Gil-Cardeza, María L; Ferri, Alejandro; Cornejo, Pablo; Gomez, Elena
2014-09-15
The accumulation of Cr in soil could be highly toxic to human health; therefore Cr soil distribution was studied in rhizosphere soils from Ricinus communis and Conium maculatum and bare soil (BS) from an industrial and urban area in Argentina. Total Cr, Cr(VI) and Cr(III) concentrations were determined in 3 soil fractions: total, extractable and associated to total-glomalin-related protein (T-GRSP). BS had the highest total Cr and total Cr(VI) concentrations. Total Cr(VI) concentration from both rhizosphere soils did not differ from the allowed value for residential area in Argentina (8 μg Cr(VI) g(-1) soil), while total Cr(VI) in BS was 1.8 times higher. Total Cr concentration in all the soils was higher than the allowed value (250 μg Cr g(-1) soil). Extractable and associated to T-GRSP Cr(VI) concentrations were below the detection limit. Cr(III) bound to T-GRSP was the highest in the BS. These findings are in agreement with a long term effect of glomalin in sequestrating Cr. In both plant species, total Cr was higher in root than in shoot and both species presented arbuscular mycorrhizal fungi (AMF). As far as we know, this is the first study that reports the presence of Cr in T-GRSP fraction of soil organic matter. These findings suggest that Cr mycorrhizostabilization could be a predominant mechanism used by R. communis and C. maculatum to diminish Cr soil concentration. Nevertheless, further research is needed to clarify the contribution of native AMF isolated from R. communis and C. maculatum rhizosphere to the Cr phytoremediation process. Copyright © 2014 Elsevier B.V. All rights reserved.
Exposure to hexavalent chromium in welders: Results of the WELDOX II field study.
Pesch, Beate; Lehnert, Martin; Weiss, Tobias; Kendzia, Benjamin; Menne, Eleonore; Lotz, Anne; Heinze, Evelyn; Behrens, Thomas; Gabriel, Stefan; Schneider, Wolfgang; Brüning, Thomas
2018-03-12
Exposure to hexavalent chromium (Cr(VI)) has been primarily studied in chromate production. Here, we measured personal exposure to respirable Cr(VI) together with airborne and urinary Cr and Ni in welders to explore levels and associations between various measures of exposure. Shift concentrations of Cr(VI), Cr, and Ni were measured in respirable welding fumes in 50 men who used either gas metal arc welding (GMAW) (n = 24) or tungsten inert gas welding (TIG) (n = 19) as their major technique. Cr and Ni were determined in pre- and post-shift urine samples. Concentrations below the limit of quantification (LOQ) were multiply imputed. Spearman correlation coefficients (rs) were calculated with 95% confidence intervals (CIs) to explore associations between the exposure variables, and regression models were applied to estimate the effect of the parent metal on the urinary concentration. Regarding the respirable Cr(VI), 62% of the measurements were below the LOQ, the 75th percentile was 0.50 µg m-3, and 8 out of 50 (16%) welders exceeded 1 µg m-3. The highest shift concentration that occurred as a result of shielded metal arc welding (SMAW) was 180 µg m-3. The Cr(VI) content in total Cr ranged from 4 to 82% (median 20%), although the concentration correlated with total Cr (rs 0.55, 95% CI 0.46; 0.64). The correlation between Cr(VI) and Ni was weaker (rs 0.42, 95% CI 0.34; 0.51) than that between total Cr and Ni in welding fumes (rs 0.83, 95% CI 0.74; 0.92). Both Cr(VI) and total Cr influenced the urinary Cr concentrations in post-shift samples (P = 0.0008 and P ≤ 0.0001, respectively). The airborne shift exposure was a weaker determinant than the Cr content in pre-shift urine samples, which strongly correlated with post-shift urinary Cr (rs 0.78, 95% CI 0.69; 0.87). The Cr(VI) content in total Cr varied considerably in welding fumes. The majority of welders using GMAW or TIG presented with shift concentrations of respirable Cr(VI) below 1 µg m-3. However, very high Cr(VI) concentrations may occur, for example in SMAW. The urinary concentration of total Cr, cannot be used to precisely determine the shift concentration of respirable Cr(VI) in welders.
Distribution and bioavailability of Cr in central Euboea, Greece
NASA Astrophysics Data System (ADS)
Megremi, Ifigeneia
2010-06-01
Plants and soils from central Euboea, were analyzed for Cr(totai), Cr(VI), Ni, Mn, Fe and Zn. The range of metal concentrations in soils is typical to those developed on Fe-Ni laterites and ultramafic rocks. Their bioavailability was expressed in terms of concentrations extractable with EDTA and 1 M HNO3, with EDTA having a limited effect on metal recovery. Cr(VI) concentrations in soils evaluated by alkaline digestion solution were lower than phytotoxic levels. Chromium and Ni — and occasionally Zn — in the majority of plants were near or above toxicity levels. Cr(VI) concentrations in plants were extremely low compared to total chromium concentrations. Cr(total) in ground waters ranged from <1 μg.L-1 to 130 μg.L-1, with almost all chromium present as Cr(VI). With the exception of Cr(total) and in some cases Zn, all elements were below regulatory limits for drinking water. On the basis of Ca, Mg, Cr(total) and Si ground waters were classified into three groups: Group(I) with Cr concentrations less than 1 μg.L-1 from a karstic aquifer; Group(II) with average concentrations of 24 μg.L-1 of Cr and relatively high Si associated with ophiolites; and Group(III) with Cr concentrations of up to 130 μg.L-1, likely due to anthropogenic activity. Group(III) is comparable to ground waters from Assopos basin, characterized by high Cr(VI) concentrations, probably due to industrial actrivities.
Changes in selected serum parameters of broiler chicken fed supplemental chromium.
Króliczewska, B; Zawadzki, W; Dobrzanski, Z; Kaczmarek-Oliwa, A
2004-12-01
The present study was conducted to evaluate the effect of chromium (Cr) from Cr yeast on the growth performance and total cholesterol, high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol, triglycerides, glucose, total protein and Cr concentration in the serum of broiler chicken. The birds were fed a control diet or a control diet supplemented with Cr at a level of 300, 500 microg/kg Cr. The supplementation of 500 mug/kg Cr increased body weight, weight gain and feed efficiency (p < 0.05). In addition, supplementation with Cr decreased the serum total cholesterol, LDL cholesterol (p < 0.05), triglycerides (p < 0.05) and glucose (p < 0.05) concentrations whereas serum HDL cholesterol increased. Serum total protein and serum Cr concentration slightly but not significantly increased in both Cr groups. The study suggest that Cr supplementation particularly at 500 microg/kg Cr from Cr yeast can influence on carbohydrate and lipid metabolism of broiler chicken and can be used as additives in animal diet but it still needs more investigations.
Measurement of Soluble and Total Hexavalent Chromium in the Ambient Airborne Particles in New Jersey
Huang, Lihui; Yu, Chang Ho; Hopke, Philip K.; Lioy, Paul J.; Buckley, Brian T.; Shin, Jin Young; Fan, Zhihua (Tina)
2015-01-01
Hexavalent chromium (Cr(VI)) in ambient airborne particulate matter (PM) is a known pulmonary carcinogen and may have both soluble and insoluble forms. The sum of the two forms is defined as total Cr(VI). Currently, there were no methods suitable for large-scale monitoring of total Cr(VI) in ambient PM. This study developed a method to measure total Cr(VI) in ambient PM. This method includes PM collection using a Teflon filter, microwave extraction with 3% Na2CO3-2% NaOH at 95°C for 60 minutes, and Cr(VI) analysis by 1,5-diphenylcarbazide colorimetry at 540 nm. The recoveries of total Cr(VI) were 119.5 ± 10.4% and 106.3 ± 16.7% for the Cr(VI)-certified reference materials, SQC 012 and SRM 2700, respectively. Total Cr(VI) in the reference urban PM (NIST 1648a) was 26.0 ± 3.1 mg/kg (%CV = 11.9%) determined by this method. The method detection limit was 0.33 ng/m3. This method and the one previously developed to measure ambient Cr(VI), which is soluble in pH ~9.0 aqueous solution, were applied to measure Cr(VI) in ambient PM10 collected from three urban areas and one suburban area in New Jersey. The total Cr(VI) concentrations were 1.05–1.41 ng/m3 in the winter and 0.99–1.56 ng/m3 in the summer. The soluble Cr(VI) concentrations were 0.03–0.19 ng/m3 in the winter and 0.12–0.37 ng/m3 in the summer. The summer mean ratios of soluble to total Cr(VI) were 14.3–43.7%, significantly higher than 4.2–14.4% in the winter. The winter concentrations of soluble and total Cr(VI) in the suburban area were significantly lower than in the three urban areas. The results suggested that formation of Cr(VI) via atmospheric chemistry may contribute to the higher soluble Cr(VI) concentrations in the summer. PMID:26120324
Matczak, W; Chmielnicka, J
1993-03-01
For the years 1987-1990 160 individual samples of manual metal arc stainless steel (MMA/SS) welding fumes from the breathing zone of welders in four industrial plants were collected. Concentrations of soluble and insoluble chromium (Cr) III and Cr VI compounds as well as of some other welding fume elements (Fe, Mn, Ni, F) were determined. Concentration of welding fumes in the breathing zone ranged from 0.2 to 23.4 mg/m3. Total Cr amounted to 0.005-0.991 mg/m3 (including 0.005-0.842 mg/m3 Cr VI). Total Cr content of fumes varied from 0.1 to 7.4%. The distribution of particular Cr compounds was: 52.6% soluble Cr (including 50.7% Cr VI), 65.5% total Cr VI, and 11.4% insoluble Cr VI. The results obtained indicate that MMA/SS welding is a process that could be highly hazardous to human health. Evaluation of occupational exposure has shown that MMA/SS welders may exceed the admissible concentrations of soluble and insoluble Cr VI forms as well as of Mn and Ni. In the plants investigated the sum of the ratios of concentrations of particular welding fumes in the breathing zone of welders exceeded corresponding maximum allowable concentration values by 24 times (including 17 times for total Cr VI). Due to the variety and changeability of particular parameters occurring in the working environment, the composition of MMA/SS welding fumes (in the welder's breathing zone) is so variable that it is not possible to assess the exposure by means of one universal exposure indicator (maximum additive hygienic limit value). The evaluation should be based on the results of measurements of concentrations of particular elements in welding fumes.
Matczak, W; Chmielnicka, J
1993-01-01
For the years 1987-1990 160 individual samples of manual metal arc stainless steel (MMA/SS) welding fumes from the breathing zone of welders in four industrial plants were collected. Concentrations of soluble and insoluble chromium (Cr) III and Cr VI compounds as well as of some other welding fume elements (Fe, Mn, Ni, F) were determined. Concentration of welding fumes in the breathing zone ranged from 0.2 to 23.4 mg/m3. Total Cr amounted to 0.005-0.991 mg/m3 (including 0.005-0.842 mg/m3 Cr VI). Total Cr content of fumes varied from 0.1 to 7.4%. The distribution of particular Cr compounds was: 52.6% soluble Cr (including 50.7% Cr VI), 65.5% total Cr VI, and 11.4% insoluble Cr VI. The results obtained indicate that MMA/SS welding is a process that could be highly hazardous to human health. Evaluation of occupational exposure has shown that MMA/SS welders may exceed the admissible concentrations of soluble and insoluble Cr VI forms as well as of Mn and Ni. In the plants investigated the sum of the ratios of concentrations of particular welding fumes in the breathing zone of welders exceeded corresponding maximum allowable concentration values by 24 times (including 17 times for total Cr VI). Due to the variety and changeability of particular parameters occurring in the working environment, the composition of MMA/SS welding fumes (in the welder's breathing zone) is so variable that it is not possible to assess the exposure by means of one universal exposure indicator (maximum additive hygienic limit value). The evaluation should be based on the results of measurements of concentrations of particular elements in welding fumes. PMID:8457491
Mills, Christopher T.; Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J.
2011-01-01
Concentrations of geogenic Cr(VI) in groundwater that exceed the World Health Organization’s maximum contaminant level for drinking water (50 μg L−1) occur in several locations globally. The major mechanism for mobilization of this Cr(VI) at these sites is the weathering of Cr(III) from ultramafic rocks and its subsequent oxidation on Mn oxides. This process may be occurring in the southern Sacramento Valley of California where Cr(VI) concentrations in groundwater can approach or exceed 50 μg L−1. To characterize Cr geochemistry in the area, samples from several soil auger cores (approximately 4 m deep) and drill cores (approximately 25 m deep) were analyzed for total concentrations of 44 major, minor and trace elements, Cr associated with labile Mn and Fe oxides, and Cr(VI). Total concentrations of Cr in these samples ranged from 140 to 2220 mg per kg soil. Between 9 and 70 mg per kg soil was released by selective extractions that target Fe oxides, but essentially no Cr was associated with the abundant reactive Mn oxides (up to ~1000 mg hydroxylamine-reducible Mn per kg soil was present). Both borehole magnetic susceptibility surveys performed at some of the drill core sites and relative differences between Cr released in a 4-acid digestion versus total Cr (lithium metaborate fusion digestion) suggest that the majority of total Cr in the samples is present in refractory chromite minerals transported from ultramafic exposures in the Coast Range Mountains. Chromium(VI) in the samples studied ranged from 0 to 42 μg kg−1, representing a minute fraction of total Cr. Chromium(VI) content was typically below detection in surface soils (top 10 cm) where soil organic matter was high, and increased with increasing depth in the soil auger cores as organic matter decreased. Maximum concentrations of Cr(VI) were up to 3 times greater in the deeper drill core samples than the shallow auger cores. Although Cr(VI) in these vadose zone soils and sediments was only a very small fraction of the total solid phase Cr, they are a potentially important source for Cr(VI) to groundwater. Enhanced groundwater recharge through the vadose zone due to irrigation could carry Cr(VI) from the vadose zone to the groundwater and may be the mechanism responsible for the correlation observed between elevated Cr(VI) and NO3- source concentrations in previously published data for valley groundwaters. Incubation of a valley subsoil showed a Cr(VI) production rate of 24 μg kg−1 a−1 suggesting that field Cr(VI) concentrations could be regenerated annually. Increased Cr(VI) production rates in H+-amended soil incubations indicate that soil acidification processes such as nitrification of ammonium in fertilizers could potentially increase the occurrence of geogenic Cr(VI) in groundwater. Thus, despite the natural origin of the Cr, Cr(VI) generation in the Sacramento Valley soils and sediments has the potential to be influenced by human activities.
Heavy metals concentration and availability of different soils in Sabzevar area, NE of Iran
NASA Astrophysics Data System (ADS)
Mazhari, Seyed Ali; Sharifiyan Attar, Reza; Haghighi, Faezeh
2017-10-01
Soils developed in the Sabzevar ophiolitic area originate from different bedrocks. All samples display similar physico-chemical properties, but heavy metal concentrations vary extremely in different soil samples. Serpentine soils have the highest total concentration of Cr, Ni and Co; while soils derived from mafic rocks (olivine basalts and hornblende gabbros) show the highest Cu (85.29-109.11 ppm) and Zn (46.88-86.60 ppm). The DTPA-extraction of soil samples indicates that the order of metal bioavailability was Cr
NASA Astrophysics Data System (ADS)
Perai, A. H.; Kermanshahi, H.; Moghaddam, H. Nassiri; Zarban, A.
2015-04-01
A total of 240 female broilers (42 days old) were randomly assigned to four groups with six replicates and fed either a basal diet (two control groups) or a basal diet supplemented with either 1,200 μg Cr+3 from chromium (Cr) methionine/kg (Cr group) or 1,200 μg Cr+3 from Cr methionine plus 800 mg vitamin C (Vit C)/kg of diet (Cr + Vit C group). After 7 days on the dietary treatment, all groups except one of the controls were transported for 3 h under the summer conditions. Performance parameters were not influenced by dietary treatments. The plasma concentrations of insulin, triiodothyronine, triglyceride, and the ratio of triiodothyronine/thyroxin were decreased and the ratio of glucose/insulin was increased due to transport process. Road transportation also increased the plasma concentrations of protein, cholesterol, aspartate aminotransferase, and creatine kinase and decreased the concentration of low-density lipoprotein cholesterol in the Cr + Vit C group. The pretransport concentrations of insulin and triiodothyronine were highest in the Cr + Vit C group. The concentration of phosphorous was lower in the Cr group than that in the other groups after transport. No significant effects of dietary treatments were observed on the other biochemical parameters. Transport increased malondialdehyde concentration in the control group and did not change plasma total antioxidant capacity and erythrocyte glutathione peroxidase activity. Either in combination or alone, Cr increased plasma total antioxidant capacity (before transport P ≤ 0.05, after transport P = 0.07) but did not affect the concentration of malondialdehyde and activity of glutathione peroxidase. The duration of tonic immobility (TI) was similar between nontransported control chicks and transported chicks without any supplements. Pretreatment with Cr + Vit C significantly reduced the duration of TI.
Netzahuatl-Muñoz, Alma Rosa; Cristiani-Urbina, María del Carmen; Cristiani-Urbina, Eliseo
2015-01-01
The present study investigated the kinetics, equilibrium and thermodynamics of chromium (Cr) ion biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark (CLB). CLB total Cr biosorption capacity strongly depended on operating variables such as initial Cr(VI) concentration and contact time: as these variables rose, total Cr biosorption capacity increased significantly. Total Cr biosorption rate also increased with rising solution temperature. The pseudo-second-order model described the total Cr biosorption kinetic data best. Langmuir´s model fitted the experimental equilibrium biosorption data of total Cr best and predicted a maximum total Cr biosorption capacity of 305.4 mg g(-1). Total Cr biosorption by CLB is an endothermic and non-spontaneous process as indicated by the thermodynamic parameters. Results from the present kinetic, equilibrium and thermodynamic studies suggest that CLB biosorbs Cr ions from Cr(VI) aqueous solutions predominantly by a chemical sorption phenomenon. Low cost, availability, renewable nature, and effective total Cr biosorption make CLB a highly attractive and efficient method to remediate Cr(VI)-contaminated water and wastewater.
Netzahuatl-Muñoz, Alma Rosa; Cristiani-Urbina, María del Carmen; Cristiani-Urbina, Eliseo
2015-01-01
The present study investigated the kinetics, equilibrium and thermodynamics of chromium (Cr) ion biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark (CLB). CLB total Cr biosorption capacity strongly depended on operating variables such as initial Cr(VI) concentration and contact time: as these variables rose, total Cr biosorption capacity increased significantly. Total Cr biosorption rate also increased with rising solution temperature. The pseudo-second-order model described the total Cr biosorption kinetic data best. Langmuir´s model fitted the experimental equilibrium biosorption data of total Cr best and predicted a maximum total Cr biosorption capacity of 305.4 mg g-1. Total Cr biosorption by CLB is an endothermic and non-spontaneous process as indicated by the thermodynamic parameters. Results from the present kinetic, equilibrium and thermodynamic studies suggest that CLB biosorbs Cr ions from Cr(VI) aqueous solutions predominantly by a chemical sorption phenomenon. Low cost, availability, renewable nature, and effective total Cr biosorption make CLB a highly attractive and efficient method to remediate Cr(VI)-contaminated water and wastewater. PMID:26352933
Content of trace elements and chromium speciation in Neem powder and tea infusions.
Novotnik, Breda; Zuliani, Tea; Ščančar, Janez; Milačič, Radmila
2015-01-01
Total concentrations of selected trace elements in Neem powder and in Neem tea were determined by inductively coupled plasma mass spectrometry (ICP-MS). The data revealed that despite high total concentrations of the potentially toxic elements Al and Ni in Neem powder, their amounts dissolved in Neem tea were low. Total concentrations of the other toxic elements Pb, As and Cd were also very low and do not represent a health hazard. In contrast, total concentrations of the essential elements Fe, Cu, Zn, Se Mo and Cr in Neem powder were high and also considerable in Neem tea. Consuming one cup of Neem tea (2g per 200 mL of water) covers the recommended daily intakes for Cr and Se and represents an important source of Mo and Cu. Speciation analysis of Cr by high performance liquid chromatography (HPLC) coupled to ICP-MS with the use of enriched Cr isotopic tracers to follow species interconversions during the analytical procedure demonstrated that toxic Cr(VI) was not present either in Neem powder or in Neem tea. Its concentrations were below the limits of detection of the HPLC-ICP-MS procedure applied. The speciation analysis data confirmed that even Cr(VI) was added, it was rapidly reduced by the presence of antioxidants in Neem leaves. By the use of enriched Cr isotopic spike solutions it was also demonstrated that for obtaining reliable analytical data it is essential to apply the extraction procedures which prevent Cr species interconversions, or to correct for species transformation. Copyright © 2015 Elsevier GmbH. All rights reserved.
Toxic metals in children's toys and jewelry: coupling bioaccessibility with risk assessment.
Cui, Xin-Yi; Li, Shi-Wei; Zhang, Shu-Jun; Fan, Ying-Ying; Ma, Lena Q
2015-05-01
A total of 45 children's toys and jewelry were tested for total and bioaccessible metal concentrations. Total As, Cd, Sb, Cr, Ni, and Pb concentrations were 0.22-19, 0.01-139, 0.1-189, 0.06-846, 0.14-2894 and 0.08-860,000 mg kg(-1). Metallic products had the highest concentrations, with 3-7 out of 13 samples exceeding the European Union safety limit for Cd, Pb, Cr, or Ni. However, assessment based on hazard index >1 and bioaccessible metal showed different trends. Under saliva mobilization or gastric ingestion, 11 out of 45 samples showed HI >1 for As, Cd, Sb, Cr, or Ni. Pb with the highest total concentration showed HI <1 for all samples while Ni showed the most hazard with HI up to 113. Our data suggest the importance of using bioaccessibility to evaluate health hazard of metals in children's toys and jewelry, and besides Pb and Cd, As, Ni, Cr, and Sb in children's products also deserve attention. Published by Elsevier Ltd.
Development and application of a method for Cr(III) determination in dairy products by HPLC-ICP-MS.
Hernandez, Fanny; Jitaru, Petru; Cormant, Florence; Noël, Laurent; Guérin, Thierry
2018-02-01
This study describes the development of an analytical approach for the determination of Cr(III) in dairy products by microwave assisted extraction, complexation in situ by ethylenediaminetetraacetate (EDTA) and high performance liquid chromatography hyphenated to inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). The extraction step was optimised by using an experimental design. A limit of quantification of 38µgkg -1 dry weight (d.w.) was obtained whereas the bias (%) measured ranged from 10 to 18%. The repeatability and intermediate precision varied between 1.2-5.0% and 7.5-13.5%, respectively. The method was applied to the analysis of several dairy samples beforehand characterized in terms of Cr(VI) and total chromium (Cr total ). Cr(III) concentrations ranged from <13 to 255µgkg -1 d.w. The results showed a good agreement between Cr(III) and Cr total concentration levels. Copyright © 2017 Elsevier Ltd. All rights reserved.
Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun
2015-01-01
The accumulation of a trace metal in rice grain is not only affected by the total concentration of the soil trace metal, but also by crop variety and related soil properties, such as soil pH, soil organic matter (SOM) and so on. However, these factors were seldom considered in previous studies on mapping the pollution risk of trace metals in paddy soil at a regional scale. In this study, the spatial nonstationary relationships between rice-Cr and a set of perceived soil properties (soil-Cr, soil pH and SOM) were explored using geographically weighted regression; and the relationships were then used for calculating the critical threshold (CT) of soil-Cr concentration that may ensure the concentration of rice-Cr being below the permissible limit. The concept of “loading capacity” (LC) for Cr in paddy soil was then defined as the difference between the CT and the real concentration of Cr in paddy soil, so as to map the pollution risk of soil-Cr to rice grain and assess the risk areas in Jiaxing city, China. Compared with the information of the concentration of the total soil-Cr, such results are more valuable for spatial decision making in reducing the accumulation of rice-Cr at a regional scale. PMID:26675587
Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun
2015-12-17
The accumulation of a trace metal in rice grain is not only affected by the total concentration of the soil trace metal, but also by crop variety and related soil properties, such as soil pH, soil organic matter (SOM) and so on. However, these factors were seldom considered in previous studies on mapping the pollution risk of trace metals in paddy soil at a regional scale. In this study, the spatial nonstationary relationships between rice-Cr and a set of perceived soil properties (soil-Cr, soil pH and SOM) were explored using geographically weighted regression; and the relationships were then used for calculating the critical threshold (CT) of soil-Cr concentration that may ensure the concentration of rice-Cr being below the permissible limit. The concept of "loading capacity" (LC) for Cr in paddy soil was then defined as the difference between the CT and the real concentration of Cr in paddy soil, so as to map the pollution risk of soil-Cr to rice grain and assess the risk areas in Jiaxing city, China. Compared with the information of the concentration of the total soil-Cr, such results are more valuable for spatial decision making in reducing the accumulation of rice-Cr at a regional scale.
Wang, Liansheng; Shi, Zhan; Jia, Zhiqiang; Su, Binchao; Shi, Baoming; Shan, Anshan
2013-07-01
The objective of this study was to determine the effects of supplemental chromium as chromium picolinate (CrPic) on productive performance, chromium (Cr) concentration, serum parameters, and colostrum composition in sows. Thirty Yorkshire sows were bred with semen from a pool of Landrace boars. The sows were equally grouped and treated with either a diet containing 0 (control) or 400 ppb dietary Cr supplementation throughout gestation. The sows received the same basal diet based on corn-DDGS meal. Supplemental CrPic increased (P < 0.05) the sow body mass gain from the insemination to the day 110 of gestation in sows. No differences (P > 0.50) were observed in the gestation interval, sow mass, and backfat at insemination, after farrowing, at weaning and lactation loss. The number of piglets born alive, piglets per litter at weaning, and litter weaned mass were increased (P < 0.05) for those supplemented with CrPic compared with the control. However, the total number of piglets born, total born litter mass, average piglet birth body mass, born alive litter mass, and average born alive piglet mass did not differ among the treatments (P > 0.05). The placental masses of sows were similar among treatments (P > 0.05). Dietary supplementation with CrPic throughout gestation in sows showed increased (P < 0.01) concentration of Cr in the colostrum or serum at days 70 and 110. Compared with the control group, dietary supplementation with CrPic throughout gestation in sows decreased (P < 0.05) the serum insulin concentration, the glucose or serum urea nitrogen concentration at days 70 and 110. However, no differences (P > 0.05) were observed in total protein concentration among treatments. No differences (P > 0.05) were observed in total solids, protein, fat or lactose among sows fed the diets supplemented with CrPic compared with the control. This exciting finding provides evidence for an increase in mass gain and live-born piglets in sows supplemented with CrPic throughout gestation.
Figueiredo, Estela; Soares, M Elisa; Baptista, Paula; Castro, Marisa; Bastos, M Lourdes
2007-08-22
An ETAAS method was validated to quantify total Cr and Cr(VI) in mushrooms and the underlying soils. The method includes a sample pretreatment for total Cr dissolution using a wet acid digestion procedure and a selective alkaline extraction for Cr(VI). The limits of detection were, expressed in microg/L, 0.15 and 0.17 for total Cr and Cr(VI), respectively. The linearity ranges under the optimized conditions were 0.15-25.0 and 0.17-20.0 microg/L for total Cr and Cr(VI), respectively. The limits of quantification were, expressed in microg/g of dry weight, 0.0163 and 0.0085 for total and hexavalent chromium, respectively. The precision of the instrumental method for total Cr and Cr(VI) was lower than 1.6%, and for the analytical method, it was lower than 10%. The accuracy of the method for Cr(VI) quantification was evaluated by the standard additions method, with the recoveries being higher than 90% for all of the added concentrations. For total Cr, certified reference materials (lichen CRM 482 and soil sample NCS ZC73001) were used. An interference study was also carried out in a mushroom simulated matrix, and it was verified that the deviations of the expected values were lower than 4.0% for both total Cr and Cr(VI). The validated method was applied to the evaluation of total Cr and Cr(VI) in 34 wild mushrooms and 34 respective underlying soil samples collected in two different regions of Portugal (Beira Interior and TrAs-os-Montes), with different locations regarded as noncontaminated or contaminated areas. The species were identified by a mycologist and subdivided into 10 genera and 15 species: Amanita (rubescens, muscaria, and ponderosa), Boletus (regius), Lactarius (deliciosus, vellereus, and piperatus), Suillus (granulatus and luteus), Tricholoma (acerbum), Agaricus (sylvicola), Volvariella (gloiocephala), Lecopaxillus (giganteus), Macrolepiota (procera), and Psilocybe (fascicularis). The mean values found for total Cr were 1.14 and 1.11 microg/g of dry weight, and for Cr(VI), the mean values were 0.103 and 0.143 microg/g of dry weight for cap and stalk, respectively. For soils, the mean concentrations found were, for total Cr, 84.0 microg/g and, for Cr(VI), 0.483 microg/g. The bioconcentration factors (BCFs) based on dry weight for cap and stalk were determined, and the values found, for both total Cr and Cr(VI), were always <1, although for hexavalent chromium, the BCFs were 10 times higher than for total chromium.
Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations.
Mamais, Daniel; Noutsopoulos, Constantinos; Kavallari, Ioanna; Nyktari, Eleni; Kaldis, Apostolos; Panousi, Eleni; Nikitopoulos, George; Antoniou, Kornilia; Nasioka, Maria
2016-06-01
The objective of this work is to develop and evaluate biological groundwater treatment systems that will achieve hexavalent chromium reduction and total chromium removal from groundwater at hexavalent chromium (Cr(VI)) groundwater concentrations in the 0-200 μg/L range. Three lab-scale units operated, as sequencing batch reactors (SBR) under aerobic, anaerobic and anaerobic-aerobic conditions. All systems received groundwater with a Cr(VI) content of 200 μg/L. In order to support biological growth, groundwater was supplemented with milk, liquid cheese whey or a mixture of sugar and milk to achieve a COD concentration of 200 mg/L. The results demonstrate that a fully anaerobic system or an anaerobic-aerobic system dosed with simple or complex external organic carbon sources can lead to practically complete Cr(VI) reduction to Cr(III). The temperature dependency of maximum Cr(VI) removal rates can be described by the Arrhenius relationship. Total chromium removal in the biological treatment systems was not complete because a significant portion of Cr(III) remained in solution. An integrated system comprising of an anaerobic SBR followed by a sand filter achieved more than 95% total chromium removal thus resulting in average effluent total and dissolved chromium concentrations of 7 μg/L and 3 μg/L, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zheng, Cancai; Huang, Yanling; Xiao, Fang; Lin, Xi; Lloyd, Karen
2016-02-01
An experiment was conducted to investigate the effects of dietary chromium (Cr) source and concentration on growth performance, carcass traits, and some serum lipid parameters of broilers under normal rearing conditions for 42 days. A total of 252 1-day-old Cobb 500 commercial female broilers were randomly allotted by body weight (BW) to one of six replicate cages (six broilers per cage) for each of seven treatments in a completely randomized design involved in a 2 × 3 factorial arrangement of treatments with three Cr sources (Cr propionate (CrPro), Cr picolinate (CrPic), Cr chloride (CrCl3)) and two concentrations of added Cr (0.4 and 2.0 mg of Cr/kg) plus a Cr-unsupplemented control diet. The results showed that dietary Cr supplementation tended to increase the breast muscle percentage compared with the Cr-unsupplemented control group (P = 0.0784), while Cr from CrPic tended to have higher breast muscle percentage compared with Cr from CrCl3 (P = 0.0881). Chromium from CrPic also tended to increase the breast intramuscular fat (IMF) compared with Cr from CrCl3 (P = 0.0648). In addition, supplementation of 0.4 mg/kg Cr tended to decrease low-density lipoprotein cholesterol (LDL-C) (P = 0.0614). Compared with the control group, broilers fed Cr-supplemented diets had higher triglyceride (TG) (P = 0.0129) regardless of Cr source and Cr concentration. Chromium from CrPro and CrPic had lower total cholesterol (TC) compared with Cr from CrCl3 (P = 0.0220). These results indicate that dietary supplementation of Cr has effects on carcass characteristics and serum lipid parameters of broilers under normal rearing conditions, while supplementation of organic Cr can improve carcass characteristics and reduce the cholesterol content in serum.
Dong, Cheng-Di; Chen, Chiu-Wen; Chen, Chih-Feng
2013-07-01
The distribution, enrichment, accumulation, and potential ecological risk of chromium (Cr) in the surface sediments of northern Kaohsiung Harbor, Taiwan, China were investigated. Sediment samples from ten locations located between the river mouths and harbor entrance of northern Kaohsiung Harbor were collected quarterly in 2011 and characterized for Cr, aluminum, water content, organic matter, total nitrogen, total phosphorous, total grease, and grain size. Results showed that the Cr concentrations varied from 27.0 to 361.9 mg/kg with an average of (113.5 +/- 87.0) mg/kg. High Cr concentration was observed near the Jen-Gen River mouth. The mean Cr concentration was high at 255.5 mg/kg, which was at least 2 to 7 times than that of other sites. This might imply significant Cr contribution from upstream receiving tanneries wastewater into the Jen-Gen River. The spatial distribution of Cr reveals relatively high in the river mouth region, especially in Jen-Gen River, and gradually diminishes toward the harbor entrance region. This indicates that the major sources of Cr pollution from upstream industrial and municipal wastewaters discharged along the river bank; and Cr may drift with sea current and be dispersed into open sea. Moreover, Cr concentrations correlated closely to the physical-chemical properties of the sediments, which suggested the influence of industrial and municipal wastewaters discharged from the neighboring industrial parks and river basins. Results from the enrichment factor and geo-accumulation index analyses imply that the Jen-Gen River sediments can be characterized as moderate enrichment and none to medium accumulation of Cr, respectively. However, results of potential ecological risk index indicate that the sediment has low ecological potential risk. The results can provide valuable information to developing future strategies for the management of river mouth and harbor.
Mäkelä, Mikko; Watkins, Gary; Pöykiö, Risto; Nurmesniemi, Hannu; Dahl, Olli
2012-03-15
Industrial residue application to soil was investigated by integrating granulated blast furnace or converter steel slag with residues from the pulp and paper industry in various formulations. Specimen analysis included relevant physicochemical properties, total element concentrations (HCl+HNO3 digestion, USEPA 3051) and chemical speciation of chosen heavy metals (CH3COOH, NH2OH·HCl and H2O2+H2O2+CH3COONH4, the BCR method). Produced matrices showed liming effects comparable to commercial ground limestone and included significant quantities of soluble vital nutrients. The use of converter steel slag, however, led to significant increases in the total concentrations of Cr and V. Subsequently, total Cr was attested to occur as Cr(III) by Na2CO3+NaOH digestion followed by IC UV/VIS-PCR (USEPA 3060A). Additionally, 80.6% of the total concentration of Cr (370 mg kg(-1), d.w.) occurred in the residual fraction. However, 46.0% of the total concentration of V (2470 mg kg(-1), d.w.) occurred in the easily reduced fraction indicating potential bioavailability. Copyright © 2011 Elsevier B.V. All rights reserved.
Occurrence of hexavalent chromium in ground water in the western Mojave Desert, California
Ball, J.W.; Izbicki, J.A.
2004-01-01
About 200 samples from selected public supply, domestic, and observation wells completed in alluvial aquifers underlying the western Mojave Desert were analyzed for total dissolved Cr and Cr(VI). Because Cr(VI) is difficult to preserve, samples were analyzed by 3 methods. Chromium(VI) was determined in the field using both a direct colorimetric method and EPA method 218.6, and samples were speciated in the field for later analysis in the laboratory using a cation-exchange method developed for the study described in this paper. Comparison of the direct colorimetric method and EPA method 218.6 with the new cation-exchange method yielded r2 values of 0.9991 and 0.9992, respectively. Total dissolved Cr concentrations ranged from less than the 0.1 ??g/l detection limit to 60 ??g/l, and almost all the Cr present was Cr(VI). Near recharge areas along the mountain front pH values were near neutral, dissolved O2 concentrations were near saturation, and Cr(VI) concentrations were less than the 0.1 ??g/l detection limit. Chromium(VI) concentrations and pH values increased downgradient as long as dissolved O 2 was present. However, low Cr(VI) concentrations were associated with low dissolved O2 concentrations near ground-water discharge areas along dry lakes. Chromium(VI) concentrations as high as 60 ??g/l occurred in ground water from the Sheep Creek fan alluvial deposits weathered from mafic rock derived from the San Gabriel Mountains, and Cr(VI) concentrations as high as about 36 ??g/l were present in ground water from alluvial deposits weathered from less mafic granitic, metamorphic, and volcanic rocks. Chromium(III) was the predominant form of Cr only in areas where dissolved O2 concentrations were less than 1 mg/l and was detected at a median concentration of 0.1 ??g/l, owing to its low solubility in water of near-neutral pH. Depending on local hydrogeologic conditions and the distribution of dissolved O2, Cr(VI) concentrations may vary considerably with depth. Samples collected under pumping conditions from different depths within wells show that Cr(VI) concentrations can range from less than the 0.1 ??g/l detection limit to 36 ??g/l in a single well and that dissolved O2 concentrations likely control the concentration and redox speciation of Cr in ground water.
Hattab-Hambli, Nour; Motelica-Heino, Mikael; Mench, Michel
2016-02-01
Copper-contaminated soils were managed with aided phytoextraction in 31 field plots at a former wood preservation site, using a single incorporation of compost (OM) and dolomitic limestone (DL) followed by a crop rotation with tobacco and sunflower. Six amended plots, with increasing total soil Cu, and one unamended plot were selected together with a control uncontaminated plot. The mobility and phytoavailability of Cu, Zn, Cr and As were investigated after 2 and 3 years in soil samples collected in these eight plots. Total Cu, Zn, Cr and As concentrations were determined in the soil pore water (SPW) and available soil Cu and Zn fractions by DGT. The Cu, Zn, Cr and As phytoavailability was characterized by growing dwarf beans on potted soils and determining the biomass of their plant parts and their foliar ionome. Total Cu concentrations in the SPW increased with total soil Cu. Total Cu, Zn, Cr and As concentrations in the SPW decreased in year 3 as compared to year 2, likely due to annual shoot removals by the plants and the lixiviation. Available soil Cu and Zn fractions also declined in year 3. The Cu, Zn, Cr and As phytoavailability, assessed by their concentration and mineral mass in the primary leaves of beans, was reduced in year 3. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mills, Patrick C.; Cobb, Richard P.
2015-01-01
There was a weak positive relation (ρ = 0.23) between concentrations of Cr(VI) and Cr(T) in untreated water samples, with a much stronger positive relation (ρ = 0.86 and ρ = 0.90, respectively) in samples collected soon after treatment and near the endpoint of distribution. The stronger relation and greater similarity between Cr(VI) and Cr(T) concentrations in treated water samples indicate that Cr(VI) represents a greater proportion of the measured concentrations of Cr(T) in treated waters than in untreated waters. The analysis of spikes and other quality-assurance samples indicate uncertainties associated with obtaining or confirming consistently accurate analytical results for Cr(VI) at near the applied reporting limit of 0.02 µg/L.
Miller, Lisa D.; Stogner, Sr., Robert W.
2017-09-01
From 2007 through 2015, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, conducted a study in the Fountain and Monument Creek watersheds, Colorado, to characterize surface-water quality and suspended-sediment conditions for three different streamflow regimes with an emphasis on characterizing water quality during storm runoff. Data collected during this study were used to evaluate the effects of stormflows and wastewater-treatment effluent discharge on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality samples were collected at 2 sites on Upper Fountain Creek, 2 sites on Monument Creek, 3 sites on Lower Fountain Creek, and 13 tributary sites during 3 flow regimes: cold-season flow (November–April), warm-season flow (May–October), and stormflow from 2007 through 2015. During 2015, additional samples were collected and analyzed for Escherichia coli (E. coli) during dry weather conditions at 41 sites, located in E. coli impaired stream reaches, to help identify source areas and scope of the impairment.Concentrations of E. coli, total arsenic, and dissolved copper, selenium, and zinc in surface-water samples were compared to Colorado in-stream standards. Stormflow concentrations of E. coli frequently exceeded the recreational use standard of 126 colonies per 100 milliliters at main-stem and tributary sites by more than an order of magnitude. Even though median E. coli concentrations in warm-season flow samples were lower than median concentrations in storm-flow samples, the water quality standard for E. coli was still exceeded at most main-stem sites and many tributary sites during warm-season flows. Six samples (three warm-season flow and three stormflow samples) collected from Upper Fountain Creek, upstream from the confluence of Monument Creek, and two stormflow samples collected from Lower Fountain Creek, downstream from the confluence with Monument Creek, exceeded the acute water-quality standard for total arsenic of 50 micrograms per liter. All concentrations of dissolved copper, selenium, and zinc measured in samples were below the water-quality standard.Concentrations of dissolved nitrate plus nitrite generally increased from upstream to downstream during all flow periods. The largest downstream increase in dissolved nitrate plus nitrite concentration was measured between sites 07103970 and 07104905 on Monument Creek. All but one tributary that drain into Monument Creek between the two sites had higher median nitrate plus nitrite concentrations than the nearest upstream site on Monument Creek, site 07103970 (MoCr_Woodmen). Increases in the concentration of dissolved nitrate plus nitrite were also evident below wastewater treatment plants located on Fountain Creek.Most stormflow concentrations of dissolved trace elements were smaller than concentrations from cold-season flow or warm-season samples. However, median concentrations of total arsenic, lead, manganese, nickel, and zinc generally were much larger during periods of stormflow than during cold-season flow or warm-season fl. Median concentrations of total arsenic, total copper, total lead, dissolved and total manganese, total nickel, dissolved and total selenium, and dissolved and total zinc concentrations increased from 1.5 to 28.5 times from site 07103700 (FoCr_Manitou) to 07103707 (FoCr_8th) during cold-season and warm-season flows, indicating a large source of trace elements between these two sites. Both of these sites are located on Fountain Creek, upstream from the confluence with Monument Creek.Median suspended-sediment concentrations and median suspended-sediment loads increased in the downstream direction during all streamflow regimes between Monument Creek sites 07103970 (MoCr_Woodmen) and 07104905 (MoCr_Bijou); however, statistically significant increase (p-value less than 0.05) were only present during warm-season flow and stormflow. Significant increases in median suspended sediment concentrations were measured during cold-season flow and warm-season flow between Upper Fountain Creek site 07103707 (FoCr_8th) and Lower Fountain Creek site 07105500 (FoCr_Nevada) because of inflows from Monument Creek with higher suspended-sediment concentrations. Median suspended-sediment concentrations between sites 07104905 (MoCr_Bijou) and 07105500 (FoCr_Nevada) increased significantly during warm-season flow but showed no significant differences during cold-season flow and stormflow. Significant decreases in median suspended-sediment concentrations were measured between sites 07105500 (FoCr_Nevada) and 07105530 (FoCr_Janitell) during all flow regimes.Suspended-sediment concentrations, discharges, and yields associated with stormflow were significantly larger than those associated with warm-season flow. Although large spatial variations in suspended-sediment yields occurred during warm-season flows, the suspended-sediment yield associated with stormflow were as much as 1,000 times larger than the suspended-sediment yields that occurred during warm-season flow.
Chromium in soil layers and plants on closed landfill site after landfill leachate application.
Zupancic, Marija; Justin, Maja Zupancic; Bukovec, Peter; Selih, Vid Simon
2009-06-01
Landfill leachate (LL) usually contains low concentrations of heavy metals due to the anaerobic conditions in the methanogenic landfill body after degradation of easily degradable organic matter and the neutral pH of LL, which prevents mobilization and leaching of metals. Low average concentrations of metals were also confirmed in our extensive study on the rehabilitation of an old landfill site with vegetative landfill cover and LL recirculation after its treatment in constructed wetland. The only exception was chromium (Cr). Its concentrations in LL ranged between 0.10 and 2.75 mg/L, and were higher than the concentrations usually found in the literature. The objectives of the study were: (1) to understand why Cr is high in LL and (2) to understand the fate and transport of Cr in soil and vegetation of landfill cover due to known Cr toxicity to plants. The total concentration of Cr in LL, total and exchangeable concentrations of Cr in landfill soil cover and Cr content in the plant material were extensively monitored from May 2004 to September 2006. By obtained data on Cr concentration in different landfill constituents, supported with the data on the amount of loaded leachate, amount of precipitation and potential evapotranspiration (ETP) during the performance of the research, a detailed picture of time distribution and co-dependency of Cr is provided in this research. A highly positive correlation was found between concentrations of Cr and dissolved organic carbon (r=0.875) in LL, which indicates the co-transport of Cr and dissolved organic carbon through the system. Monitoring results showed that the substrate used in the experiment did not contribute to Cr accumulation in the landfill soil cover, resulting in percolation of a high proportion of Cr back into the waste layers and its circulation in the system. No negative effects on plant growth appeared during the monitoring period. Due to low uptake of Cr by plants (0.10-0.15 mg/kg in leaves and 0.05-0.07 mg/kg in stems of Salix purpurea), the estimated Cr offtake from LL by plants represented only a small proportion of the LL Cr mass load during the observation period, resulting in no dispersion of Cr into the environment through leaf drop.
Rosa, Mariana; Prado, Carolina; Chocobar-Ponce, Silvana; Pagano, Eduardo; Prado, Fernando
2017-09-01
Effects of seasonality and increasing Cr(VI) concentrations on leaf starch-sucrose partitioning, sucrose- and starch-related enzyme activities, and carbon allocation toward leaf development were analyzed in fronds (floating leaves) of the floating fern Salvinia minima. Carbohydrates and enzyme activities of Cr-exposed fronds showed different patterns in winter and summer. Total soluble sugars, starch, glucose and fructose increased in winter fronds, while sucrose was higher in summer ones. Starch and soluble carbohydrates, except glucose, increased under increasing Cr(VI) concentrations in winter fronds, while in summer ones only sucrose increased under Cr(VI) treatment. In summer fronds starch, total soluble sugars, fructose and glucose practically stayed without changes in all assayed Cr(VI) concentrations. Enzyme activities related to starch and sucrose metabolisms (e.g. ADPGase, SPS, SS and AI) were higher in winter fronds than in summer ones. Total amylase and cFBPase activities were higher in summer fronds. Cr(VI) treatment increased enzyme activities, except ADPGase, in both winter and summer fronds but no clear pattern changes were observed. Data of this study show clearly that carbohydrate metabolism is differently perturbed by both seasonality and Cr(VI) treatment in summer and winter fronds, which affects leaf starch-sucrose partitioning and specific leaf area (SLA) in terms of carbon investment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Chromium concentrations in ruminant feed ingredients.
Spears, J W; Lloyd, K E; Krafka, K
2017-05-01
Chromium (Cr), in the form of Cr propionate, has been permitted for supplementation to cattle diets in the United States at levels up to 0.50 mg of Cr/kg of DM since 2009. Little is known regarding Cr concentrations naturally present in practical feed ingredients. The present study was conducted to determine Cr concentrations in feed ingredients commonly fed to ruminants. Feed ingredients were collected from dairy farms, feed mills, grain bins, and university research farms. Mean Cr concentrations in whole cereal grains ranged from 0.025 mg/kg of DM for oats to 0.041 mg/kg of DM for wheat. Grinding whole samples of corn, soybeans, and wheat through a stainless steel Wiley mill screen greatly increased analyzed Cr concentrations. Harvested forages had greater Cr concentrations than concentrates, and alfalfa hay or haylage had greater Cr concentrations than grass hay or corn silage. Chromium in alfalfa hay or haylage (n = 13) averaged 0.522 mg/kg of DM, with a range of 0.199 to 0.889 mg/kg of DM. Corn silage (n = 21) averaged 0.220 mg of Cr/kg of DM with a range of 0.105 to 0.441 mg of Cr/kg of DM. By-product feeds ranged from 0.040 mg of Cr/kg of DM for cottonseed hulls to 1.222 mg of Cr/kg of DM for beet pulp. Of the feed ingredients analyzed, feed grade phosphate sources had the greatest Cr concentration (135.0 mg/kg). Most ruminant feedstuffs and feed ingredients had less than 0.50 mg of Cr/kg of DM. Much of the analyzed total Cr in feed ingredients appears to be due to Cr contamination from soil or metal contact during harvesting, processing, or both. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Y. C.; Lin, C. Y.; Wu, S. F.; Chung, Y. T.
2006-02-01
We have developed a simple and convenient method for the determination of Cr(III), Cr(VI), and the total chromium concentrations in natural water and urine samples that use a flow injection on-line desalter-inductively coupled plasma-mass spectrometry system. When using aqueous ammonium chloride (pH 8) as the stripping solution, the severe interference from sodium in the matrix can be eliminated prior to inductively coupled plasma-mass spectrometry measurement, and the Cr(VI) level can be determined directly. To determine the total concentration of Cr in natural water and urine samples, we used H 2O 2 or HNO 3 to decompose the organic matter and convert all chromium species into the Cr(VI) oxidation state. To overcome the spectral interference caused by the matrix chloride ion in the resulting solutions, we employed cool plasma to successfully suppress chloride-based molecular ion interference during the inductively coupled plasma-mass spectrometry measurement. By significantly eliminating interference from the cationic and anionic components in the matrices prior to the inductively coupled plasma-mass spectrometry measurement, we found that the detection limit reached 0.18 μg L - 1 (based on 3 sigma). We validated this method through the analysis of the total chromium content in two reference materials (NIST 1643c and 2670E) and through measuring the recovery in spiked samples.
Biomonitoring of two types of chromium exposure in an electroplating shop.
Pierre, Francis; Diebold, François; Baruthio, François
2008-01-01
This study is concerned with two specific chromium (Cr) exposure situations at a hard-process electroplating company. Its aims are to define variations in urinary Cr concentration and to clarify their exposure relationships. Airborne chromium exposure and urinary excretion were measured for a-one week period. The majority of the exposed population was divided into two groups distinguishing chromium plating and polishing functions. Analysis of airborne Cr distinguished water soluble Cr(VI), water total soluble Cr and water insoluble Cr. Volunteers provided 6-7 urine samples per day for a monitoring period of 7 days. Differences between the two groups appear in relation to the type of exposure. Low concentration water soluble Cr(VI) (5.3 microg/m3 maximum) in electroplating shops is practically undetected in other workshops. Water insoluble Cr present in low concentration in electroplating exceeds 1 mg/m3 in polishing shops. Total soluble Cr concentrations are similar in these two activities (3-10 microg/m3). In polishing, 0.4% of the Cr aerosol comprises soluble Cr. Urinary Cr varied according to a 24 h cycle in similar manner in both groups throughout the monitoring week. Minimum values (3-10 microg/g crea) occurred when starting a work shift, following by a rapid rise as soon as exposure commenced, whilst maximum values (12-30 microg/g crea) were recorded towards the end of the work shift. Although uncorrelated with soluble Cr(VI), urinary Cr (24 h) is effectively related to the soluble fraction of airborne chromium. In the case of chromium electroplating, correspondence between exposure and excretion appears to be governed by relationships different to those emerging from stainless steel welding, from which current biological limit values have been derived.
Heitland, Peter; Blohm, Martin; Breuer, Christian; Brinkert, Florian; Achilles, Eike Gert; Pukite, Ieva; Köster, Helmut Dietrich
2017-05-01
ICP-MS and HPLC-ICP-MS were applied for diagnosis and therapeutic monitoring in a severe intoxication with a liquid containing hexavalent chromium (Cr(VI)) and inorganic arsenic (iAs). In this rare case a liver transplantation of was considered as the only chance of survival. We developed and applied methods for the determination of Cr(VI) in erythrocytes and total chromium (Cr) and arsenic (As) in blood, plasma, urine and liver tissue by ICP-MS. Exposure to iAs was diagnosed by determination of iAs species and their metabolites in urine by anion exchange HPLC-ICP-MS. Three days after ingestion of the liquid the total Cr concentrations were 2180 and 1070μg/L in whole blood and plasma, respectively, and 4540μg/L Cr(VI) in erythrocytes. The arsenic concentration in blood was 206μg/L. The urinary As species concentrations were <0.5, 109, 115, 154 and 126μg/L for arsenobetaine, As(III), As(V), methylarsonate (V) and dimethylarsinate (V), respectively. Total Cr and As concentrations in the explanted liver were 11.7 and 0.9mg/kg, respectively. Further analytical results of this case study are tabulated and provide valuable data for physicians and toxicologists. Copyright © 2017. Published by Elsevier GmbH.
Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa.
Boonyapookana, Benjaporn; Upatham, E Suchart; Kruatrachue, Maleeya; Pokethitiyook, Prayad; Singhakaew, Sombat
2002-01-01
The phytoaccumulation and phytotoxicity of heavy metals, cadmium (Cd), and chromium (Cr) on a common duckweed, Wolffia globosa, were studied. W. globosa were cultured in 3% Hoagland's nutrient medium, which was supplemented with 1, 2, 4, and 8 mg/L of Cd and Cr and were separately harvested after 3, 6, 9, and 12 days. The accumulation of Cd and Cr in W. globosa showed significant increases when the exposure time and metal concentration were increased. The effects of Cd and Cr on the biomass productivity and total chlorophyll content in W. globosa indicated that there were significant decreases in the biomass productivity and total chlorophyll content when the exposure time and metal concentration were increased.
Collins, Bradley J.; Stout, Matthew D.; Levine, Keith E.; Kissling, Grace E.; Fennell, Timothy R.; Walden, Ramsey; Abdo, Kamal; Pritchard, John B.; Fernando, Reshan A.; Burka, Leo T.; Hooth, Michelle J.
2010-01-01
In National Toxicology Program 2-year studies, hexavalent chromium [Cr(VI)] administered in drinking water was clearly carcinogenic in male and female rats and mice, resulting in small intestine epithelial neoplasms in mice at a dose equivalent to or within an order of magnitude of human doses that could result from consumption of chromium-contaminated drinking water, assuming that dose scales by body weight3/4 (body weight raised to the 3/4 power). In contrast, exposure to trivalent chromium [Cr(III)] at much higher concentrations may have been carcinogenic in male rats but was not carcinogenic in mice or female rats. As part of these studies, total chromium was measured in tissues and excreta of additional groups of male rats and female mice. These data were used to infer the uptake and distribution of Cr(VI) because Cr(VI) is reduced to Cr(III) in vivo, and no methods are available to speciate tissue chromium. Comparable external doses resulted in much higher tissue chromium concentrations following exposure to Cr(VI) compared with Cr(III), indicating that a portion of the Cr(VI) escaped gastric reduction and was distributed systemically. Linear or supralinear dose responses of total chromium in tissues were observed following exposure to Cr(VI), indicating that these exposures did not saturate gastric reduction capacity. When Cr(VI) exposure was normalized to ingested dose, chromium concentrations in the liver and glandular stomach were higher in mice, whereas kidney concentrations were higher in rats. In vitro studies demonstrated that Cr(VI), but not Cr(III), is a substrate of the sodium/sulfate cotransporter, providing a partial explanation for the greater absorption of Cr(VI). PMID:20843897
Collins, Bradley J; Stout, Matthew D; Levine, Keith E; Kissling, Grace E; Melnick, Ronald L; Fennell, Timothy R; Walden, Ramsey; Abdo, Kamal; Pritchard, John B; Fernando, Reshan A; Burka, Leo T; Hooth, Michelle J
2010-12-01
In National Toxicology Program 2-year studies, hexavalent chromium [Cr(VI)] administered in drinking water was clearly carcinogenic in male and female rats and mice, resulting in small intestine epithelial neoplasms in mice at a dose equivalent to or within an order of magnitude of human doses that could result from consumption of chromium-contaminated drinking water, assuming that dose scales by body weight(3/4) (body weight raised to the 3/4 power). In contrast, exposure to trivalent chromium [Cr(III)] at much higher concentrations may have been carcinogenic in male rats but was not carcinogenic in mice or female rats. As part of these studies, total chromium was measured in tissues and excreta of additional groups of male rats and female mice. These data were used to infer the uptake and distribution of Cr(VI) because Cr(VI) is reduced to Cr(III) in vivo, and no methods are available to speciate tissue chromium. Comparable external doses resulted in much higher tissue chromium concentrations following exposure to Cr(VI) compared with Cr(III), indicating that a portion of the Cr(VI) escaped gastric reduction and was distributed systemically. Linear or supralinear dose responses of total chromium in tissues were observed following exposure to Cr(VI), indicating that these exposures did not saturate gastric reduction capacity. When Cr(VI) exposure was normalized to ingested dose, chromium concentrations in the liver and glandular stomach were higher in mice, whereas kidney concentrations were higher in rats. In vitro studies demonstrated that Cr(VI), but not Cr(III), is a substrate of the sodium/sulfate cotransporter, providing a partial explanation for the greater absorption of Cr(VI).
Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR
NASA Astrophysics Data System (ADS)
Dammers, Enrico; Shephard, Mark W.; Palm, Mathias; Cady-Pereira, Karen; Capps, Shannon; Lutsch, Erik; Strong, Kim; Hannigan, James W.; Ortega, Ivan; Toon, Geoffrey C.; Stremme, Wolfgang; Grutter, Michel; Jones, Nicholas; Smale, Dan; Siemons, Jacob; Hrpcek, Kevin; Tremblay, Denis; Schaap, Martijn; Notholt, Justus; Erisman, Jan Willem
2017-07-01
Presented here is the validation of the CrIS (Cross-track Infrared Sounder) fast physical NH3 retrieval (CFPR) column and profile measurements using ground-based Fourier transform infrared (FTIR) observations. We use the total columns and profiles from seven FTIR sites in the Network for the Detection of Atmospheric Composition Change (NDACC) to validate the satellite data products. The overall FTIR and CrIS total columns have a positive correlation of r = 0.77 (N = 218) with very little bias (a slope of 1.02). Binning the comparisons by total column amounts, for concentrations larger than 1.0 × 1016 molecules cm-2, i.e. ranging from moderate to polluted conditions, the relative difference is on average ˜ 0-5 % with a standard deviation of 25-50 %, which is comparable to the estimated retrieval uncertainties in both CrIS and the FTIR. For the smallest total column range (< 1.0 × 1016 molecules cm-2) where there are a large number of observations at or near the CrIS noise level (detection limit) the absolute differences between CrIS and the FTIR total columns show a slight positive column bias. The CrIS and FTIR profile comparison differences are mostly within the range of the single-level retrieved profile values from estimated retrieval uncertainties, showing average differences in the range of ˜ 20 to 40 %. The CrIS retrievals typically show good vertical sensitivity down into the boundary layer which typically peaks at ˜ 850 hPa (˜ 1.5 km). At this level the median absolute difference is 0.87 (std = ±0.08) ppb, corresponding to a median relative difference of 39 % (std = ±2 %). Most of the absolute and relative profile comparison differences are in the range of the estimated retrieval uncertainties. At the surface, where CrIS typically has lower sensitivity, it tends to overestimate in low-concentration conditions and underestimate in higher atmospheric concentration conditions.
Cena, L G; Chisholm, W P; Keane, M J; Chen, B T
2015-01-01
A field study was conducted to estimate the amount of Cr, Mn, and Ni deposited in the respiratory system of 44 welders in two facilities. Each worker wore a nanoparticle respiratory deposition (NRD) sampler during gas metal arc welding (GMAW) of mild and stainless steel and flux-cored arc welding (FCAW) of mild steel. Several welders also wore side-by-side NRD samplers and closed-face filter cassettes for total particulate samples. The NRD sampler estimates the aerosol's nano-fraction deposited in the respiratory system. Mn concentrations for both welding processes ranged 2.8-199 μg/m3; Ni concentrations ranged 10-51 μg/m3; and Cr concentrations ranged 40-105 μg/m3. Cr(VI) concentrations ranged between 0.5-1.3 μg/m3. For the FCAW process the largest concentrations were reported for welders working in pairs. As a consequence this often resulted in workers being exposed to their own welding fumes and to those generated from the welding partner. Overall no correlation was found between air velocity and exposure (R2 = 0.002). The estimated percentage of the nano-fraction of Mn deposited in a mild-steel-welder's respiratory system ranged between 10 and 56%. For stainless steel welding, the NRD samplers collected 59% of the total Mn, 90% of the total Cr, and 64% of the total Ni. These results indicate that most of the Cr and more than half of the Ni and Mn in the fumes were in the fraction smaller than 300 nm.
Xu, Wei-qun; Zhang, Ling-yan; Chen, Xue-ying; Pan, Bin-hua; Mao, Jun-qing; Song, Hua; Li, Jing-yuang; Tang, Yong-min
2014-01-01
Monitoring of plasma methotrexate (MTX) concentrations allows for therapeutic adjustments in treating childhood acute lymphoblastic leukemia (ALL) or non-Hodgkin lymphoma (NHL) with high-dose MTX (HDMTX). We tested the hypothesis that assessment of creatinine clearance (CrCl) and/or serum Cr may be a suitable means of monitoring plasma MTX concentrations. All children in the study had ALL or NHL, were in complete remission, and received HDMTX (3 or 5 g/m(2))+leucovorin. Plasma MTX concentrations were measured at 24, 48, and 96 h. CrCl was determined at 24 and 48 h. Correlations between 24- and 48-h plasma MTX concentrations and CrCl and serum Cr concentrations were determined. CrCl and serum Cr concentrations were compared over time between children who had delayed and non-delayed MTX elimination. A total of 105 children were included. There were significant negative correlations between CrCl at 24 and 48 h and plasma MTX concentrations at 24 (both p < 0.001) and 48 h (both p < 0.001). There were significant positive correlations between serum Cr concentrations at both 24 and 48 h and plasma MTX concentrations at 24 (both p < 0.001) and 48 h (both p < 0.001). There were 88 (30.2 %) instances of elimination delay. Children with elimination delay had significantly lower CrCl and higher Cr concentrations at 24 and 48 h compared with children without elimination delay (all p < 0.05). Our findings suggest that, with further refinement, assessment of renal function may be a useful means of monitoring plasma MTX concentrations during HDMTX for ALL and NHL.
Hexavalent chromium exposure and control in welding tasks.
Meeker, John D; Susi, Pam; Flynn, Michael R
2010-11-01
Studies of exposure to the lung carcinogen hexavalent chromium (CrVI) from welding tasks are limited, especially within the construction industry where overexposure may be common. In addition, despite the OSHA requirement that the use of engineering controls such as local exhaust ventilation (LEV) first be considered before relying on other strategies to reduce worker exposure to CrVI, data on the effectiveness of LEV to reduce CrVI exposures from welding are lacking. The goal of the present study was to characterize breathing zone air concentrations of CrVI during welding tasks and primary contributing factors in four datasets: (1) OSHA compliance data; (2) a publicly available database from The Welding Institute (TWI); (3) field survey data of construction welders collected by the Center for Construction Research and Training (CPWR); and (4) controlled welding trials conducted by CPWR to assess the effectiveness of a portable LEV unit to reduce CrVI exposure. In the OSHA (n = 181) and TWI (n = 124) datasets, which included very few samples from the construction industry, the OSHA permissible exposure level (PEL) for CrVI (5 μg/m(3)) was exceeded in 9% and 13% of samples, respectively. CrVI concentrations measured in the CPWR field surveys (n = 43) were considerably higher, and 25% of samples exceeded the PEL. In the TWI and CPWR datasets, base metal, welding process, and LEV use were important predictors of CrVI concentrations. Only weak-to-moderate correlations were found between total particulate matter and CrVI, suggesting that total particulate matter concentrations are not a good surrogate for CrVI exposure in retrospective studies. Finally, in the controlled welding trials, LEV reduced median CrVI concentrations by 68% (p = 0.02). In conclusion, overexposure to CrVI in stainless steel welding is likely widespread, especially in certain operations such as shielded metal arc welding, which is commonly used in construction. However, exposure could be substantially reduced with proper use of LEV.
Mau, David P.; Stogner, Sr., Robert W.; Edelmann, Patrick
2007-01-01
In 1998, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study of the Fountain and Monument Creek watersheds to characterize water quality and suspended-sediment conditions in the watershed for different flow regimes, with an emphasis on characterizing water quality during storm runoff. Water-quality and suspended-sediment samples were collected in the Fountain and Monument Creek watersheds from 1981 through 2006 to evaluate the effects of stormflows and wastewater-treatment effluent on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality data were collected at 11 sites between 1981 and 2001, and 14 tributary sites were added in 2003 to increase spatial coverage and characterize water quality throughout the watersheds. Suspended-sediment samples collected daily at 7 sites from 1998 through 2001, 6 sites daily from 2003 through 2006, and 13 tributary sites intermittently from 2003 through 2006 were used to evaluate the effects of stormflow on suspended-sediment concentrations, discharges, and yields. Data were separated into three flow regimes: base flow, normal flow, and stormflow. Stormflow concentrations from 1998 through 2006 were compared to Colorado acute instream standards and, with the exception of a few isolated cases, did not exceed water-quality standards for inorganic constituents that were analyzed. However, stormflow concentrations of both fecal coliform and Escherichia coli (E. coli) frequently exceeded water-quality standards during 1998 through 2006 on main-stem and tributary sites by more than an order of magnitude. There were two sites on Cottonwood Creek, a tributary to Monument Creek, with elevated concentrations of dissolved nitrite plus nitrate: site 07103985 (TbCr), a tributary to Cottonwood Creek and site 07103990 (lower_CoCr), downstream from site 07103985 (TbCr), and near the confluence with Monument Creek. During base-flow and normal-flow conditions, the median concentrations of dissolved nitrite plus nitrate ranged from 5.1 to 6.1 mg/L and were 4 to 7 times larger than concentrations at the nearest upstream site on Monument Creek, site 07103970 (MoCr_Woodmen). The source of these larger dissolved nitrite plus nitrate concentrations has not been identified, but the fact that all measurements had elevated dissolved nitrite plus nitrate concentrations indicates a relatively constant source. Most stormflow concentrations of dissolved trace elements were smaller than concentrations from base-flow or normal-flow samples. However, median concentrations of total arsenic, copper, lead, manganese, nickel, and zinc generally were much larger during periods of stormflow than during base flow or normal flow. Concentrations of dissolved and total copper, total manganese, total nickel, dissolved and total selenium, and dissolved and total zinc ranged from 3 to 27 times larger at site 07103707 (FoCr_8th) than site 07103700 (FoCr_Manitou) during base flow, indicating a large source of trace elements between these two sites. Both of these sites are located on Fountain Creek, upstream from the confluence with Monument Creek. The likely source area is Gold Hill Mesa, a former tailings pile for a gold refinery located just upstream from the confluence with Monument Creek, and upstream from site 07103707 (FoCr_8th). Farther downstream in Fountain Creek, stormflow samples for total copper, manganese, lead, nickel, and zinc were larger at the downstream site near the city of Security, site 07105800 (FoCr_Security), than at the upstream site near Janitell Road, site 07105530 (FoCr_Janitell), compared with other main-stem sites and indicated a relatively large source of these metals between the two sites. Nitrogen, phosphorus, and trace-element loads substantially increased during stormflow. Suspended-sediment concentrations, discharges, and yields associated with stormflow were significantly larger than those associated with normal flow. The Apr
Cena, L. G.; Chisholm, W. P.; Keane, M. J.; Chen, B. T.
