HeLa cells is almost completely inhibited by the concurrent expression of hKSR-2, whereas transforming growth factor beta-activated kinase 1 (TAK1)/TAK1-binding protein 1 (TAB1)-induced interleukin-8 production is not affected by hKSR-2 co-expression. Taken together, these results indicate that hKSR-2, a new member of the KSR family, negatively regulates Cot-mediated MAP kinase and NF-kappaB pathway signaling.
Global Distribution of Shallow Water on Mars: Neutron Mapping of Summer-Time Surface by HEND/Odyssey
NASA Technical Reports Server (NTRS)
Mitrofanov, I. G.; Litvak, M. L.; Kozyrev, A. S.; Sanin, A. B.; Tretyakov, V. I.; Boynton, W.; Hamara, D.; Shinohara, C.; Saunders, R. S.; Drake, D.
2003-01-01
Orbital mapping of induced neutrons and gamma-rays by Odyssey has recently successfully proven the applicability of nuclear methods for studying of the elementary composition of Martian upper-most subsurface. In particular, the suite of Gamma-Ray Spectrometer (GRS) has discovered the presence of large water-ice rich regions southward and northward on Mars. The data of neutron mapping of summer-time surface are presented below from the Russian High Energy Neutron Spectrometer (HEND), which is a part of GRS suite. These maps represent the content of water in the soil for summer season at Southern and Northern hemispheres, when the winter deposit of CO2 is absent on the surface. The seasonal evolution of CO2 coverage on Mars is the subject of the complementary paper.
Valdenegro, Mónika; Huidobro, Camila; Monsalve, Liliam; Bernales, Maricarmen; Fuentes, Lida; Simpson, Ricardo
2018-03-24
Pomegranate (Punica granatum) is a non-climacteric fruit susceptible to chilling injury (CI) at temperatures below 5 °C. To understand the influences of ethylene and modified atmosphere on CI physiological disorders of pomegranate, exogenous ethrel (0.5, 1 and 1.5 µg L -1 ) treatments, 1-methylcyclopropene (1-MCP) (1 µL L -1 ) exposure, packaging in a modified atmosphere (MAP) (XTend™ bags; StePac, São Paulo, Brazil), a MAP/1-MCP combination, and packaging in macro-perforated bags (MPB) were applied. The treated fruits were cold stored (2 ± 1 °C; 85% relative humidity) and sampled during 120 + 3 days at 20 °C. During cold storage, CI symptoms started at 20 days in MPB and at 60 days for all exogenous ethylene treatments, and were delayed to 120 days in MAP, 1-MCP and MAP/1-MCP treatments. MPB and ethylene treatments induced significant electrolyte leakage, oxidative damage, lipid peroxidation, ethylene and CO 2 production, and 1-aminocyclopropane-1-carboxylic acid oxidase activity, without any change in total soluble solids, titratable acidity or skin and aril colours. Conversely, MAP by itself, or in combination with 1-MCP application, effectively delayed CI symptoms. During long-term cold storage of this non-climacteric fruit, ethrel application induced endogenous ethylene biosynthesis, accelerating the appearance of CI symptoms in contrast to the observations made for MAP and 1-MCP treatments. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Association Mapping of Main Tomato Fruit Sugars and Organic Acids
Zhao, Jiantao; Xu, Yao; Ding, Qin; Huang, Xinli; Zhang, Yating; Zou, Zhirong; Li, Mingjun; Cui, Lu; Zhang, Jing
2016-01-01
Association mapping has been widely used to map the significant associated loci responsible for natural variation in complex traits and are valuable for crop improvement. Sugars and organic acids are the most important metabolites in tomato fruits. We used a collection of 174 tomato accessions composed of Solanum lycopersicum (123 accessions) and S. lycopersicum var cerasiforme (51 accessions) to detect significantly associated loci controlling the variation of main sugars and organic acids. The accessions were genotyped with 182 SSRs spreading over the tomato genome. Association mapping was conducted on the main sugars and organic acids detected by gas chromatography-mass spectrometer (GC-MS) over 2 years using the mixed linear model (MLM). We detected a total of 58 significantly associated loci (P < 0.001) for the 17 sugars and organic acids, including fructose, glucose, sucrose, citric acid, malic acid. These results not only co-localized with several reported QTLs, including fru9.1/PV, suc9.1/PV, ca2.1/HS, ca3.1/PV, ca4.1/PV, and ca8.1/PV, but also provided a list of candidate significantly associated loci to be functionally validated. These significantly associated loci could be used for deciphering the genetic architecture of tomato fruit sugars and organic acids and for tomato quality breeding. PMID:27617019
Association Mapping of Main Tomato Fruit Sugars and Organic Acids.
Zhao, Jiantao; Xu, Yao; Ding, Qin; Huang, Xinli; Zhang, Yating; Zou, Zhirong; Li, Mingjun; Cui, Lu; Zhang, Jing
2016-01-01
Association mapping has been widely used to map the significant associated loci responsible for natural variation in complex traits and are valuable for crop improvement. Sugars and organic acids are the most important metabolites in tomato fruits. We used a collection of 174 tomato accessions composed of Solanum lycopersicum (123 accessions) and S. lycopersicum var cerasiforme (51 accessions) to detect significantly associated loci controlling the variation of main sugars and organic acids. The accessions were genotyped with 182 SSRs spreading over the tomato genome. Association mapping was conducted on the main sugars and organic acids detected by gas chromatography-mass spectrometer (GC-MS) over 2 years using the mixed linear model (MLM). We detected a total of 58 significantly associated loci (P < 0.001) for the 17 sugars and organic acids, including fructose, glucose, sucrose, citric acid, malic acid. These results not only co-localized with several reported QTLs, including fru9.1/PV, suc9.1/PV, ca2.1/HS, ca3.1/PV, ca4.1/PV, and ca8.1/PV, but also provided a list of candidate significantly associated loci to be functionally validated. These significantly associated loci could be used for deciphering the genetic architecture of tomato fruit sugars and organic acids and for tomato quality breeding.
Wang, Jun; Wang, Zhilan; Du, Xiaofen; Yang, Huiqing; Han, Fang; Han, Yuanhuai; Yuan, Feng; Zhang, Linyi; Peng, Shuzhong; Guo, Erhu
2017-01-01
Foxtail millet (Setaria italica), a very important grain crop in China, has become a new model plant for cereal crops and biofuel grasses. Although its reference genome sequence was released recently, quantitative trait loci (QTLs) controlling complex agronomic traits remains limited. The development of massively parallel genotyping methods and next-generation sequencing technologies provides an excellent opportunity for developing single-nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of complex quantitative traits. In this study, a high-throughput and cost-effective RAD-seq approach was employed to generate a high-density genetic map for foxtail millet. A total of 2,668,587 SNP loci were detected according to the reference genome sequence; meanwhile, 9,968 SNP markers were used to genotype 124 F2 progenies derived from the cross between Hongmiaozhangu and Changnong35; a high-density genetic map spanning 1648.8 cM, with an average distance of 0.17 cM between adjacent markers was constructed; 11 major QTLs for eight agronomic traits were identified; five co-dominant DNA markers were developed. These findings will be of value for the identification of candidate genes and marker-assisted selection in foxtail millet.
Wang, Zhilan; Du, Xiaofen; Yang, Huiqing; Han, Fang; Han, Yuanhuai; Yuan, Feng; Zhang, Linyi; Peng, Shuzhong; Guo, Erhu
2017-01-01
Foxtail millet (Setaria italica), a very important grain crop in China, has become a new model plant for cereal crops and biofuel grasses. Although its reference genome sequence was released recently, quantitative trait loci (QTLs) controlling complex agronomic traits remains limited. The development of massively parallel genotyping methods and next-generation sequencing technologies provides an excellent opportunity for developing single-nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of complex quantitative traits. In this study, a high-throughput and cost-effective RAD-seq approach was employed to generate a high-density genetic map for foxtail millet. A total of 2,668,587 SNP loci were detected according to the reference genome sequence; meanwhile, 9,968 SNP markers were used to genotype 124 F2 progenies derived from the cross between Hongmiaozhangu and Changnong35; a high-density genetic map spanning 1648.8 cM, with an average distance of 0.17 cM between adjacent markers was constructed; 11 major QTLs for eight agronomic traits were identified; five co-dominant DNA markers were developed. These findings will be of value for the identification of candidate genes and marker-assisted selection in foxtail millet. PMID:28644843
Comparative docking and CoMFA analysis of curcumine derivatives as HIV-1 integrase inhibitors.
Gupta, Pawan; Garg, Prabha; Roy, Nilanjan
2011-08-01
The docking studies and comparative molecular field analysis (CoMFA) were performed on highly active molecules of curcumine derivatives against 3' processing activity of HIV-1 integrase (IN) enzyme. The optimum CoMFA model was selected with statistically significant cross-validated r(2) value of 0.815 and non-cross validated r (2) value of 0.99. The common pharmacophore of highly active molecules was used for screening of HIV-1 IN inhibitors. The high contribution of polar interactions in pharmacophore mapping is well supported by docking and CoMFA results. The results of docking, CoMFA, and pharmacophore mapping give structural insights as well as important binding features of curcumine derivatives as HIV-1 IN inhibitors which can provide guidance for the rational design of novel HIV-1 IN inhibitors.
Response of the North American corn belt to climate warming, CO2
NASA Astrophysics Data System (ADS)
1983-08-01
The climate of the North American corn belt was characterized to estimate the effects of climatic change on that agricultural region. Heat and moisture characteristics of the current corn belt were identified and mapped based on a simulated climate for a doubling of atmospheric CO2 concentrations. The result was a map of the projected corn belt corresponding to the simulated climatic change. Such projections were made with and without an allowance for earlier planting dates that could occur under a CO2-induced climatic warming. Because the direct effects of CO2 increases on plants, improvements in farm technology, and plant breeding are not considered, the resulting projections represent an extreme or worst case. The results indicate that even for such a worst case, climatic conditions favoring corn production would not extend very far into Canada. Climatic buffering effects of the Great Lakes would apparently retard northeastward shifts in corn-belt location.
Jacobi, C A; Junghans, T; Peter, F; Naundorf, D; Ordemann, J; Müller, J M
2000-11-01
Injury of venous vessels during elevated intraperitoneal pressure is thought to cause possible fatal gas embolism, and helium may be dangerous because of its low solubility. Twenty pigs underwent laparoscopy with either CO2 (n=10) or helium (n=10) with a pressure of 15 mm Hg and standardized laceration (1 cm) of the vena cava inferior. After 30 s, the vena cava was clamped, closed endoscopically by a running suture and unclamped again. During the procedure changes of cardiac output (CO), heart rate (HR), mean arterial pressure (MAP), central venous pressure (CVP), pulmonary artery pressure (PAP), pulmonary artery wedge pressure (PAWP), end tidal CO2 pressure (PETCO2), and arterial blood gas analyses (pH, pO2 and pCO2) were investigated. No animal died during the experimental course (mean blood loss during laceration: CO2, 157+/-50 ml; helium, 173+/-83 ml). MAP and CO values showed a decrease after laceration of the vena cava in both groups that had already been completely compensated for before suturing. PETCO2 increased significantly after CO2 insufflation (P<0.01), while helium showed no effect. Laceration of the vena cava caused no significant changes in PETCO2 values in either group. Significant acidosis and an increase of pCO2 were only found in the CO2 group. The incidence of gas embolism during laparoscopy and accidental vessel injury seems to be very low. With the exception of acidosis and an increase of PETCO2 in the CO2 group, there were no differences in cardiopulmonary function between insufflation of CO2 and helium.
Waghmare, Roji B; Annapure, Uday S
2017-10-01
The aim of this study was to determine the potential of hydrogen peroxide (H 2 O 2 ) and modified atmosphere packaging (MAP) on quality of fresh-cut cluster beans. Fresh-cut cluster beans were dipped in a solution of 2% H 2 O 2 for 2 min, packed in an atmosphere of (5% O 2 , 10% CO 2 , 85% N 2 ) and stored in polypropylene bags at 5 °C for 35 days. Passive MAP was created by consuming O 2 and producing CO 2 by fresh-cut cluster beans. The combined effect of H 2 O 2 and MAP on physico-chemical analysis (Headspace gas, weight loss, chlorophyll, hardness and color), microbial quality (mesophilic aerobics and yeasts and molds) and sensory analysis were studied. Chemical treatment and MAP both are equally effective in extending the shelf life at 5 °C for 28 days. Hence, MAP can be an alternative for chemical treatment to achieve a shelf life of 28 days for fresh-cut cluster beans. Control samples, without chemical treatment and modified atmosphere, stored at 5 °C were spoiled after 14 days. Chemical treatment followed by MAP underwent minimum changes in weight, chlorophyll, hardness and color of fresh-cut cluster beans. Combination treatment gives a storage life of 35 days.
NASA Technical Reports Server (NTRS)
Bradford, C. M.; Stacey, G. J.; Nikola, T.; Bolatto, A. D.; Jackson, J. M.; Savage, M. L.; Davidson, J. A.
2005-01-01
We present an 11" resolution map of the central 2 pc of the Galaxy in the CO J = 7 --> 6 rotational transition. The CO emission shows rotation about Sgr A* but also evidence for noncircular turbulent motion and a clumpy morphology. We combine our data set with available CO measurements to model the physical conditions in the disk. We find that the molecular gas in the region is both warm and dense, with T approx. 200-300 K and n(sub H2) approx. (5-7) x 10(exp 4) cm(exp -3). The mass of warm molecular gas we measure in the central 2 pc is at least 2000 M(solar), about 20 times the UV-excited atomic gas mass, ruling out a UV heating scenario for the molecular material. We compare the available spectral tracers with theoretical models and conclude that molecular gas is heated with magnetohydrodynamic shocks with v approx. 10-20 km s(exp -1) and B approx. 0.3- 0.5 mG. Using the conditions derived with the CO analysis, we include the other important coolants, neutral oxygen and molecular hydrogen, to estimate the total cooling budget of the molecular material. We derive a mass-to-luminosity ratio of approx. 2-3 M(solar)(L(solar)exp -1), which is consistent with the total power dissipated via turbulent decay in 0.1 pc cells with v(sub rms) approx. 15 kilometers per second. These size and velocity scales are comparable to the observed clumping scale and the velocity dispersion. At this rate, the material near Sgr A* is dissipating its orbital energy on an orbital timescale and cannot last for more than a few orbits. Our conclusions support a scenario in which the features near Sgr A* such as the circumnuclear disk and northern arm are generated by infalling clouds with low specific angular momentum.
Dong, Junfeng; Song, Yueqin; Li, Wenliang; Shi, Jie; Wang, Zhenying
2016-01-01
Olfaction plays a crucial role in insect population survival and reproduction. Identification of the genes associated with the olfactory system, without the doubt will promote studying the insect chemical communication system. In this study, RNA-seq technology was used to sequence the antennae transcriptome of Athetis dissimilis, an emerging crop pest in China with limited genomic information, with the purpose of identifying the gene set involved in olfactory recognition. Analysis of the transcriptome of female and male antennae generated 13.74 Gb clean reads in total from which 98,001 unigenes were assembled, and 25,930 unigenes were annotated. Total of 60 olfactory receptors (ORs), 18 gustatory receptors (GRs), and 12 ionotropic receptors (IRs) were identified by Blast and sequence similarity analyzes. One obligated olfactory receptor co-receptor (Orco) and four conserved sex pheromone receptors (PRs) were annotated in 60 ORs. Among the putative GRs, five genes (AdisGR1, 6, 7, 8 and 94) clustered in the sugar receptor family, and two genes (AdisGR3 and 93) involved in CO2 detection were identified. Finally, AdisIR8a.1 and AdisIR8a.2 co-receptors were identified in the group of candidate IRs. Furthermore, expression levels of these chemosensory receptor genes in female and male antennae were analyzed by mapping the Illumina reads. PMID:26812239
Geffroy, Valérie; Sévignac, Mireille; Billant, Paul; Dron, Michel; Langin, Thierry
2008-02-01
Anthracnose, caused by the hemibiotrophic fungal pathogen Colletotrichum lindemuthianum is a devastating disease of common bean. Resistant cultivars are economical means for defense against this pathogen. In the present study, we mapped resistance specificities against 7 C. lindemuthianum strains of various geographical origins revealing differential reactions on BAT93 and JaloEEP558, two parents of a recombinant inbred lines (RILs) population, of Meso-american and Andean origin, respectively. Six strains revealed the segregation of two independent resistance genes. A specific numerical code calculating the LOD score in the case of two independent segregating genes (i.e. genes with duplicate effects) in a RILs population was developed in order to provide a recombination value (r) between each of the two resistance genes and the tested marker. We mapped two closely linked Andean resistance genes (Co-x, Co-w) at the end of linkage group (LG) B1 and mapped one Meso-american resistance genes (Co-u) at the end of LG B2. We also confirmed the complexity of the previously identified B4 resistance gene cluster, because four of the seven tested strains revealed a resistance specificity near Co-y from JaloEEP558 and two strains identified a resistance specificity near Co-9 from BAT93. Resistance genes found within the same cluster confer resistance to different strains of a single pathogen such as the two anthracnose specificities Co-x and Co-w clustered at the end of LG B1. Clustering of resistance specificities to multiple pathogens such as fungi (Co-u) and viruses (I) was also observed at the end of LG B2.
NASA Astrophysics Data System (ADS)
Zhang, Yi; Nishizawa, Osamu; Kiyama, Tamotsu; Chiyonobu, Shun; Xue, Ziqiu
2014-06-01
We injected Berea sandstone with supercritical CO2 and imaged the results with a medical X-ray computed tomography (CT) scanner. The images were acquired by injecting CO2 into a core of brine-saturated sandstone (drainage), and additional images were acquired during reinjection of brine (imbibition) after drainage. We then analysed the temporal variations of CO2 saturation maps obtained from the CT images. The experiments were performed under a confining pressure of 12 MPa, a pore pressure of 10 MPa and a temperature of 40 °C. Porosity and CO2 saturation were calculated for each image voxel of the rock on the basis of the Hounsfield unit values (CT numbers) measured at three states of saturation: dry, full brine saturation and full CO2 saturation. The saturation maps indicated that the distributions of CO2 and brine were controlled by the sub-core-scale heterogeneities which consisted of a laminated structure (bedding) with high- and low-porosity layers. During drainage, CO2 preferentially flowed through the high-porosity layers where most of the CO2 was entrapped during low flow-rate imbibition. The entrapped CO2 was flushed out when high flow-rate imbibition commenced. Plots of the voxel's CT number against porosity revealed the relationship between fluid replacement and porosity. By reference to the CT numbers at the full brine-saturated stage, differential CT numbers were classified into three bins corresponding to voxel porosity: high, medium and low porosity. Distributions of the differential CT number for the three porosity bins were bimodal and in order with respect to the porosity bins during both drainage and imbibitions; however, the order differed between the two stages. This difference suggested that different replacement mechanisms operated for the two processes. Spatial autocorrelation of CO2 saturation maps on sections perpendicular to the flow direction revealed remarkable changes during passage of the replacement fronts during both drainage and imbibition, changes reflecting the interfingering pattern across the replacement fronts. Although the permeability differences between high- and low-porosity layers were not sufficiently large to disturb the uniform flow of brine, the CO2 concentration in the high-porosity layers may have been caused by the differences of capillary pressure between wide and narrow pore throats, perhaps enhanced by an invasion percolation mechanism in flow-path networks.
2014-03-13
2005). the first position, two exposures were acquired with an 8" dither to mitigate any detector artifacts or cosmic-ray hits. Total frame time...with a ŕ/ f" trend in amplitude; two examples are provided in Figure 17. This is in contrast to typical red or " flicker " noise, which follows a 1...transitions between staring and mapping photometry. Following pixel-phase mitigation , we selected the set of ~280 by-BCD staring points lying within 1.2
Updating categorical soil maps using limited survey data by Bayesian Markov chain cosimulation.
Li, Weidong; Zhang, Chuanrong; Dey, Dipak K; Willig, Michael R
2013-01-01
Updating categorical soil maps is necessary for providing current, higher-quality soil data to agricultural and environmental management but may not require a costly thorough field survey because latest legacy maps may only need limited corrections. This study suggests a Markov chain random field (MCRF) sequential cosimulation (Co-MCSS) method for updating categorical soil maps using limited survey data provided that qualified legacy maps are available. A case study using synthetic data demonstrates that Co-MCSS can appreciably improve simulation accuracy of soil types with both contributions from a legacy map and limited sample data. The method indicates the following characteristics: (1) if a soil type indicates no change in an update survey or it has been reclassified into another type that similarly evinces no change, it will be simply reproduced in the updated map; (2) if a soil type has changes in some places, it will be simulated with uncertainty quantified by occurrence probability maps; (3) if a soil type has no change in an area but evinces changes in other distant areas, it still can be captured in the area with unobvious uncertainty. We concluded that Co-MCSS might be a practical method for updating categorical soil maps with limited survey data.
Updating Categorical Soil Maps Using Limited Survey Data by Bayesian Markov Chain Cosimulation
Dey, Dipak K.; Willig, Michael R.
2013-01-01
Updating categorical soil maps is necessary for providing current, higher-quality soil data to agricultural and environmental management but may not require a costly thorough field survey because latest legacy maps may only need limited corrections. This study suggests a Markov chain random field (MCRF) sequential cosimulation (Co-MCSS) method for updating categorical soil maps using limited survey data provided that qualified legacy maps are available. A case study using synthetic data demonstrates that Co-MCSS can appreciably improve simulation accuracy of soil types with both contributions from a legacy map and limited sample data. The method indicates the following characteristics: (1) if a soil type indicates no change in an update survey or it has been reclassified into another type that similarly evinces no change, it will be simply reproduced in the updated map; (2) if a soil type has changes in some places, it will be simulated with uncertainty quantified by occurrence probability maps; (3) if a soil type has no change in an area but evinces changes in other distant areas, it still can be captured in the area with unobvious uncertainty. We concluded that Co-MCSS might be a practical method for updating categorical soil maps with limited survey data. PMID:24027447
Chen, Shumin; Wen, Meiling; Bu, Shujie; Wang, Ahui; Jin, Ya; Tan, Wen
2016-12-01
Plasma samples from adult male rats were separated by nondenaturing micro 2DE and a reference gel was selected, on which 136 CBB-stained spots were numbered and subjected to in-gel digestion and quantitative LC-MS/MS. The analysis provided the assignment of 1-25 (average eight) non-redundant proteins in each spot and totally 199 proteins were assigned in the 136 spots. About 40% of the proteins were detected in more than one spot and 15% in more than ten spots. We speculate this complexity arose from multiple causes, including protein heterogeneity, overlapping of protein locations and formation of protein complexes. Consequently, such results could not be appropriately presented as a conventional 2DE map, i.e. a list or a gel pattern with one or a few proteins annotated to each spot. Therefore, the LC-MS/MS quantity data was used to reconstruct the gel distribution of each protein and a library containing 199 native protein maps was established for rat plasma. Since proteins that formed a complex would migrate together during the nondenaturing 2DE and thus show similar gel distributions, correlation analysis was attempted for similarity comparison between the maps. The protein pairs showing high correlation coefficients included some well-known complexes, suggesting the promising application of native protein mapping for interaction analysis. With the importance of rat as the most commonly used laboratory animal in biomedical research, we expect this work would facilitate relevant studies by providing not only a reference library of rat plasma protein maps but a means for functional and interaction analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A (12)CO J = 2-1 map of the disk of Centaurus A: Evidence for large scale heating in the dust lane
NASA Technical Reports Server (NTRS)
Wild, W.; Cameron, M.; Eckart, A.; Genzel, R.; Rothermel, H.; Rydbeck, G.; Wiklind, T.
1993-01-01
Centaurus A (NGC 5128) is a nearby (3 Mpc) elliptical galaxy with a prominent dust lane, extensive radio lobes, and a compact radio continuum source, suggestive of nuclear activity. As a consequence of its peculiar morphology, this merger candidate has been the subject of much attention, particularly at optical wavelengths. Unfortunately the high and patchy extinction in the disk, aggravated by the warped structure of the dust lane, has severely hindered investigations into the properties of the interstellar medium, particularly with regard to the extent of star formation. Here we present a map of the (12)CO J = 2-1 line throughout the dust lane which, when combined with a previously measured (12)CO J = 1-0 map and data on molecular absorption lines observed against the compact non-thermal continuum source, offers insight into the excitation conditions of the molecular gas.
Muhlisin, S M Kang; Choi, W H; Lee, K T; Cheong, S H; Lee, S K
2012-05-01
This study was carried out to investigate the effects of hydrated potato starch on the quality of low-fat ttoekgalbi (Korean traditional patty) packaged in modified atmosphere conditions during storage. The ttoekgalbi was prepared from 53.2% lean beef, 13.9% lean pork, 9.3% pork fat, and 23.6% other ingredients. Two low-fat ttoekgalbi treatments were prepared by substituting pork fat with hydrated potato starch; either by 50% fat replacement (50% FR) or 100% fat replacement (100% FR). Both 50% and 100% FR increased the moisture, crude protein, and decreased fat content, cooking loss, and hardness. For MAP studies, 200 g of ttoekgalbi were placed on the tray and filled with gas composed of 70% O2: 30% CO2 (70% O2-MAP) and 30% CO2: 70% N2 (70% N2-MAP), and were stored at 5°C for 12 d. During the storage time, both 50% and 100% FR showed higher protein deterioration, while no differences were found in CIE a*, CIE L*, lipid oxidation, and bacterial counts in comparison to control. The ttoekgalbi with 70% O2-MAP was more red, lighter in color, and showed higher TBARS values compared with 70% N2-MAP. The meat with 70% N2-MAP showed lower aerobic bacterial counts in control than those with 70% O2-MAP. The lower anaerobic bacterial counts were observed only in 50% FR and 100% FR packed with 70% N2-MAP in comparison with 70% O2-MAP. In conclusion, the fat replacement with hydrated potato starch showed no negative effects on the quality of low fat ttoekgalbi during storage and 70% N2-MAP was better than 70% O2-MAP for low-fat ttoekgalbi packaging.
Development of two-dimensional interdigitated center of pressure sensor
NASA Astrophysics Data System (ADS)
Yoo, Byungseok; Pines, Darryll J.
2017-12-01
This paper presents the development of a two-dimensional (2D) flexible patch sensor to detect and monitor the center of pressure (CoP) location and the total magnitude of a spatially distributed pressure to the specific surface areas of engineering structures. The CoP sensor with the contact mode induced by a pressure distribution was formulated by force sensitive resistor technology and was mainly composed of a thin conductive polymer layer, adhesive spacers, and two interdigitated patterned electrode films with unique sensing aperture shadings. By properly mapping the interdigitated electrode patterns to the top and bottom surfaces of the conductive polymer, the proposed sensor ideally enables to measure an overall applied pressure level and its centroid location within a predetermined sensing region in real-time. The CoP sensor containing 36 sensing sections within a dimension of around 3 × 3 inches was prototyped and experimentally investigated to verify its capability to identify the CoP location and magnitude due to the presence of a permanent magnet-based local pressure distribution. Only five electric wires connected to the CoP sensor to inspect the pressure-sensing positions of 36 segments. The evaluation results of the measured sensor data demonstrate good agreements with the actual test parameters such as the total pressure and its centroid position with about 5% locational error. However, to provide accurate information on the overall pressure range, the compensation factors must be determined and applied to the individual sensing sections of the sensor.
2. Perspective Map of Buena Vista (In Buena Vista, VA, ...
2. Perspective Map of Buena Vista (In Buena Vista, VA, NY:South Publishing Co., 1891 n.p.) (copy on file at Virginia State Library, Richmond, VA) - North River Canal System, West side of Buena Vista, Buena Vista, Roanoke City, VA
Global Atmosphere Watch Workshop on Measurement-Model ...
The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) Programme coordinates high-quality observations of atmospheric composition from global to local scales with the aim to drive high-quality and high-impact science while co-producing a new generation of products and services. In line with this vision, GAW’s Scientific Advisory Group for Total Atmospheric Deposition (SAG-TAD) has a mandate to produce global maps of wet, dry and total atmospheric deposition for important atmospheric chemicals to enable research into biogeochemical cycles and assessments of ecosystem and human health effects. The most suitable scientific approach for this activity is the emerging technique of measurement-model fusion for total atmospheric deposition. This technique requires global-scale measurements of atmospheric trace gases, particles, precipitation composition and precipitation depth, as well as predictions of the same from global/regional chemical transport models. The fusion of measurement and model results requires data assimilation and mapping techniques. The objective of the GAW Workshop on Measurement-Model Fusion for Global Total Atmospheric Deposition (MMF-GTAD), an initiative of the SAG-TAD, was to review the state-of-the-science and explore the feasibility and methodology of producing, on a routine retrospective basis, global maps of atmospheric gas and aerosol concentrations as well as wet, dry and total deposition via measurement-model
Large-Scale CO Maps of the Lupus Molecular Cloud Complex
NASA Astrophysics Data System (ADS)
Tothill, N. F. H.; Löhr, A.; Parshley, S. C.; Stark, A. A.; Lane, A. P.; Harnett, J. I.; Wright, G. A.; Walker, C. K.; Bourke, T. L.; Myers, P. C.
2009-11-01
Fully sampled degree-scale maps of the 13CO 2-1 and CO 4-3 transitions toward three members of the Lupus Molecular Cloud Complex—Lupus I, III, and IV—trace the column density and temperature of the molecular gas. Comparison with IR extinction maps from the c2d project requires most of the gas to have a temperature of 8-10 K. Estimates of the cloud mass from 13CO emission are roughly consistent with most previous estimates, while the line widths are higher, around 2 km s-1. CO 4-3 emission is found throughout Lupus I, indicating widespread dense gas, and toward Lupus III and IV. Enhanced line widths at the NW end and along the edge of the B 228 ridge in Lupus I, and a coherent velocity gradient across the ridge, are consistent with interaction between the molecular cloud and an expanding H I shell from the Upper-Scorpius subgroup of the Sco-Cen OB Association. Lupus III is dominated by the effects of two HAe/Be stars, and shows no sign of external influence. Slightly warmer gas around the core of Lupus IV and a low line width suggest heating by the Upper-Centaurus-Lupus subgroup of Sco-Cen, without the effects of an H I shell.
Effect of modified atmosphere packaging on the shelf life of sliced wheat flour bread.
Rodríguez, M; Medina, L M; Jordano, R
2000-08-01
The application of modified atmospheres packaging (MAP) of sliced bread with different aw, moisture content and pH values, with or without preservative added (calcium propionate) and at different storage temperatures, has been studied with the aim of establishing the effect of MAP on the shelf-life of the selected product. Four atmospheres were tested per batch: 100% N2, 20% CO2/80% N2, 50% CO2/50% N2 and a standard air control. In samples without added preservative in CO2:N2 (50:50), the increases in shelf life were 117% and 158% at 22-25 degrees C and 15-20 degrees C, respectively. In samples with added preservative in 100% N2, shelf life was increased by 116%. Samples with added preservative in 20% CO2:80% N2 increased shelf life by 150% and 131% at 22-25 degrees C and 15-20 degrees C, respectively. By increasing the CO2 concentration to 50%, the increases in shelf life of the samples with added preservative were 167% and 195% at 22-25 degrees C and 15-20 degrees C, respectively.
Multi-Sensor Mapping of Diffuse Degassing of C-O-H Compounds in Terrestrial Hydrothermal Systems
NASA Astrophysics Data System (ADS)
Schwandner, F. M.; Shock, E. L.
2004-12-01
In-situ single-sensor detection and mapping of diffuse degassing phenomena in hydrothermal and volcanic areas can be used to elucidate subsurface tectonic structures, assess emission rates, and to monitor emission variability (Williams 1985; Chiodini et al. 1996, Werner et al., 2003). More than one technique has been deployed to measure several gas species simultaneously (e.g., Crenshaw et al. 1982), and correlations of one gas species (usually CO2) with physical parameters like heat flux (Brombach et al., 2001), or with one other gas species (Rn, He) have been demonstrated (Barberi & Carapezza 1994; Williams-Jones et al., 2000). Recently, correlations of multiple gas species with one another were reported (Schwandner et al., 2004), leading to the possibility of quantitative mapping of subsurface hydrothermal chemical processes by simultaneous measurement of reaction partners and products that continuously and diffusely degas. In the present study, we joined a fully-quantitative multi-sensor instrument (Draeger Multiwarn II) to a modified accumulation-chamber sensing method (Chiodini et al., 1996) and measured diffuse degassing of CH4, H2, CO2, CO, and H2S. In this approach, each batch of gas that is recirculated through the detector is simultaneously analyzed by all sensors. To test this approach we chose two magmatically influenced, hydrothermally active areas at Yellowstone National Park (USA): Sylvan Springs and the Greater Obsidian Pool Area. The area near Obsidian Pool was previously studied during a diffuse CO2 degassing campaign (Werner & Brantley, 2004). Preliminary results show that elevated reduced gas emissions appear to be most prominent near hydrothermal pools, whereas CO2-dominated degassing anomalies highlight subsurface tectonic structures. This multimodal distribution allows us to distinguish deep degassing sources (CO2 anomalies) from shallow localized hydrothermal processes (reduced gas anomalies). The results permit us to positively identify and partially map a previously-inferred active lineament in the Obsidian Pool area. In addition, reduced gas data are yielding areal ratio distributions of CO/CO2, H2/CH4, and CO/CH4, that may be indicative of reactions such as the catalytic hydrogenation of CO2 (Sabatier-Process) and of CO (Fischer-Tropsch-Process) within the shallow hydrothermal system. Barberi & Carapezza (1994). Bull. Volcanol. 56(5): 335-342. Brombach, et al. (2001). Geophys. Res. Lett. 28(1): 69-72. Crenshaw et al. (1982). Nature 300: 345-346. Chiodini et al. (1996). Bull. Volcanol. 58(1): 41-50. Schwandner et al. (2004). JGR D 109: D04301, doi:10.1029/2003JD003890. Werner & Brantley (2004) JGR B 105: 10,831-10,846. Werner et al. (2003). Earth Planet. Sci. Lett. 210: 561-577. Williams (1985). Science 229(4713): 551-553. Williams-Jones et al. (2000). Bull. Volcanol. 62: 130-142.
CO2 and Er:YAG laser interaction with grass tissues
NASA Astrophysics Data System (ADS)
Kim, Jaehun; Ki, Hyungson
2013-01-01
Plant leaves are multi-component optical materials consisting of water, pigments, and dry matter, among which water is the predominant constituent. In this article, we investigate laser interaction with grass using CO2 and Er:YAG lasers theoretically and experimentally, especially targeting water in grass tissues. We have first studied the optical properties of light absorbing constituents of grass theoretically, and then have identified interaction regimes and constructed interaction maps through a systematic experiment. Using the interaction maps, we have studied how interaction regimes change as process parameters are varied. This study reveals some interesting findings concerning carbonization and ablation mechanisms, the effect of laser beam diameter, and the ablation efficiency and quality of CO2 and Er:YAG lasers.
Puliafito, S Enrique; Allende, David G; Castesana, Paula S; Ruggeri, Maria F
2017-12-01
This study presents a 2014 high-resolution spatially disaggregated emission inventory (0.025° × 0.025° horizontal resolution), of the main activities in the energy sector in Argentina. The sub-sectors considered are public generation of electricity, oil refineries, cement production, transport (maritime, air, rail and road), residential and commercial. The following pollutants were included: greenhouse gases (CO 2 , CH 4 , N 2 O), ozone precursors (CO, NOx, VOC) and other specific air quality indicators such as SO 2 , PM10, and PM2.5. This work could contribute to a better geographical allocation of the pollutant sources through census based population maps. Considering the sources of greenhouse gas emissions, the total amount is 144 Tg CO2eq, from which the transportation sector emits 57.8 Tg (40%); followed by electricity generation, with 40.9 Tg (28%); residential + commercial, with 31.24 Tg (22%); and cement and refinery production, with 14.3 Tg (10%). This inventory shows that 49% of the total emissions occur in rural areas: 31% in rural areas of medium population density, 13% in intermediate urban areas and 7% in densely populated urban areas. However, if emissions are analyzed by extension (per square km), the largest impact is observed in medium and densely populated urban areas, reaching more than 20.3 Gg per square km of greenhouse gases, 297 Mg/km 2 of ozone precursors gases and 11.5 Mg/km 2 of other air quality emissions. A comparison with the EDGAR global emission database shows that, although the total country emissions are similar for several sub sectors and pollutants, its spatial distribution is not applicable to Argentina. The road and residential transport emissions represented by EDGAR result in an overestimation of emissions in rural areas and an underestimation in urban areas, especially in more densely populated areas. EDGAR underestimates 60 Gg of methane emissions from road transport sector and fugitive emissions from refining activities.
Silbande, Adèle; Adenet, Sandra; Chopin, Christine; Cornet, Josiane; Smith-Ravin, Juliette; Rochefort, Katia; Leroi, Françoise
2018-02-02
The effect of vacuum (VP - 4°C) and CO 2 /N 2 -atmosphere (MAP - 4°C) packaging on the quality of red drum fillets compared with whole gutted iced fish was investigated. A metagenomic approach, bacterial enumeration and isolation, biochemical and sensory analyses were carried out. The organoleptic rejection of whole fish was observed at day 15 whereas VP and MAP fillets appeared unacceptable only after 29days. At these dates, total mesophilic counts reached 10 7 -10 8 CFU g -1 . According to Illumina MiSeq sequencing, Arthrobacter, Chryseobacterium, Brevibacterium, Staphylococcus and Kocuria were the main genera of the fresh red drum fillets. At the sensory rejection time, lactic acid bacteria (LAB), particularly Carnobacterium sp., dominated the microbiota of both types of packaging. The pH value of fresh samples was between 5.96 and 6.37 and did not vary greatly in all trials. Total volatile basic nitrogen (TVBN) and trimethylamine (TMA) concentrations were low and not represent reliable indicators of the spoilage, contrary to some biogenic amines (cadaverine, putrescine and tyramine). Chilled packed fillets of red drum have an extended shelf-life compared to whole gutted iced fish. Overall, few differences in sensory and microbial quality were observed between the VP and MAP samples. Next-Generation Sequencing (NGS) provided data on the microbiota of a tropical fish. Copyright © 2017 Elsevier B.V. All rights reserved.
VELOCITY-RESOLVED [C ii] EMISSION AND [C ii]/FIR MAPPING ALONG ORION WITH HERSCHEL *,**
Goicoechea, Javier R.; Teyssier, D.; Etxaluze, M.; Goldsmith, P.F.; Ossenkopf, V.; Gerin, M.; Bergin, E.A.; Black, J.H.; Cernicharo, J.; Cuadrado, S.; Encrenaz, P.; Falgarone, E.; Fuente, A.; Hacar, A.; Lis, D.C.; Marcelino, N.; Melnick, G.J.; Müller, H.S.P.; Persson, C.; Pety, J.; Röllig, M.; Schilke, P.; Simon, R.; Snell, R.L.; Stutzki, J.
2015-01-01
We present the first ~7.5′×11.5′ velocity-resolved (~0.2 km s−1) map of the [C ii] 158 μm line toward the Orion molecular cloud 1 (OMC 1) taken with the Herschel/HIFI instrument. In combination with far-infrared (FIR) photometric images and velocity-resolved maps of the H41α hydrogen recombination and CO J=2-1 lines, this data set provides an unprecedented view of the intricate small-scale kinematics of the ionized/PDR/molecular gas interfaces and of the radiative feedback from massive stars. The main contribution to the [C ii] luminosity (~85 %) is from the extended, FUV-illuminated face of the cloud (G0>500, nH>5×103 cm−3) and from dense PDRs (G≳104, nH≳105 cm−3) at the interface between OMC 1 and the H ii region surrounding the Trapezium cluster. Around ~15 % of the [C ii] emission arises from a different gas component without CO counterpart. The [C ii] excitation, PDR gas turbulence, line opacity (from [13C ii]) and role of the geometry of the illuminating stars with respect to the cloud are investigated. We construct maps of the L[C ii]/LFIR and LFIR/MGas ratios and show that L[C ii]/LFIR decreases from the extended cloud component (~10−2–10−3) to the more opaque star-forming cores (~10−3–10−4). The lowest values are reminiscent of the “[C ii] deficit” seen in local ultra-luminous IR galaxies hosting vigorous star formation. Spatial correlation analysis shows that the decreasing L[C ii]/LFIR ratio correlates better with the column density of dust through the molecular cloud than with LFIR/MGas. We conclude that the [C ii] emitting column relative to the total dust column along each line of sight is responsible for the observed L[C ii]/LFIR variations through the cloud. PMID:26568638
Two-dimensional ice mapping of molecular cores
NASA Astrophysics Data System (ADS)
Noble, J. A.; Fraser, H. J.; Pontoppidan, K. M.; Craigon, A. M.
2017-06-01
We present maps of the column densities of H2O, CO2 and CO ices towards the molecular cores B 35A, DC 274.2-00.4, BHR 59 and DC 300.7-01.0. These ice maps, probing spatial distances in molecular cores as low as 2200 au, challenge the traditional hypothesis that the denser the region observed, the more ice is present, providing evidence that the relationships between solid molecular species are more varied than the generic picture we often adopt to model gas-grain chemical processes and explain feedback between solid phase processes and gas phase abundances. We present the first combined solid-gas maps of a single molecular species, based upon observations of both CO ice and gas phase C18O towards B 35A, a star-forming dense core in Orion. We conclude that molecular species in the solid phase are powerful tracers of 'small-scale' chemical diversity, prior to the onset of star formation. With a component analysis approach, we can probe the solid phase chemistry of a region at a level of detail greater than that provided by statistical analyses or generic conclusions drawn from single pointing line-of-sight observations alone.
Combined effect of MAP and active compounds on fresh blue fish burger.
Del Nobile, M A; Corbo, M R; Speranza, B; Sinigaglia, M; Conte, A; Caroprese, M
2009-11-15
The combined effects of three essential oils [thymol, lemon extract and grapefruit seed extract (GFSE)] and modified atmosphere packaging conditions (MAP) on quality retention of blue fish burgers was studied and discussed. In particular, samples were packaged in air and in three different gas mix compositions: 30:40:30 O(2):CO(2):N(2), 50:50 O(2):CO(2) and 5:95 O(2):CO(2). During a 28-day storage period at 4 degrees C, the nutritional, microbiological and sensorial quality of the packed products was assessed. The potential development of biogenic amines was also evaluated. The obtained results highlight the possibility to improve the microbial quality of blue fish burgers by using very small amount of thymol (110ppm), GFSE (100ppm) and lemon extract (120ppm) in combination with MAP. Based primarily on microbiological results, the combined use of the tested natural preservatives and a packaging system characterized by a high CO(2)-concentration, was able to guarantee the microbial acceptability of fish burgers until the 28th day of storage at 4 degrees C. On the other hand, results from sensory analyses showed that sensorial quality was the sub-index that limited the burgers shelf life (to about 22-23days), even if the proposed strategy was also effective in minimizing the sensory quality loss of the product having no effect on its nutritional quality.
Silbande, Adèle; Adenet, Sandra; Smith-Ravin, Juliette; Joffraud, Jean-Jacques; Rochefort, Katia; Leroi, Françoise
2016-12-01
Metagenomic, microbial, chemical and sensory analyses of Thunnus albacares from Martinique stored in ice (AIR - 0 °C), vacuum (VP - 4/8 °C) and modified atmosphere packaging (MAP - 4/8 °C) (70% CO2 - 30% O2) were carried out. The organoleptic rejection of AIR tuna was observed at day 13 when total bacterial counts equaled 10(6)-10(7) CFU g(-1). No extension of shelf-life was provided by VP and MAP. According to 16S rRNA gene sequence analyzed by Illumina MiSeq and PCR-TTGE, Rhodanobacter terrae was the main species of the freshly caught tuna. At the sensory rejection time, Brochothrix thermosphacta and Pseudomonas dominated the AIR products while B. thermosphacta alone or a mix of B. thermosphacta, Enterobacteriaceae and lactic acid bacteria (LAB) dominated the microbiota of MAP and VP products, respectively. The pH value remained stable in all trials, ranging from 5.77 to 5.97. Total volatile basic nitrogen (TVBN) and trimethylamine (TMA-N) concentrations were weak and not significantly different between batches. Lipid oxidation increased in the samples containing O2 (MAP > AIR). The initial concentration of histamine was high (75-78 mg kg(-1)) and stable up to 8 days but then significantly decreased in all trials to reach 25-30 mg kg(-1), probably due to the presence of histamine-decomposing bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics
Chazdon, Robin L.; Broadbent, Eben N.; Rozendaal, Danaë M. A.; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T. Mitchell; Balvanera, Patricia; Becknell, Justin M.; Boukili, Vanessa; Brancalion, Pedro H. S.; Craven, Dylan; Almeida-Cortez, Jarcilene S.; Cabral, George A. L.; de Jong, Ben; Denslow, Julie S.; Dent, Daisy H.; DeWalt, Saara J.; Dupuy, Juan M.; Durán, Sandra M.; Espírito-Santo, Mario M.; Fandino, María C.; César, Ricardo G.; Hall, Jefferson S.; Hernández-Stefanoni, José Luis; Jakovac, Catarina C.; Junqueira, André B.; Kennard, Deborah; Letcher, Susan G.; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A.; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R. F.; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A.; Piotto, Daniel; Powers, Jennifer S.; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G.; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B.; Steininger, Marc K.; Swenson, Nathan G.; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D. M.; Vester, Hans; Vieira, Ima Celia G.; Bentos, Tony Vizcarra; Williamson, G. Bruce; Poorter, Lourens
2016-01-01
Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km2 of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services. PMID:27386528
Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics.
Chazdon, Robin L; Broadbent, Eben N; Rozendaal, Danaë M A; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T Mitchell; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Craven, Dylan; Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernández-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans; Vieira, Ima Celia G; Bentos, Tony Vizcarra; Williamson, G Bruce; Poorter, Lourens
2016-05-01
Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km(2) of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Joel D.; Evans, Neal J. II; Rascati, Michelle R.
2013-06-20
We present 50-210 {mu}m spectral scans of 30 Class 0/I protostellar sources, obtained with Herschel-PACS, and 0.5-1000 {mu}m spectral energy distributions, as part of the Dust, Ice, and Gas in Time Key Program. Some sources exhibit up to 75 H{sub 2}O lines ranging in excitation energy from 100 to 2000 K, 12 transitions of OH, and CO rotational lines ranging from J = 14 {yields} 13 up to J = 40 {yields} 39. [O I] is detected in all but one source in the entire sample; among the sources with detectable [O I] are two very low luminosity objects. Themore » mean 63/145 {mu}m [O I] flux ratio is 17.2 {+-} 9.2. The [O I] 63 {mu}m line correlates with L{sub bol}, but not with the time-averaged outflow rate derived from low-J CO maps. [C II] emission is in general not local to the source. The sample L{sub bol} increased by 1.25 (1.06) and T{sub bol} decreased to 0.96 (0.96) of mean (median) values with the inclusion of the Herschel data. Most CO rotational diagrams are characterized by two optically thin components ( = (0.70 {+-} 1.12) x 10{sup 49} total particles). N{sub CO} correlates strongly with L{sub bol}, but neither T{sub rot} nor N{sub CO}(warm)/N{sub CO}(hot) correlates with L{sub bol}, suggesting that the total excited gas is related to the current source luminosity, but that the excitation is primarily determined by the physics of the interaction (e.g., UV-heating/shocks). Rotational temperatures for H{sub 2}O ( = 194 +/- 85 K) and OH ( = 183 +/- 117 K) are generally lower than for CO, and much of the scatter in the observations about the best fit is attributed to differences in excitation conditions and optical depths among the detected lines.« less
Wills, K M; Mitacek, R M; Mafi, G G; VanOverbeke, D L; Jaroni, D; Jadeja, R; Ramanathan, R
2017-12-01
The objective was to evaluate the effects of wet-aging, rosemary-enhancement, and modified atmospheric packaging on the color of dark-cutting beef during simulated retail display. No-roll dark-cutting strip loins ( = 12; pH > 6.0) were selected from a commercial packing plant within 3 d postharvest. Using a balanced incomplete block design, dark-cutting loins were sectioned in half, and assigned to 1 of 3 aging periods: 7, 14, or 21 d. After respective aging, each aged section was divided into 3 equal parts, and randomly assigned to 1 of 3 enhancement treatments: nonenhanced dark-cutting, dark-cutter enhanced with 0.1% rosemary, and dark-cutter enhanced with 0.2% rosemary. Following enhancement, steaks were randomly assigned to 1 of 3 packaging treatments: high-oxygen modified atmospheric packaging (HiOx-MAP; 80% O and 20% CO), carbon monoxide modified atmospheric packaging (CO-MAP; 0.4% CO, 69.6% N, and 30% CO), and polyvinyl chloride overwrap (PVC; 20% O). Instrumental and visual color measurements were recorded during 5 d simulated retail display. Lipid oxidation was determined utilizing the thiobarbituric acid reactive substances (TBARS) method. There was a significant packaging × enhancement × display time interaction for values and chroma ( 0.001). On d 0 of display, dark-cutting steaks enhanced with 0.1% and 0.2% rosemary and packaged in HiOx-MAP had greater ( 0.001) values and chroma than other dark-cutting packaging/enhancement treatments. A significant packaging × enhancement × display time interaction resulted for values ( 0.001). Dark-cutting steaks enhanced with 0.2% rosemary and packaged in HiOx-MAP was lighter ( 0.001; greater values) than other dark-cutting treatments on d 5 of display. There were no differences ( 0.34) in discoloration scores on d 5 among different dark-cutting treatments when steaks were packaged in HiOx- and CO-MAP. There was an aging period × enhancement × packaging interaction ( < 0.0033) for lipid oxidation. On d 0 of display, there were no differences ( 0.54) in TBARS values between different aging periods and enhancement treatments. Dark-cutting steaks enhanced with 0.2% rosemary had lower ( 0.001) TBARS values than 0.1% rosemary on d 5 when aged for 21 d and in HiOx-MAP. The results suggest that rosemary enhancement with CO- or HiOx-MAP has the potential to improve the surface color of dark-cutting beef.
Karabagias, I; Badeka, A; Kontominas, M G
2011-05-01
The effect of thyme (TEO) and oregano (OEO) essential oils as well as modified atmosphere packaging (MAP) in extending the shelf life of fresh lamb meat stored at 4 °C was investigated. In a preliminary experiment TEO and OEO were used at concentrations 0.1 and 0.3% v/w while MAP tested included MAP1 (60% CO(2)/40% N(2)) and MAP2 (80% CO(2)/20% N(2)). Microbiological, physicochemical and sensory properties of lamb meat were monitored over a 20 day period. Sensory analysis showed that at the higher concentration both essential oils gave a strong objectionable odour and taste and were not further used. Of the two essential oils TEO was more effective as was MAP2 over MAP1 for lamb meat preservation. In a second experiment the combined effect of TEO (0.1%) and MAP2 (80/20) on shelf life extension of lamb meat was evaluated over a 25 day storage period. Microbial populations were reduced up to 2.8 log cfu/g on day 9 of storage with the most pronounced effect being achieved by the combination MAP2 plus TEO (0.1%). TBA values varied for all treatments and remained lower than 4 mg MDA/kg throughout storage. pH values varied between 6.4 and 6.0 during storage. Color parameters (L and b) increased with storage time while parameter (a) remained unaffected. Based primarily on sensory analysis (odour) but also on microbiological data, shelf life of lamb meat was 7 days for air packaged samples, 9-10 days for samples containing 0.1% of TEO and 21-22 days for MAP packaged samples containing 0.1% TEO. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liebscher, A. H.
2016-12-01
The Ketzin pilot site near Berlin, Germany, was initiated in 2004 as the first European onshore storage project for research and development on geological CO2 storage. The operational CO2 injection period started in June 2008 and ended in August 2013 when the site entered the post-injection closure period. During these five years, a total amount of 67 kt of CO2 was safely injected into a saline aquifer (Upper Triassic sandstone) at a depth of 630 m - 650 m. In fall 2013, the first observation well was partially plugged in the reservoir section; full abandonment of this well finished in 2015 after roughly 2 years of well closure monitoring. Abandonment of the remaining 4 wells will be finished by 2017 and hand-over of liability to the competent authority is planned for end of 2017. The CO2 injected was mainly of food grade quality (purity > 99.9%). In addition, 1.5 kt of CO2 from the pilot capture facility "Schwarze Pumpe" (oxyfuel power plant CO2 with purity > 99.7%) was injected in 2011. The injection period terminated with a CO2-N2 co-injection experiment of 650 t of a 95% CO2/5% N2 mixture in summer 2013 to study the effects of impurities in the CO2 stream on the injection operation. During regular operation, the CO2 was pre-heated on-site to 40 - 45°C prior to injection to ensure a single-phase injection process and avoid any phase transition or transient states within the injection facility or the reservoir. Between March and July 2013, just prior to the CO2-N2 co-injection experiment, the injection temperature was stepwise decreased down to 10°C within a "cold-injection" experiment to study the effects of two-phase injection conditions. During injection operation, the combination of different geochemical and geophysical monitoring methods enabled detection and mapping of the spatial and temporal in-reservoir behaviour of the injected CO2 even for small quantities. After the cessation of CO2 injection, post-injection monitoring continued and two additional field experiments have been performed. A CO2 back-production experiment was run in autumn 2014 to study the physicochemical properties of the back-produced CO2 as well as the pressure response of the reservoir. In October 2015 to January 2016, a brine injection experiment studied the imbibition process and residual gas saturation.
NASA Astrophysics Data System (ADS)
Nathan, B.; Lauvaux, T.; Turnbull, J. C.; Sweeney, C.; Karion, A.; Richardson, S.; Miles, N.; Gurney, K. R.; Patarasuk, R.
2016-12-01
Part of the Indianapolis Flux (INFLUX) Experiment has, since 2010, involved recording atmospheric trace gas measurements using NOAA flask packages. The goal of these measurements is to better inform policymakers about the behaviors of greenhouse gas emissions in the Indianapolis urban environment. Radiocarbon dioxide (14CO2) measurements recorded from the flasks allow for delineation of the fossil-fuel carbon dioxide (CO2ff) signal from the total carbon dioxide (CO2) measurement. To give policymakers even more detailed information, we investigate whether the co-measured trace gases could be used as tracers for economic source sectors of CO2ff as predefined by the bottom-up data product Hestia. This is extensively tested using an Observation System Simulation Experiment (OSSE) combining both a top-down approach for all species—influence functions from the tower flask measurements—, and attempting to assign sources via spatial overlaps with the available bottom-up inventory CO2ff source sector definitions. A self-organizing map is implemented for the mathematical attribution of signals to sources, because it can compensate for nonlinear signals (i.e. tracer emissions that do not scale linearly with CO2ff emissions). It is determined that proper attribution is at least not feasible with such a complete lack of bottom-up spatial information about all non-CO2ff potential tracers. This unfeasibility is shown not to be resolved by a test of expanding the dataset with many more theoretical measurements than are realistically available. Here we alter the approach to include the missing prior information: bottom-up estimates of the emission fluxes for a suite of species. We develop these bottom-up emission fluxes from existing whole-city emission fluxes, species-specific source sector partitioning, and the spatial patterns from Hestia CO2ff source sectors. We validate the general approach using the whole-city species: CO2ff ratios derived from all tower flask measurements. Finally, using these tools, multi-species, sector-specific inversions are investigated in the Bayesian framework.
Constraining the CO intensity mapping power spectrum at intermediate redshifts
NASA Astrophysics Data System (ADS)
Padmanabhan, Hamsa
2018-04-01
We compile available constraints on the carbon monoxide (CO) 1-0 luminosity functions and abundances at redshifts 0-3. This is used to develop a data driven halo model for the evolution of the CO galaxy abundances and clustering across intermediate redshifts. It is found that the recent constraints from the CO Power Spectrum Survey (z ˜ 3; Keating et al. 2016), when combined with existing observations of local galaxies (z ˜ 0; Keres, Yun & Young 2003), lead to predictions that are consistent with the results of smaller surveys at intermediate redshifts (z ˜ 1-2). We provide convenient fitting forms for the evolution of the CO luminosity-halo mass relation, and estimates of the mean and uncertainties in the CO power spectrum in the context of future intensity mapping experiments.
The Orion Fingers: H2 Temperatures and Excitation in an Explosive Outflow
NASA Astrophysics Data System (ADS)
Youngblood, Allison; France, Kevin; Ginsburg, Adam; Hoadley, Keri; Bally, John
2018-04-01
We measure H2 temperatures and column densities across the Orion Becklin-Neugebauer/Kleinmann-Low (BN/KL) explosive outflow from a set of 13 near-infrared (IR) H2 rovibrational emission lines observed with the TripleSpec spectrograph on Apache Point Observatory’s 3.5 m telescope. We find that most of the region is well characterized by a single temperature (∼2000–2500 K), which may be influenced by the limited range of upper-energy levels (6000–20,000 K) probed by our data set. The H2 column density maps indicate that warm H2 comprises 10‑5–10‑3 of the total H2 column density near the center of the outflow. Combining column density measurements for co-spatial H2 and CO at T = 2500 K, we measure a CO/H2 fractional abundance of 2 × 10‑3 and discuss possible reasons why this value is in excess of the canonical 10‑4 value, including dust attenuation, incorrect assumptions on co-spatiality of the H2 and CO emission, and chemical processing in an extreme environment. We model the radiative transfer of H2 in this region with ultraviolet (UV) pumping models to look for signatures of H2 fluorescence from H I Lyα pumping. Dissociative (J-type) shocks and nebular emission from the foreground Orion H II region are considered as possible Lyα sources. From our radiative transfer models, we predict that signatures of Lyα pumping should be detectable in near-IR line ratios given a sufficiently strong source, but such a source is not present in the BN/KL outflow. The data are consistent with shocks as the H2 heating source.
Alexander, B S; Gelb, A W; Mantulin, W W; Cerussi, A E; Tromberg, B J; Yu, Z; Lee, C; Meng, L
2013-05-01
While the decrease in blood carbon dioxide (CO2 ) secondary to hyperventilation is generally accepted to play a major role in the decrease of cerebral tissue oxygen saturation (SctO2 ), it remains unclear if the associated systemic hemodynamic changes are also accountable. Twenty-six patients (American Society of Anesthesiologists I-II) undergoing nonneurosurgical procedures were anesthetized with either propofol-remifentanil (n = 13) or sevoflurane (n = 13). During a stable intraoperative period, ventilation was adjusted stepwise from hypoventilation to hyperventilation to achieve a progressive change in end-tidal CO2 (ETCO2 ) from 55 to 25 mmHg. Minute ventilation, SctO2 , ETCO2 , mean arterial pressure (MAP), and cardiac output (CO) were recorded. Hyperventilation led to a SctO2 decrease from 78 ± 4% to 69 ± 5% (Δ = -9 ± 4%, P < 0.001) in the propofol-remifentanil group and from 81 ± 5% to 71 ± 7% (Δ = -10 ± 3%, P < 0.001) in the sevoflurane group. The decreases in SctO2 were not statistically different between these two groups (P = 0.5). SctO2 correlated significantly with ETCO2 in both groups (P < 0.001). SctO2 also correlated significantly with MAP (P < 0.001) and CO (P < 0.001) during propofol-remifentanil, but not sevoflurane (P = 0.4 and 0.5), anesthesia. The main mechanism responsible for the hyperventilation-induced decrease in SctO2 is hypocapnia during both propofol-remifentanil and sevoflurane anesthesia. Hyperventilation-associated increase in MAP and decrease in CO during propofol-remifentanil, but not sevoflurane, anesthesia may also contribute to the decrease in SctO2 but to a much smaller degree. © 2013 The Acta Anaesthesiologica Scandinavica Foundation.
