How Fast is Collapse of Proteins During Folding?
NASA Astrophysics Data System (ADS)
Chahine, J.; Onuchic, J. N.; Socci, N. D.
1998-03-01
Recent experiments in fast folding proteins are now starting to address the question of how fast is collapse relative to the total folding time. Using minimalist models, we are able to investigate the way in which different scenarios of folding can arise depending on the interplay between the collapse order parameter and the order parameter sensitive to specific tertiary contacts. Most of our earlier studies have focused on the limit that collapse is very fast compared to the total folding time. In this work we focus on the opposite limit, i.e., at the folding temperature, collapse and folding occurs simultaneously. The folding mechanism becomes very different in this limit. Particularly, the non-specific collapse transition, that occurs at temperatures higher than the folding temperature for the fast collapse limit, now occurs between the folding and the glass temperature. We show how this transition can be identified and its consequences for the folding kinetics.
A mixed helium-oxygen shell in some core-collapse supernova progenitors
NASA Astrophysics Data System (ADS)
Gofman, Roni Anna; Gilkis, Avishai; Soker, Noam
2018-04-01
We evolve models of rotating massive stars up to the stage of iron core collapse using the MESA code and find a shell with a mixed composition of primarily helium and oxygen in some cases. In the parameter space of initial masses of 13-40M⊙ and initial rotation velocities of 0-450 kms-1 that we investigate, we find a mixed helium-oxygen (He-O) shell with a significant total He-O mass and with a helium to oxygen mass ratio in the range of 0.5-2 only for a small fraction of the models. While the shell formation due to mixing is instigated by rotation, the pre-collapse rotation rate is not very high. The fraction of models with a shell of He-O composition required for an energetic collapse-induced thermonuclear explosion is small, as is the fraction of models with high specific angular momentum, which can aid the thermonuclear explosion by retarding the collapse. Our results suggest that the collapse-induced thermonuclear explosion mechanism that was revisited recently can account for at most a small fraction of core-collapse supernovae. The presence of such a mixed He-O shell still might have some implications for core-collapse supernovae, such as some nucleosynthesis processes when jets are present, or might result in peculiar sub-luminous core-collapse supernovae.
A mixed helium-oxygen shell in some core-collapse supernova progenitors
NASA Astrophysics Data System (ADS)
Gofman, Roni Anna; Gilkis, Avishai; Soker, Noam
2018-07-01
We evolve models of rotating massive stars up to the stage of iron core collapse using the MESA code and find a shell with a mixed composition of primarily helium and oxygen in some cases. In the parameter space of initial masses of 13-40 M⊙ and initial rotation velocities of 0-450 km s-1 that we investigate, we find a mixed helium-oxygen (He-O) shell with a significant total He-O mass and with a helium to oxygen mass ratio in the range of 0.5-2 only for a small fraction of the models. While the shell formation due to mixing is instigated by rotation, the pre-collapse rotation rate is not very high. The fraction of models with a shell of He-O composition required for an energetic collapse-induced thermonuclear explosion is small, as is the fraction of models with high specific angular momentum, which can aid the thermonuclear explosion by retarding the collapse. Our results suggest that the collapse-induced thermonuclear explosion mechanism that was revisited recently can account for at most a small fraction of core-collapse supernovae. The presence of such a mixed He-O shell still might have some implications for core-collapse supernovae, such as some nucleosynthesis processes when jets are present, or might result in peculiar sub-luminous core-collapse supernovae.
On the non-equilibrium dynamics of cavitation around the underwater projectile in variable motion
NASA Astrophysics Data System (ADS)
Chen, Y.; Lu, C. J.; Li, J.; Chen, X.; Gong, Z. X.
2015-12-01
In this work, the dynamic behavior of the non-equilibrium cavitation occurring around the underwater projectiles navigating with variable speed was numerically and theoretically investigated. The cavity collapse induced by the decelerating motion of the projectiles can be classified into two types: periodic oscillation and damped oscillation. In each type the evolution of the total mass of vapor in cavity are found to have strict correlation with the pressure oscillation in far field. By defining the equivalent radius of cavity, we introduce the specific kinetic energy of collapse and demonstrate that its change-rate is in good agreement with the pressure disturbance. We numerically investigated the influence of angle of attack on the collapse effect. The result shows that when the projectile decelerates, an asymmetric-focusing effect of the pressure induced by collapse occurs on its pressure side. We analytically explained such asymmetric-focusing effect.
A novel animal model for hyperdynamic airway collapse.
Tsukada, Hisashi; O'Donnell, Carl R; Garland, Robert; Herth, Felix; Decamp, Malcolm; Ernst, Armin
2010-12-01
Tracheobronchomalacia (TBM) is increasingly recognized as a condition associated with significant pulmonary morbidity. However, treatment is invasive and complex, and because there is no appropriate animal model, novel diagnostic and treatment strategies are difficult to evaluate. We endeavored to develop a reliable airway model to simulate hyperdynamic airway collapse in humans. Seven 20-kg male sheep were enrolled in this study. Tracheomalacia was created by submucosal resection of > 50% of the circumference of 10 consecutive cervical tracheal cartilage rings through a midline cervical incision. A silicone stent was placed in the trachea to prevent airway collapse during recovery. Tracheal collapsibility was assessed at protocol-specific time points by bronchoscopy and multidetector CT imaging while temporarily removing the stent. Esophageal pressure and flow data were collected to assess flow limitation during spontaneous breathing. All animals tolerated the surgical procedure well and were stented without complications. One sheep died at 2 weeks because of respiratory failure related to stent migration. In all sheep, near-total forced inspiratory airway collapse was observed up to 3 months postprocedure. Esophageal manometry demonstrated flow limitation associated with large negative pleural pressure swings during rapid spontaneous inhalation. Hyperdynamic airway collapse can reliably be induced with this technique. It may serve as a model for evaluation of novel diagnostic and therapeutic strategies for TBM.
Özparpucu, Merve
2018-01-01
Lignocellulosic biomass is recalcitrant toward deconstruction into simple sugars due to the presence of lignin. To render lignocellulosic biomass a suitable feedstock for the bio-based economy, plants can be engineered to have decreased amounts of lignin. However, engineered plants with the lowest amounts of lignin exhibit collapsed vessels and yield penalties. Previous efforts were not able to fully overcome this phenotype without settling in sugar yield upon saccharification. Here, we reintroduced CINNAMOYL-COENZYME A REDUCTASE1 (CCR1) expression specifically in the protoxylem and metaxylem vessel cells of Arabidopsis (Arabidopsis thaliana) ccr1 mutants. The resulting ccr1 ProSNBE:CCR1 lines had overcome the vascular collapse and had a total stem biomass yield that was increased up to 59% as compared with the wild type. Raman analysis showed that monolignols synthesized in the vessels also contribute to the lignification of neighboring xylary fibers. The cell wall composition and metabolome of ccr1 ProSNBE:CCR1 still exhibited many similarities to those of ccr1 mutants, regardless of their yield increase. In contrast to a recent report, the yield penalty of ccr1 mutants was not caused by ferulic acid accumulation but was (largely) the consequence of collapsed vessels. Finally, ccr1 ProSNBE:CCR1 plants had a 4-fold increase in total sugar yield when compared with wild-type plants. PMID:29158331
The timing and intensity of column collapse during explosive volcanic eruptions
NASA Astrophysics Data System (ADS)
Carazzo, Guillaume; Kaminski, Edouard; Tait, Stephen
2015-02-01
Volcanic columns produced by explosive eruptions commonly reach, at some stage, a collapse regime with associated pyroclastic density currents propagating on the ground. The threshold conditions for the entrance into this regime are mainly controlled by the mass flux and exsolved gas content at the source. However, column collapse is often partial and the controls on the fraction of total mass flux that feeds the pyroclastic density currents, defined here as the intensity of collapse, are unknown. To better understand this regime, we use a new experimental apparatus reproducing at laboratory scale the convecting and collapsing behavior of hot particle-laden air jets. We validate the predictions of a 1D theoretical model for the entrance into the regime of partial collapse. Furthermore, we show that where a buoyant plume and a collapsing fountain coexist, the intensity of collapse can be predicted by a universal scaling relationship. We find that the intensity of collapse in the partial collapse regime is controlled by magma gas content and temperature, and always exceeds 40%, independent of peak mass flux and total erupted volume. The comparison between our theoretical predictions and a set of geological data on historic and pre-historic explosive eruptions shows that the model can be used to predict both the onset and intensity of column collapse, hence it can be used for rapid assessment of volcanic hazards notably ash dispersal during eruptive crises.
Experimental Investigation of Free Field and Shock-Initiated Implosion of Composite Structures
2017-02-06
From- To) 06 - 02 - 2017 Final Report Nov . 2013 - De c . 2016 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Experimental I nvestigation of Free Fie l d...of experimental studies is perfor med to study the implos i on behavior of a variety of different composite structures under varying loading...Introduction Materials Experimental Procedure DIC Technique Collapse Pressure Predictions Specific and Total Impulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diot, Quentin, E-mail: quentin.diot@ucdenver.edu; Kavanagh, Brian; Vinogradskiy, Yevgeniy
2015-11-15
Purpose: To differentiate radiation-induced fibrosis from regional lung collapse outside of the high dose region in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Lung deformation maps were computed from pre-treatment and post-treatment computed tomography (CT) scans using a point-to-point translation method. Fifty anatomical landmarks inside the lung (vessel or airway branches) were matched on planning and follow-up scans for the computation process. Two methods using the deformation maps were developed to differentiate regional lung collapse from fibrosis: vector field and Jacobian methods. A total of 40 planning and follow-ups CT scans were analyzed for 20more » lung SBRT patients. Results: Regional lung collapse was detected in 15 patients (75%) using the vector field method, in ten patients (50%) using the Jacobian method, and in 12 patients (60%) by radiologists. In terms of sensitivity and specificity the Jacobian method performed better. Only weak correlations were observed between the dose to the proximal airways and the occurrence of regional lung collapse. Conclusions: The authors presented and evaluated two novel methods using anatomical lung deformations to investigate lung collapse and fibrosis caused by SBRT treatment. Differentiation of these distinct physiological mechanisms beyond what is usually labeled “fibrosis” is necessary for accurate modeling of lung SBRT-induced injuries. With the help of better models, it becomes possible to expand the therapeutic benefits of SBRT to a larger population of lung patients with large or centrally located tumors that were previously considered ineligible.« less
Wang, L; Zhang, X M; Deng, L; Tang, J F; Xiao, S F; Deng, H Q; Hu, W Y
2018-06-04
We systematically investigate the collapse of a set of open-cell nanoporous Cu (np-Cu) materials with the same porosity and shape but different specific surface areas, during thermal annealing, by performing large-scale molecular dynamics simulations. Two mechanisms govern the collapse of np-Cu. One is direct surface premelting, facilitating the collapse of np-Cu, when the specific surface area is less than a critical value (∼2.38 nm-1). The other is recrystallization followed by surface premelting, accelerating the sloughing of ligaments and the annihilation of voids, when the critical specific surface area is exceeded. Surface premelting results from surface reconstruction by prompting localized "disordering" and "chaos" on the surface, and the melting temperature reduces linearly with the increase of the specific surface area. Recrystallization is followed by surface premelting as the melting temperature is below the supercooling point, where a liquid is unstable and instantaneously recrystallizes.
QCD axion star collapse with the chiral potential
Eby, Joshua; Leembruggen, Madelyn; Suranyi, Peter; ...
2017-06-05
In a previous study, we analyzed collapsing axion stars using the low-energy instanton potential, showing that the total energy is always bounded and that collapsing axion stars do not form black holes. In this paper, we provide a proof that the conclusions are unchanged when using instead the more general chiral potential for QCD axions.
Ayres, S A; Holmberg, D L
1999-01-01
Pliable total ring prostheses were created from the polyvinyl chloride drip chambers of intravenous administration sets. The total ring prostheses were placed in one clinically normal research dog and in 4 client-owned dogs diagnosed with tracheal collapse. The research dog was euthanized one month after placement of the prostheses. Histopathological analysis of the trachea adjacent to the prostheses revealed a mild inflammatory response. The follow-up period for the clinical cases was from 4 months to 11 years. Radiographs taken and fluoroscopy performed 1 day to 5 months after surgery revealed improvement or resolution of the tracheal collapse. One dog was asymptomatic 28 weeks following surgery. Two dogs died 7 and 9 years after surgery, with one requiring intermittent medical management for coughing. They were euthanized for nonrespiratory illness. One dog had a persistent nonproductive cough, due to collapse of the mainstem bronchi, when last evaluated 4 months postoperatively. Pliable total ring prostheses provided adequate stability to the trachea and had the advantage of conforming to the trachea and being easy to create, place, and suture. Images Figure 1. Figure 2. PMID:10563237
Atmospheric Collapse on Early Mars: The Role of CO2 Clouds
NASA Technical Reports Server (NTRS)
Kahre, M. A.; Haberle, R. M.; Steakley, K. E.; Murphy, J. R.; Kling, A.
2017-01-01
The abundance of evidence that liquid water flowed on the surface early in Mars' history strongly implies that the early Martian atmosphere was significantly more massive than it is today. While it seems clear that the total CO2 inventory was likely substantially larger in the past, the fundamental question about the physical state of that CO2 is not completely understood. Because the temperature at which CO2 condenses increases with surface pressure, surface CO2 ice is more likely to form and persist as the atmospheric mass increases. For the atmosphere to remain stable against collapse, there must be enough energy, distributed planet wide, to stave off the formation of permanent CO2 caps that leads to atmospheric collapse. The presence of a "faint young sun" that was likely about 25 percent less luminous 3.8 billion years ago than the sun today makes this even more difficult. Several physical processes play a role in the ultimate stability of a CO2 atmosphere. The system is regulated by the energy balance between solar insolation, the radiative effects of the atmosphere and its constituents, atmospheric heat transport, heat exchange between the surface and the atmosphere, and latent heating/cooling. Specific considerations in this balance for a given orbital obliquity/eccentricity and atmospheric mass are the albedo of the caps, the dust content of the atmosphere, and the presence of water and/or CO2 clouds. Forget et al. show that, for Mars' current obliquity (in a circular orbit), CO2 atmospheres ranging in surface pressure from 500 hectopascals to 3000 hectopascals would have been stable against collapsing into permanent surface ice reservoirs. Soto et al. examined a similar range in initial surface pressure to investigate atmospheric collapse and to compute collapse rates. CO2 clouds and their radiative effects were included in Forget et al. but they were not included in Soto et al. Here we focus on how CO2 clouds affect the stability of the atmosphere against collapse.
Yanagihara, Angel A.; Shohet, Ralph V.
2012-01-01
Chironex fleckeri (Australian box jellyfish) stings can cause acute cardiovascular collapse and death. We developed methods to recover venom with high specific activity, and evaluated the effects of both total venom and constituent porins at doses equivalent to lethal envenomation. Marked potassium release occurred within 5 min and hemolysis within 20 min in human red blood cells (RBC) exposed to venom or purified venom porin. Electron microscopy revealed abundant ∼12-nm transmembrane pores in RBC exposed to purified venom porins. C57BL/6 mice injected with venom showed rapid decline in ejection fraction with progression to electromechanical dissociation and electrocardiographic findings consistent with acute hyperkalemia. Recognizing that porin assembly can be inhibited by zinc, we found that zinc gluconate inhibited potassium efflux from RBC exposed to total venom or purified porin, and prolonged survival time in mice following venom injection. These findings suggest that hyperkalemia is the critical event following Chironex fleckeri envenomation and that rapid administration of zinc could be life saving in human sting victims. PMID:23251508
Fiorelli, Alfonso; Scaramuzzi, Roberto; Pierdiluca, Matteo; Frongillo, Elisabetta; Messina, Gaetana; Serra, Nicola; De Felice, Alberto; Santini, Mario
2017-09-01
To assess whether the difference in lung volume measured with plethysmography and with the helium dilution technique could differentiate an open from a closed bulla in patients with a giant emphysematous bulla and could be used as a selection criterion for the positioning of an endobronchial valve. We reviewed the data of 27 consecutive patients with a giant emphysematous bulla undergoing treatment with an endobronchial valve. In addition to standard functional and radiological examinations, total lung capacity and residual volume were measured with the plethysmographic and helium dilution technique. We divided the patients into 2 groups, the collapse or the no-collapse group, depending on whether the bulla collapsed or not after the valves were put in position. We statistically evaluated the intergroup differences in lung volume and outcome. In the no-collapse group (n = 6), the baseline plethysmographic values were significantly higher than the helium dilution volumes, including total lung capacity (188 ± 14 vs 145 ± 13, P = 0.0007) and residual volume (156 ± 156 vs 115 ± 15, P = 0.001). In the collapse group, there was no significant difference in lung volumes measured with the 2 methods. A difference in total lung capacity of ≤ 13% and in residual volume of ≤ 25% measured with the 2 methods predicted the collapse of the bulla with a success rate of 83% and 84%, respectively. Only the collapse group showed significant improvement in functional data. Similar values in lung volumes measured with the 2 methods support the hypothesis that the bulla communicates with the airway (open bulla) and thus is likely to collapse when the endobronchial valve is implanted. Further studies are needed to validate our model. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Lake trout in the Great Lakes: Basin-wide stock collapse and binational restoration
Hansen, Michael J.; Taylor, William W.; Ferreri, C. Paola
1999-01-01
The lake trout (Salvelinus namaycush) was important to the human settlement of each of the Great Lakes, and underwent catastrophic collapses in each lake in the nineteenth and twentieth centuries. The timing of lake trout stock collapses were different in each lake, as were the causes of the collapses, and have been the subject of much scientific inquiry and debate. The purpose of this chapter is to summarize and review pertinent information relating historical changes in Great Lakes lake trout stocks, binational efforts to restore those stocks, and progress toward stock restoration. This presentation attempts to generalize patterns across the Great Lakes, rather than to focus within each lake. Lake specific analyses have been used to understand lake specific causes and effects, but there is continuing debate about some of these causes and effects. A basinwide review may suggest mechanisms for observed changes that are not evident by lake specific analysis.
Comparing solvophobic and multivalent induced collapse in polyelectrolyte brushes
Jackson, Nicholas E.; Brettmann, Blair K.; Vishwanath, Venkatram; ...
2017-02-03
Here, coarse-grained molecular dynamics enhanced by free-energy sampling methods is used to examine the roles of solvophobicity and multivalent salts on polyelectrolyte brush collapse. Specifically, we demonstrate that while ostensibly similar, solvophobic collapsed brushes and multivalent-ion collapsed brushes exhibit distinct mechanistic and structural features. Notably, multivalent-induced heterogeneous brush collapse is observed under good solvent polymer backbone conditions, demonstrating that the mechanism of multivalent collapse is not contingent upon a solvophobic backbone. Umbrella sampling of the potential of mean-force (PMF) between two individual brush strands confirms this analysis, revealing starkly different PMFs under solvophobic and multivalent conditions, suggesting the role ofmore » multivalent “bridging” as the discriminating feature in trivalent collapse. Structurally, multivalent ions show a propensity for nucleating order within collapsed brushes, whereas poor-solvent collapsed brushes are more disordered; this difference is traced to the existence of a metastable PMF minimum for poor solvent conditions, and a global PMF minimum for trivalent systems, under experimentally relevant conditions.« less
Comparing solvophobic and multivalent induced collapse in polyelectrolyte brushes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Nicholas E.; Brettmann, Blair K.; Vishwanath, Venkatram
Here, coarse-grained molecular dynamics enhanced by free-energy sampling methods is used to examine the roles of solvophobicity and multivalent salts on polyelectrolyte brush collapse. Specifically, we demonstrate that while ostensibly similar, solvophobic collapsed brushes and multivalent-ion collapsed brushes exhibit distinct mechanistic and structural features. Notably, multivalent-induced heterogeneous brush collapse is observed under good solvent polymer backbone conditions, demonstrating that the mechanism of multivalent collapse is not contingent upon a solvophobic backbone. Umbrella sampling of the potential of mean-force (PMF) between two individual brush strands confirms this analysis, revealing starkly different PMFs under solvophobic and multivalent conditions, suggesting the role ofmore » multivalent “bridging” as the discriminating feature in trivalent collapse. Structurally, multivalent ions show a propensity for nucleating order within collapsed brushes, whereas poor-solvent collapsed brushes are more disordered; this difference is traced to the existence of a metastable PMF minimum for poor solvent conditions, and a global PMF minimum for trivalent systems, under experimentally relevant conditions.« less
Collisions of dark matter axion stars with astrophysical sources
Eby, Joshua; Leembruggen, Madelyn; Leeney, Joseph; ...
2017-04-18
If QCD axions form a large fraction of the total mass of dark matter, then axion stars could be very abundant in galaxies. As a result, collisions with each other, and with other astrophysical bodies, can occur. We calculate the rate and analyze the consequences of three classes of collisions, those occurring between a dilute axion star and: another dilute axion star, an ordinary star, or a neutron star. In all cases we attempt to quantify the most important astrophysical uncertainties; we also pay particular attention to scenarios in which collisions lead to collapse of otherwise stable axion stars, and possible subsequent decay through number changing interactions. Collisions between two axion stars can occur with a high total rate, but the low relative velocity required for collapse to occur leads to a very low total rate of collapses. On the other hand, collisions between an axion star and an ordinary star have a large rate,more » $$\\Gamma_\\odot \\sim 3000$$ collisions/year/galaxy, and for sufficiently heavy axion stars, it is plausible that most or all such collisions lead to collapse. We identify in this case a parameter space which has a stable region and a region in which collision triggers collapse, which depend on the axion number ($N$) in the axion star, and a ratio of mass to radius cubed characterizing the ordinary star ($$M_s/R_s^3$$). Finally, we revisit the calculation of collision rates between axion stars and neutron stars, improving on previous estimates by taking cylindrical symmetry of the neutron star distribution into account. Finally, collapse and subsequent decay through collision processes, if occurring with a significant rate, can affect dark matter phenomenology and the axion star mass distribution.« less
Forensic Fluid Dynamics and the Indian Spring (1991) cave collapse problem
NASA Astrophysics Data System (ADS)
Nof, D.
2013-05-01
The collapse of the Indian spring cave (Florida) in 1991 was unique because it occurred while cave divers were in the cave. For the most part, the submerged cave is large enough to accommodate a passing truck so the cave divers were not in touch with its walls and it is hard to imagine why would it naturally collapse just when the divers were in it. Recently, Nof and Paldor (2010) resolved this apparent paradox by suggesting that resonance in the air pockets in the cavern, created by breathing (open circuit) divers, may have contributed to the collapse. In this scenario, divers present in the cavern during the dive may have (unknowingly) caused the collapse through the pressurized air/gas that they release with each breath. When the breathing period of the diver(s) matches the natural oscillations period of the "cave oscillator", the ensuing resonance causes the air pressure in the pockets to increase uncontrollably. Here, we place the above theory on a more solid ground. To do so, we first extended the resonance theory from our original two-pockets, symmetrical U-tube model (with two identical branches that were not specifically identified within the cave system) to a one (identified) pocket in the cavern and a very broad basin (identified, of course) that serves as the other branch of the U-tube. Our methodology is to apply familiar fluid dynamics principles to the situation that occurred in the cave. We did so, step-by-step, on the basis of our interviews with four out of the five surviving cave-divers. Namely, we dissected their testimonies to arrive at a physically plausible scenario determined on basis of a fluid dynamics application to the natural flow in the cave and the flow induced by the compressed air released by the divers as well as the collapsed mud. We found that the oscillation period was larger than what we earlier calculated (still relevant to the case, nevertheless), and that, in contrast to what most cave divers believe, there was a temporary flow blocking during the collapse but no total flow reversal within the cave. Observed swirling in the basin during the collapse is attributed to a dipole flow corresponding to an inflow and outflow from the cave.
Massive collapse of volcano edifices triggered by hydrothermal pressurization
Reid, M.E.
2004-01-01
Catastrophic collapse of steep volcano flanks threatens lives at stratovolcanoes around the world. Although destabilizing shallow intrusion of magma into the edifice accompanies some collapses (e.g., Mount St. Helens), others have occurred without eruption of juvenile magmatic materials (e.g., Bandai). These latter collapses can be difficult to anticipate. Historic collapses without magmatic eruption are associated with shallow hydrothermal groundwater systems at the time of collapse. Through the use of numerical models of heat and groundwater flow, I evaluate the efficacy of hydrothermally driven collapse. Heating from remote magma intrusion at depth can generate temporarily elevated pore-fluid pressures that propagate upward into an edifice. Effective-stress deformation modeling shows that these pressures are capable of destabilizing the core of an edifice, resulting in massive, deep-seated collapse. Far-field pressurization only occurs with specific rock hydraulic properties; however, data from numerous hydrothermal systems illustrate that this process can transpire in realistic settings. ?? 2004 Geological Society of America.
The Macungie sinkhole, Lehigh Valley, Pennsylvania: Cause and repair
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dougherty, P.H.; Perlow, M. Jr.
1988-10-01
A dramatic sinkhole collapse measuring some 100 feet in diameter by 41 feet deep occurred suddenly in the Borough of Macungie on June 23, 1986. The sinkhole collapse resulted in a major health and safety hazard. Continual growth of the sinkhole could have resulted in almost certain damage or loss to more than 17 residences adjacent to the sinkhole collapse. Stabilization and repair costs totaled some $450,000 and required almost three months to restore utility services, roadway, and parking areas.
Hot spaghetti: Viscous gravitational collapse
NASA Astrophysics Data System (ADS)
Müller, Berndt; Schäfer, Andreas
2018-02-01
We explore the fate of matter falling into a macroscopic Schwarzschild black hole for the simplified case of a radially collapsing thin spherical shell for which the back reaction of the geometry can be neglected. We treat the internal dynamics of the in-falling matter in the framework of viscous relativistic hydrodynamics and calculate how the internal temperature of the collapsing matter evolves as it falls toward the Schwarzschild singularity. We find that viscous hydrodynamics fails when either the dissipative radial pressure exceeds the thermal pressure and the total radial pressure becomes negative, or the time scale of variation of the tidal forces acting on the collapsing matter becomes shorter than the characteristic hydrodynamic response time.
Peberdy, Mary Ann; Gluck, Jason A; Ornato, Joseph P; Bermudez, Christian A; Griffin, Russell E; Kasirajan, Vigneshwar; Kerber, Richard E; Lewis, Eldrin F; Link, Mark S; Miller, Corinne; Teuteberg, Jeffrey J; Thiagarajan, Ravi; Weiss, Robert M; O'Neil, Brian
2017-06-13
Cardiac arrest in patients on mechanical support is a new phenomenon brought about by the increased use of this therapy in patients with end-stage heart failure. This American Heart Association scientific statement highlights the recognition and treatment of cardiovascular collapse or cardiopulmonary arrest in an adult or pediatric patient who has a ventricular assist device or total artificial heart. Specific, expert consensus recommendations are provided for the role of external chest compressions in such patients. © 2017 American Heart Association, Inc.
Lobar analysis of collapsibility indices to assess functional lung volumes in COPD patients.
Kitano, Mariko; Iwano, Shingo; Hashimoto, Naozumi; Matsuo, Keiji; Hasegawa, Yoshinori; Naganawa, Shinji
2014-01-01
We investigated correlations between lung volume collapsibility indices and pulmonary function test (PFT) results and assessed lobar differences in chronic obstructive pulmonary disease (COPD) patients, using paired inspiratory and expiratory three dimensional (3D) computed tomography (CT) images. We retrospectively assessed 28 COPD patients who underwent paired inspiratory and expiratory CT and PFT exams on the same day. A computer-aided diagnostic system calculated total lobar volume and emphysematous lobar volume (ELV). Normal lobar volume (NLV) was determined by subtracting ELV from total lobar volume, both for inspiratory phase (NLVI) and for expiratory phase (NLVE). We also determined lobar collapsibility indices: NLV collapsibility ratio (NLVCR) (%)=(1-NLVE/NLVI)×100%. Associations between lobar volumes and PFT results, and collapsibility indices and PFT results were determined by Pearson correlation analysis. NLVCR values were significantly correlated with PFT results. Forced expiratory volume in 1 second, measured as percent of predicted results (FEV1%P) was significantly correlated with NLVCR values for the lower lobes (P<0.01), whereas this correlation was not significant for the upper lobes (P=0.05). FEV1%P results were also moderately correlated with inspiratory, expiratory ELV (ELVI,E) for the lower lobes (P<0.05). In contrast, the ratio of the diffusion capacity for carbon monoxide to alveolar gas volume, measured as percent of predicted (DLCO/VA%P) results were strongly correlated with ELVI for the upper lobes (P<0.001), whereas this correlation with NLVCR values was weaker for upper lobes (P<0.01) and was not significant for the lower lobes (P=0.26). FEV1%P results were correlated with NLV collapsibility indices for lower lobes, whereas DLCO/VA%P results were correlated with NLV collapsibility indices and ELV for upper lobes. Thus, evaluating lobar NLV collapsibility might be useful for estimating pulmonary function in COPD patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huesemann, Michael H.; Huesemann, Joyce A.
Industrial society will move towards collapse if its total environmental impact (I), expressed either in terms of energy and materials use or in terms of pollution, increases with time, i.e., dI/dt > 0. The traditional interpretation of the I=PAT equation reflects the optimistic belief that technological innovation, particularly improvements in eco-efficiency, will significantly reduce the technology (T) factor, and thereby result in a corresponding decline in impact (I). Unfortunately, this interpretation of the I=PAT equation ignores the effects of technical change on the other two factors: population (P) and per capita affluence (A). A more heuristic formulation of this equationmore » is I=P(T)∙A(T)∙T in which the dependence of P and A on T is apparent. From historical evidence, it is clear that technological revolutions (tool-making, agricultural, and industrial) have been the primary driving forces behind successive population explosions, and that modern communication and transportation technologies have been employed to transform a large proportion of the world’s inhabitants into consumers of material- and energy-intensive products and services. In addition, factor analysis from neoclassical growth theory and the rebound effect provide evidence that science and technology have played a key role in contributing to rising living standards. While technological change has thus contributed to significant increases in both P and A, it has at the same time brought about considerable eco-efficiency improvements. Unfortunately, reductions in the T-factor have generally not been sufficiently rapid to compensate for the simultaneous increases in both P and A. As a result, total impact, in terms of energy production, mineral extraction, land-use and CO2 emissions, has in most cases increased with time, indicating that industrial society is nevertheless moving towards collapse. The belief that continued and even accelerated scientific research and technological innovation will automatically result in sustainability and avert collapse is at best mistaken. Innovations in science and technology will be necessary but alone will be insufficient for sustainability. Consequently, what is most needed are specific policies designed to decrease total impact, such as (a) halting population growth via effective population stabilization plans and better access to birth control methods, (b) reducing total matter-energy throughput and pollution by removing perverse subsidies, imposing regulations that limit waste discharges and the depletion of non-renewable resources, and implementing ecological tax reform, and (c) moving towards a steady-state economy in which per-capita affluence is stabilized at lower levels by replacing wasteful conspicuous material consumption with social alternatives known to enhance subjective well-being. While science and technology must play an important role in the implementation of these policies, none will be enacted without a fundamental change in society’s dominant values of growth and exploitation. Thus, value change is the most important prerequisite for avoiding global collapse.« less
Mechanics of airway and alveolar collapse in human breath-hold diving.
Fitz-Clarke, John R
2007-11-15
A computational model of the human respiratory tract was developed to study airway and alveolar compression and re-expansion during deep breath-hold dives. The model incorporates the chest wall, supraglottic airway, trachea, branched airway tree, and elastic alveoli assigned time-dependent surfactant properties. Total lung collapse with degassing of all alveoli is predicted to occur around 235 m, much deeper than estimates for aquatic mammals. Hysteresis of the pressure-volume loop increases with maximum diving depth due to progressive alveolar collapse. Reopening of alveoli occurs stochastically as airway pressure overcomes adhesive and compressive forces on ascent. Surface area for gas exchange vanishes at collapse depth, implying that the risk of decompression sickness should reach a plateau beyond this depth. Pulmonary capillary transmural stresses cannot increase after local alveolar collapse. Consolidation of lung parenchyma might provide protection from capillary injury or leakage caused by vascular engorgement due to outward chest wall recoil at extreme depths.
Fluoroscopic and radiographic evaluation of tracheal collapse in dogs: 62 cases (2001-2006).
Macready, Dawn M; Johnson, Lynelle R; Pollard, Rachel E
2007-06-15
To compare the use of radiography and fluoroscopy for detection and grading of tracheal collapse in dogs. Retrospective case series. Animals-62 dogs with tracheal collapse. For each dog, tracheal collapse was confirmed fluoroscopically and lateral cervical and thoracic radiographic views were reviewed. A board-certified radiologist (who was unaware of the dogs' clinical history) evaluated the cervical, thoracic inlet, thoracic, carinal, and main stem bronchial regions in all fluoroscopic videos and radiographic images for evidence of collapse. Cervical, thoracic inlet, thoracic, and carinal regions in both radio-graphic and fluoroscopic studies were graded for collapse (0%, 25%, 50%, 75%, or 100% decrease in diameter). Lateral cervical and thoracic radiographic images were available for 54 dogs, and inspiratory and expiratory lateral cervical and thoracic radiographic images were available for 8 dogs. For detection of tracheal collapse, assessment of radiographic views was sensitive and had the best negative predictive value in the cervical and thoracic inlet regions. Assessment of radiographic views was most specific and had the best positive predictive value in the thoracic inlet, thoracic, carina, and main stem bronchial regions. Radiography underestimated the degree of collapse in all areas. Review of inspiratory and expiratory views improved the accuracy of radiography for tracheal collapse diagnosis only slightly. Compared with fluoroscopy, radiography underestimated the frequency and degree of tracheal collapse. However, radiography appears to be useful for screening dogs with potential tracheal collapse.
Landry, Shane A; Joosten, Simon A; Eckert, Danny J; Jordan, Amy S; Sands, Scott A; White, David P; Malhotra, Atul; Wellman, Andrew; Hamilton, Garun S; Edwards, Bradley A
2017-06-01
Upper airway collapsibility is a key determinant of obstructive sleep apnea (OSA) which can influence the efficacy of certain non-continuous positive airway pressure (CPAP) treatments for OSA. However, there is no simple way to measure this variable clinically. The present study aimed to develop a clinically implementable tool to evaluate the collapsibility of a patient's upper airway. Collapsibility, as characterized by the passive pharyngeal critical closing pressure (Pcrit), was measured in 46 patients with OSA. Associations were investigated between Pcrit and data extracted from patient history and routine polysomnography, including CPAP titration. Therapeutic CPAP level, demonstrated the strongest relationship to Pcrit (r2=0.51, p < .001) of all the variables investigated including apnea-hypopnea index, body mass index, sex, and age. Patients with a mildly collapsible upper airway (Pcrit ≤ -2 cmH2O) had a lower therapeutic CPAP level (6.2 ± 0.6 vs. 10.3 ± 0.4 cmH2O, p < .001) compared to patients with more severe collapsibility (Pcrit > -2 cmH2O). A therapeutic CPAP level ≤8.0 cmH2O was sensitive (89%) and specific (84%) for detecting a mildly collapsible upper airway. When applied to the independent validation data set (n = 74), this threshold maintained high specificity (91%) but reduced sensitivity (75%). Our data demonstrate that a patient's therapeutic CPAP requirement shares a strong predictive relationship with their Pcrit and may be used to accurately differentiate OSA patients with mild airway collapsibility from those with moderate-to-severe collapsibility. Although this relationship needs to be confirmed prospectively, our findings may provide clinicians with better understanding of an individual patient's OSA phenotype, which ultimately could assist in determining which patients are most likely to respond to non-CPAP therapies. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Evidence that viral RNAs have evolved for efficient, two-stage packaging.
Borodavka, Alexander; Tuma, Roman; Stockley, Peter G
2012-09-25
Genome packaging is an essential step in virus replication and a potential drug target. Single-stranded RNA viruses have been thought to encapsidate their genomes by gradual co-assembly with capsid subunits. In contrast, using a single molecule fluorescence assay to monitor RNA conformation and virus assembly in real time, with two viruses from differing structural families, we have discovered that packaging is a two-stage process. Initially, the genomic RNAs undergo rapid and dramatic (approximately 20-30%) collapse of their solution conformations upon addition of cognate coat proteins. The collapse occurs with a substoichiometric ratio of coat protein subunits and is followed by a gradual increase in particle size, consistent with the recruitment of additional subunits to complete a growing capsid. Equivalently sized nonviral RNAs, including high copy potential in vivo competitor mRNAs, do not collapse. They do support particle assembly, however, but yield many aberrant structures in contrast to viral RNAs that make only capsids of the correct size. The collapse is specific to viral RNA fragments, implying that it depends on a series of specific RNA-protein interactions. For bacteriophage MS2, we have shown that collapse is driven by subsequent protein-protein interactions, consistent with the RNA-protein contacts occurring in defined spatial locations. Conformational collapse appears to be a distinct feature of viral RNA that has evolved to facilitate assembly. Aspects of this process mimic those seen in ribosome assembly.
Mass shedding and partition of the a/m ratio between core and envelope in gravitational collapse
NASA Astrophysics Data System (ADS)
de Felice, F.; Yu, Y.
1986-06-01
The authors show that, even taking into account redistribution of angular momentum, the ratio (a/m) (a/m = cJ/GM2, where J and M are the total angular momentum and gravitational mass) of a collapsing and rotating body varies slowly with the mass, when mass shedding takes place. Thus formation of an extended structure outside a collapsing body, like rings, discs or diffuse matter, is not in general a guarantee that the ratio (a/m) of the inner object is decreased appreciably from its initial value.
A History of Collapse Factor Modeling and Empirical Data for Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
deQuay, Laurence; Hodge, B. Keith
2010-01-01
One of the major technical problems associated with cryogenic liquid propellant systems used to supply rocket engines and their subassemblies and components is the phenomenon of propellant tank pressurant and ullage gas collapse. This collapse is mainly caused by heat transfer from ullage gas to tank walls and interfacing propellant, which are both at temperatures well below those of this gas. Mass transfer between ullage gas and cryogenic propellant can also occur and have minor to significant secondary effects that can increase or decrease ullage gas collapse. Pressurant gas is supplied into cryogenic propellant tanks in order to initially pressurize these tanks and then maintain required pressures as propellant is expelled from these tanks. The net effect of pressurant and ullage gas collapse is increased total mass and mass flow rate requirements of pressurant gases. For flight vehicles this leads to significant and undesirable weight penalties. For rocket engine component and subassembly ground test facilities this results in significantly increased facility hardware, construction, and operational costs. "Collapse Factor" is a parameter used to quantify the pressurant and ullage gas collapse. Accurate prediction of collapse factors, through analytical methods and modeling tools, and collection and evaluation of collapse factor data has evolved over the years since the start of space exploration programs in the 1950 s. Through the years, numerous documents have been published to preserve results of studies associated with the collapse factor phenomenon. This paper presents a summary and selected details of prior literature that document the aforementioned studies. Additionally other literature that present studies and results of heat and mass transfer processes, related to or providing important insights or analytical methods for the studies of collapse factor, are presented.
Habitat fragmentation resulting in overgrazing by herbivores.
Kondoh, Michio
2003-12-21
Habitat fragmentation sometimes results in outbreaks of herbivorous insect and causes an enormous loss of primary production. It is hypothesized that the driving force behind such herbivore outbreaks is disruption of natural enemy attack that releases herbivores from top-down control. To test this hypothesis I studied how trophic community structure changes along a gradient of habitat fragmentation level using spatially implicit and explicit models of a tri-trophic (plant, herbivore and natural enemy) food chain. While in spatially implicit model number of trophic levels gradually decreases with increasing fragmentation, in spatially explicit model a relatively low level of habitat fragmentation leads to overgrazing by herbivore to result in extinction of the plant population followed by a total system collapse. This provides a theoretical support to the hypothesis that habitat fragmentation can lead to overgrazing by herbivores and suggests a central role of spatial structure in the influence of habitat fragmentation on trophic communities. Further, the spatially explicit model shows (i) that the total system collapse by the overgrazing can occur only if herbivore colonization rate is high; (ii) that with increasing natural enemy colonization rate, the fragmentation level that leads to the system collapse becomes higher, and the frequency of the collapse is lowered.
NASA Astrophysics Data System (ADS)
Sun, K.; Cheng, D. B.; He, J. J.; Zhao, Y. L.
2018-02-01
Collapse gully erosion is a specific type of soil erosion in the red soil region of southern China, and early warning and prevention of the occurrence of collapse gully erosion is very important. Based on the idea of risk assessment, this research, taking Guangdong province as an example, adopt the information acquisition analysis and the logistic regression analysis, to discuss the feasibility for collapse gully erosion risk assessment in regional scale, and compare the applicability of the different risk assessment methods. The results show that in the Guangdong province, the risk degree of collapse gully erosion occurrence is high in northeastern and western area, and relatively low in southwestern and central part. The comparing analysis of the different risk assessment methods on collapse gully also indicated that the risk distribution patterns from the different methods were basically consistent. However, the accuracy of risk map from the information acquisition analysis method was slightly better than that from the logistic regression analysis method.
Demonstrating effective RNAi product line to control honeybee colony collapse factors
USDA-ARS?s Scientific Manuscript database
The Colony Collapse Disorder (CCD) phenomenon affecting honey bees is still not fully understood, but there is a strong consensus that some specific pathogens and pests are major contributing factors to colony losses. Viruses, microsporidia, and the Varroa mite are considered the top three contribut...
The explosion and collapse of the World Trade Center (WTC) was a catastrophic event that produced an aerosol plume impacting many workers, residents, and commuters during the first few days after 11 September 2001. Three bulk samples of the total settled dust and smoke were col...
NASA Astrophysics Data System (ADS)
Scolari, Vittore F.; Cosentino Lagomarsino, Marco
Recent experimental results suggest that the E. coli chromosome feels a self-attracting interaction of osmotic origin, and is condensed in foci by bridging interactions. Motivated by these findings, we explore a generic modeling framework combining solely these two ingredients, in order to characterize their joint effects. Specifically, we study a simple polymer physics computational model with weak ubiquitous short-ranged self attraction and stronger sparse bridging interactions. Combining theoretical arguments and simulations, we study the general phenomenology of polymer collapse induced by these dual contributions, in the case of regularly-spaced bridging. Our results distinguish a regime of classical Flory-like coil-globule collapse dictated by the interplay of excluded volume and attractive energy and a switch-like collapse where bridging interaction compete with entropy loss terms from the looped arms of a star-like rosette. Additionally, we show that bridging can induce stable compartmentalized domains. In these configurations, different "cores" of bridging proteins are kept separated by star-like polymer loops in an entropically favorable multi-domain configuration, with a mechanism that parallels micellar polysoaps. Such compartmentalized domains are stable, and do not need any intra-specific interactions driving their segregation. Domains can be stable also in presence of uniform attraction, as long as the uniform collapse is above its theta point.
Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine.
Laemmli, U K
1975-01-01
High-molecular-weight DNA is known to collapse into very compact particles in a salt solution containing polymers like poly(ethylene oxide) [(EO)n] or polyacrylate. The biological relevance of this phenomenon is suggested by our recent finding that high concentrations of the highly acidic internal peptides found in the mature T4 bacteriophage head, as well as poly(glutamic acid) and poly(aspartic acid), can collapse DNA in a similar manner. The structure of DNAs collapsed by various methods has been studied with electron microscope. We find (EO)n collapses T4 or T7 bacteriophage DNA into compact particles only slightly larger than the size of the T4 and T7 head, respectively. In contrast, polylysine collapses DNA into different types of structures. Double-stranded DNA collapsed with (EO)n is cut by the single-strand specific Neurospora crassa endonuclease (EC 3.1.4.21) into small fragments. Extensive digestion only occurs above the critical concentration of polymer required for DNA collapse, demonstrating the (EO)n-collapsed DNA contains enzyme-vulnerable regions (probably at each fold), which are preferentially attacked. The size of the DNA fragments produced by limit-digestion with the nuclease ranges between 200 and 400 base pairs when DNA is collapsed by (EO)n. Only fragments of DNA which are larger than 600 base pairs are cut by the endonuclease in (EO)n-containing solution. Images PMID:1060108
Wu, Sangwook
2017-01-01
Two distinct crystal structures of prethrombin-2, the alternative and collapsed forms, are elucidated by X-ray crystallogrphy. We analyzed the conformational transition from the alternative to the collapsed form employing targeted molecular dynamics (TMD) simulation. Despite small RMSD difference in the two X-ray crystal structures, some hydrophobic residues (W60d, W148, W215, and F227) show a significant difference between the two conformations. TMD simulation shows that the four hydrophobic residues undergo concerted movement from dimer to trimer transition via tetramer state in the conformational change from the alternative to the collapsed form. We reveal that the concerted movement of the four hydrophobic residues is controlled by movement of specific loop regions behind. In this paper, we propose a sequential scenario for the conformational transition from the alternative form to the collapsed form, which is partially supported by the mutant W148A simulation.
Brodscholl, A.; Kirbani, S.B.; Voight, B.
2000-01-01
The broadband data were evaluated using the assumption that avalanches with the same source areas and descent paths exhibit a linear relation between source volume and recorded seismic-amplitude envelope area. A result of the analysis is the determination of the volume of selected individual events. From the field surveys, the total volume of the collapsed dome lava is 2.6 Mm3. Discounting the volumetric influence of rockfalls, the average size of the 44 nuées ardentes is therefore about 60,000 m3. The largest collapse event at 10:54 is estimated to involve 260,000 m3, based on an analysis of the seismicity. The remaining 23 phase I events averaged 60,000 m3, with the total volume of all phase I events accounting for 63% of the unstable dome. The 20 phase II events comprised 37% of the total volume and averaged 47,000 m3. The methods described here can be put to practical use in real-time monitoring situations. Broadband data were essential in this study primarily because of the wide dynamic range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, L.S.; Gmur, N.F.; Da Costa, F.
1977-08-01
Initial injury to adaxial leaf surfaces of Phaseolus vulgaris and Helianthus annuus occurred near trichomes and stomata after exposure to simulated sulfate acid rain. Lesion frequency was not correlated with density of either stomata or trichomes but was correlated with degree of leaf expansion. The number of lesions per unit area increased with total leaf area. Results suggest that characteristics of the leaf indumentum such as development of trichomes and guard cells and/or cuticle thickness near these structures may be involved in lesion development. Adaxial epidermal cell collapse was the first event in lesion development. Palisade cells and eventually spongymore » mesophyll cells collapsed after continued, daily exposure to simulated rain of low pH. Lesion development on Phaseolus vulgaris followed a specific course of events after exposure to simulated rain of known composition, application rate, drop size frequency, drop velocities, and frequency of exposures. These results allow development of further experiments to observe accurately other parameters, such as nutrient inputs and nutrient leaching from foliage, after exposure to simulated sulfate acid rain.« less
Entropy production due to gravitational-wave viscosity in a Kaluza-Klein inflationary universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomita, K.; Ishihara, H.
1985-10-15
The role of viscosity due to the transport of gravitational radiation in a Kaluza-Klein multidimensional universe is considered, and it is shown that vast entropy may be produced by it owing to inflation of the external (ordinary) space and collapse of the internal (compact) space. The inflation and collapse factors necessary for increasing the total entropy by a factor approx.10/sup 88/ are derived.
A Simple Model for Human and Nature Interaction
NASA Astrophysics Data System (ADS)
Motesharrei, S.; Rivas, J.; Kalnay, E.
2012-12-01
There are widespread concerns that current trends in population and resource-use are unsustainable, but the possibilities of an overshoot and collapse remain unclear and controversial. Collapses of civilizations have occurred many times in the past 5000 years, often followed by centuries of economic, intellectual, and population decline. Many different natural and social phenomena have been invoked to explain specific collapses, but a general explanation remains elusive. Two important features seem to appear across societies that have collapsed: Ecological Strain and Economic Stratification. Our new model (Human And Nature DYnamics, HANDY) has just four equations that describe the evolution of Elites, Commoners, Nature, and Wealth. Mechanisms leading to collapse are discussed and the measure "Carrying Capacity" is developed and defined. The model shows that societal collapse can happen due to either one of two independent factors: (1) over-consumption of natural resources, and/or (2) deep inequity between Elites and Commoners. The model also portrays two distinct types of collapse: (i) collapse followed by recovery of nature, and (ii) full collapse. The model suggests that the estimation of Carrying Capacity is a practical means for early detection of a collapse. Collapse can be avoided, and population can reach a sustainable equilibrium, if the rate of depletion of nature is reduced to a sustainable level, and if resources are distributed in a reasonably equitable fashion.; A type-ii (full) collapse is shown in this figure. With high inequality and high depletion, societies are doomed to collapse. Wealth starts to decrease when population rises above the carrying capacity. The large gap between carrying capacity and its maximum is a result of depletion factor being much larger than the sustainable limit. ; It is possible to overshoot, oscillate, and eventually converge to an equilibrium, even in an inequitable society. However, it requires policies that control birth rates and inequality. Additionally, depletion (production) must be kept within a reasonable range.
Extracting Information about the Initial State from the Black Hole Radiation.
Lochan, Kinjalk; Padmanabhan, T
2016-02-05
The crux of the black hole information paradox is related to the fact that the complete information about the initial state of a quantum field in a collapsing spacetime is not available to future asymptotic observers, belying the expectations from a unitary quantum theory. We study the imprints of the initial quantum state contained in a specific class of distortions of the black hole radiation and identify the classes of in states that can be partially or fully reconstructed from the information contained within. Even for the general in state, we can uncover some specific information. These results suggest that a classical collapse scenario ignores this richness of information in the resulting spectrum and a consistent quantum treatment of the entire collapse process might allow us to retrieve much more information from the spectrum of the final radiation.
NASA Astrophysics Data System (ADS)
Ogloblina, Daria; Schmidt, Steffen J.; Adams, Nikolaus A.
2018-06-01
Cavitation is a process where a liquid evaporates due to a pressure drop and re-condenses violently. Noise, material erosion and altered system dynamics characterize for such a process for which shock waves, rarefaction waves and vapor generation are typical phenomena. The current paper presents novel results for collapsing vapour-bubble clusters in a liquid environment close to a wall obtained by computational fluid mechanics (CFD) simulations. The driving pressure initially is 10 MPa in the liquid. Computations are carried out by using a fully compressible single-fluid flow model in combination with a conservative finite volume method (FVM). The investigated bubble clusters (referred to as "clouds") differ by their initial vapor volume fractions, initial stand-off distances to the wall and by initial bubble radii. The effects of collapse focusing due to bubble-bubble interaction are analysed by investigating the intensities and positions of individual bubble collapses, as well as by the resulting shock-induced pressure field at the wall. Stronger interaction of the bubbles leads to an intensification of the collapse strength for individual bubbles, collapse focusing towards the center of the cloud and enhanced re-evaporation. The obtained results reveal collapse features which are common for all cases, as well as case-specific differences during collapse-rebound cycles. Simultaneous measurements of maximum pressures at the wall and within the flow field and of the vapor volume evolution show that not only the primary collapse but also subsequent collapses are potentially relevant for erosion.
NASA Astrophysics Data System (ADS)
Glasser, N. F.; Scambos, T. A.
2009-12-01
We use optical satellite imagery (ASTER and Landsat) to document changes in the Prince Gustav Ice Shelf (PGIS) and its tributary glaciers before and after its 1995 collapse. Interpretation of a pre-collapse Landsat 4-5 TM image acquired in February 1988 shows that the ice shelf was fed primarily by Sjogren Glacier from the Antarctic Peninsula and by Rhoss Glacier from James Ross Island (JRI). In 1988, the PGIS contained numerous structural discontinuities (rifts and crevasses), which collectively indicate that ice-shelf break-up had commenced at least seven years before collapse. Meltwater ponds and streams were also common across its surface. After the ice shelf collapsed, Rhoss Glacier became a tidewater glacier and has since experienced rapid and continued recession. Between January 2001 and December 2006 (six to eleven years after the collapse of the PGIS), the front of Rhoss Glacier receded a total of 13.6 km. We conclude that where tributary glaciers become tidewater glaciers they react to ice-shelf removal by rapid and continued recession and that the response time of glaciers on the Antarctic Peninsula to ice-shelf removal is measured on annual to decadal timescales. This rapid recession, coupled with previously documented tributary glacier thinning and acceleration, indicates that Antarctic Peninsula glaciers are extremely sensitive to ice-shelf collapse.
NASA Astrophysics Data System (ADS)
Marcon, V.; Gu, X.; Brantley, S. L.
2017-12-01
Life on Earth relies on the breakdown of impermeable bedrock into porous weathered rock to release nutrients and open pathways for gases and fluids to move through the subsurface. Serpentinites, though rare, are found across the globe and often have thin soils. Few studies have evaluated how porosity, a first order control on weathering, evolves from unweathered serpentinite bedrock to the soil. In this study, we evaluated weathering of serpentinites from bedrock to soil along a ridgetop in Nottingham Park, PA. A suite of geochemical analyses were used to determine chemical and physical changes during weathering. We used neutron scattering to measure pores 2nm to 20 microns in size (referred to here as nanoporosity). As this serpentinite weathers, small pores ( 1nm in diameter) are occluded and total nanoporosity and pore connectivity decrease throughout the weathered rock. Specifically, total nanoporosity decreases from 10% in the unweathered parent material to 5% in the weathered rock. However, in the upper meter of the profile, total nanoporosity increases as Fe, Mg, Mn, Si, Ni, Cr, and V are depleted. Additionally, bulk density and strain calculations suggest total volume expansion throughout the weathered rock followed by volume collapse in the upper 0.5m of the profile. We propose that low temperature reactions alter olivine in the parent material to serpentine minerals at the parent-weathered rock interface, resulting in a volume expansion and the loss of nanopores 1-100nm in size in this weathered rock zone. Volume expansion has long been reported to occur during low temperature serpentinization. We also infer that this loss of porosity limits the infiltration of reactive meteoric fluids into the deeper rock material and restricts the depth of regolith development. Following low temperature serpentinization, serpentine minerals (e.g. antigorite and lizardite) dissolve higher in the weathered rock. Because serpentinite rocks lack a non-reactive mineral such as quartz to provide supportive skeleton in the regolith, dissolution ultimately leads to collapse in the upper meter of the profile. The evolution of porosity in this profile can help explain why serpentinite regolith is characteristically thin to non-existent in the Piedmont: thin regolith occurs because of porosity occlusion as well as collapse.
NASA Astrophysics Data System (ADS)
Graziano, Giuseppe
2014-09-01
Molecular dynamics simulations have shown that a totally unfolded protein in aqueous 8 M urea undergoes a collapse transition on replacing urea molecules by guanidinium chloride, GdmCl, assuming a compact conformation in 4 M urea + 4 M GdmCl [J. Am. Chem. Soc. 134 (2012) 18266]. This is unexpected because GdmCl is a denaturant stronger than urea. It is shown that such collapse can originate from an increase in the magnitude of the solvent-excluded volume effect due the high density of urea + GdmCl mixtures, coupled to their low water number density that pushes denaturant molecules toward the protein surface.
NASA Astrophysics Data System (ADS)
Li, Jie; Zippilli, Stefano; Zhang, Jing; Vitali, David
2016-05-01
Collapse models postulate the existence of intrinsic noise which modifies quantum mechanics and is responsible for the emergence of macroscopic classicality. Assessing the validity of these models is extremely challenging because it is nontrivial to discriminate unambiguously their presence in experiments where other hardly controllable sources of noise compete to the overall decoherence. Here we provide a simple procedure that is able to probe the hypothetical presence of the collapse noise with a levitated nanosphere in a Fabry-Pérot cavity. We show that the stationary state of the system is particularly sensitive, under specific experimental conditions, to the interplay between the trapping frequency, the cavity size, and the momentum diffusion induced by the collapse models, allowing one to detect them even in the presence of standard environmental noises.
CHEMICAL AND PHYSICAL CHARACTERIZATION OF COLLAPSING LOW-MASS PRESTELLAR DENSE CORES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hincelin, U.; Commerçon, B.; Wakelam, V.
The first hydrostatic core, also called the first Larson core, is one of the first steps in low-mass star formation as predicted by theory. With recent and future high-performance telescopes, the details of these first phases are becoming accessible, and observations may confirm theory and even present new challenges for theoreticians. In this context, from a theoretical point of view, we study the chemical and physical evolution of the collapse of prestellar cores until the formation of the first Larson core, in order to better characterize this early phase in the star formation process. We couple a state-of-the-art hydrodynamical modelmore » with full gas-grain chemistry, using different assumptions for the magnetic field strength and orientation. We extract the different components of each collapsing core (i.e., the central core, the outflow, the disk, the pseudodisk, and the envelope) to highlight their specific physical and chemical characteristics. Each component often presents a specific physical history, as well as a specific chemical evolution. From some species, the components can clearly be differentiated. The different core models can also be chemically differentiated. Our simulation suggests that some chemical species act as tracers of the different components of a collapsing prestellar dense core, and as tracers of the magnetic field characteristics of the core. From this result, we pinpoint promising key chemical species to be observed.« less
Multi-species collapses at the warm edge of a warming sea
Rilov, Gil
2016-01-01
Even during the current biodiversity crisis, reports on population collapses of highly abundant, non-harvested marine species were rare until very recently. This is starting to change, especially at the warm edge of species’ distributions where populations are more vulnerable to stress. The Levant basin is the southeastern edge of distribution of most Mediterranean species. Coastal water conditions are naturally extreme, and are fast warming, making it a potential hotspot for species collapses. Using multiple data sources, I found strong evidence for major, sustained, population collapses of two urchins, one large predatory gastropod and a reef-building gastropod. Furthermore, of 59 molluscan species once-described in the taxonomic literature as common on Levant reefs, 38 were not found in the present-day surveys, and there was a total domination of non-indigenous species in molluscan assemblages. Temperature trends indicate an exceptional warming of the coastal waters in the past three decades. Though speculative at this stage, the fast rise in SST may have helped pushing these invertebrates beyond their physiological tolerance limits leading to population collapses and possible extirpations. If so, these collapses may indicate the initiation of a multi-species range contraction at the Mediterranean southeastern edge that may spread westward with additional warming. PMID:27853237
Black hole formation from the gravitational collapse of a nonspherical network of structures
NASA Astrophysics Data System (ADS)
Delgado Gaspar, Ismael; Hidalgo, Juan Carlos; Sussman, Roberto A.; Quiros, Israel
2018-05-01
We examine the gravitational collapse and black hole formation of multiple nonspherical configurations constructed from Szekeres dust models with positive spatial curvature that smoothly match to a Schwarzschild exterior. These configurations are made of an almost spherical central core region surrounded by a network of "pancake-like" overdensities and voids with spatial positions prescribed through standard initial conditions. We show that a full collapse into a focusing singularity, without shell crossings appearing before the formation of an apparent horizon, is not possible unless the full configuration becomes exactly or almost spherical. Seeking for black hole formation, we demand that shell crossings are covered by the apparent horizon. This requires very special fine-tuned initial conditions that impose very strong and unrealistic constraints on the total black hole mass and full collapse time. As a consequence, nonspherical nonrotating dust sources cannot furnish even minimally realistic toy models of black hole formation at astrophysical scales: demanding realistic collapse time scales yields huge unrealistic black hole masses, while simulations of typical astrophysical black hole masses collapse in unrealistically small times. We note, however, that the resulting time-mass constraint is compatible with early Universe models of primordial black hole formation, suitable in early dust-like environments. Finally, we argue that the shell crossings appearing when nonspherical dust structures collapse are an indicator that such structures do not form galactic mass black holes but virialize into stable stationary objects.
Diversity waves in collapse-driven population dynamics
Maslov, Sergei; Sneppen, Kim
2015-09-14
Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe collapses of the entire population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g.more » by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is cyclic ‘‘diversity waves’’ triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances are characterized by a bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak - species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies.« less
Diversity waves in collapse-driven population dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maslov, Sergei; Sneppen, Kim
Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe collapses of the entire population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g.more » by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is cyclic ‘‘diversity waves’’ triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances are characterized by a bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak - species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies.« less
Solid and liquid Equation of state for initially porous aluminum where specific heat is constant
NASA Astrophysics Data System (ADS)
Forbes, Jerry W.; Lemar, E. R.; Brown, Mary
2011-06-01
A porous solid's initial state is off the thermodynamic surface of the non-porous solid to start with but when pressure is high enough to cause total pore collapse or crush up, then the final states are on the condensed matter thermodynamic surfaces. The Hugoniot for the fully compacted solid is above the Principle Hugoniot with pressure, temperature and internal energy increased at a given v. There are a number of ways to define this hotter Hugoniot, which can be referenced to other thermodynamic paths on this thermodynamic surface. The choice here was to use the Vinet isotherm to define a consistent thermodynamic surface for the solid and melt phase of 6061 aluminum where specific heat is constant for the P-v-T space of interest. Analytical equations are developed for PH and TH.
Fuciños, Clara; Fuciños, Pablo; Míguez, Martín; Katime, Issa; Pastrana, Lorenzo M.; Rúa, María L.
2014-01-01
Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements). PMID:24520326
Fuciños, Clara; Fuciños, Pablo; Míguez, Martín; Katime, Issa; Pastrana, Lorenzo M; Rúa, María L
2014-01-01
Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).
Steinberg, H
2016-05-01
This is the second part of a 2-part study of the history of psychiatry in East Germany, i. e. the Soviet Occupied Zone and later German Democratic Republic. This part primarily covers the 1970 s and 1980 s. Starting from the 1970 s, pluralistic views on and approaches to mental illness and its treatment gained ground, which was especially visible in psychotherapy. The exacerbating economic crisis of the 1970 s and 1980 s led to a steadily worsening collapse of the building infrastructure of clinics and any reformation that would have led to significant financial investment became impossible. Despite attempts from party and state, psychiatric institutions successfully resisted being systematically misused against their patients.In the discussion part, the study supports the notion that East German psychiatry was neither totally isolated nor communist in nature. Even though communism had an influence, it did not have a decisively modifying impact on psychiatry, so that one can characterize psychiatry in East Germany as a medical discipline with a certain specific typology. © Georg Thieme Verlag KG Stuttgart · New York.
Coagulation of grains in static and collapsing protostellar clouds
NASA Technical Reports Server (NTRS)
Weidenschilling, S. J.; Ruzmaikina, T. V.
1993-01-01
The wavelength dependence of extinction in the diffuse interstellar medium implies that it is produced by particles of dominant size of approximately 10(exp -5) cm. There is some indication that in the cores of dense molecular clouds, sub-micron grains can coagulate to form larger particles; this process is probably driven by turbulence. The most primitive meteorites (carbonaceous chondrites) are composed of particles with a bimodal size distribution with peaks near 1 micron (matrix) and 1 mm (chondrules). Models for chondrule formation that involve processing of presolar material by chemical reactions or through an accretion shock during infall assume that aggregates of the requisite mass could form before or during collapse. The effectiveness of coagulation during collapse has been disputed; it appears to depend on specific assumptions. The first results of detailed numerical modeling of spatial and temporal variations of particle sizes in presolar clouds, both static and collapsing, is reported in this article.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughlin, Eric R., E-mail: eric_coughlin@berkeley.edu
We present the exact solutions for the collapse of a spherically symmetric cold (i.e., pressureless) cloud under its own self-gravity, valid for arbitrary initial density profiles and not restricted to the realm of self-similarity. These solutions exhibit a number of remarkable features, including the self-consistent formation of and subsequent accretion onto a central point mass. A number of specific examples are provided, and we show that Penston’s solution of pressureless self-similar collapse is recovered for polytropic density profiles; importantly, however, we demonstrate that the time over which this solution holds is fleetingly short, implying that much of the collapse proceedsmore » non-self-similarly. We show that our solutions can naturally incorporate turbulent pressure support, and we investigate the evolution of overdensities—potentially generated by such turbulence—as the collapse proceeds. Finally, we analyze the evolution of the angular velocity and magnetic fields in the limit that their dynamical influence is small, and we recover exact solutions for these quantities. Our results may provide important constraints on numerical models that attempt to elucidate the details of protostellar collapse when the initial conditions are far less idealized.« less
Collapse and revival of the Fermi sea in a Bose-Fermi mixture
NASA Astrophysics Data System (ADS)
Iyer, Deepak; Will, Sebastian; Rigol, Marcos
2014-05-01
The collapse and revival of quantum fields is one of the most pristine forms of coherent quantum dynamics far from equilibrium. Until now, it has only been observed in the dynamical evolution of bosonic systems. We report on the first observation of the boson mediated collapse and revival of the Fermi sea in a Bose-Fermi mixture. Specifically, we present a simple model which captures the experimental observations shown in the talk titled Observation of Collapse and Revival Dynamics in the Fermionic Component of a Lattice Bose-Fermi Mixture by Sebastian Will. Our theoretical analysis shows why the results are robust to the presence of harmonic traps during the loading or the time evolution phase. It also makes apparent that the fermionic dynamics is independent of whether the bosonic component consists of a coherent state or localized Fock states with random occupation numbers. Because of the robustness of the experimental results, we argue that this kind of collapse and revival experiment can be used to accurately characterize interactions between bosons and fermions in a lattice.
Bubble Proliferation in Shock Wave Lithotripsy Occurs during Inertial Collapse
NASA Astrophysics Data System (ADS)
Pishchalnikov, Yuri A.; McAteer, James A.; Pishchalnikova, Irina V.; Williams, James C.; Bailey, Michael R.; Sapozhnikov, Oleg A.
2008-06-01
In shock wave lithotripsy (SWL), firing shock pulses at slow pulse repetition frequency (0.5 Hz) is more effective at breaking kidney stones than firing shock waves (SWs) at fast rate (2 Hz). Since at fast rate the number of cavitation bubbles increases, it appears that bubble proliferation reduces the efficiency of SWL. The goal of this work was to determine the basis for bubble proliferation when SWs are delivered at fast rate. Bubbles were studied using a high-speed camera (Imacon 200). Experiments were conducted in a test tank filled with nondegassed tap water at room temperature. Acoustic pulses were generated with an electromagnetic lithotripter (DoLi-50). In the focus of the lithotripter the pulses consisted of a ˜60 MPa positive-pressure spike followed by up to -8 MPa negative-pressure tail, all with a total duration of about 7 μs. Nonlinear propagation steepened the shock front of the pulses to become sufficiently thin (˜0.03 μm) to impose differential pressure across even microscopic bubbles. High-speed camera movies showed that the SWs forced preexisting microbubbles to collapse, jet, and break up into daughter bubbles, which then grew rapidly under the negative-pressure phase of the pulse, but later coalesced to re-form a single bubble. Subsequent bubble growth was followed by inertial collapse and, usually, rebound. Most, if not all, cavitation bubbles emitted micro-jets during their first inertial collapse and re-growth. After jetting, these rebounding bubbles could regain a spherical shape before undergoing a second inertial collapse. However, either upon this second inertial collapse, or sometimes upon the first inertial collapse, the rebounding bubble emerged from the collapse as a cloud of smaller bubbles rather than a single bubble. These daughter bubbles could continue to rebound and collapse for a few cycles, but did not coalesce. These observations show that the positive-pressure phase of SWs fragments preexisting bubbles but this initial fragmentation does not yield bubble proliferation, as the daughter bubbles coalesce to reform a single bubble. Instead, bubble proliferation is the product of the subsequent inertial collapses.
Investigation of the Mechanism of Roof Caving in the Jinchuan Nickel Mine, China
NASA Astrophysics Data System (ADS)
Ding, Kuo; Ma, Fengshan; Guo, Jie; Zhao, Haijun; Lu, Rong; Liu, Feng
2018-04-01
On 13 March 2016, a sudden, violent roof caving event with a collapse area of nearly 11,000 m2 occurred in the Jinchuan Nickel Mine and accompanied by air blasts, loud noises and ground vibrations. This collapse event coincided with related, conspicuous surface subsidence across an area of nearly 19,000 m2. This article aims to analyse this collapse event. In previous studies, various mining-induced collapses have been studied, but collapse accidents associated with the filling mining method are very rare and have not been thoroughly studied. The filling method has been regarded as a safe mining method for a long time, so research on associated collapse mechanisms is of considerable significance. In this study, a detailed field investigation of roadway damage was performed, and GPS monitoring results were used to analyse the surface failure. In addition, a numerical model was constructed based on the geometry of the ore body and a major fault. The analysis of the model revealed three failure mechanisms acting during different stages of destruction: double-sided embedded beam deformation, fault activation, and cantilever-articulated rock beam failure. The fault activation and the specific filling method are the key factors of this collapse event. To gain a better understanding of these factors, the shear stress and normal stress along the fault plane were monitored to determine the variation in stress at different failure stages. Discrete element models were established to study two filling methods and to analyse the stability of different filling structures.
Davidson, Elizabeth J; Martin, Benson B; Rieger, Randall H; Parente, Eric J
2010-12-01
To (1) assess upper airway function by videoendoscopy in horses performing poorly after laryngoplasty and (2) establish whether dynamic collapse of the left arytenoid can be predicted by the degree of resting postsurgical abduction. Case series. Horses that had left laryngoplasty (n=45). Medical records (June 1993-December 2007) of horses evaluated for abnormal respiratory noise and/or poor performance after laryngoplasty were reviewed. Horses with video recordings of resting and exercising upper airway endoscopy were included and postsurgical abduction categorized. Horses with immediate postoperative endoscopy recordings were also evaluated and postsurgical abduction categorized. Relationships between resting postsurgical abduction and historical information with exercising endoscopic findings were examined. Dynamic collapse of the left arytenoid cartilage was probable in horses with no postsurgical abduction and could not be predicted in horses with grade 3 or 4 postsurgical abduction. Respiratory noise was associated with upper airway obstruction but was not specific for arytenoid collapse. Most horses with a left vocal fold had billowing of the fold during exercise. Other forms of dynamic collapse involved the right vocal fold, aryepiglottic folds, corniculate process of left arytenoid cartilage, dorsal displacement of soft palate, and pharyngeal collapse. Complex obstructions were observed in most examinations and in all horses with exercising collapse of the left arytenoid cartilage. There was no relationship between exercising collapse of the left arytenoid cartilage and grade 3 or 4 postsurgical abduction but was likely in horses with no abduction. © Copyright 2010 by The American College of Veterinary Surgeons.
Bronchial abnormalities found in a consecutive series of 40 brachycephalic dogs.
De Lorenzi, Davide; Bertoncello, Diana; Drigo, Michele
2009-10-01
To detect abnormalities of the lower respiratory tract (trachea, principal bronchi, and lobar bronchi) in brachycephalic dogs by use of endoscopy, evaluate the correlation between laryngeal collapse and bronchial abnormalities, and determine whether dogs with bronchial abnormalities have a less favorable postsurgical long-term outcome following correction of brachycephalic syndrome. Prospective case series study. 40 client-owned brachycephalic dogs with stertorous breathing and clinical signs of respiratory distress. Brachycephalic dogs anesthetized for pharyngoscopy and laryngoscopy between January 2007 and June 2008 underwent flexible bronchoscopy for systematic evaluation of the principal and lobar bronchi. For dogs that underwent surgical correction of any component of brachycephalic syndrome, owners rated surgical outcome during a follow-up telephone survey. Correlation between laryngeal collapse and bronchial abnormalities and association between bronchial abnormalities and long-term outcome were assessed. Pugs (n = 20), English Bulldogs (13), and French Bulldogs (7) were affected. A fixed bronchial collapse was recognized in 35 of 40 dogs with a total of 94 bronchial stenoses. Abnormalities were irregularly distributed between hemithoraces; 15 of 94 bronchial abnormalities were detected in the right bronchial system, and 79 of 94 were detected in the left. The left cranial bronchus was the most commonly affected structure, and Pugs were the most severely affected breed. Laryngeal collapse was significantly correlated with severe bronchial collapse; no significant correlation was found between severity of bronchial abnormalities and postsurgical outcome. Bronchial collapse was a common finding in brachycephalic dogs, and long-term postsurgical outcome was not affected by bronchial stenosis.