2016-01-01
A field study was conducted to estimate the amount of Cr, Mn, and Ni deposited in the respiratory system of 44 welders in two facilities. Each worker wore a nanoparticle respiratory deposition (NRD) sampler during gas metal arc welding (GMAW) of mild and stainless steel and flux-cored arc welding (FCAW) of mild steel. Several welders also wore side-by-side NRD samplers and closed-face filter cassettes for total particulate samples. The NRD sampler estimates the aerosol's nano-fraction deposited in the respiratory system. Mn concentrations for both welding processes ranged 2.8–199 μg/m3; Ni concentrations ranged 10–51 μg/m3; and Cr concentrations ranged 40–105 μg/m3. Cr(VI) concentrations ranged between 0.5–1.3 μg/m3. For the FCAW process the largest concentrations were reported for welders working in pairs. As a consequence this often resulted in workers being exposed to their own welding fumes and to those generated from the welding partner. Overall no correlation was found between air velocity and exposure (R2 = 0.002). The estimated percentage of the nano-fraction of Mn deposited in a mild-steel-welder's respiratory system ranged between 10 and 56%. For stainless steel welding, the NRD samplers collected 59% of the total Mn, 90% of the total Cr, and 64% of the total Ni. These results indicate that most of the Cr and more than half of the Ni and Mn in the fumes were in the fraction smaller than 300 nm. PMID:25985454
Influence of extractable soil manganese on oxidation capacity of different soils in Korea
NASA Astrophysics Data System (ADS)
Chon, Chul-Min; Kim, Jae Gon; Lee, Gyoo Ho; Kim, Tack Hyun
2008-08-01
We examined the relationship between soil oxidation capacity and extractable soil manganese, iron oxides, and other soil properties. The Korean soils examined in this study exhibited low to medium Cr oxidation capacities, oxidizing 0.00-0.47 mmol/kg, except for TG-4 soils, which had the highest capacity for oxidizing added Cr(III) [>1.01 mmol/kg of oxidized Cr(VI)]. TG and US soils, with high Mn contents, had relatively high oxidation capacities. The Mn amounts extracted by dithionite-citrate-bicarbonate (DCB) (Mnd), NH2OH·HCl (Mnh), and hydroquinone (Mnr) were generally very similar, except for the YS1 soils, and were well correlated. Only small proportions of either total Mn or DCB-extractable Mn were extracted by NH2OH·HCl and hydroquinone in the YS1 soils, suggesting inclusion of NH2OH·HCl and hydroquinone-resistant Mn oxides, because these extractants are weaker reductants than DCB. No Cr oxidation test results were closely related to total Mn concentrations, but Mnd, Mnh, and Mnr showed a relatively high correlation with the Cr tests ( r = 0.655-0.851; P < 0.01). The concentrations of Mnd and Mnh were better correlated with the Cr oxidation tests than was the Mnr concentration, suggesting that the oxidation capacity of our soil samples can be better explained by Mnd and Mnh than by Mnr. The first component in principal components analysis indicated that extractable soil Mn was a main factor controlling net Cr oxidation in the soils. Total soil Mn, Fe oxides, and the clay fraction are crucial for predicting the mobility of pollutants and heavy metals in soils. The second principal component indicated that the presence of Fe oxides in soils had a significant relationship with the clay fraction and total Mn oxide, and was also related to heavy-metal concentrations (Zn, Cd, and Cu, but not Pb).
Zhao, Yong; Peralta-Videa, Jose R.; Lopez-Moreno, Martha L.; Ren, Minghua; Saupe, Geoffrey; Gardea-Torresdey, Jorge L
2015-01-01
This report shows, for the first time, the effectiveness of the phytohormone kinetin (KN) in increasing Cr translocation from roots to stems in Mexican Palo Verde. Fifteen-day-old seedlings, germinated in soil spiked with Cr(III) and (VI) at 60 and 10 mg kg−1, respectively, were watered every other day for 30 days with a KN solution at 250 μM. Samples were analyzed for catalase (CAT) and ascorbate peroxidase (APOX) activities, Cr concentration, and Cr distribution in tissues. Results showed that KN reduced CAT but increased APOX in the roots of Cr(VI)-treated plants. In the leaves, KN reduced both CAT and APOX in Cr(III) but not in Cr(VI)-treated plants. However, KN increased total Cr concentration in roots, stems, and leaves by 45%, 103%, and 72%, respectively, compared to Cr(III) alone. For Cr(VI), KN increased Cr concentrations in roots, stems, and leaves, respectively, by 53%, 129%, and 168%, compared to Cr(VI) alone. The electron probe microanalyzer results showed that Cr was mainly located at the cortex section in the root, and Cr distribution was essentially homogenous in stems. However, proven through X-ray images, Cr(VI)-treated roots and stems had more Cr accumulation than Cr(III) counterparts. KN increased the Cr translocation from roots to stems. PMID:21174467
NASA Astrophysics Data System (ADS)
Randall, Janis Avril
Concentrations of chromium (Cr) in hair, serum, and urine, and serum concentrations of insulin and lipids of a selected group of men exposed to trivalent Cr (Cr III) were compared with those of men not exposed to Cr. Seventy -three tannery workers (TW) (mean age 37 +/- 12 years) from four Southern Ontario tanneries and fifty-two control subjects (CS) (mean age 41 +/- 13 years), matched for age, race, and socioeconomic status, from the Guelph and Toronto areas participated. The median hair and serum Cr concentrations for the TW were significantly higher (p < 0.01) than for the CS (hair Cr 453 vs 124 ng/g; serum Cr 0.49 vs 0.15 ng/ml). Median urinary Cr/creatinine ratios (Cr/Cre) for the TW on Monday morning (0.83 ng/mg) and Friday afternoon (0.68 ng/mg) were also significantly higher (p < 0.01, p < 0.01, respectively) than the median urinary Cr/Cre ratio for the urine samples collected on a Friday afternoon from the CS (0.18 ng/mg). For the TW, the median Friday urinary Cr/Cre ratio was significantly higher (p = 0.03) than the corresponding Monday Cr/Cre ratio. For the TW, urinary Cr/Cre ratios (Monday and Friday) were correlated significantly and positively with both Cr concentrations in serum (r = 0.45, p < 0.01; r = 0.71, p < 0.01, respectively) and in hair (r = 0.43, p < 0.01; r = 0.64, p < 0.01, respectively). Concentrations of Cr in hair and in serum were also significantly correlated (r = 0.52, p < 0.01). There were no significant differences between the TW and CS in serum concentrations of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), or triglycerides, or in calculated values for low-density lipoprotein cholesterol, %HDL-C, and TC/HDL-C. Likewise, no significant differences in serum insulin concentrations were noted between the two groups. Results of this study indicate that Cr III, from compounds used in the leather tanning industry, is absorbed and retained. Absorption of Cr III had no significant effect on serum insulin concentrations or serum lipid profiles. These results also suggest that concentrations of Cr in hair, serum, and urine are valid biological indices of industrial exposure to Cr III.
Extraction of anionic dye from aqueous solutions by emulsion liquid membrane.
Dâas, Attef; Hamdaoui, Oualid
2010-06-15
In this work, the extraction of Congo red (CR), an anionic disazo direct dye, from aqueous solutions by emulsion liquid membrane (ELM) was investigated. The important operational parameters governing emulsion stability and extraction behavior of dye were studied. The extraction of CR was influenced by a number of variables such as surfactant concentration, stirring speed, acid concentration in the feed solution and volume ratios of internal phase to organic phase and of emulsion to feed solution. Under most favorable conditions, practically all the CR molecules present in the feed phase were extracted even in the presence of salt (NaCl). At the optimum experimental conditions, total removal of antharaquinonic dye Acid Blue 25 was attained after only 10 min. Influence of sodium carbonate concentration as internal receiving phase on the stripping efficiency of CR was examined. The best sodium carbonate concentration in the internal phase that conducted to excellent stripping efficiency (>99%) and emulsion stability was 0.1N. The membrane recovery was total and the permeation of CR was not decreased up to seven runs. ELM process is a promising alternative to conventional methods and should increase awareness of the potential for recovery of anionic dyes. Copyright 2010 Elsevier B.V. All rights reserved.
Castro, Marcello P; Claudiano, Gustavo S; Petrillo, Thalita R; Shimada, Marina Tie; Belo, Marco A A; Marzocchi-Machado, Cleni M; Moraes, Julieta R E; Manrique, G Wilson; Moraes, Flávio R
2014-01-01
Oreochromis niloticus bred in net cages were supplemented with cell wall of Saccharomyces cerevisiae (Sc) (0.3%) or chromium carbochelate (Cr) (18 mg/kg of feed) or in association (Sc + Cr), for 90 days. After this period, acute inflammation was induced in the swim bladder by inoculation of 3 × 10(8) CFU of inactivated Streptococcus agalactiae, and another group received 0.65% saline solution (control). Twelve, 24, and 48 h after stimulation, the inflammation was evaluated through total and differential counting of accumulated cells, and through leukocyte respiratory burst in the blood, cortisolemia, glycemia and serum lysozyme concentration. The results showed that there were greater total numbers of cells in the exudate of fish inoculated with inactivated bacterium than in those injected with saline solution, with predominance of lymphocytes, thrombocytes, macrophages and granulocytes. Tilapia supplemented with Cr presented increased total numbers of cells with significant accumulation of lymphocytes and reductions in cortisolemia and glycemia, but the different treatments did not have any influence on leukocyte respiratory burst or serum lysozyme concentration. Tilapia supplemented with Sc and the Cr + Sc association did not present significant changes to the variables evaluated, despite higher accumulation of lymphocytes in the inflammatory exudate from fish treated with Sc. The results indicate that tilapia bred in net cages and supplemented with Cr presented higher total accumulation of cells at the inflammatory focus, thus indicating an increase in the inflammatory response induced by the bacterium, probably due to the reduction in cortisolemia and higher glucose consumption. Thus, supplementation with Cr had beneficial action, which facilitated development of acute inflammation induced by the bacterium, but did not affect neither leukocyte respiratory burst in the blood nor serum lysozyme concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.
2015-01-01
Despite significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70 °C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations using 1,5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to 1.9 μM h-1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature subsurface radioactive waste disposal sites, where the temperature may reach ∼70 °C.
40 CFR 413.02 - General definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... term CN,T shall mean cyanide, total. (c) The term Cr,VI shall mean hexavalent chromium. (d) The term... the concentration or mass of Copper (Cu), Nickel (Ni), Chromium (Cr) (total) and Zinc (Zn). (f) The... Pollution Control Act Amendments of 1972, 33 U.S.C. 1251 et. seq., as amended by the Clean Water Act of 1977...
40 CFR 413.02 - General definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... term CN,T shall mean cyanide, total. (c) The term Cr,VI shall mean hexavalent chromium. (d) The term... the concentration or mass of Copper (Cu), Nickel (Ni), Chromium (Cr) (total) and Zinc (Zn). (f) The... Pollution Control Act Amendments of 1972, 33 U.S.C. 1251 et. seq., as amended by the Clean Water Act of 1977...
Ahmad, Rehan; Ali, Shafaqat; Hannan, Fakhir; Rizwan, Muhammad; Iqbal, Muhammad; Hassan, Zaidul; Akram, Nudrat Aisha; Maqbool, Saliha; Abbas, Farhat
2017-03-01
Chromium (Cr) is among the most toxic pollutants in the environment that adversely affect the living organisms and physiological processes in different plants. The present study investigated the effect of 15 mg L -1 of 5-aminolevulinic acid (ALA) on morpho-physiological attributes of cauliflower (Brassica oleracea botrytis L.) under different Cr concentrations (0, 10, 100, and 200 μM) in the growth medium. The results showed that Cr stress decreased the growth, biomass, photosynthetic, and gas exchange parameters. Chromium stress enhanced the activities of enzymatic antioxidants, catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) in response to oxidative stress caused by the elevated levels of malondialdehyde (MDA), hydrogen peroxide (H 2 O 2 ), and electrolyte leakage (EL) in both roots and leaves of cauliflower. Chromium concentrations and total Cr uptake were increased in leaves, stems, and roots with increasing Cr levels in the culture medium. Foliar application of ALA increased the plant growth parameters, biomass, gas exchange parameters, and photosynthetic pigments under Cr stress compared to the treatments without ALA. Foliar application ALA decreased the levels of MDA, EL, and H 2 O 2 while further improved the performance of antioxidant in both leaves and roots compared to only Cr-stressed plant. Chromium concentrations and total Cr uptake were decreased by the ALA application compared to treatments without ALA application. The results of the present study indicated that foliar application of ALA might be beneficial in minimizing Cr uptake and its toxic effects in cauliflower.
Genesis of Cr(VI) in Sri Lankan soils and its adsorptive removal by calcined gibbsite
NASA Astrophysics Data System (ADS)
Rajapaksha, A. U.; Wijesundara, D. M.; Vithanage, M. S.; Ok, Y. S.
2012-12-01
Hexavalent chromium is highly toxic to biota and considered as a priority pollutant. Industrial sources of Cr(VI) include leather tanning, plating, electroplating, anodizing baths, rinse waters, etc. In addition, weathering of ultramafic rocks rich in chromium, such as serpentine, is known to Cr(VI) sources into natural water. The Cr(III) is the most stable in the environment, however, conversion of Cr(III) into Cr(VI) occurs in soil due to presence of naturally occurring minerals such as manganese dioxides. We investigated the amount of Cr(VI) recorded from the soils from anthropogenically and naturally contaminated soils (serpentine soils) in Sri Lanka and the removal efficacy of Cr(VI) by calcined gibbsite (Al oxides). The effect of pH on Cr(VI) adsorption was determined by adjusting the pH in the range of 4-10. In the experiments, the adsorbent concentration was kept at 1 g/l of solution containing 10 mg/l Cr(VI) at 25 0C. Total chromium recorded were around 11,000 mg kg-1 and 6,000 mg kg-1 for serpentine soil and tannery waste-contaminated soil, respectively. Although total Cr was high in the contaminated soils, Cr(VI) concentration was only about 28 mg kg-1 and 210 mg kg-1 in the serpentine and tannery soils, respectively. The calcined gibbsite has maximum adsorption of 85 % around pH 4 and adsorption generally decreased with increase of pH.
Cherdthong, Anusorn; Khonkhaeng, Benjamad; Seankamsorn, Anuthida; Supapong, Chanadol; Wanapat, Metha; Gunun, Nirawan; Gunun, Pongsatron; Chanjula, Pin; Polyorach, Sineenart
2018-03-14
The objective of this research was to evaluate the effect of feeding fresh cassava root (CR) along with a feed block containing high was to sulfur (FBS) on feed intake, digestibility, rumen fermentation, and blood thiocyanate concentration in Thai native beef cattle. Four Thai male native beef cattle, initial body weight (BW) of 130 + 20.0 kg, were used in this study. The experiments were randomly assigned according to a 2 × 2 factorial arrangement in a 4 × 4 Latin square design. The main factors were supplemented fresh CR levels (1.0 and 1.5% BW) and across to a feed block supplemented with sulfur added 2% (FBS-2) and 4% (FBS-4). Intakes of rice straw, concentrate diets, and FBS were not affected by treatments. Intakes of CR, sulfur, and total intake were significantly altered by the FBS treatment. The apparent dry matter and organic matter digestibility coefficient were significantly higher in animals fed FBS-4 than in those fed FBS-2. The ruminal ammonia nitrogen concentration was not affected by treatment and ranged from 15.6 to 17.6 mg/dl. Populations of protozoa and fungal zoospores were similar across treatments, whereas the bacterial population was significantly different between sulfur levels in the feed block. Feeding CR with FBS did not change total volatile fatty acid (VFA) concentrations and VFA profiles except for the propionic acid concentration, which was higher in the group with CR supplementation at 1.5% BW. Cattle fed CR with FBS showed similar blood urea nitrogen concentration at various feeding times and overall. In contrast, CR supplementation at 1.5% BW with FBS-2 increased blood thiocyanate concentrations. Therefore, supplementation of FBS-2 was beneficial to Thai native beef cattle fed with 1.5% BW fresh CR as it improved digestibility and rumen fermentation presumed, because HCN from fresh cassava root was converted into thiocyanate, which is nontoxic to farm animals.
NASA Astrophysics Data System (ADS)
Liu, Ruixia; Lead, Jamie R.; Zhang, Hao
2013-05-01
Cross flow ultrafiltration (CFUF) and diffusive gradients in thin films (DGT) with open pore gel (OP) and restricted pore gel (RP) were used to measure trace metal speciation in selected UK freshwaters. The proportions of metals present in particulate forms (>1 μm) varied widely between 40-85% Pb, 60-80% Al, 7-56% Mn, 10-49% Cu, 0-55% Zn, 20-38% Cr, 20-30% Fe, 6-25% Co, 5-22% Cd and <7% Ni. In the colloidal fraction (2 kDa-1 μm) values varied between 53-91% Pb, 33-55% Al, 21-55% Cu, 20-44% Fe, 34-36% Cr, 20-40% Cd, 7-28% Co and Ni, 2-32% Zn and <8% Mn. Wide variations were also observed in the ultrafiltered fraction (<2 kDa). These results indicated that colloids indeed influenced the occurrence and transport of Al, Fe, Cr, Co, Ni, Cu, Zn, Cr and Pb metals in rivers, while inorganic or organic colloids did not exert an important control on Mn transport in the selected freshwaters. Of total species, total labile metal measured by DGT-OP accounted for 1.4-50% for Al, Fe, Co, Ni, Cu, Cd and Pb in all selected waters. Of these metals total labile Pb concentration was the lowest with value less than 1.4% although this value slightly increased after deducting particulate fractions. In some waters, a majority of total Mn, Zn and Cr is DGT labile, in which the DGT labile Mn fraction accounted for 98-118% of the total dissolved phase. In most cases, the inorganic labile concentration measured by DGT-RP was lower than the total labile metal concentration. By the combination of CFUF and DGT techniques, the concentrations of total labile and inorganic labile metal species in CFUF-derived truly dissolved phase were measured in four water samples. 100% of ultrafiltered Mn species was found to be total DGT labile. The proportions of total labile metal species were lower than those of ultrafiltered fraction for Al, Fe, Co, Ni, Cu, Cd and Pb in all selected waters, and Cr and Zn in some cases, indicating a large amount of natural complexing ligands with smaller size for the metals to form kinetically inert species or thermodynamically stable complexes. Observed discrepancies in metal speciation between metals and within sampling sites were related to the differences in the characteristics of the metals and the nature of water sources.
Leles, Daniela M A; Lemos, Diego A; Filho, Ubirajara C; Romanielo, Lucienne L; de Resende, Miriam M; Cardoso, Vicelma L
2012-06-01
In the present study, the bioremoval of Cr(VI) and the removal of total organic carbon (TOC) were achieved with a system composed by an anaerobic filter and a submerged biofilter with intermittent aeration using a mixed culture of microorganisms originating from contaminated sludge. In the aforementioned biofilters, the concentrations of chromium, carbon, and nitrogen were optimized according to response surface methodology. The initial concentration of Cr(VI) was 137.35 mg l(-1), and a bioremoval of 85.23% was attained. The optimal conditions for the removal of TOC were 4 to 8 g l(-1) of sodium acetate, >0.8 g l(-1) of ammonium chloride and 60 to 100 mg l(-1) of Cr(VI). The results revealed that ammonium chloride had the strongest effect on the TOC removal, and 120 mg l(-1) of Cr(VI) could be removed after 156 h of operation. Moreover, 100% of the Cr(VI) and the total chromium content of the aerobic reactor output were removed, and TOC removals of 80 and 87% were attained after operating the anaerobic and aerobic reactors for 130 and 142 h, respectively. The concentrations of cells in both reactors remained nearly constant over time. The residence time distribution was obtained to evaluate the flow through the bioreactors.
Singh, Rajesh; Dong, Hailiang; Liu, Deng; ...
2014-10-22
Despite the significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70°C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H 2/CO 2 as substrate with various Cr 6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K 2Cr 2O 7). Time-course measurements of aqueous Cr 6+ concentrations with the 1, 5-diphenylcarbazide colorimetric method showed complete reduction of themore » 0.2 and 0.4 mM Cr 6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr 6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr 6+ to cells at this concentration range. At these higher Cr 6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr 6+ bioreduction rates decreased with increased initial concentrations of Cr 6+ from 13.3 to1.9 μM h ₋1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr 6+ to insoluble Cr 3+ precipitates, which was confirmed as amorphous chromium hydroxide by X-ray diffraction and selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr 3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr 6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr 6+ to less toxic Cr 3+ and its potential application in metal bioremediation, especially at high temperature subsurface radioactive waste disposal sites, where the temperature may reach ~70°C.« less
The oxidation of Cr(III) to Cr(VI) in the environment by atmospheric oxygen during the bush fires.
Panichev, N; Mabasa, W; Ngobeni, P; Mandiwana, K; Panicheva, S
2008-05-30
The presence of Cr(VI) in soils and plants of remote unpolluted areas can be explained by partial oxidation of Cr(III) with atmospheric oxygen during seasonable bush fires, which are rather frequent event in South Africa. Experiments with thermal treatment of a veld grass, Hyperthelia dissoluta, in muffle furnace at high temperature, followed by electrothermal atomic absorption spectrometry (ETAAS) determination of chromium, show a remarkable increase in Cr(VI) concentration from initial 2.5 to 23.2% after the treatment of grass ash at 500 degrees C and to 58.1% at 900 degrees C. Before ETAAS determination, the two chromium species of interest were separated by the treatment of samples with 0.1M Na2CO3. Thermodynamic calculations confirm the possibility of Cr(III) to Cr(VI) oxidation with atmospheric oxygen at high temperature in alkaline media, which is typical for vegetation ash. Analysis of field samples show that percent of Cr(VI), in respect to the total amount of chromium increased from initial 2.5% in grass to 9.3% in ash of grass. Without oxidation the percent of Cr(VI) in grass and ash of grass should be a constant value. After the fire Cr(VI) concentration in top soil (0-3 cm) increased from 0.3+/-0.05 to 1.8+/-0.5 microg g(-1) and the total Cr from 26+/-9 to 69+/-14 microg g(-1). The reason for the appearance of additional amount of Cr on top soil can be explained by condensation of chromium species from flame and shouldering ash on a soil surface. The results of studies demonstrate that Cr(VI) is formed by Cr(III) oxidation with atmospheric oxygen at high temperature during bush fires.
Scoccianti, Valeria; Bucchini, Anahi E; Iacobucci, Marta; Ruiz, Karina B; Biondi, Stefania
2016-11-01
Quinoa (Chenopodium quinoa Willd), an ancient Andean seed crop, exhibits exceptional nutritional properties and resistance to abiotic stress. The species' tolerance to heavy metals has, however, not yet been investigated nor its ability to take up and translocate chromium (Cr). This study aimed to investigate the metabolic adjustments occurring upon exposure of quinoa to several concentrations (0.01-5mM) of CrCl3. Young hydroponically grown plants were used to evaluate Cr uptake, growth, oxidative stress, and other biochemical parameters three and/or seven days after treatment. Leaves accumulated the lowest amounts of Cr, while roots and stems accumulated the most at low and at high metal concentrations, respectively. Fresh weight and photosynthetic pigments were reduced only by the higher Cr(III) doses. Substantially increased lipid peroxidation, hydrogen peroxide, and proline levels were observed only with 5mM Cr(III). Except for a significant decrease at day 7 with 5mM Cr(III), total polyphenols and flavonoids maintained control levels in Cr(III)-treated plants, whereas antioxidant activity increased in a dose-dependent manner. Maximum polyamine accumulation was observed in 1mM CrCl3-treated plants. Even though α- and γ-tocopherols also showed enhanced levels only with the 1mM concentration, tyrosine aminotransferase (TAT, EC 2.6.1.5) activity increased under Cr(III) treatment in a dose- and time-dependent manner. Taken together, results suggest that polyamines, tocopherols, and TAT activity could contribute to tolerance to 1mM Cr(III), but not to the highest concentration that, instead, generated oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.
Jiang, Hong-mei; Yang, Ting; Wang, Yan-hong; Lian, Hong-zhen; Hu, Xin
2013-11-15
A new approach of magnetic solid phase extraction (MSPE) coupled with graphite furnace atomic absorption spectrometry (GFAAS) has been developed for the speciation of Cr(III) and Cr(VI) using zincon-immobilized silica-coated magnetic Fe3O4 nanoparticles (Zincon-Si-MNPs) as the MSPE absorbent. Cr(III) was quantitatively reserved on the absorbent at pH 9.1 while total Cr was reserved at pH 6.5. The absorbed Cr species were eluted by using 2 mol/L HCl and detected by GFAAS. The concentration of Cr(VI) could be calculated by subtracting Cr(III) from total Cr. All the parameters affecting the separation and extraction efficiency of Cr species such as pH, extraction time, concentration and volume of eluent, sample volume and influence of co-existing ions were systematically examined and the optimized conditions were established accordingly. The detection limit (LOD) of the method was 0.016 and 0.011 ng mL(-1) for Cr(III) and Cr(VI), respectively, with the enrichment factor of 100 and 150. The precisions of this method (Relative standard deviation, RSD, n=7) for Cr(III) and Cr(VI) at 0.1 ng mL(-1) were 6.0% and 6.2%, respectively. In order to validate the proposed method, a certified reference material of environmental water was analyzed, and the result of Cr speciation was in good agreement with the certified value. This MSPE-GFAAS method has been successfully applied for the speciation of Cr(III) and Cr(VI) in lake and tap waters with the recoveries of 88-109% for the spiked samples. Moreover, the MSPE separation mechanism of Cr(III) and Cr(VI) based on their adsorption-desorption on Zincon-Si-MNPs has been explained through various spectroscopic characterization. © 2013 Elsevier B.V. All rights reserved.
Antoniadis, Vasileios; Zanni, Anna A; Levizou, Efi; Shaheen, Sabry M; Dimirkou, Anthoula; Bolan, Nanthi; Rinklebe, Jörg
2018-03-01
Dynamics of chromate (Cr(VI)) in contaminated soils may be modulated by decreasing its phytoavailability via the addition of organic matter-rich amendments, which might accelerate Cr(VI) reduction to inert chromite (Cr(III)) or high-cation exchange capacity amendments. We studied Cr(VI) phytoavailability of oregano in a Cr(VI)-spiked acidic soil non-treated (S) and treated with peat (SP), lime (SL), and zeolite (SZ). The addition of Cr(VI) increased the concentrations of Cr(VI) and Cr(III) in soils and plants, especially in the lime-amended soil. The plant biomass decreased in the lime-amended soil compared to the un-spiked soil (control) due to decreased plant phosphorus concentrations and high Cr(VI) concentrations in root at that treatment. Oregano in the peat-amended soil exhibited significantly less toxic effects, due to the role of organic matter in reducing toxic Cr(VI) to Cr(III) and boosted plant vigour in this treatment. In the lime-amended soil, the parameters of soil Cr(VI), soil Cr(III), and root Cr(III) increased significantly compared to the non-amended soil, indicating that Cr(VI) reduction to Cr(III) was accelerated at high pH. Added zeolite failed to decreased Cr(VI) level to soil and plant. Oregano achieved a total uptake of Cr(III) and Cr(VI) of 0.275 mg in plant kg -1 soil in a pot in the non-amended soil. We conclude that peat as soil amendment might be considered as a suitable option for decreasing Cr(VI) toxicity in soil and plant, and that oregano as tolerant plant species has a certain potential to be used as a Cr accumulator. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gloaguen, Thomas Vincent; Passe, José João
2017-11-01
The sedimentary basins of Recôncavo and Tucano, Bahia, represent the most important Brazilian Phanerozoic continental basin system, formed during fracturing of Gondwana. The northern basin of Tucano has a semiarid climate (Bsh) while the southern basin of Recôncavo has a tropical rainforest climate (Af). The aim of this study was to determine the distribution of trace metals in soils derived from various sedimentary rocks and climates. Soils were collected at 30 sites in 5 geological units at 0-20 cm and 60-80 cm deep under native vegetation. Physical and chemical attributes (particle size distribution, pH, Al, exchangeable bases, organic matter) were determined, as well as the pseudo-total concentrations (EPA 3050 b) and the total concentrations (X-ray fluorescence) of Cr, Cu, Ni, Pb and Zn. The concentrations of metals were overall correlated to soil texture, according to lithologic origin. Shales resulted in Vertisols 30.4 (Zn), 27.2 (Ni), 16.9 (Cu), 7.5 (Cr) and 2.5 (Pb) times more concentrated than Arenosols derived from the sandstones. High Cr and Ni values in clay soils from shales were attributed to diffuse contamination by erosion of mafic rocks of the Greenstone Belt River Itapicuru (from 3 km northwest of the study area) during the late Jurassic. Tropical rainforest climate resulted in a slight enrichment of Pb and Cr, and Ni had the higher mobility during soil formation (enrichment factor up to 6.01). In conclusion, the geological environment is a much more controlling factor than pedogenesis in the concentration of metals in sedimentary soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kumar, Vinod; Chopra, A K
2014-11-01
Ferti-irrigation response of 5, 10, 25, 50, 75, and 100 % concentrations of the sugar mill effluent (SME) on French bean (Phaseolus vulgaris L., cv. Annapurna) in the rainy and summer seasons was investigated. The fertigant concentrations produced significant (P < 0.01) changes in the soil parameters, viz., electrical conductivity (EC), pH, organic carbon (OC), sodium (Na(+)), potassium (K(+)), calcium (Ca(2+)), magnesium (Mg(2+)), total Kjeldahl nitrogen (TKN), phosphate (PO4 (3-)), sulfate (SO4 (2-)), ferrous (Fe(2+)), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn), in both seasons. The contents of Cr, Cu, Mn, and Zn except Cd were found to be below the maximum levels permitted for soils in India. The agronomic performance of P. vulgaris was gradually increased at lower concentrations, i.e., from 5 to 25 %, and decreased at higher concentrations, i.e., from 50 to 100 %, of the SME in both seasons when compared to controls. The accumulations of heavy metals were increased in the soil and P. vulgaris from 5 to 100 % concentrations of the SME in both seasons. The contents of Cu, Mn, and Zn except Cd and Cr were noted under the permissible limit of Food and Agriculture Organization (FAO)/World Health Organization (WHO) standards. Most contents of biochemical components like crude proteins, crude fiber, and total carbohydrates were found with 25 % concentration of the SME in both seasons. The contamination factor (Cf) of various metals was in the order of Cd > Cr > Zn > Mn > Cu for soil and Mn > Zn > Cu > Cr > Cd for P. vulgaris in both seasons after fertigation with SME. Therefore, the SME can be used to improve the soil fertility and yield of P. vulgaris after appropriate dilution.
Mukhopadhyay, Suchita; Rana, Vivek; Kumar, Adarsh; Maiti, Subodh Kumar
2017-10-01
Out of 29 plant species taken into consideration for biodiversity investigations, the present study screened out Cyperus rotundus L., Calotropis procera (Aiton) W.T. Aiton, Croton bonplandianus Baill., Eclipta prostrata (L.) L., and Vernonia cinerea (L.) Less. as the most suitable metal-tolerant plant species (high relative density and frequency) which can grow on metal-laden fly ash (FA) lagoon. Total (aqua-regia), residual (HNO 3 ) and plant available (CaCl 2 ) metal concentrations were assessed for the clean-up of metal-contaminated FA disposal site using naturally colonized plants. The total metal concentration (in mg kg -1 ) in FA followed an order of Mn (229.8) > Ni (228.4) > Zn (89.4) > Cr (61.2) > Pb (56.6) > Cu (51.5) > Co (41.9) > Cd (9.7). The HNO 3 - and CaCl 2 -extracted metals were 0.57-15.68% and 0.03-7.82% of the total metal concentration, respectively. The concentration of Ni and Cr in FA in the present study was highest among the previously studied Indian and average world power plants and Cd, Ni, and Cr were above soil toxicity limit. The variation in total, residual, and plant-available metal (single extraction) concentration indicated the presence of different proportions of metals in FA lagoon which affects the metal uptake potential of the vegetation growing on it. It has been reported that plant-available metal extractant (CaCl 2 ) is the most suitable extractant for assessment of metal transfer from soil to plant. However in the present study, Spearman's correlation showed best significant correlation between total metal concentration in FA and shoot metal concentration (r = 0.840; p < 0.01) which suggest aqua-regia as the best extractant for understanding the bioavailability and transfer of metal, and in calculation of BCF for moderately contaminated site. It can be stated that plant-available extractant is not always suitable for understanding the availability of metal, but total metal concentration can provide a better insight especially for moderate or low metal-contaminated sites. Principle component analysis revealed that all the plants showed positive correlation with Co and Cd which suggest its subsequent uptake in root and shoot. The biological indices (BCF, BAF, and TF) revealed that E. prostrata (10 mg Cd kg -1 ) and C. procera (3.5 mg Cd kg -1 ) can be utilized efficiently for the phytoextraction of Cd and phytostabilization of other potentially toxic metals (Pb, Cr, and Co) from FA lagoon. All the plants were tolerant to Pb pollution (TF > 1, BAF > 1, and BCF > 1); hence, there was a negligible translocation of Pb to the aerial tissues of these plants which shows their suitability in phytostabilization. In addition, V. cinerea accumulated elevated concentration of potentially toxic Cr (50 mg Cr kg -1 ) and Ni (67 mg Ni kg -1 ) which could also help in the phytoremediation of FA lagoon.
Reduction of hexavalent chromium in water samples acidified for preservation
Stollenwerk, K.G.; Grove, D.B.
1985-01-01
Reduction of hexavalent chromium, Cr(VI), in water samples, preserved by standard techniques, was investigated. The standard preservation technique for water samples that are to be analyzed for Cr(VI) consists of filtration through a 0.45-??m membrane, acidification to a pH < 2, and storage in plastic bottles. Batch experiments were conducted to evaluate the effect of H+ concentration, NO2, temperature, and dissolved organic carbon (DOC) on the reduction of Cr(VI) to Cr(III). The rate of reduction of Cr(VI) to Cr(III) increased with increasing NO2, DOC, H+, and temperature. Reduction of Cr(VI) by organic matter occurred in some samples even though the samples were unacidified. Reduction of Cr(VI) is inhibited to an extent by storing the sample at 4??C. Stability of Cr(VI) in water is variable and depends on the other constituents present in the sample. Water samples collected for the determination of Cr(VI) should be filtered (0.45-??m membrane), refrigerated, and analyzed as quickly as possible. Water samples should not be acidified. Measurement of total Cr in addition to Cr(VI) can serve as a check for Cr(VI) reduction. If total Cr is greater than Cr(VI), the possibility that Cr(VI) reduction has occurred needs to be considered.The rate of reduction of Cr(VI) to Cr(III) increased with increasing NO//2, DOC, H** plus , and temperature. Reduction of Cr(VI) by organic matter occurred in some samples even though the samples were unacidified. Reduction of Cr(VI) is inhibited to an extent by storing the sample at 4 degree C. Stability of Cr(VI) in water is variable and depends on the other constituents present in the sample. Water samples collected for the determination of Cr(VI) should be filtered (0. 45- mu m membrane), refrigerated, and analyzed as quickly as possible. Water samples should not be acidified. Measurement of total Cr in addition to Cr(VI) can serve as a check for Cr(VI) reduction. If total Cr is greater than Cr(VI), the possibility that Cr(VI) reduction has occurred needs to be considered.
Wise, Catherine F.; Wise, Sandra S.; Thompson, W. Douglas; Perkins, Christopher; Wise, John Pierce
2015-01-01
Hexavalent chromium (Cr(VI)) is present in the marine environment and is a known carcinogen and reproductive toxicant. Cr(VI) is the form of chromium that is well absorbed through the cell membrane. It is also the most prevalent form in seawater. We measured the total Cr levels in skin biopsies obtained from healthy free-ranging fin whales from the Gulf of Maine and found elevated levels relative to marine mammals in other parts of the world. The levels in fin whale biopsies ranged from 1.71 ug/g to 19.6 ug/g with an average level of 10.07 ug/g. We also measured the cytotoxicity and genotoxicity of Cr(VI) in fin whale skin cells. We found that particulate and soluble Cr(VI) are both cytotoxic and genotoxic to fin whale skin cells in a concentration-dependent manner. The concentration range used in our cell culture studies used environmentally relevant concentrations based on the biopsy measurements. These data suggest that Cr(VI) may be a concern for whales in the Gulf of Maine. PMID:25805270
Acosta, J A; Gabarrón, M; Faz, A; Martínez-Martínez, S; Zornoza, R; Arocena, J M
2015-09-01
Street dust and soil from high, medium and low populated cities and natural area were analysed for selected physical-chemical properties, total and chemical speciation of Zn, Pb, Cu, Cr, Cd, Co, Ni to understand the influence of human activities on metal accumulation and mobility in the environment. The pH, salinity, carbonates and organic carbon contents were similar between soil and dust from the same city. Population density increases dust/soil salinity but has no influence on metals concentrations in soils. Increases in metal concentrations with population density were observed in dusts. Cu, Zn, Pb, Cr can be mobilized more easily from dust compared to the soil. In addition, population density increase the percentage of Pb and Zn associated to reducible and carbonate phase in the dust. The behaviour of metals except Cd in soil is mainly affected by physico-chemical properties, while total metal influenced the speciation except Cr and Ni in dusts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Noble, Ryan R P; Hough, Robert M; Watkins, Ronald T
2010-06-01
Stawell Gold Mine in NW Victoria, Australia, mines ores that contain large concentrations of As and significant quantities of the metals Pb and Cr. The aim of this research was to understand the dispersion, enrichment and probable exposure of these potentially hazardous elements around the mine site. Fifty-five surface soil samples were collected near the mine (<15 km) and analysed by ICP-MS/OES following bioavailable and four-acid extractions. Soils near the mine show greater concentrations of As, Cr and Pb than those near a regionally determined background. This is attributed to the combination of a natural geochemical halo around mineralization and anthropogenic dispersion due to mining and urbanization. Total As concentrations were between 16 and 946 mg kg(-1) near the mine in a regional background of 1-16 mg kg(-1). Total Cr concentrations were between 18 and 740 mg kg(-1) near the mine in a regional background of 26-143 mg kg(-1). Total Pb concentrations were between 12 and 430 mg kg(-1) near the mine in a regional background of 9-23 mg kg(-1). Dispersion of contaminant elements from the present ore processing is <500 m. The most enriched soils occur close to the town and are unrelated to present mining practices. The bioavailable As, Cr and Pb, soil ingestion rates and Risk Reference Doses were used to estimate health risks. An average toddler (12 kg) would need to consume at least 1.5 g, and most likely 12 g, of soil per day to show some symptoms of As toxicity. The maximum measured bioavailable As would pose a risk at average ingestion rates of 200 mg per day. Individuals with soil-eating disorders would exceed the safe daily consumption limits for As, and potentially Cr and Pb. Small children are not typically exposed to soil everyday, very few have soil eating disorders, and, therefore, the health risk from the soils around the mine is minimal.
Biomarkers of oxidative stress in electroplating workers exposed to hexavalent chromium.
Pan, Chih-Hong; Jeng, Hueiwang Anna; Lai, Ching-Huang
2018-01-01
This study evaluates levels of biomarkers of oxidative DNA damage and lipid peroxidation in 105 male workers at 16 electroplating companies who had been exposed to hexavalent chromium (Cr(VI)). The study participants were 230 non-smoking male workers, comprising 105 electroplating workers who had been exposed to chromium and 125 control subjects who performed office tasks. Personal air samples, spot urine samples, hair samples, fingernail samples and questionnaires were used to quantify exposure to Cr(VI), oxidative DNA damage, lipid peroxidation, and environmental pollutants. Both the geometric mean personal concentrations of Cr(VI) of the Cr-exposed workers and the total Cr concentrations in the air to which they were exposed significantly exceeded those for the control subjects. The geometric mean concentrations of Cr in urine, hair and fingernails, and the urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), and malondialdehyde (MDA) levels in the Cr(VI) exposed workers exceeded those in the control subjects. Daily cumulative Cr(VI) exposure and urinary Cr were significantly correlated with urinary 8-OHdG levels following adjustments for covariates. A ten-fold increase in urinary Cr level was associated with a 1.73-fold increase in urinary 8-OHdG level. Daily cumulative Cr(VI) exposure and urinary Cr level were significantly correlated with urinary MDA level following adjustments for covariates. A ten-fold increase in urinary Cr was associated with a 1.45-fold increase in urinary MDA. Exposure to Cr(VI) increased oxidative DNA injury and the oxidative deterioration of lipids in electroplating workers.
1992-05-01
replicates were ɘ.020 mg/L. The chromium present was in the trivalent form. 139. Vendor 2. The replicate total chromium TCLP concentrations in the...criterion. The chromium present in the leachates was in the trivalent form, shown by concentrations of Cr(VI) of ɘ.020, ɘ.020, and 0.042 mg/L. 142...concentrations of total chromium were 4.7, 3.7, and 4.1 mg/L. Chromium is present in the trivalent form. The total chromium concentrations were below
Cutillas-Barreiro, Laura; Pérez-Rodríguez, Paula; Gómez-Armesto, Antía; Fernández-Sanjurjo, María José; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino; Arias-Estévez, Manuel; Nóvoa-Muñoz, Juan Carlos
2016-08-15
We study the influence of phasing out a cement plant on the heavy metal (Hg, Pb and Cr) content in the surrounding soils, taking into account factors often neglected, such as contributions due to local lithology or land use. The range of total Hg was 10-144µg kg(-1), reaching up to 41 and 145mgkg(-1) for total contents of Pb and Cr, respectively. Forest soils showed higher concentration of Hg than prairie soils, indicating the importance of land use on the accumulation of volatile heavy metals in soils. In forest soils, total Hg showed a trend to decrease with soil depth, whereas in prairie soils the vertical pattern of heavy metal concentrations was quite homogeneous. In most cases, the distance to the cement plant was not a factor of influence in the soils content of the analyzed heavy metals. Total Pb and Cr contents in soils nearby the cement plant were quite similar to those found in the local lithology, resulting in enrichment factor values (EF's) below 2. This suggests that soil parent material is the main source of these heavy metals in the studied soils, while the contribution of the cement plant to Pb and Cr soil pollution was almost negligible. On the contrary, the soils surrounding the cement plant accumulate a significant amount of Hg, compared to the underlying lithology. This was especially noticeable in forest soils, where Hg EF achieved values up to 36. These results are of relevance, bearing in mind that Hg accumulation in soils may be an issue of environmental concern, particularly in prairie soils, where temporal flooding can favor Hg transformation to highly toxic methyl-Hg. In addition, the concurrence of acid soils and total-Cr concentrations in the range of those considered phytotoxic should be also stressed. Copyright © 2016 Elsevier B.V. All rights reserved.
Niemelä, R; Koskela, H; Engström, K
2001-08-01
The purpose of the study was to investigate the performance of displacement ventilation in a large factory hall where large components of stainless steel for paper, pulp and chemical industries were manufactured. The performance of displacement ventilation was evaluated in terms of concentration distributions of welding fumes and grinding particles, flow field of the supply air and temperature distributions. Large differences in vertical stratification patterns between hexavalent chromium (Cr(VI)) and other particulate contaminants were observed. The concentration of Cr(VI) was notably lower in the zone of occupancy than in the upper part of the factory hall, whereas the concentrations of total airborne particles and trivalent chromium (Cr(III)) were higher in the occupied zone than in the upper zone. The stratification of Cr(VI) had the same tendency as the air temperature stratification caused by the displacement flow field.
Farmer, John G; Thomas, Rhodri P; Graham, Margaret C; Geelhoed, Jeanine S; Lumsdon, David G; Paterson, Edward
2002-04-01
Chromium concentrations of up to 91 mg l(-1) were found by ICP-OES for ground water from nine boreholes at four landfill sites in an area of S.E. Glasgow/S. Lanarkshire where high-lime chromite ore processing residue (COPR) from a local chemical works had been deposited from 1830 to 1968. Surface water concentrations of up to 6.7 mg l(-1) in a local tributary stream fell to 0.11 mg l(-1) in the River Clyde. Two independent techniques of complexation/colorimetry and speciated isotope dilution mass spectrometry (SIDMS) showed that Cr was predominantly (>90%) in hexavalent form (CrVI) as CrO4(2-), as anticipated at the high pH (7.5-12.5) of the sites. Some differences between the implied and directly determined concentrations of dissolved CrIII, however, appeared related to the total organic carbon (TOC) content. This was most significant for the ground water from one borehole that had the highest TOC concentration of 300 mg l(-1) and at which < 3% of Cr was in the form of CrVI. Subsequent ultrafiltration produced significant decreases in Cr concentration with decreasing size fractions, e.g. <0.45 microm, < 100 kDa, <30 kDa and < 1 kDa by the tangential-flow method. As this appeared related more to concentrations of humic substances than of TOC per se, horizontal bed gel electrophoresis of freeze-dried ultrafilter retentates was carried out to further characterise the CrIII-organic complex. This showed for the main Cr-containing fraction, 100 kDa-0.45 microm, that the Cr was associated with a dark brown band characteristic of organic (humic) matter. Comparison of gel electrophoresis and FTIR results for ultrafilter retentates of ground water from this borehole with those for a borehole at another site where CrVI predominated suggested the influence of carboxylate groups, both in reducing CrVI and in forming soluble CrIII-humic complexes. The implications of this for remediation strategies (especially those based on the addition of organic matter) designed to reduce highly mobile and carcinogenic Cr(VI)O4(2-) to the much less harmful CrIII as insoluble Cr(OH)3 are discussed.
Concentrations and Exposure Evaluation of Metals in Diverse Food Items from Chengdu, China.
Wang, Rong; Zhong, Bifeng; Pi, Lu; Xie, Fuyu; Chen, Mengqin; Ding, Sanglan; Su, Shijun; Li, Zhi; Gan, Zhiwei
2018-01-01
A total of 520 food samples belonging to 29 food types and 63 drinking water were collected in Chengdu market of China in 2014 to investigate the concentrations of 11 metals, and to assess the related exposure to the local consumers by estimating the hazard quotient and carcinogenic risk (CR). The results showed that metals concentrations in drinking water were below the limit values suggested by the Ministry of Health of the People's Republic of China, and FAO/WHO (Food and Agriculture Organization of the United Nations/World Health Organization). While As, Cd, and Cr were found at concentrations higher than the limit values in some of the foodstuffs. Children in Chengdu intake more metals compared to adults, with the same order of Mn > Zn > Cu > Sr > Cr > Ni > As > Cd > Pb > Co > Sb. Among all of the diverse food, rice, flour, and fish and seafood were the primary sources to intake metals for Chengdu residents. Residents in Chengdu are subjected to both carcinogenic and non-carcinogenic risks based on the calculated HI and CR values, especially for children. Finally, total daily metals intakes for both children and adults were calculated based on the current study and our previous studies, including consumption of food and drinking water and intake of outdoor and indoor dust. Dietary exposure is the predominant exposure route to metals for Chengdu residents, accounting for more than 75.8% of the total daily metals intakes for both children and adults.
Li, Miao; Zang, Shuying; Xiao, Haifeng; Wu, Changshan
2014-05-01
Sediment core samples from Nashina Lake, Heilongjiang, China were collected using a gravity sampler. The cores were sliced horizontally at 1 cm each to determine the particle size, total concentrations and speciation of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. Total concentrations of heavy metals were extracted using an acid mixture (containing hydro fluoric acid, nitric acid, and sulphuric acid) and analyzed using an inductively coupled plasma spectrometry. A sequential extraction procedure was employed to separate chemical species. Analysis of results indicate that the concentrations of heavy metals in the sediments of Nashina Lake in descending order are Mn, Cr, Zn, Pb, Ni, Cu, and Cd. The ratios of the average concentrations of four heavy metals (e.g.Cr, Cu, Ni, Zn) to their background values were >1; and those of Mn, Cd, and Pb were >1. Moreover, some toxic metals were mainly distributed in bioavailable fractions. For instance, both Cd and Mn were typically found in Acid-extractable species or Fe-Mn oxide species, and thus can be easily remobilized and enter the food chain. Finally, the analysis of geo-accumulation index showed that anthropogenic pollution levels of Cr, Cu, Mn, Ni, Zn were low, but those of Pb and Cd were at the moderate level. As both Pb and Cd are toxic metals, it is highly necessary to prohibit their transformation and accumulation in the sediments.
Chaudhry, Shafqat Rasul; Akram, Adnan; Aslam, Naveed; Asif, Muhammad; Wajid, Muhammad; Kinfe, Thomas; Jabeen, Qaiser; Muhammad, Sajjad
2016-11-01
Heliotropiumz stnigosum Wilid. (Boraginaceae) is used traditionally as a laxative, diuretic, and as a treatment for snake bites and stings of nettles. Recent investigations have shown anti-inflammatory and antioxidant activity of H. sorigosum. However, antihyperglycemic and antidyslipidemic activity of H. strigosum has not been investigated to date and we aimed to explore these activities of the crude aqueous methanolic extract of thEaerial parts of H. strigosum (Hs.Cr). Hs.Cr was administered orally at doses of 100, 300, and 500 mg/kg in alloxan-induced diabetic rats (type I diabetes) and fructose-fed rats (type II diabetes). The fasting blood glucose (FBG) concentration was assessed by glucometer, while semum total cholesterol, triglycerides and HDL were estimated by using standard kits. The FBG concentration significantly (p < 0.05) decreased in dose-dependent pattern in both alloxan-induced diabetic and fructose-fed rats on Hs.Cr administration. The percentage glucose reductions in alloxanized rats with glibenclamide, Hs.Cr 100, 300, and 500 mg/kg were obeserved to be 67, 36, 56 and 62%, respectively. In fructose-fed rats, the percentage glucose redutions associated with metformin, Hs.Cr 100, 300, and 500 mg/kg were 23, 5, 11 and 12%, respectively. The extract also corrected the dyslipidemia associated with fructose and alloxan-induced diabetes by significantly (p < 0.00 1) decreasing the concentration of serum total cholesterol, triglycerides and LDL and by increasing HDL concentration. Our data demonstrate that the H. stigosum has antidiabetic and antidyslipidemic effects, thus encouraging further studies.
Hall, J A; Yerramilli, M; Obare, E; Yerramilli, M; Yu, S; Jewell, D E
2014-12-01
The purpose of this study was to determine whether feeding cats reduced protein and phosphorus foods with added fish oil, L-carnitine, and medium-chain triglycerides (MCT) altered serum biomarkers of renal function. Thirty-two healthy cats, mean age 14.0 (8.3-19.6) years, were fed control food or one of two experimental foods for 6 months. All foods had similar concentrations of moisture, protein, and fat (approximately 8.0%, 26.5%, and 20.0%, respectively). Both experimental foods contained added fish oil (1.5%) and L-carnitine (500 mg/kg). Experimental-food 2 also contained increased MCT (10.5% from coconut oil), 1.5% added corn oil, and reduced animal fat. Glomerular filtration rate (GFR), serum biochemistries, renal function biomarkers including serum creatinine (sCr) and symmetrical dimethylarginine (SDMA), and plasma metabolomic profiles were measured at baseline, and at 1.5, 3, and 6 months. Body composition was determined by dual-energy X-ray absorptiometry. Although both experimental foods altered plasma fatty acids, carnitine and related metabolites, and lysophospholipid concentrations, there were no changes in renal function biomarkers. There was, however, a benefit in using SDMA versus sCr to assess renal function in older cats with less total lean mass. Compared with cats <12 years, those >15 years had lower total lean mass (P < 0.01), lower GFR (P = 0.04), and lower sCr concentrations (P < 0.01). However, SDMA concentrations (P < 0.01) were higher in older cats. This study shows that in cats, serum SDMA concentration is more highly correlated with GFR than sCr concentration, and, unlike sCr, which declines with age because of muscle wasting, SDMA increases as GFR declines with age. Copyright © 2014 Elsevier Ltd. All rights reserved.
Xiong, TianTian; Dumat, Camille; Pierart, Antoine; Shahid, Muhammad; Kang, Yuan; Li, Ning; Bertoni, Georges; Laplanche, Christophe
2016-12-01
The quality of cultivated consumed vegetables in relation to environmental pollution is a crucial issue for urban and peri-urban areas, which host the majority of people at the global scale. In order to evaluate the fate of metals in urban soil-plant-atmosphere systems and their consequences on human exposure, a field study was conducted at two different sites near a waste incinerator (site A) and a highway (site B). Metal concentrations were measured in the soil, settled atmospheric particulate matter (PM) and vegetables. A risk assessment was performed using both total and bioaccessible metal concentrations in vegetables. Total metal concentrations in PM were (mg kg -1 ): (site A) 417 Cr, 354 Cu, 931 Zn, 6.3 Cd and 168 Pb; (site B) 145 Cr, 444 Cu, 3289 Zn, 2.9 Cd and 396 Pb. Several total soil Cd and Pb concentrations exceeded China's Environmental Quality Standards. At both sites, there was significant metal enrichment from the atmosphere to the leafy vegetables (correlation between Pb concentrations in PM and leaves: r = 0.52, p < 0.05) which depended on the plant species. Total Cr, Cd and Pb concentrations in vegetables were therefore above or just under the maximum limit levels for foodstuffs according to Chinese and European Commission regulations. High metal bioaccessibility in the vegetables (60-79 %, with maximum value for Cd) was also observed. The bioaccessible hazard index was only above 1 for site B, due to moderate Pb and Cd pollution from the highway. In contrast, site A was considered as relatively safe for urban agriculture.
El-Sheikh, Amjad H; Al-Degs, Yahya S; Sweileh, Jamal A; Said, Adi J
2013-11-15
Due to the commercial value of phosphate rock (PR) as a fertilizer precursor, it is necessary to investigate its heavy metals content. Chromium (Cr) may present as Cr(III) or Cr(VI) in PR; but quantitative differentiation between them is not an easy task. This is due to possible interconversion of Cr species during the digestion/leaching process. In this work, ultrasound digestion (USD) of PR was optimized (300 mg PR, 4.0 mL of 4.0 mol L(-1) nitric acid, 15 min sonication) for the sake of leaching Cr species prior to their determination by flame atomic absorption spectroscopy. Using multi-walled carbon nanotube (MWCNT) as adsorbent, solid phase extraction (SPE) was used to separate Cr(III) from the digestate at pH 9, while total Cr was estimated after reducing Cr(VI) into Cr(III). The optimum USD/SPE method gave LOQ and LOD of Cr(III) of 0.96 mg kg(-1) and 0.288 mg kg(-1), respectively. The method sensitivity was 1.44×10(-3) AU kg mg(-1) within the studied Cr concentration range (5-400 mg kg(-1)). The USD/SPE method was validated by analyzing lake sediments LKSD-4 certified reference material, and by comparison with classical digestion method (CD). Application of USD/SPE on Jordanian PR samples gave total Cr rang 29.1-122.0 mg kg(-1) (±1.4-6.3), while Cr(III) ranged between 23.8 and 101.7 mg kg(-1) (±1.3-5.5). AFPC Rock Check Program samples gave total Cr range 238.9-394.7 mg kg(-1) (±11.5-24.1), while Cr(III) ranged between 202.4 and 335.8 mg kg(-1) (±11.4-18.3). These results were very close to the results obtained by the CD method. Copyright © 2013 Elsevier B.V. All rights reserved.
Blood harmane is correlated with cerebellar metabolism in essential tremor: a pilot study.
Louis, Elan D; Zheng, Wei; Mao, Xiangling; Shungu, Dikoma C
2007-08-07
On proton magnetic resonance spectroscopic imaging ((1)H MRSI), there is a decrease in cerebellar N-acetylaspartate/total creatine (NAA/tCr) in essential tremor (ET), signifying cerebellar neuronal dysfunction or degeneration. Harmane, which is present in the human diet, is a potent tremor-producing neurotoxin. Blood harmane concentrations seem to be elevated in ET. To assess in patients with ET whether blood harmane concentration is correlated with cerebellar NAA/tCR, a neuroimaging measure of neuronal dysfunction or degeneration. Twelve patients with ET underwent (1)H MRSI. The major neuroanatomic structure of interest was the cerebellar cortex. Secondary regions were the central cerebellar white matter, cerebellar vermis, thalamus, and basal ganglia. Blood concentrations of harmane and another neurotoxin, lead, were also assessed. Mean +/- SD cerebellar NAA/tCR was 1.52 +/- 0.41. In a linear regression model that adjusted for age and gender, log blood harmane concentration was a predictor of cerebellar NAA/tCR (beta = -0.41, p = 0.009); every 1 g(-10)/mL unit increase in log blood harmane concentration was associated with a 0.41 unit decrease in cerebellar NAA/tCR. The association between blood harmane concentration and brain NAA/tCR only occurred in the cerebellar cortex; it was not observed in secondary brain regions of interest. Furthermore, the association was specific to harmane and not another neurotoxin, lead. This study provides additional support for the emerging link between harmane, a neurotoxin, and ET. Further studies are warranted to address whether cerebellar harmane concentrations are associated with cerebellar pathology in postmortem studies of the ET brain.
NASA Astrophysics Data System (ADS)
Pereira de Abreu, M.-H.; Vignati, D.; Dominik, J.
2003-05-01
The total chromium concentrations by ICP-MS and HPLC-ICP-MS and the redox chromium species have been determined in rivers impacted by untreated wastes from tanneries at Fès (Morocco). The results obtained by two ICP-MS analysis methods showed significantly different chromium values at m/z 53. The higher values obtained with external calibration, can be attributed to matrix effects, especially ^{37}Cl ^{16}O at m/z 53. This is confirmed on the chromatograms by the presence of a peak at 100s with the anomalous ^{52}Cr/^{53}Cr isotopic ratio. The hexavalent chromium was not detected. Two trivalent chromium monomer species, Cr(OH)(H2O)5^{2+} and Cr(H2O)6^{3+}, were present in low concentrations. We suppose that the major part of chromium occurred as Cr(III) polymeric species which were not retained on the column. These Cr(III) forms are usually complexed with Cl^- or/and SO4^{2-}, used as tanning agents.
Population Pharmacokinetics of Cladribine in Patients with Multiple Sclerosis.
Savic, Radojka M; Novakovic, Ana M; Ekblom, Marianne; Munafo, Alain; Karlsson, Mats O
2017-10-01
The aims of this study were to characterize the concentration-time course of cladribine (CdA) and its main metabolite 2-chloroadenine (CAde), estimate interindividual variability in pharmacokinetics (PK), and identify covariates explaining variability in the PK of CdA. This population PK analysis was based on the combined dataset from four clinical studies in patients with multiple sclerosis (MS): three phase I studies, including one food and one drug-drug interaction study, and one phase III clinical study. Plasma and urine concentration data of CdA and CAde were modeled simultaneously. The analysis comprised a total of 2619 CdA and CAde plasma and urine concentration observations from 173 patients with MS who received an intravenous infusion or oral tablet doses of CdA as a single agent or in combination with interferon (IFN) β-1a. CdA PK data were best described by a three-compartment model, while a one-compartment model best described the PK of CAde. CdA renal clearance (CL R ) was correlated with creatinine clearance (CL CR ), predicting a decrease in the total clearance of 19%, 30% and 40% for patients with mild (CL CR = 65 ml/min), moderate (CL CR = 40 ml/min) and severe (CL CR = 20 ml/min) renal impairment, respectively. Food decreased the extent of CdA absorption by 11.2% and caused an absorption delay. Coadministration with IFNβ-1a was found to increase non-CL R (CL NR ) by 21%, resulting in an increase of 11% in total clearance. Both CdA and CAde displayed linear PK after intravenous and oral administration of CdA, with CdA renal function depending on CL CR . Trial registration number for study 25643: NCT00213135.
LI, Yan; GAO, Qiaoyan; LI, Mingcai; LI, Mengyang; GAO, Xueming
2014-01-01
Abstract Background The environmental pollution is one of the factors contributing to the decrease of sperm quality for human beings. The aim of this study was to assess cadmium (Cd), chromium (Cr), and copper (Cu) concentration of man in environmental pollution site, and explore relationships between men exposure to Cd, Cr, and Cu and semen-quality parameters in environmental pollution site. Methods Ninety five men were recruited through pollution area and controls in 2011. We measured semen quality using Computer-aided Semen Quality Analysis, and Cd, Cr, and Cu levels in seminal plasma using Graphite Gurnace Atomic Absorption Spectroscopy. Spearman rank correlation analysis was used to evaluate the correlation between Cd, Cr and Cu concentration in seminal plasma and semen quality. Results The mean of seminal plasma Cd, Cr, and Cu values in pollution area was higher than the controls. Seminal plasma Cr values displayed a significant negative correlation with total motility and normomorph sperm rate. Seminal plasma Cu values also displayed a negative correlation with normomorph sperm rate. Conclusions Male reproductive health may be threatened by environmental pollution, and it may be influence local population diathesis. PMID:26060677
Zhang, Tao; Shao, Yanqiu; Tian, Chao; Cattle, Stephen R.; Zhu, Ying; Song, Jinjuan
2018-01-01
A composted sewage sludge (CSS) was added to the soil of an urban garden at 5%, 10%, and 25% (w/w soil) and stabilised for 180 days. Samples were then collected and analysed for total heavy metal concentrations, chemical fractions, and bioaccessibility, together with some physicochemical properties. The results showed that the total chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) concentrations were increased with CSS addition rate. The CSS addition decreased the residual fractions of these four elements. The exchangeable Cr, Cu, and Pb fractions were very small or not detected, while Zn exhibited an increasing trend in its exchangeable fraction with CSS addition rate. The bioaccessibility of these four elements was increased with the CSS addition rate. Moreover, the Cr, Cu, and Zn bioaccessibility correlated positively with the total concentration, while the bioaccessibility of these four elements exhibited a negative correlation with the residual fraction. The fractionation and bioaccessibility of heavy metals may have also been influenced by pH, cation exchange capacity, and organic matter. The risk assessment code reflected the amended soil showed no or low environmental risks for Cr, Cu, and Pb and a medium risk for Zn. The hazardous index values and cancer risk levels indicated that the heavy metals in the soil amended with 25% CSS posed negligible potential noncarcinogenic and carcinogenic risks to children and adults via incidental ingestion. PMID:29597244
Jiajun, Yang; Aiyun, Han; Shanshan, Zheng; Minhong, Zhang
2011-04-01
The relationships between chromium and metabolism are sophisticated. Organic nucleic acids and serum biochemistry parameters are affected by dietary chromium levels. The objective of this work was to study the effect of chromium picolinate (CrPic) supplementation on total DNA and RNA contents, the ratio of RNA/DNA in muscle and in pancreatic tissue, the level of insulin receptor (IR) mRNA and some serum biochemistry parameters in a porcine model. Young animals (48) were assigned randomly into three groups of 16 piglets, fed with three different dietary levels of Cr (common basal feedstuff alone or supplemented with CrPic at a dose of 1.61 μg/g or 3.22 μg/g, which corresponds to 0.2 μg/g and 0.4 μg/g Cr). After 80 days, the animals were sacrificed and skeletal muscle and pancreatic tissues were analyzed to detect differences caused by different levels of dietary Cr. The total content of RNA in muscle was increased significantly (P<0.05) in the CrPic supplemented groups. There was no significant difference between groups in the concentrations of total RNA in the pancreas or DNA in the muscle and pancreatic tissues. The RNA/DNA ratio in pancreas showed no significant change but the ratio was increased significantly (P<0.05) in muscle. There was a slight increase of the mRNA level of IR but there was no significant difference between groups. The content of serum cholesterol and insulin were reduced significantly (P<0.05) in the CrPic-supplemented groups and the content of high-density lipoprotein cholesterol (HDLC) was increased significantly (P<0.05) as the CrPic dose increased. There was a slight (non-significant) reduction of the concentrations of serum triglyceride and low-density lipoprotein cholesterol (LDLC) in the CrPic supplementation groups. Supplementary CrPic caused no significant change of muscular mRNA level of IR in healthy animals. An increased content of RNA in muscle, improved cholesterol metabolism and improved insulin sensitivity were found in these CrPic-treated groups in the porcine model. Copyright © 2011 Elsevier GmbH. All rights reserved.
Yilmaz, Selehattin; Türe, Melike; Sadikoglu, Murat; Duran, Ali
2010-08-01
The wastewater pollution in industrial areas is one of the most important environmental problems. Heavy metal pollution, especially chromium pollution in the wastewater sources from electroplating, dyeing, and tannery, has affected the life on earth. This pollution can affect on all ecosystems and human health directly or by food chain. Therefore, the determination of total chromium in this study is of great importance. In this study, accurate, rapid, sensitive, selective, simple, and low-cost technique for the direct determination of total Cr in wastewater samples collected from the some Cr electroplating factories in March 2008 by inductively coupled plasma-atomic emission spectrometry has been developed. The analysis of a given sample is completed in about 15 min by this technique applied. As the result of the chromium analysis, the limit of quantification for the total Cr were founded to be over the limit value (0.05 mg L(-1); WHO, EPA, TSE 266, and inland water quality classification) as 1,898.78+/-0.34 mg/L at station 1 and 3,189.02+/-0.56 mg/L at station 2. The found concentration of total Cr has been determined to be IV class quality water according to the inland water classification. In order to validate the applied method, recovery studies were performed.
Gong, Yufeng; Werth, Charles J; He, Yaxue; Su, Yiming; Zhang, Yalei; Zhou, Xuefei
2018-05-10
Hexavalent chromium (Cr(VI)) reduction by Geobacter sulfurreducens PCA was evaluated in batch experiments, and the form and amounts of intracellular and extra-cellular Cr(VI) reduction products were determined over time. The first-order Cr(VI) reduction rate per unit mass of cells was consistent for different initial cell concentrations, and approximately equal to (2.065 ± 0.389) x 10 -9 mL CFU -1 h -1 . A portion of the reduced Cr(VI) products precipitated on Geobacter cell walls as Cr(III) and was bound via carboxylate functional groups, a portion accumulated inside Geobacter cells, and another portion existed as soluble Cr(III) or organo-Cr(III) released to solution. A mass balance analysis of total chromium in aqueous media, on cell walls, and inside cells was determined as a function of time, and with different initial cell concentrations. Mass balances were between 92% and 98%, and indicated Cr(VI) reduction products accumulate more on cell walls and inside cells with time and with increasing initial cell concentration, as opposed to particulates in aqueous solution. Reduced Cr(VI) products both in solution and on cell surfaces appear to form organo-Cr(III) complexes, and our results suggest that such complexes are more stable to reoxidation than aqueous Cr(III) or Cr(OH) 3 . Chromium inside cells is also likely more stable to reoxidation, both because it can form organic complexes, and it is separated by the cell membrane from solution conditions. Hence, Cr(VI) reduction products in groundwater during bioremediation may become more stable against re-oxidation, and may pose a lower risk to human health, over time and with greater initial biomass densities. Copyright © 2018 Elsevier Ltd. All rights reserved.
Swiecicka, Dorota; Garboś, Sławomir
2008-01-01
The aim of this work was optimization and validation of the method of determination of Cr(VI) existing in the form of chromate(VI) in mineral and spring waters by High Performance Ion Chromatography (HPIC) technique with application of postcolumn reaction with 1,5-diphenylcarbazide and VIS detection. Optimization of the method performed with the use of initial apparatus parameters and chromatographic conditions from the Method 218.6 allowed to lowering detection limit for Cr(VI) from 400 ng/l to 2 ng/l. Thanks to very low detection limit achieved it was possible to determine of Cr(VI) concentrations in 25 mineral and spring waters presented at Polish market. In the cases of four mineral and spring waters analyzed, determined Cr(VI) concentrations were below of quantification limit (< 4 ng/l) but simultaneously in another mineral and spring waters the concentrations of chromium(VI) were determined in the range of 5.6 - 1281 ng/l. The fact of existence of different Cr(VI) concentrations in investigated waters could be connected with secondary contamination of mineral and spring waters by chromium coming from metal installations and fittings. One should be underlined that even the highest determined concentration level of chromium(VI) was below of the maximum admissible concentration of total chromium presented in Polish Decree of Minister of Health from April 29th 2004. Therefore after taking into account determined in this work concentration of Cr(VI), the consumption of all waters analyzed in this study does not lead to essential human health risk.
Risk assessment of human health for geogenic chromium and nickel in soils derived from serpentines
NASA Astrophysics Data System (ADS)
Hseu, Zeng-Yei; Lai, Yun-Jie
2016-04-01
Concentrations of Cr and Ni are extremely high in serpentine soils compared to soils from the other parent materials. Three serpentine sites in Taiwan were selected to determine health risk of Cr and Ni as cumulative carcinogenic and non-carcinogenic risks via the multiple routes of ingestion, dermal contact, inhalation, and diet on adults and children. The mean levels of Cr and Ni were higher than the soil control standards of heavy metals in Taiwan (250 and 200 mg/kg of Cr and Ni). For adults and children, the total dose of chronic daily intake (mg/kg/d) was the highest for Ni, followed in descending order by Cr(III) and Cr(VI) at all sites. Regardless inhabitant age, the total carcinogenic risk was much lower than 1.0E-6. However, the hazard index (HI) of non-carcinogenic risk exceeded 1.0 for adults at all sites, which was mainly contributed in Ni by eating rice.