Alexander, B. S.; Gelb, A. W.; Mantulin, W. W.; Cerussi, A. E.; Tromberg, B. J.; Yu, Z.; Lee, C.; Meng, L.
2014-01-01
Background While the decrease in blood carbon dioxide (CO2) secondary to hyperventilation is generally accepted to play a major role in the decrease of cerebral tissue oxygen saturation (SctO2), it remains unclear if the associated systemic hemodynamic changes are also accountable. Methods Twenty-six patients (American Society of Anesthesiologists I–II) undergoing nonneurosurgical procedures were anesthetized with either propofol-remifentanil (n = 13) or sevoflurane (n = 13). During a stable intraoperative period, ventilation was adjusted stepwise from hypoventilation to hyper-ventilation to achieve a progressive change in end-tidal CO2 (ETCO2) from 55 to 25 mmHg. Minute ventilation, SctO2, ETCO2, mean arterial pressure (MAP), and cardiac output (CO) were recorded. Results Hyperventilation led to a SctO2 decrease from 78 ± 4% to 69 ± 5% (Δ = −9 ± 4%, P < 0.001) in the propofol-remifentanil group and from 81 ± 5% to 71 ± 7% (Δ = −10 ± 3%, P < 0.001) in the sevoflurane group. The decreases in SctO2 were not statistically different between these two groups (P = 0.5). SctO2 correlated significantly with ETCO2 in both groups (P < 0.001). SctO2 also correlated significantly with MAP (P < 0.001) and CO (P < 0.001) during propofol-remifentanil, but not sevoflurane (P = 0.4 and 0.5), anesthesia. Conclusion The main mechanism responsible for the hyperventilation-induced decrease in SctO2 is hypocapnia during both propofol-remifentanil and sevoflurane anesthesia. Hyperventilation-associated increase in MAP and decrease in CO during propofol-remifentanil, but not sevoflurane, anesthesia may also contribute to the decrease in SctO2 but to a much smaller degree. PMID:23278596
Wellbore Cement Porosity Evolution in Response to Mineral Alteration during CO 2 Flooding
Cheshire, Michael C.; Stack, Andrew G.; Carey, J. William; ...
2016-12-13
Mineral reactions during CO 2 sequestration will change the pore-size distribution and pore surface characteristics, complicating permeability and storage security predictions. In this study, we report a small/wide angle scattering study of wellbore cement that has been exposed to carbon dioxide for three decades. We have constructed detailed contour maps that describe local porosity distributions and the mineralogy of the sample and relate these quantities to the carbon dioxide reaction front on the cement. We find that the initial bimodal distribution of pores in the cement, 1–2 and 10–20 nm, is affected differently during the course of carbonation reactions. Initialmore » dissolution of cement phases occurs in the 10–20 nm pores and leads to the development of new pore spaces that are eventually sealed by CaCO 3 precipitation, leading to a loss of gel and capillary nanopores, smoother pore surfaces, and reduced porosity. This suggests that during extensive carbonation of wellbore cement, the cement becomes less permeable because of carbonate mineral precipitation within the pore space. Additionally, the loss of gel and capillary nanoporosities will reduce the reactivity of cement with CO 2 due to reactive surface area loss. Finally, this work demonstrates the importance of understanding not only changes in total porosity but also how the distribution of porosity evolves with reaction that affects permeability.« less
Measurement of Carbon Dioxide Column via Space Borne Laser Absorption
NASA Technical Reports Server (NTRS)
Heaps, WIlliam S.
2007-01-01
In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. In order to uncover the 'missing sink that is responsible for the large discrepancies in the budget as we presently understand it calculation has indicated that measurement accuracy on the order of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of .25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget in order to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong requirements on the laser system used for the measurement. This work presents an analysis of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics Several systems for meeting these requirements that are under investigation at various institutions in the US as well as Europe will be discussed.
A disrupted molecular torus around Eta Carinae as seen in 12CO with ALMA
NASA Astrophysics Data System (ADS)
Smith, Nathan; Ginsburg, Adam; Bally, John
2018-03-01
We present Atacama Large Millimeter Array (ALMA) observations of 12CO 2-1 emission from circumstellar material around the massive star Eta Carinae (η Car). These observations reveal new structural details about the cool equatorial torus located ˜4000 au from the star. The CO torus is not a complete azimuthal loop, but rather, is missing its near side, which appears to have been cleared away. The missing material matches the direction of apastron in the eccentric binary system, making it likely that η Car's companion played an important role in disrupting portions of the torus soon after ejection. Molecular gas seen in ALMA data aligns well with the cool dust around η Car previously observed in mid-infrared (IR) maps, whereas hot dust resides at the inner surface of the molecular torus. The CO also coincides with the spatial and velocity structure of near-IR H2 emission. Together, these suggest that the CO torus seen by ALMA is actually the pinched waist of the Homunculus polar lobes, which glows brightly because it is close to the star and warmer than the poles. The near side of the torus appears to be a blowout, associated with fragmented equatorial ejecta. We discuss implications for the origin of various features north-west of the star. CO emission from the main torus implies a total gas mass in the range of 0.2-1 M⊙ (possibly up to 5 M⊙ or more, although with questionable assumptions). Deeper observations are needed to constrain CO emission from the cool polar lobes.
Bosle, Janine; Goetz, Sven; Raab, Andrea; Krupp, Eva M; Scheckel, Kirk G; Lombi, Enzo; Meharg, Andrew A; Fowler, Paul A; Feldmann, Jörg
2016-12-20
Maternal diet and lifestyle choices may affect placental transfer of cobalamin (Cbl) to the fetus. Fetal liver concentration of Cbl reflects nutritional status with regards to vitamin B12, but at these low concentration current Cbl measurement methods lack robustness. An analytical method based on enzymatic extraction with subsequent reversed-phase-high-pressure liquid chromatography (RP-HPLC) separation and parallel ICPMS and electrospray ionization (ESI)-Orbitrap-MS to determine specifically Cbl species in liver samples of only 10-50 mg was developed using 14 pig livers. Subsequently 55 human fetal livers were analyzed. HPLC-ICPMS analysis for cobalt (Co) and Cbl gave detection limits of 0.18 ng/g and 0.88 ng/g d.m. in liver samples, respectively, with a recovery of >95%. Total Co (Co t ) concentration did not reflect the amount of Cbl or vitamin B12 in the liver. Cbl bound Co contributes only 45 ± 15% to Co t . XRF mapping and μXANES analysis confirmed the occurrence of non-Cbl cobalt in pig liver hot spots indicating particular Co. No correlations of total cobalt nor Cbl with fetal weight or weeks of gestation were found for the human fetal livers. Although no gender difference could be identified for total Co concentration, female livers were significantly higher in Cbl concentration (24.1 ± 7.8 ng/g) than those from male fetuses (19.8 ± 7.1 ng/g) (p = 0.04). This HPLC-ICPMS method was able to quantify total Co t and Cbl in fetus liver, and it was sensitive and precise enough to identify this gender difference.
Spatially associated clump populations in Rosette from CO and dust maps
NASA Astrophysics Data System (ADS)
Veltchev, Todor V.; Ossenkopf-Okada, Volker; Stanchev, Orlin; Schneider, Nicola; Donkov, Sava; Klessen, Ralf S.
2018-04-01
Spatial association of clumps from different tracers turns out to be a valuable tool to determine the physical properties of molecular clouds. It provides a reliable estimate for the X-factors, serves to trace the density of clumps seen in column densities only, and allows one to measure the velocity dispersion of clumps identified in dust emission. We study the spatial association between clump populations, extracted by use of the GAUSSCLUMPS technique from 12CO (1-0), 13CO (1-0) line maps and Herschel dust-emission maps of the star-forming region Rosette, and analyse their physical properties. All CO clumps that overlap with another CO or dust counterpart are found to be gravitationally bound and located in the massive star-forming filaments of the molecular cloud. They obey a single mass-size relation M_cl∝ R_cl^γ with γ ≃ 3 (implying constant mean density) and display virtually no velocity-size relation. We interpret their population as low-density structures formed through compression by converging flows and still not evolved under the influence of self-gravity. The high-mass parts of their clump mass functions are fitted by a power law dN_cl/d log M_cl∝ M_cl^{Γ } and display a nearly Salpeter slope Γ ˜ -1.3. On the other hand, clumps extracted from the dust-emission map exhibit a shallower mass-size relation with γ = 2.5 and mass functions with very steep slopes Γ ˜ -2.3 even if associated with CO clumps. They trace density peaks of the associated CO clumps at scales of a few tenths of pc where no single density scaling law should be expected.
Zhang, Ying; Thomas, Catherine L.; Xiang, Jinxia; Long, Yan; Wang, Xiaohua; Zou, Jun; Luo, Ziliang; Ding, Guangda; Cai, Hongmei; Graham, Neil S.; Hammond, John P.; King, Graham J.; White, Philip J.; Xu, Fangsen; Broadley, Martin R.; Shi, Lei; Meng, Jinling
2016-01-01
A high-density SNP-based genetic linkage map was constructed and integrated with a previous map in the Tapidor x Ningyou7 (TNDH) Brassica napus population, giving a new map with a total of 2041 molecular markers and an average marker density which increased from 0.39 to 0.97 (0.82 SNP bin) per cM. Root and shoot traits were screened under low and ‘normal’ phosphate (Pi) supply using a ‘pouch and wick’ system, and had been screened previously in an agar based system. The P-efficient parent Ningyou7 had a shorter primary root length (PRL), greater lateral root density (LRD) and a greater shoot biomass than the P-inefficient parent Tapidor under both treatments and growth systems. Quantitative trait loci (QTL) analysis identified a total of 131 QTL, and QTL meta-analysis found four integrated QTL across the growth systems. Integration reduced the confidence interval by ~41%. QTL for root and shoot biomass were co-located on chromosome A3 and for lateral root emergence were co-located on chromosomes A4/C4 and C8/C9. There was a major QTL for LRD on chromosome C9 explaining ~18% of the phenotypic variation. QTL underlying an increased LRD may be a useful breeding target for P uptake efficiency in Brassica. PMID:27624881
He, Jie; Austin, Paul T; Lee, Sing Kong
2010-09-01
Effects of elevated root zone (RZ) CO(2) and air temperature on photosynthesis, productivity, nitrate (NO(3)(-)), and total reduced nitrogen (N) content in aeroponically grown lettuce plants were studied. Three weeks after transplanting, four different RZ [CO(2)] concentrations [ambient (360 ppm) and elevated concentrations of 2000, 10,000, and 50,000 ppm] were imposed on plants grown at two air temperature regimes of 28 degrees C/22 degrees C (day/night) and 36 degrees C/30 degrees C. Photosynthetic CO(2) assimilation (A) and stomatal conductance (g(s)) increased with increasing photosynthetically active radiation (PAR). When grown at 28 degrees C/22 degrees C, all plants accumulated more biomass than at 36 degrees C/30 degrees C. When measured under a PAR >or=600 micromol m(-2) s(-1), elevated RZ [CO(2)] resulted in significantly higher A, lower g(s), and higher midday leaf relative water content in all plants. Under elevated RZ [CO(2)], the increase of biomass was greater in roots than in shoots, causing a lower shoot/root ratio. The percentage increase in growth under elevated RZ [CO(2)] was greater at 36 degrees C/30 degrees C although the total biomass was higher at 28 degrees C/22 degrees C. NO(3)(-) and total reduced N concentrations of shoot and root were significantly higher in all plants under elevated RZ [CO(2)] than under ambient RZ [CO(2)] of 360 ppm at both temperature regimes. At each RZ [CO(2)], NO(3)(-) and total reduced N concentration of shoots were greater at 28 degrees C/22 degrees C than at 36 degrees C/30 degrees C. At all RZ [CO(2)], roots of plants at 36 degrees C/30 degrees C had significantly higher NO(3)(-) and total reduced N concentrations than at 28 degrees C/22 degrees C. Since increased RZ [CO(2)] caused partial stomatal closure, maximal A and maximal g(s) were negatively correlated, with a unique relationship for each air temperature. However, across all RZ [CO(2)] and temperature treatments, there was a close correlation between maximal A and total shoot reduced N concentration of plants under different RZ [CO(2)], indicating that increased A under elevated RZ [CO(2)] could partially be due to the higher shoot total reduced N.
Argon pneumoperitoneum is more dangerous than CO2 pneumoperitoneum during venous gas embolism.
Mann, C; Boccara, G; Grevy, V; Navarro, F; Fabre, J M; Colson, P
1997-12-01
We investigated the possibility of using argon, an inert gas, as a replacement for carbon dioxide (CO2). The tolerance of argon pneumoperitoneum was compared with that of CO2 pneumoperitoneum. Twenty pigs were anesthetized with enflurane 1.5%. Argon (n = 11) or CO2 (n = 9) pneumoperitoneum was created at 15 mm Hg over 20 min, and serial intravenous injections of each gas (ranging from 0.1 to 20 mL/kg) were made. Cardiorespiratory variables were measured. Transesophageal Doppler and capnographic monitoring were assessed in the detection of embolism. During argon pneumoperitoneum, there was no significant change from baseline in arterial pressure and pulmonary excretion of CO2, mean systemic arterial pressure (MAP), mean pulmonary artery pressure (PAP), or systemic and pulmonary vascular resistances, whereas CO2 pneumoperitoneum significantly increased these values (P < 0.05). During the embolic trial and from gas volumes of 2 and 0.2 mL/kg, the decrease in MAP and the increase in PAP were significantly higher with argon than with CO2 (P < 0.05). In contrast to CO2, argon pneumoperitoneum was not associated with significant changes in cardiorespiratory functions. However, argon embolism seems to be more deleterious than CO2 embolism. The possibility of using argon pneumoperitoneum during laparoscopy remains uncertain. Laparoscopic surgery requires insufflation of gas into the peritoneal cavity. We compared the hemodynamic effects of argon, an inert gas, and carbon dioxide in a pig model of laparoscopic surgery. We conclude that argon carries a high risk factor in the case of an accidental gas embolism.
Resolving the Nuclear Obscuring Disk in the Compton-thick Seyfert Galaxy NGC 5643 with ALMA
NASA Astrophysics Data System (ADS)
Alonso-Herrero, A.; Pereira-Santaella, M.; García-Burillo, S.; Davies, R. I.; Combes, F.; Asmus, D.; Bunker, A.; Díaz-Santos, T.; Gandhi, P.; González-Martín, O.; Hernán-Caballero, A.; Hicks, E.; Hönig, S.; Labiano, A.; Levenson, N. A.; Packham, C.; Ramos Almeida, C.; Ricci, C.; Rigopoulou, D.; Rosario, D.; Sani, E.; Ward, M. J.
2018-06-01
We present ALMA Band 6 12CO(2–1) line and rest-frame 232 GHz continuum observations of the nearby Compton-thick Seyfert galaxy NGC 5643 with angular resolutions 0.″11–0.″26 (9–21 pc). The CO(2–1) integrated line map reveals emission from the nuclear and circumnuclear region with a two-arm nuclear spiral extending ∼10″ on each side. The circumnuclear CO(2–1) kinematics can be fitted with a rotating disk, although there are regions with large residual velocities and/or velocity dispersions. The CO(2–1) line profiles of these regions show two different velocity components. One is ascribed to the circular component and the other to the interaction of the AGN outflow, as traced by the [O III]λ5007 Å emission, with molecular gas in the disk a few hundred parsecs from the AGN. On nuclear scales, we detected an inclined CO(2–1) disk (diameter 26 pc, FWHM) oriented almost in a north–south direction. The CO(2–1) nuclear kinematics can be fitted with a rotating disk that appears to be tilted with respect to the large-scale disk. There are strong non-circular motions in the central 0.″2–0.″3 with velocities of up to 110 km s‑1. In the absence of a nuclear bar, these motions could be explained as radial outflows in the nuclear disk. We estimate a total molecular gas mass for the nuclear disk of M(H2) = 1.1 × 107 M ⊙ and an H2 column density toward the location of the AGN of N(H2) ∼ 5 × 1023 cm‑2, for a standard CO-to-H2 conversion factor. We interpret this nuclear molecular gas disk as the obscuring torus of NGC 5643 as well as the collimating structure of the ionization cone.
Govender, Nisha; Senan, Siju; Mohamed-Hussein, Zeti-Azura; Wickneswari, Ratnam
2018-06-15
The plant shoot system consists of reproductive organs such as inflorescences, buds and fruits, and the vegetative leaves and stems. In this study, the reproductive part of the Jatropha curcas shoot system, which includes the aerial shoots, shoots bearing the inflorescence and inflorescence were investigated in regard to gene-to-gene interactions underpinning yield-related biological processes. An RNA-seq based sequencing of shoot tissues performed on an Illumina HiSeq. 2500 platform generated 18 transcriptomes. Using the reference genome-based mapping approach, a total of 64 361 genes was identified in all samples and the data was annotated against the non-redundant database by the BLAST2GO Pro. Suite. After removing the outlier genes and samples, a total of 12 734 genes across 17 samples were subjected to gene co-expression network construction using petal, an R library. A gene co-expression network model built with scale-free and small-world properties extracted four vicinity networks (VNs) with putative involvement in yield-related biological processes as follow; heat stress tolerance, floral and shoot meristem differentiation, biosynthesis of chlorophyll molecules and laticifers, cell wall metabolism and epigenetic regulations. Our VNs revealed putative key players that could be adapted in breeding strategies for J. curcas shoot system improvements.
NASA Astrophysics Data System (ADS)
Muraoka, Kazuyuki; Takeda, Miho; Yanagitani, Kazuki; Kaneko, Hiroyuki; Nakanishi, Kouichiro; Kuno, Nario; Sorai, Kazuo; Tosaki, Tomoka; Kohno, Kotaro
2016-04-01
We present the results of CO(J = 3-2) on-the-fly mappings of two nearby non-barred spiral galaxies, NGC 628 and NGC 7793, with the Atacama Submillimeter Telescope Experiment at an effective angular resolution of 25″. We successfully obtained global distributions of CO(J = 3-2) emission over the entire disks at a sub-kpc resolution for both galaxies. We examined the spatially resolved (sub-kpc) relationship between CO(J = 3-2) luminosities (L^' }_CO(3-2)) and infrared (IR) luminosities (LIR) for NGC 628, NGC 7793, and M 83, and compared it with global luminosities of a JCMT (James Clerk Maxwell Telescope) Nearby Galaxy Legacy Survey sample. We found a striking linear L^' }_CO(3-2)-LIR correlation over the four orders of magnitude, and the correlation is consistent even with that for ultraluminous IR galaxies and submillimeter-selected galaxies. In addition, we examined the spatially resolved relationship between CO(J = 3-2) intensities (ICO(3-2)) and extinction-corrected star formation rates (SFRs) for NGC 628, NGC 7793, and M 83, and compared it with that for Giant Molecular Clouds in M 33 and 14 nearby galaxy centers. We found a linear ICO(3-2)-SFR correlation with ˜1 dex scatter. We conclude that the CO(J = 3-2) star-formation law (i.e., linear L^' }_CO(3-2)-LIR and ICO(3-2)-SFR correlations) is universally applicable to various types and spatial scales of galaxies; from spatially resolved nearby galaxy disks to distant IR-luminous galaxies, within ˜1 dex scatter.
VizieR Online Data Catalog: New young stellar cluster towards IRAS 04186+5143 (Yun+, 2015)
NASA Astrophysics Data System (ADS)
Yun, J. L.; Elia, D.; Djupvik, A. A.; Torrelles, J. M.; Molinari, S.
2016-01-01
Near-IR (J, H, and KS) images were obtained on 2009 September 8 using the Nordic Optical Telescope near-IR Camera and Spectrograph (NOTCam). The region around the position of the IRAS source was mapped using the single-dish Onsala Space Observatory (OSO) 20-m radio telescope (Onsala, Sweden) in 2009 April. Three maps were obtained in the rotational lines of 12CO(1-0), 13CO(1-0), and CS(2-1) at 115.271, 110.201, and 97.981GHz, respectively. (2 data files).
Organic carbon stock modelling for the quantification of the carbon sinks in terrestrial ecosystems
NASA Astrophysics Data System (ADS)
Durante, Pilar; Algeet, Nur; Oyonarte, Cecilio
2017-04-01
Given the recent environmental policies derived from the serious threats caused by global change, practical measures to decrease net CO2 emissions have to be put in place. Regarding this, carbon sequestration is a major measure to reduce atmospheric CO2 concentrations within a short and medium term, where terrestrial ecosystems play a basic role as carbon sinks. Development of tools for quantification, assessment and management of organic carbon in ecosystems at different scales and management scenarios, it is essential to achieve these commitments. The aim of this study is to establish a methodological framework for the modeling of this tool, applied to a sustainable land use planning and management at spatial and temporal scale. The methodology for carbon stock estimation in ecosystems is based on merger techniques between carbon stored in soils and aerial biomass. For this purpose, both spatial variability map of soil organic carbon (SOC) and algorithms for calculation of forest species biomass will be created. For the modelling of the SOC spatial distribution at different map scales, it is necessary to fit in and screen the available information of soil database legacy. Subsequently, SOC modelling will be based on the SCORPAN model, a quantitative model use to assess the correlation among soil-forming factors measured at the same site location. These factors will be selected from both static (terrain morphometric variables) and dynamic variables (climatic variables and vegetation indexes -NDVI-), providing to the model the spatio-temporal characteristic. After the predictive model, spatial inference techniques will be used to achieve the final map and to extrapolate the data to unavailable information areas (automated random forest regression kriging). The estimated uncertainty will be calculated to assess the model performance at different scale approaches. Organic carbon modelling of aerial biomass will be estimate using LiDAR (Light Detection And Ranging) algorithms. The available LiDAR databases will be used. LiDAR statistics (which describe the LiDAR cloud point data to calculate forest stand parameters) will be correlated with different canopy cover variables. The regression models applied to the total area will produce a continuous geo-information map to each canopy variable. The CO2 estimation will be calculated by dry-mass conversion factors for each forest species (C kg-CO2 kg equivalent). The result is the organic carbon modelling at spatio-temporal scale with different levels of uncertainty associated to the predictive models and diverse detailed scales. However, one of the main expected problems is due to the heterogeneous spatial distribution of the soil information, which influences on the prediction of the models at different spatial scales and, consequently, at SOC map scale. Besides this, the variability and mixture of the forest species of the aerial biomass decrease the accuracy assessment of the organic carbon.
NASA Astrophysics Data System (ADS)
Yıldız, U. A.; Kristensen, L. E.; van Dishoeck, E. F.; Hogerheijde, M. R.; Karska, A.; Belloche, A.; Endo, A.; Frieswijk, W.; Güsten, R.; van Kempen, T. A.; Leurini, S.; Nagy, Z.; Pérez-Beaupuits, J. P.; Risacher, C.; van der Marel, N.; van Weeren, R. J.; Wyrowski, F.
2015-04-01
Context. During the embedded stage of star formation, bipolar molecular outflows and UV radiation from the protostar are important feedback processes. Both processes reflect the accretion onto the forming star and affect subsequent collapse or fragmentation of the cloud. Aims: Our aim is to quantify the feedback, mechanical and radiative, for a large sample of low-mass sources in a consistent manner. The outflow activity is compared to radiative feedback in the form of UV heating by the accreting protostar to search for correlations and evolutionary trends. Methods: Large-scale maps of 26 young stellar objects, which are part of the Herschel WISH key program are obtained using the CHAMP+ instrument on the Atacama Pathfinder EXperiment (12CO and 13CO 6-5; Eup ~ 100 K), and the HARP-B instrument on the James Clerk Maxwell Telescope (12CO and 13CO 3-2; Eup ~ 30 K). The maps have high spatial resolution, particularly the CO 6-5 maps taken with a 9″ beam, resolving the morphology of the outflows. The maps are used to determine outflow parameters and the results are compared with higher-J CO lines obtained with Herschel. Envelope models are used to quantify the amount of UV-heated gas and its temperature from 13CO 6-5 observations. Results: All sources in our sample show outflow activity, with the spatial extent decreasing from the Class 0 to the Class I stage. Consistent with previous studies, the outflow force, FCO, is larger for Class 0 sources than for Class I sources, even if their luminosities are comparable. The outflowing gas typically extends to much greater distances than the power-law envelope and therefore influences the surrounding cloud material directly. Comparison of the CO 6-5 results with HIFI H2O and PACS high-J CO lines, both tracing currently shocked gas, shows that the two components are linked, even though the transitions do not probe the same gas. The link does not extend down to CO 3-2. The conclusion is that CO 6-5 depends on the shock characteristics (density and velocity), whereas CO 3-2 is more sensitive to conditions in the surrounding environment (density). The radiative feedback is responsible for increasing the gas temperature by a factor of two, up to 30-50 K, on scales of a few thousand AU, particularly along the direction of the outflow. The mass of the UV heated gas exceeds the mass contained in the entrained outflow in the inner ~3000 AU and is therefore at least as important on small scales. Appendix A is available in electronic form at http://www.aanda.orgThe CHAMP+ maps (data cubes) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A109
NASA Astrophysics Data System (ADS)
De Carlo, E. H.; Drupp, P. S.; Thompson, R. W.; Mackenzie, F. T.; Muscielewicz, S.; Jones, S. M.; Feely, R. A.; Sabine, C. L.
2012-12-01
A series of MAP-CO2 buoys deployed in the coastal waters of Hawaii have produced multiyear high temporal resolution CO2 records in four different coral reef environments of the island of Oahu, Hawaii. This study is part of an integrated effort to understand the factors that influence the dynamics of CO2-carbonic acid system parameters in waters bathing Pacific high island coral reef ecosystems and subject to differing natural and anthropogenic stresses. The MAP-CO2 buoys are located in backreef, lagoonal, and fringing reef sites, and measure CO2 and O2 in seawater and in the atmosphere. Other sensors on the buoys record physical and biogeochemical parameters (CTD, chl-a, turbidity, pH, nitrate). The buoy records, when combined with data from synoptic spatial sampling, have allowed us to examine the interplay between biological cycles of productivity/respiration and calcification/dissolution and biogeochemical and physical forcing on hourly to inter-annual time scales, including those of land runoff. Our data demonstrate that coral reefs are subject to a wide range of pCO2, both on short and long time scales, and significant differences in the CO2-carbonic acid system dynamics across these various settings. We report that coral communities currently thrive in areas where the concentrations of CO2 can range from extremes as low as 200 ppm to as high as 1000 ppm and can fluctuate by ~500 ppm on any given day. The data provide evidence that net ecosystem calcification currently occurs in the presence of levels of CO2 predicted to occur well into the next century, although these coral reef ecosystems are only exposed to the extremes for short periods of time each day.
Wang, Yuhui; VandenLangenberg, Kyle; Wen, Changlong; Wehner, Todd C; Weng, Yiqun
2018-03-01
Host resistances in PI 197088 cucumber to downy and powdery mildew pathogens are conferred by 11 (3 with major effect) and 4 (1 major effect) QTL, respectively, and three of which are co-localized. The downy mildew (DM) and powdery mildew (PM) are the two most important foliar diseases of cucurbit crops worldwide. The cucumber accession PI 197088 exhibits high-level resistances to both pathogens. Here, we reported QTL mapping results for DM and PM resistances with 148 recombinant inbred lines from a cross between PI 197088 and the susceptible line 'Coolgreen'. Phenotypic data on responses to natural DM and PM infection were collected in multi-year and multi-location replicated field trials. A high-density genetic map with 2780 single nucleotide polymorphisms (SNPs) from genotyping-by-sequencing and 55 microsatellite markers was developed, which revealed genomic regions with segregation distortion and mis-assemblies in the '9930' cucumber draft genome. QTL analysis identified 11 and 4 QTL for DM and PM resistances accounting for more than 73.5 and 63.0% total phenotypic variance, respectively. Among the 11 DM resistance QTL, dm5.1, dm5.2, and dm5.3 were major-effect contributing QTL, whereas dm1.1, dm2.1, and dm6.2 conferred susceptibility. Of the 4 QTL for PM resistance, pm5.1 was the major-effect QTL explaining 32.4% phenotypic variance and the minor-effect QTL pm6.1 contributed to disease susceptibility. Three PM QTL, pm2.1, pm5.1, and pm6.1, were co-localized with DM QTL dm2.1, dm5.2, and dm6.1, respectively, which was consistent with the observed linkage of PM and DM resistances in PI 197088. The genetic architecture of DM resistance in PI 197088 and another resistant line WI7120 (PI 330628) was compared, and the potential of using PI 197088 in cucumber breeding for downy and powdery mildew resistances is discussed.
Schoen, Heidi R; Peyton, Brent M; Knighton, W Berk
2016-12-01
A novel analytical system was developed to rapidly and accurately quantify total volatile organic compound (VOC) production from microbial reactor systems using a platinum catalyst and a sensitive CO 2 detector. This system allows nearly instantaneous determination of total VOC production by utilizing a platinum catalyst to completely and quantitatively oxidize headspace VOCs to CO 2 in coordination with a CO 2 detector. Measurement of respiratory CO 2 by bypassing the catalyst allowed the total VOC content to be determined from the difference in the two signals. To the best of our knowledge, this is the first instance of a platinum catalyst and CO 2 detector being used to quantify the total VOCs produced by a complex bioreactor system. Continuous recording of these CO 2 data provided a record of respiration and total VOC production throughout the experiments. Proton transfer reaction-mass spectrometry (PTR-MS) was used to identify and quantify major VOCs. The sum of the individual compounds measured by PTR-MS can be compared to the total VOCs quantified by the platinum catalyst to identify potential differences in detection, identification and calibration. PTR-MS measurements accounted on average for 94 % of the total VOC carbon detected by the platinum catalyst and CO 2 detector. In a model system, a VOC producing endophytic fungus Nodulisporium isolate TI-13 was grown in a solid state reactor utilizing the agricultural byproduct beet pulp as a substrate. Temporal changes in production of major volatile compounds (ethanol, methanol, acetaldehyde, terpenes, and terpenoids) were quantified by PTR-MS and compared to the total VOC measurements taken with the platinum catalyst and CO 2 detector. This analytical system provided fast, consistent data for evaluating VOC production in the nonhomogeneous solid state reactor system.
Piñeiro, Juan; Ochoa-Hueso, Raúl; Delgado-Baquerizo, Manuel; Dobrick, Silvan; Reich, Peter B; Pendall, Elise; Power, Sally A
2017-11-10
Plant roots play a crucial role in regulating key ecosystem processes such as carbon (C) sequestration and nutrient solubilisation. Elevated (e)CO 2 is expected to alter the biomass of fine, coarse and total roots to meet increased demand for other resources such as water and nitrogen (N), however, the magnitude and direction of observed changes vary considerably between ecosystems. Here, we assessed how climate and soil properties mediate root responses to eCO 2 by comparing 24 field-based CO 2 experiments across the globe including a wide range of ecosystem types. We calculated response ratios (i.e. effect size) and used structural equation modelling (SEM) to achieve a system-level understanding of how aridity, mean annual temperature and total soil nitrogen simultaneously drive the response of total, coarse and fine root biomass to eCO 2 . Models indicated that increasing aridity limits the positive response of fine and total root biomass to eCO 2 , and that fine (but not coarse or total) root responses to eCO 2 are positively related to soil total N. Our results provide evidence that consideration of factors such as aridity and soil N status is crucial for predicting plant and ecosystem-scale responses to future changes in atmospheric CO 2 concentrations, and thus feedbacks to climate change.
Andres, R. J. [CDIAC; Boden, T. A. [CDIAC
2016-01-01
The annual, gridded fossil-fuel CO2 emissions uncertainty estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016). Andres et al. (2016) describes the basic methodology in estimating the uncertainty in the (gridded fossil fuel data product ). This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty.
Andres, J.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-01-01
The monthly, gridded fossil-fuel CO2 emissions uncertainty estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016). Andres et al. (2016) describes the basic methodology in estimating the uncertainty in the (gridded fossil fuel data product ). This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty.
Nagel, Jennifer M; Wang, Xianzhong; Lewis, James D; Fung, Howard A; Tissue, David T; Griffin, Kevin L
2005-05-01
Energy-use efficiency and energy assimilation, investment and allocation patterns are likely to influence plant growth responses to increasing atmospheric CO2 concentration ([CO2]). Here, we describe the influence of elevated [CO2] on energetic properties as a mechanism of growth responses in Xanthium strumarium. Individuals of X. strumarium were grown at ambient or elevated [CO2] and harvested. Total biomass and energetic construction costs (CC) of leaves, stems, roots and fruits and percentage of total biomass and energy allocated to these components were determined. Photosynthetic energy-use efficiency (PEUE) was calculated as the ratio of total energy gained via photosynthetic activity (Atotal) to leaf CC. Elevated [CO2] increased leaf Atotal, but decreased CC per unit mass of leaves and roots. Consequently, X. strumarium individuals produced more leaf and root biomass at elevated [CO2] without increasing total energy investment in these structures (CCtotal). Whole-plant biomass was associated positively with PEUE. Whole-plant construction required 16.1% less energy than modeled whole-plant energy investment had CC not responded to increased [CO2]. As a physiological mechanism affecting growth, altered energetic properties could positively influence productivity of X. strumarium, and potentially other species, at elevated [CO2].
Framing Climate Goals in Terms of Cumulative CO2-Forcing-Equivalent Emissions
NASA Astrophysics Data System (ADS)
Jenkins, S.; Millar, R. J.; Leach, N.; Allen, M. R.
2018-03-01
The relationship between cumulative CO2 emissions and CO2-induced warming is determined by the Transient Climate Response to Emissions (TCRE), but total anthropogenic warming also depends on non-CO2 forcing, complicating the interpretation of emissions budgets based on CO2 alone. An alternative is to frame emissions budgets in terms of CO2-forcing-equivalent (CO2-fe) emissions—the CO2 emissions that would yield a given total anthropogenic radiative forcing pathway. Unlike conventional "CO2-equivalent" emissions, these are directly related to warming by the TCRE and need to fall to zero to stabilize warming: hence, CO2-fe emissions generalize the concept of a cumulative carbon budget to multigas scenarios. Cumulative CO2-fe emissions from 1870 to 2015 inclusive are found to be 2,900 ± 600 GtCO2-fe, increasing at a rate of 67 ± 9.5 GtCO2-fe/yr. A TCRE range of 0.8-2.5°C per 1,000 GtC implies a total budget for 0.6°C of additional warming above the present decade of 880-2,750 GtCO2-fe, with 1,290 GtCO2-fe implied by the Coupled Model Intercomparison Project Phase 5 median response, corresponding to 19 years' CO2-fe emissions at the current rate.
Nature, formation, and distribution of carbonates on Ceres.
Carrozzo, Filippo Giacomo; De Sanctis, Maria Cristina; Raponi, Andrea; Ammannito, Eleonora; Castillo-Rogez, Julie; Ehlmann, Bethany L; Marchi, Simone; Stein, Nathaniel; Ciarniello, Mauro; Tosi, Federico; Capaccioni, Fabrizio; Capria, Maria Teresa; Fonte, Sergio; Formisano, Michelangelo; Frigeri, Alessandro; Giardino, Marco; Longobardo, Andrea; Magni, Gianfranco; Palomba, Ernesto; Zambon, Francesca; Raymond, Carol A; Russell, Christopher T
2018-03-01
Different carbonates have been detected on Ceres, and their abundance and spatial distribution have been mapped using a visible and infrared mapping spectrometer (VIR), the Dawn imaging spectrometer. Carbonates are abundant and ubiquitous across the surface, but variations in the strength and position of infrared spectral absorptions indicate variations in the composition and amount of these minerals. Mg-Ca carbonates are detected all over the surface, but localized areas show Na carbonates, such as natrite (Na 2 CO 3 ) and hydrated Na carbonates (for example, Na 2 CO 3 ·H 2 O). Their geological settings and accessory NH 4 -bearing phases suggest the upwelling, excavation, and exposure of salts formed from Na-CO 3 -NH 4 -Cl brine solutions at multiple locations across the planet. The presence of the hydrated carbonates indicates that their formation/exposure on Ceres' surface is geologically recent and dehydration to the anhydrous form (Na 2 CO 3 ) is ongoing, implying a still-evolving body.
LARGE-SCALE CO MAPS OF THE LUPUS MOLECULAR CLOUD COMPLEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tothill, N. F. H.; Loehr, A.; Stark, A. A.
2009-11-01
Fully sampled degree-scale maps of the {sup 13}CO 2-1 and CO 4-3 transitions toward three members of the Lupus Molecular Cloud Complex-Lupus I, III, and IV-trace the column density and temperature of the molecular gas. Comparison with IR extinction maps from the c2d project requires most of the gas to have a temperature of 8-10 K. Estimates of the cloud mass from {sup 13}CO emission are roughly consistent with most previous estimates, while the line widths are higher, around 2 km s{sup -1}. CO 4-3 emission is found throughout Lupus I, indicating widespread dense gas, and toward Lupus III andmore » IV. Enhanced line widths at the NW end and along the edge of the B 228 ridge in Lupus I, and a coherent velocity gradient across the ridge, are consistent with interaction between the molecular cloud and an expanding H I shell from the Upper-Scorpius subgroup of the Sco-Cen OB Association. Lupus III is dominated by the effects of two HAe/Be stars, and shows no sign of external influence. Slightly warmer gas around the core of Lupus IV and a low line width suggest heating by the Upper-Centaurus-Lupus subgroup of Sco-Cen, without the effects of an H I shell.« less
Kaur, Jasmeen; Adamchuk, Viacheslav I.; Whalen, Joann K.; Ismail, Ashraf A.
2015-01-01
The eco-toxicological indicators used to evaluate soil quality complement the physico-chemical criteria employed in contaminated site remediation, but their cost, time, sophisticated analytical methods and in-situ inapplicability pose a major challenge to rapidly detect and map the extent of soil contamination. This paper describes a sensor-based approach for measuring potential (substrate-induced) microbial respiration in diesel-contaminated and non-contaminated soil and hence, indirectly evaluates their microbial activity. A simple CO2 sensing system was developed using an inexpensive non-dispersive infrared (NDIR) CO2 sensor and was successfully deployed to differentiate the control and diesel-contaminated soils in terms of CO2 emission after glucose addition. Also, the sensor system distinguished glucose-induced CO2 emission from sterile and control soil samples (p ≤ 0.0001). Significant effects of diesel contamination (p ≤ 0.0001) and soil type (p ≤ 0.0001) on glucose-induced CO2 emission were also found. The developed sensing system can provide in-situ evaluation of soil microbial activity, an indicator of soil quality. The system can be a promising tool for the initial screening of contaminated environmental sites to create high spatial density maps at a relatively low cost. PMID:25730479
The Dusty Galactic Center as Seen by SCUBA-2
NASA Astrophysics Data System (ADS)
Parsons, H.; Dempsey, J. T.; Thomas, H. S.; Berry, D.; Currie, M. J.; Friberg, P.; Wouterloot, J. G. A.; Chrysostomou, A.; Graves, S.; Tilanus, R. P. J.; Bell, G. S.; Rawlings, M. G.
2018-02-01
We present new JCMT SCUBA-2 observations of the Galactic Center region from 355^\\circ < l< 5^\\circ and b< +/- 1^\\circ , covering 10 × 2 square degrees along the Galactic Plane to a depth of 43 mJy beam‑1 at 850 μm and 360 mJy beam‑1 at 450 μm. We describe the mapping strategy and reduction method used. We present 12CO(3-2) observations of selected regions in the field. We derive the molecular-line conversion factors (mJy beam‑1 per K km s‑1) at 850 and 450 μm, which are then used to obtain the amount of contamination in the continuum maps due to 12CO(3-2) emission in the 850 μm band. Toward the fields where the CO contamination has been accounted for, we present an 850 μm CO-corrected compact source catalog. Finally, we look for possible physical trends in the CO contamination with respect to column density, mass, and concentration. No trends were seen in the data despite the recognition of three contributors to CO contamination: opacity, shocks, and temperature, which would be expected to relate to physical conditions. These SCUBA-2 Galactic Center data and catalog are available via https://doi.org/10.11570/17.0009.
Origin and z-distribution of Galactic diffuse [C II] emission
NASA Astrophysics Data System (ADS)
Velusamy, T.; Langer, W. D.
2014-12-01
Context. The [C ii] emission is an important probe of star formation in the Galaxy and in external galaxies. The GOT C+ survey and its follow up observations of spectrally resolved 1.9 THz [C ii] emission using Herschel HIFI provides the data needed to quantify the Galactic interstellar [C ii] gas components as tracers of star formation. Aims: We determine the source of the diffuse [C ii] emission by studying its spatial (radial and vertical) distributions by separating and evaluating the fractions of [C ii] and CO emissions in the Galactic ISM gas components. Methods: We used the HIFI [C ii] Galactic survey (GOT C+), along with ancillary H i, 12CO, 13CO, and C18O data toward 354 lines of sight, and several HIFI [C ii] and [C i] position-velocity maps. We quantified the emission in each spectral line profile by evaluating the intensities in 3 km s-1 wide velocity bins, "spaxels". Using the detection of [C ii] with CO or [C i], we separated the dense and diffuse gas components. We derived 2D Galactic disk maps using the spaxel velocities for kinematic distances. We separated the warm and cold H2 gases by comparing CO emissions with and without associated [C ii]. Results: We find evidence of widespread diffuse [C ii] emission with a z-scale distribution larger than that for the total [C ii] or CO. The diffuse [C ii] emission consists of (i) diffuse molecular (CO-faint) H2 clouds and (ii) diffuse H i clouds and/or WIM. In the inner Galaxy we find a lack of [C ii] detections in a majority (~62%) of H i spaxels and show that the diffuse component primarily comes from the WIM (~21%) and that the H i gas is not a major contributor to the diffuse component (~6%). The warm-H2 radial profile shows an excess in the range 4 to 7 kpc, consistent with enhanced star formation there. Conclusions: We derive, for the first time, the 2D [C ii] spatial distribution in the plane and the z-distributions of the individual [C ii] gas component. From the GOT C+ detections we estimate the fractional [C ii] emission tracing (i) H2 gas in dense and diffuse molecular clouds as ~48% and ~14%, respectively, (ii) in the H i gas ~18%, and (iii) in the WIM ~21%. Including non-detections from H i increases the [C ii] in H i to ~27%. The z-scale distributions FWHM from smallest to largest are [C ii] sources with CO, ~130 pc, (CO-faint) diffuse H2 gas, ~200 pc, and the diffuse H i and WIM, ~330 pc. When combined with [C ii], CO observations probe the warm-H2 gas, tracing star formation. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Overlap corrections for emissivity calculations of H2O-CO2-CO-N2 mixtures
NASA Astrophysics Data System (ADS)
Alberti, Michael; Weber, Roman; Mancini, Marco
2018-01-01
Calculations of total gas emissivities of gas mixtures containing several radiatively active species require corrections for band overlapping. In this paper, we generate such overlap correction charts for H2O-CO2-N2, H2O-CO-N2, and CO2-CO-N2 mixtures. These charts are applicable in the 0.1-40 bar total pressure range and in the 500 K-2500 K temperature range. For H2O-CO2-N2 mixtures, differences between our charts and Hottel's graphs as well as models of Leckner and Modak are highlighted and analyzed.
NASA Astrophysics Data System (ADS)
1995-12-01
We compare the simulations of three biogeography models (BIOME2, Dynamic Global Phytogeography Model (DOLY), and Mapped Atmosphere-Plant Soil System (MAPSS)) and three biogeochemistry models (BIOME-BGC (BioGeochemistry Cycles), CENTURY, and Terrestrial Ecosystem Model (TEM)) for the conterminous United States under contemporary conditions of atmospheric CO2 and climate. We also compare the simulations of these models under doubled CO2 and a range of climate scenarios. For contemporary conditions, the biogeography models successfully simulate the geographic distribution of major vegetation types and have similar estimates of area for forests (42 to 46% of the conterminous United States), grasslands (17 to 27%), savannas (15 to 25%), and shrublands (14 to 18%). The biogeochemistry models estimate similar continental-scale net primary production (NPP; 3125 to 3772 × 1012 gC yr-1) and total carbon storage (108 to 118 × 1015 gC) for contemporary conditions. Among the scenarios of doubled CO2 and associated equilibrium climates produced by the three general circulation models (Oregon State University (OSU), Geophysical Fluid Dynamics Laboratory (GFDL), and United Kingdom Meteorological Office (UKMO)), all three biogeography models show both gains and losses of total forest area depending on the scenario (between 38 and 53% of conterminous United States area). The only consistent gains in forest area with all three models (BIOME2, DOLY, and MAPSS) were under the GFDL scenario due to large increases in precipitation. MAPSS lost forest area under UKMO, DOLY under OSU, and BIOME2 under both UKMO and OSU. The variability in forest area estimates occurs because the hydrologic cycles of the biogeography models have different sensitivities to increases in temperature and CO2. However, in general, the biogeography models produced broadly similar results when incorporating both climate change and elevated CO2 concentrations. For these scenarios, the NPP estimated by the biogeochemistry models increases between 2% (BIOME-BGC with UKMO climate) and 35% (TEM with UKMO climate). Changes in total carbon storage range from losses of 33% (BIOME-BGC with UKMO climate) to gains of 16% (TEM with OSU climate). The CENTURY responses of NPP and carbon storage are positive and intermediate to the responses of BIOME-BGC and TEM. The variability in carbon cycle responses occurs because the hydrologic and nitrogen cycles of the biogeochemistry models have different sensitivities to increases in temperature and CO2. When the biogeochemistry models are run with the vegetation distributions of the biogeography models, NPP ranges from no response (BIOME-BGC with all three biogeography model vegetations for UKMO climate) to increases of 40% (TEM with MAPSS vegetation for OSU climate). The total carbon storage response ranges from a decrease of 39% (BIOME-BGC with MAPSS vegetation for UKMO climate) to an increase of 32% (TEM with MAPSS vegetation for OSU and GFDL climates). The UKMO responses of BIOME-BGC with MAPSS vegetation are primarily caused by decreases in forested area and temperature-induced water stress. The OSU and GFDL responses of TEM with MAPSS vegetations are primarily caused by forest expansion and temperature-enhanced nitrogen cycling.
NASA Astrophysics Data System (ADS)
Melillo, J. M.; Borchers, J.; Chaney, J.; Fisher, H.; Fox, S.; Haxeltine, A.; Janetos, A.; Kicklighter, D. W.; Kittel, T. G. F.; McGuire, A. D.; McKeown, R.; Neilson, R.; Nemani, R.; Ojima, D. S.; Painter, T.
1995-12-01
We compare the simulations of three biogeography models (BIOME2, Dynamic Global Phytogeography Model (DOLY), and Mapped Atmosphere-Plant Soil System (MAPSS)) and three biogeochemistry models (BIOME-BGC (BioGeochemistry Cycles), CENTURY, and Terrestrial Ecosystem Model (TEM)) for the conterminous United States under contemporary conditions of atmospheric CO2 and climate. We also compare the simulations of these models under doubled CO2 and a range of climate scenarios. For contemporary conditions, the biogeography models successfully simulate the geographic distribution of major vegetation types and have similar estimates of area for forests (42 to 46% of the conterminous United States), grasslands (17 to 27%), savannas (15 to 25%), and shrublands (14 to 18%). The biogeochemistry models estimate similar continental-scale net primary production (NPP; 3125 to 3772×1012 gCyr-1) and total carbon storage (108 to 118×1015 gC) for contemporary conditions. Among the scenarios of doubled CO2 and associated equilibrium climates produced by the three general circulation models (Oregon State University (OSU), Geophysical Fluid Dynamics Laboratory (GFDL), and United Kingdom Meteorological Office (UKMO)), all three biogeography models show both gains and losses of total forest area depending on the scenario (between 38 and 53% of conterminous United States area). The only consistent gains in forest area with all three models (BIOME2, DOLY, and MAPSS) were under the GFDL scenario due to large increases in precipitation. MAPSS lost forest area under UKMO, DOLY under OSU, and BIOME2 under both UKMO and OSU. The variability in forest area estimates occurs because the hydrologic cycles of the biogeography models have different sensitivities to increases in temperature and CO2. However, in general, the biogeography models produced broadly similar results when incorporating both climate change and elevated CO2 concentrations. For these scenarios, the NPP estimated by the biogeochemistry models increases between 2% (BIOME-BGC with UKMO climate) and 35% (TEM with UKMO climate). Changes in total carbon storage range from losses of 33% (BIOME-BGC with UKMO climate) to gains of 16% (TEM with OSU climate). The CENTURY responses of NPP and carbon storage are positive and intermediate to the responses of BIOME-BGC and TEM. The variability in carbon cycle responses occurs because the hydrologic and nitrogen cycles of the biogeochemistry models have different sensitivities to increases in temperature and CO2. When the biogeochemistry models are run with the vegetation distributions of the biogeography models, NPP ranges from no response (BIOME-BGC with all three biogeography model vegetations for UKMO climate) to increases of 40% (TEM with MAPSS vegetation for OSU climate). The total carbon storage response ranges from a decrease of 39% (BIOME-BGC with MAPSS vegetation for UKMO climate) to an increase of 32% (TEM with MAPSS vegetation for OSU and GFDL climates). The UKMO responses of BIOME-BGC with MAPSS vegetation are primarily caused by decreases in forested area and temperature-induced water stress. The OSU and GFDL responses of TEM with MAPSS vegetations are primarily caused by forest expansion and temperature-enhanced nitrogen cycling.
NASA Technical Reports Server (NTRS)
Novak, Robert E.; Mumma, Michael J.
2011-01-01
Since 1997, we have used high-resolution (R greater than 40000) spectrometers on ground based-telescopes to study molecules that have astrobiological significance in Mars' atmosphere. We have used the NASA-IRTF, Keck II, and VLT telescopes in the 1.0-5.0 micron range. The spectrometer is set at a wavelength to detect specific molecules. Spectral/spatial images are produced. Extracts from these images provide column densities centered at latitude/longitude locations (resolution 400km at sub-Earth point). We have mapped the O2 singlet-Delta emission (a proxy for ozone), HDO, and H2O for seasonal dates throughout the Martian year. Previously undiscovered isotopic bands of CO2 have been identified along with isotopic forms of CO. We are searching for other molecules that have astrobiological importance and have successfully measured methane in Mars' atmosphere.
Engineering Feasibility and Trade Studies for the NASA/VSGC MicroMaps Space Mission
NASA Technical Reports Server (NTRS)
Abdelkhalik, Ossama O.; Nairouz, Bassem; Weaver, Timothy; Newman, Brett
2003-01-01
Knowledge of airborne CO concentrations is critical for accurate scientific prediction of global scale atmospheric behavior. MicroMaps is an existing NASA owned gas filter radiometer instrument designed for space-based measurement of atmospheric CO vertical profiles. Due to programmatic changes, the instrument does not have access to the space environment and is in storage. MicroMaps hardware has significant potential for filling a critical scientific need, thus motivating concept studies for new and innovative scientific spaceflight missions that would leverage the MicroMaps heritage and investment, and contribute to new CO distribution data. This report describes engineering feasibility and trade studies for the NASA/VSGC MicroMaps Space Mission. Conceptual studies encompass: 1) overall mission analysis and synthesis methodology, 2) major subsystem studies and detailed requirements development for an orbital platform option consisting of a small, single purpose spacecraft, 3) assessment of orbital platform option consisting of the International Space Station, and 4) survey of potential launch opportunities for gaining assess to orbit. Investigations are of a preliminary first-order nature. Results and recommendations from these activities are envisioned to support future MicroMaps Mission design decisions regarding program down select options leading to more advanced and mature phases.
de Campos, Richard Piffer Soares; Yoshida, Inez Valeria Pagotto; Breitkreitz, Márcia Cristina; Poppi, Ronei Jesus; Fracassi da Silva, José Alberto
2013-01-01
Methacryloxypropyl-modified poly(dimethylsiloxane) rubbers were obtained from poly(dimethylsiloxane), PDMS, and methacryloxypropyltrimethoxysilane, MPTMS, by polycondensation reactions. The modified rubbers, prepared with 20 and 30% (v/v) of MPTMS, were used as substrates for microchannel fabrication by the CO(2) laser ablation technique. Raman imaging spectroscopy was used for the surface characterization, showing the homogeneity of the rubbery material, with uniform distribution of the crosslinking centers. Under the experimental conditions used, damage to the rubber from the CO(2) laser radiation used for the channel engraving was not observed. Correlation maps of the surface were obtained in order to spatially evaluate the modification inside and outside the channels. The correlations between the methacryloxypropyl-modified poly(dimethylsiloxane) rubbers and MPTMS (spectral range of 1800-1550 cm(-1)) and PDMS (spectral range of 820-670 cm(-1)) precursors were higher than 0.95 and 0.99, respectively. In addition, Raman imaging spectroscopy allows monitoring the topography of the fabricated microchannel. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
von Bergmann, Hubertus; Morkel, Francois; Stehmann, Timo
2015-02-01
Laser Ultrasonic Testing (UT) is an important technique for the non-destructive inspection of composite parts in the aerospace industry. In laser UT a high power, short pulse probe laser is scanned across the material surface, generating ultrasound waves which can be detected by a second low power laser system and are used to draw a defect map of the part. We report on the design and testing of a transversely excited atmospheric pressure (TEA) CO2 laser system specifically optimised for laser UT. The laser is excited by a novel solid-state switched pulsing system and utilises either spark or corona preionisation. It provides short output pulses of less than 100 ns at repetition rates of up to 1 kHz, optimised for efficient ultrasonic wave generation. The system has been designed for highly reliable operation under industrial conditions and a long term test with total pulse counts in excess of 5 billion laser pulses is reported.
NASA Astrophysics Data System (ADS)
Zaccheo, T. S.; Pernini, T.; Botos, C.; Dobler, J. T.; Blume, N.; Braun, M.; Levine, Z. H.; Pintar, A. L.
2014-12-01
This work presents a methodology for constructing 2D estimates of CO2 field concentrations from integrated open path measurements of CO2 concentrations. It provides a description of the methodology, an assessment based on simulated data and results from preliminary field trials. The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) system, currently under development by Exelis and AER, consists of a set of laser-based transceivers and a number of retro-reflectors coupled with a cloud-based compute environment to enable real-time monitoring of integrated CO2 path concentrations, and provides 2D maps of estimated concentrations over an extended area of interest. The GreenLITE transceiver-reflector pairs provide laser absorption spectroscopy (LAS) measurements of differential absorption due to CO2 along intersecting chords within the field of interest. These differential absorption values for the intersecting chords of horizontal path are not only used to construct estimated values of integrated concentration, but also employed in an optimal estimation technique to derive 2D maps of underlying concentration fields. This optimal estimation technique combines these sparse data with in situ measurements of wind speed/direction and an analytic plume model to provide tomographic-like reconstruction of the field of interest. This work provides an assessment of this reconstruction method and preliminary results from the Fall 2014 testing at the Zero Emissions Research and Technology (ZERT) site in Bozeman, Montana. This work is funded in part under the GreenLITE program developed under a cooperative agreement between Exelis and the National Energy and Technology Laboratory (NETL) under the Department of Energy (DOE), contract # DE-FE0012574. Atmospheric and Environmental Research, Inc. is a major partner in this development.
Kèlomé, Nelly C; Lévêque, Jean; Andreux, Francis; Milloux, Marie-Jeanne; Oyédé, Lucien-Marc
2006-08-01
The carbon isotopic composition (delta13C) of plants can reveal the isotopic carbon content of the atmosphere in which they develop. The delta13C values of air and plants depend on the amount of atmospheric fossil fuel CO2, which is chiefly emitted in urban areas. A new indicator of CO2 pollution is tested using the delta13C variation in a C4 grass: Eleusine indica. A range of about 4 per thousand delta units was observed at different sites in Cotonou, the largest city in the Republic of Benin. The highest delta13C values, from -12 per thousand to -14 per thousand, were found in low traffic zones; low delta13C values, from -14 per thousand to -16 per thousand, were found in high traffic zones. The amount of fossil fuel carbon assimilated by plants represented about 20% of the total plant carbon content. An overall decrease in plant delta13C values was observed over a four-year monitoring period. This decrease was correlated with increasing vehicle traffic. The delta13C dataset and the corresponding geographical database were used to map and define zones of high and low 13C-depleted CO2 emissions in urban and sub-urban areas. The spatial distribution follows dominant wind directions, with the lowest emission zones found in the southwest of Cotonou. High CO2 emissions occurred in the north, the east and the center, providing evidence of intense anthropogenic activity related to industry and transportation.
State of energy consumption and CO2 emission in Bangladesh.
Azad, Abul K; Nashreen, S W; Sultana, J
2006-03-01
Carbon dioxide (CO2) is one of the most important gases in the atmosphere, and is necessary for sustaining life on Earth. It is also considered to be a major greenhouse gas contributing to global warming and climate change. In this article, energy consumption in Bangladesh is analyzed and estimates are made of CO2 emission from combustion of fossil fuel (coal, gas, petroleum products) for the period 1977 to 1995. International Panel for Climate Change guidelines for national greenhouse gas inventories were used in estimating CO2 emission. An analysis of energy data shows that the consumption of fossil fuels in Bangladesh is growing by more than 5% per year. The proportion of natural gas in total energy consumption is increasing, while that of petroleum products and coal is decreasing. The estimated total CO2 release from all primary fossil fuels used in Bangladesh amounted to 5072 Gigagram (Gg) in 1977, and 14 423 Gg in 1995. The total amounts of CO2 released from petroleum products, natural gas, and coal in the period 1977-1995 were 83 026 Gg (50% of CO2 emission), 72 541 Gg (44% of CO2 emission), and 9545 Gg (6% CO2 emission), respectively. A trend in CO2 emission with projections to 2070 is generated. In 2070, total estimated CO2 emission will be 293 260 Gg with a current growth rate of 6.34% y . CO2 emission from fossil fuels is increasing. Petroleum products contribute the majority of CO2 emission load, and although the use of natural gas is increasing rapidly, its contribution to CO2 emission is less than that of petroleum products. The use of coal as well as CO2 emission from coal is expected to gradually decrease.
Balamatsia, C C; Paleologos, E K; Kontominas, M G; Savvaidis, I N
2006-01-01
This study evaluated the formation of biogenic amines (BAs) in breast chicken meat during storage under aerobic and modified atmospheric packaging (MAP) conditions at 4 degrees C, the correlation of microbial and sensory changes in chicken meat with formation of BAs and the possible role of BAs as indicators of poultry meat spoilage. Poultry breast fillets were stored aerobically or under MAP (30%, CO(2), 70% N(2)) at 4 degrees C for up to 17 days. Quality evaluation was carried out using microbiological, chemical and sensory analyses. Total viable counts, Pseudomonads and Enterobacteriaceae, were in general higher for chicken samples packaged in air whereas lactic acid bacteria (LAB) and Enterobacteriaceae were among the dominant species for samples under MAP. Levels of putrescine and cadaverine increased linearly with storage time and were higher in aerobically stored chicken samples. Spermine and spermidine levels were also detected in both aerobically and MAP stored chicken meat. Levels of tyramine in both chicken samples stored aerobically and or under MAP were low (< 10 mg kg(-1)) whereas the formation of histamine was only observed after day 11 of storage when Enterobacteriaceae had reached a population of ca. 10(7) CFU g(-1). Based on sensory and microbiological analyses and also taking into account a biogenic amines index (BAI, sum of putrescine, cadaverine and tyramine), BAI values between 96 and 101 mg kg(-1) may be proposed as a quality index of MAP and aerobically-packaged fresh chicken meat. Spermine and spermidine decreased steadily throughout the entire storage period of chicken meat under aerobic and MAP packaging, and thus these two amines cannot be used as indicators of fresh chicken meat quality.
Total (fumarolic + diffuse soil) CO2 output from Furnas volcano.