Rare ADH Variant Constellations are Specific for Alcohol Dependence
Zuo, Lingjun; Zhang, Heping; Malison, Robert T.; Li, Chiang-Shan R.; Zhang, Xiang-Yang; Wang, Fei; Lu, Lingeng; Lu, Lin; Wang, Xiaoping; Krystal, John H.; Zhang, Fengyu; Deng, Hong-Wen; Luo, Xingguang
2013-01-01
Aims: Some of the well-known functional alcohol dehydrogenase (ADH) gene variants (e.g. ADH1B*2, ADH1B*3 and ADH1C*2) that significantly affect the risk of alcohol dependence are rare variants in most populations. In the present study, we comprehensively examined the associations between rare ADH variants [minor allele frequency (MAF) <0.05] and alcohol dependence, with several other neuropsychiatric and neurological disorders as reference. Methods: A total of 49,358 subjects in 22 independent cohorts with 11 different neuropsychiatric and neurological disorders were analyzed, including 3 cohorts with alcohol dependence. The entire ADH gene cluster (ADH7–ADH1C–ADH1B–ADH1A–ADH6–ADH4–ADH5 at Chr4) was imputed in all samples using the same reference panels that included whole-genome sequencing data. We stringently cleaned the phenotype and genotype data to obtain a total of 870 single nucleotide polymorphisms with 0< MAF <0.05 for association analysis. Results: We found that a rare variant constellation across the entire ADH gene cluster was significantly associated with alcohol dependence in European-Americans (Fp1: simulated global P = 0.045), European-Australians (Fp5: global P = 0.027; collapsing: P = 0.038) and African-Americans (Fp5: global P = 0.050; collapsing: P = 0.038), but not with any other neuropsychiatric disease. Association signals in this region came principally from ADH6, ADH7, ADH1B and ADH1C. In particular, a rare ADH6 variant constellation showed a replicable association with alcohol dependence across these three independent cohorts. No individual rare variants were statistically significantly associated with any disease examined after group- and region-wide correction for multiple comparisons. Conclusion: We conclude that rare ADH variants are specific for alcohol dependence. The ADH gene cluster may harbor a causal variant(s) for alcohol dependence. PMID:23019235
Evaluating susceptibility of karst dolines (sinkholes) for collapse in Sango, Tennessee, USA.
Siska, Peter P; Goovaerts, Pierre; Hung, I-K
2016-08-01
Dolines or sinkholes are earth depressions that develop in soluble rocks complexes such as limestone, dolomite, gypsum, anhydrite, and halite; dolines appear in a variety of shapes from nearly circular to complex structures with highly curved perimeters. The occurrence of dolines in the studied karst area is not random; they are the results of geomorphic, hydrologic, and chemical processes that have caused partial subsidence, even the total collapse of the land surface when voids and caves are present in the bedrock and the regolith arch overbridging these voids is unstable. In the study area, the majority of collapses occur in the regolith (bedrock cover) that bridges voids in the bedrock. Because these collapsing dolines may result in property damage and even cause the loss of lives, there is a need to develop methods for evaluating karst hazards. These methods can then be used by planners and practitioners for urban and economic development, especially in regions with a growing population. The purpose of this project is threefold: 1) to develop a karst feature database, 2) to investigate critical indicators associated with doline collapse, and 3) to develop a doline susceptibility model for potential doline collapse based on external morphometric data. The study has revealed the presence of short range spatial dependence in the distribution of the dolines' morphometric parameters such as circularity, the geographic orientation of the main doline axes, and the length-to-width doline ratios; therefore, geostatistics can be used to spatially evaluate the susceptibility of the karst area for doline collapse. The partial susceptibility estimates were combined into a final probability map enabling the identification of areas where, until now, undetected dolines may cause significant hazards.
Evaluating susceptibility of karst dolines (sinkholes) for collapse in Sango, Tennessee, USA
Siska, Peter P.; Goovaerts, Pierre; Hung, I-K
2016-01-01
Dolines or sinkholes are earth depressions that develop in soluble rocks complexes such as limestone, dolomite, gypsum, anhydrite, and halite; dolines appear in a variety of shapes from nearly circular to complex structures with highly curved perimeters. The occurrence of dolines in the studied karst area is not random; they are the results of geomorphic, hydrologic, and chemical processes that have caused partial subsidence, even the total collapse of the land surface when voids and caves are present in the bedrock and the regolith arch overbridging these voids is unstable. In the study area, the majority of collapses occur in the regolith (bedrock cover) that bridges voids in the bedrock. Because these collapsing dolines may result in property damage and even cause the loss of lives, there is a need to develop methods for evaluating karst hazards. These methods can then be used by planners and practitioners for urban and economic development, especially in regions with a growing population. The purpose of this project is threefold: 1) to develop a karst feature database, 2) to investigate critical indicators associated with doline collapse, and 3) to develop a doline susceptibility model for potential doline collapse based on external morphometric data. The study has revealed the presence of short range spatial dependence in the distribution of the dolines’ morphometric parameters such as circularity, the geographic orientation of the main doline axes, and the length-to-width doline ratios; therefore, geostatistics can be used to spatially evaluate the susceptibility of the karst area for doline collapse. The partial susceptibility estimates were combined into a final probability map enabling the identification of areas where, until now, undetected dolines may cause significant hazards. PMID:27616807
Exercise-associated Excessive Dynamic Airway Collapse in Military Personnel.
Weinstein, Daniel J; Hull, James E; Ritchie, Brittany L; Hayes, Jackie A; Morris, Michael J
2016-09-01
Evaluation of military personnel for exertional dyspnea can present a diagnostic challenge, given multiple unique factors that include wide variation in military deployment. Initial consideration is given to common disorders such as asthma, exercise-induced bronchospasm, and inducible laryngeal obstruction. Excessive dynamic airway collapse has not been reported previously as a cause of dyspnea in these individuals. To describe the clinical and imaging characteristics of military personnel with exertional dyspnea who were found to have excessive dynamic collapse of large airways during exercise. After deployment to Afghanistan or Iraq, 240 active U.S. military personnel underwent a standardized evaluation to determine the etiology of persistent dyspnea on exertion. Study procedures included full pulmonary function testing, impulse oscillometry, exhaled nitric oxide measurement, methacholine challenge testing, exercise laryngoscopy, cardiopulmonary exercise testing, and fiberoptic bronchoscopy. Imaging included high-resolution computed tomography with inspiratory and expiratory views. Selected individuals underwent further imaging with dynamic computed tomography. A total of five men and one woman were identified as having exercise-associated excessive dynamic airway collapse on the basis of the following criteria: (1) exertional dyspnea without resting symptoms, (2) focal expiratory wheezing during exercise, (3) functional collapse of the large airways during bronchoscopy, (4) expiratory computed tomographic imaging showing narrowing of a large airway, and (5) absence of underlying apparent pathology in small airways or pulmonary parenchyma. Identification of focal expiratory wheezing correlated with bronchoscopic and imaging findings. Among 240 military personnel evaluated after presenting with postdeployment exertional dyspnea, a combination of symptoms, auscultatory findings, imaging, and visualization of the airways by bronchoscopy identified six individuals with excessive dynamic central airway collapse as the sole apparent cause of dyspnea. Exercise-associated excessive dynamic airway collapse should be considered in the differential diagnosis of exertional dyspnea.
NASA Astrophysics Data System (ADS)
Edmonds, M.; Herd, R.; Strutt, M.; Mann, C.
2003-12-01
A large dome collapse took place on 12-13 July 2003 at Soufriere Hills Volcano. This event was the largest in magnitude during the 1995-2003 eruption and involved over 120 million m3 andesite dome and talus material. The collapse took place over 18 hours and culminated in an explosive phase that continued intermittently until 15 July 2003. Prior to the collapse, the total volume of the dome was 230 million m3 and was made up of remnants of lava erupted 1997-2001, talus material and fresh andesite dome lava erupted during the last two years. Talus made up around 50% of the total dome volume. This paper describes and interprets the pyroclastic flow and airfall deposits from this event, using other monitoring data and empirical evidence to reconstruct the dome collapse. The airfall and pyroclastic flow deposits were studied in detail over the weeks following the collapse. Airfall deposits were studied at 45 locations around the island and 75 samples were collected for analysis. The surge deposit stretched over 10 km2 on land and 35 pits were dug at intervals through it. The sections were described and sampled, yielding a further 60 samples for grain size analysis. Further sampling was carried out on the block and ash deposits in the Tar River Valley and on the Tar River Fan. Pumices from the post-collapse explosion sequence were collected and their densities measured and mass coverage estimated. Deposit maps for airfall, lithics and pumices were constructed for all of the individual events and a map to show the distribution of the main surge unit was generated. The collapse was monitored in real-time using the MVO seismic network and observations from the field. The sequence of events was as follows. From 09:00 to 18:00, low-energy pyroclastic flows took place, confined to the Tar River Valley, which reached the sea at the mouth of Tar River. These flows gradually increased in energy throughout the day but were not associated with energetic, large surges. By 18:00 the pyroclastic flows had increased in volume and were causing phreatic explosions as large, hot blocks hit the sea on the Tar River Fan. By 20:00 the pyroclastic flows had changed in character and were associated with a larger seismic signal and powerful surges that traveled up to 3 km off the coast over the surface of the sea. The most energetic phase of the eruption took place between 22:30 12 July and 01:30 13 July. The dome collapse of 12-13 July culminated in several very large individual pyroclastic flows, representing the collapse of the massive, hot, gas-rich interior of the lava dome. One very large flow was associated with a destructive and energetic surge that swept over topography to the north of the Tar River, killed 40-50 cows, removed trees at their bases and caused large clasts to become embedded in trees at a height of 1.5 m above the ground surface north of Irish Ghaut. The unloading of such large masses of lava dome from over the vent area caused large and powerful explosions. The mapping of the deposits from this event has shed light on the origins of the surge and the timing of large phreatic and magmatic explosions and has led to a new understanding of the hazard potential of large surges derived from the Tar River Valley during large dome collapses at Soufriere Hills Volcano.
A multidisciplinary study of the 2014-2015 Bárðarbunga caldera collapse, Iceland
NASA Astrophysics Data System (ADS)
Tumi Gudmundsson, Magnus; Jonsdóttir, Kristin; Hooper, Andy; Holohan, Eoghan; Halldorsson, Saemundur
2016-04-01
The collapse of the ice-filled Bárðarbunga caldera in central Iceland occurred in autumn and winter, when weather was highly unsettled and conditions for monitoring in many ways difficult. Nevertheless several detailed time series could be obtained on the collapse and to a degree the associated flood-basalt eruption in Holuhraun. This was achieved through applying an array of sensors, that were ground, air and satellite based, partly made possible through the EU-funded FUTUREVOLC supersite project. This slow caldera collapse lasted six months, ending in February 2015. The array of sensors used, coupled with the long duration of the event, allowed unprecedented detail in observing a caldera collapse. The deciphering of the course of events required the use of aircraft altimeter surveys of the ice surface, seismic and GPS monitoring, the installation of a GPS station on the glacier surface in the centre of the caldera that continuously recorded the subsidence. Full Stokes 3-D modelling of the 700-800 m thick ice in the caldera, constrained by observations, was applied to remove the component of ice deformation that had a minor effect on the measured subsidence. The maximum subsidence of the subglacial caldera floor was about 65 meters. The combined interpretation of geochemical geobarometers, subsidence geometry with GPS and InSAR deformation signals, seismicity and distinct element deformation modelling of the subsidence provided unprecedented detail of the process and mechanism of caldera collapse. The collapse involved the re-activation of pre-existing ring faults, and was initiated a few days after magma started to drain from underneath the caldera towards the eventual eruption site in Holuhraun, 45 km to the northeast. The caldera collapse was slow and gradual, and the flow rate from underneath the caldera correlates well with the lava flow rate in Holuhraun, both in terms of total volume and variations in time.
Marsh collapse thresholds for coastal Louisiana estimated using elevation and vegetation index data
Couvillion, Brady R.; Beck, Holly
2013-01-01
Forecasting marsh collapse in coastal Louisiana as a result of changes in sea-level rise, subsidence, and accretion deficits necessitates an understanding of thresholds beyond which inundation stress impedes marsh survival. The variability in thresholds at which different marsh types cease to occur (i.e., marsh collapse) is not well understood. We utilized remotely sensed imagery, field data, and elevation data to help gain insight into the relationships between vegetation health and inundation. A Normalized Difference Vegetation Index (NDVI) dataset was calculated using remotely sensed data at peak biomass (August) and used as a proxy for vegetation health and productivity. Statistics were calculated for NDVI values by marsh type for intermediate, brackish, and saline marsh in coastal Louisiana. Marsh-type specific NDVI values of 1.5 and 2 standard deviations below the mean were used as upper and lower limits to identify conditions indicative of collapse. As marshes seldom occur beyond these values, they are believed to represent a range within which marsh collapse is likely to occur. Inundation depth was selected as the primary candidate for evaluation of marsh collapse thresholds. Elevation relative to mean water level (MWL) was calculated by subtracting MWL from an elevation dataset compiled from multiple data types including light detection and ranging (lidar) and bathymetry. A polynomial cubic regression was used to examine a random subset of pixels to determine the relationship between elevation (relative to MWL) and NDVI. The marsh collapse uncertainty range values were found by locating the intercept of the regression line with the 1.5 and 2 standard deviations below the mean NDVI value for each marsh type. Results indicate marsh collapse uncertainty ranges of 30.7–35.8 cm below MWL for intermediate marsh, 20–25.6 cm below MWL for brackish marsh, and 16.9–23.5 cm below MWL for saline marsh. These values are thought to represent the ranges of inundation depths within which marsh collapse is probable.
Characterization of viral siRNA populations in honey bee colony collapse disorder.
Chejanovsky, Nor; Ophir, Ron; Schwager, Michal Sharabi; Slabezki, Yossi; Grossman, Smadar; Cox-Foster, Diana
2014-04-01
Colony Collapse Disorder (CCD), a special case of collapse of honey bee colonies, has resulted in significant losses for beekeepers. CCD-colonies show abundance of pathogens which suggests that they have a weakened immune system. Since honey bee viruses are major players in colony collapse and given the important role of viral RNA interference (RNAi) in combating viral infections we investigated if CCD-colonies elicit an RNAi response. Deep-sequencing analysis of samples from CCD-colonies from US and Israel revealed abundant small interfering RNAs (siRNA) of 21-22 nucleotides perfectly matching the Israeli acute paralysis virus (IAPV), Kashmir virus and Deformed wing virus genomes. Israeli colonies showed high titers of IAPV and a conserved RNAi-pattern of matching the viral genome. That was also observed in sample analysis from colonies experimentally infected with IAPV. Our results suggest that CCD-colonies set out a siRNA response that is specific against predominant viruses associated with colony losses. Copyright © 2014 Elsevier Inc. All rights reserved.
Broadband Evaluation of DPRK Explosions, Collapse Event, and Induced Aftershocks
NASA Astrophysics Data System (ADS)
Mayeda, K.; Roman-Nieves, J. I.; Wagner, G.; Jeon, Y. S.
2017-12-01
We report on the past 6 declared DPRK nuclear explosions, a collapse event, and recent associated induced shear dislocation sources using long-period waveform modeling, direct regional phases, and stable P-coda and S-coda spectral ratios. We find that the recent September 3rd, 2017 explosion is well modeled with an MM71 explosion source model at normal scale depth, but the previous 5 smaller yield explosions exhibit much larger relative high frequency radiation, strongly suggesting they are all over buried by varying amounts. The collapse event that occurred 8 minutes following the September 3rd DPRK explosion shares significant similarities with a number of NTS collapse events for explosions of comparable yield, both in absolute amplitude and spectral fall-off. A large number of smaller sources have been observed, which from stable coda spectral analysis and waveform modeling, are consistent with shallow shear dislocations likely caused by stress redistribution following the past nuclear explosions. We conclude with testing of a new discriminant that is specific to this region.
Small-angle neutron scattering study of micropore collapse in amorphous solid water.
Mitterdorfer, Christian; Bauer, Marion; Youngs, Tristan G A; Bowron, Daniel T; Hill, Catherine R; Fraser, Helen J; Finney, John L; Loerting, Thomas
2014-08-14
Vapor-deposited amorphous solid water (ASW) is the most abundant solid molecular material in space, where it plays a direct role in both the formation of more complex chemical species and the aggregation of icy materials in the earliest stages of planet formation. Nevertheless, some of its low temperature physics such as the collapse of the micropore network upon heating are still far from being understood. Here we characterize the nature of the micropores and their collapse using neutron scattering of gram-quantities of D2O-ASW of internal surface areas up to 230 ± 10 m(2) g(-1) prepared at 77 K. The model-free interpretation of the small-angle scattering data suggests micropores, which remain stable up to 120-140 K and then experience a sudden collapse. The exact onset temperature to pore collapse depends on the type of flow conditions employed in the preparation of ASW and, thus, the specific surface area of the initial deposit, whereas the onset of crystallization to cubic ice is unaffected by the flow conditions. Analysis of the small-angle neutron scattering signal using the Guinier-Porod model suggests that a sudden transition from three-dimensional cylindrical pores with 15 Å radius of gyration to two-dimensional lamellae is the mechanism underlying the pore collapse. The rather high temperature of about 120-140 K of micropore collapse and the 3D-to-2D type of the transition unraveled in this study have implications for our understanding of the processing and evolution of ices in various astrophysical environments.
Definition study for an advanced cosmic ray experiment utilizing the long duration exposure facility
NASA Astrophysics Data System (ADS)
Price, P. B.
1982-06-01
To achieve the goals of cosmic ray astrophysics, an ultraheavy cosmic ray experiment on an LDEF reflight should be in an orbit with high inclination (approximately 57 deg) at approximately 230 nm for approximately 2 years near solar minimum (approximately 1986). It should fill 61 trays. Each tray should contain 4 modules of total active area 0.7 sq m, with a thermal blanket, thermal labyrinth mounts, aluminum honeycomb mechanical support, and total weight approximately 100 kg. Each module should contain interleaved CR39, Lexan, and thin copper sheets plus one event-thermometer canned in a thin metal cannister sealed with approximately 0.2 atm dry O2. The CR39 and Lexan should be manufactured to specifications and the sheet copper rolled to specifications. The event-thermometer should be a stiffened CR39 sheet that slides via bimetal strips relative to fixed CR39 sheet so that stack temperature can be read out for each event. The metal cannister can be collapsed at launch and landing, capturing the sliding assembly to prevent damage. An engineering study should be made of a prototype LDEF tray; this will include thermal and mechanical tests of detectors and the event thermometer.
Definition study for an advanced cosmic ray experiment utilizing the long duration exposure facility
NASA Technical Reports Server (NTRS)
Price, P. B.
1982-01-01
To achieve the goals of cosmic ray astrophysics, an ultraheavy cosmic ray experiment on an LDEF reflight should be in an orbit with high inclination (approximately 57 deg) at approximately 230 nm for approximately 2 years near solar minimum (approximately 1986). It should fill 61 trays. Each tray should contain 4 modules of total active area 0.7 sq m, with a thermal blanket, thermal labyrinth mounts, aluminum honeycomb mechanical support, and total weight approximately 100 kg. Each module should contain interleaved CR39, Lexan, and thin copper sheets plus one event-thermometer canned in a thin metal cannister sealed with approximately 0.2 atm dry O2. The CR39 and Lexan should be manufactured to specifications and the sheet copper rolled to specifications. The event-thermometer should be a stiffened CR39 sheet that slides via bimetal strips relative to fixed CR39 sheet so that stack temperature can be read out for each event. The metal cannister can be collapsed at launch and landing, capturing the sliding assembly to prevent damage. An engineering study should be made of a prototype LDEF tray; this will include thermal and mechanical tests of detectors and the event thermometer.
Catastrophic lava dome failure at Soufrière Hills Volcano, Montserrat, 12-13 July 2003
Herd, Richard A.; Edmonds, Marie; Bass, Venus A.
2005-01-01
The lava dome collapse of 12–13 July 2003 was the largest of the Soufrière Hills Volcano eruption thus far (1995–2005) and the largest recorded in historical times from any volcano; 210 million m3 of dome material collapsed over 18 h and formed large pyroclastic flows, which reached the sea. The evolution of the collapse can be interpreted with reference to the complex structure of the lava dome, which comprised discrete spines and shear lobes and an apron of talus. Progressive slumping of talus for 10 h at the beginning of the collapse generated low-volume pyroclastic flows. It undermined the massive part of the lava dome and eventually prompted catastrophic failure. From 02:00 to 04:40 13 July 2003 large pyroclastic flows were generated; these reached their largest magnitude at 03:35, when the volume flux of material lost from the lava dome probably approached 16 million m3 over two minutes. The high flux of pyroclastic flows into the sea caused a tsunami and a hydrovolcanic explosion with an associated pyroclastic surge, which flowed inland. A vulcanian explosion occurred during or immediately after the largest pyroclastic flows at 03:35 13 July and four further explosions occurred at progressively longer intervals during 13–15 July 2003. The dome collapse lasted approximately 18 h, but 170 of the total 210 million m3 was removed in only 2.6 h during the most intense stage of the collapse.
Gravitational collapse of dark energy field configurations and supermassive black hole formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com
Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-timemore » and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.« less
Instrumentation | Center for Cancer Research
Instrumentation [accordion collapsed] Circular Dichroism (CD) Spectroscopy Instrument: J-1500 CD Spectrophotometer (Jasco) Applications: Conformational analysis of biomolecules Protein thermal stability Binding studies Major Specifications:
How much spare capacity is necessary for the security of resource networks?
NASA Astrophysics Data System (ADS)
Zhao, Qian-Chuan; Jia, Qing-Shan; Cao, Yang
2007-01-01
The balance between the supply and demand of some kind of resource is critical for the functionality and security of many complex networks. Local contingencies that break this balance can cause a global collapse. These contingencies are usually dealt with by spare capacity, which is costly especially when the network capacity (the total amount of the resource generated/consumed in the network) grows. This paper studies the relationship between the spare capacity and the collapse probability under separation contingencies when the network capacity grows. Our results are obtained based on the analysis of the existence probability of balanced partitions, which is a measure of network security when network splitting is unavoidable. We find that a network with growing capacity will inevitably collapse after a separation contingency if the spare capacity in each island increases slower than a linear function of the network capacity and there is no suitable global coordinator.
Mobility of pyroclastic flows and surges at the Soufriere Hills Volcano, Montserrat
Calder, E.S.; Cole, P.D.; Dade, W.B.; Druitt, T.H.; Hoblitt, R.P.; Huppert, H.E.; Ritchie, L.; Sparks, R.S.J.; Young, S.R.
1999-01-01
The Soufriere Hills Volcano on Montserrat has produced avalanche-like pyroclastic flows formed by collapse of the unstable lava dome or explosive activity. Pyroclastic flows associated with dome collapse generate overlying dilute surges which detach from and travel beyond their parent flows. The largest surges partially transform by rapid sedimentation into dense secondary pyroclastic flows that pose significant hazards to distal areas. Different kinds of pyroclastic density currents display contrasting mobilities indicated by ratios of total height of fall H, run-out distance L, area inundated A and volume transported V. Dome-collapse flow mobilities (characterised by either L/H or A/V 2/3) resemble those of terrestrial and extraterrestrial cold-rockfalls (Dade and Huppert, 1998). In contrast, fountain-fed pumice flows and fine-grained, secondary pyroclastic flows travel slower but, for comparable initial volumes and heights, can inundate greater areas.
Sonoporation at Small and Large Length Scales: Effect of Cavitation Bubble Collapse on Membranes.
Fu, Haohao; Comer, Jeffrey; Cai, Wensheng; Chipot, Christophe
2015-02-05
Ultrasound has emerged as a promising means to effect controlled delivery of therapeutic agents through cell membranes. One possible mechanism that explains the enhanced permeability of lipid bilayers is the fast contraction of cavitation bubbles produced on the membrane surface, thereby generating large impulses, which, in turn, enhance the permeability of the bilayer to small molecules. In the present contribution, we investigate the collapse of bubbles of different diameters, using atomistic and coarse-grained molecular dynamics simulations to calculate the force exerted on the membrane. The total impulse can be computed rigorously in numerical simulations, revealing a superlinear dependence of the impulse on the radius of the bubble. The collapse affects the structure of a nearby immobilized membrane, and leads to partial membrane invagination and increased water permeation. The results of the present study are envisioned to help optimize the use of ultrasound, notably for the delivery of drugs.
NASA Technical Reports Server (NTRS)
Khalchukov, F. F.; Ryassny, V. G.; Ryazhskaya, O. G.; Zatsepin, G. T.
1985-01-01
As the neutrino fluxes can bring information from the internal layers of the collapsing star, the problem of the neutrino burst detection is of importance for both the direct registering of the collapse itself and the investigation of its dynamics. The main characteristics of the neutrino fluxes have been obtained by simulations. The total neutrino flux energy is estimated as 2.5 x 10 to the 53 to 1.4 x 10 to the 54 erg, the energy of NU sub E flux being 10 to the 53 erg. Predictions on neutrino energy spectra are quite different. Two models of the collapse will be used: the model by Bowers and Wilson, hereafter BW, and the model by Nadyozhin and Otroschenko (NO). The NU sub e spectrum in the BW-model reaches the maximum at E max sub NU = 8 MeV. Average energy of NU sub E E sub nu approx. = 10 MeV. The NO-model gives E max sub Nu = 10.5 MeV and E sub nu = 12.6 MeV. The NU sub E-burst duration is DELTA tau sub NU = 20s for the NO-model. As the black hole formation is the result of the star collapse in the BW-model, DELTA tau sub nu is taken to be 5s.
Chang, Yi-Chung; Huon, Leh-Kiong; Pham, Van-Truong; Chen, Yunn-Jy; Jiang, Sun-Fen; Shih, Tiffany Ting-Fang; Tran, Thi-Thao; Wang, Yung-Hung; Lin, Chen; Tsao, Jenho; Lo, Men-Tzung; Wang, Pa-Chun
2014-12-01
Progressive narrowing of the upper airway increases airflow resistance and can produce snoring sounds and apnea/hypopnea events associated with sleep-disordered breathing due to airway collapse. Recent studies have shown that acoustic properties during snoring can be altered with anatomic changes at the site of obstruction. To evaluate the instantaneous association between acoustic features of snoring and the anatomic sites of obstruction, a novel method was developed and applied in nine patients to extract the snoring sounds during sleep while performing dynamic magnetic resonance imaging (MRI). The degree of airway narrowing during the snoring events was then quantified by the collapse index (ratio of airway diameter preceding and during the events) and correlated with the synchronized acoustic features. A total of 201 snoring events (102 pure retropalatal and 99 combined retropalatal and retroglossal events) were recorded, and the collapse index as well as the soft tissue vibration time were significantly different between pure retropalatal (collapse index, 2 ± 11%; vibration time, 0.2 ± 0.3 s) and combined (retropalatal and retroglossal) snores (collapse index, 13 ± 7% [P ≤ 0.0001]; vibration time, 1.2 ± 0.7 s [P ≤ 0.0001]). The synchronized dynamic MRI and acoustic recordings successfully characterized the sites of obstruction and established the dynamic relationship between the anatomic site of obstruction and snoring acoustics.
2011-01-01
Background Meteorological disasters are an important component when considering climate change issues that impact morbidity and mortality rates. However, there are few epidemiological studies assessing the causes and characteristics of deaths from meteorological disasters. The present study aimed to analyze the causes of death associated with meteorological disasters in Korea, as well as demographic and geographic vulnerabilities and their changing trends, to establish effective measures for the adaptation to meteorological disasters. Methods Deaths associated with meteorological disasters were examined from 2,045 cases in Victim Survey Reports prepared by 16 local governments from 1990 to 2008. Specific causes of death were categorized as drowning, structural collapse, electrocution, lightning, fall, collision, landslide, avalanche, deterioration of disease by disaster, and others. Death rates were analyzed according to the meteorological type, specific causes of death, and demographic and geographic characteristics. Results Drowning (60.3%) caused the greatest number of deaths in total, followed by landslide (19.7%) and structural collapse (10.1%). However, the causes of deaths differed between disaster types. The meteorological disaster associated with the greatest number of deaths has changed from flood to typhoon. Factors that raised vulnerability included living in coastal provinces (11.3 times higher than inland metropolitan), male gender (1.9 times higher than female), and older age. Conclusions Epidemiological analyses of the causes of death and vulnerability associated with meteorological disasters can provide the necessary information for establishing future adaptation measures against climate change. A more comprehensive system for assessing disaster epidemiology needs to be established. PMID:21943038
Oh, Sang Young; Lee, Minho; Seo, Joon Beom; Kim, Namkug; Lee, Sang Min; Lee, Jae Seung; Oh, Yeon Mok
2017-01-01
A novel approach of size-based emphysema clustering has been developed, and the size variation and collapse of holes in emphysema clusters are evaluated at inspiratory and expiratory computed tomography (CT). Thirty patients were visually evaluated for the size-based emphysema clustering technique and a total of 72 patients were evaluated for analyzing collapse of the emphysema hole in this study. A new approach for the size differentiation of emphysema holes was developed using the length scale, Gaussian low-pass filtering, and iteration approach. Then, the volumetric CT results of the emphysema patients were analyzed using the new method, and deformable registration was carried out between inspiratory and expiratory CT. Blind visual evaluations of EI by two readers had significant correlations with the classification using the size-based emphysema clustering method ( r -values of reader 1: 0.186, 0.890, 0.915, and 0.941; reader 2: 0.540, 0.667, 0.919, and 0.942). The results of collapse of emphysema holes using deformable registration were compared with the pulmonary function test (PFT) parameters using the Pearson's correlation test. The mean extents of low-attenuation area (LAA), E1 (<1.5 mm), E2 (<7 mm), E3 (<15 mm), and E4 (≥15 mm) were 25.9%, 3.0%, 11.4%, 7.6%, and 3.9%, respectively, at the inspiratory CT, and 15.3%, 1.4%, 6.9%, 4.3%, and 2.6%, respectively at the expiratory CT. The extents of LAA, E2, E3, and E4 were found to be significantly correlated with the PFT parameters ( r =-0.53, -0.43, -0.48, and -0.25), with forced expiratory volume in 1 second (FEV 1 ; -0.81, -0.62, -0.75, and -0.40), and with diffusing capacity of the lungs for carbon monoxide (cDLco), respectively. The fraction of emphysema that shifted to the smaller subgroup showed a significant correlation with FEV 1 , cDLco, forced expiratory flow at 25%-75% of forced vital capacity, and residual volume (RV)/total lung capacity ( r =0.56, 0.73, 0.40, and -0.58). A detailed assessment of the size variation and collapse of emphysema holes may be useful for understanding the dynamic collapse of emphysema and its functional relation.
Subsidence and Collapse Activity in Arabia Terra, Mars: Which Link with Magmatic Activity?
NASA Astrophysics Data System (ADS)
Mangold, N.; Howard, A. D.
2014-12-01
Collapsed terrains have been observed using Viking images in the northern part of Arabia Terra from Ismenius Lacus to Deuteronilus Mensae. Recent interpretations of some of these depressions as explosive volcanoes (Michalski and Bleacher, 2013) have renewed the interest for this region. However, recent observations also show the discovery in this region of a series of outflow channels named Okavango Valles (Mangold and Howard, 2013). These channels formed in the Hesperian through catastrophic flows having deposited sediments as deltas in ephemeral lakes. The source area of these channels takes place in a region of widespread depressions and local collapse pits. A continuum of landforms exists from broad depressions (~100 km in length and 100s m in depth) and sharper collapse structures (<100 km in diameter). Given the link between these depressions and the presence of outflow channels, we interpret the collapse structures as resulting from a specific lithology with volatile-rich sediments (or megaregolith) buried at depth. Collapse may be due either to the melting of subsurface ice, or subsurface flows triggered by a change in the groundwater table, or the (less likely) dissolution of buried chemical sediments. Magmatic activity is not excluded: a regionally enhanced thermal flux during the Hesperian could have triggered ground ice melting, and could have initiated subsidence subsequently, but explosive volcanism at the surface is not necessary to explain the presence of large collapsed terrains. Michalski, J. and J. Bleacher, 2013. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars, Nature, doi:10.1038/nature12482 Mangold N., and A. D. Howard, 2013. Outflow channels with deltaic deposits in Ismenius Lacus, Mars, Icarus, doi.org/10.1016/j.icarus.2013.05.040
Marques, Melania; Genta, Pedro R; Sands, Scott A; Azarbazin, Ali; de Melo, Camila; Taranto-Montemurro, Luigi; White, David P; Wellman, Andrew
2017-03-01
In some patients, obstructive sleep apnea (OSA) can be resolved with improvement in pharyngeal patency by sleeping lateral rather than supine, possibly as gravitational effects on the tongue are relieved. Here we tested the hypothesis that the improvement in pharyngeal patency depends on the anatomical structure causing collapse, with patients with tongue-related obstruction and epiglottic collapse exhibiting preferential improvements. Twenty-four OSA patients underwent upper airway endoscopy during natural sleep to determine the pharyngeal structure associated with obstruction, with simultaneous recordings of airflow and pharyngeal pressure. Patients were grouped into three categories based on supine endoscopy: Tongue-related obstruction (posteriorly located tongue, N = 10), non-tongue related obstruction (collapse due to the palate or lateral walls, N = 8), and epiglottic collapse (N = 6). Improvement in pharyngeal obstruction was quantified using the change in peak inspiratory airflow and minute ventilation lateral versus supine. Contrary to our hypothesis, patients with tongue-related obstruction showed no improvement in airflow, and the tongue remained posteriorly located while lateral. Patients without tongue involvement showed modest improvement in airflow (peak flow increased 0.07 L/s and ventilation increased 1.5 L/min). Epiglottic collapse was virtually abolished with lateral positioning and ventilation increased by 45% compared to supine position. Improvement in pharyngeal patency with sleeping position is structure specific, with profound improvements seen in patients with epiglottic collapse, modest effects in those without tongue involvement and-unexpectedly-no effect in those with tongue-related obstruction. Our data refute the notion that the tongue falls back into the airway during sleep via gravitational influences. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Genta, Pedro R.; Sands, Scott A.; Azarbazin, Ali; de Melo, Camila; Taranto-Montemurro, Luigi; White, David P.; Wellman, Andrew
2017-01-01
Abstract Objectives: In some patients, obstructive sleep apnea (OSA) can be resolved with improvement in pharyngeal patency by sleeping lateral rather than supine, possibly as gravitational effects on the tongue are relieved. Here we tested the hypothesis that the improvement in pharyngeal patency depends on the anatomical structure causing collapse, with patients with tongue-related obstruction and epiglottic collapse exhibiting preferential improvements. Methods: Twenty-four OSA patients underwent upper airway endoscopy during natural sleep to determine the pharyngeal structure associated with obstruction, with simultaneous recordings of airflow and pharyngeal pressure. Patients were grouped into three categories based on supine endoscopy: Tongue-related obstruction (posteriorly located tongue, N = 10), non-tongue related obstruction (collapse due to the palate or lateral walls, N = 8), and epiglottic collapse (N = 6). Improvement in pharyngeal obstruction was quantified using the change in peak inspiratory airflow and minute ventilation lateral versus supine. Results: Contrary to our hypothesis, patients with tongue-related obstruction showed no improvement in airflow, and the tongue remained posteriorly located while lateral. Patients without tongue involvement showed modest improvement in airflow (peak flow increased 0.07 L/s and ventilation increased 1.5 L/min). Epiglottic collapse was virtually abolished with lateral positioning and ventilation increased by 45% compared to supine position. Conclusions: Improvement in pharyngeal patency with sleeping position is structure specific, with profound improvements seen in patients with epiglottic collapse, modest effects in those without tongue involvement and—unexpectedly—no effect in those with tongue-related obstruction. Our data refute the notion that the tongue falls back into the airway during sleep via gravitational influences. PMID:28329099
Response of an arctic predator guild to collapsing lemming cycles
Schmidt, Niels M.; Ims, Rolf A.; Høye, Toke T.; Gilg, Olivier; Hansen, Lars H.; Hansen, Jannik; Lund, Magnus; Fuglei, Eva; Forchhammer, Mads C.; Sittler, Benoit
2012-01-01
Alpine and arctic lemming populations appear to be highly sensitive to climate change, and when faced with warmer and shorter winters, their well-known high-amplitude population cycles may collapse. Being keystone species in tundra ecosystems, changed lemming dynamics may convey significant knock-on effects on trophically linked species. Here, we analyse long-term (1988–2010), community-wide monitoring data from two sites in high-arctic Greenland and document how a collapse in collared lemming cyclicity affects the population dynamics of the predator guild. Dramatic changes were observed in two highly specialized lemming predators: snowy owl and stoat. Following the lemming cycle collapse, snowy owl fledgling production declined by 98 per cent, and there was indication of a severe population decline of stoats at one site. The less specialized long-tailed skua and the generalist arctic fox were more loosely coupled to the lemming dynamics. Still, the lemming collapse had noticeable effects on their reproductive performance. Predator responses differed somewhat between sites in all species and could arise from site-specific differences in lemming dynamics, intra-guild interactions or subsidies from other resources. Nevertheless, population extinctions and community restructuring of this arctic endemic predator guild are likely if the lemming dynamics are maintained at the current non-cyclic, low-density state. PMID:22977153
Response of an arctic predator guild to collapsing lemming cycles.
Schmidt, Niels M; Ims, Rolf A; Høye, Toke T; Gilg, Olivier; Hansen, Lars H; Hansen, Jannik; Lund, Magnus; Fuglei, Eva; Forchhammer, Mads C; Sittler, Benoit
2012-11-07
Alpine and arctic lemming populations appear to be highly sensitive to climate change, and when faced with warmer and shorter winters, their well-known high-amplitude population cycles may collapse. Being keystone species in tundra ecosystems, changed lemming dynamics may convey significant knock-on effects on trophically linked species. Here, we analyse long-term (1988-2010), community-wide monitoring data from two sites in high-arctic Greenland and document how a collapse in collared lemming cyclicity affects the population dynamics of the predator guild. Dramatic changes were observed in two highly specialized lemming predators: snowy owl and stoat. Following the lemming cycle collapse, snowy owl fledgling production declined by 98 per cent, and there was indication of a severe population decline of stoats at one site. The less specialized long-tailed skua and the generalist arctic fox were more loosely coupled to the lemming dynamics. Still, the lemming collapse had noticeable effects on their reproductive performance. Predator responses differed somewhat between sites in all species and could arise from site-specific differences in lemming dynamics, intra-guild interactions or subsidies from other resources. Nevertheless, population extinctions and community restructuring of this arctic endemic predator guild are likely if the lemming dynamics are maintained at the current non-cyclic, low-density state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korogi, Yukunori; Takahashi, Mutsumasa; Mabuchi, Nobuhisa
1994-10-01
To assess the accuracy of three-dimensional, Fourier transform, time-of-flight magnetic resonance (MR) angiography in the detection of intracranial steno-occlusive diseases. One hundred thirty-one patients (62 male and 69 female patients, aged 6-77 years [mean, 53 years 8 months]) underwent MR and conventional angiography for evaluation of possible intracranial vascular disease. A total of 502 arteries were assessed. Eight projections and a collapsed image postprocessed by means of a maximum-intensity projection algorithm were reviewed by five observers in a blinded manner, with conventional angiography as the standard. A total of 32 steno-occlusive lesions were available for review. Receiver operating characteristic analysismore » from the pooled data revealed overall sensitivities of 85% and 88% and specificities of 96% and 97% for the internal carotid artery and the middle cerebral artery, respectively. MR angiography is useful as the primary diagnostic tool for evaluating suspected intracranial steno-occlusive disease. 22 refs., 7 figs., 5 tabs.« less
Unusual gravitational failures on lava domes of Tatun Volcanic Group, Northern Taiwan.
NASA Astrophysics Data System (ADS)
Belousov, Alexander; Belousova, Marina; Chen, Chang-Hwa; Zellmer, Georg
2010-05-01
Tatun Volcanic Group of Northern Taiwan was formed mainly during the Pleistocene - Early Holocene. Most of the volcanoes are represented by andesitic lava domes of moderate sizes: heights up to 400 m (absolute altitudes 800-1100 m a.s.l.), base diameters up to 2 km, and volumes up to 0.3 km³. Many of the domes have broadly opened (0.5-1.0 km across and up to 140° wide), shallow-incised horseshoe-shaped scars formed by gravitational collapses. The failure planes did not intersect the volcanic conduits, and the scars were not filled by younger volcanic edifices: most of the collapses occurred a long time after the eruptions had ceased. The largest collapse, with a volume 0.1 km³, occurred at eastern part of Datun lava dome. Specific feature of the collapse was that the rear slide blocks did not travel far from the source; they stopped high inside the collapse scar, forming multiple narrow toreva blocks descending downslope. The leading slide blocks formed a low mobile debris avalanche (L~5 km; H~1 km; H/L~0.2). The deposit is composed mainly of block facies. The age of the collapse is older than 24,000 yrs, because the related debris avalanche deposit is covered by a younger debris avalanche deposit of Siaoguanyin volcano having calibrated 14C age 22,600-23,780 BP. The Siaoguanyin debris avalanche was formed as a result of collapse of southern part of a small flank dome. Specific feature of the resulted avalanche - it was hot during deposition. The deposit contains carbonized wood; andesite boulders within the deposit frequently have radial cooling joints, and in rare cases "bread-crust" surfaces. The paucity of fine fractions in the deposit can be connected with elutriation of fines into the convective cloud when the hot avalanche travelled downslope. However in several locations the deposit is represented by typical avalanche blocks surrounded by heterolithologic mixed facies containing abundant clasts of Miocene sandstone (picked up from the substrate). Thus the deposit bears features of both debris avalanches and lithic-rich block-and-ash flows. The avalanche was rather mobile (L~6 km; H~1 km; H/L~0.16), despite its small volume (0.02 km³). Its speed reached 40 m/s at a distance of 5 km from the source (based on 80 m high runup of the avalanche). The characteristics of the avalanche deposit indicate that crystallized, degassed, but still hot material of a newly extruded lava dome was involved in the collapse. Unusual low mobile debris avalanche was formed as a result of collapse of western slope of Mt. Cising. A former lava coulee, which was involved in the collapse, underwent only weak disintegration: debris avalanche deposit is represented by big boulders with few fine grained matrix. Leading snout of the landslide traveled only 2 km, while rear slide blocks stopped near the landslide source forming multiple narrow toreva blocks descending downslope. Volume of the collapse 0.05 km³; maximum dropped height 0.5 km, H/L 0.25. Around the distal snout of the avalanche a "bulldozer facies" is well developed. Dating of vegetation entrained into the deposit gave 14C calibrated age 6000-6080 BP. Mobility of the studied debris avalanches was twice smaller than the average mobility of volcanic debris avalanches. Relatively small volume of the collapses, the particular type of material involved (massive lava domes) and the fact that the collapses occurred long after the volcanoes stopped erupting may have played a role in the low mobility of the debris avalanches of the Tatun Group.
Spence, Emma Suzuki; Beck, Jeffrey L; Gregory, Andrew J
2017-01-01
Greater sage-grouse (Centrocercus urophasianus) occupy sagebrush (Artemisia spp.) habitats in 11 western states and 2 Canadian provinces. In September 2015, the U.S. Fish and Wildlife Service announced the listing status for sage-grouse had changed from warranted but precluded to not warranted. The primary reason cited for this change of status was that the enactment of new regulatory mechanisms was sufficient to protect sage-grouse populations. One such plan is the 2008, Wyoming Sage Grouse Executive Order (SGEO), enacted by Governor Freudenthal. The SGEO identifies "Core Areas" that are to be protected by keeping them relatively free from further energy development and limiting other forms of anthropogenic disturbances near active sage-grouse leks. Using the Wyoming Game and Fish Department's sage-grouse lek count database and the Wyoming Oil and Gas Conservation Commission database of oil and gas well locations, we investigated the effectiveness of Wyoming's Core Areas, specifically: 1) how well Core Areas encompass the distribution of sage-grouse in Wyoming, 2) whether Core Area leks have a reduced probability of lek collapse, and 3) what, if any, edge effects intensification of oil and gas development adjacent to Core Areas may be having on Core Area populations. Core Areas contained 77% of male sage-grouse attending leks and 64% of active leks. Using Bayesian binomial probability analysis, we found an average 10.9% probability of lek collapse in Core Areas and an average 20.4% probability of lek collapse outside Core Areas. Using linear regression, we found development density outside Core Areas was related to the probability of lek collapse inside Core Areas. Specifically, probability of collapse among leks >4.83 km from inside Core Area boundaries was significantly related to well density within 1.61 km (1-mi) and 4.83 km (3-mi) outside of Core Area boundaries. Collectively, these data suggest that the Wyoming Core Area Strategy has benefited sage-grouse and sage-grouse habitat conservation; however, additional guidelines limiting development densities adjacent to Core Areas may be necessary to effectively protect Core Area populations.
NASA Astrophysics Data System (ADS)
Trenti, M.; Bertin, G.; van Albada, T. S.
2005-04-01
N-body simulations of collisionless collapse have offered important clues for the construction of realistic stellar dynamical models of elliptical galaxies. Understanding this idealized and relatively simple process, by which stellar systems can reach partially relaxed equilibrium configurations (characterized by isotropic central regions and radially anisotropic envelopes), is a prerequisite to more ambitious attempts at constructing physically justified models of elliptical galaxies in which the problem of galaxy formation is set in the generally accepted cosmological context of hierarchical clustering. In a previous paper we have discussed the dynamical properties of a family of models of partially relaxed stellar systems (the f(ν) models), designed to incorporate the qualitative properties of the products of collisionless collapse at small and at large radii. Here we revisit the problem of incomplete violent relaxation, by making a direct comparison between the detailed properties of such family of models and those of the products of collisionless collapse found in N-body simulations that we have run for the purpose. Surprisingly, the models thus identified are able to match the simulated density distributions over nine orders of magnitude and also to provide an excellent fit to the anisotropy profiles and a good representation of the overall structure in phase space. The end-products of the simulations and the best-fitting models turn out to be characterized by a level of pressure anisotropy close to the threshold for the onset of the radial-orbit instability. The conservation of Q, a third quantity that is argued to be approximately conserved in addition to total energy and total number of particles as a basis for the construction of the f(ν) family, is discussed and tested numerically.
NASA Astrophysics Data System (ADS)
Zapartas, E.; de Mink, S. E.; Izzard, R. G.; Yoon, S.-C.; Badenes, C.; Götberg, Y.; de Koter, A.; Neijssel, C. J.; Renzo, M.; Schootemeijer, A.; Shrotriya, T. S.
2017-05-01
Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of core-collapse supernovae, that is, the supernova rate versus time following a starburst, taking into account binary interactions. We test the systematic robustness of our results by running various simulations to account for the uncertainties in our standard assumptions. We find that a significant fraction, %, of core-collapse supernovae are "late", that is, they occur 50-200 Myr after birth, when all massive single stars have already exploded. These late events originate predominantly from binary systems with at least one, or, in most cases, with both stars initially being of intermediate mass (4-8 M⊙). The main evolutionary channels that contribute often involve either the merging of the initially more massive primary star with its companion or the engulfment of the remaining core of the primary by the expanding secondary that has accreted mass at an earlier evolutionary stage. Also, the total number of core-collapse supernovae increases by % because of binarity for the same initial stellar mass. The high rate implies that we should have already observed such late core-collapse supernovae, but have not recognized them as such. We argue that φ Persei is a likely progenitor and that eccentric neutron star - white dwarf systems are likely descendants. Late events can help explain the discrepancy in the delay-time distributions derived from supernova remnants in the Magellanic Clouds and extragalactic type Ia events, lowering the contribution of prompt Ia events. We discuss ways to test these predictions and speculate on the implications for supernova feedback in simulations of galaxy evolution.
Follow-up though Dec 31, 2002 has been completed for a study of site-specific cancer mortality among tuberculosis patients treated with artificial lung collapse therapy in Massachusetts tuberculosis sanatoria (1930-1950).
Hold your horses: A comparison of human laryngomalacia with analogous equine airway pathology.
Lawrence, Rachael J; Butterell, Matthew J; Constable, James D; Daniel, Matija
2018-02-01
Laryngomalacia is the most common cause of stridor in infants. Dynamic airway collapse is also a well-recognised entity in horses and an important cause of surgical veterinary intervention. We compare the aetiology, clinical features and management of human laryngomalacia with equine dynamic airway collapse. A structured review of the PubMed, the Ovid Medline and the Cochrane Collaboration databases (Cochrane Central Register of Controlled Trials, Cochrane Database of Systemic Reviews). There are numerous equine conditions that cause dynamic airway collapse defined specifically by the anatomical structures involved. Axial Deviation of the Aryepiglottic Folds (ADAF) is the condition most clinically analogous to laryngomalacia in humans, and is likewise most prevalent in the immature equine airway. Both conditions are managed either conservatively, or if symptoms require it, with surgical intervention. The operative procedures performed for ADAF and laryngomalacia are technically comparable. Dynamic collapse of the equine larynx, especially ADAF, is clinically similar to human laryngomalacia, and both are treated in a similar fashion. Copyright © 2017 Elsevier B.V. All rights reserved.
Collapse Mechanism Analysis in the Design of Superstructure Vehicle
NASA Astrophysics Data System (ADS)
Mohd Nor, M. K.
2016-11-01
The EU directive 2001/85/EC is an official European text which describes the specifications for “single deck class II and III vehicles” required to be approved by the regulation UN/ECE no.66 (R66). To prevent the catastrophic consequences by occupant during an accident, the Malaysian government has reinforced the same regulation upon superstructure construction. This paper discusses collapse mechanism analysis of a superstructure vehicle using a Crash D nonlinear analysis computer program based on this regulation. The analysis starts by hand calculation to define the required energy absorption by the chosen structure. Simple calculations were then performed to define the weakest collapse mechanism after undesirable collapse modes are eliminated. There are few factors highlighted in this work to pass the regulation. Using the selected cross section, Crash D simulation showed a good result. Generally, the deformation is linearly correlates to the energy absorption for the structure with low stiffness. Failure of critical members such as vertical lower side wall must be avoided to sustain safety of the passenger compartment and prevent from severe and fatal injuries to the trapped occupant.
Nonlinear analysis of collapse mechanism in superstructure vehicle
NASA Astrophysics Data System (ADS)
Nor, M. K. Mohd; Ho, C. S.; Ma'at, N.
2017-04-01
The EU directive 2001/85/EC is an official European text which describes the specifications for "single deck class II and III vehicles" required to be approved by the regulation UN/ECE no.66 (R66). To prevent the catastrophic consequences by occupant during an accident, the Malaysian government has reinforced the same regulation upon superstructure construction. This paper discusses collapse mechanism analysis of a superstructure vehicle using a Crash D nonlinear analysis computer program based on this regulation. The analysis starts by hand calculation to define the required energy absorption by the chosen structure. Simple calculations were then performed to define the weakest collapse mechanism after undesirable collapse modes are eliminated. There are few factors highlighted in this work to pass the regulation. Using the selected cross section, Crash D simulation showed a good result. Generally, the deformation is linearly correlates to the energy absorption for the structure with low stiffness. Failure of critical members such as vertical lower side wall must be avoided to sustain safety of the passenger compartment and prevent from severe and fatal injuries to the trapped occupant.
Constructing a patient-specific computer model of the upper airway in sleep apnea patients.
Dhaliwal, Sandeep S; Hesabgar, Seyyed M; Haddad, Seyyed M H; Ladak, Hanif; Samani, Abbas; Rotenberg, Brian W
2018-01-01
The use of computer simulation to develop a high-fidelity model has been proposed as a novel and cost-effective alternative to help guide therapeutic intervention in sleep apnea surgery. We describe a computer model based on patient-specific anatomy of obstructive sleep apnea (OSA) subjects wherein the percentage and sites of upper airway collapse are compared to findings on drug-induced sleep endoscopy (DISE). Basic science computer model generation. Three-dimensional finite element techniques were undertaken for model development in a pilot study of four OSA patients. Magnetic resonance imaging was used to capture patient anatomy and software employed to outline critical anatomical structures. A finite-element mesh was applied to the volume enclosed by each structure. Linear and hyperelastic soft-tissue properties for various subsites (tonsils, uvula, soft palate, and tongue base) were derived using an inverse finite-element technique from surgical specimens. Each model underwent computer simulation to determine the degree of displacement on various structures within the upper airway, and these findings were compared to DISE exams performed on the four study patients. Computer simulation predictions for percentage of airway collapse and site of maximal collapse show agreement with observed results seen on endoscopic visualization. Modeling the upper airway in OSA patients is feasible and holds promise in aiding patient-specific surgical treatment. NA. Laryngoscope, 128:277-282, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Weighting of topologically different interactions in a model of two-dimensional polymer collapse.
Bedini, Andrea; Owczarek, Aleksander L; Prellberg, Thomas
2013-01-01
We study by computer simulation a recently introduced generalized model of self-interacting self-avoiding trails on the square lattice that distinguishes two topologically different types of self-interaction: namely, crossings where the trail passes across itself and collisions where the lattice path visits the same site without crossing. This model generalizes the canonical interacting self-avoiding trail model of polymer collapse, which has a strongly divergent specific heat at its transition point. We confirm the recent prediction that the asymmetry does not affect the universality class for a range of asymmetry. Certainly, where the weighting of collisions outweighs that of crossings this is well supported numerically. When crossings are weighted heavily relative to collisions, the collapse transition reverts to the canonical θ-point-like behavior found in interacting self-avoiding walks.
A diagnostic dilemma of right lower lobe collapse caused by pulmonary bilharsiasis.
Sersar, Sameh Ibrahim; Abulmaaty, Reda Ahmed; Elnahas, Hala Ahmed; Moussa, Sherif Abdou; Shiha, Usama A; Ghafar, Wael A Abdel; Elmotawaly, Raed A
2006-02-01
A 32-year-old male was presented with massive haemoptysis. An urgent chest X-ray (Fig. 1a) and CT chest (Fig. 1b-e) was done revealing a right lower lobe consolidation collapse. An urgent rigid bronchoscopy was performed to localize the source of bleeding and try to control it. A right lower lobectomy was done using a double-lumen endotracheal tube. Preoperative and intraoperative impressions of non-specific inflammation were accused to be the aetiology. Histopathology revealed pulmonary venous congestion with bilharsial ova.
Stress focusing and collapse of a thin film under constant pressure
NASA Astrophysics Data System (ADS)
Hamm, Eugenio; Cabezas, Nicolas
2012-02-01
Thin elastic sheets and shells are prone to focus stress when forced, due to their near inextensibility. Singular structures such as ridges, vertices, and folds arising from wrinkles, are characteristic of the deformation of such systems. Usually the forcing is exerted at the boundaries or at specific points of the surface, in displacement controlled experiments. On the other hand, much of the phenomenology of stress focusing can be found at micro and nanoscales, in physics and biology, making it universal. We will consider the post-buckling regime of a thin elastic sheet that is subjected to a constant normal distributed force. Specifically, we will present experiments made on thin elastoplastic sheets that collapse under atmospheric pressure. For instance, in vacuum-sealing technology, when a flat plastic bag is forced to wrap a solid volume, a series of self-contacts and folds develop. The unfolded bag shows a pattern of scars whose structure is determined by the geometry of the volume and by the exact way it stuck to its surface, by friction. Inspired by this everyday example we study the geometry of folds that result from collapsing a hermetic bag on regular rigid bodies.
Reexpansion pulmonary edema: review of pediatric cases.
Kira, Shinichiro
2014-03-01
Reexpansion pulmonary edema (RPE) is an increased permeability pulmonary edema that usually occurs in the reexpanded lung after several days of lung collapse. This condition is recognized to occur more frequently in patients under the age of 40 years, but there has been no detailed analysis of reported pediatric cases of RPE to date. For this review, PubMed literature searches were performed using the following terms: 're(-)expansion pulmonary (o)edema' AND ('child' OR 'children' OR 'infant' OR 'boy' OR 'girl' OR 'adolescent'). The 22 pediatric cases of RPE identified were included in this review. RPE was reported in almost the entire pediatric age range, and as in adult cases, the severity ranged from subclinical to lethal. No specific treatment for RPE was identified, and treatment was administered according to the clinical features of each patient. Of the 22 reported cases, 10 occurred during the perioperative period, but were not related to any specific surgical procedures or anesthetic techniques, or to the duration of lung collapse. Pediatric anesthesiologists should be aware that pediatric RPE can occur after reexpansion of any collapsed lung and that some invasive therapies can be useful in severe cases. © 2013 John Wiley & Sons Ltd.
Code of Federal Regulations, 2010 CFR
2010-07-01
... circuit interrupters. (ii) Glove bag systems may be used to remove PACM and/or ACM from straight runs of.... (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run... PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove...
Code of Federal Regulations, 2013 CFR
2013-07-01
... circuit interrupters. (ii) Glove bag systems may be used to remove PACM and/or ACM from straight runs of.... (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run... PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove...
Code of Federal Regulations, 2012 CFR
2012-07-01
... circuit interrupters. (ii) Glove bag systems may be used to remove PACM and/or ACM from straight runs of.... (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run... PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove...
Code of Federal Regulations, 2014 CFR
2014-07-01
... circuit interrupters. (ii) Glove bag systems may be used to remove PACM and/or ACM from straight runs of.... (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run... PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove...
Code of Federal Regulations, 2011 CFR
2011-07-01
... circuit interrupters. (ii) Glove bag systems may be used to remove PACM and/or ACM from straight runs of.... (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run... PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove...
NASA Astrophysics Data System (ADS)
Pan, Huali; Hu, Mingjian; Ou, Guoqiang
2017-04-01
According to the geological investigation in Fujian province, the total number of geological disasters was 9513, in which the number of landslide, collapse, unstable slope and surface collapse was 5816, 1888, 1591, 103 and 115 respectively. The main geological disaster was the landslide with 61.1% of total geological disasters. Among all these geological disasters, only 6.0% was relative stable, 17.0% was basic stable, nearly 76.0% was unstable. The slope disaster was the main geological disaster, if the unstable slope was the potential landslide or collapse; the slope collapse was 98.0% of all geological disasters. The rainfall, in particular the heavy rain, was direct dynamic factor for geological disasters, but the occurrence probability of geological disasters was different because of the sensitivity of the geological environment though of the same intensity rainfall. To obtain the characteristics of soil erosion under the rainfall condition, the rainfall characteristics and its related disasters of slag disposal pit of a certain Gold-Copper Deposit in Fujian province was analyzed by the meteorological and rainfall data. According to the distribution of monitoring stations of hydrological and rainfall in Longyan city of Fujian province and the location of gold-copper deposit, the Shanghang monitoring station of hydrological and rainfall was chosen, which is the nearest one to the gold-copper deposit. Then main parameters of the prediction model, the antecedent precipitation, the rainfall on the day and the rainfall threshold, were calculated by using the rainfall data from 2002 to 2010. And the relationship between geological disasters and the rainfall characteristics were analyzed. The results indicated that there was high risk for the debris flow with landslide collapse when either the daily rainfall was more than 100.0 mm, or the total rainfall was more than 136.0mm in the gold-copper deposit and the Shanghang region. At the same time, although there was few risk for the debris flow when the daily rainfall was between 50.0-100.0mm, once the soil was saturated or nearly saturated because of the continuous antecedent precipitation, debris flow disaster would occur even the daily rainfall was only 50.0mm. In addition, it was prone to trigger debris flow disaster when the daily heavy rainfall was more than 100.0mm or the torrential rainfall in 3 days was between 250.0 -300.0mm.
Syslo, John M.; Guy, Christopher S.; Cox, Benjamin S.
2013-01-01
Given the large amount of resources required for long-term control or eradication projects, it is important to assess strategies and associated costs and outcomes before a particular plan is implemented. We developed a population model to assess the cost-effectiveness of mechanical removal strategies for suppressing long-term abundance of nonnative Lake Trout Salvelinus namaycush in Swan Lake, Montana. We examined the efficacy of targeting life stages (i.e., juveniles or adults) using temporally pulsed fishing effort for reducing abundance and program cost. Exploitation rates were high (0.80 for juveniles and 0.68 for adults) compared with other lakes in the western USA with Lake Trout suppression programs. Harvesting juveniles every year caused the population to decline, whereas harvesting only adults caused the population to increase above carrying capacity. Simultaneous harvest of juveniles and adults was required to cause the population to collapse (i.e., 95% reduction relative to unharvested abundance) with 95% confidence. The population could collapse within 15 years for a total program cost of US$1,578,480 using the most aggressive scenario. Substantial variation in cost existed among harvest scenarios for a given reduction in abundance; however, total program cost was minimized when collapse was rapid. Our approach provides a useful case study for evaluating long-term mechanical removal options for fish populations that are not likely to be eradicated.
miR-MaGiC improves quantification accuracy for small RNA-seq.
Russell, Pamela H; Vestal, Brian; Shi, Wen; Rudra, Pratyaydipta D; Dowell, Robin; Radcliffe, Richard; Saba, Laura; Kechris, Katerina
2018-05-15
Many tools have been developed to profile microRNA (miRNA) expression from small RNA-seq data. These tools must contend with several issues: the small size of miRNAs, the small number of unique miRNAs, the fact that similar miRNAs can be transcribed from multiple loci, and the presence of miRNA isoforms known as isomiRs. Methods failing to address these issues can return misleading information. We propose a novel quantification method designed to address these concerns. We present miR-MaGiC, a novel miRNA quantification method, implemented as a cross-platform tool in Java. miR-MaGiC performs stringent mapping to a core region of each miRNA and defines a meaningful set of target miRNA sequences by collapsing the miRNA space to "functional groups". We hypothesize that these two features, mapping stringency and collapsing, provide more optimal quantification to a more meaningful unit (i.e., miRNA family). We test miR-MaGiC and several published methods on 210 small RNA-seq libraries, evaluating each method's ability to accurately reflect global miRNA expression profiles. We define accuracy as total counts close to the total number of input reads originating from miRNAs. We find that miR-MaGiC, which incorporates both stringency and collapsing, provides the most accurate counts.
Hip replacement in femoral head osteonecrosis: current concepts
Scaglione, Michelangelo; Fabbri, Luca; Celli, Fabio; Casella, Francesco; Guido, Giulio
2015-01-01
Summary Osteonecrosis of the femoral head is a destructive disease that usually affects young adults with high functional demands and can have devastating effects on hip joint. The treatment depends on extent and location of the necrosis lesion and on patient’s factors, that suggest disease progression, collapse probability and also implants survival. Non-idiopathic osteonecrosis patients had the worst outcome. There is not a gold standard treatment and frequently it is necessary a multidisciplinary approach. Preservation procedures of the femoral head are the first choice and can be attempted in younger patients without head collapse. Replacement procedure remains the main treatment after failure of preserving procedures and in the late-stage ONFH, involving collapse of the femoral head and degenerative changes to the acetabulum. Resurfacing procedure still has good results but the patient selection is a critical factor. Total hip arthroplasties had historically poor results in patients with osteonecrosis. More recently, reports have shown excellent results, but implant longevity and following revisions are still outstanding problems. PMID:27134633
Building Damage Extraction Triggered by Earthquake Using the Uav Imagery
NASA Astrophysics Data System (ADS)
Li, S.; Tang, H.
2018-04-01
When extracting building damage information, we can only determine whether the building is collapsed using the post-earthquake satellite images. Even the satellite images have the sub-meter resolution, the identification of slightly damaged buildings is still a challenge. As the complementary data to satellite images, the UAV images have unique advantages, such as stronger flexibility and higher resolution. In this paper, according to the spectral feature of UAV images and the morphological feature of the reconstructed point clouds, the building damage was classified into four levels: basically intact buildings, slightly damaged buildings, partially collapsed buildings and totally collapsed buildings, and give the rules of damage grades. In particular, the slightly damaged buildings are determined using the detected roof-holes. In order to verify the approach, we conduct experimental simulations in the cases of Wenchuan and Ya'an earthquakes. By analyzing the post-earthquake UAV images of the two earthquakes, the building damage was classified into four levels, and the quantitative statistics of the damaged buildings is given in the experiments.
Micromechanics of cataclastic pore collapse in limestone
NASA Astrophysics Data System (ADS)
Zhu, Wei; Baud, Patrick; Wong, Teng-Fong
2010-04-01
The analysis of compactant failure in carbonate formations hinges upon a fundamental understanding of the mechanics of inelastic compaction. Microstructural observations indicate that pore collapse in a limestone initiates at the larger pores, and microcracking dominates the deformation in the periphery of a collapsed pore. To capture these micromechanical processes, we developed a model treating the limestone as a dual porosity medium, with the total porosity partitioned between macroporosity and microporosity. The representative volume element is made up of a large pore which is surrounded by an effective medium containing the microporosity. Cataclastic yielding of this effective medium obeys the Mohr-Coulomb or Drucker-Prager criterion, with failure parameters dependent on porosity and pore size. An analytic approximation was derived for the unconfined compressive strength associated with failure due to the propagation and coalescence of pore-emanated cracks. For hydrostatic loading, identical theoretical results for the pore collapse pressure were obtained using the Mohr-Coulomb or Drucker-Prager criterion. For nonhydrostatic loading, the stress state at the onset of shear-enhanced compaction was predicted to fall on a linear cap according to the Mohr-Coulomb criterion. In contrast, nonlinear caps in qualitative agreement with laboratory data were predicted using the Drucker-Prager criterion. Our micromechanical model implies that the effective medium is significantly stronger and relatively pressure-insensitive in comparison to the bulk sample.
Three-Dimensional Integrated Survey for Building Investigations.
Costantino, Domenica; Angelini, Maria Giuseppa
2015-11-01
The study shows the results of a survey aimed to represent a building collapse and the feasibility of the modellation as a support of structure analysis. An integrated survey using topographic, photogrammetric, and terrestrial laser techniques was carried out to obtain a three-dimensional (3D) model of the building, plans and prospects, and the particulars of the collapsed area. Authors acquired, by a photogrammetric survey, information about regular parties of the structure; while using laser scanner data they reconstructed a set of more interesting architectural details and areas with higher surface curvature. Specifically, the process of texture provided a detailed 3D structure of the areas under investigation. The analysis of the data acquired resulted to be very useful both in identifying the causes of the disaster and also in helping the reconstruction of the collapsed corner showing the contribution that the integrated surveys can give in preserving architectural and historic heritage. © 2015 American Academy of Forensic Sciences.
Oh, Sang Young; Lee, Minho; Seo, Joon Beom; Kim, Namkug; Lee, Sang Min; Lee, Jae Seung; Oh, Yeon Mok
2017-01-01
A novel approach of size-based emphysema clustering has been developed, and the size variation and collapse of holes in emphysema clusters are evaluated at inspiratory and expiratory computed tomography (CT). Thirty patients were visually evaluated for the size-based emphysema clustering technique and a total of 72 patients were evaluated for analyzing collapse of the emphysema hole in this study. A new approach for the size differentiation of emphysema holes was developed using the length scale, Gaussian low-pass filtering, and iteration approach. Then, the volumetric CT results of the emphysema patients were analyzed using the new method, and deformable registration was carried out between inspiratory and expiratory CT. Blind visual evaluations of EI by two readers had significant correlations with the classification using the size-based emphysema clustering method (r-values of reader 1: 0.186, 0.890, 0.915, and 0.941; reader 2: 0.540, 0.667, 0.919, and 0.942). The results of collapse of emphysema holes using deformable registration were compared with the pulmonary function test (PFT) parameters using the Pearson’s correlation test. The mean extents of low-attenuation area (LAA), E1 (<1.5 mm), E2 (<7 mm), E3 (<15 mm), and E4 (≥15 mm) were 25.9%, 3.0%, 11.4%, 7.6%, and 3.9%, respectively, at the inspiratory CT, and 15.3%, 1.4%, 6.9%, 4.3%, and 2.6%, respectively at the expiratory CT. The extents of LAA, E2, E3, and E4 were found to be significantly correlated with the PFT parameters (r=−0.53, −0.43, −0.48, and −0.25), with forced expiratory volume in 1 second (FEV1; −0.81, −0.62, −0.75, and −0.40), and with diffusing capacity of the lungs for carbon monoxide (cDLco), respectively. The fraction of emphysema that shifted to the smaller subgroup showed a significant correlation with FEV1, cDLco, forced expiratory flow at 25%–75% of forced vital capacity, and residual volume (RV)/total lung capacity (r=0.56, 0.73, 0.40, and −0.58). A detailed assessment of the size variation and collapse of emphysema holes may be useful for understanding the dynamic collapse of emphysema and its functional relation. PMID:28761337
Greatwall is essential to prevent mitotic collapse after nuclear envelope breakdown in mammals.
Álvarez-Fernández, Mónica; Sánchez-Martínez, Ruth; Sanz-Castillo, Belén; Gan, Pei Pei; Sanz-Flores, María; Trakala, Marianna; Ruiz-Torres, Miguel; Lorca, Thierry; Castro, Anna; Malumbres, Marcos
2013-10-22
Greatwall is a protein kinase involved in the inhibition of protein phosphatase 2 (PP2A)-B55 complexes to maintain the mitotic state. Although its biochemical activity has been deeply characterized in Xenopus, its specific relevance during the progression of mitosis is not fully understood. By using a conditional knockout of the mouse ortholog, Mastl, we show here that mammalian Greatwall is essential for mouse embryonic development and cell cycle progression. Yet, Greatwall-null cells enter into mitosis with normal kinetics. However, these cells display mitotic collapse after nuclear envelope breakdown (NEB) characterized by defective chromosome condensation and prometaphase arrest. Intriguingly, Greatwall is exported from the nucleus to the cytoplasm in a CRM1-dependent manner before NEB. This export occurs after the nuclear import of cyclin B-Cdk1 complexes, requires the kinase activity of Greatwall, and is mediated by Cdk-, but not Polo-like kinase 1-dependent phosphorylation. The mitotic collapse observed in Greatwall-deficient cells is partially rescued after concomitant depletion of B55 regulatory subunits, which are mostly cytoplasmic before NEB. These data suggest that Greatwall is an essential protein in mammals required to prevent mitotic collapse after NEB.
Yang, Dongmei; Li, Junhui; Ding, Yiting; Tyree, Melvin T
2017-03-01
The physiological advantages of negative turgor pressure, P t , in leaf cells are water saving and homeostasis of reactants. This paper advances methods for detecting the occurrence of negative P t in leaves. Biomechanical models of pressure-volume (PV) curves predict that negative P t does not change the linearity of PV curve plots of inverse balance pressure, P B , versus relative water loss, but it does predict changes in either the y-intercept or the x-intercept of the plots depending on where cell collapse occurs in the P B domain because of negative P t . PV curve analysis of Robinia leaves revealed a shift in the x-intercept (x-axis is relative water loss) of PV curves, caused by negative P t of palisade cells. The low x-intercept of the PV curve was explained by the non-collapse of palisade cells in Robinia in the P B domain. Non-collapse means that P t smoothly falls from positive to negative values with decreasing cell volume without a dramatic change in slope. The magnitude of negative turgor in non-collapsing living cells was as low as -1.3 MPa and the relative volume of the non-collapsing cell equaled 58% of the total leaf cell volume. This study adds to the growing evidence for negative P t . © 2016 John Wiley & Sons Ltd.
Fungicide Sprays Can Injure the Stigmatic Surface During Receptivity in Almond Flowers
YI, WEIGUANG; LAW, S. EDWARD; WETZSTEIN, HAZEL Y.