Ellingsen, Dag G; Fladseth, Geir; Daae, Hanne L; Gjølstad, Merete; Kjaerheim, Kristina; Skogstad, Marit; Olsen, Raymond; Thorud, Syvert; Molander, Paal
2006-03-01
The aims were to assess the impact of a total smoking ban on the level of airborne contaminants and the urinary cotinine levels in the employees in bars and restaurants. In a follow up design, 13 bars and restaurants were visited before and after the implementation of a smoking ban. Ninety-three employees in the establishments were initially included into the study. The arithmetic mean concentration of nicotine and total dust declined from 28.3 microg m(-3) (range, 0.4-88.0) and 262 microg m(-3) (range, 52-662), respectively, to 0.6 microg m(-3) (range, not detected-3.7) and 77 microg m(-3) (range, not detected-261) after the smoking ban. The Pearson correlation coefficient between airborne nicotine and total dust was 0.86 (p < 0.001; n = 48). The post-shift geometric mean urinary cotinine concentration declined from 9.5 microg g(-1) creatinine (cr) (95% CI 6.5-13.7) to 1.4 microg g(-1) cr (95% CI 0.8-2.5) after the ban (p < 0.001) in 25 non-snuffing non-smokers. A reduction from 1444 microg g(-1) cr (95% CI 957-2180) to 688 microg g(-1) cr (95% CI 324-1458) was found (p < 0.05) in 29 non-snuffing smokers. The urinary cotinine levels increased from 11.7 microg g(-1) cr (95% CI 7.0-19.6) post-shift to 21.9 microg g(-1) cr (95% CI 13.3-36.3) (p < 0.01) in the next morning in 24 non-snuffing non-smokers before the smoking ban. A substantial reduction of airborne nicotine and total dust was observed after the introduction of a smoking ban in bars and restaurants. The urinary cotinine levels were reduced in non-smokers. The decline found in smokers may suggest a reduction in the amount of smoking after intervention. In non-smokers cotinine concentrations were higher based on urine sampled the morning after a shift than based on urine sampled immediately post-shift.
Trivalent chromium induces oxidative stress in goldfish brain.
Lushchak, Oleh V; Kubrak, Olha I; Torous, Ihor M; Nazarchuk, Tetyana Yu; Storey, Kenneth B; Lushchak, Volodymyr I
2009-03-01
Although information on the effects of Cr(6+) in biological systems is abundant, Cr(3+) has received less attention. Toxic effects of chromium compounds are partially associated with activation of redox processes. Recently we found that Cr(6+) induced oxidative stress in goldfish tissues and the glutathione system was shown to play a protective role. The present study aimed to investigate free radical processes in brain of goldfish exposed to CrCl(3). Trivalent chromium at a concentration of 50 mg L(-1) was lethal and therefore we chose to examine sublethal dosages of 1.0-10.0 mg L(-1) in aquarium water. The levels of lipid peroxides and protein carbonyls (measures of oxidative damage to lipids and proteins) in brain increased after 96 h exposure of goldfish to Cr(3+). However, exposure to 1.0-10.0 mg L(-1) Cr(3+) decreased total glutathione concentration in brain by approximately 50-60%. Oxidized glutathione levels also fell by approximately 40-60% except at the 10.0 mg L(-1) dosage where they decreased by 85%. Therefore, 10.0 mg L(-1) Cr(3+) significantly reduced the ratio [GSSG]/[totalGSH] to 35% of the control value. Chromium treatment did not affect the activity of superoxide dismutase, but reduced the activities of catalase by 55-62% and glutathione-S-transferase by 14-21%. The activities of glucose-6-phosphate dehydrogenase and glutathione reductase were unchanged under any experimental conditions used. Therefore, it can be concluded that although Cr(3+) exposure induced oxidative stress in goldfish brain, it failed to enhance the efficiency of the antioxidant system in the organ.
Wu, Yong-li; Shi, Bao-you; Sun, Hui-fang; Zhang, Zhi-huan; Gu, Jun-nong; Wang, Dong-sheng
2013-09-01
To understand the processes of corrosion by-product release and the consequent "red water" problems caused by the variation of water chemical composition in drinking water distribution system, the effect of sulphate and dissolved oxygen (DO) concentration on total iron release in corroded old iron pipe sections historically transporting groundwater was investigated in laboratory using small-scale pipe section reactors. The release behaviors of some low-level metals, such as Mn, As, Cr, Cu, Zn and Ni, in the process of iron release were also monitored. The results showed that the total iron and Mn release increased significantly with the increase of sulphate concentration, and apparent red water occurred when sulphate concentration was above 400 mg x L(-1). With the increase of sulfate concentration, the effluent concentrations of As, Cr, Cu, Zn and Ni also increased obviously, however, the effluent concentrations of these metals were lower than the influent concentrations under most circumstances, which indicated that adsorption of these metals by pipe corrosion scales occurred. Increasing DO within a certain range could significantly inhibit the iron release.
Velasco, Antonio; Ramírez, Martha; Hernández, Sergio; Schmidt, Winfried; Revah, Sergio
2012-03-15
Single Cr(VI) reduction and coupled reduction/stabilization (R/S) processes were evaluated at pilot scale to determine their effectiveness to treat chromite ore processing residue (COPR). Sodium sulfide was used as the reducing agent and cement, gypsum and lime were tested as the stabilizing agents. The pilot experiments were performed in a helical ribbon blender mixer with batches of 250 kg of COPR and mixing time up to 30 min. Na2S/Cr(VI) mass ratios of 4.6, 5.7 and 6.8 were evaluated in the single reduction process to treat COPR with Cr(VI) concentration of ≈4.2 g/kg. The R/S process was tested with a Na2S/Cr(VI) mass ratio of 5.7 and including stabilizing agents not exceeding 5% (w/w(COPR)), to treat COPR with a Cr(VI) content of ≈5.1g/kg. The single reduction process with a ratio of 6.8, reached Cr(VI) reduction efficiencies up to 97.6% in the first days, however these values decreased to around 93% after 380 days of storage. At this point the total Cr level was around 12.5 mg/L. Cr(VI) removal efficiencies exceeding 96.5% were reached and maintained during 380 days when the coupled R/S process was evaluated. Total Cr levels lower than 5 mg/l were attained at the initials days in all R/S batch tested, however after 380 days, concentrations below the regulatory limit were only found with gypsum (2%) as single agent and with a blend of cement (4%) and lime (1%). These results indicated that the coupled R/S process is an excellent alternative to stabilize COPR. Copyright © 2011 Elsevier B.V. All rights reserved.
Shih, Chiu-Ming; Lai, Jui-Jen; Chang, Chin-Ching; Chen, Cheng-Sheng; Yeh, Yi-Chun; Jaw, Twei-Shiun; Hsu, Jui-Sheng; Li, Chun-Wei
2017-03-15
The purpose of this study was to compare brain metabolite concentration ratios determined by LCModel and Spectroscopy Analysis by General Electric (SAGE) quantitative methods to elucidate the advantages and disadvantages of each method. A total of 10 healthy volunteers and 10 patients with mild cognitive impairment (MCI) were recruited in this study. A point-resolved spectroscopy (PRESS) sequence was used to obtain the brain magnetic resonance spectroscopy (MRS) spectra of the volunteers and patients, as well as the General Electric (GE) MRS-HD-sphere phantom. The brain metabolite concentration ratios were estimated based on the peak area obtained from both LCModel and SAGE software. Three brain regions were sampled for each volunteer or patient, and 20 replicates were acquired at different times for the phantom analysis. The metabolite ratios of the GE phantom were estimated to be myo-inositol (mI)/creatine (Cr): 0.70 ± 0.01, choline (Cho)/Cr: 0.37 ± 0.00, N-acetylaspartate (NAA)/Cr: 1.26 ± 0.02, and NAA/mI: 1.81 ± 0.04 by LCModel, and mI/Cr: 0.88 ± 0.15, Cho/Cr: 0.35 ± 0.01, NAA/Cr: 1.33 ± 0.03, and NAA/mI: 1.55 ± 0.26 by SAGE. In the healthy volunteers and MCI patients, the ratios of mI/Cr and Cho/Cr estimated by LCModel were higher than those estimated by SAGE. In contrast, the ratio of NAA/Cr estimated by LCModel was lower than that estimated by SAGE. Both methods were acceptable in estimating brain metabolite concentration ratios. However, LCModel was marginally more accurate than SAGE because of its full automation, basis set, and user independency.
Investigation of hexavalent chromium sorption in serpentine sediments
NASA Astrophysics Data System (ADS)
Mpouras, Thanasis; Chrysochoou, Maria; Dermatas, Dimitris
2017-02-01
In this study the removal of hexavalent chromium (Cr6 +) by serpentine sediments was investigated in order to delineate Cr6 + sorption behavior in aquifers with ultramafic geologic background. Batch experiments were conducted in order to determine the influence of several parameters on Cr6 + removal, including the pH of the sediment solution, mineralogy, sediment's particle size and Cr6 + initial concentration. The results showed that Cr6 + removal was due to both adsorption and reduction phenomena. Reduction was attributed to the presence of a magnetic fraction in the sediment, mostly related to magnetite, which contributed almost 50% of the total removal in the pH range 3-7. Adsorption behavior was dominated by the finer sediment fraction (d < 0.075 mm). The amount of Cr6 + adsorbed was constant in the pH range 3-7, while it decreased sharply in the range 7-8.5. Cr6 + adsorption was found to increase and decrease proportionally with increasing initial Cr6 + concentration of and particle size, respectively. The linear Langmuir and Freundlich adsorption isotherms were used to describe the experimental data, with Freundlich providing a better fit to determine distribution factors for transport modeling.
NASA Astrophysics Data System (ADS)
Zarazua, G.; Ávila-Pérez, P.; Tejeda, S.; Barcelo-Quintal, I.; Martínez, T.
2006-11-01
The present area of study is located in the Upper Course of the Lerma River (UCLR). The Lerma is one of the most important rivers of Mexico, where it drains highly populated and industrialized regions. The aim of the present study is to determine the heavy metal concentration of Cr, Mn, Fe, Cu and Pb in dissolved and total phases of the UCLR by means of Total Reflection X-ray Fluorescence Spectrometry (TXRF). The surface water samples were collected at 8 sites distributed following the stream flow direction of the river. Four sampling campaigns were carried out in each site in a 1-year period. A sample preparation method was applied in order to obtain the total and dissolved fraction and to destroy the organic matter. The total heavy metal average concentration decrease in the following order: Fe (2566 μg/L) > Mn (300 μg/L) > Cu (66 μg/L) > Cr (21 μg/L) > Pb (15 μg/L). In general, the heavy metal concentrations in water of the UCLR are below the maximum permissible limits.
Farid, Mujahid; Ali, Shafaqat; Rizwan, Muhammad; Ali, Qasim; Abbas, Farhat; Bukhari, Syed Asad Hussain; Saeed, Rashid; Wu, Longhua
2017-11-01
Soil and water contamination from heavy metals and metalloids is one of the most discussed and burning global issues due to its potential to cause the scarcity of healthy food and safe water. The scientific community is proposing a range of lab and field based physical, chemical and biological solutions to remedy metals and metalloids contaminated soils and water. The present study finds out a possibility of Chromium (Cr) extraction by sunflower from spiked soil under chelating role of citric acid (CA). The sunflower plants were grown under different concentrations of Cr (0, 5, 10 & 20mgkg -1 ) and CA (0, 2.5 & 5mM). Growth, biomass, gas exchange, photosynthesis, electrolyte leakage (EL), reactive oxygen species (ROS; malondialdehyde (MDA), hydrogen peroxide (H 2 O 2 ) and the activities of antioxidant enzymes such as, superoxide dismutase (SOD), guaiacole values peroxidase (POD), ascorbate peroxidase (APX), catalase (CAT) were measured. The results depicted a clear decline in plant height, root length, leaf area, number of leaves and flowers per plant along with fresh and dry biomass of all parts of plant with increasing concentration of Cr in soil. Similar reduction was observed in chlorophyll a and b, total chlorophyll, carotenoids, soluble protein, gas exchange attributes and SPAD. The increasing concentration of Cr also enhanced the Cr uptake and accumulation in plant roots, stem and leaves along with the production of ROS and EL. The activities of antioxidant enzymes increased with increasing Cr concentration from 0 to 10mg, but decreased at 20mgkg -1 soil. The CA application significantly alleviated Cr-induced inhibition of plant growth, biomass, photosynthesis, gas exchange, soluble proteins and SPAD value. Presence of CA also enhanced the activities of all antioxidant enzymes and reduced the production of ROS and EL. The chelating potential of CA increased the concentration and accumulation of Cr in plant roots, stem and leaves. It is concluded that the sunflower can be a potential candidate for the remediation of Cr under CA treatment, while the possibility may vary with genotype, Cr level and CA concentration. Copyright © 2017 Elsevier Inc. All rights reserved.
Andrews, Rebecca E; Shah, Karan M; Wilkinson, J Mark; Gartland, Alison
2011-10-01
Metal-on-metal hip replacement (MOMHR) using large diameter bearings has become a popular alternative to conventional total hip arthroplasty, but is associated with elevated local tissue and circulating levels of chromium (Cr) and cobalt (Co) ions that may affect bone health. We examined the effects of acute and chronic exposure to these metals on human osteoblast and osteoclast formation and function over a clinically relevant concentration range previously reported in serum and within hip synovial fluid in patients after MOMHR. SaOS-2 cells were cultured with Co(2+), Cr(3+) and Cr(6+) for 3 days after which an MTS assay was used to assess cell viability, for 13 days after which alkaline phosphatase and cell viability were assessed and for 21 days after which nodule formation was assessed. Monocytes were isolated from human peripheral blood and settled onto dentine disks then cultured with M-CSF and RANKL plus either Co(2+), Cr(3+) or Cr(6+) ions for 21 days from day 0 or between days 14 and 21. Cells were fixed and stained for TRAP and osteoclast number and amount of resorption per dentine disk determined. Co(2+) and Cr(3+) did not affect osteoblast survival or function over the clinically equivalent concentration range, whilst Cr(6+) reduced osteoblast survival and function at concentrations within the clinically equivalent serum range after MOMHR (IC(50) =2.2 μM). In contrast, osteoclasts were more sensitive to metal ions exposure. At serum levels a mild stimulatory effect on resorption in forming osteoclasts was found for Co(2+) and Cr(3+), whilst at higher serum and synovial equivalent concentrations, and with Cr(6+), a reduction in cell number and resorption was observed. Co(2+) and Cr(6+) within the clinical range reduced cell number and resorption in mature osteoclasts. Our data suggest that metal ions at equivalent concentrations to those found in MOMHR affect bone cell health and may contribute to the observed bone-related complications of these prostheses. Copyright © 2011 Elsevier Inc. All rights reserved.
Banerjee, Soumya; Joshi, S R; Mandal, Tamal; Halder, Gopinath
2017-01-01
A microbial treatment of Cr 6+ contaminated wastewater with a chromium reducing bacteria isolated from coal mine area was investigated. In a series of batch study metal removal was executed under different parametric conditions which include pH (2-7), temperature (20-50 °C), initial Cr 6+ concentration (1-100 mg/L), substrate utilization and its overall effect on biomass generation. Impact of oxygen availability was checked at different agitation speed and its role on the remedial process. Liquid phase reduction of Cr 6+ was measured in terms of substrate reduction and total biomass yield. The bacterium species isolated was able to tolerate Cr 6+ over a wide range from 1 to 100 mg/L before it reached minimum inhibition concentration. Apart from Cr 6+ , the bacterial isolate showed tolerance towards Fe, As, Cu, Ag, Zn, Mn, Mg and Pb. Removal mechanism adopted by the bacterium recommended that it employed accumulation of Cr 6+ as Cr 3+ both within and outside the cell. Classical Monod equation was used to determine the biokinetics of the bacterial isolate along with the interference of metal ion concentration and substrate utilization. Cr 6+ removal was found prominent even in bimetallic solutions. The bacterial isolate was confirmed to be Rhodococcus erythopolis by 16s rRNA molecular characterization. Thus the bacterial isolate obtained from the coal mine area proved to be a potential agent for microbial remediation of Cr 6+ laden waste water. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lukanova, A; Toniolo, P; Zhitkovich, A; Nikolova, V; Panev, T; Popov, T; Taioli, E; Costa, M
1996-01-01
The relationships between chromium (Cr) levels in lymphocytes, erythrocytes, urine, and ambient air were compared among 14 chrome-platers from a metallurgic plant in Bulgaria and two groups of local controls, one from the same heavily polluted industrial town as the chrome-platers (n = 11) and one from a seaside resort town 100 km away (n = 6). Among the chrome-platers, the Cr concentration in peripheral lymphocytes was positively correlated with total Cr and Cr(VI) levels in ambient air and with Cr excretion in urine. As compared to the controls, the chrome-platers had mean Cr levels in lymphocytes twice as high, in erythrocytes ninefold higher, and in urine fourfold to eightfold higher. Although Cr levels in urine and lymphocytes were similar between the two control groups, levels in erythrocytes were 3 times higher among subjects from the industrial area than among those from the seaside town. The study suggests that lymphocyte Cr could be a good indicator of the Cr body burden caused by high exposures to Cr(VI), such as in electroplating operations. In these conditions, erythrocyte Cr may be less useful, possibly owing to increased toxicity due to the high affinity of erythrocytes for Cr. However, when exposure is lower, such as in most environmental situations, erythrocyte Cr should provide a better and more sensitive index than lymphocyte Cr. By contrast, urinary Cr, which provides information on total Cr exposure, including Cr(III) from dietary and environmental sources, does not seem to be of value for studying occupational exposure to Cr(VI).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du Preez, S. P.; Beukes, J. P.; Van Dalen, W. P. J.
The production of ferrochrome (FeCr) is a reducing process. However, it is impossible to completely exclude oxygen from all of the high-temperature production process steps, which may lead to unintentional formation of small amounts of Cr(VI). The majority of Cr(VI) is associated with particles found in the off-gas of the high-temperature processes, which are cleaned by means of venturi scrubbers or bag filter dust (BFD) systems. BFD contains the highest concentration of Cr(VI) of all FeCr wastes. In this study, the solubility of Cr(VI) present in BFD was determined by evaluating four different BFD samples. The results indicate that themore » currently applied Cr(VI) treatment strategies of the FeCr producer (with process water pH ≤ 9) only effectively extract and treat the water-soluble Cr(VI) compounds, which merely represented approximately 31% of the total Cr(VI) present in the BFD samples evaluated. Extended extraction time, within the afore-mentioned pH range, proved futile in extracting sparingly-soluble and water-insoluble Cr(VI) species, which represented approximately 34% and 35% of the total Cr(VI), respectively. Due to the deficiencies of the current treatment strategies, it is highly likely that sparingly water-soluble Cr(VI) compounds will leach from waste storage facilities (e.g. slimes dams) over time. Therefore, it is critical that improved Cr(VI) treatment strategies be formulated, which should be an important future perspective for FeCr producers and researchers alike.« less
Zhuang, Wen; Gao, Xuelu
2014-01-01
The total concentrations and chemical forms of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) in the surface sediments of the Laizhou Bay and the surrounding marine area of the Zhangzi Island (hereafter referred to as Zhangzi Island for short) were obtained and multiple indices and guidelines were applied to assess their contamination and ecological risks. The sedimentary conditions were fine in both of the two studied areas according to the marine sediment quality of China. Whereas the probable effects level guideline suggested that Ni might cause adverse biological effects to occur frequently in some sites. All indices used suggested that Cd posed the highest environmental risk in both the Laizhou Bay and the Zhangzi Island, though Cd may unlikely be harmful to human and ecological health due to the very low total concentrations. The enrichment factor (EF) showed that a substantial portion of Cr was delivered from anthropogenic sources, whereas the risk assessment code (RAC) indicated that most Cr was in an inactive state that it may not have any adverse effect either. Moreover, the results of EF and geoaccumulation index were consistent with the trend of the total metal concentrations except for Cd, while the results of RAC and potential ecological risk factor did not follow the same trend of their corresponding total metal concentrations. We also evaluated the effects of using different indices to assess the environmental impact of these heavy metals. PMID:24709993
Lages, Renata Bandeira; Bridi, Enrico Coser; Pérez, Carlos Alberto; Basting, Roberta Tarkany
2017-03-01
The purpose of this retrospective cohort study was to measure the salivary levels of nickel (Ni), chromium (Cr), iron (Fe) and copper (Cu) released from metal and esthetic fixed orthodontic appliances. Ninety patients were divided into three groups (n=30): control (those who had never undergone orthodontic treatment), metal appliance (stainless steel brackets and bands, and nitinol archwires) and esthetic appliance (polycarbonate brackets and tubes, and rhodium-coated nitinol archwires). Patients undergoing orthodontic treatment had used their appliances for periods between one and six months. Ni, Cr, Fe and Cu salivary concentrations were measured by the Total Reflection X-Ray Fluorescence technique. Kruskal-Wallis and Bonferroni-Dunn test showed that Ni (p=0.027) and Cr (p=0.040) concentrations were significantly higher for patients undergoing metallic orthodontic treatment than for the esthetic group. No significant difference regarding Ni and Cr (p=0.447) concentrations were observed between the metal and the control groups (p=0.464 and p=0.447, respectively) or between the esthetic and the control groups (p=0.698 and p=0.912, respectively). Ni and Cr concentrations were significantly influenced by the type of appliance used. Fe and Cu concentrations were not affected by the type or use of orthodontic appliances. Copyright © 2016 Elsevier GmbH. All rights reserved.
Alhidary, Ibrahim A; Alsofi, M A; Abdoun, K A; Samara, E M; Okab, A B; Al-Haidary, A A
2018-03-01
This study aimed to evaluate the effect of dietary chromium (Cr) supplementation on the apparent metabolism of some trace elements in camel calves reared under hot summer conditions. The study was conducted on a total of 15 male camel calves (5-6 months old) reared under hot summer conditions for 12 weeks. The animals were housed individually under shelter and divided into three dietary treatment groups (diets supplemented with 0.0, 0.5, or 1.0 mg Cr/kg DM), five animals each. At the end of the study, a metabolic trial was conducted on all camels for the evaluation of trace elements metabolism. Cr excretion, absorption, and retention showed an increasing trend with the increasing level of dietary Cr supplementation. Dietary Cr supplementation at 0.5 mg Cr/kg DM to camel calves resulted in a significant (P < 0.05) increase in Cu and an increasing trend in Zn and Mn excretion via urine and feces. However, Fe retention increased significantly (P < 0.05) in camel calves fed on diet supplemented with Cr. Dietary Cr supplementation to camel calves resulted in an increasing trend of plasma Cr concentration, while plasma concentration of Cu and Zn tended to decrease and without any effect on plasma Fe concentration. The results of the present study suggests that care should be taken for the negative interaction of Cr with the utilization of other trace elements, in cases where Cr is supplemented to the diet as a feed additive to promote growth and immunity under hot climatic conditions.
Golbabaei, F; Seyedsomea, M; Ghahri, A; Shirkhanloo, H; Khadem, M; Hassani, H; Sadeghi, N; Dinari, B
2012-01-01
Background: Welding can produce dangerous fumes containing various metals especially carcinogenic ones. Occupational exposure to welding fumes is associated with lung cancer. Therefore, welders in Gas Transmission Pipelines are known as a high-risk group. This study was designed to determinate the amounts of metals Cr, Ni, and Cd in breathing zone and urine of welders and to assess the possibility of introducing urinary metals as a biomarker due to occupational exposure. Methods: In this cross sectional study, 94 individuals from Gas Transmission Pipelines welders, Iran, Borujen in 2011 were selected and classified into 3 groups including Welders, Back Welders and Assistances. The sampling procedures were performed according to NIOSH 7300 for total chromium, nickel, and cadmium and NIOSH 7600 for Cr+6. For all participants urine samples were collected during the entire work shift and metals in urine were determined according to NIOSH 8310. Results: Back Welders and Assistances groups had maximum and minimum exposure to total fume and its elements, respectively. In addition, results showed that there are significant differences (P<0.05) between Welders and Back Welders with Assistances group in exposure with total fume and elements except Ni. Urinary concentrations of three metals including Cr, Cd and Ni among all welders were about 4.5, 12 and 14-fold greater than those detected in controls, respectively. Weak correlations were found between airborne and urinary metals concentrations (R2: Cr=0.45, Cd=0.298, Ni=0.362). Conclusion: Urinary metals concentrations could not be considerate as a biomarker for welders’ exposure assessment. PMID:23113226
Golbabaei, F; Seyedsomea, M; Ghahri, A; Shirkhanloo, H; Khadem, M; Hassani, H; Sadeghi, N; Dinari, B
2012-01-01
Welding can produce dangerous fumes containing various metals especially carcinogenic ones. Occupational exposure to welding fumes is associated with lung cancer. Therefore, welders in Gas Transmission Pipelines are known as a high-risk group. This study was designed to determinate the amounts of metals Cr, Ni, and Cd in breathing zone and urine of welders and to assess the possibility of introducing urinary metals as a biomarker due to occupational exposure. In this cross sectional study, 94 individuals from Gas Transmission Pipelines welders, Iran, Borujen in 2011 were selected and classified into 3 groups including Welders, Back Welders and Assistances. The sampling procedures were performed according to NIOSH 7300 for total chromium, nickel, and cadmium and NIOSH 7600 for Cr+6. For all participants urine samples were collected during the entire work shift and metals in urine were determined according to NIOSH 8310. Back Welders and Assistances groups had maximum and minimum exposure to total fume and its elements, respectively. In addition, results showed that there are significant differences (P<0.05) between Welders and Back Welders with Assistances group in exposure with total fume and elements except Ni. Urinary concentrations of three metals including Cr, Cd and Ni among all welders were about 4.5, 12 and 14-fold greater than those detected in controls, respectively. Weak correlations were found between airborne and urinary metals concentrations (R2: Cr=0.45, Cd=0.298, Ni=0.362). Urinary metals concentrations could not be considerate as a biomarker for welders' exposure assessment.
Equeenuddin, Sk Md; Pattnaik, Binaya Kumar
2017-10-01
The Sukinda ultramafic complex in Odisha has the largest chromite reserve in India. Sediment derived from ultramafic rocks has been enriched with various metals. Further, mining activities enhance the influx of metals into sediment by dumping mine overburden and tailings in the open area. Metal concentration in sediment is found in order of Cr Total (Cr) > Mn > Ni > Co > Zn > Cu with average concentration 26,778 mg/kg, 3098 mg/kg, 1813 mg/kg, 184 mg/kg, 116 mg/kg and 44 mg/kg respectively. Concentration of Cr(VI) varies from 5.25 to 26.47 mg/L with an average of 12.27 mg/L. Based on various pollution indices, it is confirmed that the area is severely contaminated. Nano-scale goethite, kaolinite, clinochlore and chromite have been identified and have high concentration of Cr, Co and Ni. Goethite has shown maximum metal retention potential as deciphered by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The HAADF-STEM mapping and principal component analysis indicate that Cr and Co mostly derived from chromite whereas Ni and Zn are derived from serpentine. Later, these metals co-precipitate and/or adsorbed onto the goethite and clay minerals. Fractionation study of metals confirms that Cu is the most mobile element followed by Zn. However, at low pH condition Ni is mobilized and likely to be bioavailable. Though Cr mostly occurs in residual fraction but as its concentration is very high, a small proportion of exchangeable fraction contributes significantly in terms of its bioavailability. Thus bioavailable Cr can pose severe threat to the environment in the Sukinda ultramafic complex. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Kundi; Li, Fuli
2011-05-01
A novel bacterium, Cr-10, was isolated from a chromium-contaminated site and capable of removing toxic chromium species from solution by reducing hexavalent chromium to an insoluble precipitate. Sequence analysis of 16S rRNA gene of strain Cr-10 showed that it was most closely related to Serratia rubidaea JCM 1240(T) (97.68%). Physiological and chemotaxonomic data also supported that strain Cr-10 was identified as Serratia sp., a genus which was never specially reported chromate-resistant before. Serratia sp., Cr-10 was tolerant to a concentration of 1,500 mg Cr(VI) L(-1), which was the highest level reported until now. The optimum pH and temperature for reduction of Cr(VI) by Serratia sp. Cr-10 were found to be 7.0 and 37 °C, respectively. The Cr(VI) reduction was significantly influenced by additional carbon sources, and among them fructose and lactose offered maximum reduction, with a rate of 0.28 and 0.25 mg Cr(VI) L(-1) h(-1), respectively. The cell-free extracts and filtrate of the culture were able to reduce Cr(VI) while concentration of total chromium remained stable in the process, indicating that the enzyme-catalyzed mechanism was applied in Cr(VI) reduction by the isolate. Additionally, it was found that there was hardly any chromium on the cell surface of the strain, further supporting that reduction, rather than bioadsorption, plays a major role in the Cr(VI) removal.
NASA Astrophysics Data System (ADS)
Pranoto; Sajidan; Suprapto, A.
2017-02-01
Chromium (Cr) concentration in water can be reduced by adsorption. This study aimed to determine the effect of Andisol soil composition/Bayat clay/husk ash, activation temperature and contact time of the adsorption capacity of Cr in the model solution; the optimum adsorption conditions and the effectiveness of ceramic filters and purifiers to reduce contaminant of Cr in the water. The mixture of Andisol soil, Bayat clay, and husk ash is used as adsorbent of metal ion of Cr(III) using batch method. The identification and characterisation of adsorbent was done with NaF test, infrared spectroscopy (FTIR), X-ray diffraction (XRD). Cr metal concentrations were analyzed by atomic absorption spectroscopy. Sorption isotherms determined by Freundlich equation and Langmuir. The optimum conditions of sorption were achieved at 150°C activation temperature, contact time of 30 minutes and a composition Andisol soil / Bayat clay / husk ash by comparison 80/10/10. The results show a ceramic filter effectively reduces total dissolved solids (TDS) and Chromium in the water with the percentage decrease respectively by 75.91% and 9.44%.
Bonilla, José Oscar; Callegari, Eduardo Alberto; Delfini, Claudio Daniel; Estevez, María Cristina; Villegas, Liliana Beatriz
2016-11-01
The purpose of this study was to investigate the influence of increasing sulfate concentrations on chromium removal, to evaluate the effect of the presence of Cr(VI) on sulfate removal by Streptomyces sp. MC1 and to analyze the differential protein expression profile in the presence of this metal for the identification of proteins repressed or overexpressed. In the presence of Cr(VI) but in the absence of sulfate ions, bacterial growth was negligible, showing the Cr(VI) toxicity for this bacterium. However, the sulfate presence stimulated bacterium growth and Cr(VI) removal, regardless of its concentrations. Streptomyces sp. MC1 showed ability to remove chromium and sulfate simultaneously. Also, the sulfate presence favored the decrease of total chromium concentration from supernatants reaching a decrease of 50% at 48 h. In presence of chromium, seven proteins were down-expressed and showed homology to proteins involved in protein biosynthesis, energy production and free radicals detoxification while two proteins involved in oxidation-reduction processes identified as dihydrolipoamide dehydrogenase and S-adenosyl-l-methionine synthase were overexpressed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guo, Lian-Xian; Zhang, Gui-Wei; Wang, Jia-Ting; Zhong, Yue-Ping; Huang, Zhi-Gang
2018-04-26
This study sought to determine the concentration and distribution of arsenic (As) species in Ophiocordyceps sinensis ( O. sinensis ), and to assess its edible hazard for long term consumption. The total arsenic concentrations, measured through inductively coupled plasma mass spectrometry (ICP-MS), ranged from 4.00 mg/kg to 5.25 mg/kg. As determined by HPLC-ICP-MS, the most concerning arsenic species—AsB, MMA V , DMA V , As V , and As Ш —were either not detected (MMA V and DMA V ) or were detected as minor As species (AsB: 1.4⁻2.9%; As V : 1.3⁻3.2%, and As Ш : 4.1⁻6.0%). The major components were a cluster of unknown organic As (uAs) compounds with As Ш , which accounted for 91.7⁻94.0% of the As content. Based on the H₂O₂ test and the chromatography behavior, it can be inferred that, the uAs might not be toxic organic As. Estimated daily intake ( EDI) , hazard quotient ( HQ ), and cancer risk ( CR ) caused by the total As content; the sum of inorganic As (iAs) and uAs, namely i+uAs; and iAs exposure from long term O. sinensis consumption were calculated and evaluated through equations from the US Environmental Protection Agency and the uncertainties were analyzed by Monte-Carlo Simulation (MCS). EDI total As and EDI i+uAs are approximately ten times more than EDI iAs ; HQ total As and HQ i+u As > 1 while HQ i As < 1; and CR total As and CR i+uAs > 1 × 10 −4 while CR iAs < 1 × 10 −4 . Thus, if the uAs is non-toxic, there is no particular risk to local consumers and the carcinogenic risk is acceptable for consumption of O. sinensis because the concentration of toxic iAs is very low.
How reliable are data for the ecotoxicity of trivalent chromium to Daphnia magna?
Ponti, Benedetta; Bettinetti, Roberta; Dossi, Carlo; Vignati, Davide Anselmo Luigi
2014-10-01
Risk assessments from the European Union and the World Health Organization report values for acute and chronic toxicity of Cr(III) to Daphnia magna in the range of 0.6 mg/L to 111 mg/L and 0.047 mg/L to 3.4 mg/L, respectively. To understand whether factors other than the use of different test media and data reporting contribute to this variability, the authors tested the acute (48-h) and chronic (21-d) toxicities of Cr(III) to D. magna according to Organisation for Economic Co-operation and Development (OECD) methods. Filterable (0.45-µm) chromium concentrations were measured at 0 h, 6 h, 24 h, and 48 h, the latter value corresponding to the total duration of the acute tests and to the interval between medium renewals in chronic tests. In highly alkaline media (4.9 meq/L), Cr concentrations decreased rapidly below the analytical detection limit, and no toxicity was observed. In less alkaline media (approximately 0.8 meq/L), the decrease in filterable Cr concentrations was inversely proportional to the quantity of added Cr(III). The authors concluded that existing data likely underestimate the ecotoxicity of Cr(III) to D. magna. A reliable assessment of the hazard of Cr(III) to D. magna must consider that exposure concentrations can decrease markedly from the beginning to the end of a test and that medium alkalinity strongly influences the outcome of laboratory toxicity tests. © 2014 SETAC.
Stanisławska, Magdalena; Janasik, Beata; Trzcinka-Ochocka, Małgorzata
2011-01-01
Occupational exposure to welding fumes is a known health hazard. The aim of this study was to determine concentrations of welding fumes components such as: iron, manganese, nickel and chromium (including chromium speciation) to assess exposure of stainless steel welders. The survey covered 14 workers of two metallurgic plants engaged in welding stainless steel (18% Cr and 8% Ni) by different techniques: manual metal arc (MMA), metal inert gas (MIG) and tungsten inert gas (TIG). Personal air samples were collected in the welders' breathing zone over a period of about 6-7 h (dust was collected on a membrane and glass filter) to determine time weighted average (TWA) concentration of welding fumes and its components. The concentrations of welding fumes (total particulate) were determined with use of the gravimetric method. Concentrations and welding fume components, such as: iron, manganese, nickel and chromium were determined by ICP-MS technique. The total hexavalent chromium was analyzed by applying the spectrophotometry method according to NIOSH. The water-soluble chromium species were analyzed by HPLC-ICP-MS. Time weighted average concentrations of the welding fumes and its components at the worker's breathing zone were (mg/m3): dust, 0.14-10.7; iron, 0.004-2.9; manganese, 0.001-1.12; nickel, < 0.001-0.2; and chromium <0.002-0.85 (mainly Cr(III) and insoluble Cr(VI)). The maximum admissible limits for workplace pollutants (TLV-TWA) were exceeded for manganese and for insoluble chromium Cr (VI). For Cr (III) the limit was exceeded in individual cases. The assessment of the workers' occupational exposure, based on the determined time weighted average (TWA) of fumes and their components, shows that the stainless steel welders worked in conditions harmful to their health owing to the significantly exceeded maximum admissible limits for manganese and the exceeded TLV value for insoluble chromium (VI).
Aqueous solubility of Cr(VI) compounds in ferrochrome bag filter dust and the implications thereof
Du Preez, S. P.; Beukes, J. P.; Van Dalen, W. P. J.; ...
2017-04-21
The production of ferrochrome (FeCr) is a reducing process. However, it is impossible to completely exclude oxygen from all of the high-temperature production process steps, which may lead to unintentional formation of small amounts of Cr(VI). The majority of Cr(VI) is associated with particles found in the off-gas of the high-temperature processes, which are cleaned by means of venturi scrubbers or bag filter dust (BFD) systems. BFD contains the highest concentration of Cr(VI) of all FeCr wastes. In this study, the solubility of Cr(VI) present in BFD was determined by evaluating four different BFD samples. The results indicate that themore » currently applied Cr(VI) treatment strategies of the FeCr producer (with process water pH ≤ 9) only effectively extract and treat the water-soluble Cr(VI) compounds, which merely represented approximately 31% of the total Cr(VI) present in the BFD samples evaluated. Extended extraction time, within the afore-mentioned pH range, proved futile in extracting sparingly-soluble and water-insoluble Cr(VI) species, which represented approximately 34% and 35% of the total Cr(VI), respectively. Due to the deficiencies of the current treatment strategies, it is highly likely that sparingly water-soluble Cr(VI) compounds will leach from waste storage facilities (e.g. slimes dams) over time. Therefore, it is critical that improved Cr(VI) treatment strategies be formulated, which should be an important future perspective for FeCr producers and researchers alike.« less
Xu, Weixing; Su, Jiansheng
2012-06-01
To study the interleukin-8 (IL-8) levels in gingival crevicular fluid (GCF) of porcelain teeth coated with Ni-Cr, Co-Cr or gold alloy at different time periods, and to uncover the degree of stimulation by these alloys on gingiva at different time periods. 45 cases of porcelain teeth coated with Ni-Cr, Co-Cr or gold alloy were selected randomly, with 15 cases in each group. Sandwich enzyme-linked immunosorbent assay (ELISA) was used to determine the concentration and total amount of IL-8 in GCF. The assay was done before treatment, as well as at 1, 3 and 6 months post-treatment. The total amounts of IL-8 and GCF volume in the Ni-Cr alloy coated porcelain teeth were higher in different time period than those before treatment (P<0.05). However, the IL-8 levels in Co-Cr and gold alloy coated porcelain teeth returned to pre-dental restoration after 3 months. Otherwise, the levels of IL-8 concentration in GCF showed no significant difference among the three different alloys coating at different time periods. IL-8 is an important cytokine during tissue inflammation. Therefore, the level of IL-8 in GCF is a useful criteria for the evaluation of stimulation degree on gingiva by different alloy coating materials in porcelain teeth. The clinical choice of different alloy coating for porcelain teeth should be considered accordingly.
Subsurface sediment contamination during borehole drilling with an air-actuated down-hole hammer.
Malard, Florian; Datry, Thibault; Gibert, Janine
2005-10-01
Drilling methods can severely alter physical, chemical, and biological properties of aquifers, thereby influencing the reliability of water samples collected from groundwater monitoring wells. Because of their fast drilling rate, air-actuated hammers are increasingly used for the installation of groundwater monitoring wells in unconsolidated sediments. However, oil entrained in the air stream to lubricate the hammer-actuating device can contaminate subsurface sediments. Concentrations of total hydrocarbons, heavy metals (Cu, Ni, Cr, Zn, Pb, and Cd), and nutrients (particulate organic carbon, nitrogen, and phosphorus) were measured in continuous sediment cores recovered during the completion of a 26-m deep borehole drilled with a down-hole hammer in glaciofluvial deposits. Total hydrocarbons, Cu, Ni, Cr and particulate organic carbon (POC) were all measured at concentrations far exceeding background levels in most sediment cores. Hydrocarbon concentration averaged 124 +/- 118 mg kg(-1) dry sediment (n = 78 samples) with peaks at depths of 8, 14, and 20 m below the soil surface (maximum concentration: 606 mg kg(-1)). The concentrations of hydrocarbons, Cu, Ni, Cr, and POC were positively correlated and exhibited a highly irregular vertical pattern, that probably reflected variations in air loss within glaciofluvial deposits during drilling. Because the penetration of contaminated air into the formation is unpreventable, the representativeness of groundwater samples collected may be questioned. It is concluded that air percussion drilling has strong limitations for well installation in groundwater quality monitoring surveys.
Μolla, A; Ioannou, Z; Mollas, S; Skoufogianni, E; Dimirkou, A
2017-03-01
The efficiency of natural minerals, i.e. zeolite, bentonite and goethite, regarding the retention of chromium, from maize was examined. Specifically, 1.0 kg of soil, 1.0 g of soil amendment and either 50 mg L -1 Cr(III) or 1 mg L -1 Cr(VI) were added in plant pots. Then, seeds of maize were cultivated. Each treatment was repeated three times. The statistical results of the experiments were analyzed by LSD test. Cr(III) addition in soil has shown that zeolite was the only amendment that increased the dry weight. Zeolite and bentonite reduced significantly the total chromium in plants after the addition of 50 mg L -1 Cr(III). The addition of Cr(VI) in soil has shown that bentonite was the only amendment that increased the dry weight of biomass and the plants' height. All soil amendments reduced to zero the total chromium concentration measured to plants after the addition of 1 mg L -1 Cr(VI).
NASA Astrophysics Data System (ADS)
El Rhazouani, O.; Benyoussef, A.
2018-01-01
Re-substitution doping by W has been investigated in the Double Perovskite (DP) Sr2CrRe1-xWxO6 for x ranging from 10 to 90% by using a Monte Carlo Simulation (MCS) in the framework of Ising model. Exchange couplings used in the simulation have been approximated in previous work for experimental Curie temperatures (TC). Doping effect on: partial and total magnetization, magnetic susceptibility, internal energy, specific heat, and Curie temperature has been studied. A sharp drop of partial magnetizations at 40% of W-concentration has been noticed at the magnetic transition. Apparition of a non-monotonic behavior of the total magnetization at 20% of W-concentration. Effect of doping on the stability of the compound has been emphasized. A quasilinear decrease of TC has been observed by increasing the concentration percentage of substitution doping by W.
Bassey, Francisca I; Oguntunde, Fehintola C; Iwegbue, Chukwujindu M A; Osabor, Vincent N; Edem, Christopher A
2014-01-01
The effects of culinary practices such as boiling, frying, and grilling on the proximate compositions and concentrations of metals (Cd, Pb, Cr, Zn, Fe, Cu, Mn, Ni, and Hg) in commonly consumed fish species from the Nigerian coastal waters were investigated. The selected fish species were Polydactylus quadratifilis, Chrysicthys nigrodigitatus and Cynoglossus senegalensis. The culinary practices lead to increased protein, fat, and ash contents and decreased moisture contents of these fish species. The culinary practices resulted significant increase in the concentrations of most of the studied metals and decrease in the concentrations of Fe, Cr, and Pb in some fish types. The concentrations and estimated dietary intakes of Cd, Pb, Cr, Zn, Fe, Cu, Mn, Ni, and Hg from consumption of the processed fish were within their statutory safe limits. The individual metal target hazard quotient (THQ) values and the total THQs were less than 1 which indicates that no health risks would arise from the long-term consumption of these fish species. PMID:24936297
Dennis, John H; French, Michael J; Hewitt, Peter J; Mortazavi, Seyed B; Redding, Christopher A J
2002-01-01
Hexavalent chromium [Cr(VI)] and ozone are produced in many arc-welding processes. Cr(VI) is formed when welding with chromium-containing alloys and is a suspected carcinogen. Ozone is formed by the action of ultraviolet light from the arc on oxygen and can cause severe irritation to the eyes and mucous membranes. Previous work has demonstrated that reduction of sodium and potassium in manual metal arc-welding electrodes leads to substantial reductions in Cr(VI) concentrations in the fume as well as a reduction in the fume formation rate. In this paper replacement of potassium by lithium in a tubular wire welding electrode (self-shielding flux-cored) is shown to give reductions in Cr(VI) concentrations and fume formation rates. Previous work has also demonstrated that use of a tubular wire (metal cored) containing 1% zinc can, under certain conditions, result in a reduction in Cr(VI) formation rate and in ozone concentration near the arc but with a rise in the total fume formation rate. The effects of different shield gases and different levels of zinc are examined. An experimental chromium-containing tubular wire with 1% zinc was used with the following shield gases: argon, Argoshield 5, Argoshield 20, Helishield 101, Ar + 2% CO2, Ar + 5% CO2, Ar + 1% O2 and Ar + 2% O2. The wire gave > 98% reduction in Cr(VI) formation rate compared to the control wire provided the shield gas contained no oxygen. When the shield gas did contain oxygen, 1% zinc enhanced Cr(VI) formation rate, resulting in more than double the rates measured when welding with the control wire. Experiments with zinc concentrations, from 0.018 to 0.9% using Helishield 101, gave results indicating that there is an optimum zinc concentration from the point of view of Cr(VI) reduction. Implications of the use of lithium or zinc on the overall exposure risk are discussed.
Massas, Ioannis; Kalivas, Dionisios; Ehaliotis, Constantions; Gasparatos, Dionisios
2013-08-01
The Thriassio plain is located 25 km west of Athens city, the capital of Greece. Two major towns (Elefsina and Aspropyrgos), heavy industry plants, medium to large-scale manufacturing, logistics plants, and agriculture comprise the main land uses of the studied area. The aim of the present study was to measure the total and available concentrations of Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe in the top soils of the plain, and to asses soil contamination by these metals by using the geoaccumulation index (I geo), the enrichment factor (EF), and the availability ratio (AR) as soil pollution indexes. Soil samples were collected from 90 sampling sites, and aqua regia and DTPA extractions were carried out to determine total and available metal forms, respectively. Median total Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe concentrations were 78, 155, 81, 112, 24, 321, 834, 38, and 16 × 10(3) mg kg(-1), respectively. The available fractions showed much lower values with medians of 0.4, 5.6, 1.7, 6.9, 0.8, 5.7, 19.8, 2.1, and 2.9 mg kg(-1). Though median total metal concentrations are not considered as particularly high, the I geo and the EF values indicate moderate to heavy soil enrichment. For certain metals such as Cr, Ni, Cu, and Ba, the different distribution patterns between the EFs and the ARs suggest different origin of the total and the available metal forms. The evaluation of the EF and AR data sets for the soils of the two towns further supports the argument that the EFs can well demonstrate the long-term history of soil pollution and that the ARs can adequately portray the recent history of soil pollution.
Magnetic resonance spectroscopy in mild cognitive impairment: systematic review and meta-analysis.
Tumati, Shankar; Martens, Sander; Aleman, André
2013-12-01
Research using proton magnetic resonance spectroscopy (MRS) can potentially elucidate metabolite changes representing early degeneration in Mild Cognitive Impairment (MCI), an early stage of dementia. We integrated the published literature using meta-analysis to identify patterns of metabolite changes in MCI. 29 MRS studies (with a total of 607 MCI patients and 862 healthy controls) were classified according to brain regions. Hedges' g was used as effect size in a random effects model. N-Acetyl Aspartate (NAA) measures were consistently reduced in posterior cingulate (PC), hippocampus, and the paratrigonal white matter (PWM). Creatine (Cr) concentration was reduced in the hippocampus and PWM. Choline (Cho) concentration was reduced in the hippocampus while Cho/Cr ratio was raised in the PC. Myo-inositol (mI) concentration was raised in the PC and mI/Cr ratio was raised in the hippocampus. NAA/mI ratio was reduced in the PC. NAA may be the most reliable marker of brain dysfunction in MCI though mI, Cho, and Cr may also contribute towards this. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhao, M M; Gao, T; Zhang, L; Li, J L; Lv, P A; Yu, L L; Gao, F; Zhou, G H
2017-09-01
We investigated the effects of in ovo feeding (IOF) of creatine pyruvate (CrPyr) on energy reserves, satellite cell mitotic activity (SCMA) and myogenic gene expression in breast muscle of embryos and neonatal broilers. A total of 960 eggs were randomly allocated into three treatments: 1) non-injected control group, 2) saline group injected with 0.6 mL of physiological saline (0.75%), and 3) CrPyr group injected with 0.6 mL of physiological saline (0.75%) containing 12 mg CrPyr/egg at 17.5 d of incubation. After hatching, a total of 120 male chicks were randomly assigned to each treatment group, with eight replicate sets per group. Selected chicks had body BW close to the average of their pooled group. Our results showed that the total and relative breast muscle weights of broilers subjected to CrPyr treatment were higher than those in the control and saline groups on 19 d of incubation (19 E), the day of hatch, 3 and 7 d post-hatch (P < 0.05). The myofiber diameter and cross-sectional area of individuals in the CrPyr group were higher than those in other treatments on 3 and 7 d post-hatch (P < 0.05). Moreover, IOF of CrPyr increased (P < 0.05) creatine concentrations on 19 E, the day of hatch and 3 d post-hatch, the same treatment increased phosphocreatine concentrations on 19 E. Broilers in the CrPyr group showed higher expression of myogenic differentiation 1 (MyoD) (P < 0.05), myogenin and paired box 7 (Pax7), as well as higher index of SCMA on 3 d post-hatch. However, myostatin mRNA expression in CrPyr-treated broilers was down-regulated on 3 d post-hatch (P < 0.05). These results indicated that IOF of CrPyr increased energy reserves of embryos and SCMA of broilers on 3 d post-hatch, which led to enhanced muscle growth in the late embryos and neonatal broilers. Additionally, IOF of CrPyr increased the activity of satellite cells possibly through up-regulating MyoD, myogenin, and Pax7 mRNA expression and down-regulating myostatin mRNA expression. © 2017 Poultry Science Association Inc.
Kim, Young Mo; Park, Hongkeun; Chandran, Kartik
2016-04-01
The goal of this study was to investigate the responses in the physiology, microbial ecology and gene expression of nitrifying bacteria to imposition of and recovery from Cr(VI) loading in a lab-scale nitrification bioreactor. Exposure to Cr(VI) in the reactor strongly inhibited nitrification performance resulting in a parallel decrease in nitrate production and ammonia consumption. Cr(VI) exposure also led to an overall decrease in total bacterial concentrations in the reactor. However, the fraction of ammonia oxidizing bacteria (AOB) decreased to a greater extent than the fraction of nitrite oxidizing bacteria (NOB). In terms of functional gene expression, a rapid decrease in the transcript concentrations of amoA gene coding for ammonia oxidation in AOB was observed in response to the Cr(VI) shock. In contrast, transcript concentrations of the nxrA gene coding for nitrite oxidation in NOB were relatively unchanged compared to Cr(VI) pre-exposure levels. Therefore, Cr(VI) exposure selectively and directly inhibited activity of AOB, which indirectly resulted in substrate (nitrite) limitation to NOB. Significantly, trends in amoA expression preceded performance trends both during imposition of and recovery from inhibition. During recovery from the Cr(VI) shock, the high ammonia concentrations in the bioreactor resulted in an irreversible shift towards AOB populations, which are expected to be more competitive in high ammonia environments. An inadvertent impact during recovery was increased emission of nitrous oxide (N2O) and nitric oxide (NO), consistent with recent findings linking AOB activity and the production of these gases. Therefore, Cr(VI) exposure elicited multiple responses on the microbial ecology, gene expression and both aqueous and gaseous nitrogenous conversion in a nitrification process. A complementary interrogation of these multiple responses facilitated an understanding of both direct and indirect inhibitory impacts on nitrification. Copyright © 2016 Elsevier Ltd. All rights reserved.
Marshall, Julian D; Apte, Joshua S; Coggins, Jay S; Goodkind, Andrew L
2015-12-15
The largest U.S. environmental health risk is cardiopulmonary mortality from ambient PM2.5. The concentration-response (C-R) for ambient PM2.5 in the U.S. is generally assumed to be linear: from any initial baseline, a given concentration reduction would yield the same improvement in health risk. Recent evidence points to the perplexing possibility that the PM2.5 C-R for cardiopulmonary mortality and some other major endpoints might be supralinear: a given concentration reduction would yield greater improvements in health risk as the initial baseline becomes cleaner. We explore the implications of supralinearity for air policy, emphasizing U.S. If C-R is supralinear, an economically efficient PM2.5 target may be substantially more stringent than under current standards. Also, if a goal of air policy is to achieve the greatest health improvement per unit of PM2.5 reduction, the optimal policy might call for greater emission reductions in already-clean locales-making "blue skies bluer"-which may be at odds with environmental equity goals. Regardless of whether the C-R is linear or supralinear, the health benefits of attaining U.S. PM2.5 levels well below the current standard would be large. For the supralinear C-R considered here, attaining the current U.S. EPA standard, 12 μg m(-3), would avert only ~17% (if C-R is linear: ∼ 25%) of the total annual cardiopulmonary mortality attributable to PM2.5.
Wu, Ting; Li, Xiaoping; Yang, Tao; Sun, Xuemeng; Cai, Yue; Ai, Yuwei; Zhao, Yanan; Liu, Dongying; Zhang, Xu; Li, Xiaoyun; Wang, Lijun; Yu, Hongtao
2017-01-01
The purpose of this study was to identify the concentration of multi-elements (MEs) in source water (surface and drinking water) and assess their quality for sustainability. A total of 161 water samples including 88 tap drinking waters (DW) and 73 surface waters (SW) were collected from five cities in Xi’an, Yan’an, Xining, Lanzhou, and Urumqi in northwestern China. Eighteen parameters including pH, electrical conductivity (EC), total organic carbon (TOC) total nitrogen (TN), chemical compositions of anions (F−, Cl−, NO3−, HCO3−, SO42−), cations (NH4+, K+, Na+, Ca2+, Mg2+), and metals (lead (Pb), chromium (Cr), cadmium (Cd), copper (Cu)) were analyzed in the first time at the five cities . The results showed that pH values and concentrations of Cl−, SO42−, Na+, K+, Ca2+, Mg2+ and Cd, Cr, Cu in DW were within the permissible limits of the Chinese Drinking Water Quality Criteria, whereas the concentrations of other ions (F−, NO3−, NH4+ and Pb) exceeded their permissible values. In terms of the SW, the concentrations of F−, Cl−, NO3−, SO42− were over the third range threshold i.e., water suitable for fishing and swimming of the Surface Water Quality Standards in China. The spatial distributions of most MEs in source water are similar, and there was no clear variation for all ions and metals. The metals in DW may be caused by water pipes, faucets and their fittings. The noncarcinogenic risk of metals in DW for local children are in decreasing order Cr > Cd > Pb > Cu. The carcinogenic risk from Cr exposure was at the acceptable level according to threshold of USEPA. Although the comprehensive index of potential ecological assessment of Cr, Cd, Pb and Cu in SW ranked at low risk level and was in the order of Huang River in Xining > Peaceful Canal in Urumqi > Yan River in Yan’an > Yellow River in Lanzhou, their adverse effects to ecology and human health at a low concentration in local semi-arid and arid areas should not be ignored in the long run. PMID:28974043
Wu, Ting; Li, Xiaoping; Yang, Tao; Sun, Xuemeng; Mielke, Howard W; Cai, Yue; Ai, Yuwei; Zhao, Yanan; Liu, Dongying; Zhang, Xu; Li, Xiaoyun; Wang, Lijun; Yu, Hongtao
2017-10-02
The purpose of this study was to identify the concentration of multi-elements (MEs) in source water (surface and drinking water) and assess their quality for sustainability. A total of 161 water samples including 88 tap drinking waters (DW) and 73 surface waters (SW) were collected from five cities in Xi'an, Yan'an, Xining, Lanzhou, and Urumqi in northwestern China. Eighteen parameters including pH, electrical conductivity (EC), total organic carbon (TOC) total nitrogen (TN), chemical compositions of anions (F - , Cl - , NO₃ - ,HCO₃ - , SO₄ 2- ), cations (NH₄⁺, K⁺, Na⁺, Ca 2+ ,Mg 2+ ), and metals (lead (Pb), chromium (Cr), cadmium (Cd), copper (Cu)) were analyzed in the first time at the five cities . The results showed that pH values and concentrations of Cl - , SO₄ 2- , Na⁺, K⁺, Ca 2+ , Mg 2+ and Cd, Cr, Cu in DW were within the permissible limits of the Chinese Drinking Water Quality Criteria, whereas the concentrations of other ions (F - , NO₃ - , NH₄⁺ and Pb) exceeded their permissible values. In terms of the SW, the concentrations of F - , Cl - , NO₃ - , SO₄ 2- were over the third range threshold i.e., water suitable for fishing and swimming of the Surface Water Quality Standards in China. The spatial distributions of most MEs in source water are similar, and there was no clear variation for all ions and metals. The metals in DW may be caused by water pipes, faucets and their fittings. The noncarcinogenic risk of metals in DW for local children are in decreasing order Cr > Cd > Pb > Cu. The carcinogenic risk from Cr exposure was at the acceptable level according to threshold of USEPA. Although the comprehensive index of potential ecological assessment of Cr, Cd, Pb and Cu in SW ranked at low risk level and was in the order of Huang River in Xining > Peaceful Canal in Urumqi > Yan River in Yan'an > Yellow River in Lanzhou, their adverse effects to ecology and human health at a low concentration in local semi-arid and arid areas should not be ignored in the long run.
Blood Parameters and Toxicity of Chromium Picolinate Oral Supplementation in Lambs.
Dallago, Bruno Stéfano Lima; Braz, ShélidaVasconcelos; Marçola, Tatiana Guerrero; McManus, Concepta; Caldeira, Denise Ferreira; Campeche, Aline; Gomes, Edgard Franco; Paim, Tiago Prado; Borges, Bárbara Oliveira; Louvandini, Helder
2015-11-01
The effects of oral supplementation of chromium picolinate (CrPic) on various blood parameters and their possible toxicity on the liver, kidneys, lungs, heart, and testis were investigated. Twenty-four Santa Inês (SI) lambs were treated with four different concentrations of CrPic (six animals/treatment): placebo, 0.250, 0.375, and 0.500 mg CrPic/animal/day for 84 days. The basal diet consisted of hay Panicum maximum cv Massai and concentrate. Blood and serum were collected fortnightly for analysis. On day 84, the animals were euthanized, and histopathological analysis in the liver, kidney, heart, lung, and testis was made. The liver and kidney were also submitted to electronic microscopy analysis. Differences between treatments (P < 0.05) were observed for packed cell volume (day 84), hemoglobin (day 84), total plasm protein (day 56 and day 84), and triglycerides (day 70). There was no statistically significant relationship between Cr supplementation and histopathology findings, although some animals treated with supplementary Cr showed morphological changes in the liver, kidney, and testis. Thus, the effectiveness of supplementation with Cr remains in doubt as to its physiological action and toxicity in sheep.
Bahadur, Ali; Ahmad, Rizwan; Afzal, Aftab; Feng, Huyuan; Suthar, Vishandas; Batool, Asfa; Khan, Aman; Mahmood-Ul-Hassan, Muhammad
2017-07-01
Chromium contamination of agronomic soil has to turn into a serious global problem. This research was pointed to assess the effects of three Cr-tolerant rhizobacteria (SS1, SS3, and SS6) on sunflower growth and heavy metal uptake under Cr smog i.e. 20, 30 and 40 ppm using K 2 Cr 2 O 7 . Root promotion assay and pot experiment were conducted to investigate and evaluate the effects of Cr tolerance rhizobacteria and Cr accumulation capacity of sunflower. From root promotion assay non-significant variation was observed in the root length between SS1 and SS3 compared with un-inoculated whereas SS6 enhanced the root length in the absence and presence of chromium. In addition, inoculation with rhizobacteria alleviated the Cr concentration and endorsed plant growth by enhancing Cr accumulation in sunflower. At different Cr levels, the Cr concentration in shoot was improved by each rhizobacterium though their difference was non-significant with each other, while the percentage increase was half as the Cr level doubled. Different rhizobacterium inoculation significantly (P < 0.05) affected the physiological and morphological characteristics of sunflower and increased the plant height, stem diameter, head diameter, grain yield, oil content of seeds, and total biomass, and among them, SS6 observed best followed by SS1 and SS3 comparing with un-inoculated. Our study illustrates an assessment about Cr-tolerant bacteria and their influences and recommends that these bacteria can effectively be used for crop improvement which provides a potential approach for Cr phytoremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Acid volatile sulfide and bioaccumulation of Cr in sediments from a municipal polluted river].
Li, Feng; Wen, Yan-Mao; Zhu, Ping-Ting; Jin, Hui; Song, Wei-Wei; Dai, Rui-Zhi
2009-03-15
Samples of sediment, overlying water, pore water, and benthic invertebrate were collected at 13 stations along a typical municipal polluted river in the Pearl River Delta. The samples were analyzed to study relationships between acid volatile sulfide (AVS) versus Cr(III) and Cr(VI) in sediment, overlying water, and pore water as well as Cr in Limnodrilus sp.. Based on the "Cr hypothesis", the relationship between AVS and bioavailability of Cr in heavily polluted areas was explored to extend the utility of AVS measurements as sediment assessments. The mean value of total Cr in sediment was 329.57 mg/kg, which was 9.4 times of background value (35 mg/kg). The result indicated that the study area has been seriously polluted by Cr. The concentrations of Cr(VI) in sediment and overlying water were low, indicating that most of Cr was in the form of Cr(III). In the study area, the value of AVS was relatively high with an average value of 650.38 mg/kg, while Cr in the pore water was low with the average of 68.42 microg/L. Cr(VI) in the pore water was below the detection limit except at Z1 station. The range of Cr concentrations in Limnodrilus sp. was from 12.46 mg/kg to 38.99 mg/kg of dried weight, with the average of 25.85 mg/kg, which was higher than other similar results in the literature. The result showed that the amount of Cr accumulation in Limnodrilus sp. was significant. A further analysis showed a significant correlation between Cr in Limnodrilus sp. and Cr in the pore water (r = 0.614, p < 0.05). Since most of Cr in pore water was in the form of Cr(III), the toxicity of Cr(III) in pore water to organism can not be neglected in the heavily polluted river.
Haldar, Sudipto; Mondal, Souvik; Samanta, Saikat; Ghosh, Tapan Kumar
2009-11-01
The effects of supplemental chromium (Cr) as chromic chloride hexahydrate in incremental dose levels (0, 0.5, 1.0, and 1.5 mg/day for 240 days) on metabolism of nutrients and trace elements were determined in dwarf Bengal goats (Capra hircus, castrated males, average age 3 months, n = 24, initial mean body weight 6.4 +/- 0.22 kg). Live weight increased linearly (p < 0.05) with the level of supplemental Cr. Organic matter and crude protein digestibility, intake of total digestible nutrients, and retention of N (g/g N intake) increased (p < 0.05) in a dose-dependent linear manner. Serum cholesterol and tryacylglycerol concentrations changed inversely with the dose of supplemental Cr (p < 0.01). Supplemental Cr positively influenced retention of copper and iron (p < 0.05) causing linear increase (p < 0.01) in their serum concentrations. It was concluded that Cr supplementation may improve utilization of nutrients including the trace elements and may also elicit a hypolidemic effect in goats. However, further study with regards to optimization of dose is warranted.
Trace elements in fish from Taihu Lake, China: levels, associated risks, and trophic transfer.
Hao, Ying; Chen, Liang; Zhang, Xiaolan; Zhang, Dongping; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo
2013-04-01
Concentrations of eight trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr), mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As)] were measured in a total of 198 samples covering 24 fish species collected from Taihu Lake, China, in September 2009. The trace elements were detected in all samples, and the total mean concentrations ranged from 18.2 to 215.8 μg/g dw (dry weight). The concentrations of the trace elements followed the sequence of Zn>Fe>Mn>Cr>As>Hg>Pb>Cd. The measured trace element concentrations in fish from Taihu Lake were similar to or lower than the reported values in fish around the world. The metal pollution index was used to compare the total trace element accumulation levels among various species. Toxabramis swinhonis (1.606) accumulated the highest level of the total trace elements, and Saurogobio dabryi (0.315) contained the lowest. The concentrations of human non-essential trace elements (Hg, Cd, Pb, and As) were lower than the allowable maximum levels in fish in China and the European Union. The relationships between the trace element concentrations and the δ(15)N values of fish species were used to investigate the trophic transfer potential of the trace elements. Of the trace elements, Hg might be biomagnified through the food chain in Taihu Lake if the significant level of p-value was set at 0.1. No biomagnification and biodilution were observed for other trace elements. Copyright © 2012 Elsevier Inc. All rights reserved.
Synchrotron-based analysis of chromium distributions in multicrystalline silicon for solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Mallory Ann; Hofstetter, Jasmin; Morishige, Ashley E.
Chromium (Cr) can degrade silicon wafer-based solar cell efficiencies at concentrations as low as 10(10) cm(-3). In this contribution, we employ synchrotron-based X-ray fluorescence microscopy to study chromium distributions in multicrystalline silicon in as-grown material and after phosphorous diffusion. We complement quantified precipitate size and spatial distribution with interstitial Cr concentration and minority carrier lifetime measurements to provide insight into chromium gettering kinetics and offer suggestions for minimizing the device impacts of chromium. We observe that Cr-rich precipitates in as-grown material are generally smaller than iron-rich precipitates and that Cri point defects account for only one-half of the total Crmore » in the as-grown material. This observation is consistent with previous hypotheses that Cr transport and CrSi2 growth are more strongly diffusion-limited during ingot cooling. We apply two phosphorous diffusion gettering profiles that both increase minority carrier lifetime by two orders of magnitude and reduce [Cr-i] by three orders of magnitude to approximate to 10(10) cm(-3). Some Cr-rich precipitates persist after both processes, and locally high [Cri] after the high-temperature process indicates that further optimization of the chromium gettering profile is possible. (C) 2015 AIP Publishing LLC.« less
Turgut, Cafer; Pepe, M Katie; Cutright, Teresa J
2005-02-01
The use of two EDTA concentrations for enhancing the bioavailability of cadmium, chromium, and nickel in three natural soils (Ohio, New Mexico and Colombia) was investigated. The resulting uptake, translocation and selectivity with Helianthus annuus after mobilization were also examined. In general, plants grown in the sandy-loam Ohio soil had a higher uptake that resulted in a selectivity and total metal content of Cd>Cr>Ni and 0.73 mg and Cr>Cd>Ni and 0.32 mg for 0.1 and 0.3 g kg-1 EDTA, respectively. With the silty-loam New Mexico soil, although the total metal uptake was not statistically different the EDTA level did alter the selectivity; Cd>Cr>Ni (0.1 g kg-1 EDTA) and Cd>Cr>Ni (0.3 g kg-1 EDTA). Conversely, with the Colombian (sandy clay loam) soil increasing the EDTA level resulted in a higher total metal uptake (0.62 mg) than the 0.1 g kg-1 (0.59 mg) treatment. For all three soils, the translocation of Cd was limited. Evaluating the mobile metal fraction with and without EDTA determined that the chelator was capable of overcoming mass transfer limitations associated with the expandable clay fraction in the soils. Root wash results and root biomass concentrations indicated that Cd sorption was occurring. Therefore limited Cd translocation was attributed to insufficient phytochelatin levels.
Qi, Peng; Yu, Shu-quan; Zhang, Chao; Liang, Li-cheng; Che, Ji-lu
2015-12-01
In order to understand the pollution characteristics of heavy metals in surface water sediments of Yongkang, we analyzed the concentrations of 10 heavy metals including Ti, Cr, Mn, Co, Ni, Cu, Zn, As, Pb and Fe in 122 sediment samples, explored the underlying source of heavy metals and then assessed the potential ecological risks of those metals by methods of the index of geo-accumulation and the potential ecological risk. The study results showed that: 10 heavy metal contents followed the order: Fe > Ti > Mn > Zn > Cr > Cu > Ph > Ni > As > Co, all heavy metals except for Ti were 1. 17 to 3.78 times higher than those of Zhejiang Jinhua- Quzhou basin natural soils background values; The concentrations of all heavy metals had a significantly correlation between each other, indicating that those heavy metals had similar sources of pollution, and it mainly came from industrial and vehicle pollutions; The pollution extent of heavy metals in sediments by geo-accumulation index (Igeo) followed the order: Cr > Zn > Ni > Cu > Fe > As > Pb >Mn > Ti, thereinto, Cr, Zn, Cu and Ni were moderately polluted or heavily polluted at some sampling sites; The potential ecological risk of 9 heavy metals in sediments were in the following order: Cu > As > Ni > Cr > Pb > Co > Zn > Mn > Ti, Cu and As contributed the most to the total potential ecological risk, accounting for 22.84% and 21. 62% , others had a total of 55.54% , through the ecological risk assessment, 89. 34% of the potential ecological risk indexes ( RI) were low and 10. 66% were higher. The contamination level of heavy metals in Yongkang was slight in total, but was heavy in local areas.