Pedone, M; Viveiros, F; Aiuppa, A; Giudice, G; Grassa, F; Gagliano, A L; Francofonte, V; Ferreira, T
Furnas volcano, in São Miguel island (Azores), being the surface expression of rising hydrothermal steam, is the site of intense carbon dioxide (CO 2 ) release by diffuse degassing and fumaroles. While the diffusive CO 2 output has long (since the early 1990s) been characterized by soil CO 2 surveys, no information is presently available on the fumarolic CO 2 output. Here, we performed (in August 2014) a study in which soil CO 2 degassing survey was combined for the first time with the measurement of the fumarolic CO 2 flux. The results were achieved by using a GasFinder 2.0 tunable diode laser. Our measurements were performed in two degassing sites at Furnas volcano (Furnas Lake and Furnas Village), with the aim of quantifying the total (fumarolic + soil diffuse) CO 2 output. We show that, within the main degassing (fumarolic) areas, the soil CO 2 flux contribution (9.2 t day -1 ) represents a minor (~15 %) fraction of the total CO 2 output (59 t day -1 ), which is dominated by the fumaroles (~50 t day -1 ). The same fumaroles contribute to ~0.25 t day -1 of H 2 S, based on a fumarole CO 2 /H 2 S ratio of 150 to 353 (measured with a portable Multi-GAS). However, we also find that the soil CO 2 contribution from a more distal wider degassing structure dominates the total Furnas volcano CO 2 budget, which we evaluate (summing up the CO 2 flux contributions for degassing soils, fumarolic emissions and springs) at ~1030 t day -1 .
Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo
NASA Technical Reports Server (NTRS)
Hayashi, Joan N.; Jakosky, Bruce M.; Haberle, Robert M.
1995-01-01
We examine the effects of a dusty CO2 atmosphere on the thermal inertia and thermally derived albedo of Mars and we present a new map of thermal inertias. This new map was produced using a coupled surface atmosphere (CSA) model, dust opacities from Viking infrared thermal mapper (IRTM) data, and CO2 columns based on topography. The CSA model thermal inertias are smaller than the 2% model thermal inertias, with the difference largest at large thermal inertia. Although the difference between the thermal inertias obtained with the two models is moderate for much of the region studied, it is largest in regions of either high dust opacity or of topographic lows, including the Viking Lander 1 site and some geologically interesting regions. The CSA model thermally derived albedos do not acurately predict the IRTM measured albedos and are very similar to the thermally derived albedos obtained with models making the 2% assumption.
Characterization of Lithium Ion Battery Materials with Valence Electron Energy-Loss Spectroscopy.
Castro, Fernando C; Dravid, Vinayak P
2018-06-01
Cutting-edge research on materials for lithium ion batteries regularly focuses on nanoscale and atomic-scale phenomena. Electron energy-loss spectroscopy (EELS) is one of the most powerful ways of characterizing composition and aspects of the electronic structure of battery materials, particularly lithium and the transition metal mixed oxides found in the electrodes. However, the characteristic EELS signal from battery materials is challenging to analyze when there is strong overlap of spectral features, poor signal-to-background ratios, or thicker and uneven sample areas. A potential alternative or complementary approach comes from utilizing the valence EELS features (<20 eV loss) of battery materials. For example, the valence EELS features in LiCoO2 maintain higher jump ratios than the Li-K edge, most notably when spectra are collected with minimal acquisition times or from thick sample regions. EELS maps of these valence features give comparable results to the Li-K edge EELS maps of LiCoO2. With some spectral processing, the valence EELS maps more accurately highlight the morphology and distribution of LiCoO2 than the Li-K edge maps, especially in thicker sample regions. This approach is beneficial for cases where sample thickness or beam sensitivity limit EELS analysis, and could be used to minimize electron dosage and sample damage or contamination.
NASA Astrophysics Data System (ADS)
Jameson, Katherine E.; Bolatto, Alberto D.; Wolfire, Mark; Warren, Steven R.; Herrera-Camus, Rodrigo; Croxall, Kevin; Pellegrini, Eric; Smith, John-David; Rubio, Monica; Indebetouw, Remy; Israel, Frank P.; Meixner, Margaret; Roman-Duval, Julia; van Loon, Jacco Th.; Muller, Erik; Verdugo, Celia; Zinnecker, Hans; Okada, Yoko
2018-02-01
The Small Magellanic Cloud (SMC) provides the only laboratory to study the structure of molecular gas at high resolution and low metallicity. We present results from the Herschel Spectroscopic Survey of the SMC (HS3), which mapped the key far-IR cooling lines [C II], [O I], [N II], and [O III] in five star-forming regions, and new ALMA 7 m array maps of {}12{CO} and {}13{CO} (2-1) with coverage overlapping four of the five HS3 regions. We detect [C II] and [O I] throughout all of the regions mapped. The data allow us to compare the structure of the molecular clouds and surrounding photodissociation regions using {}13{CO}, {}12{CO}, [C II], and [O I] emission at ≲ 10\\prime\\prime (< 3 pc) scales. We estimate {A}V using far-IR thermal continuum emission from dust and find that the CO/[C II] ratios reach the Milky Way value at high {A}V in the centers of the clouds and fall to ∼ 1/5{--}1/10× the Milky Way value in the outskirts, indicating the presence of translucent molecular gas not traced by bright {}12{CO} emission. We estimate the amount of molecular gas traced by bright [C II] emission at low {A}V and bright {}12{CO} emission at high {A}V. We find that most of the molecular gas is at low {A}V and traced by bright [C II] emission, but that faint {}12{CO} emission appears to extend to where we estimate that the {{{H}}}2-to-H I transition occurs. By converting our {{{H}}}2 gas estimates to a CO-to-{{{H}}}2 conversion factor (X CO), we show that X CO is primarily a function of {A}V, consistent with simulations and models of low-metallicity molecular clouds. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
NASA Astrophysics Data System (ADS)
Pawson, S.; Nielsen, J.; Ott, L. E.; Darmenov, A.; Putman, W.
2015-12-01
Model-data fusion approaches, such as global inverse modeling for surface flux estimation, have traditionally been performed at spatial resolutions of several tens to a few hundreds of kilometers. Use of such coarse scales presents a fundamental limitation in reconciling the modeled field with both the atmospheric observations and the distribution of surface emissions and uptake. Emissions typically occur on small scales, including point sources (e.g. power plants, forest fires) or with inhomegeneous structure. Biological uptake can have spatial variations related to complex, diverse vegetation, etc. Atmospheric observations of CO2 are either surface based, providing information at a single point, or space based with a finite-sized footprint. For instance, GOSAT and OCO-2 have footprint sizes of around 10km and proposed active sensors (such as ASCENDS) will likely have even finer footprints. One important aspect of reconciling models to measurements is the representativeness of the observation for the model field, and this depends on the generally unknown spatio-temporal variations of the CO2 field around the measurement location and time. This work presents an assessment of the global spatio-temporal variations of the CO2 field using the "7km GEOS-5 Nature Run" (7km-G5NR), which includes CO2 emissions and uptake mapped to the finest possible resolution. Results are shown for surface CO2 concentrations, total-column CO2, and separate upper and lower tropospheric columns. Spatial variability is shown to be largest in regions with strong point sources and at night in regions with complex terrain, especially where biological processes dominate the local CO2 fluxes, where the day-night differences are also most marked. The spatio-temporal variations are strongest for surface concentrations and for lower tropospheric CO2. While these results are largely anticipated, these high resolution simulations provide quantitative estimates of the global nature of spatio-temporal CO2 variability. Implications for characterizing representativeness of passive CO2 observations will be discussed. Differences between daytime and nighttime structures will be considered in light of active CO2 sensors. Finally, some possible limitations of the model will be highlighted, using some global 3-km simulations.
Buerstmayr, Maria; Lemmens, Marc; Steiner, Barbara; Buerstmayr, Hermann
2011-07-01
While many reports on genetic analysis of Fusarium head blight (FHB) resistance in bread wheat have been published during the past decade, only limited information is available on FHB resistance derived from wheat relatives. In this contribution, we report on the genetic analysis of FHB resistance derived from Triticum macha (Georgian spelt wheat). As the origin of T. macha is in the Caucasian region, it is supposed that its FHB resistance differs from other well-investigated resistance sources. To introduce valuable alleles from the landrace T. macha into a modern genetic background, we adopted an advanced backcross QTL mapping scheme. A backcross-derived recombinant-inbred line population of 321 BC(2)F(3) lines was developed from a cross of T. macha with the Austrian winter wheat cultivar Furore. The population was evaluated for Fusarium resistance in seven field experiments during four seasons using artificial inoculations. A total of 300 lines of the population were genetically fingerprinted using SSR and AFLP markers. The resulting linkage map covered 33 linkage groups with 560 markers. Five novel FHB-resistance QTL, all descending from T. macha, were found on four chromosomes (2A, 2B, 5A, 5B). Several QTL for morphological and developmental traits were mapped in the same population, which partly overlapped with FHB-resistance QTL. Only the 2BL FHB-resistance QTL co-located with a plant height QTL. The largest-effect FHB-resistance QTL in this population mapped at the spelt-type locus on chromosome 5A and was associated with the wild-type allele q, but it is unclear whether q has a pleiotropic effect on FHB resistance or is closely linked to a nearby resistance QTL.
Total sulfur dioxide emissions and pre-eruption vapor-saturated magma at Mount St. Helens, 1980-88
NASA Astrophysics Data System (ADS)
Gerlach, T. M.; McGee, K. A.
1994-12-01
SO2 from explosive volcanism can cause significant climatic and atmospheric impacts, but the source of the sulfur is controversial. Total ozone mapping spectrometer (TOMS), correlation spectrometer (COSPEC), and ash leachate data for Mount St. Helens from the time of the climactic eruption on 18 May 1980 to the final stages of non-explosive degassing in 1988 give a total SO2 emission of 2 Mt. COSPEC data show a sharp drop in emission rate that was apparently controlled by a decreasing rate of magma supply. A total SO2 emission of only 0.08 Mt is estimated from melt inclusion data and the conventional assumption that the main sulfur source was pre-eruption melt; commonly invoked sources of 'excess sulfur' (anhydrite decomposition, basaltic magma, and degassing of non-erupted magma) are unlikely in this case. Thus melt inclusions may significantly underestimate SO2 emissions and impacts of explosive volcanism on climate and the atmosphere. Measured CO2 emissions, together with the H2O content of melt inclusions and experimental solubility data, indicate the Mount St. Helens dacite was vapor-saturated at depth prior to ascent and suggest that a vapor phase was the main source of sulfur for the 2-Mt of SO2. A vapor source is consistent with experimental studies on the Mount St. Helens dacite and removes the need for a much debated shallow magma body.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, P. A. R.; Aghanim, N.; Aniano, G.
The nearby Chamaeleon clouds have been observed in γ rays by the Fermi Large Area Telescope (LAT) and in thermal dust emission by Planck and IRAS. Cosmic rays and large dust grains, if smoothly mixed with gas, can jointly serve with the H i and 12CO radio data to (i) map the hydrogen column densities, N H, in the different gas phases, in particular at the dark neutral medium (DNM) transition between the H i-bright and CO-bright media; (ii) constrain the CO-to-H 2 conversion factor, X CO; and (iii) probe the dust properties per gas nucleon in each phase andmore » map their spatial variations across the clouds. We have separated clouds at local, intermediate, and Galactic velocities in H i and 12CO line emission to model in parallel the γ-ray intensity recorded between 0.4 and 100 GeV; the dust optical depth at 353 GHz, τ 353; the thermal radiance of the large grains; and an estimate of the dust extinction, A VQ, empirically corrected for the starlight intensity. Furthermore, the dust and γ-ray models have been coupled to account for the DNM gas. The consistent γ-ray emissivity spectra recorded in the different phases confirm that the GeV–TeV cosmic rays probed by the LAT uniformly permeate all gas phases up to the 12CO cores. The dust and cosmic rays both reveal large amounts of DNM gas, with comparable spatial distributions and twice as much mass as in the CO-bright clouds. We give constraints on the H i-DNM-CO transitions for five separate clouds. CO-dark H 2 dominates the molecular columns up to AV ≃ 0.9 and its mass often exceeds the one-third of the molecular mass expected by theory. The corrected A VQ extinction largely provides the best fit to the total gas traced by the γ rays. Nevertheless, we find evidence for a marked rise in A VQ/N H with increasing N H and molecular fraction, and with decreasing dust temperature. The rise in τ 353/NH is even steeper. Here, we observe variations of lesser amplitude and orderliness for the specific power of the grains, except for a coherent decline by half in the CO cores. This combined information suggests grain evolution. We also provide average values for the dust properties per gas nucleon in the different phases. The γ rays and dust radiance yield consistent X CO estimates near 0.7 × 10 20 cm -2 K -1 km -1 s. The A VQ and τ 353 tracers yield biased values because of the large rise in grain opacity in the CO clouds. These results clarify a recurrent disparity in the γ-ray versus dust calibration of X CO, but they confirm the factor of 2 difference found between the X CO estimates in nearby clouds and in the neighbouring spiral arms.« less
Quantifying the drivers of ocean-atmosphere CO2 fluxes
NASA Astrophysics Data System (ADS)
Lauderdale, Jonathan M.; Dutkiewicz, Stephanie; Williams, Richard G.; Follows, Michael J.
2016-07-01
A mechanistic framework for quantitatively mapping the regional drivers of air-sea CO2 fluxes at a global scale is developed. The framework evaluates the interplay between (1) surface heat and freshwater fluxes that influence the potential saturated carbon concentration, which depends on changes in sea surface temperature, salinity and alkalinity, (2) a residual, disequilibrium flux influenced by upwelling and entrainment of remineralized carbon- and nutrient-rich waters from the ocean interior, as well as rapid subduction of surface waters, (3) carbon uptake and export by biological activity as both soft tissue and carbonate, and (4) the effect on surface carbon concentrations due to freshwater precipitation or evaporation. In a steady state simulation of a coarse-resolution ocean circulation and biogeochemistry model, the sum of the individually determined components is close to the known total flux of the simulation. The leading order balance, identified in different dynamical regimes, is between the CO2 fluxes driven by surface heat fluxes and a combination of biologically driven carbon uptake and disequilibrium-driven carbon outgassing. The framework is still able to reconstruct simulated fluxes when evaluated using monthly averaged data and takes a form that can be applied consistently in models of different complexity and observations of the ocean. In this way, the framework may reveal differences in the balance of drivers acting across an ensemble of climate model simulations or be applied to an analysis and interpretation of the observed, real-world air-sea flux of CO2.
Vehicle emission trends and spatial distribution in Shandong province, China, from 2000 to 2014
NASA Astrophysics Data System (ADS)
Sun, Shida; Jiang, Wei; Gao, Weidong
2016-12-01
Vehicle emissions have become a major source of air pollution in Shandong province, which has experienced a sharp growth of vehicle numbers in recent years and now has the largest vehicle population in China. This paper combines the COPERT IV model with the vehicle age distribution to estimate the temporal trends and map the spatial distributions of vehicle emissions in Shandong province during the period ranging from 2000 to 2014. Both conventional air pollutants and greenhouse gases are included. In addition, a high-resolution vehicle emission inventory at the prefecture level is developed and mapped on a 0.05° × 0.05° grid based on road information. Our results show that the emissions of all of the conventional air pollutants have decreased to various extents over the recent past, but greenhouse gas emissions have continued to increase due to the lack of effective control strategies. The total emissions of CO, NMVOC, NOX, PM10, CO2, CH4 and N2O from the Shandong vehicle fleet changed from 1734.5 Gg, 277.9 Gg, 177.0 Gg, 12.4 Gg, 19239.7 Gg, 11.3 Gg and 0.6 Gg, respectively, in 2000 to 1723.3 Gg, 234.2 Gg, 513.8 Gg, 29.5 Gg, 138,419.5 Gg, 15.3 Gg and 3.9 Gg, respectively, in 2014. Vehicle emissions were mainly concentrated in cities and became more dispersed in Shandong province between 2000 and 2014.
NASA Astrophysics Data System (ADS)
Zalev, Jason; Clingman, Bryan; Smith, Remie J.; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Ermilov, Sergey; Conjusteau, André; Tsyboulski, Dmitri; Oraevsky, Alexander A.; Kist, Kenneth; Dornbluth, N. C.; Otto, Pamela
2013-03-01
We report on findings from the clinical feasibility study of the ImagioTM. Breast Imaging System, which acquires two-dimensional opto-acoustic (OA) images co-registered with conventional ultrasound using a specialized duplex hand-held probe. Dual-wavelength opto-acoustic technology is used to generate parametric maps based upon total hemoglobin and its oxygen saturation in breast tissues. This may provide functional diagnostic information pertaining to tumor metabolism and microvasculature, which is complementary to morphological information obtained with conventional gray-scale ultrasound. We present co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical feasibility study. The clinical results illustrate that the technology may have the capability to improve the efficacy of breast tumor diagnosis. In doing so, it may have the potential to reduce biopsies and to characterize cancers that were not seen well with conventional gray-scale ultrasound alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brázda, Petr, E-mail: brazda@fzu.cz; Palatinus, Lukáš; Klementová, Mariana
2015-07-15
We have used electron diffraction tomography and powder X-ray diffraction to elucidate the structural properties of layered cobaltate γ-La{sub 0.30}CoO{sub 2}. The structure consists of hexagonal sheets of edge-sharing CoO{sub 6} octahedra interleaved by lanthanum monolayers. The La{sup 3+} cations occupy only one third of available P2 sites, forming a 2-dimensional a√3×a√3 superstructure in a–b plane. The results show that there exists no order in the mutual relative shift between the neighbouring La interlayers within the a–b plane. This is manifested in the observed monotonous decrease of the diffracted intensity of the superstructure diffractions along c{sup ⁎} in both X-raymore » and electron diffraction data. The observed lack of stacking order differentiates the La{sub x}CoO{sub 2} from its Ca and Sr analogues where at least a partial stacking order of the cationic interlayers is manifested in experimental data published in literature. - Highlights: • We use electron diffraction tomography for reciprocal space mapping of La{sub 0.30}CoO{sub 2}. • We observed a complete disorder of the stacking of Lanthanum interlayers. • Co{sub 3}O{sub 4} intergrown with La{sub 0.30}CoO{sub 2} crystals brings about fake superstructure diffractions. • Twinning of Co{sub 3}O{sub 4} enhances the problem of fake superstructure diffractions.« less
Chang, Jia-Dong; Mantri, Nitin; Sun, Bin; Jiang, Li; Chen, Ping; Jiang, Bo; Jiang, Zhengdong; Zhang, Jialei; Shen, Jiahao; Lu, Hongfei; Liang, Zongsuo
2016-06-01
Recently, an important topic of research has been how climate change is seriously threatening the sustainability of agricultural production. However, there is surprisingly little experimental data regarding how elevated temperature and CO2 will affect the growth of medicinal plants and production of bioactive compounds. Here, we comprehensively analyzed the effects of elevated CO2 and temperature on the photosynthetic process, biomass, total sugars, antioxidant compounds, antioxidant capacity, and bioactive compounds of Gynostemma pentaphyllum. Two different CO2 concentrations [360 and 720μmolmol(-1)] were imposed on plants grown at two different temperature regimes of 23/18 and 28/23°C (day/night) for 60days. Results show that elevated CO2 and temperature significantly increase the biomass, particularly in proportion to inflorescence total dry weight. The chlorophyll content in leaves increased under the elevated temperature and CO2. Further, electron transport rate (ETR), photochemical quenching (qP), actual photochemical quantum yield (Yield), instantaneous photosynthetic rate (Photo), transpiration rate (Trmmol) and stomatal conductance (Cond) also increased to different degrees under elevated CO2 and temperature. Moreover, elevated CO2 increased the level of total sugars and gypenoside A, but decreased the total antioxidant capacity and main antioxidant compounds in different organs of G. pentaphyllum. Accumulation of total phenolics and flavonoids also decreased in leaves, stems, and inflorescences under elevated CO2 and temperature. Overall, our data indicate that the predicted increase in atmospheric temperature and CO2 could improve the biomass of G. pentaphyllum, but they would reduce its health-promoting properties. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Thorpe, A. K.; Frankenberg, C.; Thompson, D. R.; Duren, R. M.; Aubrey, A. D.; Bue, B. D.; Green, R. O.; Gerilowski, K.; Krings, T.; Borchardt, J.; Kort, E. A.; Sweeney, C.; Conley, S. A.; Roberts, D. A.; Dennison, P. E.; Ayasse, A.
2016-12-01
Imaging spectrometers like the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) can map large regions with the high spatial resolution necessary to resolve methane (CH4) and carbon dioxide (CO2) emissions. This capability is aided by real time detection and geolocation of gas plumes, permitting unambiguous identification of individual emission source locations and communication to ground teams for rapid follow up. We present results from AVIRIS-NG flight campaigns in the Four Corners region (Colorado and New Mexico) and the San Joaquin Valley (California). Over three hundred plumes were observed, reflecting emissions from anthropogenic and natural sources. Examples of plumes will be shown for a number of sources, including CH4 from well completions, gas processing plants, tanks, pipeline leaks, natural seeps, and CO2 from power plants. Despite these promising results, an imaging spectrometer built exclusively for quantitative mapping of gas plumes would have improved sensitivity compared to AVIRIS-NG. For example, an instrument providing a 1 nm spectral sampling (2,000-2,400 micron) would permit mapping CH4, CO2, H2O, CO, and N2O from more diffuse sources using both airborne and orbital platforms. The ability to identify emission sources offers the potential to constrain regional greenhouse gas budgets and improve partitioning between anthropogenic and natural emission sources. Because the CH4 lifetime is only about 9 years and CH4 has a Global Warming Potential 86 times that of CO2 for a 20 year time interval, mitigating these emissions is a particularly cost-effective approach to reduce overall atmospheric radiative forcing. Fig. 1. True color image subset with superimposed gas plumes showing concentrations in ppmm. Left: AVIRIS-NG observed CH4 plumes from natural gas processing plant extending over 500 m downwind of multiple emissions sources. Right: Multiple CO2 plumes observed from coal-fired power plant.
Chèneby, Jeanne; Gheorghe, Marius; Artufel, Marie
2018-01-01
Abstract With this latest release of ReMap (http://remap.cisreg.eu), we present a unique collection of regulatory regions in human, as a result of a large-scale integrative analysis of ChIP-seq experiments for hundreds of transcriptional regulators (TRs) such as transcription factors, transcriptional co-activators and chromatin regulators. In 2015, we introduced the ReMap database to capture the genome regulatory space by integrating public ChIP-seq datasets, covering 237 TRs across 13 million (M) peaks. In this release, we have extended this catalog to constitute a unique collection of regulatory regions. Specifically, we have collected, analyzed and retained after quality control a total of 2829 ChIP-seq datasets available from public sources, covering a total of 485 TRs with a catalog of 80M peaks. Additionally, the updated database includes new search features for TR names as well as aliases, including cell line names and the ability to navigate the data directly within genome browsers via public track hubs. Finally, full access to this catalog is available online together with a TR binding enrichment analysis tool. ReMap 2018 provides a significant update of the ReMap database, providing an in depth view of the complexity of the regulatory landscape in human. PMID:29126285
The Orbiting Carbon Observatory-2: first 18 months of science data products
NASA Astrophysics Data System (ADS)
Eldering, Annmarie; O'Dell, Chris W.; Wennberg, Paul O.; Crisp, David; Gunson, Michael R.; Viatte, Camille; Avis, Charles; Braverman, Amy; Castano, Rebecca; Chang, Albert; Chapsky, Lars; Cheng, Cecilia; Connor, Brian; Dang, Lan; Doran, Gary; Fisher, Brendan; Frankenberg, Christian; Fu, Dejian; Granat, Robert; Hobbs, Jonathan; Lee, Richard A. M.; Mandrake, Lukas; McDuffie, James; Miller, Charles E.; Myers, Vicky; Natraj, Vijay; O'Brien, Denis; Osterman, Gregory B.; Oyafuso, Fabiano; Payne, Vivienne H.; Pollock, Harold R.; Polonsky, Igor; Roehl, Coleen M.; Rosenberg, Robert; Schwandner, Florian; Smyth, Mike; Tang, Vivian; Taylor, Thomas E.; To, Cathy; Wunch, Debra; Yoshimizu, Jan
2017-02-01
The Orbiting Carbon Observatory-2 (OCO-2) is the first National Aeronautics and Space Administration (NASA) satellite designed to measure atmospheric carbon dioxide (CO2) with the accuracy, resolution, and coverage needed to quantify CO2 fluxes (sources and sinks) on regional scales. OCO-2 was successfully launched on 2 July 2014 and has gathered more than 2 years of observations. The v7/v7r operational data products from September 2014 to January 2016 are discussed here. On monthly timescales, 7 to 12 % of these measurements are sufficiently cloud and aerosol free to yield estimates of the column-averaged atmospheric CO2 dry air mole fraction, XCO2, that pass all quality tests. During the first year of operations, the observing strategy, instrument calibration, and retrieval algorithm were optimized to improve both the data yield and the accuracy of the products. With these changes, global maps of XCO2 derived from the OCO-2 data are revealing some of the most robust features of the atmospheric carbon cycle. This includes XCO2 enhancements co-located with intense fossil fuel emissions in eastern US and eastern China, which are most obvious between October and December, when the north-south XCO2 gradient is small. Enhanced XCO2 coincident with biomass burning in the Amazon, central Africa, and Indonesia is also evident in this season. In May and June, when the north-south XCO2 gradient is largest, these sources are less apparent in global maps. During this part of the year, OCO-2 maps show a more than 10 ppm reduction in XCO2 across the Northern Hemisphere, as photosynthesis by the land biosphere rapidly absorbs CO2. As the carbon cycle science community continues to analyze these OCO-2 data, information on regional-scale sources (emitters) and sinks (absorbers) which impart XCO2 changes on the order of 1 ppm, as well as far more subtle features, will emerge from this high-resolution global dataset.
The potential of using remote sensing data to estimate air-sea CO2 exchange in the Baltic Sea
NASA Astrophysics Data System (ADS)
Parard, Gaëlle; Rutgersson, Anna; Parampil, Sindu Raj; Alexandre Charantonis, Anastase
2017-12-01
In this article, we present the first climatological map of air-sea CO2 flux over the Baltic Sea based on remote sensing data: estimates of pCO2 derived from satellite imaging using self-organizing map classifications along with class-specific linear regressions (SOMLO methodology) and remotely sensed wind estimates. The estimates have a spatial resolution of 4 km both in latitude and longitude and a monthly temporal resolution from 1998 to 2011. The CO2 fluxes are estimated using two types of wind products, i.e. reanalysis winds and satellite wind products, the higher-resolution wind product generally leading to higher-amplitude flux estimations. Furthermore, the CO2 fluxes were also estimated using two methods: the method of Wanninkhof et al. (2013) and the method of Rutgersson and Smedman (2009). The seasonal variation in fluxes reflects the seasonal variation in pCO2 unvaryingly over the whole Baltic Sea, with high winter CO2 emissions and high pCO2 uptakes. All basins act as a source for the atmosphere, with a higher degree of emission in the southern regions (mean source of 1.6 mmol m-2 d-1 for the South Basin and 0.9 for the Central Basin) than in the northern regions (mean source of 0.1 mmol m-2 d-1) and the coastal areas act as a larger sink (annual uptake of -4.2 mmol m-2 d-1) than does the open sea (-4 mmol m-2 d-1). In its entirety, the Baltic Sea acts as a small source of 1.2 mmol m-2 d-1 on average and this annual uptake has increased from 1998 to 2012.
Tong, Zhijun; Xiao, Bingguang; Jiao, Fangchan; Fang, Dunhuang; Zeng, Jianmin; Wu, Xingfu; Chen, Xuejun; Yang, Jiankang; Li, Yongping
2016-01-01
Tobacco (Nicotiana tabacum L.), particularly flue-cured tobacco, is one of the most economically important nonfood crops and is also an important model system in plant biotechnology. Despite its importance, only limited molecular marker resources are available for genome analysis, genetic mapping, and breeding. Simple sequence repeats (SSR) are one of the most widely-used molecular markers, having significant advantages including that they are generally co-dominant, easy to use, abundant in eukaryotic organisms, and produce highly reproducible results. In this study, based on the genome sequence data of flue-cured tobacco (K326), we developed a total of 13,645 mostly novel SSR markers, which were working in a set of eighteen tobacco varieties of four different types. A mapping population of 213 backcross (BC1) individuals, which were derived from an intra-type cross between two flue-cured tobacco varieties, Y3 and K326, was selected for mapping. Based on the newly developed SSR markers as well as published SSR markers, we constructed a genetic map consisting of 626 SSR loci distributed across 24 linkage groups and covering a total length of 1120.45 cM with an average distance of 1.79 cM between adjacent markers, which is the highest density map of flue-cured tobacco till date. PMID:27436948
Chemistry of Earth's Putative Steam Atmosphere
NASA Astrophysics Data System (ADS)
Fegley, B.; Schaefer, L.
2007-12-01
The concept of a steam atmosphere generated by impact devolatilization of planetesimals accreted during Earth's formation is over 20 years old (Matsui and Abe, 1986; Lange and Ahrens, 1982). Surprisingly, with the possible exception of a few qualitative remarks, no one has critically assessed this scenario. We use thermochemical equilibrium and, where relevant, thermochemical kinetic calculations to model the chemistry of the "steam" atmosphere produced by impact volatilization of different types of accreting material. We present results for our nominal conditions (1500 K, total P = 100 bar). We also studied the effects of variable temperature and total pressure. The composition of the accreting material is modeled using average compositions of the Orgueil CI chondrite, the Murchison CM2 chondrite, the Allende CV3 chondrite, average ordinary (H, L, LL) chondrites, and average enstatite (EH, EL) chondrites. The major gases released from CI and CM chondritic material are H2O, CO2, H2, H2S, CO, CH4, and SO2 in decreasing order of abundance. About 10% of the atmosphere is CO2. The major gases released from CV chondritic material are CO2, H2O, CO, H2, and SO2 in decreasing order of abundance. About 20% of the total atmosphere is steam. The major gases released from average ordinary chondritic material are H2, CO, H2O, CO2, CH4, H2S, and N2 in decreasing order of abundance. The "steam" atmosphere is predominantly H2 + CO with steam being about 10% of the total atmosphere. The major gases released from EH chondritic material are H2, CO, H2O, CO2, N2, and CH4 in decreasing order of abundance. The "steam" atmosphere is predominantly H2 + CO with about 10% of the total atmosphere as steam. This work was supported by the NASA Astrobiology and Origins Programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedmann, S J
Carbon capture and sequestration (CCS) has emerged as a key technology for dramatic short-term reduction in greenhouse gas emissions in particular from large stationary. A key challenge in this arena is the monitoring and verification (M&V) of CO2 plumes in the deep subsurface. Towards that end, we have developed a tool that can simultaneously invert multiple sub-surface data sets to constrain the location, geometry, and saturation of subsurface CO2 plumes. We have focused on a suite of unconventional geophysical approaches that measure changes in electrical properties (electrical resistance tomography, electromagnetic induction tomography) and bulk crustal deformation (til-meters). We had alsomore » used constraints of the geology as rendered in a shared earth model (ShEM) and of the injection (e.g., total injected CO{sub 2}). We describe a stochastic inversion method for mapping subsurface regions where CO{sub 2} saturation is changing. The technique combines prior information with measurements of injected CO{sub 2} volume, reservoir deformation and electrical resistivity. Bayesian inference and a Metropolis simulation algorithm form the basis for this approach. The method can (a) jointly reconstruct disparate data types such as surface or subsurface tilt, electrical resistivity, and injected CO{sub 2} volume measurements, (b) provide quantitative measures of the result uncertainty, (c) identify competing models when the available data are insufficient to definitively identify a single optimal model and (d) rank the alternative models based on how well they fit available data. We present results from general simulations of a hypothetical case derived from a real site. We also apply the technique to a field in Wyoming, where measurements collected during CO{sub 2} injection for enhanced oil recovery serve to illustrate the method's performance. The stochastic inversions provide estimates of the most probable location, shape, volume of the plume and most likely CO{sub 2} saturation. The results suggest that the method can reconstruct data with poor signal to noise ratio and use hard constraints available from many sites and applications. External interest in the approach and method is high, and already commercial and DOE entities have requested technical work using the newly developed methodology for CO{sub 2} monitoring.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tony Y.; Wechsler, Risa H.; Devaraj, Kiruthika
Intensity mapping, which images a single spectral line from unresolved galaxies across cosmological volumes, is a promising technique for probing the early universe. Here we present predictions for the intensity map and power spectrum of the CO(1–0) line from galaxies atmore » $$z\\sim 2.4$$–2.8, based on a parameterized model for the galaxy–halo connection, and demonstrate the extent to which properties of high-redshift galaxies can be directly inferred from such observations. We find that our fiducial prediction should be detectable by a realistic experiment. Motivated by significant modeling uncertainties, we demonstrate the effect on the power spectrum of varying each parameter in our model. Using simulated observations, we infer constraints on our model parameter space with an MCMC procedure, and show corresponding constraints on the $${L}_{\\mathrm{IR}}$$–$${L}_{\\mathrm{CO}}$$ relation and the CO luminosity function. These constraints would be complementary to current high-redshift galaxy observations, which can detect the brightest galaxies but not complete samples from the faint end of the luminosity function. Furthermore, by probing these populations in aggregate, CO intensity mapping could be a valuable tool for probing molecular gas and its relation to star formation in high-redshift galaxies.« less
How well does CO emission measure the H2 mass of MCs?
NASA Astrophysics Data System (ADS)
Szűcs, László; Glover, Simon C. O.; Klessen, Ralf S.
2016-07-01
We present numerical simulations of molecular clouds (MCs) with self-consistent CO gas-phase and isotope chemistry in various environments. The simulations are post-processed with a line radiative transfer code to obtain 12CO and 13CO emission maps for the J = 1 → 0 rotational transition. The emission maps are analysed with commonly used observational methods, I.e. the 13CO column density measurement, the virial mass estimate and the so-called XCO (also CO-to-H2) conversion factor, and then the inferred quantities (I.e. mass and column density) are compared to the physical values. We generally find that most methods examined here recover the CO-emitting H2 gas mass of MCs within a factor of 2 uncertainty if the metallicity is not too low. The exception is the 13CO column density method. It is affected by chemical and optical depth issues, and it measures both the true H2 column density distribution and the molecular mass poorly. The virial mass estimate seems to work the best in the considered metallicity and radiation field strength range, even when the overall virial parameter of the cloud is above the equilibrium value. This is explained by a systematically lower virial parameter (I.e. closer to equilibrium) in the CO-emitting regions; in CO emission, clouds might seem (sub-)virial, even when, in fact, they are expanding or being dispersed. A single CO-to-H2 conversion factor appears to be a robust choice over relatively wide ranges of cloud conditions, unless the metallicity is low. The methods which try to take the metallicity dependence of the conversion factor into account tend to systematically overestimate the true cloud masses.
Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application
NASA Astrophysics Data System (ADS)
Bae, Seong Jun; Ahn, Yoonhan; Lee, Jekyoung; Lee, Jeong Ik
2014-12-01
Various supercritical carbon dioxide (S-CO2) cycles for a power conversion system of a Molten Carbonate Fuel Cell (MCFC) hybrid system are studied in this paper. Re-Compressing Brayton (RCB) cycle, Simple Recuperated Brayton (SRB) cycle and Simple Recuperated Transcritical (SRT) cycle layouts were selected as candidates for this study. In addition, a novel concept of S-CO2 cycle which combines Brayton cycle and Rankine cycle is proposed and intensively studied with other S-CO2 layouts. A parametric study is performed to optimize the total system to be compact and to achieve wider operating range. Performances of each S-CO2 cycle are compared in terms of the thermal efficiency, net electricity of the MCFC hybrid system and approximate total volumes of each S-CO2 cycle. As a result, performance and total physical size of S-CO2 cycle can be better understood for MCFC S-CO2 hybrid system and especially, newly suggested S-CO2 cycle shows some success.
Mapping of AFLP markers linked to seed coat colour loci in Brassica juncea (L.) Czern.
Sabharwal, V; Negi, M S; Banga, S S; Lakshmikumaran, M
2004-06-01
Association mapping of the seed-coat colour with amplified fragment length polymorphism (AFLP) markers was carried out in 39 Brassica juncea lines. The lines had genetically diverse parentages and varied for seed-coat colour and other morphological characters. Eleven AFLP primer combinations were used to screen the 39 B. juncea lines, and a total of 335 polymorphic bands were detected. The bands were analysed for association with seed-coat colour using multiple regression analysis. This analysis revealed 15 markers associated with seed-coat colour, obtained with eight AFLP primer combinations. The marker E-ACA/M-CTG(350 )explained 69% of the variation in seed-coat colour. This marker along with markers E-AAC/M-CTC(235 )and E-AAC/M-CTA(250) explained 89% of the total variation. The 15 associated markers were validated for linkage with the seed-coat colour loci using a recombinant inbred line (RIL) mapping population. Bands were amplified with the eight AFLP primer combinations in 54 RIL progenies. Of the 15 associated markers, 11 mapped on two linkage groups. Eight markers were placed on linkage group 1 at a marker density of 6.0 cM, while the remaining three were mapped on linkage group 2 at a marker density of 3.6 cM. Marker E-ACA/M-CTG(350 )co-segregated with Gene1 controlling seed-coat colour; it was specific for yellow seed-coat colour and mapped to linkage group 1. Marker E-AAC/M-CTC(235) (AFLP8), which had been studied previously, was present on linkage group 2; it was specific for brown seed-coat colour. Since AFLP markers are not adapted for large-scale applications in plant breeding, it is important to convert these to sequence-characterised amplified region (SCAR) markers. Marker E-AAC/M-CTC(235) (AFLP8) had been previously converted into a SCAR. Work is in progress to convert the second of the linked markers, E-ACA/M-CTG(350), to a SCAR. The two linked AFLP markers converted to SCARs will be useful for developing yellow-seeded B. juncea lines by means of marker-assisted selection.
Changes of pH and peroxide value in carp (Cyprinus carpio) cuts packaged in modified atmosphere
NASA Astrophysics Data System (ADS)
Milijašević, M.; Babić Milijašević, J.; Đinović-Stojanović, J.; Vesković Moračanin, S.; Lilić, S.
2017-09-01
The aim of our research was to examine the influence of packaging in modified atmosphere on the pH and peroxide value in muscle of common carp (Cyprinus carpio), as well as to determine the most suitable gas mixtures for packing of that freshwater species. Three sample groups of carp cuts were investigated. One group of carp cuts was placed on top of flaked ice placed in polystyrene boxes. Two other groups were packaged in modified atmosphere with different gas ratios: 80%O2+20%CO2 (MAP 1) and 90%CO2+10%N2 (MAP 2). All carp cuts were stored in the same conditions at 3±0.5°C, and on 1, 3, 5, 7, 9, 11, 13, 15. and 17 days of storage, chemical testing was performed. The results obtained indicate that the packaging of common carp under 90%CO2+10%N2 slowed proteolytic reaction as well as secondary lipid oxidation.
The molecular spiral arms of NGC 6946
NASA Technical Reports Server (NTRS)
Tacconi, L. J.; Xie, S.
1990-01-01
From CO-12(J=1 to 0) observations at 45 seconds resolution Tacconi and Young (1989) have found evidence for enhancements in both the CO emissivity and the massive star formation efficiency (MSFE) on optical spiral arms of the bright spiral galaxy NGC 6946. In the optically luminous and well-defined spiral arm in the NE quadrant, there are enhancements in both the H2 surface density and MSFE relative to the interarm regions. In contrast, a poorly defined arm in the SW shows no arm-interarm contrast in the MSFE. To further investigate the molecular gas content of these two spiral arms, researchers have made CO-12 J=2 to 1 and 3 to 2 observations with the James Clerk Maxwell Telescope. In the J=2 to 1 line, they made observations of the NE and SW spiral arm and interarm regions in 4 x 9 10 seconds spaced grids (36 points per grid). Because of decreased sensitivity in the J=3 to 2 line, they were limited to mapping the two arm regions in 2 x 3 10 seconds spaced grids (6 points per grid). The centers of each of the grids lie 2.4 minutes to the NE and 2.3 minutes to the SW of the nucleus of NGC 6946. With the CO J=2 to 1 data researchers are able to fully resolve the two observed spiral arms in NGC 6946. In both cases the CO emission is largely confined to the optical spiral arm regions with the peak observed T asterisk sub A being up to 4 times higher on the spiral arms than in the interarm regions. Researchers are currently estimating massive star formation efficiencies on and off the spiral arms through direct comparison of the CO maps with an H alpha image. They are also comparing the CO J=2 to 1 data with an HI map made at similar resolution. Thus, they will be able to determine structure in all components of the IS on scales of less than 20 inches.
Tree species influence soil-atmosphere fluxes of the greenhouse gases CO2, CH4 and N2O
NASA Astrophysics Data System (ADS)
Steffens, Christina; Vesterdal, Lars; Pfeiffer, Eva-Maria
2016-04-01
In the temperate zone, forests are the greatest terrestrial sink for atmospheric CO2, and tree species affect soil C stocks and soil CO2 emissions. When considering the total greenhouse gas (GHG) balance of the forest soil, the relevant GHGs CH4 and N2O should also be considered as they have a higher global warming potential than CO2. The presented data are first results from a field study in a common garden site in Denmark where tree species with ectomycorrhizal colonization (beech - Fagus sylvatica, oak - Quercus robur) and with arbuscular mycorrhizal colonization (maple - Acer pseudoplatanus, ash - Fraxinus excelsior) have been planted in monocultures in adjacent blocks of about 0.25 ha in the year 1973 on former arable land. The soil-atmosphere fluxes of all three gases were measured every second week since August 2015. The hypothesis is that the total GHG efflux from forest soil would differ between species, and that these differences could be related to the type of mycorrhizal association and leaf litter quality. Preliminary results (August to December 2015) indicate that tree species influence the fluxes (converted to CO2-eq) of the three GHGs. Total soil CO2 efflux was in the low end of the range reported for temperate broadleaved forests but similar to the measurements at the same site approximately ten years ago. It was highest under oak (9.6±2.4 g CO2 m-2 d-1) and lowest under maple (5.2±1.6 g CO2 m-2 d-1). In contrast, soil under oak was a small but significant sink for CH4(-0.005±0.003 g CO2-eq m-2 d-1), while there were almost no detectable CH4 fluxes in maple. Emissions of N2O were highest under beech (0.6±0.6 g CO2-eq m-2 d-1) and oak (0.2±0.09 g CO2-eq m-2 d-1) and lowest under ash (0.03±0.04 g CO2-eq m-2 d-1). In the total GHG balance, soil CH4 uptake was negligible (≤0.1% of total emissions). Emissions of N2O (converted to CO2-eq) contributed <1% (ash) to 8% (beech) to total GHG emissions. Summing up all GHG emissions, the tree species were divided in two groups as hypothesized: Beech and oak, both colonized by ectomycorrhiza and producing leaf litter with a high lignin:N ratio, had higher total GHG emissions (8.9±3.5 and 10.3±2.9 g CO2-eq m-2 d-1) than maple and ash (6.2±1.4 and 6.2±0.9 g CO2-eq m-2 d-1) that are colonized by arbuscular mycorrhiza and produce leaf litter with a lower lignin:N ratio.
The Carbon Footprint of Conference Papers.
Spinellis, Diomidis; Louridas, Panos
2013-01-01
The action required to stem the environmental and social implications of climate change depends crucially on how humankind shapes technology, economy, lifestyle and policy. With transport CO2 emissions accounting for about a quarter of the total, we examine the contribution of CO2 output by scientific travel. Thankfully for the reputation of the scientific community, CO2 emissions associated with the trips required to present a paper at a scientific conference account for just 0.003% of the yearly total. However, with CO2 emissions for a single conference trip amounting to 7% of an average individual's total CO2 emissions, scientists should lead by example by demonstrating leadership in addressing the issue.
The Carbon Footprint of Conference Papers
Spinellis, Diomidis; Louridas, Panos
2013-01-01
The action required to stem the environmental and social implications of climate change depends crucially on how humankind shapes technology, economy, lifestyle and policy. With transport CO2 emissions accounting for about a quarter of the total, we examine the contribution of CO2 output by scientific travel. Thankfully for the reputation of the scientific community, CO2 emissions associated with the trips required to present a paper at a scientific conference account for just 0.003% of the yearly total. However, with CO2 emissions for a single conference trip amounting to 7% of an average individual’s total CO2 emissions, scientists should lead by example by demonstrating leadership in addressing the issue. PMID:23840496
Jia, Xia; Liu, Tuo; Zhao, Yonghua; He, Yunhua; Yang, Mingyan
2016-01-01
The objective of this study was to investigate the effects of elevated CO2 (700 ± 23 μmol mol(-1)) on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated CO2 was associated with decreased quantities of reducing sugars, starch, and soluble amino acids, and with increased quantities of soluble sugars, total sugars, and soluble proteins in wheat seedlings under Cd stress. The contents of total soluble sugars, total free amino acids, total soluble phenolic acids, and total organic acids in the rhizosphere soil under Cd stress were improved by elevated CO2. Compared to Cd stress alone, the activity of amylase, phenol oxidase, urease, L-asparaginase, β-glucosidase, neutral phosphatase, and fluorescein diacetate increased under elevated CO2 in combination with Cd stress; only cellulase activity decreased. Bacterial abundance in rhizosphere soil was stimulated by elevated CO2 at low Cd concentrations (1.31-5.31 mg Cd kg(-1) dry soil). Actinomycetes, total microbial abundance, and fungi decreased under the combined conditions at 5.31-10.31 mg Cd kg(-1) dry soil. In conclusion, increased production of soluble sugars, total sugars, and proteins in wheat seedlings under elevated CO2 + Cd stress led to greater quantities of organic compounds in the rhizosphere soil relative to seedlings grown under Cd stress only. Elevated CO2 concentrations could moderate the effects of heavy metal pollution on enzyme activity and microorganism abundance in rhizosphere soils, thus improving soil fertility and the microecological rhizosphere environment of wheat under Cd stress.
Limitations to CO2-induced growth enhancement in pot studies.
McConnaughay, K D M; Berntson, G M; Bazzaz, F A
1993-07-01
Recently, it has been suggested that small pots may reduce or eliminate plant responses to enriched CO 2 atmospheres due to root restriction. While smaller pot volumes provide less physical space available for root growth, they also provide less nutrients. Reduced nutrient availability alone may reduce growth enhancement under elevated CO 2 . To investigate the relative importance of limited physical rooting space separate from and in conjunction with soil nutrients, we grew plants at ambient and double-ambient CO 2 levels in growth containers of varied volume, shape, nutrient concentration, and total nutrient content. Two species (Abutilon theophrasti, a C 3 dicot with a deep tap root andSetaria faberii, a C 4 monocot with a shallow diffuse root system) were selected for their contrasting physiology and root architecture. Shoot demography was determined weekly and biomass was determined after eight and ten weeks of growth. Increasing total nutrients, either by increasing nutrient concentration or by increasing pot size, increased plant growth. Further, increasing pot size while maintaining equal total nutrients per pot resulted in increased total biomass for both species. CO 2 -induced growth and reproductive yield enhancements were greatest in pots with high nutrient concentrations, regardless of total nutrient content or pot size, and were also mediated by the shape of the pot. CO 2 -induced growth and reproductive yield enhancements were unaffected by pot size (growth) or were greater in small pots (reproductive yield), regardless of total nutrient content, contrary to predictions based on earlier studies. These results suggest that several aspects of growth conditions within pots may influence the CO 2 responses of plants; pot size, pot shape, the concentration and total amount of nutrient additions to pots may lead to over-or underestimates of the CO 2 responses of real-world plants.
Ide, Kojiro; Worthley, Matthew; Anderson, Todd; Poulin, Marc J
2007-10-01
Cerebral blood flow is highly sensitive to alterations in the partial pressures of O(2) and CO(2) (P(O(2)) and P(CO(2)), respectively) in the arterial blood. In humans, the extent to which nitric oxide (NO) is involved in this regulation is unclear. We hypothesized that the NO synthase (NOS) inhibitor N(G)-monomethyl-l-arginine (l-NMMA), attenuates the sensitivity of middle cerebral artery blood velocity (V(p)) to isocapnic hypoxia (end-tidal P(O(2)) = 50 Torr) and euoxic hypercapnia (end-tidal P(CO(2)) = +9 Torr above resting values) in 10 volunteers (age, 28.7 +/- 1.3 years; height, 179.2 +/- 2.4 cm; weight, 78.0 +/- 3.7 kg; mean +/- s.e.m.). The techniques of transcranial Doppler ultrasound and dynamic end-tidal forcing were used to measure(V(p)), and control end-tidal P(O(2)) and end-tidal P(CO(2)), respectively. At baseline (isocapnic euoxia), following intravenous administration of l-NMMA, mean arterial blood pressure (MAP) increased (76.3 +/- 7.3 to 86.2 +/- 9.4 mmHg) and heart rate (HR) decreased (59.5 +/- 9.0 to 55.2 +/- 9.5 beats min(-1)) but (V(p)) was unchanged. Hypoxia-induced increases in MAP, HR and were similar with and without l-NMMA (5.0 +/- 0.7 versus 7.1 +/- 1.0 mmHg, 11.5 +/- 1.4 versus 12.4 +/- 1.5 beats min(-1), 6.5 +/- 0.8 versus 6.6 +/- 0.8 cm s(-1) for DeltaMAP, DeltaHR and Delta , respectively). Hypercapnia-induced increases in MAP, HR and (V(p)) were similar with and without l-NMMA (7.4 +/- 3.1 versus 8.1 +/- 2.2 mmHg, 10.4 +/- 4.6 versus 10.0 +/- 4.2 beats min(-1), 16.5 +/- 1.5 versus 17.6 +/- 1.5 cm s(-1) for DeltaMAP, DeltaHR and Delta(V(p)) , respectively) but the sensitivity of the(V(p)) response at the removal of hypercapnia was attenuated with l-NMMA. In young healthy humans, pharmacological blockade of nitric oxide synthesis does not affect the increases in cerebral blood flow with hypoxia and hypercapnia, suggesting that nitric oxide is not required for the cerbrovascular responses to hypoxia and hypercapnia.
Aperture synthesis observations of CO emission from the Nucleus of IC 342
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, K.Y.; Berge, G.L.; Claussen, M.J.
1984-07-15
We present the first aperture synthesis maps of lambda2.6 mm CO (J = 1-0) emission from an external galaxy, IC 342. The 7'' resolution maps of the nuclear region were made with the Owens Valley Millimeter-Wave Interferometr. They reveal that the CO source is distributed in a bar, 300 pc x > or approx. =1500 pc, with a veloity gradient across the width of the bar. The observations suggest that the molecular gas in the nucleus is moving in response to an oval gravitational potential. The implications of an oval potential on enhanced star formation and other activities are discussed.
Patsias, A; Chouliara, I; Badeka, A; Savvaidis, I N; Kontominas, M G
2006-08-01
This study evaluated the effect of modified atmosphere packaging on shelf-life extension of a precooked chicken meat product stored at 4 degrees C using microbiological, physico-chemical and sensory analyses. The following gas mixtures were used: M1: 30%/70% (CO2/N2), M2: 60%/40% (CO2/N2) and M3: 90%/10% (CO2/N2). Identical chicken samples were aerobically packaged and used as control samples. Sampling was carried out at predetermined time intervals namely: 0, 4, 8, 12, 16 and 20 days. Total viable counts (TVC), Lactic acid bacteria (LAB), Brochothrix thermosphacta, pseudomonads, yeasts and molds, and Enterobacteriaceae were monitored. TVC of precooked chicken product reached 7 log cfu/g, after days 12 and 16 of storage (air and M1 samples), respectively. The M2 and M3 gas mixture packaged samples did not reach this value throughout the 20 days storage period under refrigeration. LAB and to a lesser degree B. thermosphacta, constituted part of the natural microflora of precooked chicken samples stored in air and under MAP reaching 7.0-8.1 log cfu/g at the end of storage period. Of the remaining bacterial species monitored, both pseudomonads and yeasts/molds were significantly higher (P<0.05) for chicken samples stored in air than under MAP (M1, M2, M3) throughout the entire storage period under refrigeration. Finally, counts of Enterobacteriaceae were low (<2 log cfu/g) in all chicken samples irrespective of the packaging conditions throughout the entire storage period. Of the chemical indices determined, thiobarbituric (TBA) values in all cases remained low, equal or lower than 3.0 mg malonaldehyde (MA)/kg during the entire storage period. Results of the present work show that the limit of sensory acceptability was only reached for the aerobically stored and M1 gas mixture chicken samples somewhat before days 16 and 20 of storage, respectively. This limit coincided with high TVC and LAB populations (>6.8 log cfu/g), increased lipid oxidation (aerobic storage only) and apparent growth of yeasts/moulds on the surface of chicken samples. The use of MAP as shown in the present study, resulted in an extension of shelf-life of precooked chicken by ca. 4 days (M1 gas mixture), and by more than 6 days (M2 and M3 gas mixtures), respectively. Precooked chicken meat was better preserved under M2 and M3 mixtures maintaining desirable odor/taste attributes even on final day of storage tested.
NASA Astrophysics Data System (ADS)
Mahdavi Najafabadi, R.; Khajeddin, S. J.; Sofyanian, A. R.; Karimzadeh, H. R.; Rezaei, M.
2009-04-01
Most of arid and semiarid parts of the world suffer from great lack of forest land. Therefore taking a good care of these forest lands quantity and quality and control of renewable natural resources is very important. Zagroass forests are located in semiarid parts of Iran. The main purpose of this research is to determine the potential habitat of forest olive for Chaharmahal va Bakhtiary using GIS. This province has a total area of 1653300 hectars. The main steps of this project are as follows: collecting data and maps, digitizing topographic maps with scale of 1:25000, and developing maps of slope, elevation levels, aspect, climatic classification. Regretion analysis was performed on the climatic data and the gradian equations were developed with a high R2 value. Using these equations the following maps were developed. For the whole province: isothermal, isoheytal, abs. max isothermal, relative humidity relative humidity of dry months. Soil maps were also digitized and the information system suitable for this study was developed. Using this bank the following layers were made: land units, soil depth, two soil textures, EC, pH, CaCo3. The following layers were made using digitized data, land use hydraulic network, lake and marsh land. Considering ecological needs of olive and extracting them from all diferent layers using boolean method. The layers showing suitable locations for planting olive(olea europea) was made. One of these maps includes all types of soils suitable for planting olive and the other excludes silty clay loam soils which are not so suitable. The total area achived was 9500 hectars in the whole province and the area excluding silty clay loam soils was determined to be 900 hectars. Using RS information and GIS technology in these types of projects can increase accuracy specialy including some more layers is recommended.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheshire, Michael C.; Stack, Andrew G.; Carey, J. William
Mineral reactions during CO 2 sequestration will change the pore-size distribution and pore surface characteristics, complicating permeability and storage security predictions. In this study, we report a small/wide angle scattering study of wellbore cement that has been exposed to carbon dioxide for three decades. We have constructed detailed contour maps that describe local porosity distributions and the mineralogy of the sample and relate these quantities to the carbon dioxide reaction front on the cement. We find that the initial bimodal distribution of pores in the cement, 1–2 and 10–20 nm, is affected differently during the course of carbonation reactions. Initialmore » dissolution of cement phases occurs in the 10–20 nm pores and leads to the development of new pore spaces that are eventually sealed by CaCO 3 precipitation, leading to a loss of gel and capillary nanopores, smoother pore surfaces, and reduced porosity. This suggests that during extensive carbonation of wellbore cement, the cement becomes less permeable because of carbonate mineral precipitation within the pore space. Additionally, the loss of gel and capillary nanoporosities will reduce the reactivity of cement with CO 2 due to reactive surface area loss. Finally, this work demonstrates the importance of understanding not only changes in total porosity but also how the distribution of porosity evolves with reaction that affects permeability.« less
NASA Technical Reports Server (NTRS)
Mao, Jianping; Kawa, S. Randolph
2003-01-01
A series of sensitivity studies is carried out to explore the feasibility of space-based global carbon dioxide (CO2) measurements for global and regional carbon cycle studies. The detection method uses absorption of reflected sunlight in the CO2 vibration-rotation band at 1.58 micron. The sensitivities of the detected radiances are calculated using the line-by-line model (LBLRTM), implemented with the DISORT (Discrete Ordinates Radiative Transfer) model to include atmospheric scattering in this band. The results indicate that (a) the small (approx.1%) changes in CO2 near the Earth's surface are detectable in this CO2 band provided adequate sensor signal-to-noise ratio and spectral resolution are achievable; (b) the effects of other interfering constituents, such as water vapor, aerosols and cirrus clouds, on the radiance are significant but the overall effects of the modification of light path length on total back-to-space radiance sensitivity to CO2 change are minor for general cases, which means that generally the total column CO2 can be derived in high precision from the ratio of the on-line center to off-line radiances; (c) together with CO2 gas absorption aerosol/cirrus cloud layer has differential scattering which may result in the modification of on-line to off-line radiance ratio which could lead a large bias in the total column CO2 retrieval. Approaches to correct such bias need further investigation. (d) CO2 retrieval requires good knowledge of the atmospheric temperature profile, e.g. approximately 1K RMS error in layer temperature, which is achievable from new atmospheric sounders in the near future; (e) the atmospheric path length, over which the CO2 absorption occurs, should be known in order to correctly interpret horizontal gradients of CO2 from the total column CO2 measurement; thus an additional sensor for surface pressure measurement needs to be attached for a complete measurement package.
First results from Orbiting Carbon Observatory-2 (OCO-2) and prospects for OCO-3
NASA Astrophysics Data System (ADS)
Eldering, Annmarie; Basilio, Ralph; Schimel, David; O'Dell, Chris
2017-04-01
Since September 6, 2014, NASA's Orbiting Carbon Observatory-2 (OCO-2) instrument has been routinely returning almost one million soundings of the column averaged CO2 dry air mole fraction, XCO2, over the sunlit hemisphere each day. On monthly time scales, 7 to 21% of these soundings are sufficiently cloud free to yield full-column estimates of XCO2 of the with single sounding random errors near 0.5 parts per million (ppm) at solar zenith angles as large as 70 degrees. These XCO2 estimates are being validated against results obtained from the Total Carbon Column Observing Network (TCCON) and other standards to assess their accuracy and correct regional scale biases. After correction, the median bias between OCO-2 and TCCON XCO2 estimates is less than 0.5 ppm, and root-mean-square (RMS) differences are typically less than 1.5 ppm. The OCO-2 data are now being used to investigate the impacts of the 2015/2016 El Nino on the carbon cycle, as well as examples of local emission enhancements and the seasonal patterns of solar induced fluorescence. Highlights of the latest science findings will be presented. The Orbiting Carbon Observatory-3 (OCO-3) instrument will explore, for the first time, daily variations in the release and uptake of carbon dioxide by plants and trees in the major tropical rainforests of South America, Africa, and Southeast Asia, the largest stores of aboveground carbon on our planet. NASA will develop and assemble the instrument using spare materials from OCO-2 and host the instrument on the International Space Station (ISS) (earliest launch readiness in early 2018.) The low-inclination ISS orbit lets OCO-3 sample the tropics and sub-tropics across the full range of daylight hours with dense observations at northern and southern mid-latitudes (+/- 52°). At the same time, OCO-3 will also collect measurements of solar-induced chlorophyll fluorescence (SIF) over these areas. The instrument utilizes an agile, 2-axis pointing mechanism (PMA), providing the capability to look towards the bright reflection from the ocean and validation targets. The PMA also allows for a snapshot mapping mode to collect dense datasets over 100km by 100km areas. Measurements over urban centers could aid in making estimates of fossil fuel CO2 emissions. This is critical because the largest urban areas (25 megacities) account for 75% of the global total fossil fuel CO2 emissions, and rapid growth (> 10% per year) is expected in developing regions over the coming 10 years. Similarly, the snapshot mapping mode can be used to sample regions of interest for the terrestrial carbon cycle. For example, snapshot maps of 100km by 100km could be gathered in the Amazon or key agricultural regions. In addition, there is potential to utilize data from ISS instruments ECOSTRESS (ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station) and GEDI (Global Ecosystem Dynamics Investigation), which measure other key variables of the control of carbon uptake by plants, to complement OCO-3 data in science analysis.