2003-01-01
Fungicides can be detrimental to flower development, pollen function and fruit set in a number of crops. Almond is a self‐incompatible nut crop that has a fruit set of only approx. 30 % of the total number of flowers. Thus, interference of pollination and fertilization by fungicide sprays is of concern, and identification of chemicals having the least detrimental effects would be desirable. The objective of this study was to evaluate the effect of fungicide sprays on stigma morphology in almond using a laboratory spray apparatus that simulated field applications. Four fungicides (azoxystrobin, myclobutanil, iprodione and cyprodinil) were applied, and fresh, unfixed stigmatic surfaces were observed using a scanning electron microscope at 4 and 24 h after spraying. Increased exudate accumulation was induced by azoxystrobin at both time periods, and localized damage and collapse of stigmatic cells were observed after 24 h. Damaged stigmatic papillae exhibited wrinkling, surface distortion or collapse. Likewise, myclobutanil caused significant damage to and collapse of papillae; these were more extensive at later observations. Iprodione had no effect on exudate accumulation but caused marked and severe collapse of stigmatic papillae which was pronounced at 24 h. Cyprodinil promoted a copious increase in exudate secretion and caused the most severe collapse of stigmatic cells of all the fungicides evaluated. Damage was somewhat localized at 4 h but more global at 24 h. This study has verified that certain fungicide sprays have direct detrimental effects on stigma morphology and enhance exudate production in almond flowers. PMID:12547686
Satellite-based constraints on explosive SO2 release from Soufrière Hills Volcano, Montserrat
NASA Astrophysics Data System (ADS)
Carn, Simon A.; Prata, Fred J.
2010-09-01
Numerous episodes of explosive degassing have punctuated the 1995-2009 eruption of Soufrière Hills volcano (SHV), Montserrat, often following major lava dome collapses. We use ultraviolet (UV) and infrared (IR) satellite measurements to quantify sulfur dioxide (SO2) released by explosive degassing, which is not captured by routine ground-based and airborne gas monitoring. We find a total explosive SO2 release of ˜0.5 Tg, which represents ˜6% of total SO2 emissions from SHV since July 1995. The majority of this SO2 (˜0.4 Tg) was vented following the most voluminous SHV dome collapses in July 2003 and May 2006. Based on our analysis, we suggest that the SO2 burden measured following explosive disruption of lava domes depends on several factors, including the instantaneous lava effusion rate, dome height above the conduit, and the vertical component of directed explosions. Space-based SO2 measurements merit inclusion in routine gas monitoring at SHV and other dome-forming volcanoes.
Block oscillation model for impact crater collapse
NASA Astrophysics Data System (ADS)
Ivanov, B. A.; Kostuchenko, V. N.
1997-03-01
Previous investigations of the impact crater formation mechanics have shown that the late stage, a transient cavity collapse in a gravity field, may be modeled with a traditional rock mechanics if one ascribes very specific mechanical properties of rock in the vicinity of a crater: an effective strength of rock needed is around 30 bar, and effective angle of internal friction below 5 deg. The rock media with such properties may be supposed 'temporary fluidized'. The nature of this fluidization is now poorly understood; an acoustic (vibration) nature of this fluidization has been suggested. This model now seems to be the best approach to the problem. The open question is how to implement the model (or other possible models) in a hydrocode for numerical simulation of a dynamic crater collapse. We study more relevant models of mechanical behavior of rocks during cratering. The specific of rock deformation is that the rock media deforms not as a plastic metal-like continuum, but as a system of discrete rock blocks. The deep drilling of impact craters revealed the system of rock blocks of 50 m to 200 m in size. We used the model of these block oscillations to formulate the appropriate rheological law for the subcrater flow during the modification stage.
Target-molecule-triggered rupture of aptamer-encapsulated polyelectrolyte microcapsules.
Zhang, Xueru; Chabot, Denise; Sultan, Yasir; Monreal, Carlos; DeRosa, Maria C
2013-06-26
Polyelectrolyte microcapsules have great potential for serving as carriers for the delivery of their contents when triggered by an external stimulus. Aptamers are synthetic ssDNA or RNA that can bind to specific targets with high affinity and selectivity. Aptamers may retain these superior molecular recognition properties after encapsulation within polymer microcapsules. In this work, stable polyelectrolyte microcapsules with encapsulated aptamers were obtained by the layer-by-layer (LbL) method. Polyelectrolyte films were deposited onto a CaCO3 template that had been predoped with polystyrene sulfonate (PSS) and aptamer sequences (SA) that have an affinity for the dye sulforhodamine B (SRB). The PSS and aptamers are thought to serve as an internal scaffold supporting the microcapsule walls. These microcapsules would present target-molecule-triggered rupture properties. Microcapsule collapse was triggered by the binding of SRB to the encapsulated aptamer. The specificity of microcapsule collapse was investigated using a similar dye, tetramethylrosamine (TMR), which does not have affinity for SA. A high concentration of TMR did not lead to the collapse of the microcapsules. The effect of target binding on the microcapsules was confirmed by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). These microcapsules may have potential applications in targeted delivery systems for the controlled release of drugs, pesticides, or other payloads.
Scanning the parameter space of collapsing rotating thin shells
NASA Astrophysics Data System (ADS)
Rocha, Jorge V.; Santarelli, Raphael
2018-06-01
We present results of a comprehensive study of collapsing and bouncing thin shells with rotation, framing it in the context of the weak cosmic censorship conjecture. The analysis is based on a formalism developed specifically for higher odd dimensions that is able to describe the dynamics of collapsing rotating shells exactly. We analyse and classify a plethora of shell trajectories in asymptotically flat spacetimes. The parameters varied include the shell’s mass and angular momentum, its radial velocity at infinity, the (linear) equation-of-state parameter and the spacetime dimensionality. We find that plunges of rotating shells into black holes never produce naked singularities, as long as the matter shell obeys the weak energy condition, and so respects cosmic censorship. This applies to collapses of dust shells starting from rest or with a finite velocity at infinity. Not even shells with a negative isotropic pressure component (i.e. tension) lead to the formation of naked singularities, as long as the weak energy condition is satisfied. Endowing the shells with a positive isotropic pressure component allows for the existence of bouncing trajectories satisfying the dominant energy condition and fully contained outside rotating black holes. Otherwise any turning point occurs always inside the horizon. These results are based on strong numerical evidence from scans of numerous sections in the large parameter space available to these collapsing shells. The generalisation of the radial equation of motion to a polytropic equation-of-state for the matter shell is also included in an appendix.
NASA Astrophysics Data System (ADS)
Özdemir, Adnan
2008-02-01
This study examines the local geological conditions and soil structure as possible causes of the collapse of the Zümrüt Building 2 February 2004. This catastrophe resulted in 92 fatalities and 35 injuries. This study also examines other views which claim weak soil structure, elastic and consolidation settlement of soil and excessive groundwater extraction as well as subsidence resulting from the underground silt erosion as possible factors. Zümrüt Building was constructed on normally consolidated, low plasticity clay. The underground water table was 30 m in depth. The internal friction angle of soil was 8°-30°, its cohesion was between 34 and 127 kN/m2 and standard penetration test numbers varied between 11 and 50. The underground water level beneath Zümrüt Building had risen 4.5 m since its construction. Therefore the claim that subsidence resulting from the decrease of underground water level contributed to the collapse is incorrect. Secondly the settlement, resulting from the filling up of the pores created by the silt receding with the underground water, was 4.4 mm in total, and attributing this as the primary cause of the collapse is also incorrect. Soil properties, in situ and laboratory test results showed that the existing and/or expected settlement and the differential ground settlement in the Zümrüt building vicinity had the potential to cause structural damage. The tensile stresses caused by differential settlements recorded here are thought to be an indicator, but not the main cause contributing to the collapse of the building. The Zümrüt Building collapse was due to several compounding mistakes during the construction phase. These were geotechnical and other project faults and the use of low quality construction materials. The resulting catastrophe caused 92 fatalities, 35 injuries and a material loss of approximately US7 million.
NASA Astrophysics Data System (ADS)
Torres-Orozco, R.; Cronin, S. J.; Damaschke, M.; Kosik, S.; Pardo, N.
2016-12-01
Three eruptive scenarios were determined based on the event-lithostratigraphic reconstruction of the largest late-Holocene eruptions of the andesitic Mt. Taranaki, New Zealand: a) sustained dome-effusion followed by sudden stepwise collapse and unroofing of gas-rich magma; b) repeated plug and burst events generated by transient open-/closed-vent conditions; and c) open-vent conditions of more mafic magmas erupting from a satellite vent. Pyroclastic density currents (PDCs) are the most frequent outcome in every scenario. They can be produced in any/every eruption phase by formation and either repetitive-partial or total gravity-driven collapse of lava domes in the summit crater (block-and-ash flows), frequently followed by sudden magma decompression and violent, highly unsteady to quasi-steady lateral expansion (blast-like PDCs); by collapse or single-pulse fall-back of unsteady eruption columns (pyroclastic flow- and surge-type currents); or during highly unsteady and explosive hydromagmatic phases (wet surges). Fall deposits are produced during the climatic phase of each eruptive scenario by the emplacement of (i) high, sustained and steady, (ii) sustained and height-oscillating, (iii) quasi-steady and pulsating, or (iv) unsteady and totally collapsing eruption columns. Volumes, column heights and mass- and volume-eruption rates indicate that these scenarios correspond to VEI 4-5 plinian and sub-plinian multi-phase and style-shifting episodes, similar or larger than the most recent 1655 AD activity, and comparable to plinian eruptions of e.g. Apoyeque, Colima, Merapi and Tarawera volcanoes. Whole-rock chemistry, textural reconstructions and density-porosity determinations suggest that the different eruptive scenarios are mainly driven by variations in the density structure of magma in the upper conduit. Assuming a simple single conduit model, the style transitions can be explained by differing proportions of alternating gas-poor/degassed and gas-rich magma.
Deng, Yusong; Cai, Chongfa; Xia, Dong; Ding, Shuwen; Chen, Jiazhou
2017-01-01
Collapsing gullies are among the most severe soil erosion problems in the tropical and subtropical areas of southern China. However, few studies have examined the relationship of soil particle size distribution (PSD) changes with land-use patterns in the alluvial fans of collapsing gullies. Recently, the fractal method has been applied to estimate soil structure and has proven to be an effective tool in analyzing soil properties and their relationships with other eco-environmental factors. In this study, the soil fractal dimension (D), physico-chemical properties and their relationship with different land-use patterns in alluvial fans were investigated in an experiment that involved seven collapsing gully areas in seven counties of southern China. Our results demonstrated that different land-use patterns of alluvial fans had a significant effect on soil physico-chemical properties. Compared to grasslands and woodlands, farmlands and orchards generally contained more fine soil particles (silt and clay) and fewer coarse particles, whereas significant differences were found in the fractal dimension of soil PSD in different land-use patterns. Specifically, the soil fractal dimension was lower in grasslands and higher in orchards relative to that of other land-use patterns. The average soil fractal dimension of grasslands had a value that was 0.08 lower than that of orchards. Bulk density was lower but porosity was higher in farmlands and orchards. Saturated moisture content was lower in woodlands and grasslands, but saturated hydraulic conductivity was higher in all four land-use patterns. Additionally, the fractal dimension had significant linear relationships with the silt, clay and sand contents and soil properties and exhibited a positive correlation with the clay (R2 = 0.976, P<0.001), silt (R2 = 0.578, P<0.01), organic carbon (R2 = 0.777, P<0.001) and saturated water (R2 = 0.639, P<0.01) contents but a negative correlation with gravel content (R2 = 0.494, P<0.01), coarse sand content (R2 = 0.623, P<0.01) and saturated hydraulic conductivity (R2 = 0.788, P<0.001). However, the fractal dimension exhibited no significant correlation with pH, bulk density or total porosity. Furthermore, the second-degree polynomial equation was found to be more adequate for describing the correlations between soil fractal dimension and particle size distribution. The results of this study demonstrate that a fractal dimension analysis of soil particle size distribution is a useful method for the quantitative description of different land-use patterns in the alluvial fans of collapsing gullies in southern China. PMID:28301524
NASA Astrophysics Data System (ADS)
Ruiz, Milton; Shapiro, Stuart L.
2017-10-01
Inspiraling and merging binary neutron stars are not only important source of gravitational waves, but also promising candidates for coincident electromagnetic counterparts. These systems are thought to be progenitors of short gamma-ray bursts (sGRBs). We have shown previously that binary neutron star mergers that undergo delayed collapse to a black hole surrounded by a weighty magnetized accretion disk can drive magnetically powered jets. We now perform magnetohydrodynamic simulations in full general relativity of binary neutron stars mergers that undergo prompt collapse to explore the possibility of jet formation from black hole- light accretion disk remnants. We find that after t -tBH˜26 (MNS/1.8 M⊙) ms (MNS is the ADM mass) following prompt black hole formation, there is no evidence of mass outflow or magnetic field collimation. The rapid formation of the black hole following merger prevents magnetic energy from approaching force-free values above the magnetic poles, which is required for the launching of a jet by the usual Blandford-Znajek mechanism. Detection of gravitational waves in coincidence with sGRBs may provide constraints on the nuclear equation of state (EOS): the fate of an NSNS merger-delayed or prompt collapse, and hence the appearance or nonappearance of an sGRB-depends on a critical value of the total mass of the binary, and this value is sensitive to the EOS.
Calcium Deficiency of Dark-grown Seedlings of Phaseolus vulgaris L.
Helms, K
1971-06-01
Hypocotyl collapse in dark-grown seedlings of Phaseolus vulgaris cv. Pinto was due to calcium deficiency. There was no evidence of an associated pathogen. The number of seedlings with hypocotyl collapse decreased and the mean hypocotyl length increased when increasing levels of calcium (0-100 micrograms per gram) were supplied in an external nutrient solution to seedlings grown under sterile conditions.When seedlings were supplied with a complete nutrient solution, containing calcium at 100 micrograms per gram, but minus potassium, magnesium, sulfur, nitrogen, or phosphorus, occasional plants developed hypocotyl collapse symptoms; however, the lengths of hypocotyls varied little from those of controls grown in complete nutrient. When the calcium level in the deficient nutrient solutions was raised to 200 micrograms per gram, the number of plants with hypocotyl collapse was reduced markedly.With complete nutrient solution minus calcium, seedlings developed symptoms of calcium deficiency irrespective of seed size, i.e., irrespective of whether or not the seed contained a total calcium content that was low or relatively high.An increase in hypocotyl length in response to an external supply of calcium was obtained with five cultivars of Phaseolus vulgaris L. and with one of Soja max Piper. A similar response to calcium was obtained for epicotyl growth of a cultivar of Vicia faba L., but not for a cultivar of Pisum sativum L.
With water still in midflight, the northeast end of the ...
With water still in mid-flight, the northeast end of the bridge (left) nears total collapse. View is to southeast from confluence of Trinity and South Fork Trinity Rivers - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
Hypertensive crisis secondary to pheochromocytoma.
Greenleaf, Christopher E; Griffin, Laura A; Shake, Jay G; Orr, Wayne S
2017-07-01
Pheochromocytoma is an uncommon tumor of the adrenal glands that can present with headaches, sweating, palpitations, and paroxysmal hypertension. Pheochromocytoma crisis can lead to cardiomyopathy, pulmonary edema, and even total circulatory collapse. We describe a patient with hypoxic respiratory failure requiring extracorporeal membrane oxygenation to stabilize until the pheochromocytoma was discovered and treated.
Pre-Hawking radiation cannot prevent the formation of apparent horizon
NASA Astrophysics Data System (ADS)
Chen, Pisin; Unruh, William G.; Wu, Chih-Hung; Yeom, Dong-Han
2018-03-01
As an attempt to solve the black hole information loss paradox, recently there has been the suggestion that, due to semiclassical effects, a pre-Hawking radiation must exist during the gravitational collapse of matter, which in turn prevents the apparent horizon from forming. Assuming the pre-Hawking radiation does exist, here we argue the opposite. First we note that the stress energy tensor near the horizon for the pre-Hawking radiation is far too small to do anything to the motion of a collapsing shell. Thus the shell will always cross the apparent horizon within a finite proper time. Moreover, the amount of energy that can be radiated must be less than half of the total initial energy (if the particle starts at rest at infinity) before the shell becomes a null shell and cannot radiate any more without becoming tachyonic. We conclude that for any gravitational collapsing process within Einstein gravity and semiclassical quantum field theory, the formation of the apparent horizon is inevitable. Pre-Hawking radiation is therefore not a valid solution to the information paradox.
Pre-Hawking radiation cannot prevent the formation of apparent horizon
Chen, Pisin; Unruh, William G.; Wu, Chih-Hung; ...
2018-03-30
As an attempt to solve the black hole information loss paradox, recently there has been the suggestion that, due to semiclassical effects, a pre-Hawking radiation must exist during the gravitational collapse of matter, which in turn prevents the apparent horizon from forming. Assuming the pre-Hawking radiation does exist, here we argue the opposite. First we note that the stress energy tensor near the horizon for the pre-Hawking radiation is far too small to do anything to the motion of a collapsing shell. Thus the shell will always cross the apparent horizon within a finite proper time. Moreover, the amount ofmore » energy that can be radiated must be less than half of the total initial energy (if the particle starts at rest at infinity) before the shell becomes a null shell and cannot radiate any more without becoming tachyonic. Here, we conclude that for any gravitational collapsing process within Einstein gravity and semiclassical quantum field theory, the formation of the apparent horizon is inevitable. Pre-Hawking radiation is therefore not a valid solution to the information paradox.« less
Pre-Hawking radiation cannot prevent the formation of apparent horizon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin; Unruh, William G.; Wu, Chih-Hung
As an attempt to solve the black hole information loss paradox, recently there has been the suggestion that, due to semiclassical effects, a pre-Hawking radiation must exist during the gravitational collapse of matter, which in turn prevents the apparent horizon from forming. Assuming the pre-Hawking radiation does exist, here we argue the opposite. First we note that the stress energy tensor near the horizon for the pre-Hawking radiation is far too small to do anything to the motion of a collapsing shell. Thus the shell will always cross the apparent horizon within a finite proper time. Moreover, the amount ofmore » energy that can be radiated must be less than half of the total initial energy (if the particle starts at rest at infinity) before the shell becomes a null shell and cannot radiate any more without becoming tachyonic. Here, we conclude that for any gravitational collapsing process within Einstein gravity and semiclassical quantum field theory, the formation of the apparent horizon is inevitable. Pre-Hawking radiation is therefore not a valid solution to the information paradox.« less
Gagala, J; Tarczynska, M; Gaweda, K; Matuszewski, L
2014-09-01
Osteonecrosis of the femoral head is an entity which occurs mainly in young and active patients aged between 20 and 50. The success of hip joint preserving treatments ranges from 15% to 50% depending on the stage and amount of osteonecrotic lesion. Total hip replacement is indicated in late post-collapse hips but it has unsatisfactory survival because of the wear and osteolysis in young and active patients. Osteochondral allografts have been reported in the treatment of large articular lesions with defects in underlying bone in knee, talus and shoulder. By combining osteoconductive properties of osteochondral allograft with osteogenic abilities of bone marrow-derived mesenchymal cells it has a potential to be an alternative to an autologous graft. The adjunct of hinged joint distraction should minimize stresses in subchondral bone to promote creeping substitution and prevent femoral head collapse. Unlike current treatment modalities, it would provide both structural support and allow bony and articular substitution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Asymmetric bursting of Taylor bubble in inclined tubes
NASA Astrophysics Data System (ADS)
Rana, Basanta Kumar; Das, Arup Kumar; Das, Prasanta Kumar
2016-08-01
In the present study, experiments have been reported to explain the phenomenon of approach and collapse of an asymmetric Taylor bubble at free surface inside an inclined tube. Four different tube inclinations with horizontal (30°, 45°, 60° and 75°) and two different fluids (water and silicon oil) are considered for the experiment. Using high speed imaging, we have investigated the approach, puncture, and subsequent liquid drainage for re-establishment of the free surface. The present study covers all the aspects in the collapse of an asymmetric Taylor bubble through the generation of two films, i.e., a cap film which lies on top of the bubble and an asymmetric annular film along the tube wall. Retraction of the cap film is studied in detail and its velocity has been predicted successfully for different inclinations and fluids. Film drainage formulation considering azimuthal variation is proposed which also describes the experimental observations well. In addition, extrapolation of drainage velocity pattern beyond the experimental observation limit provides insight into the total collapse time of bubbles at different inclinations and fluids.
Craters and Granular Jets Generated by Underground Cavity Collapse
NASA Astrophysics Data System (ADS)
Loranca-Ramos, F. E.; Carrillo-Estrada, J. L.; Pacheco-Vázquez, F.
2015-07-01
We study experimentally the cratering process due to the explosion and collapse of a pressurized air cavity inside a sand bed. The process starts when the cavity breaks and the liberated air then rises through the overlying granular layer and produces a violent eruption; it depressurizes the cavity and, as the gas is released, the sand sinks under gravity, generating a crater. We find that the crater dimensions are totally determined by the cavity volume; the pressure does not affect the morphology because the air is expelled vertically during the eruption. In contrast with impact craters, the rim is flat and, regardless of the cavity shape, it evolves into a circle as the cavity depth increases or if the chamber is located deep enough inside the bed, which could explain why most of the subsidence craters observed in nature are circular. Moreover, for shallow spherical cavities, a collimated jet emerges from the collision of sand avalanches that converge concentrically at the bottom of the depression, revealing that collapse under gravity is the main mechanism driving the jet formation.
NASA Astrophysics Data System (ADS)
Imshennik, Vladimir S.
2011-02-01
The two-stage (double) signal produced by the outburst of the close supernova (SN) in the Large Magellanic Cloud, which started on and involved two neutrino signals during the night of 23 February 1987 UT, is theoretically interpreted in terms of a scenario of rotationally exploding collapsing SNs, to whose class the outburst undoubtedly belongs. This scenario consists of a set of hydrodynamic and kinetic models in which key results are obtained by numerically solving non-one-dimensional and nonstationary problems. Of vital importance in this context is the inclusion of rotation effects, their role being particularly significant precisely in terms of the question of the transformation of the original collapse of the presupernova iron core to the explosion of the SN shell, with an energy release on a familiar scale of 1051 erg. The collapse in itself leads to the birth of neutron stars (black holes) emitting neutrino and gravitational radiation signals of gigantic intensity, whose total energy significantly (by a factor of hundreds) exceeds the above-cited SN burst energy. The proposed rotational scenario is described briefly by artificially dividing it into three (or four) characteristic stages. This division is dictated by the physical meaning of the chain of events a rotating iron core of a sufficiently massive (more than 10M) star triggers when it collapses. An attempt is made to quantitatively describe the properties of the associated neutrino and gravitational radiations. The review highlights the interpretation of the two-stage neutrino signal from SN 1987A, a problem which, given the present status of theoretical astrophysics, cannot, in the author's view, be solved without including rotation effects.
The Role of CO2 Clouds on the Stability of the Early Mars Atmosphere Against Collapse
NASA Astrophysics Data System (ADS)
Kahre, Melinda A.; Haberle, Robert; Steakley, Kathryn; Murphy, Jim; Kling, Alexandre
2017-10-01
The early Mars atmosphere was likely significantly more massive than it is today, given the growing body of evidence that liquid water flowed on the surface early in the planet’s history. Although the CO2 inventory was likely larger in the past, there is much we still do not understand about the state of that CO2. As surface pressure increases, the temperature at which CO2 condenses also increases, making it more likely that CO2 ice would form and persist on the surface when the atmospheric mass increases. An atmosphere that is stable against collapse must contain enough energy, distributed globally, to prohibit the formation of permanents CO2 ice reservoirs that lead to collapse. The presence of the “faint young sun” compounds this issue. Previous global climate model (GCM) investigations show that atmospheres within specific ranges of obliquities and atmospheric masses are stable against collapse. We use the NASA Ames Mars GCM to expand on these works by focusing specifically on the role of CO2 clouds in atmospheric stability. Two end member simulations are executed, one that includes CO2 cloud formation and one that does not. The simulation that explicitly includes CO2 clouds is stable, while the simulation without CO2 clouds collapses into permanent surface CO2 reservoirs. In both cases, significant atmospheric condensation is occurring in the atmosphere throughout the year. In the case without CO2 clouds, all atmospheric condensation (even if it occurs at altitude) leads directly to the accumulation of surface ice, whereas in the case with CO2 clouds, there is a finite settling timescale for the cloud particles. Depending on this timescale and the local conditions, the cloud particles could stay aloft or sublimate as they fall toward the surface. Thus, the striking difference between these two cases illustrates the important role of CO2 clouds. We plan to conduct and present further simulations to better understand how atmospheric stability depends on the details of CO2 cloud microphysical processes and assumptions.
Dark halos formed via dissipationless collapse. I - Shapes and alignment of angular momentum
NASA Astrophysics Data System (ADS)
Warren, Michael S.; Quinn, Peter J.; Salmon, John K.; Zurek, Wojciech H.
1992-11-01
We use N-body simulations on highly parallel supercomputers to study the structure of Galactic dark matter halos. The systems form by gravitational collapse from scale-free and more general Gaussian initial density perturbations in an expanding 400 Mpc-cubed spherical slice of an Einstein-deSitter universe. We analyze the structure and kinematics of about 100 of the largest relaxed halos in each of 10 separate simulations. A typical halo is a triaxial spheroid which tends to be more often prolate than oblate. These shapes are maintained by anisotropic velocity dispersion rather than by angular momentum. Nevertheless, there is a significant tendency for the total angular momentum vector to be aligned with the minor axis of the density distribution.
Collapse of optical wave arrested by cross-phase modulation in nonlinear metamaterials
NASA Astrophysics Data System (ADS)
Zhang, Jinggui; Li, Ying; Xiang, Yuanjiang; Lei, Dajun; Zhang, Lifu
2016-03-01
In this article, we put forward a novel strategy to realize the management of wave collapse through designing probe-pump configuration where probe wave is assumed to propagate in the positive-index region of metamaterials (MMs), while pump wave is assumed to propagate in the negative-index region. We disclose that cross-phase modulation (XPM) in MMs as a new physical mechanism that can be used to arrest the collapse of probe wave in the positive-index region by copropagating it together with pump wave in the negative-index region. Further, we observe that pump wave will evolve into a ring while probe wave will develop a side lob in the wings during the course of coupled waves propagation, different from the corresponding counterpart in the ordinary positive-index materials (OMs) where they simultaneously exhibit the catastrophic self-focusing behavior. Meanwhile, we also discuss how to control the collapse of probe wave by adjusting intensity-detuned pump wave. Our analysis is performed by directly numerically solving the coupled nonlinear Schrödinger equations, as well as using the variational approximation, both showing consistent results. The finding demonstrates XPM as a specific physical mechanism in MMs can provide us unique opportunities unattainable in OMs to manipulate self-focusing of high-power laser.
NASA Astrophysics Data System (ADS)
Ichinose, G. A.; Ford, S. R.; Chiang, A.; Walter, W. R.; Dreger, D. S.
2017-12-01
The Democratic People's Republic of Korea (DPRK) conducted its sixth announced nuclear test on 3 September 2017, 03:30:00 with a magnitude of 6.1 (IDC mb). At 03:38:27, there was an aftershock of magnitude 4.1 (IDC mb). Moment tensor analysis using regional long-period surface waves was performed to identify the source type of these two events. The first event was an explosive isotropic source with total seismic moment magnitude of Mw 5.34 (Mo=1.16e+17 Nm) with strong 66% isotropic component (eigenvalues: 1.30e+17, 0.75e+17, 0.44e+17 Nm). The second event was a closing crack source with an Mw 4.64 (Mo=1.04e+17 Nm) also with a strong 68% isotropic component (eigenvalues: -4.82e+16, -5.33e+16, -10.93e+16 Nm). We used the same stations within 360-1140 km for inversion of both events (stations: IC.MDJ, IC.BJT, IC.HIA) and predict the long-period displacements at KG.TJN and IU.INCN. We used a 1-D velocity model appropriate for active tectonic regions and band pass the data between periods of 20 and 100 sec. Waveform time-shifts were incorporated from previous event-station pairs to account for velocity model inadequacies. Both DPRK events source-types plot within the population of other NNSS nuclear and western US collapse events (Ford et al., 2009) on the fundamental lune (Tape and Tape, 2012). The DPRK collapse event is similar to the hole collapse 0h21m26s after the 5 September 1982 Atrisco shot at NNSS (Springer et al., 2002; DOE NV-209). The DPRK collapse could be explained by a complete or partial apical cavity collapse. The estimated collapse volume is 122000-277000 m3 and crack radius is 30-40 m given the seismic moment, elastic moduli for granite and a closing crack model (Mueller, 2001). In comparison to Denny and Johnson (1994) cavity-yield scaling in granite, the cavity radius ranges from 40 to 60 m given an explosion yield range of 140-400 kT. This collapse event is noteworthy because large aftershocks are rare in nuclear testing and even more rare are collapses in granite. Analysis of surface wave relative amplitude and phase anomalies between the recent and previous DPRK events indicates no anomalies in the ratios with the 20160106 and 20160909 tests beneath the Mt. Mantap and large anomalies with ratios between the 2009 and 2013 tests beneath the mountain slope. Prepared by LLNL under Contract DE-AC52-07NA27344.
Mechanism of the 2016 giant twin glacier collapse in Aru range, Tibet
NASA Astrophysics Data System (ADS)
Gilbert, A.; Leinss, S.; Kääb, A.; Kargel, J. S.; Yao, T.; Gascoin, S.; Leonard, G. J.; Berthier, E.; Karki, A.
2017-12-01
In northwestern Tibet (34.0°N, 82.2°E) near lake Aru Co, the entire ablation area of two unnamed glaciers (Aru-1 and Aru-2) suddenly collapsed on 17 July 2016 and 21 September 2016 and transformed into a mass flow that ran out over a distance of over several km, killing nine people. These two events are unique and defined a new kind of glacier behavior almost never observed before. The only similar event currently documented is the 2002 Kolka Glacier mass flow (Caucasus Mountains). Using remote sensing observations and 3D thermo-mechanical modeling of the two glaciers, we reconstructed glacier thermal regime, thickness, basal friction evolution and ice damaging state prior to the collapse. We show that frictional change leading to the collapse occurred in the temperate areas of a polythermal structure that is likely close to equilibrium with the local climate. The collapses were driven by a fast and sustained friction change in the temperate part of the glacier for which the glacier shape was not able to adjust due to the cold-based parts providing strong resisting force to sliding. This led to high stresses on the cold margins of the glacier where ice deformation became partially accommodated by fracturing until the final collapse occurred. Field investigations reveal that those two glaciers are flowing on a soft and fine-grained sedimentary lithology prone to landslide activity in the presence of water. This suggests that fast friction change in the temperate part of the glacier is linked to shear strength weakening in the sediment and till underneath the glacier in response to increasing water pore pressure at the glacier base. The Kolka Glacier mass flow also occurred on pyroclastic rocks well known for their landslide activities. This suggests that the three gigantic glacier collapses documented to date involve specific bedrock lithology where failure is driven by shear strength weakening in the glacier till in a landslide-like process. Contrary to a classical surges, these collapses occurred when the glacier shape is not able to adjust to the apparent friction change and maintains high driving stresses either due to polythermal structure (Aru) or due to sudden mass loading from external sources (rock/ice avalanches in the Kolka case).
Comprehensive evaluation of fracture critical bridges.
DOT National Transportation Integrated Search
2014-02-01
Two-girder steel bridges are classified as fracture critical bridges based on the definition given in the AASHTO LRFD Bridge Design Specifications. In a fracture critical bridge a failure of a tension member leads to collapse of the bridge. However, ...
Marine reserves and reproductive biomass: a case study of a heavily targeted reef fish.
Taylor, Brett M; McIlwain, Jennifer L; Kerr, Alexander M
2012-01-01
Recruitment overfishing (the reduction of a spawning stock past a point at which the stock can no longer replenish itself) is a common problem which can lead to a rapid and irreversible fishery collapse. Averting this disaster requires maintaining a sufficient spawning population to buffer stochastic fluctuations in recruitment of heavily harvested stocks. Optimal strategies for managing spawner biomass are well developed for temperate systems, yet remain uncertain for tropical fisheries, where the danger of collapse from recruitment overfishing looms largest. In this study, we explored empirically and through modeling, the role of marine reserves in maximizing spawner biomass of a heavily exploited reef fish, Lethrinus harak around Guam, Micronesia. On average, spawner biomass was 16 times higher inside the reserves compared with adjacent fished sites. Adult density and habitat-specific mean fish size were also significantly greater. We used these data in an age-structured population model to explore the effect of several management scenarios on L. harak demography. Under minimum-size limits, unlimited extraction and all rotational-closure scenarios, the model predicts that preferential mortality of larger and older fish prompt dramatic declines in spawner biomass and the proportion of male fish, as well as considerable declines in total abundance. For rotational closures this occurred because of the mismatch between the scales of recovery and extraction. Our results highlight how alternative management scenarios fall short in comparison to marine reserves in preserving reproductively viable fish populations on coral reefs.
NASA Astrophysics Data System (ADS)
Gourdin, E.; Huon, S.; Evrard, O.; Ribolzi, O.; Bariac, T.; Sengtaheuanghoung, O.; Ayrault, S.
2014-06-01
Tropical rivers of Southeast Asia are characterized by high specific carbon yields and supplies to the ocean. The origin and dynamics of particulate organic matter were studied in the Houay Xon River catchment located in northern Laos during the first erosive flood of the rainy season in May 2012. The partly cultivated catchment is equipped with three successive gauging stations draining areas ranging between 0.2 and 11.6 km2 on the main stem of the permanent stream, and two additional stations draining 0.6 ha hillslopes. In addition, the sequential monitoring of rainwater, overland flow and suspended organic matter compositions was realized at 1 m2 plot scale during a single storm. The composition of particulate organic matter (total organic carbon, total nitrogen, δ13C and δ15N) was determined for suspended sediment, soil surface and subsurface samples collected in the catchment (n = 57, 65 and 11 respectively). Hydrograph separation of event water was conducted using water electric conductivity and δ18O data measured for rainfall, overland flow and river water base flow (n = 9, 30 and 57, respectively). The composition of particulate organic matter indicates that upstream suspended sediments were mainly derived from cultivated soils labelled by their C3 vegetation cover (upland rice, fallow vegetation and teak plantations) but that collapsed riverbanks, characterized by C4 vegetation occurrence (Napier grass), significantly contributed to sediment yields during water level rise and at the downstream station. The highest runoff coefficient (11.7%), sediment specific yield (433 kg ha-1), total organic carbon specific yield (8.3 kg C ha-1) and overland flow contribution (78-100%) were found for the reforested areas covered by teak plantations. Total organic carbon specific yields were up to 2.6-fold higher (at downstream station) than the annual ones calculated 10 years earlier, before the expansion of teak plantations in the catchment. They may be attributed both to the sampling period at the onset of the rainy season (following field clearing by slash and burn) and to the impact of land use change during the past decade.
Lin, Milo M; Meinhold, Lars; Shorokhov, Dmitry; Zewail, Ahmed H
2008-08-07
A 2D free-energy landscape model is presented to describe the (un)folding transition of DNA/RNA hairpins, together with molecular dynamics simulations and experimental findings. The dependence of the (un)folding transition on the stem sequence and the loop length is shown in the enthalpic and entropic contributions to the free energy. Intermediate structures are well defined by the two coordinates of the landscape during (un)zipping. Both the free-energy landscape model and the extensive molecular dynamics simulations totaling over 10 mus predict the existence of temperature-dependent kinetic intermediate states during hairpin (un)zipping and provide the theoretical description of recent ultrafast temperature-jump studies which indicate that hairpin (un)zipping is, in general, not a two-state process. The model allows for lucid prediction of the collapsed state(s) in simple 2D space and we term it the kinetic intermediate structure (KIS) model.
Spitzer Characterization of Transients from the Palomar Transient Factory
NASA Astrophysics Data System (ADS)
Kasliwal, Mansi; Ofek, Eran; Corsi, Alessandra; Nugent, Peter; Kulkarni, Shri; Cao, Yi; Helou, George; Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi
2012-12-01
We propose to continue Spitzer/IRAC follow-up of optical transients discovered by the Palomar Transient Factory. Our goals are: (i) probe the mass loss history and characterize the circumstellar environment of supernovae. (ii) construct a late-time bolometric light curve; the mid-infrared observations complement our ground-based optical and near-infrared data and (iii) understand the physical origin of new classes of transients (specifically, intermediate luminosity red transients) where the mystery is literally enshrouded in dust. We select extremely nearby supernovae, both thermonuclear and core-collapse, where the thermal echo is easily detectable in the mid-infrared. We also select peculiar supernovae that show tell-tale signs of circumstellar interaction. We also select rare and red gap transients in the local universe for IRAC follow-up. Additionally, we request low-impact target of opportunity observations for new discoveries in 2013. Our total request is 24 hrs.
Spitzer Characterization of Transients from the Palomar Transient Factory
NASA Astrophysics Data System (ADS)
Kasliwal, Mansi; Goobar, Ariel; Johansson, Joel; Cenko, Brad; Ofek, Eran; Nugent, Peter; Kulkarni, Shri; Cao, Yi; Helou, George; Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi
2013-10-01
We propose to continue Spitzer/IRAC follow-up of optical transients discovered by the Palomar Transient Factory. Our goals are: (i) probe the mass loss history and characterize the circumstellar environment of supernovae. (ii) construct a late-time bolometric light curve; the mid-infrared observations complement our ground-based optical and near-infrared data and (iii) understand the physical origin of new classes of transients (specifically, intermediate luminosity red transients) where the mystery is literally enshrouded in dust. We select extremely nearby supernovae, both thermonuclear and core-collapse, where the thermal echo is easily detectable in the mid-infrared. We also select peculiar supernovae that show tell-tale signs of circumstellar interaction. We also select rare and red gap transients in the local universe. Additionally, we request low-impact target of opportunity observations for new discoveries in 2014. Our total request is 17 hrs.
Prediction of the wetting-induced collapse behaviour using the soil-water characteristic curve
NASA Astrophysics Data System (ADS)
Xie, Wan-Li; Li, Ping; Vanapalli, Sai K.; Wang, Jia-Ding
2018-01-01
Collapsible soils go through three distinct phases in response to matric suction decrease during wetting: pre-collapse phase, collapse phase and post-collapse phase. It is reasonable and conservative to consider a strain path that includes a pre-collapse phase in which constant volume is maintained and a collapse phase that extends to the final matric suction to be experienced by collapsible soils during wetting. Upon this assumption, a method is proposed for predicting the collapse behaviour due to wetting. To use the proposed method, two parameters, critical suction and collapse rate, are required. The former is the suction value below which significant collapse deformations take place in response to matric suction decease, and the later is the rate at which void ratio reduces with matric suction in the collapse phase. The value of critical suction can be estimated from the water-entry value taking account of both the microstructure characteristics and collapse mechanism of fine-grained collapsible soils; the wetting soil-water characteristic curve thus can be used as a tool. Five sets of data of wetting tests on both compacted and natural collapsible soils reported in the literature were used to validate the proposed method. The critical suction values were estimated from the water-entry value with parameter a that is suggested to vary between 0.10 and 0.25 for compacted soils and to be lower for natural collapsible soils. The results of a field permeation test in collapsible loess soils were also used to validate the proposed method. The relatively good agreement between the measured and estimated collapse deformations suggests that the proposed method can provide reasonable prediction of the collapse behaviour due to wetting.
Education in Somalia: History, Destruction, and Calls for Reconstruction.
ERIC Educational Resources Information Center
Abdi, Ali A.
1998-01-01
Traces the history of education in Somalia: in precolonial traditional Somalia; during colonial rule by Italy; under civilian rule, 1960-69; and under military rule, 1969-90. Describes the total destruction of the education system since the 1991 collapse of the state, widespread illiteracy and adolescent involvement in thuggery, and the urgent…
Automotive Manufacturing and Repair Technician Employment
ERIC Educational Resources Information Center
McAlinden, Sean P.
2013-01-01
It's been more than three years since the U.S. automobile industry nearly collapsed. A controversial federal bailout, an increase in consumer demand, and a growing interest in environmentally friendly fuel-efficient vehicles and related technologies have combined to help create a remarkable recovery. Total U.S. sales of light vehicles in 2012 are…
Nonthermal Quantum Channels as a Thermodynamical Resource.
Navascués, Miguel; García-Pintos, Luis Pedro
2015-07-03
Quantum thermodynamics can be understood as a resource theory, whereby thermal states are free and the only allowed operations are unitary transformations commuting with the total Hamiltonian of the system. Previous literature on the subject has just focused on transformations between different state resources, overlooking the fact that quantum operations which do not commute with the total energy also constitute a potentially valuable resource. In this Letter, given a number of nonthermal quantum channels, we study the problem of how to integrate them in a thermal engine so as to distill a maximum amount of work. We find that, in the limit of asymptotically many uses of each channel, the distillable work is an additive function of the considered channels, computable for both finite dimensional quantum operations and bosonic channels. We apply our results to bound the amount of distillable work due to the natural nonthermal processes postulated in the Ghirardi-Rimini-Weber (GRW) collapse model. We find that, although GRW theory predicts the possibility of extracting work from the vacuum at no cost, the power which a collapse engine could, in principle, generate is extremely low.
Nonthermal Quantum Channels as a Thermodynamical Resource
NASA Astrophysics Data System (ADS)
Navascués, Miguel; García-Pintos, Luis Pedro
2015-07-01
Quantum thermodynamics can be understood as a resource theory, whereby thermal states are free and the only allowed operations are unitary transformations commuting with the total Hamiltonian of the system. Previous literature on the subject has just focused on transformations between different state resources, overlooking the fact that quantum operations which do not commute with the total energy also constitute a potentially valuable resource. In this Letter, given a number of nonthermal quantum channels, we study the problem of how to integrate them in a thermal engine so as to distill a maximum amount of work. We find that, in the limit of asymptotically many uses of each channel, the distillable work is an additive function of the considered channels, computable for both finite dimensional quantum operations and bosonic channels. We apply our results to bound the amount of distillable work due to the natural nonthermal processes postulated in the Ghirardi-Rimini-Weber (GRW) collapse model. We find that, although GRW theory predicts the possibility of extracting work from the vacuum at no cost, the power which a collapse engine could, in principle, generate is extremely low.
Guanidinium can both Cause and Prevent the Hydrophobic Collapse of Biomacromolecules
2017-01-01
A combination of Fourier transform infrared and phase transition measurements as well as molecular computer simulations, and thermodynamic modeling were performed to probe the mechanisms by which guanidinium (Gnd+) salts influence the stability of the collapsed versus uncollapsed state of an elastin-like polypeptide (ELP), an uncharged thermoresponsive polymer. We found that the cation’s action was highly dependent upon the counteranion with which it was paired. Specifically, Gnd+ was depleted from the ELP/water interface and was found to stabilize the collapsed state of the macromolecule when paired with well-hydrated anions such as SO42–. Stabilization in this case occurred via an excluded volume (or depletion) effect, whereby SO42– was strongly partitioned away from the ELP/water interface. Intriguingly, at low salt concentrations, Gnd+ was also found to stabilize the collapsed state of the ELP when paired with SCN–, which is a strong binder for the ELP. In this case, the anion and cation were both found to be enriched in the collapsed state of the polymer. The collapsed state was favored because the Gnd+ cross-linked the polymer chains together. Moreover, the anion helped partition Gnd+ to the polymer surface. At higher salt concentrations (>1.5 M), GndSCN switched to stabilizing the uncollapsed state because a sufficient amount of Gnd+ and SCN– partitioned to the polymer surface to prevent cross-linking from occurring. Finally, in a third case, it was found that salts which interacted in an intermediate fashion with the polymer (e.g., GndCl) favored the uncollapsed conformation at all salt concentrations. These results provide a detailed, molecular-level, mechanistic picture of how Gnd+ influences the stability of polypeptides in three distinct physical regimes by varying the anion. It also helps explain the circumstances under which guanidinium salts can act as powerful and versatile protein denaturants. PMID:28054487
The role of gluten in a pound cake system: A model approach based on gluten-starch blends.
Wilderjans, Edith; Pareyt, Bram; Goesaert, Hans; Brijs, Kristof; Delcour, Jan A
2008-10-15
In order to evaluate the role of gluten in cake-making, gluten-starch (GS) blends with different ratios of gluten to starch were tested in a research pound cake formula. The viscosities of batters made from commercial GS blends in the otherwise standardised formula increased with their gluten content. High viscosities during heating provide the batters with the capacity to retain expanding air nuclei, and thereby led to desired product volumes. In line with the above, increasing gluten levels in the cake recipes led to a more extended oven spring period. Cakes with a starch content exceeding 92.5% in the GS blend suffered from substantial collapse during cooling. They had a coarse crumb with a solid gummy layer at the bottom. Image analysis showed statistical differences in numbers of cells per cm(2), cell to total area ratio and mean cell area (p<0.05). Both density and mean cell area were related to gluten level. Moreover, mean cell area and cell to total area ratio were the highest for cakes with the lowest density and highest gluten levels. Relative sodium dodecyl sulfate (SDS, 2.0%) buffer (pH 6.8) extractabilities of protein from cakes baked with the different GS blends decreased with gluten content and were strongly correlated with the intensity of collapse. Taken together, the results teach that protein gives the cakes resistance to collapse, resulting in desirable volumes and an optimal grain structure with uniform cell distribution. Copyright © 2008 Elsevier Ltd. All rights reserved.
New cataclysmic variables and other exotic binaries in the globular cluster 47 Tucanae*
NASA Astrophysics Data System (ADS)
Rivera Sandoval, L. E.; van den Berg, M.; Heinke, C. O.; Cohn, H. N.; Lugger, P. M.; Anderson, J.; Cool, A. M.; Edmonds, P. D.; Wijnands, R.; Ivanova, N.; Grindlay, J. E.
2018-04-01
We present 22 new (+3 confirmed) cataclysmic variables (CVs) in the non-core-collapsed globular cluster 47 Tucanae (47 Tuc). The total number of CVs in the cluster is now 43, the largest sample in any globular cluster so far. For the identifications we used near-ultraviolet (NUV) and optical images from the Hubble Space Telescope, in combination with X-ray results from the Chandra X-ray Observatory. This allowed us to build the deepest NUV CV luminosity function of the cluster to date. We found that the CVs in 47 Tuc are more concentrated towards the cluster centre than the main-sequence turn-off stars. We compared our results to the CV populations of the core-collapsed globular clusters NGC 6397 and NGC 6752. We found that 47 Tuc has fewer bright CVs per unit mass than those two other clusters. That suggests that dynamical interactions in core-collapsed clusters play a major role creating new CVs. In 47 Tuc, the CV population is probably dominated by primordial and old dynamically formed systems. We estimated that the CVs in 47 Tuc have total masses of ˜1.4 M⊙. We also found that the X-ray luminosity function of the CVs in the three clusters is bimodal. Additionally, we discuss a possible double degenerate system and an intriguing/unclassified object. Finally, we present four systems that could be millisecond pulsar companions given their X-ray and NUV/optical colours. For one of them we present very strong evidence for being an ablated companion. The other three could be CO or He white dwarfs.
The predictive value of drug-induced sleep endoscopy for CPAP titration in OSA patients.
Lan, Ming-Chin; Hsu, Yen-Bin; Lan, Ming-Ying; Huang, Yun-Chen; Kao, Ming-Chang; Huang, Tung-Tsun; Chiu, Tsan-Jen; Yang, Mei-Chen
2017-12-15
The aim of this study was to identify possible upper airway obstructions causing a higher continuous positive airway pressure (CPAP) titration level, utilizing drug-induced sleep endoscopy (DISE). A total of 76 patients with obstructive sleep apnea (OSA) underwent CPAP titration and DISE. DISE findings were recorded using the VOTE classification system. Polysomnographic (PSG) data, anthropometric variables, and patterns of airway collapse during DISE were analyzed with CPAP titration levels. A significant association was found between the CPAP titration level and BMI, oxygen desaturation index (ODI), apnea-hypopnea index (AHI), and neck circumference (NC) (P < 0.001, P < 0.001, P < 0.001, and P < 0.001, respectively, by Spearman correlation). Patients with concentric collapse of the velum or lateral oropharyngeal collapse were associated with a significantly higher CPAP titration level (P < 0.001 and P = 0.043, respectively, by nonparametric Mann-Whitney U test; P < 0.001 and P = 0.004, respectively, by Spearman correlation). No significant association was found between the CPAP titration level and any other collapse at the tongue base or epiglottis. By analyzing PSG data, anthropometric variables, and DISE results with CPAP titration levels, we can better understand possible mechanisms resulting in a higher CPAP titration level. We believe that the role of DISE can be expanded as a tool to identify the possible anatomical structures that may be corrected by oral appliance therapy or surgical intervention to improve CPAP compliance.
Constraining high-energy neutrino emission from choked jets in stripped-envelope supernovae
NASA Astrophysics Data System (ADS)
Senno, Nicholas; Murase, Kohta; Mészáros, Peter
2018-01-01
There are indications that γ-ray dark objects such as supernovae (SNe) with choked jets, and the cores of active galactic nuclei may contribute to the diffuse flux of astrophysical neutrinos measured by the IceCube observatory. In particular, stripped-envelope SNe have received much attention since they are capable of producing relativistic jets and could explain the diversity in observations of collapsar explosions (e.g., gamma-ray bursts (GRBs), low-luminosity GRBs, and Type Ibc SNe). We use an unbinned maximum likelihood method to search for spatial and temporal coincidences between Type Ibc core-collapse SNe, which may harbor a choked jet, and muon neutrinos from a sample of IceCube up-going track-like events measured from May 2011–May 2012. In this stacking analysis, we find no significant deviation from a background-only hypothesis using one year of data, and are able to place upper limits on the total amount of isotropic equivalent energy that choked jet core-collapse SNe deposit in cosmic rays Script Ecr and the fraction of core-collapse SNe which have a jet pointed towards Earth fjet. This analysis can be extended with yet to be made public IceCube data, and the increased amount of optically detected core-collapse SNe discovered by wide field-of-view surveys such as the Palomar Transient Factory and All-Sky Automated Survey for Supernovae. The choked jet SNe/high-energy cosmic neutrino connection can be more tightly constrained in the near future.
NASA Astrophysics Data System (ADS)
Edgar, C. J.; Cas, R. A. F.; Olin, P. H.; Wolff, J. A.; Martí, J.; Simmons, J. M.
2017-10-01
The 312 ka Fasnia eruption from the Las Cañadas Caldera on Tenerife, Canary Islands, Spain, produced a complex sequence of twenty-two intercalated units, including 7 pumice fall, 7 ignimbrite and 8 ash surge and fall deposits that define two distinct eruption sequences (Lower and Upper Fasnia sequences). The fallout units themselves are internally complex, reflecting waxing and waning of the eruption column, while many of the ignimbrites reflect multiple intra-plinian partial column collapse events associated with the injection of lithic clasts into the eruption column. The Lower and Upper Fasnia eruption phases were each terminated by caldera collapse and complete column collapse events. Probable blockage of the conduit and vent system during Lower Fasnia caldera collapse event briefly terminated the eruption, resulting in a short-lived period of erosion and sedimentation prior to the onset of the Upper Fasnia phase. The transition to the Upper Fasnia eruption phase coincided with the eruption of more geochemically homogeneous pyroclasts. In total, 62 km3 of tephra were erupted, including 49 km3 of juvenile clasts and > 12 km3 of lithic clasts. The DRE volume of magma erupted was 13 km3 (Lower Fasnia > 5 km3, Upper Fasnia > 8 km3), two thirds of which ( 9-10 km3) was deposited purely by fallout. The Fasnia Member is one of the most complex plinian sequences known.
Particle acceleration in relativistic magnetic flux-merging events
NASA Astrophysics Data System (ADS)
Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver
2017-12-01
Using analytical and numerical methods (fluid and particle-in-cell simulations) we study a number of model problems involving merger of magnetic flux tubes in relativistic magnetically dominated plasma. Mergers of current-carrying flux tubes (exemplified by the two-dimensional `ABC' structures) and zero-total-current magnetic flux tubes are considered. In all cases regimes of spontaneous and driven evolution are investigated. We identify two stages of particle acceleration during flux mergers: (i) fast explosive prompt X-point collapse and (ii) ensuing island merger. The fastest acceleration occurs during the initial catastrophic X-point collapse, with the reconnection electric field of the order of the magnetic field. During the X-point collapse, particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For plasma magnetization 2$ the spectrum power-law index is 2$ ; in this case the maximal energy depends linearly on the size of the reconnecting islands. For higher magnetization, 2$ , the spectra are hard, , yet the maximal energy \\text{max}$ can still exceed the average magnetic energy per particle, , by orders of magnitude (if is not too close to unity). The X-point collapse stage is followed by magnetic island merger that dissipates a large fraction of the initial magnetic energy in a regime of forced magnetic reconnection, further accelerating the particles, but proceeds at a slower reconnection rate.
Testing collapse models by a thermometer
NASA Astrophysics Data System (ADS)
Bahrami, M.
2018-05-01
Collapse models postulate that space is filled with a collapse noise field, inducing quantum Brownian motions, which are dominant during the measurement, thus causing collapse of the wave function. An important manifestation of the collapse noise field, if any, is thermal energy generation, thus disturbing the temperature profile of a system. The experimental investigation of a collapse-driven heating effect has provided, so far, the most promising test of collapse models against standard quantum theory. In this paper, we calculate the collapse-driven heat generation for a three-dimensional multi-atomic Bravais lattice by solving stochastic Heisenberg equations. We perform our calculation for the mass-proportional continuous spontaneous localization collapse model with nonwhite noise. We obtain the temperature distribution of a sphere under stationary-state and insulated surface conditions. However, the exact quantification of the collapse-driven heat-generation effect highly depends on the actual value of cutoff in the collapse noise spectrum.
NASA Astrophysics Data System (ADS)
O'Connor, Evan Patrick
Core-Collapse Supernovae are one of the most complex astrophysical systems in the universe. They deeply entwine aspects of physics and astrophysics that are rarely side by side in nature. To accurately model core-collapse supernovae one must self-consistently combine general relativity, nuclear physics, neutrino physics, and magneto-hydrodynamics in a symmetry-free computational environment. This is a challenging task, as each one of these aspects on its own is an area of great study. We take an open approach in an effort to encourage collaboration in the core-collapse supernovae community. In this thesis, we develop a new open-source general-relativistic spherically-symmetric Eulerian hydrodynamics code for studying stellar collapse, protoneutron star formation, and evolution until black hole formation. GR1D includes support for finite temperature equations of state and an efficient and qualitatively accurate treatment of neutrino leakage. GR1D implements spherically-symmetric rotation, allowing for the study of slowly rotating stellar collapse. GR1D is available at http://www.stellarcollapse.org. We use GR1D to perform an extensive study of black hole formation in failing core-collapse supernovae. Over 100 presupernova models from various sources are used in over 700 total simulations. We systematically explore the dependence of black hole formation on the input physics: initial zero-age main sequence (ZAMS) mass and metallicity, nuclear equation of state, rotation, and stellar mass loss rates. Assuming the core-collapse supernova mechanism fails and a black hole forms, we find that the outcome, for a given equation of state, can be estimated, to first order, by a single parameter, the compactness of the stellar core at bounce. By comparing the protoneutron star structure at the onset of gravitational instability with solutions of the Tolman-Oppenheimer-Volkof equations, we find that thermal pressure support in the outer protoneutron star core is responsible for raising the maximum protoneutron star mass by up to 25% above the cold neutron star value. By artificially increasing neutrino heating, we find the critical neutrino heating efficiency required for exploding a given progenitor structure and connect these findings with ZAMS conditions. This establishes, albeit approximately, for the first time based on actual collapse simulations, the mapping between ZAMS parameters and the outcome of core collapse. We also use GR1D to study proposed progenitors of long-duration gamma-ray bursts. We find that many of the proposed progenitors have core structures similar to garden-variety core-collapse supernovae. These are not expected to form black holes, a key ingredient of the collapsar model of long-duration gamma-ray bursts. The small fraction of proposed progenitors that are compact enough to form black holes have fast rotating iron cores, making them prone to a magneto-rotational explosion and the formation of a protomagnetar rather than a black hole. Finally, we present preliminary work on a fully general-relativistic neutrino transport code and neutrino-interaction library. Following along with the trends explored in our black hole formation study, we look at the dependence of the neutrino observables on the bounce compactness. We find clear relationships that will allow us to extract details of the core structure from the next galactic supernova. Following the open approach of GR1D, the neutrino transport code will be made open-source upon completion. The open-source neutrino-interaction library, NuLib, is already available at http://www.nulib.org.
Synthesis of falsework, formwork and scaffolding for highway bridge structures
DOT National Transportation Integrated Search
1994-08-01
Following the collapse of the Route 198 bridge over the Baltimore-Washington Parkway in 1989, the FHWA determined that there was a need to reassess, on a national level, the specifications currently used to design, construct, and inspect falsework an...
Laulan, J; Marteau, E; Bacle, G
2015-02-01
Painful wrist osteoarthritis can result in major functional impairment. Most cases are related to posttraumatic sequel, metabolic arthropathies, or inflammatory joint disease, although wrist osteoarthritis occurs as an idiopathic condition in a small minority of cases. Surgery is indicated only when conservative treatment fails. The main objective is to ensure pain relief while restoring strength. Motion-preserving procedures are usually preferred, although residual wrist mobility is not crucial to good function. The vast array of available surgical techniques includes excisional arthroplasty, limited and total fusion, total wrist denervation, partial and total arthroplasty, and rib-cartilage graft implantation. Surgical decisions rest on the cause and extent of the degenerative wrist lesions, degree of residual mobility, and patient's wishes and functional demand. Proximal row carpectomy and four-corner fusion with scaphoid bone excision are the most widely used surgical procedures for stage II wrist osteoarthritis secondary to scapho-lunate advanced collapse (SLAC) or scaphoid non-union advanced collapse (SNAC) wrist. Proximal row carpectomy is not indicated in patients with stage III disease. Total wrist denervation is a satisfactory treatment option in patients of any age who have good range of motion and low functional demands; furthermore, the low morbidity associated with this procedure makes it a good option for elderly patients regardless of their range of motion. Total wrist fusion can be used not only as a revision procedure, but also as the primary surgical treatment in heavy manual labourers with wrist stiffness or generalised wrist-joint involvement. The role for pyrocarbon implants, rib-cartilage graft implantation, and total wrist arthroplasty remains to be determined, given the short follow-ups in available studies. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Feng, Zhihui; Zhang, Junran
2012-01-01
Homologous recombination (HR) is a major mechanism utilized to repair blockage of DNA replication forks. Here, we report that a sister chromatid exchange (SCE) generated by crossover-associated HR efficiently occurs in response to replication fork stalling before any measurable DNA double-strand breaks (DSBs). Interestingly, SCE produced by replication fork collapse following DNA DSBs creation is specifically suppressed by ATR, a central regulator of the replication checkpoint. BRCA1 depletion leads to decreased RPA2 phosphorylation (RPA2-P) following replication fork stalling but has no obvious effect on RPA2-P following replication fork collapse. Importantly, we found that BRCA1 promotes RAD51 recruitment and SCE induced by replication fork stalling independent of ATR. In contrast, BRCA1 depletion leads to a more profound defect in RAD51 recruitment and SCE induced by replication fork collapse when ATR is depleted. We concluded that BRCA1 plays a dual role in two distinct HR-mediated repair upon replication fork stalling and collapse. Our data established a molecular basis for the observation that defective BRCA1 leads to a high sensitivity to agents that cause replication blocks without being associated with DSBs, and also implicate a novel mechanism by which loss of cell cycle checkpoints promotes BRCA1-associated tumorigenesis via enhancing HR defect resulting from BRCA1 deficiency. PMID:21954437
NASA Astrophysics Data System (ADS)
Shibata, Masaru
2004-04-01
We study secular stability against a quasi-radial oscillation for rigidly rotating stars with soft equations of state in general relativity. The polytropic equations of state with polytropic index n between 3 and 3.05 are adopted for modeling the rotating stars. The stability is determined in terms of the turning-point method. It is found that (1) for n>~3.04, all the rigidly rotating stars are unstable against the quasi-radial oscillation and (2) for n>~3.01, the nondimensional angular momentum parameter q≡cJ/GM2 (where J, M, G, and c denote the angular momentum, the gravitational mass, the gravitational constant, and the speed of light, respectively) for all marginally stable rotating stars is larger than unity. A semianalytic calculation is also performed, and good agreement with the numerical results is confirmed. The final outcome after axisymmetric gravitational collapse of rigidly rotating and marginally stable massive stars with q>1 is predicted, assuming that the rest-mass distribution as a function of the specific angular momentum is preserved and that the pressure never halt the collapse. It is found that even for 1~2.5, the significant angular momentum will prevent the direct formation of a black hole.
NASA Astrophysics Data System (ADS)
Coralic, Vedran
Shockwave lithotripsy is a noninvasive medical procedure wherein shockwaves are repeatedly focused at the location of kidney stones in order to pulverize them. Stone comminution is thought to be the product of two mechanisms: the propagation of stress waves within the stone and cavitation erosion. However, the latter mechanism has also been implicated in vascular injury. In the present work, shock-induced bubble collapse is studied in order to understand the role that it might play in inducing vascular injury. A high-order accurate, shock- and interface-capturing numerical scheme is developed to simulate the three-dimensional collapse of the bubble in both the free-field and inside a vessel phantom. The primary contributions of the numerical study are the characterization of the shock-bubble and shock-bubble-vessel interactions across a large parameter space that includes clinical shockwave lithotripsy pressure amplitudes, problem geometry and tissue viscoelasticity, and the subsequent correlation of these interactions to vascular injury. Specifically, measurements of the vessel wall pressures and displacements, as well as the finite strains in the fluid surrounding the bubble, are utilized with available experiments in tissue to evaluate damage potential. Estimates are made of the smallest injurious bubbles in the microvasculature during both the collapse and jetting phases of the bubble's life cycle. The present results suggest that bubbles larger than one micrometer in diameter could rupture blood vessels under clinical SWL conditions.
The rotational shear in pre-collapse cores of massive stars
NASA Astrophysics Data System (ADS)
Zilberman, Noa; Gilkis, Avishai; Soker, Noam
2018-02-01
We evolve stellar models to study the rotational profiles of the pre-explosion cores of single massive stars that are progenitors of core collapse supernovae (CCSNe), and find large rotational shear above the iron core that might play an important role in the jet feedback explosion mechanism by amplifying magnetic fields before and after collapse. Initial masses of 15 and 30 M⊙ and various values of the initial rotation velocity are considered, as well as a reduced mass-loss rate along the evolution and the effect of core-envelope coupling through magnetic fields. We find that the rotation profiles just before core collapse differ between models, but share the following properties. (1) There are narrow zones of very large rotational shear adjacent to convective zones. (2) The rotation rate of the inner core is slower than required to form a Keplerian accretion disc. (3) The outer part of the core and the envelope have non-negligible specific angular momentum compared to the last stable orbit around a black hole (BH). Our results suggest the feasibility of magnetic field amplification which might aid a jet-driven explosion leaving behind a neutron star. Alternatively, if the inner core fails in exploding the star, an accretion disc from the outer parts of the core might form and lead to a jet-driven CCSN which leaves behind a BH.
NASA Astrophysics Data System (ADS)
Ranasinghage, P. N.; Ortiz, J. D.; Moore, A.; Siriwardana, C.
2009-12-01
Core collapsing is a common problem in studies of lagoonal sediment cores. Coring liquefied sediments below the water table can lead to collapse of material from upper core drives in to the hole. This can be prevented by casing the hole. But casing is not always possible due to practical issues such as coring device type, resources, or time constraints. In such cases identifying the collapsed material in each drive is necessary to ensure accurate results. Direct visual identification of collapsed portion is not always possible and may not be precise. This study successfully recognized collapsed material using a suite of physical properties measurements including: visible (VIS) reflectance spectroscopy, magnetic susceptibility and grain size spectra. This enables us to use the verified stratigraphically continuous records for paleo-environmental studies. Sediment cores were collected from three coastal lagoons and a swale along south eastern and eastern Sri Lanka. Cores were collected using a customized AMS soil coring device with a 1-m long sample barrel. The metal barrel of this instrument collects a 2.5 cm diameter sample in 1-m long plastic tubes. Coring was conducted to refusal, with a maximum depth of 5 m. Casing was not applied to the holes due to small core diameter and time constrains. Drill holes were placed at locations situated both below and above the water level of the lagoons. A total of 100 m of sediment core were obtained from these locations. After opening the cores, suspected collapsed material was initially identified by visual observation using a high power binocular microscope. Particle size, magnetic susceptibility, X-ray fluorescence (XRF) and Diffuse Spectral Reflectance (DSR) was then measured on all cores at 1-2 cm resolution to precisely define the repeated sediment intervals. Down core variation plots of magnetic susceptibility, CIE L* (lightness), a*(red/green difference), b* (blue and yellow difference) clearly record abrupt changes at core drive boundaries at the presence of collapsed material. The correlation of grain-size spectra from the bottom and top of consecutive drives was used to precisely determine the thickness of the collapsed material between drives. Our analysis of 48 m of core material thus far indicates that ~4.4m or ~9% of the record represents collapsed material which can be excluded from further study. The remaining continuous record was analyzed for paleoenvironmental studies. Down core variation of grain size, geochemical ratios, principle components of DSR and geochemical data, and magnetic susceptibility from all locations indicate a gradual filling of these deep lagoons and a transition from reducing to oxic conditions. According to an age model constructed for a nearby lagoon the onset of regression began ~6,000 years BP. Several instantaneous sedimentation events were recorded in all lagoons. Further studies will be carried out to determine whether these represent tsunami, storm surge, or flood deposits.
Rib fixation for severe chest deformity due to multiple rib fractures.
Igai, Hitoshi; Kamiyoshihara, Mitsuhiro; Nagashima, Toshiteru; Ohtaki, Yoichi
2012-01-01
The operative indications for rib fracture repair have been a matter of debate. However, several reports have suggested that flail chest, pain on respiration, and chest deformity/defect are potential conditions for rib fracture repair. We describe our experience of rib fixation in a patient with severe chest deformity due to multiple rib fractures. A 70-year-old woman was admitted with right-sided multiple rib fractures (2nd to 7th) and marked chest wall deformity without flailing caused by an automobile accident. Collapse of the chest wall was observed along the middle anterior axillary line. At 11 days after the injury, surgery was performed to repair the chest deformity, as it was considered to pose a risk of restrictive impairment of pulmonary function or chronic intercostal pain in the future. Operative findings revealed marked displacement of the superior 4 ribs, from the 2nd to the 5th, and collapse of the osseous chest wall towards the thoracic cavity. After exposure of the fracture regions, ribs fixations were performed using rib staplers. The total operation time was 90 minutes, and the collapsed portion of the chest wall along the middle anterior axillary line was reconstructed successfully.
Far Red and White Light-promoted Utilization of Calcium by Seedlings of Phaseolus vulgaris L.
Helms, K; David, D J
1973-01-01
The cotyledons and embryo axes of seeds of Phaseolus vulgaris L. cv. Pinto contained 16% of the total calcium in the seed. The remaining 84% was in the testas. There was no evidence that calcium in testas was used in seedling growth or that calcium was leached from seedlings during growth.An external supply of calcium decreased the incidence of hypocotyl collapse (a severe symptom of calcium deficiency), increased the calcium content of all organs, and increased the dry weight of all organs except cotyledons. Light treatments decreased the incidence of hypocotyl collapse and increased the calcium content and dry weight of all organs except cotyledons and hypocotyls.White light was more effective than far red light for decreasing incidence of hypocotyl collapse. Usually the effects of white light and far red light on the calcium content and dry weight of organs were similar, and usually those of white light were quantitatively greater than those of far red light. It is suggested that the light-promoted effects were associated with photomorphogenesis and that differences in data obtained with white light and far red light could be associated with photosynthesis.
Solid-solid collapse transition in a two dimensional model molecular system.
Singh, Rakesh S; Bagchi, Biman
2013-11-21
Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte-Carlo simulation to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB), which, for a specific set of parameters, sustains two solid phases: honeycomb and oblique. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by increasing temperature. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common belief and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as a linear strip, followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions, which enables the dominance of stabilizing energy over destabilizing surface energy. The nucleus of stable oblique phase is wetted by intermediate order particles, which minimizes the surface free energy. In the case of pressure induced transition at low temperature the collapsed state is a disordered solid. The disordered solid phase has diverse local quasi-stable structures along with oblique-solid like domains.
Solid-solid collapse transition in a two dimensional model molecular system
NASA Astrophysics Data System (ADS)
Singh, Rakesh S.; Bagchi, Biman
2013-11-01
Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte-Carlo simulation to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB), which, for a specific set of parameters, sustains two solid phases: honeycomb and oblique. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by increasing temperature. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common belief and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as a linear strip, followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions, which enables the dominance of stabilizing energy over destabilizing surface energy. The nucleus of stable oblique phase is wetted by intermediate order particles, which minimizes the surface free energy. In the case of pressure induced transition at low temperature the collapsed state is a disordered solid. The disordered solid phase has diverse local quasi-stable structures along with oblique-solid like domains.
Lee, Dominic J O'
2015-04-15
Dual mechanical braiding experiments provide a useful tool with which to investigate the nature of interactions between rod-like molecules, for instance actin and DNA. In conditions close to molecular condensation, one would expect an appearance of a local minimum in the interaction potential between the two molecules. We investigate this situation, introducing an attractive component into the interaction potential, using a model developed for describing such experiments. We consider both attractive interactions that do not depend on molecular structure and those which depend on a DNA-like helix structure. In braiding experiments, an attractive term may lead to certain effects. A local minimum may cause molecules to collapse from a loosely braided configuration into a tight one, occurring at a critical value of the moment applied about the axis of the braid. For a fixed number of braid pitches, this may lead to coexistence between the two braiding states, tight and loose. Coexistence implies certain proportions of the braid are in each state, their relative size depending on the number of braid pitches. This manifests itself as a linear dependence in numerically calculated quantities as functions of the number of braid pitches. Also, in the collapsed state, the braid radius stays roughly constant. Furthermore, if the attractive interaction is helix dependent, the left-right handed braid symmetry is broken. For a DNA like charge distribution, using the Kornyshev-Leikin interaction model, our results suggest that significant braid collapse and coexistence only occurs for left handed braids. Regardless of the interaction model, the study highlights the possible qualitative physics of braid collapse and coexistence; and the role helix specific forces might play, if important. The model could be used to connect other microscopic theories of interaction with braiding experiments.
The sea-level fingerprints of ice-sheet collapse during interglacial periods
NASA Astrophysics Data System (ADS)
Hay, Carling; Mitrovica, Jerry X.; Gomez, Natalya; Creveling, Jessica R.; Austermann, Jacqueline; E. Kopp, Robert
2014-03-01
Studies of sea level during previous interglacials provide insight into the stability of polar ice sheets in the face of global climate change. Commonly, these studies correct ancient sea-level highstands for the contaminating effect of isostatic adjustment associated with past ice age cycles, and interpret the residuals as being equivalent to the peak eustatic sea level associated with excess melting, relative to present day, of ancient polar ice sheets. However, the collapse of polar ice sheets produces a distinct geometry, or fingerprint, of sea-level change, which must be accounted for to accurately infer peak eustatic sea level from site-specific residual highstands. To explore this issue, we compute fingerprints associated with the collapse of the Greenland Ice Sheet, West Antarctic Ice Sheet, and marine sectors of the East Antarctic Ice Sheet in order to isolate regions that would have been subject to greater-than-eustatic sea-level change for all three cases. These fingerprints are more robust than those associated with modern melting events, when applied to infer eustatic sea level, because: (1) a significant collapse of polar ice sheets reduces the sensitivity of the computed fingerprints to uncertainties in the geometry of the melt regions; and (2) the sea-level signal associated with the collapse will dominate the signal from steric effects. We evaluate these fingerprints at a suite of sites where sea-level records from interglacial marine isotopes stages (MIS) 5e and 11 have been obtained. Using these results, we demonstrate that previously discrepant estimates of peak eustatic sea level during MIS5e based on sea-level markers in Australia and the Seychelles are brought into closer accord.