Mendoza-Díaz, Fernando; Serrano, Arturo; Cuervo-López, Liliana; López-Jiménez, Alejandra; Galindo, José A; Basañez-Muñoz, Agustin
2013-06-01
Pollution by heavy metals in marine ecosystems in the Gulf of Mexico is one of the hardest conservation issues to solve. Sharks as top predators are bioindicators of the marine ecosystem health, since they tend to bioaccumulate and biomagnify contaminants; they also represent a food source for local consumption. Thus, the objective of this study was to study the possible presence of heavy metals and a metalloid in livers of Carcharhinus limbatus. For this, a total of 19 shark livers were taken from animals captured nearby Tamihua, Veracruz, Mexico from December 2007 to April 2008. 12 out of the 19 captured sharks were males, one was an adult female, three were juvenile males, and three juvenile females. Four heavy metals (Hg, Pb, Cd, and Cr) and one metaloid (As) were analyzed in shark livers using an atomic absorption spectrophotometry with flame and hydride generator. Our results showed that the maximum concentrations found were: Hg = 0.69 mg/kg, Cd = 0.43 mg/kg, As = 27.37 mg/kg, Cr = 0.70 mg/kg. The minimum concentrations found were: As = 14.91 mg/kg, Cr = 0.35 mg/kg. The Pb could not be determined because the samples did not have the spectrophotometer minimum detectable amount (0.1 mg/kg). None of the 19 samples analyzed showed above the permissible limits established by Mexican and American laws. There was a correlation between shark size and Cr and As concentration (Pearson test). The concentration of Cr and As was observed to be higher in bigger animals. There was not a significant difference in heavy metals concentration between juveniles and adults; however, there was a difference between males and females. A higher Cr concentration was found in females when compared to males. None of the samples exceed the maximum limit established by the laws of Mexico and the United States of America. Much longer studies are needed with C. limbatus and other species caught in the region, in order to determine the degree of contaminants exposure in aquatic ecosystems and to identify potential health risks to consumers.
Minoia, C; Cavalleri, A
1988-06-01
Using personal air sampling exposure to hexavalent and trivalent chromium was measured in 22 workers mainly exposed to Cr(VI) and in 15 workers mainly exposed to Cr(III) as basic chromium sulphate. Determination of Cr(VI) in the urine of all the subjects using a selective technique by ETA-AAS and liquid anion exchangers failed to show detectable amounts of the hexavalent form, the detection limit of the technique being 0.05 micrograms/L. A clear relationship between exposure and postshift urinary total chromium was found in subjects exposed to Cr(VI), while urinary levels in workers exposed to chromic sulphate high concentration proved lower. Determination of total chromium in serum and red blood cells showed a significant increase of chromium levels in erythrocytes of workers exposed to Cr(VI) while in subjects mainly exposed to Cr(III) an increase of the serum fraction was observed. The results demonstrate that Cr(III) is absorbed through the respiratory tract, but its kinetics and distribution in the body are not the same as for Cr(VI), and are not adequately monitored by short-term urinary determinations. Oxidation states of chromium largely influence uptake, mechanism of absorption, transport and organ distribution as well as toxicity of chromium-containing compounds. In particular, hexavalent derivatives are known to induce adverse effects, both acute and chronic, in occupationally exposed subjects, while there is little conclusive evidence for toxic effects caused by trivalent chromium compounds. Biological monitoring of exposure to chromium(VI) has usually been performed by determining total chromium levels in urine, whereas biological monitoring data in subjects occupationally exposed to Cr(III) are still scanty.(ABSTRACT TRUNCATED AT 250 WORDS)
Devoy, Jérôme; Géhin, Antoine; Müller, Samuel; Melczer, Mathieu; Remy, Aurélie; Antoine, Guillaume; Sponne, Isabelle
2016-07-25
Chromium(VI) compounds are classified as carcinogenic to humans. Whereas chromium measurements in urine and whole blood (i.e., including plasma) are indicative of recent exposure, chromium in red blood cells (RBC) is attributable specifically to Cr(VI) exposure. Before recommending Cr in RBC as a biological indicator of Cr(VI) exposure, in-vitro studies must be undertaken to assess its reliability. The present study examines the relationship between the chromium added to a blood sample and that subsequently found in the RBC. After incubation of total blood with chromium, RBC were isolated, counted and their viability assessed. Direct analysis of chromium in RBC was conducted using Atomic Absorption Spectrometry. Hexavalent, but not trivalent Cr, was seen to accumulate in the RBC and we found a strong correlation between the Cr(VI) concentration added to a blood sample and the amount of Cr in RBC. This relationship appears to be independent of the chemical properties of the human blood samples (e.g., different blood donors or different reducing capacities). Even though in-vivo studies are still needed to integrate our understanding of Cr(VI) toxicokinetics, our findings reinforce the idea that a single determination of the chromium concentration in RBC would enable biomonitoring of critical cases of Cr(VI) exposure. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A regional-scale study of chromium and nickel in soils of northern California, USA
Morrison, J.M.; Goldhaber, M.B.; Lee, L.; Holloway, J.M.; Wanty, R.B.; Wolf, R.E.; Ranville, J.F.
2009-01-01
A soil geochemical survey was conducted in a 27,000-km2 study area of northern California that includes the Sierra Nevada Mountains, the Sacramento Valley, and the northern Coast Range. The results show that soil geochemistry in the Sacramento Valley is controlled primarily by the transport and weathering of parent material from the Coast Range to the west and the Sierra Nevada to the east. Chemically and mineralogically distinctive ultramafic (UM) rocks (e.g. serpentinite) outcrop extensively in the Coast Range and Sierra Nevada. These rocks and the soils derived from them have elevated concentrations of Cr and Ni. Surface soil samples derived from UM rocks of the Sierra Nevada and Coast Range contain 1700-10,000 mg/kg Cr and 1300-3900 mg/kg Ni. Valley soils west of the Sacramento River contain 80-1420 mg/kg Cr and 65-224 mg/kg Ni, reflecting significant contributions from UM sources in the Coast Range. Valley soils on the east side contain 30-370 mg/kg Cr and 16-110 mg/kg Ni. Lower Cr and Ni concentrations on the east side of the valley are the result of greater dilution by granitic sources of the Sierra Nevada. Chromium occurs naturally in the Cr(III) and Cr(VI) oxidation states. Trivalent Cr is a non-toxic micronutrient, but Cr(VI) is a highly soluble toxin and carcinogen. X-ray diffraction and scanning electron microscopy of soils with an UM parent show Cr primarily occurs within chromite and other mixed-composition spinels (Al, Mg, Fe, Cr). Chromite contains Cr(III) and is highly refractory with respect to weathering. Comparison of a 4-acid digestion (HNO3, HCl, HF, HClO4), which only partially dissolves chromite, and total digestion by lithium metaborate (LiBO3) fusion, indicates a lower proportion of chromite-bound Cr in valley soils relative to UM source soils. Groundwater on the west side of the Sacramento Valley has particularly high concentrations of dissolved Cr ranging up to 50 ??g L-1 and averaging 16.4 ??g L-1. This suggests redistribution of Cr during weathering and oxidation of Cr(III)-bearing minerals. It is concluded that regional-scale transport and weathering of ultramafic-derived constituents have resulted in enrichment of Cr and Ni in the Sacramento Valley and a partial change in the residence of Cr.
Rodgher, Suzelei; Espíndola, Evaldo Luiz Gaeta; Lombardi, Ana Teresa
2010-08-01
The acute toxicity of metals to Daphnia similis was determined and compared to other daphnid species to evaluate the suitability of this organism in ecotoxicology bioassays. To verify the performance D. similis in toxicity tests, we also investigated the effect of Pseudokirchneriella subcapitata at 1 x 10(5) and 1 x 10(6) cells ml(-1) on Cd and Cr acute toxicity to the cladoceran. Daphnid neonates were exposed to a range of chromium and cadmium concentrations in the absence and presence of the algal cells. Metal speciation calculations using MINEQL(+) showed that total dissolved metal concentrations in zooplankton culture corresponded to 96.2% free Cd and 100% free Cr concentrations. Initial total dissolved metal concentrations were used for 48 h-LC(50) determination. LC(50) for D. similis was 5.15 x 10(-7) mol l(-1) dissolved Cd without algal cells, whereas with 1 x 10(5) cells ml(-1), it was significantly higher (7.15 x 10(-7) mol l(-1) dissolved Cd). For Cr, the 48 h-LC(50) value of 9.17 x 10(-7) mol l(-1) obtained for the cladoceran in tests with 1 x 10(6) cells ml(-1) of P. subcapitata was also significantly higher than that obtained in tests without algal cells (5.28 x 10(-7) mol l(-1) dissolved Cr). The presence of algal cells reduced the toxicity of metals to D. similis, as observed in other studies that investigated the effects of food on metal toxicity to standard cladocerans. Comparing our results to those of literature, we observed that D. similis is as sensitive to metals as other standardized Daphnia species and may serve as a potential test species in ecotoxicological evaluations.
Ahmed, Golam; Miah, M Arzu; Anawar, Hossain M; Chowdhury, Didarul A; Ahmad, Jasim U
2012-07-01
Industrial wastewater discharged into aquatic ecosystems either directly or because of inadequate treatment of process water can increase the concentrations of pollutants such as toxic metals and others, and subsequently deteriorate water quality, environmental ecology and human health in the Dhaka Export Processing Zone (DEPZ), the largest industrial belt of 6-EPZ in Bangladesh. Therefore, in order to monitor the contamination levels, this study collected water samples from composite effluent points inside DEPZ and the surrounding surface water body connected to effluent disposal sites and determined the environmental hazards by chemical analysis and statistical approach. The water samples were analysed by inductively coupled plasma mass spectrometry to determine 12 trace metals such as As, Ag, Cr, Co, Cu, Li, Ni, Pb, Se, Sr, V and Zn in order to assess the influence of multi-industrial activities on metal concentrations. The composite effluents and surface waters from lagoons were characterized by a strong colour and high concentrations of biochemical oxygen demand, chemical oxygen demand, electrical conductivity, pH, total alkalinity, total hardness, total organic carbon, Turb., Cl(-), total suspended solids and total dissolved solids, which were above the limit of Bangladesh industrial effluent standards, but dissolved oxygen concentration was lower than the standard value. The measurement of skewness and kurtosis values showed asymmetric and abnormal distribution of the elements in the respective phases. The mean trend of variation was found in a decreasing order: Zn > Cu > Sr > Pb > Ni > Cr > Li > Co > V > Se > As > Ag in composite industrial effluents and Zn > Cu > Sr > Pb > Ni > Cr > Li > V > As > Ag > Co > Se in surface waters near the DEPZ. The strong correlations between effluent and surface water metal contents indicate that industrial wastewaters discharged from DEPZ have a strong influence on the contamination of the surrounding water bodies by toxic metals. The average contamination factors were reported to be 0.70-96.57 and 2.85-1,462 for industrial effluents and surface waters, respectively. The results reveal that the surface water in the area is highly contaminated with very high concentrations of some heavy/toxic metals like Zn, Pb, Cu, Ni and Cr; their average contamination factors are 1,460, 860, 136, 74.71 and 4.9, respectively. The concentrations of the metals in effluent and surface water were much higher than the permissible limits for drinking water and the world average concentrations in surface water. Therefore, the discharged effluent and surface water may create health hazards especially for people working and living inside and in the surrounding area of DEPZ.
Sasaki, Kazuhiro; Oguma, Shinichi; Namiki, Yukie; Ohmura, Naoya
2009-05-15
Isothiocyanobenzyl group-appended ethylenediamine tetraacetic acid (EDTA) was used to covalently couple Cr(III) x EDTA to keyhole limpet hemocyanin for use as an immunogen. An obtained monoclonal antibody (RD3G4) bound to Cr(III) x EDTA with an equilibrium dissociation constant (K(d)) of 9.7 nM, which was 100-fold tighter than the K(d)s for the other tested EDTA-metal complex. In particular, there was an over 2000-fold affinity difference between Cr(III) x EDTA and Fe(III) x EDTA, although the ion radius of trivalent chromium (0.76 A) was quite close to that of ferric ion (0.79 A). Hexavalent chromium could be detected by the antibody after being reduced into trivalent form. An immunoassay format showed an IC50 of 87 nM for hexavalent chromium, with a detection limit of 30 nM (1.6 microg/L). Therefore, the addition of reducing agents to the mixture of tri- and hexavalent chromium allows determination of the total chromium concentration by the immunoassay. Hexavalent chromium could be isolated from trivalent chromium by an anion-exchange column, and thus, the concentration of hexavalent chromium in tri- and hexa- mixture can also be estimated by the immunoassay.
Study on Cr(VI) Leaching from Cement and Cement Composites
Palascakova, Lenka; Kanuchova, Maria
2018-01-01
This paper reports an experimental study on hexavalent chromium leaching from cement samples and cement composites containing silica fume and zeolite additions that were subjected to various leaching agents. The water-soluble Cr(VI) concentrations in cements ranged from 0.2 to 3.2 mg/kg and represented only 1.8% of the total chromium content. The presence of chromium compounds with both chromium oxidation states of III and VI was detected in the cement samples by X-ray photoelectron spectroscopy (XPS). Leaching tests were performed in a Britton-Robinson buffer to simulate natural conditions and showed increased dissolution of Cr(VI) up to 6 mg/kg. The highest amount of leached hexavalent chromium was detected after leaching in HCl. The findings revealed that the leaching of chromium from cements was higher by 55–80% than that from the cement composites. A minimum concentration was observed for all cement samples when studying the relationship between the soluble Cr(VI) and the cement storage time. PMID:29690550
Study on Cr(VI) Leaching from Cement and Cement Composites.
Estokova, Adriana; Palascakova, Lenka; Kanuchova, Maria
2018-04-22
This paper reports an experimental study on hexavalent chromium leaching from cement samples and cement composites containing silica fume and zeolite additions that were subjected to various leaching agents. The water-soluble Cr(VI) concentrations in cements ranged from 0.2 to 3.2 mg/kg and represented only 1.8% of the total chromium content. The presence of chromium compounds with both chromium oxidation states of III and VI was detected in the cement samples by X-ray photoelectron spectroscopy (XPS). Leaching tests were performed in a Britton-Robinson buffer to simulate natural conditions and showed increased dissolution of Cr(VI) up to 6 mg/kg. The highest amount of leached hexavalent chromium was detected after leaching in HCl. The findings revealed that the leaching of chromium from cements was higher by 55⁻80% than that from the cement composites. A minimum concentration was observed for all cement samples when studying the relationship between the soluble Cr(VI) and the cement storage time.
Evolution of displacement cascades in Fe-Cr structures with different [001] tilt grain boundaries
NASA Astrophysics Data System (ADS)
Abu-Shams, M.; Haider, W.; Shabib, I.
2017-06-01
Reduced-activation ferritic/martensitic steels of Cr concentration between 2.25 and 12 wt% are candidate structural materials for next-generation nuclear reactors. In this study, molecular dynamics (MD) simulation is used to generate the displacement cascades in Fe-Cr structures with different Cr concentrations by using different primary knock-on atom (PKA) energies between 2 and 10 keV. A concentration-dependent model potential has been used to describe the interactions between Fe and Cr. Single crystals (SCs) of three different coordinate bases (e.g. [310], [510], and [530]) and bi-crystal (BC) structures with three different [001] tilt grain boundaries (GBs) (e.g. Σ5, Σ13, and Σ17) have been simulated. The Wigner-Seitz cell criterion has been used to identify the produced Frenkel pairs. The results show a marked difference between collisions observed in SCs and those in BC structures. The numbers of vacancies and interstitials are found to be significantly higher in BC structures than those found in SCs. The number of point defects exhibits a power relationship with the PKA energies; however, the Cr concentration does not seem to have any influence on the number of survived point defects. In BC models, a large fraction of the total survived point defects (between 59% and 93%) tends accumulate at the GBs, which seem to trap the generated point defects. The BC structure with Σ17 GB is found to trap more defects than Σ5 and Σ13 GBs. The defect trapping is found to be dictated by the crystallographic parameters of the GBs. For all studied GBs, self-interstitial atoms (SIAs) are easily trapped within the GB region than vacancies. An analysis of defect composition reveals an enrichment of Cr in SIAs, and in BC cases, more than half of the Cr-SIAs are found to be located within the GB region.
Deminice, Rafael; de Castro, Gabriela Salim Ferreira; Francisco, Lucas Vieira; da Silva, Lilian Eslaine Costa Mendes; Cardoso, João Felipe Rito; Frajacomo, Fernando Tadeu Trevisan; Teodoro, Bruno Gonzaga; Dos Reis Silveira, Leonardo; Jordao, Alceu Afonso
2015-04-01
To examine the effects of creatine (Cr) supplementation on liver fat accumulation in rats fed a choline-deficient diet. Twenty-four rats were divided into 3 groups of 8 based on 4 weeks of feeding an AIN-93 control diet (C), a choline-deficient diet (CDD) or a CDD supplemented with 2% Cr. The CDD diet was AIN-93 without choline. The CDD significantly increased plasma homocysteine and TNFα concentration, as well as ALT activity. In liver, the CDD enhanced concentrations of total fat (55%), cholesterol (25%), triglycerides (87%), MDA (30%), TNFα (241%) and decreased SAM concentrations (25%) and the SAM/SAH ratio (33%). Cr supplementation prevented all these metabolic changes, except for hepatic SAM and the SAM/SAH ratio. However, no changes in PEMT gene expression or liver phosphatidylcholine levels were observed among the three experimental groups, and there were no changes in hepatic triglyceride transfer protein (MTP) mRNA level. On the contrary, Cr supplementation normalized expression of the transcription factors PPARα and PPARγ that were altered by the CDD. Further, the downstream targets and fatty acids metabolism genes, UCP2, LCAD and CPT1a, were also normalized in the Cr group as compared to CDD-fed rats. Cr supplementation prevented fat liver accumulation and hepatic injures in rats fed with a CDD for 4 weeks. Our results demonstrated that one-carbon metabolism may have a small role in mitigating hepatic fat accumulation by Cr supplementation. The modulation of key genes related to fatty acid oxidation pathway suggests a new mechanism by which Cr prevents liver fat accumulation. Copyright © 2015 Elsevier Inc. All rights reserved.
da Silva, Yuri Jacques Agra Bezerra; do Nascimento, Clístenes Williams Araújo; Cantalice, José Ramon Barros; da Silva, Ygor Jacques Agra Bezerra; Cruz, Cinthia Maria Cordeiro Atanázio
2015-09-01
Determining heavy metal background concentrations in soils is fundamental in order to support the monitoring of potentially contaminated areas. This is particularly important to areas submitted to high environmental impact where an intensive and local monitoring is required. To this end, the aim of this study was to establish background concentrations and quality reference values (QRVs) for the heavy metals Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn, As, and Hg in an environmentally impacted watershed from Brazil. Geochemical associations among Fe, Mn, and trace elements were also assessed to provide an alternative tool for establishing background concentrations. A total of one hundred and four samples comprised twenty-six composite soil samples from areas of native forest or minimal anthropic influence. Samples were digested (USEPA method 3051A), and the metals were determined by ICP-OES, except for As and Hg measured by atomic absorption spectrophotometer. Background concentrations of heavy metals in soils had the following decreasing order: Fe > Mn > Zn > Cr > Pb > Ni > Cu > As > Cd > Hg. These values were usually lower than those observed in the international and national literature. The QRVs for Ipojuca watershed followed the order (mg kg(-1)) Fe (13,020.40) > Mn (91.80) > Zn (30.12) > Cr (15.00) > Pb (13.12) > Cu (3.53) > Ni (3.30) > As (0.51) > Cd (0.08) > Hg (0.04). Significant correlation among Fe, Mn, and heavy metals shows that solubilization by the method 3051A provides a reasonable estimate for predicting background concentrations for Cd, Cr, and Cu as well as Zn, Cr, Cu, and Ni.
Turgut, Cafer; Katie Pepe, M; Cutright, Teresa J
2004-09-01
The possibility to clean heavy metal contaminated soils with hyperaccumulator plants has shown great potential. One of the most recently studied species used in phytoremediation applications are sunflowers. In this study, two cultivars of Helianthus annuus were used in conjunction with ethylene diamine tetracetic acid (EDTA) and citric acid (CA) as chelators. Two different concentrations of the chelators were studied for enhancing the uptake and translocation of Cd, Cr, and Ni from a silty-clay loam soil. When 1.0 g/kg CA was used, the highest total metal uptake was only 0.65 mg. Increasing the CA concentration posed a severe phytotoxicity to both cultivars as evidenced by stunted growth and diminished uptake rates. Decreasing the CA concentration to 0.1 and 0.3 g/kg yielded results that were not statistically different from the control. EDTA at a concentration of 0.1 g/kg yielded the best results for both cultivars achieving a total metal uptake of approximately 0.73 mg compared to approximately 0.40 mg when EDTA was present at 0.3 g/kg.
Lee, Soyoung; Nam, Kyu-Yeol; Oh, Jaeseong; Lee, SeungHwan; Cho, Sang-Min; Choi, Youn-Woong; Cho, Joo-Youn; Lee, Beom-Jin; Hong, Jang Hee
2018-01-01
Levodropropizine is a non-opioid antitussive agent that inhibits cough reflex by reducing the release of sensory peptide in the peripheral region. To improve patients' compliance, a controlled-release (CR) tablet is under development. The aim of this study was to compare the pharmacokinetic (PK) profiles of the CR and immediate-release (IR) tablets of levodropropizine. In addition, the effect of food on the PK properties of levodropropizine CR tablet in healthy subjects was evaluated. A randomized, open-label, multiple-dose, three-treatment, three-period, six-sequence, crossover study was conducted on 47 healthy subjects. All subjects were randomly assigned to one of the six sequences, which involve combinations of the following three treatments: levodropropizine IR 60 mg three times in the fasted state (R), levodropropizine CR 90 mg two times in the fasted state (T), and levodropropizine CR 90 mg two times in the fed state (TF). Serial blood samples were collected up to 24 h after the first dose. Tolerability was assessed based on the vital signs, adverse events (AEs), and clinical laboratory tests. Levodropropizine CR showed lower maximum drug concentration ( C max ) and similar total exposure compared to levodropropizine IR. The geometric mean ratios (GMRs) (90% confidence intervals [CIs]) of T to R for the C max and area under the concentration-time curve from the 0 to 24 h time points (AUC 0-24h ) were 0.80 (0.75-0.85) and 0.89 (0.86-0.93), respectively. In the fed group, levodropropizine CR showed exposure similar to that in the fasted group. The GMRs (90% CIs) of TF to T for the C max and AUC 0-24h were 0.90 (0.85-0.97) and 1.10 (1.05-1.14), respectively. No serious AEs occurred with both levodropropizine CR and IR tablets. Total systemic exposure for levodropropizine was similar in subjects receiving the CR and IR formulations in terms of the AUC. Although food delayed the absorption of levodropropizine CR, systemic exposure was not affected.
Angulo, A; Merchán, J A; Molina, M
1994-03-01
We examined the role of chromium reduction in the Golgi-Colonnier method, correlating the quality of neuronal impregnation with the levels of hexavalent (CrVI) and trivalent (CrIII) chromium in the tissue and in the chromation fluid (CF). The concentrations of both chromium species were assessed by measuring spectrophotometrically the CrVI before and after oxidizing the sample and by calculating the ratio of CrVI to total chromium (chromium ratio, CrR). The CrR was almost identical in the tissue and the CF, decreasing exponentially during chromation due to a progressive consumption of CrVI to form CrIII. Satisfactory cell impregnation was obtained only when the CrR was 0.45-0.7, regardless of other factors. The CrR values could be accurately predicted by the pH increase of the CF; this increase has proven to be a most reliable criterion to decide the endpoint of the chromation process. The dependence of cell staining on the [CrIII], together with the well-known ability of this species to bridge proteins, suggests that the key event for cell impregnation is the cross-linking of neuronal proteins by CrIII polymers.
Racette, Molly A.; Hans, Eric C.; Volstad, Nicola J.; Holzman, Gerianne; Bleedorn, Jason A.; Schaefer, Susan L.; Waller, Kenneth R.; Hao, Zhengling; Block, Walter F.
2017-01-01
Cruciate ligament rupture (CR) and associated osteoarthritis (OA) is a common condition in dogs. Dogs frequently develop a second contralateral CR. This study tested the hypothesis that the degree of stifle synovitis and cranial cruciate ligament (CrCL) matrix damage in dogs with CR is correlated with non-invasive diagnostic tests, including magnetic resonance (MR) imaging. We conducted a prospective cohort study of 29 client-owned dogs with an unstable stifle due to complete CR and stable contralateral stifle with partial CR. We evaluated correlation of stifle synovitis and CrCL fiber damage with diagnostic tests including bilateral stifle radiographs, 3.0 Tesla MR imaging, and bilateral stifle arthroscopy. Histologic grading and immunohistochemical staining for CD3+ T lymphocytes, TRAP+ activated macrophages and Factor VIII+ blood vessels in bilateral stifle synovial biopsies were also performed. Serum and synovial fluid concentrations of C-reactive protein (CRP) and carboxy-terminal telopeptide of type I collagen (ICTP), and synovial total nucleated cell count were determined. Synovitis was increased in complete CR stifles relative to partial CR stifles (P<0.0001), although total nucleated cell count in synovial fluid was increased in partial CR stifles (P<0.01). In partial CR stifles, we found that 3D Fast Spin Echo Cube CrCL signal intensity was correlated with histologic synovitis (SR = 0.50, P<0.01) and that radiographic OA was correlated with CrCL fiber damage assessed arthroscopically (SR = 0.61, P<0.001). Taken together, results of this study show that clinical diagnostic tests predict severity of stifle synovitis and cruciate ligament matrix damage in stable partial CR stifles. These data support use of client-owned dogs with unilateral complete CR and contralateral partial CR as a clinical trial model for investigation of disease-modifying therapy for partial CR. PMID:28575001
Sample, Susannah J; Racette, Molly A; Hans, Eric C; Volstad, Nicola J; Holzman, Gerianne; Bleedorn, Jason A; Schaefer, Susan L; Waller, Kenneth R; Hao, Zhengling; Block, Walter F; Muir, Peter
2017-01-01
Cruciate ligament rupture (CR) and associated osteoarthritis (OA) is a common condition in dogs. Dogs frequently develop a second contralateral CR. This study tested the hypothesis that the degree of stifle synovitis and cranial cruciate ligament (CrCL) matrix damage in dogs with CR is correlated with non-invasive diagnostic tests, including magnetic resonance (MR) imaging. We conducted a prospective cohort study of 29 client-owned dogs with an unstable stifle due to complete CR and stable contralateral stifle with partial CR. We evaluated correlation of stifle synovitis and CrCL fiber damage with diagnostic tests including bilateral stifle radiographs, 3.0 Tesla MR imaging, and bilateral stifle arthroscopy. Histologic grading and immunohistochemical staining for CD3+ T lymphocytes, TRAP+ activated macrophages and Factor VIII+ blood vessels in bilateral stifle synovial biopsies were also performed. Serum and synovial fluid concentrations of C-reactive protein (CRP) and carboxy-terminal telopeptide of type I collagen (ICTP), and synovial total nucleated cell count were determined. Synovitis was increased in complete CR stifles relative to partial CR stifles (P<0.0001), although total nucleated cell count in synovial fluid was increased in partial CR stifles (P<0.01). In partial CR stifles, we found that 3D Fast Spin Echo Cube CrCL signal intensity was correlated with histologic synovitis (SR = 0.50, P<0.01) and that radiographic OA was correlated with CrCL fiber damage assessed arthroscopically (SR = 0.61, P<0.001). Taken together, results of this study show that clinical diagnostic tests predict severity of stifle synovitis and cruciate ligament matrix damage in stable partial CR stifles. These data support use of client-owned dogs with unilateral complete CR and contralateral partial CR as a clinical trial model for investigation of disease-modifying therapy for partial CR.
Hair chromium as an index of chromium exposure of tannery workers.
Randall, J A; Gibson, R S
1989-01-01
The use of hair chromium (Cr) concentrations as an index of Cr exposure of tannery workers was investigated. As has been shown earlier, Cr from Cr III compounds used in the leather tanning industry is absorbed because concentrations of Cr in serum and urine of tannery workers are significantly increased compared with corresponding concentrations for unexposed controls. Hair samples were collected from 71 male tannery workers from four southern Ontario tanneries and from 53 male controls not exposed to Cr in the workplace. Subjects were matched for age, race, and socioeconomic status. Hair samples were washed, ashed in a low temperature asher, and analysed by flameless atomic absorption. The median hair Cr concentrations for the tannery workers (551 ng/g) was significantly higher (p = 0.0001) than for the controls (123 ng/g). For the tannery workers, hair Cr concentrations were positively and significantly correlated with serum Cr (r = 0.52, p less than 0.01) and with the preshift and postshift urinary Cr/creatinine ratios (r = 0.43, p less than 0.01; r = 0.64, p less than 0.01, respectively). These data indicate that trivalent Cr absorbed from leather tanning compounds results in raised concentrations of Cr in hair and that hair Cr concentrations may be used as an index of industrial Cr exposure. PMID:2930727
Scancar, J; Milacic, R; Strazar, M; Burica, O; Bukovec, P
2001-02-01
Dewatered sewage sludge containing relatively high total concentrations of Cr (945 micrograms ml-1), Cu (523 micrograms ml-1), Ni (1186 micrograms ml-1) and Zn (2950 micrograms ml-1) was treated with quicklime and sawdust for sludge disinfection and post-stabilisation. The mobility of the heavy metals in the sludge samples was assessed by applying a modified five-step Tessier sequential extraction procedure. Water was added as a first step for estimation of the proportion of the easily soluble metal fractions. To check the precision of the analytical work the concentrations of heavy metals in steps 1-6 of the extraction procedure were summed and compared to the total metal concentrations. The mass balance agreed within +/- 3% for Cd, Cu, Cr, and Zn and within +/- 5% for Ni, Pb, Fe and Mn. Data from the partitioning study indicate that in the lime-treated sludge at a pH of 12 the mobility of Cu and Ni notably increased with the solubilisation of these metals from their organic and/or carbonate and Fe and Mn oxide and hydroxide fractions, respectively. Liming slightly decreased the proportion of other heavy metals in the easily soluble fractions while its impact on the partitioning between other sludge phases was almost insignificant. Due to the increased solubility of Ni and Cu as well as potential Cr oxidation at high pH, liming cannot be recommended for sludge disinfection. Addition of sawdust did not change the heavy metal partitioning.
Heavy metals seasonal variability and distribution in Lake Qaroun sediments, El-Fayoum, Egypt
NASA Astrophysics Data System (ADS)
Redwan, Mostafa; Elhaddad, Engy
2017-10-01
This study was carried out to investigate the seasonal variability and distribution of heavy metals ;HMs; (Fe, Mn, Co, Cr, Cu, Ni, Pb, Zn and V) in the bottom sediments of Lake Qaroun, in Egypt. The samples were collected from 10 sites in summer and winter seasons in 2015. Total metals concentrations were measured using inductively coupled plasma spectrometer. Multivariate techniques were applied to analyse the distribution and potential source of heavy metals. The mean seasonal concentrations follow a descending order of Fe > Mn > V > Zn > Cr > Ni > Cu > Co > Pb. The mean concentrations of HMs in sediments during summer were higher than the concentrations during winter and above the average world shale values, except for Pb, suggesting potential adverse toxicity to aquatic organisms. All metals showed enrichment during summer and winter at sites S3 and S5 in the southeastern parts of the lake due to the heavy discharge of contaminants from El-Bats and El-Wadi drains. Principal component analysis results suggested two principal components controlling HMs variability in sediments, which accounted for 63.9% (factor 1: Co, Cr, Cu, Ni, Zn, Pb and V), 15.9% (factor 2: Mn and Fe) during summer, and 76.7% (factor 1: Fe, Co, Cr, Cu, Ni, Zn, Pb and V), 13.8% (factor 2: Mn) during winter of the total variance. Geo-accumulation index (Igeo) showed some pollution risk at the southeastern and southern parts (sites S3 and S5). Dilution during winter, concentration during summer, impact of non-point sources from different agricultural, industrial, municipal sewage and fish farms in the southern part of Lake Qaroun, adsorption and salt dissolution reactions and lithogenic sources are the main controlling factors for HMs in the study area. Monitoring of contaminant discharge at Lake Qaroun should be introduced for future remediation and management strategies.
Novotnik, Breda; Zuliani, Tea; Ščančar, Janez; Milačič, Radmila
2014-06-01
The input of wastewater treatment plants (WWTPs) may contain high concentrations of Cr(III) and Cr(VI), which can affect nitrogen removal. In the present study the influence of different Cr(III) and Cr(VI) concentrations towards activated sludge nitrification was studied. To better understand the mechanisms of Cr(VI) toxicity, its reduction, adsorption and uptake in activated sludge was investigated in a batch growth system. Quantification of Cr(VI) was performed by speciated isotope dilution inductively coupled plasma mass spectrometry. It was found that Cr(VI) concentrations above 1.0 mg L(-1) and Cr(III) concentrations higher than 50 mg L(-1) negatively affected nitrification. Speciation studies indicated almost complete reduction of Cr(VI) after 24h of incubation when Cr(VI) concentrations were lower than 2.5 mg L(-1), whereas for Cr(VI) added to 5 mg L(-1) around 40% remained unreduced. The study of the partitioning of Cr in the activated sludge was performed by the addition of Cr(VI) in concentrations of 2.5 and 5.0 mg L(-1). Results revealed that Cr was allocated mainly within the intercellular compartments, whereas intracellular and adsorbed Cr represented less than 0.1% of the Cr sludge concentrations. Cr(VI) was reduced in all compartments, the most efficiently (about 94%) within the intracellular and intercellular fractions. The extent of reduction of adsorbed Cr was 92% and 80% for 2.5 and 5.0mg of Cr(VI) L(-1), respectively. The results of present investigation provide a new insight into the toxicity of Cr species towards activated sludge nitrification, which is of significant importance for the management of WWTPs in order to prevent them from inflows containing harmful Cr(VI) concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of creatine supplementation on exercise performance.
Demant, T W; Rhodes, E C
1999-07-01
While creatine has been known to man since 1835, when a French scientist reported finding this constitutent of meat, its presence in athletics as a performance enhancer is relatively new. Amid claims of increased power and strength, decreased performance time and increased muscle mass, creatine is being hailed as a true ergogenic aid. Creatinine is synthesised from the amino acids glycine, arginine and methionine in the kidneys, liver and pancreas, and is predominantly found in skeletal muscle, where it exists in 2 forms. Approximately 40% is in the free creatine form (Crfree), while the remaining 60% is in the phosphorylated form, creatine phosphate (CP). The daily turnover rate of approximately 2 g per day is equally met via exogenous intake and endogenous synthesis. Although creatine concentration (Cr) is greater in fast twitch muscle fibres, slow twitch fibres have a greater resynthesis capability due to their increased aerobic capacity. There appears to be no significant difference between males and females in Cr, and training does not appear to effect Cr. The 4 roles in which creatine is involved during performance are temporal energy buffering, spatial energy buffering, proton buffering and glycolysis regulation. Creatine supplementation of 20 g per day for at least 3 days has resulted in significant increases in total Cr for some individuals but not others, suggesting that there are 'responders' and 'nonresponders'. These increases in total concentration among responders is greatest in individuals who have the lowest initial total Cr, such as vegetarians. Increased concentrations of both Crfree and CP are believed to aid performance by providing more short term energy, as well as increase the rate of resynthesis during rest intervals. Creatine supplementation does not appear to aid endurance and incremental type exercises, and may even be detrimental. Studies investigating the effects of creatine supplementation on short term, high intensity exercises have reported equivocal results, with approximately equal numbers reporting significant and nonsignificant results. The only side effect associated with creatine supplementation appears to be a small increase in body mass, which is due to either water retention or increased protein synthesis.
Environmental impacts of asphalt mixes with electric arc furnace steel slag.
Milačič, Radmila; Zuliani, Tea; Oblak, Tina; Mladenovič, Ana; Ančar, Janez Šč
2011-01-01
Electric arc furnace (EAF) steel slag can be used as an alternative high-quality material in road construction. Although asphalts with slag aggregates have been recognized as environmentally acceptable, there is a lack of data concerning the potential leaching of toxic Cr(VI) due to the highly alkaline media of EAF slag. Leaching of selected water extractable metals from slag indicated elevated concentrations of total chromium and Cr(VI). To estimate the environmental impacts of asphalt mixes with slag, leachability tests based on diffusion were performed using pure water and salt water as leaching agents. Compact and ground asphalt composites with natural aggregates, and asphalt composites in which the natural aggregates were completely replaced by slag were prepared. The concentrations of total chromium and Cr(VI) were determined in leachates over a time period of 6 mo. After 1 and 6 mo, the concentrations of some other metals were also determined in the leachates. The results indicated that chromium in leachates from asphalt composites with the addition of slag was present almost solely in its hexavalent form. However, the concentrations were very low (below 25 μg L) and did not represent an environmental burden. The leaching of other metals from asphalt composites with the addition of slag was negligible. Therefore, the investigated EAF slag can be considered as environmentally safe substitute for natural aggregates in asphalt mixes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
McComb, Jacqueline Q.; Han, Fengxiang X.; Rogers, Christian; Thomas, Catherine; Arslan, Zikri; Ardeshir, Adeli; Tchounwou, Paul B.
2015-01-01
The objectives of this study are to investigate distribution of trace elements and heavy metals in the salt marsh and wetland soil and biogeochemical processes in the Grand Bay National Estuarine Research Reserve of the northern Gulf of Mexico. The results show that Hg, Cd and to some extent, As and Pb have been significantly accumulated in soils. The strongest correlations were found between concentrations of Ni and total organic matter contents. The correlations decreased in the order: Ni > Cr > Sr > Co > Zn, Cd > Cu > Cs. Strong correlations were also observed between total P and concentrations of Ni, Co, Cr, Sr, Zn, Cu, and Cd. This may be related to the P spilling accident in 2005 in the Bangs Lake site. Lead isotopic ratios in soils matched well those of North American coals, indicating the contribution of Pb through atmospheric fallout from coal power plants. PMID:26238403
Tunc-Skarka, Nuran; Weber-Fahr, Wolfgang; Ende, Gabriele
2015-10-01
It has previously been reported that even social alcohol consumption affects the magnetic resonance spectroscopy (MRS) signals of choline-containing compounds (tCho). The purpose of this study was to investigate whether the consumption of alcohol affects the concentrations of the metabolites tCho, N-acetylaspartate, creatine, or myo-inositol and/or their T 2 relaxation times. (1)H MR spectra were obtained at 3 T from a frontal white matter voxel of 25 healthy subjects with social alcohol consumption (between 0 and 25.9 g/day). Absolute brain metabolite concentrations and T 2 relaxation times of metabolites were examined via MRS measurements at different echo times. Metabolite concentrations and their T 2 relaxation times were correlated with subjects' alcohol consumption, controlling for age. We observed positive correlations of absolute tCho and phosphocreatine and creatine (tCr) concentrations with alcohol consumption but no correlation between any metabolite T 2 relaxation time and alcohol consumption. This study shows that even social alcohol consumption affects the concentrations of tCho and tCr in cerebral white matter. Future studies assessing brain tCho and tCr levels should control for the confounding factor alcohol consumption.
Ye, Xuezhu; Xiao, Wendan; Zhang, Yongzhi; Zhao, Shouping; Wang, Gangjun; Zhang, Qi; Wang, Qiang
2015-06-01
There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg(-1), respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg(-1), respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg(-1)). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg(-1), respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.
Samanta, S; Haldar, S; Ghosh, T K
2008-03-01
1. The study was conducted to ascertain the effects of supplemental organic acids and chromium (Cr) on production and carcase traits of broiler chickens. 2. A total of 120 1-d-old broiler chicks were divided into 4 treatment groups in a 2 x 2 factorial design (each treatment group contained 6 replicates with 5 birds per replicate). 3. The diets were supplemented with an organic acid blend containing ortho-phosphoric, formic and propionic acid and calcium propionate (1 g/kg diet) and inorganic trivalent chromium (Cr(3+)) as chromic chloride hexahydrate (0.5 mg/kg diet) either independently or together as a combination for 35 d. 4. Individual supplementation of organic acids and Cr(3+) and their combination significantly improved the food conversion ratio, hot and dressed carcase weight and weight of the wholesale cuts compared to the control group of birds. 5. Organic acids, either independently or along with Cr(3+), increased total accretion of ash in carcase. Protein accretion was improved by dietary Cr(3+) and organic acid supplementation compared to the control group and a further improvement in this regard was observed when Cr(3+) and organic acid were supplemented together. Across the treatment groups meat fat content and fat accretion were lower in birds receiving dietary Cr(3+) supplementation. 6. Circulatory Cr(3+) and meat Cr(3+) concentration increased compared to the other treatment groups when Cr(3+) was supplemented to the birds. 7. It was concluded that, instead of individual supplementation, a combination of Cr(3+) and organic acids may improve the production and carcase traits of broilers more effectively presumably because of an additive effect.
Huang, Yanling; Yang, Jian; Xiao, Fang; Lloyd, Karen; Lin, Xi
2016-03-01
The objective of this study was to investigate the effects of dietary supplemental chromium (Cr) on growth performance, carcass traits, and meat quality of broilers reared under heat stress. A total of 252 1-d-old Cobb 500 commercial female broilers were randomly allotted by body weight (BW) to one of six replicate cages (six broilers per cage) for each of seven treatments in a completely randomized design involving a 2 × 3 factorial arrangement of treatments with three Cr sources (Cr propionate, CrPro; Cr picolinate, CrPic; Cr chloride, CrCl3) and two concentrations of added Cr (0.4, or 2.0 mg of Cr/kg) plus a Cr-unsupplemented control group. Feed and distilled-deionized water were available ad libitum for an experimental phase of 42 days. For induction of heat stress, the house temperature was set at 33 ± 2 °C from 15 to 42 days of age. Results showed that birds supplemented with Cr, regardless of Cr source, had increased ADG (P = 0.032) than controls. Birds fed 2.0 mg Cr/kg diet had greater ADG (P = 0.005) than birds fed 0.4 mg Cr/kg diet. Compared to controls, birds fed with Cr had greater dressing percentage (P = 0.021). Percentage of abdominal fat decreased (P = 0.013), whereas, breast intramuscular fat (IMF) remained unaffected (P = 0.147) in Cr supplemented vs control broilers. Broilers supplemented Cr had decreased b* values of meat color (P = 0.042) in breast muscle. B*values were also lesser (P = 0.049) in birds fed CrPro than birds supplemented with CrCl3 or CrPic. Regardless of Cr source, the percentage of cooking loss was decreased (P = 0.025) with Cr supplementation in breast muscle when compared to controls. Results from this study indicate that Cr supplementation, independent of its source, could promote growth and improve carcass traits and meat quality of broilers under heat stress conditions. Chromium propionate seems to have greater beneficial effects on meat color in comparison with CrPic and CrCl3.
Ihedioha, J N; Ukoha, P O; Ekere, N R
2017-06-01
The study assessed the levels of some heavy metals in soils in the vicinity of a municipal solid waste dumpsite with a view to providing information on the extent of contamination, ecological risk of metals in the soils and human health risk to the residents in Uyo. Soil samples were collected in rainy and dry seasons and analyzed for metals (Pb, Cd, Zn, Mn, Cr, Ni and Fe) using atomic absorption spectrometry. The concentrations of heavy metals (mg/kg) at the dumpsite in rainy season were Pb (9.90), Zn (137), Ni (12.56), Cr (3.60), Cd (9.05) and Mn (94.00), while in dry season, the concentrations were Pb (11.80), Zn (146), Ni (11.82), Cr (4.05), Cd (12.20) and Mn (91.20). The concentrations of metals in the studied sites were higher than that of the control site (P < 0.05). Pollution indices studies revealed that soil samples from dumpsite and distances from 10 and 20 m east of the dumpsite were highly polluted with cadmium. Ecological risk assessment carried out showed that cadmium contributed 98-99 % of the total potentially ecological risk. No probable health risk was observed as the total hazard index of all the metals was less than one. However, children were found to be more susceptible to heavy metal contamination than adult.
Zhang, Chao; Shan, Baoqing; Tang, Wenzhong; Dong, Lixin; Zhang, Wenqiang; Pei, Yuansheng
2017-05-01
Heavy metal (Cr, Cu, Ni, Pb, and Zn) pollution and the risks posed by the heavy metals in riverine sediments in a mountainous urban-belt area (MB), a mountain-plain urban-belt area (MPB), and a plain urban-belt area (PB) in the Haihe Basin, China, were assessed. The enrichment factors indicated that the sediments were more polluted with Cu and Zn than with the other metals, especially in the MPB. The sediments in the MPB were strongly affected by Cu and Zn inputs from anthropogenic sources. The risk assessment codes and individual contamination factors showed that Zn was mobile and posed ecological risks, the exchangeable fractions being 21.1%, 21.2%, and 19.2% of the total Zn concentrations in the samples from the MB, MPB, and PB, respectively. Cr, Cu, and Zn in the sediments from the MPB were potentially highly bioavailable because the non-residual fractions were 56.2%, 54.9%, and 56.5%, respectively, of the total concentrations. The potential risks posed by the heavy metals (determined from the chemical fractions of the heavy metals) in the different areas generally decreased in the order MPB > MB > PB. Pictorial representation of cluster analysis results showed that urbanization development level could cause Cr and Zn pollution in the urban riverine sediments to become more severe. Copyright © 2017 Elsevier Inc. All rights reserved.
Taraškevičius, Ričardas; Zinkutė, Rimantė; Gedminienė, Laura; Stankevičius, Žilvinas
2017-05-23
The research is based on analysis data of Cr, Cu, Mn, Ni, V, Zn (metals) and S in the hair of 47 girls and 63 boys from eight Vilnius kindergartens and the distribution pattern of high metal concentrations and bioavailability in snow-cover dust, also dust samples from vents of characteristic pollution sources. The kindergartens were selected according to topsoil total contamination index and dust-related indices. Significantly higher Cu, Mn, Ni and Zn concentrations in the hair of girls (means are 1.1, 1.9, 1.3, 1.2 times higher) and the differences between hair of genders according to inter-element correlation and clustering were found. Analysis of Spearman correlation coefficients between metal concentrations in hair of each gender and dust metal concentrations or metal loading rates at their residence sites revealed that for Mn, Cu and Zn, they are insignificant, while for Cr, Ni, Pb and V, they are mainly significant positive (except V in female hair). The correlation of the contents of Cr, Ni and V in dust with respective concentrations in hair was more significant for boys (p < 0.001) than for girls. Only a few cases with a significant Cr, Ni, Cu, Pb and Zn increase were revealed in hair of children attending polluted kindergartens in comparison with control. It was concluded that relationship between metal concentrations in hair and dust-related indices is more expressed for children's residence sites than for their kindergarten sites. The gender-based grouping and site-by-site study design are recommended in the studies of reflection of environmental exposure in hair.
Saleem, Muhammad; Iqbal, Javed; Shah, Munir H.
2014-01-01
The present study is carried out for the assessment of water quality parameters and selected metals levels in surface water from Mangla Lake, Pakistan. The metal levels (Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, and Zn) were determined by flame atomic absorption spectrophotometry. Average levels of Cd, Co, Cr, Ni, and Pb were higher than the allowable concentrations set by national and international agencies. Principal component analysis indicated significant anthropogenic contributions of Cd, Co, Cr, Ni, and Pb in the water reservoir. Noncarcinogenic risk assessment was then evaluated using Hazard Quotient (HQing/derm) and Hazard Index (HIing/derm) following USEPA methodology. For adults and children, Cd, Co, Cr, and Pb (HQing > 1) emerged as the most important pollutants leading to noncarcinogenic concerns via ingestion route, whereas there was no risk via dermal contact of surface water. This study helps in establishing pollutant loading reduction goal and the total maximum daily loads, and consequently contributes to preserve public health and develop water conservation strategy. PMID:24744690
Uranium, Thorium and some other trace elements in phosphorites from different provenances
NASA Astrophysics Data System (ADS)
Bech, J.; Reverter, F.; Tume, P.; Roca, N.; Suarez, E.; Sepúlveda, G.; Sokolovska, M.
2012-04-01
Data on the trace element composition of phosphorites is scarce. Some of them may be harmful at certain concentrations. Special concern is given to the radionuclides U and Th and some other heavy metals such as: Co, Cr, Cu, Ni and V. Phosphorites of different origins can vary significantly in the trace element concentrations. 37 samples of phosphorites from 16 deposits were analyzed for Uranium, Thorium and five potential toxic elements (Co, Cr, Cu, Ni and V) as well as 26 samples of data gathered from the literature. In total 63 samples of phosphorites from 20 deposits of 19 countries were studied: Algeria, Australia, Brazil, Burkina Faso, Chile, Colombia, Egypt, India, Israel, Mongolia, Morocco, New Zealand, Peru, Senegal, Syria, Togo, Tunisia, USA and Venezuela. Aqua regia extracts were used to estimate the "pseudototal" values, following standard procedures (ISO 11466, 2002) and measured by ICP-MS. The median concentrations (mgkg-1) obtained were: U 53 (range 0.20-177), Th 4.05 (range 1-49), Co 4 (range 0.5-159), Cr 100 (range 15-1000), Cu 20 (range 5-213), Ni 21 (range 3-850) and V 70.05 (range 20-591). As 120 mgkg-1 of U concentration of phosphorites is the value considered to be useful as a source of nuclear fuel, we now indicate the deposits with values higher than 120 mgkg-1: Khouribga KIISB (Morocco) 121, Khouribga KIISL (Morocco) 123, Champ mines (Idaho, USA) 131, Noralyn (Central Florida, USA) 138, Bone Valley (Florida, USA) 140, Boucraa BGB (Morocco) 141, Boucraa BGC (Morocco) 152, Negev (Israel) 172 and Chatam Rise (New Zealand) 177. The highest Th concentration found was 49 mgkg-1 at Bijawar Group (India). Uranium shows significant positive correlations with V (r = 0.41) and Cr (r = 0.30), and significant negative correlations with Co (r= -0.47). Other positive correlations are Cr with Cu (r=0.58), Cr with V (r=0.52) and Cr with Ni (r=0.51). Cu correlates positively with Ni (r=0.84) and with V (r=0.63). Ni correlates positively with V (r=0.72).
Yu, Hongmei; Pang, Jing; Wu, Mei; Wu, Qiaoli; Huo, Cuixiu
2014-01-01
The ues of corn silk modified with diluted nitric acid (HNO3-MCS) as a novel biosorbent has been established for solid-phase extraction of Cr(III) and chromium speciation in water samples. The functional groups of the HNO3-MCS surface are favorable for the adsorption of Cr(III). Effective extraction conditions were optimized in both batch and column methods. At pH 3.0 - 6.0, a discrimination of Cr(III) and Cr(VI) is achieved on the HNO3-MCS surface. Cr(III) ions are retained onto the HNO3-MCS surface, however, the adsorption of Cr(VI) is negligible under the same conditions. The adsorption isotherm of HNO3-MCS for Cr(III) has been demonstrated in accordance with a linear form of the Langmuir equation, and the maximum adsorption capacity is 35.21 mg g(-1). The well fitted linear regression of the pseudo-second order model showed the indication of a chemisorption mechanism for the entire concentration range. Thermodynamic studies have shown that the adsorption process is spontaneous and endothermic. The adsorbed Cr(III) was quantitatively eluted by a nitric acid solution with detection by flame atomic absorption spectrometry (FAAS). With a sample volume of 30 mL, a detection limit (3σ) of 0.85 μg L(-1) and a precision of 2.0% RSD at the 40 μg L(-1) level were achieved. The concentration of Cr(III) could be accurately quantified within a linear range of 3 - 200 μg L(-1). After Cr(VI) has been reduced to Cr(III) with hydroxylamine hydrochloride, the total amount of chromium was obtained, and the content of Cr(VI) was given by subtraction. The procedure was validated by analyzing chromium in a certified reference material (GBW (E) 080039). It was also successfully applied for the speciation of chromium in wastewater samples.
Method of trivalent chromium concentration determination by atomic spectrometry
Reheulishvili, Aleksandre N [Tbilisi, 0183, GE; Tsibakhashvili, Neli Ya [Tbilisi, 0101, GE
2006-12-12
A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.
Opioid Concentrations in Oral Fluid and Plasma in Cancer Patients With Pain.
Heiskanen, Tarja; Langel, Kaarina; Gunnar, Teemu; Lillsunde, Pirjo; Kalso, Eija A
2015-10-01
Measuring opioid concentrations in pain treatment is warranted in situations where optimal opioid analgesia is difficult to reach. To assess the usefulness of oral fluid (OFL) as an alternative to plasma in opioid concentration monitoring in cancer patients on chronic opioid therapy. We collected OFL and plasma samples from 64 cancer patients on controlled-release (CR) oral morphine, CR oral oxycodone, or transdermal (TD) fentanyl for pain. Samples were obtained on up to five separate days. A total of 213 OFL and plasma samples were evaluable. All patients had detectable amounts of the CR or TD opioid in both plasma and OFL samples. The plasma concentrations of oxycodone and fentanyl (determination coefficient R(2) = 0.628 and 0.700, respectively), but not morphine (R(2) = 0.292), were moderately well correlated to the daily opioid doses. In contrast to morphine and fentanyl (mean OFL/plasma ratio 2.0 and 3.0, respectively), the OFL oxycodone concentrations were significantly higher than the respective plasma concentrations (mean OFL/plasma ratio 14.9). An active transporter could explain the much higher OFL vs. plasma concentrations of oxycodone compared with morphine and fentanyl. OFL analysis is well suited for detecting the studied opioids. For morphine and fentanyl, an approximation of the plasma opioid concentrations is obtainable, whereas for oxycodone, the OFL/plasma concentration relationship is too variable for reliable approximation results. Copyright © 2015 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.
Fractionation study in bioleached metallurgy wastes using six-step sequential extraction.
Krasnodebska-Ostrega, Beata; Pałdyna, Joanna; Kowalska, Joanna; Jedynak, Łukasz; Golimowski, Jerzy
2009-08-15
The stored metallurgy wastes contain residues from ore processing operations that are characterized by relatively high concentrations of heavy metals. The bioleaching process makes use of bacteria to recover elements from industrial wastes and to decrease potential risk of environmental contamination. Wastes were treated by solutions containing bacteria. In this work, the optimized six-stage sequential extraction procedure was applied for the fractionation of Ni, Cr, Fe, Mn, Cu and Zn in iron-nickel metallurgy wastes deposited in Southern Poland (Szklary). Fractionation and total concentrations of elements in wastes before and after various bioleaching treatments were studied. Analyses of the extracts were performed by ICP-MS and FAAS. To achieve the most effective bioleaching of Zn, Cr, Ni, Cu, Mn, Fe the usage of both autotrophic and heterotrophic bacteria in sequence, combined with flushing of the residue after bioleaching is required. 80-100% of total metal concentrations were mobilized after the proposed treatment. Wastes treated according to this procedure could be deposited without any risk of environmental contamination and additionally the metals could be recovered for industrial purposes.
Early Support of Intracranial Perfusion
2010-10-01
indicated a time evolution of TBI. Schuhmann et al showed that total creatine (tCr), N-acetylaspartate (NAA), glutamate (Glu), and choline (Cho...differences were found in glutamine, myo- inositol , and taurine concentrations among the 30 three time points in either the pericontusional voxel
Besser, J.M.; Brumbaugh, W.G.; Kemble, N.E.; May, T.W.; Ingersoll, C.G.
2004-01-01
We evaluated the influence of sediment characteristics, acid-volatile sulfide (AVS) and organic matter (OM), on the toxicity of chromium (Cr) in freshwater sediments. We conducted chronic (28-42-d) toxicity tests with the amphipod Hyalella azteca exposed to Cr(VI) and Cr(III) in water and in spiked sediments. Waterborne Cr(VI) caused reduced survival of amphipods with a median lethal concentration (LC50) of 40 ??g/L. Cr(VI) spiked into test sediments with differing levels of AVS resulted in graded decreases in AVS and sediment OM. Only Cr(VI)-spiked sediments with low AVS concentrations (<1 ??mol/g) caused significant amphipod mortality. Waterborne Cr(III) concentrations near solubility limits caused decreased survival of amphipods at pH 7 and pH 8 but not at pH 6. Sediments spiked with high levels of Cr(III) did not affect amphipod survival but had minor effects on growth and inconsistent effects on reproduction. Pore waters of some Cr(III)-spiked sediments contained measurable concentrations of Cr(VI), but observed toxic effects did not correspond closely to Cr concentrations in sediment or pore waters. Our results indicate that risks of Cr toxicity are low in freshwater sediments containing substantial concentrations of AVS.
Stridsklev, Inger Cecilie; Schaller, Karl-Heinz; Langård, Sverre
2004-11-01
This study was undertaken to investigate the exposure to chromium (Cr) and nickel (Ni) in flux-cored wire (FCW) welders welding on stainless steel (SS). Seven FCW welders were monitored for 3 days to 1 workweek, measuring Cr and Ni in air, blood, and urine. The welders were questioned about exposure to Cr and Ni during their whole working careers, with emphasis on the week of monitoring, about the use of personal protective equipment and their smoking habits. The air concentrations were mean 200 microg/m(3) (range 2.4-2,744) for total Cr, 11.3 microg/m(3) (<0.2-151.3) for Cr(VI), and 50.4 microg/m(3) (<2.0-416.7) for Ni during the workdays for the five welders who were monitored with air measurements. The levels of Cr and Ni in biological fluids varied between different workplaces. For Cr in whole blood, plasma, and erythrocytes, the mean levels after work were 1.25 (<0.4-8.3) and 1.68 (<0.2-8.0) and 0.9 (<0.4-7.2) microg/l, respectively. For Ni most of the measurements in whole blood and plasma were below the detection limits, the mean levels after work being 0.84 (<0.8-3.3) and 0.57 microg/l (<0.4-1.7), respectively. Mean levels for Cr and Ni in the urine after work were 3.96 (0.34-40.7) and 2.50 (0.56-5.0) microg/g creatinine, respectively. Correlations between the Cr(VI) levels measured in air and the levels of total Cr in the measured biological fluids were found. The results seem to support the view that monitoring of Cr in the urine may be versatile for indirect monitoring of the Cr(VI) air level in FCW welders. The results seem to suggest that external and internal exposure to Cr and Ni in FCW welders welding SS is low in general.
Chen, Hualin; Arocena, Joselito M; Li, Jianbing; Thring, Ronald W; Zhou, Jiangmin
2012-12-01
Leather tanneries around the world, including China, introduce chromium (Cr) and other metals into the environment. In China, the population pressure compels the utilization of every piece of available land for food production. In this study, we investigated the content, leachability and possible storage sinks for Cr and other metals in soils around facilities of leather industry in southern China. It was found that Cr in soils impacted by tannery can be as high as 2484 mg Cr kg⁻¹ soil, and the mean contents of other metals such as Zn (214 mg Zn kg⁻¹ soil), Cd (5.4 mg Cd kg⁻¹ soil), As (17 mg As kg⁻¹ soil) exceeded the soil quality standards and guidelines in China and Canada. Simulated leaching studies (i.e., Synthetic Precipitation Leaching Procedure) indicated that these soils could release Cr and other metals in concentrations above the environmental quality guidelines and standards for water in China and Canada. As a result, the mobility of metals from these soils can potentially contaminate both groundwater and surface water. We also found differential leachability of metals with soil properties such as total metal and total carbon contents. Principal component analysis of the total contents of 32 elements showed that the possible major sinks for Cr are organic matter and oxides of Fe/Mn/Al, while sulfates and phosphates are potential storage of Cd, Zn, Cu and Pb. The information obtained from this study can be valuable for the restoration of ecosystem functions (i.e., food production) in the study area.
Zhang, F J; Weng, X G; Wang, J F; Zhou, D; Zhang, W; Zhai, C C; Hou, Y X; Zhu, Y H
2014-07-01
Heat stress adversely affects the productivity and immune status of dairy cows. The temperature-humidity index (THI) is commonly used to indicate the degree of heat stress on dairy cattle. We investigated the effects of different THI and Cr supplementation on the antioxidant capacity, the levels of heat shock protein 72 (Hsp72), and cytokine responses of lactating cows. The study used a total of 24 clinically healthy uniparous midlactation Holstein cows, which were randomly divided into 2 groups (n = 12 per group), and was conducted in 3 designated THI periods: low THI period (LTHI; THI = 56.4 ± 2.5), moderate THI period (MTHI; THI = 73.9 ± 1.7), and high THI period (HTHI; THI = 80.3 ± 1.0). The 2 groups of cows were fed corn and corn silage based basal diet supplemented chromium picolinate to provide 3.5 mg of Cr/cow daily (Cr+) or basal diet with no Cr (Cr-). The experiment was a 3 × 2 factorial design. The numbers of leukocytes (P < 0.05) and serum levels of glucose (P < 0.001) were lower; however, the serum levels of blood urea nitrogen (BUN; P < 0.001) and creatinine (P < 0.001) were greater in the MTHI and HTHI than in LTHI. The total antioxidant capacity in the serum was unaltered; an increase in superoxide dismutase activity (P < 0.001) and in serum malondialdehyde concentration (P < 0.001) was observed in the MTHI and HTHI compared with the LTHI. The high THI led to increases in serum concentrations of tumor necrosis factor-α (TNF-α; P < 0.001) and IL-10 (P < 0.05). Cows supplemented with Cr had lower (P = 0.009) serum concentrations of cholesterol but greater (P < 0.001, respectively) serum levels of Hsp72 and IL-10 compared with those without Cr supplementation in the HTHI. Western blot analysis revealed that cows supplemented with Cr had greater (P = 0.038) expression of the inhibitor of nuclear factor kappa B α (IκBα) in peripheral blood mononuclear cells (PBMC) compared with those without Cr supplementation in the HTHI, whereas the expression of Hsp72 in PBMC was unaltered. Data indicate that there is a decrease in glucose and increases in BUN and creatinine in the serum of midlactation cows under hot conditions during the summer and that these cows have a lowered oxidative capacity but an elevated antioxidant capacity. In addition, Cr may play an anti-inflammatory role in lactating cows by promoting the release of Hsp72, increasing the production of IL-10, and inhibiting the degradation of IκBα under hot conditions during the summer.
Lin, Manli; Gui, Herong; Wang, Yao; Peng, Weihua
2017-01-01
To analyze the pollution characteristics, source apportionment, and health risk of heavy metals (HMs) in street dust of Suzhou, China, 23 sampling sites were selected and periodically sampled for 12 months. A total of 276 samples were collected, and the concentrations of selected HMs (e.g., Cr, Cu, Fe, Mn, Pb, V, and Zn) were examined with an X-ray fluorescence spectrum analyzer. Results showed that the mean concentrations of Cr, Cu, Fe, Mn, Pb, V, and Zn in the street dust of Suzhou were 112.9, 27.5, 19941.3, 410.3, 45.2, 75.6, and 225.3 mg kg -1 , respectively. Cr, Cu, Pb, and Zn exceeded their background values in local natural soils by 1.3-3.6-fold, whereas Fe, Mn, and V were all within their background values. However, enrichment factor analysis revealed that Cr, Cu, Mn, Pb, V, and Zn, especially Cr, Cu, Pb, and Zn, were enriched in Suzhou street dust. The HMs showed no significant seasonal changes overall, but spatial distribution analysis implied that the high values of Cr, Cu, Mn, Pb, V, and Zn were mainly distributed in areas with frequent human activities. Results of multivariate techniques (e.g., Pearson correlation, hierarchical cluster, and principal components analyses) suggested that Pb and Zn had complicated sources; Cu and V mainly originated from traffic sources; Fe and Mn mainly came from natural sources; and Cr was dominantly related to industrial district. Health risk assessment revealed that a single heavy metal might not cause both non-cancer and carcinogenic risks to local residents. Nevertheless, the sum of the hazard index of all selected HMs for children slightly exceeded the safety value, thereby implying that the HMs from Suzhou street dust can possibly produce significant risk to children. Cr was the priority pollutant in the study area because of its high concentration, high enrichment, and high contribution to non-cancer risk values.
Henriksen, Ulrik L; Hansen, Hanne B; Ring-Larsen, Helmer; Bendtsen, Flemming; Henriksen, Jens H
2015-01-01
In patients with fluid retention, the total plasma clearance of (51)Cr-EDTA (ClP) may overestimate the glomerular filtration rate (GFR). The present study was therefore undertaken in order to compare ClP with the urinary plasma clearance of (51)Cr-EDTA (ClU) in patients with cirrhosis with and without fluid retention. A total of 136 patients with cirrhosis (24 without fluid retention, 112 with ascites) received a quantitative intravenous injection of (51)Cr-EDTA followed by plasma and quantitative urinary samples for 5 hours. ClP was determined from the injected dose relative to the plasma concentration-time area, extrapolated to infinity. ClU was determined as urinary excretion relative to the plasma concentration-time area up to voiding. In patients without fluid retention, the difference between ClP and ClU (ClP - ClU = ClΔ) was mean 4.5 mL/min/1.73 m(2). In patients with ascites, ClΔ was significantly higher (17.6 mL/min/1.73 m(2), p < 0.0001). ClΔ increased with lower values of GFR (r = - 0.458, p < 0.001). Repeated measurements of ClU in a subgroup of patients with fluid retention (n = 25) gave almost identical values. Different types of corrections of one-pool clearance were almost identical with ClP, except for higher clearance values, which were somewhat underestimated by the former. In patients with fluid retention and ascites ClP and corrected one-pool clearance overestimates GFR substantially. Although ClU may underestimate GFR slightly, patients with ascites should collect urine quantitatively in order to obtain a reliable measurement of GFR.
Chromium speciation in environmental samples using a solid phase spectrophotometric method
NASA Astrophysics Data System (ADS)
Amin, Alaa S.; Kassem, Mohammed A.
2012-10-01
A solid phase extraction technique is proposed for preconcentration and speciation of chromium in natural waters using spectrophotometric analysis. The procedure is based on sorption of chromium(III) as 4-(2-benzothiazolylazo)2,2'-biphenyldiol complex on dextran-type anion-exchange gel (Sephadex DEAE A-25). After reduction of Cr(VI) by 0.5 ml of 96% concentrated H2SO4 and ethanol, the system was applied to the total chromium. The concentration of Cr(VI) was calculated as the difference between the total Cr and the Cr(III) content. The influences of some analytical parameters such as: pH of the aqueous solution, amounts of 4-(2-benzothiazolylazo)2,2'-biphenyldiol (BTABD), and sample volumes were investigated. The absorbance of the gel, at 628 and 750 nm, packed in a 1.0 mm cell, is measured directly. The molar absorptivities were found to be 2.11 × 107 and 3.90 × 107 L mol-1 cm-1 for 500 and 1000 ml, respectively. Calibration is linear over the range 0.05-1.45 μg L-1 with RSD of <1.85% (n = 8.0). Using 35 mg exchanger, the detection and quantification limits were 13 and 44 ng L-1 for 500 ml sample, whereas for 1000 ml sample were 8.0 and 27 ng L-1, respectively. Increasing the sample volume can enhance the sensitivity. No considerable interferences have been observed from other investigated anions and cations on the chromium speciation. The proposed method was applied to the speciation of chromium in natural waters and total chromium preconcentration in microwave digested tobacco, coffee, tea, and soil samples. The results were simultaneously compared with those obtained using an ET AAS method, whereby the validity of the method has been tested.
Wang, Changyou; Guo, Jinqiang; Liang, Shengkang; Wang, Yunfei; Yang, Yanqun; Wang, Xiulin
2018-03-01
The concentrations of the potentially toxic dissolved elements (PTEs) As, Hg, Cr, Pb, Cd, and Cu in the main rivers into Jiaozhou Bay (JZB) during 1981-2006 were measured, and the impact of the fluvial PTE fluxes on their distributions in the bay was investigated. The overall average concentration in the rivers into JZB ranged from 8.8 to 39.6 μg L -1 for As, 10.1 to 632.6 ng L -1 for Hg, 4.1 to 3003.6 μg L -1 for Cr, 8.5 to 141.9 μg L -1 for Pb, 1.1 to 34.2 μg L -1 for Cd, and 13.2 to 1042.8 μg L -1 for Cu. The interannual average concentration variations of the PTEs in these rivers were enormous, with maximum differences of 41-21,680 times, while their relative seasonal changes were far smaller with maximum differences of 3-12 times. The total annual fluvial fluxes for As, Hg, and Cr into JZB exhibited the inverse "U" pattern, while those for Pb and Cd showed the "N" pattern. As a whole, the total annual Cu flux presented a growing tendency from 1998 to 2006. In general, the changing trends of the PTE concentrations in JZB were similar to those of their annual fluxes from the rivers, indicating a great impact of their fluvial fluxes on their distributions in JZB. The annual concentration of Cd in the bay almost remained constant and differed from the fluvial flux of Cd. The diversified pattern of the environmental Kuznets curve (EKC) represented China's approach to industrialization as "improving while developing."
A simplified method for active-site titration of lipases immobilised on hydrophobic supports.