Extinction Maps and Dust-to-gas Ratios in Nearby Galaxies with LEGUS
NASA Astrophysics Data System (ADS)
Kahre, L.; Walterbos, R. A.; Kim, H.; Thilker, D.; Calzetti, D.; Lee, J. C.; Sabbi, E.; Ubeda, L.; Aloisi, A.; Cignoni, M.; Cook, D. O.; Dale, D. A.; Elmegreen, B. G.; Elmegreen, D. M.; Fumagalli, M.; Gallagher, J. S., III; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Hunter, D. A.; Sacchi, E.; Smith, L. J.; Tosi, M.; Adamo, A.; Andrews, J. E.; Ashworth, G.; Bright, S. N.; Brown, T. M.; Chandar, R.; Christian, C.; de Mink, S. E.; Dobbs, C.; Evans, A. S.; Herrero, A.; Johnson, K. E.; Kennicutt, R. C.; Krumholz, M. R.; Messa, M.; Nair, P.; Nota, A.; Pellerin, A.; Ryon, J. E.; Schaerer, D.; Shabani, F.; Van Dyk, S. D.; Whitmore, B. C.; Wofford, A.
2018-03-01
We present a study of the dust-to-gas ratios in five nearby galaxies: NGC 628 (M74), NGC 6503, NGC 7793, UGC 5139 (Holmberg I), and UGC 4305 (Holmberg II). Using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury program Legacy ExtraGalactic UV Survey (LEGUS) combined with archival HST/Advanced Camera for Surveys data, we correct thousands of individual stars for extinction across these five galaxies using an isochrone-matching (reddening-free Q) method. We generate extinction maps for each galaxy from the individual stellar extinctions using both adaptive and fixed resolution techniques and correlate these maps with neutral H I and CO gas maps from the literature, including the H I Nearby Galaxy Survey and the HERA CO-Line Extragalactic Survey. We calculate dust-to-gas ratios and investigate variations in the dust-to-gas ratio with galaxy metallicity. We find a power-law relationship between dust-to-gas ratio and metallicity, consistent with other studies of dust-to-gas ratio compared to metallicity. We find a change in the relation when H2 is not included. This implies that underestimation of {N}{{{H}}2} in low-metallicity dwarfs from a too-low CO-to-H2 conversion factor X CO could have produced too low a slope in the derived relationship between dust-to-gas ratio and metallicity. We also compare our extinctions to those derived from fitting the spectral energy distribution (SED) using the Bayesian Extinction and Stellar Tool for NGC 7793 and find systematically lower extinctions from SED fitting as compared to isochrone matching.
Mapping Air Quality Index of Carbon Monoxide (CO) in Medan City
NASA Astrophysics Data System (ADS)
Suryati, I.; Khair, H.
2017-03-01
This study aims to map and analyze air quality index of carbon monoxide (CO) in Medan City. This research used 12 (twelve) sampling points around in Medan with an hour duration each point. CO concentration was analyzed using the NDIR CO Analyzer sampling tool. The concentration CO was obtained between 1 ppm - 23 ppm, with an average concentration was 9.5 ppm. This condition is still below the national ambient air quality standard set by Government Regulation of Indonesian Republic Number 41-1999 amounted to 29 ppm. The result of CO concentration measurements was converted into air pollutant standard index, obtained the index value of 58 - 204. Surfer 10 was used to create map of air pollutant standard index for CO. The map illustrates very unhealthy area where located in the Medan Belawan district. The main factors affecting the concentration of CO are from transportation and meteorological factors.
La, Gui-xiao; Fang, Ping; Teng, Yi-bo; Li, Ya-juan; Lin, Xian-yong
2009-06-01
The effects of CO(2) enrichment on the growth and glucosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/L) were investigated. Height, stem thickness, and dry weights of the total aerial parts, bolting stems, and roots, as well as the root to shoot ratio, significantly increased as CO(2) concentration was elevated from 350 to 800 microl/L at each N concentration. In the edible part of the bolting stem, 11 individual GSs were identified, including 7 aliphatic and 4 indolyl GSs. GS concentration was affected by the elevated CO(2) concentration, N concentration, and CO(2)xN interaction. At 5 and 10 mmol N/L, the concentrations of aliphatic GSs and total GSs significantly increased, whereas those of indolyl GSs were not affected, by elevated atmospheric CO(2). However, at 20 mmol N/L, elevated CO(2) had no significant effects on the concentrations of total GSs and total indolyl GSs, but the concentrations of total aliphatic GSs significantly increased. Moreover, the bolting stem carbon (C) content increased, whereas the N and sulfur (S) contents decreased under elevated CO(2) concentration in the three N treatments, resulting in changes in the C/N and N/S ratios. Also the C/N ratio is not a reliable predictor of change of GS concentration, while the changes in N and S contents and the N/S ratio at the elevated CO(2) concentration may influence the GS concentration in Chinese kale bolting stems. The results demonstrate that high nitrogen supply is beneficial for the growth of Chinese kale, but not for the GS concentration in bolting stems, under elevated CO(2) condition.
He, Qin; Mohaghegh, Shahab D.; Gholami, Vida
2013-01-01
CO 2 sequestration into a coal seam project was studied and a numerical model was developed in this paper to simulate the primary and secondary coal bed methane production (CBM/ECBM) and carbon dioxide (CO 2 ) injection. The key geological and reservoir parameters, which are germane to driving enhanced coal bed methane (ECBM) and CO 2 sequestration processes, including cleat permeability, cleat porosity, CH 4 adsorption time, CO 2 adsorption time, CH 4 Langmuir isotherm, CO 2 Langmuir isotherm, and Palmer and Mansoori parameters, have been analyzed within a reasonable range. The model simulation results showed good matches for bothmore » CBM/ECBM production and CO 2 injection compared with the field data. The history-matched model was used to estimate the total CO 2 sequestration capacity in the field. The model forecast showed that the total CO 2 injection capacity in the coal seam could be 22,817 tons, which is in agreement with the initial estimations based on the Langmuir isotherm experiment. Total CO 2 injected in the first three years was 2,600 tons, which according to the model has increased methane recovery (due to ECBM) by 6,700 scf/d.« less
The curious history of Tethys as evidenced by irregular craters and variable tectonism
NASA Astrophysics Data System (ADS)
Ferguson, S. N.; Rhoden, A.; Nayak, M.; Asphaug, E. I.
2017-12-01
At first glance, the surface of Saturn's moon Tethys appears dominated by craters and its large canyon system, Ithaca Chasma. However, high-resolution Cassini imagery reveals a surface rife with curious geologic features, perhaps indicative of non-heliocentric impact populations and, potentially, a history of tectonic activity. We mapped three regions on Tethys to survey the diversity of features present on the surface, determine crater counts for each region, map and analyze fracture patterns, and identify constraints on the impactor populations. One study region is just south and west of the Odysseus impact basin (R1), and the other two regions sit slightly west of Ithaca Chasma (R2 and R3). The regions were imaged at average resolutions of 200m/pix, which is adequate to identify craters down to D=1km. Of 1200 total craters counted, we have identified 195 elliptical craters and 28 polygonal craters. Elliptical craters likely form from slow, oblique impacts, whereas polygonal craters are indicative of underlying tectonic structure. We identified 605 small craters, D=1-2km, across the three regions; we find that R1 has many more 1-10 km craters than R2 and R3. We also mapped 367 linear features. The median and range of orientations of the linear features vary across the regions. Despite their proximity, the orientations of lineations in R2 and R3 are not consistent with the orientation of Ithaca Chasma. This could be suggestive of different epochs of tectonic activity on Tethys. When compared with R2 and R3, R1 has more small craters, more lineations, and a preferred orientation of lineations that is distinct from the other two regions. Possible causes for a larger population of small craters in R1 include secondary craters from Odysseus and oblique impacts from debris ejected from Tethys' co-orbital moons, which should create many more 1km craters in R1 than the other regions. Due to the oblique impact angles predicted for incoming co-orbital debris, these impacts may have also produced some of the lineations observed in R1. Oblique impacts can also form elliptical craters, but that would imply much larger debris than expected from the craters presently observed on the co-orbitals. We discuss additional analysis and implications of Tethys' curious geologic features on its bombardment and tectonic history.
He, Zhangjiang; Zhao, Xin; Lu, Zhuoyue; Wang, Huifang; Liu, Pengfei; Zeng, Fanqin; Zhang, Yongjun
2018-01-01
Sensing, responding, and adapting to the surrounding environment are crucial for all living organisms to survive, proliferate, and differentiate in their biological niches. Beauveria bassiana is an economically important insect-pathogenic fungus which is widely used as a biocontrol agent to control a variety of insect pests. The fungal pathogen unavoidably encounters a variety of adverse environmental stresses and defense response from the host insects during application of the fungal agents. However, few are known about the transcription response of the fungus to respond or adapt varied adverse stresses. Here, we comparatively analyzed the transcriptome of B. bassiana in globe genome under the varied stationary-phase stresses including osmotic agent (0.8 M NaCl), high temperature (32 °C), cell wall-perturbing agent (Congo red), and oxidative agents (H 2 O 2 or menadione). Total of 12,412 reads were obtained, and mapped to the 6767 genes of the B. bassiana. All of these stresses caused transcription responses involved in basal metabolism, cell wall construction, stress response or cell rescue/detoxification, signaling transduction and gene transcription regulation, and likely other cellular processes. An array of genes displayed similar transcription patterns in response to at least two of the five stresses, suggesting a shared transcription response to varied adverse stresses. Gene co-expression network analysis revealed that mTOR signaling pathway, but not HOG1 MAP kinase pathway, played a central role in regulation the varied adverse stress responses, which was verified by RNAi-mediated knockdown of TOR1. Our findings provided an insight of transcription response and gene co-expression network of B. bassiana in adaptation to varied environments. Copyright © 2017 Elsevier Inc. All rights reserved.
Révész, Kinga M.; Doctor, Daniel H.
2014-01-01
The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon (δ13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.
Kiaitsi, Elsa; Magan, Naresh
2018-01-01
Zearalenone (ZEN) contamination from Fusarium graminearum colonization is particularly important in food and feed wheat, especially during post-harvest storage with legislative limits for both food and feed grain. Indicators of the relative risk from exceeding these limits would be useful. We examined the effect of different water activities (aw; 0.95–0.90) and temperature (10–25 °C) in naturally contaminated and irradiated wheat grain, both inoculated with F. graminearum and stored for 15 days on (a) respiration rate; (b) dry matter losses (DML); (c) ZEN production and (d) relationship between DML and ZEN contamination relative to the EU legislative limits. Gas Chromatography was used to measure the temporal respiration rates and the total accumulated CO2 production. There was an increase in temporal CO2 production rates in wetter and warmer conditions in all treatments, with the highest respiration in the 25 °C × 0.95 aw treatments + F. graminearum inoculation. This was reflected in the total accumulated CO2 in the treatments. The maximum DMLs were in the 0.95 aw/20–25 °C treatments and at 10 °C/0.95 aw. The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Contamination with ZEN/ZEN-related compounds were quantified. Maximum production was at 25 °C/0.95–0.93 aw and 20 °C/0.95 aw. ZEN contamination levels plotted against DMLs for all the treatments showed that at ca. <1.0% DML, there was a low risk of ZEN contamination exceeding EU legislative limits, while at >1.0% DML, the risk was high. This type of data is important in building a database for the development of a post-harvest decision support system for relative risks of different mycotoxins. PMID:29462982
An assessment of biofuel use and burning of agricultural waste in the developing world
NASA Astrophysics Data System (ADS)
Yevich, Rosemarie; Logan, Jennifer A.
2003-12-01
We present an assessment of biofuel use and agricultural field burning in the developing world. We used information from government statistics, energy assessments from the World Bank, and many technical reports, as well as from discussions with experts in agronomy, forestry, and agro-industries. We estimate that 2060 Tg biomass fuel was used in the developing world in 1985; of this, 66% was burned in Asia, and 21% and 13% in Africa and Latin America, respectively. Agricultural waste supplies about 33% of total biofuel use, providing 39%, 29%, and 13% of biofuel use in Asia, Latin America, and Africa, and 41% and 51% of the biofuel use in India and China. We find that 400 Tg of crop residues are burned in the fields, with the fraction of available residue burned in 1985 ranging from 1% in China, 16-30% in the Middle East and India, to about 70% in Indonesia; in Africa about 1% residue is burned in the fields of the northern drylands, but up to 50% in the humid tropics. We distributed this biomass burning on a spatial grid with resolution of 1° × 1°, and applied emission factors to the amount of dry matter burned to give maps of trace gas emissions in the developing world. The emissions of CO from biofuel use in the developing world, 156 Tg, are about 50% of the estimated global CO emissions from fossil fuel use and industry. The emission of 0.9 Pg C (as CO2) from burning of biofuels and field residues together is small, but nonnegligible when compared with the emissions of CO2 from fossil fuel use and industry, 5.3 Pg C. The biomass burning source of 10 Tg/yr for CH4 and 2.2 Tg N/yr of NOx are relatively small when compared with total CH4 and NOx sources; this source of NOx may be important on a regional basis.
Step 2: Enter Baseline Energy Consumption Data | Climate Action Planning
Scope 1: Emissions (Direct Combustion) T CO2e = Tonnes of Carbon Dioxide Equivalent* Gas (T CO2e) Oil (T CO2e) Coal (T CO2e) Fleet (T CO2e) Total (T CO2e) *Metric tons of CO2 equivalent or 2.204 lbs of CO2
Correlation of gas dynamics and dust in the evolved filament G82.65-02.00
NASA Astrophysics Data System (ADS)
Saajasto, M.; Juvela, M.; Dobashi, K.; Shimoikura, T.; Ristorcelli, I.; Montillaud, J.; Marshall, D. J.; Malinen, J.; Pelkonen, V.-M.; Fehér, O.; Rivera-Ingraham, A.; Toth, L. V.; Montier, L.; Bernard, J.-Ph.; Onishi, T.
2017-12-01
Context. The combination of line and continuum observations can provide vital insight into the formation and fragmentation of filaments and the initial conditions for star formation. We have carried out line observations to map the kinematics of an evolved, actively star forming filament G82.65-2.00. The filament was first identified from the Planck data as a region of particularly cold dust emission and was mapped at 100-500 μm as a part of the Herschel key program Galactic Cold Cores. The Herschel observations cover the central part of the filament, corresponding to a filament length of 12 pc at the assumed distance of 620 pc. Aims: CO observations show that the filament has an intriguing velocity field with several velocity components around the filament. In this paper, we study the velocity structure in detail, to quantify possible mass accretion rate onto the filament, and study the masses of the cold cores located in the filament. Methods: We have carried out line observations of several molecules, including CO isotopologues, HCO+, HCN, and CS with the Osaka 1.85 m telescope and the Nobeyama 45 m telescope. The spectral line data are used to derive velocity and column density information. Results: The observations reveal several velocity components in the field, with strongest line emission concentrated to velocity range [3,5] km s-1. The column density of molecular hydrogen along the filament varies from 1.0 to 2.3 × 1022cm2. We have examined six cold clumps from the central part of the filament. The clumps have masses in the range 10-20M⊙ ( 70 M⊙ in total) and are close to or above the virial mass. Furthermore, the main filament is heavily fragmented and most of the substructures have a mass lower than or close to the virial mass, suggesting that the filament is dispersing as a whole. Position-velocity maps of 12CO and 13CO lines indicate that at least one of the striations is kinematically connected to two of the clumps, potentially indicating mass accretion from the striation onto the main filament. We tentatively estimate the accretion rate to be Ṁ = 2.23 × 10-6M⊙/ yr. Conclusions: Our line observations have revealed two or possibly three velocity components connected to the filament G82.65-2.00 and putative signs of mass accretion onto the filament. The line observations combined with Herschel and WISE maps suggest a possible collision between two cloud components. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.The reduced data cubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A21
NASA Astrophysics Data System (ADS)
Ambus, P.; Reinsch, S.; Sárossy, Z.; Egsgaard, H.; Jakobsen, I.; Michelsen, A.; Schmidt, I.; Nielsen, P.
2013-12-01
An in-situ 13CO2 pulse-labeling experiment was carried out in a temperate heathland (8 oC MAT, 610 mm MAP) to study the impact on short-term carbon (C) allocation as affected by elevated CO2 concentration (+120 ppm), prolonged summer droughts (ca. -43 mm) and warming (+1 oC). The study was carried out six years after the climate treatments were initiated and took place in the early growing season in May in vegetation dominated by grasses, mainly Deschampsia flexuosa. Newly assimilated C (13C from the pulse-label) was traced into vegetation, soil and soil microorganisms and belowground respiration 1, 2 and 8 days after pulse-labeling. The importance of the microbial community in C utilization was investigated using 13C enrichment patterns in different microbial functional groups on the basis of phospholipid fatty acid (PLFA) profiles. Climate treatments did not affect microorganism abundance in soil or rhizosphere fractions in terms of total PLFA-C concentration. Elevated CO2 significantly reduced the abundance of gram-negative bacteria (17:0cy), but did not affect the abundance of decomposers (fungi and actinomycetes) in rhizosphere fractions. Drought favored the bacterial community in rhizosphere fractions whereas warming reduced the abundance of gram-negative bacteria (19:0cy) and changed the actinomycetes community (10Me16:0, 10Me18:0). Fastest and highest utilization of recently assimilated C was observed in rhizosphere associated gram-negative bacteria followed by gram-positive bacteria. The utilization of recently assimilated C by the microbial community was faster under elevated CO2 conditions compared to ambient. The 13C assimilation by green plant tissue and translocation to roots was significantly reduced by the extended summer drought. Under elevated CO2 conditions we observed an increased amount of 13C in the litter fraction. The assimilation of 13C by vegetation was not changed when the climate factors were applied in combination. The total amount of 13C lost by belowground respiration was not altered by the climatic manipulations. We conclude that six years of changed climatic conditions have affected the temporal and functional pattern of C utilization by the soil microorganisms towards increased C cycling mainly caused by bacterial activity. This change may potentially alter the ecosystem C balance. Meanwhile, the short-term C balance was not affected by six years of environmental changes, which suggests substantial ecosystem resilience.
Monitoring fugitive CH4 and CO2 emissions from a closed landfill at Tenerife, Canary Islands
NASA Astrophysics Data System (ADS)
Asensio-Ramos, María; Tompkins, Mitchell R. K.; Turtle, Lara A. K.; García-Merino, Marta; Amonte, Cecilia; Rodrígez, Fátima; Padrón, Eleazar; Melián, Gladys V.; Padilla, Germán; Barrancos, José; Pérez, Nemesio M.
2017-04-01
Solid waste must be managed systematically to ensure environmental best practices. One of the ways to manage this huge problem is to systematic dispose waste materials in locations such as landfills. However, landfills could face possible threats to the environment such as groundwater pollution and the release of landfill gases (CH4, volatile organic compounds, etc.) to the atmosphere. These structures should be carefully filled, monitored and maintained while they are active and for up to 30 years after they are closed. Even after years of being closed, a systematically amount of landfill gas could be released to the atmosphere through its surface in a diffuse and fugitive form. During the period 1999-2016, we have studied the spatial-temporal distribution of the surface fugitive emission of CO2 and CH4 into the atmosphere in a cell in the Arico's municipal landfill (0.3 km2) at Tenerife, Canary Islands, Spain. This cell was operative until 2004, when it was filled and closed. Monitoring these diffuse landfill emissions provides information of how the closed landfill is degassing. To do so, we have performed 9 gas emission surveys during the period 1999-2016. Surface landfill CO2 efflux measurements were carried out at around 450 sampling site by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. Landfill gases taken in the chamber were analyzed using a double channel VARIAN 4900 micro-GC. CH4 efflux measurements were computed combining CO2 efflux measurements and CH4/CO2 ratio in the landfill's surface gas. To quantify the total CH4 emission, CH4 efflux contour map was constructed using sequential Gaussian simulation (sGs) as interpolation method. In general, a decrease in the CO2 emission is observed since the cell was closed (2004) to the present. The total CO2 and CH4 diffuse emissions estimated in the 2016 survey were 4.54 ± 0.14 t d-1 and 268.65 ± 17.99 t d-1, respectively. These types of studies provide knowledge of how a landfill degasses and serves to public and private entities to establish effective systems for extraction of biogas. This aims not only to achieve higher levels of controlled gas release from landfills resulting in a higher level of energy production but also will contribute to minimize air pollution caused by them.
NASA Astrophysics Data System (ADS)
García-Merino, Marta; García-Hernández, Rubén; Montrond, Eurico; Dionis, Samara; Fernandes, Paulo; Silva, Sonia V.; Alfama, Vera; Cabral, Jeremías; Pereira, Jose M.; Padrón, Eleazar; Pérez, Nemesio M.
2017-04-01
Brava (67 km2) is the southwestern most and the smallest inhabited island of the Cape Verde archipelago. It is located 18 km west of Fogo Island and rises 976 m from the sea level. Brava has not any documented historical eruptions, but its Holocene volcanism and relatively high seismic activity clearly indicate that it is an active volcanic island. Since there have been no historic eruptions in Brava, volcanic hazard awareness among the population and the authorities is very low; therefore, its volcano monitoring program is scarce. With the aim of helping to provide a multidisciplinary monitoring program for the volcanic surveillance of the island, diffuse CO2 emission surveys have been carried out since 2010; approximately every 2 years. Soil CO2 efflux measurements are periodically performed at ˜ 275 observation sites all over the island and after taking into consideration their accessibility and the island volcano-structural characteristics. At each sampling site, soil CO2 efflux measurement was performed by means of a portable NDIR sensor according to the accumulation chamber method. To quantify the total diffuse CO2 emission from Brava volcanic system, soil CO2 efflux maps were constructed using sequential Gaussian simulations (sGs). An increase trend of diffuse CO2 emission rate from 42 to 681 t d-1at Brava was observed; just one year prior the 2014-2015 Fogo eruption and almost three years before the anomalous seismic activity recorded on August 2016 with more than 1000 seismic events registered by the INMG on August 1st, 2016 (Bruno Faria, personal communication). Due to this anomalous seismic activity, a diffuse CO2 emission survey at Brava was performed from August 2 to 10, 2016, and the estimated degassing rate yield a value about 72 t d-1; typical background values. An additional survey was carried out from October 22 to November 6, 2016. For this last survey, the estimated diffuse CO2 emission from Brava showed the highest observed value with a degassing rate about 1.700 t d-1. These observed changes on diffuse CO2 emission are geochemical evidences which seem to support a volcanic unrest for the recent anomalous seismic activity registered at Brava.
Characterising the Structure of Molecular Clouds
NASA Astrophysics Data System (ADS)
Wong, Graeme Francis
The Interstellar Medium contains the building blocks of matter in our Galaxy and plays a vital role in the evolution of low mass star formation. The poorly studied molecular clouds of Lupus and Chamaeleon contain ongoing low mass star formation, and are in close proximity to our Solar System. While on the other hand the Carina molecular cloud, poorly observed in radio wavelength, is an active region of star formation and host some of the brightest stars known within our Galaxy. Using tracers like carbon monoxide, atomic neutral carbon, and ammonia, we are able to measure the temperature and density of the gas cloud. This information allows us to understand the initial conditions of the formation of low mass stars. Observations conducted with the 22-m Mopra radio telescope (located at the edge of the Warrumbungle Mountains near Coonabarabran), in the Carbon monoxide (CO) isotopologues 12 CO, 13 CO, C17O, and C18O (1-0) transitions, have mapped the Chamaeleon II cloud, an intermediate mass cloud within the Chamaeleon. Through the sub-arcminute maps, comparisons have been made to previous low resolution (2.5') maps which have been to resolve some of the dense clumps previously identified. Optical depth, column density, and excitation temperature derived from the CO maps, are consistent with previous results. A detailed comparison between identified C18O clumps have shown the different conditions occurring within the clumps, some of which contain or are located near a population of young stellar objects. The Northern region of the Carina Nebular Complex, was observed with NANTEN2, a 4-m radio telescope (located in the Chilean Atacama desert), in the 12CO (4-3) and [C I] 3P1-3P0 emission lines. Previous observations towards this region has either been at poor resolution or had limited coverage. The presented observations, strike a balance between the two; observing in sub-arcmin resolution (0.6') and with an area of 0.9° X 0.5° mapped. Excitation temperature of the 12CO (4-3) and column density of [C I] 3P1-3P0 have been derived. Discussions have been made of the complex morphology of the Northern Carina Nebular Complex region, compared to optical features, and supported the assertion of the HII region (Car I) expanding into the molecular cloud. The selected areas within the Lupus molecular clouds (regions I, III and IV) were observed with the DSS43 (also known as Tid-70m), the largest steerable single dish radio telescope (70-m) in the Southern Hemisphere located at Canberra Deep Space Communication Complex (CDSCC) near Canberra, in the ammonia transitions (1,1) and (2,2). Due to the observation modes and limited amount of time available for the Astronomical community, the targeted areas were mapped in a series of position-switching strips. Column density, kinetic and rotation temperatures were derived, which were compared and analysed to low-resolution maps towards the dense clumps. As Tid-70m had limited observing capabilities, this project has been able to improve the observation capabilities by implementing on-the-fly (OTF) mapping. With its size and unique capabilities, implementing OTF mapping will increase the efficiency of observations. Test observations were carried out towards the well known sources of Orion A, and Sagittarius A through the newly implemented OTF observing mode. Analysis and comparison of Orion A and Sagittarius A, shows consistency with the new maps produced.
Current land cover in the tropics and its potential for sequestering carbon
NASA Astrophysics Data System (ADS)
Houghton, R. A.; Unruh, J. D.; Lefebvre, P. A.
1993-06-01
Emissions of carbon dioxide and other greenhouse gases from human activity are increasing the concentrations of these gases in the atmosphere. The Earth is expected to warm as a result, with consequences that are potentially highly disruptive to human societies. Reductions in the use of fossil fuels and in rates of deforestation worldwide will reduce emissions of CO2, but atmospheric concentrations will continue to increase unless emissions are reduced by more than 60% (about 4.5 billion tons of carbon annually). Reforestation seems to offer one of the few means for reducing the atmospheric concentration of CO2 over periods as short as human generations. We report here an approach for evaluating the potential for reforestation to help stabilize or even reduce the concentration of CO2 in the atmosphere. Reforestation is defined broadly to include tree plantations, natural regrowth of secondary forests, and the practice of agroforestry. Our premise is that human use of the land has generally reduced woody biomass and that such lands have a potential for reaccumulating carbon if appropriately managed. We used published ground studies together with global vegetation index data from the NOAA 7 satellite to estimate current land cover in tropical regions. Then, superimposing this map of current land cover over maps depicting the distribution of vegetation cover prior to human disturbance, we obtained an estimate of about 3200 X 106 ha in the tropics (almost 60% of the total land area considered) where woody biomass had been decreased, and where carbon might again be sequestered. We calculated the amount of carbon that could be withdrawn from the atmosphere and stored in woody biomass if several management options were implemented. Biomass accumulations were determined from forestry statistics. Application of the data on biomass to the areas suitable for accumulation of carbon yielded an estimate of potential accumulation of 160-170 Pg carbon, an amount equivalent to the accumulation of carbon in the atmosphere since the start of the industrial revolution, or to about 25 years of fossil fuel emissions at current rates. Estimates of both area and potential accumulation of carbon were crude, probably not better than ±50%. They are useful for suggesting the role that tropical lands might play in stabilizing atmospheric concentrations of CO2, but they should not be used to suggest specific management options in individual countries. As maps with higher spatial resolution become available, however, the method should provide more precise estimates overall and in specific locations.
NASA Astrophysics Data System (ADS)
Nakamura, Fumitaka; Dobashi, Kazuhito; Shimoikura, Tomomi; Tanaka, Tomohiro; Onishi, Toshikazu
2017-03-01
We present the results of wide-field 12CO (J=2{--}1) and 13CO (J=2{--}1) observations toward the Aquila Rift and Serpens molecular cloud complexes (25^\\circ < l< 33^\\circ and 1^\\circ < b< 6^\\circ ) at an angular resolution of 3.‧4 (≈ 0.25 pc) and at a velocity resolution of 0.079 km s-1 with velocity coverage of -5 {km} {{{s}}}-1< {V}{LSR}< 35 {km} {{{s}}}-1. We found that the 13CO emission better traces the structures seen in the extinction map, and derived the {X}{13{CO}}-factor of this region. Applying SCIMES to the 13CO data cube, we identified 61 clouds and derived their mass, radii, and line widths. The line width-radius relation of the identified clouds basically follows those of nearby molecular clouds. The majority of the identified clouds are close to virial equilibrium, although the dispersion is large. By inspecting the 12CO channel maps by eye, we found several arcs that are spatially extended to 0.°2-3° in length. In the longitude-velocity diagrams of 12CO, we also found two spatially extended components that appear to converge toward Serpens South and the W40 region. The existence of two components with different velocities and arcs suggests that large-scale expanding bubbles and/or flows play a role in the formation and evolution of the Serpens South and W40 cloud.
Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project
Strickland, Chris E.; USA, Richland Washington; Vermeul, Vince R.; ...
2014-12-31
A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO 2 and will be used for: (1) tracking the spatial extent of the free phase CO 2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO 2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated formore » a number of geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO 2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO 2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.« less
Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strickland, Chris E.; USA, Richland Washington; Vermeul, Vince R.
A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO 2 and will be used for: (1) tracking the spatial extent of the free phase CO 2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO 2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated formore » a number of geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO 2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO 2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.« less
Sympathetic and cardiovascular responses to glossopharyngeal insufflation in trained apnea divers
Dzamonja, Gordan; Breskovic, Toni; Steinback, Craig D.; Diedrich, André; Tank, Jens; Jordan, Jens; Dujic, Zeljko
2010-01-01
Glossopharyngeal insufflation (lung packing) is a common maneuver among experienced apnea divers by which additional air is pumped into the lungs. It has been shown that packing may compromise cardiovascular homeostasis. We tested the hypothesis that the packing-mediated increase in intrathoracic pressure enhances the baroreflex-mediated increase in muscle sympathetic nerve activity (MSNA) in response to an exaggerated drop in cardiac output (CO). We compared changes in hemodynamics and MSNA (peroneal microneurography) during maximal breath-holds without and with prior moderate packing (0.79 ± 0.40 liters) in 14 trained divers (12 men, 2 women, 26.7 ± 4.5 yr, body mass index 24.8 ± 2.4 kg/m2). Packing did not change apnea time (3.8 ± 1.0 vs. 3.8 ± 1.2 min), hemoglobin oxygen desaturation (−17.6 ± 12.3 vs. −18.7 ± 12.8%), or the reduction in CO (1 min: −3.65 ± 1.83 vs. −3.39 ± 1.96 l/min; end of apnea: −2.44 ± 1.33 vs. −2.16 ± 1.44 l/min). On the other hand, packing dampened the early, i.e., 1-min increase in mean arterial pressure (MAP, 1 min: 9.2 ± 8.3 vs. 2.4 ± 11.0 mmHg, P < 0.01) and in total peripheral resistance (relative TPR, 1 min: 2.1 ± 0.5 vs. 1.9 ± 0.5, P < 0.05) but it augmented the concomitant rise in MSNA (1 min: 28.0 ± 11.7 vs. 39.4 ± 12.7 bursts/min, P < 0.001; 32.8 ± 16.4 vs. 43.9 ± 14.8 bursts/100 heart beats, P < 0.01; 3.3 ± 2.1 vs. 4.8 ± 3.2 au/min, P < 0.05). We conclude that the early sympathoactivation 1 min into apnea after moderate packing is due to mechanisms other than excessive reduction in CO. We speculate that lower MAP despite increased MSNA after packing might be explained by vasodilator substances released by the lungs. This idea should be addressed in future studies. PMID:20864558
Cardiopulmonary function and oxygen delivery during total liquid ventilation.
Tsagogiorgas, Charalambos; Alb, Markus; Herrmann, Peter; Quintel, Michael; Meinhardt, Juergen P
2011-10-01
Total liquid ventilation (TLV) with perfluorocarbons has shown to improve cardiopulmonary function in the injured and immature lung; however there remains controversy over the normal lung. Hemodynamic effects of TLV in the normal lung currently remain undetermined. This study compared changes in cardiopulmonary and circulatory function caused by either liquid or gas tidal volume ventilation. In a prospective, controlled study, 12 non-injured anesthetized, adult New Zealand rabbits were primarily conventionally gas-ventilated (CGV). After instrumentation for continuous recording of arterial (AP), central venous (CVP), left artrial (LAP), pulmonary arterial pressures (PAP), and cardiac output (CO) animals were randomized into (1) CGV group and (2) TLV group. In the TLV group partial liquid ventilation was initiated with instillation of perfluoroctylbromide (12 ml/kg). After 15 min, TLV was established for 3 hr applying a volume-controlled, pressure-limited, time-cycled ventilation mode using a double-piston configured TLV. Controls (CGV) remained gas-ventilated throughout the experiment. During TLV, heart rate, CO, PAP, MAP, CVP, and LAP as well as derived hemodynamic variables, arterial and mixed venous blood gases, oxygen delivery, PVR, and SVR did not differ significantly compared to CGV. Liquid tidal volumes suitable for long-term TLV in non-injured rabbits do not significantly impair CO, blood pressure, and oxygen dynamics when compared to CGV. Copyright © 2011 Wiley-Liss, Inc.
A mobile sensor network to map carbon dioxide emissions in urban environments
NASA Astrophysics Data System (ADS)
Lee, Joseph K.; Christen, Andreas; Ketler, Rick; Nesic, Zoran
2017-03-01
A method for directly measuring carbon dioxide (CO2) emissions using a mobile sensor network in cities at fine spatial resolution was developed and tested. First, a compact, mobile system was built using an infrared gas analyzer combined with open-source hardware to control, georeference, and log measurements of CO2 mixing ratios on vehicles (car, bicycles). Second, two measurement campaigns, one in summer and one in winter (heating season) were carried out. Five mobile sensors were deployed within a 1 × 12. 7 km transect across the city of Vancouver, BC, Canada. The sensors were operated for 3.5 h on pre-defined routes to map CO2 mixing ratios at street level, which were then averaged to 100 × 100 m grid cells. The averaged CO2 mixing ratios of all grids in the study area were 417.9 ppm in summer and 442.5 ppm in winter. In both campaigns, mixing ratios were highest in the grid cells of the downtown core and along arterial roads and lowest in parks and well vegetated residential areas. Third, an aerodynamic resistance approach to calculating emissions was used to derive CO2 emissions from the gridded CO2 mixing ratio measurements in conjunction with mixing ratios and fluxes collected from a 28 m tall eddy-covariance tower located within the study area. These measured emissions showed a range of -12 to 226 CO2 ha-1 h-1 in summer and of -14 to 163 kg CO2 ha-1 h-1 in winter, with an average of 35.1 kg CO2 ha-1 h-1 (summer) and 25.9 kg CO2 ha-1 h-1 (winter). Fourth, an independent emissions inventory was developed for the study area using buildings energy simulations from a previous study and routinely available traffic counts. The emissions inventory for the same area averaged to 22.06 kg CO2 ha-1 h-1 (summer) and 28.76 kg CO2 ha-1 h-1 (winter) and was used to compare against the measured emissions from the mobile sensor network. The comparison on a grid-by-grid basis showed linearity between CO2 mixing ratios and the emissions inventory (R2 = 0. 53 in summer and R2 = 0. 47 in winter). Also, 87 % (summer) and 94 % (winter) of measured grid cells show a difference within ±1 order of magnitude, and 49 % (summer) and 69 % (winter) show an error of less than a factor 2. Although associated with considerable errors at the individual grid cell level, the study demonstrates a promising method of using a network of mobile sensors and an aerodynamic resistance approach to rapidly map greenhouse gases at high spatial resolution across cities. The method could be improved by longer measurements and a refined calculation of the aerodynamic resistance.
3D-QSAR analysis of MCD inhibitors by CoMFA and CoMSIA.
Pourbasheer, Eslam; Aalizadeh, Reza; Ebadi, Amin; Ganjali, Mohammad Reza
2015-01-01
Three-dimensional quantitative structure-activity relationship was developed for the series of compounds as malonyl-CoA decarboxylase antagonists (MCD) using the CoMFA and CoMSIA methods. The statistical parameters for CoMFA (q(2)=0.558, r(2)=0.841) and CoMSIA (q(2)= 0.615, r(2) = 0.870) models were derived based on 38 compounds as training set in the basis of the selected alignment. The external predictive abilities of the built models were evaluated by using the test set of nine compounds. From obtained results, the CoMSIA method was found to have highly predictive capability in comparison with CoMFA method. Based on the given results by CoMSIA and CoMFA contour maps, some features that can enhance the activity of compounds as MCD antagonists were introduced and used to design new compounds with better inhibition activity.
Pharmacophore-Map-Pick: A Method to Generate Pharmacophore Models for All Human GPCRs.
Dai, Shao-Xing; Li, Gong-Hua; Gao, Yue-Dong; Huang, Jing-Fei
2016-02-01
GPCR-based drug discovery is hindered by a lack of effective screening methods for most GPCRs that have neither ligands nor high-quality structures. With the aim to identify lead molecules for these GPCRs, we developed a new method called Pharmacophore-Map-Pick to generate pharmacophore models for all human GPCRs. The model of ADRB2 generated using this method not only predicts the binding mode of ADRB2-ligands correctly but also performs well in virtual screening. Findings also demonstrate that this method is powerful for generating high-quality pharmacophore models. The average enrichment for the pharmacophore models of the 15 targets in different GPCR families reached 15-fold at 0.5 % false-positive rate. Therefore, the pharmacophore models can be applied in virtual screening directly with no requirement for any ligand information or shape constraints. A total of 2386 pharmacophore models for 819 different GPCRs (99 % coverage (819/825)) were generated and are available at http://bsb.kiz.ac.cn/GPCRPMD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Investigation into the disparate origin of CO2 and H2O outgassing for Comet 67/P
NASA Astrophysics Data System (ADS)
Fink, Uwe; Doose, Lyn; Rinaldi, Giovanna; Bieler, André; Capaccioni, Fabrizio; Bockelée-Morvan, Dominique; Filacchione, Gianrico; Erard, Stephane; Leyrat, Cedric; Blecka, Maria; Capria, Maria Teresa; Combi, Michael; Crovisier, Jacques; De Sanctis, Maria Cristina; Fougere, Nicolas; Taylor, Fred; Migliorini, Alessandra; Piccioni, Giuseppe
2016-10-01
We present an investigation of the emission intensity of CO2 and H2O and their distribution in the coma of 67P/ Churyumov-Gerasimenko obtained by the VIRTIS-M imaging spectrometer on the Rosetta mission. We analyze 4 data cubes from Feb. 28, and 7 data cubes from April 27, 2015. For both data sets the spacecraft was at a sufficiently large distance from the comet to allow images of the whole nucleus and the surrounding coma. We find that unlike water which has a reasonably predictable behavior and correlates well with the solar illumination, CO2 outgasses mostly in local regions or spots. Furthermore for the data on April 27, the CO2 evolves almost exclusively from the southern hemisphere, a region of the comet that has not received solar illumination since the comet's last perihelion passage. Because CO2 and H2O have such disparate origins, deriving mixing ratios from local column density measurements cannot provide a meaningful measurement of the CO2/H2O ratio in the coma of the comet. We obtain total production rates of H2O and CO2 by integrating the band intensity in an annulus surrounding the nucleus and obtain pro-forma production rate CO2/H2O mixing ratios of ∼5.0% and ∼2.5% for Feb. 28 and April 27, respectively. Because of the highly variable nature of the CO2 evolution from the surface we do not believe that these numbers are diagnostic of the comet's bulk CO2/H2O composition. We believe that our investigation provides an explanation for the large observed variations reported in the literature for the CO2/H2O production rate ratios. Our mixing ratio maps indicate that, besides the difference in vapor pressure of the two gases, this ratio depends on the comet's rotational orientation combined with its complex geometric shape which can result in quite variable rates of erosion for different surface areas such as the northern and southern hemisphere. Our annulus measurement for the total water production for Feb. 28 at 2.21AU from the Sun is 2.5 × 1026 molecules/s while for April 27 at 1.76 AU it is 4.65 × 1026. We find that about 83% of the H2O resides in the illuminated portion of our annulus and about 17% on the night side. We also make an attempt to obtain the fraction of the H2O production coming from the highly active neck of the comet versus the rest of the illuminated surface from the pole-on view of Feb. 28 and estimate that about 60% of the H2O derives from the neck area. A rough estimate of the water surface evaporation rate of the illuminated nucleus for April 27 yields about 5 × 1019 molecules/s/m2. Spatial radial profiles of H2O on April 27 on the illuminated side of the comet, extending from 1.78 to 6.47 km from the nucleus center, show that water follows model predictions quite well, with the gas accelerating as it expands into the coma. Our dayside radial profile allows us to make an empirical determination of the expansion velocity of water. On the night side the spatial profile of water follows 1/ρ. The CO2 profiles do not exhibit any acceleration into the coma but are closely matched by a 1/ρ profile.
Controlled-atmosphere effects on postharvest quality and antioxidant activity of cranberry fruits.
Gunes, Gurbuz; Liu, Rui Hai; Watkins, Christopher B
2002-10-09
The effects of controlled-atmosphere (CA) storage on the firmness, respiration rate, quality, weight loss, total phenolics and flavonoids contents, and total antioxidant activities of the Pilgrim and Stevens cultivars of cranberries (Vaccinium macrocarpon Aiton) have been studied during storage in atmospheres of 2, 21, and 70% O(2) with 0, 15, and 30% CO(2) (balance N(2)); and 100% N(2) at 3 degrees C. Elevated CO(2) concentrations decreased bruising, physiological breakdown, and decay of berries, thereby reducing fruit losses. Respiration and weight loss of fruits decreased, but fruit softening increased, at higher CO(2) concentrations. Accumulations of acetaldehyde, ethanol, and ethyl acetate varied by cultivar and storage atmosphere but were generally highest in the 2 and 70% O(2) and 100% N(2) atmospheres and increased in response to elevated CO(2) concentrations. Overall, the 30% CO(2) plus 21% O(2) atmosphere appeared optimal for the storage of cranberries. Sensory analysis is required, however, to confirm that accumulations of fermentation products at this atmosphere are acceptable for consumers. Stevens fruits had a higher phenolics content and total antioxidant activity than Pilgrim fruits. The storage atmosphere did not affect the content of total phenolics or flavonoids. However, the total antioxidant activity of the fruits increased overall by about 45% in fruits stored in air. This increase was prevented by storage in 30% CO(2) plus 21% O(2).
Nadarajan, Saravanapriah; Mohideen, Firaz; Tzur, Yonatan B; Ferrandiz, Nuria; Crawley, Oliver; Montoya, Alex; Faull, Peter; Snijders, Ambrosius P; Cutillas, Pedro R; Jambhekar, Ashwini; Blower, Michael D; Martinez-Perez, Enrique; Harper, J Wade; Colaiacovo, Monica P
2016-01-01
Asymmetric disassembly of the synaptonemal complex (SC) is crucial for proper meiotic chromosome segregation. However, the signaling mechanisms that directly regulate this process are poorly understood. Here we show that the mammalian Rho GEF homolog, ECT-2, functions through the conserved RAS/ERK MAP kinase signaling pathway in the C. elegans germline to regulate the disassembly of SC proteins. We find that SYP-2, a SC central region component, is a potential target for MPK-1-mediated phosphorylation and that constitutively phosphorylated SYP-2 impairs the disassembly of SC proteins from chromosomal domains referred to as the long arms of the bivalents. Inactivation of MAP kinase at late pachytene is critical for timely disassembly of the SC proteins from the long arms, and is dependent on the crossover (CO) promoting factors ZHP-3/RNF212/Zip3 and COSA-1/CNTD1. We propose that the conserved MAP kinase pathway coordinates CO designation with the disassembly of SC proteins to ensure accurate chromosome segregation. DOI: http://dx.doi.org/10.7554/eLife.12039.001 PMID:26920220
Koivusalo, A M; Kellokumpu, I; Ristkari, S; Lindgren, L
1997-10-01
Carbon dioxide (CO2) pneumoperitoneum together with an increased intraabdominal pressure (IAP) induces a hemodynamic stress response, diminishes urine output, and may compromise splanchnic perfusion. A new retractor method may be less traumatic. Accordingly, 30 ASA physical status I or II patients undergoing laparoscopic cholecystectomy were randomly allocated to a CO2 pneumoperitoneum (IAP 12-13 mm Hg) (control) or to a gasless abdominal wall lift method (retractor) group. Anesthesia and intravascular fluids were standardized. Direct mean arterial pressure (MAP), urine output, urine-N-acetyl-beta-D-glucosaminidase (U-NAG), arterial blood gases, gastric mucosal PCO2, and intramucosal pH (pHi) were measured. Normoventilation was instituted in all patients. MAP increased (P < 0.001) only with CO2 pneumoperitoneum. Minute volume of ventilation had to be increased by 35% with CO2 insufflation. PaCO2 was significantly higher (P < 0.05) for 3 h postoperatively in the control group. Diuresis was less (P < 0.01) and U-NAG levels (P < 0.01) higher in the control group. The pHi decreased after induction of pneumoperitoneum up to three hours postoperatively and remained intact in the retractor group. We conclude that the retractor method for laparoscopic cholecystectomy ensures stable hemodynamics, prevents respiratory acidosis, and provides protection against biochemical effects, which reveal the renal and splanchic ischemia caused by CO2 insufflation. A mechanical retractor method (gasless) was compared with conventional CO2 pneumoperitoneum for laparoscopic cholestectomy. The gasless method ensured stable hemodynamics, prevented respiratory acidosis, and provided protection against the renal and splanchnic ischemia seen with CO2 pneumoperitoneum.
The Cygnus OB2 Star Forming Complex
NASA Astrophysics Data System (ADS)
Rybarczyk, Daniel R.; Bania, Thomas
2018-01-01
Almost all astrophysical systems—from planets to stars to supernovae to entire galaxies—are impacted by the process of star formation. The brightest, most massive stars (OB stars) form in hot young clusters called OB associations. Cygnus OB2 is an OB association containing over 160 OB stars, making it one of the largest in the Milky Way Galaxy. At a distance of less than 1.5 kpc, its proximity to the Sun makes it optimal for assessing the process of Galactic star formation and its implications for stellar evolution, Galactic structure, and Galactic chemical evolution. Using existing data sets, we derive comprehensive maps of the distribution of thermal continuum, atomic, and molecular emission from the interstellar gas in Cyg OB2. The thermal continuum emission stems from the plasma ionized by OB stars. The atomic gas is probed by emission from atomic hydrogen, HI, at 21 cm wavelength. The molecular gas is traced by emission from the CO molecule which is a proxy for molecular hydrogen, H2. We combine these atomic and molecular data to derive a map of the total proton column density distribution in Cyg OB2. We also analyze the velocity fields of the OB stars, the atomic and molecular hydrogen gas, and the HII regions' radio recombination emission. As expected, we find HII regions to be spatially coincident with zones of higher cloud density. Surrounding the greatest concentration of OB stars is a cavity in the radio continuum and CO emission. This results from shock waves produced by the combined action of the high HII region pressure and winds from the OB stars. Such a distribution implies that Cyg OB2 is old enough to have evolved to this state.
2D Presentation Techniques of Mind-maps for Blind Meeting Participants.
Pölzer, Stephan; Miesenberger, Klaus
2015-01-01
Mind-maps, used as ideation technique in co-located meetings (e.g. in brainstorming sessions), which meet with increased importance in business and education, show considerably accessibility challenges for blind meeting participants. Besides an overview of general aspects of accessibility issues in co-located meetings, this paper focuses on the design and development of alternative non-visual presentation techniques for mind-maps. The different aspects of serialized presentation techniques (e.g. treeview) for Braille and audio rendering and two dimensional presentation techniques (e.g. tactile two dimensional array matrix and edge-projection method [1]) are discussed based on the user feedback gathered in intermediate tests following a user centered design approach.
Precision Column CO2 Measurement from Space Using Broad Band LIDAR
NASA Technical Reports Server (NTRS)
Heaps, William S.
2009-01-01
In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. To uncover the missing sink" that is responsible for the large discrepancies in the budget as we presently understand it, calculation has indicated that measurement accuracy of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of 0.25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong constraints on the laser system used for the measurement. This work presents an overview of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics. We are examining the possibility of making precise measurements of atmospheric carbon dioxide using a broad band source of radiation. This means that many of the difficulties in wavelength control can be treated in the detector portion of the system rather than the laser source. It also greatly reduces the number of individual lasers required to make a measurement. Simplifications such as these are extremely desirable for systems designed to operate from space.
NASA Astrophysics Data System (ADS)
Aouidate, Adnane; Ghaleb, Adib; Ghamali, Mounir; Chtita, Samir; Choukrad, M'barek; Sbai, Abdelouahid; Bouachrine, Mohammed; Lakhlifi, Tahar
2017-07-01
A series of nineteen DHFR inhibitors was studied based on the combination of two computational techniques namely, three-dimensional quantitative structure activity relationship (3D-QSAR) and molecular docking. The comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) were developed using 19 molecules having pIC50 ranging from 9.244 to 5.839. The best CoMFA and CoMSIA models show conventional determination coefficients R2 of 0.96 and 0.93 as well as the Leave One Out cross-validation determination coefficients Q2 of 0.64 and 0.72, respectively. The predictive ability of those models was evaluated by the external validation using a test set of five compounds with predicted determination coefficients R2test of 0.92 and 0.94, respectively. The binding mode between this kind of compounds and the DHFR enzyme in addition to the key amino acid residues were explored by molecular docking simulation. Contour maps and molecular docking identified that the R1 and R2 natures at the pyrazole moiety are the important features for the optimization of the binding affinity to the DHFR receptor. According to the good concordance between the CoMFA/CoMSIA contour maps and docking results, the obtained information was explored to design novel molecules.
Yao, Yimin; Hildreth, Cara M; Farnham, Melissa M; Saha, Manash; Sun, Qi-Jian; Pilowsky, Paul M; Phillips, Jacqueline K
2015-06-01
The effect of angiotensin II type I receptor (AT1R) inhibition on the pattern of reflex sympathetic nerve activity (SNA) to multiple target organs in the Lewis polycystic kidney (LPK) rat model of chronic kidney disease was determined. Mean arterial pressure (MAP), splanchnic SNA (sSNA), renal SNA (rSNA) and lumbar SNA (lSNA) were recorded in urethane-anaesthetized LPK and Lewis controls (total n = 39). Baroreflex, peripheral and central chemoreflex, and somatosensory reflex control of SNA (evoked by phenylephrine/sodium nitroprusside infusion, 10% O2 in N2 or 100% N2 ventilation, 5% CO2 ventilation and sciatic nerve stimulation, respectively) were determined before and after administration of losartan (AT1R antagonist 3 mg/kg, intravenous). Baseline MAP was higher in LPK rats and baroreflex control of sSNA and rSNA, but not lSNA, was reduced. Losartan reduced MAP in both strains and selectively improved baroreflex gain for sSNA (-1.2 ± 0.1 vs. -0.7 ± 0.07 %/mmHg; P < 0.05) in LPK. The peripheral and central chemoreflex increased MAP and all SNA in Lewis controls, but reduced or had no effect on these parameters, respectively, in LPK. The SNA response to somatosensory stimulation was biphasic, with latency to second peak less in LPK. Losartan ameliorated the depressor and sympathoinhibitory responses to peripheral chemoreflex stimulation in the LPK, but did not alter the central chemoreflex or somatosympathetic responses. Inhibition of the AT1R selectively improved baroreflex control of sSNA and peripheral chemoreflex control of all three sympathetic nerve outflows in the LPK rat, suggesting these anomalies in reflex function are driven in part by angiotensin II.
Bicarbonate test; HCO3-; Carbon dioxide test; TCO2; Total CO2; CO2 test - serum; Acidosis - CO2; Alkalosis - CO2 ... Many medicines can interfere with blood test results. Your health ... need to stop taking any medicines before you have this test. DO ...
Monteiro, Maria Lúcia Guerra; Mársico, Eliane Teixeira; Mano, Sérgio Borges; Teixeira, Claudia Emília; da Cruz Silva Canto, Anna Carolina Vilhena; de Carvalho Vital, Helio; Conte-Júnior, Carlos Adam
2013-01-01
This study evaluated the influence of good manufacturing practices (GMP) on the shelf life of refrigerated fillets of Nile tilapia (Oreochromis niloticus) packed in modified atmosphere packaging (MAP) and irradiated. In a first series of experiments, 120 tilapia fillets kept under controlled sanitary conditions were purchased from a fish market managed by a cooperative. A second lot totaling 200 tilapia fillets was obtained under controlled storage conditions from a pilot plant. The combined effects of MAP (40% CO2 and 60% N2) and irradiation (1.5 kGy) were investigated by monitoring physical and chemical (total volatile bases and pH), bacteriological (aerobic heterotrophic mesophilic and psychrophilic bacteria) and sensory (acceptance test) changes in the samples. The quality of samples decreased with storage time regardless of the treatment, remaining higher in fillets produced in the pilot plant in comparison with the commercially produced fillets. The observed shelf life of nonirradiated commercially produced fillets was only 3 days, compared to 8 days for those produced in the pilot plant, probably due to GMP in the latter. It was concluded that, even with a combination of proven conservation methods for meats, the adoption of good manufacturing practices still remains essential before, during, and after the filleting process in order to ensure the effectiveness of the entire treatment. PMID:24804034
The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China
Ma, Feng; Sha, Aimin; Yang, Panpan; Huang, Yue
2016-01-01
This study proposes an inventory analysis method to evaluate the greenhouse gas (GHG) emissions from Portland cement concrete pavement construction, based on a case project in the west of China. The concrete pavement construction process was divided into three phases, namely raw material production, concrete manufacture and pavement onsite construction. The GHG emissions of the three phases are analyzed by a life cycle inventory method. The CO2e is used to indicate the GHG emissions. The results show that for 1 km Portland cement concrete pavement construction, the total CO2e is 8215.31 tons. Based on the evaluation results, the CO2e of the raw material production phase is 7617.27 tons, accounting for 92.7% of the total GHG emissions; the CO2e of the concrete manufacture phase is 598,033.10 kg, accounting for 7.2% of the total GHG emissions. Lastly, the CO2e of the pavement onsite construction phase is 8396.59 kg, accounting for only 0.1% of the total GHG emissions. The main greenhouse gas is CO2 in each phase, which accounts for more than 98% of total emissions. N2O and CH4 emissions are relatively insignificant. PMID:27347987
Impact of anthropogenic CO2 on the CaCO3 system in the oceans.
Feely, Richard A; Sabine, Christopher L; Lee, Kitack; Berelson, Will; Kleypas, Joanie; Fabry, Victoria J; Millero, Frank J
2004-07-16
Rising atmospheric carbon dioxide (CO2) concentrations over the past two centuries have led to greater CO2 uptake by the oceans. This acidification process has changed the saturation state of the oceans with respect to calcium carbonate (CaCO3) particles. Here we estimate the in situ CaCO3 dissolution rates for the global oceans from total alkalinity and chlorofluorocarbon data, and we also discuss the future impacts of anthropogenic CO2 on CaCO3 shell-forming species. CaCO3 dissolution rates, ranging from 0.003 to 1.2 micromoles per kilogram per year, are observed beginning near the aragonite saturation horizon. The total water column CaCO3 dissolution rate for the global oceans is approximately 0.5 +/- 0.2 petagrams of CaCO3-C per year, which is approximately 45 to 65% of the export production of CaCO3.
Remote sensing algorithm for sea surface CO2 in the Baltic Sea
NASA Astrophysics Data System (ADS)
Parard, G.; Charantonis, A. A.; Rutgerson, A.
2014-08-01
Studies of coastal seas in Europe have brought forth the high variability in the CO2 system. This high variability, generated by the complex mechanisms driving the CO2 fluxes makes their accurate estimation an arduous task. This is more pronounced in the Baltic Sea, where the mechanisms driving the fluxes have not been as highly detailed as in the open oceans. In adition, the joint availability of in-situ measurements of CO2 and of sea-surface satellite data is limited in the area. In this paper, a combination of two existing methods (Self-Organizing-Maps and Multiple Linear regression) is used to estimate ocean surface pCO2 in the Baltic Sea from remotely sensed surface temperature, chlorophyll, coloured dissolved organic matter, net primary production and mixed layer depth. The outputs of this research have an horizontal resolution of 4 km, and cover the period from 1998 to 2011. The reconstructed pCO2 values over the validation data set have a correlation of 0.93 with the in-situ measurements, and a root mean square error is of 38 μatm. The removal of any of the satellite parameters degraded this reconstruction of the CO2 flux, and we chose therefore to complete any missing data through statistical imputation. The CO2 maps produced by this method also provide a confidence level of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of available data and we expect to be able to produce even more accurate reconstructions in the coming years, in view of the predicted acquisitions of new data.
40 CFR 98.476 - Data reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) of this section. (c) If you use more than one receiving flow meter, report the net total mass of CO2... section. (a) If you receive CO2 by pipeline, report the following for each receiving flow meter: (1) The total net mass of CO2 received (metric tons) annually. (2) If a volumetric flow meter is used to receive...
40 CFR 98.476 - Data reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) of this section. (c) If you use more than one receiving flow meter, report the net total mass of CO2... section. (a) If you receive CO2 by pipeline, report the following for each receiving flow meter: (1) The total net mass of CO2 received (metric tons) annually. (2) If a volumetric flow meter is used to receive...
Intercomparison of CO 2 measurements
NASA Astrophysics Data System (ADS)
Poisson, A.; Culkin, F.; Ridout, P.
1990-10-01
Seawater samples, of four different salinities, were analysed for total alkalinity, total CO 2, pH and pCO 2 by up to 12 laboratories. The results showthat although most laboratories are capable of high precision in these determinations, there is an unacceptably high disagreement between their analyses of the same samples. For global programmes involving studies of the CO 2 system in seawater, it is strongly recommended that standard reference materials be made widely available.