NASA Astrophysics Data System (ADS)
Wagger, David Leonard
1992-01-01
The drag reduction phenomenon was experimentally studied in two pipes, of diameters 1.46 and 1.02 cm, using seven polyelectrolytic HPAM additives, with molecular weights from 1 to 20 times 10^6 g/mole and degree of backbone hydrolysis from 8 to 60%, at concentrations from 1 to 1000 wppm, in saline solutions containing from 0.3 to 0.00001 N NaCl. Both laminar and turbulent flow behavior were greatly influenced by salinity-induced changes in the initial conformation of the HPAM additives. Initially collapsed, random-coiling conformations exhibited Newtonian laminar flow and Type-A turbulent drag reduction, while initially extended conformations exhibited shear-thinning in laminar flow and Type-B turbulent drag reduction. The gross-flow physics of Type-B drag reduction were delineated. A characteristic "ladder" structure prevailed, with polymeric regime segments that were roughly parallel to, but shifted upward from, the Prandtl-Karman line. In the polymeric regime, both Type-A fan and Type -B ladder structures were essentially independent of pipe diameter, and were scaled by the wall shear stress. The wall shear stress also scaled degradation during drag reduction. New onset and slope increment correlations were presented for Type-A drag reduction by HPAM additives. In Type-B drag reduction, flow enhancement was found proportional to additive concentration, and the intrinsic slip, Sigma = S^'/(c/M _{rm w}), varied roughly as the third power of backbone chain links N_ {rm bb}. New intrinsic slip and retro-onset correlations were presented for Type-B drag reduction by HPAM additives. Analysis of Type-B literature revealed a wide range of additive efficacies, with specific slips S^'/c from 0.0001 to 4. For the most effective additives, HPAM and asbestos fibers, the additive-pervaded volume fraction per unit flow enhancement, X_{rm v} /S^' ~ 3000, implied that these additives align during drag reduction. The slip ratio R_{rm sc}, which is the relative flow enhancement induced in Type-A and Type-B drag reduction at constant additive concentration, was found to be a universal function of the normalized turbulent flow strength (Re_ {rm s}sqrtf/Re_ {rm s}sqrtf*). The extension of initially collapsed, random-coiling, HPAM macromolecules by the turbulent flow field thus seems independent of additive parameters and absolute wall shear stress levels. Gross flow additive equivalence was detected at iso-slip points, where different polymer solutions induced equal flow enhancements. At numerous such points, the collapsed to extended slip ratio at constant concentration, R_{rm sc}, was essentially equal to the extended to collapsed concentration ratio at constant slip, R _{rm cs}. Thus, for fixed total additive concentration, the R_{ rm sc} observed at any Re_ {rm s}sqrtf simply represents the fraction of originally collapsed macromolecules that have become extended in the flow, and thence effective in drag reduction. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).
Managing Florida's fracture critical bridges - phases 1 and 2 : final report.
DOT National Transportation Integrated Search
2016-05-01
Based on the definition given in the AASHTO LRFD Bridge Design Specifications, twin steel box-girder bridges are : classified as bridges with fracture critical members (FCMs), in which a failure of a tension member is expected to : lead to a collapse...
1999 Annual Tropical Cyclone Report
1999-01-01
over Gopalpur, India in the Ganjam district at 171730Z October. JTWC issued a Tropical Cyclone Formation Alert at 151730Z October based on a Special...collapsed buildings and up- rooted trees from the eastern Indian state of Orissa. The Ganjam district, specifically the port of Gopalpur, received
16S rDNA clone libraries were evaluated for detection of fecal source-identifying bacteria from a collapsed equine manure pile. Libraries were constructed using universal eubacterial primers and Bacteroides-Prevotella group-specific primers. Eubacterial sequences indicat...
A Rotating Stellar Collapse Model for Supernova 1987A
NASA Astrophysics Data System (ADS)
Nakamura, T.; Fukugita, M.
It is shown that the bunch structure of the Kamiokande neutrino events associated with SN 1987A can be naturally understood, if one assumes that the core of the progenitor star was rotating moderately with q(≡Jc/GM2) ≈ 3 with J the total angular momentum and M the gravitational mass of the core.
Valero, Manuel; Averkin, Robert G; Fernandez-Lamo, Ivan; Aguilar, Juan; Lopez-Pigozzi, Diego; Brotons-Mas, Jorge R; Cid, Elena; Tamas, Gabor; Menendez de la Prida, Liset
2017-06-21
Memory traces are reactivated selectively during sharp-wave ripples. The mechanisms of selective reactivation, and how degraded reactivation affects memory, are poorly understood. We evaluated hippocampal single-cell activity during physiological and pathological sharp-wave ripples using juxtacellular and intracellular recordings in normal and epileptic rats with different memory abilities. CA1 pyramidal cells participate selectively during physiological events but fired together during epileptic fast ripples. We found that firing selectivity was dominated by an event- and cell-specific synaptic drive, modulated in single cells by changes in the excitatory/inhibitory ratio measured intracellularly. This mechanism collapses during pathological fast ripples to exacerbate and randomize neuronal firing. Acute administration of a use- and cell-type-dependent sodium channel blocker reduced neuronal collapse and randomness and improved recall in epileptic rats. We propose that cell-specific synaptic inputs govern firing selectivity of CA1 pyramidal cells during sharp-wave ripples. Copyright © 2017 Elsevier Inc. All rights reserved.
Pilge, Hakan; Bittersohl, Bernd; Schneppendahl, Johannes; Hesper, Tobias; Zilkens, Christoph; Ruppert, Martin; Krauspe, Rüdiger; Jäger, Marcus
2016-11-17
With disease progression, avascular necrosis (AVN) of the femoral head may lead to a collapse of the articular surface. The exact pathophysiology of AVN remains unclear, although several conditions are known that can result in spontaneous cell death, leading to a reduction of trabecular bone and the development of AVN. Hip AVN treatment is stage-dependent in which two main stages of the disease can be distinguished: pre-collapse (ARCO 0-II) and post-collapse stage (ARCO III-IV, crescent sign). In the pre-collapse phase, core decompression (CD), with or without the addition of bone marrow ( e.g . bone marrow aspirate concentrate, BMAC) or bone graft, is a common treatment alternative. In the post-collapse phase, THA (total hip arthroplasty) must be performed in most of the patients. In addition to surgical treatment, the intravenous application of Iloprost has been shown to have a curative potential and analgesic effect. From October 2009 to October 2014, 49 patients with AVN (stages I-III) were treated with core decompression at our institution. All patients were divided into group A (CD + BMAC) and group B (CD alone). Of these patients, 20 were included in a matched pair analysis. The patients were matched to age, gender, ARCO-stage, Kerboul combined necrotic angle, the cause of AVN, and whether Iloprost-therapy was performed. The Merle d'Aubigné Score and the Kerboul combined necrotic angle in a-p and lateral radiographs were evaluated pre- and postoperatively. The primary endpoint was a total hip arthroplasty. In group A, two patients needed THA while in group B four patients were treated with THA. In group A, the Merle d'Aubigné Score improved from 13.5 (pre-operatively) to 15.3 (postoperatively). In group B there was no difference between the pre- (14.3) and postoperative (14.1) assessment. The mean of the Kerboul angle showed no difference in both groups compared pre- to postoperatively (group A: pre-op 212°, postop 220°, group B: pre-op 213, postop 222°). Regarding radiographic evaluation, the interobserver variability revealed a moderate agreement between two raters regarding the pre-(ICC 0.594) and postoperative analysis (ICC 0.604).This study demonstrates that CD in combination with the application of autologous bone marrow aspirate concentrate into the femoral head seems to be a safe and efficient treatment alternative in the early stages of AVN of the femoral head when compared to CD alone.
Tomaru, Yohei; Yoshioka, Tomokazu; Sugaya, Hisashi; Aoto, Katsuya; Wada, Hiroshi; Akaogi, Hiroshi; Yamazaki, Masashi; Mishima, Hajime
2017-07-06
We had previously established concentrated autologous bone marrow aspirate transplantation (CABMAT), a one-step, low-invasive, joint-preserving surgical technique for treating osteonecrosis of the femoral head (ONFH). The present study aimed to evaluate the effects of CABMAT as a hip preserving surgical approach, preventing femoral head collapse in asymptomatic ONFH. In total, 222 patients (341 hips) with ONFH were treated with CABMAT between April 2003 and March 2013. Based on magnetic resonance imaging, we determined that 119 of these patients had bilateral asymptomatic ONFH (238 hips), and 38 further patients had unilateral asymptomatic ONFH (38 hips). In this series, we retrospectively examined 31 hips in 31 patients with unilateral asymptomatic ONFH treated surgically between 2003 and 2012 and followed up for more than 2 years. Clinical and radiological evaluation were performed immediately before the procedure and at the final follow-up. The two-year follow-up rate among patients with unilateral ONFH was 82% (31/38). Therefore, the present study included 31 patients (19 males and 12 females), with a mean age and follow-up period of 40 and 5.8 years, respectively. Of the 31 asymptomatic hips, 5, 6, 10, and 10 had osteonecrosis of types A, B, C1, and C2, respectively. The diagnosis, classification, and staging of ONFH were based on the 2001 Japanese Orthopaedic Association (JOA) classification. Secondary collapse of the femoral head was observed in 6/10 hips and 5/10 hips with osteonecrosis of types C1 and C2, respectively. Total hip arthroplasty was performed in 9.6% of patients (3/31 hips), at an average of 33 months after surgery. Clinical symptoms improved after surgery, and the secondary collapse rate at a mean of 5.8 years after CABMAT was lower than that reported in several previous studies on the natural course of asymptomatic ONFH. Early diagnosis of ONFH (i.e., before femoral head collapse) and early intervention with CABMAT could improve the clinical outcome of corticosteroid and alcohol-induced ONFH.
Serum cardiac troponin I in canine syncope and seizures.
Dutton, E; Dukes-McEwan, J; Cripps, P J
2017-02-01
To determine if serum cardiac troponin I (cTnI) concentration distinguishes between cardiogenic syncope and collapsing dogs presenting with either generalized epileptic seizures (both with and without cardiac disease) or vasovagal syncope. Seventy-nine prospectively recruited dogs, grouped according to aetiology of collapse: generalized epileptic seizures (group E), cardiogenic syncope (group C), dogs with both epileptic seizures and cardiac disease (group B), vasovagal syncope (group V) or unclassified (group U). Most patients had ECG (n = 78), echocardiography (n = 78) and BP measurement (n = 74) performed. Dogs with a history of intoxications, trauma, evidence of metabolic disorders or renal insufficiency (based on serum creatinine concentrations >150 μmol/L and urine specific gravity <1.030) were excluded. Serum cTnI concentrations were measured and compared between groups using non-parametric statistical methods. Multivariable regression analysis investigated factors associated with cTnI. Receiver operator characteristic curve analysis examined whether cTnI could identify cardiogenic syncope. Median cTnI concentrations were higher in group C than E (cTnI: 0.165 [0.02-27.41] vs. 0.03 [0.01-1.92] ng/mL; p<0.05). Regression analysis found that serum cTnI concentrations decreased with increasing time from collapse (p=0.015) and increased with increasing creatinine concentration (p=0.028). Serum cTnI diagnosed cardiogenic syncope with a sensitivity of 75% and specificity of 80%. Serum cTnI concentrations were significantly different between groups C and E. However, due to the overlap in cTnI concentrations between groups cTnI, measurement in an individual is not optimally discriminatory to differentiate cardiogenic syncope from collapse with generalized epileptic seizures (both with and without cardiac disease) or vasovagal syncope. Copyright © 2016 Elsevier B.V. All rights reserved.
Modeling an exogenic origin for the equatorial ridge on Iapetus
NASA Astrophysics Data System (ADS)
Stickle, Angela M.; Roberts, James H.
2018-06-01
Iapetus has a ridge along the equator that extends continuously for more than 110° in longitude. Parts of the ridge rise as much as 20 km above the surrounding terrains. Most models for the formation of this enigmatic ridge are endogenic, generally requiring the formation of a fast-spinning Iapetus with an oblate shape due to the rotation speed. Many of these require specific scenarios and have constraining parameters in order to generate a ridge comparable to what is seen today. An exogenic formation mechanism has also been proposed, that the ridge represents the remains of an early ring system around Iapetus that collapsed onto the surface. Thus far, none of the models have conclusively identified the origin of the ridge. In this study, an exogenic origin for the ridge is assumed, which is derived from a collapsing disk of debris around Iapetus, without invoking any specific model for the generation of the debris disk. Here, we evaluate whether it is possible to generate a ridge of the size and shape as observed by simulating the impact of the collapsing debris using the CTH hydrocode. Pi-scaling calculations suggest that extremely oblique impact angles (1°-10°) are needed to add to ridge topography. These extreme impact angles severely reduce the cratering efficiency compared to a vertical impact, adding material rather than eroding it during crater formation. Furthermore, material is likely to be excavated at low angles, enhancing downrange accumulation. Multiple impacts from debris pieces will heighten this effect. Because infalling debris is predicted to impact at extremely low angles, both of these effects might have contributed to ridge formation on Iapetus. The extreme grazing angles of the impacts modeled here decouple much of the projectile energy from the target, and impact heating of the surface is not significant. These models suggest that a collapsing disk of debris should have been able to build topography to create a ridge around Iapetus.
Sediment-induced amplification and the collapse of the Nimitz Freeway
Hough, S.E.; Friberg, P.A.; Busby, R.; Field, E.F.; Jacob, K.H.; Borcherdt, R.D.
1990-01-01
THE amplification of ground motion by low-seismic-velocity surface sediments is an important factor in determining the seismic hazard specific to a given site. The Ms = 7.1 Loma Prieta earthquake of 17 October 1989 was the largest event in the contiguous United States in 37 years, and yielded an unparalleled volume of seismic data from the main shock and aftershock sequence1. These data can be used to image the seismic source, to study detailed Earth structure, and to study the propagation of seismic waves both through bedrock at depth and through sediment layers near the surface. Near the edge of San Francisco Bay, site conditions vary considerably on scales of hundreds of metres. The collapsed section of the two-tiered Nimitz Freeway in Oakland was built on San Francisco Bay mud, whereas stiffer alluvial sediments underlie a southern section that was damaged but did not collapse. Here we analyse high-quality, digital aftershock recordings from several sites near the Nimitz Freeway, and conclude that soil conditions and resulting ground-motion amplification may have contributed significantly to the failure of the structure.
Fitch, Taylor; Villanueva, Gabriela; Quadir, Mohammad M; Sagiraju, Hari K R; Alamgir, Hasanat
2015-07-01
Prevalence and risk factors of PTSD among injured garment workers who survived a major factory collapse. Survivors receiving treatment or rehabilitation care at one year post event were surveyed, which included Post Traumatic Stress Disorder Checklist Specific version. The respondents consisted of 181 people with a mean age of 27.8 years and a majority had less than high school education (91.2%). Multivariable logistic regression found that the odds of having PTSD was higher among married (OR: 3.2 [95% CI: 1.3-8.0]), those who used to work more than 70 hr/week (OR: 2.4 [1.1-5.3]), workers who used to hold higher job positions (OR: 2.6 [1.2-5.6]) or who had a concussion injury (OR: 3.7 [1.4-9.8]). Among the respondents, 83.4% remained unemployed, and only 57.3% (63 people) reported receiving a quarter or less of what they were promised as compensation. Probable PTSD was prevalent among surviving workers of the Rana Plaza building collapse in Bangladesh. © 2015 Wiley Periodicals, Inc.
The Experimental Study of Dynamics of Scaled Gas-Filled Bubble Collapse in Liquid
NASA Astrophysics Data System (ADS)
Pavlenko, Alexander
2011-06-01
The article provides results of analyzing special features of the single-bubble sonoluminescence, developing the special apparatus to investigate this phenomenon on a larger-scale basis. Certain very important effects of high energy density physics, i.e. liquid compressibility, shock-wave formation under the collapse of the gas cavity in liquid, shock-wave focusing in the gas-filled cavity, occurrence of hot dense plasma in the focusing area, and high-temperature radiation yield are observed in this phenomenon. Specificity of the process is conditioned by the ``ideal'' preparation and sphericity of the gas-and-liquid contact boundary what makes the collapse process efficient due to the reduced influence of hydrodynamic instabilities. Results of experimental investigations; results of developing the facilities, description of methods used to register parameters of facilities and the system under consideration; analytical estimates how gas-filled bubbles evolve in liquid with the regard for scale effects; results of preliminary 1-D gas dynamic calculations of the gas bubble evolution are presented. The work supported by ISTC Project #2116.
Conformational Space and Stability of ETD Charge Reduction Products of Ubiquitin
NASA Astrophysics Data System (ADS)
Lermyte, Frederik; Łącki, Mateusz Krzysztof; Valkenborg, Dirk; Gambin, Anna; Sobott, Frank
2017-01-01
Owing to its versatility, electron transfer dissociation (ETD) has become one of the most commonly utilized fragmentation techniques in both native and non-native top-down mass spectrometry. However, several competing reactions—primarily different forms of charge reduction—occur under ETD conditions, as evidenced by the distorted isotope patterns usually observed. In this work, we analyze these isotope patterns to compare the stability of nondissociative electron transfer (ETnoD) products, specifically noncovalent c/ z fragment complexes, across a range of ubiquitin conformational states. Using ion mobility, we find that more extended states are more prone to fragment release. We obtain evidence that for a given charge state, populations of ubiquitin ions formed either directly by electrospray ionization or through collapse of more extended states upon charge reduction, span a similar range of collision cross-sections. Products of gas-phase collapse are, however, less stabilized towards unfolding than the native conformation, indicating that the ions retain a memory of previous conformational states. Furthermore, this collapse of charge-reduced ions is promoted if the ions are `preheated' using collisional activation, with possible implications for the kinetics of gas-phase compaction.
Moreno, Angel J; Lo Verso, Federica; Arbe, Arantxa; Pomposo, José A; Colmenero, Juan
2016-03-03
By means of large-scale computer simulations and small-angle neutron scattering (SANS), we investigate solutions of single-chain nanoparticles (SCNPs), covering the whole concentration range from infinite dilution to melt density. The analysis of the conformational properties of the SCNPs reveals that these synthetic nano-objects share basic ingredients with intrinsically disordered proteins (IDPs), as topological polydispersity, generally sparse conformations, and locally compact domains. We investigate the role of the architecture of the SCNPs in their collapse behavior under macromolecular crowding. Unlike in the case of linear macromolecules, which experience the usual transition from self-avoiding to Gaussian random-walk conformations, crowding leads to collapsed conformations of SCNPs resembling those of crumpled globules. This behavior is already found at volume fractions (about 30%) that are characteristic of crowding in cellular environments. The simulation results are confirmed by the SANS experiments. Our results for SCNPs--a model system free of specific interactions--propose a general scenario for the effect of steric crowding on IDPs: collapse from sparse conformations at high dilution to crumpled globular conformations in cell environments.
NASA Astrophysics Data System (ADS)
Grams, G.; Giraud, S.; Fantina, A. F.; Gulminelli, F.
2018-03-01
The aim of the present study is to calculate the nuclear distribution associated at finite temperature to any given equation of state of stellar matter based on the Wigner-Seitz approximation, for direct applications in core-collapse simulations. The Gibbs free energy of the different configurations is explicitly calculated, with special care devoted to the calculation of rearrangement terms, ensuring thermodynamic consistency. The formalism is illustrated with two different applications. First, we work out the nuclear statistical equilibrium cluster distribution for the Lattimer and Swesty equation of state, widely employed in supernova simulations. Secondly, we explore the effect of including shell structure, and consider realistic nuclear mass tables from the Brussels-Montreal Hartree-Fock-Bogoliubov model (specifically, HFB-24). We show that the whole collapse trajectory is dominated by magic nuclei, with extremely spread and even bimodal distributions of the cluster probability around magic numbers, demonstrating the importance of cluster distributions with realistic mass models in core-collapse simulations. Simple analytical expressions are given, allowing further applications of the method to any relativistic or nonrelativistic subsaturation equation of state.
Utilitarian models of the solar nebula
NASA Technical Reports Server (NTRS)
Cassen, Patrick
1994-01-01
Models of the primitive solar nebula based on a combination of theory, observations of T Tauri stars, and global conservation laws are presented. The models describe the motions of nebular gas, mixing of interstellar material during the formation of the nebula, and evolution of thermal structure in terms of several characteristic parameters. The parameters describe key aspects of the protosolar cloud (its rotation rate and collapse rate) and the nebula (its mass relative to the Sun, decay time, and density distribution). For most applications, the models are heuristic rather than predicted. Their purpose is to provide a realistic context for the interpretation of solar system data, and to distinquish those nebular characteristics that can be specified with confidence, independently of the assumtions of particular models, form those that are poorly constrained. It is demonstrated that nebular gas typically experienced large radial excursions during the evolution of the nebula and that both inward and outward mean radial velocities on the order of meters per second occured in the terrestrial planet region, with inward velocities predominant for most ofthe evolution. However, the time history of disk size, surface density, and radial velocities are sensitive to the total angular momentun of the protosolar cloud, which cannot be constrained by purely theoretical considerations.It is shown that a certain amount of 'formational' mixing of interstellar material was an inevitable consequenc of nebular mass and angular momentum transport during protostellar collapse, regardless of the specific transport mechanisms invloved. Even if the protosolar cloud was initially homogeneous, this mixing was important because it had the effect of mingling presolar material that had experienced different degrees of thermal processing during collapse and passage through the accertion shock. Nebular thermal structure is less sensitive to poorly constrained parameters than is dynamical history. A simple criterion is derived for the condition that silicate grains are evaporated at midplane, and it is argued that this condition was probably fulfilled early in nebular history. Cooling of a hot nebula due tocoagulation of dust and consequent local reduction of optical depth is examined, and it is shown how such a process leads naturally to an enrichment of rock-forming elements in the gas phase.
Landry, Shane A; Joosten, Simon A; Sands, Scott A; White, David P; Malhotra, Atul; Wellman, Andrew; Hamilton, Garun S; Edwards, Bradley A
2017-08-01
Upper airway collapsibility predicts the response to several non-continuous positive airway pressure (CPAP) interventions for obstructive sleep apnoea (OSA). Measures of upper airway collapsibility cannot be easily performed in a clinical context; however, a patient's therapeutic CPAP requirement may serve as a surrogate measure of collapsibility. The present work aimed to compare the predictive use of CPAP level with detailed physiological measures of collapsibility. Therapeutic CPAP levels and gold-standard pharyngeal collapsibility measures (passive pharyngeal critical closing pressure (P crit ) and ventilation at CPAP level of 0 cmH 2 O (V passive )) were retrospectively analysed from a randomized controlled trial (n = 20) comparing the combination of oxygen and eszopiclone (treatment) versus placebo/air control. Responders (9/20) to treatment were defined as those who exhibited a 50% reduction in apnoea/hypopnoea index (AHI) plus an AHI<15 events/h on-therapy. Responders to treatment had a lower therapeutic CPAP requirement compared with non-responders (6.6 (5.4-8.1) cmH 2 O vs 8.9 (8.4-10.4) cmH 2 O, P = 0.007), consistent with their reduced collapsibility (lower P crit , P = 0.017, higher V passive P = 0.025). Therapeutic CPAP level provided the highest predictive accuracy for differentiating responders from non-responders (area under the curve (AUC) = 0.86 ± 0.9, 95% CI: 0.68-1.00, P = 0.007). However, both P crit (AUC = 0.83 ± 0.11, 95% CI: 0.62-1.00, P = 0.017) and V passive (AUC = 0.77 ± 0.12, 95% CI: 0.53-1.00, P = 0.44) performed well, and the difference in AUC for these three metrics was not statistically different. A therapeutic CPAP level ≤8 cmH 2 O provided 78% sensitivity and 82% specificity (positive predictive value = 78%, negative predictive value = 82%) for predicting a response to these therapies. Therapeutic CPAP requirement, as a surrogate measure of pharyngeal collapsibility, predicts the response to non-anatomical therapy (oxygen and eszopiclone) for OSA. © 2017 Asian Pacific Society of Respirology.
Sloan Great Wall as a complex of superclusters with collapsing cores
NASA Astrophysics Data System (ADS)
Einasto, Maret; Lietzen, Heidi; Gramann, Mirt; Tempel, Elmo; Saar, Enn; Liivamägi, Lauri Juhan; Heinämäki, Pekka; Nurmi, Pasi; Einasto, Jaan
2016-10-01
Context. The formation and evolution of the cosmic web is governed by the gravitational attraction of dark matter and antigravity of dark energy (cosmological constant). In the cosmic web, galaxy superclusters or their high-density cores are the largest objects that may collapse at present or during the future evolution. Aims: We study the dynamical state and possible future evolution of galaxy superclusters from the Sloan Great Wall (SGW), the richest galaxy system in the nearby Universe. Methods: We calculated supercluster masses using dynamical masses of galaxy groups and stellar masses of galaxies. We employed normal mixture modelling to study the structure of rich SGW superclusters and search for components (cores) in superclusters. We analysed the radial mass distribution in the high-density cores of superclusters centred approximately at rich clusters and used the spherical collapse model to study their dynamical state. Results: The lower limit of the total mass of the SGW is approximately M = 2.5 × 1016 h-1 M⊙. Different mass estimators of superclusters agree well, the main uncertainties in masses of superclusters come from missing groups and clusters. We detected three high-density cores in the richest SGW supercluster (SCl 027) and two in the second richest supercluster (SCl 019). They have masses of 1.2 - 5.9 × 1015 h-1 M⊙ and sizes of up to ≈60 h-1 Mpc. The high-density cores of superclusters are very elongated, flattened perpendicularly to the line of sight. The comparison of the radial mass distribution in the high-density cores with the predictions of spherical collapse model suggests that their central regions with radii smaller than 8 h-1 Mpc and masses of up to M = 2 × 1015 h-1 M⊙ may be collapsing. Conclusions: The rich SGW superclusters with their high-density cores represent dynamically evolving environments for studies of the properties of galaxies and galaxy systems.
High-mass Star Formation through Filamentary Collapse and Clump-fed Accretion in G22
NASA Astrophysics Data System (ADS)
Yuan, Jinghua; Li, Jin-Zeng; Wu, Yuefang; Ellingsen, Simon P.; Henkel, Christian; Wang, Ke; Liu, Tie; Liu, Hong-Li; Zavagno, Annie; Ren, Zhiyuan; Huang, Ya-Fang
2018-01-01
How mass is accumulated from cloud-scale down to individual stars is a key open question in understanding high-mass star formation. Here, we present the mass accumulation process in a hub-filament cloud G22 that is composed of four supercritical filaments. Velocity gradients detected along three filaments indicate that they are collapsing with a total mass infall rate of about 440 M ⊙ Myr‑1, suggesting the hub mass would be doubled in six free-fall times, adding up to ∼2 Myr. A fraction of the masses in the central clumps C1 and C2 can be accounted for through large-scale filamentary collapse. Ubiquitous blue profiles in HCO+ (3–2) and 13CO (3–2) spectra suggest a clump-scale collapse scenario in the most massive and densest clump C1. The estimated infall velocity and mass infall rate are 0.31 km s‑1 and 7.2 × 10‑4 M ⊙ yr‑1, respectively. In clump C1, a hot molecular core (SMA1) is revealed by the Submillimeter Array observations and an outflow-driving high-mass protostar is located at the center of SMA1. The mass of the protostar is estimated to be 11–15 M ⊙ and it is still growing with an accretion rate of 7 × 10‑5 M ⊙ yr‑1. The coexistent infall in filaments, clump C1, and the central hot core in G22 suggests that pre-assembled mass reservoirs (i.e., high-mass starless cores) may not be required to form high-mass stars. In the course of high-mass star formation, the central protostar, the core, and the clump can simultaneously grow in mass via core-fed/disk accretion, clump-fed accretion, and filamentary/cloud collapse.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ACM from straight runs of piping and elbows and other connections with the following specifications... or other device used to prevent collapse of bag during removal shall run continually during the... pressure glove box systems. Negative pressure glove boxes may be used to remove ACM or PACM from pipe runs...
Code of Federal Regulations, 2014 CFR
2014-07-01
... ACM from straight runs of piping and elbows and other connections with the following specifications... or other device used to prevent collapse of bag during removal shall run continually during the... pressure glove box systems. Negative pressure glove boxes may be used to remove ACM or PACM from pipe runs...
Code of Federal Regulations, 2013 CFR
2013-07-01
... ACM from straight runs of piping and elbows and other connections with the following specifications... or other device used to prevent collapse of bag during removal shall run continually during the... pressure glove box systems. Negative pressure glove boxes may be used to remove ACM or PACM from pipe runs...
Code of Federal Regulations, 2012 CFR
2012-07-01
... ACM from straight runs of piping and elbows and other connections with the following specifications... or other device used to prevent collapse of bag during removal shall run continually during the... pressure glove box systems. Negative pressure glove boxes may be used to remove ACM or PACM from pipe runs...
Code of Federal Regulations, 2011 CFR
2011-07-01
... ACM from straight runs of piping and elbows and other connections with the following specifications... or other device used to prevent collapse of bag during removal shall run continually during the... pressure glove box systems. Negative pressure glove boxes may be used to remove ACM or PACM from pipe runs...
Hasegawa, Kazuhiro; Kitahara, Ko; Hara, Toshiaki; Takano, Ko; Shimoda, Haruka; Homma, Takao
2008-03-01
In vivo quantitative measurement of lumbar segmental stability has not been established. The authors developed a new measurement system to determine intraoperative lumbar stability. The objective of this study was to clarify the biomechanical properties of degenerative lumbar segments by using the new method. Twenty-two patients with a degenerative symptomatic segment were studied and their measurements compared with those obtained in normal or asymptomatic degenerative segments (Normal group). The measurement system produces cyclic flexion-extension through spinous process holders by using a computer-controlled motion generator with all ligamentous structures intact. The following biomechanical parameters were determined: stiffness, absorption energy (AE), and neutral zone (NZ). Discs with degeneration were divided into 2 groups based on magnetic resonance imaging grading: degeneration without collapse (Collapse[-]) and degeneration with collapse (Collapse[+]). Biomechanical parameters were compared among the groups. Relationships among the biomechanical parameters and age, diagnosis, or radiographic parameters were analyzed. The mean stiffness value in the Normal group was significantly greater than that in Collapse(-) or Collapse(+) group. There was no significant difference in the average AE value among the Normal, Collapse(-), and Collapse(+) groups. The NZ in the Collapse(-) was significantly higher than in the Normal or Collapse(+) groups. Stiffness was negatively and NZ was positively correlated with age. Stiffness demonstrated a significant negative and NZ a significant positive relationship with disc height, however. There were no significant differences in stiffness between spines in the Collapse(-) and Collapse(+) groups. The values of a more sensitive parameter, NZ, were higher in Collapse(-) than in Collapse(+) groups, demonstrating that degenerative segments with preserved disc height have a latent instability compared to segments with collapsed discs.
Polyamorphism in Yb-based metallic glass induced by pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Liangliang; Luo, Qiang; Li, Renfeng
2017-04-25
The Yb 62.5Zn 15Mg 17.5Cu 5 metallic glass is investigated using synchrotron x-ray total scattering method up to 38.4 GPa. The polyamorphic transformation from low density to high density with a transition region between 14.1 and 25.2 GPa is observed, accompanying with a volume collapse reflected by a discontinuousness of isothermal bulk modulus. This collapse is caused by that distortional icosahedron short range order precedes to perfect icosahedron, which might link to Yb 4f electron delocalization upon compression, and match the result of in situ electrical resistance measurement under high pressure conditions. Furthermore, this discovery in Yb-based metallic glass, combinedmore » with the previous reports on other metallic glass systems, demonstrates that pressure induced polyamorphism is the general behavior for typical lanthanide based metallic glasses.« less
Simulating Society Transitions: Standstill, Collapse and Growth in an Evolving Network Model
Xu, Guanghua; Yang, Junjie; Li, Guoqing
2013-01-01
We developed a model society composed of various occupations that interact with each other and the environment, with the capability of simulating three widely recognized societal transition patterns: standstill, collapse and growth, which are important compositions of society evolving dynamics. Each occupation is equipped with a number of inhabitants that may randomly flow to other occupations, during which process new occupations may be created and then interact with existing ones. Total population of society is associated with productivity, which is determined by the structure and volume of the society. We ran the model under scenarios such as parasitism, environment fluctuation and invasion, which correspond to different driving forces of societal transition, and obtained reasonable simulation results. This work adds to our understanding of societal evolving dynamics as well as provides theoretical clues to sustainable development. PMID:24086530
Evolution of geodesic congruences in a gravitationally collapsing scalar field background
NASA Astrophysics Data System (ADS)
Shaikh, Rajibul; Kar, Sayan; DasGupta, Anirvan
2014-12-01
The evolution of timelike geodesic congruences in a spherically symmetric, nonstatic, inhomogeneous spacetime representing gravitational collapse of a massless scalar field is studied. We delineate how initial values of the expansion, rotation, and shear of a congruence, as well as the spacetime curvature, influence the global behavior and focusing properties of a family of trajectories. Under specific conditions, the expansion scalar is shown to exhibit a finite jump (from negative to positive value) before focusing eventually occurs. This nonmonotonic behavior of the expansion, observed in our numerical work, is successfully explained through an analysis of the equation for the expansion. Finally, we bring out the role of the metric parameters (related to nonstaticity and spatial inhomogeneity) in shaping the overall behavior of geodesic congruences.
NASA Technical Reports Server (NTRS)
Corbett, J. Elizabeth; Tfaily, Malak M.; Burdige, David J.; Glaser, Paul H.; Chanton, Jeffrey P.
2015-01-01
Using an isotope-mass balance approach and assuming the equimolar production of CO2 and CH4 from methanogenesis (e.g., anaerobic decomposition of cellulose), we calculate that the proportion of total CO2 production from methanogenesis varies from 37 to 83% across a variety of northern peatlands. In a relative sense, methanogenesis was a more important pathway for decomposition in bogs (80 +/- 13% of CO2 production) than in fens (64 +/- 5.7% of CO2 production), but because fens contain more labile substrates they may support higher CH4 production overall. The concentration of CO2 produced from methanogenesis (CO2-meth) can be considered equivalent to CH4 concentration before loss due to ebullition, plant-mediated transport, or diffusion. Bogs produced slightly less CO2-meth than fens (2.9 +/- 1.3 and 3.7 +/- 1.4 mmol/L, respectively). Comparing the quantity of CH4 present to CO2-meth, fens lost slightly more CH4 than bogs (89 +/- 2.8% and 82 +/- 5.3%, respectively) likely due to the presence of vascular plant roots. In collapsed permafrost wetlands, bog moats produced half the amount of CO2-meth (0.8 +/- 0.2mmol/L) relative to midbogs (1.6 +/- 0.6 mmol/L) and methanogenesis was less important (42 +/- 6.6% of total CO2 production relative to 55 +/- 8.1%).We hypothesize that the lower methane production potential in collapsed permafrost wetlands occurs because recently thawed organic substrates are being first exposed to the initial phases of anaerobic decomposition following collapse and flooding. Bog moats lost a comparable amount of CH4 as midbogs (63 +/- 7.0% and 64 +/- 9.3%).
NASA Astrophysics Data System (ADS)
Corbett, J. Elizabeth; Tfaily, Malak M.; Burdige, David J.; Glaser, Paul H.; Chanton, Jeffrey P.
2015-02-01
Using an isotope-mass balance approach and assuming the equimolar production of CO2 and CH4 from methanogenesis (e.g., anaerobic decomposition of cellulose), we calculate that the proportion of total CO2 production from methanogenesis varies from 37 to 83% across a variety of northern peatlands. In a relative sense, methanogenesis was a more important pathway for decomposition in bogs (80 ± 13% of CO2 production) than in fens (64 ± 5.7% of CO2 production), but because fens contain more labile substrates they may support higher CH4 production overall. The concentration of CO2 produced from methanogenesis (CO2-meth) can be considered equivalent to CH4 concentration before loss due to ebullition, plant-mediated transport, or diffusion. Bogs produced slightly less CO2-meth than fens (2.9 ± 1.3 and 3.7 ± 1.4 mmol/L, respectively). Comparing the quantity of CH4 present to CO2-meth, fens lost slightly more CH4 than bogs (89 ± 2.8% and 82 ± 5.3%, respectively) likely due to the presence of vascular plant roots. In collapsed permafrost wetlands, bog moats produced half the amount of CO2-meth (0.8 ± 0.2 mmol/L) relative to midbogs (1.6 ± 0.6 mmol/L) and methanogenesis was less important (42 ± 6.6% of total CO2 production relative to 55 ± 8.1%). We hypothesize that the lower methane production potential in collapsed permafrost wetlands occurs because recently thawed organic substrates are being first exposed to the initial phases of anaerobic decomposition following collapse and flooding. Bog moats lost a comparable amount of CH4 as midbogs (63 ± 7.0% and 64 ± 9.3%).
Regional collapse of symbiotic specificity between lucanid beetles and canestriniid mites
NASA Astrophysics Data System (ADS)
Okabe, Kimiko; Masuya, Hayato; Kanzaki, Natusmi; Taki, Hisatomo
2012-11-01
The intensity of interspecific interactions between hosts and symbionts varies among populations of each organism because of differences in the biotic and abiotic environment. We found geographic mosaics in associations between lucanid beetles ( Dorcus rectus and Dorcus striatipennis) and symbiotic mites ( Haitlingeria sp. and Sandrophela sp., respectively) that were caused by the collapse of host specificity in the northern part of Japan. Haitlingeria sp. was only collected from the surface of the exoskeleton of D. rectus in south and central Japan. Sandrophela sp. showed host specificity in southern to central Japan but was found on both beetle species in areas where Haitlingeria sp. was not found. Because Haitlingeria sp. was able to reproduce on D. rectus collected from Haitlingeria-free regions and no significant differences were observed in average temperature between the host-specific and nonspecific regions bordering on each other, we suggest that the expansion of Haitlingeria sp. in the north has been limited for unknown reasons. When both mites were placed together on D. rectus, only Haitlingeria sp. reproduced, probably because it killed Sandrophela sp., especially juveniles. Thus, we conclude that Sandrophela sp. has expanded its host use to include D. rectus in areas where Haitlingeria sp. is absent. We hypothesise that false host specificity in the canestriniids has been maintained by habitat isolation and/or aggressive behaviour toward competitors. We suggest that host-specific canestriniids provide benefits to hosts that do not develop countermeasures to exclude micro- or macroparasites from their surfaces.
NASA Astrophysics Data System (ADS)
Kumano, Teruhisa
As known well, two of the fundamental processes which give rise to voltage collapse in power systems are the on load tap changers of transformers and dynamic characteristics of loads such as induction machines. It has been well established that, comparing among these two, the former makes slower collapse while the latter makes faster. However, in realistic situations, the load level of each induction machine is not uniform and it is well expected that only a part of loads collapses first, followed by collapse process of each load which did not go into instability during the preceding collapses. In such situations the over all equivalent collapse behavior viewed from bulk transmission level becomes somewhat different from the simple collapse driven by one aggregated induction machine. This paper studies the process of cascaded voltage collapse among many induction machines by time simulation, where load distribution on a feeder line is modeled by several hundreds of induction machines and static impedance loads. It is shown that in some cases voltage collapse really cascades among induction machines, where the macroscopic load dynamics viewed from upper voltage level makes slower collapse than expected by the aggregated load model. Also shown is the effects of machine protection of induction machines, which also makes slower collapse.
Space-Based Detection of Sinkhole Activity in Central Florida
NASA Astrophysics Data System (ADS)
Oliver-Cabrera, T.; Kruse, S.; Wdowinski, S.
2015-12-01
Central Florida's thick carbonate deposits and hydrological conditions have made the area prone to sinkhole development. Sinkhole collapse is a major geologic hazard in central Florida threatening human life and causing substantial damage to property. According to the Florida Senate report in 2010, between 2006-2010 total insurance claims due to sinkhole activity were around $200 million per year. Detecting sinkhole deformation before a collapse is a very difficult task, due to small or sometimes unnoticeable surface changes. Most techniques used to monitor sinkholes provide very localized information and cannot be implemented to study broad areas. This is the case of central Florida, where the active zone spans over hundreds of square-kilometers. In this study we use Interferometric Synthetic Aperture Radar (InSAR) observations acquired over several locations in central Florida to detect possible pre-collapse deformation. The study areas were selected because they have shown suspicious sinkhole behavior. One of the sites collapsed on March 2013 destroying a property and killing a man. To generate the InSAR results we use six datasets acquired by the TerraSAR-X and Cosmo-SkyMed satellites with various acquisition modes reflecting pixel resolutions between 25cm and 2m. Preliminary InSAR results show good coherence over constructed areas and low coherence in vegetated zones, justifying our analysis that focuses on the man-made structures. After full datasets will be acquired, a Persistent Scatterer Interferometry (PSI) time series analysis will be performed for detecting localized deformation at spatial scale of 1-5 meters. The project results will be verified using Ground Penetrating Radar.
Gravitational Waves from Gravitational Collapse.
Fryer, Chris L; New, Kimberly C B
2011-01-01
Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.
Dynamic Control of Collapse in a Vortex Airy Beam
Chen, Rui-Pin; Chew, Khian-Hooi; He, Sailing
2013-01-01
Here we study systematically the self-focusing dynamics and collapse of vortex Airy optical beams in a Kerr medium. The collapse is suppressed compared to a non-vortex Airy beam in a Kerr medium due to the existence of vortex fields. The locations of collapse depend sensitively on the initial power, vortex order, and modulation parameters. The collapse may occur in a position where the initial field is nearly zero, while no collapse appears in the region where the initial field is mainly distributed. Compared with a non-vortex Airy beam, the collapse of a vortex Airy beam can occur at a position away from the area of the initial field distribution. Our study shows the possibility of controlling and manipulating the collapse, especially the precise position of collapse, by purposely choosing appropriate initial power, vortex order or modulation parameters of a vortex Airy beam. PMID:23518858
Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles
Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.
2011-01-01
Bubbles excited by lithotripter shock waves undergo a prolonged growth followed by an inertial collapse and rebounds. In addition to the relevance for clinical lithotripsy treatments, such bubbles can be used to study the mechanics of inertial collapses. In particular, both phase change and diffusion among vapor and noncondensable gas molecules inside the bubble are known to alter the collapse dynamics of individual bubbles. Accordingly, the role of heat and mass transport during inertial collapses is explored by experimentally observing the collapses and rebounds of lithotripsy bubbles for water temperatures ranging from 20 to 60 °C and dissolved gas concentrations from 10 to 85% of saturation. Bubble responses were characterized through high-speed photography and acoustic measurements that identified the timing of individual bubble collapses. Maximum bubble diameters before and after collapse were estimated and the corresponding ratio of volumes was used to estimate the fraction of energy retained by the bubble through collapse. The rebounds demonstrated statistically significant dependencies on both dissolved gas concentration and temperature. In many observations, liquid jets indicating asymmetric bubble collapses were visible. Bubble rebounds were sensitive to these asymmetries primarily for water conditions corresponding to the most dissipative collapses. PMID:22088027
NASA Astrophysics Data System (ADS)
Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.
2017-04-01
Void collapse in energetic materials leads to hot spot formation and enhanced sensitivity. Much recent work has been directed towards simulation of collapse-generated reactive hot spots. The resolution of voids in calculations to date has varied as have the resulting predictions of hot spot intensity. Here we determine the required resolution for reliable cylindrical void collapse calculations leading to initiation of chemical reactions. High-resolution simulations of collapse provide new insights into the mechanism of hot spot generation. It is found that initiation can occur in two different modes depending on the loading intensity: Either the initiation occurs due to jet impact at the first collapse instant or it can occur at secondary lobes at the periphery of the collapsed void. A key observation is that secondary lobe collapse leads to large local temperatures that initiate reactions. This is due to a combination of a strong blast wave from the site of primary void collapse and strong colliding jets and vortical flows generated during the collapse of the secondary lobes. The secondary lobe collapse results in a significant lowering of the predicted threshold for ignition of the energetic material. The results suggest that mesoscale simulations of void fields may suffer from significant uncertainty in threshold predictions because unresolved calculations cannot capture the secondary lobe collapse phenomenon. The implications of this uncertainty for mesoscale simulations are discussed in this paper.
ERIC Educational Resources Information Center
Dugan, John P.; Yurman, Lauren
2011-01-01
This study explores the appropriateness of collapsing lesbian, gay, and bisexual (LGB) college students into a single category in quantitative research designs as well as the nature of their engagement with the collegiate environment. Data were collected as part of a national study and represent a total of 980 LGB self-identified college students…
Genetic epidemiology of the Sudden Oak Death pathogen Phytophthora ramorum in California
S. Mascheretti; P.J.P. Croucher; M. Kozanitas; L. Baker; M. Garbelotto
2009-01-01
A total of 669 isolates of Phytophthora ramorum, the pathogen responsible for Sudden Oak Death, were collected from 34 Californian forests and from the ornamental plant-trade. Seven microsatellite markers revealed 82 multilocus genotypes (MGs) of which only three were abundant (>10%). Iteratively collapsing based upon minimum ΦST, yielded five meta-samples and five...
Elastic Properties across the y→α Volume Collapse in Cerium versus Pressure and Temperature
Lipp, M. J.; Jenei, Zs.; Cynn, H.; ...
2017-10-31
Here, the longitudinal and transverse sound speeds, c L and c T, of polycrystalline cerium were measured isothermally vs pressure up to the critical temperature across the iso-structural γ-α volume collapse (VC) phase transition. We deduce values for the adiabatic bulk modulus BS, the shear modulus G = ρc T 2, the Poisson’s ratio ν and the Debye temperature, θ D(p). We find that the elastic constant C 12 is solely responsible for the decrease of B S with pressure towards the VC at RT. With increasing temperature, the lattice contribution ΔS vib(γ→α) to the total entropy change across themore » VC decreases more rapidly to zero than the total entropy itself suggesting that another mechanism, possibly disorder, assists in stabilizing the γ-phase entropically against the α-phase. Also, with increasing temperature, the Poisson’s ratio becomes negative near the VC transition, meaning that cerium metal takes on auxetic characteristics over a small pressure range. At the critical point the Poisson’s ratio ought to be -1, since the isothermal bulk modulus vanishes and the shear modulus remains nonzero.« less
Elastic Properties across the y→α Volume Collapse in Cerium versus Pressure and Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipp, M. J.; Jenei, Zs.; Cynn, H.
Here, the longitudinal and transverse sound speeds, c L and c T, of polycrystalline cerium were measured isothermally vs pressure up to the critical temperature across the iso-structural γ-α volume collapse (VC) phase transition. We deduce values for the adiabatic bulk modulus BS, the shear modulus G = ρc T 2, the Poisson’s ratio ν and the Debye temperature, θ D(p). We find that the elastic constant C 12 is solely responsible for the decrease of B S with pressure towards the VC at RT. With increasing temperature, the lattice contribution ΔS vib(γ→α) to the total entropy change across themore » VC decreases more rapidly to zero than the total entropy itself suggesting that another mechanism, possibly disorder, assists in stabilizing the γ-phase entropically against the α-phase. Also, with increasing temperature, the Poisson’s ratio becomes negative near the VC transition, meaning that cerium metal takes on auxetic characteristics over a small pressure range. At the critical point the Poisson’s ratio ought to be -1, since the isothermal bulk modulus vanishes and the shear modulus remains nonzero.« less
Investigations in Martian Sedimentology
NASA Technical Reports Server (NTRS)
Moore, Jeffrey M.
1998-01-01
The purpose of this report is to investigate and discuss the Martian surface. This report was done in specific tasks. The tasks were: characterization of Martian fluids and chemical sediments; mass wasting and ground collapse in terrains of volatile-rich deposits; Mars Rover terrestrial field investigations; Mars Pathfinder operations support; and Martian subsurface water instrument.
Extragalactic Gravitational Collapse
NASA Astrophysics Data System (ADS)
Rees, Martin J.
After some introductory "numerology", routes towards black hole formation are briefly reviewed; some properties of black holes relevant to theories for active galactic nuclei are then described. Applications are considered to specific models for energy generation and the production of relativistic beams. The paper concludes with a discussion of extragalactic sources of gravitational waves.
Combining slope stability and groundwater flow models to assess stratovolcano collapse hazard
NASA Astrophysics Data System (ADS)
Ball, J. L.; Taron, J.; Reid, M. E.; Hurwitz, S.; Finn, C.; Bedrosian, P.
2016-12-01
Flank collapses are a well-documented hazard at volcanoes. Elevated pore-fluid pressures and hydrothermal alteration are invoked as potential causes for the instability in many of these collapses. Because pore pressure is linked to water saturation and permeability of volcanic deposits, hydrothermal alteration is often suggested as a means of creating low-permeability zones in volcanoes. Here, we seek to address the question: What alteration geometries will produce elevated pore pressures in a stratovolcano, and what are the effects of these elevated pressures on slope stability? We initially use a finite element groundwater flow model (a modified version of OpenGeoSys) to simulate `generic' stratovolcano geometries that produce elevated pore pressures. We then input these results into the USGS slope-stability code Scoops3D to investigate the effects of alteration and magmatic intrusion on potential flank failure. This approach integrates geophysical data about subsurface alteration, water saturation and rock mechanical properties with data about precipitation and heat influx at Cascade stratovolcanoes. Our simulations show that it is possible to maintain high-elevation water tables in stratovolcanoes given specific ranges of edifice permeability (ideally between 10-15 and 10-16 m2). Low-permeability layers (10-17 m2, representing altered pyroclastic deposits or altered breccias) in the volcanoes can localize saturated regions close to the surface, but they may actually reduce saturation, pore pressures, and water table levels in the core of the volcano. These conditions produce universally lower factor-of-safety (F) values than at an equivalent dry edifice with the same material properties (lower values of F indicate a higher likelihood of collapse). When magmatic intrusions into the base of the cone are added, near-surface pore pressures increase and F decreases exponentially with time ( 7-8% in the first year). However, while near-surface impermeable layers create elevated water tables and pore pressures, they do not necessarily produce the largest or deepest collapses. This suggests that mechanical properties of both the edifice and layers still exert a significant control, and collapse volumes depend on a complex interplay of mechanical factors and layering.
Revisiting the evidence for collapsing boundaries and urgency signals in perceptual decision-making.
Hawkins, Guy E; Forstmann, Birte U; Wagenmakers, Eric-Jan; Ratcliff, Roger; Brown, Scott D
2015-02-11
For nearly 50 years, the dominant account of decision-making holds that noisy information is accumulated until a fixed threshold is crossed. This account has been tested extensively against behavioral and neurophysiological data for decisions about consumer goods, perceptual stimuli, eyewitness testimony, memories, and dozens of other paradigms, with no systematic misfit between model and data. Recently, the standard model has been challenged by alternative accounts that assume that less evidence is required to trigger a decision as time passes. Such "collapsing boundaries" or "urgency signals" have gained popularity in some theoretical accounts of neurophysiology. Nevertheless, evidence in favor of these models is mixed, with support coming from only a narrow range of decision paradigms compared with a long history of support from dozens of paradigms for the standard theory. We conducted the first large-scale analysis of data from humans and nonhuman primates across three distinct paradigms using powerful model-selection methods to compare evidence for fixed versus collapsing bounds. Overall, we identified evidence in favor of the standard model with fixed decision boundaries. We further found that evidence for static or dynamic response boundaries may depend on specific paradigms or procedures, such as the extent of task practice. We conclude that the difficulty of selecting between collapsing and fixed bounds models has received insufficient attention in previous research, calling into question some previous results. Copyright © 2015 the authors 0270-6474/15/352476-09$15.00/0.
Yusof, Mohammad Imran; Hassan, Eskandar; Rahmat, Nasazli; Yunus, Rohaizan
2009-04-01
Pedicle involvement in spinal tuberculosis (TB), the prevertebral abscess formation, severity of vertebral body, and disc collapse were evaluated from magnetic resonance imaging (MRI) of the patients. To study the pedicle involvement in spine TB in relation to the degree of vertebral body and disc collapse, prevertebral abscess collection, and degree of kyphosis; and to correlate the occurrence of pedicle involvement and the degree of spinal deformity. There are a few reports describing the posterior element involvement in spinal TB. Typically, the infection resides in the anterior part of the vertebral body endplates and rarely involved the pedicles. There were 31 patients, who had been diagnosed and treated for spinal TB from 2003 to 2007 at our center. Critical evaluation of each patient's MRI was carried out for the pedicle involvement, prevertebral abscess formation, severity of vertebral body, and disc collapse. Spinal TB mostly involved the thoracic level (48.4%). Pedicle involvement was noted in 64.5% of patients, and the highest involvement was at thoracic level. The mean vertebral body, disc collapse, prevertebral abscess, and kyphosis were more severe in pedicle involved group. The posterior spinal element, specifically the pedicle is not uncommonly involved in spinal TB. Pedicle involvement is part of the disease process and usually associated with relatively severe vertebral body and disc destruction, wide prevertebral abscess, and severe kyphosis. Pedicle involvement can be detected early from MRI and need to be documented as it may influence the treatment strategy.
Alveolar derecruitment and collapse induration as crucial mechanisms in lung injury and fibrosis.
Lutz, Dennis; Gazdhar, Amiq; Lopez-Rodriguez, Elena; Ruppert, Clemens; Mahavadi, Poornima; Günther, Andreas; Klepetko, Walter; Bates, Jason H; Smith, Bradford; Geiser, Thomas; Ochs, Matthias; Knudsen, Lars
2015-02-01
Idiopathic pulmonary fibrosis (IPF) and bleomycin-induced pulmonary fibrosis are associated with surfactant system dysfunction, alveolar collapse (derecruitment), and collapse induration (irreversible collapse). These events play undefined roles in the loss of lung function. The purpose of this study was to quantify how surfactant inactivation, alveolar collapse, and collapse induration lead to degradation of lung function. Design-based stereology and invasive pulmonary function tests were performed 1, 3, 7, and 14 days after intratracheal bleomycin-instillation in rats. The number and size of open alveoli was correlated to mechanical properties. Active surfactant subtypes declined by Day 1, associated with a progressive alveolar derecruitment and a decrease in compliance. Alveolar epithelial damage was more pronounced in closed alveoli compared with ventilated alveoli. Collapse induration occurred on Day 7 and Day 14 as indicated by collapsed alveoli overgrown by a hyperplastic alveolar epithelium. This pathophysiology was also observed for the first time in human IPF lung explants. Before the onset of collapse induration, distal airspaces were easily recruited, and lung elastance could be kept low after recruitment by positive end-expiratory pressure (PEEP). At later time points, the recruitable fraction of the lung was reduced by collapse induration, causing elastance to be elevated at high levels of PEEP. Surfactant inactivation leading to alveolar collapse and subsequent collapse induration might be the primary pathway for the loss of alveoli in this animal model. Loss of alveoli is highly correlated with the degradation of lung function. Our ultrastructural observations suggest that collapse induration is important in human IPF.
Delineation of a collapse feature in a noisy environment using a multichannel surface wave technique
Xia, J.; Chen, C.; Li, P.H.; Lewis, M.J.
2004-01-01
A collapse developed at Calvert Cliffs Nuclear Power Plant, Maryland, in early 2001. The location of the collapse was over a groundwater drainage system pipe buried at an elevation of +0??9 m (reference is to Chesapeake Bay level). The cause of the collapse was a subsurface drain pipe that collapsed because of saltwater corrosion of the corrugated metal pipe. The inflow/outflow of sea water and groundwater flow caused soil to be removed from the area where the pipe collapsed. To prevent damage to nearby structures, the collapse was quickly filled with uncompacted sand and gravel (???36000 kg). However, the plant had an immediate need to determine whether more underground voids existed. A high-frequency multichannel surface-wave survey technique was conducted to define the zone affected by the collapse. Although the surface-wave survey at Calvert Cliffs Nuclear Power Plant was conducted at a noise level 50-100 times higher than the normal environment for a shallow seismic survey, the shear (S)-wave velocity field calculated from surface-wave data delineated a possible zone affected by the collapse. The S-wave velocity field showed chimney-shaped low-velocity anomalies that were directly related to the collapse. Based on S-wave velocity field maps, a potential zone affected by the collapse was tentatively defined.
Collapse of Corroded Pipelines under Combined Tension and External Pressure
Ye, Hao; Yan, Sunting; Jin, Zhijiang
2016-01-01
In this work, collapse of corroded pipeline under combined external pressure and tension is investigated through numerical method. Axially uniform corrosion with symmetric imperfections is firstly considered. After verifying with existing experimental results, the finite element model is used to study the effect of tension on collapse pressure. An extensive parametric study is carried out using Python script and FORTRAN subroutine to investigate the influence of geometric parameters on the collapse behavior under combined loads. The results are used to develop an empirical equation for estimating the collapse pressure under tension. In addition, the effects of loading path, initial imperfection length, yielding anisotropy and corrosion defect length on the collapse behavior are also investigated. It is found that tension has a significant influence on collapse pressure of corroded pipelines. Loading path and anisotropic yielding are also important factors affecting the collapse behavior. For pipelines with relatively long corrosion defect, axially uniform corrosion models could be used to estimate the collapse pressure. PMID:27111544
Computed tomography of lobar collapse: 2. Collapse in the absence of endobronchial obstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naidich, D.P.; McCauley, D.I.; Khouri, N.F.
1983-10-01
The computed tomographic appearance of collapse without endobronchial obstruction is reviewed. These 57 cases were classified by the etiology of collapse. The largest group consisted of 29 patients with passive atelectasis, i.e., collapse secondary to fluid, air, or both in the pleural space. Twenty-three of 29 proved secondary to malignant pleural disease. Computed tomography accurately predicted a malignant etiology in 22 of 23 cases. The second largest group of patients had lobar collapse secondary to cicatrization from chronic inflammation. In all cases the underlying etiology was tuberculosis. Radiation caused adhesive atelectasis in six patients secondary to a lack of productionmore » of surfactant. In each case a sharp line of demarcation could be defined between normal and abnormal collapsed pulmonary parenchyma. Three cases of unchecked tumor growth caused a peripheral form of collapse (replacement atelectasis). This form of collapse was characterized by an absence of endobronchial obstruction and extensive tumor not delineated by the normal boundaries of the pulmonary lobes.« less
Jia, Yi-lin; Fu, Min-kui; Ma, Lian
2004-05-01
To examine the effect of pre-surgical orthodontics on the outcome of the secondary alveolar bone grafting in the patients with complete cleft lip and palate. Sixteen complete cleft lip and palate patients (9 males and 7 females) with collapsed upper arch or severe mal-positioned upper incisors were selected. The cleft was not easily grafted because of the poor access. The total cleft sites were 22 (10 patients with UCLP and 6 patients with BCLP). The age range of the patients was from 8 to 22 years. Pre-surgical orthodontic treatment was mainly to expand the collapsed upper arch and correct the mal-positioned upper incisors. After the secondary alveolar bone grafting, the patients were followed up and anterior occlusal radiograph/intraoral panograph were taken regularly. The observation period was from 6 months to 4 years. Bergland criteria were used to evaluate the interdental septal height. Upper arch expansion and the correction of the mal-positioned upper incisors done by the orthodontic treatment made the bone grafting procedure easier. The clinically successful rate reached 86%. The severe upper arch collapse and mal-positioned upper incisors in the patients with complete cleft lip and palate should be corrected orthodontically before the secondary alveolar bone grafting.
Viscous flow past a collapsible channel as a model for self-excited oscillation of blood vessels.
Tang, Chao; Zhu, Luoding; Akingba, George; Lu, Xi-Yun
2015-07-16
Motivated by collapse of blood vessels for both healthy and diseased situations under various circumstances in human body, we have performed computational studies on an incompressible viscous fluid past a rigid channel with part of its upper wall being replaced by a deformable beam. The Navier-Stokes equations governing the fluid flow are solved by a multi-block lattice Boltzmann method and the structural equation governing the elastic beam motion by a finite difference method. The mutual coupling of the fluid and solid is realized by the momentum exchange scheme. The present study focuses on the influences of the dimensionless parameters controlling the fluid-structure system on the collapse and self-excited oscillation of the beam and fluid dynamics downstream. The major conclusions obtained in this study are described as follows. The self-excited oscillation can be intrigued by application of an external pressure on the elastic portion of the channel and the part of the beam having the largest deformation tends to occur always towards the end portion of the deformable wall. The blood pressure and wall shear stress undergo significant variations near the portion of the greatest oscillation. The stretching motion has the most contribution to the total potential elastic energy of the oscillating beam. Copyright © 2015 Elsevier Ltd. All rights reserved.
The imprints of the last jets in core collapse supernovae
NASA Astrophysics Data System (ADS)
Bear, Ealeal; Grichener, Aldana; Soker, Noam
2017-12-01
We analyse the morphologies of three core collapse supernova remnants (CCSNRs) and the energy of jets in other CCSNRs and in Super Luminous Supernovae (SLSNe) of type Ib/Ic/IIb, and conclude that these properties are well explained by the last jets' episode as expected in the jet feedback explosion mechanism of core collapse supernovae (CCSNe). The presence of two opposite protrusions, termed ears, and our comparison of the CCSNR morphologies with morphologies of planetary nebulae strengthen the claim that jets play a major role in the explosion mechanism of CCSNe. We crudely estimate the energy that was required to inflate the ears in two CCSNRs and assume that the ears were inflated by jets. We find that the energies of the jets which inflated ears in 11 CCSNRs span a range that is similar to that of jets in some energetic CCSNe (SLSNe) and that this energy, only of the last jets' episode, is much less than the explosion energy. This finding is compatible with the jet feedback explosion mechanism of CCSNe, where only the last jets, which carry a small fraction of the total energy carried by earlier jets, are expected to influence the outer parts of the ejecta. We reiterate our call for a paradigm shift from neutrino-driven to jet-driven explosion models of CCSNe.
Debris avalanches and slumps on the margins of volcanic domes on Venus: Characteristics of deposits
NASA Technical Reports Server (NTRS)
Bulmer, M. H.; Guest, J. E.; Beretan, K.; Michaels, Gregory A.; Saunders, R. Stephen
1992-01-01
Modified volcanic domes, referred to as collapsed margin domes, have diameters greater than those of terrestrial domes and were therefore thought to have no suitable terrestrial analogue. Comparison of the collapsed debris using the Magellan SAR images with volcanic debris avalanches on Earth has revealed morphological similarities. Some volcanic features identified on the seafloor from sonar images have diameters similar to those on Venus and also display scalloped margins, indicating modification by collapse. Examination of the SAR images of collapsed dome features reveals a number of distinct morphologies to the collapsed masses. Ten examples of collapsed margin domes displaying a range of differing morphologies and collapsed masses have been selected and examined.
Earthquakes as collapse precursors at the Han-sur-Lesse Cave in the Belgian Ardennes
NASA Astrophysics Data System (ADS)
Camelbeeck, Thierry; Quinif, Yves; Verheyden, Sophie; Vanneste, Kris; Knuts, Elisabeth
2018-05-01
Collapse activation is an ongoing process in the evolution of karstic networks related to the weakening of cave vaults. Because collapses are infrequent, few have been directly observed, making it challenging to evaluate the role of external processes in their initiation and triggering. Here, we study the two most recent collapses in the Dôme chamber of the Han-sur-Lesse Cave (Belgian Ardenne) that occurred on or shortly after 3rd December 1828 and between the 13th and 14th of March 1984. Because of the low probability that the two earthquakes that generated the strongest ground motions in Han-sur-Lesse since 1800, on 23rd February 1828 (Mw = 5.1 in Central Belgium) and 8th November 1983 (Mw = 4.8 in Liège) occurred by coincidence less than one year before these collapses, we suggest that the collapses are related to these earthquakes. We argue that the earthquakes accelerated the cave vault instability, leading to the collapses by the action of other factors weakening the host rock. In particular, the 1828 collapse was likely triggered by a smaller Mw = 4.2 nearby earthquake. The 1984 collapse followed two months of heavy rainfall that would have increased water infiltration and pressure in the rock mass favoring destabilization of the cave ceiling. Lamina counting of a stalagmite growing on the 1828 debris dates the collapse at 1826 ± 9 CE, demonstrating the possibility of dating previous collapses with a few years of uncertainty. Furthermore, our study opens new perspectives for studying collapses and their chronology both in the Han-sur-Lesse Cave and in other karstic networks. We suggest that earthquake activity could play a stronger role than previously thought in initiating cave collapses.
Content specificity of attentional bias to threat in post-traumatic stress disorder.
Zinchenko, A; Al-Amin, M M; Alam, M M; Mahmud, W; Kabir, N; Reza, H M; Burne, T H J
2017-08-01
Attentional bias to affective information and reduced cognitive control may maintain the symptoms of post-traumatic stress disorder (PTSD) and impair cognitive functioning. However, the role of content specificity of affective stimuli (e.g., trauma-related, emotional trauma-unrelated) in the observed attentional bias and cognitive control is less clear, as this has not been tested simultaneously before. Therefore, we examined the content specificity of attentional bias to threat in PTSD. PTSD participants (survivors of a multistory factory collapse, n=30) and matched controls (n=30) performed an Eriksen Flanker task. They identified the direction of a centrally presented target arrow, which was flanked by several task-irrelevant distractor arrows pointed to the same (congruent) or opposite direction (incongruent). Additionally, participants were presented with a picture of a face (neutral, emotional) or building (neutral=normal, emotional=collapsed multistory factory) as a task-irrelevant background image. We found that PTSD participants produced overall larger conflict effects and longer reaction times (RT) to emotional than to neutral stimuli relative to their healthy counterparts. Moreover, PTSD, but not healthy participants showed a stimulus specific dissociation in processing emotional stimuli. Emotional faces elicited longer RTs compared to neutral faces, while emotional buildings elicited faster responses, compared to neutral buildings. PTSD patients show a content-sensitive attentional bias to emotional information and impaired cognitive control. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bridge Failure Due to Inadequate Design of Bed Protection
NASA Astrophysics Data System (ADS)
Gupta, Yogita; Kaur, Suneet; Dindorkar, Nitin
2017-12-01
The shallow foundation is generally provided on non-erodible strata or where scour depth is less. It is also preferable for low perennial flow or standing water condition. In the present case study shallow foundation is adopted for box type bridge. The total length of the bridge is 132.98 m, consisting of eight unit of RCC box. Each unit is composed of three cell box. The bottom slab of box unit is acted as raft foundation, founded 500 mm below ground level. River bed protection work is provided on both upstream and downstream side along the whole length of the bridge as it is founded above scour level. The bridge collapsed during the monsoon just after two years of service. The present paper explains the cause of failure. This study on failure of the bridge illustrates the importance of bridge inspection before and after monsoon period and importance of the timely maintenance. Standard specifications of Indian Road Congress for the river bed protection work are also included.
Recruitment manoeuvres in anaesthesia: How many more excuses are there not to use them?
García-Fernández, J; Romero, A; Blanco, A; Gonzalez, P; Abad-Gurumeta, A; Bergese, S D
2018-04-01
Pulmonary recruitment manoeuvres (RM) are intended to reopen collapsed lung areas. RMs are present in nature as a physiological mechanism to get a newborn to open their lungs for the first time at birth, and we also use them, in our usual anaesthesiological clinical practice, after induction or during general anaesthesia when a patient is desaturated. However, there is much confusion in clinical practice regarding their safety, the best way to perform them, when to do them, in which patients they are indicated, and in those where they are totally contraindicated. There are important differences between RM in the patient with adult respiratory distress syndrome, and in a healthy patient during general anaesthesia. Our intention is to review, from a clinical and practical point of view, the use of RM, specifically in anaesthesia. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
Obstructive sleep apnea syndrome: An important piece in the puzzle of cardiovascular risk factors.
Costa, Cátia; Santos, Beatriz; Severino, Davide; Cabanelas, Nuno; Peres, Marisa; Monteiro, Isabel; Leal, Margarida
2015-01-01
The obstructive sleep apnea syndrome (OSA) is a clinical entity characterized by recurring episodes of apnea and/or hypopnea during sleep, due to a total or partial collapse, respectively, of the upper airway. This collapse originates a set of pathophysiological changes that determine the appearance of several cardiovascular complications. OSA contributes for the development of hypertension, heart failure, arrhythmias and coronary heart disease. Nowadays it is recognized to be an important public health problem, taking into account not just its repercussions but also its prevalence, since the main risk factor for the disease is obesity, a growing problem worldwide, both in developed and developing countries. The present review summarizes the current knowledge about OSA, as regards its definition, pathophysiology, clinical manifestations, diagnosis, cardiovascular effects and treatment. Copyright © 2014 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.
Mrabet, D; Rekik, S; Khiari, H; Mizouni, H; Meddeb, N; Cheour, I; Elleuch, M; Mnif, E; Mrabet, A; Sahli, H; Sellami, S
2011-03-24
Hydatidosis, also known as echinococcosis, is a rare but serious parasitic disease in endemic areas. Primary spinal location is extremely rare. This case report describes a rare instance of hydatid cyst that caused severe and progressive low-back pain and neurologic dysfunction. Spine MRI showed a unique vertebral collapse of Th12 body with multicystic lesions filling the spinal canal. In addition, hydatidosis serodiagnostic test was positive at 1/725. Treatment depended on the actual surgical removal of the cysts. Surgery consisted in excision and extirpation of the cysts, associated with decompressive laminectomy. The diagnosis was confirmed on the basis of histological results. No coincidental hydatid visceral involvement was found. Antihelminthic drugs (Albendazole) were promptly given before surgery for a long period. The outcome was satisfactorily marked by total regression of the motor deficit and sphincter disorders.
Fatal Primary Capillary Leak Syndrome in a Late Preterm Newborn.
Kulihova, Katarina; Prochazkova, Martina; Semberova, Jana; Janota, Jan
2016-10-01
Primary capillary leak syndrome is a rare disease of unknown etiology, characterized by episodes of vascular collapse and plasma extravasation, which may lead to multiple organ failure. Primary capillary leak is extremely rare in children. The authors report a case of a late preterm newborn with fatal capillary leak syndrome of unknown etiology, manifesting as hypotension unresponsive to treatment, extravasation leading to generalised edema, disseminated intravascular coagulation and finally, multiple organ dysfunction syndrome. Aggressive volumotherapy and a combination of inotropes and high doses of terlipressin did not influence systemic vascular collapse and plasma extravasation. The newborn developed multiple organ failure and died on day 27 of life. Investigations performed failed to reveal any specific cause of capillary leak. This is the first report of a fatal primary capillary leak syndrome in a newborn.
ERIC Educational Resources Information Center
Pinkerton, Steven D.; Galletly, Carol L.; McAuliffe, Timothy L.; DiFranceisco, Wayne; Raymond, H. Fisher; Chesson, Harrell W.
2010-01-01
The sexual behaviors of HIV/sexually transmitted infection (STI) prevention intervention participants can be assessed on a partner-by-partner basis: in aggregate (i.e., total numbers of sex acts, collapsed across partners) or using a combination of these two methods (e.g., assessing five partners in detail and any remaining partners in aggregate).…
A Conditional Criterion for Identity, Leading to a Fourth Law of Logic
1979-06-01
Identify by block number) Aristotle, Aristotlean logic, axiom, axioms of logic, change, Charles Muses, chronotopology, collapse of the wave function...of perception, merely accounting for the spatial aspects. In other words, Aristotlean logic is a synthesis of primitive observation, which has been...parameter, not an observable. Hence measurement/detection (observ- ables)deal with primitive observation and Aristotlean logic (topology), while total
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isler, R.C.; Colchin, R.J.; Wade, M.R.