Nalder, Tim D; Kurtovic, Ivan; Barrow, Colin J; Marshall, Susan N
2018-06-01
The aim of this work was to develop a simple and accurate protocol to measure the functional active site concentration of lipases immobilised on highly hydrophobic supports. We used the potent lipase inhibitor methyl 4-methylumbelliferyl hexylphosphonate to titrate the active sites of Candida rugosa lipase (CrL) bound to three highly hydrophobic supports: octadecyl methacrylate (C18), divinylbenzene crosslinked methacrylate (DVB) and styrene. The method uses correction curves to take into account the binding of the fluorophore (4-methylumbelliferone, 4-MU) by the support materials. We showed that the uptake of the detection agent by the three supports is not linear relative to the weight of the resin, and that the uptake occurs in an equilibrium that is independent of the total fluorophore concentration. Furthermore, the percentage of bound fluorophore varied among the supports, with 50 mg of C18 and styrene resins binding approximately 64 and 94%, respectively. When the uptake of 4-MU was calculated and corrected for, the total 4-MU released via inhibition (i.e. the concentration of functional lipase active sites) could be determined via a linear relationship between immobilised lipase weight and total inhibition. It was found that the functional active site concentration of immobilised CrL varied greatly among different hydrophobic supports, with 56% for C18, compared with 14% for DVB. The described method is a simple and robust approach to measuring functional active site concentration in immobilised lipase samples. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Jian-Kun; Wang, Zhen-Hua; Ye, Yun
2016-12-01
Three bacterial isolates, GT2, GT3, and GT7, were isolated from the sludge and water of a circulating cooling system of iron and steel plant by screening on Cr(VI)-containing plates. Three isolates were characterized as the members of the genus Pseudomonas on the basis of phenotypic characteristics and 16S rRNA sequence analysis. All isolates were capable of resisting multiple antibiotics and heavy metals. GT7 was most resistant to Cr(VI), with a minimum inhibitory concentration (MIC) of 6.5 mmol L -1 . GT7 displayed varied rates of Cr(VI) reduction in M2 broth, which was dependent on pH, initial Cr(VI) concentration, and inoculating dose. Total chromium analysis revealed that GT7 could remove a part of chromium from the media, and the maximum rate of chromium removal was up to 40.8 %. The Cr(VI) reductase activity of GT7 was mainly associated with the soluble fraction of cell-free extracts and reached optimum at pH 6.0∼8.0. The reductase activity was apparently enhanced by external electron donors and Cu(II), whereas it was seriously inhibited by Hg(II), Cd(II), and Zn(II). The reductase showed a K m of 74 μmol L -1 of Cr(VI) and a V max of 0.86 μmol of Cr(VI) min -1 mg -1 of protein. The results suggested that GT7 could be a promising candidate for in situ bioremediation of Cr(VI).
NASA Astrophysics Data System (ADS)
Yokoyama, Seiji; Okazaki, Kohei; Sasano, Junji; Izaki, Masanobu
2014-02-01
Hexavalent chromium (Cr(VI)) is well-known to be a strong oxidizer, and is recognized as a carcinogen. Therefore, it is regulated for drinking water, soil, groundwater and sea by the environmental quality standards all over the world. In this study, it was attempted to remove Cr(VI) ion in a carbonic acid solution by the oxidizing slag that was discharged from the normal steelmaking process in an electric arc furnace. After the addition of the slag into the aqueous solution contained Cr(VI) ion, concentrations of Cr(VI) ion and total chromium (Cr(VI) + trivalent chromium (Cr(III)) ions decreased to lower detection limit of them. Therefore, the used slag could reduce Cr(VI) and fix Cr(III) ion on the slag. While Cr(VI) ion existed in the solution, iron did not dissolve from the slag. From the relation between predicted dissolution amount of iron(II) ion and amount of decrease in Cr(VI) ion, the Cr(VI) ion did not react with iron(II) ion dissolved from the slag. Therefore, Cr(VI) ion was removed by the reductive reaction between Cr(VI) ion and the iron(II) oxide (FeO) in the slag. This reaction progressed on the newly appeared surface of iron(II) oxide due to the dissolution of phase composed of calcium etc., which existed around iron(II) oxide grain in the slag.
Calibration of LR-115 for 222Rn monitoring taking into account the plateout effect.
Da Silva, A A R; Yoshimura, E M
2003-01-01
The dose received by people exposed to indoor radon is mainly due to radon progeny. This fact points to the establishment of techniques that access either radon and progeny together, or only radon progeny concentration. In this work a low cost and easy to use methodology is presented to determine the total indoor alpha emission concentration. It is based on passive detection using LR-115 and CR-39 detectors, taking into account the plateout effect. A calibration of LR-115 track density response was done by indoor exposure in controlled environments and dwellings, places where 222Rn and progeny concentration were measured with CR-39. The calibration factor obtained showed great dependence on the ambient condition: (0.69 +/- 0.04) cm for controlled environments and (0.43 +/- 0.03) cm for dwellings.
Sartorius, Alexander; Lugenbiel, Patrick; Mahlstedt, Magdalena M; Ende, Gabriele; Schloss, Patrick; Vollmayr, Barbara
2008-07-30
Creatine (Cr) is an amino acid, which upon phosphorylation is utilized as an energy reservoir in cells with high-energy demand. The ongoing catabolism of creatine to creatinine requires a permanent creatine replenishment into the cells. Because neurons themselves cannot synthesize creatine, they have to take it up via the creatine transporter (CrT). Thus, the concentration of intracellular Cr available for the Cr/PCr shuttle system depends on the expression level of CrT protein. The proton magnetic resonance spectroscopy (MRS) creatine peak (total creatine=tCr) constitutes of two metabolites, namely Cr and phosphocreatine (PCr). We have quantified the level of CrT protein expression with western blotting and compared it to tCr content as estimated by in vitro MRS in Sprague-Dawley rats. Under the assumption of hemispheric symmetry, we took identical samples from left and right hemisphere, which were used for in vitro MRS (tCr) and for western blotting (CrT), respectively. Altogether, it was possible to take 90 corresponding brain samples from 31 animals. A Pearson linear regression analysis for CrT and tCr revealed p<0.0001, explaining 14% of the variance. Since MR-detectable alterations of tCr in the human brain are widespread (e.g. in most major psychiatric disorders proton MRS detectable tCr alterations have been described as regionally and usually state dependent) it is stringent to elucidate their meaning. An influence of tCr on the brain's energy regulating system seems plausible.
Lu, Sen; Meng, Ping; Zhang, Jinsong; Yin, Changjun; Sun, Shiyou
2015-11-01
Limited information is available on the effects of agroforestry system practices on soil properties in the Loess Plateau of China. Over the last decade, a vegetation restoration project has been conducted in this area by converting cropland into tree-based agroforestry systems and orchards to combat soil erosion and degradation. The objective of the present study was to determine the effects of land use conversion on soil organic carbon and total nitrogen in southeastern Loess Plateau. The experiment included three treatments: walnut intercropping system (AF), walnut orchard (WO), and traditional cropland (CR). After 7 years of continual management, soil samples were collected at 0-10, 10-30, and 30-50-cm depths for three treatments, and soil organic carbon (SOC) and total nitrogen (TN) were measured. Results showed that compared with the CR and AF treatments, WO treatment decreased both SOC and TN concentrations in the 0-50-cm soil profile. However, similar patterns of SOC and TN concentrations were observed in the AF and CR treatments across the entire profile. The SOC stocks at 0-50-cm depth were 5.42, 5.52, and 4.67 kg m(-2) for CR, AF, and WO treatments, respectively. The calculated TN stocks at 0-50-cm depth were 0.63, 0.62, and 0.57 kg m(-2) for CR, AF, and WO treatments, respectively. This result demonstrated that the stocks of SOC and TN in WO were clearly lower than those of AF and CR and that the walnut-based agroforestry system was more beneficial than walnut monoculture in terms of SOC and TN sequestration. Owing to the short-term intercropping practice, the changes in SOC and TN stocks were slight in AF compared with those in CR. However, a significant decrease in SOC and TN stocks was observed during the conversion of cropland to walnut orchard after 7 years of management. We also found that land use types had no significant effect on soil C/N ratio. These findings demonstrated that intercropping between walnut rows can potentially maintain more SOC and TN stocks than walnut monoculture and that agroforestry is a sustainable management pattern for vegetation restoration in the Loess Plateau area.
Global brain metabolic quantification with whole-head proton MRS at 3 T.
Kirov, Ivan I; Wu, William E; Soher, Brian J; Davitz, Matthew S; Huang, Jeffrey H; Babb, James S; Lazar, Mariana; Fatterpekar, Girish; Gonen, Oded
2017-10-01
Total N-acetyl-aspartate + N-acetyl-aspartate-glutamate (NAA), total creatine (Cr) and total choline (Cho) proton MRS ( 1 H-MRS) signals are often used as surrogate markers in diffuse neurological pathologies, but spatial coverage of this methodology is limited to 1%-65% of the brain. Here we wish to demonstrate that non-localized, whole-head (WH) 1 H-MRS captures just the brain's contribution to the Cho and Cr signals, ignoring all other compartments. Towards this end, 27 young healthy adults (18 men, 9 women), 29.9 ± 8.5 years old, were recruited and underwent T 1 -weighted MRI for tissue segmentation, non-localizing, approximately 3 min WH 1 H-MRS (T E /T R /T I = 5/10/940 ms) and 30 min 1 H-MR spectroscopic imaging (MRSI) (T E /T R = 35/2100 ms) in a 360 cm 3 volume of interest (VOI) at the brain's center. The VOI absolute NAA, Cr and Cho concentrations, 7.7 ± 0.5, 5.5 ± 0.4 and 1.3 ± 0.2 mM, were all within 10% of the WH: 8.6 ± 1.1, 6.0 ± 1.0 and 1.3 ± 0.2 mM. The mean NAA/Cr and NAA/Cho ratios in the WH were only slightly higher than the "brain-only" VOI: 1.5 versus 1.4 (7%) and 6.6 versus 5.9 (11%); Cho/Cr were not different. The brain/WH volume ratio was 0.31 ± 0.03 (brain ≈ 30% of WH volume). Air-tissue susceptibility-driven local magnetic field changes going from the brain outwards showed sharp gradients of more than 100 Hz/cm (1 ppm/cm), explaining the skull's Cr and Cho signal losses through resonance shifts, line broadening and destructive interference. The similarity of non-localized WH and localized VOI NAA, Cr and Cho concentrations and their ratios suggests that their signals originate predominantly from the brain. Therefore, the fast, comprehensive WH- 1 H-MRS method may facilitate quantification of these metabolites, which are common surrogate markers in neurological disorders. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
McClain, C.; Maher, K.; Fendorf, S.
2011-12-01
California recently adopted the nation's first Public Health Goal (PHG) for hexavalent chromium (Cr(VI)) in drinking water (0.02 μg/L) because recent studies show that Cr(VI) may be carcinogenic through ingestion. Approximately one third of drinking water sources in California tested for Cr(VI) have levels above 1 μg/L and thus may pose a risk to human health. Cr(VI) can enter drinking water directly from anthropogenic sources or from the release of Cr(III) in natural geogenic sources such as rocks, sediments and soils, and subsequent oxidation to Cr(VI) by manganese oxides. Ultramafic rocks and related soils and sediments have elevated Cr and Mn concentrations compared to other rock types. To study the release of Cr(VI) to water from geogenic sources we examined the local hydrology, groundwater, surface water, soils and sediment compositions within a serpentinized ultramafic terrain along Hunting Creek, a tributary to Putah Creek, at the McLaughlin Natural Reserve in the California Coast Ranges. The hydrology of the site is dominated by fracture flow: groundwater wells were screened in fractured serpentinite, and springs emanating from fractured serpentinite bedrock contribute to the baseflow of Hunting Creek. Soil profiles and bedrock were analyzed for major and trace elements by XRF to assess the fate of Cr during weathering and the distribution of manganese oxides. These factors, along with mineral surface areas, microbial activity, water content, and flow dynamics, collectively control the oxidation of Cr(III). The prevalence of Mg-HCO3 waters at this site indicates that waters are primarily interacting with serpentinites. Pyroxenes are slightly to highly undersaturated and amorphous silica is saturated. Smectite clays, chlorite, and hydromagnesite are supersaturated, indicating formation of secondary mineral phases is favorable and could lead to the inclusion of Cr(III). Total Cr concentrations in surface and groundwater vary from 0.1-26 μg/L and Cr(VI) concentrations vary from < 2.5-22 μg/L, where the highest concentrations were found in seeps emanating from fractured serpentinite and in tributaries to Hunting Creek. Aqueous Cr is mostly present as Cr(VI) (likely CrO42- and MgCrO4), which is consistent with the high pH (7.98-8.72). A reactive transport approach, constrained by solid and fluid data, was used to assess the geochemical transformations that occur along flow paths in order to evaluate the coupling between hydrologic and biogeochemical processes. Similar ultramafic rocks and terrains occur in belts along the Coast Range and the Foothills to the Sierra Nevada and in the Klamath Mountains. Creeks and rivers draining these ultramafic terrains have transported Cr-bearing sediments to the Central Valley, (and other densely populated sedimentary basins and alluvial plains) where they are now widely distributed both at the surface and buried underground, interlaced with aquifer materials. This study highlights the importance of using a holistic approach that considers multiple length scales to understand the factors that control Cr distribution and speciation in natural waters.
Geng, Menghan; Qi, Hongjuan; Liu, Xuelin; Gao, Bo; Yang, Zhan; Lu, Wei; Sun, Rubao
2016-05-01
The potential contaminations of 16 trace elements (Cr, Mn, Ni, Cu, Zn, As, Cd, Sb, Ba, Pb, Co, Be, V, Ti, Tl, Al) in drinking water collected in two remote areas in China were analyzed. The average levels of the trace elements were lower than the allowable concentrations set by national agencies, except for several elements (As, Sb, Mn, and Be) in individual samples. A health risk assessment model was conducted and carcinogenic and non-carcinogenic risks were evaluated separately. The results indicated that the total carcinogenic risks were higher than the maximum allowed risk level set by most organizations (1 × 10(-6)). Residents in both study areas were at risk of carcinogenic effects from exposure to Cr, which accounted for 80-90 % of the total carcinogenic risks. The non-carcinogenic risks (Cu, Zn, Ni) were lower than the maximum allowance levels. Among the four population groups, infants incurred the highest health risks and required special attention. Correlation analysis revealed significant positive associations among most trace elements, indicating the likelihood of a common source. The results of probabilistic health risk assessment of Cr based on Monte-Carlo simulation revealed that the uncertainty of system parameters does not affect the decision making of pollution prevention and control. Sensitivity analysis revealed that ingestion rate of water and concentration of Cr showed relatively high sensitivity to the health risks.
A Synthetic Calcite Standard for Determination of Relative Mn/Cr Sensitivity Factor
NASA Astrophysics Data System (ADS)
Fujiya, W.; Ichimura, K.; Takahata, N.; Sugiura, N.; Sano, Y.
2009-12-01
Primitive chondrites which suffered from aqueous alteration often contain carbonates such as calcites, dolomites and breunnerites. 53Mn-53Cr decay system (half-life: 3.7 Myr) is applicable to dating their precipitation and many authors have measured their Mn-Cr ages using the SIMS. However, the relative Mn/Cr sensitivity factor: RSF (measured Mn+/Cr+ ratio divided by the true ratio) is not well established due to the absence of suitable standards, therefore the ages have systematic uncertainties. We prepared a synthetic Mn and Cr bearing calcite to evaluate the Mn/Cr RSF. Here we report the technical details of preparation for the standard and its Mn/Cr RSF. We also measured the Mn/Cr RSF of San Carlos olivine which is often assumed to be the same as that of a carbonate, and compared it with that of our synthetic calcite. The Cr-bearing calcite was produced in a N2 filled closed system by the reaction Ca2+ + CO32- = CaCO3 in an aqueous solution. The reaction proceeded by continuous addition of ammonium carbonate vapor to the solution. The crystal size of the calcite was ~300 μm. A small amount of hydrazine was added to the solution in order to keep chromous ion from oxidation. Mn and Cr concentrations in the calcite grains were determined by the SEM-EDS. A weak, defocused beam was used due to prevent electron beam damage. In a spherical grain, radial zoning of Mn and Cr concentrations occur and they decrease towards the periphery. At the center of the grains, Mn and Cr concentrations are ~0.5 atomic % and the values of the Mn/Cr ratios are relatively constant. The Mn/Cr RSF was determined with the CAMECA NanoSIMS 50 at Ocean Research Institute of Univ. of Tokyo. A primary O- beam of ~1 nA and 5 μm diameter was used. 43Ca+, 52Cr+, 53Cr+ and 55Mn+ ions were analyzed in a combined peak-jumping/multi-detection mode. The total measurement time was typically ~20 minutes. The measurements were started after presputtering of 15 minutes. The mass resolution power was ~3500, sufficient to resolve all relevant isobaric interferences. Several points near the center of calcite grains with constant Mn and Cr concentrations were measured. As for San Carlos olivine, a primary beam was rastered over 20 x 20 μm2 areas. Signals of all ions decreased with time during the measurements. The 55Mn/52Cr RSF also decreased with time. Initially it was ~0.7-0.8, and approached to a nearly constant value of ~0.5-0.6 after ~20 minutes. 53Cr+/52Cr+ isotopic ratio was 0.1105 ± 0.0002 (1σ), not dependent on time and space. This value corresponds to ~-26 permil fractionation from the reference value. On the other hand, the RSF of San Carlos olivine was found to be ~0.9, consistent with previous studies. The RSF of our calcite is significantly lower than the values used in previous studies and the RSF of San Carlos olivine measured in this study. This implies that Mn-Cr ages for carbonates obtained in previous studies may have systematic biases (~3 Myr).
Chromium oxidation state mapping in human cells
NASA Astrophysics Data System (ADS)
Ortega, R.; Fayard, B.; Salomé, M.; Devès, G.; Susini, J.
2003-03-01
The widespread use of chromium in industrial applications such as chemical production of pigments, refractory brick production, tanning, metallurgy, electroplating, and combustion of fuels has lead to human occupational exposure and to its increased introduction into the environment. Hexavalent chromium compounds are established carcinogens but their mechanism of cell transformation is not known. Up to now, no microanalytical technique was sensitive enough to allow the observation of chromium distribution, and oxidation state identification, within isolated cells at carcinogenic concentrations. In this experiment, we used successfully the ID-21 X-ray microscope to map Cr(VI) and total Cr distributions in cells exposed in vitro to soluble, and insoluble, Cr(VI) compounds. Exposure to soluble compounds, weak carcinogens, resulted in a homogeneous intracellular distribution of Cr, confirming by in situ measurement that Cr is present in the cell nucleus. Cr(VI) was never detected in cells which suggests a mechanism of rapid intracellular reducticn. On the other hand, exposure to insoluble compounds, strong carcinogens, also resulted in a homogeneous distribution of reduced forms of Cr in cells, and their nucleus. However, in this case, Cr(VI)-rich structures were observed into the cells suggesting that carcinogenicity is enhanced when oxidation reactions due to Cr(VI) chronic exposure are associated to Cr-DNA alterations.
Nickel, Cobalt, Chromium and Copper in agricultural and grazing land soils of Europe
NASA Astrophysics Data System (ADS)
Albanese, Stefano; Sadeghi, Martiya; De Vivo, Benedetto; Lima, Annamaria; Cicchella, Domenico; Dinelli, Enrico
2014-05-01
In the framework of the GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soils) project, concentrations of Ni, Co, Cu and Cr were determined for the whole available dataset (2218 samples of agricultural soil and 2127 samples of grazing land soil) covering a total area of 5.6 million sq km all over Europe. The distribution pattern of Ni in the European soils (both agricultural and grazing land soils) shows the highest concentrations in correspondence with the Mediterranean area (especially in Greece, the Balcan Peninsula and NW Italy) with average values generally ranging between 40 mg/kg and 140 mg/kg and anomalous areas characterized by peaks higher than 2400 mg/kg. Concentrations between 10 mg/kg and 40 mg/kg characterize Continental Europe north of Alps and, partly, the Scandinavian countries. Lower concentrations (< 10 mg/kg) occurs near the Trans-European Suture Zone, one of the main tectonic borders in Europe, and they are limited on the south by the maximum extent limit of the last glaciation. Cobalt and Cr show distribution patterns similar to Ni in both agricultural and grazing land soils. The maximum concentration peaks of Cobalt and Cr rise up to respectively 126 mg/kg and 696 mg/kg in agricultural soils and up to 255 mg/kg and 577 mg/kg in grazing land soils. Copper distribution in the soils collected across Europe, although has a general correspondence with the patterns of Ni, Co, Cr, shows some peculiarities. Specifically, Cu is characterized by high concentration values (up to 395 mg/kg in agricultural soils and 373 mg/kg in Grazing land soils) also in correspondence with the Roman Comagmatic Province and the south western coast of France characterized by a wide spread of vineyards.
Kfoury, Adib; Ledoux, Frédéric; Roche, Cloé; Delmaire, Gilles; Roussel, Gilles; Courcot, Dominique
2016-02-01
The constrained weighted-non-negative matrix factorization (CW-NMF) hybrid receptor model was applied to study the influence of steelmaking activities on PM2.5 (particulate matter with equivalent aerodynamic diameter less than 2.5 μm) composition in Dunkerque, Northern France. Semi-diurnal PM2.5 samples were collected using a high volume sampler in winter 2010 and spring 2011 and were analyzed for trace metals, water-soluble ions, and total carbon using inductively coupled plasma--atomic emission spectrometry (ICP-AES), ICP--mass spectrometry (ICP-MS), ionic chromatography and micro elemental carbon analyzer. The elemental composition shows that NO3(-), SO4(2-), NH4(+) and total carbon are the main PM2.5 constituents. Trace metals data were interpreted using concentration roses and both influences of integrated steelworks and electric steel plant were evidenced. The distinction between the two sources is made possible by the use Zn/Fe and Zn/Mn diagnostic ratios. Moreover Rb/Cr, Pb/Cr and Cu/Cd combination ratio are proposed to distinguish the ISW-sintering stack from the ISW-fugitive emissions. The a priori knowledge on the influencing source was introduced in the CW-NMF to guide the calculation. Eleven source profiles with various contributions were identified: 8 are characteristics of coastal urban background site profiles and 3 are related to the steelmaking activities. Between them, secondary nitrates, secondary sulfates and combustion profiles give the highest contributions and account for 93% of the PM2.5 concentration. The steelwork facilities contribute in about 2% of the total PM2.5 concentration and appear to be the main source of Cr, Cu, Fe, Mn, Zn. Copyright © 2015. Published by Elsevier B.V.
Margolis, Lee M.; Rivas, Donato A.; Ezzyat, Yassine; Gaffney-Stomberg, Erin; Young, Andrew J.; McClung, James P.; Fielding, Roger A.; Pasiakos, Stefan M.
2016-01-01
The purpose of this investigation was to assess the influence of calorie restriction (CR) alone, higher-protein/lower-carbohydrate intake alone, and combined CR higher-protein/lower-carbohydrate intake on glucose homeostasis, hepatic de novo lipogenesis (DNL), and intrahepatic triglycerides. Twelve-week old male Sprague Dawley rats consumed ad libitum (AL) or CR (40% restriction), adequate (10%), or high (32%) protein (PRO) milk-based diets for 16 weeks. Metabolic profiles were assessed in serum, and intrahepatic triglyceride concentrations and molecular markers of de novo lipogenesis were determined in liver. Independent of calorie intake, 32% PRO tended to result in lower homeostatic model assessment of insulin resistance (HOMA-IR) values compared to 10% PRO, while insulin and homeostatic model assessment of β-cell function (HOMA-β) values were lower in CR than AL, regardless of protein intake. Intrahepatic triglyceride concentrations were 27.4 ± 4.5 and 11.7 ± 4.5 µmol·g−1 lower (p < 0.05) in CR and 32% PRO compared to AL and 10% PRO, respectively. Gene expression of fatty acid synthase (FASN), stearoyl-CoA destaurase-1 (SCD1) and pyruvate dehydrogenase kinase, isozyme 4 (PDK4) were 45% ± 1%, 23% ± 1%, and 57% ± 1% lower (p < 0.05), respectively, in CR than AL, regardless of protein intake. Total protein of FASN and SCD were 50% ± 1% and 26% ± 1% lower (p < 0.05) in 32% PRO compared to 10% PRO, independent of calorie intake. Results from this investigation provide evidence that the metabolic health benefits associated with CR—specifically reduction in intrahepatic triglyceride content—may be enhanced by consuming a higher-protein/lower-carbohydrate diet. PMID:27649241
Mills, Christopher T.; Goldhaber, Martin B.
2012-01-01
Sacramento Valley (California, USA) soils and sediments have high concentrations of Cr(III) because they are partially derived from ultramafic material. Some Cr(III) is oxidized to more toxic and mobile Cr(VI) by soil Mn oxides. Valley soils typically have neutral to alkaline pH at which Cr(III) is highly immobile. Much of the valley is under cultivation and is both fertilized and irrigated. A series of laboratory incubation experiments were conducted to assess how cultivation might impact Cr cycling in shallow vadose zone material from the valley. The first experiments employed low (7.1 mmol N per kg soil) and high (35 mmol N kg− 1) concentrations of applied (NH4)2SO4. Initially, Cr(VI) concentrations were up to 45 and 60% greater than controls in low and high incubations, respectively. After microbially-mediated oxidation of all NH4+, Cr(VI) concentrations dropped below control values. Increased nitrifying bacterial populations (estimated by measurement of phospholipid fatty acids) may have increased the Cr(VI) reduction capacity of the vadose zone material resulting in the observed decreases in Cr(VI). Another series of incubations employed vadose zone material from a different location to which low (45 meq kg− 1) and high (128 meq kg− 1) amounts of NH4Cl, KCl, and CaCl2 were applied. All treatments, except high concentration KCl, resulted in mean soil Cr(VI) concentrations that were greater than the control. High concentrations of water-leachable Ba2 + (mean 38 μmol kg− 1) in this treatment may have limited Cr(VI) solubility. A final set of incubations were amended with low (7.1 mmol N kg− 1) and high (35 mmol N kg− 1) concentrations of commercial liquid ammonium polyphosphate (APP) fertilizer which contained high concentrations of Cr(III). Soil Cr(VI) in the low APP incubations increased to a concentration of 1.8 μmol kg− 1 (5 × control) over 109 days suggesting that Cr(III) added with the APP fertilizer was more reactive than naturally-occurring soil Cr(III).
de Oliveira, Letúzia M; Lessl, Jason T; Gress, Julia; Tisarum, Rujira; Guilherme, Luiz R G; Ma, Lena Q
2015-02-01
We investigated the effects of chromate (CrVI) and phosphate (P) on their uptake and translocation in As-hyperaccumulator Pteris vittata (PV). Plants were exposed to 1) 0.10 mM CrVI and 0, 0.25, 1.25, or 2.50 mM P or 2) 0.25 mM P and 0, 0.50, 2.5 or 5.0 mM CrVI for 24 h in hydroponics. PV accumulated 2919 mg/kg Cr in the roots at CrVI₀.₁₀, and 5100 and 3500 mg/kg P in the fronds and roots at P₀.₂₅. When co-present, CrVI and P inhibited each other's uptake in PV. Increasing P concentrations reduced Cr root concentrations by 62-82% whereas increasing CrVI concentrations reduced frond P concentrations by 52-59% but increased root P concentrations by 11-15%. Chromate reduced P transport, with more P being accumulated in PV roots. Though CrVI was supplied, 64-78% and 92-93% CrIII were in PV fronds and roots. Based on X-ray diffraction, Cr₂O₃ was detected in the roots confirming CrVI reduction to CrIII by PV. In short, CrVI and P inhibited each other in uptake and translocation by PV, and CrVI reduction to CrIII in PV roots served as its detoxification mechanism. The finding helps to understand the interactions of P and Cr during their uptake in PV. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Chen, Huixia; Dou, Junfeng; Xu, Hongbin
2017-12-01
Sewage sludge compost biomass was used as a novel biosorbent to remove hexavalent chromium from water. Surface area analysis, scanning electron microscopy, fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and point zero charge was applied to study the microstructure, compositions and chemical bonding states of the biomass adsorbent. Effects of contact time, biomass dosage, agitation speed, pH, the initial concentration of Cr(VI) and Cr(Ⅲ) on its adsorption removal were also performed in the batch experiments. A model describing adsorption, desorption and reduction phenomena during the sorption process has been referenced to model Cr(VI) sorption onto sewage sludge compost biomass. The result of characterization test shows that adsorption of Cr(VI) onto sewage sludge compost biomass followed by the partial reduction to Cr(Ⅲ) by biomass groups such as hydroxyl, carboxyl, and amino groups. The absorption kinetics model in the description of adsorption-coupled reduction of Cr(VI) fits successfully the kinetic data obtained at different temperatures and describes the kinetics profile of total, hexavalent and trivalent chromium. The study shows that sewage sludge compost biomass could be used as a potential biosorbent for removal of hexavalent chromium from wastewaters.
Maleki, Afshin; Amini, Hassan; Nazmara, Shahrokh; Zandi, Shiva; Mahvi, Amir Hossein
2014-01-01
Heavy metals are ubiquitous elsewhere in nature and their measurement in environment is necessary to develop health management strategies. In this study, we aimed to find out concentrations and spatial patterns of heavy metals in main farms of Sanandaj in Kurdistan, Iran. Over May to October 2012, six farms were selected to analyze concentrations and spatial patterns of several heavy metals, namely aluminum (Al), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in their soil, irrigation water, and edible vegetables. Overall, 36 samples of soil and water and 72 samples of vegetables including coriander (Coriandrum sativum), dill (Anethum graveolens), radish (Raphanus sativus) root and radish leaf were collected. The concentrations of metals were determined by inductively coupled plasma optical emission spectrometry. The spatial surfaces of heavy metals were created using geospatial information system. The order of metals in soil was Al > Zn > Ni > Cu > Cr > Pb > Co > As > Cd while in water it was Cr > Co > Zn > Pb > Cu > Ni > Al = As = Cd. The order of heavy metals in vegetables was Al > Zn > Cu > Cr > Ni > Pb > Co > As > Cd. Totally, the minimum concentrations of Al, Cu, Pb, and Zn were found in radish root while the maximum of Al, Co, Cr, and Ni were found in radish leaf. The minimum concentrations of Cd and Cr and maximum concentrations of Cu and Zn were also deciphered in dill. Noteworthy, coriander had the minimum concentrations of Co and Ni. The concentrations of Cr and Pb in vegetables were more than maximum allowable limits of the Food and Agriculture Organization (FAO) and the World Health Organization (WHO). In summary, albeit the concentrations of heavy metals in soil and water samples were below FAO and the WHO standards, vegetables were contaminated by chromium and lead.
de Oliveira, Letúzia M; Gress, Julia; De, Jaysankar; Rathinasabapathi, Bala; Marchi, Giuliano; Chen, Yanshan; Ma, Lena Q
2016-03-01
We investigated the effects of chromate (CrVI) and sulfate on their uptake and translocation in As-hyperaccumulator Pteris vittata. Plants were exposed to 1) 0.1 mM CrVI and 0, 0.25, 1.25 or 2.5 mM sulfate or 2) 0.25 mM sulfate and 0, 0.5, 2.5 or 5.0 mM CrVI for 1 d in hydroponics. P. vittata accumulated 26 and 1261 mg kg(-1) Cr in the fronds and roots at CrVI0.1, and 2197 and 1589 mg kg(-1) S in the fronds and roots at S0.25. Increasing sulfate concentrations increased Cr root concentrations by 16-66% and helped CrVI reduction to CrIII whereas increasing CrVI concentrations increased frond sulfate concentrations by 3-27%. Increasing sulfate concentrations enhanced TBARS concentrations in the biomass, indicating oxidative stress caused lipid peroxidation in plant cell membranes. However, addition of 0.25-2.5 mM sulfate alleviated CrVI's toxic effects and decreased TBARS from 23.5 to 9.46-12.3 μmol g(-1) FW. Though CrVI was supplied, 78-96% of CrIII was in the biomass, indicating efficient CrVI reduction to CrIII by P. vittata. The data indicated the amazing ability of P. vittata in Cr uptake at 289 mg kg(-1) h(-1) with little translocation to the fronds. These results indicated that P. vittata had potential in Cr phytoremediation in contaminated sites but further studies are needed to evaluate this potential. The facts that CrVI and sulfate helped each other in uptake by P. vittata suggest that CrVI was not competing with sulfate uptake in P. vittata. However, the mechanisms of how sulfate and CrVI enhance each other's accumulation in P. vittata need further investigation. Published by Elsevier Ltd.
Tissue accumulation and urinary excretion of Cr in chromium picolinate (CrPic)-supplemented lambs.
Dallago, Bruno Stéfano Lima; Lima, Bárbara Alcântara Ferreira; Braz, Shélida Vasconcelos; Mustafa, Vanessa da Silva; McManus, Concepta; Paim, Tiago do Prado; Campeche, Aline; Gomes, Edgard Franco; Louvandini, Helder
2016-05-01
Chromium (Cr) concentrations in liver, kidney, spleen, heart, lymph node, skeletal muscle, bone, testis and urine of lambs were measured to trace the biodistribution and bioaccumulation of Cr after oral supplementation with chromium picolinate (CrPic). Twenty-four Santa Inês lambs were treated with four different concentrations of CrPic: placebo, 0.250, 0.375 and 0.500 mg of CrPic/animal/day for 84 days. The basal diet consisted of Panicum maximum cv Massai hay and concentrate. Cr concentrations were measured by ICP-MS measuring (52)Cr as collected mass. There was a positive linear relationship between dose administered and the accumulation of Cr in the heart, lungs and testis. Urinary excretion of Cr occurred in a time and dose-dependent manner, so the longer or more dietary Cr provided, the greater excretion of the element. As some non-carcass components (such as lungs or heart) are added to bone and visceral meal to feed animals, there is a risk of bioaccumulation and biomagnification due to Cr offered as CrPic in the diet. Copyright © 2016 Elsevier GmbH. All rights reserved.
Kumar, Adarsh; Maiti, Subodh Kumar
2015-01-01
The abandoned chromite-asbestos mines are located in the Roro hills, West Singhbhum, Jharkhand, India, where mining operation ceased in 1983, and since then these mines are causing environmental pollution. The present study was planned to phytoremediate these metalloid and metal contaminated mine waste by using two aromatic grasses, Cymbopogon citratus and Chrysopogon zizanioides by applying different proportions of amendments (chicken manure, farmyard manure and garden soil). Mine waste has neutral pH, low electrical conductivity and organic carbon with higher concentration of total metals (Cr and Ni) as compared to soil. Application of manures resulted significant improvements of mine waste characteristics and plant growth, reduction in the availability of total extractable toxic metals (Cr, Ni) and increase in Mn, Zn and Cu concentration in the substrate. The maximum growth and biomass production for C. citratus and C. zizanioides were found in T-IV combination comprising of mine waste (90%), chicken manure (2.5%), farmyard manure (2.5%) and garden soil (5%). Addition of T-IV combination also resulted in low Cr and Ni accumulation in roots and reduction in translocation to shoots. Study indicates that C. citratus and C. zizanioides can be used for phytostabilization of abandoned chromite-asbestos mine waste with amendments.
Corrosion and Wear Behaviors of Cr-Doped Diamond-Like Carbon Coatings
NASA Astrophysics Data System (ADS)
Viswanathan, S.; Mohan, L.; Bera, Parthasarathi; Kumar, V. Praveen; Barshilia, Harish C.; Anandan, C.
2017-08-01
A combination of plasma-enhanced chemical vapor deposition and magnetron sputtering techniques has been employed to deposit chromium-doped diamond-like carbon (DLC) coatings on stainless steel, silicon and glass substrates. The concentrations of Cr in the coatings are varied by changing the parameters of the bipolar pulsed power supply and the argon/acetylene gas composition. The coatings have been studied for composition, morphology, surface nature, nanohardness, corrosion resistance and wear resistance properties. The changes in I D / I G ratio with Cr concentrations have been obtained from Raman spectroscopy studies. Ratio decreases with an increase in Cr concentration, and it has been found to increase at higher Cr concentration, indicating the disorder in the coating. Carbide is formed in Cr-doped DLC coatings as observed from XPS studies. There is a decrease in sp 3/ sp 2 ratios with an increase in Cr concentration, and it increases again at higher Cr concentration. Nanohardness studies show no clear dependence of hardness on Cr concentration. DLC coatings with lower Cr contents have demonstrated better corrosion resistance with better passive behavior in 3.5% NaCl solution, and corrosion potential is observed to move toward nobler (more positive) values. A low coefficient of friction (0.15) at different loads is observed from reciprocating wear studies. Lower wear volume is found at all loads on the Cr-doped DLC coatings. Wear mechanism changes from abrasive wear on the substrate to adhesive wear on the coating.
Relationship between lean body mass and serum renal biomarkers in healthy dogs.
Hall, Jean A; Yerramilli, Maha; Obare, Edward; Yerramilli, Murthy; Melendez, Lynda D; Jewell, Dennis E
2015-01-01
Symmetric dimethylarginine (SDMA) is an accurate and precise biomarker for estimating glomerular filtration rate (GFR) in humans and cats. Serum creatinine (sCr) also correlates with GFR, but has limitations as a biomarker of renal function because nonrenal factors can influence its concentration. Differences in lean body mass (LBM) influence sCr, but not serum SDMA concentrations. Forty-one healthy Beagles, mean age 9.9 years (range: 3.1-14.8 years), were studied over a 6 month period. Serum biomarkers of renal function were measured prospectively at baseline, and 1, 3, and 6 months. SDMA concentrations were measured by liquid chromatography-mass spectroscopy and sCr concentrations by enzymatic colorimetry. Body composition was determined by dual energy x-ray absorptiometry. LBM (P < .001) and age (P = .006) were significant explanatory variables for sCr concentration (R(2) = 0.38), but not SDMA concentration. Time on food was the only significant explanatory variable for SDMA concentration (R(2) = 0.49). SDMA concentrations decreased across time (P < .001). LBM was affected by sex (males > females; P = .02). Mature adult dogs (<8 years) had greater LBM compared with geriatric dogs (≥8 years; P < .001). sCr concentrations, but not SDMA concentrations, are influenced by LBM, which limits sCr utility as a biomarker for monitoring renal function in dogs with decreased LBM. Reductions in LBM can lower sCr concentration and overestimate GFR. SDMA concentrations, but not sCr concentrations were influenced by time on food. SDMA could have clinical advantages over sCr in monitoring response to nutritional interventions. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Srinivas, Reji; Shynu, R; Sreeraj, M K; Ramachandran, K K
2017-07-15
Metal concentrations (Al, Cr, Ni, Cu, Zn, and Pb), grain size, and total organic carbon content in 29 surface sediment samples from the nearshore area off Calicut were analyzed to determine their distribution and pollution status. Surface sediments were dominantly silts with low percentage of clay and sand at nearshore and offshore areas. The mean metal concentrations were in the following order: Cr>Ni>Zn>Pb>Cu. The enrichment factor and geo-accumulation index of metals suggest that the surface sediments were not polluted by Zn and moderately polluted by Cu and Ni. By contrast, Cr and Pb showed significant enrichment levels. Results from a multivariate statistical analysis suggested that the spatial enrichment of these heavy metals was related to sediment type. Thus, the sediment distribution and their metal enrichment were mainly controlled by local hydrodynamic conditions that caused the winnowing of fine-grained sediments. Copyright © 2017. Published by Elsevier Ltd.
Adin, Darcy B; Taylor, Aaron W; Hill, Richard C; Scott, Karen C; Martin, Frank G
2003-01-01
Several studies in human subjects have demonstrated greater diuresis with constant rate infusion (CRI) furosemide than intermittent bolus (IB) furosemide. This study was conducted to compare the diuretic efficacy of the same total dose of IB furosemide and CRI furosemide in 6 healthy, adult Greyhound dogs in a randomized crossover design with a 2-week washout period between treatments. For IB administration, dogs received 3 mg/kg at 0 and 4 hours. For CRI administration, dogs received a 0.66 mg/kg loading dose followed by 0.66 mg/kg/h over 8 hours. The same volume of fluid was administered for both methods. Urine output was quantified hourly. Urine electrolyte concentrations, urine specific gravity (USG), packed cell volume (PCV), total protein (TP), serum electrolyte concentrations, total carbon dioxide (TCO2), serum creatinine (sCr), and blood urea nitrogen (BUN) were determined every 2 hours. Urine production and water intake were greater (P < or = 0.05) for CRI than IB. Urine sodium and calcium losses were greater (P < 0.05) and urine potassium loss was less (P = 0.03) for CRI than IB, but there was no evidence of a difference between methods for urine magnesium and chloride losses. Serum chloride concentration was less (P < 0.001), sCr concentration greater (P = 0.04). TP greater (P = 0.01), and PCV greater (P = 0.003) for CRI than IB. No differences in USG, TCO2, BUN, or serum potassium, sodium, and magnesium concentrations were detected between methods. The same total dose of CRI furosemide resulted in more diuresis, natriuresis, and calciuresis and less kaliuresis than IB furosemide in these normal Greyhound dogs over 8 hours, suggesting that furosemide is a more effective diuretic when administered by CRI than by IB.
Tong, Yang; Jin, Ke; Bei, Hongbin; ...
2018-05-26
Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Yang; Jin, Ke; Bei, Hongbin
Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.
Mita, Yukiko; Ishihara, Kengo; Fukuchi, Yoshiko; Fukuya, Yoko; Yasumoto, Kyoden
2005-01-01
To study the preventive effect of supplemented chromium picolinate (CrPic) on the development of diabetic nephropathy in mice, we analyzed the effects of CrPic supplementation on renal function and concentrations of serum glucose and tissue chromium (Cr). In experiment 1, male KK-Ay obese diabetic mice were fed either a control diet (control) or a diet supplemented with 2 mg/kg diet (Cr2) or 10 mg/kg diet (Cr10) of Cr for 12 wk. Cr10 significantly ameliorated hyperglycemia after a glucose load, creatinine clearance rates, and urinary microalbumin levels (p<0.05). In experiment 2, the Cr10 diet was fed to male KK-Ay obese diabetic mice and C57BL nondiabetic mice for 4 wk. The CrPic diet reduced urinary albumin excretion in the diabetic mice (p<0.05). Inductively coupled plasma-mass spectrometry analysis revealed that the renal Cr content and the recovery of renal Cr concentration after Cr supplementation were significantly lower in the diabetic mice than in the nondiabetic mice (p<0.01). These observations suggest that Cr supplementation of type 2 diabetic mice reduces the symptoms of hyperglycemia and improves the renal function by recovering renal Cr concentration.
The Effect of the Concentration of Oxidant, Cr(VI), on the Iron Oxidation in Saline Water
NASA Astrophysics Data System (ADS)
Ahn, H.; Jo, H. Y.; Ryu, J. H.; Koh, Y. K.
2014-12-01
Deep geological disposal is currently considered as the most appropriate method to isolate high level radioactive wastes (HLRWs) from the ecosystem. If groundwater seeps into underground disposal facilities, water molecules can be dissociated to radicals or peroxides, which can oxidize metal canisters and HLRWs. The oxidized radionuclides with a high solubility can be dissolved in the groundwater. Some dissolved radionuclides can act as oxidants. The continuous radiolysis of water molecules, which results from continuous seepage of groundwater, can enable the continuous production of the radioactive oxidants, resulting in an increase in concentration of oxidants. In this study, the effect of oxidant concentration on iron oxidation in the presence of salt was evaluated. Zero valent iron (ZVI) particles were reacted with Cr(VI) solutions with initial Cr(VI) concentrations ranged from 50 to 300 mg/L in reactors. The initial pH and NaCl concentration were fixed at 3 and 0.5 M, respectively. An increase in the initial Cr(VI) concentration caused an increase in the rate and extend of H2 gas production. The decrement of Cr(VI) was increased as the initial Cr(VI) concentration was increased. The penetration of H+ ions in the presence Cl- ions through the passive film on the ZVI particles caused the reaction between H+ ions and ZVI particles, producing H2 gas and Fe2+ ions. The passive film was damaged during the reaction due to the eruption of H2 gas or peptization by Cl- ions. The Fe2+ ions were reacted with Cr(VI) ions in the solution, producing Fe(III)-Cr(III) (oxy)hydroxides on the passive film of ZVI particles or in the solution as colloidal particles. The Fe(III)-Cr(III) (oxy)hydroxides tends to be precipitated as colloidal particles at a high Cr(VI) concentration and precipitated on the passive film at a low Cr(VI) concentration. The passive film was repaired or thickened by additional formation of Fe(III)-Cr(III) (oxy)hydroxides at a lower Cr(VI) concentration.
Chromium supplementation and polycystic ovary syndrome: A systematic review and meta-analysis.
Fazelian, Siavash; Rouhani, Mohamad H; Bank, Sahar Saraf; Amani, Reza
2017-07-01
polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women. Some vitamins and mineral can play role in improvement of PCOS. Chromium (Cr) is an essential element in glucose and insulin homeostasis. However, findings are not consistent regarding PCOS improvement. Therefore, the purpose of this paper was to assess the effect of Cr supplementation in PCOS that have not yet fully been elucidated. We searched ISI Web of Science, MEDLINE (1966 to June 2016), Google Scholar databases and Proquest and identified eligible papers and extracted the following terms: total testosterone, DHEAS, insulin sensitivity, fasting glucose, fasting insulin, OGTT 1h glucose, OGTT 2h glucose (mg/dL), LH (mIU/mL), FSH, DHEAS, ferriman-Galwey score (FG score). We calculated overall effect size with random effects model, between-study heterogeneity with I square (I 2 ) statistic. Publication bias was assessed using Begg's test regression. Totally, 7 RCTs were selected. Results indicated that Cr supplementation had a beneficial effect on BMI with effect size: -2.37 (kg/m 2 ), 95% CI: -2.99, -1.76, p=0.001 and free testosterone concentration with effect size=-0.52 (pg/mL), 95% CI: -0.83, -0.23, p=0.001. Cr reduced fasting insulin in subgroup of studies with >10 participants with effect size: -0.86mIU/ml, 95% CI: -0.67, -0.17; p=0.001. Cr supplementation had no beneficial effects on reducing total testosterone, FG score, DHEA, FSH and LH. This systematic review and meta-analysis shows that using Cr picolinate supplementation has beneficial effects on decreasing BMI, fasting insulin and free testosterone in PCOS patients. Copyright © 2017 Elsevier GmbH. All rights reserved.
Evidence for Metabolic Hypothalamo-Amygdala Dysfunction in Narcolepsy
Poryazova, Rositsa; Schnepf, Betina; Werth, Esther; Khatami, Ramin; Dydak, Ulrike; Meier, Dieter; Boesiger, Peter; Bassetti, Claudio L.
2009-01-01
Study Objectives: Proton resonance spectroscopy (1H-MRS) allows noninvasive chemical tissue analysis in the living brain. As neuronal loss and gliosis have been described in narcolepsy, metabolites of primary interest are N-acetylaspartate (NAA), a marker of neuronal integrity and myo-Inositol (mI), a glial marker and second messenger involved in the regulation of intracellular calcium. One 1H-MRS study in narcolepsy found no metabolic changes in the pontomedullary junction. Another study showed a reduction in NAA/creatine-phosphocreatine (Cr) in the hypothalamus of narcolepsy patients with cataplexy. We aimed to test for metabolic changes in specific brain areas, “regions of interest,” thought to be involved in emotional processing, sleep regulation and pathophysiology of narcolepsy: hypothalamus, pontomesencephalic junction and both amygdalae. Design: We performed 1H-MRS using a 3T Philips Achieva whole body MR scanner. Single-voxel proton MR spectra were acquired and quantified with LCModel to determine metabolite concentration ratios. Setting: The participants in the study were recruited at the outpatient clinic for sleep medicine, Department of Neurology and magnetic resonance spectroscopy was performed at the MRI facility, University Hospital Zurich. Participants: 1H-MRS was performed in fourteen narcolepsy patients with cataplexy, CSF hypocretin deficiency (10/10) and HLA-DQB1*0602 positivity (14/14) and 14 age, gender and body mass index matched controls. Patients were treatment naïve or off therapy for at least 14 days before scanning. Measurements and Results: No differences were observed in the regions of interest for (total NAA)/Cr ratios. Myo-Inositol (mI)/Cr was significantly lower in the right amygdala of the patients, compared to controls (P < 0.042). Significant negative correlations only in the patients group were found between (total NAA)/Cr in hypothalamus and mI/Cr in the right amygdala (r = −0.89, P < 0.001), between mI/Cr in hypothalamus and (total NAA)/Cr in the right amygdala (r = −63, P < 0.05) and between mI/Cr in the left amygdala and total NAA)/Cr in the pontomesencephalic junction (r = −0.69, P < 0.05). Conclusion: Our findings suggest amygdala involvement and possible hypothalamo-amygdala dysfunction in narcolepsy. Citation: Poryazova R; Werth E; Khatami R; Dydak U; Meier D; Boesiger P; Bassetti CL. Evidence for metabolic hypothalamo-amygdala dysfunction in narcolepsy. SLEEP 2009;32(5):607-613. PMID:19480227
Accelerated redox reaction between chromate and phenolic pollutants during freezing.
Ju, Jinjung; Kim, Jaesung; Vetráková, Ľubica; Seo, Jiwon; Heger, Dominik; Lee, Changha; Yoon, Ho-Il; Kim, Kitae; Kim, Jungwon
2017-05-05
The redox reaction between 4-chlorophenol (4-CP) and chromate (Cr(VI)) (i.e., the simultaneous oxidation of 4-CP by Cr(VI) and reduction of Cr(VI) by 4-CP) in ice (i.e., at -20°C) was compared with the corresponding reaction in water (i.e., at 25°C). The redox conversion of 4-CP/Cr(VI), which was negligible in water, was significantly accelerated in ice. This accelerated redox conversion of 4-CP/Cr(VI) in ice is ascribed to the freeze concentration effect occurring during freezing, which excludes solutes (i.e., 4-CP and Cr(VI)) and protons from the ice crystals and subsequently concentrates them in the liquid brine. The concentrations of Cr(VI) and protons in the liquid brine were confirmed by measuring the optical image and the UV-vis absorption spectra of cresol red (CR) as a pH indicator of frozen solution. The redox conversion of 4-CP/Cr(VI) was observed in water when the concentrations of 4-CP/protons or Cr(VI)/protons increased by 100/1000-fold. These results corroborate the freeze concentration effect as the reason for the accelerated redox conversion of 4-CP/Cr(VI) in ice. The redox conversion of various phenolic pollutants/Cr(VI) and 4-CP/Cr(VI) in real wastewater was successfully achieved in ice, which verifies the environmental relevance and importance of freezing-accelerated redox conversion of phenolic pollutants/Cr(VI) in cold regions. Copyright © 2017 Elsevier B.V. All rights reserved.
Filice, Fraser P; Li, Michelle S M; Wong, Jonathan M; Ding, Zhifeng
2018-05-01
Chromium is a useful heavy metal which has been employed in numerous industry and house applications. However, there are several known health risks associated with its uses. Cr (VI) is a toxic heavy metal format which serves no essential biological role in humans. It has been associated with oxidative stress, cytotoxicity, and carcinogenicity. Contamination of groundwater or soil due to improper handling lead to long term environmental damage. This study explores the effects of long duration chronic exposure to Cr (VI) on live human cells. Herein, scanning electrochemical microscopy (SECM) depth scan imaging was employed to monitor the membrane permeability of single live human bladder cancer (T24) cells following incubation with various Cr (VI) concentration stimuli. SECM was used to provide insights into the long duration effects on membrane homeostasis of individual cells exposed to constant levels of Cr (VI). Further investigation of total population viability was performed by MTT assay. Dependent on the exposure time, transition between three distinct trends was observed. At short incubation times (≤1-3 h) with low concentrations of Cr (VI) (0-10 μM), membrane permeability was largely unaffected. As time increased a decrease in membrane permeability coefficient was observed, reaching a minimum at 3-6 h. Following this a dramatic increase in membrane permeability was observed as cell viability decreased. Higher concentrations were also found to accelerate the timeframe at which these trends occurred. These findings further demonstrate the strength of SECM as a bioanalytical technique for monitoring cellular homeostasis. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sridhar, S. G. D.; Sakthivel, A. M.; Sangunathan, U.; Balasubramanian, M.; Jenefer, S.; Mohamed Rafik, M.; Kanagaraj, G.
2017-12-01
The assessment of groundwater quality is an obligatory pre-requisite to developing countries like India with rural-based economy. Heavy metal concentration in groundwater from Besant Nagar to Sathankuppam, South Chennai was analyzed to assess the acquisition process. The study area has rapid urbanization since few decades, which deteriorated the condition of the aquifer of the area. Totally 30 groundwater samples were collected during pre-monsoon (June 2014) and post-monsoon (January 2015) from the same aquifer to assess the heavy metal concentration in groundwater. Groundwater samples were analyzed for heavy metals such as Fe, Pb, Zn, Cu, Ni, Cr, Co and Mn using atomic absorption spectrophotometry (AAS). Correlation matrix revealed that there is no significant correlation between heavy metals and other parameters during pre-monsoon except EC with Cr but Fe and Zn have good positive correlation during post-monsoon.
NASA Astrophysics Data System (ADS)
Liu, M.; Fan, D.; Han, Z.; Liao, Y.; Chen, B.; Yang, Z.
2016-02-01
The concentrations and speciations of heavy metals (Cu, Co, Ni, Zn, Pb, Cr and Cd) in surface and core sediments collected from the central Bohai Sea were analyzed by ICP-MS, to evaluate their distribution / fractionation, pollution status and sources. The results showed that Cd exhibited gradual increasing vertically, while others were stable or declined slightly in core sediments. Metals showed higher values in `central mud area of the Bohai Sea' and the coastal area of the Bohai Bay in surface sediments. Residual fractions were the dominant forms of Cu, Co, Ni, Zn and Cr in the surface sediments, while Cd and Pb had large proportions of the total concentration in the non-residual fractions. Both the contamination factors and the geo-accumulation index indicated that Cu, Co, Ni, Cr were not polluted, while Pb, Zn, Cd were in moderate contamination. The ecological risk assessment (by sepeciations) indicated that the sediments were unpolluted with respect to the heavy metals Co, Ni and Cr and unpolluted to moderately polluted with respect to Cu, Zn, Cd and Pb. Compared with sediment quality guidelines (SQGs), Cu, Zn, Cr, Pb, Cd were likely to produce occasional adverse biological effects, while Ni showed possible ecotoxicological risks. The combined levels of the metals have a 21% probability of being toxic. Elements Cr, Co and Ni were mainly natural origined and significantly affected by the composition of sediments. Cu, Zn, Pb and especially Cd may be influenced by human activities.
Yan, Jinxia; Liu, Jingling; Li, Yi; Lang, Sisi
2014-10-01
The pollution loads continuously increased in Haihe estuary, of Tianjin, China, due to intensive human activities, especially the construction of the Haihe Gate and Lingang Industrial Area. In 2011, hydrological variability in Haihe estuary was investigated and sediments were collected. Total organic carbon (TOC), particle size, total polycyclic aromatic hydrocarbons (ΣPAHs), heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn), and benthic diatom community were analyzed. The highest concentrations of ΣPAHs and heavy metals were found near the Haihe Gate. The Shannon diversity index and the relative abundance of Coscinodiscus perforatus (RC) indicated a decreasing trend seaward. Results of Pearson correlation analysis illustrated significant relations between water current velocity and ΣPAHs (p < 0.01), Cr (p < 0.05), and RC (p < 0.05). Path analysis further indicated that water current played an important role in the distribution of PAH, Cr, and RC.
Varol, Memet
2013-10-01
Water samples were collected at monthly intervals during 1 year of monitoring from Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin to assess the concentrations of dissolved heavy metals and to determine their spatial and seasonal variations. The results indicated that dissolved heavy metal concentrations in the reservoirs were very low, reflecting the natural background levels. The lowest total metal concentrations in the three dam reservoirs were detected at sampling sites close to the dam wall. However, the highest total concentrations were observed at sites, which are located at the entrance of the streams to the reservoirs. Fe, Cr and Ni were the most abundant elements in the reservoirs, whereas Cd and As were the less abundant. The mean concentrations of dissolved metals in the dam reservoirs never exceeded the maximum permitted concentrations established by EC (European Community), WHO and USEPA drinking water quality guidelines. All heavy metals showed significant seasonal variations. As, Cd, Cr, Cu, Fe, Ni and Pb displayed higher values in the dry season, while higher values for Zn in the wet season. Cluster analysis grouped all ten sampling sites into three clusters. Clusters 1 and 2, and cluster 3 corresponded to relatively low polluted and moderate polluted regions, respectively. PCA/FA demonstrated the dissolved metals in the dam reservoirs controlled by natural sources. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cena, Lorenzo G.; Chisholm, William P.; Keane, Michael J.; Cumpston, Amy; Chen, Bean T.
2016-01-01
A laboratory study was conducted to determine the mass of total Cr, Cr(VI), Mn, and Ni in 15 size fractions for mild and stainless steel gas-metal arc welding (GMAW) fumes. Samples were collected using a nano multi orifice uniform deposition impactor (MOUDI) with polyvinyl chloride filters on each stage. The filters were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography. Limits of detection (LODs) and quantitation (LOQs) were experimentally calculated and percent recoveries were measured from spiked metals in solution and dry, certified welding-fume reference material. The fraction of Cr(VI) in total Cr was estimated by calculating the ratio of Cr(VI) to total Cr mass for each particle size range. Expected, regional deposition of each metal was estimated according to respiratory-deposition models. The weight percent (standard deviation) of Mn in mild steel fumes was 9.2% (6.8%). For stainless steel fumes, the weight percentages were 8.4% (5.4%) for total Cr, 12.2% (6.5%) for Mn, 2.1% (1.5%) for Ni and 0.5% (0.4%) for Cr(VI). All metals presented a fraction between 0.04 and 0.6 μm. Total Cr and Ni presented an additional fraction <0.03 μm. On average 6% of the Cr was found in the Cr(VI) valence state. There was no statistical difference between the smallest and largest mean Cr(VI) to total Cr mass ratio (p-value D 0.19), hence our analysis does not show that particle size affects the contribution of Cr(VI) to total Cr. The predicted total respiratory deposition for the metal particles was ∼25%. The sites of principal deposition were the head airways (7–10%) and the alveolar region (11–14%). Estimated Cr(VI) deposition was highest in the alveolar region (14%). PMID:26848207
Cena, Lorenzo G; Chisholm, William P; Keane, Michael J; Cumpston, Amy; Chen, Bean T
A laboratory study was conducted to determine the mass of total Cr, Cr(VI), Mn, and Ni in 15 size fractions for mild and stainless steel gas-metal arc welding (GMAW) fumes. Samples were collected using a nano multi orifice uniform deposition impactor (MOUDI) with polyvinyl chloride filters on each stage. The filters were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography. Limits of detection (LODs) and quantitation (LOQs) were experimentally calculated and percent recoveries were measured from spiked metals in solution and dry, certified welding-fume reference material. The fraction of Cr(VI) in total Cr was estimated by calculating the ratio of Cr(VI) to total Cr mass for each particle size range. Expected, regional deposition of each metal was estimated according to respiratory-deposition models. The weight percent (standard deviation) of Mn in mild steel fumes was 9.2% (6.8%). For stainless steel fumes, the weight percentages were 8.4% (5.4%) for total Cr, 12.2% (6.5%) for Mn, 2.1% (1.5%) for Ni and 0.5% (0.4%) for Cr(VI). All metals presented a fraction between 0.04 and 0.6 μ m. Total Cr and Ni presented an additional fraction <0.03 μ m. On average 6% of the Cr was found in the Cr(VI) valence state. There was no statistical difference between the smallest and largest mean Cr(VI) to total Cr mass ratio ( p -value D 0.19), hence our analysis does not show that particle size affects the contribution of Cr(VI) to total Cr. The predicted total respiratory deposition for the metal particles was ∼25%. The sites of principal deposition were the head airways (7-10%) and the alveolar region (11-14%). Estimated Cr(VI) deposition was highest in the alveolar region (14%).
Humoral and cellular immunity in chromium picolinate-supplemented lambs.
Dallago, B S L; McManus, C M; Caldeira, D F; Campeche, A; Burtet, R T; Paim, T P; Gomes, E F; Branquinho, R P; Braz, S V; Louvandini, H
2013-08-01
The effects of oral supplementation of chromium picolinate (CrPic) on humoral and cellular immunity in sheep were investigated. Twenty-four male lambs divided into four treatments and received different dosages of CrPic: placebo (0), 0.250, 0.375, and 0.500 mg of chromium/animal/day during 84 days. The base ration was Panicum maximum cv Massai hay and concentrate. Blood samples were collected fortnightly for total and differential leukocyte counts. On days 28 and 56, the lambs were challenged with chicken ovalbumin I.M. Serum samples were collected on days 46 and 74 and subjected to an indirect enzyme-linked immunosorbent assay to measure IgG anti-ovalbumin. The cell-mediated immune response was determined by a delay-type hypersensitivity test using phytohemagglutinin. CrPic did not significantly affect humoral immunity in lambs but there was a negative effect on cellular immunity (P < 0.05) as Cr supplementation increased. Therefore, the level of Cr supplementation for lambs must be better studied to address its effect on stressed animals or the possible toxic effects of Cr on the animal itself or its immune system.
Zhang, Runyuan; Zhang, Nuanqin; Fang, Zhanqiang
2018-03-01
In this study, the remediation experiments were performed outdoors in natural conditions. Carboxymethyl cellulose (CMC)-stabilized nanoscale zero-valent iron (CMC-nZVI), biochar (BC) and CMC-stabilized nanoscale zero-valent iron composited with biochar (CMC-nZVI/BC) were synthesized and investigated for their effect on the in situ remediation of hexavalent chromium [Cr(VI)] contaminated soil and the concentration of available iron was tested after the remediation, compared with the untreated soil. The results of toxicity characteristic leaching procedure (TCLP) test showed that CMC-nZVI and CMC-nZVI/BC used as remediation materials could obviously improve the remediation rate of Cr contaminated soil and when the ratio of CMC-nZVI to Fe 0 was 2.5 g/Kg, the leachability of Cr(VI) and Cr total can be reduced by 100% and 95.8% simultaneously. Moreover, sequential extraction procedure (SEP) showed that most exchangeable Cr converted to carbonate-bound and Fe-Mn oxides-bound, reducing the availability and leachability of Cr in the soil.
Azuma, H; Sekizaki, S; Satoh, A; Nakajima, T
1986-05-01
The pharmacological mechanisms of platelet aggregation induced by highly toxic proteins (CrTX-I, CrTX-II, and CrTX-III) obtained from tentacles of a jellyfish, Carybdea rastonii, were investigated. When the partially purified toxin (pCrTX) and CrTXs were added to the citrated platelet-rich plasma (PRP), aggregation was produced in a concentration-dependent manner. The activity of CrTXs was approximately 100 times more potent than pCrTX. The CrTXs-induced aggregation was little affected by indomethacin and quinacrine at concentrations sufficient to inhibit arachidonic acid- and collagen-induced aggregation. The CrTXs-induced aggregation in washed platelets was significantly augmented in the presence of Ca2+. The pretreatment with verapamil failed to modify this augmentation of aggregation. The concentration of cytoplasmic-free calcium ([Ca2+]i) of platelets was increased by CrTXs at the same concentrations that produced aggregation. This effect of CrTXs was again little affected by verapamil. CrTXs at the same concentrations as those that produced aggregation and increased [Ca2+]i caused depolarization of platelets, which was unchanged after pretreatment with sodium or potassium transport inhibitors. CrTX-I significantly increased the 22Na flux into platelets and this effect of CrTX-I was unaffected by tetrodotoxin. The CrTX-I-induced aggregation, depolarization, and increase in [Ca2+]i were all significantly attenuated in the low Na+ medium. These results suggest that CrTXs cause a massive depolarization by increasing cation permeability and this generalized depolarization permits an inward movement of Ca2+ down its electrochemical gradient which, in turn, triggers platelet aggregation.
Quantifying Cr(VI) Production and Export from Serpentine Soil of the California Coast Range
McClain, Cynthia N.; Fendorf, Scott; Webb, Samuel M.; ...
2016-11-22
Here, hexavalent chromium (Cr(VI)) is generated in serpentine soils and exported to surface and groundwaters at levels above health-based drinking water standards. Although Cr(VI) concentrations are elevated in serpentine soil pore water, few studies have reported field evidence documenting Cr(VI) production rates and fluxes that govern Cr(VI) transport from soil to water sources. We report Cr speciation (i) in four serpentine soil depth profiles derived from the California Coast Range serpentinite belt and (ii) in local surface waters. Within soils, we detected Cr(VI) in the same horizons where Cr(III)-minerals are colocated with biogenic Mn(III/IV)-oxides, suggesting Cr(VI) generation through oxidation bymore » Mn-oxides. Water-extractable Cr(VI) concentrations increase with depth constituting a 7.8 to 12 kg/km 2 reservoir of Cr(VI) in soil. Here, Cr(VI) is produced at a rate of 0.3 to 4.8 kg Cr(VI)/km 2/yr and subsequently flushed from soil during water infiltration, exporting 0.01 to 3.9 kg Cr(VI)/km 2/yr at concentrations ranging from 25 to 172 μg/L. Although soil-derived Cr(VI) is leached from soil at concentrations exceeding 10 μg/L, due to reduction and dilution during transport to streams, Cr(VI) levels measured in local surface waters largely remain below California’s drinking water limit.« less
Quantifying Cr(VI) Production and Export from Serpentine Soil of the California Coast Range.
McClain, Cynthia N; Fendorf, Scott; Webb, Samuel M; Maher, Kate
2017-01-03
Hexavalent chromium (Cr(VI)) is generated in serpentine soils and exported to surface and groundwaters at levels above health-based drinking water standards. Although Cr(VI) concentrations are elevated in serpentine soil pore water, few studies have reported field evidence documenting Cr(VI) production rates and fluxes that govern Cr(VI) transport from soil to water sources. We report Cr speciation (i) in four serpentine soil depth profiles derived from the California Coast Range serpentinite belt and (ii) in local surface waters. Within soils, we detected Cr(VI) in the same horizons where Cr(III)-minerals are colocated with biogenic Mn(III/IV)-oxides, suggesting Cr(VI) generation through oxidation by Mn-oxides. Water-extractable Cr(VI) concentrations increase with depth constituting a 7.8 to 12 kg/km 2 reservoir of Cr(VI) in soil. Here, Cr(VI) is produced at a rate of 0.3 to 4.8 kg Cr(VI)/km 2 /yr and subsequently flushed from soil during water infiltration, exporting 0.01 to 3.9 kg Cr(VI)/km 2 /yr at concentrations ranging from 25 to 172 μg/L. Although soil-derived Cr(VI) is leached from soil at concentrations exceeding 10 μg/L, due to reduction and dilution during transport to streams, Cr(VI) levels measured in local surface waters largely remain below California's drinking water limit.
Antonious, George F; Kochhar, Tejinder S; Coolong, Timothy
2012-01-01
The mobility of heavy metals from soil into the food chain and their subsequent bioaccumulation has increased the attention they receive as major environmental pollutants. The objectives of this investigation were to: i) study the impact of mixing native agricultural soil with municipal sewage sludge (SS) or chicken manure (CM) on yield and quality of cabbage and broccoli, ii) quantify the concentration of seven heavy metals (Cd, Cr, Mo, Cu, Zn, Pb, and Ni) in soil amended with SS or CM, and iii) determine bioavailability of heavy metals to cabbage leaves and broccoli heads at harvest. Analysis of the two soil amendments used in this investigation indicated that Cr, Ni, Cu, Zn, Mo, Cd, Pb, and organic matter content were significantly greater (P < 0.05) in premixed sewage sludge than premixed chicken manure. Total cabbage and broccoli yields obtained from SS and CM mixed soil were both greater than those obtained from no-mulch (bare) soil. Concentration of Ni in cabbage leaves of plants grown in soil amended with CM was low compared to plants grown in no-mulch soil. No significant differences were found in Cd and Pb accumulation between cabbage and broccoli. Concentrations of Ni, Cu, Zn, and Mo were greater in broccoli than cabbage. Total metals and plant available metals were also determined in the native and amended soils. Results indicated that the concentration of heavy metals in soils did not necessary reflect metals available to plants. Regardless of soil amendments, the overall bioaccumulation factor (BAF) of seven heavy metals in cabbage leaves and broccoli heads revealed that cabbage and broccoli were poor accumulators of Cr, Ni, Cu, Cd, and Pb (BAF <1), while BAF values were >1 for Zn and Mo. Elevated Ni and Mo bioaccumulation factor (BAF >1) of cabbage grown in chicken manure mixed soil is a characteristic that would be less favorable when cabbage is grown on sites having high concentrations of these two metals.