Lara, Mark J; McGuire, A David; Euskirchen, Eugenie S; Tweedie, Craig E; Hinkel, Kenneth M; Skurikhin, Alexei N; Romanovsky, Vladimir E; Grosse, Guido; Bolton, W Robert; Genet, Helene
2015-04-01
The landscape of the Barrow Peninsula in northern Alaska is thought to have formed over centuries to millennia, and is now dominated by ice-wedge polygonal tundra that spans drained thaw-lake basins and interstitial tundra. In nearby tundra regions, studies have identified a rapid increase in thermokarst formation (i.e., pits) over recent decades in response to climate warming, facilitating changes in polygonal tundra geomorphology. We assessed the future impact of 100 years of tundra geomorphic change on peak growing season carbon exchange in response to: (i) landscape succession associated with the thaw-lake cycle; and (ii) low, moderate, and extreme scenarios of thermokarst pit formation (10%, 30%, and 50%) reported for Alaskan arctic tundra sites. We developed a 30 × 30 m resolution tundra geomorphology map (overall accuracy:75%; Kappa:0.69) for our ~1800 km² study area composed of ten classes; drained slope, high center polygon, flat-center polygon, low center polygon, coalescent low center polygon, polygon trough, meadow, ponds, rivers, and lakes, to determine their spatial distribution across the Barrow Peninsula. Land-atmosphere CO2 and CH4 flux data were collected for the summers of 2006-2010 at eighty-two sites near Barrow, across the mapped classes. The developed geomorphic map was used for the regional assessment of carbon flux. Results indicate (i) at present during peak growing season on the Barrow Peninsula, CO2 uptake occurs at -902.3 10(6) gC-CO2 day(-1) (uncertainty using 95% CI is between -438.3 and -1366 10(6) gC-CO2 day(-1)) and CH4 flux at 28.9 10(6) gC-CH4 day(-1) (uncertainty using 95% CI is between 12.9 and 44.9 10(6) gC-CH4 day(-1)), (ii) one century of future landscape change associated with the thaw-lake cycle only slightly alter CO2 and CH4 exchange, while (iii) moderate increases in thermokarst pits would strengthen both CO2 uptake (-166.9 10(6) gC-CO2 day(-1)) and CH4 flux (2.8 10(6) gC-CH4 day(-1)) with geomorphic change from low to high center polygons, cumulatively resulting in an estimated negative feedback to warming during peak growing season. © 2014 John Wiley & Sons Ltd.
Gonthier, Lucy; Blassiau, Christelle; Mörchen, Monika; Cadalen, Thierry; Poiret, Matthieu; Hendriks, Theo; Quillet, Marie-Christine
2013-08-01
High-density genetic maps were constructed for loci involved in nuclear male sterility (NMS1-locus) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L.). The mapping population consisted of 389 F1' individuals derived from a cross between two plants, K28 (male-sterile) and K59 (pollen-fertile), both heterozygous at the S-locus. This F1' mapping population segregated for both male sterility (MS) and strong self-incompatibility (SI) phenotypes. Phenotyping F1' individuals for MS allowed us to map the NMS1-locus to linkage group (LG) 5, while controlled diallel and factorial crosses to identify compatible/incompatible phenotypes mapped the S-locus to LG2. To increase the density of markers around these loci, bulked segregant analysis was used. Bulks and parental plants K28 and K59 were screened using amplified fragment length polymorphism (AFLP) analysis, with a complete set of 256 primer combinations of EcoRI-ANN and MseI-CNN. A total of 31,000 fragments were generated, of which 2,350 showed polymorphism between K59 and K28. Thirteen AFLP markers were identified close to the NMS1-locus and six in the vicinity of the S-locus. From these AFLP markers, eight were transformed into sequence-characterized amplified region (SCAR) markers and of these five showed co-dominant polymorphism. The chromosomal regions containing the NMS1-locus and the S-locus were each confined to a region of 0.8 cM. In addition, we mapped genes encoding proteins similar to S-receptor kinase, the female determinant of sporophytic SI in the Brasicaceae, and also markers in the vicinity of the putative S-locus of sunflower, but none of these genes or markers mapped close to the chicory S-locus.
Molecular gas associated with IRAS 10361-5830
NASA Astrophysics Data System (ADS)
Vazzano, M. M.; Cappa, C. E.; Vasquez, J.; Rubio, M.; Romero, G. A.
2014-10-01
Aims: We analyze the distribution of the molecular gas and dust in the molecular clump linked to IRAS 10361-5830, located in the environs of the bubble-shaped Hii region Gum 31 in the Carina region, with the aim of determining the main parameters of the associated material and of investigating the evolutionary state of the young stellar objects identified there. Methods: Using the APEX telescope, we mapped the molecular emission in the J = 3-2 transition of three CO isotopologues, 12CO, 13CO and C18O, over a 1.´5 × 1.´5 region around the IRAS position. We also observed the high-density tracers CS and HCO+ toward the source. The cold- dust distribution was analyzed using submillimeter continuum data at 870 μm obtained with the APEX telescope. Complementary IR and radio data at different wavelengths were used to complete the study of the interstellar medium. Results: The molecular gas distribution reveals a cavity and a shell-like structure of ~0.32 pc in radius centered at the position of the IRAS source, with some young stellar objects projected onto the cavity. The total molecular mass in the shell and the mean H2volume density are ~40 M⊙ and ~(1-2) × 103 cm-3. The cold-dust counterpart of the molecular shell has been detected in the far-IR at 870 μm and in Herschel data at 350 μm. Weak extended emission at 24 μm from warm dust is projected onto the cavity, as well as weak radio continuum emission. Conclusions: A comparison of the distribution of cold and warm dust, and molecular and ionized gas allows us to conclude that a compact Hii region has developed in the molecular clump, indicating that this is an area of recent massive star formation. Probable exciting sources capable of creating the compact Hii region are investigated. The 2MASS source 10380461-5846233 (MSX G286.3773-00.2563) seems to be responsible for the formation of the Hii region. FITS files with datacubes corresponding to 12CO, 13CO, C180 maps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/570/A109
Volatiles and energy released by Puracé volcano
NASA Astrophysics Data System (ADS)
Maldonado, Luisa Fernanda Meza; Inguaggiato, Salvatore; Jaramillo, Marco Tulio; Valencia, Gustavo Garzón; Mazot, Agnes
2017-12-01
Total CO2 output of Puracé volcano (Colombia) was estimated on the basis of fluids discharged by fumaroles, soil gases, and dissolved carbon species in the aquifer. The soil CO2 emission was computed from a field survey of 512 points of CO2 soil flux measurements at the main degassing areas of Puracé volcano. The CO2 flux from Puracé's plume was estimated using an indirect method, that used the SO2 plume flux and CO2/SO2 ratio of the main high temperature fumarole. The total output of CO2 was estimated at ≅ 1500 t/day. The main contribution of CO2 comes from the plume (summit degassing) and from soil degassing that emit 673 and 812 t/day, respectively. The contributions of summit and soil degassing areas are comparable, indicating an intermediate degassing style partitioned between closed and open conduit systems. The estimated water vapor discharge (as derived from the chemical composition of the fumaroles, the H2O/CO2 ratio, and the SO2 plume flux) allowed calculation of the total thermal energy (fumarolic, soil degassing, and aquifer) released from the Puracé volcanic system. This was 360 MW.
Tan, Shu; Cheng, Jiao-Wen; Zhang, Li; Qin, Cheng; Nong, Ding-Guo; Li, Wei-Peng; Tang, Xin; Wu, Zhi-Ming; Hu, Kai-Lin
2015-01-01
Re-sequencing permits the mining of genome-wide variations on a large scale and provides excellent resources for the research community. To accelerate the development and application of molecular markers and identify the QTLs affecting the flowering time-related trait in pepper, a total of 1,038 pairs of InDel and 674 SSR primers from different sources were used for genetic mapping using the F2 population (n = 154) derived from a cross between BA3 (C. annuum) and YNXML (C. frutescens). Of these, a total of 224 simple PCR-based markers, including 129 InDels and 95 SSRs, were validated and integrated into a map, which was designated as the BY map. The BY map consisted of 13 linkage groups (LGs) and spanned a total genetic distance of 1,249.77 cM with an average marker distance of 5.60 cM. Comparative analysis of the genetic and physical map based on the anchored markers showed that the BY map covered nearly the whole pepper genome. Based on the BY map, one major and five minor QTLs affecting the number of leaves on the primary axis (Nle) were detected on chromosomes P2, P7, P10 and P11 in 2012. The major QTL on P2 was confirmed based on another subset of the same F2 population (n = 147) in 2014 with selective genotyping of markers from the BY map. With the accomplishment of pepper whole genome sequencing and annotations (release 2.0), 153 candidate genes were predicted to embed in the Nle2.2 region, of which 12 important flowering related genes were obtained. The InDel/SSR-based interspecific genetic map, QTLs and candidate genes obtained by the present study will be useful for the downstream isolation of flowering time-related gene and other genetic applications for pepper.
Cassini Visual and Infrared Mapping Spectrometer observations of Iapetus: Detection of CO2
Buratti, B.J.; Cruikshank, D.P.; Brown, R.H.; Clark, R.N.; Bauer, J.M.; Jaumann, R.; McCord, T.B.; Simonelli, D.P.; Hibbitts, C.A.; Hansen, G.B.; Owen, T.C.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Drossart, P.; Formisano, V.; Langevin, Y.; Matson, D.L.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Roush, T.L.; Soderlund, K.; Muradyan, A.
2005-01-01
The Visual and Infrared Mapping Spectrometer (VIMS) instrument aboard the Cassini spacecraft obtained its first spectral map of the satellite lapetus in which new absorption bands are seen in the spectra of both the low-albedo hemisphere and the H2O ice-rich hemisphere. Carbon dioxide is identified in the low-albedo material, probably as a photochemically produced molecule that is trapped in H2O ice or in some mineral or complex organic solid. Other absorption bands are unidentified. The spectrum of the low-albedo hemisphere is satisfactorily modeled with a combination of organic tholin, poly-HCN, and small amounts of H2O ice and Fe 2O3. The high-albedo hemisphere is modeled with H 2O ice slightly darkened with tholin. The detection of CO2 in the low-albedo material on the leading hemisphere supports the contention that it is carbon-bearing material from an external source that has been swept up by the satellite's orbital motion. ?? 2005. The American Astronomical Society. All rights reserved.
Myers, Samuel S; Wessells, K Ryan; Kloog, Itai; Zanobetti, Antonella; Schwartz, Joel
2015-10-01
Increasing concentrations of atmospheric carbon dioxide (CO2) lower the content of zinc and other nutrients in important food crops. Zinc deficiency is currently responsible for large burdens of disease globally, and the populations who are at highest risk of zinc deficiency also receive most of their dietary zinc from crops. By modelling dietary intake of bioavailable zinc for the populations of 188 countries under both an ambient CO2 and elevated CO2 scenario, we sought to estimate the effect of anthropogenic CO2 emissions on the global risk of zinc deficiency. We estimated per capita per day bioavailable intake of zinc for the populations of 188 countries at ambient CO2 concentrations (375-384 ppm) using food balance sheet data for 2003-07 from the Food and Agriculture Organization. We then used previously published data from free air CO2 enrichment and open-top chamber experiments to model zinc intake at elevated CO2 concentrations (550 ppm, which is the concentration expected by 2050). Estimates developed by the International Zinc Nutrition Consultative Group were used for country-specific theoretical mean daily per-capita physiological requirements for zinc. Finally, we used these data on zinc bioavailability and population-weighted estimated average zinc requirements to estimate the risk of inadequate zinc intake among the populations of the different nations under the two scenarios (ambient and elevated CO2). The difference between the population at risk at elevated and ambient CO2 concentrations (ie, population at new risk of zinc deficiency) was our measure of impact. The total number of people estimated to be placed at new risk of zinc deficiency by 2050 was 138 million (95% CI 120-156). The people likely to be most affected live in Africa and South Asia, with nearly 48 million (32-63) residing in India alone. Global maps of increased risk show significant heterogeneity. Our results indicate that one heretofore unquantified human health effect associated with anthropogenic CO2 emissions will be a significant increase in the human population at risk of zinc deficiency. Our country-specific findings can be used to help guide interventions aimed at reducing this vulnerability. Bill & Melinda Gates Foundation, Winslow Foundation. Copyright © 2015 Myers et al. Open access article published under the terms of CC BY-NC-ND. Published by Elsevier Ltd.. All rights reserved.
Seasonal/Diurnal Mapping of Ozone and Water in the Martian Atmosphere
NASA Technical Reports Server (NTRS)
Novak, R. E.; Mumma, M. J.; DiSanti, M. A.; DelloRusso, N.; Magee-Sauer, K.; Bonev, B.
2003-01-01
Ozone and water are key species for understanding the stability and evolution of Mars atmosphere; they are closely linked (along with CO, H, OH, and O) through photochemistry. Photolysis of water produces the OH radical (thought to catalyze reformation of CO2 from CO and O2) and atomic hydrogen (which reacts with O3 forming OH and O2). Atomic hydrogen also reacts with O2 (forming HO2), thereby reducing the amount of O2 available to reform O3 from collisions between O and O2. Hence ozone and water should be anti-correlated on Mars. Photolysis of O3 produces O2(a(sup 1) delta g) with 90% efficiency, and the resulting emission band system near 1.27 mm traces the presence and abundance of ozone. This approach was initially used to study ozone on Earth and then applied to Mars. In 1997, we measured several lines of the O2(a(sup 1) delta g) emission using CSHELL at the NASA IRTF; the O2(a(sup 1) delta g) state is also quenched by collisions with CO2. This quenching dominates at lower altitudes so that the detected emissions are used to detect ozone column densities above 20 km. The slit was positioned N-S along Mars' central meridian resulting in a one-dimensional map of ozone. Nearly simultaneous maps may be made of water using CSHELL by detecting the v1 fundamental band of HDO near 3.67 microns and using the D/H ratio for Mars. This technique was used by DiSanti and Mumma. With CSHELL, measurements for both O2(a(sup 1) delta g) emissions and HDO absorptions can be made during the day or night. Since January, 1997, we have repeated these measurements at different times during the Martian year. For all of these dates, we have positioned the slit N-S along the central meridian; for some of these dates, we have also stepped the slit across the planet at 1 arc-sec intervals generating a 2-dimensional map. We have also positioned the slit E-W on Mars thus providing diurnal variations of ozone and water along the slit.
Li, Ko-Jen; Wu, Cheng-Han; Shen, Chieh-Yu; Kuo, Yu-Min; Yu, Chia-Li; Hsieh, Song-Chou
2016-01-01
The biological significance of membrane transfer (trogocytosis) between polymorphonuclear neutrophils (PMNs) and mononuclear cells (MNCs) remains unclear. We investigated the biological/immunological effects and molecular basis of trogocytosis among various immune cells in healthy individuals and patients with active systemic lupus erythematosus (SLE). By flow cytometry, we determined that molecules in the immunological synapse, including HLA class-I and-II, CD11b and LFA-1, along with CXCR1, are exchanged among autologous PMNs, CD4+ T cells, and U937 cells (monocytes) after cell-cell contact. Small interfering RNA knockdown of the integrin adhesion molecule CD11a in U937 unexpectedly enhanced the level of total membrane transfer from U937 to PMN cells. Functionally, phagocytosis and IL-8 production by PMNs were enhanced after co-culture with T cells. Total membrane transfer from CD4+ T to PMNs delayed PMN apoptosis by suppressing the extrinsic apoptotic molecules, BAX, MYC and caspase 8. This enhancement of activities of PMNs by T cells was found to be mediated via p38- and P44/42-Akt-MAP kinase pathways and inhibited by the actin-polymerization inhibitor, latrunculin B, the clathrin inhibitor, Pitstop-2, and human immunoglobulin G, but not by the caveolin inhibitor, methyl-β-cyclodextrin. In addition, membrane transfer from PMNs enhanced IL-2 production by recipient anti-CD3/anti-CD28 activated MNCs, and this was suppressed by inhibitors of mitogen-activated protein kinase (PD98059) and protein kinase C (Rottlerin). Of clinical significance, decreased total membrane transfer from PMNs to MNCs in patients with active SLE suppressed mononuclear IL-2 production. In conclusion, membrane transfer from MNCs to PMNs, mainly at the immunological synapse, transduces survival and activation signals to enhance PMN functions and is dependent on actin polymerization, clathrin activation, and Fcγ receptors, while membrane transfer from PMNs to MNCs depends on MAP kinase and PKC signaling. Defective membrane transfer from PMNs to MNCs in patients with active systemic lupus erythematous suppressed activated mononuclear IL-2 production.
Mapping High Biomass Corridors for Climate and Biodiversity Co-Benefits
NASA Astrophysics Data System (ADS)
Jantz, P.; Goetz, S. J.; Laporte, N. T.
2013-12-01
A key issue in global conservation is how climate mitigation activities can secure biodiversity co-benefits. Tropical deforestation releases significant amounts of CO2 to the atmosphere and results in widespread biodiversity loss. The dominant strategy for forest conservation has been protected area designation. However, maintaining biodiversity in protected areas requires ecological exchange with ecosystems in which they are embedded. At current funding levels, existing conservation strategies are unlikely to prevent further loss of connectivity between protected areas and surrounding landscapes. The emergence of REDD+, a mechanism for funding carbon emissions reductions from deforestation in developing countries, suggests an alignment of goals and financial resources for protecting forest carbon, maintaining biodiversity in protected areas, and minimizing loss of forest ecosystem services. Identifying, protecting and sustainably managing vegetation carbon stocks between protected areas can provide both climate mitigation benefits through avoided CO2 emissions from deforestation and biodiversity benefits through the targeted protection of forests that maintain connectivity between protected areas and surrounding ecosystems. We used a high resolution, pan-tropical map of vegetation carbon stocks derived from MODIS, GLAS lidar and field measurements to map corridors that traverse areas of highest aboveground biomass between protected areas. We mapped over 13,000 corridors containing 49 GtC, accounting for 14% of unprotected vegetation carbon stock in the tropics. In the majority of cases, carbon density in corridors was commensurate with that of the protected areas they connect, suggesting significant opportunities for achieving climate mitigation and biodiversity co-benefits. To further illustrate the utility of this approach, we conducted a multi-criteria analysis of corridors in the Brazilian Amazon, identifying high biodiversity, high vegetation carbon stock corridors with low opportunity costs which may be good candidates for inclusion in climate mitigation activities like those being considered under REDD+.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castaldini, C.; Waterland, L.R.; Lips, H.I.
1986-02-01
The report discusses results from sampling flue gas from an enhanced-oil-recovery steam generator (EOR steamer) equipped with an MHI PM low-NOx burner. The tests included burner performance/emission mapping tests, comparative testing of an identical steamer equipped with a conventional burner, and comprehensive testing of the low-NOx-burner-equipped steamer. Comprehensive test measurements included continuous flue-gas monitoring; source assessment sampling system testing with subsequent laboratory analysis to give total flue-gas organics in two boiling point ranges and specific quantitation on the semivolatile organic priority pollutants; C1 to C6 hydrocarbon sampling; Methods 5/8 sampling for particulate and SO/sub 2/ and SO/sub 3/ emissions; andmore » emitted particle size distribution tests using Andersen impactors. Full-load NOx emissions of 110 ppm (3% O/sub 2/) could be maintained from the low-NOx burner at acceptable CO and smoke emissions, compared to about 300 ppm (3% O/sub 2/) from the conventional-burner-equipped steamer. At the low-NOx condition, CO, SO/sub 2/, and SO/sub 3/ emissions were 93, 594, and 3.1 ppm, respectively. Particulate emissions were 39 mg/dscm with a mean particle diameter of 3 to 4 micrometers. Total organic emissions were 11.1 mg/dscm, almost exclusively volatile (C1 to C6) organics. Three PAHs were detected at from 0.1 to 1.4 micrograms/dscm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf-Chase, Grace; Arvidsson, Kim; Smutko, Michael, E-mail: gwolfchase@adlerplanetarium.org
We present the results of a narrow-band near-infrared imaging survey for Molecular Hydrogen emission-line Objects (MHOs) toward 26 regions containing high-mass protostellar candidates and massive molecular outflows. We have detected a total of 236 MHOs, 156 of which are new detections, in 22 out of the 26 regions. We use H{sub 2} 2.12 μ m/H{sub 2} 2.25 μ m flux ratios, together with morphology, to separate the signatures of fluorescence associated with photo-dissociation regions (PDRs) from shocks associated with outflows in order to identify the MHOs. PDRs have typical low flux ratios of ∼1.5–3, while the vast majority of MHOsmore » display flux ratios typical of C-type shocks (∼6–20). A few MHOs exhibit flux ratios consistent with expected values for J-type shocks (∼3–4), but these are located in regions that may be contaminated with fluorescent emission. Some previously reported MHOs have low flux ratios, and are likely parts of PDRs rather than shocks indicative of outflows. We identify a total of 36 outflows across the 22 target regions where MHOs were detected. In over half these regions, MHO arrangements and fluorescent structures trace features present in CO outflow maps, suggesting that the CO emission traces a combination of dynamical effects, which may include gas entrained in expanding PDRs as well as bipolar outflows. Where possible, we link MHO complexes to distinct outflows and identify candidate driving sources.« less
Kei, Tiffanie; Mistry, Nikhil; Tsui, Albert K Y; Liu, Elaine; Rogers, Stephen; Doctor, Allan; Wilson, David F; Desjardins, Jean-Francois; Connelly, Kim; Mazer, C David; Hare, Gregory M T
2017-12-01
Low hemoglobin concentration (Hb) and low mean arterial blood pressure (MAP) impact outcomes in critically ill patients. We utilized an experimental model of "normotensive" vs. "hypotensive" acute hemodilutional anemia to test whether optimal tissue perfusion is dependent on both Hb and MAP during acute blood loss and fluid resuscitation, and to assess the value of direct measurements of the partial pressure of oxygen in tissue (P t O 2 ). Twenty-nine anesthetized rats underwent 40% isovolemic hemodilution (1:1) (or sham-hemodilution control, n = 4) with either hydroxyethyl starch (HES) (n = 14, normotensive anemia) or saline (n = 11, hypotensive anemia) to reach a target Hb value near 70 g/L. The partial pressure of oxygen in the brain and skeletal muscle tissue (P t O 2 ) were measured by phosphorescence quenching of oxygen using G4 Oxyphor. Mean arterial pressure (MAP), heart rate, temperature, arterial and venous co-oximetry, blood gases, and lactate were assessed at baseline and for 60 min after hemodilution. Cardiac output (CO) was measured at baseline and immediately after hemodilution. Data were analyzed by repeated measures two-way ANOVA. Following "normotensive" hemodilution with HES, Hb was reduced to 66 ± 6 g/L, CO increased (p < 0.05), and MAP was maintained. These conditions resulted in a reduction in brain P t O 2 (22.1 ± 5.6 mmHg to 17.5 ± 4.4 mmHg, p < 0.05), unchanged muscle PO 2 , and an increase in venous oxygen extraction. Following "hypotensive" hemodilution with saline, Hb was reduced to 79 ± 5 g/L and both CO and MAP were decreased (P < 0.05). These conditions resulted in a more severe reduction in brain P t O 2 (23.2 ± 8.2 to 10.7 ± 3.6 mmHg (p < 0.05), a reduction in muscle P t O 2 (44.5 ± 11.0 to 19.9 ± 12.4 mmHg, p < 0.05), a further increase in venous oxygen extraction, and a threefold increase in systemic lactate levels (p < 0.05). Acute normotensive anemia (HES hemodilution) was associated with a subtle decrease in brain tissue P t O 2 without clear evidence of global tissue hypoperfusion. By contrast, acute hypotensive anemia (saline hemodilution) resulted in a profound decrease in both brain and muscle tissue P t O 2 and evidence of inadequate global perfusion (lactic acidosis). These data emphasize the importance of maintaining CO and MAP to ensure adequacy of vital organ oxygen delivery during acute anemia. Improved methods of assessing P t O 2 may provide an earlier warning signal of vital organ hypoperfusion.
In the current study, three Google Street View cars were equipped with the Aclima Environmental Intelligence ™ Platform. The air pollutants of interest, including O3, NO, NO2, CO2, black carbon, and particle number in several size ranges, were measured using a suite of fast...
Ade, P. A. R.; Aghanim, N.; Aniano, G.; ...
2015-09-30
The nearby Chamaeleon clouds have been observed in γ rays by the Fermi Large Area Telescope (LAT) and in thermal dust emission by Planck and IRAS. Cosmic rays and large dust grains, if smoothly mixed with gas, can jointly serve with the H i and 12CO radio data to (i) map the hydrogen column densities, N H, in the different gas phases, in particular at the dark neutral medium (DNM) transition between the H i-bright and CO-bright media; (ii) constrain the CO-to-H 2 conversion factor, X CO; and (iii) probe the dust properties per gas nucleon in each phase andmore » map their spatial variations across the clouds. We have separated clouds at local, intermediate, and Galactic velocities in H i and 12CO line emission to model in parallel the γ-ray intensity recorded between 0.4 and 100 GeV; the dust optical depth at 353 GHz, τ 353; the thermal radiance of the large grains; and an estimate of the dust extinction, A VQ, empirically corrected for the starlight intensity. Furthermore, the dust and γ-ray models have been coupled to account for the DNM gas. The consistent γ-ray emissivity spectra recorded in the different phases confirm that the GeV–TeV cosmic rays probed by the LAT uniformly permeate all gas phases up to the 12CO cores. The dust and cosmic rays both reveal large amounts of DNM gas, with comparable spatial distributions and twice as much mass as in the CO-bright clouds. We give constraints on the H i-DNM-CO transitions for five separate clouds. CO-dark H 2 dominates the molecular columns up to AV ≃ 0.9 and its mass often exceeds the one-third of the molecular mass expected by theory. The corrected A VQ extinction largely provides the best fit to the total gas traced by the γ rays. Nevertheless, we find evidence for a marked rise in A VQ/N H with increasing N H and molecular fraction, and with decreasing dust temperature. The rise in τ 353/NH is even steeper. Here, we observe variations of lesser amplitude and orderliness for the specific power of the grains, except for a coherent decline by half in the CO cores. This combined information suggests grain evolution. We also provide average values for the dust properties per gas nucleon in the different phases. The γ rays and dust radiance yield consistent X CO estimates near 0.7 × 10 20 cm -2 K -1 km -1 s. The A VQ and τ 353 tracers yield biased values because of the large rise in grain opacity in the CO clouds. These results clarify a recurrent disparity in the γ-ray versus dust calibration of X CO, but they confirm the factor of 2 difference found between the X CO estimates in nearby clouds and in the neighbouring spiral arms.« less
Shao, Yafang; Jin, Liang; Zhang, Gan; Lu, Yan; Shen, Yun; Bao, Jinsong
2011-03-01
Phytochemicals such as phenolics and flavonoids in rice grain are antioxidants that are associated with reduced risk of developing chronic diseases including cardiovascular disease, type-2 diabetes and some cancers. Understanding the genetic basis of these traits is necessary for the improvement of nutritional quality by breeding. Association mapping based on linkage disequilibrium has emerged as a powerful strategy for identifying genes or quantitative trait loci (QTL) underlying complex traits in plants. In this study, genome-wide association mapping using models controlling both population structure (Q) and relative kinship (K) were performed to identify the marker loci/QTLs underlying the naturally occurring variations of grain color and nutritional quality traits in 416 rice germplasm accessions including red and black rice. A total of 41 marker loci were identified for all the traits, and it was confirmed that Ra (i.e., Prp-b for purple pericarp) and Rc (brown pericarp and seed coat) genes were main-effect loci for rice grain color and nutritional quality traits. RM228, RM339, fgr (fragrance gene) and RM316 were important markers associated with most of the traits. Association mapping for the traits of the 361 white or non-pigmented rice accessions (i.e., excluding the red and black rice) revealed a total of 11 markers for four color parameters, and one marker (RM346) for phenolic content. Among them, Wx gene locus was identified for the color parameters of lightness (L*), redness (a*) and hue angle (H (o)). Our study suggested that the markers identified in this study can feasibly be used to improve nutritional quality or health benefit properties of rice by marker-assisted selection if the co-segregations of the marker-trait associations are validated in segregating populations.
Hulse-Kemp, Amanda M.; Lemm, Jana; Plieske, Joerg; Ashrafi, Hamid; Buyyarapu, Ramesh; Fang, David D.; Frelichowski, James; Giband, Marc; Hague, Steve; Hinze, Lori L.; Kochan, Kelli J.; Riggs, Penny K.; Scheffler, Jodi A.; Udall, Joshua A.; Ulloa, Mauricio; Wang, Shirley S.; Zhu, Qian-Hao; Bag, Sumit K.; Bhardwaj, Archana; Burke, John J.; Byers, Robert L.; Claverie, Michel; Gore, Michael A.; Harker, David B.; Islam, Md S.; Jenkins, Johnie N.; Jones, Don C.; Lacape, Jean-Marc; Llewellyn, Danny J.; Percy, Richard G.; Pepper, Alan E.; Poland, Jesse A.; Mohan Rai, Krishan; Sawant, Samir V.; Singh, Sunil Kumar; Spriggs, Andrew; Taylor, Jen M.; Wang, Fei; Yourstone, Scott M.; Zheng, Xiuting; Lawley, Cindy T.; Ganal, Martin W.; Van Deynze, Allen; Wilson, Iain W.; Stelly, David M.
2015-01-01
High-throughput genotyping arrays provide a standardized resource for plant breeding communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), complex trait dissection, and studying patterns of genomic diversity among cultivars and wild accessions. We have developed the CottonSNP63K, an Illumina Infinium array containing assays for 45,104 putative intraspecific single nucleotide polymorphism (SNP) markers for use within the cultivated cotton species Gossypium hirsutum L. and 17,954 putative interspecific SNP markers for use with crosses of other cotton species with G. hirsutum. The SNPs on the array were developed from 13 different discovery sets that represent a diverse range of G. hirsutum germplasm and five other species: G. barbadense L., G. tomentosum Nuttal × Seemann, G. mustelinum Miers × Watt, G. armourianum Kearny, and G. longicalyx J.B. Hutchinson and Lee. The array was validated with 1,156 samples to generate cluster positions to facilitate automated analysis of 38,822 polymorphic markers. Two high-density genetic maps containing a total of 22,829 SNPs were generated for two F2 mapping populations, one intraspecific and one interspecific, and 3,533 SNP markers were co-occurring in both maps. The produced intraspecific genetic map is the first saturated map that associates into 26 linkage groups corresponding to the number of cotton chromosomes for a cross between two G. hirsutum lines. The linkage maps were shown to have high levels of collinearity to the JGI G. raimondii Ulbrich reference genome sequence. The CottonSNP63K array, cluster file and associated marker sequences constitute a major new resource for the global cotton research community. PMID:25908569
Mapping the total electron content over Malaysia using Spherical Cap Harmonic Analysis
NASA Astrophysics Data System (ADS)
Bahari, S.; Abdullah, M.; Bouya, Z.; Musa, T. A.
2017-12-01
The ionosphere over Malaysia is unique because of her location which is in close proximity to the geomagnetic equator and is in the equatorial regions. In this region, the magnetic field is horizontally oriented from south to north and field aligned direction is in the meridional plane (ExB) which becomes the source of equatorial ionospheric anomaly occurrence such as plasma bubble, fountain effects and others. Until today, there is no model that has been developed over Malaysia to study the ionosphere. Due to that, the main objective of this paper is to develop a new technique for mapping the total electron content (TEC) from GPS measurements. Data by myRTKnet network of GPS receiver over Malaysia were used in this study. A new methodology, based on modified spherical cap harmonic analysis (SCHA), was developed to estimate diurnal vertical TEC over the region using GPS observations. The SCHA model is based on longitudinal expansion in Fourier series and fractional Legendre co-latitudinal functions over a spherical cap-like region. The TEC map with spatial resolution of 0.15 ° x 0.15 ° in latitude and longitude with the time resolution of 30 seconds are derived. TEC maps from the SCHA model were compared with the global ionospheric map and other regional models. Result shows that during low solar activity, SCHA model had a better mapping with the accuracy of less than 1 TECU compared to other regional models.
Chapter 2: Livestock and Grazed Lands Emissions
USDA-ARS?s Scientific Manuscript database
A total of 342 MMT CO2 eq. of greenhouse gasses (GHGs) were emitted from livestock, managed livestock waste, and grazed land in 2013. This represents about 66% of total emissions from the agricultural sector, which totaled 516 MMT CO2 eq. Compared to the base line year (1990), emissions from livesto...
15. Site plan, 1915, bottom half With CT214, photocopied from ...
15. Site plan, 1915, bottom half With CT-2-14, photocopied from an ozalid print, 'Map of Plant of Sentinel Manufacturing Co.,' Folio 2, EWC. The Sentinel Manufacturing Co. produced gas stoves. They leased the Whitney Armory buildings about 1915. - Eli Whitney Armory, West of Whitney Avenue, Armory Street Vicinity, Hamden, New Haven County, CT
Chèneby, Jeanne; Gheorghe, Marius; Artufel, Marie; Mathelier, Anthony; Ballester, Benoit
2018-01-04
With this latest release of ReMap (http://remap.cisreg.eu), we present a unique collection of regulatory regions in human, as a result of a large-scale integrative analysis of ChIP-seq experiments for hundreds of transcriptional regulators (TRs) such as transcription factors, transcriptional co-activators and chromatin regulators. In 2015, we introduced the ReMap database to capture the genome regulatory space by integrating public ChIP-seq datasets, covering 237 TRs across 13 million (M) peaks. In this release, we have extended this catalog to constitute a unique collection of regulatory regions. Specifically, we have collected, analyzed and retained after quality control a total of 2829 ChIP-seq datasets available from public sources, covering a total of 485 TRs with a catalog of 80M peaks. Additionally, the updated database includes new search features for TR names as well as aliases, including cell line names and the ability to navigate the data directly within genome browsers via public track hubs. Finally, full access to this catalog is available online together with a TR binding enrichment analysis tool. ReMap 2018 provides a significant update of the ReMap database, providing an in depth view of the complexity of the regulatory landscape in human. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Carbon footprint of patient journeys through primary care: a mixed methods approach.
Andrews, Elizabeth; Pearson, David; Kelly, Charlotte; Stroud, Laura; Rivas Perez, Martin
2013-09-01
The NHS has a target of cutting its carbon dioxide (CO2) emissions by 80% below 1990 levels by 2050. Travel comprises 17% of the NHS carbon footprint. This carbon footprint represents the total CO2 emissions caused directly or indirectly by the NHS. Patient journeys have previously been planned largely without regard to the environmental impact. The potential contribution of 'avoidable' journeys in primary care is significant. To investigate the carbon footprint of patients travelling to and from a general practice surgery, the issues involved, and potential solutions for reducing patient travel. A mixed methods study in a medium-sized practice in Yorkshire. During March 2012, 306 patients completed a travel survey. GIS maps of patients' travel (modes and distances) were produced. Two focus groups (12 clinical and 13 non-clinical staff) were recorded, transcribed, and analysed using a thematic framework approach. The majority (61%) of patient journeys to and from the surgery were made by car or taxi; main reasons cited were 'convenience', 'time saving', and 'no alternative' for accessing the surgery. Using distances calculated via ArcGIS, the annual estimated CO2 equivalent carbon emissions for the practice totalled approximately 63 tonnes. Predominant themes from interviews related to issues with systems for booking appointments and repeat prescriptions; alternative travel modes; delivering health care; and solutions to reducing travel. The modes and distances of patient travel can be accurately determined and allow appropriate carbon emission calculations for GP practices. Although challenging, there is scope for identifying potential solutions (for example, modifying administration systems and promoting walking) to reduce 'avoidable' journeys and cut carbon emissions while maintaining access to health care.
Carbon footprint of patient journeys through primary care: a mixed methods approach
Andrews, Elizabeth; Pearson, David; Kelly, Charlotte; Stroud, Laura; Rivas Perez, Martin
2013-01-01
Background The NHS has a target of cutting its carbon dioxide (CO2) emissions by 80% below 1990 levels by 2050. Travel comprises 17% of the NHS carbon footprint. This carbon footprint represents the total CO2 emissions caused directly or indirectly by the NHS. Patient journeys have previously been planned largely without regard to the environmental impact. The potential contribution of ‘avoidable’ journeys in primary care is significant. Aim To investigate the carbon footprint of patients travelling to and from a general practice surgery, the issues involved, and potential solutions for reducing patient travel. Design and setting A mixed methods study in a medium-sized practice in Yorkshire. Method During March 2012, 306 patients completed a travel survey. GIS maps of patients’ travel (modes and distances) were produced. Two focus groups (12 clinical and 13 non-clinical staff) were recorded, transcribed, and analysed using a thematic framework approach. Results The majority (61%) of patient journeys to and from the surgery were made by car or taxi; main reasons cited were ‘convenience’, ‘time saving’, and ‘no alternative’ for accessing the surgery. Using distances calculated via ArcGIS, the annual estimated CO2 equivalent carbon emissions for the practice totalled approximately 63 tonnes. Predominant themes from interviews related to issues with systems for booking appointments and repeat prescriptions; alternative travel modes; delivering health care; and solutions to reducing travel. Conclusion The modes and distances of patient travel can be accurately determined and allow appropriate carbon emission calculations for GP practices. Although challenging, there is scope for identifying potential solutions (for example, modifying administration systems and promoting walking) to reduce ‘avoidable’ journeys and cut carbon emissions while maintaining access to health care. PMID:23998839
EnviroAtlas -- Memphis, TN (2012) -- One Meter Resolution Urban Land Cover Data Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas ). The Memphis, TN EnviroAtlas One Meter-scale Urban Land Cover (MULC) dataset comprises 2,733 km2 around the city of Memphis, surrounding towns, and rural areas. These leaf-on LC data and maps were derived from 1-m pixel, four-band (red, green, blue, and near-infrared) aerial photography acquired from the United States Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) on four dates in 2012: June 15, June 18, June 21 and June 23, and one date in 2013: July 12. Three separate LiDAR (Light Detection and Ranging) data sets collected on February 19, 2009 00e2?? August 2, 2010, December 1-2, 2011 and January 23-24, 2012 were integrated for Shelby Co., TN, Crittenden Co., AR, and DeSoto Co, MS. Five MULC classes were mapped directly from the NAIP and LiDAR data: Water, Impervious, Soil, Trees, and Grass/Herbaceous. Agriculture was derived from USDA Common Land Unit (CLU) data. Woody and emergent wetlands were copied from existing National Wetlands Inventory (NWI) data. Analysis of a random sampling of 612 photo-interpreted land cover reference points yielded an overall users accuracy of 86.9%. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-u
EnviroAtlas -- Memphis, TN (2012) -- One Meter Resolution Urban Land Cover Data
The Memphis, TN EnviroAtlas One Meter-scale Urban Land Cover (MULC) dataset comprises 2,733 km2 around the city of Memphis, surrounding towns, and rural areas. These leaf-on LC data and maps were derived from 1-m pixel, four-band (red, green, blue, and near-infrared) aerial photography acquired from the United States Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) on four dates in 2012: June 15, June 18, June 21 and June 23, and one date in 2013: July 12. Three separate LiDAR (Light Detection and Ranging) data sets collected on February 19, 2009 00e2?? August 2, 2010, December 1-2, 2011 and January 23-24, 2012 were integrated for Shelby Co., TN, Crittenden Co., AR, and DeSoto Co, MS. Five MULC classes were mapped directly from the NAIP and LiDAR data: Water, Impervious, Soil, Trees, and Grass/Herbaceous. Agriculture was derived from USDA Common Land Unit (CLU) data. Woody and emergent wetlands were copied from existing National Wetlands Inventory (NWI) data. Analysis of a random sampling of 612 photo-interpreted land cover reference points yielded an overall users accuracy of 86.9%. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as do
2012-01-01
Background Tocopherols, which are vitamin E compounds, play an important role in maintaining human health. Compared with other staple foods, maize grains contain high level of tocopherols. Results Two F2 populations (K22/CI7 and K22/Dan340, referred to as POP-1 and POP-2, respectively), which share a common parent (K22), were developed and genotyped using a GoldenGate assay containing 1,536 single nucleotide polymorphism (SNP) markers. An integrated genetic linkage map was constructed using 619 SNP markers, spanning a total of 1649.03 cM of the maize genome with an average interval of 2.67 cM. Seventeen quantitative trait loci (QTLs) for all the traits were detected in the first map and 13 in the second. In these two maps, QTLs for different traits were localized to the same genomic regions and some were co-located with candidate genes in the tocopherol biosynthesis pathway. Single QTL was responsible for 3.03% to 52.75% of the phenotypic variation and the QTLs in sum explained23.4% to 66.52% of the total phenotypic variation. A major QTL (qc5-1/qd5-1) affecting α-tocopherol (αT) was identified on chromosome 5 between the PZA03161.1 and PZA02068.1 in the POP-2. The QTL region was narrowed down from 18.7 Mb to 5.4 Mb by estimating the recombination using high-density markers of the QTL region. This allowed the identification of the candidate gene VTE4 which encodes γ-tocopherol methyltransferase, an enzyme that transforms γ-tocopherol (γT)to αT. Conclusions These results demonstrate that a few QTLs with major effects and several QTLs with medium to minor effects might contribute to the natural variation of tocopherols in maize grain. The high-density markers will help to fine map and identify the QTLs with major effects even in the preliminary segregating populations. Furthermore, this study provides a simple guide line for the breeders to improve traits that minimize the risk of malnutrition, especially in developing countries. PMID:23122295
NASA Astrophysics Data System (ADS)
Macario Galang, Jan Albert; Narod Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo
2015-04-01
The M 7.2 October 15, 2013 Bohol earthquake is the most destructive earthquake to hit the Philippines since 2012. The epicenter was located in Sagbayan municipality, central Bohol and was generated by a previously unmapped reverse fault called the "Inabanga Fault". Its name, taken after the barangay (village) where the fault is best exposed and was first seen. The earthquake resulted in 209 fatalities and over 57 billion USD worth of damages. The earthquake generated co-seismic landslides most of which were related to fault structures. Unlike rainfall induced landslides, the trigger for co-seismic landslides happen without warning. Preparedness against this type of landslide therefore, relies heavily on the identification of fracture-related unstable slopes. To mitigate the impacts of co-seismic landslide hazards, morpho-structural orientations or discontinuity sets were mapped in the field with the aid of a 2012 IFSAR Digital Terrain Model (DTM) with 5-meter pixel resolution and < 0.5 meter vertical accuracy. Coltop 3D software was then used to identify similar structures including measurement of their dip and dip directions. The chosen discontinuity sets were then keyed into Matterocking software to identify potential rock slide zones due to planar or wedged discontinuities. After identifying the structurally-controlled unstable slopes, the rock mass propagation extent of the possible rock slides was simulated using Conefall. The results were compared to a post-earthquake landslide inventory of 456 landslides. Out the total number of landslides identified from post-earthquake high-resolution imagery, 366 or 80% intersect the structural-controlled hazard areas of Bohol. The results show the potential of this method to identify co-seismic landslide hazard areas for disaster mitigation. Along with computer methods to simulate shallow landslides, and debris flow paths, located structurally-controlled unstable zones can be used to mark unsafe areas for settlement. The method can be further improved with the use of Lidar DTMs, which has better accuracy than the IFSAR DTM. A nationwide effort under DOST-Project NOAH (DREAM-LIDAR) is underway, to map the Philippine archipelago using Lidar.
NASA Astrophysics Data System (ADS)
Antón, M.; Koukouli, M. E.; Kroon, M.; McPeters, R. D.; Labow, G. J.; Balis, D.; Serrano, A.
2010-10-01
This article focuses on the global-scale validation of the empirically corrected Version 8 total ozone column data set acquired by the NASA Total Ozone Mapping Spectrometer (TOMS) during the period 1996-2004 when this instrument was flying aboard the Earth Probe (EP) satellite platform. This analysis is based on the use of spatially co-located, ground-based measurements from Dobson and Brewer spectrophotometers. The original EP-TOMS V8 total ozone column data set was also validated with these ground-based measurements to quantify the improvements made by the empirical correction that was necessary as a result of instrumental degradation issues occurring from the year 2000 onward that were uncorrectable by normal calibration techniques. EP-TOMS V8-corrected total ozone data present a remarkable improvement concerning the significant negative bias of around ˜3% detected in the original EP-TOMS V8 observations after the year 2000. Neither the original nor the corrected EP-TOMS satellite total ozone data sets show a significant dependence on latitude. In addition, both EP-TOMS satellite data sets overestimate the Brewer measurements for small solar zenith angles (SZA) and underestimate for large SZA, explaining a significant seasonality (˜1.5%) for cloud-free and cloudy conditions. Conversely, relative differences between EP-TOMS and Dobson present almost no dependence on SZA for cloud-free conditions and a strong dependence for cloudy conditions (from +2% for small SZA to -1% for high SZA). The dependence of the satellite ground-based relative differences on total ozone shows good agreement for column values above 250 Dobson units. Our main conclusion is that the upgrade to TOMS V8-corrected total ozone data presents a remarkable improvement. Nevertheless, despite its quality, the EP-TOMS data for the period 2000-2004 should not be used as a source for trend analysis since EP-TOMS ozone trends are empirically corrected using NOAA-16 and NOAA-17 solar backscatter ultraviolet/2 data as external references, and therefore, they are no longer considered as independent observations.
Stonos, Nancy; Bauman, Cathy; Menzies, Paula; Wootton, Sarah K; Karrow, Niel A
2017-04-01
Infection with small ruminant lentiviruses (SRLV) causes a variety of chronic inflammatory conditions that limit production. Mycobacterium avium subsp. paratuberculosis (MAP) is also a major production-limiting disease of sheep and goats, which causes severe inflammation of the small intestine. Previous studies have indicated that both SRLV and MAP are widespread in small ruminants in Ontario. This study estimated the prevalence of SRLV and MAP co-infection. Serum samples that were previously tested for MAP infection were re-tested for SRLV. The apparent prevalence of co-infection was low, with 3.4% [95% confidence interval (CI): 1.9 to 5.9] and 14.3% (95% CI: 11.6 to 17.5) of sheep and goats respectively, positive for both infections. However, co-infection is widespread with 36.8% (95% CI: 19.1 to 59.1) and 71.4% (95% CI: 52.8 to 84.9) of sheep and goat farms with 1 or more co-infected animals. A significant association was found between SRLV seropositivity and MAP fecal culture ( P = 0.021), suggesting that co-infected goats may be more likely to shed MAP in their feces.
Assessment of CO2 Mineralization and Dynamic Rock Properties at the Kemper Pilot CO2 Injection Site
NASA Astrophysics Data System (ADS)
Qin, F.; Kirkland, B. L.; Beckingham, L. E.
2017-12-01
CO2-brine-mineral reactions following CO2 injection may impact rock properties including porosity, permeability, and pore connectivity. The rate and extent of alteration largely depends on the nature and evolution of reactive mineral interfaces. In this work, the potential for geochemical reactions and the nature of the reactive mineral interface and corresponding hydrologic properties are evaluated for samples from the Lower Tuscaloosa, Washita-Fredericksburg, and Paluxy formations. These formations have been identified as future regionally extensive and attractive CO2 storage reservoirs at the CO2 Storage Complex in Kemper County, Mississippi, USA (Project ECO2S). Samples from these formations were obtained from the Geological Survey of Alabama and evaluated using a suite of complementary analyses. The mineral composition of these samples will be determined using petrography and powder X-ray Diffraction (XRD). Using these compositions, continuum-scale reactive transport simulations will be developed and the potential CO2-brine-mineral interactions will be examined. Simulations will focus on identifying potential reactive minerals as well as the corresponding rate and extent of reactions. The spatial distribution and accessibility of minerals to reactive fluids is critical to understanding mineral reaction rates and corresponding changes in the pore structure, including pore connectivity, porosity and permeability. The nature of the pore-mineral interface, and distribution of reactive minerals, will be determined through imaging analysis. Multiple 2D scanning electron microscopy (SEM) backscattered electron (BSE) images and energy dispersive x-ray spectroscopy (EDS) images will be used to create spatial maps of mineral distributions. These maps will be processed to evaluate the accessibility of reactive minerals and the potential for flow-path modifications following CO2 injection. The "Establishing an Early CO2 Storage Complex in Kemper, MS" project is funded by the U.S. Department of Energy's National Energy Technology Laboratory and cost-sharing partners.
Milczarski, Paweł; Hanek, Monika; Tyrka, Mirosław; Stojałowski, Stefan
2016-11-01
Genotyping by sequencing (GBS) is an efficient method of genotyping in numerous plant species. One of the crucial steps toward the application of GBS markers in crop improvement is anchoring them on particular chromosomes. In rye (Secale cereale L.), chromosomal localization of GBS markers has not yet been reported. In this paper, the application of GBS markers generated by the DArTseq platform for extending the high-density map of rye is presented. Additionally, their application is used for the localization of the Rfc1 gene that restores male fertility in plants with the C source of sterility-inducing cytoplasm. The total number of markers anchored on the current version of the map is 19,081, of which 18,132 were obtained from the DArTseq platform. Numerous markers co-segregated within the studied mapping population, so, finally, only 3397 unique positions were located on the map of all seven rye chromosomes. The total length of the map is 1593 cM and the average distance between markers is 0.47 cM. In spite of the resolution of the map being not very high, it should be a useful tool for further studies of the Secale cereale genome because of the presence on this map of numerous GBS markers anchored for the first time on rye chromosomes. The Rfc1 gene was located on high-density maps of the long arm of the 4R chromosome obtained for two mapping populations. Genetic maps were composed of DArT, DArTseq, and PCR-based markers. Consistent mapping results were obtained and DArTs tightly linked to the Rfc1 gene were successfully applied for the development of six new PCR-based markers useful in marker-assisted selection.
Breast cancer publication network: profile of co-authorship and co-organization.
Biglu, Mohammad-Hossein; Abotalebi, Parvaneh; Ghavami, Mostafa
2016-01-01
Introduction: Breast cancer is one of the highest reasons of deaths for people in the world. The objective of current study is to analyze and visualize the trend of global scientific activities in the field of breast cancer during a period of 10 years through 2006-2015. Methods: The current study was performed by utilizing the scientometrics analysis and mapping the co-authorship and co-organization networks. The Web of Science Core Collection (WoS-CC)database was used to extract all papers indexed as a topic of breast cancer through 2006 to 2015. Research productivity was measured through analysis several parameters, including: the number and time course of publications, the journal and language of publications, the frequency and type of publications, as well as top 20 active sub-categories together with country contribution. The extracted data were transferred into the Excel charts and plotted as diagrams. The Science of Science (Sci2) and CiteSpace softwares were used as tools for mapping the co-authorship and co-organization networks of the published papers. Results: Analysis of data indicated that the number of publications in the field of breast cancer has linearly increased and correlated with the time-course of the study. The number of publication indexed in WoS-CC in 2015 was two times greater than that of 2006, which reached from 15 229 documents in 2006 to 30 667 documents in 2015. English Language accounted for 98% of total publications as the most dominant language. The vast majority of publications' type was in the form of original journal articles (64.7%). Based on Bradford scatterings law, the journal of "Cancer Research" was the most productive journal among the core journals, while the USA, China, and England were the most prolific countries in the field. The co-organization network indicated the dominant role of Harvard University in the field. Conclusion: The integrity of network indicated that scientists in the field of breast cancer working collaboratively to tackle the number one threat in women health.
NASA Astrophysics Data System (ADS)
Possinger, A. R.; Zachman, M.; Lehmann, J.
2016-12-01
An important, yet largely overlooked case of soil organic carbon (SOC) stabilization through mineral-organic associations is the co-precipitation of dissolved organic matter (DOM) into mineral precipitates as they form. The contribution of co-precipitated DOM to the mineral-stabilized SOC pool is expected to be greatest in soil environments with frequent mineral dissolution and precipitation processes. Compared to surface adsorption, properties of mineral-organic co-precipitates are expected to differ at both the particle scale (e.g., total carbon (C) content and composition) and the molecular scale (e.g., impurities in mineral structure), with potential implications for stability and C turnover; additionally, these properties vary across C sources, amounts, and forms. Consequently, high-resolution visualization and characterization combined with bulk chemical measurements is needed to provide a more complete understanding of co-precipitate formation processes and properties, especially as a function of C co-precipitant characteristics. In this study, we evaluate the effect of model C compound and DOM chemical properties (e.g., iron-binding affinity) on the formation, structure, and chemical properties of ferrihydrite (Fh) (Fe3+3O2 •0.5H2O) co-precipitates. Salicylic acid (SA), sucrose and water-extractable DOM from coniferous or deciduous-dominated organic soils were either adsorbed to pre-formed Fh or co-precipitated with Fh. At a C/Fe ratio 10, the amount of co-precipitated C differed among all organic compounds, and for DOM, was more than 2X greater for co-precipitation than adsorption, suggesting a greater capacity for C retention. To probe the molecular-scale C spatial distribution of Fh-SA particles, we obtained Scanning Transmission Electron Microscopy with Electron Energy Loss Spectroscopy (STEM-EELS) maps at a nanometer-scale spatial pixel resolution. Additionally, we will present chemical characteristics of organic-Fh co-precipitates and adsorption complexes investigated in bulk using C Near-Edge X-ray Absorption Fine Structure (NEXAFS) and Fourier Transform Infrared (FT-IR) spectroscopy. Ultimately, these observations of model co-precipitation systems will be used to better interpret observations of putative co-precipitated OM in natural soils.
Diouf, Isidore A.; Derivot, Laurent; Bitton, Frédérique; Pascual, Laura; Causse, Mathilde
2018-01-01
Quality is a key trait in plant breeding, especially for fruit and vegetables. Quality involves several polygenic components, often influenced by environmental conditions with variable levels of genotype × environment interaction that must be considered in breeding strategies aiming to improve quality. In order to assess the impact of water deficit and salinity on tomato fruit quality, we evaluated a multi-parent advanced generation intercross (MAGIC) tomato population in contrasted environmental conditions over 2 years, one year in control vs. drought condition and the other in control vs. salt condition. Overall 250 individual lines from the MAGIC population—derived from eight parental lines covering a large diversity in cultivated tomato—were used to identify QTL in both experiments for fruit quality and yield component traits (fruit weight, number of fruit, Soluble Solid Content, firmness), phenology traits (time to flower and ripe) and a vegetative trait, leaf length. All the traits showed a large genotype variation (33–86% of total phenotypic variation) in both experiments and high heritability whatever the year or treatment. Significant genotype × treatment interactions were detected for five of the seven traits over the 2 years of experiments. QTL were mapped using 1,345 SNP markers. A total of 54 QTL were found among which 15 revealed genotype × environment interactions and 65% (35 QTL) were treatment specific. Confidence intervals of the QTL were projected on the genome physical map and allowed identifying regions carrying QTL co-localizations, suggesting pleiotropic regulation. We then applied a strategy for candidate gene detection based on the high resolution mapping offered by the MAGIC population, the allelic effect of each parental line at the QTL and the sequence information of the eight parental lines. PMID:29559986
NASA Astrophysics Data System (ADS)
Levinsen, Joanna F.; Borgstrøm, Rasmus E.
2017-04-01
We present the work towards developing new Digital Elevation Models (DEMs), orthophotos, and vector maps over the ice-free parts of Greenland. The products will be based on high-resolution stereoscopic images co-registered to Ground Control Points (GCPs) to reduce horizontal and vertical errors. Here, we provide a status overview of our achievements wrt. DEMs and orthophotos. We have conducted a pilot study in which four areas have been mapped using SPOT-6 and -7 images: The Disko Bay, Narsaq, Tasiilaq, and Zackenberg. The images have been acquired in 2016, with a few additions from 2014, and the areas cover approximately 82.000 km2, i.e. ˜20% of the total ice-free area. The technical requirements for the products have been defined in close collaboration with end-users from governmental institutions, emergency management offices, the tourist industry, etc., to ensure a direct applicability following product completion. This has resulted in 8 m DEMs and 1.5 m orthophotos. Validation against GCPs shows horizontal and vertical offsets of approximately 0.5 ± 2 m, i.e. values that meet our expectations and satisfy end-user needs. The GCPs make out an extensive network of huts, helipads, ports, large boulders, etc., measured using GPS by collaborators during field campaigns. The experiences gained in the product development as well as the broad range of collaborations provides confidence that the set-up for a production of the total ice-free area has been established, which can deliver products with a high accuracy in time and space. That will make them useful for a wide range of purposes. The next step therefore is to secure the given upgrade. More on that to come!
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Zhou; Chang, Yih Chung; Gao, Hong
2014-06-21
We present a generally applicable experimental method for the direct measurement of nascent spin-orbit state distributions of atomic photofragments based on the detection of vacuum ultraviolet (VUV)-excited autoionizing-Rydberg (VUV-EAR) states. The incorporation of this VUV-EAR method in the application of the newly established VUV-VUV laser velocity-map-imaging-photoion (VMI-PI) apparatus has made possible the branching ratio measurement for correlated spin-orbit state resolved product channels, CO(ã{sup 3}Π; v) + O({sup 3}P{sub 0,1,2}) and CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}), formed by VUV photoexcitation of CO{sub 2} to the 4s(1{sub 0}{sup 1}) Rydberg state at 97,955.7 cm{sup −1}. The total kinetic energy releasemore » (TKER) spectra obtained from the O{sup +} VMI-PI images of O({sup 3}P{sub 0,1,2}) reveal the formation of correlated CO(ã{sup 3}Π; v = 0–2) with well-resolved v = 0–2 vibrational bands. This observation shows that the dissociation of CO{sub 2} to form the spin-allowed CO(ã{sup 3}Π; v = 0–2) + O({sup 3}P{sub 0,1,2}) channel has no potential energy barrier. The TKER spectra for the spin-forbidden CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}) channel were found to exhibit broad profiles, indicative of the formation of a broad range of rovibrational states of CO(Χ{sup ~1}Σ{sup +}) with significant vibrational populations for v = 18–26. While the VMI-PI images for the CO(ã{sup 3}Π; v = 0–2) + O({sup 3}P{sub 0,1,2}) channel are anisotropic, indicating that the predissociation of CO{sub 2} 4s(1{sub 0}{sup 1}) occurs via a near linear configuration in a time scale shorter than the rotational period, the angular distributions for the CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}) channel are close to isotropic, revealing a slower predissociation process, which possibly occurs on a triplet surface via an intersystem crossing mechanism.« less
Glycinergic inhibition of BAT sympathetic premotor neurons in rostral raphe pallidus.
Conceição, Ellen Paula Santos da; Madden, Christopher J; Morrison, Shaun F
2017-06-01
The rostral raphe pallidus (rRPa) contains sympathetic premotor neurons controlling thermogenesis in brown adipose tissue (BAT). We sought to determine whether a tonic activation of glycine A receptors (Gly A R) in the rRPa contributes to the inhibitory regulation of BAT sympathetic nerve activity (SNA) and of cardiovascular parameters in anesthetized rats. Nanoinjection of the Gly A R antagonist, strychnine (STR), into the rRPa of intact rats increased BAT SNA (peak: +495%), BAT temperature (T BAT , +1.1°C), expired CO 2 , (+0.4%), core body temperature (T CORE , +0.2°C), mean arterial pressure (MAP, +4 mmHg), and heart rate (HR, +57 beats/min). STR into rRPa in rats with a postdorsomedial hypothalamus transection produced similar increases in BAT thermogenic and cardiovascular parameters. Glycine nanoinjection into the rRPa evoked a potent inhibition of the cooling-evoked increases in BAT SNA (nadir: -74%), T BAT (-0.2°C), T CORE (-0.2°C), expired CO 2 (-0.2%), MAP (-8 mmHg), and HR (-22 beats/min) but had no effect on the increases in these variables evoked by STR nanoinjection into rRPa. Nanoinjection of GABA into the rRPa inhibited the STR-evoked BAT SNA (nadir: -86%) and reduced the expired CO 2 (-0.4%). Blockade of glutamate receptors in rRPa reduced the STR-evoked increases in BAT SNA (nadir: -61%), T BAT (-0.5°C), expired CO 2 (-0.3%), MAP (-9 mmHg), and HR (-33 beats/min). We conclude that a tonically active glycinergic input to the rRPa contributes to the inhibitory regulation of the discharge of BAT sympathetic premotor neurons and of BAT thermogenesis and energy expenditure. Copyright © 2017 the American Physiological Society.