Collapses of stored energy are typically observed in low-density ({anti n}{sub e} {approx} 10{sup 13} cm{sup {minus}3}) extensively gettered ATF plasmas when the electron density rises to the ECH cutoff point, and the central heating is supplied only by neutral- beam-injection (NBI). However, the decline of stored energy can be avoided if the density is raised rapidly to about 5 {times} 10{sup 13} cm{sup {minus}3}. Three mechanisms have been proposed to explain the collapses: (1) impurity radiation, (2) excitation of an electron instability driven by the neutral beams, or (3) poor coupling of the beam ions to the thermal plasmas.more » Detailed spectroscopic studies of plasma cleanliness as a function of the gettering procedure have shown that radiation is an unlikely candidate for initiating collapses, although it may become an important loss mechanism once the electron temperature has fallen to a low level. No specific electron instability has yet been identified with injection, but recent experimental and computational work indicates that losses by shinethrough and charge exchange strongly influence the evolution of low-density plasmas. This report discusses the beam particle losses, thermal ions, and the evolution of radiation profiles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherji, Debashish; Stuehn, Torsten; Kremer, Kurt
Smart polymers are a modern class of polymeric materials that often exhibit unpredictable behavior in mixtures of solvents. One such phenomenon is co-non-solvency. Co-non-solvency occurs when two (perfectly) miscible and competing good solvents, for a given polymer, are mixed together. As a result, the same polymer collapses into a compact globule within intermediate mixing ratios. More interestingly, polymer collapses when the solvent quality remains good and even gets increasingly better by the addition of the better cosolvent. This is a puzzling phenomenon that is driven by strong local concentration fluctuations. Because of the discrete particle based nature of the interactions,more » Flory-Huggins type mean field arguments become unsuitable. In this work, we extend the analysis of the co-non-solvency effect presented earlier [D. Mukherji et al., Nat. Commun. 5, 4882 (2014)]. We explain why co-non-solvency is a generic phenomenon, which can only be understood by the thermodynamic treatment of the competitive displacement of (co)solvent components. This competition can result in a polymer collapse upon improvement of the solvent quality. Specific chemical details are not required to understand these complex conformational transitions. Therefore, a broad range of polymers are expected to exhibit similar reentrant coil-globule-coil transitions in competing good solvents.« less
Size and stochasticity in irrigated social-ecological systems
NASA Astrophysics Data System (ADS)
Puy, Arnald; Muneepeerakul, Rachata; Balbo, Andrea L.
2017-03-01
This paper presents a systematic study of the relation between the size of irrigation systems and the management of uncertainty. We specifically focus on studying, through a stylized theoretical model, how stochasticity in water availability and taxation interacts with the stochastic behavior of the population within irrigation systems. Our results indicate the existence of two key population thresholds for the sustainability of any irrigation system: or the critical population size required to keep the irrigation system operative, and N* or the population threshold at which the incentive to work inside the irrigation system equals the incentives to work elsewhere. Crossing irretrievably leads to system collapse. N* is the population level with a sub-optimal per capita payoff towards which irrigation systems tend to gravitate. When subjected to strong stochasticity in water availability or taxation, irrigation systems might suffer sharp population drops and irreversibly disintegrate into a system collapse, via a mechanism we dub ‘collapse trap’. Our conceptual study establishes the basis for further work aiming at appraising the dynamics between size and stochasticity in irrigation systems, whose understanding is key for devising mitigation and adaptation measures to ensure their sustainability in the face of increasing and inevitable uncertainty.
ERIC Educational Resources Information Center
Dennen, Vanessa P.; Burner, Kerry J.
2017-01-01
This study examines university student's attitudes toward Facebook use, focusing specifically on how they feel about using a social network that encourages the performance of personal and social identity to support learning and interaction among classmates and instructors. Two surveys elicited student habits, preferences, and beliefs related to…
High Resolution SAR Imaging Employing Geometric Features for Extracting Seismic Damage of Buildings
NASA Astrophysics Data System (ADS)
Cui, L. P.; Wang, X. P.; Dou, A. X.; Ding, X.
2018-04-01
Synthetic Aperture Radar (SAR) image is relatively easy to acquire but difficult for interpretation. This paper probes how to identify seismic damage of building using geometric features of SAR. The SAR imaging geometric features of buildings, such as the high intensity layover, bright line induced by double bounce backscattering and dark shadow is analysed, and show obvious differences texture features of homogeneity, similarity and entropy in combinatorial imaging geometric regions between the un-collapsed and collapsed buildings in airborne SAR images acquired in Yushu city damaged by 2010 Ms7.1 Yushu, Qinghai, China earthquake, which implicates a potential capability to discriminate collapsed and un-collapsed buildings from SAR image. Study also shows that the proportion of highlight (layover & bright line) area (HA) is related to the seismic damage degree, thus a SAR image damage index (SARDI), which related to the ratio of HA to the building occupation are of building in a street block (SA), is proposed. While HA is identified through feature extraction with high-pass and low-pass filtering of SAR image in frequency domain. A partial region with 58 natural street blocks in the Yushu City are selected as study area. Then according to the above method, HA is extracted, SARDI is then calculated and further classified into 3 classes. The results show effective through validation check with seismic damage classes interpreted artificially from post-earthquake airborne high resolution optical image, which shows total classification accuracy 89.3 %, Kappa coefficient 0.79 and identical to the practical seismic damage distribution. The results are also compared and discussed with the building damage identified from SAR image available by other authors.
NASA Astrophysics Data System (ADS)
Cornu, Melodie-Neige; Paris, Raphael; Doucelance, Regis; Bachelery, Patrick; Guillou, Hervé
2017-04-01
Mass wasting of oceanic shield volcanoes is largely documented through the recognition of collapse scars and submarine debris fans. However, it is actually difficult to infer the mechanisms controlling volcano flank failures that potentially imply tens to hundreds of km3. Studies coupling detailed petrological and geochemical analyses of eruptive products hold clues for better understanding the relationships between magma sources, the plumbing system, and flank instability. Our study aims at tracking potential variations of magma source, storage and transport beneath Fogo shield volcano (Cape Verde) before and after its major flank collapse. We also provide a geochronological framework of this magmatic evolution through new radiometric ages (K-Ar and Ar-Ar) of both pre-collapse and post-collapse lavas. The central part of Fogo volcanic edifice is truncated by an 8 km-wide caldera opened to the East, corresponding to the scar of the last flank collapse (Monte Amarelo collapse, Late Pleistocene, 150 km3). Lavas sampled at the base of the scar (the so-called Bordeira) yielded ages between 158 and 136 ka. The age of the collapse is constrained between 68 ka (youngest lava flow cut by the collapse scar) and 59 ka (oldest lava flow overlapping the scar). The collapse walls display a complex structural, intrusive and eruptive history. Undersaturated volcanism (SiO2<43%) is surprisingly dominated by explosive products such as ignimbrites, with 4 major explosive episodes representing half of the volume of the central edifice. This explosive record onshore is correlated with the offshore record of mafic tephra and turbidites (Eisele et al., 2015). Major elements analyses indicate that the pre-collapse lavas are significantly less differentiated than post-collapse lavas, with a peak of alkalis at the collapse. Rare-earth elements concentration decreases with time, with a notable positive anomaly before the collapse. The evolution of the isotopic ratios (Sr, Nd and Pb) through time displays unusual V-shaped profiles centered around the collapse. The occurrence of the Monte Amarelo collapse is thus not disconnected from the magmatic evolution, both at the crustal and mantellic levels. Our results also point out the importance and relative frequency of explosive eruptions of undersaturated magmas at Fogo volcano.
NASA Astrophysics Data System (ADS)
van Dijk, W. M.; Mastbergen, D. R.; Van der Werf, J. J.; Leuven, J.; Kleinhans, M. G.
2017-12-01
Channel bank failure and collapses of shoal margins due to flow slides have been recorded in Dutch estuaries for the past 200 years. The effects of these collapses on the morphodynamics of estuaries are unknown, but could potentially increase the dynamics of channel-shoal interactions by causing perturbations of up to a million cubic meters per event, which could impact habitats and navigability. The processes of shoal margin collapses are currently not included in numerical morphodynamic models. The objectives of this study are to investigate where shoal margins collapses typically occur, what their dimensions are, and to model how shoal margin collapses affect the morphodynamics at the channel-shoal scale. We identified 300 shoal margin collapses from bathymetry data of the Western Scheldt estuary for the period 1959-2015, and found that the shape of a shoal margin collapse is well represented by 1/3 of an ellipsoid, and that its volume has a log-normal distribution with an average of 100,000 m3. We implemented a parameterization for shoal margin collapses and tested their effects on morphodynamics in a Delft3D numerical model schematization of the Western Scheldt estuary. Three sets of scenarios were analyzed for near-field morphodynamics and far-field effects on flow pattern and channel-bar morphology: 1) an observed single shoal margin collapse of 2014, 2) collapses on various locations that are susceptible to collapses, and 3) our novel stochastic model producing collapses over a time span of a decade. Results show that single shoal margin collapses only affect the local dynamics in longitudinal direction and dampen out within a year when the collapse is small. When larger disturbances reach the seaward or landward sill at tidal channel junctions over a longer time span, the bed elevation at the sill increases on average and decrease the hydraulic geometry of the channel junctions. The extent of far-field effects is sensitive to the grain-size of the deposit, where finer sediments are transported further away. The location of the deposit across the channel matters for disturbing the region around the collapse, where sediment transport is highest for the strongest residual current. These results imply that disturbances caused by dredging and dumping may likewise affect the dynamics of channel junctions.
Collapsing cavities in reactive and nonreactive media
NASA Astrophysics Data System (ADS)
Bourne, Neil K.; Field, John E.
1991-04-01
This paper presents results of a high-speed photographic study of cavities collapsed asymmetrically by shocks of strengths in the range 0.26 GPa to 3.5 GPa. Two-dimensional collapses of cavity configurations punched into a 12% by weight gelatine in water sheet, and an ammonium nitrate/sodium nitrate (AN/SN) emulsion explosive were photographed using schlieren optics. The single cavity collapses were characterized by the velocity of the liquid jet formed by the upstream wall as it was accelerated by the shock and by the time taken for the cavity to collapse. The shock pressure did not qualitatively affect the collapse behaviour but jet velocities were found to exceed incident shock velocities at higher pressures. The more violent collapses induced light emission from the compressed gas in the cavity. When an array of cavities collapsed, a wave, characterized by the particle velocity in the medium, the cavity diameter and the inter-cavity spacing, was found to run through the array. When such an array was created within an emulsion explosive, ignition of the reactive matrix occurred ahead of the collapse wave when the incident shock was strong.
Kawakami, Shigehisa; Kumazaki, Yohei; Manda, Yosuke; Oki, Kazuhiro; Minagi, Shogo
2014-01-01
Aim The role of parafunctional masticatory muscle activity in tooth loss has not been fully clarified. This study aimed to reveal the characteristic activity of masseter muscles in bite collapse patients while awake and asleep. Materials and Methods Six progressive bite collapse patients (PBC group), six age- and gender-matched control subjects (MC group), and six young control subjects (YC group) were enrolled. Electromyograms (EMG) of the masseter muscles were continuously recorded with an ambulatory EMG recorder while patients were awake and asleep. Diurnal and nocturnal parafunctional EMG activity was classified as phasic, tonic, or mixed using an EMG threshold of 20% maximal voluntary clenching. Results Highly extended diurnal phasic activity was observed only in the PBC group. The three groups had significantly different mean diurnal phasic episodes per hour, with 13.29±7.18 per hour in the PBC group, 0.95±0.97 per hour in the MC group, and 0.87±0.98 per hour in the YC group (p<0.01). ROC curve analysis suggested that the number of diurnal phasic episodes might be used to predict bite collapsing tooth loss. Conclusion Extensive bite loss might be related to diurnal masticatory muscle parafunction but not to parafunction during sleep. Clinical Relevance: Scientific rationale for study Although mandibular parafunction has been implicated in stomatognathic system breakdown, a causal relationship has not been established because scientific modalities to evaluate parafunctional activity have been lacking. Principal findings This study used a newly developed EMG recording system that evaluates masseter muscle activity throughout the day. Our results challenge the stereotypical idea of nocturnal bruxism as a strong destructive force. We found that diurnal phasic masticatory muscle activity was most characteristic in patients with progressive bite collapse. Practical implications The incidence of diurnal phasic contractions could be used for the prognostic evaluation of stomatognathic system stability. PMID:25010348
Subramaniam, Dhananjay Radhakrishnan; Mylavarapu, Goutham; McConnell, Keith; Fleck, Robert J; Shott, Sally R; Amin, Raouf S; Gutmark, Ephraim J
2016-05-01
Elasticity of the soft tissues surrounding the upper airway lumen is one of the important factors contributing to upper airway disorders such as snoring and obstructive sleep apnea. The objective of this study is to calculate patient specific elasticity of the pharynx from magnetic resonance (MR) images using a 'tube law', i.e., the relationship between airway cross-sectional area and transmural pressure difference. MR imaging was performed under anesthesia in children with Down syndrome (DS) and obstructive sleep apnea (OSA). An airway segmentation algorithm was employed to evaluate changes in airway cross-sectional area dilated by continuous positive airway pressure (CPAP). A pressure-area relation was used to make localized estimates of airway wall stiffness for each patient. Optimized values of patient specific Young's modulus for tissue in the velopharynx and oropharynx, were estimated from finite element simulations of airway collapse. Patient specific deformation of the airway wall under CPAP was found to exhibit either a non-linear 'hardening' or 'softening' behavior. The localized airway and tissue elasticity were found to increase with increasing severity of OSA. Elasticity based patient phenotyping can potentially assist clinicians in decision making on CPAP and airway or tissue elasticity can supplement well-known clinical measures of OSA severity.
Nedelec, Stephane; Peljto, Mirza; Shi, Peng; Amoroso, Mackenzie W.; Kam, Lance C.; Wichterle, Hynek
2012-01-01
Formation of functional motor circuits relies on the ability of distinct spinal motor neuron subtypes to project their axons with high precision to appropriate muscle targets. While guidance cues contributing to motor axon pathfinding have been identified, the intracellular pathways underlying subtype specific responses to these cues remain poorly understood. In particular, it remains controversial whether responses to axon guidance cues depend on axonal protein synthesis. Using a growth cone collapse assay, we demonstrate that mouse embryonic stem cell (ESC) derived spinal motor neurons (ES-MNs) respond to ephrin-A5, Sema3f and Sema3a in a concentration dependent manner. At low doses, ES-MNs exhibit segmental or subtype specific responses, while this selectivity is lost at higher concentrations. Response to high doses of semaphorins and to all doses of ephrin-A5 is protein synthesis independent. In contrast, using microfluidic devices and stripe assays, we show that growth cone collapse and guidance at low concentrations of semaphorins relies on local protein synthesis in the axonal compartment. Similar bimodal response to low and high concentrations of guidance cues is observed in human ES-MNs, pointing to a general mechanism by which neurons increase their repertoire of responses to the limited set of guidance cues involved in neural circuit formation. PMID:22279234
Economic assessment of the construction industry: A construction-economics nexus
NASA Astrophysics Data System (ADS)
Barber, Herbert Marion, Jr.
The purpose of this study was to conduct an economic assessment of the construction industry. More specifically, this study addresses ambiguities within the literature that are associated with the construction-economics nexus. The researcher 1) investigated the relationships between economic indicators and stock prices of U.S. construction equipment manufacturers, 2) investigated the relationships between energy production, consumption, and corruption, and 3) determined the economic effect electricity generation and electricity consumption has on economies of scale. The researcher used descriptive and inferential statistics in this study and determined that economists, researchers, policy-makers, and others should have predicted the 2007-08 world economic collapse 5-6 years prior to realization of the event given that construction indices and GDP grossly regressed from statistically acceptable trends as early as 2002 and perhaps 2000. Substantiating this claim, the effect of the cost of construction materials and labor, i.e. construction index, on GDP was significant for years leading up to the collapse (1970-2007). Additionally, it was determined that energy production and consumption are predictors of governmental corruption in some countries. In the Republic of Botswana, for example, the researcher determined that energy production and consumption statistically jointly effected governmental corruption. In addition to determining statistical effect, a model for predicting governmental corruption was developed based on energy production and consumption volumes. Also, the researcher found that electricity generation in the 25 largest world economies had a statistically significant effect on GDP. Electricity consumption also had an effect on GDP, as well, but not on other economic indicators. More importantly than the quantitative findings, the researcher concluded that the construction-economics nexus is far more complex than most policy-makers realize. As such, infrastructure spending may, or may not, be an answer to the current world economic collapse, as much more research remains to be completed by researchers to address known ambiguities within various associated findings. Until a collective agreement can be reached among researchers as to the effect that construction spending has on economic output under known, specific parameters, policy-makers should exercise extreme caution when leveraging infrastructure spending as a solution for overcoming the world economic collapse.
Numerical simulations of non-spherical bubble collapse.
Johnsen, Eric; Colonius, Tim
2009-06-01
A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined.
Numerical simulations of non-spherical bubble collapse
JOHNSEN, ERIC; COLONIUS, TIM
2009-01-01
A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined. PMID:19756233
Conformational dynamics of bacterial trigger factor in apo and ribosome-bound states.
Can, Mehmet Tarik; Kurkcuoglu, Zeynep; Ezeroglu, Gokce; Uyar, Arzu; Kurkcuoglu, Ozge; Doruker, Pemra
2017-01-01
The chaperone trigger factor (TF) binds to the ribosome exit tunnel and helps cotranslational folding of nascent chains (NC) in bacterial cells and chloroplasts. In this study, we aim to investigate the functional dynamics of fully-atomistic apo TF and its complex with 50S. As TF accomodates a high percentage of charged residues on its surface, the effect of ionic strength on TF dynamics is assessed here by performing five independent molecular dynamics (MD) simulations (total of 1.3 micro-second duration) at 29 mM and 150 mM ionic strengths. At both concentrations, TF exhibits high inter- and intra-domain flexibility related to its binding (BD), core (CD), and head (HD) domains. Even though large oscillations in gyration radius exist during each run, we do not detect the so-called 'fully collapsed' state with both HD and BD collapsed upon the core. In fact, the extended conformers with relatively open HD and BD are highly populated at the physiological concentration of 150 mM. More importantly, extended TF snapshots stand out in terms of favorable docking onto the 50S subunit. Elastic network modeling (ENM) indicates significant changes in TF's functional dynamics and domain decomposition depending on its conformation and positioning on the 50S. The most dominant slow motions are the lateral sweeping and vertical opening/closing of HD relative to 50S. Finally, our ENM-based efficient technique -ClustENM- is used to sample atomistic conformers starting with an extended TF-50S complex. Specifically, BD and CD motions are restricted near the tunnel exit, while HD is highly mobile. The atomistic conformers generated without an NC are in agreement with the cryo-EM maps available for TF-ribosome-NC complex.
Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas
2015-01-01
Biosurfactants (BSs) are “green” amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm BS producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on BS production, was examined. Two types of BS – lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography and Fourier transform infrared spectroscopy. Results indicate that BS production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil (CO) implies that the BS producing microbes generate no more than the required amount of BSs that enables biodegradation of the CO. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of CO has emerged as a promising substrate for BS production (by marine BS producers) with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents. PMID:25904907
NASA Astrophysics Data System (ADS)
Gulyaev, P.; Jordan, V.; Gulyaev, I.; Dolmatov, A.
2017-05-01
The paper presents the analysis of the recorded tracks of high-velocity emission in the air-argon plasma flow during breaking up of tungsten microdroplets. This new physical effect of optical emission involves two stages. The first one includes thermionic emission of electrons from the surface of the melted tungsten droplet of 100-200 μm size and formation of the charged sphere of 3-5 mm diameter. After it reaches the breakdown electric potential, it collapses and produces a spherical shock wave and luminous radiation. The second stage includes previously unknown physical phenomenon of narrowly directed energy jet with velocity exceeding 4000 m/s from the surface of the tungsten droplet. The luminous spherical collapse and high-velocity jets were recorded using CMOS photo-array operating in a global shutter charge storage mode. Special features of the CMOS array scanning algorithm affect formation of distinctive signs of the recorded tracks, which stay invariant to trace transform (TT) with specific functional. The series of concentric circles were adopted as primitive object models (patterns) used in TT at the spherical collapse stage and linear segment of fixed thickness - at the high-velocity emission stage. The two invariants of the physical object, motion velocity and optical brightness distribution in the motion front, were adopted as desired identification features of tracks. The analytical expressions of the relation of 2D TT parameters and physical object motion invariants were obtained. The equations for spherical collapse stage correspond to Radon-Nikodym transform.
Mott Transition of MnO under Pressure: A Comparison of Correlated Band Theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasinathan, Deepa; Kunes, Jan; Koepernik, K
The electronic structure, magnetic moment, and volume collapse of MnO under pressure are obtained from four different correlated band theory methods; local density approximation+Hubbard U (LDA+U), pseudopotential self-interaction correction (pseudo-SIC), the hybrid functional (combined local exchange plus Hartree-Fock exchange), and the local spin density SIC (SIC-LSD) method. Each method treats correlation among the five Mn 3d orbitals (per spin), including their hybridization with three O 2p orbitals in the valence bands and their changes with pressure. The focus is on comparison of the methods for rock salt MnO (neglecting the observed transition to the NiAs structure in the 90-100 GPamore » range). Each method predicts a first-order volume collapse, but with variation in the predicted volume and critical pressure. Accompanying the volume collapse is a moment collapse, which for all methods is from high-spin to low-spin ((5/2){yields}(1/2)), not to nonmagnetic as the simplest scenario would have. The specific manner in which the transition occurs varies considerably among the methods: pseudo-SIC and SIC-LSD give insulator-to-metal, while LDA+U gives insulator-to-insulator and the hybrid method gives an insulator-to-semimetal transition. Projected densities of states above and below the transition are presented for each of the methods and used to analyze the character of each transition. In some cases the rhombohedral symmetry of the antiferromagnetically ordered phase clearly influences the character of the transition.« less
CO outflows from high-mass Class 0 protostars in Cygnus-X
NASA Astrophysics Data System (ADS)
Duarte-Cabral, A.; Bontemps, S.; Motte, F.; Hennemann, M.; Schneider, N.; André, Ph.
2013-10-01
Context. The earliest phases of the formation of high-mass stars are not well known. It is unclear whether high-mass cores in monolithic collapse exist or not, and what the accretion process and origin of the material feeding the precursors of high-mass stars are. As outflows are natural consequences of the accretion process, they represent one of the few (indirect) tracers of accretion. Aims: We aim to search for individual outflows from high-mass cores in Cygnus X and to study the characteristics of the detected ejections. We compare these to what has been found for the low-mass protostars, to understand how ejection and accretion change and behave with final stellar mass. Methods: We used CO (2-1) PdBI observations towards six massive dense clumps, containing a total of 9 high-mass cores. We estimated the bolometric luminosities and masses of the 9 high-mass cores and measured the energetics of outflows. We compared our sample to low-mass objects studied in the literature and developed simple evolutionary models to reproduce the observables. Results: We find that 8 out of 9 high-mass cores are driving clear individual outflows. They are therefore true equivalents of Class 0 protostars in the high-mass regime. The remaining core, CygX-N53 MM2, has only a tentative outflow detection. It could be one of the first examples of a true individual high-mass prestellar core. We also find that the momentum flux of high-mass objects has a linear relation to the reservoir of mass in the envelope, as a scale up of the relations previously found for low-mass protostars. This suggests a fundamental proportionality between accretion rates and envelope masses. The linear dependency implies that the timescale for accretion is similar for high- and low-mass stars. Conclusions: The existence of strong outflows driven by high-mass cores in Cygnus X clearly indicates that high-mass Class 0 protostars exist. The collapsing envelopes of these Class 0 objects have similar sizes and a similar fragmentation scale to the low-mass equivalents, and have enough mass to directly form high-mass stars from a monolithic collapse. If the pre-collapse evolution is quasi-static, the fragmentation scale is expected to limit the size of the initial mass reservoirs for all masses leading to higher densities at birth and therefore shorter free-fall times for higher mass stars. However, we find the collapse timescales to be similar for both low- and high-mass objects. This implies that in a quasi-static view, we would require significant turbulent/magnetic support to slow down the collapse of the more massive envelopes. But with this support still to be discovered, and based on independent indications of large dynamics in pre-collapse gas for high-mass star formation, we propose that such an identical collapse timescale implies that the initial densities, which should set the duration of the collapse, should be similar for all masses. Since the fragmentation scale is identical for all masses, a lower initial density requires that the mass that incorporates massive stars has to have been accreted from larger scales than those of low-mass stars and in a dynamical way. Appendices are available in electronic form at http://www.aanda.org
Volcano collapse promoted by progressive strength reduction: New data from Mount St. Helens
Reid, Mark E.; Keith, Terry E.C.; Kayen, Robert E.; Iverson, Neal R.; Iverson, Richard M.; Brien, Dianne
2010-01-01
Rock shear strength plays a fundamental role in volcano flank collapse, yet pertinent data from modern collapse surfaces are rare. Using samples collected from the inferred failure surface of the massive 1980 collapse of Mount St. Helens (MSH), we determined rock shear strength via laboratory tests designed to mimic conditions in the pre-collapse edifice. We observed that the 1980 failure shear surfaces formed primarily in pervasively shattered older dome rocks; failure was not localized in sloping volcanic strata or in weak, hydrothermally altered rocks. Our test results show that rock shear strength under large confining stresses is reduced ∼20% as a result of large quasi-static shear strain, as preceded the 1980 collapse of MSH. Using quasi-3D slope-stability modeling, we demonstrate that this mechanical weakening could have provoked edifice collapse, even in the absence of transiently elevated pore-fluid pressures or earthquake ground shaking. Progressive strength reduction could promote collapses at other volcanic edifices.
NASA Astrophysics Data System (ADS)
Martínez-Moreno, F. J.; Monteiro Santos, F. A.; Madeira, J.; Pous, J.; Bernardo, I.; Soares, A.; Esteves, M.; Adão, F.; Ribeiro, J.; Mata, J.; Brum da Silveira, A.
2018-05-01
One of the most remarkable natural events on Earth are the large lateral flank collapses of oceanic volcanoes, involving volumes of rock exceeding tens of km3. These collapses are relatively frequent in recent geological times as supported by evidence found in the geomorphology of volcanic island edifices and associated debris flows deposited on the proximal ocean floor. The Island of Fogo in the Cape Verde archipelago is one of the most active and prominent oceanic volcanoes on Earth. The island has an average diameter of 25 km and reaches a maximum elevation of 2829 m above sea level (m a.s.l.) at Pico do Fogo, a young stratovolcano located within a summit depression open eastward due to a large lateral flank collapse. The sudden collapse of the eastern flank of Fogo Island produced a megatsunami 73 ky ago. The limits of the flank collapse were deduced as well from geomorphologic markers within the island. The headwall of the collapse scar is interpreted as either being located beneath the post-collapse volcanic infill of the summit depression or located further west, corresponding to the Bordeira wall that partially surrounds it. The magnetotelluric (MT) method provides a depth distribution of the ground resistivity obtained by the simultaneous measurement of the natural variations of the electric and magnetic field of the Earth. Two N-S magnetotelluric profiles were acquired across the collapsed area to determine its geometry and boundaries. The acquired MT data allowed the determination of the limits of the collapsed area more accurately as well as its morphology at depth and thickness of the post-collapse infill. According to the newly obtained MT data and the bathymetry of the eastern submarine flank of Fogo, the volume involved in the flank collapse is estimated in 110 km3. This volume -the first calculated onshore- stands between the previously published more conservative and excessive calculations -offshore- that were exclusively based in geomorphic evidence. The model for the summit depression proposing two caldera collapses preceding the collapse of the eastern flank of Fogo is supported by the MT data.
Collapse Causes Analysis and Numerical Simulation for a Rigid Frame Multiple Arch Bridge
NASA Astrophysics Data System (ADS)
Zuo, XinDai
2018-03-01
Following the collapse accident of Baihe Bridge, the author built a plane model of the whole bridge firstly and analyzed the carrying capacity of the structure for a 170-tons lorry load. Then the author built a spatial finite element model which can accurately simulate the bridge collapse course. The collapse course was simulated and the accident scene was reproduced. Spatial analysis showed rotational stiffness of the pier bottom had a large influence on the collapse from of the superstructures. The conclusion was that the170 tons lorry load and multiple arch bridge design were the important factors leading to collapse.
A mineralogical and granulometric study of Cayambe volcano debris avalanche deposit
NASA Astrophysics Data System (ADS)
Detienne, M.; Delmelle, P.; Guevara, A.; Samaniego, P.; Bustillos, J.; Sonnet, P.; Opfergelt, S.
2013-12-01
Volcano flank/sector collapse represents one of the most catastrophic volcanic hazards. Various volcanic and non-volcanic processes are known to decrease the stability of a volcanic cone, eventually precipitating its gravitational failure. Among them, hydrothermal alteration of volcanic rocks leading to clay mineral formation is recognized as having a large negative impact on rock strength properties. Furthermore, the presence of hydrothermal clays in the collapsing mass influences the behavior of the associated volcanic debris avalanche. In particular, clay-containing debris avalanches seem to travel farther and spread more widely than avalanches of similar volume but which do not incorporate hydrothermally-altered materials. However, the relationship between hydrothermal alteration, flank collapse and debris avalanche behavior is not well understood. The objective of this study is to better determine the volume and composition of hydrothermal clay minerals in the poorly characterized debris avalanche deposit (DAD) of Cayambe composite volcano, located in a densely populated area ~70 km northeast of Quito, Ecuador. Cayambe DAD originated from a sector collapse, which occurred less than 200 ka ago. The DAD is 10-20 m thick and has an estimated total volume of ~0.85 Km3. The H/L ratio (where H is the vertical drop and L is the travel distance of the avalanche) for Cayambe DAD is ~0.095, suggesting a high mobility. In the medial-distal zone, at 9-20 km from its source, the DAD consists of an unstratified and unsorted matrix supporting millimetric to metric clasts. It has a matrix facies (i.e. rich in particles < 2 mm) enriched in hydrothermally-altered materials. Preliminary results of granulometry measurements indicate that the matrix corresponds to ~55 wt.% of the deposit and suggest that the DAD behaved as a cohesive debris flow. Analysis of 13 matrix samples reveals a large variability in particle size distribution. This may reflect poor mixing of the collapsed material during transport. The clay fraction content in the matrix ranges from 15 to 30 wt.%, and does not show a relationship with the sample position in the DAD. Mineralogical determinations are in progress and will be presented.
NASA Astrophysics Data System (ADS)
Li, Z. B.; Liu, Y. M.; Yao, D. X.; Bao, C. G.
2017-07-01
Under the Thomas-Fermi approximation, an approach is proposed to solve the coupled Gross-Pitaevskii equations (CGP) for the two-species Bose-Einstein condensate analytically. The essence of this approach is to find out the building blocks to build the solution. By introducing the weighted strengths, relatively simpler analytical solutions have been obtained. A number of formulae have been deduced to relate the parameters when the system is experimentally tuned at various status. These formulae demonstrate the combined effect of the parameters, and are useful for the evaluation of their magnitudes. The whole parameter space is divided into zones, where each supports a specific phase. All the boundaries separating these zones have analytical expressions. Based on the division, the phase diagrams against any set of parameters can be plotted. In addition, by introducing a model for the asymmetric states, the total energies of the lowest symmetric and asymmetric states have been compared. Thereby, in which case the former will be replaced by the latter has been evaluated. The CGP can be written in a matrix form. For repulsive inter-species interaction V AB , when the parameters vary and cross over the singular point of the matrix, a specific state transition will happen and the total energy of the lowest symmetric state will increase remarkably. This provides an excellent opportunity for the lowest asymmetric state to emerge as the ground state. For attractive V AB , when the parameters tend to a singular point, the system will tend to collapse. The effects caused by the singular points have been particularly studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutter, B.L.; Chang, Ging-Song
The underground testing of nuclear devices causes the formation of large underground cavities which eventually may be filled by rubble and soil falling from the roof of the cavity. The zone of collapsing soil progresses upward toward the ground surface to form a ''chimney.'' The mechanisms of chimney collapse are important to understand for two important reasons. (1) A devastating and sudden propagation of the collapse may result in the formation of a surface crater which may threaten personnel and equipment in the vicinity of the crater. (2) Different collapse patterns are known to occur in the field and somemore » of these collapse patterns are known to be associated with leakage of radioactive wastes to the ground surface. A number of centrifuge tests were conducted by Kutter et al. (1988), to study the collapse of cavities in uniform dry sands. In these materials, the chimney collapse patterns were found to involve continuous, smoothly varying shear strain patterns in the chimney. The pattern of collapse in one of the tests is shown in figure 1. Figure 1a shows the surface crater that formed on the ground surface due to the collapse of a 6 inch diameter cavity buried 18'' beneath the ground surface. This result was obtained by draining fluid out of a 6'' rubber bag while the centrifuge was spinning at 11 g.« less
Kim, Soo In; Lee, Chang Woo
2011-02-01
Nowadays, many researchers try to measure the collapse force of fine pattern. However, most of the researches use LFM to gauge it indirectly and LFM can measure not for collapse force directly but only limited for horizontal force. Thus, nano-scratch is suggested to measure the collapse force possibly. We used poly-Si pattern on Si plate and changed the z-location of the pattern. From these experiments, the stiffness was decease as depth increase from surface and well fitted with negative exponential curve. Also, the elastic modulus was decreased. From the results, the collapse force of poly-Si nano-patterns was decreased as the depth increased over than 30% from the surface and the maximum collapse force was 26.91 microN and pattern was collapsed between poly-Si and plate.
International Norms in the Reform of Romanian Higher Education: A Discursive Analysis
ERIC Educational Resources Information Center
Deca, Ligia
2015-01-01
Higher education systems in Central and Eastern Europe have faced numerous challenges in their transitions following the collapse of totalitarian regimes in 1989-1990. Romania, as a country that is representative of the specificities of this particular region, as well as a relatively new member of the European Union, is a privileged site for…
Aerobic, Anaerobic, and Skill Performance with Regard to Classification in Wheelchair Rugby Athletes
ERIC Educational Resources Information Center
Morgulec-Adamowicz, Natalia; Kosmol, Andrzej; Molik, Bartosz; Yilla, Abu B.; Laskin, James J.
2011-01-01
The purpose of the study was to examine the sport-specific performance of wheelchair rugby players with regard to their classification. A group of 30 male athletes from the Polish Wheelchair Rugby League participated in the study. The seven International Wheelchair Rugby Federation classes were collapsed into four groups. Standardized measures of…
26 CFR 1.341-1 - Collapsible corporations; in general.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 26 Internal Revenue 4 2014-04-01 2014-04-01 false Collapsible corporations; in general. 1.341-1... TAX (CONTINUED) INCOME TAXES (CONTINUED) Collapsible Corporations; Foreign Personal Holding Companies § 1.341-1 Collapsible corporations; in general. Subject to the limitations contained in § 1.341-4 and...
26 CFR 1.341-1 - Collapsible corporations; in general.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Collapsible corporations; in general. 1.341-1... TAX (CONTINUED) INCOME TAXES Collapsible Corporations; Foreign Personal Holding Companies § 1.341-1 Collapsible corporations; in general. Subject to the limitations contained in § 1.341-4 and the exceptions...
26 CFR 1.341-1 - Collapsible corporations; in general.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 4 2013-04-01 2013-04-01 false Collapsible corporations; in general. 1.341-1... TAX (CONTINUED) INCOME TAXES (CONTINUED) Collapsible Corporations; Foreign Personal Holding Companies § 1.341-1 Collapsible corporations; in general. Subject to the limitations contained in § 1.341-4 and...
26 CFR 1.341-1 - Collapsible corporations; in general.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 4 2011-04-01 2011-04-01 false Collapsible corporations; in general. 1.341-1... TAX (CONTINUED) INCOME TAXES Collapsible Corporations; Foreign Personal Holding Companies § 1.341-1 Collapsible corporations; in general. Subject to the limitations contained in § 1.341-4 and the exceptions...
26 CFR 1.341-1 - Collapsible corporations; in general.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 26 Internal Revenue 4 2012-04-01 2012-04-01 false Collapsible corporations; in general. 1.341-1... TAX (CONTINUED) INCOME TAXES (Continued) Collapsible Corporations; Foreign Personal Holding Companies § 1.341-1 Collapsible corporations; in general. Subject to the limitations contained in § 1.341-4 and...
Lessons Learned from the University of Virginia's Balcony Collapse.
ERIC Educational Resources Information Center
Dillman, Robert P.; Klingel, Jay W.
2002-01-01
Discusses the 1997 collapse of a balcony on a historic building at the University of Virginia, which resulted in a death and several injuries. Explores the balcony structure and cause of the collapse, any possibly preventative measures, and the resolution of legal proceedings resulting from the collapse. (EV)
The 1997/98 El Nino: A Test for Climate Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, R; Dong, B; Cess, R D
Version 3 of the Hadley Centre Atmospheric Model (HadAM3) has been used to demonstrate one means of comparing a general circulation model with observations for a specific climate perturbation, namely the strong 1997/98 El Nino. This event was characterized by the collapse of the tropical Pacific's Walker circulation, caused by the lack of a zonal sea surface temperature gradient during the El Nino. Relative to normal years, cloud altitudes were lower in the western portion of the Pacific and higher in the eastern portion. HadAM3 likewise produced the observed collapse of the Walker circulation, and it did a reasonable jobmore » of reproducing the west/east cloud structure changes. This illustrates that the 1997/98 El Nino serves as a useful means of testing cloud-climate interactions in climate models.« less
Collapse of Experimental Colloidal Aging using Record Dynamics
NASA Astrophysics Data System (ADS)
Robe, Dominic; Boettcher, Stefan; Sibani, Paolo; Yunker, Peter
The theoretical framework of record dynamics (RD) posits that aging behavior in jammed systems is controlled by short, rare events involving activation of only a few degrees of freedom. RD predicts dynamics in an aging system to progress with the logarithm of t /tw . This prediction has been verified through new analysis of experimental data on an aging 2D colloidal system. MSD and persistence curves spanning three orders of magnitude in waiting time are collapsed. These predictions have also been found consistent with a number of experiments and simulations, but verification of the specific assumptions that RD makes about the underlying statistics of these rare events has been elusive. Here the observation of individual particles allows for the first time the direct verification of the assumptions about event rates and sizes. This work is suppoted by NSF Grant DMR-1207431.
Progenitor Masses for Every Nearby Historic Core-Collapse Supernova
NASA Astrophysics Data System (ADS)
Williams, Benjamin
2016-10-01
Some of the most energetic explosions in the Universe are the core-collapse supernovae (CCSNe) that arise from the death of massive stars. They herald the birth of neutron stars and black holes, are prodigious emitters of neutrinos and gravitational waves, influence galactic hydrodynamics, trigger further star formation, and are a major site for nucleosynthesis, yet even the most basic elements of CCSN theory are poorly constrained by observations. Specifically, there are too few observations to constrain the progenitor mass distribution and fewer observations still to constrain the mapping between progenitor mass and explosion type (e.g. IIP IIL, IIb, Ib/c, etc.). Combining previous measurements with 9 proposed HST pointings covering 13 historic CCSNe, we plan to obtain progenitor mass measurements for all cataloged historic CCSNe within 8 Mpc, optimizing observational mass constraints for CCSN theory.
Thermodynamic models for bounding pressurant mass requirements of cryogenic tanks
NASA Technical Reports Server (NTRS)
Vandresar, Neil T.; Haberbusch, Mark S.
1994-01-01
Thermodynamic models have been formulated to predict lower and upper bounds for the mass of pressurant gas required to pressurize a cryogenic tank and then expel liquid from the tank. Limiting conditions are based on either thermal equilibrium or zero energy exchange between the pressurant gas and initial tank contents. The models are independent of gravity level and allow specification of autogenous or non-condensible pressurants. Partial liquid fill levels may be specified for initial and final conditions. Model predictions are shown to successfully bound results from limited normal-gravity tests with condensable and non-condensable pressurant gases. Representative maximum collapse factor maps are presented for liquid hydrogen to show the effects of initial and final fill level on the range of pressurant gas requirements. Maximum collapse factors occur for partial expulsions with large final liquid fill fractions.
On peaceful coexistence: is the collapse postulate incompatible with relativity?
NASA Astrophysics Data System (ADS)
Myrvold, Wayne C.
In this paper, it is argued that the prima facie conflict between special relativity and the quantum-mechanical collapse postulate is only apparent, and that the seemingly incompatible accounts of entangled systems undergoing collapse yielded by different reference frames can be regarded as no more than differing accounts of the same processes and events. Attention to the transformation properties of quantum-mechanical states undergoing unitary, non-collapse evolution points the way to a treatment of collapse evolution consistent with the demands of relativity.
Why do naked singularities form in gravitational collapse? II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Pankaj S.; Goswami, Rituparno; Dadhich, Naresh
We examine physical features that could lead to formation of a naked singularity rather than black hole, as end state of spherical collapse. Generalizing earlier results on dust collapse to general type I matter fields, it is shown that collapse always creates black hole if shear vanishes or density is homogeneous. It follows that nonzero shear is a necessary condition for singularity to be visible to external observers, when trapped surface formation is delayed by shearing forces or inhomogeneity within the collapsing cloud.
Meinhardt, J P; Ashton, B A; Annich, G M; Quintel, M; Hirschl, R B
2003-05-30
To evaluate the influence of pump system and flow pattern on expiratory airway collapse (EAC) in total perfluorocarbon ventilation. - Prospective, controlled, randomized animal trial for determination of (1) post-mortem changes by repeated expiration procedures (EP) with a constant flow piston pump (PP) before and after sacrifice (n = 8 rabbits), (2) differences between pump systems by subjecting animals to both PP and roller pump (RP) circuits for expiration (n = 16 rabbits). EP were performed using a servo-controlled shut-off at airway pressures < 25 cm H subset 2O randomly with either pump at different flows. - Expired volumes before and after sacrifice were not significantly different. PP and RP revealed identical mean flows, while significantly more liquid was drained using PP (p<0.05). Increasing differences towards higher flow rates indicated profound flow pulsatility in RP. - (1) post-mortem changes in expired volumes are not significant, (2) EAC is related to flow rate and pump system; (3) relationship between expiratory flow rate and drainable liquid volume is linear inverse; (4) PP provides higher drainage than RP. - Expiratory airway collapse is related to flow rate and pump system, post mortem changes in expirable volumes are not significant. Relationship between expiratory flow rate and drainable liquid volume is linear inverse, piston pump expiration provides higher drainage volumes than roller pump expiration.
From a market of dreamers to economical shocks
NASA Astrophysics Data System (ADS)
Owhadi, Houman
2004-11-01
Over the past years an intense work has been undertaken to understand the origin of the crashes and bubbles of financial markets. The explanations of these crashes have been grounded on the hypothesis of behavioral and social correlations between the agents in interacting particle models or on a feedback of the stock prices on trading behaviors in mean-field models (here bubbles and crashes are seen as collective hysteria). In this paper, we will introduce a market model as a particle system with no other interaction between the agents than the fact that to be able to sell, somebody must be willing to buy and no feedback of the price on their trading behavior. We will show that this model crashes in finite estimable time. Although the age of the market does not appear in the price dynamic the population of traders taken as a whole system is maturing towards collapse. The wealth distribution among the agents follows the second law of thermodynamics and with probability one an agent (or a minority of agents) will accumulate a large portion of the total wealth, at some point this disproportion in the wealth distribution becomes unbearable for the market leading to its collapse. We believe that the origin of the collapse in our model could be of some relevance in understanding long-term economic cycles such as the Kondratiev cycle.
Radiation enhancement and temperature in the collapse regime of gravitational scattering
NASA Astrophysics Data System (ADS)
Ciafaloni, Marcello; Colferai, Dimitri
2017-04-01
We generalize the semiclassical treatment of graviton radiation to gravitational scattering at very large energies √{s }≫mP and finite scattering angles Θs, so as to approach the collapse regime of impact parameters b ≃bc˜R ≡2 G √{s } . Our basic tool is the extension of the recently proposed, unified form of radiation to the Amati Ciafaloni Veneziano (ACV) reduced-action model and to its resummed-eikonal exchange. By superimposing that radiation all over eikonal scattering, we are able to derive the corresponding (unitary) coherent-state operator. The resulting graviton spectrum, tuned on the gravitational radius R , fully agrees with previous calculations for small angles Θs≪1 but, for sizeable angles Θs(b )≤Θc=O (1 ) , acquires an exponential cutoff of the large ω R region, due to energy conservation, so as to emit a finite fraction of the total energy. In the approach-to-collapse regime of b →bc+, we find a radiation enhancement due to large tidal forces, so that the whole energy is radiated off, with a large multiplicity ⟨N ⟩˜G s ≫1 and a well-defined frequency cutoff of order R-1. The latter corresponds to the Hawking temperature for a black hole of mass notably smaller than √{s }.
NASA Astrophysics Data System (ADS)
Zhai, Zirui; Wang, Yong; Jiang, Hanqing
2018-03-01
Origami has been employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. Deployable metamaterials are usually flexible, particularly along their deploying and collapsing directions, which unfortunately in many cases leads to an unstable deployed state, i.e., small perturbations may collapse the structure along the same deployment path. Here we create an origami-inspired mechanical metamaterial with on-demand deployability and selective collapsibility through energy analysis. This metamaterial has autonomous deployability from the collapsed state and can be selectively collapsed along two different paths, embodying low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields load-bearing capability in the deployed direction while possessing great deployability and collapsibility. The principle in this work can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications.
Explosively driven hypervelocity launcher: Second-stage augmentation techniques
NASA Technical Reports Server (NTRS)
Baum, D. W.
1973-01-01
The results are described of a continuing study aimed at developing a two-stage explosively driven hypervelocity launcher capable of achieving projectile velocities between 15 and 20 km/sec. The testing and evaluation of a new cylindrical impact technique for collapsing the barrel of two-stage launcher are reported. Previous two-stage launchers have been limited in ultimate performance by incomplete barrel collapse behind the projectile. The cylindrical impact technique explosively collapses a steel tube concentric with and surrounding the barrel of the launcher. The impact of the tube on the barrel produces extremely high stresses which cause the barrel to collapse. The collapse rate can be adjusted by appropriate variation of the explosive charge and tubing parameters. Launcher experiments demonstrated that the technique did achieve complete barrel collapse and form a second-stage piston. However, jetting occurred in the barrel collapse process and was responsible for severe projectile damage.
Zhai, Zirui; Wang, Yong; Jiang, Hanqing
2018-02-27
Origami has been employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. Deployable metamaterials are usually flexible, particularly along their deploying and collapsing directions, which unfortunately in many cases leads to an unstable deployed state, i.e., small perturbations may collapse the structure along the same deployment path. Here we create an origami-inspired mechanical metamaterial with on-demand deployability and selective collapsibility through energy analysis. This metamaterial has autonomous deployability from the collapsed state and can be selectively collapsed along two different paths, embodying low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields load-bearing capability in the deployed direction while possessing great deployability and collapsibility. The principle in this work can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications. Copyright © 2018 the Author(s). Published by PNAS.
Zhai, Zirui; Wang, Yong
2018-01-01
Origami has been employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. Deployable metamaterials are usually flexible, particularly along their deploying and collapsing directions, which unfortunately in many cases leads to an unstable deployed state, i.e., small perturbations may collapse the structure along the same deployment path. Here we create an origami-inspired mechanical metamaterial with on-demand deployability and selective collapsibility through energy analysis. This metamaterial has autonomous deployability from the collapsed state and can be selectively collapsed along two different paths, embodying low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields load-bearing capability in the deployed direction while possessing great deployability and collapsibility. The principle in this work can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications. PMID:29440441
Kinematic fingerprint of core-collapsed globular clusters
NASA Astrophysics Data System (ADS)
Bianchini, P.; Webb, J. J.; Sills, A.; Vesperini, E.
2018-03-01
Dynamical evolution drives globular clusters towards core collapse, which strongly shapes their internal properties. Diagnostics of core collapse have so far been based on photometry only, namely on the study of the concentration of the density profiles. Here, we present a new method to robustly identify core-collapsed clusters based on the study of their stellar kinematics. We introduce the kinematic concentration parameter, ck, the ratio between the global and local degree of energy equipartition reached by a cluster, and show through extensive direct N-body simulations that clusters approaching core collapse and in the post-core collapse phase are strictly characterized by ck > 1. The kinematic concentration provides a suitable diagnostic to identify core-collapsed clusters, independent from any other previous methods based on photometry. We also explore the effects of incomplete radial and stellar mass coverage on the calculation of ck and find that our method can be applied to state-of-art kinematic data sets.
Hierarchical Bayesian modelling of mobility metrics for hazard model input calibration
NASA Astrophysics Data System (ADS)
Calder, Eliza; Ogburn, Sarah; Spiller, Elaine; Rutarindwa, Regis; Berger, Jim
2015-04-01
In this work we present a method to constrain flow mobility input parameters for pyroclastic flow models using hierarchical Bayes modeling of standard mobility metrics such as H/L and flow volume etc. The advantage of hierarchical modeling is that it can leverage the information in global dataset for a particular mobility metric in order to reduce the uncertainty in modeling of an individual volcano, especially important where individual volcanoes have only sparse datasets. We use compiled pyroclastic flow runout data from Colima, Merapi, Soufriere Hills, Unzen and Semeru volcanoes, presented in an open-source database FlowDat (https://vhub.org/groups/massflowdatabase). While the exact relationship between flow volume and friction varies somewhat between volcanoes, dome collapse flows originating from the same volcano exhibit similar mobility relationships. Instead of fitting separate regression models for each volcano dataset, we use a variation of the hierarchical linear model (Kass and Steffey, 1989). The model presents a hierarchical structure with two levels; all dome collapse flows and dome collapse flows at specific volcanoes. The hierarchical model allows us to assume that the flows at specific volcanoes share a common distribution of regression slopes, then solves for that distribution. We present comparisons of the 95% confidence intervals on the individual regression lines for the data set from each volcano as well as those obtained from the hierarchical model. The results clearly demonstrate the advantage of considering global datasets using this technique. The technique developed is demonstrated here for mobility metrics, but can be applied to many other global datasets of volcanic parameters. In particular, such methods can provide a means to better contain parameters for volcanoes for which we only have sparse data, a ubiquitous problem in volcanology.
f-Mode Secular Instabilities in Deleptonizing Fizzlers
NASA Astrophysics Data System (ADS)
Imamura, James N.; Durisen, Richard H.
2004-12-01
Fizzlers are intermediate states that may form between white dwarf and neutron star densities during the collapse of massive rotating stars. This paper studies the gravitational radiation reaction (GRR) driven f-mode secular instabilities of fizzlers with angular momentum distributions h(mc) appropriate to the core collapse of massive rotating stars, where h is the specific angular momentum and mc is the cylindrical mass fraction. For core collapses that maintain axial symmetry, the h(mc) of the remnant reflects the conditions in the precollapse stellar core, and, thus, the h(mc) will resemble that of a uniformly rotating star supported by the pressure of relativistically degenerate electrons. Such an h(mc) concentrates most angular momentum toward the equatorial region of the object. The onset of f-mode secular instabilities in such fizzlers is affected strongly by the h(mc), whereas instability depends only weakly on compressibility. For a broad range of fizzler equations of state and the core h(mc), the f-mode secular instability thresholds drop to T/W~0.034-0.042, 0.019-0.021, and 0.012-0.0135, for m=2, 3, and 4, respectively. These same thresholds with the Maclaurin spheroid h(mc) are T/W=0.13-0.15, 0.10-0.11, and 0.08-0.09, respectively. The growth times τgw for GRR-driven m=2 modes are long. For fizzlers with specific angular momentum J/M~1.5×1016 cm2 s-1 and T/W<~0.24 (ρc<~1014 g cm-3), τgw>400 s. For these fizzlers, τgw>>τde, the deleptonization timescale, and GRR-driven secular instabilities will not grow along a deleptonizing fizzler sequence except, possibly, at T/W near the dynamic bar mode instability threshold, T/W~0.27.
2017-01-01
The selectivity filter of the KcsA K+ channel has two typical conformations—the conductive and the collapsed conformations, respectively. The transition from the conductive to the collapsed filter conformation can represent the process of inactivation that depends on many environmental factors. Water molecules permeating behind the filter can influence the collapsed filter stability. Here we perform the molecular dynamics simulations to study the stability of the collapsed filter of the KcsA K+ channel under the different water patterns. We find that the water patterns are dynamic behind the collapsed filter and the filter stability increases with the increasing number of water molecules. In addition, the stability increases significantly when water molecules distribute uniformly behind the four monomeric filter chains, and the stability is compromised if water molecules only cluster behind one or two adjacent filter chains. The altered filter stabilities thus suggest that the collapsed filter can inactivate gradually under the dynamic water patterns. We also demonstrate how the different water patterns affect the filter recovery from the collapsed conformation. PMID:29049423
Wu, Di
2017-01-01
The selectivity filter of the KcsA K+ channel has two typical conformations-the conductive and the collapsed conformations, respectively. The transition from the conductive to the collapsed filter conformation can represent the process of inactivation that depends on many environmental factors. Water molecules permeating behind the filter can influence the collapsed filter stability. Here we perform the molecular dynamics simulations to study the stability of the collapsed filter of the KcsA K+ channel under the different water patterns. We find that the water patterns are dynamic behind the collapsed filter and the filter stability increases with the increasing number of water molecules. In addition, the stability increases significantly when water molecules distribute uniformly behind the four monomeric filter chains, and the stability is compromised if water molecules only cluster behind one or two adjacent filter chains. The altered filter stabilities thus suggest that the collapsed filter can inactivate gradually under the dynamic water patterns. We also demonstrate how the different water patterns affect the filter recovery from the collapsed conformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghezzi, Cristian R.; Letelier, Patricio S.
2007-01-15
The time evolution of a set of 22M{sub {center_dot}} unstable charged stars that collapse is computed integrating the Einstein-Maxwell equations. The model simulates the collapse of a spherical star that had exhausted its nuclear fuel and has or acquires a net electric charge in its core while collapsing. When the charge-to-mass ratio is Q/{radical}(G)M{>=}1, the star does not collapse but spreads. On the other hand, a different physical behavior is observed with a charge-to-mass ratio of 1>Q/{radical}(G)M>0.1. In this case, the collapsing matter forms a bubble enclosing a lower density core. We discuss an immediate astrophysical consequence of these resultsmore » that is a more efficient neutrino trapping during the stellar collapse and an alternative mechanism for powerful supernova explosions. The outer space-time of the star is the Reissner-Nordstroem solution that matches smoothly with our interior numerical solution; thus the collapsing models form Reissner-Nordstroem black holes.« less
The effect of giant flank collapses on magma pathways and location of volcanic vents
NASA Astrophysics Data System (ADS)
Maccaferri, Francesco; Richter, Nicole; Walter, Thomas
2017-04-01
Flank collapses have been identified at tall volcanoes and ocean islands worldwide. They are recurrent processes, significantly contributing to the morphological and structural evolution of volcanic edifices, and they often occur in interaction with magmatic activity. Moreover, it has been observed that the intrusion pathways and eruption's sites often differ before and after flank collapses. While it is understood that dyke intrusions might destabilise a volcano flank, and a moving flank might create the space needed for further intrusions, the effect of collapses on the magma pathways has been rarely addressed. Here we use a boundary element model for dyke propagation to study the effect of the stress redistribution due to a flank collapse on the location of eruptive vents. We use our model to simulate the path of magmatic intrusion after the collapse of the eastern flank of Fogo Volcano, Cabe Verde. We find that the competition between loading stress due to the volcanic edifice and unloading due to the collapse of a flank favours magmatic activity to cluster within the collapse scar, displaced with respect to the pre-collapse volcanic centre. Our results are compared with geomorphological observations at Fogo Island and are discussed in the general context of the long-term evolution intraplate volcanic ocean islands worldwide.
NASA Astrophysics Data System (ADS)
Trofimovs, J.; Sparks, S.; Talling, P.
2006-12-01
What happens when pyroclastic flows enter the ocean? To date, the subject of submarine pyroclastic flow behaviour has been controversial. Ambiguity arises from inconclusive evidence of a subaqueous depositional environment in ancient successions, to difficulty in sampling the in situ products of modern eruptions. A research voyage of the RRS James Clark Ross (9-18 May 2005) sampled 52 sites offshore from the volcanic island of Montserrat. The Soufrière Hills volcano, Montserrat, has been active since 1995 with eruptive behaviour dominated by andesite lava dome growth and collapse. Over 90% of the pyroclastic material produced has been deposited into the ocean. In July 2003 the Soufrière Hills volcano produced the largest historically documented dome collapse event. 210 x 106 m3 of pyroclastic material avalanched down the Tar River Valley, southeast Montserrat, to be deposited into the ocean. Bathymetric imaging and coring of offshore pyroclastic deposits, with a specific focus on the July 2003 units, reveals that the pyroclastic flows mix rapidly and violently with the water as they enter the ocean. Mixing takes place between the shore and 500 m depth where the deposition of basal coarse-grained parts of the flow initiates on slopes of 15° or less. The coarse components (pebbles to boulders) are deposited proximally from dense basal slurries to form steep sided, near linear ridges that amalgamate to form a kilometer-scale submarine fan. These proximal deposits contain <1% of ash-grade material. The finer components (dominantly ash-grade) are mixed into the overlying water column to form turbidity currents that flow distances >40 km from source. The total volume of pyroclastic material deposited within the submarine environment during this event exceeds 170 x 106 m3, with 65% deposited in proximal lobes and 35% deposited as distal turbidites. This broadly correlates with the block and ash components respectively, of the source subaerial pyroclastic flow. However, the efficient sorting and physical differentiation of the submarine flows, in comparison to the original mixture of their subaerial counterparts, suggests that the pyroclastic flows mix thoroughly with seawater and generate sediment gravity currents which are stratified in grain size and concentration.
Kirkham, R.M.; Streufert, R.K.; Budahn, J.R.; Kunk, Michael J.; Perry, W.J.
2001-01-01
Dissolution and flow of Pennsylvanian evaporitic rocks in west-central Colorado created the Carbondale Collapse Center, a 450 mi2 structural depression with about 4,000 ft of vertical collapse during the late Cenozoic. This paper describes evidence of collapse in the lower Roaring Fork River valley. Both the lateral extent and amount of vertical collapse is constrained by deformed upper Cenozoic volcanic rocks that have been correlated using field mapping, 40Ar/39Ar geochronology, geochemistry, and paleomagnetism. The Carbondale Collapse Center is one of at least two contiguous areas that have experienced major evaporite tectonism during the late Cenozoic. Historic sinkholes, deformed Holocene deposits, and modern high-salinity loads in the rivers and thermal springs indicate the collapse process continues today. Flow of evaporitic rocks is an important element in the collapse process, and during initial stages of collapse it was probably the primary causative mechanism. Dissolution, however, is the ultimate means by which evaporite is removed from the collapse area. As the Roaring Fork River began to rapidly down-cut through a broad volcanic plateau during the late Miocene, the underlying evaporite beds were subjected to differential overburden pressures. The evaporitic rocks flowed from beneath the upland areas where overburden pressures remained high, toward the Roaring Fork River Valley where the pressures were much lower. Along the valley the evaporitic rocks rose upward, sometimes as diapirs, forming or enhancing a valley anticline in bedrock and locally upwarping Pleistocene terraces. Wherever the evaporites encountered relatively fresh ground water, they were dissolved, forming underground voids into which overlying bedrock and surficial deposits subsided. The saline ground water eventually discharged to streams and rivers through thermal springs and by seepage into alluvial aquifers.
Upper Airway Collapsibility During REM Sleep in Children with the Obstructive Sleep Apnea Syndrome
Huang, Jingtao; Karamessinis, Laurie R.; Pepe, Michelle E.; Glinka, Stephen M.; Samuel, John M.; Gallagher, Paul R.; Marcus, Carole L.
2009-01-01
Study Objectives: In children, most obstructive events occur during rapid eye movement (REM) sleep. We hypothesized that children with the obstructive sleep apnea syndrome (OSAS), in contrast to age-matched control subjects, would not maintain airflow in the face of an upper airway inspiratory pressure drop during REM sleep. Design: During slow wave sleep (SWS) and REM sleep, we measured airflow, inspiratory time, inspiratory time/total respiratory cycle time, respiratory rate, tidal volume, and minute ventilation at a holding pressure at which flow limitation occurred and at 5 cm H2O below the holding pressure in children with OSAS and in control subjects. Setting: Sleep laboratory. Participants: Fourteen children with OSAS and 23 normal control subjects. Results: In both sleep states, control subjects were able to maintain airflow, whereas subjects with OSAS preserved airflow in SWS but had a significant decrease in airflow during REM sleep (change in airflow of 18.58 ± 12.41 mL/s for control subjects vs −44.33 ± 14.09 mL/s for children with OSAS, P = 0.002). Although tidal volume decreased, patients with OSAS were able to maintain minute ventilation by increasing the respiratory rate and also had an increase in inspiratory time and inspiratory time per total respiratory cycle time Conclusion: Children with OSAS do not maintain airflow in the face of upper-airway inspiratory-pressure drops during REM sleep, indicating a more collapsible upper airway, compared with that of control subjects during REM sleep. However, compensatory mechanisms exist to maintain minute ventilation. Local reflexes, central control mechanisms, or both reflexes and control mechanisms need to be further explored to better understand the pathophysiology of this abnormality and the compensation mechanism. Citation: Huang J; Karamessinis LR; Pepe ME; Glinka SM; Samuel JM; Gallagher PR; Marcus CL. Upper airway collapsibility during REM sleep in children with the obstructive sleep apnea syndrome. SLEEP 2009;32(9):1173-1181. PMID:19750922
Ueno, Toshiharu; Kobayashi, Namiko; Nakayama, Makiko; Takashima, Yasutoshi; Ohse, Takamoto; Pastan, Ira; Pippin, Jeffrey W; Shankland, Stuart J; Uesugi, Noriko; Matsusaka, Taiji; Nagata, Michio
2013-06-01
Collapsing focal segmental glomerulosclerosis (cFSGS) is a progressive kidney disease characterized by glomerular collapse with epithelial hyperplasia. Here we used a transgenic mouse model of cFSGS with immunotoxin-induced podocyte-specific injury to determine the role for Notch signaling in its pathogenesis. The mice exhibited progressive loss of podocytes and severe proteinuria concomitant with histological features of cFSGS. Hyperplastic epithelium was negative for genetic podocyte tags, but positive for the parietal epithelial cell marker claudin-1, and expressed Notch1, Jagged1, and Hes1 mRNA and protein. Enhanced Notch mRNA expression induced by transforming growth factor-β1 in cultured parietal epithelial cells was associated with mesenchymal markers (α-smooth muscle actin, vimentin, and Snail1). Notch inhibition in vitro suppressed these phenotypic transcripts and Notch-dependent cell migration. Moreover, Notch inhibition in vivo significantly decreased parietal epithelial cell lesions but worsened proteinuria and histopathology in our cFSGS model. Thus, aberrant Notch1-mediated parietal epithelial cell migration with phenotypic changes appears to underlie the pathogenesis of cFSGS. Parietal epithelial cell hyperplasia may also represent an adaptive response to compensate for a disrupted filtration barrier with progressive podocyte loss.
Hydrostatic collapse research in support of the Oman India gas pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, P.R.; McKeehan, D.S.
1995-12-01
This paper provides a summary of the collapse test program conducted as part of the technical development for the Ultra Deep Oman to India Pipeline. The paper describes the motivation for conducting the collapse test program, outlines the test objectives and procedures, presents the results obtained, and draws conclusions on the factors affecting collapse resistance.
Cell therapy of hip osteonecrosis with autologous bone marrow grafting.
Hernigou, Philippe; Poignard, Alexandre; Zilber, Sebastien; Rouard, Hélène
2009-01-01
One of the reasons for bone remodeling leading to an insufficient creeping substitution after osteonecrosis in the femoral head may be the small number of progenitor cells in the proximal femur and the trochanteric region. Because of this lack of progenitor cells, treatment modalities should stimulate and guide bone remodeling to sufficient creeping substitution to preserve the integrity of the femoral head. Core decompression with bone graft is used frequently in the treatment of osteonecrosis of the femoral head. In the current series, grafting was done with autologous bone marrow obtained from the iliac crest of patients operated on for early stages of osteonecrosis of the hip before collapse with the hypothesis that before stage of subchondral collapse, increasing the number of progenitor cells in the proximal femur will stimulate bone remodeling and creeping substitution and thereby improve functional outcome. Between 1990 and 2000, 342 patients (534 hips) with avascular osteonecrosis at early stages (Stages I and II) were treated with core decompression and autologous bone marrow grafting obtained from the iliac crest of patients operated on for osteonecrosis of the hip. The percentage of hips affected by osteonecrosis in this series of 534 hips was 19% in patients taking corticosteroids, 28% in patients with excessive alcohol intake, and 31% in patients with sickle cell disease. The mean age of the patients at the time of decompression and autologous bone marrow grafting was 39 years (range: 16-61 years). The aspirated marrow was reduced in volume by concentration and injected into the femoral head after core decompression with a small trocar. To measure the number of progenitor cells transplanted, the fibroblast colony forming unit was used as an indicator of the stroma cell activity. Patients were followed up from 8 to 18 years. The outcome was determined by the changes in the Harris hip score, progression in radiographic stages, change in volume determined by digitizing area of the necrosis on the different cuts obtained on MRI, and by the need for hip replacement. Total hip replacement was necessary in 94 hips (evolution to collapse) among the 534 hips operated before collapse (Stages I and II). Sixty-nine hips with stage I osteonecrosis of the femoral head at the time of surgery demonstrated total resolution of osteonecrosis based on preoperative and postoperative MRI studies; these hips did not show any changes on plain radiographs. Before treatment, these 69 osteonecrosis had only a marginal band like pattern as abnormal signal and a volume less than 20 cubic centimeters. The intralesional area had kept a normal signal as regards the signal of the femoral head outside the osteonecrosis area. For the 371 other hips without collapse at the most recent follow up (average 12 years), the mean preoperative volume of the osteonecrosis was 26 cm(3) (minimum 12, maximum 30 cm(3)). The mean volume of the abnormal signal measured on MRI at the most recent follow up (mean 12 years) was 12 cm(3). The abnormal signal persisting as a sequelae was seen on T1 images as an intralesional area of low intensity signal with a disappearance of the marginal band like pattern. According to our experience, best indication for the procedure is symptomatic hips with osteonecrosis without collapse. In some patients who had Steinberg stage III osteonecrosis (subchondral lucency, no collapse) successful outcomes (no further surgery) has been obtained between 5 to 10 years. Therefore in selected patients, even more advanced disease can be considered for core decompression. Patients who had the greater number of progenitor cells transplanted in their hips had better outcomes.
Catastrophic volcanic collapse: relation to hydrothermal processes.
López, D L; Williams, S N
1993-06-18
Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.
Kim, Joon-young; Han, Hyun-jung; Yun, Hun-young; Lee, Bora; Jang, Ha-young; Eom, Ki-dong; Park, Hee-myung
2008-01-01
To evaluate the potential utility of a self-expandable intratracheal nitinol stent with flared ends for the treatment of tracheal collapse in dogs, endotracheal stenting therapy was performed under fluoroscopic guidance in four dogs with severe tracheal collapse. During the 4 to 7 month follow-up, after stent implantation, clinical signs, including dyspnea and respiratory distress, dramatically improved in all dogs. The radiographs showed that the implanted stents improved the tracheal collapse, and there were no side effects such as collapse, shortening or migration of the stents. In conclusion, the self-expandable intratracheal nitinol stents provided adequate stability to the trachea and were effective for attenuating the clinical signs associated with severe tracheal collapse. PMID:18296893
The absence of horizon in black-hole formation
NASA Astrophysics Data System (ADS)
Ho, Pei-Ming
2016-08-01
With the back-reaction of Hawking radiation taken into consideration, the work of Kawai, Matsuo and Yokokura [1] has shown that, under a few assumptions, the collapse of matter does not lead to event horizon nor apparent horizon. In this paper, we relax their assumptions and elaborate on the space-time geometry of a generic collapsing body with spherical symmetry. The geometry outside the collapsing sphere is found to be approximated by the geometry outside the white-hole horizon, hence the collapsing matter remains outside the Schwarzschild radius. As particles in Hawking radiation are created in the vicinity of the collapsing matter, the information loss paradox is alleviated. Assuming that the collapsing body evaporates within finite time, there is no event horizon.
Granular Silo collapse: an experimental study
NASA Astrophysics Data System (ADS)
Clement, Eric; Gutierriez, Gustavo; Boltenhagen, Philippe; Lanuza, Jose
2008-03-01
We present an experimental work that develop some basic insight into the pre-buckling behavior and the buckling transition toward plastic collapse of a granular silo. We study different patterns of deformation generated on thin paper cylindrical shells during granular discharge. We study the collapse threshold for different bed height, flow rates and grain sizes. We compare the patterns that appear during the discharge of spherical beads, with those obtained in the axially compressed cylindrical shells. When the height of the granular column is close to the collapse threshold, we describe a ladder like pattern that rises around the cylinder surface in a spiral path of diamond shaped localizations, and develops into a plastic collapsing fold that grows around the collapsing silo.
Detecting When “Quality of Life” Has Been “Enhanced”: Estimating Change in Quality of Life Ratings
Tractenberg, Rochelle E.; Yumoto, Futoshi; Aisen, Paul S.
2015-01-01
Objective To demonstrate challenges in the estimation of change in quality of life (QOL). Methods Data were taken from a completed clinical trial with negative results. Responses to 13 QOL items were obtained 12 months apart from 258 persons with Alzheimer’s disease (AD) participating in a randomized, placebo-controlled clinical trial with two treatment arms. Two analyses to estimate whether “change” in QOL occurred over 12 months are described. A simple difference (later - earlier) was calculated from total scores (standard approach). A Qualified Change algorithm (novel approach) was applied to each item: differences in ratings were classified as either: improved, worsened, stayed poor, or stayed “positive” (fair, good, excellent). The strengths of evidence supporting a claim that “QOL changed”, derived from the two analyses, were compared by considering plausible alternative explanations for, and interpretations of, results obtained under each approach. Results Total score approach: QOL total scores decreased, on average, in the two treatment (both −1.0, p < 0.05), but not the placebo (=−0.59, p > 0.3) groups. Qualified change approach: Roughly 60% of all change in QOL items was worsening in every arm; 17% - 42% of all subjects experienced change in each item. Conclusions Totalling the subjective QOL item ratings collapses over items, and suggests a potentially misleading “overall” level of change (or no change, as in the placebo arm). Leaving the items as individual components of “quality” of life they were intended to capture, and qualifying the direction and amount of change in each, suggests that at least 17% of any group experienced change on every item, with 60% of all observed change being worsening. Discussion Summarizing QOL item ratings as a total “score” collapses over the face-valid, multi-dimensional components of the construct “quality of life”. Qualified Change provides robust evidence of changes to QOL or “enhancements of” life quality. PMID:26213645
Observational Corollaries of Proto-AGN: Understanding Formation of Supermassive Black Hole Seeds
NASA Astrophysics Data System (ADS)
Shlosman, Isaac
2016-10-01
Formation of supermassive black holes (SMBHs) is still an enigma. Recent detections of high-z quasars which harbor massive SMBHs provide a challenge to models of structure buildup in the universe. Main alternatives for the formation of SMBH seeds are (1) remnants of Population III stars, and (2) a direct baryonic collapse within dark matter (DM) halos of 10^8 Mo -- first halos whose virial temperature exceeds 10^4 K, and which can lead to the formation of proto-AGN -- luminous pre-SMBH objects. Potentially, this can involve both high-z objects as well as low-z dwarf galaxies in voids. We focus on the direct collapse in 10^8 Mo halos which circumvents the pitfalls of Pop III remnants. The collapse can proceed via a radiation pressure-supported quasistar -- with a modified blackbody continuum. Such a configuration requires a very efficient angular momentum transfer. Or, it can form a thick, differentially rotating, self-gravitating disk, which is associated with an X-ray-infrared continuum and Seyfert-level luminosity, anisotropic emission, massive bi-conical outflows, and will be a powerful source of the Ly-alpha emission. We propose to perform radiative transfer in the continuum and hydrogen lines (e.g., Lyman and Balmer), using our models of proto-AGN, and do it on-the-fly -- concurrently with the collapse. We shall test the path to quasistellar and disky proto-AGN, produce first synthetic spectra of proto-AGN, and address the issue of feasibility of their detection by the JWST. Finally, we shall develop the strategy of searching for these objects at high- and low-z, based on the specific features in the spectra and associated variability.