Chew, Marci L; Plotka, Anna; Alvey, Christine W; Pitman, Verne W; Alebic-Kolbah, Tanja; Scavone, Joseph M; Bockbrader, Howard N
2014-09-01
The pharmacokinetic properties of the immediate-release (IR) and the recently developed controlled-release (CR) formulation of pregabalin are dose proportional. Pregabalin IR can be taken with or without food. This analysis characterizes the effect of food on pregabalin CR. The objectives of this analysis were: (1) to evaluate the effect of administration time and fat or caloric content of an accompanying meal on the pharmacokinetic properties of a single dose of pregabalin CR (330 mg) relative to a single dose of pregabalin IR (300 mg); (2) to evaluate the pharmacokinetic properties of a single dose of pregabalin CR administered fasted relative to a single dose of pregabalin CR administered immediately after food; and (3) to determine the safety and tolerability of single-dose administration of pregabalin CR and IR with and without food. The effect of food on the pharmacokinetic properties of pregabalin CR was determined in five phase I, open-label, single-dose, crossover studies (24-28 participants/study). Caloric and fat content of meals were varied and treatments were administered in the morning, at midday, or in the evening. Blood samples were collected up to 48 h post-dose. Pharmacokinetic parameters were estimated from plasma concentration-time data using standard noncompartmental methods. Adverse events were monitored throughout all studies. One hundred and twenty-eight healthy participants (19-54 years of age) received pregabalin. Peak plasma concentrations (C max) were lower for CR than the respective pregabalin IR doses, and time to C max occurred later. When pregabalin CR was administered with food at midday or in the evening, total exposures [area under the plasma concentration-time curve from time zero extrapolated to infinite time (AUC∞)] were equivalent for pregabalin CR and IR formulations regardless of fat or caloric content. When pregabalin CR was administered with an 800-1,000 calorie medium-fat breakfast, AUC∞ was equivalent for pregabalin CR and IR. Bioequivalence criteria for comparison of pregabalin CR after a low- or medium-calorie breakfast relative to pregabalin IR were not met; however, bioavailability of the pregabalin CR vs. IR formulation was relatively high (75-86 %). When pregabalin CR was administered fasted, the AUC∞ was 70-78 % of the AUC∞ of pregabalin CR administered with food and bioequivalence criteria were not met. Additionally, the AUC∞ of the pregabalin CR formulation administered fasted was 62-69 % of that of pregabalin IR administered fasted and bioequivalence criteria were not met. Single-dose pregabalin CR and IR were well tolerated in all studies, with no serious or severe adverse events reported. Time of day of administration and the fat and caloric content of the accompanying meal had minimal overall effect on the pharmacokinetic properties and bioavailability of the pregabalin CR formulation.
Monitoring of chromium and nickel in biological fluids of grinders grinding stainless steel.
Stridsklev, Inger Cecilie; Schaller, Karl-Heinz; Langård, Sverre
2007-04-01
Stainless steel (SS) welders usually spend some of their working time grinding, to finish and smoothen the welding groove. The aim of this study was to investigate possible relations between the concentrations of nickel (Ni) and chromium (Cr) in the work atmosphere generated by grinders grinding SS, and to compare the air levels to the levels of Cr and Ni in their biological fluids. Hereby, it might be possible to identify the contribution of grinding to the levels of Cr and Ni in biological fluids in SS welders. Also the airborne levels of Cr and Ni in SS grinders were compared to corresponding levels in SS welders. The subjects examined in this study were selected among SS grinders not performing welding. Nine grinders were monitored for 1 workweek, measuring Cr and Ni in air, blood and urine. They were questioned about their exposure to Cr and Ni during their working careers. Air levels of total Cr up to 95 microg/m(3) and Ni levels up to 25 microg/m(3) were measured. Chromium(VI) (Cr(VI)) was detectable only in five air samples; the levels in the remaining samples were below the detection limit. The levels of Cr in blood and urine were also low. The levels of Ni in urine were close to those for MMA and MIG/MAG SS welders. In spite of high levels of total Cr and Ni observed in air, the levels found in biological fluids were low. The Cr levels in more than 50% of the whole blood and red cell samples and about 1/3 of the Cr-plasma levels were below the detection limits. The mean blood levels for Cr were 0.43, 0.60 and 0.35 microg/l, in whole blood, plasma and red cells, respectively. The mean levels for Cr in the urine was 1.6, 1.4 and 1.4 microg/g creatinine for the first void, just before and just after work. For Ni the mean blood levels were 0.87 microg/l in whole blood and 0.68 microg/l in plasma. The mean levels and ranges of Ni from the first void, just before and after work in urine were 3.79 microg/g creatinine, 3.39 and 4.56, respectively. The Cr concentrations found in whole blood, plasma and red cells were approximately the same as those found in the unexposed controls and among TIG SS welders, while the urinary levels were somewhat higher, but still lower than in the welders applying other welding techniques. The mean levels of Ni in the urine of grinders were higher than those of welders, except for SS welders welding the MIG/MAG-method. SS Grinding seems not to contribute significantly to the uptake of Cr, which may be explained by the fact that most of Cr in the air is present in the metallic (0-valent) or trivalent form, and hardly any as Cr(VI), and therefore hardly being taken up in the airways. The grinders' uptake of Ni seems to take place to the same extent as in SS welders.
Rodriguez-Espinosa, P F; Jonathan, M P; Morales-García, S S; Villegas, Lorena Elizabeth Campos; Martínez-Tavera, E; Muñoz-Sevilla, N P; Cardona, Miguel Alvarado
2015-11-01
We analyzed the total (Zn, Pb, Ni, Hg, Cr, Cd, Cu, As) and partially leachable metals (PLMs) in 25 ash and soil samples from recent (2012-2013) eruptions of the Popocatépetl Volcano in Central Mexico. More recent ash and soil samples from volcanic activity in 2012-2013 had higher metal concentrations than older samples from eruptions in 1997 suggesting that the naturally highly volatile and mobile metals leach into nearby fresh water sources. The higher proportions of As (74.72%), Zn (44.64%), Cu (42.50%), and Hg (32.86%) reflect not only their considerable mobility but also the fact that they are dissolved and accumulated quickly following an eruption. Comparison of our concentration patterns with sediment quality guidelines indicates that the Cu, Cd, Cr, Hg, Ni, and Pb concentrations are higher than permissible limits; this situation must be monitored closely as these concentrations may reach lethal levels in the future.
Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles.
Li, Yujie; Wang, Wanyu; Zhou, Liqiang; Liu, Yuanyuan; Mirza, Zakaria A; Lin, Xiang
2017-02-01
Carboxymethyl cellulose (CMC) stabilized microscale iron sulfide (FeS) particles were synthesized and applied to remediate hexavalent chromium (Cr(VI)) spiked soil. The effects of parameters including dosage of FeS particles, soil moisture, and natural organic matter (NOM) in soil were investigated with comparison to iron sulfate (FeSO 4 ). The results show that the stabilized FeS particles can reduce Cr(VI) and immobilize Cr in soil quickly and efficiently. The soil moisture ranging from 40% to 70% and NOM in soil had no significant effects on Cr(VI) remediation by FeS particles. When molar ratio of FeS to Cr(VI) was 1.5:1, about 98% of Cr(VI) in soil was reduced by FeS particles in 3 d and Cr(VI) concentration decreased from 1407 mg kg -1 to 16 mg kg -1 . The total Cr and Cr(VI) in Toxicity Characteristic Leaching Procedure (TCLP) leachate were reduced by 98.4% and 99.4%, respectively. In FeS particles-treated soil, the exchangeable Cr fraction was mainly converted to Fe-Mn oxides bound fraction because of the precipitation of Cr(III)-Fe(III) hydroxides. The physiologically based extraction test (PBET) bioaccessibility of Cr was decreased from 58.67% to 6.98%. Compared to FeSO 4 , the high Cr(VI) removal and Cr immobilization efficiency makes prepared FeS particles a great potential in field application of Cr(VI) contaminated soil remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Long-Term Cr Poisoning Effect on LSCF-GDC Composite Cathodes Sintered at Different Temperatures
Xiong, Chunyan; Taillon, Joshua A.; Pellegrinelli, Christopher; ...
2016-07-19
Here, the impact of sintering temperature on Cr-poisoning of solid oxide fuel cell (SOFC) cathodes was systematically studied. La 0.6Sr 0.4Fe 0.8Co 0.2O 3-δ - Ce 0.9Gd 0.1O 2-δ symmetric cells were aged at 750°C in synthetic air with the presence of Crofer 22 APU, a common high temperature interconnect, over 200 hours and electrochemical impedance spectroscopy (EIS) was used to determine the degradation process. Both the ohmic resistance (R Ω) and polarization resistance (R P) of LSCF-GDC cells, extracted from EIS spectra, for different sintering temperatures increase as a function of aging time. Furthermore, the Cr-related degradation rate increasesmore » with decreased cathode sintering temperature. The polarization resistance of cathode sintered at lower temperature (950°C) increases dramatically while aging with the presence of Cr and also significantly decreases the oxygen partial pressure dependence after aging. The degradation rate shows a positive correlation to the concentration of Cr. The results indicate that decreased sintering temperature increases the total surface area, leading to more available sites for Sr-Cr-O nucleation and thus greater Cr degradation.« less
Magnetic cluster expansion model for random and ordered magnetic face-centered cubic Fe-Ni-Cr alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavrentiev, M. Yu., E-mail: Mikhail.Lavrentiev@ukaea.uk; Nguyen-Manh, D.; Dudarev, S. L.
A Magnetic Cluster Expansion model for ternary face-centered cubic Fe-Ni-Cr alloys has been developed, using DFT data spanning binary and ternary alloy configurations. Using this Magnetic Cluster Expansion model Hamiltonian, we perform Monte Carlo simulations and explore magnetic structures of alloys over the entire range of compositions, considering both random and ordered alloy structures. In random alloys, the removal of magnetic collinearity constraint reduces the total magnetic moment but does not affect the predicted range of compositions where the alloys adopt low-temperature ferromagnetic configurations. During alloying of ordered fcc Fe-Ni compounds with Cr, chromium atoms tend to replace nickel rathermore » than iron atoms. Replacement of Ni by Cr in ordered alloys with high iron content increases the Curie temperature of the alloys. This can be explained by strong antiferromagnetic Fe-Cr coupling, similar to that found in bcc Fe-Cr solutions, where the Curie temperature increase, predicted by simulations as a function of Cr concentration, is confirmed by experimental observations. In random alloys, both magnetization and the Curie temperature decrease abruptly with increasing chromium content, in agreement with experiment.« less
Analysis of total metals in waste molding and core sands from ferrous and non-ferrous foundries.
Miguel, Roberto E; Ippolito, James A; Leytem, April B; Porta, Atilio A; Banda Noriega, Roxana B; Dungan, Robert S
2012-11-15
Waste molding and core sands from the foundry industry are successfully being used around the world in geotechnical and soil-related applications. Although waste foundry sands (WFSs) are generally not hazardous in nature, relevant data is currently not available in Argentina. This study aimed to quantify metals in waste molding and core sands from foundries using a variety of metal-binder combinations. Metal concentrations in WFSs were compared to those in virgin silica sands (VSSs), surface soils and soil guidance levels. A total analysis for Ag, Al, Ba, Be, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Te, Tl, V, and Zn was conducted on 96 WFSs and 14 VSSs collected from 17 small and medium-sized foundries. The majority of WFSs analyzed, regardless of metal cast and binder type, contained metal concentrations similar to those found in VSSs and native soils. In several cases where alkyd urethane binder was used, Co and Pb concentrations were elevated in the waste sands. Elevated Cr, Mo, Ni, and Tl concentrations associated with VSSs should not be an issue since these metals are bound within the silica sand matrix. Because of the naturally low metal concentrations found in most WFSs examined in this study, they should not be considered hazardous waste, thus making them available for encapsulated and unencapsulated beneficial use applications. Published by Elsevier Ltd.
Methods for determining soluble and insoluble Cr III and Cr VI compounds in welding fumes.
Matczak, W; Chmielnicka, J
1989-01-01
An analytical procedure for simultaneous determination of soluble and insoluble Cr III and Cr VI compounds in welding fumes has been proposed. In the welding fume samples collected on a membrane filter, total chromium was determined with atomic absorption spectrophotometry (AAS). Glass filters with collected samples were divided into two parts. In one part of the sample, soluble and insoluble chromium was determined by means of AAS. The separation of soluble chromium III and VI was carried out on diphenylcarbazide resin. In the second part of the sample total chromium VI was determined by means of the colorimetric method with s-diphenylcarbazide. The difference in the results of these determinations allowed the calculation of the content of total Cr III, Cr III insolub. and Cr VI insolub. The results of determining chromium compounds in welding fumes samples collected in the welder's breathing zone and in experimental chambers are also presented in this paper. The content of total chromium in the fumes determined by AAS (from a membrane filtr) and that calculated from the sum of soluble and insoluble chromium (from a glass filter) were concordant and within the limits of the admissible error for the method. Total chromium content in welding fume samples collected individually was found to range from 2.4-4.2%. The percentage of particular chromium compounds as compared to total chromium (100%) amounted: total Cr III--34%, total Cr VI--66%, soluble chromium--66% and in this Cr III--20% and Cr VI--43%, insoluble chromium--34% and in this: Cr III--14% and Cr VI--20%.
Wang, Guey-Horng; Cheng, Chiu-Yu; Liu, Man-Hai; Chen, Tzu-Yu; Hsieh, Min-Chi; Chung, Ying-Chien
2016-08-16
Fast hexavalent chromium (Cr(VI)) determination is important for environmental risk and health-related considerations. We used a microbial fuel cell-based biosensor inoculated with a facultatively anaerobic, Cr(VI)-reducing, and exoelectrogenic Ochrobactrum anthropi YC152 to determine the Cr(VI) concentration in water. The results indicated that O. anthropi YC152 exhibited high adaptability to pH, temperature, salinity, and water quality under anaerobic conditions. The stable performance of the microbial fuel cell (MFC)-based biosensor indicated its potential as a reliable biosensor system. The MFC voltage decreased as the Cr(VI) concentration in the MFC increased. Two satisfactory linear relationships were observed between the Cr(VI) concentration and voltage output for various Cr(VI) concentration ranges (0.0125-0.3 mg/L and 0.3-5 mg/L). The MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in drinking water, groundwater, and electroplating wastewater in 45 min with low deviations (<10%). The use of the biosensor can help in preventing the violation of effluent regulations and the maximum allowable concentration of Cr(VI) in water. Thus, the developed MFC biosensor has potential as an early warning detection device for Cr(VI) determination even if O. anthropi YC152 is a possible opportunistic pathogen.
January, Mary C; Cutright, Teresa J; Van Keulen, Harry; Wei, Robert
2008-01-01
Sundance sunflowers were subjected to contaminated solutions containing 3, 4, or 5 heavy metals, with and without EDTA. The sunflowers exhibited a metal uptake preference of Cd=Cr>Ni, Cr>Cd>Ni>As and Fe>As>Cd>Ni>Cr without EDTA and Cr>Cd>Ni, Fe>As>Cd>Cr>Ni with EDTA. As uptake was not affected by other metals, but it decreased Cd and Ni concentration in the stems. The presence of Fe improved the translocation of the other metals regardless of whether EDTA was present. In general, EDTA served as a hindrance to metal uptake. For the experiment with all five heavy metals, EDTA decreased Cd in the roots and stems from 2.11 to 1.36 and from 2.83 to 2.3 2mg g(-1) biomass, respectively. For the same conditions, Ni in the stems decreased from 1.98 to 0.94 mg g(-1) total metal uptake decreased from 14.95 mg to 13.89 mg, and total biomass decreased from 2.38 g to 1.99 g. These results showed an overall negative effect in addition of EDTA. However it is unknown whether the negative effect was due to toxicity posed by EDTA or the breaking of phytochelatin-metal bonds. The most important finding was the ability of Sundance sunflowers to achieve hyperaccumulator status for both As and Cd under all conditions studied. Ni hyperaccumulator status was only achieved in the presence of three metals without EDTA.
Paiva, Ana N; Lima, Josivan G de; Medeiros, Anna C Q de; Figueiredo, Heverton A O; Andrade, Raiana L de; Ururahy, Marcela A G; Rezende, Adriana A; Brandão-Neto, José; Almeida, Maria das G
2015-10-01
Chromium is an essential mineral that contributes to normal glucose function and lipid metabolism. This study evaluated the effect of chromium picolinate (CrPic) supplementation in patients with type 2 diabetes mellitus (T2DM). A four month controlled, single blind, randomized trial was performed with 71 patients with poorly controlled (hemoglobin A1c [HbA1c]>7%) T2DM divided into 2 groups: Control (n=39, using placebo), and supplemented (n=32, using 600μg/day CrPic). All patients received nutritional guidance according to the American Diabetes Association (ADA), and kept using prescribed medications. Fasting and postprandial glucose, HbA1c, total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides and serum ferritin were evaluated. CrPic supplementation significantly reduced the fasting glucose concentration (-31.0mg/dL supplemented group; -14.0mg/dL control group; p<0.05, post- vs. pre-treatment, in each group) and postprandial glucose concentration (-37.0mg/dL in the supplemented group; -11.5 mg/dL in the control group; p<0.05). HbA1c values were also significantly reduced in both groups (p<0.001, comparing post- vs. pre-treatment groups). Post-treatment HbA1c values in supplemented patients were significantly lower than those of control patients. HbA1c lowering in the supplemented group (-1.90), and in the control group (-1.00), was also significant, comparing pre- and post-treatment values, for each group (p<0.001 and p<0.05, respectively). CrPic increased serum chromium concentrations (p<0.001), when comparing the supplemented group before and after supplementation. No significant difference in lipid profile was observed in the supplemented group; however, total cholesterol, HDL-c and LDL-c were significantly lowered, comparing pre- and post-treatment period, in the control group (p<0.05). CrPic supplementation had a beneficial effect on glycemic control in patients with poorly controlled T2DM, without affecting the lipid profile. Additional studies are necessary to investigate the effect of long-term CrPic supplementation. Copyright © 2015 Elsevier GmbH. All rights reserved.
Hexavalent Chromium Generation within Naturally Structured Soils and Sediments
Hausladen, Debra M.; Fendorf, Scott
2017-01-13
Chromium(VI) produced from the oxidation of indigenous Cr(III) minerals is increasingly being recognized as a threat to groundwater quality. A critical determinant of Cr(VI) generation within soils and sediments is the necessary interaction of two low-solubility phases$-$Cr(III) silicates or (hydr)oxides and Mn(III/IV) oxides—that lead to its production. Here in this paper, we investigate the potential for Cr(III) oxidation by Mn oxides within fixed solid matrices common to soils and sediments. Artificial aggregates were constructed from Cr(OH) 3- and Cr 0.25Fe 0.75(OH) 3-coated quartz grains and either mixed with synthetic birnessite or inoculated with the Mn(II)-oxidizing bacterium Leptothrix cholodnii. In aggregatesmore » simulating low organic carbon environments, we observe Cr(VI) concentrations within advecting solutes at levels more than twenty-times the California drinking water standard. Chromium(VI) production is highly dependent on Cr-mineral solubility; increasing Fe-substitution (x = 0 to x = 0.75) decreases the solubility of the solid and concomitantly decreases total Cr(VI) generation by 37%. In environments with high organic carbon, reducing conditions within aggregate cores (microbially) generate sufficient Fe(II) to suppress Cr(VI) efflux. Our results illustrate Cr(VI) generation from reaction with Mn oxides within structured media simulating soils and sediments and provide insight into how fluctuating hydrologic and redox conditions impact coupled processes controlling Cr and Mn cycling.« less
Hexavalent Chromium Generation within Naturally Structured Soils and Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausladen, Debra M.; Fendorf, Scott
Chromium(VI) produced from the oxidation of indigenous Cr(III) minerals is increasingly being recognized as a threat to groundwater quality. A critical determinant of Cr(VI) generation within soils and sediments is the necessary interaction of two low-solubility phases$-$Cr(III) silicates or (hydr)oxides and Mn(III/IV) oxides—that lead to its production. Here in this paper, we investigate the potential for Cr(III) oxidation by Mn oxides within fixed solid matrices common to soils and sediments. Artificial aggregates were constructed from Cr(OH) 3- and Cr 0.25Fe 0.75(OH) 3-coated quartz grains and either mixed with synthetic birnessite or inoculated with the Mn(II)-oxidizing bacterium Leptothrix cholodnii. In aggregatesmore » simulating low organic carbon environments, we observe Cr(VI) concentrations within advecting solutes at levels more than twenty-times the California drinking water standard. Chromium(VI) production is highly dependent on Cr-mineral solubility; increasing Fe-substitution (x = 0 to x = 0.75) decreases the solubility of the solid and concomitantly decreases total Cr(VI) generation by 37%. In environments with high organic carbon, reducing conditions within aggregate cores (microbially) generate sufficient Fe(II) to suppress Cr(VI) efflux. Our results illustrate Cr(VI) generation from reaction with Mn oxides within structured media simulating soils and sediments and provide insight into how fluctuating hydrologic and redox conditions impact coupled processes controlling Cr and Mn cycling.« less
Kuo, H; Chang, S; Wu, K; Wu, F
2003-01-01
Aims: To investigate the concentration of urinary 8-hydroxydeoxyguanosine (8-OHdG) among electroplating workers in Taiwan. Methods: Fifty workers were selected from five chromium (Cr) electroplating plants in central Taiwan. The 20 control subjects were office workers with no previous exposure to Cr. Urinary 8-OHdG concentrations were determined using high performance liquid chromatography with electrochemical detection. Results: Urinary 8-OHdG concentrations among Cr workers (1149.5 pmol/kg/day) were higher than those in the control group (730.2 pmol/kg/day). There was a positive correlation between urinary 8-OHdG concentrations and urinary Cr concentration (r = 0.447, p < 0.01), and urinary 8-OHdG correlated positively with airborne Cr concentration (r = 0.285). Using multiple regression analysis, the factors that affected urinary 8-OHdG concentrations were alcohol, the common cold, and high urinary Cr concentration. There was a high correlation of urinary 8-OHdG with both smoking and drinking, but multiple regression analysis showed that smoking was not a significant factor. Age and gender were also non-significant factors. Conclusion: 8-OHdG, which is an indicator of oxidative DNA damage, was a sensitive biomarker for Cr exposure. PMID:12883020
NASA Astrophysics Data System (ADS)
Deng, W. J.; Louie, P. K. K.; Liu, W. K.; Bi, X. H.; Fu, J. M.; Wong, M. H.
Twenty-nine air samples of total suspended particles (TSP, particles less than 30-60 μm) and thirty samples of particles with aerodynamic diameter smaller than 2.5 μm (PM 2.5) were collected at Guiyu, an electronic waste (e-waste) recycling site in southeast China from 16 August 2004 to 17 September 2004. The results showed that mass concentrations contained in TSP and PM 2.5 were 124±44.1 and 62.12±20.5 μg m -3, respectively. The total sum of 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) associated with TSP and PM 2.5 ranged from 40.0 to 347 and 22.7 to 263 ng m -3, respectively. Five-ring and six-ring PAHs accounted for 73% of total PAHs. The average concentration of benzo(a) pyrene was 2-6 times higher than in other Asian cities. Concentrations of Cr, Cu and Zn in PM 2.5 of Guiyu were 4-33 times higher than in other Asian countries. In general, there were significant correlations between concentrations of individual contaminants in TSP with PM 2.5 (i.e. PAHs, Cd, Cr, Cu, Pb, Zn, Mn except Ni and As). The high concentrations of both PAHs and heavy metals in air of Guiyu may impose a serious environmental and health concern. Cytotoxicity of the extract of TSP and PM 2.5 of ten 24 h samples collected against human promonocytic leukemia cell line U937 (ATCC 1593.2) was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cytotoxicity assay. The results showed that under the same concentrations of extract, PM 2.5 cytotoxicity was 2-4 times higher than TSP.
Tunable magnetism of 3d transition metal doped BiFeO3
NASA Astrophysics Data System (ADS)
Lu, S.; Li, C.; Zhao, Y. F.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J.; Wang, T.
2017-10-01
Electronic polarization or bond relaxation can effectively alter the electronic and magnetic behavior of materials by doping impurity atom. For this aim, the thermodynamic, electronic and magnetic performances of cubic BiFeO3 have been modulated by the 3d transition metal (TM) dopants (Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn) based on the density functional theory. Results show that the doped specimen with low impurity concentration is more stable than that with high impurity concentration. The Mulliken charge values and spin magnetic moments of TM element are making major changes, while those of all host atoms are making any major changes. Especially, it is the linear relation between the spin magnetic moments of TM dopants and the total magnetic moment of doped specimens; thus, the variations of total magnetic moment of doped specimens are decided by the spin magnetic moments of TM dopants, thought the total magnetic moments of doped specimens mainly come from Fe atom and TM dopants. Besides, as double TM atoms substitution the Fe atoms, the Sc-, Ti-, Mn-, Co- and Zn-doped specimens show AFM state, while the V-, Cr-, Ni- and Cu-doped specimens show FM state.
Vijayaraghavan, K; Joshi, Umid Man; Ping, Han; Reuben, Sheela; Burger, David F
2014-01-01
In this study, in situ hybrid sand filters were designed to remove dissolved and suspended contaminants from eutrophic pond. Currently, there are no attempts made to eradicate dissolved as well as suspended contaminants from eutrophic water system in a single step. Monitoring studies revealed that examined pond contain high chlorophyll-a content (101.8 μg L(-1)), turbidity (39.5 NTU) and total dissolved solids concentration (0.04 g L(-1)). Samples were further exposed to extensive water quality analysis, which include examining physicochemical parameters (pH, conductivity, total dissolved solids, salinity, turbidity and chlorophyll-a), metals (Na, K, Ca, Mg, Al, Fe, Cu, Cd, Pb, Zn, Cr, and Ni) and anions (NO3, NO2, PO4, SO4, Cl, F and Br). To tackle pollutants, filtration system was designed to comprise of several components including fine sand, coarse sand/sorbent mix and gravel from top to bottom loaded in fiberglass tanks. All the filters (activated carbon, Sargassum and zeolite) completely removed algal biomass and showed potential to decrease pH during entire operational period of 20 h at 120 L h(-1). To examine the efficiency of filters in adverse conditions, the pond water was spiked with heavy metals (Cu, Cd, Pb, Zn, Cr, and Ni). Of the different filter systems, Sargassum-loaded filter performed exceedingly well with concentrations of heavy metals never exceeded the Environmental protection agency regulations for freshwater limits during total operational period. The total uptake capacities at the end of the fifth event were 24.9, 20.5, 0.58, 5.2, 0.091 and 2.8 mg/kg for Cr, Ni, Cu, Zn, Cd and Pb, respectively.
Improved Atmospheric Sampling of Hexavalent Chromium
Torkmahalleh, Mehdi Amouei; Yu, Chang-Ho; Lin, Lin; Fan, Zhihua (Tina); Swift, Julie L.; Bonanno, Linda; Rasmussen, Don H.; Holsen, Thomas M.; Hopke, Philip K.
2015-01-01
Hexavalent chromium (Cr(VI)) and trivalent chromium (Cr(III)) are the primary chromium oxidation states found in ambient atmospheric particulate matter. While Cr(III) is relatively nontoxic, Cr(VI) is toxic and exposure to Cr(VI) may lead to cancer, nasal damage, asthma, bronchitis, and pneumonitis. Accurate measurement of the ambient Cr(VI) concentrations is an environmental challenge since Cr(VI) can be reduced to Cr(III) and vice versa during sampling. In the present study, a new Cr(VI) sampler (Clarkson sampler) was designed, constructed, and field tested to improve the sampling of Cr(VI) in ambient air. The new Clarkson Cr(VI) sampler was based on the concept that deliquescence during sampling leads to aqueous phase reactions. Thus, the relative humidity of the sampled air was reduced below the deliquescence relative humidity (DRH) of the ambient particles. The new sampler was operated to collect Total Suspended Particles (TSP), and compared side-by-side with the current National Air Toxics Trends Stations (NATTS) Cr(VI) sampler that is utilized in the United States Environmental Protection Agency (USEPA) air toxics monitoring program. Side-by-side field testing of the samplers occurred in Elizabeth, NJ during the winter and summer of 2012. The average recovery values of Cr(VI) spikes after 24 hour sampling intervals during summer and winter sampling were 57 and 72%, respectively, for the Clarkson sampler, while the corresponding average values for NATTS samplers were 46% for both summer and winter sampling, respectively. Preventing the ambient aerosol collected on the filters from deliquescing is a key to improving the sampling of Cr(VI). PMID:24344574
NASA Astrophysics Data System (ADS)
Ohtsuka, Satoshi; Tanno, Takashi; Oka, Hiroshi; Yano, Yasuhide; Kato, Shoichi; Furukawa, Tomohiro; Kaito, Takeji
2018-07-01
A calculation model was constructed to systematically study the effects of environmental conditions (i.e. Cr concentration in sodium, test temperature, axial temperature gradient of fuel pin, and sodium flow velocity) on Cr dissolution behavior. Chromium dissolution was largely influenced by small changes in Cr concentration (i.e. chemical potential of Cr) in liquid sodium in the model calculation. Chromium concentration in sodium coolant, therefore, should be recognized as a critical parameter for the prediction and management of Cr dissolution behavior in the sodium-cooled fast reactor (SFR) core. Because the fuel column length showed no impact on dissolution behavior in the model calculation, no significant downstream effects possibly take place in the SFR fuel cladding tube due to the much shorter length compared with sodium loops in the SFR plant and the large axial temperature gradient. The calculated profile of Cr concentration along the wall-thickness direction was consistent with that measured in BOR-60 irradiation test where Cr concentration in inlet sodium bulk flow was set at 0.07 wt ppm in the calculation.
Ding, Changfeng; Li, Xiaogang; Zhang, Taolin; Ma, Yibing; Wang, Xingxiang
2014-10-01
Soil environmental quality standards in respect of heavy metals for farmlands should be established considering both their effects on crop yield and their accumulation in the edible part. A greenhouse experiment was conducted to investigate the effects of chromium (Cr) on biomass production and Cr accumulation in carrot plants grown in a wide range of soils. The results revealed that carrot yield significantly decreased in 18 of the total 20 soils with Cr addition being the soil environmental quality standard of China. The Cr content of carrot grown in the five soils with pH>8.0 exceeded the maximum allowable level (0.5mgkg(-1)) according to the Chinese General Standard for Contaminants in Foods. The relationship between carrot Cr concentration and soil pH could be well fitted (R(2)=0.70, P<0.0001) by a linear-linear segmented regression model. The addition of Cr to soil influenced carrot yield firstly rather than the food quality. The major soil factors controlling Cr phytotoxicity and the prediction models were further identified and developed using path analysis and stepwise multiple linear regression analysis. Soil Cr thresholds for phytotoxicity meanwhile ensuring food safety were then derived on the condition of 10 percent yield reduction. Copyright © 2014 Elsevier Inc. All rights reserved.
Conficoni, Daniele; Alberghini, Leonardo; Bissacco, Elisa; Contiero, Barbara; Giaccone, Valerio
2018-02-01
Cuttlefish ink is consumed as a delicacy worldwide. The current study is the first assessment of heavy metal concentrations in cuttlefish ink versus mantle under different storage methods. A total of 212 samples (64 of fresh mantle, 42 of frozen mantle, 64 of fresh ink, and 42 of frozen ink) were analyzed for the detection of the following heavy metals: arsenic (As), chromium (Cr), iron (Fe), lead (Pb), mercury (Hg), and cadmium (Cd). The median As concentrations were 12.9 mg/kg for fresh mantle, 8.63 mg/kg for frozen mantle, 10.8 mg/kg for frozen ink, and 0.41 mg/kg for fresh ink. The median Cr concentrations were 0.06 mg/kg for fresh mantle and frozen ink, 0.03 mg/kg for frozen mantle, and below the limit of quantification (LOQ) for fresh ink. The median Fe concentrations were 4.08 mg/kg for frozen ink, 1.51 mg/kg for fresh mantle, 0.73 mg/kg for frozen mantle, and below the LOQ for fresh ink. The median Pb concentrations of almost all samples were below the LOQ; only two frozen ink, one fresh ink, one frozen mantle, and one fresh mantle sample exceeded the limit stipulated by the European Union. The Hg concentrations were statistically similar among the four categories of samples; the median Hg concentrations were below the LOQ, and the maximum concentrations were found in frozen ink, at 1.62 mg/kg. The median Cd concentrations were 0.69 mg/kg for frozen ink and 0.11 mg/kg for frozen mantle, fresh mantle and fresh ink concentrations were below the LOQ, and in 11.3% of the tested samples, Cd concentrations were higher than the European Union limit. The probability of samples having a Cd concentration above the legal limit was 35.75 times higher in frozen than in fresh products. Fresh ink had significantly lower concentrations of As, Cr, Fe, and Cd, but the concentrations of Hg and Pb were not significantly different from those of other products. Frozen ink had significantly higher concentrations of Cd, Cr, and Fe, but concentrations of As were lower than those in fresh mantle, pointing out a possible role for the freezing process and for different fishing zones as risk factors for heavy metal contamination.
Atmospheric trace element concentrations in total suspended particles near Paris, France
NASA Astrophysics Data System (ADS)
Ayrault, Sophie; Senhou, Abderrahmane; Moskura, Mélanie; Gaudry, André
2010-09-01
To evaluate today's trace element atmospheric concentrations in large urban areas, an atmospheric survey was carried out for 18 months, from March 2002 to September 2003, in Saclay, nearby Paris. The total suspended particulate matter (TSP) was collected continuously on quartz fibre filters. The TSP contents were determined for 36 elements (including Ag, Bi, Mo and Sb) using two analytical methods: Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The measured concentrations were in agreement within the uncertainties with the certified values for the polycarbonate reference material filter SRM-2783 (National Institute for Standard Technology NIST, USA). The measured concentrations were significantly lower than the recommended atmospheric concentrations. In 2003, the Pb atmospheric level at Saclay was 15 ng/m 3, compared to the 500 ng/m 3 guideline level and to the 200 ng/m 3 observed value in 1994. The typical urban background TSP values of 1-2, 0.2-1, 4-6, 10-30 and 3-5 ng/m 3 for As, Co, Cr, Cu and Sb, respectively, were inferred from this study and were compared with the literature data. The typical urban background TSP concentrations could not be realised for Cd, Pb and Zn, since these air concentrations are highly influenced by local features. The Zn concentrations and Zn/Pb ratio observed in Saclay represented a characteristic fingerprint of the exceptionally large extent of zinc-made roofs in Paris and its suburbs. The traffic-related origin of Ba, Cr, Cu, Pb and Sb was demonstrated, while the atmospheric source(s) of Ag was not identified.
Gu, Yang-Guang; Lin, Qin; Huang, Hong-Hui; Wang, Liang-Gen; Ning, Jia-Jia; Du, Fei-Yan
2017-01-30
The concentrations of heavy metals (Cd, Pb, Cr, Ni, Cu and Zn) were determined in four commercially valuable fish species (Thunnus obesus, Decapterus lajang, Cubiceps squamiceps and Priacanthus macracanthus), collected in the western continental shelf of the South China Sea. Concentrations of Cd, Pb, Cr, Ni, Cu, and Zn in fish muscles were 0.006-0.050, 0.13-0.68, 0.18-0.85, 0.11-0.25, 0.12-0.77, and 2.41-4.73μg/g, wet weight, respectively. Concentrations of heavy metals in all species were below their acceptable daily upper limit, suggesting human consumption of these wild fish species may be safe, with health risk assessment based on the target hazard quotients (THQ) and total THQ, indicating no significant adverse health effects with consumption. The average concentrations of Zn were higher in gills than in stomach contents, backbones or muscle, while conversely, the other heavy metals had higher concentrations in stomach contents than in other tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.
Choudhary, Bharat; Paul, Debajyoti; Singh, Abhas; Gupta, Tarun
2017-07-01
Chromium pollution of soil and water is a serious environmental concern due to potential carcinogenicity of hexavalent chromium [Cr(VI)] when ingested. Eucalyptus bark biochar (EBB), a carbonaceous black porous material obtained by pyrolysis of biomass at 500 °C under oxygen-free atmosphere, was used to investigate the removal of aqueous Cr(VI) upon interaction with the EBB, the dominant Cr(VI) removal mechanism(s), and the applicability to treat Cr(VI)-contaminated wastewater. Batch experiments showed complete removal of aqueous Cr(VI) at pH 1-2; sorption was negligible at pH 1, but ~55% of total Cr was sorbed onto the EBB surface at pH 2. Detailed investigations on unreacted and reacted EBB through Fourier transform infrared spectroscopy and X-ray photoelectron spectrometry (XPS) indicate that the carboxylic groups in biochar played a dominant role in Cr(VI) sorption, whereas the phenolic groups were responsible for Cr(VI) reduction. The predominance of sorption-reduction mechanism was confirmed by XPS studies that indicated ~82% as Cr(III) and ~18% as Cr(VI) sorbed on the EBB surface. Significantly, Cr(VI) reduction was also facilitated by dissolved organic matter (DOM) extracted from biochar. This reduction was enhanced by the presence of biochar. Overall, the removal of Cr(VI) in the presence of biochar was affected by sorption due to electrostatic attraction, sorption-reduction mediated by surface organic complexes, and aqueous reduction by DOM. Relative dominance of the aqueous reduction mechanism depended on a critical biochar dosage for a given electrolyte pH and initial Cr(VI) concentration. The low-cost EBB developed here successfully removed all Cr(VI) in chrome tanning acidic wastewater and Cr(VI)-contaminated groundwater after pH adjustment, highlighting its potential applicability in effective Cr(VI) remediation.
López-Luna, J; González-Chávez, M C; Esparza-García, F J; Rodríguez-Vázquez, R
2009-04-30
This work assessed the effect of soil amended with tannery sludge (0, 500, 1000, 2000, 4000 and 8000 mg Cr kg(-1)soil), Cr(3+) as CrCl(3).6H(2)O (0, 100, 250, 500, 1000 and 2000 mg Cr kg(-1)soil), and Cr(6+) as K(2)Cr(2)O(7) (0, 25, 50, 100, 200 and 500 mg Cr kg(-1)soil) on wheat, oat and sorghum plants. Seed germination, seedling growth (root and shoot) and Cr accumulation in dry tissue were measured. Toxicological parameters; medium effective concentration, no observed adverse effect concentration and low observed adverse effect concentration were determined. Root growth was the most sensitive assessment of Cr toxicity (P<0.05). There was a significant correlation (P<0.0001) between Cr accumulation in dry tissue and toxic effects on seedling growth. The three Cr sources had different accumulation and mobility patterns; tannery sludge was less toxic for all three plant species, followed by CrCl(3).6H(2)O and K(2)Cr(2)O(7).
Boiano, J M; Wallace, M E; Sieber, W K; Groff, J H; Wang, J; Ashley, K
2000-08-01
A field study was conducted with the goal of comparing the performance of three recently developed or modified sampling and analytical methods for the determination of airborne hexavalent chromium (Cr(VI)). The study was carried out in a hard chrome electroplating facility and in a jet engine manufacturing facility where airborne Cr(VI) was expected to be present. The analytical methods evaluated included two laboratory-based procedures (OSHA Method ID-215 and NIOSH Method 7605) and a field-portable method (NIOSH Method 7703). These three methods employ an identical sampling methodology: collection of Cr(VI)-containing aerosol on a polyvinyl chloride (PVC) filter housed in a sampling cassette, which is connected to a personal sampling pump calibrated at an appropriate flow rate. The basis of the analytical methods for all three methods involves extraction of the PVC filter in alkaline buffer solution, chemical isolation of the Cr(VI) ion, complexation of the Cr(VI) ion with 1,5-diphenylcarbazide, and spectrometric measurement of the violet chromium diphenylcarbazone complex at 540 nm. However, there are notable specific differences within the sample preparation procedures used in three methods. To assess the comparability of the three measurement protocols, a total of 20 side-by-side air samples were collected, equally divided between a chromic acid electroplating operation and a spray paint operation where water soluble forms of Cr(VI) were used. A range of Cr(VI) concentrations from 0.6 to 960 microg m(-3), with Cr(VI) mass loadings ranging from 0.4 to 32 microg, was measured at the two operations. The equivalence of the means of the log-transformed Cr(VI) concentrations obtained from the different analytical methods was compared. Based on analysis of variance (ANOVA) results, no statistically significant differences were observed between mean values measured using each of the three methods. Small but statistically significant differences were observed between results obtained from performance evaluation samples for the NIOSH field method and the OSHA laboratory method.
Yang, Jiajun; Qian, Kun; Zhang, Wei; Xu, Yayuan; Wu, Yijing
2016-11-08
Both chromium (Cr) and probiotic bacillus own the virtues of regulating animal metabolism and meat quality. Purpose of this study was to evaluate the efficiency of supplemental Cr and bacillus in the form of chromium-enriched Bacillus subtilis KT260179 (CEBS) on chicken growth performance, plasma lipid parameters, tissue chromium levels, cecal bacterial composition and breast meat quality. Six hundred of 1-day-old Chinese Huainan Partridge chickens were divided into four groups randomly: Control, inorganic Cr, Bacillus subtilis, and CEBS. The feed duration was 56 days. After 28 days of treatment, broiler feed CEBS or normal B. subtilis had higher body weights than control broiler, and after 56 days, chickens given either CEBS or B. subtilis had greater body weights than control broiler or those given inorganic Cr. Plasma total cholesterol, triglycerides, and low density lipoprotein cholesterol levels declined significantly in the CEBS group compared with the control, whereas plasma high density lipoprotein cholesterol levels increased significantly. The concentration of Cr in blood and breast muscle increased after CEBS and inorganic Cr supplementation. B. subtilis and CEBS supplementation caused a significant increase in the numbers of Lactobacillus and Bifidobacterium in the caecum, while the numbers of Escherichia coli and Salmonella decreased significantly compared to the control. Feed adding CEBS increased the lightness, redness, and yellowness of breast meat, improved the water-holding capacity, decreased the shear force and cooking loss. In all, CEBS supplementation promoted body growth, improved plasma lipid parameters, increased tissue Cr concentrations, altered cecal bacterial composition and improved breast meat quality.
Wang, Guey-Horng; Cheng, Chiu-Yu; Liu, Man-Hai; Chen, Tzu-Yu; Hsieh, Min-Chi; Chung, Ying-Chien
2016-01-01
Fast hexavalent chromium (Cr(VI)) determination is important for environmental risk and health-related considerations. We used a microbial fuel cell-based biosensor inoculated with a facultatively anaerobic, Cr(VI)-reducing, and exoelectrogenic Ochrobactrum anthropi YC152 to determine the Cr(VI) concentration in water. The results indicated that O. anthropi YC152 exhibited high adaptability to pH, temperature, salinity, and water quality under anaerobic conditions. The stable performance of the microbial fuel cell (MFC)-based biosensor indicated its potential as a reliable biosensor system. The MFC voltage decreased as the Cr(VI) concentration in the MFC increased. Two satisfactory linear relationships were observed between the Cr(VI) concentration and voltage output for various Cr(VI) concentration ranges (0.0125–0.3 mg/L and 0.3–5 mg/L). The MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in drinking water, groundwater, and electroplating wastewater in 45 min with low deviations (<10%). The use of the biosensor can help in preventing the violation of effluent regulations and the maximum allowable concentration of Cr(VI) in water. Thus, the developed MFC biosensor has potential as an early warning detection device for Cr(VI) determination even if O. anthropi YC152 is a possible opportunistic pathogen. PMID:27537887
Arosalo, Bela M; Raekallio, Marja; Rajamäki, Minna; Holopainen, Elina; Kastevaara, Tuulia; Salonen, Hanna; Sankari, Satu
2007-01-01
Background The aim of the study was to investigate urine matrix metalloproteinase (MMP-2 and -9) activity, alkaline phosphatase/creatinine (U-AP/Cr) and gamma-glutamyl-transpeptidase/creatinine (U-GGT/Cr) ratios, glucose concentration, and urine protein/creatinine (U-Prot/Cr) ratio and to compare data with plasma MMP-2 and -9 activity, cystatin-C and creatinine concentrations in colic horses and healthy controls. Horses with surgical colic (n = 5) were compared to healthy stallions (n = 7) that came for castration. Blood and urine samples were collected. MMP gelatinolytic activity was measured by zymography. Results We found out that horses with colic had significantly higher urinary MMP-9 complex and proMMP-9 activities than horses in the control group. Colic horses also had higher plasma MMP-2 activity than the control horses. Serum creatinine, although within reference range, was significantly higher in the colic horses than in the control group. There was no significant increase in urinary alkaline phosphatase, gamma-glutamyltranspeptidase or total proteins in the colic horses compared to the control group. A human cystatin-C test (Dako Cytomation latex immunoassay® based on turbidimetry) did not cross react with equine cystatin-C. Conclusion The results indicate that plasma MMP-2 may play a role in the pathogenesis of equine colic and urinary MMP-9 in equine kidney damage. PMID:17244354
Durán, U; Coronado-Apodaca, K G; Meza-Escalante, E R; Ulloa-Mercado, G; Serrano, D
2018-05-01
Hexavalent chromium (Cr VI) from industrial wastewaters represents a highly toxic source at low concentrations. Biological treatments with anaerobic granular biomass are a promising alternative for the Cr VI bioremediation. This study evaluated the Cr VI removal in a range of 5-500 mg/L, using an active anaerobic granular consortium. Two removal mechanisms were differentiated from the assays: 1) biological reduction of 70 mg/L to Cr III at a concentration of 250 mg Cr VI/L and 2) physical bioadsorption of 297 mg of Cr VI/L or 31.39 mg of Cr VI/g biomass at concentration of 500 mg Cr VI /L. The half-maximal inhibitory concentration (IC 50 ) values for the rate and production of methane were 1.4 and 253 mg/L, respectively. In addition, Cr VI is a biostimulant that increase the methane production, in a range from 5 to 100 mg/L, of the anaerobic consortium. This work demonstrates the potential application of the anaerobic granular consortium in metal bioremediation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cao, Wei; Dang, Zhi; Yia, Xiao-Yun; Yang, Chen; Lu, Gui-Ning; Liu, Yun-Feng; Huang, Se-Yan; Zheng, Liu-Chun
2013-01-01
An anion exchanger from rice straw was used to remove Cr (VI) from synthetic wastewater and electroplating effluent. The exchanger was characterized using Fourier transform infrared (FTIR) spectrum and scanning electron microscopy (SEM), and it was found that the quaternary amino group and hydroxyl group are the main functional groups on the fibrous surface of the exchanger. The effect of contact time, initial concentration and pH on the removal of Cr (VI), and adsorption isotherms at different temperature, was investigated. The results showed that the removal of Cr (VI) was very rapid and was significantly affected by the initial pH of the solution. Although acidic conditions (pH = 2-6) facilitated Cr (VI) adsorption, the exchanger was effective in neutral solution and even under weak base conditions. The equilibrium data fitted well with Langmuir adsorption model, and the maximum Cr (VI) adsorption capacities at pH 6.4 were 0.35, 0.36 and 0.38 mmol/g for 15, 25 and 35 degrees C, respectively. The exchanger was finally tested with real electroplating wastewater, and at sorbent dosage of 10 g/L, the removal efficiencies for Cr (VI) and total Cr were 99.4% and 97.8%, respectively. In addition, the positive relationship between adsorbed Cr (VI) and desorbed Cl- suggested that Cr (VI) was mainly removed by ion exchange with chlorine.
NASA Astrophysics Data System (ADS)
Zhao, Yang; Chang, Wenkai; Huang, Zhiding; Feng, Xugen; Ma, Lin; Qi, Xiaoxia; Li, Zenghe
2017-05-01
Owing to the acute toxicity and mobility, the Cr(VI) in tannery wastewater is a huge threat to biological and environmental systems. Herein, an effective photoelectrocatalytic reduction of Cr(VI) was carried out by applying electric field to photocatalysis of as-prepared TiO2 spheres. The synthesis of spherical TiO2 catalytic materials with hollow structure and high surface areas was based on a self-assembly process induced by a mixture of organic acetic acid and ethanol. The possible formation mechanism of TiO2 spheres was proposed and verified by acid concentration-dependent and temperature-dependent experiments. It was found that the reaction rate constant of photoelectrocatalytic reduction of Cr(VI) exhibited an almost 3 fold improvement (0.0362 min-1) as compared to that of photocatalysis (0.0126 min-1). As a result, the mechanism of photoelectrocatalytic reduction of Cr(VI) was described according to the simultaneous determination of Cr(VI), Cr(III) and total Cr in the system. In addition, the effect of pH value and voltage of potential were also discussed. Moreover, this photoelectrocatalysis with TiO2 hollow spheres exhibited excellent activity for reduction of Cr(VI) in actual tannery wastewater produced from three different tanning procedures. These attributes suggest that this photoelectrocatalysis has strong potential applications in the treatment of tannery pollutants.
[Effect of chloride ion on corrosion of two commonly used dental alloys].
Chen, Lei; Zhang, Weidan; Zhang, Yuanyuan
2014-11-01
To investigate the eff ect of chloride concentration on the corrosion of Co-Cr alloy and pure Ti in a simulated oral environment. The electrochemical corrosion tests of pure Ti and Co-Cr alloy were carried out in neutral artificial saliva solutions with different NaCl concentrations (0.9%, 2.0%, and 3.0%). Th e morphologies of corroded surface for pure Ti and Co-Cr alloy were observed by scanning electron microscope (SEM). Th e changes in the self-corrosion potentials (Ecorr) for pure Ti and Co-Cr alloy in three kinds of artificial saliva solutions was not obvious. However, the self-corrosion current densities (Icorr) of pure Ti were much lower than those of Co-Cr. The Icorr of Co-Cr alloy increased in a concentration-dependent manner of NaCl, whereas the breakdown potential (Eb) of Co-Cr alloy decreased in a concentration-dependent manner. Th e potential ranged for the breakdown of oxide film (Ev) was shortened in a concentration-dependent manner of NaCl. There was no obvious difference in the Icorr of pure Ti with different concentrations of NaCl. The breakdown potential was not seen according to the polarization curves. In a certain range, the increase of the concentration of Cl- leads to accelerate the corrosion behavior of Co-Cr alloy, but it does not affect pure Ti.
Spatial Distribution, Sources Apportionment and Health Risk of Metals in Topsoil in Beijing, China.
Sun, Chunyuan; Zhao, Wenji; Zhang, Qianzhong; Yu, Xue; Zheng, Xiaoxia; Zhao, Jiayin; Lv, Ming
2016-07-20
In order to acquire the pollution feature and regularities of distribution of metals in the topsoil within the sixth ring road in Beijing, a total of 46 soil samples were collected, and the concentrations of twelve elements (Nickel, Ni, Lithium, Li, Vanadium, V, Cobalt, Co, Barium, Ba, Strontium, Sr, Chrome, Cr, Molybdenum, Mo, Copper, Cu, Cadmium, Cd, Zinc, Zn, Lead, Pb) were analyzed. Geostatistics and multivariate statistics were conducted to identify spatial distribution characteristics and sources. In addition, the health risk of the analyzed heavy metals to humans (adult) was evaluated by an U.S. Environmental Protection Agency health risk assessment model. The results indicate that these metals have notable variation in spatial scale. The concentration of Cr was high in the west and low in the east, while that of Mo was high in the north and low in the south. High concentrations of Cu, Cd, Zn, and Pb were found in the central part of the city. The average enrichment degree of Cd is 5.94, reaching the standard of significant enrichment. The accumulation of Cr, Mo, Cu, Cd, Zn, and Pb is influenced by anthropogenic activity, including vehicle exhaustion, coal burning, and industrial processes. Health risk assessment shows that both non-carcinogenic and carcinogenic risks of selected heavy metals are within the safety standard and the rank of the carcinogenic risk of the four heavy metals is Cr > Co > Ni > Cd.
Spatial Distribution, Sources Apportionment and Health Risk of Metals in Topsoil in Beijing, China
Sun, Chunyuan; Zhao, Wenji; Zhang, Qianzhong; Yu, Xue; Zheng, Xiaoxia; Zhao, Jiayin; Lv, Ming
2016-01-01
In order to acquire the pollution feature and regularities of distribution of metals in the topsoil within the sixth ring road in Beijing, a total of 46 soil samples were collected, and the concentrations of twelve elements (Nickel, Ni, Lithium, Li, Vanadium, V, Cobalt, Co, Barium, Ba, Strontium, Sr, Chrome, Cr, Molybdenum, Mo, Copper, Cu, Cadmium, Cd, Zinc, Zn, Lead, Pb) were analyzed. Geostatistics and multivariate statistics were conducted to identify spatial distribution characteristics and sources. In addition, the health risk of the analyzed heavy metals to humans (adult) was evaluated by an U.S. Environmental Protection Agency health risk assessment model. The results indicate that these metals have notable variation in spatial scale. The concentration of Cr was high in the west and low in the east, while that of Mo was high in the north and low in the south. High concentrations of Cu, Cd, Zn, and Pb were found in the central part of the city. The average enrichment degree of Cd is 5.94, reaching the standard of significant enrichment. The accumulation of Cr, Mo, Cu, Cd, Zn, and Pb is influenced by anthropogenic activity, including vehicle exhaustion, coal burning, and industrial processes. Health risk assessment shows that both non-carcinogenic and carcinogenic risks of selected heavy metals are within the safety standard and the rank of the carcinogenic risk of the four heavy metals is Cr > Co > Ni > Cd. PMID:27447657
Antoniadis, Vasileios; Golia, Evangelia E; Shaheen, Sabry M; Rinklebe, Jörg
2017-04-01
Elevated concentrations of potentially toxic elements (PTEs) are usually found in areas of intense industrial activity. Thriasio Plain is a plain near Athens, Greece, where most of the heavy industry of the country has been situated for decades, but it also is a residential and horticultural area. We aimed at measuring the levels of PTEs in soils and indigenous plant species and assessing the health risk associated with direct soil ingestion. Samples of soils at roadsides and growing plants were collected from 31 sites of that area. Concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V and Zn were measured in both soils (as pseudo-total) and aerial plant tissues. We found that As, Cd, Cr, Cu, Ni, Pb and Zn were higher than maximum regulatory limits. Element concentrations in plants were rather lower than expected, probably because indigenous plants have developed excluder behaviour over time. Copper and Zn soil-to-plant coefficients were highest among the other elements; for Cu this was unexpected, and probably associated with recent Cu-releasing industrial activity. Risk assessment analysis indicated that As was the element contributing more than 50 % of the health risk related to direct soil ingestion, followed by Cr, Pb, and, surprisingly, Mn. We concluded that in a multi-element contamination situation, elevated risk of PTEs (such as As, Cr and Pb) may reduce the tolerance limits of exposure to less-toxic elements (here, Mn).
Assessment of heavy metal contamination in the sediments of Nansihu Lake Catchment, China.
Liu, Enfeng; Shen, Ji; Yang, Liyuan; Zhang, Enlou; Meng, Xianghua; Wang, Jianjun
2010-02-01
At present, anthropogenic contribution of heavy metals far exceeds natural input in some aquatic sediment, but the proportions are difficult to differentiate due to the changes in sediment characters. In this paper, the metal (Al, Fe, K, Mg, Ca, Cr, Cu, Ni, and Zn) concentrations, grain size, and total organic carbon (TOC) content in the surface and core sediments of Nansihu Lake Catchment (the open lake and six inflow rivers) were determined. The chemical speciations of the metals (Al, Fe, Cr, Cu, Ni, and Zn) in the surface sediments were also analyzed. Approaches of factor analysis, normalized enrichment factor (EF) and the new non-residual fractions enrichment factor (K(NRF)) were used to differentiate the sources of the metals in the sediments, from detrital clastic debris or anthropogenic input, and to quantify the anthropogenic contamination. The results indicate that natural processes were more dominant in concentrating the metals in the surface and core sediments of the open lake. High concentration of Ca and deficiency of other metals in the upper layers of the sediment core were attributed to the input of carbonate minerals in the catchment with increasing human activities since 1980s. High TOC content magnified the deficiency of the metals. Nevertheless, the EF and K(NRF) both reveal moderate to significant anthropogenic contamination of Cr, Cu, Ni, and Zn in the surface sediments of Laoyun River and the estuary and Cr in the surface sediments of Baima River. The proportion of non-residual fractions (acid soluble, reducible, and oxidizable fractions) of Cr, Cu, Ni, and Zn in the contaminated sediments increased to 37-99% from the background levels less than 30%.
A chronic oral reference dose for hexavalent chromium-induced intestinal cancer†
Thompson, Chad M; Kirman, Christopher R; Proctor, Deborah M; Haws, Laurie C; Suh, Mina; Hays, Sean M; Hixon, J Gregory; Harris, Mark A
2014-01-01
High concentrations of hexavalent chromium [Cr(VI)] in drinking water induce villous cytotoxicity and compensatory crypt hyperplasia in the small intestines of mice (but not rats). Lifetime exposure to such cytotoxic concentrations increases intestinal neoplasms in mice, suggesting that the mode of action for Cr(VI)-induced intestinal tumors involves chronic wounding and compensatory cell proliferation of the intestine. Therefore, we developed a chronic oral reference dose (RfD) designed to be protective of intestinal damage and thus intestinal cancer. A physiologically based pharmacokinetic model for chromium in mice was used to estimate the amount of Cr(VI) entering each intestinal tissue section (duodenum, jejunum and ileum) from the lumen per day (normalized to intestinal tissue weight). These internal dose metrics, together with corresponding incidences for diffuse hyperplasia, were used to derive points of departure using benchmark dose modeling and constrained nonlinear regression. Both modeling techniques resulted in similar points of departure, which were subsequently converted to human equivalent doses using a human physiologically based pharmacokinetic model. Applying appropriate uncertainty factors, an RfD of 0.006 mg kg–1 day–1 was derived for diffuse hyperplasia—an effect that precedes tumor formation. This RfD is protective of both noncancer and cancer effects in the small intestine and corresponds to a safe drinking water equivalent level of 210 µg l–1. This concentration is higher than the current federal maximum contaminant level for total Cr (100 µg l–1) and well above levels of Cr(VI) in US drinking water supplies (typically ≤ 5 µg l–1). © 2013 The Authors. Journal of Applied Toxicology published by John Wiley & Sons, Ltd. PMID:23943231
Study of multi-kW solar arrays for Earth orbit application
NASA Technical Reports Server (NTRS)
1980-01-01
Planar and concentrator solar array configurations based on silicon and gallium arsenide solar cells were conceptualized and on-orbit maintainability was addressed. Four basic categories emerged: (1) planar (non concentrated) with silicon cells, (2) low-CR (concentration ratio = 3.4) with silicon cells, (3) low-CR with GaAs, and (4) high-CR (concentration ratio = 62.5) with GaAs. A very high-CR (concentration ratio = 200) was investigated but rejected on thermal grounds. Nonrecurring and recurring cost elements for each of the four concepts selected were compared over a 15 year life cycle. Under conditions where the gallium arsenide cells can be produced for less than $25 per 2 x 2 cm, the low CR concentrator emerges as the most cost effective configuration. However, the producibility risk remains higher on the gallium arsenide cell.
Zhang, Yaxin; Tian, Ye; Shen, Maocai; Zeng, Guangming
2018-05-01
Heavy metal contamination in soils/sediments and its impact on human health and ecological environment have aroused wide concerns. Our study investigated 30 samples of soils and sediments around Dongting Lake to analyze the concentration of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn in the samples and to distinguish the natural and anthropogenic sources. Also, the relationship between heavy metals and the physicochemical properties of samples was studied by multivariate statistical analysis. Concentration of Cd at most sampling sites were more than five times that of national environmental quality standard for soil in China (GB 15618-1995), and Pb and Zn levels exceeded one to two times. Moreover, Cr in the soil was higher than the national environmental quality standards for one to two times while in sediment was lower than the national standard. The investigation revealed that the accumulations of As, Cd, Mn, and Pb in the soils, and sediments were affected apparently by anthropogenic activities; however, Cr, Fe, and Ni levels were impacted by parent materials. Human activities around Dongting Lake mainly consisted of industrial activities, mining and smelting, sewage discharges, fossil fuel combustion, and agricultural chemicals. The spatial distribution of heavy metal in soil followed the rule of geographical gradient, whereas in sediments, it was significantly affected by the river basins and human activities. The result of principal component analysis (PCA) demonstrated that heavy metals in soils were associated with pH and total phosphorus (TP), while in sediments, As, Cr, Fe, and Ni were closely associated with cation exchange capacity (CEC) and pH, where Pb, Zn, and Cd were associated with total nitrogen (TN), TP, total carbon (TC), moisture content (MC), soil organic matter (SOM), and ignition lost (IL). Our research provides comprehensive approaches to better understand the potential sources and the fate of contaminants in lakeshore soils and sediments.
Chromium speciation in environmental samples using a solid phase spectrophotometric method.
Amin, Alaa S; Kassem, Mohammed A
2012-10-01
A solid phase extraction technique is proposed for preconcentration and speciation of chromium in natural waters using spectrophotometric analysis. The procedure is based on sorption of chromium(III) as 4-(2-benzothiazolylazo)2,2'-biphenyldiol complex on dextran-type anion-exchange gel (Sephadex DEAE A-25). After reduction of Cr(VI) by 0.5 ml of 96% concentrated H(2)SO(4) and ethanol, the system was applied to the total chromium. The concentration of Cr(VI) was calculated as the difference between the total Cr and the Cr(III) content. The influences of some analytical parameters such as: pH of the aqueous solution, amounts of 4-(2-benzothiazolylazo)2,2'-biphenyldiol (BTABD), and sample volumes were investigated. The absorbance of the gel, at 628 and 750 nm, packed in a 1.0 mm cell, is measured directly. The molar absorptivities were found to be 2.11×10(7) and 3.90×10(7) L mol(-1)cm(-1) for 500 and 1000 ml, respectively. Calibration is linear over the range 0.05-1.45 μg L(-1) with RSD of <1.85% (n=8.0). Using 35 mg exchanger, the detection and quantification limits were 13 and 44 ng L(-1) for 500 ml sample, whereas for 1000 ml sample were 8.0 and 27 ng L(-1), respectively. Increasing the sample volume can enhance the sensitivity. No considerable interferences have been observed from other investigated anions and cations on the chromium speciation. The proposed method was applied to the speciation of chromium in natural waters and total chromium preconcentration in microwave digested tobacco, coffee, tea, and soil samples. The results were simultaneously compared with those obtained using an ET AAS method, whereby the validity of the method has been tested. Copyright © 2012 Elsevier B.V. All rights reserved.
Velez, Pilar A; Talano, Melina A; Paisio, Cintia E; Agostini, Elizabeth; González, Paola S
2017-09-01
The presence of chromium in soils not only affects the physiological processes of plants but also the microbial rhizosphere composition and metabolic activities of microorganisms. Hence, the inoculation of plants with Cr(VI)-tolerant rhizospheric microorganisms as an alternative to reduce Cr phytotoxicity was studied. In this work, chickpea germination was reduced by Cr(VI) concentrations of 150 and 250 mg/L (6 and 33%, respectively); however lower Cr(VI) concentrations negatively affected the biomass. On the other hand, its symbiont, Mesorhizobium ciceri, was able to grow and remove different Cr(VI) concentrations (5-20 mg/L). The inoculation of chickpea plants with this strain exposed to Cr(VI) showed a significantly enhanced plant growth. In addition, inoculated plants accumulated higher Cr concentration in roots than those noninoculated. It is important to note that Cr was not translocated to shoots independently of inoculation. These results suggest that Mesorhizobium's capability to remove Cr(VI) could be exploited for bioremediation. Moreover, chickpea plants would represent a natural system for phytoremediation or phytostabilization of Cr in situ that could be improved with M. ciceri inoculation. This strategy would be considered as a phytoremediation tool with great economic and ecological relevance.
Sorption of chromium with struvite during phosphorus recovery.
Rouff, Ashaki A
2012-11-20
Struvite (MgNH(4)PO(4)·6H(2)O; MAP) precipitation is a viable means of phosphorus (P) recovery from animal and human wastes. The behavior of metal contaminants such as chromium (Cr) during struvite precipitation, however, requires consideration. Here the influence of both Cr concentration and oxidation state on sorption is assessed. The Cr content of struvite precipitated in the presence of 1-100 μM Cr as Cr(III) (22.3-3030.1 mg/kg) was higher than that of solids from Cr(VI) (4.5-5.1 mg/kg) solutions. For 1-20 μM Cr(III) solids, scanning electron microscopy (SEM) revealed etch pit formation on struvite crystal surfaces, indicative of a surface interaction. The formation of an adsorbate was confirmed by X-ray absorption fine structure spectroscopy (XAFS). At initial concentrations ≥20 μM Cr(III), XAFS confirmed the formation of a Cr(OH)(3)·nH(2)O(am) precipitate. Fourier transform infrared (FT-IR) spectroscopy revealed that both Cr(III) and Cr(VI) sorption resulted in distortion of the PO(4)(3-) tetrahedra in the mineral structure. This, combined with SEM results revealed that even at low sorbed concentrations, the Cr impurity can affect the mineral surface and structure. Thus, the initial Cr concentration and oxidation state in wastes targeted for P recovery will dictate the final Cr content, the mechanism of sorption, and impact on the struvite structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyas, Josef; Amonette, James E.; Kukkadapu, Ravi K.
2014-10-31
Precipitation of large crystals/agglomerates of spinel and their accumulation in the pour spout riser of a Joule-heated ceramic melter during idling can plug the melter and prevent pouring of molten glass into canisters. Thus, there is a need to understand the effects of spinel-forming components, temperature, and time on the growth of crystals in connection with an accumulation rate. In our study, crystals of spinel [Fe, Ni, Mn, Zn, Sn][Fe, Cr]₂O₄ were precipitated from simulated high-level waste borosilicate glasses containing different concentrations of Ni, Fe, and Cr by heat treating at 850 and 900°C for different times. These crystals weremore » extracted from the glasses and analyzed with scanning electron microscopy and image analysis for size and shape, with inductively coupled plasma-atomic emission spectroscopy and atom probe tomography for concentration of spinel-forming components, and with wet colorimetry and Mössbauer spectroscopy for Fe²⁺/Fe total ratio. High concentrations of Ni, Fe, and Cr in glasses resulted in the precipitation of crystals larger than 100 µm in just two days. Crystals were a solid solution of NiFe₂O₄, NiCr₂O₄, and -Fe₂O₃ (identified only in the high-Ni-Fe glass) and also contained small concentrations of less than 1 at% of Li, Mg, Mn, and Al.« less
Ran, Jing; Wang, Dejian; Wang, Can; Zhang, Gang; Yao, Lipeng
2014-08-01
Portable X-ray fluorescence (PXRF) spectrometry may be very suitable for a fast and effective environmental assessment and source identification of trace metals in soils. In this study, topsoils (0-10 cm) at 139 sites were in situ scanned for total trace metals (Cr, Cu, Ni, Pb and Zn) and arsenic concentrations by PXRF in a typical town in Yangtze Delta region of Jiangsu province, China. To validate the utility of PXRF, 53 samples were collected from the scanning sites for the determination of selected trace metals using conventional methods. Based on trace metal concentrations detected by in situ PXRF, the contamination extent and sources of trace metals were studied via geo-accumulation index, multivariate analysis and geostatistics. The trace metal concentrations determined by PXRF were similar to those obtained via conventional chemical analysis. The median concentration of As, Cr, Cu, Ni, Pb and Zn in soils were 10.8, 56.4, 41.5, 43.5, 33.5, and 77.7 mg kg(-1), respectively. The distribution patterns of Cr, Cu, Ni, Pb, and Zn were mostly affected by anthropogenic sources, while As was mainly derived from lithogenic sources. Overall, PXRF has been successfully applied to contamination assessment and source identification of trace metals in soils.