Tóth, Gergely; Hermann, Tamás; Szatmári, Gábor; Pásztor, László
2016-09-15
Soil contamination is one of the greatest concerns among the threats to soil resources in Europe and globally. Despite of its importance there was only very course scale (1/5000km(2)) data available on soil heavy metal concentrations prior to the LUCAS topsoil survey, which had a sampling density of 200km(2). Based on the results of the LUCAS sampling and auxiliary information detailed and up-to-date maps of heavy metals (As, Cd, Cr, Cu, Hg, Pb, Zn, Sb, Co and Ni) in the topsoil of the European Union were produced. Using the maps of heavy metal concentration in topsoil we made a spatial prediction of areas where local assessment is suggested to monitor and eventually control the potential threat from heavy metals. Most of the examined elements remain under the corresponding threshold values in the majority of the land of the EU. However, one or more of the elements exceed the applied threshold concentration on 1.2Mkm(2), which is 28.3% of the total surface area of the EU. While natural backgrounds might be the reason for high concentrations on large proportion of the affected soils, historical and recent industrial and mining areas show elevated concentrations (predominantly of As, Cd, Pb and Hg) too, indicating the magnitude of anthropogenic effect on soil quality in Europe. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Huang, Zhen; Peng, Gary; Liu, Xunjia; Deora, Abhinandan; Falk, Kevin C.; Gossen, Bruce D.; McDonald, Mary R.; Yu, Fengqun
2017-01-01
Clubroot, caused by Plasmodiophora brassicae, is an important disease of canola (Brassica napus) in western Canada and worldwide. In this study, a clubroot resistance gene (Rcr2) was identified and fine mapped in Chinese cabbage cv. “Jazz” using single-nucleotide polymorphisms (SNP) markers identified from bulked segregant RNA sequencing (BSR-Seq) and molecular markers were developed for use in marker assisted selection. In total, 203.9 million raw reads were generated from one pooled resistant (R) and one pooled susceptible (S) sample, and >173,000 polymorphic SNP sites were identified between the R and S samples. One significant peak was observed between 22 and 26 Mb of chromosome A03, which had been predicted by BSR-Seq to contain the causal gene Rcr2. There were 490 polymorphic SNP sites identified in the region. A segregating population consisting of 675 plants was analyzed with 15 SNP sites in the region using the Kompetitive Allele Specific PCR method, and Rcr2 was fine mapped between two SNP markers, SNP_A03_32 and SNP_A03_67 with 0.1 and 0.3 cM from Rcr2, respectively. Five SNP markers co-segregated with Rcr2 in this region. Variants were identified in 14 of 36 genes annotated in the Rcr2 target region. The numbers of poly variants differed among the genes. Four genes encode TIR-NBS-LRR proteins and two of them Bra019410 and Bra019413, had high numbers of polymorphic variants and so are the most likely candidates of Rcr2. PMID:28894454
Perinatal asphyxia induces neurogenesis in hippocampus: an organotypic culture study.
Morales, P; Huaiquín, P; Bustamante, D; Fiedler, J; Herrera-Marschitz, M
2007-07-01
There is clinical and experimental evidence indicating that neurocircuitries of the hippocampus are vulnerable to hypoxia/ischemia occurring at birth, inducing, upon re-oxygenation/re-circulation, delayed neuronal death, but also compensatory mechanisms, including neurogenesis. In the present report, perinatal asphyxia was induced by immersing foetuses-containing uterine horns removed from ready-to-deliver rats into a water bath at 37 degrees C for 20 min. Some pups were delivered immediately after the hysterectomy to be used as non-asphyxiated caesarean-delivered controls. The pups were sacrificed after seven days for preparing organotypic hippocampal cultures. The cultures were grown on a coverslip in a medium-containing culture tube inserted in a hole of a roller device standing on the internal area of a cell incubator at 35 degrees C, 10% CO2. At days in vitro (DIV) 25-27, cultures were fixed for assaying cell proliferation and neuronal phenotype with antibodies against 5-bromo-2'deoxyuridine (BrdU) and microtubule associated protein-2 (MAP-2), respectively. Confocal microscopy revealed that there was a 2-fold increase of BrdU-positive, but a 40% decrease of MAP-2-positive cells/mm3 in cultures from asphyxia-exposed, compared to that from control animals. Approximately 30% of BrdU-positive cells were also positive for MAP-2 (approximately 4800 cells), mainly seen in the dentate gyrus of the hippocampus, demonstrating a 3-fold increase of postnatal neurogenesis, when the total amount of double-labelled cells seen in cultures from asphyxia-exposed animals is compared to that from control animals.
Functional Traits for Carbon Access in Macrophytes
Pfister, Catherine A.; Wootton, J. Timothy
2016-01-01
Understanding functional trait distributions among organisms can inform impacts on and responses to environmental change. In marine systems, only 1% of dissolved inorganic carbon in seawater exists as CO2. Thus the majority of marine macrophytes not only passively access CO2 for photosynthesis, but also actively transport CO2 and the more common bicarbonate (HCO3-, 92% of seawater dissolved inorganic carbon) into their cells. Because species with these carbon concentrating mechanisms (CCMs) are non-randomly distributed in ecosystems, we ask whether there is a phylogenetic pattern to the distribution of CCMs among algal species. To determine macrophyte traits that influence carbon uptake, we assessed 40 common macrophyte species from the rocky intertidal community of the Northeast Pacific Ocean to a) query whether macrophytes have a CCM and b) determine the evolutionary history of CCMs, using ancestral state reconstructions and stochastic character mapping based on previously published data. Thirty-two species not only depleted CO2, but also concentrated and depleted HCO3-, indicative of a CCM. While analysis of CCMs as a continuous trait in 30 families within Phylum Rhodophyta showed a significant phylogenetic signal under a Brownian motion model, analysis of CCMs as a discrete trait (presence or absence) indicated that red algal families are more divergent than expected in their CCM presence or absence; CCMs are a labile trait within the Rhodophyta. In contrast, CCMs were present in each of 18 Ochrophyta families surveyed, indicating that CCMs are highly conserved in the brown algae. The trait of CCM presence or absence was largely conserved within Families. Fifteen of 23 species tested also changed the seawater buffering capacity, or Total Alkalinity (TA), shifting DIC composition towards increasing concentrations of HCO3- and CO2 for photosynthesis. Manipulating the external TA of the local environment may influence carbon availability in boundary layers and areas of low water mixing, offering an additional mechanism to increase CO2 availability. PMID:27415005
Damaziak, K; Stelmasiak, A; Michalczuk, M; Wyrwisz, J; Moczkowska, M; Marcinkowska-Lesiak, M M; Niemiec, J; Wierzbicka, A
2016-09-01
Raw and smoked (spickgans) fillets of oat-fattened White Kołuda® goose were packed in: PET - ethylene terephthalate bags; VSP - 99% vacuum; MAP1 - 80% O2, 20% CO2; MAP2 - 70% N2, 30% O2; MAP3 - 30% O2, 40% N2, 30% CO2, and stored at a temperature of 2°C. On the day of packaging (0 d) and during storage of raw (5, 7, 10 d) and smoked fillets (5, 10, 15 d), the samples were analyzed for weight losses, physicochemical traits, and chemical composition. The study demonstrated the effect of storage time and packaging method on storage yield of raw and smoked fillets. In VSP, the raw fillets were characterized by the lowest amount of leakage, whereas spickgans were characterized by the highest storage yield and weight loss. The analysis of the effect of the modified atmosphere demonstrated the lowest weight loss of raw fillets at, simultaneously, the smallest amount of leakage in MAP1. The spickgans stored in MAP2 showed higher weight, higher yield after storage, and lower storage loss in all terms of analyses compared to MAP1 and MAP3. The greatest cooking loss at simultaneously the lowest pH values was determined for the samples stored in VSP. The WBSF values of raw fillets were decreasing along with storage time, in contrast to WBSF values of spickgans, in which case the value of this parameter increased compared to 0 d. Raw fillets stored in MAP1 and MAP3 were characterized by the most significant increase in the value of L*, by a decrease in the value of a* and an increase in that of b* parameter. Visual assessment of spickgans on 15 d of storage revealed the presence of white sediment on the surface of products, except for the samples stored in VSP. The study demonstrated the effect of storage time on the contents of protein and fat in raw fillets and on the contents of salt and fat in spickgans. © 2016 Poultry Science Association Inc.
NASA Astrophysics Data System (ADS)
Prado-Pérez, A. J.; Aracil, E.; Pérez del Villar, L.
2014-06-01
Currently, carbon deep geological storage is one of the most accepted methods for CO2 sequestration, being the long-term behaviour assessment of these artificial systems absolutely essential to guarantee the safety of the CO2 storage. In this sense, hydrogeochemical modelling is being used for evaluating any artificial CO2 deep geological storage as a potential CO2 sinkhole and to assess the leakage processes that are usually associated with these engineered systems. Carbonate precipitation, as travertines or speleothems, is a common feature in the CO2 leakage scenarios and, therefore, is of the utmost importance to quantify the total C content trapped as a stable mineral phase in these carbonate formations. A methodology combining three classical techniques such as: electrical resistivity tomography, geostatistical analysis and mercury porosimetry is described in this work, which was developed for calculating the total amount of C trapped as CaCO3 associated with the CO2 leakages in Alicún de las Torres natural analogue (Granada, Spain). The proposed methodology has allowed estimating the amount of C trapped as calcite, as more than 1.7 Mt. This last parameter, focussed on an artificial CO2 deep geological storage, is essential for hydrogeochemical modellers when evaluating whether CO2 storages constitute or not CO2 sinkholes. This finding is extremely important when assessing the long-term behaviour and safety of any artificial CO2 deep geological storage.
Authorship, institutional and citation metrics for publications on postmenopausal osteoporosis.
Biglu, M H; Ghavami, M; Biglu, S
2014-04-01
Osteoporosis is the most common metabolic bone condition that does not often become clinically clear until a fracture occurs. The objective of the current study was to analyze all publications whose titles included the term "postmenopausal osteoporosis" published during the past decade by journals indexed in the database of SCI-E. This paper analyzes two sets of data: in the first, all papers with "postmenopausal osteoporosis" in their titles indexed in the database of SCI-E in the period 2001-2011; the second, all papers published by Osteoporosis International that were indexed in SCI-E during 2001-2011. The Science of Science Tool was used to map the co-authorship networks of papers published by Osteoporosis International in 2007-2011. Only papers cited more than 100 times in the Web of Science were considered for mapping the co-authorship network. A total number of 2,056 papers with "postmenopausal osteoporosis" in their titles were indexed in SCI-E between 2001 and 2011. The annual number of publications increased during the study period. The majority of publications came from Western Europe and North America. The number of papers published by authors based in Western Europe was about 75% greater than for North America. More papers on postmenopausal osteoporosis were published in Western Europe than in North America. The networks of co-authorship pointed to the strategic positions of highly cited authors from Western Europe. The top eight authors contributing the majority of papers were from Western Europe. Consequently Western Europe had greater impact than North America.
La, Gui-xiao; Fang, Ping; Teng, Yi-bo; Li, Ya-juan; Lin, Xian-yong
2009-01-01
The effects of CO2 enrichment on the growth and glucosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/L) were investigated. Height, stem thickness, and dry weights of the total aerial parts, bolting stems, and roots, as well as the root to shoot ratio, significantly increased as CO2 concentration was elevated from 350 to 800 μl/L at each N concentration. In the edible part of the bolting stem, 11 individual GSs were identified, including 7 aliphatic and 4 indolyl GSs. GS concentration was affected by the elevated CO2 concentration, N concentration, and CO2×N interaction. At 5 and 10 mmol N/L, the concentrations of aliphatic GSs and total GSs significantly increased, whereas those of indolyl GSs were not affected, by elevated atmospheric CO2. However, at 20 mmol N/L, elevated CO2 had no significant effects on the concentrations of total GSs and total indolyl GSs, but the concentrations of total aliphatic GSs significantly increased. Moreover, the bolting stem carbon (C) content increased, whereas the N and sulfur (S) contents decreased under elevated CO2 concentration in the three N treatments, resulting in changes in the C/N and N/S ratios. Also the C/N ratio is not a reliable predictor of change of GS concentration, while the changes in N and S contents and the N/S ratio at the elevated CO2 concentration may influence the GS concentration in Chinese kale bolting stems. The results demonstrate that high nitrogen supply is beneficial for the growth of Chinese kale, but not for the GS concentration in bolting stems, under elevated CO2 condition. PMID:19489111
NASA Astrophysics Data System (ADS)
Vuorinen, Terhi; Reddy, G. V. P.; Nerg, Anne-Marja; Holopainen, Jarmo K.
The warming of the lower atmosphere due to elevating CO 2 concentration may increase volatile organic compound (VOC) emissions from plants. Also, direct effects of elevated CO 2 on plant secondary metabolism are expected to lead to increased VOC emissions due to allocation of excess carbon on secondary metabolites, of which many are volatile. We investigated how growing at doubled ambient CO 2 concentration affects emissions from cabbage plants ( Brassica oleracea subsp. capitata) damaged by either the leaf-chewing larvae of crucifer specialist diamondback moth ( Plutella xylostella L.) or generalist Egyptian cotton leafworm ( Spodoptera littoralis (Boisduval)). The emission from cabbage cv. Lennox grown in both CO 2 concentrations, consisted mainly of monoterpenes (sabinene, limonene, α-thujene, 1,8-cineole, β-pinene, myrcene, α-pinene and γ-terpinene). ( Z)-3-Hexenyl acetate, sesquiterpene ( E, E)- α-farnesene and homoterpene ( E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) were emitted mainly from herbivore-damaged plants. Plants grown at 720 μmol mol -1 of CO 2 had significantly lower total monoterpene emissions per shoot dry weight than plants grown at 360 μmol mol -1 of CO 2, while damage by both herbivores significantly increased the total monoterpene emissions compared to intact plants. ( Z)-3-Hexenyl acetate, ( E, E)- α-farnesene and DMNT emissions per shoot dry weight were not affected by the growth at elevated CO 2. The emission of DMNT was significantly enhanced from plants damaged by the specialist P. xylostella compared to the plants damaged by the generalist S. littoralis. The relative proportions of total monoterpenes and total herbivore-induced compounds of total VOCs did not change due to the growth at elevated CO 2, while insect damage increased significantly the proportion of induced compounds. The results suggest that VOC emissions that are induced by the leaf-chewing herbivores will not be influenced by elevated CO 2 concentration.
NASA Astrophysics Data System (ADS)
Barrancos, José; O'Neill, Ryan; Gould, Catherine E.; Padilla, Germán; Rodríguez, Fátima; Amonte, Cecilia; Padrón, Eleazar; Pérez, Nemesio M.
2017-04-01
Tenerife is the largest of the Canary Islands (2100 km2) and the North East Rift (NERZ) volcano is one of the three active volcanic rift-zones of the island (210 km2). The last eruptive activity at NERZ volcano occurred in 1704 and 1705, with three volcanic eruptions: Siete Fuentes, Fasnia and Arafo. In order to provide a multidisciplinary approach to monitor potential volcanic activity changes at the NERZ volcano, diffuse CO2 emission surveys have been undertaken in a yearly basis since 2001. This study shows the results of the last soil CO2 efflux survey undertaken in summer 2016, with 600 soil gas sampling sites homogenously distributed. Soil CO2 efflux measurements were performed at the surface environment by means of a portable non-dispersive infrared spectrophotometer (NDIR) LICOR Li800 following the accumulation chamber method. Soil CO2 efflux values ranged from non-detectable (˜0.5 g m-2 d-1) up to 70 g m-2 d-1, with an average value of 8.8 g m-2 d-1. In order to distinguish the existence of different geochemical populations on the soil CO2 efflux data, a Sinclair graphical analysis was done. The average value of background population was 2.9 g m-2 d-1 and that of peak population was 67.8 g m-2 d-1, value that has been increasing since the year 2014. To quantify the total CO2 emission rate from the NERZ volcano a sequential Gaussian simulation (sGs) was used as interpolation method to construct soil CO2 emission contour maps. The diffuse CO2 emission rate for the studied area was estimated in 1,675 ± 47 t d-1. If we compare the 2016 results with those ones obtained in previous surveys since 2001, two main pulses on diffuse CO2 emission are identified, the first one in 2007 and the second one between during 2014 and 2016. This long-term variation on the diffuse CO2 emission doesn't seem to be masked by the external-meteorological variations. However, the first peak precedes the anomalous seismicity recorded in and around Tenerife Island between 2009 and 2011, suggesting changes in strain-stress at depth as a possible cause of the observed changes in the diffuse CO2 emission rate. On the other hand, the second peak seems to be related to later changes in the seismicity, such as the seismic activity that occurred in Tenerife at the end of 2016. Again, this study demonstrates the importance of studies of soil CO2 efflux at the NERZ volcano of Tenerife island as an effective volcanic monitoring tool.
Minson, A C; Darby, G K; Wildy, P
1979-11-01
Two independently derived cell lines which carry the herpes simplex type 2 thymidine kinase gene have been examined for the presence of HSV-2-specific DNA sequences. Both cell lines contained 1 to 3 copies per cell of a sequence lying within map co-ordinates 0.2 to 0.4 of the HSV-2 genome. Revertant cells, which contained no detectable thymidine kinase, did not contain this DNA sequence. The failure of EcoR1-restricted HSV-2 DNA to act as a donor of the thymidine kinase gene in transformation experiments suggests that the gene lies close to the EcoR1 restriction site within this sequence at a map position of approx. 0.3. The HSV-2 kinase gene is therefore approximately co-linear with the HSV-1 gene.
Lu, Weizhi; Xiao, Jingfeng; Liu, Fang; Zhang, Yue; Liu, Chang'an; Lin, Guanghui
2017-03-01
Wetlands play an important role in regulating the atmospheric carbon dioxide (CO 2 ) concentrations and thus affecting the climate. However, there is still lack of quantitative evaluation of such a role across different wetland types, especially at the global scale. Here, we conducted a meta-analysis to compare ecosystem CO 2 fluxes among various types of wetlands using a global database compiled from the literature. This database consists of 143 site-years of eddy covariance data from 22 inland wetland and 21 coastal wetland sites across the globe. Coastal wetlands had higher annual gross primary productivity (GPP), ecosystem respiration (R e ), and net ecosystem productivity (NEP) than inland wetlands. On a per unit area basis, coastal wetlands provided large CO 2 sinks, while inland wetlands provided small CO 2 sinks or were nearly CO 2 neutral. The annual CO 2 sink strength was 93.15 and 208.37 g C m -2 for inland and coastal wetlands, respectively. Annual CO 2 fluxes were mainly regulated by mean annual temperature (MAT) and mean annual precipitation (MAP). For coastal and inland wetlands combined, MAT and MAP explained 71%, 54%, and 57% of the variations in GPP, R e , and NEP, respectively. The CO 2 fluxes of wetlands were also related to leaf area index (LAI). The CO 2 fluxes also varied with water table depth (WTD), although the effects of WTD were not statistically significant. NEP was jointly determined by GPP and R e for both inland and coastal wetlands. However, the NEP/R e and NEP/GPP ratios exhibited little variability for inland wetlands and decreased for coastal wetlands with increasing latitude. The contrasting of CO 2 fluxes between inland and coastal wetlands globally can improve our understanding of the roles of wetlands in the global C cycle. Our results also have implications for informing wetland management and climate change policymaking, for example, the efforts being made by international organizations and enterprises to restore coastal wetlands for enhancing blue carbon sinks. © 2016 John Wiley & Sons Ltd.
Kostaki, Maria; Giatrakou, Vasiliki; Savvaidis, Ioannis N; Kontominas, Michael G
2009-08-01
The present study evaluated the combined effect of Modified Atmosphere Packaging (MAP) using two different gas mixtures (40% CO2/50% N2/10% O2; treatment M1, 60% CO2/30% N2/10% O2, treatment M2), and thyme oil (0.2% v/w, T) used as a natural preservative, on the quality and shelf life extension of fresh filleted sea bass, product of organic aquaculture, during refrigerated storage (4 +/- 0.5 degrees C), for a period of 21 days. Aerobically packaged sea bass fillets (A) were used as control samples. The dominant bacteria in the microflora of sea bass fillets, irrespective of treatment, were the pseudomonads and the H2S-producing bacteria while lactic acid bacteria were also part of the dominant microflora. Total viable counts for fresh sea bass fillets stored aerobically exceeded 7 log CFU/g after 7 days, while treatments A+T, M1, M2 and M2+T reached the same value on days 9, 10, 12 and 19, respectively. Among the chemical indices determined, TBA values were within the good quality limits (2-4 mg MDA/kg), during the sensory shelf lives of sea bass samples, irrespective of treatment. TVB-N proved to be a suitable index for the spoilage of sea bass fillets stored at 4 degrees C. Samples A and A+T, M1, M2, M2+T exceeded the proposed upper TVB-N acceptability limit (10 mg N/100 g) on days 6, 8, 9, 13 and 17 of storage respectively. TMA-N values of the samples A, A+T and M1, M2, M2+T exceeded the proposed limit (4 mg N/100 g) on days 6, 9, 9-10, 13 and 19 of storage, respectively, and correlated well with the microbiological data, indicating that along with TVB-N, TMA-N may serve as a useful index for sea bass fillets spoilage. As regards sensory evaluation, the presence of thyme oil proved to improve the sensory quality of sea bass fillets when used in combination with MAP2, providing a shelf life of 17 days as compared to 6 days of the control samples.
Smart Packaging Technologies and Their Application in Conventional Meat Packaging Systems
NASA Astrophysics Data System (ADS)
O'Grady, Michael N.; Kerry, Joseph P.
Preservative packaging of meat and meat products should maintain acceptable appearance, odour and flavour and should delay the onset of microbial spoilage. Typically fresh red meats are placed on trays and over-wrapped with an oxygen permeable film or alternatively, meats are stored in modified atmosphere packages (MAP) containing high levels of oxygen and carbon dioxide (80% O2:20% CO2) (Georgala & Davidson, 1970). Cooked meats are usually stored in 70% N2:30% CO2 (Smiddy, Papkovsky, & Kerry, 2002). The function of oxygen in MAP is to maintain acceptable fresh meat colour and carbon dioxide inhibits the growth of spoilage bacteria (Seideman & Durland, 1984). Nitrogen is used as an inert filler gas either to reduce the proportions of the other gases or to maintain the pack shape (Bell & Bourke, 1996).
Ridier, Karl; Gillon, Béatrice; Gukasov, Arsen; Chaboussant, Grégory; Cousson, Alain; Luneau, Dominique; Borta, Ana; Jacquot, Jean-François; Checa, Ruben; Chiba, Yukako; Sakiyama, Hiroshi; Mikuriya, Masahiro
2016-01-11
Polarized neutron diffraction (PND) experiments were carried out at low temperature to characterize with high precision the local magnetic anisotropy in two paramagnetic high-spin cobalt(II) complexes, namely [Co(II) (dmf)6 ](BPh4 )2 (1) and [Co(II) 2 (sym-hmp)2 ](BPh4 )2 (2), in which dmf=N,N-dimethylformamide; sym-hmp=2,6-bis[(2-hydroxyethyl)methylaminomethyl]-4-methylphenolate, and BPh4 (-) =tetraphenylborate. This allowed a unique and direct determination of the local magnetic susceptibility tensor on each individual Co(II) site. In compound 1, this approach reveals the correlation between the single-ion easy magnetization direction and a trigonal elongation axis of the Co(II) coordination octahedron. In exchange-coupled dimer 2, the determination of the individual Co(II) magnetic susceptibility tensors provides a clear outlook of how the local magnetic properties on both Co(II) sites deviate from the single-ion behavior because of antiferromagnetic exchange coupling. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
InMAP: A model for air pollution interventions
Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.; ...
2017-04-19
Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. We present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical informationmore » from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons we run, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.« less
InMAP: A model for air pollution interventions
Hill, Jason D.; Marshall, Julian D.
2017-01-01
Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons run here, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of −17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license. PMID:28423049
InMAP: A model for air pollution interventions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.
Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. We present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical informationmore » from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons we run, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.« less
CO2 emissions from German drinking water reservoirs.
Saidi, Helmi; Koschorreck, Matthias
2017-03-01
Globally, reservoirs are a significant source of atmospheric CO 2 . However, precise quantification of greenhouse gas emissions from drinking water reservoirs on the regional or national scale is still challenging. We calculated CO 2 fluxes for 39 German drinking water reservoirs during a period of 22years (1991-2013) using routine monitoring data in order to quantify total emission of CO 2 from drinking water reservoirs in Germany and to identify major drivers. All reservoirs were a net CO 2 source with a median flux of 167gCm -2 y -1 , which makes gaseous emissions a relevant process for the carbon budget of each reservoir. Fluxes varied seasonally with median fluxes of 13, 48, and 201gCm -2 y -1 in spring, summer, and autumn respectively. Differences between reservoirs appeared to be primarily caused by the concentration of CO 2 in the surface water rather than by the physical gas transfer coefficient. Consideration of short term fluctuations of the gas transfer coefficient due to varying wind speed had only a minor effect on the annual budgets. High CO 2 emissions only occurred in reservoirs with pH<7 and total alkalinity <0.2mEql -1 . Annual CO 2 emissions correlated exponentially with pH but not with dissolved organic carbon (DOC). There was significant correlation between land use in the catchment and CO 2 emissions. In total, German drinking water reservoirs emit 44000t of CO 2 annually, which makes them a negligible CO 2 source (<0.005% of national CO 2 emissions) in Germany. Copyright © 2017 Elsevier B.V. All rights reserved.
McCord, T.B.; Hansen, G.B.; Clark, R.N.; Martin, P.D.; Hibbitts, C.A.; Fanale, F.P.; Granahan, J.C.; Segura, M.; Matson, D.L.; Johnson, T.V.; Carlson, R.W.; Smythe, W.D.; Danielson, G.E.
1998-01-01
We present evidence for several non-ice constituents in the surface material of the icy Galilean satellites, using the reflectance spectra returned by the Galileo near infrared mapping spectrometer (NIMS) experiment. Five new absorption features are described at 3.4, 3.88, 4.05, 4.25, and 4.57 ??m for Callisto and Ganymede, and some seem to exist for Europa as well. The four absorption bands strong enough to be mapped on Callisto and Ganymede are each spatially distributed in different ways, indicating different materials are responsible for each absorption. The spatial distributions are correlated at the local level in complex ways with surface features and in some cases show global patterns. Suggested candidate spectrally active groups, perhaps within larger molecules, producing the five absorptions include C-H, S-H, SO2, CO2, and C???N. Organic material like tholins are candidates for the 4.57- and 3.4-??m features. We suggest, based on spectroscopic evidence, that CO2 is present as a form which does not allow rotational modes and that SO2 is present neither as a frost nor a free gas. The CO2, SO2, and perhaps cyanogen (4.57 ??m) may be present as very small collections of molecules within the crystal structure, perhaps following models for radiation damage and/or for comet and interstellar grain formation at low temperatures. Some of the dark material on these surfaces may be created by radiation damage of the CO2 and other carbon-bearing species and the formation of graphite. These spectra suggest a complex chemistry within the surface materials and an important role for non-ice materials in the evolution of the satellite surfaces. Copyright 1998 by the American Geophysical Union.
Ali, Mohammad Babar; Hahn, Eun Joo; Paek, Kee-Yoeup
2005-05-01
The effects of different concentrations of CO(2) (1%, 2.5% and 5%) on the antioxidant capacity, total phenols, flavonoids, protein content and phenol biosynthetic enzymes in roots of Panax ginseng were studied in bioreactor (working volume 4 l) after 15, 30 and 45 days. CO(2) induced accumulation of total phenolics in a concentration and duration dependent manner. Total phenols, flavonoids and 1,1-diphenyl-2-picrylhydrazyl (DPPH) activity increased 60%, 30% and 20% at 2.5% CO(2) after 45 days compared to control in P. ginseng roots which indicated that phenolics compounds played an important role in protecting the plants from CO(2). Hypothesizing that increasing the phenolic compounds in roots of P. ginseng may increase its nutritional functionality; we investigated whether pentose phosphate pathway (PPP), shikimate/phenylpropanoid pathway enzymes have a role in phenolics mobilization in P. ginseng roots. Fresh weight (FW), dry weight (DW) and growth ratio was increased at 1% and 2.5% CO(2) only after 45 days, however, unaffected after 15 and 30 days. Results also indicated that high CO(2) progressively stimulated the activities of glucose 6 phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49), shikimate dehydrogenase (SKDH, E.C. 1.1.1.25), phenylalanine ammonia lyase (PAL, E.C. 4.3.1.5), cinnamyl alcohol dehydrogenase (CAD, E.C. 1.1.1.195), caffeic acid (CA) peroxidase and chlorogenic acid (CGA) peroxidase after 15, 30 and 45 days. Increased CO(2) levels resulted in increases in accumulation of total protein (45%), non-protein thiol (NP-SH) (30%) and cysteine contents (52%) after 45 days compared to control and increased activities of beta-glucosidase (GS, E.C. 3.2.1.21) and polyphenol oxidase (PPO, E.C. 1.10.3.2) in P. ginseng roots indicated that they played an important role in protecting the plants from CO(2). These results strongly suggest that high concentration of CO(2) delivered to ginseng root suspension cultures induced the accumulation of total phenolics possessing high antioxidant properties probably useful for human health. Therefore, roots of P. ginseng are considered as a good source of phenolics compounds with high antioxidants capacity and can be produced on a large scale.
USDA-ARS?s Scientific Manuscript database
Effects of active modified atmosphere packaging (MAP, initial O2/CO2: 5/5; 30/5; 80/0) and passive packaging (initial O2/CO2: 20.8/0 (air)) on the antioxidant capacity and sensory quality of fresh-cut ‘Yaoshan’ pear stored at 4C for 12 days were investigated. Samples stored in high O2 (30% and 80%) ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furuya, Ray S.; Kitamura, Yoshimi; Shinnaga, Hiroko, E-mail: rsf@tokushima-u.ac.jp, E-mail: kitamura@isas.jaxa.jp, E-mail: hiroko.shinnaga@nao.ac.jp
2014-10-01
To study physical properties of the natal filament gas around the cloud core harboring an exceptionally young low-mass protostar GF 9-2, we carried out J = 1-0 line observations of {sup 12}CO, {sup 13}CO, and C{sup 18}O molecules using the Nobeyama 45 m telescope. The mapping area covers ∼ one-fifth of the whole filament. Our {sup 13}CO and C{sup 18}O maps clearly demonstrate that the core formed at the local density maxima of the filament, and the internal motions of the filament gas are totally governed by turbulence with Mach number of ∼2. We estimated the scale height of themore » filament to be H = 0.3-0.7 pc, yielding the central density of n {sub c} = 800-4200 cm{sup –3}. Our analysis adopting an isothermal cylinder model shows that the filament is supported by the turbulent and magnetic pressures against the radial and axial collapse due to self-gravity. Since both the dissipation timescales of the turbulence and the transverse magnetic fields can be comparable to the free-fall time of the filament gas of 10{sup 6} yr, we conclude that the local decay of the supersonic turbulence and magnetic fields made the filament gas locally unstable, hence making the core collapse. Furthermore, we newly detected a gas condensation with velocity width enhancement to ∼0.3 pc southwest of the GF 9-2 core. The condensation has a radius of ∼0.15 pc and an LTE mass of ∼5 M {sub ☉}. Its internal motion is turbulent with Mach number of ∼3, suggesting a gravitationally unbound state. Considering the uncertainties in our estimates, however, we propose that the condensation is a precursor of a cloud core, which would have been produced by the collision of the two gas components identified in the filament.« less
Automated Geo/Co-Registration of Multi-Temporal Very-High-Resolution Imagery.
Han, Youkyung; Oh, Jaehong
2018-05-17
For time-series analysis using very-high-resolution (VHR) multi-temporal satellite images, both accurate georegistration to the map coordinates and subpixel-level co-registration among the images should be conducted. However, applying well-known matching methods, such as scale-invariant feature transform and speeded up robust features for VHR multi-temporal images, has limitations. First, they cannot be used for matching an optical image to heterogeneous non-optical data for georegistration. Second, they produce a local misalignment induced by differences in acquisition conditions, such as acquisition platform stability, the sensor's off-nadir angle, and relief displacement of the considered scene. Therefore, this study addresses the problem by proposing an automated geo/co-registration framework for full-scene multi-temporal images acquired from a VHR optical satellite sensor. The proposed method comprises two primary steps: (1) a global georegistration process, followed by (2) a fine co-registration process. During the first step, two-dimensional multi-temporal satellite images are matched to three-dimensional topographic maps to assign the map coordinates. During the second step, a local analysis of registration noise pixels extracted between the multi-temporal images that have been mapped to the map coordinates is conducted to extract a large number of well-distributed corresponding points (CPs). The CPs are finally used to construct a non-rigid transformation function that enables minimization of the local misalignment existing among the images. Experiments conducted on five Kompsat-3 full scenes confirmed the effectiveness of the proposed framework, showing that the georegistration performance resulted in an approximately pixel-level accuracy for most of the scenes, and the co-registration performance further improved the results among all combinations of the georegistered Kompsat-3 image pairs by increasing the calculated cross-correlation values.
Drone Detects Hotspots of Radiation and CO2 Outgassing
NASA Astrophysics Data System (ADS)
Takac, M.; Kletetschka, G.
2016-12-01
Market availability of environmental sensors and drones allow drones to become part of the education activities promoting environmental science both in high schools and grade schools. Here we provide one mode of drone operation for potential use in educational framework.Drone can carry devices that are capable of measuring various parameters of the environment. Commercial radiation and gas (CO2) sensors can be attached to the commercial drone. Our specific drone acquired data set of CO2 measurements over the natural outgassing of CO2 and another set of measurements over old uranium mine. Measurements of CO2 gave a poor signal to noise ratio. Its sensitivity, however, was enough to detect an increase in CO2 in the closed room with humans present compared to the fresh air outside. We could measure an increase of CO2 when directly over the source of natural CO2 outburst. Our data showed that CO2 concentration quickly dilutes in air few meters from the source to concentrations that are within the noise limit. However, the radiation measurements provided a map that correlates well with radiation survey obtained by ground measurements with more sophisticated instrument. We used the most common conventional drone, which is on the market and highly effective personal dosimeter, which can also be used for fire and rescue for its durability. Experimental field measurements were done at Třebsko site, where a map of radioactivity using standard spot measurements was already done. A field experiment was done in winter months when demand for the drone was higher due to cold and wet weather. We tested profiles and height versus the intensity of the recorded signal measurements. We consulted our results and ability to measure radioactivity with the regional fire-fighting units headquarters and verify the applicability and use of this technology for their needs.
Novelli, Paul [NOAA Climate Monitoring and Diagnostics Lab (CMDL), Boulder, Colorado; Masarie, Ken [Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado
1998-01-01
This database offers select carbon monoxide (CO) mixing ratios from eleven field and aircraft measurement programs around the world. Carbon monoxide mixing ratios in the middle troposphere have been examined for short periods of time by using the Measurement of Air Pollution from Satellites (MAPS) instrument. MAPS measures CO from a space platform, using gas filter correlation radiometry. During the 1981 and 1984 MAPS flights, measurement validation was attempted by comparing space-based measurements of CO to those made in the middle troposphere from aircraft. Before the 1994 MAPS flights aboard the space shuttle Endeavour, a correlative measurement team was assembled to provide the National Aeronautics and Space Administration (NASA) with results of their CO field measurement programs during the April and October shuttle missions. To maximize the usefulness of these correlative data, team members agreed to participate in an intercomparison of CO measurements. The correlative data presented in this database provide an internally consistent, ground-based picture of CO in the lower atmosphere during Spring and Fall 1994. The data show the regional importance of two CO sources: fossil-fuel burning in urbanized areas and biomass burning in regions in the Southern Hemisphere.
NASA Astrophysics Data System (ADS)
Hsieh, I. F.; Gill, A. L.; Finzi, A.
2017-12-01
Potential increase in peatland C losses by environmental change has been presented by impacting the balance of CO2 and CH4 sequestration and release. While temperature warming may accelerate the temperature-sensitive processes and release CO2 and CH4 from peat C stores, factors associated with warming and that associated with elevated CO2 concentration may alter the intrinsic characteristics of CO2 and CH4 emission from peatland. By leveraging Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment, we measured peat surface CO2 and CH4 fluxes and their i13C signatures across a gradient of warming temperatures in a boreal black spruce peat bog in 2015 and 2016 growing seasons. Elevated CO2 (eCO2) treatment was added to the warming experiment in June, 2016. Our results show both CH4 and CO2 flux increased with warming temperature in the two-year measurement period. Total emission for both gases were higher in 2016 with whole ecosystem warming than that in 2015 with deep peat heat warming. The 2016 increase in CO2 emission was significantly larger in the hummock microtopographic position compared to hollows. The opposite was true for CH4 fluxes, where the increase was strongest in the hollows. In fact, CH4 flux from hummocks declined in 2016 compared to 2015, suggesting lower overall rates of CH4 production and/or greater rates of methanotrophy. The increase (less depleted) in i13C -CH4 signatures suggest acetoclastic methanogensis increased its contribution to total CH4 production across the growing season and in response to experimental warming, while hydrogenotrophic methanogenesis dominated total CH4 production. On the contrary, results of i13C-CO2 show no significant change in the contribution of different sources to total CO2 emission through time or across warming temperature. On the other hand, i13C-CO2 signatures under CO2 fumigation in 2016 was significantly depleted since the eCO2 initiation, indicating a rapid increase in plant productivity and the subsequent belowground transfer of photosynthate. Our results emphasize the susceptibleness of northern peat bog to changes in the environment by illustrating measureable influences of whole ecosystem warming and elevated CO2 on greenhouse gases emission.
THE VIRUS-P EXPLORATION OF NEARBY GALAXIES (VENGA): THE X {sub CO} GRADIENT IN NGC 628
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanc, Guillermo A.; Schruba, Andreas; Evans, Neal J. II
2013-02-20
We measure the radial profile of the {sup 12}CO(1-0) to H{sub 2} conversion factor (X {sub CO}) in NGC 628. The H{alpha} emission from the VENGA integral field spectroscopy is used to map the star formation rate (SFR) surface density ({Sigma}{sub SFR}). We estimate the molecular gas surface density ({Sigma}{sub H2}) from {Sigma}{sub SFR} by inverting the molecular star formation law (SFL), and compare it to the CO intensity to measure X {sub CO}. We study the impact of systematic uncertainties by changing the slope of the SFL, using different SFR tracers (H{alpha} versus far-UV plus 24 {mu}m), and COmore » maps from different telescopes (single-dish and interferometers). The observed X {sub CO} profile is robust against these systematics, drops by a factor of two from R {approx} 7 kpc to the center of the galaxy, and is well fit by a gradient {Delta}log(X {sub CO}) = 0.06 {+-} 0.02 dex kpc{sup -1}. We study how changes in X {sub CO} follow changes in metallicity, gas density, and ionization parameter. Theoretical models show that the gradient in X {sub CO} can be explained by a combination of decreasing metallicity, and decreasing {Sigma}{sub H2} with radius. Photoelectric heating from the local UV radiation field appears to contribute to the decrease of X {sub CO} in higher density regions. Our results show that galactic environment plays an important role at setting the physical conditions in star-forming regions, in particular the chemistry of carbon in molecular complexes, and the radiative transfer of CO emission. We caution against adopting a single X {sub CO} value when large changes in gas surface density or metallicity are present.« less
Chouliara, E; Karatapanis, A; Savvaidis, I N; Kontominas, M G
2007-09-01
The combined effect of oregano essential oil (0.1% and 1% w/w) and modified atmosphere packaging (MAP) (30% CO2/70% N2 and 70% CO2/30% N2) on shelf-life extension of fresh chicken meat stored at 4 degrees C was investigated. The parameters that were monitored were: microbiological (TVC, Pseudomonas spp., lactic acid bacteria (LAB), yeasts, Brochothrix thermosphacta and Enterobacteriaceae), physico-chemical (pH, TBA, color) and sensory (odor and taste) attributes. Microbial populations were reduced by 1-5 log cfu/g for a given sampling day, with the more pronounced effect being achieved by the combination of MAP and oregano essential oil. TBA values for all treatments remained lower than 1 mg malondialdehyde (MDA) kg(-1) throughout the 25-day storage period. pH values varied between 6.4 (day 0) and 5.9 (day 25). The values of the color parameters L*, a* and b* were not considerably affected by oregano oil or by MAP. Finally, sensory analysis showed that oregano oil at a concentration of 1% imparted a very strong taste to the product for which reason these lots of samples were not scored. On the basis of sensory evaluation a shelf-life extension of breast chicken meat by ca. 3-4 days for samples containing 0.1% oregano oil, 2-3 days for samples under MAP and 5-6 days for samples under MAP containing 0.1% of oregano oil was attained. Thus oregano oil and MAP exhibited an additive preservation effect.
Cai, Yun; Ziegelbauer, Joseph M.; Baker, Andrew M.; ...
2018-03-14
PtCo-alloy cathode electrocatalysts release Co cations under operation, and the presence of these cations in the membrane electrode assembly (MEA) can result in large performance losses. It is unlikely that these cations are static, but change positions depending on operating conditions. A thorough accounting of these Co cation positions and concentrations has been impossible to obtain owing to the inability to monitor these processes in operando. Indeed, the environment (water and ion content, potential, and temperature) within a fuel cell varies widely from inlet to outlet, from anode to cathode, and from active to inactive area. Here, synchrotron micro-X-ray fluorescencemore » (μ-XRF) was leveraged to directly monitor Co 2+ transport in an operating H 2/air MEA for the first time. A Nafion membrane was exchanged to a known Co cation capacity, and standard Pt/C electrocatalysts were utilized for both electrodes. Co Kα 1 XRF maps revealed through-plane transient Co transport responses driven by cell potential and current density. Because of the cell design and imaging geometry, the distributions were strongly impacted by the MEA edge configuration. These findings will drive future imaging cell designs to allow for quantitative mapping of cation through-plane distributions during operation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yun; Ziegelbauer, Joseph M.; Baker, Andrew M.
PtCo-alloy cathode electrocatalysts release Co cations under operation, and the presence of these cations in the membrane electrode assembly (MEA) can result in large performance losses. It is unlikely that these cations are static, but change positions depending on operating conditions. A thorough accounting of these Co cation positions and concentrations has been impossible to obtain owing to the inability to monitor these processes in operando. Indeed, the environment (water and ion content, potential, and temperature) within a fuel cell varies widely from inlet to outlet, from anode to cathode, and from active to inactive area. Here, synchrotron micro-X-ray fluorescencemore » (μ-XRF) was leveraged to directly monitor Co 2+ transport in an operating H 2/air MEA for the first time. A Nafion membrane was exchanged to a known Co cation capacity, and standard Pt/C electrocatalysts were utilized for both electrodes. Co Kα 1 XRF maps revealed through-plane transient Co transport responses driven by cell potential and current density. Because of the cell design and imaging geometry, the distributions were strongly impacted by the MEA edge configuration. These findings will drive future imaging cell designs to allow for quantitative mapping of cation through-plane distributions during operation.« less
Major, John E; Barsi, Debby C; Mosseler, Alex; Campbell, Moira
2007-03-01
Traits related to light-energy processing have significant ecological implications for plant fitness. We studied the effects of elevated atmospheric CO(2) concentration ([CO(2)]) on chloroplast pigment traits of a red spruce (RS) (Picea rubens Sarg.)-black spruce (BS) (P. mariana (Mill.) B.S.P.) genetic complex in two experiments: (1) a comparative species' provenance experiment from across the near-northern part of the RS range; and (2) an intra- and interspecific controlled-cross experiment. Results from the provenance experiment showed that total chlorophyll (a + b) concentration was, on average, 15% higher in ambient [CO(2)] than in elevated [CO(2)] (P < 0.001). In ambient [CO(2)], BS populations averaged 11% higher total chlorophyll and carotenoid concentrations than RS populations (P < 0.001). There were significant species, CO(2), and species x CO(2) interaction effects, with chlorophyll concentration decreasing about 7 and 26% for BS and RS, respectively, in response to elevated [CO(2)]. Results from the controlled-cross experiment showed that families with a hybrid index of 25 (25% RS) had the highest total chlorophyll concentrations, and families with hybrid indices of 75 and 100 had among the lowest amounts. Initial analysis of the controlled-cross experiment supported a more additive model of inheritance; however, parental analysis showed a significant and predominant male effect for chlorophyll concentration. In ambient and elevated [CO(2)] environments, crosses with BS males had 10.6 and 17.6% higher total chlorophyll concentrations than crosses with hybrid and RS males, respectively. Our results show that chlorophyll concentration is under strong genetic control, and that these traits are positively correlated with productivity within and across species. A significant positive correlation between chlorophyll concentration and the ratio of total plant N to root dry mass was also found (r = 0.872). The almost fourfold decrease in chlorophyll concentration in RS suggests that it would be at a competitive disadvantage compared with BS in a high [CO(2)] environment.
Walser, Buddy; Stebbins, Charles L
2008-10-01
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have beneficial effects on cardiovascular function. We tested the hypotheses that dietary supplementation with DHA (2 g/day) + EPA (3 g/day) enhances increases in stroke volume (SV) and cardiac output (CO) and decreases in systemic vascular resistance (SVR) during dynamic exercise. Healthy subjects received DHA + EPA (eight men, four women) or safflower oil (six men, three women) for 6 weeks. Both groups performed 20 min of bicycle exercise (10 min each at a low and moderate work intensity) before and after DHA + EPA or safflower oil treatment. Mean arterial pressure (MAP), heart rate (HR), SV, CO, and SVR were assessed before exercise and during both workloads. HR was unaffected by DHA + EPA and MAP was reduced, but only at rest (88 +/- 5 vs. 83 +/- 4 mm Hg). DHA + EPA augmented increases in SV (14.1 +/- 6.3 vs. 32.3 +/- 8.7 ml) and CO (8.5 +/- 1.0 vs. 10.3 +/- 1.2 L/min) and tended to attenuate decreases in SVR (-7.0 +/- 0.6 vs. -10.1 +/- 1.6 mm Hg L(-1) min(-1)) during the moderate workload. Safflower oil treatment had no effects on MAP, HR, SV, CO or SVR at rest or during exercise. DHA + EPA-induced increases in SV and CO imply that dietary supplementation with these fatty acids can increase oxygen delivery during exercise, which may have beneficial clinical implications for individuals with cardiovascular disease and reduced exercise tolerance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watney, W. Lynn
2014-09-30
1. Drilled, cored, and logged three wells to the basement and collecting more than 2,700 ft of conventional core; obtained 20 m i2 of multicomponent 3D seismic imaging and merged and reprocessed more than 125 mi 2 of existing 3D seismic data for use in modeling CO 2- EOR oil recovery and CO 2 storage in five oil fields in southern Kansas. 2. Determined the technical feasibility of injecting and sequestering CO 2 in a set of four depleted oil reservoirs in the Cutter, Pleasant Prairie South, Eubank, and Shuck fields in southwest Kansas; of concurrently recovering oil from thosemore » fields; and of quantifying the volumes of CO2 sequestered and oil recovered during the process. 3. Formed a consortium of six oil operating companies, five of which own and operate the four fields. The consortium became part of the Southwest Kansas CO 2-EOR Initiative for the purpose of sharing data, knowledge, and interest in understanding the potential for CO 2-EOR in Kansas. 4. Built a regional well database covering 30,000 mi 2 and containing stratigraphic tops from ~90,000 wells; correlated 30 major stratigraphic horizons; digitized key wells, including wireline logs and sample logs; and analyzed more than 3,000 drill stem tests to establish that fluid levels in deep aquifers below the Permian evaporites are not connected to the surface and therefore pressures are not hydrostatic. Connectivity with the surface aquifers is lacking because shale aquitards and impermeable evaporite layers consist of both halite and anhydrite. 5. Developed extensive web applications and an interactive mapping system that do the following: a. Facilitate access to a wide array of data obtained in the study, including core descriptions and analyses, sample logs, digital (LAS) well logs, seismic data, gravity and magnetics maps, structural and stratigraphic maps, inferred fault traces, earthquakes, Class I and II disposal wells, and surface lineaments. b. Provide real-time analysis of the project dataset, including automated integration and viewing of well logs, core, core analyses, brine chemistry, and stratigraphy using the Java Profile app. A cross-section app allows for the display of log data for up to four wells at a time. 6. Integrated interpretations from the project’s interactive web-based mapping system to gain insights to aid in assessing the efficacy of geologic CO 2 storage in Kansas and insights toward understanding recent seismicity to aid in evaluating induced vs. naturally occurring earthquakes. 7. Developed a digital type-log system, including web-based software to modify and refine stratigraphic nomenclature to provide stakeholders a common means for communication about the subsurface. 8. Contracted use of a nuclear magnetic resonance (NMR) log and ran it slowly to capture response and characterize larger pores common for carbonate reservoirs. Used NMR to extend core analyses to apply permeability, relative permeability to CO 2, and capillary pressure to the major rock types, each uniquely expressed as a reservoir quality index (RQI), present in the Mississippian and Arbuckle rocks. 9. Characterized and evaluated the possible role of microbes in dense brines. Used microbes to compliment H/O stable isotopes to fingerprint brine systems. Used perforation/swabbing to obtain samples from multiple hydrostratigraphic units and confirmed equivalent results using less expensive drill stem tests (DST). 10. Used an integrated approach from whole core, logs, tests, and seismic to verify and quantify properties of vuggy, brecciated, and fractured carbonate intervals. 11. Used complex geocellular static and dynamic models to evaluate regional storage capacity using large parallel processing. 12. Carbonates are complex reservoirs and CO 2-EOR needs to move to the next generation to increase effectiveness of CO 2 and efficiency and safety of the injection.« less
Development of Fracture Mechanics Maps for Composite Materials. Volume 2.
1985-12-01
AD-A169 663 DEP 1/3UR OIOST l uNCL~ss~~n HUCI S I B M 11 1*2 AF,:P,.-TR-?5,-4150 DEVELOPMENT OF FRACTURE MECHANICS MAPS FOR COMPOSITE MATERIALS Dr. H...coIo. Development of N/A N/A N/A N/A Fracture Mechanics Maps for Composite Materials 12. PERSONAL AUTHORISI Editor (Dr. H. W. Bergmann) 13. TYPE OF...GROUP SUB GR. Fiber Reinforced Composites , Dynamic Test, Thermal Cycling, 1I1 04 Quality Control, Static Test, Stress Concentrations 01 03 19
GIANT MOLECULAR CLOUDS AND STAR FORMATION IN THE NON-GRAND DESIGN SPIRAL GALAXY NGC 6946
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebolledo, David; Wong, Tony; Leroy, Adam
We present high spatial resolution observations of giant molecular clouds (GMCs) in the eastern part of the nearby spiral galaxy NGC 6946 obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We have observed CO(1 {yields} 0), CO(2 {yields} 1) and {sup 13}CO(1 {yields} 0), achieving spatial resolutions of 5.''4 Multiplication-Sign 5.''0, 2.''5 Multiplication-Sign 2.''0, and 5.''6 Multiplication-Sign 5.''4, respectively, over a region of 6 Multiplication-Sign 6 kpc. This region extends from 1.5 kpc to 8 kpc galactocentric radius, thus avoiding the intense star formation in the central kpc. We have recovered short-spacing u-v components by using singlemore » dish observations from the Nobeyama 45 m and IRAM 30 m telescopes. Using the automated CPROPS algorithm, we identified 45 CO cloud complexes in the CO(1 {yields} 0) map and 64 GMCs in the CO(2 {yields} 1) maps. The sizes, line widths, and luminosities of the GMCs are similar to values found in other extragalactic studies. We have classified the clouds into on-arm and inter-arm clouds based on the stellar mass density traced by the 3.6 {mu}m map. Clouds located on-arm present in general higher star formation rates than clouds located in inter-arm regions. Although the star formation efficiency shows no systematic trend with galactocentric radius, some on-arm clouds-which are more luminous and more massive compared to inter-arm GMCs-are also forming stars more efficiently than the rest of the identified GMCs. We find that these structures appear to be located in two specific regions in the spiral arms. One of them shows a strong velocity gradient, suggesting that this region of high star formation efficiency may be the result of gas flow convergence.« less
Wang, Huhu; Zhang, Xinxiao; Wang, Guangyu; Jia, Kun; Xu, Xinglian; Zhou, Guanghong
2017-01-01
The consumption of yellow-feathered broiler has been advocated for purchasing with chilled meat rather than live broilers in Asia due to the outbreaks of animal influenza. Here, the microbial community of chilled yellow-feathered broiler response to modified-air packaging (MAP, 80% CO2/20% N2) and penetrated-air packaging (PAP, air-filling) during storage was revealed by a combination of whole-metagenome shotgun sequencing and traditional isolation methods, and the volatile organic compounds and proteolytic activity of representative dominant isolates were also accessed. The results revealed that MAP prolonged shelf life from 4 to 8 days compared to PAP, when the numbers of total viable counts and lactic acid bacteria reached more than 7 log CFU/g. Aeromonas, Acinetobacter, Escherichia, and Streptococcus occupied the bacteria communities in initial broiler carcasses. MAP dramatically increased the bacteria diversity during storage compared to PAP. Clear shifts of the dominant bacteria species were obviously observed, with the top genera of Aeromonas, Lactococcus, Serratia, and Shewanella in MAP, whereas the microbial communities in PAP were largely dominated by Pseudomonas. The isolates of Pseudomonas from PAP carcasses and Aeromonas from MAP carcasses displayed strong proteolytic activities. Meanwhile, the principal component analysis based on the volatile organic compounds indicated that the metabolic profiles greatly varied between each treatment, and no link between the natural odor of spoilage meat in situ and the volatile odor of the dominant isolates incubated in standard culture was found. These data could lead to new insights into the bacteria communities of yellow-feathered broiler meat during storage and would benefit the development of novel preservative approaches. PMID:29312261
NASA Astrophysics Data System (ADS)
Izumi, T.; Kohno, K.; Fathi, K.; Hatziminaoglou, E.; Davies, R. I.; Martín, S.; Matsushita, S.; Schinnerer, E.; Espada, D.; Aalto, S.; Onishi, K.; Turner, J. L.; Imanishi, M.; Nakanishi, K.; Meier, D. S.; Wada, K.; Kawakatu, N.; Nakajima, T.
2017-08-01
We used the Atacama Large Millimeter/Submillimeter Array to map the CO(3-2) and the underlying continuum emissions around the type-1 low-luminosity active galactic nucleus (LLAGN; bolometric luminosity ≲ {10}42 erg s-1) of NGC 1097 at ˜10 pc resolution. These observations revealed a detailed cold gas distribution within a ˜100 pc of this LLAGN. In contrast to the luminous Seyfert galaxy NGC 1068, where a ˜7 pc cold molecular torus was recently revealed, a distinctively dense and compact torus is missing in our CO(3-2) integrated intensity map of NGC 1097. Based on the CO(3-2) flux, the gas mass of the torus of NGC 1097 would be a factor of ≳2-3 less than that found for NGC 1068 by using the same CO-to-H2 conversion factor, which implies less active nuclear star formation and/or inflows in NGC 1097. Our dynamical modeling of the CO(3-2) velocity field implies that the cold molecular gas is concentrated in a thin layer as compared to the hot gas traced by the 2.12 μm H2 emission in and around the torus. Furthermore, we suggest that NGC 1097 hosts a geometrically thinner torus than NGC 1068. Although the physical origin of the torus thickness remains unclear, our observations support a theoretical prediction that geometrically thick tori with high opacity will become deficient as AGNs evolve from luminous Seyferts to LLAGNs.
Quantifying Beetle-Mediated Effects on Gas Fluxes from Dung Pats
Penttilä, Atte; Slade, Eleanor M.; Simojoki, Asko; Riutta, Terhi; Minkkinen, Kari; Roslin, Tomas
2013-01-01
Agriculture is one of the largest contributors of the anthropogenic greenhouse gases (GHGs) responsible for global warming. Measurements of gas fluxes from dung pats suggest that dung is a source of GHGs, but whether these emissions are modified by arthropods has not been studied. A closed chamber system was used to measure the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from dung pats with and without dung beetles on a grass sward. The presence of dung beetles significantly affected the fluxes of GHGs from dung pats. Most importantly, fresh dung pats emitted higher amounts of CO2 and lower amounts of CH4 per day in the presence than absence of beetles. Emissions of N2O showed a distinct peak three weeks after the start of the experiment – a pattern detected only in the presence of beetles. When summed over the main grazing season (June–July), total emissions of CH4 proved significantly lower, and total emissions of N2O significantly higher in the presence than absence of beetles. While clearly conditional on the experimental conditions, the patterns observed here reveal a potential impact of dung beetles on gas fluxes realized at a small spatial scale, and thereby suggest that arthropods may have an overall effect on gas fluxes from agriculture. Dissecting the exact mechanisms behind these effects, mapping out the range of conditions under which they occur, and quantifying effect sizes under variable environmental conditions emerge as key priorities for further research. PMID:23940758
NASA Astrophysics Data System (ADS)
Hobbie, Erik A.; Schubert, Brian A.; Craine, Joseph M.; Linder, Ernst; Pringle, Anne
2017-02-01
How climate and rising carbon dioxide concentrations (pCO2) have influenced competition between C3 and C4 plants over the last 50 years is a critical uncertainty in climate change research. Here we used carbon isotope (δ13C) values of the saprotrophic lawn fungus Amanita thiersii to integrate the signal of C3 and C4 carbon in samples collected between 1982 and 2009 from the Midwestern USA. We then calculated 13C fractionation (Δ) to assess the balance between C3 and C4 photosynthesis as influenced by mean annual temperature (MAT), mean annual precipitation over a 30 year period (MAP-30), and pCO2. Sporocarp Δ correlated negatively with MAT (-1.74‰ °C-1, 79% of variance) and positively with MAP (9.52‰ m-1, 15% of variance), reflecting the relative productivity of C3 and C4 grasses in lawns. In addition, Δ values correlated positively with pCO2 (0.072‰ ppm-1, 5% of variance). Reduced photorespiration with rising pCO2 accounted for 20% of this increased Δ, but the remaining 80% is consistent with increased assimilation of C3-derived carbon by Amanita thiersii resulting from increased productivity of C3 grasses with rising pCO2. Between 1982 and 2009, pCO2 rose by 46 ppm and the relative contribution of C3 photosynthesis to Amanita thiersii carbon increased 18.5%. The δ13C value of Amanita thiersii may integrate both lawn maintenance practices and the physiological responses of turf grasses to rising CO2 concentrations.
Hanouz, Jean-Luc; Fiant, Anne-Lise; Gérard, Jean-Louis
2016-09-01
The goal of the present study was to examine changes of middle cerebral artery (VMCA) blood flow velocity in patients scheduled for shoulder surgery in beach chair position. Prospective observational study. Operating room, shoulder surgery. Fifty-three consecutive patients scheduled for shoulder surgery in beach chair position. Transcranial Doppler performed after induction of general anesthesia (baseline), after beach chair positioning (BC1), during surgery 20minutes (BC2), and after back to supine position before stopping anesthesia (supine). Mean arterial pressure (MAP), end-tidal CO2, and volatile anesthetic concentration and VMCA were recorded at baseline, BC1, BC2, and supine. Postoperative neurologic complications were searched. Beach chair position induced decrease in MAP (baseline: 73±10mm Hg vs lower MAP recorded: 61±10mm Hg; P<.0001) requiring vasopressors and fluid challenge in 44 patients (83%). There was a significant decrease in VMCA after beach chair positioning (BC1: 33±10cm/s vs baseline: 39±14cm/s; P=.001). The VMCA at baseline (39±2cm/s), BC2 (35±14cm/s), and supine (39±14cm/s) were not different. The minimal alveolar concentration of volatile anesthetics, end-tidal CO2, SpO2, and MAP were not different at baseline, BC1, BC2, and supine. Beach chair position resulted in transient decrease in MAP requiring fluid challenge and vasopressors and a moderate decrease in VMCA. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Brunke, E.-G.; Ebinghaus, R.; Kock, H. H.; Labuschagne, C.; Slemr, F.