NASA Astrophysics Data System (ADS)
Furuya, M.
2003-12-01
Miyakejima volcano is a basaltic strato volcano island on the eastern edge of the Philippine Sea Plate, and was undergoing a number of eruption activities over the past centuries. In July-August 2000, the Miyakejima volcano underwent a caldera collapse, prompting many modern geodetic and geophysical measurements (e.g., Geshi et al. 2002; Furuya et al. 2003). The observation results on the pre-caldera-collapse stages are, however, limitted. Were there any precursory secular subsidence before the collapse? Though Miyazaki (1990) reported a secular subsidence at the Miyakejima, using leveling technique, there are no documented reports, to my knowledge, which employed radar interferometry to examine the ground displacements at Miyakejima. Here I will report on the results derived from the radar interferometry at Miyakejima volcano. I chose JERS-1 data (L-band HH) for the analysis, so that I could get rid of the loss of coherence; most of the Miyakejima is covered with vegetation. To remove the topographic fringes as well as to re-estimate the spatial baseline data (Rosen et al. 1996), I employed 10-meter resolution digital elevation map derived by Geographical Survey Institute, Japan. I could generate 24 differential interferograms at the time of writing this text. However, I do not yet recognize any significant "signals" that can be discriminated with the atmospheric "noise". There appears to be no specific subsidence pattern, which are detected in a number of other volcanos in the world (e.g., Lu et al. 2002; Yarai et al. 2002; Okuyama et al. 2002). I am going to show a stacked interferogram like that in Fujiwara et al. (1998) and to examine the existence of volcanic signals.
Can we use GIS as a historic city's heritage management system? The case study of Hermoupolis-Syros
NASA Astrophysics Data System (ADS)
Chatzigrigoriou, Pavlos
2016-08-01
Because of the severe economic crisis, Greek historic heritage is in risk. Historic cities as Hermoupolis, were dealing with this risk years before the crisis. The current situation needed drastic action, with innovative low cost ideas. The historic building stock in Hermoupolis counts more than 1.200 buildings. By recording the pathology, the GIS and the D.B.M.S "HERMeS" with the appropriate algorithms identify the historic buildings in risk. In the first application of the system those buildings were 160, with a rate of 2.4 historic buildings collapse every year. The prioritization of interventions in these buildings is critical, as it is not possible to lower the collapsing risk simultaneously in 160 buildings, but neither the interventions can be judged solely by the reactions of local residents. Bearing in mind the fact that one, given the current economic conditions, has to make best use of the funds for this purpose, it is proved that the relevant decision requires multi criteria analysis method of prioritizing interventions. Specifically, the analysis takes into account the risk of collapse of each building, but in connection with a series of other variables, such as the role of building in Hermoupolis, the position in the city, the influence in other areas of interest, the social impact etc. The final result is a catalogue with historic buildings and a point system, which reflects the risk of loosing the building. The point system leads to a Conservation Plan for the city of Hermoupolis, giving the hierarchy of interventions that must be done in order to save the maximum architecture heritage with the minimum funds, postponing the risk of collapsing. In 2015, EU and EUROPA-NOSTRA awarded the above-mentioned project in the category of "Research and Digitization".
Support Needs of the Survivors of the August 17, 1999 Earthquake in Turkey
ERIC Educational Resources Information Center
Kasapoglu, Aytul; Ecevit, Yildiz; Ecevit, Mehmet
2004-01-01
This paper aims to present a sociological analysis of social support related to disaster sociology in general and earthquakes specifically. The analysis is based on field research conducted a year after the 17 August 1999 East Marmara earthquake where 18,000 people died; 50,000 people injured; 5000 buildings collapsed and 340,000 of them damaged;…
The role of bank collapse on tidal creek ontogeny: A novel process-based model for bank retreat
NASA Astrophysics Data System (ADS)
Gong, Zheng; Zhao, Kun; Zhang, Changkuan; Dai, Weiqi; Coco, Giovanni; Zhou, Zeng
2018-06-01
Bank retreat in coastal tidal flats plays a primary role on the planimetric shape of tidal creeks and is commonly driven by both flow-induced bank erosion and gravity-induced bank collapse. However, existing modelling studies largely focus on bank erosion and overlook bank collapse. We build a bank retreat model coupling hydrodynamics, bank erosion and bank collapse. To simulate the process of bank collapse, a stress-deformation model is utilized to calculate the stress variation of bank soil after bank erosion, and the Mohr-Coulomb failure criterion is then applied to evaluate the stability of the tidal creek bank. Results show that the bank failure process can be categorized into three stages, i.e., shear failure at the bank toe (stage I), tensile failure on the bank top (stage II), and sectional cracking from the bank top to the toe (stage III). With only bank erosion, the planimetric shapes of tidal creeks are funneled due to the gradually seaward increasing discharge. In contrast to bank erosion, bank collapse is discontinuous, and the contribution of bank collapse to bank retreat can reach 85%, highlighting that the expansion of tidal creeks can be dominated by bank collapse process. The planimetric shapes of tidal creeks are funneled with a much faster expansion rate when bank collapse is considered. Overall, this study makes a further step toward more physical and realistic simulation of bank retreat in estuarine and coastal settings and the developed bank collapse module can be readily included in other morphodynamic models.
NASA Astrophysics Data System (ADS)
Huang, Chien-Jung; White, Susan M.; Huang, Shao-Ching; Mallya, Sanjay; Eldredge, Jeff D.
2014-11-01
Obstructive sleep apnea(OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the airway of OSA patients are prone to collapse under the low pressure loads incurred during breathing. The numerical simulation with patient-specific upper airway model can provide assistance for diagnosis and treatment assessment. The eventual goal of this research is the development of numerical tool for air-tissue interactions in the upper airway of patients with OSA. This tool is expected to capture collapse of the airway in respiratory flow conditions, as well as the effects of various treatment protocols. Here, we present our ongoing progress toward this goal. A sharp-interface embedded boundary method is used on Cartesian grids for resolving the air-tissue interface in the complex patient-specific airway geometries. For the structure simulation, a cut-cell FEM is used. Non-linear Green strains are used for properly resolving the large tissue displacements in the soft palate structures. The fluid and structure solvers are strongly coupled. Preliminary results will be shown, including flow simulation inside the 3D rigid upper airway of patients with OSA, and several validation problem for the fluid-structure coupling.
Gravitational Collapse with Heat Flux and Gravitational Waves
NASA Astrophysics Data System (ADS)
Ahmad, Zahid; Ahmed, Qazi Zahoor; Awan, Abdul Sami
2013-10-01
In this paper, we investigated the cylindrical gravitational collapse with heat flux by considering the appropriate geometry of the interior and exterior spacetimes. For this purpose, we matched collapsing fluid to an exterior containing gravitational waves.The effects of heat flux on gravitational collapse are investigated and matched with the results obtained by Herrera and Santos (Class. Quantum Gravity 22:2407, 2005).
NASA Astrophysics Data System (ADS)
Petit, Olivier; Kuper, Marcel; López-Gunn, Elena; Rinaudo, Jean-Daniel; Daoudi, Ali; Lejars, Caroline
2017-09-01
The aim of this paper is to investigate the notion of collapse of agricultural groundwater economies using the adaptive-cycle analytical framework. This framework was applied to four case studies in southern Europe and North Africa to question and discuss the dynamics of agricultural groundwater economies. In two case studies (Saiss in Morocco and Clain basin in France), the imminent physical or socio-economic collapse was a major concern for stakeholders and the early signs of collapse led to re-organization of the groundwater economy. In the other two cases (Biskra in Algeria and Almeria in Spain), collapse was either not yet a concern or had been temporarily resolved through increased efficiency and access to additional water resources. This comparative analysis shows the importance of taking the early signs of collapse into account. These signs can be either related to resource depletion or to environmental and socio-economic impacts. Beyond these four case studies, the large number of groundwater economies under threat in (semi-)arid areas should present a warning regarding their possible collapse. Collapse can have severe and irreversible consequences in some cases, but it can also mean new opportunities and changes.
NASA Astrophysics Data System (ADS)
Yilmaz, Isik; Keskin, Inan; Marschalko, Marian; Bednarik, Martin
2010-05-01
This study compares the GIS based collapse susceptibility mapping methods such as; conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) applied in gypsum rock masses in Sivas basin (Turkey). Digital Elevation Model (DEM) was first constructed using GIS software. Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index- TWI, stream power index- SPI, Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from CP, LR and ANN models, and they were then compared by means of their validations. Area Under Curve (AUC) values obtained from all three methodologies showed that the map obtained from ANN model looks like more accurate than the other models, and the results also showed that the artificial neural networks is a usefull tool in preparation of collapse susceptibility map and highly compatible with GIS operating features. Key words: Collapse; doline; susceptibility map; gypsum; GIS; conditional probability; logistic regression; artificial neural networks.
The effect of giant lateral collapses on magma pathways and the location of volcanism.
Maccaferri, Francesco; Richter, Nicole; Walter, Thomas R
2017-10-23
Flank instability and lateral collapse are recurrent processes during the structural evolution of volcanic edifices, and they affect and are affected by magmatic activity. It is known that dyke intrusions have the potential to destabilise the flanks of a volcano, and that lateral collapses may change the style of volcanism and the arrangement of shallow dykes. However, the effect of a large lateral collapse on the location of a new eruptive centre remains unclear. Here, we use a numerical approach to simulate the pathways of magmatic intrusions underneath the volcanic edifice, after the stress redistribution resulting from a large lateral collapse. Our simulations are quantitatively validated against the observations at Fogo volcano, Cabo Verde. The results reveal that a lateral collapse can trigger a significant deflection of deep magma pathways in the crust, favouring the formation of a new eruptive centre within the collapse embayment. Our results have implications for the long-term evolution of intraplate volcanic ocean islands.
Four tails problems for dynamical collapse theories
NASA Astrophysics Data System (ADS)
McQueen, Kelvin J.
2015-02-01
The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss the problem without considering the more severe formulations. Here I distinguish four distinct tails problems. The first (bare tails problem) and second (structured tails problem) exist in the literature. I argue that while the first is a pseudo-problem, the second has not been adequately addressed. The third (multiverse tails problem) reformulates the second to account for recently discovered dynamical consequences of collapse. Finally the fourth (tails problem dilemma) shows that solving the third by replacing the Gaussian with a non-Gaussian collapse function introduces new conflict with relativity theory.
Long gamma-ray bursts and core-collapse supernovae have different environments.
Fruchter, A S; Levan, A J; Strolger, L; Vreeswijk, P M; Thorsett, S E; Bersier, D; Burud, I; Castro Cerón, J M; Castro-Tirado, A J; Conselice, C; Dahlen, T; Ferguson, H C; Fynbo, J P U; Garnavich, P M; Gibbons, R A; Gorosabel, J; Gull, T R; Hjorth, J; Holland, S T; Kouveliotou, C; Levay, Z; Livio, M; Metzger, M R; Nugent, P E; Petro, L; Pian, E; Rhoads, J E; Riess, A G; Sahu, K C; Smette, A; Tanvir, N R; Wijers, R A M J; Woosley, S E
2006-05-25
When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration gamma-ray burst. One would then expect that these long gamma-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the gamma-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long gamma-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.
Dynamics of bubble collapse under vessel confinement in 2D hydrodynamic experiments
NASA Astrophysics Data System (ADS)
Shpuntova, Galina; Austin, Joanna
2013-11-01
One trauma mechanism in biomedical treatment techniques based on the application of cumulative pressure pulses generated either externally (as in shock-wave lithotripsy) or internally (by laser-induced plasma) is the collapse of voids. However, prediction of void-collapse driven tissue damage is a challenging problem, involving complex and dynamic thermomechanical processes in a heterogeneous material. We carry out a series of model experiments to investigate the hydrodynamic processes of voids collapsing under dynamic loading in configurations designed to model cavitation with vessel confinement. The baseline case of void collapse near a single interface is also examined. Thin sheets of tissue-surrogate polymer materials with varying acoustic impedance are used to create one or two parallel material interfaces near the void. Shadowgraph photography and two-color, single-frame particle image velocimetry quantify bubble collapse dynamics including jetting, interface dynamics and penetration, and the response of the surrounding material. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading.''
One-dimensional bubble model of pulsed discharge in water
NASA Astrophysics Data System (ADS)
Lu, XinPei
2007-09-01
In this paper, a one-dimensional bubble model of pulsed discharge in water is presented. With a total input energy of 0.63J, the simulation results show that when the bubble collapses at the center of the bubble, the plasma pressure oscillates strongly. It oscillates between 800 and 1150atm with an oscillation frequency of about 6.9MHz, while at r =R/2 (R: bubble radius), the gas velocity oscillates intensely at the same frequency. It oscillates between -235 and 229m/s when the bubble radius reaches its minimum. But it does not oscillate at r =R because of the inertia of the surrounding water. The bubble collapses and reexpands with almost the same speed as that of the zero-dimensional (0D) model. This further confirms why the shock wave pressure from the 0D mode has a good agreement with the experimental results since the shock wave pressure is only determined by the bubble wall velocity v(R ).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schramm, D.N.
1987-10-01
Supernova 1987A is reviewed with emphasis on the neutrino observations. It is shown that the results fit well with the expectations for neutrino temperatures (T approx. 4epsilon/sub 0/4.5 MeV) and total energy emitted (2epsilon/sub 0/4 x 10/sup 53/ ergs). It is argued that the detection tends to favor collapse models that yield emission for 10 second timescales with a 1epsilon/sub 0/2 second early accretion phase followed by Kelvin-Helmholtz cooling as opposed to prompt shocks with the immediate onset of cooling. It is also argued that the probable detection of one or more electron scattering event favors a superthermal tail atmore » high energies. Neutrino mass limits and flavor limits are comparable to laboratory experiments. An estimate for future collapse rates in our galaxy of 1/7 year is made based on nucleosynthesis yields. The supernova also has eliminated many axion and majoron models. 69 refs., 3 figs., 27 tabs.« less
Collapse characteristics of hydroformed tubes
NASA Astrophysics Data System (ADS)
Kim, Young-Suk; Lee, Young-Moon; Kim, Cheol; Hwang, Sang-Moo
2002-07-01
Tube hydroforming technology (THF) has been extensively applied to auto-body structural members such as the engine cradle and side member in order to meet the urgent need for vehicle weight and cost reduction as well as high quality for collision accidents. In this paper, the mechanical properties for hydroformed tubes with various bulging strians under the plane strain mode are experimentally investigated. Axial compression tests for hydroformed tubes are performed to investigate the collapse load and collapse absorption capacity through the collapse load-displacement curves. Moreover, the collapse absorption capacities are compared and discussed among as-received, hydroformed, and press formed tubes. Results demonstrate that the hydroformed tubes show higher collapse absorption capability in comparison with the as-received tube and the press formed tube because of its high yield strength due to strain hardening.
Spherical collapse in chameleon models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brax, Ph.; Rosenfeld, R.; Steer, D.A., E-mail: brax@spht.saclay.cea.fr, E-mail: rosenfel@ift.unesp.br, E-mail: daniele.steer@apc.univ-paris7.fr
2010-08-01
We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in themore » presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity.« less
Variation of the temperature coefficient of collapse field in bismuth-based bubble garnets
NASA Technical Reports Server (NTRS)
Fratello, V. J.; Pierce, R. D.; Brandle, C. D.
1985-01-01
An approximation to the collapse-field formula is used to show its dependence on magnetization and wall energy and the effect of additions of Gd, Sm, and Eu on 1-micron Bi:YIG bubble materials. The collapse field, magnetization, and wall energy are fitted to quadratic functions of temperature from -50 to 150 C. It is shown that the addition of the various classes of rare earths reduces the temperature derivative of the collapse field in Bi:YIG. Gd influences the collapse field through the magnetization, Sm affects it through the domain wall energy, and Eu does both. The singular magnetic properties of Eu result in the most nearly constant temperature dependence of the collapse field and the best match to a barium-ferrite bias magnite.
Parameterizing the Supernova Engine and Its Effect on Remnants and Basic Yields
NASA Astrophysics Data System (ADS)
Fryer, Chris L.; Andrews, Sydney; Even, Wesley; Heger, Alex; Safi-Harb, Samar
2018-03-01
Core-collapse supernova science is now entering an era in which engine models are beginning to make both qualitative and, in some cases, quantitative predictions. Although the evidence in support of the convective engine for core-collapse supernova continues to grow, it is difficult to place quantitative constraints on this engine. Some studies have made specific predictions for the remnant distribution from the convective engine, but the results differ between different groups. Here we use a broad parameterization for the supernova engine to understand the differences between distinct studies. With this broader set of models, we place error bars on the remnant mass and basic yields from the uncertainties in the explosive engine. We find that, even with only three progenitors and a narrow range of explosion energies, we can produce a wide range of remnant masses and nucleosynthetic yields.
Axial collapse characteristics of CFRP composites with stacking conditions under the hygrothermal
NASA Astrophysics Data System (ADS)
Yang, Yongjun; Choi, Juho; Hwang, Woochae; Son, Jaekyung; Kook, Hyun; Im, Kwanghee; Sim, Jaeki; Yang, Inyoung
2012-04-01
CFRP composite material has superior specific strength and rigidity compared to metallic material, and is widely adopted in the various fields. Exceptional corrosion resistance enables the acceptance in maritime structural members such as ship and oildrilling machineries. However, CFRP composite material has the weakness in hygrothermal environment and crash environment. Especially, moisture ingress into composite material under hygrothermal environment can change molecule arrangement and chemical properties. In addition, interface characteristics and component material properties can be degraded. An experimental investigation was carried out to study the crash evaluations of CFRP composites to dynamic crushing by impact loading. We have made a collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed specimen. As a result, the effect of moisture absorption and impact loads of approximately 30~50% reduction in strength are shown.
Axial collapse characteristics of CFRP composites with stacking conditions under the hygrothermal
NASA Astrophysics Data System (ADS)
Yang, Yongjun; Choi, Juho; Hwang, Woochae; Son, Jaekyung; Kook, Hyun; Im, Kwanghee; Sim, Jaeki; Yang, Inyoung
2011-11-01
CFRP composite material has superior specific strength and rigidity compared to metallic material, and is widely adopted in the various fields. Exceptional corrosion resistance enables the acceptance in maritime structural members such as ship and oildrilling machineries. However, CFRP composite material has the weakness in hygrothermal environment and crash environment. Especially, moisture ingress into composite material under hygrothermal environment can change molecule arrangement and chemical properties. In addition, interface characteristics and component material properties can be degraded. An experimental investigation was carried out to study the crash evaluations of CFRP composites to dynamic crushing by impact loading. We have made a collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed specimen. As a result, the effect of moisture absorption and impact loads of approximately 30~50% reduction in strength are shown.
Physicochemical properties of chars at different treatment temperatures.
Kim, Sung Su; Kang, Youn Suk; Lee, Hyun Dong; Kim, Jae Kwan; Hong, Sung Chang
2012-02-01
In this study, the physicochemical properties of the char of Indonesian SM coal following heat treatment at various temperatures were evaluated using X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and morphological and specific surface area analysis. Based on these analyses, heat treatment of coal was determined to be the most effective in increasing the coal rank. In the XPS analysis, the C-O and C-O-C groups and quaternary-N species were found to be of a lower grade coal when the pretreatment temperature decreased, meanwhile the C-C group and pyridinic species increased. In the FT-IR analysis, the collapse of the C-O and C-O-C group was observed due to the collapse of the ether group. In SEM and Brunauer-Emmett-Teller (BET) analysis, a decrease in the ether group was shown to be accompanied with the formation of micropores.
Earthquake Damping Device for Steel Frame
NASA Astrophysics Data System (ADS)
Zamri Ramli, Mohd; Delfy, Dezoura; Adnan, Azlan; Torman, Zaida
2018-04-01
Structures such as buildings, bridges and towers are prone to collapse when natural phenomena like earthquake occurred. Therefore, many design codes are reviewed and new technologies are introduced to resist earthquake energy especially on building to avoid collapse. The tuned mass damper is one of the earthquake reduction products introduced on structures to minimise the earthquake effect. This study aims to analyse the effectiveness of tuned mass damper by experimental works and finite element modelling. The comparisons are made between these two models under harmonic excitation. Based on the result, it is proven that installing tuned mass damper will reduce the dynamic response of the frame but only in several input frequencies. At the highest input frequency applied, the tuned mass damper failed to reduce the responses. In conclusion, in order to use a proper design of damper, detailed analysis must be carried out to have sufficient design based on the location of the structures with specific ground accelerations.
NASA Astrophysics Data System (ADS)
Mukherji, Debashish; Marques, Carlos M.; Kremer, Kurt
2018-01-01
In this work we discuss two mirror but distinct phenomena of polymer paradoxical properties in mixed solvents: co-non-solvency and co-solvency. When a polymer collapses in a mixture of two miscible good solvents the phenomenon is known as co-non-solvency, while co-solvency is a phenomenon that is associated with the swelling of a polymer in poor solvent mixtures. A typical example of co-non-solvency is provided by poly(N-isopropylacrylamide) in aqueous alcohol, while poly(methyl methacrylate) in aqueous alcohol shows co-solvency. We discuss these two phenomena to compare their microscopic origins and show that both can be understood within generic universal concepts. A broad range of polymers is therefore expected to exhibit these phenomena where specific chemical details play a lesser role than the appropriate combination of interactions between the trio of molecular components.
Protostellar collapse in a self-gravitating sheet
NASA Technical Reports Server (NTRS)
Hartmann, Lee; Boss, Alan; Calvet, Nuria; Whitney, Barbara
1994-01-01
We present preliminary calculations of protostellar cloud collapse starting from an isothermal, self-gravitating gaseous layer in hydrostatic equilibrium. This gravitationally unstable layer collapses into a flattened or toroidal density distribution, even in the absence of rotation or magnetic fields. We suggest that the flat infalling envelope recently observed in HL Tau by Hayashi et al.is the result of collapse from an initially nonspherical layer. We also speculate that the later evolution of such a flattened, collapsing envelope can produce a structure similar to the 'flared disk' invoked by Kenyon and Hartmann to explain the infrared excesses of many T Tauri stars.
Atomistic modeling of shock-induced void collapse in copper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davila, L P; Erhart, P; Bringa, E M
2005-03-09
Nonequilibrium molecular dynamics (MD) simulations show that shock-induced void collapse in copper occurs by emission of shear loops. These loops carry away the vacancies which comprise the void. The growth of the loops continues even after they collide and form sessile junctions, creating a hardened region around the collapsing void. The scenario seen in our simulations differs from current models that assume that prismatic loop emission is responsible for void collapse. We propose a new dislocation-based model that gives excellent agreement with the stress threshold found in the MD simulations for void collapse as a function of void radius.
NASA Astrophysics Data System (ADS)
Gilbert, Adrien; Leinss, Silvan; Evans, Steve; Tian, Lide; Kääb, Andreas; Kargel, Jeffrey; Gimbert, Florent; Chao, Wei-An; Gascoin, Simon; Bueler, Yves; Berthier, Etienne; Yao, Tandong; Huggel, Christian; Farinotti, Daniel; Brun, Fanny; Guo, Wanqin; Leonard, Gregory
2017-04-01
In northwestern Tibet (34.0°N, 82.2°E) near lake Aru Co, the entire ablation area of an unnamed glacier (Aru-1) suddenly collapsed on 17 July 2016 and transformed into a mass flow that ran out over a distance of over 8 km, killing nine people and hundreds of cattle. Remarkably, a second glacier detachment with similar characteristics (Aru-2) took place 2.6 km south of the July event on 21 September 2016. These two events are unique in several aspects: their massive volumes (66 and 83 Mm3 respectively), the low slope angles (<13°) of the failed glacier sections, the maximum avalanche speeds (> 200 km h-1) and their close timing within two months. The only similar event currently documented is the 2002 Kolka Glacier mass flow (Caucasus Mountains). The uncommon occurrence of such large glacier failures suggest that such events require very specific conditions that could be linked to glacier thermal regime, bedrock lithology and morphology, geothermal activity or a particular climate setting. Using field and remote sensing observations, retrospective climate analysis, mass balance and thermo-mechanical modeling of the two glaciers in Tibet, we investigate the processes involved in the twin collapses. It appears that both, mostly cold-based glaciers, started to surge about 7-8 years ago, possibly in response to a long period of positive mass balance (1995-2005) followed by a sustained increase of melt water delivery to the glacier bed in the polythermal lower accumulation zone (1995-2016). Inversion of friction conditions at the base of the glacier constrained by surface elevation change rate for both glaciers shows a zone of very low basal friction progressively migrating downward until the final collapse. We interpret this to be the signature of the presence of high-pressure water dammed at the bed by the glacier's frozen periphery and toe. Large areas of low friction at the bed led to high shear stresses along the frozen side walls as evident in surface ice cracking patterns observed on satellite imagery. This process progressively weakened the ice, until the final rupture releasing both water and ice into a high-speed long-runout glacier avalanche. We suggest that the combination of increasing temperature and precipitation in this area of the Tibetan Plateau is the probable driver of the twin collapses. However, such an event occurs only for a very specific configuration of thermal regime, glacier morphology and probably other characteristics that may include the fine-grained sedimentary lithology of the bed and/or hydrothermal activity beneath the glaciers.
NASA Astrophysics Data System (ADS)
Salvage, R. O.; Neuberg, J. W.
2016-09-01
Prior to many volcanic eruptions, an acceleration in seismicity has been observed, suggesting the potential for this as a forecasting tool. The Failure Forecast Method (FFM) relates an accelerating precursor to the timing of failure by an empirical power law, with failure being defined in this context as the onset of an eruption. Previous applications of the FFM have used a wide variety of accelerating time series, often generating questionable forecasts with large misfits between data and the forecast, as well as the generation of a number of different forecasts from the same data series. Here, we show an alternative approach applying the FFM in combination with a cross correlation technique which identifies seismicity from a single active source mechanism and location at depth. Isolating a single system at depth avoids additional uncertainties introduced by averaging data over a number of different accelerating phenomena, and consequently reduces the misfit between the data and the forecast. Similar seismic waveforms were identified in the precursory accelerating seismicity to dome collapses at Soufrière Hills volcano, Montserrat in June 1997, July 2003 and February 2010. These events were specifically chosen since they represent a spectrum of collapse scenarios at this volcano. The cross correlation technique generates a five-fold increase in the number of seismic events which could be identified from continuous seismic data rather than using triggered data, thus providing a more holistic understanding of the ongoing seismicity at the time. The use of similar seismicity as a forecasting tool for collapses in 1997 and 2003 greatly improved the forecasted timing of the dome collapse, as well as improving the confidence in the forecast, thereby outperforming the classical application of the FFM. We suggest that focusing on a single active seismic system at depth allows a more accurate forecast of some of the major dome collapses from the ongoing eruption at Soufrière Hills volcano, and provides a simple addition to the well-used methodology of the FFM.
Dalager, Tina; Bredahl, Thomas G V; Pedersen, Mogens T; Boyle, Eleanor; Andersen, Lars L; Sjøgaard, Gisela
2015-10-01
The aim was to determine the effect of one weekly hour of specific strength training within working hours, performed with the same total training volume but with different training frequencies and durations, or with different levels of supervision, on compliance, muscle health and performance, behavior and work performance. In total, 573 office workers were cluster-randomized to: 1 WS: one 60-min supervised session/week, 3 WS: three 20-min supervised sessions/week, 9 WS: nine 7-min supervised sessions/week, 3 MS: three 20-min sessions/week with minimal supervision, or REF: a reference group without training. Outcomes were diary-based compliance, total training volume, muscle performance and questionnaire-based health, behavior and work performance. Comparisons were made among the WS training groups and between 3 WS and 3 MS. If no difference, training groups were collapsed (TG) and compared with REF. Results demonstrated similar degrees of compliance, mean(range) of 39(33-44)%, and total training volume, 13.266(11.977-15.096)kg. Musculoskeletal pain in neck and shoulders were reduced with approx. 50% in TG, which was significant compared with REF. Only the training groups improved significantly their muscle strength 8(4-13)% and endurance 27(12-37)%, both being significant compared with REF. No change in workability, productivity or self-rated health was demonstrated. Secondary analysis showed exercise self-efficacy to be a significant predictor of compliance. Regardless of training schedule and supervision, similar degrees of compliance were shown together with reduced musculoskeletal pain and improved muscle performance. These findings provide evidence that a great degree of flexibility is legitimate for companies in planning future implementation of physical exercise programs at the workplace. ClinicalTrials.gov, number NCT01027390. Copyright © 2015 Elsevier Ltd. All rights reserved.
White, Rebecca M B; Deardorff, Julianna; Liu, Yu; Gonzales, Nancy A
2013-12-01
To examine the role of neighborhood contextual variation in the putative association between pubertal timing and internalizing and externalizing symptoms among Mexican-origin boys. In a sample of seventh-grade Mexican-origin boys (N = 353; x¯age=12.8years) we assessed a range of secondary sexual characteristics, internalizing, and externalizing symptoms. Reports on all secondary sexual characteristics were collapsed and age-standardized to represent total pubertal timing. We also distinguished between the timing of physical changes driven by adrenal versus gonadal maturation. Boys' residential addresses were geocoded and American Community Survey data were used to describe neighborhoods along two dimensions: ethnic concentration and socioeconomic disadvantage. Three years later (in 10th grade) we re-assessed internalizing and externalizing symptoms. We examined the moderating influence of neighborhood ethnic concentration and neighborhood socioeconomic disadvantage on the prospective associations between puberty timing (total, gonadal, adrenal) and internalizing and externalizing symptoms. Earlier total pubertal timing predicted increases in externalizing symptoms, but only when Mexican-origin boys lived in neighborhoods low on ethnic concentration. Total timing results for externalizing symptoms were replicated for adrenal timing. Furthermore, early adrenal timing predicted increases in internalizing symptoms, but again, only when boys lived in neighborhoods low on ethnic concentration. No effects were observed for gonadal timing specifically. Early pubertal timing, especially advanced physical changes initiated and regulated by adrenal maturation, have important implications for Mexican-origin boys' internalizing and externalizing symptoms, but these implications depend on neighborhood characteristics. Ethnically concentrated neighborhoods are protective for early-maturing Mexican-origin boys. Copyright © 2013 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Model for quantum effects in stellar collapse
NASA Astrophysics Data System (ADS)
Arderucio-Costa, Bruno; Unruh, William G.
2018-01-01
We present a simple model for stellar collapse and evaluate the quantum mechanical stress-energy tensor to argue that quantum effects do not play an important role for the collapse of astrophysical objects.
González-Delgado, Antonio M; Pérez-Morales, Marta; Giner-Casares, Juan J; Muñoz, Eulogia; Martín-Romero, María T; Camacho, Luis
2009-10-08
In this paper, we study the collapse of a mixed insoluble monolayer formed by a cationic matrix, dioctadecyl-dimethylammonium bromide (DOMA), and a tetra-anionic porphyrin, tetrakis(4-sulfonatophenyl)porphyrin (TSPP), in a molar ratio TSPP/DOMA = 1:4. During the collapse of this system, we visualized the formation of circular domains consisting exclusively of trilayer, although the domains coalescence was not observed. The coexistence of trilayer and monolayer at the final step of the collapse cannot be interpreted exclusively in terms of a thermodynamic phase equilibrium, intervening as an additional factor the anisotropic line tension of the domain. A high line tension implies a high resistance to the domain deformation, and the anisotropy of the line tension implies the lack of coalescence between these domains, which has been experimentally observed by Brewster angle microscopy for us. Under these circumstances, the domains of collapsed material could enclose monolayer regions where the local surface pressure drops thus stopping the collapse process. The collapse of the TSPP/DOMA system is reversible, that is, the return of the three-dimensional material to the monolayer fits into a simple kinetics according to the nucleation-growth-collision theory. As for the collapse, the reverse process is also affected by the line tension of the domains. This paper relates the high line tension and the anisotropic line tension of a given domains with the reversible nature of the collapse process.
Source-Type Inversion of the September 03, 2017 DPRK Nuclear Test
NASA Astrophysics Data System (ADS)
Dreger, D. S.; Ichinose, G.; Wang, T.
2017-12-01
On September 3, 2017, the DPRK announced a nuclear test at their Punggye-ri site. This explosion registered a mb 6.3, and was well recorded by global and regional seismic networks. We apply the source-type inversion method (e.g. Ford et al., 2012; Nayak and Dreger, 2015), and the MDJ2 seismic velocity model (Ford et al., 2009) to invert low frequency (0.02 to 0.05 Hz) complete three-component waveforms, and first-motion polarities to map the goodness of fit in source-type space. We have used waveform data from the New China Digital Seismic Network (BJT, HIA, MDJ), Korean Seismic Network (TJN), and the Global Seismograph Network (INCN, MAJO). From this analysis, the event discriminates as an explosion. For a pure explosion model, we find a scalar seismic moment of 5.77e+16 Nm (Mw 5.1), however this model fails to fit the large Love waves registered on the transverse components. The best fitting complete solution finds a total moment of 8.90e+16 Nm (Mw 5.2) that is decomposed as 53% isotropic, 40% double-couple, and 7% CLVD, although the range of isotropic moment from the source-type analysis indicates that it could be as high as 60-80%. The isotropic moment in the source-type inversion is 4.75e16 Nm (Mw 5.05). Assuming elastic moduli from model MDJ2 the explosion cavity radius is approximately 51m, and the yield estimated using Denny and Johnson (1991) is 246kt. Approximately 8.5 minutes after the blast a second seismic event was registered, which is best characterized as a vertically closing horizontal crack, perhaps representing the partial collapse of the blast cavity, and/or a service tunnel. The total moment of the collapse is 3.34e+16 Nm (Mw 4.95). The volumetric moment of the collapse is 1.91e+16 Nm, approximately 1/3 to 1/2 of the explosive moment. German TerraSAR-X observations of deformation (Wang et al., 2017) reveal large radial outward motions consistent with expected deformation for an explosive source, but lack significant vertical motions above the shot point. Forward elastic half-space modeling of the static deformation field indicates that the combination of the explosion and collapse explains the observed deformation to first order. We will present these results as well as a two-step inversion of the explosion in an attempt to better resolve the nature of the non-isotropic radiation of the event.
Void collapse under distributed dynamic loading near material interfaces
NASA Astrophysics Data System (ADS)
Shpuntova, Galina; Austin, Joanna
2012-11-01
Collapsing voids cause significant damage in diverse applications from biomedicine to underwater propulsion to explosives. While shock-induced void collapse has been studied extensively, less attention has been devoted to stress wave loading, which will occur instead if there are mechanisms for wave attenuation or if the impact velocity is relatively low. A set of dynamic experiments was carried out in a model experimental setup to investigate the effect of acoustic heterogeneities in the surrounding medium on void collapse. Two tissue-surrogate polymer materials of varying acoustic properties were used to create flowfield geometries involving a boundary and a void. A stress wave, generated by projectile impact, triggered void collapse in the gelatinous polymer medium. When the length scales of features in the flow field were on the same order of magnitude as the stress wave length scale, the presence of the boundary was found to affect the void collapse process relative to collapse in the absence of a boundary. This effect was quantified for a range of geometries and impact conditions using a two-color, single-frame particle image velocimetry technique. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading'' with Prof. Henning Winter as Program Manager.
NASA Astrophysics Data System (ADS)
Yilmaz, Işik; Marschalko, Marian; Bednarik, Martin
2013-04-01
The paper presented herein compares and discusses the use of bivariate, multivariate and soft computing techniques for collapse susceptibility modelling. Conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) models representing the bivariate, multivariate and soft computing techniques were used in GIS based collapse susceptibility mapping in an area from Sivas basin (Turkey). Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index (TWI), stream power index (SPI), Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from the models, and they were then compared by means of their validations. However, Area Under Curve (AUC) values obtained from all three models showed that the map obtained from soft computing (ANN) model looks like more accurate than the other models, accuracies of all three models can be evaluated relatively similar. The results also showed that the conditional probability is an essential method in preparation of collapse susceptibility map and highly compatible with GIS operating features.
Static inflation and deflation pressure–volume curves from excised lungs of marine mammals
Fahlman, Andreas; Loring, Stephen H.; Ferrigno, Massimo; Moore, Colby; Early, Greg; Niemeyer, Misty; Lentell, Betty; Wenzel, Frederic; Joy, Ruth; Moore, Michael J.
2011-01-01
SUMMARY Excised lungs from eight marine mammal species [harp seal (Pagophilus groenlandicus), harbor seal (Phoca vitulina), gray seal (Halichoerus grypush), Atlantic white-sided dolphin (Lagenorhynchus acutus), common dolphin (Delphinus delphis), Risso's dolphin (Grampus griseus), long-finned pilot whale (Globicephala melas) and harbor porpoise (Phocoena phocoena)] were used to determine the minimum air volume of the relaxed lung (MAV, N=15), the elastic properties (pressure–volume curves, N=24) of the respiratory system and the total lung capacity (TLC). Our data indicate that mass-specific TLC (sTLC, l kg–1) does not differ between species or groups (odontocete vs phocid) and agree with that estimated (TLCest) from body mass (Mb) by applying the equation: TLCest=0.135 Mb0.92. Measured MAV was on average 7% of TLC, with a range from 0 to 16%. The pressure–volume curves were similar among species on inflation but diverged during deflation in phocids in comparison with odontocetes. These differences provide a structural basis for observed species differences in the depth at which lungs collapse and gas exchange ceases. PMID:22031747
Bound states of spin-half particles in a static gravitational field close to the black hole field
NASA Astrophysics Data System (ADS)
Spencer-Smith, A. F.; Gossel, G. H.; Berengut, J. C.; Flambaum, V. V.
2013-03-01
We consider the bound-state energy levels of a spin-1/2 fermion in the gravitational field of a near-black hole object. In the limit that the metric of the body becomes singular, all binding energies tend to the rest-mass energy (i.e. total energy approaches zero). We present calculations of the ground state energy for three specific interior metrics (Florides, Soffel and Schwarzschild) for which the spectrum collapses and becomes quasi-continuous in the singular metric limit. The lack of zero or negative energy states prior to this limit being reached prevents particle pair production occurring. Therefore, in contrast to the Coulomb case, no pairs are produced in the non-singular static metric. For the Florides and Soffel metrics the singularity occurs in the black hole limit, while for the Schwarzschild interior metric it corresponds to infinite pressure at the centre. The behaviour of the energy level spectrum is discussed in the context of the semi-classical approximation and using general properties of the metric.
Fahlman, Andreas; Loring, Stephen H.; Johnson, Shawn P.; Haulena, Martin; Trites, Andrew W.; Fravel, Vanessa A.; Van Bonn, William G.
2014-01-01
We examined structural properties of the marine mammal respiratory system, and tested Scholander's hypothesis that the chest is highly compliant by measuring the mechanical properties of the respiratory system in five species of pinniped under anesthesia (Pacific harbor seal, Phoca vitulina; northern elephant seal, Mirounga angustirostris; northern fur seal Callorhinus ursinus; California sea lion, Zalophus californianus; and Steller sea lion, Eumetopias jubatus). We found that the chest wall compliance (CCW) of all five species was greater than lung compliance (airways and alveoli, CL) as predicted by Scholander, which suggests that the chest provides little protection against alveolar collapse or lung squeeze. We also found that specific respiratory compliance was significantly greater in wild animals than in animals raised in an aquatic facility. While differences in ages between the two groups may affect this incidental finding, it is also possible that lung conditioning in free-living animals may increase pulmonary compliance and reduce the risk of lung squeeze during diving. Overall, our data indicate that compliance of excised pinniped lungs provide a good estimate of total respiratory compliance. PMID:25426080
Phosphonitrilic Fluoroelastomer Coated Fabrics for Collapsible Fuel Storage Tanks
1979-07-01
Coated F,,brics .*.... *• .. ...... ..... •---*..,- *... 97 36. Stabilizer Masterbatch Formulations R21960 and -601. 58 37- Banbury "BR" Mixes of P®FO...minutes total mix time. The mix is then dumped. Curing agent is then added to the masterbatch banded on a mill. Ambient temperature mills were generally...maximum flow. 0 minutes-load polymer. speed: slow (77 rpm) 2 minutes-add fillers 7 minutes-add stabilizer masterbatch 15 minutevk-dunip mix To obtain as
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooperstock, F.I., E-mail: cooperst@uvic.ca; Dupre, M.J., E-mail: mdupre@tulane.edu
We introduce a naturally-defined totally invariant spacetime energy expression for general relativity incorporating the contribution from gravity. The extension links seamlessly to the action integral for the gravitational field. The demand that the general expression for arbitrary systems reduces to the Tolman integral in the case of stationary bounded distributions, leads to the matter-localized Ricci integral for energy–momentum in support of the energy localization hypothesis. The role of the observer is addressed and as an extension of the special relativistic case, the field of observers comoving with the matter is seen to compute the intrinsic global energy of a system.more » The new localized energy supports the Bonnor claim that the Szekeres collapsing dust solutions are energy-conserving. It is suggested that in the extreme of strong gravity, the Heisenberg Uncertainty Principle be generalized in terms of spacetime energy–momentum. -- Highlights: •We present a totally invariant spacetime energy expression for general relativity incorporating the contribution from gravity. •Demand for the general expression to reduce to the Tolman integral for stationary systems supports the Ricci integral as energy–momentum. •Localized energy via the Ricci integral is consistent with the energy localization hypothesis. •New localized energy supports the Bonnor claim that the Szekeres collapsing dust solutions are energy-conserving. •Suggest the Heisenberg Uncertainty Principle be generalized in terms of spacetime energy–momentum in strong gravity extreme.« less
Identification and behavior of collapsible soils : [technical summary].
DOT National Transportation Integrated Search
2011-01-01
Collapsible soils are susceptible to large volumetric strains when they become saturated. Numerous soil types : fall in the general category of collapsible soils, including : loess, a well-known aeolian deposit, present throughout : most of Indiana. ...
NASA Astrophysics Data System (ADS)
Calvari, Sonia; Intrieri, Emanuele; Di Traglia, Federico; Bonaccorso, Alessandro; Casagli, Nicola; Cristaldi, Antonio
2016-05-01
Crater-wall collapses are fairly frequent at active volcanoes and they are normally studied through the analysis of their deposits. In this paper, we present an analysis of the 12 January 2013 crater-wall collapse occurring at Stromboli volcano, investigated by means of a monitoring network comprising visible and infrared webcams and a Ground-Based Interferometric Synthetic Aperture Radar. The network revealed the triggering mechanisms of the collapse, which are comparable to the events that heralded the previous effusive eruptions in 1985, 2002, 2007 and 2014. The collapse occurred during a period of inflation of the summit cone and was preceded by increasing explosive activity and the enlargement of the crater. Weakness of the crater wall, increasing magmastatic pressure within the upper conduit induced by ascending magma and mechanical erosion caused by vent opening at the base of the crater wall and by lava fingering, are considered responsible for triggering the collapse on 12 January 2013 at Stromboli. We suggest that the combination of these factors might be a general mechanism to generate crater-wall collapse at active volcanoes.
Experimental study of shock-driven cavity collapse with a single-stage gas gun driver
NASA Astrophysics Data System (ADS)
Anderson, Phillip; Betney, Matthew; Doyle, Hugo; Hawker, Nicholas; Roy, Ronald
2014-10-01
This paper explores experimental studies of shock-driven cavity collapse using a single-stage gas gun. Shocks of up to 1 GPa are generated in a hydrogel with the impact of a planar-faced projectile (50 mm dia.). Within the hydrogel, a pre-formed cavity (5 mm dia.) is cast, which is collapsed by the interaction with the shockwave. The basic collapse process involves the formation of a high-speed transverse jet and then a second collapse phase driven from jet impact. Single-shot multi-frame schlieren imaging is used to show the position and timing of optical emission in relation to the collapse hydrodynamics. Further, temporally and spectrally-resolved measurements of the optical emission are made through simultaneous use of multiple band-passed PMTs and an integrating spectrometer. This reveals three distinct pulses of emission possessing different frequency content. The first corresponds to the trapping of gas during jet impact; the second and third correspond to the further inertial collapse of the now toroidal cavity. Plasma models are used to provide the first indication of the temperature of these inertially confined plasmas.
Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington
Reid, M.E.; Sisson, T.W.; Brien, D.L.
2001-01-01
Catastrophic collapses of steep volcano flanks threaten many populated regions, and understanding factors that promote collapse could save lives and property. Large collapses of hydrothermally altered parts of Mount Rainier have generated far-traveled debris flows; future flows would threaten densely populated parts of the Puget Sound region. We evaluate edifice collapse hazards at Mount Rainier using a new three-dimensional slope stability method incorporating detailed geologic mapping and subsurface geophysical imaging to determine distributions of strong (fresh) and weak (altered) rock. Quantitative three-dimensional slope stability calculations reveal that sizeable flank collapse (>0.1 km3) is promoted by voluminous, weak, hydrothermally altered rock situated high on steep slopes. These conditions exist only on Mount Rainier's upper west slope, consistent with the Holocene debris-flow history. Widespread alteration on lower flanks or concealed in regions of gentle slope high on the edifice does not greatly facilitate collapse. Our quantitative stability assessment method can also provide useful hazard predictions using reconnaissance geologic information and is a potentially rapid and inexpensive new tool for aiding volcano hazard assessments.
NASA Astrophysics Data System (ADS)
Mitra, Abhas
2013-04-01
It is widely believed that though pressure resists gravitational collapse in Newtonian gravity, it aids the same in general relativity (GR) so that GR collapse should eventually be similar to the monotonous free fall case. But we show that, even in the context of radiationless adiabatic collapse of a perfect fluid, pressure tends to resist GR collapse in a manner which is more pronounced than the corresponding Newtonian case and formation of trapped surfaces is inhibited. In fact there are many works which show such collapse to rebound or become oscillatory implying a tug of war between attractive gravity and repulsive pressure gradient. Furthermore, for an imperfect fluid, the resistive effect of pressure could be significant due to likely dramatic increase of tangential pressure beyond the "photon sphere." Indeed, with inclusion of tangential pressure, in principle, there can be static objects with surface gravitational redshift z → ∞. Therefore, pressure can certainly oppose gravitational contraction in GR in a significant manner in contradiction to the idea of Roger Penrose that GR continued collapse must be unstoppable.
Weary, David J.
2015-01-01
Rocks with potential for karst formation are found in all 50 states. Damage due to karst subsidence and sinkhole collapse is a natural hazard of national scope. Repair of damage to buildings, highways, and other infrastructure represents a significant national cost. Sparse and incomplete data show that the average cost of karst-related damages in the United States over the last 15 years is estimated to be at least $300,000,000 per year and the actual total is probably much higher. This estimate is lower than the estimated annual costs for other natural hazards; flooding, hurricanes and cyclonic storms, tornadoes, landslides, earthquakes, or wildfires, all of which average over $1 billion per year. Very few state organizations track karst subsidence and sinkhole damage mitigation costs; none occurs at the Federal level. Many states discuss the karst hazard in their State hazard mitigation plans, but seldom include detailed reports of subsidence incidents or their mitigation costs. Most State highway departments do not differentiate karst subsidence or sinkhole collapse from other road repair costs. Amassing of these data would raise the estimated annual cost considerably. Information from insurance organizations about sinkhole damage claims and payouts is also not readily available. Currently there is no agency with a mandate for developing such data. If a more realistic estimate could be made, it would illuminate the national scope of this hazard and make comparison with costs of other natural hazards more realistic.
A model for intergalactic filaments and galaxy formation during the first gigayear
NASA Astrophysics Data System (ADS)
Harford, A. Gayler; Hamilton, Andrew J. S.
2017-11-01
We propose a physically based, analytic model for intergalactic filaments during the first gigayear of the universe. The structure of a filament is based upon a gravitationally bound, isothermal cylinder of gas. The model successfully predicts for a cosmological simulation the total mass per unit length of a filament (dark matter plus gas) based solely upon the sound speed of the gas component, contrary to the expectation for collisionless dark matter aggregation. In the model, the gas, through its hydrodynamic properties, plays a key role in filament structure rather than being a passive passenger in a preformed dark matter potential. The dark matter of a galaxy follows the classic equation of collapse of a spherically symmetric overdensity in an expanding universe. In contrast, the gas usually collapses more slowly. The relative rates of collapse of these two components for individual galaxies can explain the varying baryon deficits of the galaxies under the assumption that matter moves along a single filament passing through the galaxy centre, rather than by spherical accretion. The difference in behaviour of the dark matter and gas can be simply and plausibly related to the model. The range of galaxies studied includes that of the so-called too big to fail galaxies, which are thought to be problematic for the standard Λ cold dark matter model of the universe. The isothermal-cylinder model suggests a simple explanation for why these galaxies are, unaccountably, missing from the night sky.
Prediction of inspiratory flow shapes during sleep with a mathematic model of upper airway forces.
Aittokallio, Tero; Gyllenberg, Mats; Saaresranta, Tarja; Polo, Olli
2003-11-01
To predict the airflow dynamics during sleep using a mathematic model that incorporates a number of static and dynamic upper airway forces, and to compare the numerical results to clinical flow data recorded from patients with sleep-disordered breathing on and off various treatment options. Upper airway performance was modeled in virtual subjects characterized by parameter settings that describe common combinations of risk factors predisposing to upper airway collapse during sleep. The treatments effect were induced by relevant changes of the initial parameter values. Computer simulations at our website (http://www.utu.fi/ml/sovmat/bio/). Risk factors considered in the simulation settings were sex, obesity, pharyngeal collapsibility, and decreased phasic activity of pharyngeal muscles. The effects of weight loss, pharyngeal surgery, nasal continuous positive airway pressure, and respiratory stimulation on the inspiratory flow characteristics were tested with the model. Numerical predictions were investigated by means of 3 measurable inspiratory airflow characteristics: initial slope, total volume, and flow shape. The model was able to reproduce the inspiratory flow shape characteristics that have previously been described in the literature. Simulation results also supported the observations that a multitude of factors underlie the pharyngeal collapse and, therefore, certain medical therapies that are effective in some conditions may prove ineffective in others. A mathematic model integrating the current knowledge of upper airway physiology is able to predict individual treatment responses. The model provides a framework for designing novel and potentially feasible treatment alternatives for sleep-disordered breathing.
Lithic breccia and ignimbrite erupted during the collapse of Crater Lake Caldera, Oregon
Druitt, T.H.; Bacon, C.R.
1986-01-01
The climactic eruption of Mount Mazama (6845 y.B.P.) vented a total of ???50 km3 of compositionally zoned rhyodacitic to basaltic magma from: (a) a single vent as a Plinian pumice fall deposit and the overlying Wineglass Welded Tuff, and (b) ring vents as ignimbrite and coignimbrite lithic breccia accompanying the collapse of Crater Lake caldera. New field and grain-size data for the ring-vent products are presented in this report. The coarse-grained, poorly bedded, clast-supported lithic breccia extends as far as 18 km from the caldera center. Like the associated ignimbrite, the breccia is compositionally zoned both radially and vertically, and silicic, mixed, and mafic types can be recognized, based on the proportion of rhyodacitic pumice. Matrix fractions in silicic breccias are depleted of fines and are lithic- and crystal-enriched relative to silicic ignimbrite due to vigorous gas sorting during emplacement. Ignimbrite occurs as a proximal veneer deposit overlying the breccia, a medial (??? 8 to ??? 25 km from the caldera center), compositionally zoned valley fill as much as > 110 m thick, and an unzoned distal ({slanted equal to or greater-than} 20 km) facies which extends as far as 55 km from the caldera. Breccia within ??? 9 km of the caldera center is interpreted as a coignimbrite lag breccia formed within the deflation zone of the collapsing ring-vent eruption columns. Expanded pyroclastic flows of the deflation zone were probably vertically graded in both size and concentration of blocks, as recently postulated for some turbidity currents. An inflection in the rate of falloff of lithic-clast size within the lithic breccia at ??? 9 km may mark the outer edge of the deflation zone or may be an artifact of incomplete exposure. The onset of ring-vent activity at Mt. Mazama was accompanied by a marked increase in eruptive discharge. Pyroclastic flows were emplaced as a semicontinuous stream, as few ignimbrite flow-unit boundaries are evident. As eruption from the ring vents progressed, flow-runout distance and the extent of breccia deposition decreased due to (a) greater internal flow friction, and (b) decreasing eruption column heights. Effect (b) probably resulted from a progressive decrease in magmatic gas content and discharge rate. Waning discharge may have been promoted by the tapping of more viscous, crystal-rich magma, collapse of conduit walls, and declining caldera collapse rate. ?? 1986.
NASA Astrophysics Data System (ADS)
Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.
2014-12-01
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.
Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.
2014-01-01
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached. PMID:25482065
Boulton, Chris A; Allison, Lesley C; Lenton, Timothy M
2014-12-08
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.
Wetting dynamics of a collapsing fluid hole
NASA Astrophysics Data System (ADS)
Bostwick, J. B.; Dijksman, J. A.; Shearer, M.
2017-01-01
The collapse dynamics of an axisymmetric fluid cavity that wets the bottom of a rotating bucket bound by vertical sidewalls are studied. Lubrication theory is applied to the governing field equations for the thin film to yield an evolution equation that captures the effect of capillary, gravitational, and centrifugal forces on this converging flow. The focus is on the quasistatic spreading regime, whereby contact-line motion is governed by a constitutive law relating the contact-angle to the contact-line speed. Surface tension forces dominate the collapse dynamics for small holes with the collapse time appearing as a power law whose exponent compares favorably to experiments in the literature. Gravity accelerates the collapse process. Volume dependence is predicted and compared with experiment. Centrifugal forces slow the collapse process and lead to complex dynamics characterized by stalled spreading behavior that separates the large and small hole asymptotic regimes.
Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow.
Gudmundsson, Magnús T; Jónsdóttir, Kristín; Hooper, Andrew; Holohan, Eoghan P; Halldórsson, Sæmundur A; Ófeigsson, Benedikt G; Cesca, Simone; Vogfjörd, Kristín S; Sigmundsson, Freysteinn; Högnadóttir, Thórdís; Einarsson, Páll; Sigmarsson, Olgeir; Jarosch, Alexander H; Jónasson, Kristján; Magnússon, Eyjólfur; Hreinsdóttir, Sigrún; Bagnardi, Marco; Parks, Michelle M; Hjörleifsdóttir, Vala; Pálsson, Finnur; Walter, Thomas R; Schöpfer, Martin P J; Heimann, Sebastian; Reynolds, Hannah I; Dumont, Stéphanie; Bali, Eniko; Gudfinnsson, Gudmundur H; Dahm, Torsten; Roberts, Matthew J; Hensch, Martin; Belart, Joaquín M C; Spaans, Karsten; Jakobsson, Sigurdur; Gudmundsson, Gunnar B; Fridriksdóttir, Hildur M; Drouin, Vincent; Dürig, Tobias; Aðalgeirsdóttir, Guðfinna; Riishuus, Morten S; Pedersen, Gro B M; van Boeckel, Tayo; Oddsson, Björn; Pfeffer, Melissa A; Barsotti, Sara; Bergsson, Baldur; Donovan, Amy; Burton, Mike R; Aiuppa, Alessandro
2016-07-15
Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption. We use multiparameter geophysical and geochemical data to show that the 110-square-kilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014-2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual, near-exponential decline of both collapse rate and the intensity of the 180-day-long eruption. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Shah, Hasrat Hussain
In the last three to four decades, various programs have been studied in order to investigate the final fate of gravitational collapse of massive astronomical objects. In the theoretical context, Black Holes (BHs) are the consequence of final stage of the gravitational collapse. In this work, we investigated the gravitational collapse process of a spherically symmetric star constituted of dark matter (DM), ρM, and Dark Energy (DE), ρ in the context of the brane-world scenario. In our model, we discussed the anisotropy of the pressure in a fluid with Equation of State (EoS) pt = kρ and pr = lρ, (l + 2k < ‑1). We briefly discussed various cases of gravitational collapse and it is found that BH can be formed by the gravitational collapse in brane-world regime while in some cases there is only a naked singularity at their end state.
Sherrell, Dennis L.
1990-01-01
A hollow, collapsable seal member normally disposed in a natural expanded state offering fail-safe pressure sealing against a seating surface and adapted to be evacuated by a vacuum force for collapsing the seal member to disengage the same from said seating surface.
Sherrell, D.L.
1983-12-08
A hollow, collapsable seal member normally disposed in a natural expanded state offering fail-safe pressure sealing against a seating surface and adapted to be evacuated by a vacuum force for collapsing the seal member to disengage the same from said seating surface.
NASA Astrophysics Data System (ADS)
yu, Zhang; hui, Li; guibo, Bao; wuyu, Zhang; ningshan, Jiang; xiaoyun, Yang
2018-05-01
The collapsibility test in field may have huge error with computed results[1-4]. The writer gave a compare between single-line and double-line method and then compared with the field’s result. The writer’s purpose is to reduce the error of measured value to computed value and propose a way to decrease the error through consider the matric suction’s influence to unsaturated soil in using finite element analysis, field test was completed to verify the reasonability of this method and get some regulate of development of collapse deformation and supply some calculation basis of engineering design and forecast in emergency situation.
Gravitational collapse and the vacuum energy
NASA Astrophysics Data System (ADS)
Campos, M.
2014-03-01
To explain the accelerated expansion of the universe, models with interacting dark components (dark energy and dark matter) have been considered recently in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy of the all fields that fill the universe. As the other side of the same coin, the influence of the vacuum energy on the gravitational collapse is of great interest. We study such collapse adopting different parameterizations for the evolution of the vacuum energy. We discuss the homogeneous collapsing star fluid, that interacts with a vacuum energy component, using the stiff matter case as example. We conclude this work with a discussion of the Cahill-McVittie mass for the collapsed object.
Mochizuki, Susumu; Minami, Eiichi; Nishizawa, Yoko
2015-12-01
The rice blast fungus Magnaporthe oryzae grows inside living host cells. Cytological analyses by live-cell imaging have revealed characteristics of the biotrophic invasion, particularly the extrainvasive hyphal membrane (EIHM) originating from the host plasma membrane and a host membrane-rich structure, biotrophic interfacial complex (BIC). Here, we observed rice subcellular changes associated with invasive hyphal growth using various transformants expressing specifically localized fluorescent proteins. The invasive hyphae did not penetrate across but were surrounded by the host vacuolar membrane together with EIHM even after branching. High-resolution imaging of BICs revealed that the host cytosol was accumulated at BIC with aggregated EIHM and a symplastic effector, Pwl2, in a punctate form. The vacuolar membrane did not aggregate in but closely surrounded the BIC. A good correlation was observed between the early collapse of vacuoles and damage of invasive hyphae in the first-invaded cell. Furthermore, a newly developed, long-term imaging method has revealed that the central vacuole gradually shrank until collapse, which was caused by the hyphal invasion occurring earlier in the neighboring cells than in the first-invaded cells. These data suggest that M. oryzae may suppress host vacuole collapse during early infection stages for successful infection. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Bianchi, Eugenio; De Lorenzo, Tommaso; Smerlak, Matteo
2015-06-01
We study the dynamics of vacuum entanglement in the process of gravitational collapse and subsequent black hole evaporation. In the first part of the paper, we introduce a covariant regularization of entanglement entropy tailored to curved spacetimes; this regularization allows us to propose precise definitions for the concepts of black hole "exterior entropy" and "radiation entropy." For a Vaidya model of collapse we find results consistent with the standard thermodynamic properties of Hawking radiation. In the second part of the paper, we compute the vacuum entanglement entropy of various spherically-symmetric spacetimes of interest, including the nonsingular black hole model of Bardeen, Hayward, Frolov and Rovelli-Vidotto and the "black hole fireworks" model of Haggard-Rovelli. We discuss specifically the role of event and trapping horizons in connection with the behavior of the radiation entropy at future null infinity. We observe in particular that ( i) in the presence of an event horizon the radiation entropy diverges at the end of the evaporation process, ( ii) in models of nonsingular evaporation (with a trapped region but no event horizon) the generalized second law holds only at early times and is violated in the "purifying" phase, ( iii) at late times the radiation entropy can become negative (i.e. the radiation can be less correlated than the vacuum) before going back to zero leading to an up-down-up behavior for the Page curve of a unitarily evaporating black hole.
NASA Astrophysics Data System (ADS)
Hidaka, Jun; Fuller, George M.
2006-12-01
We investigate matter-enhanced Mikheyev-Smirnov-Wolfenstein (MSW) active-sterile neutrino conversion in the νe⇌νs channel in the collapse of the iron core of a presupernova star. For values of sterile neutrino rest mass ms and vacuum mixing angle θ (specifically, 0.5keV
Inherently unstable networks collapse to a critical point
NASA Astrophysics Data System (ADS)
Sheinman, M.; Sharma, A.; Alvarado, J.; Koenderink, G. H.; MacKintosh, F. C.
2015-07-01
Nonequilibrium systems that are driven or drive themselves towards a critical point have been studied for almost three decades. Here we present a minimalist example of such a system, motivated by experiments on collapsing active elastic networks. Our model of an unstable elastic network exhibits a collapse towards a critical point from any macroscopically connected initial configuration. Taking into account steric interactions within the network, the model qualitatively and quantitatively reproduces results of the experiments on collapsing active gels.
Inter-plume aerodynamics for gasoline spray collapse
Sphicas, Panos; Pickett, Lyle M.; Skeen, Scott A.; ...
2017-11-10
The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel–air mixing. But, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtainedmore » using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. Furthermore, the effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.« less
Inter-plume aerodynamics for gasoline spray collapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sphicas, Panos; Pickett, Lyle M.; Skeen, Scott A.
The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel–air mixing. But, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtainedmore » using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. Furthermore, the effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.« less
Yang, X; Zhang, X; Teixeira da Silva, J A; Liang, K; Deng, R; Ma, G
2014-01-01
The structure and development of collapsed layers of the haustorium were studied in Santalum album Linn. Through light and transmission electron microscopy, it was shown that the collapsed layers originated from starch-containing cells when the haustorium developed an internal gland, thickened gradually and ultimately developed into the mantle, which, combined with the sucker, buckled the host root. We report on the presence of inter-collapsed layers for the first time. These layers develop after penetration into the host and are located between the intrusive tissues and the vascular meristematic region, gradually linking the collapsed layers and remains around the sucker. The proliferation of cells in the meristematic region and the 'host tropism' of cortical layers contribute to pressure within the haustorium and result in development of the collapsed layers. Besides, starch-containing cells that turn into collapsed layers are vulnerable to pressure as they lack a large vacuole, have uneven cell wall thickness and a loose cell arrangement. We proposed that the functions of collapsed layers are to efficiently assure that cell inclusion and energy concentrate at the inner meristematic region and are recycled to affect penetration, reinforce the physical connection between the sandalwood haustorium and host root, and supply space for haustorial development. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Challenges in fitting a hearing aid to a severely collapsed ear canal and mixed hearing loss.
Oeding, Kristi; Valente, Michael; Chole, Richard
2012-04-01
Collapsed ear canals typically occur when an outside force, such as a headset for audiometric testing, is present. However, when a collapsed ear canal occurs without external pressure, this creates a challenge not only for performing audiometric testing but also for coupling a hearing aid to the ear canal. This case report highlights the challenges associated with fitting a hearing aid on a patient with a severe anterior-posterior collapsed ear canal with a mixed hearing loss. A 67-yr-old female originally presented to Washington University in St. Louis School of Medicine in 1996 with a long-standing history of bilateral otosclerosis. She had chronic ear infections in the right ear and a severely collapsed ear canal in the left ear and was fit with a bone anchored hearing aid (BAHA®) on the right side in 2003. However, benefit from the BAHA started to decrease due to changes in hearing, and a different hearing solution was needed. It was proposed that a hearing aid be fit to her collapsed left ear canal; however, trying to couple a hearing aid to the collapsed ear canal required unique noncustom earmold solutions. This case study highlights some of the obstacles and potential solutions for coupling a hearing aid to a severely collapsed ear canal. American Academy of Audiology.
NASA Astrophysics Data System (ADS)
Li, Guang-Xing
2018-03-01
Astrophysical systems, such as clumps that form star clusters share a density profile that is close to ρ ˜ r-2. We prove analytically this density profile is the result of the scale-free nature of the gravitational collapse. Therefore, it should emerge in many different situations as long as gravity is dominating the evolution for a period that is comparable or longer than the free-fall time, and this does not necessarily imply an isothermal model, as many have previously believed. To describe the collapse process, we construct a model called the turbulence-regulated gravitational collapse model, where turbulence is sustained by accretion and dissipates in roughly a crossing time. We demonstrate that a ρ ˜ r-2 profile emerges due to the scale-free nature the system. In this particular case, the rate of gravitational collapse is regulated by the rate at which turbulence dissipates the kinetic energy such that the infall speed can be 20-50% of the free-fall speed(which also depends on the interpretation of the crossing time based on simulations of driven turbulence). These predictions are consistent with existing observations, which suggests that these clumps are in the stage of turbulence-regulated gravitational collapse. Our analysis provides a unified description of gravitational collapse in different environments.
NASA Astrophysics Data System (ADS)
Belousova, M.; Belousov, A.; Chen, C.
2009-12-01
The dominantly andesitic Tatun Volcanic Group of Northern Taiwan was formed during the Pleistocene - Early Holocene. The volcanoes are represented by lava domes of moderate sizes: heights up to 350 m (absolute altitudes 800 - 1120 m a.s.l.), base diameters up to 1.5 km, and volumes up to 0.3 km3. Many of the domes have broad, shallow horseshoe-shaped scars (0.5-1.0 km across) formed by gravitational collapses. Field examination revealed deposits of collapses of volcanoes Datun, Cising, Siaoguanyin, Cigu, and Dajianhou. The largest of the collapses (V ~ 0.1 km3) occurred at Mt. Datun. The collapse formed a typical debris avalanche deposit composed mainly of block facies. The avalanche traveled a distance L ~ 5 km, dropped a height H ~ 1 km, and was moderately mobile H/L ~ 0.2. The age of the collapse is > 24,000 yrs because the related debris avalanche deposit is covered by a younger debris avalanche deposit of Siaoguanyin volcano containing charcoal having calibrated 14C age 22,600-23,780 BP. The Siaoguanyin debris avalanche deposit (V~ 0.02 km3; L ~ 6 km; H ~ 1 km; H/L ~ 0.16) is composed of massive, very coarse-grained, fines-poor, gravelly material represented predominantly by very dense, dark-grey andesite. The avalanche was hot during deposition; material of a lava dome which had no time to cool down completely after extrusion was involved into the collapse. The avalanche speed was 40 m/s at a distance 5 km from the source, basing on 80 m of the avalanche run-up. The latest (calibrated age 6000-6080 BP) large-scale collapse (V~0.05 km3, H/L ~ 0.25) occurred at Mt. Cising in the form of numerous retrogressive landslide blocks, which did not transform into a long runout debris avalanche. The leading snout of the landslide traveled 2.0 km, while rear slide blocks traveled only several hundred meters and stopped near the landslide source. Its maximum dropped height is only ~0.5 km. A former lava coulee, which was involved in the collapse, underwent weak disintegration: material of the collapse is represented by big boulders with few fine grained matrix. Collapses of Cigu and Dajianhou volcanoes had the smallest volumes, ~ 0.01 km3, and their character is transitional to large rockfalls. The studied collapses occurred after the volcanoes had stopped erupting, and thus were not triggered by volcanic activity. Hydrothermally altered rocks do not compose significant parts of the studied debris avalanches, although hydrothermal fields are common in the scars of the collapses. Probably weakening of mechanical properties of the volcanic edifices due to hydrothermal alteration did not play a key role in the studied collapses, but elevated fluid pressure and hydrothermal alteration in the foundations of the volcanoes might have had some role. Scars of the collapses are located on intersections of the edifices with active tectonic faults of NNE-SSW and/or W-E strike, which are expressed in relief and clearly visible on space images. Thus, the collapsed parts of the volcanic edifices were detached by tectonic motions, and the collapses were possibly triggered by seismic activity.
Collapsing lattice animals and lattice trees in two dimensions
NASA Astrophysics Data System (ADS)
Hsu, Hsiao-Ping; Grassberger, Peter
2005-06-01
We present high statistics simulations of weighted lattice bond animals and lattice trees on the square lattice, with fugacities for each non-bonded contact and for each bond between two neighbouring monomers. The simulations are performed using a newly developed sequential sampling method with resampling, very similar to the pruned-enriched Rosenbluth method (PERM) used for linear chain polymers. We determine with high precision the line of second-order transitions from an extended to a collapsed phase in the resulting two-dimensional phase diagram. This line includes critical bond percolation as a multicritical point, and we verify that this point divides the line into different universality classes. One of them corresponds to the collapse driven by contacts and includes the collapse of (weakly embeddable) trees. There is some evidence that the other is subdivided again into two parts with different universality classes. One of these (at the far side from collapsing trees) is bond driven and is represented by the Derrida-Herrmann model of animals having bonds only (no contacts). Between the critical percolation point and this bond-driven collapse seems to be an intermediate regime, whose other end point is a multicritical point P* where a transition line between two collapsed phases (one bond driven and the other contact driven) sparks off. This point P* seems to be attractive (in the renormalization group sense) from the side of the intermediate regime, so there are four universality classes on the transition line (collapsing trees, critical percolation, intermediate regime, and Derrida-Herrmann). We obtain very precise estimates for all critical exponents for collapsing trees. It is already harder to estimate the critical exponents for the intermediate regime. Finally, it is very difficult to obtain with our method good estimates of the critical parameters of the Derrida-Herrmann universality class. As regards the bond-driven to contact-driven transition in the collapsed phase, we have some evidence for its existence and rough location, but no precise estimates of critical exponents.
Costa Rica's Chain of laterally collapsed volcanoes.
NASA Astrophysics Data System (ADS)
Duarte, E.; Fernandez, E.
2007-05-01
From the NW extreme to the SW end of Costa Rica's volcanic backbone, a number of laterally collapsed volcanoes can be observed. Due to several factors, attention has been given to active volcanoes disregarding the importance of collapsed features in terms of assessing volcanic hazards for future generations around inhabited volcanoes. In several cases the typical horseshoe shape amphitheater-like depression can be easily observed. In other cases due to erosion, vegetation, topography, seismic activity or drastic weather such characteristics are not easily recognized. In the order mentioned above appear: Orosi-Cacao, Miravalles, Platanar, Congo, Von Frantzius, Cacho Negro and Turrialba volcanoes. Due to limited studies on these structures it is unknown if sector collapse occurred in one or several phases. Furthermore, in the few studied cases no evidence has been found to relate collapses to actual eruptive episodes. Detailed studies on the deposits and materials composing dome-like shapes will shed light on unsolved questions about petrological and chemical composition. Volume, form and distance traveled by deposits are part of the questions surrounding most of these collapsed volcanoes. Although most of these mentioned structures are extinct, at least Irazú volcano (active volcano) has faced partial lateral collapses recently. It did presented strombolian activity in the early 60s. Collapse scars show on the NW flank show important mass removal in historic and prehistoric times. Moreover, in 1994 a minor hydrothermal explosion provoked the weakening of a deeply altered wall that holds a crater lake (150m diameter, 2.6x106 ). A poster will depict images of the collapsed volcanoes named above with mayor descriptive characteristics. It will also focus on the importance of deeper studies to assess the collapse potential of Irazú volcano with related consequences. Finally, this initiative will invite researchers interested in such topic to join future studies in these Costarrican volcanoes.