Liang, Yaya; Yi, Xiaoyun; Dang, Zhi; Wang, Qin; Luo, Houmei; Tang, Jie
2017-12-12
The purpose of this study was to assess heavy metal contamination and health risks for residents in the vicinity of a tailing pond in Guangdong, southern China. Water, soil, rice, and vegetable samples were collected from the area in the vicinity of the tailing pond. Results showed that surface water was just polluted by Ni and As, while groundwater was not contaminated by heavy metals. The concentrations of Pb, Zn, Cu, Cd, Ni, and As in the paddy soil exceeded the standard values but not those of Cr. In vegetable soils, the concentration of heavy metals was above the standard values except for Ni and As. Soil heavy metal concentrations generally decreased with increasing distance from the polluting source. Leafy vegetables were contaminated by Pb, Cr, Cd, and Ni, while the non-leafy vegetables were contaminated only by Cr. There was a significant difference in heavy metal concentrations between leafy vegetables and non-leafy vegetables. Almost all the rice was polluted by heavy metals. Diet was the most significant contributor to non-carcinogenic risk, which was significantly higher than the safe level of 1. The total cancer risk was also beyond the safe range (10 -6 -10 -4 ). Results revealed that there is a risk of potential health problems to residents in the vicinity of the tailing pond.
Liang, Yaya; Yi, Xiaoyun; Dang, Zhi; Wang, Qin; Luo, Houmei; Tang, Jie
2017-01-01
The purpose of this study was to assess heavy metal contamination and health risks for residents in the vicinity of a tailing pond in Guangdong, southern China. Water, soil, rice, and vegetable samples were collected from the area in the vicinity of the tailing pond. Results showed that surface water was just polluted by Ni and As, while groundwater was not contaminated by heavy metals. The concentrations of Pb, Zn, Cu, Cd, Ni, and As in the paddy soil exceeded the standard values but not those of Cr. In vegetable soils, the concentration of heavy metals was above the standard values except for Ni and As. Soil heavy metal concentrations generally decreased with increasing distance from the polluting source. Leafy vegetables were contaminated by Pb, Cr, Cd, and Ni, while the non-leafy vegetables were contaminated only by Cr. There was a significant difference in heavy metal concentrations between leafy vegetables and non-leafy vegetables. Almost all the rice was polluted by heavy metals. Diet was the most significant contributor to non-carcinogenic risk, which was significantly higher than the safe level of 1. The total cancer risk was also beyond the safe range (10−6–10−4). Results revealed that there is a risk of potential health problems to residents in the vicinity of the tailing pond. PMID:29231884
Novotnik, Breda; Ščančar, Janez; Milačič, Radmila; Filipič, Metka; Žegura, Bojana
2016-07-01
Chromium (Cr) and ethylenediaminetetraacetate (EDTA) are common environmental pollutants and can be present in high concentrations in surface waters at the same time. Therefore, chelation of Cr with EDTA can occur and thereby stable Cr(III)-EDTA complex is formed. Since there are no literature data on Cr(III)-EDTA toxicity, the aim of our work was to evaluate and compare Cr(III)-EDTA cytotoxic and genotoxic activity with those of Cr(VI) and Cr(III)-nitrate in human hepatoma (HepG2) cell line. First the effect of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA on cell viability was studied in the concentration range from 0.04 μg mL(-1) to 25 μg mL(-1) after 24 h exposure. Further the influence of non-cytotoxic concentrations of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA on DNA damage and genomic stability was determined with the comet assay and cytokinesis block micronucleus cytome assay, respectively. Cell viability was decreased only by Cr(VI) at concentrations above 1.0 μg mL(-1). Cr(VI) at ≥0.2 μg mL(-1) and Cr(III) at ≥1.0 μg mL(-1) induced DNA damage, while after Cr(III)-EDTA exposure no formation DNA strand breaks was determined. Statistically significant formation of micronuclei was induced only by Cr(VI) at ≥0.2 μg mL(-1), while no influence on the frequency of nuclear buds nor nucleoplasmic bridges was observed at any exposure. This study provides the first evidence that Cr(III)-EDTA did not induce DNA damage and had no influence on the genomic stability of HepG2 cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi
2017-01-01
This study was carried out to examine heavy metal accumulation in rice grains and brassicas and to identify the different controls, such as soil properties and soil heavy metal fractions obtained by the Community Bureau of Reference (BCR) sequential extraction, in their accumulation. In Guangdong Province, South China, rice grain and brassica samples, along with their rhizospheric soil, were collected from fields on the basis of distance downstream from electroplating factories, whose wastewater was used for irrigation. The results showed that long-term irrigation using the electroplating effluent has not only enriched the rhizospheric soil with Cd, Cr, Cu, and Zn but has also increased their mobility and bioavailability. The average concentrations of Cd and Cr in rice grains and brassicas from closest to the electroplating factories were significantly higher than those from the control areas. Results from hybrid redundancy analysis (hRDA) and redundancy analysis (RDA) showed that the BCR fractions of soil heavy metals could explain 29.0 and 46.5 % of total eigenvalue for heavy metal concentrations in rice grains and brassicas, respectively, while soil properties could only explain 11.1 and 33.4 %, respectively. This indicated that heavy metal fractions exerted more control upon their concentrations in rice grains and brassicas than soil properties. In terms of metal interaction, an increase of residual Zn in paddy soil or a decrease of acid soluble Cd in the brassica soil could enhance the accumulation of Cd, Cu, Cr, and Pb in both rice grains and brassicas, respectively, while the reducible or oxidizable Cd in soil could enhance the plants' accumulation of Cr and Pb. The RDA showed an inhibition effect of sand content and CFO on the accumulation of heavy metals in rice grains and brassicas. Moreover, multiple stepwise linear regression could offer prediction for Cd, Cu, Cr, and Zn concentrations in the two crops by soil heavy metal fractions and soil properties.
Diets containing leguminous seeds influence chromium content in the rat femur bone.
Gralak, M A; Leontowicz, H; Leontowicz, M; Debski, B
2002-01-01
Leguminous seeds contain a lot of antinutritional factors (ANFs) such as protease inhibitors, lectins and condensed tannins which can affect bioavailability of nutrients. Detrimental effect of protease inhibitors can be decreased by sulphur amino acids addition. Moreover, most of the leguminous ANFs are thermolabile. Hence, legumes tested in our study were extruded and/or diets were supplemented with methionine and cystine (0.15% + 0.15%). The present experiment was performed for 28 days on 90 Wistar rats divided into nine feeding groups. Semipurified diets (10% casein) were supplemented (10%), except the control one, with soybean (S) or faba bean (F), raw (R) or extruded (E), with addition of sulphur amino acids (SAA) or without them. The Cr concentration was determined in the femur bone. Total feed intake during whole trial widely varied among the groups and was the lowest in SR (289 g) and FR (294 g) groups. There was no correlation between feed intake and Cr content in the femur bone. Generally, 10% soybean in the diet decreased Cr concentration in the bones, and faba bean increased it. The SAA addition to diets generally increased femur Cr content. However, there was a significant interaction between SAA supplementation and extrusion of faba bean, hence, the effect of their combination was unclear.
Removal of arsenic from toxic ash after combustion of impregnated wood
NASA Astrophysics Data System (ADS)
Ottosen, L. M.; Pedersen, A. J.; Kristensen, I. V.; Ribeiro, A. B.
2003-05-01
ln the next ten years the amounts of waste wood impregnated with Cu, Cr and As (CCA) is expected to increase dramatically. Mixed with municipal solid waste for incineration the wood constitutes a problem because As emission is not hindered through common flue gas treatment. Furthermore the ashes will contain higher concentrations of Cu, Cr and As. In different countries initiatives has been taken or are implemented to sort the impregnated wood from other waste and handle the wood separately. This handling can involve combustion in special plants. This paper deals with electrodialytic treatment of ash from combustion of CCA treated wood. The total concentrations in the ash were very high: 69gCu/kg, 62gCr/kg and 35gAs/kg. A SEM/EDX analysis showed that Cr was mainly build into the matrix structure of the ash. Cu, too, but some Cu was also precipitated on the surface of the particles. As, on the other hand, was only found associated with Ca and thus probably in a soluble form. As is the main problem of the ash due to the high toxicity and mobility and thus the treatment aims at removing this element. It was shown that during 5 days of electrodialytic treatment 92% As could be removed.
Liu, S X; Chen, X; Chen, X Y; Liu, Z F; Wang, H L
2007-03-06
In the present work, activated carbon (AC) with excellent Cr(VI) adsorption performance especially at low concentrations was prepared by an acid-base surface modification method. Raw activated carbon (AC(0)) was first oxidized in boiling HNO(3) (AC(1)), then treated with a mixture of NaOH and NaCl (AC(2)). Batch equilibrium and continuous column adsorption were conducted to evaluate the adsorption performance. Boehm titration, elemental analysis, and N(2)/77K adsorption isotherm methods were used to characterize the surface properties and pore structure of modified ACs. The results revealed that the modified AC exhibited excellent Cr(VI) adsorption performance in terms of adsorption capacity and adsorption rate: AC(2)>AC(1)>AC(0). Modification caused S(BET) to decrease and the total number of surface oxygen acidic groups to increase. HNO(3) oxidization produced positive acid groups, and subsequently NaOH treatment replaced H(+) of surface acid groups by Na(+), and the acidity of AC decreased. The main cause of higher Cr(VI) adsorption capacity and rate for AC(2) was the presence of more oxygen surface acidic groups and suitable surface acidity. HNO(3)-NaOH modification shows potential for the preparation of high quality AC for the effective removal of low concentrations of Cr(VI).
[Heavy metal concentration in Nanjing urban soils and their affecting factors].
Lu, Ying; Gong, Zitong; Zhang, Ganlin; Zhang, Bo
2004-01-01
The concentration and source of heavy metals in Nanjing urban soils and their relationships with soil properties were studied. The results indicated that the soils in Nanjing urban were not obviously polluted by Fe, Ni, Co and V, but polluted by Mn, Cr, Cu, Zn, and Pb to a certain extent. The heavy metals were irregularly distributed in soil profiles. Fe, Ni, Co, and V were originated from soil materials, but Cu, Zn, Pb, and Cr were anthropogenic input. Probably, Mn had different origins in different soils. There were positive correlations among Fe, Cr, Ni, Co, and V concentration, and among Cu, Zn, Pb, and Cr concentration. The Fe, Co, V, and Ni concentration were positively correlated with soil clay content and CEC, and the Cu, Zn and Pb concentration were negatively correlated with clay content. There were positive correlations between Cu, Zn, Pb and Cr concentration and organic C content, and between Pb concentration and soil pH.
Relationship of Hydrogen Bioavailability to Chromate Reduction in Aquifer Sediments
Marsh, Tamara L.; McInerney, Michael J.
2001-01-01
Biological Cr(VI) reduction was studied in anaerobic sediments from an aquifer in Norman, Okla. Microcosms containing sediment and mineral medium were amended with various electron donors to determine those most important for biological Cr(VI) reduction. Cr(VI) (about 340 μM) was reduced with endogenous substrates (no donor), or acetate was added. The addition of formate, hydrogen, and glucose stimulated Cr(VI) reduction compared with reduction in unamended controls. From these sediments, an anaerobic Cr(VI)-utilizing enrichment was obtained that was dependent upon hydrogen for both growth and Cr(VI) reduction. No methane was produced by the enrichment, which reduced about 750 μM Cr(VI) in less than six days. The dissolved hydrogen concentration was used as an indicator of the terminal electron accepting process occurring in the sediments. Microcosms with sediments, groundwater, and chromate metabolized hydrogen to a concentration below the detection limits of the mercury vapor gas chromatograph. In microcosms without chromate, the hydrogen concentration was about 8 nM, a concentration comparable to that under methanogenic conditions. When these microcosms were amended with 500 μM Cr(VI), the dissolved hydrogen concentration quickly fell below the detection limits. These results showed that the hydrogen concentration under chromate-reducing conditions became very low, as low as that reported under nitrate- and manganese-reducing conditions, a result consistent with the free energy changes for these reactions. The utilization of formate, lactate, hydrogen, and glucose as electron donors for Cr(VI) reduction indicates that increasing the availability of hydrogen results in a greater capacity for Cr(VI) reduction. This conclusion is supported by the existence of an enrichment dependent upon hydrogen for growth and Cr(VI) reduction. PMID:11282599
NASA Astrophysics Data System (ADS)
Huerta, L.; Contreras-Valadez, R.; Palacios-Mayorga, S.; Miranda, J.; Calva-Vasquez, G.
2002-04-01
The purpose of this work was to obtain the total elemental composition of agricultural soils irrigated with well water and wastewater. The studied area is located in the Valle del Mezquital in Hidalgo State, Mexico. The studied soils were collected, every two months during one year. Particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA) were applied for elemental analysis. PIXE analyses gave elemental contents of major and trace elements (Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Y, Zr, and Pb). Total concentrations of Na, Mg, C, N and O were obtained by RBS and NRA. PIXE analyses were carried out with 2 MeV proton beams, RBS with 2 MeV helium ions, while NRA was applied with a 1.2 MeV deuterium beam. Results indicated that heavy metal total concentrations exceed the critical soil total concentrations according to environmental regulations.
Cox, Zachary L; Calcutt, Marion W; Morrison, Thomas B; Akers, Wendell S; Davis, Mary Beth; Lenihan, Daniel J
2013-09-01
To determine steady state milrinone concentrations in patients with stage D heart failure (HF) with and without renal dysfunction We retrospectively identified patients with stage D HF at a single medical center on continuous milrinonein fusion at the time of plasma collection for entry into a research registry database. Milrinone was prescribed and titrated to improve hemodynamic and clinical status by a cardiologist. Plasma samples were obtained at steady state milrinone concentrations. Patients were stratified by creatinine clearance (CrCl) into 4 groups: group 1 (CrCl >60 mL/min), group 2 (CrCl 60-30 mL/min), group 3 (CrCl <30 mL/min), and group 4 (intermittent hemodialysis). Retrospective chart review was performed to quantify the post milrinone hemodynamic changes by cardiac catheterization and electrophysiologic changes by implantable cardiac defibrillator (ICD) interrogation. A total of 29 patients were identified: group 1 (n=14), group 2 (n=10), group 3(n=3), and group 4 (n = 2). The mean infusion rate (0.391+0.08 mg/kg/min) did not differ between groups (P=0.14). The mean milrinone concentration was 451+243 ng/mL in group 1, 591+293 ng/mL in group 2, 1575+962 ng/mL in group 3, and 6252+4409 ng/mL in group 4 (P<0.05 compared to groups 1). There was no difference in post milrinone hemodynamic improvements between the groups (P=0.41). The ICD interrogation revealed limited comparisons, but 6 of the 8 post milrinone ventricular tachycardia episodes requiring defibrillation occurred in group 4 patients. Patients with stage D HF having severe renal dysfunction have elevated milrinone concentrations. Future studies of milrinone concentrations are warranted to investigate the potential risk of life-threatening arrhythmias and potential dosing regimens in renal dysfunction.
Chemical speciation of trace metals in the industrial sludge of Dhaka City, Bangladesh.
Islam, Md Saiful; Al-Mamun, Md Habibullah; Feng, Ye; Tokumura, Masahiro; Masunaga, Shigeki
2017-07-01
The objective of this study was to assess total concentration and chemical fractionation of trace metals in the industrial wastewater and sludge collected from seven different types of industries in Dhaka City, Bangladesh. The sludge from industries is either dumped on landfills or reused as secondary resources in order to preserve natural resources. Metals were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The ranges of Cr, Ni, Cu, As, Cd, and Pb in the sludges were 1.4-9,470, 4.8-994, 12.8-444, 2.2-224, 1.9-46.0 and 1.3-87.0 mg/kg, respectively. As a whole, the average concentrations of trace metals in samples were in the decreasing order of Cr > Ni > Cu > As > Pb > Cd. The results of the Community Bureau of Reference (BCR) sequential extraction showed that the studied metals were predominantly associated with the residual fraction followed by the oxidizable fraction. The study revealed that the mobile fractions of trace metals are poorly predictable from the total content, and bioavailability of all fractions of elements tends to decrease.
Chen, Zunwei; Song, Shufang; Wen, Yuezhong
2016-12-01
The priority pollutant chromium (Cr) was ubiquitous and great efforts have been made to reduce Cr (VI) into less-toxic Cr (III) by alga for the convenient availability and low expense. However, the functional role of organelle inside the algal cell in Cr (VI) reduction was poorly understood. In this study, organelles in green algae Chlorella vulgaris were extracted and further decorated for Cr (VI) reduction tests. Results showed that the chloroplast exhibited not only adsorption ability of total Cr (21.18% comparing to control) but also reduction potential of Cr (VI) (almost 70% comparing to control), whose most suitable working concentration was at 17μg/mL. Furtherly, the isolated thylakoid membrane (ITM) showed better Cr (VI) reduction potential with the presence of sodium alginate (SA), even though the Hill reaction activity (HRA) was inhibited. As for photosystem II (PSII), the addition of mesoporous silica SBA-15 enhanced the reduction ability through improving the light-harvesting complex (LHC) II efficiency and electron transport rate. On the whole, the reduction ability order of the three kinds of materials based on chloroplast in C. vulgaris was PSII@SBA-15>Chloroplast>ITM@SA. The attempt made in this study to reduce the Cr (VI) with C. vulgaris organelles might not only offer basement to detect the potential action mechanism of Cr (VI) reduction by C. vulgaris but also provide a new sight for the scavenge of heavy metal with biological materials. Copyright © 2016 Elsevier B.V. All rights reserved.
[Corrosion property and oxide film of dental casting alloys before and after porcelain firing].
Ma, Qian; Wu, Feng-ming
2011-03-01
To evaluate the types and compositions of oxide films formed during porcelain-fused-to-metal (PFM) firing on three kinds of dental casting alloys, and to investigate the corrosion property of these alloys in Dulbecco's modification of Eagle's medium (DMEM) cell culture fluid, before and after PFM firing. Specimens of three dental casting alloys (Ni-Cr, Co-Cr and Ni-Ti) before and after PFM firing were prepared, and were immersed in DMEM cell culture fluid. After 30 days, the type and concentration of released metal ions were measured using inductively coupled plasma atomic emission spectroscopy (ICP-AES). X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used for analysis of oxide film on the alloys. One way-ANOVA was adopted in data analysis. The total amount of metal ions released from the three dental alloys was found to be highest in Ni-Cr alloy [(2.829 ± 0.694) mg/L], followed by Co-Cr [(2.120 ± 0.418) mg/L] and Ni-Ti alloy [(1.211 ± 0.101) mg/L]. The amount of Ni ions released from Ni-Cr alloys [(1.531 ± 0.392) mg/L] was higher than that from Ni-Ti alloys [(0.830 ± 0.052) mg/L]. The amount of Cr, Mo ions released from Co-Cr alloy [Cr: (0.048 ± 0.011) mg/L, Mo: (1.562 ± 0.333) mg/L] was higher than that from Ni-Cr alloy [Cr: (0.034 ± 0.002) mg/L, Mo: (1.264 ± 0.302) mg/L] and Ni-Ti alloy [Cr: (0.013 ± 0.006) mg/L, Mo: (0.151 ± 0.026) mg/L] (P < 0.05). After PFM firing, the total amount of metal irons released from the three dental alloys decreased [Ni-Cr: (0.861 ± 0.054) mg/L, Co-Cr: (0.695 ± 0.327) mg/L, Ni-Ti: (0.892 ± 0.115) mg/L] (P < 0.05). In addition, XPS showed increase of Cr(2)O(3) and Mo-Ni oxide on the surface of all the alloys after PFM firing. The amount of ions released from Ni-Cr alloy was the highest among the three dental casting alloys, this means Ni-Cr alloy is prone to corrode. The PFM firing process changed the alloys' surface composition. Increased Ni, Cr and Mo were found in oxide film, and the increase in Cr(2)O(3) can improve the corrosion-resistance of alloys.
A new cation-exchange method for accurate field speciation of hexavalent chromium
Ball, J.W.; McCleskey, R. Blaine
2003-01-01
A new method for field speciation of Cr(VI) has been developed to meet present stringent regulatory standards and to overcome the limitations of existing methods. The method consists of passing a water sample through strong acid cation-exchange resin at the field site, where Cr(III) is retained while Cr(VI) passes into the effluent and is preserved for later determination. The method is simple, rapid, portable, and accurate, and makes use of readily available, inexpensive materials. Cr(VI) concentrations are determined later in the laboratory using any elemental analysis instrument sufficiently sensitive to measure the Cr(VI) concentrations of interest. The new method allows measurement of Cr(VI) concentrations as low as 0.05 ??g 1-1, storage of samples for at least several weeks prior to analysis, and use of readily available analytical instrumentation. Cr(VI) can be separated from Cr(III) between pH 2 and 11 at Cr(III)/Cr(VI) concentration ratios as high as 1000. The new method has demonstrated excellent comparability with two commonly used methods, the Hach Company direct colorimetric method and USEPA method 218.6. The new method is superior to the Hach direct colorimetric method owing to its relative sensitivity and simplicity. The new method is superior to USEPA method 218.6 in the presence of Fe(II) concentrations up to 1 mg 1-1 and Fe(III) concentrations up to 10 mg 1-1. Time stability of preserved samples is a significant advantage over the 24-h time constraint specified for USEPA method 218.6.
Memon, Jamil R; Memon, Saima Q; Bhanger, Muhammad I; El-Turki, Adel; Hallam, Keith R; Allen, Geoffrey C
2009-05-01
This study describes the use of banana peel, a commonly produced fruit waste, for the removal of Cr(VI) from industrial wastewater. The parameters pH, contact time, initial metal ion concentration, and temperature were investigated and the conditions resulting in rapid and efficient adsorption (95% within 10 min) were determined. The binding of metal ions was found to be pH dependent with the optimal sorption occurring at pH 2. The retained species were eluted with 5 mL of 2M H(2)SO(4). To elucidate the mechanism of the process, total amounts of chromium and Cr(VI) were analyzed using flame atomic absorption and ultraviolet-visible (UV-vis) spectroscopic techniques, respectively. The Langmuir and Dubinin-Radushkevich (D-R) isotherms were used to describe the partitioning behavior for the system at different temperatures. Kinetics and thermodynamics of Cr(VI) removal by banana peel were also studied. The influence of diverse ions on the sorption behavior revealed that only Fe(II) ions (of those tested) suppressed the sorption of Cr(VI) ions to some extent. The method was applied for the removal of Cr(VI) from industrial wastewater.
Sanyal, Tanmay; Kaviraj, Anilava; Saha, Subrata
2015-11-01
Accumulation of chromium (Cr) was determined in water, sediment, aquatic plants, invertebrates and fish in aquatic ecosystems receiving effluents from handloom textile industries in Ranaghat-Fulia region of West Bengal in India. Cr was determined in the samples by atomic absorption spectrophotometer and data were analyzed functionally by Genetic Algorithm to determine trend of depositions of Cr in the sediment and water. Area plot curve was used to represent accumulation of Cr in biota. The results indicate that the aquatic ecosystems receiving the effluents from handloom textile factories are heavily contaminated by Cr. The contamination is hardly reflected in the concentration of Cr in water, but sediment exhibits seasonal fluctuation in deposition of Cr, concentration reaching to as high as 451.0 μg g(-1) during the peak production period. There is a clear trend of gradual increase in the deposition of Cr in the sediment. Aquatic weed, insect and mollusk specimens collected from both closed water bodies (S1 & S2) and riverine resources (S3 & S4) showed high rate of accumulation of Cr. Maximum concentration of Cr was detected in roots of aquatic weeds (877.5 μg g(-1)). Fish specimens collected from the polluted sites (S3 & S4) of river Churni showed moderate to high concentration of Cr in different tissues. Maximum concentration was detected in the liver of Glossogobius giuris (679.7 μg g(-1)) during monsoon followed by gill of Mystus bleekeri (190.0 μg g(-1)) and gut of G. giuris (123.7 μg g(-1)) during summer. Eutropiichthys vacha showed moderately high concentration of Cr in different tissues (65-99 μg g(-1)) while Puntius sarana showed relatively low concentration of Cr (below detection limit to 18.0 μg g(-1)) in different tissues except in gill (64.4 μg g(-1)).
Sanyal, Tanmay; Kaviraj, Anilava; Saha, Subrata
2014-01-01
Accumulation of chromium (Cr) was determined in water, sediment, aquatic plants, invertebrates and fish in aquatic ecosystems receiving effluents from handloom textile industries in Ranaghat–Fulia region of West Bengal in India. Cr was determined in the samples by atomic absorption spectrophotometer and data were analyzed functionally by Genetic Algorithm to determine trend of depositions of Cr in the sediment and water. Area plot curve was used to represent accumulation of Cr in biota. The results indicate that the aquatic ecosystems receiving the effluents from handloom textile factories are heavily contaminated by Cr. The contamination is hardly reflected in the concentration of Cr in water, but sediment exhibits seasonal fluctuation in deposition of Cr, concentration reaching to as high as 451.0 μg g−1 during the peak production period. There is a clear trend of gradual increase in the deposition of Cr in the sediment. Aquatic weed, insect and mollusk specimens collected from both closed water bodies (S1 & S2) and riverine resources (S3 & S4) showed high rate of accumulation of Cr. Maximum concentration of Cr was detected in roots of aquatic weeds (877.5 μg g−1). Fish specimens collected from the polluted sites (S3 & S4) of river Churni showed moderate to high concentration of Cr in different tissues. Maximum concentration was detected in the liver of Glossogobius giuris (679.7 μg g−1) during monsoon followed by gill of Mystus bleekeri (190.0 μg g−1) and gut of G. giuris (123.7 μg g−1) during summer. Eutropiichthys vacha showed moderately high concentration of Cr in different tissues (65–99 μg g−1) while Puntius sarana showed relatively low concentration of Cr (below detection limit to 18.0 μg g−1) in different tissues except in gill (64.4 μg g−1). PMID:26644938
Verma, Mascha; Khadapkar, Rashmi; Sahu, Priyadarshi Soumyaranjan; Das, Bibhu Ranjan
2006-09-01
An increase in the communication within the healthcare services, both nationally and internationally, has strengthened the need for harmonization of measurements and reference intervals in laboratory medicine. In the present report, the calculated reference interval for serum creatinine (sCr) levels of healthy normal individuals (n=1121) in different sex and age groups are compared with the established interval. The calculated reference interval for sCr level was 0.4-1.3 mg/dL and 0.6 to 1.3 mg/dL in the age groups of 21-40 and 41-60 years respectively. The difference between the mean sCr values in total males and total females (age range 21-60 years) was statistically significant (p<0.0001); When male and female subjects were analyzed age-group wise, the data showed a significant difference in mean sCr values (p<0.0001) in three age groups (21-30, 31-40 and 41-50 years) however, in older age group (51-60 years), the difference was non-significant (p=0.07). The reference ranges were 0.7-1.3 and 0.4-1.0 mg/dL for males and females respectively where the lower limit was 0.1-0.2 units less than that of standard limits. An increase in the mean value of sCr was observed particularly in females with an increase in age. Hence it is of interest to validate an age specific reference ranges for sCr in our population.
Kováčik, Jozef; Babula, Petr; Hedbavny, Josef; Klejdus, Bořivoj
2014-05-30
Toxicity of low (3μM) and high (60 and 120μM) concentrations of hexavalent chromium/Cr(VI) in chamomile plants was studied. Fluorescence staining confirmed reduction of Cr(VI) to Cr(III). Cr was mainly accumulated in the roots with translocation factor <0.007. Notwithstanding this, both shoots and roots revealed increase in oxidative stress and depletion of glutathione, total thiols, ascorbic acid and activities of glutathione reductase and partially ascorbate peroxidase mainly at 120μM Cr. Though some protective mechanisms were detected (elevation of nitric oxide, enhancement of GPX activity and increase in phenols and lignin), this was not sufficient to counteract the oxidative damage. Consequently, soluble proteins, tissue water content and biomass production were considerably depleted. Surprising increase in some mineral nutrients in roots (Ca, Fe, Zn and Cu) was also detected. Subsequent experiment confirmed that exogenous calcium suppressed oxidative symptoms and Cr uptake but growth of chamomile seedlings was not improved. Alteration of naturally present reductants could be a reason for Cr(III) signal detected using specific fluorescence reagent: in vitro assay confirmed disappearance of ascorbic acid in equimolar mixture with dichromate (>96% at pH 4 and 7) while such response of glutathione was substantially less visible. Copyright © 2014 Elsevier B.V. All rights reserved.
Cao, Hongbin; Chen, Jianjiang; Zhang, Jun; Zhang, Hui; Qiao, Li; Men, Yi
2010-01-01
Contamination of soil and agricultural products by heavy metals resulting from rapid industrial development has caused major concern. In this study, we investigated heavy metal (Cu, Zn, Pb, Cr, Hg and Cd) concentrations in rice and garden vegetables, as well as in cultivated soils, in a rural-industrial developed region in southern Jiangsu, China, and estimated the potential health risks of metals to the inhabitants via consumption of locally produced rice and garden vegetables. A questionnaire-based survey on dietary consumption rates of foodstuffs showed that rice and vegetables accounted for 64% of total foodstuffs consumed, and over 60% of rice and vegetables were grown in the local region. Average concentrations of Cr, Cu, Zn, Cd, Hg and Pb were 0.75, 2.64, 12.00, 0.014, 0.006 and 0.054 mg/kg dw (dry weight) in rice and were 0.67, 1.18, 4.34, 0.011, 0.002 and 0.058 mg/kg fw (fresh weight) in garden vegetables, respectively. These values were all below the maximum allowable concentration in food in China except for Cr in vegetables. Leafy vegetables had higher metal concentrations than solanaceae vegetables. Average daily intake of Cr, Cu, Zn, Cd, Hg and Pb through the consumption of rice and garden vegetables were 5.66, 16.90, 74.21, 0.10, 0.04 and 0.43 microg/(kg x day), respectively. Although Hazard Quotient values of individual metals were all lower than 1, when all six metal intakes via self-planted rice and garden vegetables were combined, the Hazard Index value was close to 1. Potential health risks from exposure to heavy metals in self-planted rice and garden vegetables need more attention.
Friesenbichler, Joerg; Maurer-Ertl, Werner; Sadoghi, Patrick; Lovse, Thomas; Windhager, Reinhard; Leithner, Andreas
2012-03-01
The effects of systemic metal ion exposure in patients with implants made of common prosthetic alloys continue to be a matter of concern. The aim of the study was to determine the measurement values of cobalt (Co), chromium (Cr) and molybdenum (Mo) in serum following rotating-hinge knee arthroplasty. Blood was taken from 25 patients [mean follow-up 35 (range nine to 67) months] treated with megaprostheses (n=17) or standard rotating-hinge devices (n=8) and analysed using electrothermal graphite furnace atomic absorption spectrometry (ET-ASS). Determining the concentrations of metal ions following rotating-hinge knee arthroplasty revealed increments for Co and Cr but not Mo. Metal ion release was significantly higher in patients with megaprostheses compared to a standard rotating-hinge knee device (Co p=0,024; Cr p=0.025). The authors believe there might be an additional metal ion release from the surface of the prosthesis and not only from the articulating surfaces because, in cases of rotating-hinge knee prosthesis, there is a metal-on-polyethylene articulation and not a direct metal-on-metal junction. Nevertheless, long-term studies are required to determine adverse effects of Co, Cr and Mo following total hip replacement and total knee arthroplasty.
Improving alachlor biodegradability by ferrate oxidation.
Zhu, Jian-Hang; Yan, Xi-Luan; Liu, Ye; Zhang, Bao
2006-07-31
Alachlor can be recalcitrant when present at high concentrations in wastewater. Ferrate oxidation was used as a pretreatment to improve its biodegradability and was evaluated by monitoring alachlor elimination and removal of COD(Cr) (chemical oxygen demand determined by potassium dichromate) during the oxidation process up to a value compatible with biological treatment. Ferrate oxidation resulted in elimination of alachlor followed by degradation of its intermediates. High pH suppressed alachlor removal and COD(Cr) removal due to the low redox potential of ferrate ions. Although alachlor can be totally eliminated within 10 min under optimized conditions (alachlor, 40 mg l(-1); ferrate:alachlor molar ratio, 2; and pH 7.0), its complete mineralization cannot be achieved by ferrate oxidation alone. Alachlor solution treated by ferrate for 10 min inhibited an up-flow biotreatment with activated sludge. The biodegradability of ferrate-pretreated solution improved when the treatment was increased to 20 min, at the point of which BOD(5)/COD(Cr) ratio of the treated solution was increased to 0.87 from 0.35 after 10 min treatment. Under optimized conditions, ferrate oxidation for 20 min resulted in total elimination of alachlor, partial removal of COD(Cr) and the ferrate-treated solution could be effectively treated by the up-flow activated sludge process.
Lai, Hung-Yu; Juang, Kai-Wei; Chen, Zueng-Sang
2010-01-01
A site in central Taiwan with an area of 1.3 ha and contaminated with Cr, Cu, Ni, and Zn was selected to examine the feasibility of phytoextraction. Based on the results of a preexperiment at this site, a total of approximately 20,000 plants of 12 species were selected from plants of 33 tested species to be used in a large-area phytoextraction experiment at this site. A comparison with the initial metal concentration of 12 plant species before planting demonstrated that most species accumulated significant amounts of Cr, Cu, Ni, and Zn in their shoots after growing in this contaminated site for 31 d. Among the 12 plant species, the following accumulated higher concentrations of metals in their shoots; Garden canna and Garden verbena (45-60 mg Cr kg(-1)), Chinese ixora and Kalanchoe (30 mg Cu kg(-1)), Rainbow pink and Sunflower (30 mg Ni kg(-1)), French marigold and Sunflower (300-470 mg Zn kg(-1)). The roots of the plants of most of the 12 plant species can accumulate higher concentrations of metals than the shoots and extending the growth period promotes accumulation in the shoots. Large-area experiments demonstrated that phytoextraction is a feasible method to enable metal-contaminated soil in central Taiwan to be reused.
Meng, Fansheng; Xue, Hao; Wang, Yeyao; Zheng, Binghui; Wang, Juling
2018-02-01
Electrokinetic experiments were conducted on chromium-residue-contaminated soils collected from a chemical plant in China. Acidification-electrokinetic remediation technology was proposed in order to solve the problem of removing inefficient with ordinary electrokinetic. The results showed that electrokinetic remediation removal efficiency of chromium from chromium-contaminated soil was significantly enhanced with acidizing pretreatment. The total chromium [Cr(T)] and hexavalent chromium [Cr(VI)] removal rate of the group acidized by citric acid (0.9 mol/L) for 5 days was increased from 6.23% and 19.01% in the acid-free experiments to 26.97% and 77.66% in the acidification-treated experiments, respectively. In addition, part of chromium with the state of carbonate-combined will be converted into water-soluble state through acidification to improve the removal efficiency. Within the appropriate concentration range, the higher concentration of acid was, the more chromium was released. So the removal efficiency of chromium depended on the acid concentration. The citric acid is also a kind of complexing agent, which produced complexation with Cr that was released by the electrokinetic treatment and then enhanced the removal efficiency. The major speciation of chromium that was removed from soils by acidification-electrokinetics remediation was acid-soluble speciation, revivification speciation and oxidation speciation, which reduced biological availability of chromium.
Characterization and first flush analysis in road and roof runoff in Shenyang, China.
Li, Chunlin; Liu, Miao; Hu, Yuanman; Gong, Jiping; Sun, Fengyun; Xu, Yanyan
2014-01-01
As urbanization increases, urban runoff is an increasingly important component of total urban non-point source pollution. In this study, the properties of urban runoff were examined in Shenyang, in northeastern China. Runoff samples from a tiled roof, a concrete roof and a main road were analyzed for key pollutants (total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), Pb, Cd, Cr, Cu, Ni, and Zn). The event mean concentration, site mean concentration, M(V) curves (dimensionless cumulative curve of pollutant load with runoff volume), and mass first flush ratio (MFF30) were used to analyze the characteristics of pollutant discharge and first flush (FF) effect. For all events, the pollutant concentration peaks occurred in the first half-hour after the runoff appeared and preceded the flow peaks. TN is the main pollutant in roof runoff. TSS, TN, TP, Pb, and Cr are the main pollutants in road runoff in Shenyang. There was a significant correlation between TSS and other pollutants except TN in runoff, which illustrated that TSS was an important carrier of organic matter and heavy metals. TN had strong positive correlations with total rainfall (Pearson's r = 0.927), average rainfall (Pearson's r = 0.995), and maximum rainfall intensity (Pearson's r = 0.991). TP had a strong correlation with rainfall intensity (Pearson's r = 0.940). A significant positive correlation between COD and rainfall duration (Pearson's r = 0.902, significance level = 0.05) was found. The order of FF intensity in different surfaces was concrete roof > tile roof > road. Rainfall duration and the length of the antecedent dry period were positively correlated with the FF. TN tended to exhibit strong flush for some events. Heavy metals showed a substantially stronger FF than other pollutant.
Toxicity Effect of Cr Stress on Seed Germination and Seedling Growth in Lactuca Sativa
NASA Astrophysics Data System (ADS)
Ma, Wan Zheng; Ma, Wan Min; Du, Ying Ying; Dan, Qiong Peng; Yin, Bing; Dai, Shan Shan; Hao, Xiang
2018-03-01
The impact of Cr6+ on the growth of lactuca sativa in Greenhouse Cucumber was investigated. The seeds of lacuna sativa Italian bolting resistance lettuce were treated by different Cr6+ concentration to study the effects on its seed germination and seedling growth. The results showed that the seed germination rate, vigor index of seedlings decreased with increment of Cr6+ concentration to varying degrees, and vigor germination, vigor index, raw weight, root length significantly lower. The absorption of lettuce seedlings on different nutrient elements is impacted by the concentration of Cr6+.
Synthesis and Luminescence Characteristics of Cr 3+ doped Y 3Al 5O 12 Phosphors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Brenda A.; Dabestani, Reza T.; Lewis, Linda A.
2015-10-01
Luminescence performance of yttrium aluminum garnet (Y 3Al 5O 12) phosphors as a function of Cr 3+ concentration has been investigated via two different wet-chemical synthesis techniques, direct- (DP) and hydrothermal-precipitation (HP). Using either of these methods, the red-emitting phosphor [Y 3Al 5-xCr xO 12 (YAG: Cr 3+)] showed similar photoluminescence (PL) intensities once the dopant concentration was optimized. Specifically, the YAG: Cr 3+ PL emission intensity reached a maximum at Cr3+ concentrations of x = 0.02 (0.4 at.%) and x = 0.13 (2.6 at.%) for DP and HP processed samples, respectively. The results indicated the strong influence of themore » processing method on the optimized YAG: Cr 3+ performance, where a more effective energy transfer rate between a pair of Cr3+ activators at low concentration levels was observed by using the DP synthesis technique. Development of a highly efficient phosphor, using a facile synthesis approach, could significantly benefit consumer and industrial applications by improving the operational efficiency of a wide range of practical devices.« less
NASA Astrophysics Data System (ADS)
Lei, Peng-cheng; Shen, Xian-jiang; Li, Yang; Guo, Min; Zhang, Mei
2016-07-01
A simple and practical method for the synthesis of zeolite 4A from bauxite tailings is presented in this paper. Systematic investigations were carried out regarding the capacity of zeolite 4A to remove Cr(III) from aqueous solutions with relatively low initial concentrations of Cr(III) (5-100 mg·L-1). It is found that the new method is extremely cost-effective and can significantly contribute in decreasing environmental pollution caused by the dumping of bauxite tailings. The Cr(III) removal capacity highly depends on the initial pH value and concentration of Cr(III) in the solution. The maximum removal capacity of Cr(III) was evaluated to be 85.1 mg·g-1 for zeolite 4A, measured at an initial pH value of 4 and an initial Cr(III) concentration of 5 mg·L-1. This approach enables a higher removal capacity at lower concentrations of Cr(III), which is a clear advantage over the chemical precipitation method. The removal mechanism of Cr(III) by zeolite 4A was examined. The results suggest that both ion exchange and the surface adsorption-crystallization reaction are critical steps. These two steps collectively resulted in the high removal capacity of zeolite 4A to remove Cr(III).
Qing, Xiao; Yutong, Zong; Shenggao, Lu
2015-10-01
The purpose of this study was to determine the concentrations and health risk of heavy metals in urban soils from a steel industrial district in China. A total of 115 topsoil samples from Anshan city, Liaoning, Northeast China were collected and analyzed for Cr, Cd, Pb, Zn, Cu, and Ni. The geoaccumulation index (Igeo), pollution index (PI), and potential ecological risk index (PER) were calculated to assess the pollution level in soils. The hazard index (HI) and carcinogenic risk (RI) were used to assess human health risk of heavy metals. The average concentration of Cr, Cd, Pb, Zn, Cu, and Ni were 69.9, 0.86, 45.1, 213, 52.3, and 33.5mg/kg, respectively. The Igeo and PI values of heavy metals were in the descending order of Cd>Zn>Cu>Pb>Ni>Cr. Higher Igeo value for Cd in soil indicated that Cd pollution was moderate. Pollution index indicated that urban soils were moderate to highly polluted by Cd, Zn, Cu, and Pb. The spatial distribution maps of heavy metals revealed that steel industrial district was the contamination hotspots. Principal component analysis (PCA) and matrix cluster analysis classified heavy metals into two groups, indicating common industrial sources for Cu, Zn, Pb, and Cd. Matrix cluster analysis classified the sampling sites into four groups. Sampling sites within steel industrial district showed much higher concentrations of heavy metals compared to the rest of sampling sites, indicating significant contamination introduced by steel industry on soils. The health risk assessment indicated that non-carcinogenic values were below the threshold values. The hazard index (HI) for children and adult has a descending order of Cr>Pb>Cd>Cu>Ni>Zn. Carcinogenic risks due to Cr, Cd, and Ni in urban soils were within acceptable range for adult. Carcinogenic risk value of Cr for children is slightly higher than the threshold value, indicating that children are facing slight threat of Cr. These results provide basic information of heavy metal pollution control and environment management in steel industrial regions. Copyright © 2015 Elsevier Inc. All rights reserved.
van Zuylen, L; Gianni, L; Verweij, J; Mross, K; Brouwer, E; Loos, W J; Sparreboom, A
2000-06-01
Cremophor EL (CrEL) is a castor oil surfactant used as a vehicle for formulation of a variety of poorly water-soluble agents, including paclitaxel. Recently, we found that CrEL can influence the in vitro blood distribution of paclitaxel by reducing the free drug fraction, thereby altering drug accumulation in erythrocytes. The purpose of this study was to investigate the clinical pharmacokinetics of CrEL, and to examine inter-relationships of paclitaxel disposition, infusion duration and CrEL kinetics. The CrEL plasma clearance, studied in 17 patients for a total of 28 courses, was time dependent and increased significantly with prolongation of the infusion duration from 1 to 3 to 24 h (p<0.03). An indirect response model, applied based on use of a Hill function for CrEL concentration-dependent alteration of in vivo blood distribution of paclitaxel, was used to fit experimental data of the 3 h infusion (r2=0.733; p=0.00001). Simulations for 1 and 24 h infusions using predicted parameters and CrEL kinetic data revealed that both short and prolonged administration schedules induce a low relative net change in paclitaxel blood distribution. Our pharmacokinetic/pharmacodynamic model demonstrates that CrEL causes disproportional accumulation of paclitaxel in plasma in a 3 h schedule, but is unlikely to affect drug pharmacokinetics in this manner with alternative infusion durations.
Horowitz, A.J.; Elrick, K.A.; Smith, J.J.
2001-01-01
Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes increase in the Mississippi and Columbia Basins, whereas fluxes markedly decrease in the Colorado Basin. No consistent pattern in trace element fluxes was detected in the Rio Grande Basin.
Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Maninder; Qiang, You, E-mail: youqiang@uidaho.edu; Dai, Qilin
2013-11-11
Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr{sub 2}O{sub 3} and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (∼25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of σ-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs.
Adsorption and desorption of hexavalent chromium in an alluvial aquifer near Telluride, Colorado
Stollenwerk, K.G.; Grove, D.B.
1985-01-01
A laboratory investigation of reactions between hexavalent chromium [Cr(VI)] and alluvium was conducted to evaluate reactions of Cr(VI) contaminating an alluvial aquifer near Telluride, CO and to determine the mechanisms responsible for these reactions. Uncontaminated alluvium and groundwater (spiked with CrO42-) from the study site were used in batch and column experiments. Results of these experiments show that Cr(VI) was adsorbed by the alluvium. Distribution coefficients from batch experiments ranged from 52 L/kg at an equilibrium CrO42- concentration of 0.4 ??mol/L to 1.7 L/kg at an equilibrium concentration of 1400 ??mol/L. The zero point of charge for the alluvium was approximately 8.3, and the alluvium had a positive net charge at the groundwater pH of 6.8. Visual and chemical evidence indicated that Fe oxide and hydroxide coatings on the alluvial particles principally were responsible for the absorption of Cr(VI). During column experiments, Cr(VI) initially was desorbed easily from the alluvium by Cr-free groundwater; however, the rate of desorption decreased rapidly, and > 60 pore volumes of groundwater were required to decrease the effluent concentration of Cr(VI) to 3 ??mol/L [drinking water standard for Cr(VI) = 1 ??mol/L]. The quantity of Cr(VI) adsorbed varied with the type and concentration of other anions in solution.
Wu, Song-Lin; Chen, Bao-Dong; Sun, Yu-Qing; Ren, Bai-Hui; Zhang, Xin; Wang, You-Shan
2014-09-01
In a greenhouse pot experiment, dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon[Linn.] Pers.), inoculated with and without arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis, were grown in chromium (Cr)-amended soils (0 mg/kg, 5 mg/kg, 10 mg/kg, and 20 mg/kg Cr[VI]) to test whether arbuscular mycorrhizal (AM) symbiosis can improve Cr tolerance in different plant species. The experimental results indicated that the dry weights of both plant species were dramatically increased by AM symbiosis. Mycorrhizal colonization increased plant P concentrations and decreased Cr concentrations and Cr translocation from roots to shoots for dandelion; in contrast, mycorrhizal colonization decreased plant Cr concentrations without improvement of P nutrition in bermudagrass. Chromium speciation analysis revealed that AM symbiosis potentially altered Cr species and bioavailability in the rhizosphere. The study confirmed the protective effects of AMF on host plants under Cr contaminations. © 2014 SETAC.
DEVELOPMENT OF CRASSPHAGE-BASED QPCR ASSAYS ...
A newly discovered bacteriophage, “crAssphage”, is predicted to be both highlyabundant and predominantly human-associated, both ideal characteristics for a human-specific fecal indicator. A total of 384 end-point PCR primers were designed along the length of the crAssphage genome, eliminating regions suspected to be hypervariable or react with other animal sources. The primer pairs were rigorously tested in three rounds of screening for specificity, geographic variability, limit of detection, and environmental water performance. The two best performing assays, crAss056 and crAss064, were adapted to a qPCR platform and exhibited a specificity of 98.0% and 98.9%, respectively. The markers’ abundance was compared with two bacterial based assays and were found at concentrations at or above the bacterial based assays in wastewater influent and impacted environmental waters. This poster will present the methodology of the novel marker development and the potential uses for this technology in maintaining sustainable waterways in the future. To inform the public.
Saeed, Abdullah A; Sandhu, Mansur A; Khilji, Muhammad S; Yousaf, Muhammad S; Rehman, Habib U; Tanvir, Zafar I; Ahmad, Tanveer
2017-07-01
The study was conducted to ascertain the effects of dietary chromium chloride (CrCl 3 ·6H 2 O) supplementation on mineral interaction in blood serum, leg muscles and bones of broilers at 35 th day of age. For this purpose, ninety male broiler chicks were divided into three groups. One served as control (group I) while, the other two groups were supplemented with CrCl 3 (group II-12.5mg/Kg feed; group III-25mg/Kg feed) from 12 to 28days of age. In serum, Cr concentration remained non-significant however, Zn, and K concentrations decreased (P<0.05) with both levels of Cr-supplementation. Furthermore, in muscles Cr, Cu, Ca and Na levels remained non-significant but concentrations of Zn and K decreased (P<0.05) with feed Cr enrichment. Chromium had a substantial effect on femur and fibula Zn retention with 25mg/Kg feed supplementation while, Cr deposition decreased (P<0.05) in fibula. Femur Ca (P<0.002), Na (P<0.001) and K (P<0.05) retention was inversely proportional to both Cr concentrations in feed. In tibia, Cu and Na concentration decreased (P<0.002) with high dietary Cr supplementation. Fibular Ca and Na concentrations remained significantly (P<0.001) lower in Cr supplemented groups. Bone robusticity index was non-significant but ash to weight ratio of femur, tibia and fibula decreased (P<0.05) in group III. Chromium supplementation has a major effect on serum or muscle Zn and K deposition while bone mineral interaction shows a major thrust on Zn, Ca and Na levels. Copyright © 2017 Elsevier GmbH. All rights reserved.
Wang, Shumin; He, Qiang; Ai, Hainan; Wang, Zhentao; Zhang, Qianqian
2013-03-01
To investigate the distribution of pollutant concentrations and pollution loads in stormwater runoff in Chongqing, six typical land use types were selected and studied from August 2009 to September 2011. Statistical analysis on the distribution of pollutant concentrations in all water samples shows that pollutant concentrations fluctuate greatly in rainfall-runoff, and the concentrations of the same pollutant also vary greatly in different rainfall events. In addition, it indicates that the event mean concentrations (EMCs) of total suspended solids (TSS) and chemical oxygen demand (COD) from urban traffic roads (UTR) are significantly higher than those from residential roads (RR), commercial areas (CA), concrete roofs (CR), tile roofs (TRoof), and campus catchment areas (CCA); and the EMCs of total phosphorus (TP) and NH3-N from UTR and CA are 2.35-5 and 3 times of the class-II standard values specified in the Environmental Quality Standards for Surface Water (GB 3838-2002). The EMCs of Fe, Pb and Cd are also much higher than the class-III standard values. The analysis of pollution load producing coefficients (PLPC) reveals that the main pollution source of TSS, COD and TP is UTR. The analysis of correlations between rainfall factors and EMCs/PLPC indicates that rainfall duration is correlated with EMCs/PLPC of TSS for TRoof and TP for UTR, while rainfall intensity is correlated with EMCs/PLPC of TP for both CR and CCA. The results of this study provide a reference for better management of non-point source pollution in urban regions.
Fukuda, Tsubasa; Ishino, Yasuhiro; Ogawa, Akane; Tsutsumi, Kadzuyo; Morita, Hiroshi
2008-10-01
Aspergillus sp. N2 and Penicillium sp. N3 are chromate-resistant filamentous fungi that were isolated from Cr(VI) contaminated soil based on their ability to decrease hexavalent chromium levels in the growth medium. After 120 h of growth in a medium containing 50 ppm Cr(VI) at near neutral pH, Aspergillus sp. N2 reduced the Cr(VI) concentration by about 75%. Penicillium sp. N3 was able to reduce the Cr(VI) concentration by only 35%. However, Penicillium sp. N3 reduced the Cr(VI) concentration in the medium by 93% under acidic conditions. Interestingly, the presence of Cu(II) enhanced the Cr(VI) reducing ability of Aspergillus sp. N2 and Penicillium sp. N3 at near neutral pH. Aspergillus sp. N2 and Penicillium sp. N3 reduced the Cr(VI) concentration in the growth medium to a virtually undetectable level within 120 h. For both Aspergillus sp. N2 and Penicillium sp. N3, mycelial seed cultures were more efficient at Cr(VI) reduction than conidium seed cultures. The mechanisms of Cr(VI) reduction in Aspergillus sp. N2 and Penicillium sp. N3 were enzymatic reduction and sorption to mycelia. Enzymatic activity contributed significantly to Cr(VI) reduction. Aspergillus sp. N2 and Penicillium sp. N3 reduced the levels of Cr(VI) in polluted soil samples, suggesting that these strains might be useful for cleaning up chromium-contaminated sites.
Huang, Lihui; Yu, Chang Ho; Hopke, Philip K; Shin, Jin Young; Fan, Zhihua
2014-12-01
Measurement of carcinogenic Cr(VI) in ambient PM is challenging due to potential errors associated with conversion between Cr (VI) (a carcinogen) and Cr(III) (an essential nutrient). Cr(III) conversion is a particular concern due to its > 80% atomic abundance in total Cr. US. Environmental Protection Agency (EPA) method 6800 that uses water-soluble isotope spikes can be used to correct the interconversion. However, whether the enriched Cr(III) isotope spikes can adequately mimic the Cr(III) species originally in ambient PM is unknown. This study examined the water solubility of Cr(III) in ambient PM and discussed its influence on Cr(VI) measurement. Ambient PM10 samples were collected on Teflon filters at four sites in New Jersey that may have different Cr emission sources. The samples were ultrasonically extracted with 5 mL DI-H2O (pH 5.7) at room temperature for 40 min, and then analyzed by ion chromatography-inductively coupled plasma mass spectrometry (IC-ICPMS). Cr(III) was below detection limit (0.06 ng/m3) for all samples, suggesting water-soluble Cr(III) species, such as CrCl3, Cr(NO3)3, and amorphous Cr(OH)3, in the ambient PM were negligible. Therefore, the enriched 50Cr(III) isotope spike (in the form of Cr(NO3)3) could not mimic the original ambient Cr(III). Only the conversion of 53Cr(VI) (in the form of K2CrO4) was taken into account when correcting the interconversion. We then used NaHCO3-pretreated MCE filters (prespiked with enriched isotope species) to measure Cr(VI) in the ambient PM10. The samples were ultrasonically extracted at 60 C pH 9 solutions for 40 min followed by IC-ICPMS analysis. Due to the correction of Cr(VI) reduction, the Cr(VI) concentrations determined by EPA method 6800, 0.26 ± 0.16 (summer) and 0.16 ± 0.11(winter) ng/m3 (n = 64), were significantly greater than those by the external standard curve, 0.21 ± 0.17 (summer) and 0.10 ± 0.07 (winter) ng/m3 (n = 56) (p < 0.01, Student's t-test). Our study revealed that appropriate application of EPA method 6800 is important because it only applies to soluble fraction of Cr species in ambient PM. Implications: Accurate measurement of carcinogenic Cr(VI) in ambient PM is challenging due to conversion between Cr(VI) (a human carcinogen) and Cr(III) (a human essential nutrient). The conversion of CR(III) is of particular concern due to its dominant presence in total Cr (>80%). This study examined the water solubility of Cr(III) in ambient PM that was collected at four locations in New Jersey. Then we discussed the influence of Cr(III) solubility on the application of EPA method 6800, which utilizes enriched isotope spikes to correct the interconversion. Our results suggested that appropriate application of EPA method 6800 is important because it only applies to soluble fraction of Cr species.
Zhu, Peilei; Jiao, Shilin; Jiang, Pu; Zeng, Xin; Luo, Qifang; Wang, Lin
2015-03-01
To identify the hexavalent chromium reduction Cr4-1, and to study the better conditions of the bacterial growth and its Cr(VI) reduction. The physiological and biochemical methods and 16s rDNA sequencing were used for identification of bacteria Cr4-1. The influence of temperature, pH, initial Cr (VI) concentration and shaking speed on bacterial growth and Cr (VI) reduction were studied. Mass balance analysis was used to analyze the end products of the reduction reaction. A Cr(VI) reducing bacteria Cr4-1, screened from acclimated activated sludge, was identified as Bacillus cereus. The appropriate conditions of bacterial growth was 25 °C, pH 7 to 8, shaking speed 150 r/min, while the suitable conditions for Cr(VI) reduction was 35 °C, pH 8 to 9. When the initial Cr(VI) concentration increased from 20 mg/L to 60 mg/L, the reduction rate decreased gradually. Under the suitable reducing conditions, when the initial concentration of Cr (VI) was 30 mg/L, the reduction rate could up to 100% in 9 h. The end product was soluble trivalent chromium. Strain Cr4-1 had a good effect on Cr (VI) reduction and the final product was soluble trivalent chromium.
Sperling, M; Yin, X; Welz, B
1992-03-01
A rapid, sensitive and selective method for the differential determination of CrIII and CrVI in natural waters is described. Chromium(vi) can be determined directly by flow injection on-line sorbent extraction preconcentration coupled with electrothermal atomic absorption spectrometry using sodium diethyldithiocarbamate as the complexing agent and C18 bonded silica reversed-phase sorbent as the column material. Total Cr can be determined after oxidation of CrIII to CrVI by potassium peroxydisulfate. Chromium(III) can be calculated by difference. The optimum conditions for sorbent extraction of CrVI and oxidation of CrIII to CrVI are evaluated. A 12-fold enhancement in sensitivity compared with direct introduction of 40 microliters samples was achieved after preconcentration for 60 s, giving detection limits of 16 ng l-1 for CrVI and 18 ng l-1 for total Cr (based on 3 sigma). Results obtained for sea-water and river water reference materials were all within the certified range for total Cr with a precision of better than 10% relative standard deviation in the range 100-200 ng l-1. The selectivity of the determination of CrVI was evaluated by analysing spiked reference materials in the presence of CrIII, resulting in quantitative recovery of CrVI.
Influence of sleep restriction on weight loss outcomes associated with caloric restriction.
Wang, Xuewen; Sparks, Joshua R; Bowyer, Kimberly P; Youngstedt, Shawn D
2018-05-01
To examine the effects of moderate sleep restriction (SR) on body weight, body composition, and metabolic variables in individuals undergoing caloric restriction (CR). Overweight or obese adults were randomized to an 8 week caloric restriction (CR) regimen alone (n = 15) or combined with sleep restriction (CR + SR) (n = 21). All participants were instructed to restrict daily calorie intake to 95 per cent of their measured resting metabolic rate. Participants in the CR + SR group were also instructed to reduce time in bed on five nights and to sleep ad libitum on the other two nights each week. The CR + SR group reduced sleep by 57 ± 36 min per day during SR days and increased sleep by 59 ± 38 min per day during ad libitum sleep days, resulting in a sleep reduction of 169 ± 75 min per week. The CR and CR + SR groups lost similar amounts of weight, lean mass, and fat mass. However, the proportion of total mass lost as fat was significantly greater (p = 0.016) in the CR group. This proportion was greater than body fat percentage at baseline for the CR (p = 0.0035), but not the CR + SR group. Resting respiratory quotient was reduced (p = 0.033) only in CR, and fasting leptin concentration was reduced only in CR + SR (p = 0.029). Approximately 1 hr of SR on five nights a week led to less proportion of fat mass loss in individuals undergoing hypocaloric weight loss, despite similar weight loss. SR may adversely affect changes in body composition and "catch-up" sleep may not completely reverse it. ClinicalTrials.gov (NCT02413866).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Zidong Donna; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu
Previous studies showed glucose and insulin signaling can regulate bile acid (BA) metabolism during fasting or feeding. However, limited knowledge is available on the effect of calorie restriction (CR), a well-known anti-aging intervention, on BA homeostasis. To address this, the present study utilized a “dose–response” model of CR, where male C57BL/6 mice were fed 0, 15, 30, or 40% CR diets for one month, followed by BA profiling in various compartments of the enterohepatic circulation by UPLC-MS/MS technique. This study showed that 40% CR increased the BA pool size (162%) as well as total BAs in serum, gallbladder, and smallmore » intestinal contents. In addition, CR “dose-dependently” increased the concentrations of tauro-cholic acid (TCA) and many secondary BAs (produced by intestinal bacteria) in serum, such as tauro-deoxycholic acid (TDCA), DCA, lithocholic acid, ω-muricholic acid (ωMCA), and hyodeoxycholic acid. Notably, 40% CR increased TDCA by over 1000% (serum, liver, and gallbladder). Interestingly, 40% CR increased the proportion of 12α-hydroxylated BAs (CA and DCA), which correlated with improved glucose tolerance and lipid parameters. The CR-induced increase in BAs correlated with increased expression of BA-synthetic (Cyp7a1) and conjugating enzymes (BAL), and the ileal BA-binding protein (Ibabp). These results suggest that CR increases BAs in male mice possibly through orchestrated increases in BA synthesis and conjugation in liver as well as intracellular transport in ileum. - Highlights: • Dose response effects of short-term CR on BA homeostasis in male mice. • CR increased the BA pool size and many individual BAs. • CR altered BA composition (increased proportion of 12α-hydroxylated BAs). • Increased mRNAs of BA enzymes in liver (Cyp7a1 and BAL) and ileal BA binding protein.« less
Farid, Mujahid; Ali, Shafaqat; Rizwan, Muhammad; Ali, Qasim; Saeed, Rashid; Nasir, Tauqir; Abbasi, Ghulam Hasan; Rehmani, Muhammad Ishaq Asif; Ata-Ul-Karim, Syed Tahir; Bukhari, Syed Asad Hussain; Ahmad, Tanvir
2018-04-30
Soil contamination with heavy metals is threatening the food security around the globe. Chromium (Cr) contamination results in poor quality and reduction in yield of crops. The present research was performed to figure out the Cr toxicity in sunflower and the ameliorative role of 5-aminolevulinic acid (ALA) as a plant growth regulator. The sunflower (FH-614) was grown under increasing concentration of Cr (0, 5, 10 and 20mgkg -1 ) alone and/or in combination with 5-ALA (0, 10 and 20mgL -1 ). Results showed that Cr suppressed the overall growth, biomass, gas exchange attributes and chlorophyll content of sunflower plants. Moreover, lower levels of Cr (5 and 10mgkg -1 ) increased the production of reactive oxygen species (ROS) and electrolyte leakage (EL) along with the activities of antioxidant enzymes i.e., superoxide dismutase (SOD), guaiacole peroxidase (POD), ascorbate (APX), catalase (CAT). But at higher concentration of Cr (20mgkg -1 ), the activities of these enzymes presented a declining trend. However, the addition of 5-ALA significantly alleviated the Cr-induced toxicity in sunflower plant and enhanced the plant growth and biomass parameters along with increased chlorophyll content, gas exchange attributes, soluble proteins and soil plant analysis development (SPAD) values by scavenging the ROS and lowering down the EL. The 5-ALA also enhanced the activities of antioxidant enzymes at all levels of Cr. The increase in Cr concentration in all plant parts such as leaf, root and stem was directly proportional to the Cr concentration in soil. The application of 5-ALA further enhanced the uptake of Cr and its concentration in the plants. To understand this variation in response of plants to 5-ALA, detailed studies are required on plant biochemistry and genetic modifications. Copyright © 2018 Elsevier Inc. All rights reserved.
Experimental Monitoring of Cr(VI) Bio-reduction Using Electrochemical Geophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birsen Canan; Gary R. Olhoeft; William A. Smith
2007-09-01
Many Department of Energy (DOE) sites are contaminated with highly carcinogenic hexavalent chromium (Cr(VI)). In this research, we explore the feasibility of applying complex resistivity to the detection and monitoring of microbially-induced reduction of hexavalent chromium (Cr(VI)) to a less toxic form (Cr(III)). We hope to measure the change in ionic concentration that occurs during this reduction reaction. This form of reduction promises to be an attractive alternative to more expensive remedial treatment methods. The specific goal of this research is to define the minimum and maximum concentration of the chemical and biological compounds in contaminated samples for which themore » Cr(VI) - Cr(III) reduction processes could be detected via complex resistivity. There are three sets of experiments, each comprised of three sample columns. The first experiment compares three concentrations of Cr(VI) at the same bacterial cell concentration. The second experiment establishes background samples with, and without, Cr(VI) and bacterial cells. The third experiment examines the influence of three different bacterial cell counts on the same concentration of Cr(VI). A polarization relaxation mechanism was observed between 10 and 50 Hz. The polarization mechanism, unfortunately, was not unique to bio-chemically active samples. Spectral analysis of complex resistivity data, however, showed that the frequency where the phase minimum occurred was not constant for bio-chemically active samples throughout the experiment. A significant shifts in phase minima occurred between 10 to 20 Hz from the initiation to completion of Cr(VI) reduction. This phenomena was quantified using the Cole-Cole model and the Marquardt-Levenberg nonlinear least square minimization method. The data suggests that the relaxation time and the time constant of this relaxation are the Cole-Cole parameters most sensitive to changes in biologically-induced reduction of Cr(VI).« less
Yuan, Yongqiang; Yu, Shen; Bañuelos, G S; He, Yunfeng
2016-11-01
Tanning sludge enriched with high concentrations of Cr and other metals has adverse effects on the environment. Plants growing in the metalliferous soils may have the ability to cope with high metal concentrations. This study focuses on potentials of using native plants for bioindication and/or phytoremediation of Cr-contaminated sites. In the study, we characterized plants and soils from six tanning sludge storage sites. Soil in these sites exhibited toxic levels of Cr (averaged 16,492 mg kg -1 ) and other metals (e.g., 48.3 mg Cu kg -1 , 2370 mg Zn kg -1 , 44.9 mg Pb kg -1 , and 0.59 mg Cd kg -1 ). Different metal tolerance and accumulation patterns were observed among the sampled plant species. Phragmites australis, Zephyranthes candida, Cynodon dactylon, and Alternanthera philoxeroides accumulated moderate-high concentrations of Cr and other metals, which could make them good bioindicators of heavy metal pollution. High Cr and other metal concentrations (e.g., Cd and Pb) were found in Chenopodium rubrum (372 mg Cr kg -1 ), Aster subulatus (310 mg Cr kg -1 ), and Brassica chinensis (300 mg Cr kg -1 ), being considered as metal accumulators. In addition, Nerium indicum and Z. candida were able to tolerate high concentrations of Cr and other metals, and they may be used as preferable pioneer species to grow or use for restoration in Cr-contaminated sites. This study can be useful for establishing guidelines to select the most suitable plant species to revegetate and remediate metals in tanning sludge-contaminated fields.
Platelet aggregation caused by a partially purified jellyfish toxin from Carybdea rastonii.
Azuma, H; Sekizaki, S; Satoh, A; Nakajima, T; Ishikawa, M
1986-01-01
A partially purified toxin (pCrTX) was obtained from the tentacles of the jellyfish, Carybdea rastonii. When pCrTX (3 X 10(-8) - 3 X 10(-7) g/ml) was added to citrated platelet-rich plasma, aggregation was produced in a concentration-dependent manner. Scanning electron microscopic examination revealed that both pCrTX and collagen produced aggregates of platelets possessing many pseudopods. The concentration which produced 50% aggregation for pCrTX was 1.8 X 10(-7) g/ml, as compared to 2.3 X 10(-6) g/ml for collagen. The pCrTX-induced aggregation was only slightly inhibited by indomethacin and quinacrine in concentrations sufficient to inhibit arachidonic acid- and collagen-induced aggregation. pCrTX was less active in washed platelets suspended in Ca2+ free medium, whereas the pCrTX-induced aggregation was significantly augmented in the presence of Ca2+. The augmentation of aggregation by Ca2+ was only slightly attenuated by pretreatment with 100 microM verapamil. pCrTX significantly increased the concentration of cytoplasmic free Ca2+ ([Ca2+]i) and depolarized the platelet membrane in concentrations that produced aggregation. The increase in [Ca2+]i caused by pCrTX was little affected by verapamil. The depolarization by pCrTX was unchanged in the presence or absence of Ca2+, or by sodium or potassium transport inhibitors. The movement of 22Na+ into platelets was significantly increased by pCrTX. This increase in the movement of 22N+ into platelets was unaffected by tetrodotoxin. On the other hand, pCrTX-induced aggregation, depolarization and the increase in [Ca2+]i were all significantly attenuated in low Na+ medium. These results suggest that pCrTX causes a massive depolarization by increasing cation permeability indiscriminately and this generalized depolarization permits an inward movement of calcium down an electrochemical gradient which, in turn triggers platelet aggregation.
Miyake, Yuichi; Tokumura, Masahiro; Iwazaki, Yuta; Wang, Qi; Amagai, Takashi; Horii, Yuichi; Otsuka, Hideyuki; Tanikawa, Noboru; Kobayashi, Takeshi; Oguchi, Masahiro
2017-06-16
An ion chromatography with post-column derivatization with 1,5-diphenylcarbazide (IC-DPC) analytical method was modified to enable measurement of trace-level hexavalent chromium (Cr(VI)) in air. One of the difficulties in determining trace levels of Cr(VI) in air with conventional IC-DPC methods is co-elution of the solvent and ion peaks due to high concentrations of ionic compounds in the extract. However, by using gradient elution rather than isocratic elution we were able to fully resolve the Cr(VI) ion peak from the solvent peak without the need for diluting the extract, which would have reduced the minimum quantifiable level of the method. With this method, we were able to detect Cr(VI) in air at concentrations of 5.3ng/m 3 (assuming a sampling volume of 1m 3 and a final solution volume of 10mL). Recovery tests at three different concentrations of Cr(VI) (50, 250, 1000ng) were performed with or without fly ash; recovery rates at all the concentrations of Cr(VI), with or without fly ash, ranged from 68% to 110% (mean±relative standard deviation, 96%±11%), and there were no differences in recovery rates with respect to the presence or absence of fly ash. Finally, we used the developed method to determine the concentration of Cr(VI) in stack gases collected from eight industrial waste incinerators located in Japan. The concentration of Cr(VI) in the stack gases ranged from below the method quantification limit to 3100ng/m 3 . The highest concentrations of Cr(VI) detected in the stack gases were two to three orders of magnitude higher than that in ambient air in Japan. Copyright © 2017 Elsevier B.V. All rights reserved.