2012-05-01
Mercury emissions in South Africa have so far been estimated only by a bottom-up approach from activities and emission factors for different processes. In this paper we derive GEM/CO (GEM being gaseous elemental mercury, Hg0), GEM/CO2, GEM/CH4, CO/CO2, CH4/CO2, and CH4/CO emission ratios from plumes observed during long-term monitoring of these species at Cape Point between March 2007 and December 2009. The average observed GEM/CO, GEM/CO2, GEM/CH4, CO/CO2, CH4/CO2, and CH4/CO emission ratios were 2.40 ± 2.65 pg m-3 ppb-1 (n = 47), 62.7 ± 80.2 pg m-3 ppb-1 (n = 44), 3.61 ± 4.66 pg m-3 ppb-1 (n = 46), 35.6 ± 25.4 ppb ppm-1 (n = 52), 20.2 ± 15.5 ppb ppm-1 (n=48), and 0.876 ± 1.106 ppb ppm-1 (n=42), respectively. The observed CO/CO2, CH4/CO2, and CH4/CO emission ratios agree within the combined uncertainties of the observations and emissions with the ratios calculated from EDGAR (version 4.2) CO2, CO, and CH4 inventories for South Africa and Southern Africa (South Africa, Lesotho, Swaziland, Namibia, Botswana, Zimbabwe, and Mozambique) in 2007 and 2008 (inventories for 2009 are not available yet). Total elemental mercury emission of 13.1, 15.2, and 16.1 t Hg yr-1 are estimated independently using the GEM/CO, GEM/CO2, and GEM/CH4 emission ratios and the annual mean CO, CO2, and CH4 emissions, respectively, of South Africa in 2007 and 2008. The average of these independent estimates of 14.8 ± 1.5 t GEM yr-1 is much less than the total emission of 257 t Hg yr-1 from older inventories. Considering that emission of GEM represents only 50-78% of all mercury emissions, our estimates come close to the total mercury emission estimates ranging between 40-50 t Hg yr-1 from more recent inventories.
Grebitus, Carola; Jensen, Helen H; Roosen, Jutta; Sebranek, Joseph G
2013-01-01
Consumers' perceptions and evaluations of meat quality attributes such as color and shelf life influence purchasing decisions, and these product attributes can be affected by the type of fresh meat packaging system. Modified atmosphere packaging (MAP) extends the shelf life of fresh meat and, with the inclusion of carbon monoxide (CO-MAP), achieves significant color stabilization. The objective of this study was to assess whether consumers would accept specific packaging technologies and what value consumers place on ground beef packaged under various atmospheres when their choices involved the attributes of color and shelf life. The study used nonhypothetical consumer choice experiments to determine the premiums that consumers are willing to pay for extended shelf life resulting from MAP and for the "cherry red" color in meat resulting from CO-MAP. The experimental design allowed determination of whether consumers would discount foods with MAP or CO-MAP when (i) they are given more detailed information about the technologies and (ii) they have different levels of individual knowledge and media exposure. The empirical analysis was conducted using multinomial logit models. Results indicate that consumers prefer an extension of shelf life as long as the applied technology is known and understood. Consumers had clear preferences for brighter (aerobic and CO) red color and were willing to pay $0.16/lb ($0.35/kg) for each level of change to the preferred color. More information on MAP for extending the shelf life and on CO-MAP for stabilizing color decreased consumers' willingness to pay. An increase in personal knowledge and media exposure influenced acceptance of CO-MAP negatively. The results provide quantitative measures of how packaging affects consumers' acceptance and willingness to pay for products. Such information can benefit food producers and retailers who make decisions about investing in new packaging methods.
NASA Astrophysics Data System (ADS)
Petropoulos, George P.; Kontoes, Charalambos C.; Keramitsoglou, Iphigenia
2012-08-01
In this study, the potential of EO-1 Advanced Land Imager (ALI) radiometer for land cover and especially burnt area mapping from a single image analysis is investigated. Co-orbital imagery from the Landsat Thematic Mapper (TM) was also utilised for comparison purposes. Both images were acquired shortly after the suppression of a fire occurred during the summer of 2009 North-East of Athens, the capital of Greece. The Maximum Likelihood (ML), Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) classifiers were parameterised and subsequently applied to the acquired satellite datasets. Evaluation of the land use/cover mapping accuracy was based on the error matrix statistics. Also, the McNemar test was used to evaluate the statistical significance of the differences between the approaches tested. Derived burnt area estimates were validated against the operationally deployed Services and Applications For Emergency Response (SAFER) Burnt Scar Mapping service. All classifiers applied to either ALI or TM imagery proved flexible enough to map land cover and also to extract the burnt area from other land surface types. The highest total classification accuracy and burnt area detection capability was returned from the application of SVMs to ALI data. This was due to the SVMs ability to identify an optimal separating hyperplane for best classes' separation that was able to better utilise ALI's advanced technological characteristics in comparison to those of TM sensor. This study is to our knowledge the first of its kind, effectively demonstrating the benefits of the combined application of SVMs to ALI data further implying that ALI technology may prove highly valuable in mapping burnt areas and land use/cover if it is incorporated into the development of Landsat 8 mission, planned to be launched in the coming years.
Distribution, physical state and mixing of materials at the surface of Pluto from New Horizons
NASA Astrophysics Data System (ADS)
Schmitt, Bernard; Philippe, Sylvain; Grundy, Will; Reuter, D. C.; Quirico, Eric; Protopapa, Silvia; Côte, Rémi; Young, Leslie; Binzel, Richard; Cook, Jason C.; Cruikshank, Dale P.; Dalle Ore, Cristina M.; Earle, Alissa M.; Ennico, Kimberly; Howett, Carly; Jennings, Donald; Linscott, Ivan; Lunsford, A. W.; Olkin, Catherine B.; Parker, Joel Wm.; Parker, Alex; Singer, Kelsi N.; Spencer, John R.; Stansberry, John A.; Stern, S. Alan; Tsang, Constantine; Verbiscer, Anne J.; Weaver, Harold A.; New Horizons Science Team
2016-10-01
In July 2015 the New Horizons spacecraft recorded a large set of data on Pluto, in particular with the LEISA spectro-imager dedicated to the study of the surface composition.In this talk we report a study of the distribution and physical state of the ices and non-ice materials on Pluto's surface and their mode and degree of mixing. Principal Component analysis as well as specific spectral indicators and correlation plots are used on high resolution LEISA spectro-images covering the whole illuminated face of Pluto. Qualitative distribution maps have been obtained for the 4 main condensed molecules, N2, CH4, CO, H2O as well as for the visible-dark red material. These maps indicate the presence of 3 different types of ices: N2-rich:CH4:CO ices, CH4-rich:(CO:N2?) ices and H2O ice. Their mixing lines and with the dark reddish material are studied. CH4 is mixed at the molecular level with N2 and CO, thus forming a ternary molecular mixture that follows its phase diagram with low solubility limits. The occurrence of a N2-rich - CH4-rich ices mixing line associated with a decrease of the CO/CH4 ratio tell us that a fractionation sublimation sequence transforms N2-rich ice into either a N2-rich - CH4-rich binary mixture at the surface or an upper CH4-rich(:CO:N2) ice crust that may hide the N2-rich ice below. The CH4-rich - H2O mixing line witnesses the subsequent sublimation of CH4 ice left behind by the N2:CO sublimation (N spring-summer), or a direct condensation of CH4 ice on cold H2O ice (S autumn). The very sharp spatial transitions between CH4-containing ices and the dark red material are probably due to thermal incompatibility. Finally there is some spatial mixing of the reddish material covering H2O ice. H2O ice appears to be the substratum on which other ices condense or non-volatile organic material is deposited from the atmosphere. The spatial distribution of these materials is very complex.The high spatial definition of all these composition maps will allow us to compare them with Pluto's geologic features observed by LORRI panchromatic and MVIC multispectral imagers to better understand the geophysical processes in action at the surface of this astonishingly active cold world.
LOW CO LUMINOSITIES IN DWARF GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schruba, Andreas; Walter, Fabian; Sandstrom, Karin
2012-06-15
We present maps of {sup 12}COJ = 2-1 emission covering the entire star-forming disks of 16 nearby dwarf galaxies observed by the IRAM HERACLES survey. The data have 13'' angular resolution, {approx}250 pc at our average distance of D = 4 Mpc, and sample the galaxies by 10-1000 resolution elements. We apply stacking techniques to perform the first sensitive search for CO emission in dwarf galaxies outside the Local Group ranging from individual lines of sight, stacking over IR-bright regions of embedded star formation, and stacking over the entire galaxy. We detect five galaxies in CO with total CO luminositiesmore » of L{sub CO2-1} = (3-28) Multiplication-Sign 10{sup 6} K km s{sup -1} pc{sup 2}. The other 11 galaxies remain undetected in CO even in the stacked images and have L{sub CO2-1} {approx}< (0.4-8) Multiplication-Sign 10{sup 6} K km s{sup -1} pc{sup 2}. We combine our sample of dwarf galaxies with a large sample of spiral galaxies from the literature to study scaling relations of L{sub CO} with M{sub B} and metallicity. We find that dwarf galaxies with metallicities of Z Almost-Equal-To 1/2-1/10 Z{sub Sun} have L{sub CO} of 2-4 orders of magnitude smaller than massive spiral galaxies and that their L{sub CO} per unit L{sub B} is 1-2 orders of magnitude smaller. A comparison with tracers of star formation (FUV and 24 {mu}m) shows that L{sub CO} per unit star formation rate (SFR) is 1-2 orders of magnitude smaller in dwarf galaxies. One possible interpretation is that dwarf galaxies form stars much more efficiently: we argue that the low L{sub CO}/SFR ratio is due to the fact that the CO-to-H{sub 2} conversion factor, {alpha}{sub CO}, changes significantly in low-metallicity environments. Assuming that a constant H{sub 2} depletion time of {tau}{sub dep} = 1.8 Gyr holds in dwarf galaxies (as found for a large sample of nearby spirals) implies {alpha}{sub CO} values for dwarf galaxies with Z Almost-Equal-To 1/2-1/10 Z{sub Sun} that are more than one order of magnitude higher than those found in solar metallicity spiral galaxies. Such a significant increase of {alpha}{sub CO} at low metallicity is consistent with previous studies, in particular those of Local Group dwarf galaxies that model dust emission to constrain H{sub 2} masses. Even though it is difficult to parameterize the dependence of {alpha}{sub CO} on metallicity given the currently available data, the results suggest that CO is increasingly difficult to detect at lower metallicities. This has direct consequences for the detectability of star-forming galaxies at high redshift, which presumably have on average sub-solar metallicity.« less
Brown, R.H.; Baines, K.H.; Bellucci, G.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Baugh, N.; Griffith, C.A.; Hansen, G.B.; Hibbitts, C.A.; Momary, T.W.; Showalter, M.R.
2006-01-01
The Visual and Infrared Mapping Spectrometer observed Phoebe, Iapetus, Titan and Saturn's rings during Cassini's approach and orbital insertion. Phoebe's surface contains water ice, CO2, and ferrous iron. lapetus contains CO2 and organic materials. Titan's atmosphere shows methane fluorescence, and night-side atmospheric emission that may be CO2 and CH3D. As determined from cloud motions, the winds at altitude 25-30 km in the south polar region of Titan appear to be moving in a prograde direction at velocity ???1 m s-1. Circular albedo features on Titan's surface, seen at 2.02 ??m, may be palimpsests remaining from the rheological adjustment of ancient impact craters. As such, their long-term persistence is of special interest in view of the expected precipitation of liquids and solids from the atmosphere. Saturn's rings have changed little in their radial structure since the Voyager flybys in the early 1980s. Spectral absorption bands tentatively attributed to Fe2+ suggest that iron-bearing silicates are a source of contamination of the C ring and the Cassini Division. ?? ESO 2006.
Going beyond the flood insurance rate map: insights from flood hazard map co-production
NASA Astrophysics Data System (ADS)
Luke, Adam; Sanders, Brett F.; Goodrich, Kristen A.; Feldman, David L.; Boudreau, Danielle; Eguiarte, Ana; Serrano, Kimberly; Reyes, Abigail; Schubert, Jochen E.; AghaKouchak, Amir; Basolo, Victoria; Matthew, Richard A.
2018-04-01
Flood hazard mapping in the United States (US) is deeply tied to the National Flood Insurance Program (NFIP). Consequently, publicly available flood maps provide essential information for insurance purposes, but they do not necessarily provide relevant information for non-insurance aspects of flood risk management (FRM) such as public education and emergency planning. Recent calls for flood hazard maps that support a wider variety of FRM tasks highlight the need to deepen our understanding about the factors that make flood maps useful and understandable for local end users. In this study, social scientists and engineers explore opportunities for improving the utility and relevance of flood hazard maps through the co-production of maps responsive to end users' FRM needs. Specifically, two-dimensional flood modeling produced a set of baseline hazard maps for stakeholders of the Tijuana River valley, US, and Los Laureles Canyon in Tijuana, Mexico. Focus groups with natural resource managers, city planners, emergency managers, academia, non-profit, and community leaders refined the baseline hazard maps by triggering additional modeling scenarios and map revisions. Several important end user preferences emerged, such as (1) legends that frame flood intensity both qualitatively and quantitatively, and (2) flood scenario descriptions that report flood magnitude in terms of rainfall, streamflow, and its relation to an historic event. Regarding desired hazard map content, end users' requests revealed general consistency with mapping needs reported in European studies and guidelines published in Australia. However, requested map content that is not commonly produced included (1) standing water depths following the flood, (2) the erosive potential of flowing water, and (3) pluvial flood hazards, or flooding caused directly by rainfall. We conclude that the relevance and utility of commonly produced flood hazard maps can be most improved by illustrating pluvial flood hazards and by using concrete reference points to describe flooding scenarios rather than exceedance probabilities or frequencies.
The first genetic map of pigeon pea based on diversity arrays technology (DArT) markers.
Yang, Shi Ying; Saxena, Rachit K; Kulwal, Pawan L; Ash, Gavin J; Dubey, Anuja; Harper, John D I; Upadhyaya, Hari D; Gothalwal, Ragini; Kilian, Andrzej; Varshney, Rajeev K
2011-04-01
With an objective to develop a genetic map in pigeon pea (Cajanus spp.), a total of 554 diversity arrays technology (DArT) markers showed polymorphism in a pigeon pea F(2) mapping population of 72 progenies derived from an interspecific cross of ICP 28 (Cajanus cajan) and ICPW 94 (Cajanus scarabaeoides). Approximately 13% of markers did not conform to expected segregation ratio. The total number of DArT marker loci segregating in Mendelian manner was 405 with 73.1% (P > 0.001) of DArT markers having unique segregation patterns. Two groups of genetic maps were generated using DArT markers. While the maternal genetic linkage map had 122 unique DArT maternal marker loci, the paternal genetic linkage map has a total of 172 unique DArT paternal marker loci. The length of these two maps covered 270.0 cM and 451.6 cM, respectively. These are the first genetic linkage maps developed for pigeon pea, and this is the first report of genetic mapping in any grain legume using diversity arrays technology.
Takayama, Yukihisa; Hatakenaka, Masamitsu; Tsushima, Hidetoshi; Okazaki, Ken; Yoshiura, Takashi; Yonezawa, Masato; Nishikawa, Kei; Iwamoto, Yukihide; Honda, Hiroshi
2013-04-01
We compared the diagnostic performance of T1ρ and T2 mappings in the evaluation of denatured articular cartilage with osteoarthritis of the knee. 2D-Sagittal T1ρ and T2 mappings of the knee were obtained from 16 patients before total knee arthroplasty. After surgery, specimens of the femur and tibia were regionally segmented according to a 5-point scale of the severity of denaturalization. The T1ρ and T2 values in the full thickness of the articular cartilage in each region were measured by two observers. The two mappings were compared for their ability to differentiate between normal and denatured articular cartilage and also for their usefulness in grading the severity of the denaturalization using the area under receiver operating characteristic curves (Az). A p<0.05 was considered significant for each analysis. The T1ρ mapping showed a significantly higher Az value than the T2 mapping for the differentiation between normal and denatured articular cartilage (p<0.05). Regarding the assessment of the severity of denaturalization, T1ρ mapping could differentiate between normal and mild denaturalization (p<0.05), but T2 mapping could not. However, there were no significant differences between the two mappings in the discrimination of mild versus moderate denaturalization or of moderate versus severe denaturalization. The two observers showed good agreement in the results (intraclass correlation coefficient=0.81 for T1ρ and 0.92 for T2). T1ρ mapping is superior to T2 mapping for the evaluation of denatured articular cartilage with osteoarthritis of the knee. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
The global star formation law of galaxies revisited in the radio continuum
NASA Astrophysics Data System (ADS)
Liu, LiJie; Gao, Yu
2012-02-01
We study the global star formation law, the relation between the gas and star formation rate (SFR) in a sample of 130 local galaxies with infrared (IR) luminosities spanning over three orders of magnitude (109-1012 L⊙), which includes 91 normal spiral galaxies and 39 (ultra)luminous IR galaxies [(U)LIRGs]. We derive their total (atomic and molecular) gas and dense molecular gas masses using newly available HI, CO and HCN data from the literature. The SFR of galaxies is determined from total IR (8-1000 μm) and 1.4 GHz radio continuum (RC) luminosities. The galaxy disk sizes are defined by the de-convolved elliptical Gaussian FWHM of the RC maps. We derive the galaxy disk-averaged SFRs and various gas surface densities, and investigate their relationships. We find that the galaxy disk-averaged surface density of dense molecular gas mass has the tightest correlation with that of SFR (scatter ˜0.26 dex), and is linear in log-log space (power-law slope of N=1.03±0.02) across the full galaxy sample. The correlation between the total gas and SFR surface densities for the full sample has a somewhat larger scatter (˜0.48 dex), and is best fit by a power-law with slope 1.45±0.02. However, the slope changes from ˜1 when only normal spirals are considered, to ˜1.5 when more and more (U)LIRGs are included in the fitting. When different CO-to-H2 conversion factors are used to infer molecular gas masses for normal galaxies and (U)LIRGs, the bi-modal relations claimed recently in CO observations of high-redshift galaxies appear to also exist in local populations of star-forming galaxies.
Yadav, Sonam; Mishra, Avinash; Jha, Bhavanath
2018-01-01
The C 4 halophytic species Suaeda monoica and S. fruticosa, possess the C 4 photosynthesis pathway without Kranz anatomy were grown at ambient (470ppm CO 2 ) and elevated (850ppm CO 2 ) atmospheric CO 2 under control containment facility to study the plant response under CO 2 stress condition. The relative growth of both Suaeda species was enhanced with atmospheric CO 2 enrichment compared to control (ambient) condition. The photosynthesis rate was found 2.5μmolCO 2 m -2 s -1 in both species under stress condition compared to about 1.9μmolCO 2 m -2 s -1 under control conditions. About 0.3molH 2 Om -2 s -1 conductance was detected under an unstressed condition which decreased significantly to ~0.07molH 2 Om -2 s -1 on the 6th day of stress treatment. Similarly, transpiration rate was also decreased significantly from 4.4-5.2mmolH 2 Om -2 s -1 to 1.7-1.9 under stress condition. In contrast, VpdL increased significantly from 1.9kPa to 2.5kPa under stress condition. A higher total chlorophyll content observed in S. monoica (56.36mgg -1 tissue) compared to S. fruticosa (33.12mgg -1 tissue) under unstressed (control) condition. A significant increase was found in the total chlorophyll content of S. fruticosa (45.47mgg -1 tissue) with stress treatment compared to control (33.12mgg -1 tissue). In contrast, the total chlorophyll decreased in S. monoica (51.58mgg -1 tissue) under similar stress condition compared to control plants (56.36mgg -1 tissue). About 6-6.8mg total sugar per gram tissue found under control condition which enhanced further (7.5 to 11mgg -1 tissue) under stress condition. Similarly, total reducing sugar (~2mgg -1 tissue) and total starch content (6.5-11mgg -1 tissue) increased under stress condition. About 6.5- and 3- fold higher expression of PPDK gene was observed for S. monoica and S. fruticosa, respectively under CO 2 stress condition. PPDK (1.2- and 1.5- fold) and antioxidant enzymes; APX (12.7- and two-fold), CAT (2.2- and 6.4- fold) and SOD (4.6- and 94- fold) enhanced significantly in S. fruticosa and S. monoica, respectively under high CO 2 stress condition compared to control plants. Overall, it was observed that PPDK enzyme plays a key role in C 4 photosynthesis pathway and S. monoica is a potential candidate to be explored further for the saline agricultural and CO 2 capture. Copyright © 2017 Elsevier B.V. All rights reserved.
Kosse, Pascal; Kleeberg, Tasja; Lübken, Manfred; Matschullat, Jörg; Wichern, Marc
2018-08-15
Treatment of nutrient-rich wastewater potentially results in direct release of greenhouse gases (GHGs) such as CO 2 , N 2 O or CH 4 - and thus affects Waste Water Treatment Plant's carbon footprint. Accurate CO 2 quantification is challenging due to various chemical, physical and operational conditions. A floating chamber equipped with a nondispersive infrared, single beam, dual wavelength sensor has been evaluated for a pilot approach to quantify fugitive CO 2 emissions above different wastewater treatment units. Total average CO 2 flux was 1182gCO 2 ·m -2 ·d -1 with minimum and maximum fluxes of 829gCO 2 ·m -2 ·d -1 and 1493gCO 2 ·m -2 ·d -1 , respectively. Total observed CO 2 emissions were in 7 to 17kgCO 2 ·PE -1 ·a -1 (average 12kgCO 2 ·PE -1 ·a -1 ). The nitrification tank accounted for about 94.3% of the emissions, followed by secondary clarification (ca. 4.3%) and denitrification (ca. 1.4%), based on those average annual CO 2 emissions per population equivalent (PE). Copyright © 2018 Elsevier B.V. All rights reserved.
The carbon footprint of Australian health care.
Malik, Arunima; Lenzen, Manfred; McAlister, Scott; McGain, Forbes
2018-01-01
Carbon footprints stemming from health care have been found to be variable, from 3% of the total national CO 2 equivalent (CO 2 e) emissions in England to 10% of the national CO 2 e emissions in the USA. We aimed to measure the carbon footprint of Australia's health-care system. We did an observational economic input-output lifecycle assessment of Australia's health-care system. All expenditure data were obtained from the 15 sectors of the Australian Institute of Health and Welfare for the financial year 2014-15. The Australian Industrial Ecology Virtual Laboratory (IELab) data were used to obtain CO 2 e emissions per AUS$ spent on health care. In 2014-15 Australia spent $161·6 billion on health care that led to CO 2 e emissions of about 35 772 (68% CI 25 398-46 146) kilotonnes. Australia's total CO 2 e emissions in 2014-15 were 494 930 kilotonnes, thus health care represented 35 772 (7%) of 494 930 kilotonnes total CO 2 e emissions in Australia. The five most important sectors within health care in decreasing order of total CO 2 e emissions were: public hospitals (12 295 [34%] of 35 772 kilotonnes CO 2 e), private hospitals (3635 kilotonnes [10%]), other medications (3347 kilotonnes [9%]), benefit-paid drugs (3257 kilotonnes [9%]), and capital expenditure for buildings (2776 kilotonnes [8%]). The carbon footprint attributed to health care was 7% of Australia's total; with hospitals and pharmaceuticals the major contributors. We quantified Australian carbon footprint attributed to health care and identified health-care sectors that could be ameliorated. Our results suggest the need for carbon-efficient procedures, including greater public health measures, to lower the impact of health-care services on the environment. None. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
Palma, A; Mangia, N P; Fadda, A; Barberis, A; Schirra, M; D'Aquino, S
2013-01-01
Microorganisms are natural contaminants of fresh produce and minimally processed products, and contamination arises from a number of sources, including the environment, postharvest handling and processing. Fresh-cut products are particularly susceptible to microbial contaminations because of the changes occurring in the tissues during processing. In package gas composition of modified atmosphere packaging (MAP) in combination with low storage temperatures besides reducing physiological activity of packaged produce, can also delay pathogen growth. Present study investigated on the effect of MAPs, achieved with different plastic films, on microbial growth of minimally processed cactus pear (Opuntio ficus-indica) fruit. Five different plastic materials were used for packaging the manually peeled fruit. That is: a) polypropylene film (Termoplast MY 40 micron thickness, O2 transmission rate 300 cc/m2/24h); b) polyethylene film (Bolphane BHE, 11 micron thickness, O2 transmission rate 19000 cc/m2/24h); c) polypropylene laser-perforated films (Mach Packaging) with 8, 16 or 32 100-micron holes. Total aerobic psychrophilic, mesophilic microorganisms, Enterobacteriaceae, yeast, mould populations and in-package CO2, O2 and C2H4 were determined at each storage time. Different final gas compositions, ranging from 7.8 KPa to 17.1 KPa O2, and 12.7 KPa to 2.6 KPa CO2, were achieved with MY and micro perforated films, respectively. Differences were detected in the mesophilic, Enterobacteriaceae and yeast loads, while no difference was detected in psychrophilic microorganisms. At the end of storage, microbial load in fruits sealed with MY film was significantly lower than in those sealed with BHE and micro perforated films. Furthermore, fruits packed with micro-perforated films showed the highest microbial load. This occurrence may in part be related to in-package gas composition and in part to a continuous contamination of microorganisms through micro-holes.
Külen, Oktay; Stushnoff, Cecil; Holm, David G
2013-08-15
Twelve Colorado-grown specialty potato clones were evaluated for total phenolic content, antioxidant activity and ascorbic acid content at harvest and after 2, 4, 6 and 7 months cold storage at 4 °C. Potato clones were categorized as pigmented ('CO97226-2R/R', 'CO99364-3R/R', 'CO97215-2P/P', 'CO97216-3P/P', 'CO97227-2P/P', 'CO97222-1R/R', 'Purple Majesty', 'Mountain Rose' and 'All Blue'), yellow ('Yukon Gold') and white fleshed ('Russet Nugget', 'Russet Burbank'). Folin-Ciocalteu reagent was used to estimate total phenolic content, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS(•+) ) and 2,2-diphenyl-1-picrylhydrazyl (DPPH(•) ) radical scavenging assays were used to estimate antioxidant capacity. Pigmented potato genotypes had significantly higher total phenolic content and antioxidant activity at all data points than yellow- and white-fleshed cultivars. Vitamin C content was higher in 'Yukon Gold' than in the other clones. The highest level of vitamin C in all clones was at harvest and after 2 months in cold storage. Vitamin C content in all potato clones dropped rapidly with longer intervals of cold storage. Although total phenolic content and antioxidant activity fluctuated during cold storage, after 7 months of cold storage their levels were slightly higher than at harvest. Total phenolic content was better correlated with Trolox equivalent antioxidant capacity (TEAC)/ABTS(•+) than the TEAC/DPPH(•) radical scavenging assay. Pigmented potato clones had significantly higher total phenolic content and antioxidant activity, while the yellow-fleshed potato cultivar 'Yukon Gold' had significantly higher vitamin C content. Vitamin C content decreased in all potato clones during cold storage, while total phenolics increased in pigmented clones. © 2013 Society of Chemical Industry.
Acrylamide inhibits cellular differentiation of human neuroblastoma and glioblastoma cells.
Chen, Jong-Hang; Chou, Chin-Cheng
2015-08-01
This study explores human neuroblastoma (SH-SY5Y) and human glioblastoma (U-1240 MG) cellular differentiation changes under exposure to acrylamide (ACR). Differentiation of SH-SY5Y and U-1240 MG cells were induced by retinoic acid (RA) and butyric acid (BA), respectively. Morphological observations and MTT assay showed that the induced cellular differentiation and cell proliferation were inhibited by ACR in a time- and dose-dependent manner. ACR co-treatment with RA attenuated SH-SY5Y expressions of neurofilament protein-L (NF-L), microtubule-associated protein 1b (MAP1b; 1.2 to 0.7, p < 0.001), MAP2c (2.2 to 0.8, p < 0.05), and Janus kinase1 (JAK1; 1.9 to 0.6, p < 0.001), while ACR co-treatment with BA attenuated U-1240 MG expressions of glial fibrillary acidic protein (GFAP), MAP1b (1.2 to 0.6, p < 0.001), MAP2c (1.5 to 0.7, p < 0.01), and JAK1 (2.1 to 0.5, p < 0.001), respectively. ACR also decreased the phosphorylation of extracellular-signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK) in U-1240 MG cells, while caffeine reversed this suppression of ERK and JNK phosphorylation caused by ACR treatment. These results showed that RA-induced neurogenesis of SH-SY5Y and BA-induced astrogliogenesis of U-1240 MG cells were attenuated by ACR and were associated with down-regulation of MAPs expression and JAK-STAT signaling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Measurement of total organic concentration in water
NASA Technical Reports Server (NTRS)
Winkler, E.
1978-01-01
Instrument for determining total organic concentration in water uses no corrosive reagents or gases. Instead continuous ultraviolet photolysis process converts organic compounds to carbon dioxide (CO2). CO2 electrode is used to measure CO2 content. Only reagent necessary is oxygen, generated in situ by electrolyzing some water. In addition to application in aerospace industry, system has potential uses in pollution monitoring and in laboratory analyses.
NASA Astrophysics Data System (ADS)
Wang, R.; Zhao, M.; Hu, Y.; Guo, S.
2016-12-01
Responses of soil CO2 emission to natural precipitation play an essential role in regulating regional C cycling. With more erratic precipitation regimes, mostly likely of more frequent heavy rainstorms, projected into the future, extreme precipitation would potentially affect local soil moisture, plant growth, microbial communities, and further soil CO2 emissions. However, responses of soil CO2 emissions to extreme precipitation have not yet been systematically investigated. Such performances could be of particular importance for rainfed arable soil in semi-arid regions where soil microbial respiration stress is highly sensitive to temporal distribution of natural precipitation.In this study, a simulated experiment was conducted on bare loess soil from the semi-arid Chinese Loess Plateau. Three precipitation regimes with total precipitation amounts of 150 mm, 300 mm and 600 mm were carried out to simulate the extremely dry, business as usual, and extremely wet summer. The three regimes were individually materialized by wetting soils in a series of sub-events (10 mm or 150 mm). Co2 emissions from surface soil were continuously measured in-situ for one month. The results show that: 1) Evident CO2 emission pulses were observed immediately after applying sub-events, and cumulative CO2 emissions from events of total amount of 600 mm were greater than that from 150 mm. 3) In particular, for the same total amount of 600 mm, wetting regimes by applying four times of 150 mm sub-events resulted in 20% less CO2 emissions than by applying 60 times of 10 mm sub-events. This is mostly because its harsh 150 mm storms introduced more over-wet soil microbial respiration stress days (moisture > 28%). As opposed, for the same total amount of 150 mm, CO2 emissions from wetting regimes by applying 15 times of 10 mm sub-events were 22% lower than by wetting at once with 150 mm water, probably because its deficiency of soil moisture resulted in more over-dry soil microbial respiration stress days (moisture < 15%). Overall, soil CO2 emissions not only responded to total precipitation amount, but was also sensitive to precipitation regimes. Such differentiated responses of CO2 emissions highlight the necessity to properly account for relative contributions from CO2 emissions when projecting global carbon cycling into future climate scenarios.
NASA Astrophysics Data System (ADS)
Plouhinec, J.; Lucotte, M. M.; Ouellet, A.; Gelinas, Y.
2012-12-01
The processes that fuel heterotrophy and thus contribute to CO2 production in lakes and reservoirs of the boreal region in Quebec are still not fully understood. To shed light on some of the factors controlling heterotrophy, we evaluated the importance of photodechemical mineralization of dissolved organic mater relative to other sources of CO2 production in six natural or human-perturbed lakes through logging on their watersheds and two reservoirs of the Quebec boreal forest over a period of 1.5 year. Rates of CO2 production in the water column were measured through incubation/irradiation experiments, using a series of filtrations to isolate the effects of photochemical mineralization, bacterial respiration, and planktonic respiration. Total CO2 fluxes measured in this study compared well to total diffusive fluxes measured through the traditional thin boundary layer method, thus validating our incubation approach. We calculated the daily integrated production of CO2 through photochemical mineralization (DIPMCO2) of dissolved organic matter over the entire water column using the calculation of the spectrum yield (Φλ). DIPMCO2 appeared as a robust indicator strongly correlated to the absorption coefficient of chromophoric dissolved organic matter (CDOM) at 360 nm (R2=0.81, p<0.01). DIPMCO2 accounts for 15% ± 14% of the total diffusive flux of CO2 to the atmosphere, independently of water body type or perturbation level. Our data also suggests that photochemical mineralization and photosynthesis processes are strongly correlated (R2=0.79, p<0.01), which is due to the fact that the strong photosynthetically active radiation (PAR) attenuation derives from a terrestrial organic matter (TOM) input into the water column. Also, the total diffusive fluxes of CO2 towards the atmosphere (fCO2) are correlated to the DIPMCO2 values (R2=0.49, p<0.01). We have evaluated theoretical CO2 fluxes emitted from the photic zone (f°CO2 ) by photochemical mineralization, bacterial respiration and CO2 consumption by phosynthesis based on measurements obtained from incubation/irradiation experiments. Finally, the relationship between fCO2 and the theoretical CO2 fluxes after production and consumption of CO2 considered only in the epilimnitic zone (R2=0.97, p<0.01) shows that, independently of the environmental conditions, the passive CO2 fluxes are approximately equal to 10 mmol.CO2.m-2.d-1.
Lara, Mark J.; McGuire, A. David; Euskirchen, Eugénie S.; Tweedie, Craig E.; Hinkel, Kenneth M.; Skurikhin, Alexei N.; Romanovsky, Vladimir E.; Grosse, Guido; Bolton, W. Robert; Genet, Helene
2015-01-01
The landscape of the Barrow Peninsula in northern Alaska is thought to have formed over centuries to millennia, and is now dominated by ice-wedge polygonal tundra that spans drained thaw-lake basins and interstitial tundra. In nearby tundra regions, studies have identified a rapid increase in thermokarst formation (i.e., pits) over recent decades in response to climate warming, facilitating changes in polygonal tundra geomorphology. We assessed the future impact of 100 years of tundra geomorphic change on peak growing season carbon exchange in response to: (i) landscape succession associated with the thaw-lake cycle; and (ii) low, moderate, and extreme scenarios of thermokarst pit formation (10%, 30%, and 50%) reported for Alaskan arctic tundra sites. We developed a 30 × 30 m resolution tundra geomorphology map (overall accuracy:75%; Kappa:0.69) for our ~1800 km² study area composed of ten classes; drained slope, high center polygon, flat-center polygon, low center polygon, coalescent low center polygon, polygon trough, meadow, ponds, rivers, and lakes, to determine their spatial distribution across the Barrow Peninsula. Land-atmosphere CO2 and CH4 flux data were collected for the summers of 2006–2010 at eighty-two sites near Barrow, across the mapped classes. The developed geomorphic map was used for the regional assessment of carbon flux. Results indicate (i) at present during peak growing season on the Barrow Peninsula, CO2 uptake occurs at -902.3 106gC-CO2 day−1(uncertainty using 95% CI is between −438.3 and −1366 106gC-CO2 day−1) and CH4 flux at 28.9 106gC-CH4 day−1(uncertainty using 95% CI is between 12.9 and 44.9 106gC-CH4 day−1), (ii) one century of future landscape change associated with the thaw-lake cycle only slightly alter CO2 and CH4 exchange, while (iii) moderate increases in thermokarst pits would strengthen both CO2uptake (−166.9 106gC-CO2 day−1) and CH4 flux (2.8 106gC-CH4 day−1) with geomorphic change from low to high center polygons, cumulatively resulting in an estimated negative feedback to warming during peak growing season.
3D-QSAR modeling and molecular docking studies on a series of 2,5 disubstituted 1,3,4-oxadiazoles
NASA Astrophysics Data System (ADS)
Ghaleb, Adib; Aouidate, Adnane; Ghamali, Mounir; Sbai, Abdelouahid; Bouachrine, Mohammed; Lakhlifi, Tahar
2017-10-01
3D-QSAR (comparative molecular field analysis (CoMFA)) and comparative molecular similarity indices analysis (CoMSIA) were performed on novel 2,5 disubstituted 1,3,4-oxadiazoles analogues as anti-fungal agents. The CoMFA and CoMSIA models using 13 compounds in the training set gives Q2 values of 0.52 and 0.51 respectively, while R2 values of 0.92. The adapted alignment method with the suitable parameters resulted in reliable models. The contour maps produced by the CoMFA and CoMSIA models were employed to determine a three-dimensional quantitative structure-activity relationship. Based on this study a set of new molecules with high predicted activities were designed. Surflex-docking confirmed the stability of predicted molecules in the receptor.
Löser, Benjamin; Werner, Yuki B; Punke, Mark A; Saugel, Bernd; Haas, Sebastian; Reuter, Daniel A; Mann, Oliver; Duprée, Anna; Schachschal, Guido; Rösch, Thomas; Petzoldt, Martin
2017-05-01
Peroral endoscopic myotomy (POEM) is a novel technique for treating esophageal achalasia. During POEM, carbon dioxide (CO 2 ) is insufflated to aid surgical dissection, but it may inadvertently track into surrounding tissues, causing systemic CO 2 uptake and tension capnoperitoneum. This in turn may affect cardiorespiratory function. This study quantified these cardiorespiratory effects and treatment by hyperventilation and percutaneous abdominal needle decompression (PND). One hundred and seventy-three consecutive patients who underwent POEM were included in this four-year retrospective study. Procedure-related changes in peak inspiratory pressure (p max ), end-tidal CO 2 levels (etCO 2 ), minute ventilation (MV), mean arterial pressure (MAP), and heart rate (HR) were analyzed. We also quantified the impact of PND on these cardiorespiratory parameters. During the endoscopic procedure, cardiorespiratory parameters increased from baseline: p max 15.1 (4.5) vs 19.8 (4.7) cm H 2 O; etCO 2 4.5 (0.4) vs 5.5 (0.9) kPa [34.0 (2.9) vs 41.6 (6.9) mmHg]; MAP 73.9 (9.7) vs 99.3 (15.2) mmHg; HR 67.6 (12.4) vs 85.3 (16.4) min -1 (P < 0.001 for each). Hyperventilation [MV 5.9 (1.2) vs 9.0 (1.8) L·min -1 , P < 0.001] was applied to counteract iatrogenic hypercapnia. Individuals with tension capnoperitoneum treated with PND (n = 55) had higher peak p max values [22.8 (5.7) vs 18.4 (3.3) cm H 2 O, P < 0.001] than patients who did not require PND. After PND, p max [22.8 (5.7) vs 19.9 (4.3) cm H 2 O, P = 0.045] and MAP [98.2 (16.3) vs 88.6 (11.8) mmHg, P = 0.013] decreased. Adverse events included pneumothorax (n = 1), transient myocardial ischemia (n = 1), and subcutaneous emphysema (n = 49). The latter precluded immediate extubation in eight cases. Postanesthesia care unit (PACU) stay was longer in individuals with subcutaneous emphysema than in those without [74.9 min (34.5) vs 61.5 (26.8 min), P = 0.007]. Carbon dioxide insufflation during POEM produces systemic CO 2 uptake and increased intra-abdominal pressure. Changes in cardiorespiratory parameters include increased p max , etCO 2 , MAP, and HR. Hyperventilation and PND help mitigate some of these changes. Subcutaneous emphysema is common and may delay extubation and prolong PACU stay.
Hinson, Audra L; Feagin, Rusty A; Eriksson, Marian; Najjar, Raymond G; Herrmann, Maria; Bianchi, Thomas S; Kemp, Michael; Hutchings, Jack A; Crooks, Steve; Boutton, Thomas
2017-12-01
Tidal wetlands contain large reservoirs of carbon in their soils and can sequester carbon dioxide (CO 2 ) at a greater rate per unit area than nearly any other ecosystem. The spatial distribution of this carbon influences climate and wetland policy. To assist with international accords such as the Paris Climate Agreement, national-level assessments such as the United States (U.S.) National Greenhouse Gas Inventory, and regional, state, local, and project-level evaluation of CO 2 sequestration credits, we developed a geodatabase (CoBluCarb) and high-resolution maps of soil organic carbon (SOC) distribution by linking National Wetlands Inventory data with the U.S. Soil Survey Geographic Database. For over 600,000 wetlands, the total carbon stock and organic carbon density was calculated at 5-cm vertical resolution from 0 to 300 cm of depth. Across the continental United States, there are 1,153-1,359 Tg of SOC in the upper 0-100 cm of soils across a total of 24 945.9 km 2 of tidal wetland area, twice as much carbon as the most recent national estimate. Approximately 75% of this carbon was found in estuarine emergent wetlands with freshwater tidal wetlands holding about 19%. The greatest pool of SOC was found within the Atchafalaya/Vermilion Bay complex in Louisiana, containing about 10% of the U.S. total. The average density across all tidal wetlands was 0.071 g cm -3 across 0-15 cm, 0.055 g cm -3 across 0-100 cm, and 0.040 g cm -3 at the 100 cm depth. There is inherent variability between and within individual wetlands; however, we conclude that it is possible to use standardized values at a range of 0-100 cm of the soil profile, to provide first-order quantification and to evaluate future changes in carbon stocks in response to environmental perturbations. This Tier 2-oriented carbon stock assessment provides a scientific method that can be copied by other nations in support of international requirements. © 2017 John Wiley & Sons Ltd.
Ma, Hao; Moore, Paul H; Liu, Zhiyong; Kim, Minna S; Yu, Qingyi; Fitch, Maureen M M; Sekioka, Terry; Paterson, Andrew H; Ming, Ray
2004-01-01
A high-density genetic map of papaya (Carica papaya L.) was constructed using 54 F(2) plants derived from cultivars Kapoho and SunUp with 1501 markers, including 1498 amplified fragment length polymorphism (AFLP) markers, the papaya ringspot virus coat protein marker, morphological sex type, and fruit flesh color. These markers were mapped into 12 linkage groups at a LOD score of 5.0 and recombination frequency of 0.25. The 12 major linkage groups covered a total length of 3294.2 cM, with an average distance of 2.2 cM between adjacent markers. This map revealed severe suppression of recombination around the sex determination locus with a total of 225 markers cosegregating with sex types. The cytosine bases were highly methylated in this region on the basis of the distribution of methylation-sensitive and -insensitive markers. This high-density genetic map is essential for cloning of specific genes of interest such as the sex determination gene and for the integration of genetic and physical maps of papaya. PMID:15020433
Near-infrared image-guided laser ablation of artificial caries lesions.
Tao, You-Chen; Fan, Kenneth; Fried, Daniel
2007-01-01
Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. The objective of this study was to test the hypothesis that two-dimensional NIR images of demineralized tooth surfaces can be used to guide CO(2) laser ablation for the selective removal of artificial caries lesions. Highly patterned artificial lesions were produced by submerging 5 × 5 mm(2) bovine enamel samples in demineralized solution for a 9-day period while sound areas were protected with acid resistant varnish. NIR imaging and polarization sensitive optical coherence tomography (PS-OCT) were used to acquire depth-resolved images at a wavelength of 1310-nm. An imaging processing module was developed to analyze the NIR images and to generate optical maps. The optical maps were used to control a CO(2) laser for the selective removal of the lesions at a uniform depth. This experiment showed that the patterned artificial lesions were removed selectively using the optical maps with minimal damage to sound enamel areas. Post-ablation NIR and PS-OCT imaging confirmed that demineralized areas were removed while sound enamel was conserved. This study successfully demonstrated that near-IR imaging can be integrated with a CO(2) laser ablation system for the selective removal of dental caries.
Near-infrared image-guided laser ablation of artificial caries lesions
Tao, You-Chen; Fan, Kenneth; Fried, Daniel
2012-01-01
Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. The objective of this study was to test the hypothesis that two–dimensional NIR images of demineralized tooth surfaces can be used to guide CO2 laser ablation for the selective removal of artificial caries lesions. Highly patterned artificial lesions were produced by submerging 5 × 5 mm2 bovine enamel samples in demineralized solution for a 9-day period while sound areas were protected with acid resistant varnish. NIR imaging and polarization sensitive optical coherence tomography (PS-OCT) were used to acquire depth-resolved images at a wavelength of 1310-nm. An imaging processing module was developed to analyze the NIR images and to generate optical maps. The optical maps were used to control a CO2 laser for the selective removal of the lesions at a uniform depth. This experiment showed that the patterned artificial lesions were removed selectively using the optical maps with minimal damage to sound enamel areas. Post-ablation NIR and PS-OCT imaging confirmed that demineralized areas were removed while sound enamel was conserved. This study successfully demonstrated that near-IR imaging can be integrated with a CO2 laser ablation system for the selective removal of dental caries. PMID:22866210
Yadav, Bechu K V; Nandy, S
2015-05-01
Mapping forest biomass is fundamental for estimating CO₂ emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m × 31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10-40, 40-70 and >70% of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m(3) ha(-1). The total growing stock of the forest was found to be 2,024,652.88 m(3). The AGWB ranged from 143 to 421 Mgha(-1). Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE) = 42.25 Mgha(-1)) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha(-1) respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha(-1). The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping.
Yang, Shihong; Xiao, Ya Nan; Xu, Junzeng
2018-04-01
Quantifying carbon sequestration in paddy soil is necessary to understand the effect of agricultural practices on carbon cycles. The objective of this study was to assess the effect of organic fertilizer addition (MF) on the soil respiration and net ecosystem carbon dioxide (CO 2 ) absorption of paddy fields under water-saving irrigation (CI) in the Taihu Lake Region of China during the 2014 and 2015 rice-growing seasons. Compared with the traditional fertilizer and water management (FC), the joint regulation of CI and MF (CM) significantly increased the rice yields and irrigation water use efficiencies of paddy fields by 4.02~5.08 and 83.54~109.97% (p < 0.05). The effects of organic fertilizer addition on soil respiration and net ecosystem CO 2 absorption rates showed inter-annual differences. CM paddy fields showed a higher soil respiration and net CO 2 absorption rates during some periods of the rice growth stage in the first year and during most periods of the rice growth stage in the second year. These fields also had significantly higher total CO 2 emission through soil respiration (total R soil ) and total net CO 2 absorption compared with FC paddy fields (p < 0.05). The total R soil and net ecosystem CO 2 absorption of CM paddy fields were 67.39~91.55 and 129.41~113.75 mol m -2 , which were 27.66~135.52 and 12.96~31.66% higher than those of FC paddy fields. The interaction between water and fertilizer management had significant effects on total net ecosystem CO 2 absorption. The frequent alternate wet-dry cycles of CI paddy fields increased the soil respiration and reduced the net CO 2 absorption. Organic fertilizer promoted the soil respiration of paddy soil but also increased its net CO 2 absorption and organic carbon content. Therefore, the joint regulation of water-saving irrigation and organic fertilizer is an effective measure for maintaining yield, increasing irrigation water use efficiency, mitigating CO 2 emission, and promoting paddy soil fertility.
CRISM Observations of Water Vapor and Carbon Monoxide
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd
2008-01-01
Near-infrared spectra returned by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM, [1]) on-board the Mars Reconnaissance Orbiter (MRO) contain the clear spectral signature of several atmospheric gases including carbon dioxide (CO2), water vapor (H2O), and carbon monoxide (CO). Here we describe the seasonal and spatial mapping of water vapor and carbon dioxide for one full Martian year using CRISM spectra.
Energy Use and Carbon Dioxide Emissions from Cropland Production in the United States, 1990-2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Tristram O.; Brandt, Craig C; Marland, Gregg
2009-01-01
Changes in cropland production and management influence energy consumption and emissions of CO2 from fossil-fuel combustion. A method was developed to calculate on-site and off-site energy and CO2 emissions for cropping practices in the US at the county scale. Energy consumption and emissions occur on-site from the operation of farm machinery and occur off-site from the manufacture and transport of cropland production inputs, such as fertilizers, pesticides, and agricultural lime. Estimates of fossil-fuel consumption and associated CO2 emissions for cropping practices enable (a) the monitoring of energy and emissions with changes in land management, and (b) the calculation and balancingmore » of regional and national carbon budgets. Results indicate on-site energy use and total energy use (i.e., the sum of on-site and off-site) on US croplands in 2004 ranged from 1.6-7.9 GJ ha-1 yr-1 and from 5.5-20.5 GJ ha-1 yr-1, respectively. On-site and total CO2 emissions in 2004 ranged from 23-176 kg C ha-1 yr-1 and from 91-365 kg C ha-1 yr-1, respectively. During the period of this analysis (1990-2004), national total energy consumption for crop production ranged from 1204-1297 PJ yr-1 (Petajoule = 1 1015 Joule) with associated total fossil CO2 emissions ranging from 22.0-23.2 Tg C yr-1 (Teragram = 1 1012 gram). The annual proportion of on-site CO2 to total CO2 emissions changed depending on the diversity of crops planted. Adoption of reduced tillage practices in the US from 1990 to 2004 resulted in a net emissions reduction of 2.4 Tg C.« less
Ali, M Liakat; Taylor, Jeff H; Jie, Liu; Sun, Genlou; William, Manilal; Kasha, Ken J; Reid, Lana M; Pauls, K Peter
2005-06-01
Gibberella ear rot, caused by the fungus Fusarium graminearum Schwabe, is a serious disease of corn (Zea mays) grown in northern climates. Infected corn is lower yielding and contains toxins that are dangerous to livestock and humans. Resistance to ear rot in corn is quantitative, specific to the mode of fungal entry (silk channels or kernel wounds), and highly influenced by the environment. Evaluations of ear rot resistance are complex and subjective; and they need to be repeated over several years. All of these factors have hampered attempts to develop F. graminearum resistant corn varieties. The aim of this study was to identify molecular markers linked to the genes for resistance to Gibberella ear rot. A recombinant inbred (RI) population, produced from a cross between a Gibberella ear rot resistant line (CO387) and a susceptible line (CG62), was field-inoculated and scored for Gibberella ear rot symptoms in the F4, F6, and F7 generations. The distributions of disease scores were continuous, indicating that resistance is probably conditioned by multiple loci. A molecular linkage map, based on segregation in the F5 RI population, contained 162 markers distributed over 10 linkage groups and had a total length of 2237 cM with an average distance between markers of 13.8 cM. Composite interval mapping identified 11 quantitative trait loci (QTLs) for Gibberella ear rot resistance following silk inoculation and 18 QTLs following kernel inoculation in 4 environments that accounted for 6.7%-35% of the total phenotypic variation. Only 2 QTLs (on linkage group 7) were detected in more than 1 test for silk resistance, and only 1 QTL (on linkage group 5) was detected in more than 1 test for kernel resistance, confirming the strong influence of the environment on these traits. The majority of the favorable alleles were derived from the resistant parent (CO387). The germplasm and markers for QTLs with significant phenotypic effects may be useful for marker-assisted selection to incorporate Gibberella ear rot resistance into commercial corn cultivars.
NASA Astrophysics Data System (ADS)
González Abad, Gonzalo; Vasilkov, Alexander; Seftor, Colin; Liu, Xiong; Chance, Kelly
2016-07-01
This paper presents our new formaldehyde (H2CO) retrievals, obtained from spectra recorded by the nadir instrument of the Ozone Mapping and Profiler Suite (OMPS) flown on board NASA's Suomi National Polar-orbiting Partnership (SUOMI-NPP) satellite. Our algorithm is similar to the one currently in place for the production of NASA's Ozone Monitoring Instrument (OMI) operational H2CO product. We are now able to produce a set of long-term data from two different instruments that share a similar concept and a similar retrieval approach. The ongoing overlap period between OMI and OMPS offers a perfect opportunity to study the consistency between both data sets. The different spatial and spectral resolution of the instruments is a source of discrepancy in the retrievals despite the similarity of the physic assumptions of the algorithm. We have concluded that the reduced spectral resolution of OMPS in comparison with OMI is not a significant obstacle in obtaining good-quality retrievals. Indeed, the improved signal-to-noise ratio of OMPS with respect to OMI helps to reduce the noise of the retrievals performed using OMPS spectra. However, the size of OMPS spatial pixels imposes a limitation in the capability to distinguish particular features of H2CO that are discernible with OMI. With root mean square (RMS) residuals ˜ 5 × 10-4 for individual pixels we estimate the detection limit to be about 7.5 × 1015 molecules cm-2. Total vertical column density (VCD) errors for individual pixels range between 40 % for pixels with high concentrations to 100 % or more for pixels with concentrations at or below the detection limit. We compare different OMI products (SAO OMI v3.0.2 and BIRA OMI v14) with our OMPS product using 1 year of data, between September 2012 and September 2013. The seasonality of the retrieved slant columns is captured similarly by all products but there are discrepancies in the values of the VCDs. The mean biases among the two OMI products and our OMPS product are 23 % between OMI SAO and OMPS SAO and 28 % between OMI BIRA and OMPS SAO for eight selected regions.
A Topological Paradigm for Hippocampal Spatial Map Formation Using Persistent Homology
Dabaghian, Y.; Mémoli, F.; Frank, L.; Carlsson, G.
2012-01-01
An animal's ability to navigate through space rests on its ability to create a mental map of its environment. The hippocampus is the brain region centrally responsible for such maps, and it has been assumed to encode geometric information (distances, angles). Given, however, that hippocampal output consists of patterns of spiking across many neurons, and downstream regions must be able to translate those patterns into accurate information about an animal's spatial environment, we hypothesized that 1) the temporal pattern of neuronal firing, particularly co-firing, is key to decoding spatial information, and 2) since co-firing implies spatial overlap of place fields, a map encoded by co-firing will be based on connectivity and adjacency, i.e., it will be a topological map. Here we test this topological hypothesis with a simple model of hippocampal activity, varying three parameters (firing rate, place field size, and number of neurons) in computer simulations of rat trajectories in three topologically and geometrically distinct test environments. Using a computational algorithm based on recently developed tools from Persistent Homology theory in the field of algebraic topology, we find that the patterns of neuronal co-firing can, in fact, convey topological information about the environment in a biologically realistic length of time. Furthermore, our simulations reveal a “learning region” that highlights the interplay between the parameters in combining to produce hippocampal states that are more or less adept at map formation. For example, within the learning region a lower number of neurons firing can be compensated by adjustments in firing rate or place field size, but beyond a certain point map formation begins to fail. We propose that this learning region provides a coherent theoretical lens through which to view conditions that impair spatial learning by altering place cell firing rates or spatial specificity. PMID:22912564
Predicting the intensity mapping signal for multi-J CO lines
NASA Astrophysics Data System (ADS)
Mashian, Natalie; Sternberg, Amiel; Loeb, Abraham
2015-11-01
We present a novel approach to estimating the intensity mapping signal of any CO rotational line emitted during the Epoch of Reionization (EoR). Our approach is based on large velocity gradient (LVG) modeling, a radiative transfer modeling technique that generates the full CO spectral line energy distribution (SLED) for a specified gas kinetic temperature, volume density, velocity gradient, molecular abundance, and column density. These parameters, which drive the physics of CO transitions and ultimately dictate the shape and amplitude of the CO SLED, can be linked to the global properties of the host galaxy, mainly the star formation rate (SFR) and the SFR surface density. By further employing an empirically derived SFR-M relation for high redshift galaxies, we can express the LVG parameters, and thus the specific intensity of any CO rotational transition, as functions of the host halo mass M and redshift z. Integrating over the range of halo masses expected to host CO-luminous galaxies, we predict a mean CO(1-0) brightness temperature ranging from ~ 0.6 μK at z = 6 to ~ 0.03 μK at z = 10 with brightness temperature fluctuations of ΔCO2 ~ 0.1 and 0.005 μK respectively, at k = 0.1 Mpc-1. In this model, the CO emission signal remains strong for higher rotational levels at z = 6, with langle TCO rangle ~ 0.3 and 0.05 μK for the CO J = 6arrow5 and CO J = 10arrow9 transitions respectively. Including the effects of CO photodissociation in these molecular clouds, especially at low metallicities, results in the overall reduction in the amplitude of the CO signal, with the low- and high-J lines weakening by 2-20% and 10-45%, respectively, over the redshift range 4 < z < 10.
Development of Double and Triple-Pulsed 2-micron IPDA Lidars for Column CO2 Measurements
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Reithmaier, Karl
2015-01-01
Carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and globalradiation budget on Earth. CO2 role on Earth’s climate is complicated due to different interactions with various climatecomponents that include the atmosphere, the biosphere and the hydrosphere. Although extensive worldwide efforts formonitoring atmospheric CO2 through various techniques, including in-situ and passive sensors, are taking place highuncertainties exist in quantifying CO2 sources and sinks. These uncertainties are mainly due to insufficient spatial andtemporal mapping of the gas. Therefore it is required to have more rapid and accurate CO2 monitoring with higheruniform coverage and higher resolution. CO2 DIAL operating in the 2-µm band offer better near-surface CO2measurement sensitivity due to the intrinsically stronger absorption lines. For more than 15 years, NASA LangleyResearch Center (LaRC) contributed in developing several 2-?m CO2 DIAL systems and technologies. This paperfocuses on the current development of the airborne double-pulsed and triple-pulsed 2-?m CO2 integrated pathdifferential absorption (IPDA) lidar system at NASA LaRC. This includes the IPDA system development andintegration. Results from ground and airborne CO2 IPDA testing will be presented. The potential of scaling suchtechnology to a space mission will be addressed.
Critical evaluation of 13C natural abundance techniques to partition soil-surface CO2 efflux
NASA Astrophysics Data System (ADS)
Snell, H.; Midwood, A. J.; Robinson, D.
2013-12-01
Soil is the largest terrestrial store of carbon and the flux of CO2 from soils to the atmosphere is estimated at around 98 Pg (98 billion tonnes) of carbon per year. The CO2 efflux from the soil surface is derived from plant root and rhizosphere respiration (autotrophically fuelled) and microbial degradation of soil organic matter (heterotrophic respiration). Heterotrophic respiration is a key determinant of an ecosystem's long-term C balance, but one that is difficult to measure in the field. One approach involves partitioning the total soil-surface CO2 efflux between heterotrophic and autotrophic components; this can be done using differences in the natural abundance stable isotope ratios (δ13C) of autotrophic and heterotrophic CO2 as the end-members of a simple mixing model. In most natural, temperate ecosystems, current and historical vegetation cover (and therefore also plant-derived soil organic matter) is produced from C3 photosynthesis so the difference in δ13C between the autotrophic and heterotrophic CO2 sources is small. Successful partitioning therefore requires accurate and precise measurements of the δ13CO2 of the autotrophic and heterotrophic end-members (obtained by measuring the δ13CO2 of soil-free roots and root-free soil) and of total soil CO2 efflux. There is currently little consensus on the optimum measurement protocols. Here we systematically tested some of the most commonly used techniques to identify and minimise methodological errors. Using soil-surface chambers to sample total CO2 efflux and a cavity ring-down spectrometer to measure δ13CO2 in a partitioning study on a Scottish moorland, we found that: using soil-penetrating collars leads to a more depleted chamber measurement of total soil δ13CO2 as a result of severing roots and fungal hyphae or equilibrating with δ13CO2 at depth or both; root incubations provide an accurate estimate of in-situ root respired δ13CO2 provided they are sampled within one hour; the δ13CO2 from root-free soil changes rapidly during incubation and even CO2 sampled very soon after excavation is unlikely to give an accurate estimate of the heterotrophic isotope end-member, to solve this we applied non-linear regressions to the change in δ13CO2 with time to derive the heterotrophic end-member in undisturbed soil.