Clark, Richard D.; Bence, James R.; Claramunt, Randall M.; Clevenger, John A.; Kornis, Matthew S.; Bronte, Charles R.; Madenjian, Charles P.; Roseman, Edward
2017-01-01
Alewives Alosa pseudoharengus are the preferred food of Chinook Salmon Oncorhynchus tshawytscha in the Laurentian Great Lakes. Alewife populations collapsed in Lake Huron in 2003 but remained comparatively abundant in Lake Michigan. We analyzed capture locations of coded-wire-tagged Chinook Salmon before, during, and after Alewife collapse (1993–2014). We contrasted the pattern of tag recoveries for Chinook Salmon released at the Swan River in northern Lake Huron and Medusa Creek in northern Lake Michigan. We examined patterns during April–July, when Chinook Salmon were primarily occupied by feeding, and August–October, when the salmon were primarily occupied by spawning. We found evidence that Swan River fish shifted their feeding location from Lake Huron to Lake Michigan after the collapse. Over years, proportions of Swan River Chinook Salmon captured in Lake Michigan increased in correspondence with the Alewife decline in Lake Huron. Mean proportions of Swan River fish captured in Lake Michigan were 0.13 (SD = 0.14) before collapse (1993–1997) and 0.82 (SD = 0.22) after collapse (2008–2014) and were significantly different. In contrast, proportions of Medusa Creek fish captured in Lake Michigan did not change; means were 0.98 (SD = 0.05) before collapse and 0.99 (SD = 0.01) after collapse. The mean distance to the center of the coastal distribution of Swan River fish during April–July shifted 357 km (SD = 169) from central Lake Huron before collapse to central Lake Michigan after collapse. The coastal distributions during August–October were centered on the respective sites of origin, suggesting that Chinook Salmon returned to release sites to spawn regardless of their feeding locations. Regarding the impact on Alewife populations, this shift in interlake movement would be equivalent to increasing the Chinook Salmon stocking rate within Lake Michigan by 30%. The primary management implication is that interlake coordination of Chinook Salmon stocking policies would be expected to benefit the recreational fishery.
Correlated random walks induced by dynamical wavefunction collapse
NASA Astrophysics Data System (ADS)
Bedingham, Daniel
2015-03-01
Wavefunction collapse models modify Schrödinger's equation so that it describes the collapse of a superposition of macroscopically distinguishable states as a genuine physical process [PRA 42, 78 (1990)]. This provides a basis for the resolution of the quantum measurement problem. An additional generic consequence of the collapse mechanism is that it causes particles to exhibit a tiny random diffusive motion. Furthermore, the diffusions of two sufficiently nearby particles are positively correlated -- it is more likely that the particles diffuse in the same direction than would happen if they behaved independently [PRA 89, 032713 (2014)]. The use of this effect is proposed as an experimental test of wave function collapse models in which pairs of nanoparticles are simultaneously released from nearby traps and allowed a brief period of free fall. The random displacements of the particles are then measured. The experiment must be carried out at sufficiently low temperature and pressure for the collapse effects to dominate over the ambient environmental noise. It is argued that these constraints can be satisfied by current technologies for a large class of viable wavefunction collapse models. Work supported by the Templeton World Charity Foundation.
Inertial collapse of bubble pairs near a solid surface
NASA Astrophysics Data System (ADS)
Alahyari Beig, Shahaboddin; Johnsen, Eric
2017-11-01
Cavitation occurs in a variety of applications ranging from naval structures to biomedical ultrasound. One important consequence is structural damage to neighboring surfaces following repeated inertial collapse of vapor bubbles. Although the mechanical loading produced by the collapse of a single bubble has been widely investigated, less is known about the detailed dynamics of the collapse of multiple bubbles. In such a problem, the bubble-bubble interactions typically affect the dynamics, e.g., by increasing the non-sphericity of the bubbles and amplifying/hindering the collapse intensity depending on the flow parameters. Here, we quantify the effects of bubble-bubble interactions on the bubble dynamics, as well as the pressures/temperatures produced by the collapse of a pair of gas bubbles near a rigid surface. We perform high-resolution simulations of this problem by solving the three-dimensional compressible Navier-Stokes equations for gas/liquid flows. The results are used to investigate the non-spherical bubble dynamics and characterize the pressure and temperature fields based on the relevant parameters entering the problem: stand-off distance, geometrical configuration (angle, relative size, distance), collapse strength. This research was supported in part by ONR Grant N00014-12-1-0751 and NSF Grant CBET 1253157.
Stress evolution during caldera collapse
NASA Astrophysics Data System (ADS)
Holohan, E. P.; Schöpfer, M. P. J.; Walsh, J. J.
2015-07-01
The mechanics of caldera collapse are subject of long-running debate. Particular uncertainties concern how stresses around a magma reservoir relate to fracturing as the reservoir roof collapses, and how roof collapse in turn impacts upon the reservoir. We used two-dimensional Distinct Element Method models to characterise the evolution of stress around a depleting sub-surface magma body during gravity-driven collapse of its roof. These models illustrate how principal stress orientations rotate during progressive deformation so that roof fracturing transitions from initial reverse faulting to later normal faulting. They also reveal four end-member stress paths to fracture, each corresponding to a particular location within the roof. Analysis of these paths indicates that fractures associated with ultimate roof failure initiate in compression (i.e. as shear fractures). We also report on how mechanical and geometric conditions in the roof affect pre-failure unloading and post-failure reloading of the reservoir. In particular, the models show how residual friction within a failed roof could, without friction reduction mechanisms or fluid-derived counter-effects, inhibit a return to a lithostatically equilibrated pressure in the magma reservoir. Many of these findings should be transferable to other gravity-driven collapse processes, such as sinkhole formation, mine collapse and subsidence above hydrocarbon reservoirs.
a Statistical Texture Feature for Building Collapse Information Extraction of SAR Image
NASA Astrophysics Data System (ADS)
Li, L.; Yang, H.; Chen, Q.; Liu, X.
2018-04-01
Synthetic Aperture Radar (SAR) has become one of the most important ways to extract post-disaster collapsed building information, due to its extreme versatility and almost all-weather, day-and-night working capability, etc. In view of the fact that the inherent statistical distribution of speckle in SAR images is not used to extract collapsed building information, this paper proposed a novel texture feature of statistical models of SAR images to extract the collapsed buildings. In the proposed feature, the texture parameter of G0 distribution from SAR images is used to reflect the uniformity of the target to extract the collapsed building. This feature not only considers the statistical distribution of SAR images, providing more accurate description of the object texture, but also is applied to extract collapsed building information of single-, dual- or full-polarization SAR data. The RADARSAT-2 data of Yushu earthquake which acquired on April 21, 2010 is used to present and analyze the performance of the proposed method. In addition, the applicability of this feature to SAR data with different polarizations is also analysed, which provides decision support for the data selection of collapsed building information extraction.
Primordial black holes from fifth forces
NASA Astrophysics Data System (ADS)
Amendola, Luca; Rubio, Javier; Wetterich, Christof
2018-04-01
Primordial black holes can be produced by a long-range attractive fifth force stronger than gravity, mediated by a light scalar field interacting with nonrelativistic "heavy" particles. As soon as the energy fraction of heavy particles reaches a threshold, the fluctuations rapidly become nonlinear. The overdensities collapse into black holes or similar screened objects, without the need for any particular feature in the spectrum of primordial density fluctuations generated during inflation. We discuss whether such primordial black holes can constitute the total dark matter component in the Universe.
2014-03-01
resistance; while decreasing the amount of acrylonitrile content improves low-temperature flexibility, but increases transport rates of military fuels through...tanks do suffer from an increase in total weight and reduced flexibility, which may influence storage, transportation , and setup of the containers...exterior surfaces. The transport of the fuel can be described by Fick’s first law (11): c J=-P x (1) Where J is the fuel vapor flux, P is
East Europe Report, Economic and Industrial Affairs
1985-11-27
second letter addressed to the editor, J . Behal from Otrokovice writes that 4 years ago he bought a collapsible bicycle, and last year he needed a new...requirements and district heat quantity requirements 19 J • 20 4.2.2 Methodology Determination of the maximum district heat power requirements is made in... j (structural area, community, city) in the year t, POAnit is the total c°nnected load of the region (user group) i in the year t k is a general
NASA Astrophysics Data System (ADS)
Vavilov, Vladimir P.
1998-03-01
IR thermography was used in surveying dormitory debris of Tomsk High Military School of Communication Engineering in Siberia that collapsed on July 17, 1997, with 12 students dead. In total, the debris had the ambient temperature but plentiful joints between vertical brick-made columns and horizontal concrete beams were detected to be abnormally warm. The reasons for this temperature elevation are discussed. The arguments pro and contra possibility to identify temperature patterns as abnormal mechanical stresses are considered.
Features of globular cluster's dynamics with an intermediate-mass black hole
NASA Astrophysics Data System (ADS)
Ryabova, Marina V.; Gorban, Alena S.; Shchekinov, Yuri A.; Vasiliev, Evgenii O.
2018-02-01
In this paper, we address the question of how a central intermediate-mass black hole (IMBH) in a globular cluster (GC) affects dynamics, core collapse, and formation of the binary population. It is shown that the central IMBH forms a binary system that affects dynamics of stars in the cluster significantly. The presence of an intermediate-mass black hole with mass ≥ 1.0-1.7%of the total stellar mass in the cluster inhibits the formation of binary stars population.
Perry, J A
1979-01-01
The Teton Dam in Southeastern Idaho collapsed on June 5, 1976. The resulting flood damaged a large area and caused the release of toxicants into the Snake River. A pesticide recovery team in a helicopter worked the flooded area for three weeks and collected 1,104 containers, about 35% of which contained toxicants. It was estimated that less than 60% of the lost pesticide containers were recovered. This paper addresses the results of a one-time sampling effort designed to determine the magnitude of the chemical contamination. Over 300 samples of fish, plankton, waterfowl, sediments, water, stream drift, aquatic plants, and soil were taken. Pesticide residues were measured as microgram/kg (ppb) wet weight, whole animal basis. Rainbow trout had as much as 1432 micrograms/kg total DDT plus analogs, 66 micrograms/kg dieldrin, and 1010 micrograms/kg PCBs. Utah suckers had up to 1420 micrograms/kg total DDT plus analogs, 32 micrograms/kg dieldrin, and 1800 micrograms/kg PCB. Rocky Mountain whitefish had as much as 2650 micrograms/kg total DDT and analogs, 30 micrograms/kg dieldrin and 1400 micrograms/kg PCBs. These PCB and DDT levels were high, approaching the 2,000 micrograms/kg FDA proposed tolerance, but were below the 5,000 micrograms/kg present tolerance. Dieldrin levels were low and organophosphates were undetectable. An undeveloped area (the Fort Hall Bottoms) showed higher levels of contaminants than did an industrialized area (the lower Portneuf River). This apparent discrepancy remains unexplained. Very little pre-flood data on a whole fish basis were available for comparison (Johnson et al 1977). However, it does not appear that any human health hazard due to pesticide levels exists in this portion of the Snake River.
Search for core-collapse supernovae using the MiniBooNE neutrino detector
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fisher, M.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.; MiniBooNE Collaboration
2010-02-01
We present a search for core-collapse supernovae in the Milky Way galaxy, using the MiniBooNE neutrino detector. No evidence is found for core-collapse supernovae occurring in our Galaxy in the period from December 14, 2004 to July 31, 2008, corresponding to 98% live time for collection. We set a limit on the core-collapse supernova rate out to a distance of 13.4 kpc to be less than 0.69 supernovae per year at 90% C.L.
Parvovirus B19 Myocarditis of Fulminant Evolution.
Spartalis, Michael; Tzatzaki, Eleni; Spartalis, Eleftherios; Damaskos, Christos; Mavrogeni, Sophie; Voudris, Vassilis
2017-08-01
Myocarditis is an inflammation of the myocardium. Clinical presentation ranges from non-specific systematic symptoms to fulminant collapse and sudden death. Sudden death occurs at rates of 8.6-12% and cardiomyopathy at 9%. In active myocarditis, there is inflammatory cellular infiltrate with myocardial necrosis. The disease is distinguished by clinical presentation in fulminant and non-fulminant myocarditis. We present a rare case of a parvovirus B19-induced fulminant viral myocarditis in a young female. The patient presented with acute onset heart failure mimicking a myocardial infarction, followed by non-specific symptoms that had been misdiagnosed as urinary tract infection.
Parvovirus B19 Myocarditis of Fulminant Evolution
Spartalis, Michael; Tzatzaki, Eleni; Spartalis, Eleftherios; Damaskos, Christos; Mavrogeni, Sophie; Voudris, Vassilis
2017-01-01
Myocarditis is an inflammation of the myocardium. Clinical presentation ranges from non-specific systematic symptoms to fulminant collapse and sudden death. Sudden death occurs at rates of 8.6-12% and cardiomyopathy at 9%. In active myocarditis, there is inflammatory cellular infiltrate with myocardial necrosis. The disease is distinguished by clinical presentation in fulminant and non-fulminant myocarditis. We present a rare case of a parvovirus B19-induced fulminant viral myocarditis in a young female. The patient presented with acute onset heart failure mimicking a myocardial infarction, followed by non-specific symptoms that had been misdiagnosed as urinary tract infection. PMID:28868104
Fazelinia, Hossein; Xu, Ming; Cheng, Hong; Roder, Heinrich
2014-01-15
Many proteins undergo a sharp decrease in chain dimensions during early stages of folding, prior to the rate-limiting step in folding. However, it remains unclear whether compact states are the result of specific folding events or a general hydrophobic collapse of the poly peptide chain driven by the change in solvent conditions. To address this fundamental question, we extended the temporal resolution of NMR-detected H/D exchange labeling experiments into the microsecond regime by adopting a microfluidics approach. By observing the competition between H/D exchange and folding as a function of labeling pH, coupled with direct measurement of exchange rates in the unfolded state, we were able to monitor hydrogen-bond formation for over 50 individual backbone NH groups within the initial 140 microseconds of folding of horse cytochrome c. Clusters of solvent-shielded amide protons were observed in two α-helical segments in the C-terminal half of the protein, while the N-terminal helix remained largely unstructured, suggesting that proximity in the primary structure is a major factor in promoting helix formation and association at early stages of folding, while the entropically more costly long-range contacts between the N- and C-terminal helices are established only during later stages. Our findings clearly indicate that the initial chain condensation in cytochrome c is driven by specific interactions among a subset of α-helical segments rather than a general hydrophobic collapse.
NASA Astrophysics Data System (ADS)
Boudon, Georges; Villemant, Benoît; Friant, Anne Le; Paterne, Martine; Cortijo, Elsa
2013-08-01
Flank-collapse events are now recognized as common processes of destruction of volcanoes. They may occur several times on a volcanic edifice pulling out varying volumes of material from km3 to thousands of km3. In the Lesser Antilles Arc, a large number of flank-collapse events were identified. Here, we show that some of the largest events are correlated to significant variations in erupted magma compositions and eruptive styles. On Montagne Pelée (Martinique), magma production rate has been sustained during several thousand years following a 32 ka old flank-collapse event. Basic and dense magmas were emitted through open-vent eruptions that generated abundant scoria flows while significantly more acidic magmas were produced before the flank collapse. The rapid building of a new cone increased the load on magma bodies at depth and the density threshold. Magma production rate decreased and composition of the erupted products changed to more acidic compared to the preceding period of activity. These low density magma generated plinian and dome-forming eruptions up to the Present. In contrast at Soufrière Volcanic Centre of St. Lucia and at Pitons du Carbet in Martinique, the flank-collapses have an opposite effect: in both cases, the acidic magmas erupted immediately after the flank-collapses. These magmas are highly porphyritic (up to 60% phenocrysts) and much more viscous than the magmas erupted before the flank-collapses. They have been generally emplaced as voluminous and uptight lava domes (called “the Pitons”). Such magmas could not ascent without a significant decrease of the threshold effect produced by the volcanic edifice loading before the flank-collapse.
Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches.
Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac
2016-07-01
We provide detailed comparison between the adaptive mesh refinement (AMR) code enzo-2.4 and the smoothed particle hydrodynamics (SPH)/ N -body code gadget-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in gadget-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H 2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ∼ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, gadget-3 requires significantly larger computational resources than enzo-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regan, John A.; Johansson, Peter H.; Wise, John H., E-mail: john.regan@helsinki.fi
2014-11-10
The direct collapse model of supermassive black hole seed formation requires that the gas cools predominantly via atomic hydrogen. To this end we simulate the effect of an anisotropic radiation source on the collapse of a halo at high redshift. The radiation source is placed at a distance of 3 kpc (physical) from the collapsing object and is set to emit monochromatically in the center of the Lyman-Werner (LW) band. The LW radiation emitted from the high redshift source is followed self-consistently using ray tracing techniques. Due to self-shielding, a small amount of H{sub 2} is able to form atmore » the very center of the collapsing halo even under very strong LW radiation. Furthermore, we find that a radiation source, emitting >10{sup 54} (∼ 10{sup 3} J{sub 21}) photons s{sup –1}, is required to cause the collapse of a clump of M ∼ 10{sup 5} M {sub ☉}. The resulting accretion rate onto the collapsing object is ∼0.25 M {sub ☉} yr{sup –1}. Our results display significant differences, compared to the isotropic radiation field case, in terms of the H{sub 2} fraction at an equivalent radius. These differences will significantly affect the dynamics of the collapse. With the inclusion of a strong anisotropic radiation source, the final mass of the collapsing object is found to be M ∼ 10{sup 5} M {sub ☉}. This is consistent with predictions for the formation of a supermassive star or quasi-star leading to a supermassive black hole.« less
Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches
NASA Astrophysics Data System (ADS)
Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac
2016-07-01
We provide detailed comparison between the adaptive mesh refinement (AMR) code ENZO-2.4 and the smoothed particle hydrodynamics (SPH)/N-body code GADGET-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in GADGET-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ˜ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, GADGET-3 requires significantly larger computational resources than ENZO-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.
Cavitation erosion prediction based on analysis of flow dynamics and impact load spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihatsch, Michael S., E-mail: michael.mihatsch@aer.mw.tum.de; Schmidt, Steffen J.; Adams, Nikolaus A.
2015-10-15
Cavitation erosion is the consequence of repeated collapse-induced high pressure-loads on a material surface. The present paper assesses the prediction of impact load spectra of cavitating flows, i.e., the rate and intensity distribution of collapse events based on a detailed analysis of flow dynamics. Data are obtained from a numerical simulation which employs a density-based finite volume method, taking into account the compressibility of both phases, and resolves collapse-induced pressure waves. To determine the spectrum of collapse events in the fluid domain, we detect and quantify the collapse of isolated vapor structures. As reference configuration we consider the expansion ofmore » a liquid into a radially divergent gap which exhibits unsteady sheet and cloud cavitation. Analysis of simulation data shows that global cavitation dynamics and dominant flow events are well resolved, even though the spatial resolution is too coarse to resolve individual vapor bubbles. The inviscid flow model recovers increasingly fine-scale vapor structures and collapses with increasing resolution. We demonstrate that frequency and intensity of these collapse events scale with grid resolution. Scaling laws based on two reference lengths are introduced for this purpose. We show that upon applying these laws impact load spectra recorded on experimental and numerical pressure sensors agree with each other. Furthermore, correlation between experimental pitting rates and collapse-event rates is found. Locations of high maximum wall pressures and high densities of collapse events near walls obtained numerically agree well with areas of erosion damage in the experiment. The investigation shows that impact load spectra of cavitating flows can be inferred from flow data that captures the main vapor structures and wave dynamics without the need for resolving all flow scales.« less
NASA Astrophysics Data System (ADS)
Duperret, A.; Genter, A.; Daigneault, M.; Mortimore, R. N.
Coastal chalk cliffs exposed on each part of the English Channel suffer numerous collapses, with mean volumes varying between 10 000 and 100 000 cubic meters. Between October 1998 and October 2001, a minimum of 52 collapses have been ob- served along 120 km of the French chalk coastline located in Upper-Normandy and Picardy. The chalk coastline has evidenced 4 collapses in 1999 and 6 collapses in 2000 (winter and spring), whereas 28 collapses with volume greater than 1000 m3 was recorded in 2001 (winter, spring and summer). The increase of large-scale collapses during 2001 is interpreted as an excess of rainfalls recorded previously. Most of these collapses extend all over the vertical cliff height and are mainly controlled by ground- water infiltration. The modality of water circulation through the chalk rock depends on the chalk lithology and the hydrogeological properties of pre-existing fractures. In the framework of the European scientific project named ROCC (Risk of Cliff Col- lapse), the chalk lithology and the pre-existing fracture pattern have been investigated in order to determine the response of the rock mass to subaerial and marine solicita- tions, including rainfall conditions. Such data have been reported in a GIS system in order to determine the degree of cliff sensibility to collapses. Some rainfall-triggered collapses will be presented to illustrate the diversity of the rock mass response to rain- fall excess, in terms of rock mass characteristics and time delay: (1) a collapse was witnessed at Puys, the 17th May 2000, after two periods of intense rainfall inducing floods, during the two previous months. The occurrence of impervious marl seams levels within the chalk and its low fracture content may have generated water over- pressure and consequently stress concentration on the marl seams, which conduct to the rupture. The delay between rainfall and the rupture may be explained by the low velocity of groundwater through a poorly fractured porous chalk. (2) a series of large- scale collapses has been evidenced at Yport in June 2001, at Grandes Dalles the 15th July 2001 and at Benouville the 24th July 2001. These collapses occurred after a dry period, during the previous three months. A collapse occurred again at Yport the 27th August 2001, after an increase of rainfall during August 2001. All these sites present the same lithological chalk succession than at Puys, but their fracture pattern is made of large-scale subvertical fractures expanding all over the cliff height. Some of them 1 which correspond to dissolution pipes are filled with clays-with-flints. The sharp in- crease of collapses during the summer 2001 could be related to the superimposition of dry periods which alternate with heavy rainfalls, in karst environment. 2
Cliff Collapse Hazard from Repeated Multicopter Uav Acquisitions: Return on Experience
NASA Astrophysics Data System (ADS)
Dewez, T. J. B.; Leroux, J.; Morelli, S.
2016-06-01
Cliff collapse poses a serious hazard to infrastructure and passers-by. Obtaining information such as magnitude-frequency relationship for a specific site is of great help to adapt appropriate mitigation measures. While it is possible to monitor hundreds-of-meter-long cliff sites with ground based techniques (e.g. lidar or photogrammetry), it is both time consuming and scientifically limiting to focus on short cliff sections. In the project SUAVE, we sought to investigate whether an octocopter UAV photogrammetric survey would perform sufficiently well in order to repeatedly survey cliff face geometry and derive rock fall inventories amenable to probabilistic rock fall hazard computation. An experiment was therefore run on a well-studied site of the chalk coast of Normandy, in Mesnil Val, along the English Channel (Northern France). Two campaigns were organized in January and June 2015 which surveyed about 60 ha of coastline, including the 80-m-high cliff face, the chalk platform at its foot, and the hinterland in a matter of 4 hours from start to finish. To conform with UAV regulations, the flight was flown in 3 legs for a total of about 30 minutes in the air. A total of 868 and 1106 photos were respectively shot with a Sony NEX 7 with fixed focal 16mm. Three lines of sight were combined: horizontal shots for cliff face imaging, 45°-oblique views to tie plateau/platform photos with cliff face images, and regular vertical shots. Photogrammetrically derived dense point clouds were produced with Agisoft Photoscan at ultra-high density (median density is 1 point every 1.7cm). Point cloud density proved a critical parameter to reproduce faithfully the chalk face's geometry. Tuning down the density parameter to "high" or "medium", though efficient from a computational point of view, generated artefacts along chalk bed edges (i.e. smoothing the sharp gradient) and ultimately creating ghost volumes when computing cloud to cloud differences. Yet, from a hazard point of view, this is where small rock fall will most likely occur. Absolute orientation of both point clouds proved unsufficient despite the 30 black and white quadrants ground control point DGPS surveyed. Additional ICP was necessary to reach centimeter-level accuracy and segment rock fall scars corresponding to the expected average daily rock fall volume (ca. 0.013 m3).
ERIC Educational Resources Information Center
Fontaine, Haroldo A.
2010-01-01
In this article, the author considers three of today's pre-service teachers who have each watched the World Trade Center towers collapse on broadcast television, viewed the film "Hidalgo," and participated in subsequent interviews regarding the movie. Specifically, the author wants to examine the extent to which the pre-service teachers in this…
The Italian Expedition in the Russian Campaign 1941-43: A Pronounced Failure
This monograph investigates the Italian Expedition in the Russian campaign during the Second World War from an operational perspective. It seeks to...identify those factors relevant for practicing operational art that caused the collapse of the Italian forces in 1943. Specifically, the monograph ...commands. The conclusion of the monograph depicts several lessons for current and future operational planners. The latter have to be ready to properly frame
Tamada, Hiromi; Kiryu-Seo, Sumiko; Hosokawa, Hiroki; Ohta, Keisuke; Ishihara, Naotada; Nomura, Masatoshi; Mihara, Katsuyoshi; Nakamura, Kei-Ichiro; Kiyama, Hiroshi
2017-08-01
Mitochondria undergo morphological changes through fusion and fission for their quality control, which are vital for neuronal function. In this study, we examined three-dimensional morphologies of mitochondria in motor neurons under normal, nerve injured, and nerve injured plus fission-impaired conditions using the focused ion beam/scanning electron microscopy (FIB/SEM), because the FIB/SEM technology is a powerful tool to demonstrate both 3D images of whole organelle and the intra-organellar structure simultaneously. Crossing of dynamin-related protein 1 (Drp1) gene-floxed mice with neuronal injury-specific Cre driver mice, Atf3:BAC Tg mice, allowed for Drp1 ablation specifically in injured neurons. FIB/SEM analysis demonstrated that somatic mitochondrial morphologies in motor neurons were not altered before or after nerve injury. However, the fission impairment resulted in prominent somatic mitochondrial enlargement, which initially induced complex morphologies with round regions and long tubular processes, subsequently causing a decrease in the number of processes and further enlargement of the round regions, which eventually resulted in big spheroidal mitochondria without processes. The abnormal mitochondria exhibited several degradative morphologies: local or total cristae collapse, vacuolization, and mitophagy. These suggest that mitochondrial fission is crucial for maintaining mitochondrial integrity in injured motor neurons, and multiple forms of mitochondria degradation may accelerate neuronal degradation. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corpuz, A.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Loew, K.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Santamaria, L.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-11-01
We present results from a search for gravitational-wave bursts coincident with two core-collapse supernovae observed optically in 2007 and 2011. We employ data from the Laser Interferometer Gravitational-wave Observatory (LIGO), the Virgo gravitational-wave observatory, and the GEO 600 gravitational-wave observatory. The targeted core-collapse supernovae were selected on the basis of (1) proximity (within approximately 15 Mpc), (2) tightness of observational constraints on the time of core collapse that defines the gravitational-wave search window, and (3) coincident operation of at least two interferometers at the time of core collapse. We find no plausible gravitational-wave candidates. We present the probability of detecting signals from both astrophysically well-motivated and more speculative gravitational-wave emission mechanisms as a function of distance from Earth, and discuss the implications for the detection of gravitational waves from core-collapse supernovae by the upgraded Advanced LIGO and Virgo detectors.
Rapid onset of mafic magmatism facilitated by volcanic edifice collapse
NASA Astrophysics Data System (ADS)
Cassidy, M.; Watt, S. F. L.; Talling, P. J.; Palmer, M. R.; Edmonds, M.; Jutzeler, M.; Wall-Palmer, D.; Manga, M.; Coussens, M.; Gernon, T.; Taylor, R. N.; Michalik, A.; Inglis, E.; Breitkreuz, C.; Le Friant, A.; Ishizuka, O.; Boudon, G.; McCanta, M. C.; Adachi, T.; Hornbach, M. J.; Colas, S. L.; Endo, D.; Fujinawa, A.; Kataoka, K. S.; Maeno, F.; Tamura, Y.; Wang, F.
2015-06-01
Volcanic edifice collapses generate some of Earth's largest landslides. How such unloading affects the magma storage systems is important for both hazard assessment and for determining long-term controls on volcano growth and decay. Here we present a detailed stratigraphic and petrological analyses of volcanic landslide and eruption deposits offshore Montserrat, in a subduction zone setting, sampled during Integrated Ocean Drilling Program Expedition 340. A large (6-10 km3) collapse of the Soufrière Hills Volcano at ~130 ka was followed by explosive basaltic volcanism and the formation of a new basaltic volcanic center, the South Soufrière Hills, estimated to have initiated <100 years after collapse. This basaltic volcanism was a sharp departure from the andesitic volcanism that characterized Soufrière Hills' activity before the collapse. Mineral-melt thermobarometry demonstrates that the basaltic magma's transit through the crust was rapid and from midcrustal depths. We suggest that this rapid ascent was promoted by unloading following collapse.
FAILURE OF A NEUTRINO-DRIVEN EXPLOSION AFTER CORE-COLLAPSE MAY LEAD TO A THERMONUCLEAR SUPERNOVA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kushnir, Doron; Katz, Boaz, E-mail: kushnir@ias.edu
We demonstrate that ∼10 s after the core-collapse of a massive star, a thermonuclear explosion of the outer shells is possible for some (tuned) initial density and composition profiles, assuming that the neutrinos failed to explode the star. The explosion may lead to a successful supernova, as first suggested by Burbidge et al. We perform a series of one-dimensional (1D) calculations of collapsing massive stars with simplified initial density profiles (similar to the results of stellar evolution calculations) and various compositions (not similar to 1D stellar evolution calculations). We assume that the neutrinos escaped with a negligible effect on themore » outer layers, which inevitably collapse. As the shells collapse, they compress and heat up adiabatically, enhancing the rate of thermonuclear burning. In some cases, where significant shells of mixed helium and oxygen are present with pre-collapsed burning times of ≲100 s (≈10 times the free-fall time), a thermonuclear detonation wave is ignited, which unbinds the outer layers of the star, leading to a supernova. The energy released is small, ≲10{sup 50} erg, and negligible amounts of synthesized material (including {sup 56}Ni) are ejected, implying that these 1D simulations are unlikely to represent typical core-collapse supernovae. However, they do serve as a proof of concept that the core-collapse-induced thermonuclear explosions are possible, and more realistic two-dimensional and three-dimensional simulations are within current computational capabilities.« less
Reversible Leaf Xylem Collapse: A Potential “Circuit Breaker” against Cavitation1[OPEN
Zhang, Yong-Jiang; Rockwell, Fulton E.; Graham, Adam C.; Alexander, Teressa; Holbrook, N. Michele
2016-01-01
We report a novel form of xylem dysfunction in angiosperms: reversible collapse of the xylem conduits of the smallest vein orders that demarcate and intrusively irrigate the areoles of red oak (Quercus rubra) leaves. Cryo-scanning electron microscopy revealed gradual increases in collapse from approximately −2 MPa down to −3 MPa, saturating thereafter (to −4 MPa). Over this range, cavitation remained negligible in these veins. Imaging of rehydration experiments showed spatially variable recovery from collapse within 20 s and complete recovery after 2 min. More broadly, the patterns of deformation induced by desiccation in both mesophyll and xylem suggest that cell wall collapse is unlikely to depend solely on individual wall properties, as mechanical constraints imposed by neighbors appear to be important. From the perspective of equilibrium leaf water potentials, petioles, whose vessels extend into the major veins, showed a vulnerability to cavitation that overlapped in the water potential domain with both minor vein collapse and buckling (turgor loss) of the living cells. However, models of transpiration transients showed that minor vein collapse and mesophyll capacitance could effectively buffer major veins from cavitation over time scales relevant to the rectification of stomatal wrong-way responses. We suggest that, for angiosperms, whose subsidiary cells give up large volumes to allow large stomatal apertures at the cost of potentially large wrong-way responses, vein collapse could make an important contribution to these plants’ ability to transpire near the brink of cavitation-inducing water potentials. PMID:27733514
Can a collapse of global civilization be avoided?
Ehrlich, Paul R.; Ehrlich, Anne H.
2013-01-01
Environmental problems have contributed to numerous collapses of civilizations in the past. Now, for the first time, a global collapse appears likely. Overpopulation, overconsumption by the rich and poor choices of technologies are major drivers; dramatic cultural change provides the main hope of averting calamity. PMID:23303549
NASA Astrophysics Data System (ADS)
Turubanova, S.; Potapov, P.; Krylov, A.; Tyukavina, A.; McCarty, J. L.; Radeloff, V. C.; Hansen, M. C.
2015-04-01
Dramatic political and economic changes in Eastern European countries following the dissolution of the "Eastern Bloc" and the collapse of the Soviet Union greatly affected land-cover and land-use trends. In particular, changes in forest cover dynamics may be attributed to the collapse of the planned economy, agricultural land abandonment, economy liberalization, and market conditions. However, changes in forest cover are hard to quantify given inconsistent forest statistics collected by different countries over the last 30 years. The objective of our research was to consistently quantify forest cover change across Eastern Europe from 1985 until 2012 using the complete Landsat data archive. We developed an algorithm for processing imagery from different Landsat platforms and sensors (TM and ETM+), aggregating these images into a common set of multi-temporal metrics, and mapping annual gross forest cover loss and decadal gross forest cover gain. Our results show that forest cover area increased from 1985 to 2012 by 4.7% across the region. Average annual gross forest cover loss was 0.41% of total forest cover area, with a statistically significant increase from 1985 to 2012. Most forest disturbance recovered fast, with only 12% of the areas of forest loss prior to 1995 not being recovered by 2012. Timber harvesting was the main cause of forest loss. Logging area declined after the collapse of socialism in the late 1980s, increased in the early 2000s, and decreased in most countries after 2007 due to the global economic crisis. By 2012, Central and Baltic Eastern European countries showed higher logging rates compared to their Western neighbours. Comparing our results with official forest cover and change estimates showed agreement in total forest area for year 2010, but with substantial disagreement between Landsat-based and official net forest cover area change. Landsat-based logging areas exhibit strong relationship with reported roundwood production at national scale. Our results allow national and sub-national level analysis of forest cover extent, change, and logging intensity and are available on-line as a baseline for further analyses of forest dynamics and its drivers.
Chemistry in dynamically evolving clouds
NASA Technical Reports Server (NTRS)
Tarafdar, S. P.; Prasad, S. S.; Huntress, W. T., Jr.; Villere, K. R.; Black, D. C.
1985-01-01
A unified model of chemical and dynamical evolution of isolated, initially diffuse and quiescent interstellar clouds is presented. The model uses a semiempirically derived dependence of the observed cloud temperatures on the visual extinction and density. Even low-mass, low-density, diffuse clouds can collapse in this model, because the inward pressure gradient force assists gravitational contraction. In contrast, previous isothermal collapse models required the low-mass diffuse clouds to be unrealistically cold before gravitational contraction could start. Theoretically predicted dependences of the column densities of various atoms and molecules, such as C and CO, on visual extinction in diffuse clouds are in accord with observations. Similarly, the predicted dependences of the fractional abundances of various chemical species (e.g., CO, H2CO, HCN, HCO(+)) on the total hydrogen density in the core of the dense clouds also agree with observations reported to date in the literature. Compared with previous models of interstellar chemistry, the present model has the potential to explain the wide spectrum of chemical and physical properties of both diffuse and dense clouds with a common formalism employing only a few simple initial conditions.
Well-temperate phage: Optimal bet-hedging against local environmental collapses
Maslov, Sergei; Sneppen, Kim
2015-06-02
Upon infection of their bacterial hosts temperate phages must chose between lysogenic and lytic developmental strategies. Here we apply the game-theoretic bet-hedging strategy introduced by Kelly to derive the optimal lysogenic fraction of the total population of phages as a function of frequency and intensity of environmental downturns affecting the lytic subpopulation. “Well-temperate” phage from our title is characterized by the best long-term population growth rate. We show that it is realized when the lysogenization frequency is approximately equal to the probability of lytic population collapse. We further predict the existence of sharp boundaries in system’s environmental, ecological, and biophysicalmore » parameters separating the regions where this temperate strategy is optimal from those dominated by purely virulent or dormant (purely lysogenic) strategies. We show that the virulent strategy works best for phages with large diversity of hosts, and access to multiple independent environments reachable by diffusion. Conversely, progressively more temperate or even dormant strategies are favored in the environments, that are subject to frequent and severe temporal downturns.« less
Density driven structural transformations in amorphous semiconductor clathrates
Tulk, Christopher A.; dos Santos, Antonio M.; Neuefeind, Joerg C.; ...
2015-01-16
The pressure induced crystalline collapse at 14.7 GPa and polyamorphic structures of the semiconductor clathrate Sr8Ga16Ge30 are reported up to 35 GPa. In-situ total scattering measurements under pressure allow the direct microscopic inspection of the mechanisms associated with pressure induced amorphization in these systems, as well as the structure of the recovered phase. It is observed that, between 14.7 and 35 GPa the second peak in the structure factor function gradually disappears. Analysis of the radial distribution function extracted from those data indicate that this feature is associated with gradual cage collapse and breakdown of the tetrahedral structure with themore » consequent systematic lengthening of the nearest-neighbor framework bonds. This suggests an overall local coordination change to an even higher density amorphous form. Upon recovery from high pressure, the sample remains amorphous, and while there is some indication of the guest-host cage reforming, it doesn't seem that the tetrahedral coordination is recovered. As such, the compresion-decompression process in this systems gives rise to three distict amorphous forms.« less
Well-temperate phage: Optimal bet-hedging against local environmental collapses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maslov, Sergei; Sneppen, Kim
Upon infection of their bacterial hosts temperate phages must chose between lysogenic and lytic developmental strategies. Here we apply the game-theoretic bet-hedging strategy introduced by Kelly to derive the optimal lysogenic fraction of the total population of phages as a function of frequency and intensity of environmental downturns affecting the lytic subpopulation. “Well-temperate” phage from our title is characterized by the best long-term population growth rate. We show that it is realized when the lysogenization frequency is approximately equal to the probability of lytic population collapse. We further predict the existence of sharp boundaries in system’s environmental, ecological, and biophysicalmore » parameters separating the regions where this temperate strategy is optimal from those dominated by purely virulent or dormant (purely lysogenic) strategies. We show that the virulent strategy works best for phages with large diversity of hosts, and access to multiple independent environments reachable by diffusion. Conversely, progressively more temperate or even dormant strategies are favored in the environments, that are subject to frequent and severe temporal downturns.« less
A weight limit emerges for neutron stars
NASA Astrophysics Data System (ADS)
Cho, Adrian
2018-02-01
Astrophysicists have long wondered how massive a neutron star—the corpse of certain exploding stars—could be without collapsing under its own gravity to form a black hole. Now, four teams have independently deduced a mass limit for neutron stars of about 2.2 times the mass of the sun. To do so, all four groups analyzed last year's blockbuster observations of the merger of two neutron stars, spied on 17 September 2017 by dozens of observatories. That approach may seem unpromising, as it might appear that the merging neutron stars would have immediately produced a black hole. However, the researchers argue that the merger first produced a spinning, overweight neutron star momentarily propped up by centrifugal force. They deduce that just before it collapsed, the short-lived neutron star had to be near the maximum mass for one spinning as a solid body. That inference allowed them to use a scaling relationship to estimate the maximum mass of a nonrotating, stable neutron star, starting from the total mass of the original pair and the amount of matter spewed into space.
RESPIRATORY MODULATION OF LINGUAL MUSCLE ACTIVITY ACROSS SLEEP-WAKE STATES IN RATS
Stettner, Georg M.; Rukhadze, Irma; Mann, Graziella L.; Lei, Yanlin; Kubin, Leszek
2013-01-01
In obstructive sleep apnea (OSA) patients, inspiratory activation (IA) of lingual muscles protects the upper airway from collapse. We aimed to determine when rats’ lingual muscles exhibit IA. In 5 Sprague-Dawley and 3 Wistar rats, we monitored cortical EEG and lingual, diaphragmatic and nuchal electromyograms (EMGs), and identified segments of records when lingual EMG exhibited IA. Individual segments lasted 2.4–269 s (median: 14.5 s), most (89%) occurred during slow-wave sleep (SWS), and they collectively occupied 0.3–6.1% of the total recording time. IA usually started to increase with a delay after SWS onset and ended with an arousal, or declined prior to rapid eye movement sleep. IA of lingual EMG was not accompanied by increased diaphragmatic activity or respiratory rate changes, but occurred when cortical EEG power was particularly low in a low beta-1 frequency range (12.5–16.4 Hz). A deep SWS-related activation of upper airway muscles may be an endogenous phenomenon designed to protect the upper airway against collapse. PMID:23732510
The Avellino 3780-yr-B.P. catastrophe as a worst-case scenario for a future eruption at Vesuvius
Mastrolorenzo, Giuseppe; Petrone, Pierpaolo; Pappalardo, Lucia; Sheridan, Michael F.
2006-01-01
A volcanic catastrophe even more devastating than the famous anno Domini 79 Pompeii eruption occurred during the Old Bronze Age at Vesuvius. The 3780-yr-B.P. Avellino plinian eruption produced an early violent pumice fallout and a late pyroclastic surge sequence that covered the volcano surroundings as far as 25 km away, burying land and villages. Here we present the reconstruction of this prehistoric catastrophe and its impact on the Bronze Age culture in Campania, drawn from an interdisciplinary volcanological and archaeoanthropological study. Evidence shows that a sudden, en masse evacuation of thousands of people occurred at the beginning of the eruption, before the last destructive plinian column collapse. Most of the fugitives likely survived, but the desertification of the total habitat due to the huge eruption size caused a social–demographic collapse and the abandonment of the entire area for centuries. Because an event of this scale is capable of devastating a broad territory that includes the present metropolitan district of Naples, it should be considered as a reference for the worst eruptive scenario at Vesuvius. PMID:16537390
Hydrostatic pressure effects on the structural and electronicproperties of carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capaz,Rodrigo B.; Spataru, Catalin D.; Tangney, Paul
2004-03-15
We study the structural and electronic properties ofisolated single-wall carbon nanotubes (SWNTs) under hydrostatic pressureusing a combination of theoretical techniques: continuum elasticitymodels, classical molecular dynamics simulations, tight-bindingelectronic structure methods, and first-principles total energycalculations within the density-functional and pseudopotentialframeworks. For pressures below a certain critica pressure Pc, the SWNTs'structure remains cylindrical and the Kohn-Sham energy gaps ofsemiconducting SWNTs have either positive or negative pressurecoefficients depending on the value of (n,m) with a distinct "family" (ofthe same n-m) behavior. The diameter and chirality dependence of thepressure coefficients can be described by a simple analytical expression.At Pc, molecular-dynamics simulations predict that isolated SWNTsmore » undergoa pressure-induced symmetry-breaking transformation from a cylindricalshape to a collapsed geometry. This transition is described by a simpleelastic model as arising from the competition between the bond-bendingand PV terms in the enthalpy. The good agreement between calculated andexperimental values of Pc provides a strong support to the "collapse"interpretation of the experimental transitions in bundles.« less
Tabassum, Sumera; Haider, Shahbaz
2016-01-01
To determine frequencies of different MRI patterns of tuberculous spondylitisin a public sector hospital in Karachi. This descriptive multidisciplinary case series study was done from October 25, 2011 to May 28, 2012 in Radiology Department and Department of Medicine in the Jinnah Postgraduate Medical Center Karachi. MRI scans (dorsal / lumbosacral spine) of the Patients presenting with backache in Medical OPD, were performed in Radiology Department. Axial and sagittal images of T1 weighted, T2 weighted and STIR sequences of the affected region were taken. A total of 140 patients who were diagnosed as having tuberculous spondylitis were further evaluated and analyzed for having different patterns of involvement of the spine and compared with similar studies. Among frequencies of different MRI pattern of tuberculous spondylitis, contiguous vertebral involvement was 100%, discal involvement 98.6%, paravertebral abscess 92.1% cases, epidural abscess 91.4%, spinal cord / thecal sac compression 89.3%, vertebral collapse 72.9%, gibbus deformity 42.9% and psoas abscess 36.4%. Contiguous vertebral involvement was commonest MRI pattern, followed by disk involvement, paravertebral & epidural abscesses, thecal sac compression and vertebral collapse.
Nonspherically Symmetric Collapse in Asymptotically AdS Spacetimes.
Bantilan, Hans; Figueras, Pau; Kunesch, Markus; Romatschke, Paul
2017-11-10
We numerically simulate gravitational collapse in asymptotically anti-de Sitter spacetimes away from spherical symmetry. Starting from initial data sourced by a massless real scalar field, we solve the Einstein equations with a negative cosmological constant in five spacetime dimensions and obtain a family of nonspherically symmetric solutions, including those that form two distinct black holes on the axis. We find that these configurations collapse faster than spherically symmetric ones of the same mass and radial compactness. Similarly, they require less mass to collapse within a fixed time.
Recoverable and Programmable Collapse from Folding Pressurized Origami Cellular Solids.
Li, S; Fang, H; Wang, K W
2016-09-09
We report a unique collapse mechanism by exploiting the negative stiffness observed in the folding of an origami solid, which consists of pressurized cells made by stacking origami sheets. Such a collapse mechanism is recoverable, since it only involves rigid folding of the origami sheets and it is programmable by pressure control and the custom design of the crease pattern. The collapse mechanism features many attractive characteristics for applications such as energy absorption. The reported results also suggest a new branch of origami study focused on its nonlinear mechanics associated with folding.
Biological effects of stellar collapse neutrinos
Collar, J I
1996-02-05
Massive stars in their final stages of collapse radiate most of their binding energy in the form of MeV neutrinos. The recoil atoms that they produce in elastic scattering off nuclei in organic tissue create radiation damage which is highly effective in the production of irreparable DNA harm, leading to cellular mutation, neoplasia, and oncogenesis. Using a conventional model of the galaxy and of the collapse mechanism, the periodicity of nearby stellar collapses and the radiation dose are calculated. The possible contribution of this process to the paleontological record of mass extinctions is examined.
Benefits of Objective Collapse Models for Cosmology and Quantum Gravity
NASA Astrophysics Data System (ADS)
Okon, Elias; Sudarsky, Daniel
2014-02-01
We display a number of advantages of objective collapse theories for the resolution of long-standing problems in cosmology and quantum gravity. In particular, we examine applications of objective reduction models to three important issues: the origin of the seeds of cosmic structure, the problem of time in quantum gravity and the information loss paradox; we show how reduction models contain the necessary tools to provide solutions for these issues. We wrap up with an adventurous proposal, which relates the spontaneous collapse events of objective collapse models to microscopic virtual black holes.
Nonspherically Symmetric Collapse in Asymptotically AdS Spacetimes
NASA Astrophysics Data System (ADS)
Bantilan, Hans; Figueras, Pau; Kunesch, Markus; Romatschke, Paul
2017-11-01
We numerically simulate gravitational collapse in asymptotically anti-de Sitter spacetimes away from spherical symmetry. Starting from initial data sourced by a massless real scalar field, we solve the Einstein equations with a negative cosmological constant in five spacetime dimensions and obtain a family of nonspherically symmetric solutions, including those that form two distinct black holes on the axis. We find that these configurations collapse faster than spherically symmetric ones of the same mass and radial compactness. Similarly, they require less mass to collapse within a fixed time.
Radiating gravitational collapse with shearing motion and bulk viscosity
NASA Astrophysics Data System (ADS)
Chan, R.
2001-03-01
A model is proposed of a collapsing radiating star consisting of a shearing fluid with bulk viscosity undergoing radial heat flow with outgoing radiation. The pressure of the star, at the beginning of the collapse, is isotropic but due to the presence of the bulk viscosity the pressure becomes more and more anisotropic. The behavior of the density, pressure, mass, luminosity, the effective adiabatic index and the Kretschmann scalar is analyzed. Our work is compared to the case of a collapsing shearing fluid of a previous model, for a star with 6 Msun.
Radiating gravitational collapse with shear viscosity
NASA Astrophysics Data System (ADS)
Chan, R.
2000-08-01
A model is proposed of a collapsing radiating star consisting of an isotropic fluid with shear viscosity undergoing radial heat flow with outgoing radiation. The pressure of the star, at the beginning of the collapse, is isotropic but owing to the presence of the shear viscosity the pressure becomes more and more anisotropic. The behaviour of the density, pressure, mass, luminosity and the effective adiabatic index is analysed. Our work is compared to the case of a collapsing shearing fluid of a previous model, for a star with 6Msolar.
Particle creation in (2+1) circular dust collapse
NASA Astrophysics Data System (ADS)
Gutti, Sashideep; Singh, T. P.
2007-09-01
We investigate the quantum particle creation during the circularly symmetric collapse of a 2+1 dust cloud, for the cases when the cosmological constant is either zero or negative. We derive the Ford-Parker formula for the 2+1 case, which can be used to compute the radiated quantum flux in the geometric optics approximation. It is shown that no particles are created when the collapse ends in a naked singularity, unlike in the 3+1 case. When the collapse ends in a Banados-Teitelboim-Zanelli black hole, we recover the expected Hawking radiation.
Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy
NASA Astrophysics Data System (ADS)
Kilburn, Christopher R. J.; Petley, David N.
2003-08-01
Rapid, giant landslides, or sturzstroms, are among the most powerful natural hazards on Earth. They have minimum volumes of ˜10 6-10 7 m 3 and, normally preceded by prolonged intervals of accelerating creep, are produced by catastrophic and deep-seated slope collapse (loads ˜1-10 MPa). Conventional analyses attribute rapid collapse to unusual mechanisms, such as the vaporization of ground water during sliding. Here, catastrophic collapse is related to self-accelerating rock fracture, common in crustal rocks at loads ˜1-10 MPa and readily catalysed by circulating fluids. Fracturing produces an abrupt drop in resisting stress. Measured stress drops in crustal rock account for minimum sturzstrom volumes and rapid collapse accelerations. Fracturing also provides a physical basis for quantitatively forecasting catastrophic slope failure.
The shadow of a collapsing dark star
NASA Astrophysics Data System (ADS)
Schneider, Stefanie; Perlick, Volker
2018-06-01
The shadow of a black hole is usually calculated, either analytically or numerically, on the assumption that the black hole is eternal, i.e., that it has existed for all time. Here we ask the question of how this shadow comes about in the course of time when a black hole is formed by gravitational collapse. To that end we consider a star that is spherically symmetric, dark and non-transparent and we assume that it begins, at some instant of time, to collapse in free fall like a ball of dust. We analytically calculate the dependence on time of the angular radius of the shadow, first for a static observer who is watching the collapse from a certain distance and then for an observer who is falling towards the centre following the collapsing star.
Intracapsular implant rupture: MR findings of incomplete shell collapse.
Soo, M S; Kornguth, P J; Walsh, R; Elenberger, C; Georgiade, G S; DeLong, D; Spritzer, C E
1997-01-01
The objective of this study was to determine the frequency and significance of the MR findings of incomplete shell collapse for detecting implant rupture in a series of surgically removed breast prostheses. MR images of 86 breast implants in 44 patients were studied retrospectively and correlated with surgical findings at explantation. MR findings included (a) complete shell collapse (linguine sign), 21 implants; (b) incomplete shell collapse (subcapsular line sign, teardrop sign, and keyhole sign), 33 implants; (c) radial folds, 31 implants; and (d) normal, 1 implant. The subcapsular line sign was seen in 26 implants, the teardrop sign was seen in 27 implants, and the keyhole sign was seen in 23 implants. At surgery, 48 implants were found to be ruptured and 38 were intact. The MR findings of ruptured implants showed signs of incomplete collapse in 52% (n = 25), linguine sign in 44% (n = 21), and radial folds in 4% (n = 2). The linguine sign perfectly predicted implant rupture, but sensitivity was low. Findings of incomplete shell collapse improved sensitivity and negative predictive values, and the subcapsular line sign produced a significant incremental increase in predictive ability. MRI signs of incomplete shell collapse were more common than the linguine sign in ruptured implants and are significant contributors to the high sensitivity and negative predictive values of MRI for evaluating implant integrity.
Gravitational waves and core-collapse supernovae
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.; Moiseenko, S. G.
2017-11-01
A mechanism of formation of gravitational waves in the Universe is considered for a nonspherical collapse of matter. Nonspherical collapse results are presented for a uniform spheroid of dust and a finite-entropy spheroid. Numerical simulation results on core-collapse supernova explosions are presented for the neutrino and magneto-rotational models. These results are used to estimate the dimensionless amplitude of the gravitational wave with a frequency ν ~ 1300 Hz, radiated during the collapse of the rotating core of a pre-supernova with a mass of 1.2 M⊙ (calculated by the authors in 2D). This estimate agrees well with many other calculations (presented in this paper) that have been done in 2D and 3D settings and which rely on more exact and sophisticated calculations of the gravitational wave amplitude. The formation of the large-scale structure of the Universe in the Zel’dovich pancake model involves the emission of very long-wavelength gravitational waves. The average amplitude of these waves is calculated from the simulation, in the uniform spheroid approximation, of the nonspherical collapse of noncollisional dust matter, which imitates dark matter. It is noted that a gravitational wave radiated during a core-collapse supernova explosion in our Galaxy has a sufficient amplitude to be detected by existing gravitational wave telescopes.
NASA Astrophysics Data System (ADS)
Shi, Chun-Hui; Lou, Yu-Qing
2018-04-01
We investigate and explore self-similar dynamic radial collapses of relativistic degenerate stellar cores (RDSCs) and radiation pressure dominated stellar interiors (RPDSIs) of spherical symmetry by invoking a conventional polytropic (CP) equation of state (EoS) with a constant polytropic index γ = 4 / 3 and by allowing free-fall non-zero RDSC or RPDSI surface mass density and pressure due to their sustained physical contact with the outer surrounding stellar envelopes also in contraction. Irrespective of the physical triggering mechanisms (including, e.g., photodissociation, electron-positron pair instability, general relativistic instability etc.) for initiating such a self-similar dynamically collapsing RDSC or RPDSI embedded within a massive star, a very massive star (VMS) or a supermassive star (SMS) in contraction and by comparing with the Schwarzschild radii associated with their corresponding RDSC/RPDSI masses, the emergence of central black holes in a wide mass range appears inevitable during such RDSC/RPDSI dynamic collapses inside massive stars, VMSs, and SMSs, respectively. Radial pulsations of progenitor cores or during a stellar core collapse may well leave imprints onto collapsing RDSCs/RPDSIs towards their self-similar dynamic evolution. Massive neutron stars may form during dynamic collapses of RDSC inside massive stars in contraction under proper conditions.
Fishing, fast growth and climate variability increase the risk of collapse
Pinsky, Malin L.; Byler, David
2015-01-01
Species around the world have suffered collapses, and a key question is why some populations are more vulnerable than others. Traditional conservation biology and evidence from terrestrial species suggest that slow-growing populations are most at risk, but interactions between climate variability and harvest dynamics may alter or even reverse this pattern. Here, we test this hypothesis globally. We use boosted regression trees to analyse the influences of harvesting, species traits and climate variability on the risk of collapse (decline below a fixed threshold) across 154 marine fish populations around the world. The most important factor explaining collapses was the magnitude of overfishing, while the duration of overfishing best explained long-term depletion. However, fast growth was the next most important risk factor. Fast-growing populations and those in variable environments were especially sensitive to overfishing, and the risk of collapse was more than tripled for fast-growing when compared with slow-growing species that experienced overfishing. We found little evidence that, in the absence of overfishing, climate variability or fast growth rates alone drove population collapse over the last six decades. Expanding efforts to rapidly adjust harvest pressure to account for climate-driven lows in productivity could help to avoid future collapses, particularly among fast-growing species. PMID:26246548
Fishing, fast growth and climate variability increase the risk of collapse.
Pinsky, Malin L; Byler, David
2015-08-22
Species around the world have suffered collapses, and a key question is why some populations are more vulnerable than others. Traditional conservation biology and evidence from terrestrial species suggest that slow-growing populations are most at risk, but interactions between climate variability and harvest dynamics may alter or even reverse this pattern. Here, we test this hypothesis globally. We use boosted regression trees to analyse the influences of harvesting, species traits and climate variability on the risk of collapse (decline below a fixed threshold) across 154 marine fish populations around the world. The most important factor explaining collapses was the magnitude of overfishing, while the duration of overfishing best explained long-term depletion. However, fast growth was the next most important risk factor. Fast-growing populations and those in variable environments were especially sensitive to overfishing, and the risk of collapse was more than tripled for fast-growing when compared with slow-growing species that experienced overfishing. We found little evidence that, in the absence of overfishing, climate variability or fast growth rates alone drove population collapse over the last six decades. Expanding efforts to rapidly adjust harvest pressure to account for climate-driven lows in productivity could help to avoid future collapses, particularly among fast-growing species. © 2015 The Author(s).
Shock-induced collapse of a gas bubble in shockwave lithotripsy.
Johnsen, Eric; Colonius, Tim
2008-10-01
The shock-induced collapse of a pre-existing nucleus near a solid surface in the focal region of a lithotripter is investigated. The entire flow field of the collapse of a single gas bubble subjected to a lithotripter pulse is simulated using a high-order accurate shock- and interface-capturing scheme, and the wall pressure is considered as an indication of potential damage. Results from the computations show the same qualitative behavior as that observed in experiments: a re-entrant jet forms in the direction of propagation of the pulse and penetrates the bubble during collapse, ultimately hitting the distal side and generating a water-hammer shock. As a result of the propagation of this wave, wall pressures on the order of 1 GPa may be achieved for bubbles collapsing close to the wall. The wall pressure decreases with initial stand-off distance and pulse width and increases with pulse amplitude. For the stand-off distances considered in the present work, the wall pressure due to bubble collapse is larger than that due to the incoming shockwave; the region over which this holds may extend to ten initial radii. The present results indicate that shock-induced collapse is a mechanism with high potential for damage in shockwave lithotripsy.
Shock-induced collapse of a gas bubble in shockwave lithotripsy
Johnsen, Eric; Colonius, Tim
2008-01-01
The shock-induced collapse of a pre-existing nucleus near a solid surface in the focal region of a lithotripter is investigated. The entire flow field of the collapse of a single gas bubble subjected to a lithotripter pulse is simulated using a high-order accurate shock- and interface-capturing scheme, and the wall pressure is considered as an indication of potential damage. Results from the computations show the same qualitative behavior as that observed in experiments: a re-entrant jet forms in the direction of propagation of the pulse and penetrates the bubble during collapse, ultimately hitting the distal side and generating a water-hammer shock. As a result of the propagation of this wave, wall pressures on the order of 1 GPa may be achieved for bubbles collapsing close to the wall. The wall pressure decreases with initial stand-off distance and pulse width and increases with pulse amplitude. For the stand-off distances considered in the present work, the wall pressure due to bubble collapse is larger than that due to the incoming shockwave; the region over which this holds may extend to ten initial radii. The present results indicate that shock-induced collapse is a mechanism with high potential for damage in shockwave lithotripsy. PMID:19062841
Preliminary Seismological Report on the 6 August 2007 Crandall Canyon Mine Collapse in Utah
NASA Astrophysics Data System (ADS)
Pechmann, J. C.; Arabasz, W. J.; Pankow, K. L.; Burlacu, R.; McCarter, M. K.
2007-12-01
A large and tragic collapse occurred in the Crandall Canyon coal mine in east-central Utah on 6 Aug 2007, causing the loss of six miners and generating national attention. This collapse was accompanied by a local magnitude (ML) 3.9 seismic event having an origin time of 2:48 am MDT (8:48 UTC) and a location near the collapse. Two lines of evidence indicate that most of the seismic wave energy of this event was generated by the mine collapse rather than an earthquake: (1) the observation that all of the P-wave first motion directions are down and (2) the results of a moment tensor inversion by Ford et al. (2007; http://seismo.berkeley.edu/seismo/Homepage.html). The Crandall Canyon mine is in an area of Utah where there is abundant mining-induced seismicity, including events with both collapse and shear-slip sources. Prior to the 6 Aug collapse, and within a 3 km radius of it, there were 28 seismic events during 2007 that were large enough to be detected and located as part of the routine processing of University of Utah regional seismic network data: 8 in the 2.5-week period prior to the collapse (ML ≤ 1.9) and 15 during an earlier period of activity in late February and early March (ML ≤ 1.8). The 6 Aug collapse was followed by 37 locatable seismic events of ML ≤ 2.2 before the end of August. One of these "aftershocks" (ML 1.6) occurred in conjunction with the violent burst of coal from the mine walls on 17 Aug (UTC) that killed three rescuers. The aftershocks have an exponential frequency-magnitude distribution with a lower ratio between the frequencies of smaller- and larger-magnitude events (lower b-value) than for the prior events in the area. Aftershock rates generally decreased with time through August but there was a noteworthy 5.8-day hiatus in activity that began 37 hours after the collapse. The University of Utah deployed a 5-station temporary network near the mine beginning on 8 Aug. Data from these stations are being used to help develop travel-time corrections for these and other stations in order to improve the computed locations of seismic events that occurred in the area both before and after the 6 Aug collapse.
Hinojosa-Laborde, Carmen; Rickards, Caroline A; Ryan, Kathy L; Convertino, Victor A
2011-01-01
Heart rate variability (HRV) decreases during hemorrhage, and has been proposed as a new vital sign to assess cardiovascular stability in trauma patients. The purpose of this study was to determine if any of the HRV metrics could accurately distinguish between individuals with different tolerance to simulated hemorrhage. Specifically, we hypothesized that (1) HRV would be similar in low tolerant (LT) and high tolerant (HT) subjects at presyncope when both groups are on the verge of hemodynamic collapse; and (2) HRV could distinguish LT subjects at presyncope from hemodynamically stable HT subjects (i.e., at a submaximal level of hypovolemia). Lower body negative pressure (LBNP) was used as a model of hemorrhage in healthy human subjects, eliciting central hypovolemia to the point of presyncopal symptoms (onset of hemodynamic collapse). Subjects were classified as LT if presyncopal symptoms occurred during the -15 to -60 mmHg levels of LBNP, and HT if symptoms occurred after LBNP of -60 mmHg. A total of 20 HRV metrics were derived from R-R interval measurements at the time of presyncope, and at one level prior to presyncope (submax) in LT and HT groups. Only four HRV metrics (Long-range Detrended Fluctuation Analysis, Forbidden Words, Poincaré Plot Descriptor Ratio, and Fractal Dimensions by Curve Length) supported both hypotheses. These four HRV metrics were evaluated further for their ability to identify individual LT subjects at presyncope when compared to HT subjects at submax. Variability in individual LT and HT responses was so high that LT responses overlapped with HT responses by 85-97%. The sensitivity of these HRV metrics to distinguish between individual LT from HT subjects was 6-33%, and positive predictive values were 40-73%. These results indicate that while a small number of HRV metrics can accurately distinguish between LT and HT subjects using group mean data, individual HRV values are poor indicators of tolerance to hypovolemia.
Rebuilding after collapse: evidence for long-term cohort dynamics in the native Hawaiian rain forest
Boehmer, Hans Juergen; Wagner, Helene H.; Jacobi, James D.; Gerrish, Grant C.; Mueller-Dombois, Dieter
2013-01-01
Questions: Do long-term observations in permanent plots confirm the conceptual model of Metrosideros polymorpha cohort dynamics as postulated in 1987? Do regeneration patterns occur independently of substrate age, i.e. of direct volcanic disturbance impact? Location: The windward mountain slopes of the younger Mauna Loa and the older Mauna Kea volcanoes (island of Hawaii, USA). Methods: After widespread forest decline (dieback), permanent plots were established in 1976 in 13 dieback and 13 non-dieback patches to monitor the population structure of M. polymorpha at ca. 5-yr intervals. Within each plot of 20 × 20 m, all trees with DBH >2.5 cm were individually tagged, measured and tree vigour assessed; regeneration was quantified in 16 systematically placed subplots of 3 × 5 m. Data collected in the subplots included the total number of M. polymorpha seedlings and saplings (five stem height classes). Here we analyse monitoring data from six time steps from 1976 to 2003 using repeated measures ANOVA to test specific predictions derived from the 1987 conceptual model. Results: Regeneration was significantly different between dieback and non-dieback plots. In dieback plots, the collapse in the 1970s was followed by a ‘sapling wave’ that by 2003 led to new cohort stands of M. polymorpha. In non-dieback stands, seedling emergence did not result in sapling waves over the same period. Instead, a ‘sapling gap’ (i.e. very few or no M. polymorpha saplings) prevailed as typical for mature stands. Canopy dieback in 1976, degree of recovery by 2003 and the number of living trees in 2003 were unrelated to substrate age. Conclusions: Population development of M. polymorpha supports the cohort dynamics model, which predicts rebuilding of the forest with the same canopy species after dieback. The lack of association with substrate age suggests that the long-term maintenance of cohort structure in M. polymorpha does not depend on volcanic disturbance but may be related to other environmental mechanisms, such as climate anomalies.
Effects of high shock pressures and pore morphology on hot spot mechanisms in HMX
NASA Astrophysics Data System (ADS)
Springer, H. K.; Tarver, C. M.; Bastea, S.
2017-01-01
The shock initiation and detonation behavior of heterogeneous solid explosives is governed by its microstructure and reactive properties. New additive manufacturing techniques offer unprecedented control of explosive microstructures previously impossible, enabling us to develop novel explosives with tailored shock sensitivity and detonation properties. Since microstructure-performance relationships are not well established for explosives, there is little material design guidance for these manufacturing techniques. In this study, we explore the effects of high shock pressures (15-38 GPa) with long shock durations and different pore morphologies on hot spot mechanisms in HMX. HMX is chosen as the model material because we have experimental data on many of the chemical-thermal-mechanical properties required for pore collapse simulations. Our simulations are performed using the multi-physics arbitrary Lagrangian Eulerian finite element hydrocode, ALE3D, with Cheetah-based models for the unreacted and the product equation-of-states. We use a temperature-dependent specific heat with the unreacted equation-of-state and a temperature-dependent viscosity model to ensure accurate shock temperatures for subsequent chemistry. The Lindemann Law model is used for shock melting in HMX. In contrast to previous pore collapse studies at lower shock pressures (≤10 GPa) in HMX and shorter post-collapse burning times, our calculations show that shock melting occurs above 15 GPa due to higher bulk heating and a prominent elongated ("jet-like") hot spot region forms at later times. The combination of the elongated, post-collapse hot spot region and the higher bulk heating with increasing pressure dramatically increases the growth rate of reaction. Our calculations show that the reaction rate, dF/dt, increases with increasing shock pressure. We decompose the reaction rate into ignition ((dF/dt)ig) and growth ((dF/dt)gr) phases to better analyze our results. We define the ignition phase to primarily include pore collapse and growth phase to primarily include post-collapse grain burning. We are able to track late-time, post-collapse burning due to the unique loading conditions employed in these calculations. We find that (dF/dt)gr > (dF/dt)ig for all pressures considered. (dF/dt)gr changes more significantly from 25 to 38 GPa (from 0.05/µs to >10-100/µs) than from 15 to 25 GPa (from 0.005/µs to 0.05/µs). There is a three order-of-magnitude difference in the reaction from 15 to 38 GPa just after pore collapse. This is qualitatively consistent with fitting the (macroscopic) Ignition and Growth model to high pressure shock initiation data, where much larger reaction fractions are needed to capture the early stages of reaction. Calculated burn rates demonstrate better agreement with data at intermediate times in the growth phase for 15 to 25 GPa and late times for 30 GPa then at any time in the growth phase for 38 GPa. Our calculations are much higher than burn rate data at the earliest times in the growth phase for all pressures, which may reflect the higher localized pressures and temperatures just after pore collapse in the ignition phase. Our calculations with spherical, conical, and elliptical pores show that the influence of morphology on reaction rate is pressure dependent and the most influential pore shapes at lower pressures aren't the same at higher pressures in the regime studied. Altogether these studies provide the basis for developing microstructure-aware models that can be used to design new explosives with optimal performance-safety characteristics. Such models can be used to guide additive manufacturing of explosives and fully exploit their disruptive nature.
NASA Astrophysics Data System (ADS)
Elmegreen, Bruce G.
2016-10-01
Exponential radial profiles are ubiquitous in spiral and dwarf Irregular galaxies, but the origin of this structural form is not understood. This talk will review the observations of exponential and double exponential disks, considering both the light and the mass profiles, and the contributions from stars and gas. Several theories for this structure will also be reviewed, including primordial collapse, bar and spiral torques, clump torques, galaxy interactions, disk viscosity and other internal processes of angular momentum exchange, and stellar scattering off of clumpy structure. The only process currently known that can account for this structure in the most theoretically difficult case is stellar scattering off disks clumps. Stellar orbit models suggest that such scattering can produce exponentials even in isolated dwarf irregulars that have no bars or spirals, little shear or viscosity, and profiles that go out too far for the classical Mestel case of primordial collapse with specific angular momentum conservation.
Stevenson, Christopher M; Puleston, Cedric O; Vitousek, Peter M; Chadwick, Oliver A; Haoa, Sonia; Ladefoged, Thegn N
2015-01-27
Many researchers believe that prehistoric Rapa Nui society collapsed because of centuries of unchecked population growth within a fragile environment. Recently, the notion of societal collapse has been questioned with the suggestion that extreme societal and demographic change occurred only after European contact in AD 1722. Establishing the veracity of demographic dynamics has been hindered by the lack of empirical evidence and the inability to establish a precise chronological framework. We use chronometric dates from hydrated obsidian artifacts recovered from habitation sites in regional study areas to evaluate regional land-use within Rapa Nui. The analysis suggests region-specific dynamics including precontact land use decline in some near-coastal and upland areas and postcontact increases and subsequent declines in other coastal locations. These temporal land-use patterns correlate with rainfall variation and soil quality, with poorer environmental locations declining earlier. This analysis confirms that the intensity of land use decreased substantially in some areas of the island before European contact.
Stevenson, Christopher M.; Puleston, Cedric O.; Vitousek, Peter M.; Chadwick, Oliver A.; Haoa, Sonia; Ladefoged, Thegn N.
2015-01-01
Many researchers believe that prehistoric Rapa Nui society collapsed because of centuries of unchecked population growth within a fragile environment. Recently, the notion of societal collapse has been questioned with the suggestion that extreme societal and demographic change occurred only after European contact in AD 1722. Establishing the veracity of demographic dynamics has been hindered by the lack of empirical evidence and the inability to establish a precise chronological framework. We use chronometric dates from hydrated obsidian artifacts recovered from habitation sites in regional study areas to evaluate regional land-use within Rapa Nui. The analysis suggests region-specific dynamics including precontact land use decline in some near-coastal and upland areas and postcontact increases and subsequent declines in other coastal locations. These temporal land-use patterns correlate with rainfall variation and soil quality, with poorer environmental locations declining earlier. This analysis confirms that the intensity of land use decreased substantially in some areas of the island before European contact. PMID:25561523
Micalizzi, Emma W; Mack, Jonathan N; White, George P; Avis, Tyler J; Smith, Myron L
2017-01-01
Pseudogymnoascus destructans, the fungus that causes white-nose syndrome in hibernating bats, has spread across eastern North America over the past decade and decimated bat populations. The saprotrophic growth of P. destructans may help to perpetuate the white-nose syndrome epidemic, and recent model predictions suggest that sufficiently reducing the environmental growth of P. destructans could help mitigate or prevent white-nose syndrome-associated bat colony collapse. In this study, we screened 301 microbes from diverse environmental samples for their ability to inhibit the growth of P. destructans. We identified 145 antagonistic isolates, 53 of which completely or nearly completely inhibited the growth of P. destructans in co-culture. Further analysis of our best antagonists indicated that these microbes have different modes of action and may have some specificity in inhibiting P. destructans. The results suggest that naturally-occurring microbes and/or their metabolites may be considered further as candidates to ameliorate bat colony collapse due to P. destructans.