Koseki, Shigenobu; Itoh, Kazuhiko
2002-02-01
Nitrogen (N2) gas packaging for fresh-cut vegetables (lettuce and cabbage) has been examined as a means of modified atmosphere packaging (MAP) for extending the shelf life of cut vegetables. Gas composition in enclosed packages that contained cut vegetables and were filled with 100% N2 had an oxygen (O2) concentration of 1.2 to 5.0% and a carbon dioxide (CO2) concentration of 0.5 to 3.5% after 5 days of storage. An atmosphere of low concentrations of O2 and high CO2 conditions occurred naturally in the package filled with N2 gas. Degradation of cut vegetables in terms of appearance was delayed by N2 gas packaging. Because of this effect, the appearance of fresh-cut vegetables packaged with N2 gas remained acceptable at temperatures below 5 degrees C after 5 days. Treatment with acidic electrolyzed water (AcEW) contributed to the acceptability of the vegetables' appearance at 5 and 10 degrees C in the air-packaging system. N2 gas packaging did not significantly affect the growth of microbial populations (total aerobic bacteria, coliform bacteria, Bacillus cereus, and psychrotrophic bacteria) in or on cut vegetables at 1, 5, and 10 degrees C for 5 days. Microbial growth in or on the cut vegetables was inhibited at 1 degrees C for 5 days regardless of atmospheric conditions.
Pan, Xiaogui; Zhang, Yi; Tao, Sai
2015-01-01
Objective was to investigate the effects of Tai Chi exercise on nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) levels, and blood pressure (BP) in patients with essential hypertension (EH). EH patients were assigned to the Tai Chi exercise group (HTC, n = 24), and hypertension group (HP, n = 16) by patients' willingness. Healthy volunteers matched for age and gender were recruited as control (NP, n = 16). HTC group performed Tai Chi (60 min/d, 6 d/week) for 12 weeks. Measurements (blood glucose, cholesterol, NO, CO, H2S and BP) were obtained at week 0, 6, and 12. SBP, MAP, and low-density lipoprotein cholesterol levels decreased, and high-density lipoprotein cholesterol levels increased by week 12 in the HTC group (all p < 0.05 versus baseline). Plasma NO, CO, and H2S levels in the HTC group were increased after 12 weeks (all p < 0.05 versus baseline). SBP, DBP and MAP levels were significantly lower in the HTC than in the HP group (all p < 0.05). However, no changes were observed in the HP and NP groups. Correlations were observed between changes in SBP and changes in NO, CO and H2S (r = -0.45, -0.51 and -0.46, respectively, all p < 0.05), and between changes in MAP and changes in NO, CO and H2S (r = -0.36, -0.45 and -0.42, respectively, all p < 0.05). In conclusion, Tai Chi exercise seems to have beneficial effects on BP and gaseous signaling molecules in EH patients. However, further investigation is required to understand the exact mechanisms underlying these observations, and to confirm these results in a larger cohort.
X-ray diffraction measurement of cosolvent accessible volume in rhombohedral insulin crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soares, Alexei S.; Caspar, Donald L. D.
We report x-ray crystallographic measurement of the number of solvent electrons in the unit cell of a protein crystal equilibrated with aqueous solutions of different densities provides information about preferential hydration in the crystalline state. Room temperature and cryo-cooled rhombohedral insulin crystals were equilibrated with 1.2 M trehalose to study the effect of lowered water activity. The native and trehalose soaked crystals were isomorphous and had similar structures. Including all the low resolution data, the amplitudes of the structure factors were put on an absolute scale (in units of electrons per asymmetric unit) by constraining the integrated number of electronsmore » inside the envelope of the calculated protein density map to equal the number deduced from the atomic model. This procedure defines the value of F(0 0 0), the amplitude at the origin of the Fourier transform, which is equal to the total number of electrons in the asymmetric unit (i.e. protein plus solvent). Comparison of the F(0 0 0) values for three isomorphous pairs of room temperature insulin crystals, three with trehalose and three without trehalose, indicates that 75 ± 12 electrons per asymmetric unit were added to the crystal solvent when soaked in 1.2 M trehalose. If all the water in the crystal were available as solvent for the trehalose, 304 electrons would have been added. Thus, the co-solvent accessible volume is one quarter of the total water in the crystal. Finally, determination of the total number of electrons in a protein crystal is an essential first step for mapping the average density distribution of the disordered solvent.« less
X-ray diffraction measurement of cosolvent accessible volume in rhombohedral insulin crystals
Soares, Alexei S.; Caspar, Donald L. D.
2017-08-31
We report x-ray crystallographic measurement of the number of solvent electrons in the unit cell of a protein crystal equilibrated with aqueous solutions of different densities provides information about preferential hydration in the crystalline state. Room temperature and cryo-cooled rhombohedral insulin crystals were equilibrated with 1.2 M trehalose to study the effect of lowered water activity. The native and trehalose soaked crystals were isomorphous and had similar structures. Including all the low resolution data, the amplitudes of the structure factors were put on an absolute scale (in units of electrons per asymmetric unit) by constraining the integrated number of electronsmore » inside the envelope of the calculated protein density map to equal the number deduced from the atomic model. This procedure defines the value of F(0 0 0), the amplitude at the origin of the Fourier transform, which is equal to the total number of electrons in the asymmetric unit (i.e. protein plus solvent). Comparison of the F(0 0 0) values for three isomorphous pairs of room temperature insulin crystals, three with trehalose and three without trehalose, indicates that 75 ± 12 electrons per asymmetric unit were added to the crystal solvent when soaked in 1.2 M trehalose. If all the water in the crystal were available as solvent for the trehalose, 304 electrons would have been added. Thus, the co-solvent accessible volume is one quarter of the total water in the crystal. Finally, determination of the total number of electrons in a protein crystal is an essential first step for mapping the average density distribution of the disordered solvent.« less
Degassing of CO2, SO2, and H2S associated with the 2009 eruption of Redoubt Volcano, Alaska
Werner, Cynthia A.; Kelly, Peter; Doukas, Michael P.; Lopez, Taryn; Pfeffer, Melissa; McGimsey, Robert G.; Neal, Christina
2013-01-01
The 2009 eruption of Redoubt Volcano, Alaska was particularly well monitored for volcanic gas emissions. We report 35 airborne measurements of CO2, SO2, and H2S emission rates that span from October 2008 to August 2010. The magmatic system degassed primarily as a closed system although minor amounts of open system degassing were observed in the 6 months prior to eruption on March 15, 2009 and over 1 year following cessation of dome extrusion. Only 14% of the total CO2 was emitted prior to eruption even though high emissions rates (between 3630 and 9020 t/d) were observed in the final 6 weeks preceding the eruption. A minor amount of the total SO2 was observed prior to eruption (4%), which was consistent with the low emission rates at that time (up to 180 t/d). The amount of the gas emitted during the explosive and dome growth period (March 15–July 1, 2009) was 59 and 66% of the total CO2and SO2, respectively. Maximum emission rates were 33,110 t/d CO2, 16,650 t/d SO2, and 1230 t/d H2S. Post-eruptive passive degassing was responsible for 27 and 30% of the total CO2 and SO2, respectively. SO2 made up on average 92% of the total sulfur degassing throughout the eruption. Magmas were vapor saturated with a C- and S-rich volatile phase, and regardless of composition, the magmas appear to be buffered by a volatile composition with a molar CO2/SO2 ratio of ~ 2.4. Primary volatile contents calculated from degassing and erupted magma volumes range from 0.9 to 2.1 wt.% CO2 and 0.27–0.56 wt.% S; whole-rock normalized values are slightly lower (0.8–1.7 wt.% CO2 and 0.22–0.47 wt.% S) and are similar to what was calculated for the 1989–90 eruption of Redoubt. Such contents argue that primary arc magmas are rich in CO2 and S. Similar trends between volumes of estimated degassed magma and observed erupted magma during the eruptive period point to primary volatile contents of 1.25 wt.% CO2 and 0.35 wt.% S. Assuming these values, up to 30% additional unerupted magma degassed in the year following final dome emplacement.
Degassing of CO2, SO2, and H2S associated with the 2009 eruption of Redoubt Volcano, Alaska
NASA Astrophysics Data System (ADS)
Werner, Cynthia; Kelly, Peter J.; Doukas, Michael; Lopez, Taryn; Pfeffer, Melissa; McGimsey, Robert; Neal, Christina
2013-06-01
The 2009 eruption of Redoubt Volcano, Alaska was particularly well monitored for volcanic gas emissions. We report 35 airborne measurements of CO2, SO2, and H2S emission rates that span from October 2008 to August 2010. The magmatic system degassed primarily as a closed system although minor amounts of open system degassing were observed in the 6 months prior to eruption on March 15, 2009 and over 1 year following cessation of dome extrusion. Only 14% of the total CO2 was emitted prior to eruption even though high emissions rates (between 3630 and 9020 t/d) were observed in the final 6 weeks preceding the eruption. A minor amount of the total SO2 was observed prior to eruption (4%), which was consistent with the low emission rates at that time (up to 180 t/d). The amount of the gas emitted during the explosive and dome growth period (March 15-July 1, 2009) was 59 and 66% of the total CO2 and SO2, respectively. Maximum emission rates were 33,110 t/d CO2, 16,650 t/d SO2, and 1230 t/d H2S. Post-eruptive passive degassing was responsible for 27 and 30% of the total CO2 and SO2, respectively. SO2 made up on average 92% of the total sulfur degassing throughout the eruption. Magmas were vapor saturated with a C- and S-rich volatile phase, and regardless of composition, the magmas appear to be buffered by a volatile composition with a molar CO2/SO2 ratio of ~ 2.4. Primary volatile contents calculated from degassing and erupted magma volumes range from 0.9 to 2.1 wt.% CO2 and 0.27-0.56 wt.% S; whole-rock normalized values are slightly lower (0.8-1.7 wt.% CO2 and 0.22-0.47 wt.% S) and are similar to what was calculated for the 1989-90 eruption of Redoubt. Such contents argue that primary arc magmas are rich in CO2 and S. Similar trends between volumes of estimated degassed magma and observed erupted magma during the eruptive period point to primary volatile contents of 1.25 wt.% CO2 and 0.35 wt.% S. Assuming these values, up to 30% additional unerupted magma degassed in the year following final dome emplacement.
Bevelhimer, Mark S.; Stewart, Aurthur J.; Fortner, Allison M.; ...
2016-01-06
During August-September 2012, we sampled six hydropower reservoirs in southeastern United States. for CO 2 and CH 4 emissions via three pathways: diffusive emissions from water surface; ebullition in the water column; and losses from dam tailwaters during power generation. Average total emission rates of CO 2 for the six reservoirs ranged from 1,127 to 2,051 mg m -2 d -1, which is low to moderate compared to CO 2 emissions rates reported for tropical hydropower reservoirs and boreal ponds and lakes, and similar to rates reported for other temperate reservoirs. Similar average rates for CH 4 were also relativelymore » low, ranging from 5 to 83 mg m -2 d -1. On a whole-reservoir basis, total emissions of CO 2 ranged nearly 10-fold, from ~51,000 kg per day for Fontana to ~486,000 kg per day for Guntersville, and total emissions of CH 4 ranged nearly 20-fold, from ~5 kg per day for Fontana to ~83 kg per day for Allatoona. Emissions through the tailwater pathway varied among reservoirs, comprising from 20 to 50% of total CO 2 emissions and 0 to 90% of CH 4 emissions, depending on the reservoir. Furthermore, several explanatory factors related to reservoir morphology and water quality were considered for observed differences among reservoirs.« less
Olsen, Jerry S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Watts, Julia A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Allison, Linda J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2001-01-01
In 1980, this data base and the corresponding map were completed after more than 20 years of field investigations, consultations, and analyses of published literature. They characterize the use and vegetative cover of the Earth's land surface with a 0.5° × 0.5° grid. This world-ecosystem-complex data set and the accompanying map provide a current reference base for interpreting the role of vegetation in the global cycling of CO2 and other gases and a basis for improved estimates of vegetation and soil carbon, of natural exchanges of CO2, and of net historic shifts of carbon between the biosphere and the atmosphere.
2-Micron Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement
NASA Technical Reports Server (NTRS)
Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan;
2014-01-01
A 2-micron high energy, pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. Development of this lidar heavily leverages the 2-micron laser technologies developed in LaRC over the last decade. The high pulse energy, direct detection lidar operating at CO2 2-micron absorption band provides an alternate approach to measure CO2 concentrations. This new 2-micron pulsed IPDA lidar has been flown in spring of this year for total ten flights with 27 flight hours. It is able to make measurements of the total amount of atmospheric CO2 from the aircraft to the ground or cloud. It is expected to provide high-precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.
CO2 deserts: implications of existing CO2 supply limitations for carbon management.
Middleton, Richard S; Clarens, Andres F; Liu, Xiaowei; Bielicki, Jeffrey M; Levine, Jonathan S
2014-10-07
Efforts to mitigate the impacts of climate change will require deep reductions in anthropogenic CO2 emissions on the scale of gigatonnes per year. CO2 capture and utilization and/or storage technologies are a class of approaches that can substantially reduce CO2 emissions. Even though examples of this approach, such as CO2-enhanced oil recovery, are already being practiced on a scale >0.05 Gt/year, little attention has been focused on the supply of CO2 for these projects. Here, facility-scale data newly collected by the U.S. Environmental Protection Agency was processed to produce the first comprehensive map of CO2 sources from industrial sectors currently supplying CO2 in the United States. Collectively these sources produce 0.16 Gt/year, but the data reveal the presence of large areas without access to CO2 at an industrially relevant scale (>25 kt/year). Even though some facilities with the capability to capture CO2 are not doing so and in some regions pipeline networks are being built to link CO2 sources and sinks, much of the country exists in "CO2 deserts". A life cycle analysis of the sources reveals that the predominant source of CO2, dedicated wells, has the largest carbon footprint further confounding prospects for rational carbon management strategies.
NASA Astrophysics Data System (ADS)
Martens, Sonja; Moeller, Fabian; Streibel, Martin; Liebscher, Axel; Ketzin Group
2014-05-01
The injection of CO2 at the Ketzin pilot site in Germany ended after five years in August 2013. We present the key results from site operation and outline future activities within the post-closure phase. From June 2008 onwards, a total amount of 67 kt of CO2 was safely injected into a saline aquifer (Upper Triassic sandstone) at a depth of 630 m - 650 m. The CO2 used was mainly of food grade quality (purity > 99.9%). In addition, 1.5 kt of CO2 from the pilot capture facility "Schwarze Pumpe" (power plant CO2 with purity > 99.7%) was injected in 2011. During regular operation, the CO2 was pre-heated on-site to 45°C before injection in order to avoid pressure build-up within the reservoir. During the final months of injection a "cold-injection" experiment with a stepwise decrease of the injection temperature down to 10°C was conducted between March and July 2013. In summer 2013, the injection of a mixture of 95% CO2 and 5% N2 was also tested. After ceasing the injection in August the injection facility and pipeline were removed in December 2013. Geological storage of CO2 at the Ketzin pilot site has so far proceeded in a safe and reliable manner. As a result of one of the most comprehensive R&D programs worldwide, a combination of different geochemical and geophysical monitoring methods is able to detect even small quantities of CO2 and map their spatial extent. After the cessation of CO2 injection a series of activities and further investigations are involved in the post-closure phase. The aim is that Ketzin will for the first time ever close the complete life-time cycle of a CO2 storage site at pilot scale. The five wells (1 injection/observation well, 4 pure observation wells) will be successively abandoned within the next few years while monitoring is continuing. The partial plugging of one observation well in the reservoir section was already completed in fall 2013. The new four-years project COMPLETE (CO2 post-injection monitoring and post-closure phase at the Ketzin pilot site) started in January 2014. Activities within COMPLETE include R&D work on well integrity, post-closure monitoring as well as two field experiments. One is a back-production test of the CO2 aiming at information on the physicochemical properties of the back-produced CO2 as well as the pressure response of the reservoir. The other experiment will focus on brine injection into the CO2 storage reservoir in order to study e.g. the residual gas saturation. Public outreach has been a key element for the project from the very beginning and accompanies the research on CO2 storage at Ketzin since 2004. Thus dissemination (e.g. www.co2ketzin.de) and activities at the visitor centre at the pilot site will continue within COMPLETE and along the entire life cycle of the Ketzin project.
Prospects for Chlorophyll Fluorescence Remote Sensing from the Orbiting Carbon Observatory-2
NASA Technical Reports Server (NTRS)
Frankenberg, Christian; Odell, Chris; Berry, Joseph; Guanter, Luis; Joiner, Joanna; Kohler, Philipp; Pollock, Randy; Taylor, Thomas E.
2014-01-01
The Orbiting Carbon Observatory-2 (OCO-2), scheduled to launch in July 2014, is a NASA mission designed to measure atmospheric CO2. Its main purpose is to allow inversions of net flux estimates of CO2 on regional to continental scales using the total column CO2 retrieved using high-resolution spectra in the 0.76, 1.6, and 2.0 nm ranges. Recently, it was shown that solar-induced chlorophyll fluorescence (SIF), a proxy for gross primary production (GPP, carbon uptake through photosynthesis), can be accurately retrieved from space using high spectral resolution radiances in the 750 nm range from the Japanese GOSAT and European GOME-2 instruments. Here, we use real OCO-2 thermal vacuum test data as well as a full repeat cycle (16 days) of simulated OCO-2 spectra under realistic conditions to evaluate the potential of OCO-2 for retrievals of chlorophyll fluorescence and also its dependence on clouds and aerosols. We find that the single-measurement precision is 0.3-0.5 Wm(exp -2)sr(exp -1) nm(exp -1) (15-25% of typical peak values), better than current measurements from space but still difficult to interpret on a single-sounding basis. The most significant advancement will come from smaller ground-pixel sizes and increased measurement frequency, with a 100-fold increase compared to GOSAT (and about 8 times higher than GOME-2). This will largely decrease the need for coarse spatial and temporal averaging in data analysis and pave the way to accurate local studies.We also find that the lack of full global mapping from the OCO-2 only incurs small representativeness errors on regional averages. Eventually, the combination of net ecosystem exchange (NEE) derived from CO2 source/sink inversions and SIF as proxy for GPP from the same satellite will provide a more process-based understanding of the global carbon cycle.
Radiocarbon measurements constrain the fossil and biological components of total CO2
NASA Astrophysics Data System (ADS)
Miller, J. B.; Lehman, S. J.; Tans, P. P.; Turnbull, J. C.
2009-12-01
In a rapidly evolving environment in which binding treaties and laws at the international, national and state levels are likely to limit greenhouse gas emissions, it will be critical for society to have independent verification of emissions and their accumulation in the atmosphere. Current treaties and laws like the Kyoto Protocol and California’s AB32 rely upon “bottom-up” reporting by governments and industry from inventories and process models to assess emissions. What we propose here is that to promote accuracy and transparency, it will also be necessary to verify these “bottom-up” approaches from the “top-down” perspective of the atmosphere. In particular, total CO2, which is the bottom line for climate forcing, and fossil fuel CO2, which is the primary driver of the observed increase need to be monitored. Total CO2 is already measured at high precision and accuracy at numerous sites nationally and globally by a variety of university and government entities (see e.g., www.esrl.noaa.gov/gmd/ccgg/globalview/). CO2 measurements in more locations and at higher frequencies are required to establish tighter constraints to emissions. For fossil fuel CO2, however, we require measurements of the rare isotopic species 14CO2. Fossil fuel emissions of CO2 are devoid of 14 (radiocarbon), because, by definition, these fuels are many millions of years old and the 14 half-life is only 5730 years. This makes 14CO2 an ideal tracer for fossil fuel emissions. Here we will present results of a nascent United States 14CO2 observation program that together with model simulations suggest a large number of 14CO2 measurements over the coterminous USA would allow for tight (~20%) regional (~105 - 106 km2) constraints on fossil fuel emissions at annual or seasonal time scales. Additionally, correlations of our 14CO2 observations with a wide suite of anthropogenic tracers suggest that “tuning” of these tracers with 14CO2 for fossil fuel detection may be possible. Furthermore, correlations of 14CO2 with tracers linked to specific activities like air conditioning or driving may allow a parsing of the total fossil fuel signal into sectoral components.
Star formation in the inner galaxy: A far-infrared and radio study of two H2 regions
NASA Technical Reports Server (NTRS)
Lester, D. F.; Dinerstein, H. L.; Werner, M. W.; Harvey, P. M.; Evans, N. J.; Brown, R. L.
1985-01-01
Far-infrared and radio continuum maps have been made of the central 6' of the inner-galaxy HII regions G30.8-0.0 (in the W43 complex) and G25.4-0.2, along with radio and molecular line measurements at selected positions. The purpose of this study is an effort to understand star formation in the molecular ring at 5 kpc in galactic radius. Measurements at several far infrared wavelengths allow the dust temperature structures and total far infrared fluxes to be determined. Comparison of the radio and infrared maps shows a close relationship between the ionized gas and the infrared-emitting material. There is evidence that parts of G30.8 are substantially affected by extinction, even at far-infrared wavelengths. Using radio recombination line and CO line data for G25.4-0.2, the distance ambiguity for this source is resolved. The large distance previously ascribed to the entire complex is found to apply to only one of the two main components. The confusion in distance determination is found to result from an extraordinary near-superposition of two bright HII regions. Using the revised distances of 4.3 kpc for G25.4SE and 12 kpc for G25.4NW, it is found that the latter, which is apparently the fainter of the two sources, is actually the more luminous. The ratio of total luminosity to ionizing luminosity is very similar to that of HII regions in the solar circle. Assuming a coeval population of ionizing stars, a normal initial mass function is indicated.
Non-CO2 Greenhouse Gas Emissions in China 2012: Inventory and Supply Chain Analysis
NASA Astrophysics Data System (ADS)
Zhang, Bo; Zhang, Yaowen; Zhao, Xueli; Meng, Jing
2018-01-01
Reliable inventory information is critical in informing emission mitigation efforts. Using the latest officially released emission data, which is production based, we take a consumption perspective to estimate the non-CO2 greenhouse gas (GHG) emissions for China in 2012. The non-CO2 GHG emissions, which cover CH4, N2O, HFCs, PFCs, and SF6, amounted to 2003.0 Mt. CO2-eq (including 1871.9 Mt. CO2-eq from economic activities), much larger than the total CO2 emissions in some developed countries. Urban consumption (30.1%), capital formation (28.2%), and exports (20.6%) derived approximately four fifths of the total embodied emissions in final demand. Furthermore, the results from structural path analysis help identify critical embodied emission paths and key economic sectors in supply chains for mitigating non-CO2 GHG emissions in Chinese economic systems. The top 20 paths were responsible for half of the national total embodied emissions. Several industrial sectors such as
NASA Astrophysics Data System (ADS)
Chen, Huilin; Katrynski, Krzysztof; Nedelec, Philippe; Machida, Toshinobu; Matsueda, Hidekazu; Sawa, Yousuke; Gerbig, Christoph
2010-05-01
Aircraft profiles for atmospheric trace gases have been collected using both rental aircraft and from commercial airliners. High-accuracy regular in situ CO2 measurements aboard rental aircraft over northeast Poland have been upgraded since August 2008. During each flight, two profiles are taken with a spatial separation of 20 kilometers. Until now, 74 profiles with continuous CO2 have been collected. Meanwhile, aircraft profiles for carbon monoxide (CO) have been made aboard commercial airliners within MOZAIC (Measurement of Ozone, water vapor, carbon monoxide and nitrogen oxides by AIrbus in-service airCraft) and for CO2 within CONTRAIL (Comprehensive Observation Network for TRace gases byAIrLiner) respectively. Starting from 2011, IAGOS-ERI (Integration of routine Aircraft measurements into a Global Observing System - European Research Infrastructure) will provide continuous CO2, CH4 and H2O measurements using instruments deployed aboard commercial airliners, with many profiles during take-off and landing over airports distributed all over the globe. These profiles contain not only vertical gradients but also regionally representative information. It is of importance to investigate how these profiles could be used for applications such as satellite validation and inverse modeling to retrieve surface-atmosphere exchange fluxes of greenhouse gases at regional to continental scales. Especially profiles from commercial airliners near major cities, which are potentially influenced by local fossil fuel emissions, need to be assessed with respect to their regional representativeness. We analyzed CO profiles over Frankfurt airport from the MOZAIC and CO2 profiles from CONTRAIL using STILT (the Stochastic Time Inverted Lagrangian Transport model) combined with a high resolution CO emission map in central Europe. Combining STILT footprints (maps of sensitivities to upstream surface fluxes) with high resolution emission inventories allows to attribute the contribution fossil fuel emissions to local vs. regional sources. In contrast, we analyzed CO2 profiles over northeast Poland in a similar way, where fossil fuel emissions are insignificant. The representativeness analysis provides information on under which circumstances such profiles can be used for potential applications, i.e. satellite validation and inverse modeling. The analysis suggests that a combined measurement of CO2 and CO significantly improves the usability of the regular profiles, where CO serves as the emission tracer.
Controlled environments alter nutrient content of soybeans
NASA Astrophysics Data System (ADS)
Jurgonski, L. J.; Smart, D. J.; Bugbee, B.; Nielsen, S. S.
1997-01-01
Information about compositional changes in plants grown in controlled environments is essential for developing a safe, nutritious diet for a Controlled Ecological Life-Support System (CELSS). Information now is available for some CELSS candidate crops, but detailed information has been lacking for soybeans. To determine the effect of environment on macronutrient and mineral composition of soybeans, plants were grown both in the field and in a controlled environment where the hydroponic nutrient solution, photosynthetic flux (PPF), and CO_2 level were manipulated to achieve rapid growth rates. Plants were harvested at seed maturity, separated into discrete parts, and oven dried prior to chemical analysis. Plant material was analyzed for proximate composition (moisture, protein, lipid, ash, and carbohydrate), total nitrogen (N), nonprotein N (NPN), nitrate, minerals, amino acid composition, and total dietary fiber. The effect of environment on composition varied by cultivar and plant part. Chamber-grown plants generally exhibited the following characteristics compared with field-grown plants: 1) increased total N and protein N for all plant parts, 2) increased nitrate in leaves and stems but not in seeds, 3) increased lipids in seeds, and 4) decreased Ca:P ratio for stems, pods, and leaves. These trends are consistent with data for other CELSS crops. Total N, protein N, and amino acid contents for 350 ppm CO_2 and 1000 ppm CO_2 were similar for seeds, but protein N and amino acid contents for leaves were higher at 350 ppm CO_2 than at 1000 ppm CO_2. Total dietary fiber content of soybean leaves was higher with 350 ppm CO_2 than with 1000 ppm CO_2. Such data will help in selecting of crop species, cultivars, and growing conditions to ensure safe, nutritious diets for CELSS.
Compositional analysis of Hyperion with the Cassini Visual and Infrared Mapping Spectrometer
NASA Astrophysics Data System (ADS)
Brad Dalton, J.; Cruikshank, Dale P.; Clark, Roger N.
2012-08-01
Compositional mapping of the surface of Hyperion using Cassini Visual and Infrared Mapping Spectrometer (VIMS) observations reveals a heterogeneous surface dominated by water ice accompanied by additional materials. Carbon dioxide, as evidenced by a prominent absorption band centered at 4.26 μm, is distributed over most of the surface, including icy regions. This does not represent exposures of pure CO2 ice, but concentrations of CO2 molecules adsorbed on other materials or complexed in H2O, perhaps as a clathrate (Cruikshank, D.P., Meyer, A.W., Brown, R.H., Clark, R.N., Jaumann, R., Stephan, K., Hibbitts, C.A., Sandford, S.A., Mastrapa, R., Filacchione, G., Dalle Ore, C.M., Nicholson, P.D., Buratti, B.J., McCord, T.B., Nelson, R.M., Dalton, J.B., Baines, K.H., Matson, D.L., The VIMS Team [2010]. Icarus 206, 561-572). Localized deposits of low-albedo material in subcircular depressions exhibit spectral absorptions indicative of C-H in aromatic (3.29 μm) and aliphatic (3.35-3.50 μm) hydrocarbons. An absorption band at 2.42 μm that is also seen on other saturnian satellites, tentatively identified as H2 (Clark, R.N. et al. [2011]. In: Proc. AAS-DPS Meeting, 43, 1563; Clark et al., in preparation, 2012) adsorbed on dark material grains, is also prominent. Our best spectral models included H2O and CO2 ice, with small amounts of nanophase Fe and Fe2O3. Weaker and more spatially scattered absorption features are also found at 4.48, 4.60, and 4.89 μm, although no clear molecular identifications have yet been made. While strongest in the low-albedo deposits, the CO2, hydrocarbon and putative H2 bands vary in strength throughout the icy regions, as do the 4.48-, 4.60- and 4.89-μm bands, suggesting that this background ice is laced with a complex mixture of non-ice compounds.
Vigna, Bianca B. Z.; Santos, Jean C. S.; Jungmann, Leticia; do Valle, Cacilda B.; Mollinari, Marcelo; Pastina, Maria M.; Garcia, Antonio A. F.
2016-01-01
The African species Urochloa humidicola (Rendle) Morrone & Zuloaga (syn. Brachiaria humidicola (Rendle) Schweick.) is an important perennial forage grass found throughout the tropics. This species is polyploid, ranging from tetra to nonaploid, and apomictic, which makes genetic studies challenging; therefore, the number of currently available genetic resources is limited. The genomic architecture and evolution of U. humidicola and the molecular markers linked to apomixis were investigated in a full-sib F1 population obtained by crossing the sexual accession H031 and the apomictic cultivar U. humidicola cv. BRS Tupi, both of which are hexaploid. A simple sequence repeat (SSR)-based linkage map was constructed for the species from 102 polymorphic and specific SSR markers based on simplex and double-simplex markers. The map consisted of 49 linkage groups (LGs) and had a total length of 1702.82 cM, with 89 microsatellite loci and an average map density of 10.6 cM. Eight homology groups (HGs) were formed, comprising 22 LGs, and the other LGs remained ungrouped. The locus that controls apospory (apo-locus) was mapped in LG02 and was located 19.4 cM from the locus Bh027.c.D2. In the cytological analyses of some hybrids, bi- to hexavalents at diakinesis were observed, as well as two nucleoli in some meiocytes, smaller chromosomes with preferential allocation within the first metaphase plate and asynchronous chromosome migration to the poles during anaphase. The linkage map and the meiocyte analyses confirm previous reports of hybridization and suggest an allopolyploid origin of the hexaploid U. humidicola. This is the first linkage map of an Urochloa species, and it will be useful for future quantitative trait locus (QTL) analysis after saturation of the map and for genome assembly and evolutionary studies in Urochloa spp. Moreover, the results of the apomixis mapping are consistent with previous reports and confirm the need for additional studies to search for a co-segregating marker. PMID:27104622
Ntalianis, Argyrios S; Drakos, Stavros G; Charitos, Christos; Dolou, Paraskevi; Pierrakos, Charalampos N; Terrovitis, John V; Papaioannou, Theodoros; Charitos, Efstratios; Nanas, John N
2008-01-01
The present experimental study compared the effectiveness of counterpulsation provided by the intra-aortic balloon pump (IABP) versus that of a nonpulsatile, radial-flow centrifugal pump (CFP) in rapidly worsening acute heart failure (HF). Eighteen pigs were included in the study. After the induction of acute moderate HF, circulatory support was randomly provided with either the IABP or CFP. No significant change in cardiac output (CO) and mean aortic pressure (MAP) was observed with either pump. The IABP caused a significantly greater decrease than the CFP in 1) double product (13.138 +/- 2.476 mm Hg/min vs. 14.217 +/- 2.673 mm Hg/min, p = 0.023), 2) left ventricular systolic pressure (LVSP, 100 +/- 8 mm Hg vs. 106 +/- 10 mm Hg, p = 0.046), and 3) end-diastolic aortic pressure (EDAP, 70 +/- 6 mm Hg vs. 86 +/- 6 mm Hg, p = 0.000). The effects of both pumps on total tension time index and LAD flow were similar. After the induction of severe HF, the IABP had its main effects on afterload and decreased LVSP from 88 +/- 6 mm Hg to 78 +/- 9 mm Hg, (p = 0.008), and EDAP from 57 +/- 9 mm Hg to 49 +/- 14 mm Hg, (p = 0.044), whereas the CFP exerted its effects mainly on preload, lowering LV end-diastolic pressure from 19 +/- 5 mm Hg to 11 +/- 4 mm Hg, (p = 0.002). CO and MAP were similarly increased by both assist systems. The IABP (by lowering afterload) and CFP (by lowering preload) both offered significant mechanical support in acute HF. However, afterload reduction offered principally by the IABP seems preferable for the recovery of the acutely failing heart.
Bibliography on CO2 Effects on Vegetation and Ecosystems: 1990-1999 Literature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Michael H.; Curtis, Peter S.; Institute for Scientific Information
This database provides complete bibliographic citations (plus abstracts and keywords, when available) for more than 2700 references published between 1990 and 1999 on the direct effects of elevated atmospheric concentrations of carbon dioxide (CO2) on vegetation, ecosystems, their components and interactions. This bibliography is an update to Direct Effects of Atmospheric CO2 Enrichment on Plants and Ecosystems: An Updated Bibliographic Data Base (ORNL/CDIAC-70), edited by Boyd R. Strain and Jennifer D. Cure, which covered literature from 1980 to 1994. This bibliography was developed to support the Carbon Dioxide Meta-Analysis Project (CO2MAP) at The Ohio State University, but was designed tomore » be useful for a wide variety of purposes related to the effects of elevated CO2 on vegetation and ecosystems.« less
Environmental Assessment for Potential Impacts of Ocean CO2 Storage on Marine Biogeochemical Cycles
NASA Astrophysics Data System (ADS)
Yamada, N.; Tsurushima, N.; Suzumura, M.; Shibamoto, Y.; Harada, K.
2008-12-01
Ocean CO2 storage that actively utilizes the ocean potential to dissolve extremely large amounts of CO2 is a useful option with the intent of diminishing atmospheric CO2 concentration. CO2 storage into sub-seabed geological formations is also considered as the option which has been already put to practical reconnaissance in some projects. Direct release of CO2 in the ocean storage and potential CO2 leakage from geological formations into the bottom water can alter carbonate system as well as pH of seawater. It is essential to examine to what direction and extent chemistry change of seawater induced by CO2 can affect the marine environments. Previous studies have shown direct and acute effects by increasing CO2 concentrations on physiology of marine organisms. It is also a serious concern that chemistry change can affect the rates of chemical, biochemical and microbial processes in seawater resulting in significant influences on marine biogeochemical cycles of the bioelements including carbon, nutrients and trace metals. We, AIST, have conducted a series of basic researches to assess the potential impacts of ocean CO2 storage on marine biogeochemical processes including CaCO3 dissolution, and bacterial and enzymatic decomposition of organic matter. By laboratory experiments using a special high pressure apparatus, the improved empirical equation was obtained for CaCO3 dissolution rate in the high CO2 concentrations. Based on the experimentally obtained kinetics with a numerical simulation for a practical scenario of oceanic CO2 sequestration where 50 Mton CO2 per year is continuously injected to 1,000-2,500 m depth within 100 x 333 km area for 30 years, we could illustrate precise 3-D maps for the predicted distributions of the saturation depth of CaCO3, in situ Ω value and CaCO3 dissolution rate in the western North Pacific. The result showed no significant change in the bathypelagic CaCO3 flux due to chemistry change induced by ocean CO2 sequestration. Both bacteria and hydrolytic enzymes are known as the essential promoters for organic matter decomposition in marine ecosystems. Bacterial activity and metabolisms under various CO2 concentrations and pH were examined on total cell abundance, 3H-leucine incorporation rate, and viable cell abundance. Our in vitro experiments demonstrated that acute effect by high CO2 conditions was negligible on the activities of bathypelagic bacteria at pH 7 or higher. However, our results suggested that bacterial assemblage in some organic-rich "microbial hot-spots" in seawater such as organic aggregates sinking particles, exhibited high sensitivity to acidification. Furthermore, it was indicated that CO2 injection seems to be the trigger to alter the microbial community structure between Eubacteria and Archaea. The activities of five types of hydrolytic enzymes showed no significant change with acidification as those observed in the bacterial activity. As to acute effects on microbial and biochemical processes examined by our laboratory studies, no significant influence was exhibited in the simulated ocean CO2 storage on marine biogeochemical cycling. Uncertainties in chronic and large-scale impacts, however, remain and should be addressed for more understanding the potential benefits and risks of the ocean storage.
NASA Technical Reports Server (NTRS)
Peters, L. K.; Yamanis, J.
1981-01-01
Objective procedures to analyze data from meteorological and space shuttle observations to validate a three dimensional model were investigated. The transport and chemistry of carbon monoxide and methane in the troposphere were studied. Four aspects were examined: (1) detailed evaluation of the variational calculus procedure, with the equation of continuity as a strong constraint, for adjustment of global tropospheric wind fields; (2) reduction of the National Meteorological Center (NMC) data tapes for data input to the OSTA-1/MAPS Experiment; (3) interpolation of the NMC Data for input to the CH4-CO model; and (4) temporal and spatial interpolation procedures of the CO measurements from the OSTA-1/MAPS Experiment to generate usable contours of the data.
Zhao, Yuhui; Su, Kai; Wang, Gang; Zhang, Liping; Zhang, Jijun; Li, Junpeng; Guo, Yinshan
2017-07-14
Genetic linkage maps are an important tool in genetic and genomic research. In this study, two hawthorn cultivars, Qiujinxing and Damianqiu, and 107 progenies from a cross between them were used for constructing a high-density genetic linkage map using the 2b-restriction site-associated DNA (2b-RAD) sequencing method, as well as for mapping quantitative trait loci (QTL) for flavonoid content. In total, 206,411,693 single-end reads were obtained, with an average sequencing depth of 57× in the parents and 23× in the progeny. After quality trimming, 117,896 high-quality 2b-RAD tags were retained, of which 42,279 were polymorphic; of these, 12,951 markers were used for constructing the genetic linkage map. The map contained 17 linkage groups and 3,894 markers, with a total map length of 1,551.97 cM and an average marker interval of 0.40 cM. QTL mapping identified 21 QTLs associated with flavonoid content in 10 linkage groups, which explained 16.30-59.00% of the variance. This is the first high-density linkage map for hawthorn, which will serve as a basis for fine-scale QTL mapping and marker-assisted selection of important traits in hawthorn germplasm and will facilitate chromosome assignment for hawthorn whole-genome assemblies in the future.
NASA Astrophysics Data System (ADS)
Liebscher, Axel
2017-04-01
Initiated in 2004, the Ketzin pilot site near Berlin, Germany, was the first European onshore storage project for research and development on geological CO2 storage. After comprehensive site characterization the site infrastructure was build comprising three deep wells and the injection facility including pumps and storage tanks. The operational CO2 injection period started in June 2008 and ended in August 2013 when the site entered the post-injection closure period. During these five years, a total amount of 67 kt of CO2 was safely injected into an Upper Triassic saline sandstone aquifer at a depth of 630 m - 650 m. In fall 2013, the first observation well was partially plugged in the reservoir section with CO2 resistant cement; full abandonment of this well finished in 2015 after roughly 2 years of cement plug monitoring. Abandonment of the remaining wells will be finished by summer 2017 and hand-over of liability to the competent authority is scheduled for end of 2017. The CO2 injected was mainly of food grade quality (purity > 99.9%). In addition, 1.5 kt of CO2 from the oxyfuel pilot capture facility "Schwarze Pumpe" (purity > 99.7%) was injected in 2011. The injection period terminated with a CO2-N2 co-injection experiment of 650 t of a 95% CO2/5% N2 mixture in summer 2013 to study the effects of impurities in the CO2 stream on the injection operation. During regular operation, the CO2 was pre-heated on-site to 40°C prior to injection to ensure a single-phase injection process and avoid any phase transition or transient states within the injection facility or the reservoir. Between March and July 2013, just prior to the CO2-N2 co-injection experiment, the injection temperature was stepwise decreased down to 10°C within a "cold-injection" experiment to study the effects of two-phase injection conditions. During injection operation, the combination of different geochemical and geophysical monitoring methods enabled detection and mapping of the spatial and temporal in-reservoir behaviour of the injected CO2 even for small quantities. After the cessation of CO2 injection, post-injection monitoring continues and is guided by the three high-level criteria set out in the EU Directive for transfer of liability: i) observed behaviour of the injected CO2 conforms to the modelled behaviour, ii) no detectable leakage, and iii) site is evolving towards a situation of long-term stability. In addition, two further field experiments have been performed since end of injection. A CO2 back-production experiment was run in autumn 2014 to study the physicochemical properties of the back-produced CO2 as well as the pressure response of the reservoir. From October 2015 to January 2016, a brine injection experiment aimed at studying the imbibition process and residual gas saturation. Just prior to final well abandonment, drilling of two sidetracks in one of the wells is scheduled for summer 2017 to recover unique core samples from reservoir and cap rocks that reflect 9 years of in-situ CO2 exposure and will provide first-hand information on CO2-triggered mineralogical, mechanical and petrophysical rock property changes.
Ikaite solubility in seawater-derived brines at 1 atm and sub-zero temperatures to 265 K
NASA Astrophysics Data System (ADS)
Papadimitriou, Stathys; Kennedy, Hilary; Kennedy, Paul; Thomas, David N.
2013-05-01
The concentration-based (stoichiometric) equilibrium solubility product of ikaite (CaCO3·6H2O) in seawater and cryogenic seawater-derived brines was determined at 1 atm total pressure over the temperature range from -1.1 to -7.5 °C and the salinity range from 34 to 124 in temperature-salinity pairs representative of sea ice brines. The solubility measurements were obtained in solutions that were undersaturated and supersaturated with respect to ikaite by equilibration with CO2/N2 gas mixtures of known pCO2 (20-400 μatm). The solutions were then equilibrated with synthetic ikaite (seed) for up to 3 months in a closed system. Arrival of the solid-solution system at a long-term chemical equilibrium was indicated by attainment of constant chemical solution composition with respect to total dissolved calcium, total dissolved inorganic carbon, and total alkalinity. Using these measurements, the stoichiometric equilibrium solubility product of ikaite (Ksp,ikaite∗=[Ca][CO32-], in molkgsolution-2) was determined, with the carbonate ion concentration computed from the measured total alkalinity and total dissolved inorganic carbon concentrations. The computed carbonate ion concentration and, by extension, the Ksp,ikaite∗ are both contingent on solving the system of equations that describe the parameters of the CO2 system in seawater by extrapolation to the experimental salinity and temperature conditions. The results show that the pKsp,ikaite∗=-logKsp,ikaite∗ in seawater of salinity 34 at -1.1 °C was 5.362 ± 0.004 and that the pKsp,ikaite∗ in sea ice at the freezing point of brines of salinity greater than 34 can be described as a function of temperature (T, in K) by the equation, pKsp,ikaite∗=-15489.09608+623443.70216T-1+2355.14596lnT, in the temperature range of 265.15 K < T < 271.15 K (-8 °C < t < -2 °C). Brines of low pCO2 (20 μatm) yielded a much slower (>1 month) approach to chemical equilibrium when incubated without seeding ikaite crystals. Simple modeling indicated that ikaite should not precipitate from sea ice brines evolving under closed system conditions with respect to CO2 exchange. To facilitate ikaite precipitation, brine pCO2 reduction due to photosynthesis or CO2 degassing, or both, is necessary.
Climatological Data for Clouds Over the Globe from Surface Observations (1988) (NDP-026)
Hahn, Carole J. [Univ. of Colorado, Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences (CIRES); Warren, Stephen G. [Department of Atmospheric Sciences, University of Washington, Seattle, Washington; London, Julius [Department of Astrophysical, Planetary, and Atmospheric Sciences, University of Colorado, Boulder, CO; Jenne, Ray L. [National Center for Atmospheric Research, Boulder, CO (United States); Chervin, Robert M. [National Center for Atmospheric Research, Boulder, CO (United States)
1988-01-01
With some data from as early as 1930, global long-term monthly and/or seasonal total cloud cover, cloud type amounts and frequencies of occurrence, low cloud base heights, harmonic analyses of annual and diurnal cycles, interannual variations and trends, and cloud type co-occurrences have been compiled and presented in two atlases (Warren et al. 1988, 1990). These data were derived from land and ship synoptic weather reports from the "SPOT" archive of the Fleet Numerical Oceanography Center (FNOC) and from Release 1 of the Comprehensive Ocean-Atmosphere Data Set (COADS) for the years 1930-1979. The data are in 12 files (one containing latitude, longitude, land-fraction, and number of land stations for grid boxes; four containing total cloud, cloud types, harmonic analyses, and interannual variations and trends for land; four containing total cloud, cloud types, harmonic analyses, and interannual variations and trends for oceans; one containing first cloud analyses for the first year of the GARP Global Experiment (FGGE); one containing cloud-type co-occurrences for land and oceans; and one containing a FORTRAN program to read and produce maps).
Part of the ecological risk assessment process involves examining the potential for environmental stressors and ecological receptors to co-occur across a landscape. In this study, we introduce a Bayesian joint modeling framework for use in evaluating and mapping the co-occurrence...
NASA Astrophysics Data System (ADS)
Shibuya, Takazo; Komiya, Tsuyoshi; Takai, Ken; Maruyama, Shigenori; Russell, Michael J.
2017-12-01
It was previously revealed that the total CO2 concentration in seawater decreased during the Late Archean. In this paper, to assess the secular change of total CO2 concentration in seawater, we focused on the Paleoproterozoic era when the Earth experienced its first recorded global glaciation. The 2.4 Ga Ongeluk Formation outcrops in the Kaapvaal Craton, South Africa. The formation consists mainly of submarine volcanic rocks that have erupted during the global glaciation. The undeformed lavas are mostly carbonate-free but contain rare disseminated calcites. The carbon isotope ratio of the disseminated calcite (δ13Ccc vs. VPDB) ranges from - 31.9 to - 13.2 ‰. The relatively low δ13Ccc values clearly indicate that the carbonation was partially contributed by 13C-depleted CO2 derived from decomposition of organic matter beneath the seafloor. The absence of δ13Ccc higher than - 13.2‰ is consistent with the exceptionally 13C-depleted CO2 in the Ongeluk seawater during glaciation. The results suggest that carbonation occurred during subseafloor hydrothermal circulation just after the eruption of the lavas. Previously, it was reported that the carbonate content in the uppermost subseafloor crust decreased from 3.2 to 2.6 Ga, indicating a decrease in total CO2 concentration in seawater during that time. However, the average CO2 (as carbonate) content in the Ongeluk lavas (< 0.001 wt%) is much lower than those of 2.6 Ga representatives and even of modern equivalents. This finding suggests that the total CO2 concentration in seawater further decreased during the period between 2.6 and 2.4 Ga. Thus, the very low content of carbonate in the Ongeluk lavas is probable evidence for the extremely low CO2 concentration in seawater during the global glaciation. Considering that the carbonate content of the subseafloor crusts also shows a good correlation with independently estimated atmospheric pCO2 levels through the Earth history, it seem highly likely that the low carbonate content in the Ongeluk lavas reflects the low atmospheric pCO2 at that time. We conclude that the continuous decrease in CO2 concentration of seawater/atm. from 3.2 Ga was one of the contributing factors to the Paleoproterozoic global glaciation.
NASA Astrophysics Data System (ADS)
Turnbull, J. C.; Cambaliza, M. L.; Sweeney, C.; Karion, A.; Newberger, T.; Tans, P. P.; Lehman, S.; Davis, K. J.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Shepson, P.; Gurney, K. R.; Song, Y.; Razlivanov, I. N.
2012-12-01
Emissions of fossil fuel CO2 (CO2ff) from anthropogenic sources are the primary driver of observed increases in the atmospheric CO2 burden, and hence global warming. Quantification of the magnitude of fossil fuel CO2 emissions is vital to improving our understanding of the global and regional carbon cycle, and independent evaluation of reported emissions is essential to the success of any emission reduction efforts. The urban scale is of particular interest, because ~75% CO2ff is emitted from urban regions, and cities are leading the way in attempts to reduce emissions. Measurements of 14CO2 can be used to determine CO2ff, yet existing 14C measurement techniques require laborious laboratory analysis and measurements are often insufficient for inferring an urban emission flux. This presentation will focus on how 14CO2 measurements can be combined with those of more easily measured ancillary tracers to obtain high resolution CO2ff mixing ratio estimates and then infer the emission flux. A pilot study over Sacramento, California showed strong correlations between CO2ff and carbon monoxide (CO) and demonstrated an ability to quantify the urban flux, albeit with large uncertainties. The Indianapolis Flux Project (INFLUX) aims to develop and assess methods to quantify urban greenhouse gas emissions. Indianapolis was chosen as an ideal test case because it has relatively straightforward meteorology; a contained, isolated, urban region; and substantial and well-known fossil fuel CO2 emissions. INFLUX incorporates atmospheric measurements of a suite of gases and isotopes including 14C from light aircraft and from a network of existing tall towers surrounding the Indianapolis urban area. The recently added CO2ff content is calculated from measurements of 14C in CO2, and then convolved with atmospheric transport models and ancillary data to estimate the urban CO2ff emission flux. Significant innovations in sample collection include: collection of hourly averaged samples to remove short term atmospheric variability; and direct measurement of the background signal from towers immediately upwind of the urban area and from the boundary layer. We find that CO2ff and other anthropogenic trace gases are consistently enhanced at a tower site downwind of the city. Measurements made directly over or very close to the urban area show only weak correlations between CO2ff and trace gases associated with combustion, likely because the urban plume is not yet well mixed. Total CO2 is also consistently enhanced in the downwind samples, even in summer. In winter, total CO2 enhancement is slightly higher than the fossil fuel CO2 enhancement, in agreement with Indiana's requirement for 10% bioethanol use in gasoline. This result implies that the enhancement in total CO2 can be used to infer CO2ff emissions for Indianapolis during winter. We therefore use the high resolution in situ total CO2 measurements in a simple mass balance model to estimate the urban CO2ff emissions. An initial comparison shows a ~20% difference between the top-down and bottom-up methods.
Kumari, Sanju; M Sheba, Jennifer; Marappan, Maheshwaran; Ponnuswamy, Shanmugasunderam; Seetharaman, Suresh; Pothi, Nagarajan; Subbarayalu, Mohankumar; Muthurajan, Raveendran; Natesan, Senthil
2010-09-01
Brown planthopper (Nilaparvata lugens Stål) is one of the major insect pests of rice. A Sri Lankan indica rice cultivar Rathu Heenati was found to be resistant to all biotypes of the brown planthopper. In the present study, a total of 268 F(7) RILs of IR50 and Rathu Heenati were phenotyped for their level of resistance against BPH by the standard seedbox screening test (SSST) in the greenhouse. A total of 53 SSR primers mapped on the chromosome 3 were used to screen the polymorphism between the parents IR50 and Rathu Heenati, out of which eleven were found to be polymorphic between IR50 and Rathu Heenati. The eleven primers that have shown polymorphism between the IR50 and Rathu Heenati parents were genotyped in a set of five resistant RILs and five susceptible RILs along with the parents for co-segregation analysis. Among the eleven primers, two primers namely RM3180 (18.22 Mb) and RM2453 (20.19 Mb) showed complete co-segregation with resistance. The identification of SSR markers linked with BPH resistant could be used for the maker assisted selection (MAS) program in rice breeding and to map the resistant genes on rice chromosomes for further gene cloning.
Two-dimensional Molecular Gas and Ongoing Star Formation around H II Region Sh2-104
NASA Astrophysics Data System (ADS)
Xu, Jin-Long; Xu, Ye; Yu, Naiping; Zhang, Chuan-peng; Liu, Xiao-Lan; Wang, Jun-Jie; Ning, Chang-chun; Ju, Bing-Gang; Zhang, Guo-Yin
2017-11-01
We performed a multi-wavelength study toward H II region Sh2-104. New maps of 12CO J = 1 - 0 and 13CO J = 1 - 0 were obtained from the Purple Mountain Observatory 13.7 m radio telescope. Sh2-104 displays a double-ring structure. The outer ring with a radius of 4.4 pc is dominated by 12, 500 μm, 12CO J = 1 - 0, and 13CO J = 1 - 0 emission, while the inner ring with a radius of 2.9 pc is dominated by 22 μm and 21 cm emission. We did not detect CO emission inside the outer ring. The north-east portion of the outer ring is blueshifted, while the south-west portion is redshifted. The present observations have provided evidence that the collected outer ring around Sh2-104 is a two-dimensional structure. From the column density map constructed by the Hi-GAL survey data, we extract 21 clumps. About 90% of all the clumps will form low-mass stars. A power-law fit to the clumps yields M=281 {M}⊙ {(r/{pc})}1.31+/- 0.08. The selected YSOs are associated with the collected material on the edge of Sh2-104. The derived dynamical age of Sh2-104 is 1.6× {10}6 yr. Comparing the Sh2-104 dynamical age with the YSO timescale and the fragmentation time of the molecular ring, we further confirm that the collect-and-collapse process operates in this region, indicating positive feedback from a massive star for surrounding gas.
Impact of nano-CaCO3 -LDPE packaging on quality of fresh-cut sugarcane.
Luo, Zisheng; Wang, Yansheng; Wang, Haohui; Feng, Simin
2014-12-01
In order to evaluate the effects of nano-CaCO3 -based low density polyethylene (nano-CaCO3 -LDPE) packaging on the quality of fresh-cut sugarcane, concentrations of O2 and CO2 within the packages, overall visual quality (OVQ), total bacterial count (TBC), yeast and mould count (YMC), reducing sugar content and total phenolic content, respiration, ethylene production, and the activities of phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD), acid invertase (AI) and neutral invertase (NI) were examined during storage at 10 °C for 5 days. The transmission rate of O2 and CO2 of the nano-CaCO3 -LDPE material was lower than that of LDPE, which lead to the more rapid formation of gas environment with low O2 and high CO2 concentration in the package. TBC and YMC counts of fresh-cut sugarcane were significantly retarded by nano-CaCO3 -LDPE packaging. Nano-CaCO3 -LDPE packaging fresh-cut sugarcane exhibited significantly lower activities of PAL, PPO, POD AI and NI than LDPE packaging fresh-cut sugarcanes during the storage. Meanwhile, nano-CaCO3 -LDPE packaging significantly inhibited the increase of browning index and total phenolic content, while improving OVQ. Our results indicated that nano-CaCO3 -LDPE packaging together with the cold storage is a promising approach in inhibiting browning and maintaining quality of fresh-cut sugarcane. © 2014 Society of Chemical Industry.
Developing a GIS for CO2 analysis using lightweight, open source components
NASA Astrophysics Data System (ADS)
Verma, R.; Goodale, C. E.; Hart, A. F.; Kulawik, S. S.; Law, E.; Osterman, G. B.; Braverman, A.; Nguyen, H. M.; Mattmann, C. A.; Crichton, D. J.; Eldering, A.; Castano, R.; Gunson, M. R.
2012-12-01
There are advantages to approaching the realm of geographic information systems (GIS) using lightweight, open source components in place of a more traditional web map service (WMS) solution. Rapid prototyping, schema-less data storage, the flexible interchange of components, and open source community support are just some of the benefits. In our effort to develop an application supporting the geospatial and temporal rendering of remote sensing carbon-dioxide (CO2) data for the CO2 Virtual Science Data Environment project, we have connected heterogeneous open source components together to form a GIS. Utilizing widely popular open source components including the schema-less database MongoDB, Leaflet interactive maps, the HighCharts JavaScript graphing library, and Python Bottle web-services, we have constructed a system for rapidly visualizing CO2 data with reduced up-front development costs. These components can be aggregated together, resulting in a configurable stack capable of replicating features provided by more standard GIS technologies. The approach we have taken is not meant to replace the more established GIS solutions, but to instead offer a rapid way to provide GIS features early in the development of an application and to offer a path towards utilizing more capable GIS technology in the future.
Real-time Author Co-citation Mapping for Online Searching.
ERIC Educational Resources Information Center
Lin, Xia; White, Howard D.; Buzydlowski, Jan
2003-01-01
Describes the design and implementation of a prototype visualization system, AuthorLink, to enhance author searching. AuthorLink is based on author co-citation analysis and visualization mapping algorithms. AuthorLink produces interactive author maps in real time from a database of 1.26 million records supplied by the Institute for Scientific…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ierardi, Anna Maria; Duka, Ejona; Radaelli, Alessandro
AimTo evaluate the feasibility of image fusion (IF) of pre-procedural arterial-phase CT angiography or MR angiography with intra-procedural fluoroscopy for road-mapping in endovascular treatment of aorto-iliac steno-occlusive disease.Materials and MethodsBetween September and November, 2014, we prospectively evaluated 5 patients with chronic aorto-iliac steno-occlusive disease, who underwent endovascular treatment in the angiography suite. Fusion image road-mapping was performed using angiographic phase CT images or MR images acquired before and intra-procedural unenhanced cone-beam CT. Radiation dose of the procedure, volume of intra-procedural iodinated contrast medium, fluoroscopy time, and overall procedural time were recorded. Reasons for potential fusion imaging inaccuracies were also evaluated.ResultsImagemore » co-registration and fusion guidance were feasible in all procedures. Mean radiation dose of the procedure was 60.21 Gycm2 (range 55.02–63.75 Gycm2). The mean total procedure time was 32.2 min (range 27–38 min). The mean fluoroscopy time was 12 min and 3 s. The mean procedural iodinated contrast material dose was 24 mL (range 20–40 mL).ConclusionsIF gives Interventional Radiologists the opportunity to use new technologies in order to improve outcomes with a significant reduction of contrast media administration.« less
Properties of the molecular gas in the fast outflow in the Seyfert galaxy IC 5063
NASA Astrophysics Data System (ADS)
Oosterloo, Tom; Raymond Oonk, J. B.; Morganti, Raffaella; Combes, Françoise; Dasyra, Kalliopi; Salomé, Philippe; Vlahakis, Nektarios; Tadhunter, Clive
2017-12-01
We present a detailed study of the properties of the molecular gas in the fast outflow driven by the active galactic nucleus (AGN) in the nearby radio-loud Seyfert galaxy IC 5063. By using ALMA observations of a number of tracers of the molecular gas (12CO(1-0), 12CO(2-1), 12CO(3-2), 13CO(2-1) and HCO+(4-3)), we map the differences in excitation, density and temperature of the gas as function of position and kinematics. The results show that in the immediate vicinity of the radio jet, a fast outflow, with velocities up to 800 km s-1, is occurring of which the gas has high excitation with excitation temperatures in the range 30-55 K, demonstrating the direct impact of the jet on the ISM. The relative brightness of the 12CO lines, as well as that of 13CO(2-1) vs. 12CO(2-1), show that the outflow is optically thin. We estimate the mass of the molecular outflow to be at least 1.2 × 106 M⊙ and likely to be a factor between two and three larger than this value. This is similar to that of the outflow of atomic gas, but much larger than that of the ionised outflow, showing that the outflow in IC 5063 is dominated by cold gas. The total mass outflow rate we estimated to be 12 M⊙ yr-1. The mass of the outflow is much smaller than the total gas mass of the ISM of IC 5063. Therefore, although the influence of the AGN and its radio jet is very significant in the inner regions of IC 5063, globally speaking the impact will be very modest. We used RADEX non-LTE modelling to explore the physical conditions of the molecular gas in the outflow. Models with the outflowing gas being quite clumpy give the most consistent results and our preferred solutions have kinetic temperatures in the range 20-100 K and densities between 105 and 106 cm-3. The resulting pressures are 106-107.5 K cm-3, about two orders of magnitude higher than in the outer quiescent disk. The highest densities and temperatures are found in the regions with the fastest outflow. The results strongly suggest that the outflow in IC 5063 is driven by the radio plasma jet expanding into a clumpy gaseous medium and creating a cocoon of (shocked) gas which is pushed away from the jet axis resulting in a lateral outflow, very similar to what is predicted by numerical simulations.