Mack, Jonathan N.; White, George P.; Avis, Tyler J.; Smith, Myron L.
2017-01-01
Pseudogymnoascus destructans, the fungus that causes white-nose syndrome in hibernating bats, has spread across eastern North America over the past decade and decimated bat populations. The saprotrophic growth of P. destructans may help to perpetuate the white-nose syndrome epidemic, and recent model predictions suggest that sufficiently reducing the environmental growth of P. destructans could help mitigate or prevent white-nose syndrome-associated bat colony collapse. In this study, we screened 301 microbes from diverse environmental samples for their ability to inhibit the growth of P. destructans. We identified 145 antagonistic isolates, 53 of which completely or nearly completely inhibited the growth of P. destructans in co-culture. Further analysis of our best antagonists indicated that these microbes have different modes of action and may have some specificity in inhibiting P. destructans. The results suggest that naturally-occurring microbes and/or their metabolites may be considered further as candidates to ameliorate bat colony collapse due to P. destructans. PMID:28632782
Comparison of candidate solar array maximum power utilization approaches. [for spacecraft propulsion
NASA Technical Reports Server (NTRS)
Costogue, E. N.; Lindena, S.
1976-01-01
A study was made of five potential approaches that can be utilized to detect the maximum power point of a solar array while sustaining operations at or near maximum power and without endangering stability or causing array voltage collapse. The approaches studied included: (1) dynamic impedance comparator, (2) reference array measurement, (3) onset of solar array voltage collapse detection, (4) parallel tracker, and (5) direct measurement. The study analyzed the feasibility and adaptability of these approaches to a future solar electric propulsion (SEP) mission, and, specifically, to a comet rendezvous mission. Such missions presented the most challenging requirements to a spacecraft power subsystem in terms of power management over large solar intensity ranges of 1.0 to 3.5 AU. The dynamic impedance approach was found to have the highest figure of merit, and the reference array approach followed closely behind. The results are applicable to terrestrial solar power systems as well as to other than SEP space missions.
Statistical mechanics of complex economies
NASA Astrophysics Data System (ADS)
Bardoscia, Marco; Livan, Giacomo; Marsili, Matteo
2017-04-01
In the pursuit of ever increasing efficiency and growth, our economies have evolved to remarkable degrees of complexity, with nested production processes feeding each other in order to create products of greater sophistication from less sophisticated ones, down to raw materials. The engine of such an expansion have been competitive markets that, according to general equilibrium theory (GET), achieve efficient allocations under specific conditions. We study large random economies within the GET framework, as templates of complex economies, and we find that a non-trivial phase transition occurs: the economy freezes in a state where all production processes collapse when either the number of primary goods or the number of available technologies fall below a critical threshold. As in other examples of phase transitions in large random systems, this is an unintended consequence of the growth in complexity. Our findings suggest that the Industrial Revolution can be regarded as a sharp transition between different phases, but also imply that well developed economies can collapse if too many intermediate goods are introduced.
Smart membranes: Hydroxypropyl cellulose for flavor delivery
NASA Astrophysics Data System (ADS)
Heitfeld, Kevin A.
2007-12-01
This work focuses on the use of temperature responsive gels (TRGs) (polymeric hydrogels with a large temperature-dependent change in volume) for flavor retention at cooking temperatures. Specifically, we have studied a gel with a lower critical solution temperature (LCST) that swells at low temperatures and collapses at high temperatures. In the collapsed state, the polymer acts as a transport barrier, keeping the volatile flavors inside. An encapsulation system was designed to utilize the solution (phase separation) behavior of a temperature responsive gel. The gel morphology was understood and diffusive properties were tailored through morphology manipulation. Heterogeneous and homogeneous gels were processed by understanding the effect of temperature on gel morphology. A morphology model was developed linking bulk diffusive properties to molecular morphology. Flavor was encapsulated within the gel and the emulsifying capability was determined. The capsules responded to temperature similarly to the pure polymer. The release kinetcs were compared to commercial gelatin capsules and the temperature responsive polymer took longer to release.
SESNPCA: Principal Component Analysis Applied to Stripped-Envelope Core-Collapse Supernovae
NASA Astrophysics Data System (ADS)
Williamson, Marc; Bianco, Federica; Modjaz, Maryam
2018-01-01
In the new era of time-domain astronomy, it will become increasingly important to have rigorous, data driven models for classifying transients, including supernovae (SNe). We present the first application of principal component analysis (PCA) to stripped-envelope core-collapse supernovae (SESNe). Previous studies of SNe types Ib, IIb, Ic, and broad-line Ic (Ic-BL) focus only on specific spectral features, while our PCA algorithm uses all of the information contained in each spectrum. We use one of the largest compiled datasets of SESNe, containing over 150 SNe, each with spectra taken at multiple phases. Our work focuses on 49 SNe with spectra taken 15 ± 5 days after maximum V-band light where better distinctions can be made between SNe type Ib and Ic spectra. We find that spectra of SNe type IIb and Ic-BL are separable from the other types in PCA space, indicating that PCA is a promising option for developing a purely data driven model for SESNe classification.
Cosmic clocks: a tight radius-velocity relationship for H I-selected galaxies
NASA Astrophysics Data System (ADS)
Meurer, Gerhardt R.; Obreschkow, Danail; Wong, O. Ivy; Zheng, Zheng; Audcent-Ross, Fiona M.; Hanish, D. J.
2018-05-01
H I-selected galaxies obey a linear relationship between their maximum detected radius Rmax and rotational velocity. This result covers measurements in the optical, ultraviolet, and H I emission in galaxies spanning a factor of 30 in size and velocity, from small dwarf irregulars to the largest spirals. Hence, galaxies behave as clocks, rotating once a Gyr at the very outskirts of their discs. Observations of a large optically selected sample are consistent, implying this relationship is generic to disc galaxies in the low redshift Universe. A linear radius-velocity relationship is expected from simple models of galaxy formation and evolution. The total mass within Rmax has collapsed by a factor of 37 compared to the present mean density of the Universe. Adopting standard assumptions, we find a mean halo spin parameter λ in the range 0.020-0.035. The dispersion in λ, 0.16 dex, is smaller than expected from simulations. This may be due to the biases in our selection of disc galaxies rather than all haloes. The estimated mass densities of stars and atomic gas at Rmax are similar (˜0.5 M⊙ pc-2), indicating outer discs are highly evolved. The gas consumption and stellar population build time-scales are hundreds of Gyr, hence star formation is not driving the current evolution of outer discs. The estimated ratio between Rmax and disc scalelength is consistent with long-standing predictions from monolithic collapse models. Hence, it remains unclear whether disc extent results from continual accretion, a rapid initial collapse, secular evolution, or a combination thereof.
Solvation Free Energies of Alanine Peptides: The Effect of Flexibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokubo, Hironori; Harris, Robert C.; Asthagiri, Dilip
The electrostatic (?Gel), cavity-formation (?Gvdw), and total (?G) solvation free energies for 10 alanine peptides ranging in length (n) from 1 to 10 monomers were calculated. The free energies were computed both with xed, extended conformations of the peptides and again for some of the peptides without constraints. The solvation free energies, ?Gel, ?Gvdw, and ?G, were found to be linear in n, with the slopes of the best-fit lines being gamma_el, gamma_vdw, and gamma, respectively. Both gamma_el and gamma were negative for fixed and flexible peptides, and gamma_vdw was negative for fixed peptides. That gamma_vdw was negative was surprising,more » as experimental data on alkanes, theoretical models, and MD computations on small molecules and model systems generally suggest that gamma_vdw should be positive. A negative gamma_vdw seemingly contradicts the notion that ?Gvdw drives the initial collapse of the protein when it folds by favoring conformations with small surface areas, but when we computed ?Gvdw for the flexible peptides, thereby allowing the peptides to assume natural ensembles of more compact conformations, gamma-vdw was positive. Because most proteins do not assume extended conformations, a ?Gvdw that increases with increasing surface area may be typical for globular proteins. An alternative hypothesis is that the collapse is driven by intramolecular interactions. We show that the intramolecular van der Waal's interaction energy is more favorable for the flexible than for the extended peptides, seemingly favoring this hypothesis, but the large fluctuations in this energy may make attributing the collapse of the peptide to this intramolecular energy difficult.« less
Karamatic, S L; Anderson, G A; Parry, B W; Slocombe, R F; Mansfield, C S
2018-04-01
A prospective, observational study to determine the prevalence of post-exercise conditions at Australian Greyhound race meetings and to assess association with race performance and other environmental, race- and dog-related factors was undertaken. A total of 4020 starters were observed (2813 Greyhounds, 1009 trainers, 536 races, 52 race meets, 48 race dates and 11 race tracks) following a race. The presence of diaphragmatic flutter (DF), ataxia, seizure, collapse or sudden death was recorded. Risk factors were screened by univariable logistic regression prior to multivariable backward stepwise model building. In this study, 962 starters (n = 768 dogs) had DF (23.9%), 16 starters were ataxic (0.4%) and there were no observed cases of collapse, seizure or sudden death. Race track location, increasing race distance, race grade based on increasing 1st place prize value, lower (earlier) race number at the meeting, age, a previous observation of DF at the last start, females, colour (white) and better finishing position were all associated with an increased risk of a Greyhound being observed with DF. However, when logistic regression assessing the random effect of dog was performed, the presence of previous DF was not significant. In this cohort, DF was common following strenuous exercise in Greyhounds and on its own does not appear to result in reduced performance or distress to the animal. The incidence of ataxia was low and collapse, seizure and sudden death were not observed. However, even though uncommon, ataxia has welfare concerns for racing Greyhounds that warrants further investigation. © 2018 Australian Veterinary Association.
Ozgul, Mehmet A; Cetinkaya, Erdogan; Cortuk, Mustafa; Iliaz, Sinem; Tanriverdi, Elif; Gul, Sule; Ozgul, Guler; Onaran, Hilal; Abbasli, Kenan; Dincer, Huseyin E
2017-04-01
Expiratory central airway collapse (ECAC) is abnormal central airway narrowing during expiration. ECAC involves 2 different pathophysiological entities as tracheobronchomalacia and excessive dynamic airway collapse (EDAC). Although the exact cause is unknown, chronic obstructive pulmonary disease (COPD) is frequently accompanied by ECAC. Although there are various publications on the relationship between COPD and ECAC, there are very few data for stent placement in patients with tracheobronchomalacia accompanied severe COPD. We share our results for stenting in ECAC among patients with severe COPD. The data in this case series were collected retrospectively. The ECAC diagnosis was made during flexible bronchoscopy with severe COPD. Silicone Y-stents were placed via rigid bronchoscopy under general anesthesia. A total of 9 patients' (7 men) data were evaluated with an average age of 67±10.73 years. One patient experienced stent migration on the second day of stenting prompting stent removal. Another patient died 1 month after stenting. Consequently, we evaluated the follow-up data of remaining 7 patients. The changes in forced expiratory volume 1 was not significant for these 7 cases (P=0.51). The modified Medical Research Council (mMRC) score improvement was statistically significant (P=0.03). Functional status improvement was observed in 4 of 7 patients. Of the 7 patients, mean additional follow-up bronchoscopic interventions requirement was 2.2 times. Our study showed significant decrease in mMRC score with stenting for ECAC in severe COPD. For 2 patients, we experienced severe complications during short-term follow-up period after stenting. Additional follow-up bronchoscopic interventions were required.
Agapiou, A; Zorba, E; Mikedi, K; McGregor, L; Spiliopoulou, C; Statheropoulos, M
2015-07-09
Field experiments were devised to mimic the entrapment conditions under the rubble of collapsed buildings aiming to investigate the evolution of volatile organic compounds (VOCs) during the early dead body decomposition stage. Three pig carcasses were placed inside concrete tunnels of a search and rescue (SAR) operational field terrain for simulating the entrapment environment after a building collapse. The experimental campaign employed both laboratory and on-site analytical methods running in parallel. The current work focuses only on the results of the laboratory method using thermal desorption coupled to comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (TD-GC×GC-TOF MS). The flow-modulated TD-GC×GC-TOF MS provided enhanced separation of the VOC profile and served as a reference method for the evaluation of the on-site analytical methods in the current experimental campaign. Bespoke software was used to deconvolve the VOC profile to extract as much information as possible into peak lists. In total, 288 unique VOCs were identified (i.e., not found in blank samples). The majority were aliphatics (172), aromatics (25) and nitrogen compounds (19), followed by ketones (17), esters (13), alcohols (12), aldehydes (11), sulfur (9), miscellaneous (8) and acid compounds (2). The TD-GC×GC-TOF MS proved to be a sensitive and powerful system for resolving the chemical puzzle of above-ground "scent of death". Copyright © 2015 Elsevier B.V. All rights reserved.
Collapsed scrums and collision tackles: what is the injury risk?
Roberts, Simon P; Trewartha, Grant; England, Mike; Stokes, Keith A
2015-04-01
To establish the propensity for specific contact events to cause injury in rugby union. Medical staff at participating English community-level rugby clubs reported any injury resulting in the absence for one match or more from the day of the injury during the 2009/2010 (n=46), 2010/2011 (n=67) and 2011/2012 (n=76) seasons. Injury severity was defined as the number of matches missed. Thirty community rugby matches were filmed and the number of contact events (tackles, collision tackles, rucks, mauls, lineouts and scrums) recorded. Of 370 (95% CI 364 to 378) contact events per match, 141 (137 to 145) were tackles, 115 (111 to 119) were rucks and 32 (30 to 33) were scrums. Tackles resulted in the greatest propensity for injury (2.3 (2.2 to 2.4) injuries/1000 events) and the greatest severity (16 (15 to 17) weeks missed/1000 events). Collision tackles (illegal tackles involving a shoulder charge) had a propensity for injury of 15 (12.4 to 18.3) injuries/1000 events and severity was 92 (75 to 112) weeks missed/1000 events, both of which were higher than any other event. Additional scrum analysis showed that only 5% of all scrums collapsed, but the propensity for injury was four times higher (2.9 (1.5 to 5.4) injuries/1000 events) and the severity was six times greater (22 (12 to 42) weeks missed/1000 events) than for non-collapsed scrums. Injury prevention in the tackle should focus on technique with strict enforcement of existing laws for illegal collision tackles. The scrum is a relatively controllable event and further attempts should be made to reduce the frequency of scrum collapse. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Fluid dynamics of the 1997 Boxing Day volcanic blast on Montserrat, West Indies
NASA Astrophysics Data System (ADS)
Esposti Ongaro, T.; Clarke, A. B.; Neri, A.; Voight, B.; Widiwijayanti, C.
2008-03-01
Directed volcanic blasts are powerful explosions with a significant laterally directed component, which can generate devastating, high-energy pyroclastic density currents (PDCs). Such blasts are an important class of eruptive phenomena, but quantified understanding of their dynamics and effects is still incomplete. Here we use 2-D and 3-D multiparticle thermofluid dynamic flow codes to examine a powerful volcanic blast that occurred on Montserrat in December 1997. On the basis of the simulations, we divide the blast into three phases: an initial burst phase that lasts roughly 5 s and involves rapid expansion of the gas-pyroclast mixture, a gravitational collapse phase that occurs when the erupted material fails to mix with sufficient air to form a buoyant column and thus collapses asymmetrically, and a PDC phase that is dominated by motion parallel to the ground surface and is influenced by topography. We vary key input parameters such as total gas energy and total solid mass to understand their influence on simulations, and we compare the simulations with independent field observations of damage and deposits, demonstrating that the models generally capture important large-scale features of the natural phenomenon. We also examine the 2-D and 3-D model results to estimate the flow Mach number and conclude that the range of damage sustained at villages on Montserrat can be reasonably explained by the spatial and temporal distribution of the dynamic pressure associated with subsonic PDCs.
Basic processes and factors determining the evolution of collapse sinkholes: a sensitivity study
NASA Astrophysics Data System (ADS)
Romanov, Douchko; Kaufmann, Georg
2017-04-01
Collapse sinkholes appear as closed depressions at the surface. The origin of these karst features is related to the continuous dissolution of the soluble rock caused by a focussed sub-surface flow. Water flowing along a preferential pathway through fissures and fractures within the phreatic part of a karst aquifer is able to dissolve the rock (limestone, gypsum, anhydrite). With time, the dissolved void volume increases and part of the ceiling above the stream can become unstable, collapses, and accumulates as debris in the flow path. The debris partially blocks the flow and thus activates new pathways. Because of the low compaction of the debris (high hydraulic conductivity), the flow and the dissolution rates within this crushed zone remain high. This allows a relatively fast dissolutional and erosional removal of the crushed material and the development of new empty voids. The void volume expands upwards towards the surface until a collapse sinkhole is formed. The collapse sinkholes exhibit a large variety of shapes (cylindrical, cone-, bowl-shaped), depths (from few to few hundred meters) and diameters (meters up to hundreds of meters). Two major processes are responsible for this diversity: a) the karst evolution of the aquifer - responsible for the dissolutional and erosional removal of material; b) the mechanical evolution of the host rock and the existence of structural features, faults for example, which determine the stability and the magnitude of the subsequent collapses. In this work we demonstrate the influence of the host rock type, the hydrological and geological boundary conditions, the chemical composition of the flowing water, and the geometry and the scale of the crushed zone, on the location and the evolution of the growing sinkhole. We demonstrate the ability of the karst evolution models to explain, at least qualitatively, the growth and the morphology of the collapse sinkholes and to roughly predict their shape and location. Implementing simple rules that describe the mechanical collapse, we come to the conclusion that a complete quantitative and qualitative description of a collapse sinkhole is possible, but for this it is necessary to take into account also the mechanical properties of the rock and the processes determining the mechanics of the collapses.
Timescales of isotropic and anisotropic cluster collapse
NASA Astrophysics Data System (ADS)
Bartelmann, M.; Ehlers, J.; Schneider, P.
1993-12-01
From a simple estimate for the formation time of galaxy clusters, Richstone et al. have recently concluded that the evidence for non-virialized structures in a large fraction of observed clusters points towards a high value for the cosmological density parameter Omega0. This conclusion was based on a study of the spherical collapse of density perturbations, assumed to follow a Gaussian probability distribution. In this paper, we extend their treatment in several respects: first, we argue that the collapse does not start from a comoving motion of the perturbation, but that the continuity equation requires an initial velocity perturbation directly related to the density perturbation. This requirement modifies the initial condition for the evolution equation and has the effect that the collapse proceeds faster than in the case where the initial velocity perturbation is set to zero; the timescale is reduced by a factor of up to approximately equal 0.5. Our results thus strengthens the conclusion of Richstone et al. for a high Omega0. In addition, we study the collapse of density fluctuations in the frame of the Zel'dovich approximation, using as starting condition the analytically known probability distribution of the eigenvalues of the deformation tensor, which depends only on the (Gaussian) width of the perturbation spectrum. Finally, we consider the anisotropic collapse of density perturbations dynamically, again with initial conditions drawn from the probability distribution of the deformation tensor. We find that in both cases of anisotropic collapse, in the Zel'dovich approximation and in the dynamical calculations, the resulting distribution of collapse times agrees remarkably well with the results from spherical collapse. We discuss this agreement and conclude that it is mainly due to the properties of the probability distribution for the eigenvalues of the Zel'dovich deformation tensor. Hence, the conclusions of Richstone et al. on the value of Omega0 can be verified and strengthened, even if a more general approach to the collapse of density perturbations is employed. A simple analytic formula for the cluster redshift distribution in an Einstein-deSitter universe is derived.
NASA Astrophysics Data System (ADS)
Sibrant, A. L. R.; Hildenbrand, A.; Marques, F. O.; Weiss, B.; Boulesteix, T.; Hübscher, C.; Lüdmann, T.; Costa, A. C. G.; Catalão, J. C.
2015-08-01
The evolution of volcanic islands is generally marked by fast construction phases alternating with destruction by a variety of mass-wasting processes. More specifically, volcanic islands located in areas of intense regional deformation can be particularly prone to gravitational destabilisation. The island of S. Miguel (Azores) has developed during the last 1 Myr inside the active Terceira Rift, a major tectonic structure materializing the present boundary between the Eurasian and Nubian lithospheric plates. In this work, we depict the evolution of the island, based on high-resolution DEM data, stratigraphic and structural analyses, high-precision K-Ar dating on separated mineral phases, and offshore data (bathymetry and seismic profiles). The new results indicate that: (1) the oldest volcanic complex (Nordeste), composing the easternmost part of the island, was dominantly active between ca. 850 and 750 ka, and was subsequently affected by a major south-directed flank collapse. (2) Between at least 500 ka and 250 ka, the landslide depression was massively filled by a thick lava succession erupted from volcanic cones and domes distributed along the main E-W collapse scar. (3) Since 250 kyr, the western part of this succession (Furnas area) was affected by multiple vertical collapses; associated plinian eruptions produced large pyroclastic deposits, here dated at ca. 60 ka and less than 25 ka. (4) During the same period, the eastern part of the landslide scar was enlarged by retrogressive erosion, producing the large Povoação valley, which was gradually filled by sediments and young volcanic products. (5) The Fogo volcano, in the middle of S. Miguel, is here dated between ca. 270 and 17 ka, and was affected by, at least, one southwards flank collapse. (6) The Sete Cidades volcano, in the western end of the island, is here dated between ca. 91 and 13 ka, and experienced mutliple caldera collapses; a landslide to the North is also suspected from the presence of a subtle morphologic scar covered by recent lava flows erupted from alignments of basaltic strombolian cones. The predominance of the N150° and N75° trends in the island suggest that the tectonics of the Terceira Rift controlled the location and the distribution of the volcanism, and to some extent the various destruction events.
Implosive Collapse about Magnetic Null Points: A Quantitative Comparison between 2D and 3D Nulls
NASA Astrophysics Data System (ADS)
Thurgood, Jonathan O.; Pontin, David I.; McLaughlin, James A.
2018-03-01
Null collapse is an implosive process whereby MHD waves focus their energy in the vicinity of a null point, forming a current sheet and initiating magnetic reconnection. We consider, for the first time, the case of collapsing 3D magnetic null points in nonlinear, resistive MHD using numerical simulation, exploring key physical aspects of the system as well as performing a detailed parameter study. We find that within a particular plane containing the 3D null, the plasma and current density enhancements resulting from the collapse are quantitatively and qualitatively as per the 2D case in both the linear and nonlinear collapse regimes. However, the scaling with resistivity of the 3D reconnection rate—which is a global quantity—is found to be less favorable when the magnetic null point is more rotationally symmetric, due to the action of increased magnetic back-pressure. Furthermore, we find that, with increasing ambient plasma pressure, the collapse can be throttled, as is the case for 2D nulls. We discuss this pressure-limiting in the context of fast reconnection in the solar atmosphere and suggest mechanisms by which it may be overcome. We also discuss the implications of the results in the context of null collapse as a trigger mechanism of Oscillatory Reconnection, a time-dependent reconnection mechanism, and also within the wider subject of wave–null point interactions. We conclude that, in general, increasingly rotationally asymmetric nulls will be more favorable in terms of magnetic energy release via null collapse than their more symmetric counterparts.
Geophysical observations at cavity collapse
NASA Astrophysics Data System (ADS)
Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe
2010-05-01
In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.
Protein collapse is encoded in the folded state architecture.
Samanta, Himadri S; Zhuravlev, Pavel I; Hinczewski, Michael; Hori, Naoto; Chakrabarti, Shaon; Thirumalai, D
2017-05-21
Folded states of single domain globular proteins are compact with high packing density. The radius of gyration, R g , of both the folded and unfolded states increase as N ν where N is the number of amino acids in the protein. The values of the Flory exponent ν are, respectively, ≈⅓ and ≈0.6 in the folded and unfolded states, coinciding with those for homopolymers. However, the extent of compaction of the unfolded state of a protein under low denaturant concentration (collapsibility), conditions favoring the formation of the folded state, is unknown. We develop a theory that uses the contact map of proteins as input to quantitatively assess collapsibility of proteins. Although collapsibility is universal, the propensity to be compact depends on the protein architecture. Application of the theory to over two thousand proteins shows that collapsibility depends not only on N but also on the contact map reflecting the native structure. A major prediction of the theory is that β-sheet proteins are far more collapsible than structures dominated by α-helices. The theory and the accompanying simulations, validating the theoretical predictions, provide insights into the differing conclusions reached using different experimental probes assessing the extent of compaction of proteins. By calculating the criterion for collapsibility as a function of protein length we provide quantitative insights into the reasons why single domain proteins are small and the physical reasons for the origin of multi-domain proteins. Collapsibility of non-coding RNA molecules is similar β-sheet proteins structures adding support to "Compactness Selection Hypothesis".
NASA Astrophysics Data System (ADS)
Rothery, D. A.
2012-04-01
Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image from orbit. Although the vent itself may have been excavated partly by explosive volcanism, the most recent event is collapse of a 7 km wide zone in the south centre of the vent. The sharpness of features within this (unmuted either by regolith-forming processes or by fall of volcanic ejecta) suggests that this collapse considerably post-dates the rest of the vent interior. It could reflect a late-stage minor 'throat clearing' explosive eruption, but (in the absence of evidence of associated volcanic ejecta) more likely reflects collapse into a void within the volcanic conduit, itself a result of magma-drainage. A class of 'hole' that is so far conspicuous by its absence on Mercury is sinuous rilles (as opposed to much straighter tectonic grabens) or aligned skylights representing collapsed or partly-collapsed drained lava tubes. Tube-fed flows are to be expected during emplacement of volcanic plains, and it will be surprising if no examples are revealed on MESSENGER and BepiColombo high-resolution images.
Maternal Postpartum Role Collapse as a Theory of Postpartum Depression
ERIC Educational Resources Information Center
Amankwaa, Linda Clark
2005-01-01
The purpose of this paper is to discuss the development of a theory of maternal postpartum role collapse. The influences of traditional role theory and symbolic interactionism are presented. The development of the maternal postpartum role collapse theory emerged from the study of postpartum depression among African-American women (Amankwaa, 2000).…
Collapse events of two-color optical beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukhinin, Alexey; Aceves, Alejandro B.; Diels, Jean-Claude
2017-03-08
Here in this work, we study optical self-focusing that leads to collapse events for the time-independent model of copropagating beams with different wavelengths. We show that collapse events depend on the combined critical power of two beams for fundamental, vortex, and mixed configurations as well as on the ratio of their individual powers.
How Fast Does a Building Fall?
ERIC Educational Resources Information Center
Denny, Mark
2010-01-01
In this paper, the time required for a tower block to collapse is calculated. The tower collapses progressively, with one floor falling onto the floor below, causing it to fall. The rate of collapse is found to be not much slower than freefall. The calculation is an engaging and relevant application of Newton's laws, suitable for undergraduate…
Ryan, Barbara J.
1989-01-01
Ten years of hydrologic research have been conducted by the U.S. Geological Survey at a commercial low-level radioactive-waste disposal site near Sheffield, Illinois. Research included studies of microclimate, evapotranspiration, and tritium release by plants; runoff and land modification; water movement through a trench cover; water and tritium movement in the unsaturated zone; gases in the unsaturated zone; water and tritium movement in the saturated zone; and water chemistry. Implications specific to each research topic and those based on overlapping research topics are summarized as to their potential effect on the selection, characterization, design, operation, and decommissioning processes of future low-level radioactive-waste disposal sites. Unconsolidated deposits at the site are diverse in lithologic character and are spatially and stratigraphically complex. Thickness of these Quaternary deposits ranges from 3 to 27 meters and averages 17 meters. The unconsolidated deposits overlay 140 meters of Pennsylvanian shale, mudstone, siltstone, and coal. Approximately 90,500 cubic meters of waste were buried from August 1967 through August 1978, in 21 trenches that were constructed in glacial materials by using a cut-and-fill process. Trenches generally were constructed below grade and ranged from 11 to 180 meters long, 2.4 to 21 meters wide, and 2.4 to about 7.9 meters deep. Research on microclimate and evapotranspiration at the site was conducted from July 1982 through June 1984. Continuous measurements were made of precipitation, incoming and reflected solar (shortwave) radiation, incoming and emitted terrestrial (longwave) radiation, horizontal windspeed and direction, wet- and dry-bulb air temperature, barometric pressure, soil-heat fluxes, and soil temperature. Soil-moisture content, for this research phase, was measured approximately biweekly. Evapotranspiration rates were estimated by using three techniques--energy budget, aerodynamic profile, and water budget. Although monthly totals for each method differed, estimated annual evapotranspiration averages ranged from 630 to 693 millimeters or about 70 percent of precipitation. Tritium concentrations in leaf water from on-site plants were determined for 125 vegetation samples collected during the summers of 1982 through 1986. Concentrations varied significantly among some locations and plant types. Tritium concentrations ranged from the detection limit of 0 .2 to 1,330 nanocuries per liter, with alfalfa (Medicago sativa) having the highest concentrations, followed by brome grass (Bromus inermis), and then red clover (Trifoleum pratense); these variations in concentration are most likely a result of root depth. Runoff and sediment transport were measured from July 1982 through December 1985 in four basins--three comprising almost two-thirds of the 8.1-hectare site and one comprising a 1.4-hectare undisturbed area. Volumes and equivalent weights of collapses were estimated from records of site surficial conditions from October 1978 through December 1985. Runoff showed a direct relation to degree of land modification; lowest mean yields were measured at the undisturbed area, and highest mean yields were measured from the basin composed wholly of trench and intertrench areas. Sediment yield measured onsite averaged 3.4 megagrams per hectare. A total of 315 collapse cavities, corresponding to a cumulative volume of about 500 cubic meters, were documented. Most collapses were recorded after periods of rainfall or snowmelt when soil moisture was near maximum. Almost two-thirds of the collapses, corresponding to 63 percent of the cumulative cavity volume, occurred during February through April. Data for the study of water movement through a trench cover were collected from July 1982 through June 1934. Pressure-head data were collected at four different clusters at depths ranging from 50 to 1,850 millimeters within a selected trench cover. Soil-moisture content f
A Mathematical Model Development for the Lateral Collapse of Octagonal Tubes
NASA Astrophysics Data System (ADS)
Ghazali Kamardan, M.; Sufahani, Suliadi; Othman, M. Z. M.; Che-Him, Norziha; Khalid, Kamil; Roslan, Rozaini; Ali, Maselan; Zaidi, A. M. A.
2018-04-01
Many researches has been done on the lateral collapse of tube. However, the previous researches only focus on cylindrical and square tubes. Then a research has been done discovering the collapse behaviour of hexagonal tube and the mathematic model of the deformation behaviour had been developed [8]. The purpose of this research is to study the lateral collapse behaviour of symmetric octagonal tubes and hence to develop a mathematical model of the collapse behaviour of these tubes. For that, a predictive mathematical model was developed and a finite element analysis procedure was conducted for the lateral collapse behaviour of symmetric octagonal tubes. Lastly, the mathematical model was verified by using the finite element analysis simulation results. It was discovered that these tubes performed different deformation behaviour than the cylindrical tube. Symmetric octagonal tubes perform 2 phases of elastic - plastic deformation behaviour patterns. The mathematical model had managed to show the fundamental of the deformation behaviour of octagonal tubes. However, further studies need to be conducted in order to further improve on the proposed mathematical model.
Dynamics and noise emission of laser induced cavitation bubbles in a vortical flow field
NASA Astrophysics Data System (ADS)
Oweis, Ghanem F.; Choi, Jaehyug; Ceccio, Steven L.
2004-03-01
The sound produced by the collapse of discrete cavitation bubbles was examined. Laser-generated cavitation bubbles were produced in both a quiescent and a vortical flow. The sound produced by the collapse of the cavitation bubbles was recorded, and its spectral content was determined. It was found that the risetime of the sound pulse produced by the collapse of single, spherical cavitation bubbles in quiescent fluid exceeded that of the slew rate of the hydrophone, which is consistent with previously published results. It was found that, as collapsing bubbles were deformed by the vortical flow, the acoustic impulse of the bubbles was reduced. Collapsing nonspherical bubbles often created a sound pulse with a risetime that exceeded that of the hydrophone slew rate, although the acoustic impulse created by the bubbles was influenced largely by the degree to which the bubbles became nonspherical before collapse. The noise produced by the slow growth of cavitation bubbles in the vortex core was not detectable. These results have implications for the interpretation of hydrodynamic cavitation noise produced by vortex cavitation.
White, R N
2012-01-01
To describe the use of cricoarytenoid lateralisation combined with thyroarytenoid caudo- lateralisation (arytenoid laryngoplasty) for the management of stage II and III laryngeal collapse in dogs. A retrospective study of a consecutive series of 12 dogs suffering from life-threatening stage II or III laryngeal collapse associated with brachycephalic airway obstruction syndrome. Pre-operatively, either stage II collapse (2/12) or stage III collapse (10/12) was confirmed on visual examination. In all cases, a left-sided arytenoid laryngoplasty was performed. Two dogs were euthanased postoperatively as a result of persistent life-threatening respiratory compromise. The procedure resulted in subjective enlargement of the rima glottidis and an associated improvement in respiratory function in the remaining 10 dogs. Follow-up, long-term outcome (median, 3·5 years) in these dogs indicated that all owners considered that the surgery had resulted in marked improvements in their dog's respiratory function, tolerance to exercise, and quality of life. Combined cricoarytenoid and thyroarytenoid caudo-lateralisation may be a useful procedure for treatment of stage II and III laryngeal collapse in the dog. © 2011 British Small Animal Veterinary Association.
NASA Astrophysics Data System (ADS)
Burns, F. A.; Bonadonna, C.; Pioli, L.; Cole, P. D.; Stinton, A.
2017-04-01
On 11 February 2010, Soufrière Hills Volcano, Montserrat, underwent a partial dome collapse ( 50 × 106 m3) and a short-lived Vulcanian explosion towards the end. Three main pyroclastic units were identified N and NE of the volcano: dome-collapse pyroclastic density current (PDC) deposits, fountain-collapse PDC deposits formed by the Vulcanian explosion, and tephra-fallout deposits associated with elutriation from the dome-collapse and fountain-collapse PDCs (i.e. co-PDC fallout deposit). The fallout associated with the Vulcanian explosion was mostly dispersed E and SE by high altitude winds. All units N and NE of the volcano contain variable amounts and types of particle aggregates, although the co-PDC fallout deposit is associated with the largest abundance (i.e. up to 24 wt%). The size of aggregates found in the co-PDC fallout deposit increases with distance from the volcano and proximity to the sea, reaching a maximum diameter of 12 mm about 500 m from the coast. The internal grain size of all aggregates have nearly identical distributions (with Mdϕ ≈ 4-5), with particles in the size categories > 3 ϕ (i.e. < 250 μm) being distributed in similar proportions within the aggregates but in different proportions within distinct internal layers. In fact, most aggregates are characterized by a coarse grained central core occupying the main part of the aggregate, coated by a thin layer of finer ash (single-layer aggregates), while others have one or two additional layers accreted over the core (multiple-layer aggregates). Calculated aggregate porosity and settling velocity vary between 0.3 and 0.5 and 11-21 m s- 1, respectively. The aggregate size shows a clear correlation with both the core size and the size of the largest particles found in the core. The large abundance of aggregates in the co-PDC fallout deposits suggests that the buoyant plumes elutriated above PDCs represent an optimal environment for the formation (particle collision) and development (aggregate layering) of particle aggregates. However, specific conditions are required, including i) a large availability of water (in this case provided by the steam plumes associated with the entrance of PDCs into the ocean), ii) presence of plume regions with different grain-size features (i.e. both median size and sorting) that allows for the development of multiple layers, iii) strong turbulence that permits both particle collision and the transition of the aggregates through different plume regions, iv) presence of hot regions (e.g. PDCs) that promote aggregate preservation (in this case also facilitated by the presence of sea salt).
Hernigou, Philippe; Dubory, Arnaud; Homma, Yasuhiro; Guissou, Isaac; Flouzat Lachaniette, Charles Henri; Chevallier, Nathalie; Rouard, Hélène
2018-05-09
Symptomatic osteonecrosis related to corticosteroids has a high risk of progression to collapse in absence of treatment. The purposes of this study were to evaluate the results of autologous bone marrow grafting of the symptomatic hip in adult patients with osteonecrosis and to compare the results with core decompression alone in the contralateral symptomatic hip. A total of 125 consecutive patients (78 males and 47 females) with bilateral osteonecrosis (ON) and who had both hips symptomatic and at the same stage on each side (stage I or II) were included in this study from 1988 to 1998. The volume of osteonecrosis was measured with MRI in both hips; the smaller size ON was treated with core decompression, and the contralateral hip with the larger ON was treated with percutaneous mesenchymal cell (MSC) injection obtained from bone marrow concentration. The average total number of MSCs (counted as number of colony forming units-fibroblast) injected in each hip was 90,000 ± 25,000 cells (range 45,000 to 180,000 cells). At the most recent FU (average 25 years after the first surgery, range 20 to 30 years), among the 250 hips included in the study, 35 hips (28%) had collapsed at the most recent follow-up after bone marrow grafting, and 90 (72%) after core decompression (CD). Ninety-five hips (76%) in the CD group underwent total hip replacement and 30 hips (24%) in the bone marrow graft group (p < 0.0001). Hips undergoing only CD were approximately three times more likely to undergo a primary THA (odds ratio: 10.0278; 95% CI: 5.6117 to 17.9190; p < 0.0001) as compared with hips undergoing an initial bone marrow grafting. For the 90 hips treated with bone marrow injection and without collapse, the mean volume of repair evaluated by MRI at the most recent follow-up was 16.4 cm 3 (range 12 to 21 cm 3 ) corresponding to a decrease of the pre-operative average volume from 22.4 cm 3 (range 35-15 cm 3 ) to 6 cm 3 (range 12-0 cm 3 ); as percentage of the volume of the femoral head, the decrease moved from 44.8 to 12%. Core decompression with bone marrow injection improved the outcome of the disease as compared with core decompression alone in the same patient.
Calderas and caldera structures: a review
NASA Astrophysics Data System (ADS)
Cole, J. W.; Milner, D. M.; Spinks, K. D.
2005-02-01
Calderas are important features in all volcanic environments and are commonly the sites of geothermal activity and mineralisation. Yet, it is only in the last 25 years that a thorough three-dimensional study of calderas has been carried out, utilising studies of eroded calderas, geophysical analysis of their structures and analogue modelling of caldera formation. As more data has become available on calderas, their individuality has become apparent. A distinction between 'caldera', 'caldera complex', 'cauldron', and 'ring structure' is necessary, and new definitions are given in this paper. Descriptions of calderas, based on dominant composition of eruptives (basaltic, peralkaline, andesitic-dacitic, rhyolitic) can be used, and characteristics of each broad group are given. Styles of eruption may be effusive or explosive, with the former dominant in basaltic calderas, and the latter dominant in andesitic-dacitic, rhyolitic and peralkaline calderas. Four 'end-member' collapse styles occur—plate or piston, piecemeal, trapdoor, and downsag—but many calderas have multiple styles. Features of so-called 'funnel' and 'chaotic' calderas proposed in the literature can be explained by other collapse styles and the terms are considered unnecessary. Ground deformation comprises subsidence or collapse (essential characteristics of a caldera) and uplifting/doming and fracturing due to tumescence and/or resurgence (frequent, but not essential). Collapse may occur on pre-existing structures, such as regional faults or on faults created during the caldera formation, and the shape of the collapse area will be influenced by depth, size and shape of the magma chamber. The final morphology of a caldera will depend on how the caldera floor breaks up; whether collapse takes place in one event or multiple events, whether vertical movement is spasmodic or continuous throughout the eruptive sequence, and whether blocks subside uniformly or chaotically at one or more collapse centres. A meaningful description of any caldera should therefore include; number of collapse events, presence or absence of resurgence, caldera-floor coherency, caldera-floor collapse geometry, and dominant composition of eruptives.
Future sea-level rise from tidewater and ice-shelf tributary glaciers of the Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Schannwell, C.; Barrand, N. E.; Radic, V.
2016-12-01
Iceberg calving and increased ice discharge from ice-shelf tributary glaciers contribute significant amounts to global sea-level rise (SLR) from the Antarctic Peninsula (AP). Owing to ongoing ice dynamical changes (collapse of buttressing ice shelves), these contributions have accelerated in recent years. As the AP is one of the fastest warming regions on Earth, further ice dynamical adjustment (increased ice discharge) is expected over the next two centuries. Here the first regional SLR projection of the AP from both iceberg calving and increased ice discharge from ice-shelf tributary glaciers in response to ice-shelf collapse is presented. The British Antarctic Survey Antarctic Peninsula Ice Sheet Model (BAS-APISM), previously shown to be suitable for the unique topographic setting from the AP, is forced by temperature output from 13 global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). In response to the high greenhouse gas emission scenario (Representative Concentration Pathway (RCP)8.5), simulations project contribution to SLR of 28±16 to 32±16 mm by 2300, partitioned approximately equally between contributions from tidewater glaciers and ice-shelf tributary glaciers. In the RCP4.5 scenario, sea-level rise projections to 2300 are dominated by tidewater glaciers ( ˜8-18 mm). In this cooler scenario, 2.4±1 mm is added to global sea levels from ice-shelf tributary drainage basins as fewer ice-shelves are projected to collapse. Sea-level projections from ice-shelf tributary glaciers are dominated by drainage basins feeding George VI Ice Shelf, accounting for ˜70% of simulated SLR. Combined total ice dynamical SLR projections to 2300 from the AP vary between 11±2 and 32±16 mm sea-level equivalent (SLE), depending on the emission scenario used. These simulations suggest that omission of tidewater glaciers could lead to a substantial underestimation of the ice-sheet's contribution to regional SLR. Iceberg calving and increased ice discharge from ice-shelf tributary glaciers contribute significant amounts to global sea-level rise (SLR) from the Antarctic Peninsula (AP). Owing to ongoing ice dynamical changes (collapse of buttressing ice shelves), these contributions have accelerated in recent years. As the AP is one of the fastest warming regions on Earth, further ice dynamical adjustment (increased ice discharge) is expected over the next two centuries. Here the first regional SLR projection of the AP from both iceberg calving and increased ice discharge from ice-shelf tributary glaciers in response to ice-shelf collapse is presented. The British Antarctic Survey Antarctic Peninsula Ice Sheet Model (BAS-APISM), previously shown to be suitable for the unique topographic setting from the AP, is forced by temperature output from 13 global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). In response to the high greenhouse gas emission scenario (Representative Concentration Pathway (RCP)8.5), simulations project contribution to SLR of 28±16 to 32±16 mm by 2300, partitioned approximately equally between contributions from tidewater glaciers and ice-shelf tributary glaciers. In the RCP4.5 scenario, sea-level rise projections to 2300 are dominated by tidewater glaciers ( ˜8-18 mm). In this cooler scenario, 2.4±1 mm is added to global sea levels from ice-shelf tributary drainage basins as fewer ice-shelves are projected to collapse. Sea-level projections from ice-shelf tributary glaciers are dominated by drainage basins feeding George VI Ice Shelf, accounting for ˜70% of simulated SLR. Combined total ice dynamical SLR projections to 2300 from the AP vary between 11±2 and 32±16 mm sea-level equivalent (SLE), depending on the emission scenario used. These simulations suggest that omission of tidewater glaciers could lead to a substantial underestimation of the ice-sheet's contribution to regional SLR.
Kranenburg, Onno; Poland, Mieke; van Horck, Francis P. G.; Drechsel, David; Hall, Alan; Moolenaar, Wouter H.
1999-01-01
Neuronal cells undergo rapid growth cone collapse, neurite retraction, and cell rounding in response to certain G protein–coupled receptor agonists such as lysophosphatidic acid (LPA). These shape changes are driven by Rho-mediated contraction of the actomyosin-based cytoskeleton. To date, however, detection of Rho activation has been hampered by the lack of a suitable assay. Furthermore, the nature of the G protein(s) mediating LPA-induced neurite retraction remains unknown. We have developed a Rho activation assay that is based on the specific binding of active RhoA to its downstream effector Rho-kinase (ROK). A fusion protein of GST and the Rho-binding domain of ROK pulls down activated but not inactive RhoA from cell lysates. Using GST-ROK, we show that in N1E-115 neuronal cells LPA activates endogenous RhoA within 30 s, concomitant with growth cone collapse. Maximal activation occurs after 3 min when neurite retraction is complete and the actin cytoskeleton is fully contracted. LPA-induced RhoA activation is completely inhibited by tyrosine kinase inhibitors (tyrphostin 47 and genistein). Activated Gα12 and Gα13 subunits mimic LPA both in activating RhoA and in inducing RhoA-mediated cytoskeletal contraction, thereby preventing neurite outgrowth. We conclude that in neuronal cells, LPA activates RhoA to induce growth cone collapse and neurite retraction through a G12/13-initiated pathway that involves protein-tyrosine kinase activity. PMID:10359601
Entrepreneurial proliferation: Russia`s nuclear industry suits the buyers market. Master`s thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whalen, T.D.; Williams, A.R.
1995-06-01
The Soviet Union collapsed in December 1991, bringing an end to four decades of the Cold War. A system of tight centralized controls has given way to chaotic freedom and un-managed, entrepreneurial capitalism. Of immediate concern to most world leaders has been the control and safety of over 30,000 Soviet nuclear weapons. After 1991, the Soviet, centralized system of management lost one key structural element: a reliable `human factor` for nuclear material control. The Soviet systems for physical security and material control are still in place in the nuclear inheritor states - Russia, Ukraine, Khazakhnstan, and Belarus - but theymore » do not restrain or regulate their nuclear industry. In the chaos created by the Soviet collapse, the nonproliferation regime may not adequately temper the supply of the nuclear materials of the new inheritor states. This could permit organizations or states seeking nuclear weapons easier access to fissile materials. New initiatives such as the United States Cooperative Threat Reduction program, which draws upon U.S. technology and expertise to help the NIS solve these complex problems, are short-tern tactics. At present there are no strategies which address the long-tern root problems caused by the Soviet collapse.This thesis demonstrates the extent of the nuclear control problems in Russia. Specifically, we examine physical security, material control and accounting regulation and enforcement, and criminal actions. It reveals that the current lack of internal controls make access to nuclear materials easier for aspiring nuclear weapons States.« less
Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis.
Andrabi, Shaida A; Umanah, George K E; Chang, Calvin; Stevens, Daniel A; Karuppagounder, Senthilkumar S; Gagné, Jean-Philippe; Poirier, Guy G; Dawson, Valina L; Dawson, Ted M
2014-07-15
Excessive poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) activation kills cells via a cell-death process designated "parthanatos" in which PAR induces the mitochondrial release and nuclear translocation of apoptosis-inducing factor to initiate chromatinolysis and cell death. Accompanying the formation of PAR are the reduction of cellular NAD(+) and energetic collapse, which have been thought to be caused by the consumption of cellular NAD(+) by PARP-1. Here we show that the bioenergetic collapse following PARP-1 activation is not dependent on NAD(+) depletion. Instead PARP-1 activation initiates glycolytic defects via PAR-dependent inhibition of hexokinase, which precedes the NAD(+) depletion in N-methyl-N-nitroso-N-nitroguanidine (MNNG)-treated cortical neurons. Mitochondrial defects are observed shortly after PARP-1 activation and are mediated largely through defective glycolysis, because supplementation of the mitochondrial substrates pyruvate and glutamine reverse the PARP-1-mediated mitochondrial dysfunction. Depleting neurons of NAD(+) with FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, does not alter glycolysis or mitochondrial function. Hexokinase, the first regulatory enzyme to initiate glycolysis by converting glucose to glucose-6-phosphate, contains a strong PAR-binding motif. PAR binds to hexokinase and inhibits hexokinase activity in MNNG-treated cortical neurons. Preventing PAR formation with PAR glycohydrolase prevents the PAR-dependent inhibition of hexokinase. These results indicate that bioenergetic collapse induced by overactivation of PARP-1 is caused by PAR-dependent inhibition of glycolysis through inhibition of hexokinase.
The Influence of AN Interacting Vacuum Energy on the Gravitational Collapse of a Star Fluid
NASA Astrophysics Data System (ADS)
Campos, M.
2014-02-01
To explain the accelerated expansion of the universe, models with interacting dark components has been considered in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy. However, at the other side of the same coin, the influence of the vacuum energy in the gravitational collapse is a topic of scientific interest. Based in a simple assumption on the collapsed rate of the matter fluid density that is altered by the inclusion of a vacuum energy component that interacts with the matter fluid, we study the final fate of the collapse process.
Coexistence of collapse and stable spatiotemporal solitons in multimode fibers
NASA Astrophysics Data System (ADS)
Shtyrina, Olga V.; Fedoruk, Mikhail P.; Kivshar, Yuri S.; Turitsyn, Sergei K.
2018-01-01
We analyze spatiotemporal solitons in multimode optical fibers and demonstrate the existence of stable solitons, in a sharp contrast to earlier predictions of collapse of multidimensional solitons in three-dimensional media. We discuss the coexistence of blow-up solutions and collapse stabilization by a low-dimensional external potential in graded-index media, and also predict the existence of stable higher-order nonlinear waves such as dipole-mode spatiotemporal solitons. To support the main conclusions of our numerical studies we employ a variational approach and derive analytically the stability criterion for input powers for the collapse stabilization.
NASA Satellite Eyes Deadly Tibetan Landslide
2016-10-05
On July 17, 2016, one of the largest ice avalanches ever recorded tumbled down a Tibetan mountain, killing 9 people. The cause of the collapse is still unclear. On September 22, a second glacier, 1.9 miles (3 kilometers) farther south, collapsed. Geologists investigating the July collapse warned about the possibility of a second collapse, which did occur. The image covers an area of 7.8 by 10.2 miles (12.6 by 16.4 kilometers), was acquired October 4, 2017, and is located at 334 degrees north, 82.3 degrees east. http://photojournal.jpl.nasa.gov/catalog/PIA21069
Successful new anti-sloughing drilling fluid application, Yanchang gas field, China
NASA Astrophysics Data System (ADS)
He, Peng; Liu, Hanmei; Du, Sen; He, Chenghai
2017-10-01
Borehole collapse had always been encountered when drilling the Shiqianfeng and Shihezi formations in Yan Chang gas field. By analyzing the reasons for the collapse can be obtained, "double layer of stone" brittle strong, pore development, water sensitivity and high mineral content filling skeleton particles, water lock effect and stress sensitivity is a potential factor in inducing strong wall collapse. According to the characteristics of the geological structure developed anti-sloughing drilling fluid system "double layer of stone," "complex fluid loss - dual inhibition - materialized block" multiple cooperative mechanism to achieve the purpose of anti-collapse.
Scalar field collapse in Gauss-Bonnet gravity
NASA Astrophysics Data System (ADS)
Banerjee, Narayan; Paul, Tanmoy
2018-02-01
We consider a "scalar-Einstein-Gauss-Bonnet" theory in four dimension, where the scalar field couples non-minimally with the Gauss-Bonnet (GB) term. This coupling with the scalar field ensures the non-topological character of the GB term. In this scenario, we examine the possibility for collapsing of the scalar field. Our result reveals that such a collapse is possible in the presence of Gauss-Bonnet gravity for suitable choices of parametric regions. The singularity formed as a result of the collapse is found to be a curvature singularity which is hidden from the exterior by an apparent horizon.
REVIEWS OF TOPICAL PROBLEMS: Neutrinos from stellar core collapses: present status of experiments
NASA Astrophysics Data System (ADS)
Ryazhskaya, Ol'ga G.
2006-10-01
The responses of the existing underground detectors to neutrino bursts from collapsing stars evolving in accordance with various models are considered. The interpretation of the results of detecting neutrino radiation from the SN1987A supernova explosion is discussed. A combination of large scintillation counters interlayered with iron slabs (as a target for the electron neutrino interaction) is suggested as a detector for core collapse neutrinos. Bounds for the galactic rate of core collapses based on 28 years of observations by neutrino telescopes of RAS INR, LSD, and LVD detectors are presented.
NASA Astrophysics Data System (ADS)
Buyco, K.; Heaton, T. H.
2016-12-01
Current U.S. seismic code and performance-based design recommendations quantify ground motion intensity using 5%-damped spectral acceleration when estimating the collapse vulnerability of buildings. This intensity measure works well for predicting inter-story drift due to moderate shaking, but other measures have been shown to be better for estimating collapse risk.We propose using highly-damped (>10%) spectral acceleration to assess collapse vulnerability. As damping is increased, the spectral acceleration at a given period T begins to behave like a weighted average of the corresponding lowly-damped (i.e. 5%) spectrum at a range of periods. Weights for periods longer than T increase as damping increases. Using high damping is physically intuitive for two reasons. Firstly, ductile buildings dissipate a large amount of hysteretic energy before collapse and thus behave more like highly-damped systems. Secondly, heavily damaged buildings experience period-lengthening, giving further credence to the weighted-averaging property of highly-damped spectral acceleration.To determine the optimal damping value(s) for this ground motion intensity measure, we conduct incremental dynamic analysis for a suite of ground motions on several different mid-rise steel buildings and select the damping value yielding the lowest dispersion of intensity at the collapse threshold. Spectral acceleration calculated with damping as high as 70% has been shown to be a better indicator of collapse than that with 5% damping.
NASA Astrophysics Data System (ADS)
Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan; Ran, Sheng; Valentí, Roser; Canfield, Paul C.
2016-01-01
Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe2As2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ˜25 % on cooling from room temperature to ˜100 K in the tetragonal phase and is only weakly temperature dependent at low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe2As2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.
NASA Astrophysics Data System (ADS)
Torres-Forné, Alejandro; Cerdá-Durán, Pablo; Passamonti, Andrea; Font, José A.
2018-03-01
Gravitational waves from core-collapse supernovae are produced by the excitation of different oscillation modes in the protoneutron star (PNS) and its surroundings, including the shock. In this work we study the relationship between the post-bounce oscillation spectrum of the PNS-shock system and the characteristic frequencies observed in gravitational-wave signals from core-collapse simulations. This is a fundamental first step in order to develop a procedure to infer astrophysical parameters of the PNS formed in core-collapse supernovae. Our method combines information from the oscillation spectrum of the PNS, obtained through linear perturbation analysis in general relativity of a background physical system, with information from the gravitational-wave spectrum of the corresponding non-linear, core-collapse simulation. Using results from the simulation of the collapse of a 35 M⊙ pre-supernova progenitor we show that both types of spectra are indeed related and we are able to identify the modes of oscillation of the PNS, namely g-modes, p-modes, hybrid modes, and standing accretion shock instability (SASI) modes, obtaining a remarkably close correspondence with the time-frequency distribution of the gravitational-wave modes. The analysis presented in this paper provides a proof of concept that asteroseismology is indeed possible in the core-collapse scenario, and it may serve as a basis for future work on PNS parameter inference based on gravitational-wave observations.
Compact X-ray Binary Re-creation in Core Collapse: NGC 6397
NASA Astrophysics Data System (ADS)
Grindlay, J. E.; Bogdanov, S.; van den Berg, M.; Heinke, C.
2005-12-01
We report new Chandra observations of the core collapsed globular cluster NGC 6397. In comparison with our original Chandra observations (Grindlay et al 2001, ApJ, 563, L53), we now detect some 30 sources (vs. 20) in the cluster. A new CV is confirmed, though new HST/ACS optical observations (see Cohn et al this meeting) show that one of the original CV candidates is a background AGN). The 9 CVs (optically identified) yet only one MSP and one qLMXB suggest either a factor of 7 reduction in NSs/WDs vs. what we find in 47Tuc (see Grindlay 2005, Proc. Cefalu Conf. on Interacting Binaries) or that CVs are produced in the core collapse. The possible second MSP with main sequence companion, source U18 (see Grindlay et al 2001) is similar in its X-ray and optical properties to MSP-W in 47Tuc, which must have swapped its binary companion. Together with the one confirmed (radio) MSP in NGC 6397, with an evolved main sequence secondary, the process of enhanced partner swapping in the high stellar density of core collapse is implicated. At the same time, main sequence - main sequence binaries (active binaries) are depleted in the cluster core, presumably by "binary burning" in core collapse. These binary re-creation and destruction mechanisms in core collapse have profound implications for binary evolution and mergers in globulars that have undergone core collapse.
NASA Astrophysics Data System (ADS)
Arulkumaran, S.; Ng, G. I.; Lee, C. H.; Liu, Z. H.; Radhakrishnan, K.; Dharmarasu, N.; Sun, Z.
2010-11-01
Studies on the influence of quiescent-gate ( Vgs0) and quiescent-drain ( Vds0) bias stresses in rf-plasma MBE grown AlGaN/GaN high-electron-mobility transistors (HEMTs) were performed. The increase of drain current ( ID) collapse by quiescent-bias-stress in AlGaN/GaN HEMTs were observed using pulsed (pulse width = 200 ns; pulse period = 1 ms) IDS- VDS characteristics. The Si 3N 4 passivation suppressed about 80% ID collapse in quiescent-bias-point stressed HEMTs. The remaining 20% ID collapse were not suppressed which may be coming from buffer-related traps. However, more than 10% of ID collapse suppression was observed on un-stressed or fresh-HEMTs. Similarly, improved cut-off frequency ( fT), maximum oscillation frequency ( fmax) and device output power ( Pout) values were also observed on the un-stressed HEMTs. The Si 3N 4 passivation completely suppressed the ID collapse in un-stressed or fresh-HEMTs which leads to 70% improvement in fT and 60% improvement in the device Pout. The Si 3N 4 passivation did not completely suppress ID collapse in the quiescent-bias stressed-HEMTs. This may be due to the generation of additional surface-related traps in the HEMTs by quiescent-bias-stresses.
The Tacoma Narrows Bridge Collapse on Film and Video
ERIC Educational Resources Information Center
Olson, Don; Hook, Joseph; Doescher, Russell; Wolf, Steven
2015-01-01
This month marks the 75th anniversary of the Tacoma Narrows Bridge collapse. During a gale on Nov. 7, 1940, the bridge exhibited remarkable oscillations before collapsing spectacularly (Figs. 1-5). Physicists over the years have spent a great deal of time and energy studying this event. By using open-source analysis tools and digitized footage of…
The 3D Death of a Massive Star
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-07-01
What happens at the very end of a massive star's life, just before its core's collapse? A group led by Sean Couch (California Institute of Technology and Michigan State University) claim to have carried out the first three-dimensional simulations of these final few minutes — revealing new clues about the factors that can lead a massive star to explode in a catastrophic supernova at the end of its life. A Giant Collapses In dying massive stars, in-falling matter bounces off the of collapsed core, creating a shock wave. If the shock wave loses too much energy as it expands into the star, it can stall out — but further energy input can revive it and result in a successful explosion of the star as a core-collapse supernova. In simulations of this process, however, theorists have trouble getting the stars to consistently explode: the shocks often stall out and fail to revive. Couch and his group suggest that one reason might be that these simulations usually start at core collapse assuming spherical symmetry of the progenitor star. Adding Turbulence Couch and his collaborators suspect that the key is in the final minutes just before the star collapses. Models that assume a spherically-symmetric star can't include the effects of convection as the final shell of silicon is burned around the core — and those effects might have a significant impact! To test this hypothesis, the group ran fully 3D simulations of the final three minutes of the life of a 15 solar-mass star, ending with core collapse, bounce, and shock-revival. The outcome was striking: the 3D modeling introduced powerful turbulent convection (with speeds of several hundred km/s!) in the last few minutes of silicon-shell burning. As a result, the initial structure and motions in the star just before core collapse were very different from those in core-collapse simulations that use spherically-symmetric initial conditions. The turbulence was then further amplified during collapse and formation of the shock, generating pressure that aided the shock expansion — which should ultimately help the star explode! The group cautions that their simulations are still very idealized, but these results clearly indicate that the 3D structure of massive stellar cores has an important impact on the core-collapse supernova mechanism. Citation Sean M. Couch et al. 2015 ApJ 808 L21 doi:10.1088/2041-8205/808/1/L21
Van Gosen, Bradley S.; Wenrich, Karen J.
1991-01-01
Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.
Van Gosen, Bradley S.; Wenrich, Karen J.
1991-01-01
Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.
Van Gosen, Bradley S.; Wenrich, Karen J.
1991-01-01
Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.
Van Gosen, Bradley S.; Wenrich, Karen J.
1991-01-01
Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.
Experimental injury study of children seated behind collapsing front seats in rear impacts.
Saczalski, Kenneth J; Sances, Anthony; Kumaresan, Srirangam; Burton, Joseph L; Lewis, Paul R
2003-01-01
In the mid 1990's the U.S. Department of Transportation made recommendations to place children and infants into the rear seating areas of motor vehicles to avoid front seat airbag induced injuries and fatalities. In most rear-impacts, however, the adult occupied front seats will collapse into the rear occupant area and pose another potentially serious injury hazard to the rear-seated children. Since rear-impacts involve a wide range of speeds, impact severity, and various sizes of adults in collapsing front seats, a multi-variable experimental method was employed in conjunction with a multi-level "factorial analysis" technique to study injury potential of rear-seated children. Various sizes of Hybrid III adult surrogates, seated in a "typical" average strength collapsing type of front seat, and a three-year-old Hybrid III child surrogate, seated on a built-in booster seat located directly behind the front adult occupant, were tested at various impact severity levels in a popular "minivan" sled-buck test set up. A total of five test configurations were utilized in this study. Three levels of velocity changes ranging from 22.5 to 42.5 kph were used. The average of peak accelerations on the sled-buck tests ranged from approximately 8.2 G's up to about 11.1 G's, with absolute peak values of just over 14 G's at the higher velocity change. The parameters of the test configuration enabled the experimental data to be combined into a polynomial "injury" function of the two primary independent variables (i.e. front seat adult occupant weight and velocity change) so that the "likelihood" of rear child "injury potential" could be determined over a wide range of the key parameters. The experimentally derived head injury data was used to obtain a preliminary HIC (Head Injury Criteria) polynomial fit at the 900 level for the rear-seated child. Several actual accident cases were compared with the preliminary polynomial fit. This study provides a test efficient, multi-variable, method to compare the injury biomechanical data with actual accident cases.
Stratovolcano stability assessment methods and results from Citlaltepetl, Mexico
Zimbelman, D.R.; Watters, R.J.; Firth, I.R.; Breit, G.N.; Carrasco-Nunez, Gerardo
2004-01-01
Citlaltépetl volcano is the easternmost stratovolcano in the Trans-Mexican Volcanic Belt. Situated within 110 km of Veracruz, it has experienced two major collapse events and, subsequent to its last collapse, rebuilt a massive, symmetrical summit cone. To enhance hazard mitigation efforts we assess the stability of Citlaltépetl's summit cone, the area thought most likely to fail during a potential massive collapse event. Through geologic mapping, alteration mineralogy, geotechnical studies, and stability modeling we provide important constraints on the likelihood, location, and size of a potential collapse event. The volcano's summit cone is young, highly fractured, and hydrothermally altered. Fractures are most abundant within 5–20-m wide zones defined by multiple parallel to subparallel fractures. Alteration is most pervasive within the fracture systems and includes acid sulfate, advanced argillic, argillic, and silicification ranks. Fractured and altered rocks both have significantly reduced rock strengths, representing likely bounding surfaces for future collapse events. The fracture systems and altered rock masses occur non-uniformly, as an orthogonal set with N–S and E–W trends. Because these surfaces occur non-uniformly, hazards associated with collapse are unevenly distributed about the volcano. Depending on uncertainties in bounding surfaces, but constrained by detailed field studies, potential failure volumes are estimated to range between 0.04–0.5 km3. Stability modeling was used to assess potential edifice failure events. Modeled failure of the outer portion of the cone initially occurs as an "intact block" bounded by steeply dipping joints and outwardly dipping flow contacts. As collapse progresses, more of the inner cone fails and the outer "intact" block transforms into a collection of smaller blocks. Eventually, a steep face develops in the uppermost and central portion of the cone. This modeled failure morphology mimics collapse amphitheaters
NASA Astrophysics Data System (ADS)
Holohan, E. P.; Walter, T. R.; Schöpfer, M. P. J.; Walsh, J. J.; Orr, T.; Poland, M.
2012-04-01
In March 2011, a spectacular fissure eruption on Kilauea was associated with a major collapse event in the highly-active Puu Oo crater. Time-lapse cameras maintained by the Hawaii Volcano Observatory captured views of the crater in the moments before, during, and after the collapse. The 2011 event hence represents a unique opportunity to characterize the surface deformation related to the onset of a pit crater collapse and to understand what factors influence it. To do so, we used two approaches. First, we analyzed the available series of camera images by means of digital image correlation techniques. This enabled us to gain a semi-quantitative (pixel-unit) description of the surface displacements and the structural development of the collapsing crater floor. Secondly, we ran a series of 'true-scale' numerical pit-crater collapse simulations based on the two-dimensional Distinct Element Method (2D-DEM). This enabled us to gain insights into what geometric and mechanical factors could have controlled the observed surface displacement pattern and structural development. Our analysis of the time-lapse images reveals that the crater floor initially gently sagged, and then rapidly collapsed in association with the appearance of a large ring-like fault scarp. The observed structural development and surface displacement patterns of the March 2011 Puu Oo collapse are best reproduced in DEM models with a relatively shallow magma reservoir that is vertically elongated, and with a crater floor rock mass that is reasonably strong. In combining digital image correlation with DEM modeling, our study highlights the future potential of these relatively new techniques for understanding physical processes at active volcanoes.
NASA Astrophysics Data System (ADS)
Derakhshani, Maaneli
In this thesis, we consider the implications of solving the quantum measurement problem for the Newtonian description of semiclassical gravity. First we review the formalism of the Newtonian description of semiclassical gravity based on standard quantum mechanics---the Schroedinger-Newton theory---and two well-established predictions that come out of it, namely, gravitational 'cat states' and gravitationally-induced wavepacket collapse. Then we review three quantum theories with 'primitive ontologies' that are well-known known to solve the measurement problem---Schroedinger's many worlds theory, the GRW collapse theory with matter density ontology, and Nelson's stochastic mechanics. We extend the formalisms of these three quantum theories to Newtonian models of semiclassical gravity and evaluate their implications for gravitational cat states and gravitational wavepacket collapse. We find that (1) Newtonian semiclassical gravity based on Schroedinger's many worlds theory is mathematically equivalent to the Schroedinger-Newton theory and makes the same predictions; (2) Newtonian semiclassical gravity based on the GRW theory differs from Schroedinger-Newton only in the use of a stochastic collapse law, but this law allows it to suppress gravitational cat states so as not to be in contradiction with experiment, while allowing for gravitational wavepacket collapse to happen as well; (3) Newtonian semiclassical gravity based on Nelson's stochastic mechanics differs significantly from Schroedinger-Newton, and does not predict gravitational cat states nor gravitational wavepacket collapse. Considering that gravitational cat states are experimentally ruled out, but gravitational wavepacket collapse is testable in the near future, this implies that only the latter two are viable theories of Newtonian semiclassical gravity and that they can be experimentally tested against each other in future molecular interferometry experiments that are anticipated to be capable of testing the gravitational wavepacket collapse prediction.
Shock-induced nanobubble collapse and its applications
NASA Astrophysics Data System (ADS)
Vedadi, Mohammad Hossein
The shock-induced collapse of nanobubbles in water is investigated using molecular dynamics simulations based on a reactive force field. Monitoring the collapse of a cavitation nanobubble, we observe a focused nanojet at the onset of bubble shrinkage and a water hammer shock wave upon bubble collapse. The nanojet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. The shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of approximately 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. Moreover, a substantial number of positive and negative ions appear when the nanojet hits the distal side of the nanobubble and the water hammer shock forms. Furthermore, two promising applications of shock-induced nanobubble collapse have been explored. Our simulations of poration in lipid bilayers due to shock-induced collapse of nanobubbles reveal penetration of nanojets into lipid bilayers. The nanojet impact generates shear flow of water on bilayer leaflets and pressure gradients across them, which transiently enhance the bilayer permeability by creating nanopores through which water molecules translocate across the bilayer. The effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. Finally, the shock-induced collapse of CO2-filled nanobubbles in water is investigated. The energetic nanojet and high-pressure water hammer shock formed during and after collapse of the nanobubble trigger mechano-chemical H2O-CO2 reactions, some of which lead to splitting of water molecules. The dominant pathways through which splitting of water molecules occur are identified.
Analysis of collapse in flattening a micro-grooved heat pipe by lateral compression
NASA Astrophysics Data System (ADS)
Li, Yong; He, Ting; Zeng, Zhixin
2012-11-01
The collapse of thin-walled micro-grooved heat pipes is a common phenomenon in the tube flattening process, which seriously influences the heat transfer performance and appearance of heat pipe. At present, there is no other better method to solve this problem. A new method by heating the heat pipe is proposed to eliminate the collapse during the flattening process. The effectiveness of the proposed method is investigated through a theoretical model, a finite element(FE) analysis, and experimental method. Firstly, A theoretical model based on a deformation model of six plastic hinges and the Antoine equation of the working fluid is established to analyze the collapse of thin walls at different temperatures. Then, the FE simulation and experiments of flattening process at different temperatures are carried out and compared with theoretical model. Finally, the FE model is followed to study the loads of the plates at different temperatures and heights of flattened heat pipes. The results of the theoretical model conform to those of the FE simulation and experiments in the flattened zone. The collapse occurs at room temperature. As the temperature increases, the collapse decreases and finally disappears at approximately 130 °C for various heights of flattened heat pipes. The loads of the moving plate increase as the temperature increases. Thus, the reasonable temperature for eliminating the collapse and reducing the load is approximately 130 °C. The advantage of the proposed method is that the collapse is reduced or eliminated by means of the thermal deformation characteristic of heat pipe itself instead of by external support. As a result, the heat transfer efficiency of heat pipe is raised.
Refined applications of the collapse of the wave function
NASA Astrophysics Data System (ADS)
Stodolsky, L.
2015-05-01
In a two-part system, the collapse of the wave function of one part can put the other part in a state which would be difficult or impossible to achieve otherwise, in particular, one sensitive to small effects in the "collapse" interaction. We present some applications to the very symmetric and experimentally accessible situations of the decays ϕ (1020 )→KoKo , ψ (3770 )→DoDo, or ϒ (4 s )→BoBo , involving the internal state of the two-state Ko, Do, or Bo mesons. The collapse of the wave function occasioned by a decay of one member of the pair (away side) fixes the state vector of that side's two-state system. Bose-Einstein statistics then determines the state of the recoiling meson (near side), whose evolution can then be followed further. In particular, the statistics requirement dictates that the "away side" and "near side" internal wave functions must be orthogonal at the time of the collapse. Thus a C P violation in the away side decay implies a complementary C P impurity on the near side, which can be detected in the further evolution. The C P violation so manifested is necessarily direct C P violation, since neither the mass matrix nor time evolution was involved in the collapse. A parametrization of the direct C P violation is given, and various manifestations are presented. Certain rates or combination of rates are identified which are nonzero only if there is direct C P violation. The very explicit and detailed use made of the collapse of the wave function makes the procedure interesting with respect to the fundamentals of quantum mechanics. We note an experimental consistency test for our treatment of the collapse of the wave function, which can be carried out by a certain measurement of partial decay rates.