Biswas, Avishek; Divya, Sharma; Mandal, A B; Majumdar, S; Singh, Ram
2014-12-30
This experiment investigated the effect of dietary chromium (Cr as picolinate) on physical and biochemical characteristics of semen and carcass traits of adult male turkey. Seventy-two (72) male turkeys (16 weeks old) were randomly distributed into four dietary treatment groups (4×3×6) for a period of 24 weeks. Three experimental diets were supplemented with 250, 500 and 750μg Cr/kg (T2, T3 and T4 respectively) in basal diet (T1 considered as control). Semen physical characteristics viz. sperm concentration, progressive motility, live and dead count of spermatozoa and fertility differed significantly (P<0.05). Sperm concentration, progressive motility and fertility were higher and dead count was lower in T4 (750μg) group than control (T1) or other dietary treatments (T2 or T3) group. Semen biochemical parameters like creatinine, acid phosphatase (ACP) and alkaline phosphatase (ALP) concentration did not differ significantly among the dietary treatment groups, whereas, total protein, glucose, malondialdehyde (MAD) and cholesterol concentration differed significantly (P<0.05) amongst the treatment groups. Protein and MAD were higher while glucose and cholesterol concentrations were lower in T3 and T4 group than control or T1 group. The shrinkage loss, eviscerated yield, relative weight (as percent of body weight) of breast, thigh and liver improved on supplementation of Cr leading to significantly higher in T4 group in comparison to control. From this study, it could be concluded that supplementation of chromium as chromium picolinate, at 750μg/kg level in diet was beneficial for improving physical characteristics of semen, carcass yield and breast yield of adult male turkeys. However, Cr levels of 500 or 750μg/kg in diet were beneficial for semen biochemical parameters of adult male turkeys. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fitamo, Daniel; Itana, Fisseha; Olsson, Mats
2007-02-01
The Akaki River, laden with untreated wastes from domestic, industrial, and commercial sources, serves as a source of water for irrigating vegetable farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals and to predict their potential mobility and bioavailability. Zn and V had the highest, whereas Hg the lowest, concentrations observed in the soils. The average contents of As, Co, Cr, Cu, Ni, Zn, V, and Hg of both soils; and Pb and Se from Fluvisol surpassed the mean + 2 SD of the corresponding levels reported for their uncontaminated counterparts. Apparently, irrigation with waste water for the last few decades has contributed to the observed higher concentrations of the above elements in the study soils (Vertisol and Fluvisol) when compared to uncontaminated Vertisol and Fluvisol. On the other hand, Vertisol accommodated comparatively higher average levels of Cr, Cu, Ni, Zn, etc V, and Cd, whereas high contents of Pb and Se were observed in Fluvisol. Alternatively, comparable levels of Co and Hg were found in either soil. Except for Ni, Cr, and Cd in contaminated Vertisol, heavy metals in the soils were not significantly affected by the depth (0-20 and 30-50 cm). When the same element from the two soils was compared, the levels of Cr, Cu, Ni, Pb, Se, Zn, V, Cd at 0-20 cm; and Cr, Ni, Cu, Cd, and Zn at 30-50 cm were significantly different. Organic carbon (in both soils), CEC (Fluvisol), and clay (Vertisol) exhibited significant positive correspondences with the total heavy metal levels. Conversely, Se and Hg contents revealed perceptible associations with carbonate and pH. The exchangeable fraction was dominated by Hg and Cd, whereas the carbonate fraction was abounded with Cd, Pb, and Co. conversely, V and Pb displayed strong affinity to reducible fraction, where as Cr, Cu, Zn, and Ni dominated the oxidizable fraction. Cr, Hg, Se, and Zn (in both soils) showed preference to the residual fraction. Generally, a considerable proportion of the total levels of many of the heavy metals resided in non residual fractions. The enhanced lability is generally expected to follow the order: Cd > Co > Pb > Cu > Ni > Se > V and Pb > Cd > Co > Cu > Ni > Zn in Vertisol and Fluvisol, respectively. For the similar wastewater application, the soil variables influence the status and the distribution of the associated heavy metals among the different soil fractions in the study soils. Among heavy metals that presented relatively elevated levels and with potential mobility, Co, Cu, Ni (either soil), V (Vertisol), Pb, and Zn (Fluvisol) could pose health threat through their introduction into the food chain in the wastewater irrigated soils.
Turner, Andrew
2017-05-01
Filamentous plastic litter collected from two beaches in south west England has been characterized by FTIR and XRF. The majority of samples were constructed of polyethylene and consisted of twisted or braided strands of a variety of colours that appeared to be derived from commercial fishing nets. A number of different elements were detected among the samples but, from an environmental perspective, the regular occurrence of Cr and Pb and the occasional or isolated occurrence of Br, Cd and Se were of greatest concern. The highest total concentrations of Br (2420 μg g -1 ), Cd (1460 μg g -1 ), Cr (909 μg g -1 ), Pb (3770 μg g -1 ) and Se (240 μg g -1 ) were always encountered among orange samples and are attributed to the presence of lead chromates and cadmium sulphoselenide as colourants and to brominated compounds as flame retardants. Element bioaccessibility was evaluated by ICP-MS following an acidic extraction test that mimics the digestive tract of seabirds, with maximum values after a seven-day incubation period and relative to respective total concentrations of 0.2-0.4% for Cd, Cr and Pb and about 7% for Br. In addition to the well-documented impacts on wildlife through entrapment, filamentous plastic waste may act as a significant source of hazardous chemicals into the marine foodchain through ingestion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Patra, Deepak Kumar; Pradhan, Chinmay; Patra, Hemanta Kumar
2018-02-01
Chromium (Cr) contamination in soil is a growing concern in sustainable agricultural production and food safety. Remediation of Cr from contaminated soils is a challenging task which may not only help in sustaining agriculture but also in minimizing adverse environmental impacts. Pot culture experiments were performed with the application of varied concentration of Cr +6 to assess the Chromium accumulation potential of Lemongrass and to study the impact of toxic concentration of Cr +6 on morphological, physiological and biochemical parameters of the plant. The results showed an increasing accumulation trend of Chromium with increasing Chromium concentrations in both root and shoot of 60 days old Lemongrass plants, while the protein and chlorophyll contents decreased. Similarly, accumulation of Cr increased the levels of proline and antioxidant enzymes indicating the enhanced damage control activity. The potentiality of the plant with the capacity to accumulate and stabilize Cr compound in Cr contaminated soil by phytoremediation process has been explored in the present investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analysis of inflammatory markers and metals in nasal lavage fluid of welders.
Raulf, Monika; Weiss, Tobias; Lotz, Anne; Lehnert, Martin; Hoffmeyer, Frank; Liebers, Verena; Van Gelder, Rainer; Udo Käfferlein, Heiko; Hartwig, Andrea; Pesch, Beate; Brüning, Thomas
2016-01-01
Welding fumes may produce adverse health effects in the respiratory tract. To assess the relationship between exposure to welding fumes and inflammation in the upper airways, 190 male welders were examined from the WELDOX study (median age 40 yr, 54.7% smokers, and 32.9% atopics). Inhalable welding fumes were collected in the breathing zone of welders during a single shift. Chromium (Cr), nickel (Ni), manganese (Mn), and iron (Fe) were measured in the welding-fume samples and in postshift nasal lavage fluid (NALF). In addition, the numbers of particles and inflammatory biomarkers, including total and differential cell counts, interleukin (IL)-8, leukotriene (LT) B 4 , 8-isoprostane (8-iso-PGF 2α ), tissue inhibitor of metalloproteinase-1 (TIMP-1), and immunoreactive matrix metalloproteinase (MMP)-9, were determined. Metal concentrations in NALF correlated with airborne concentrations. No significant association was found between airborne metal concentrations and biomarkers of inflammation in NALF, whereas increasing metal concentrations in NALF resulted in increased concentrations of total protein, IL-8, MMP-9, and TIMP-1. LTB 4 and 8-iso PGF 2α were elevated at higher concentrations of Cr or Ni in NALF. The same was true for Fe, although the effects were less pronounced and of borderline significance. In conclusion, our results showed a significant association between the concentrations of metals and soluble inflammatory markers in the NALF of welders. The noninvasive collection of NALF is applicable in field studies, where it may serve as a suitable matrix to simultaneously assess biomarkers of exposure and effect in the upper respiratory tract in workers who are occupationally exposed to airborne hazardous substances.
Sivakumar, Kirthiram K; Stanley, Jone A; Arosh, Joe A; Pepling, Melissa E; Burghardt, Robert C; Banu, Sakhila K
2014-04-01
Hexavalent chromium (CrVI), one of the more toxic heavy metals, is widely used in more than 50 industries such as chrome plating, welding, wood processing and tanneries. As one of the world's leading producers of chromium compounds, the U.S. is facing growing challenges in protecting human health against multiple adverse effects of CrVI. CrVI is rapidly converted to CrIII intracellularly, and can induce apoptosis through different mechanisms. Our previous studies demonstrated postnatal exposure to CrVI results in a delay or arrest in follicle development and puberty. Pregnant rats were treated with 25 ppm potassium dichromate (CrVI) from gestational day (GD) 9.5 to 14.5 through drinking water, placentae were removed on GD 20, and total Cr was estimated in the placentae; ovaries were removed from the F1 offspring on postnatal day (PND)-1 and various analyses were performed. Our results show that gestational exposure to CrVI resulted in (i) increased Cr concentration in the placenta, (ii) increased germ cell apoptosis by up-regulating p53/p27-Bax-caspase-3 proteins and by increasing p53-SOD-2 co-localization; (iii) accelerated germ cell cyst (GCC) breakdown; (iv) advanced primordial follicle assembly and primary follicle transition and (v) down regulation of p-AKT, p-ERK and XIAP. As a result of the above events, CrVI induced early reproductive senescence and decrease in litter size in F1 female progeny. Published by Elsevier Inc.
Sivakumar, Kirthiram K.; Stanley, Jone A.; Arosh, Joe A.; Pepling, Melissa E.; Burghardt, Robert C.; Banu, Sakhila K.
2014-01-01
Hexavalent chromium (CrVI), one of the more toxic heavy metals, is widely used in more than 50 industries such as chrome plating, welding, wood processing and tanneries. As one of the world’s leading producers of chromium compounds, the U.S. is facing growing challenges in protecting human health against multiple adverse effects of CrVI. CrVI is rapidly converted to CrIII intracellularly, and can induce apoptosis through different mechanisms. Our previous studies demonstrated postnatal exposure to CrVI results in a delay or arrest in follicle development and puberty. Pregnant rats were treated with 25 ppm potassium dichromate (CrVI) from gestational day (GD) 9.5 to 14.5 through drinking water, placentae were removed on GD 20, and total Cr was estimated in the placentae; ovaries were removed from the F1 offspring on postnatal day (PND)-1 and various analyses were performed. Our results show that gestational exposure to CrVI resulted in (i) increased Cr concentration in the placenta, (ii) increased germ cell apoptosis by up-regulating p53/p27–Bax–caspase-3 proteins and by increasing p53–SOD-2 co-localization; (iii) accelerated germ cell cyst (GCC) breakdown; (iv) advanced primordial follicle assembly and primary follicle transition and (v) down regulation of p-AKT, p-ERK and XIAP. As a result of the above events, CrVI induced early reproductive senescence and decrease in litter size in F1 female progeny. PMID:24530425
Salles, Fernanda Junqueira; Sato, Ana Paula Sayuri; Luz, Maciel Santos; Fávaro, Déborah Inês Teixeira; Ferreira, Francisco Jorge; da Silva Paganini, Wanderley; Olympio, Kelly Polido Kaneshiro
2018-04-01
The outsourcing informal home practices adopted in jewelry and fashion jewelry chain can cause toxic substance elimination in the effluents and raise a concern for its environmental impact. This study evaluates if this informal work alters the concentration of potentially toxic elements (PTEs: As, Cd, Cr total and Cr-VI, Cu, Hg, Ni, Pb, Sn, and Zn) in the sewage network. The sanitary sewage samples (n = 540) were collected in 15 manholes during two campaigns in three different areas of Limeira-SP, Brazil (industrial area, with informal work and without known industrial/informal activity). The sewage sludge (n = 12), raw (n = 12), and treated sewage (n = 12) were collected in two wastewater treatment plants (WWT: AS and TATU) operating with different treatment process. The PTE determination was performed by ICP-OES, direct mercury analysis, and UV-Vis spectroscopy. Cr-VI, Cu, Ni, and Zn were the only elements above the quantification limit. Four samples exceeded Cu or Zn values permitted to be discharged into sewage system; however, the concentration average was lower than that established by Brazilian legislation. A difference was found between values above and below the 75th percentile for campaign and total organic carbon values (p < 0.015). The AS-treated sewage presented low concentrations of Cu (p < 0.05), Zn (p = 0.02), and Ni (p = 0.01) compared to treated sewage from TATU. In the sludge samples, the Cu means exceeded the limits of the Brazilian legislation (1500 mg kg -1 ) and the Zn results were very close to the limits (2800 mg kg -1 ). The heterogeneity of the results can indicate the sporadic nature of the PTE's sanitary disposal. PTEs used in jewelry and fashion jewelry chain may precipitate on the sludge, where presented high concentrations of Cu and Zn which require controlled destination.
UdDin, Islam; Bano, Asghari; Masood, Sajid
2015-03-01
Chromium (Cr), being a highly toxic metal, adversely affects the mineral uptake and metabolic processes in plants when present in excess. The current study was aimed at investigating the Cr accumulation in various plant tissues and its relation to the antioxidation activity and root exudation. Plants were grown in soil spiked with different concentrations of Cr for three weeks in pots and analysed for different growth, antioxidants and ion attributes. Furthermore, plants treated with different concentrations of Cr in pots were shifted to rhizobox-like system for 48h and organic acids were monitored in the mucilage dissolved from the plant root surface, mirroring rhizospheric solution. The results revealed that the Cr application at 1mM increased the shoot fresh and dry weight and root dry weight of Solanum nigrum, whereas the opposite was observed for Parthenium hysterophorus when compared with lower levels of Cr (0.5mM) or control treatment. In both plant species, Cr and Cl concentrations were increased while Ca, Mg and K concentrations in root, shoot and root exudates were decreased with increasing levels of Cr. Higher levels of Cr treatments enhanced the activities of SOD, POD and proline content in leaves of S. nigrum, whereas lower levels of Cr treatment were found to have stimulatory effects in P. hysterophorus. P. hysterophorus exhibited highest exudation of organic acid contents. With increasing levels of Cr treatments, citric acid concentration in root exudates increased by 35% and 44% in S. nigrum, whereas 20% and 76% in P. hysterophorus. Cr toxicity was responsible for the shoot growth reduction of S. nigrum and P. hysterophorus, however, shoot growth response was different at different levels of applied Cr. Consequently, Cr stress negatively altered the plant physiology and biochemistry. However, the enhanced antioxidant production, Cl uptake and root exudation are the physiological and biochemical indicators for the plant adaptations in biotic systems polluted with Cr. Copyright © 2014 Elsevier Inc. All rights reserved.
Removal of chromium from synthetic plating waste by zero-valent iron and sulfate-reducing bacteria.
Guha, Saumyen; Bhargava, Puja
2005-01-01
Experiments were conducted to evaluate the potential of zero-valent iron and sulfate-reducing bacteria (SRB) for reduction and removal of chromium from synthetic electroplating waste. The zero-valent iron shows promising results as a reductant of hexavalent chromium (Cr+6) to trivalent chromium (Cr+3), capable of 100% reduction. The required iron concentration was a function of chromium concentration in the waste stream. Removal of Cr+3 by adsorption or precipitation on iron leads to complete removal of chromium from the waste and was a slower process than the reduction of Cr+6. Presence SRB in a completely mixed batch reactor inhibited the reduction of Cr+6. In a fixed-bed column reactor, SRB enhanced chromium removal and showed promising results for the treatment of wastes with low chromium concentrations. It is proposed that, for waste with high chromium concentration, zero-valent iron is an efficient reductant and can be used for reduction of Cr+6. For low chromium concentrations, a SRB augmented zero-valent iron and sand column is capable of removing chromium completely.
Effects of chromium picolinate on the viability of chick embryo fibroblast.
Bai, Y; Zhao, X; Qi, C; Wang, L; Cheng, Z; Liu, M; Liu, J; Yang, D; Wang, S; Chai, T
2014-04-01
Chromium picolinate (CrPic), which is used as a nutritional supplement and to treat type 2 diabetes, has gained much attention because of its cytotoxicity. This study evaluated the effects of CrPic on the viability of the chick embryo fibroblast (CEF) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, morphological detection, and flow cytometry. The results show that lower concentrations of CrPic (8 and 16 μM) did not damage CEF viability (p > 0.05). However, higher CrPic concentrations (400 and 600 μM) indicated a highly significant effect on the production of intracellular reactive oxygen species, alteration of mitochondrial membrane potential, intracellular calcium ion concentration, and the apoptosis rate (p < 0.01), contrary to lower CrPic concentrations (8 and 16 μM) and control group. Moreover, apoptotic morphological changes induced by these processes in CEF were confirmed using Hoechst 33258 staining. Cell death induced by higher concentrations of CrPic was caused by an apoptotic and a necrotic mechanism, whereas the main mechanism of oxidative stress-induced mitochondrial dysfunction was apoptotic death.
Li, Shi-Guo; Hou, Jing; Liu, Xin-Hui; Cui, Bao-Shan; Bai, Jun-Hong
2016-07-01
The carcinogenic, teratogenic, and mutagenic effects of hexavalent chromium (Cr[VI]) on living organisms through the food chain raise the immediate need to assess the potential toxicological impacts of Cr(VI) on human health. Therefore, the concentration-dependent responses of 12 Cr(VI)-responsive genes selected from a high-throughput Lycopersicon esculentum complementary DNA microarray were examined at different Cr concentrations. The results indicated that most of the genes were differentially expressed from 0.1 mg Cr/kg soil, whereas the lowest-observable-adverse-effect concentrations of Cr(VI) were 1.6 mg Cr/kg soil, 6.4 mg Cr/kg soil, 3.2 mg Cr/kg soil, and 0.4 mg Cr/kg soil for seed germination, root elongation, root biomass, and root morphology, respectively, implying that the transcriptional method was more sensitive than the traditional method in detecting Cr(VI) toxicity. Dose-dependent responses were observed for the relative expression of expansin (p = 0.778), probable chalcone-flavonone isomerase 3 (p = -0.496), and 12S seed storage protein CRD (p = -0.614); therefore, the authors propose the 3 genes as putative biomarkers in Cr(VI)-contaminated soil. Environ Toxicol Chem 2016;35:1751-1758. © 2015 SETAC. © 2015 SETAC.
Kim, Hyuck Soo; Kim, Kwon-Rae; Kim, Won-Il; Owens, Gary; Kim, Kye-Hoon
2017-02-01
The urban agricultural (UA) environment near active roadways can be degraded by traffic-related particles (i.e., exhaust gases and road dust), which may contain heavy metals. The current study investigated changes in heavy-metal [cadmium (Cd), copper (Cu), chromium (Cr) nickel (Ni), lead (Pb) and zinc (Zn)] concentrations in soils located near highly trafficked roads in Korea and the subsequent uptake of these metals by Chinese cabbage. Heavy-metal plant concentrations were determined in both washed and unwashed plant leaves to determine whether foliar deposition played any role in plant metal uptake. Soil concentrations of Cd, Cu, Pb, and Zn were all lower than the Korean standard soil limits and showed no significant influence from road traffic. In contrast, both Ni and Cr concentrations in soils collected within 10 m of the road were 4 and 5 times greater, respectively, than those in soils collected 70 m from the road. Heavy-metal concentrations in unwashed Chinese cabbage leaf collected at 5 m from the road were consistently greater than those of washed leaf samples, thus indicating the deposition of traffic-related particles on the plant surface. With the exception of Cu, all heavy-metal concentration in washed plant samples collected at 5 m also showed greater accumulation compared with samples collected further away. This was mainly attributed to increased total soil heavy-metal concentrations and increased metal phytoavailability induced by decreases in soil pH near the road. However, overall heavy-metal soil concentrations were well lower than the allowable concentrations, and the levels observed in plants collected in this study were considered not to currently pose a significant risk to human health. However, some traffic-related heavy metals, in particular Cr and Ni, were being accumulated in the roadside UA environment, which may warrant some caution regarding the environment and/or health issues in the future.
Investigation of Some Metals in Leaves and Leaf Extracts of Lippia javanica: Its Daily Intake
Florence, Kunsamala
2017-01-01
Consumption of plant extracts can be a source of essential elements or a route of human exposure to toxicants. Metal concentrations in leaves, leaf brew, and infusion of L. javanica collected from five sites were determined by atomic absorption spectrometry after acid and aqueous extraction. Estimated daily intakes of metals in extracts were compared with recommended dietary allowances. Total metal concentrations in leaves varied with sampling sites (p < 0.05): Mn > Fe > Cu > Cr > Pb for sites SS2–SS5. The highest metal concentrations in leaves were recorded for SS3 (Cu: 15.32 ± 4.53 and Mn: 734.99 ± 105.49), SS5 (Fe: 210.27 ± 17.17), SS2 (Pb: 3.11 ± 0.21), and SS4 (Cr: 4.40 ± 0.75 mg/kg). Leaf infusion appeared to release higher Cu and Mn concentrations in leaves across sites (Cu: 21.65; Mn: 28.01%) than leaf brew (Cu: 11.95; Mn: 19.74%). Lead was not detected in leaf extracts. Estimated dietary intakes of Cr, Cu, Fe, and Mn were below recommended dietary allowances. A 250 ml cup of leaf infusion contributed 0.30–1.18% Cu and 4.46–13.83% Mn to the recommended dietary allowances of these elements per day. Lead did not pose any potential hazard when consumed in tea beverage made from brew and infusion of leaves of L. javanica. PMID:28781598
Larsen, K K; Wielandt, D; Schiller, M; Bizzarro, M
2016-04-22
Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of these species can result in incomplete Cr recovery during chromatographic purification. Because of large mass-dependent inter-species isotope fractionation, incomplete recovery can affect the accuracy of high-precision Cr isotope analysis. Here, we demonstrate widely differing cation distribution coefficients of Cr(III)-species (Cr(3+), CrCl(2+) and CrCl2(+)) with equilibrium mass-dependent isotope fractionation spanning a range of ∼1‰/amu and consistent with theory. The heaviest isotopes partition into Cr(3+), intermediates in CrCl(2+) and the lightest in CrCl2(+)/CrCl3°. Thus, for a typical reported loss of ∼25% Cr (in the form of Cr(3+)) through chromatographic purification, this translates into 185 ppm/amu offset in the stable Cr isotope ratio of the residual sample. Depending on the validity of the mass-bias correction during isotope analysis, this further results in artificial mass-independent effects in the mass-bias corrected (53)Cr/(52)Cr (μ(53)Cr* of 5.2 ppm) and (54)Cr/(52)Cr (μ(54)Cr* of 13.5 ppm) components used to infer chronometric and nucleosynthetic information in meteorites. To mitigate these fractionation effects, we developed strategic chemical sample pre-treatment procedures that ensure high and reproducible Cr recovery. This is achieved either through 1) effective promotion of Cr(3+) by >5 days exposure to HNO3H2O2 solutions at room temperature, resulting in >∼98% Cr recovery for most types of sample matrices tested using a cationic chromatographic retention strategy, or 2) formation of Cr(III)-Cl complexes through exposure to concentrated HCl at high temperature (>120 °C) for several hours, resulting in >97.5% Cr recovery using a chromatographic elution strategy that takes advantage of the slow reaction kinetics of de-chlorination of Cr in dilute HCl at room temperature. These procedures significantly improve cation chromatographic purification of Cr over previous methods and allow for high-purity Cr isotope analysis with a total recovery of >95%. Copyright © 2016 Elsevier B.V. All rights reserved.
Larsen, K.K.; Wielandt, D.; Schiller, M.; Bizzarro, M.
2016-01-01
Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of these species can result in incomplete Cr recovery during chromatographic purification. Because of large mass-dependent inter-species isotope fractionation, incomplete recovery can affect the accuracy of high-precision Cr isotope analysis. Here, we demonstrate widely differing cation distribution coefficients of Cr(III)-species (Cr3+, CrCl2+ and CrCl2+) with equilibrium mass-dependent isotope fractionation spanning a range of ~1‰/amu and consistent with theory. The heaviest isotopes partition into Cr3+, intermediates in CrCl2+ and the lightest in CrCl2+/CrCl3°. Thus, for a typical reported loss of ~25% Cr (in the form of Cr3+) through chromatographic purification, this translates into 185 ppm/amu offset in the stable Cr isotope ratio of the residual sample. Depending on the validity of the mass-bias correction during isotope analysis, this further results in artificial mass-independent effects in the mass-bias corrected 53Cr/52Cr (μ53 Cr* of 5.2 ppm) and 54Cr/52Cr (μ54Cr* of 13.5 ppm) components used to infer chronometric and nucleosynthetic information in meteorites. To mitigate these fractionation effects, we developed strategic chemical sample pre-treatment procedures that ensure high and reproducible Cr recovery. This is achieved either through 1) effective promotion of Cr3+ by >5 days exposure to HNO3 —H2O2 solutions at room temperature, resulting in >~98% Cr recovery for most types of sample matrices tested using a cationic chromatographic retention strategy, or 2) formation of Cr(III)-Cl complexes through exposure to concentrated HCl at high temperature (>120 °C) for several hours, resulting in >97.5% Cr recovery using a chromatographic elution strategy that takes advantage of the slow reaction kinetics of de-chlorination of Cr in dilute HCl at room temperature. These procedures significantly improve cation chromatographic purification of Cr over previous methods and allow for high-purity Cr isotope analysis with a total recovery of >95%. PMID:27036208
Accumulation rates of airborne heavy metals in wetlands
Souch, C.J.; Filippelli, G.M.; Dollar, N.; Perkins, S.; Mastalerz, Maria
2002-01-01
Accumulation rates of heavy metals (Cd, Cr, Cu, Mn, Pb, and Zn) retained in wetland sediments in northwest Indiana-downwind of the Chicago-Gary-Hammond industrial area-are quantified to assess anthropogenic influences on atmospheric fluxes. Metal concentrations for 22 sediment cores are determined by ICP-AES after ashing and strong acid extraction. Relations between organic content and metal concentrations at depth are used to separate natural and anthropogenic sources. Accumulation rates over the lifetime of the wetlands (???4500 years) have averaged 0.2 (Cd), 1.4 (Cu), 1.7 (Cr), 13.4 (Mn), 4.8 (Pb), and 18.7 (Zn) mg m-2 y-1. Rates for the last 100 years have increased on average by factors of 6 (Cd), 8 (Cu), 10 (Mn), 15 (Pb), and 30 (Zn), remaining effectively constant for Cr. Where the wetlands have been drained, metals have been lost from the sediments, owing to changes in organic content and local hydrochemistry (exposure to acidic rainfall). Sediment-based accumulation rates at the undrained sites are higher, though generally consistent, with measured and modeled atmospheric fluxes documented by short-term studies conducted over the last three decades. The fraction of the total metals in the wetlands estimated to be of anthropogenic origin ranges from approximately 3% for Cr, up to approximately 35% for Pb, and 70% for Zn. This historic legacy of contamination must be considered in land management decisions, particularly when wetlands are drained.
Relationship between timed and spot urine collections for measuring phosphate excretion.
Tan, Sven-Jean; Smith, Edward R; Cai, Michael M X; Holt, Stephen G; Hewitson, Tim D; Toussaint, Nigel D
2016-01-01
Twenty-four hour urinary phosphate excretion (UPE) reflects intestinal phosphate absorption in steady state and may be more informative than serum phosphate (sPi) when assessing phosphate homoeostasis clinically. Timed urine collections are cumbersome and prone to collection errors. Spot urine phosphate/creatinine ratio (uPiCr) may be a useful, simple surrogate for 24-h UPE, but requires further validation. This study aimed to determine the relationship between uPiCr and 24-h UPE. This single-centre cross-sectional study examined contemporaneous serum, spot urine and 24-h urine. Serum biochemistry was analysed. Urine phosphate concentration (uPi) and creatinine concentration (uCr) were measured in spot and 24-h urine collections. Spearman's rank correlation coefficients and Bland-Altman plots were used to assess agreement between spot uPiCr and UPE. Backward multivariate analysis was undertaken for UPE prediction. One hundred and sixteen participants (77 with kidney disease and 39 healthy volunteers) were studied. Seventy-four (63.8 %) were male. Median (IQR) age was 61(49-71) years. Median (IQR) spot uPiCr and total UPE were 1.7 (1.3-2.2) mmol/mmol and 25.8 (19.9-35.0) mmol/d, respectively. There was no correlation between spot uPiCr and 24-h UPE (R = 0.064, P = 0.51) but spot uPi significantly correlated with 24-h UPE (R = 0.385, P < 0.001). Although spot and 24-h measures of phosphate handling correlated (all P < 0.001), Bland-Altman analysis revealed bias between collection techniques. UPE prediction model using the independent variables of eGFR, sPi, albumin and spot uPi provided R (2) = 0.443. No direct correlation was noted between spot uPiCr and 24-h UPE. Normalization of uPi to uCr on spot urine samples may be inappropriate when evaluating urinary phosphate excretion in adults and thus, a spot uPiCr is not a suitable surrogate for measuring UPE. A UPE prediction model utilising spot urine biochemistry cannot be advocated at present.
Effect and removal mechanisms of 6 different washing agents for building wastes containing chromium.
Xing-run, Wang; Yan-xia, Zhang; Qi, Wang; Jian-min, Shu
2012-01-01
With the building wastes contaminated by chromium in Haibei Chemical Plan in China as objects, we studied the contents of total Cr and Cr (VI) of different sizes, analyzed the effect of 6 different washing agents, discussed the removal mechanisms of 6 different washing agents for Cr in various forms, and finally selected applicable washing agent. As per the results, particle size had little impact on the contents of total Cr and Cr (VI); after one washing with water, the removal rate of total Cr and Cr (VI) was 75% and 78%, respectively, and after the second washing with 6 agents, the removal rate of citric acid was the highest, above 90% for total Cr and above 99% for hexavalent chromium; the pH of building wastes were reduced by citric acid, and under acid condition, hexavalent chromium was reduced to trivalent chromium spontaneously by organic acid, which led to better removal rate of acid soluble Cr and reducible Cr; due to the complexing action, citric acid had best removal rate for oxidizable trivalent chromium. In conclusion, citric acid is the most applicable second washing agent for building wastes.
Thiruppathi, Eagappanath; Larson, Mark K; Mani, Gopinath
2015-01-01
CoCr alloy is commonly used in various cardiovascular medical devices for its excellent physical and mechanical properties. However, the formation of blood clots on the alloy surfaces is a serious concern. This research is focused on the surface modification of CoCr alloy using varying concentrations (1, 25, 50, 75, and 100 mM) of phosphoric acid (PA) and phosphonoacetic acid (PAA) to generate various surfaces with different wettability, chemistry, and roughness. Then, the adsorption of blood plasma proteins such as albumin and fibrinogen and the adhesion, activation, and aggregation of platelets with the various surfaces generated were investigated. Contact angle analysis showed PA and PAA coatings on CoCr provided a gradient of hydrophilic surfaces. FTIR showed PA and PAA were covalently bound to CoCr surface and formed different bonding configurations depending on the concentrations of coating solutions used. AFM showed the formation of homogeneous PA and PAA coatings on CoCr. The single and dual protein adsorption studies showed that the amount of albumin and fibrinogen adsorbed on the alloy surfaces strongly depend on the type of PA and PAA coatings prepared by different concentrations of coating solutions. All PA coated CoCr showed reduced platelet adhesion and activation when compared to control CoCr. Also, 75 and 100 mM PA-CoCr showed reduced platelet aggregation. For PAA coated CoCr, no significant difference in platelet adhesion and activation was observed between PAA coated CoCr and control CoCr. Thus, this study demonstrated that CoCr can be surface modified using PA for potentially reducing the formation of blood clots and improving the blood compatibility of the alloy.
Meena, Amanda H.; Arai, Yuji
2016-04-29
Reductive precipitation of hexavalent chromium (Cr(VI)) with magnetite is a well-known Cr(VI) remediation method to improve water quality. The rapid (< a few hr) reduction of soluble Cr(VI) to insoluble Cr(III) species by Fe(II) in magnetite has been the primary focus of the Cr(VI) removal process in the past. However, the contribution of simultaneous Cr(VI) adsorption processes in aged magnetite has been largely ignored, leaving uncertainties in evaluating the application of in situ Cr remediation technologies for aqueous systems. In this study, effects of common groundwater ions (i.e., nitrate and sulfate) on Cr(VI) sorption to magnetite were investigated using batchmore » geochemical experiments in conjunction with X-ray absorption spectroscopy. As a result, in both nitrate and sulfate electrolytes, batch sorption experiments showed that Cr(VI) sorption decreases with increasing pH from 4 to 8. In this pH range, Cr(VI) sorption decreased with increasing ionic strength of sulfate from 0.01 to 0.1 M whereas nitrate concentrations did not alter the Cr(VI) sorption behavior. This indicates the background electrolyte specific Cr(VI) sorption process in magnetite. Under the same ionic strength, Cr(VI) removal in sulfate containing solutions was greater than that in nitrate solutions. This is because the oxidation of Fe(II) by nitrate is more thermodynamically favorable than by sulfate, leaving less reduction capacity of magnetite to reduce Cr(VI) in the nitrate media. X-ray absorption spectroscopy analysis supports the macroscopic evidence that more than 75 % of total Cr on the magnetite surfaces was adsorbed Cr(VI) species after 48 h. In conclusion, this experimental geochemical study showed that the adsorption process of Cr(VI) anions was as important as the reductive precipitation of Cr(III) in describing the removal of Cr(VI) by magnetite, and these interfacial adsorption processes could be impacted by common groundwater ions like sulfate and nitrate. The results of this study highlight new information about the large quantity of adsorbed Cr(VI) surface complexes at the magnetite-water interface. It has implications for predicting the long-term stability of Cr at the magnetite-water interface.« less
Modeling Cr-to-Tm and Cr-to-Tm-to-Ho energy transfer in YAG crystals
NASA Technical Reports Server (NTRS)
Swetits, John J.
1991-01-01
A systematic analysis of energy transfer processes in crystals of YAG doped with varying concentrations of Cr and Tm is described. Both spectral measurements and measurements of the temporal response to pulsed excitation are used to give independent determinations of the microscopic interaction parameter for Cr to Tm transfer. The different factors in influencing the temperature dependence of the Cr to Tm transfer are discussed. The dependence of the Tm cross-relaxation rate on Tm concentration is determined.
Wang, Zhen-xing; Chen, Jian-qun; Chai, Li-yuan; Yang, Zhi-hui; Huang, Shun-hong; Zheng, Yu
2011-06-15
Previous studies often neglected the direct exposure to soil heavy metals in human health risk assessment. The purpose of this study was to assess the environmental impact and site-specific health risks of chromium (Cr) by both direct and indirect exposure assessment method. Results suggested that total Cr was shown a substantial buildup with a significant increase in the industrial and cultivated soils (averaged 1910 and 986 mg kg(-1), respectively). The Cr contents of vegetables exceeded the maximum permissible concentration by more than four times in every case. Human exposure to Cr was mainly due to dietary food intake in farming locations and due to soil ingestion in both industrial and residential sites. Soil ingestion was the main contributor pathway for direct exposure, followed by inhalation, and then dermal contact. The highest risks of vegetable ingestion were associated with consumption of Chinese cabbage. The results also indicated that plant tissues are able to convert the potentially toxic Cr (VI) species into the non-toxic Cr (III) species. The analyses of human health risks indicated that an important portion of the population is at risk, especially in the industrial site. Copyright © 2011 Elsevier B.V. All rights reserved.
Son, A R; Ji, S Y; Kim, B G
2012-12-01
An experiment was conducted to measure DE and ME in copra (Cocos nucifera) meal (CM), palm kernel meal (PKM), and cassava (Manihot esculenta) root (CR) in growing pigs. Eight boars with an initial BW of 67.3 ± 5.8 kg were individually housed in metabolism crates that were equipped with a feeder and a nipple drinker. A replicated 4 × 4 Latin square design was used with 4 dietary treatments, 4 periods, and 8 animals. A basal diet mainly contained corn (Zea mays) and soybean (Glycine max) meal. Three additional diets were formulated to contain 30% of CM, PKM, and CR. All diets contained the same proportion of corn:soybean meal ratio at 4.14:1. The apparent total tract digestibility of energy was 89.5, 84.1, 82.4, and 87.9% (P < 0.001) in the basal, CM, PKM, and CR diets, respectively. The DE in CM and PKM were greater (P < 0.05) than in CR (3440 and 3238 vs. 2966 kcal/kg as-fed). The ME in CM was greater (P < 0.05) than in CR (3340 vs. 2935 kcal/kg as-fed) but not different from the ME in PKM (3168 kcal/kg as-fed). In conclusion, CM and PKM have a higher DE value than CR, and CM has a higher ME value than CR.
NASA Astrophysics Data System (ADS)
Chen, Shujuan; Zhang, Xinshen; Yu, Lingyun; Wang, Li; Li, Hui
2012-03-01
Trivalent and hexavalent chromium have been successfully separated and determined using low pressure ion chromatography combined with flow injection spectrophotometric analysis (LPIC-FIA). A column packed with crosslinking starch microspheres was used for on-line separation of Cr(III) from Cr(VI) in a flow-injection system because of its absorptive effect on Cr(III). To determine the concentration of Cr(III) and Cr(VI) in samples, we used 3.0 mmol/L nitric acid to elute adsorbed Cr(III) from the column and then used ceric sulfate-sulfuric acid as oxidant to convert all Cr(III) into Cr(VI). Then, Cr(VI) directly came from the samples and Cr(VI) came from Cr(III) successively formed a amaranthine complex with diphenycarbazide and the complex shows a maximum absorption at 530 nm. Analytical parameters including the concentration of eluent and oxidant solution, oxidizing temperature, length of oxidizing reaction coil, reaction coil and injection coil, interfering effects, etc., were optimized. The limit of detection was 1.25 μg/L for Cr(VI) and 3.76 μg/L for Cr(III). The linear relationship between absorption with the concentration of Cr(VI) and Cr(III) was 0.001-1.000 mg/L and 0.030-1.000 mg/L with correlation coefficients of 0.9995 and 0.9994, respectively. The relative standard deviation of Cr(VI) and Cr(III) was 1.21% and 1.66%, respectively (n = 10). Major cations and anions did not show any interference. We validated this method through certified reference materials and through measuring the recovery in tannery wastewater.
Suedel, Burton C; Nicholson, Andrew; Day, Christopher H; Spicer, James
2006-10-01
When evaluating the risk chemicals may pose to mammals and birds in ecological risk assessments (ERAs), it is common practice to conservatively assume that all (100%) of a chemical in an environmental medium is bioavailable to receptors. This assumption often leads to overestimating ecological risk and may ultimately result in costly and unnecessary risk management actions. While effects of bioavailability and speciation of metals such as arsenic (As) and lead (Pb) have been considered in human health risk assessment, these effects are rarely taken into consideration when assessing risks to mammals and birds. An ERA was conducted at the former Col-Tex refinery site in Colorado City, Texas, USA, to characterize risks to select wildlife species from exposure to chromium (Cr) and Pb found in soils. The focus on these metals was based on results of a screening-level ERA that found that Cr and Pb were posing ecological risks at the site. Soils were analyzed for total Cr and Pb, trivalent Cr (CrIII), hexavalent Cr (CrVI), organic Pb, and the bioavailability and speciation of Pb. Results for Pb and Cr indicated that >94% of the Cr was present as the less toxic and immobile Cr(III) and that >99% of the Pb in soils was present as inorganic Pb. Lead bioaccessibility measured by in vitro testing ranged from 8% to 77.8%, depending on location of individual soil samples. Results demonstrated that Pb and Cr bioavailability and speciation information can raise soil cleanup concentrations while being protective of ecological receptors. The costs of performing the ERA were de minimus compared to the reduction in remediation costs at the site. The refined hazard estimates allowed informed decision making in the management and segregation of soils, allowing for effective risk management at the site.
Gil-Cardeza, María Lourdes; Calonne-Salmon, Maryline; Gómez, Elena; Declerck, Stéphane
2017-11-01
Hexavalent chromium is a potent carcinogen, while phosphorus is an essential nutrient. The role of arbuscular mycorrhizal fungi (AMF) in the uptake of P is well known and was also reported, at low levels, for Cr. However, it is unclear whether the uptake of Cr can impact the short-term uptake dynamics of P since both elements have a similar chemical structure and may thus potentially compete with each other during the uptake process. This study investigated the impact of Cr(VI) on short-term P uptake by the AMF Rhizophagus irregularis MUCL 41833 in Medicago truncatula. Bi-compartmented Petri plates were used to spatially separate a root compartment (RC) from a hyphal compartment (HC) using a whole plant in vitro culture system. The HC was supplemented with Cr(VI). Chromium(VI) as well as total Cr and P were monitored during 16 h within the HC and their concentrations determined by the end of the experiment within roots and shoots. Our results indicated that the uptake and translocation of Cr from hyphae to roots was a fast process: roots in which the extraradical mycelium (ERM) was exposed to Cr(VI) accumulated more Cr than roots of which the ERM was not exposed to Cr(VI) or was dead. Our results further confirmed that dead ERM immobilized more Cr than alive ERM. Finally our results demonstrated that the short exposure to Cr(VI) was sufficient to stimulate P uptake by the ERM and that the stimulation process began within the first 4 h of exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Studies on the erythron and the ferrokinetic responses in beagles adapted to hypergravity
NASA Technical Reports Server (NTRS)
Beckman, D. A.; Evans, J. W.; Oyama, J.
1978-01-01
Red cell survival, ferrokinetics, and hematologic parameters were investigated in beagle dogs exposed to chronic hypergravity (2.6 Gx). Ineffective erythropoiesis, red cell mass, plasma volume, and Cr-51-elution were significantly increased; maximum Fe-59 incorporation was decreased; and there was no change in the mean erythrocyte life span following autologous injection of Cr-51-labeled red cells and Fe-59-labeled transferrin. Red cell count, F(cells), total body hemoglobin (Hb), susceptability to osmotic lysis, and differential reticulocyte count were increased. White blood cell count, venous blood %Hb, mean cell volume, mean cell Hb, mean cell Hb concentration, and serum iron were decreased. No changes were observed for body mass, mg Fe per g Hb, iron binding capacity, percent saturation of iron carrying capacity, or the electrophoretic mobility of purified Hb. This study indicated that chronic exposure to hypergravity induced changes in red cell size, volume, total mass, and membrane permeability.
GilPavas, E; Dobrosz-Gómez, I; Gómez-García, M Á
2011-01-01
The capacity of the electro-coagulation (EC) process for the treatment of the wastewater containing Cr3+, resulting from a leather tannery industry placed in Medellin (Colombia), was evaluated. In order to assess the effect of some parameters, such as: the electrode type (Al and/or Fe), the distance between electrodes, the current density, the stirring velocity, and the initial Cr3+ concentration on its efficiency of removal (%RCr+3), a multifactorial experimental design was used. The %RCr3+ was defined as the response variable for the statistical analysis. In order to optimise the operational values for the chosen parameters, the response surface method (RSM) was applied. Additionally, the Biological Oxygen Demand (BOD5), the Chemical Oxygen Demand (COD), and the Total Organic Carbon (TOC) were monitored during the EC process. The electrodes made of aluminium appeared to be the most effective in the chromium removal from the wastewater under study. At pH equal to 4.52 and at 28°C, the optimal conditions of Cr3+ removal using the EC process were found, as follows: the initial Cr3+ concentration=3,596 mg/L, the electrode gap=0.5 cm, the stirring velocity=382.3 rpm, and the current density=57.87 mA/cm2. At those conditions, it was possible to reach 99.76% of Cr3+ removal, and 64% and 61% of mineralisation (TOC) and COD removal, respectively. A kinetic analysis was performed in order to verify the response capacity of the EC process at optimised parameter values.
Liu, Chao; Lu, Liwen; Huang, Ting; Huang, Yalin; Ding, Lei; Zhao, Weituo
2016-01-01
Exponential industrialization and rapid urbanization have resulted in contamination of soil by metals from anthropogenic sources in Dongguan, China. The aims of this research were to determine the concentration and distribution of various metals (arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn)) in soils and identify their potential health risks for local residents. A total of 106 soil samples were collected from the vicinity of industrial sites in Dongguan. Two types of samples were collected from each site: topsoil (0–20 cm, TS) and shallow soil (20–50 cm, SS). Results showed that the soils were contaminated by metals and pollution was mainly focused on TS. The geoaccumulation index (Igeo) and pollution indexes (PI) implied that there was a slight increase in the concentrations of Cd, Cu, Hg, Ni, and Pb, but the metal pollution caused by industrial activities was less severe, and elements of As and Cr exhibited non-pollution level. The risk assessment results suggested that there was a potential health risk associated with As and Cr exposure for residents because the carcinogenic risks of As and Cr via corresponding exposure pathways exceeded the safety limit of 10−6 (the acceptable level of carcinogenic risk for humans). Furthermore, oral ingestion and inhalation of soil particles are the main exposure pathways for As and Cr to enter the human body. This study may provide basic information of metal pollution control and human health protection in the vicinity of industrial regions. PMID:27548198
Manav, Ramazan; Uğur Görgün, Aysun; Filizok, Işık
2016-11-09
The pollution level of Lake Bafa was investigated by collecting fish samples { Dicentrarchus labrax (sea bass), Liza ramada (mullet) and Anguilla anguilla (eel)}, surface sediment, and core samples. In all these samples, 210 Po and 210 Pb concentrations were estimated, and total annual dose rates were obtained for each species. Some heavy metal (Cr, Ni, Pb, Cd, Mn, Fe, and Zn) concentration levels were obtained for the fish and a core sample. The sediment mass accumulation rate was found to be 3.27 g·m -2 ·day -1 (0.119 g·cm -2 ·y -1 ) from a core sample. The heavy metal concentrations in the vertical profile of samples from the core were also observed. The measured concentration of Zn, Pb, Cd, and Cr were between the ERL (effects range low) and ERM (effects range median) limits, while Ni concentrations were higher than the ERM limit. The observed concentrations of Cd, Pb, and Zn in fish samples did not exceed the limits in accordance with Turkish Food Regulations. Further, the maximum effective dose equivalent of 210 Po in the area was found to be 1.169 µSv·y -1 .
Zarazúa-Ortega, Graciela; Poblano-Bata, Josefina; Tejeda-Vega, Samuel; Ávila-Pérez, Pedro; Zepeda-Gómez, Carmen; Ortiz-Oliveros, Huemantzin; Macedo-Miranda, Guadalupe
2013-01-01
This study is aimed at assessing atmospheric deposition of heavy metals using the epiphytic moss genera Fabronia ciliaris collected from six urban sites in the Metropolitan Zone of the Toluca Valley in Mexico. The concentrations of K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr, and Pb were determined by total reflection X-ray fluorescence technique. Results show that the average metal concentration decrease in the following order: Fe (8207 mg/Kg) > Ca (7315 mg/Kg) > K (3842 mg/Kg) > Ti (387 mg/Kg) > Mn, Zn (191 mg/Kg) > Sr (71 mg/Kg) > Pb (59 mg/Kg) > Cu, V (32 mg/Kg) > Cr (24 mg/Kg) > Rb (13 mg/Kg) > Ni (10 mg/Kg). Enrichment factors show a high enrichment for Cr, Cu, Zn, and Pb which provides an evidence of anthropogenic impact in the industrial and urban areas, mainly due to the intense vehicular traffic and the fossil fuel combustion. Monitoring techniques in mosses have proved to be a powerful tool for determining the deposition of heavy metals coming from diverse point sources of pollution.
Callitriche cophocarpa biomass as a potential low-cost biosorbent for trivalent chromium.
Kyzioł-Komosińska, Joanna; Augustynowicz, Joanna; Lasek, Wojciech; Czupioł, Justyna; Ociński, Daniel
2018-05-15
The present study focused on the use of the dry mass of the macrophyte Callitriche cophocarpa as an effective biosorbent for chromium removal from concentrated solutions, typical for industrial effluents. In order to evaluate the usability of C. cophocarpa as the Cr(III) sorbent, its detailed physicochemical characterization has been performed as well as the preliminary adsorption studies. The biosorbent was characterized by specific surface area (SSA), porosity, total organic carbon (TOC), inorganic content as well as the cation exchange capacity (CEC), dominant exchangeable cations and anion exchange capacity (AEC), point of zero charge (pH pzc ) and buffering capacity. The effect of the initial chromium concentration, solution pH and co-existing anions on the sorption effectiveness have been investigated. Based on theoretical isotherm models, the maximum adsorption capacity of the dry C. cophocarpa has been determined as 77.1 mg Cr(III)/g. Finally, the strength of Cr-binding onto the plant biomass has been evaluated using the BCR extraction method, stating that chromium was strongly and - under environmental conditions - irreversibly bound to the plant biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.
You, Shao-Hong; Zhang, Xue-Hong; Liu, Jie; Zhu, Yi-Nian; Gu, Chen
2014-01-01
As a low-cost treatment technology for effluent, the constructed wetlands can be applied to remove the heavy metals from wastewater. Leersia hexandra Swartz is a metal-accumulating hygrophyte with great potential to remove heavy metal from water. In this study, two pilot-scale constructed wetlands planted with L. hexandra (CWL) were set up in greenhouse to treat electroplating wastewater containing Cr, Cu and Ni. The treatment performance of CWL under different hydraulic loading rates (HLR) and initial metal concentrations were also evaluated. The results showed that CWL significantly reduced the concentrations of Cr, Cu and Ni in wastewater by 84.4%, 97.1% and 94.3%, respectively. High HLR decreased the removal efficiencies of Cr, Cu and Ni; however, the heavy metal concentrations in effluent met Emission Standard of Pollutants for Electroplating in China (ESPE) at HLR less than 0.3 m3/m2 d. For the influent of 5 mg/L Cr, 10 mg/L Cu and 8 mg/L Ni, effluent concentrations were below maximum allowable concentrations in ESPE, indicating that the removal of Cr, Cu and Ni by CWL was feasible at considerably high influent metal concentrations. Mass balance showed that the primary sink for the retention of contaminants within the constructed wetland system was the sediment, which accounted for 59.5%, 83.5%, and 73.9% of the Cr, Cu and Ni, respectively. The data from the pilot wetlands support the view that CWL could be used to successfully remove Cr, Cu and Ni from electroplating wastewater.
Adsorption of heavy metals by road deposited solids.
Gunawardana, Chandima; Goonetilleke, Ashantha; Egodawatta, Prasanna
2013-01-01
The research study discussed in the paper investigated the adsorption/desorption behaviour of heavy metals commonly deposited on urban road surfaces, namely, Zn, Cu, Cr and Pb, for different particle size ranges of solids. The study outcomes, based on field studies and batch experiments, confirmed that road deposited solids particles contain a significantly high amount of vacant charge sites with the potential to adsorb additional heavy metals. Kinetic studies and adsorption experiments indicated that Cr is the most preferred metal element to associate with solids due to the relatively high electronegativity and high charge density of trivalent cation (Cr(3+)). However, the relatively low availability of Cr in the urban road environment could influence this behaviour. Comparing total adsorbed metals present in solids particles, it was found that Zn has the highest capacity for adsorption to solids. Desorption experiments confirmed that a low concentration of Cu, Cr and Pb in solids was present in water-soluble and exchangeable form, whilst a significant fraction of adsorbed Zn has a high likelihood of being released back into solution. Among heavy metals, Zn is considered to be the most commonly available metal among road surface pollutants.
Sachan, Sanjay; Singh, S K; Srivastava, P C
2007-10-01
Accumulation of heavy metals in soil-water-plant continuum as a result of irrigation with metals contaminated effluent has been studied. Effluents being used for irrigating agricultural fields had normal pH 7.3-7.5, high Cr and Cl content as per the prescribed standards for irrigation. Among the heavy metals, buildup of total Iron was highest (9 times) and that of cadmium (1.3 times) was lowest in effluent irrigated soil as compared to tubewell irrigated soils. In most of the hand pump water samples, Pb, Cd and Cr were above the permissible limits for drinking. Bioaccumulation of Pb and Cr in vegetables was found to be above the critical concentrations for plant growth while Pb and Cd were above the prescribed limit in the diet of animals. Most of the heavy metals were above the maximum allowable limit in soil.
Morgan, Marsha K; Nash, Maliha; Barr, Dana Boyd; Starr, James M; Scott Clifton, M; Sobus, Jon R
2018-03-01
Bisphenol A (BPA) is commonly manufactured to make polycarbonate plastics and epoxy resins for use in consumer products and packaged goods. BPA has been found in several different types of environmental media (e.g., food, dust, and air). Many cross-sectional studies have frequently detected BPA concentrations in adult urine samples. However, limited data are available on the temporal variability and important predictors of urinary BPA concentrations in adults. In this work, the major objectives were to: 1) quantify BPA levels in duplicate-diet solid food, drinking water, hard floor surface wipe, and urine samples (first-morning void [FMV], bedtime, and 24-h) collected from adults over a six-week monitoring period; 2) determine the temporal variability of urinary BPA levels using concentration, specific gravity (SG) adjusted, creatinine (CR) adjusted, and excretion rate values, and; 3) examine associations between available study factors and urinary BPA concentrations. In 2009-2011, a convenience sample of 50 adults was recruited from residential settings in North Carolina. The participants completed diaries and collected samples during weeks 1, 2, and/or 6 of a six-week monitoring period. BPA was detected in 38%, 4%, and 99% of the solid food (n=775), drinking water (n=50), and surface wipe samples (n=138), respectively. Total BPA (free plus conjugated) was detected in 98% of the 2477 urine samples. Median urinary BPA levels were 2.07ng/mL, 2.20ng/mL-SG, 2.29ng/mg, and 2.31ng/min for concentration, SG-adjusted, CR-adjusted, and excretion rate values, respectively. The intraclass correlation coefficient (ICC) estimates for BPA showed poor reproducibility (≤0.35) for all urine sample types and methods over a day, week, and six weeks. CR-adjusted bedtime voids collected over six-weeks required the fewest, realistic number of samples (n=11) to obtain a reliable biomarker estimate (ICC=0.80). Results of linear mixed-effects models showed that sex, race, season, and CR-level were all significant predictors (p<0.05) of the adults' urinary BPA concentrations. BPA levels in the solid food and surface wipe samples did not contribute significantly to the participants' urinary BPA concentrations. However, a significant positive relationship was observed between solid food intake and urine-based estimates of BPA dose, when aggregated over 24-h periods. Ingestion of BPA via solid food explained only about 20% of the total dose (at the median of the dose distribution), suggesting that these adults were likely exposed to other major unknown (non-dietary) sources of BPA in their everyday environments. Published by Elsevier Ltd.
Exposure of women to trace elements through the skin by direct contact with underwear clothing.
Nguyen, Thao; Saleh, Mahmoud A
2017-01-02
Heavy metals pose a potential danger to human health when present in textile materials. In the present study, inductive coupled plasma mass spectrometry (ICPMS) was used to determine the concentrations and the identity of extractable inorganic elements from different brands of women undergarments. A total of 120 samples consisting of 63 cottons, 44 nylons and 13 polyesters manufactured in 14 different countries having different colors were analyzed for their extractable metals contents. Elements analyzed were Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, Pb, Sb, Se, Sr, Ti, V and Zn. Cotton undergarments were rich in Al, Fe and Zn, nylon undergarments had high levels of Cr, Cu and Al, while polyester fabrics contained higher levels of Ni and Fe compared to cotton or nylon. With respect to manufacturing countries, China, Egypt and India showed the highest concentrations of metals in all fabrics. With respect to the color, black garments were characteristic by high concentration of Fe, blue colors with Cu, brown garments with Fe and Cu, green garments with Cu and Fe, pink garments with Al, purple garments with Al and Cu and red garments with Cr, Zn and Al. The consumer should be made aware of the potential dangers of these metals in their clothing.
The relative influence of nutrients and habitat on stream metabolism in agricultural streams
Frankforter, J.D.; Weyers, H.S.; Bales, J.D.; Moran, P.W.; Calhoun, D.L.
2010-01-01
Stream metabolism was measured in 33 streams across a gradient of nutrient concentrations in four agricultural areas of the USA to determine the relative influence of nutrient concentrations and habitat on primary production (GPP) and respiration (CR-24). In conjunction with the stream metabolism estimates, water quality and algal biomass samples were collected, as was an assessment of habitat in the sampling reach. When data for all study areas were combined, there were no statistically significant relations between gross primary production or community respiration and any of the independent variables. However, significant regression models were developed for three study areas for GPP (r 2 = 0.79-0.91) and CR-24 (r 2 = 0.76-0.77). Various forms of nutrients (total phosphorus and area-weighted total nitrogen loading) were significant for predicting GPP in two study areas, with habitat variables important in seven significant models. Important physical variables included light availability, precipitation, basin area, and in-stream habitat cover. Both benthic and seston chlorophyll were not found to be important explanatory variables in any of the models; however, benthic ash-free dry weight was important in two models for GPP. ?? 2009 The Author(s).
NASA Astrophysics Data System (ADS)
Stolpe, Björn; Guo, Laodong; Shiller, Alan M.; Aiken, George R.
2013-03-01
Water samples were collected from six small rivers in the Yukon River basin in central Alaska to examine the role of colloids and organic matter in the transport of trace elements in Northern high latitude watersheds influenced by permafrost. Concentrations of dissolved organic carbon (DOC), selected elements (Al, Si, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Ba, Pb, U), and UV-absorbance spectra were measured in 0.45 μm filtered samples. 'Nanocolloidal size distributions' (0.5-40 nm, hydrodynamic diameter) of humic-type and chromophoric dissolved organic matter (CDOM), Cr, Mn, Fe, Co, Ni, Cu, Zn, and Pb were determined by on-line coupling of flow field-flow fractionation (FFF) to detectors including UV-absorbance, fluorescence, and ICP-MS. Total dissolved and nanocolloidal concentrations of the elements varied considerably between the rivers and between spring flood and late summer base flow. Data on specific UV-absorbance (SUVA), spectral slopes, and the nanocolloidal fraction of the UV-absorbance indicated a decrease in aromaticity and size of CDOM from spring flood to late summer. The nanocolloidal size distributions indicated the presence of different 'components' of nanocolloids. 'Fulvic-rich nanocolloids' had a hydrodynamic diameter of 0.5-3 nm throughout the sampling season; 'organic/iron-rich nanocolloids' occurred in the <8 nm size range during the spring flood; whereas 'iron-rich nanocolloids' formed a discrete 4-40 nm components during summer base flow. Mn, Co, Ni, Cu and Zn were distributed between the nanocolloid components depending on the stability constant of the metal (+II)-organic complexes, while stronger association of Cr to the iron-rich nanocolloids was attributed to the higher oxidation states of Cr (+III or +IV). Changes in total dissolved element concentrations, size and composition of CDOM, and occurrence and size of organic/iron and iron-rich nanocolloids were related to variations in their sources from either the upper organic-rich soil or the deeper mineral layer, depending on seasonal variations in hydrological flow patterns and permafrost dynamics.
Zhao, Bingzi; Maeda, Morihiro; Zhang, Jiabao; Zhu, Anning; Ozaki, Yasuo
2006-03-01
Andisols are widespread in Japan and have some special properties such as high anion exchange capacity, low bulk density, and high organic matter content, which might influence the accumulation or chemical fractionation of heavy metals. However, few such data exist in Japanese andisols. The primary objective of this study was to investigate the distribution and chemical fractions of Cu, Zn, Ni, and Cr in the soil profiles and subsequently to assess their potential environmental hazard. Soil samples were taken from a field experiment conducted on Japanese andisols, which had received either swine compost or chemical fertilizers for 6 years. Concentrations of Cu, Zn, Ni, and Cr were determined for all of the obtained extract solutions by ICP-AES. Considerably higher total concentrations of Cu and Zn were observed in the top 20 cm layer of the compost-amended soil, relative to the unfertilized soil, while chemical fertilizers had little effect. Application of the swine compost increased the concentrations of Cu and Zn, but not Ni and Cr, in all fractions in the top 20 cm layer. The greatest increase in the organically bound fraction (OM) Cu and dilute acid-exchangeable fraction (DAEXCH) Zn was observed. This suggests that Cu and Zn are potentially bioavailable and mobile in the andisol profiles after 6-year consecutive applications of the swine compost. On the other hand, distribution of Cu, Zn, Ni and Cr among various soil fractions was generally unaffected by chemical fertilizers. We observed that 6-year consecutive applications of the swine compost led to an increase in total metals of Cu and Zn, as well as their all-chemical fractions, in the top 20 cm soil layers. Potential hazard of heavy metals, especially of Cu and Zn, as a result of the use of swine compost on andisols, must be taken into account. The long-term effect of the accumulation of heavy metals, particularly Cu and Zn, in various plant tissues and soils, as well as their potential risk to surface water via runoff and groundwater via leaching, needs to be carefully considered. Further investigations in the long-term experiments are therefore necessary.
NASA Astrophysics Data System (ADS)
Ruiz, Karina B.; Cicatelli, Angela; Guarino, Francesco; Jacobsen, Sven-Erik; Biondi, Stefania; Castiglione, Stefano
2017-04-01
Quinoa (Chenopodium quinoa Willd), an ancient Andean halophytic seed crop, exhibits exceptional resistance to salinity, drought, and cold. Consistent with the notion that such a resilient plant is likely to tolerate toxic levels of heavy metals as well and could, therefore, be employed for the clean-up of polluted soil (via phytoextraction or phytostabilization), the species' ability to take up, translocate, and tolerate chromium (CrIII) was investigated in a greenhouse pot experiment. A cultivar adapted to European conditions (cv. Titicaca) was grown on soil spiked with 500 mg kg-1 DW of Cr(NO3)3•9H2O, combined (or not) with 150 mM NaCl, or on soil grown with 150 mM NaCl alone. Plants were grown up to maturity (four months after sowing), and then plant biomass and concentrations of Na, Cr, and other elements (e.g., Fe and P) were evaluated in the plant organs. Soil Cr content (total and available fractions) was analysed at the start of the experiment, one week after the last addition of Cr and/or NaCl, and at the end of the trial. No visible toxic effects were observed under the different culture conditions. Results revealed that Cr was mainly accumulated in roots, while Na+ was translocated to the aerial parts. In order to compare plant stress responses under the different treatments (Cr, NaCl, Cr+NaCl), expression levels of several stress-related genes, together with those of a potential Cr transporter, were determined by quantitative real-time RT-PCR.
Mirfendereski, E; Jahanian, R
2015-02-01
The present study was carried out to investigate the effects of dietary supplementation of chromium-methionine (CrMet) and vitamin C (VC) on performance, immune response, and stress status of laying hens subjected to high stocking density. A total of 360 Hy-Line W-36 leghorn hens (at 26 wk old) were used in a 2×3×2 factorial arrangement that had 2 cage densities (5 and 7 hens per cage), 3 Cr levels (0, 500, and 1,000 ppb as CrMet), and 2 dietary VC levels (0 and 500 ppm as L-ascorbic acid). The trial lasted for 12 wk. The first 2 wk were for adaptation (26 to 28 wk of age), and the remaining 10 wk served as the main recording period. In addition to performance, immune response to Newcastle disease virus (NDV) was assessed at d 7 and 14 postvaccination. Also, the birds' stress status was evaluated by analyzing appropriate plasma metabolites. The results showed that hens in cages with higher stocking density had lower hen-day egg production, egg mass, and feed intake compared with those in normal density cages (P<0.05). Dietary CrMet supplementation caused significant increases in egg production and egg mass (P<0.01). There were significant Cr × VC interactions related to egg production and feed conversion efficiency (P<0.01); dietary CrMet supplementation was more effective in improving egg production and feed conversion ratio in VC-unsupplemented diets. Although plasma concentrations of triglycerides and high-density lipoproteins were not influenced by dietary treatments, supplemental CrMet decreased plasma cholesterol levels (P<0.05). Plasma insulin and glucose levels of hens kept at a density of 7 hens/cage were significantly higher than those of hens in normal cage density (P<0.01), and dietary CrMet supplementation decreased plasma concentrations of insulin (P<0.001) and glucose (P<0.01), with higher impacts in high stocking density-challenged hens. While high stocking density caused a marked increase in plasma corticosterone (P<0.01), both supplemental CrMet and VC decreased it to near normal levels. There were significant stocking density×Cr interactions related to plasma insulin and corticosterone concentrations (P<0.01); supplemental CrMet was more effective in lowering these hormones in high stocking density-challenged hens. The high stocking density challenge suppressed NDV antibody response (P<0.001), while dietary supplementation of CrMet improved antibody titers against NDV at d 14 post vaccination particularly in hens kept at a density of 7 hens/cage (P<0.01). From the present observations, it can be concluded that CrMet can improve laying performance largely because it alleviates harmful responses to stressful conditions. © 2015 Poultry Science Association Inc.
Liu, Tingyi; Yang, Xi; Wang, Zhong-Liang; Yan, Xiaoxing
2013-11-01
The removal of heavy metals from electroplating wastewater is a matter of paramount importance due to their high toxicity causing major environmental pollution problems. Nanoscale zero-valent iron (NZVI) became more effective to remove heavy metals from electroplating wastewater when enhanced chitosan (CS) beads were introduced as a support material in permeable reactive barriers (PRBs). The removal rate of Cr (VI) decreased with an increase of pH and initial Cr (VI) concentration. However, the removal rates of Cu (II), Cd (II) and Pb (II) increased with an increase of pH while decreased with an increase of their initial concentrations. The initial concentrations of heavy metals showed an effect on their removal sequence. Scanning electron microscope images showed that CS-NZVI beads enhanced by ethylene glycol diglycidyl ether (EGDE) had a loose and porous surface with a nucleus-shell structure. The pore size of the nucleus ranged from 19.2 to 138.6 μm with an average aperture size of around 58.6 μm. The shell showed a tube structure and electroplating wastewaters may reach NZVI through these tubes. X-ray photoelectron spectroscope (XPS) demonstrated that the reduction of Cr (VI) to Cr (III) was complete in less than 2 h. Cu (II) and Pb (II) were removed via predominant reduction and auxiliary adsorption. However, main adsorption and auxiliary reduction worked for the removal of Cd (II). The removal rate of total Cr, Cu (II), Cd (II) and Pb (II) from actual electroplating wastewater was 89.4%, 98.9%, 94.9% and 99.4%, respectively. The findings revealed that EGDE-CS-NZVI-beads PRBs had the capacity to remediate actual electroplating wastewater and may become an effective and promising technology for in situ remediation of heavy metals. Copyright © 2013 Elsevier Ltd. All rights reserved.
Thyroid hormones and menstrual cycle function in a longitudinal cohort of premenopausal women.
Jacobson, Melanie H; Howards, Penelope P; Darrow, Lyndsey A; Meadows, Juliana W; Kesner, James S; Spencer, Jessica B; Terrell, Metrecia L; Marcus, Michele
2018-05-01
Previous studies have reported that hyperthyroid and hypothyroid women experience menstrual irregularities more often compared with euthyroid women, but reasons for this are not well-understood and studies on thyroid hormones among euthyroid women are lacking. In a prospective cohort study of euthyroid women, this study characterised the relationship between thyroid hormone concentrations and prospectively collected menstrual function outcomes. Between 2004-2014, 86 euthyroid premenopausal women not lactating or taking hormonal medications participated in a study measuring menstrual function. Serum thyroid hormones were measured before the menstrual function study began. Women then collected first morning urine voids and completed daily bleeding diaries every day for three cycles. Urinary oestrogen and progesterone metabolites (estrone 3-glucuronide (E 1 3G) and pregnanediol 3-glucuronide (Pd3G)) and follicle-stimulating hormone were measured and adjusted for creatinine (Cr). Total thyroxine (T 4 ) concentrations were positively associated with Pd3G and E 1 3G. Women with higher (vs lower) T 4 had greater luteal phase maximum Pd3G (Pd3G = 11.7 μg/mg Cr for women with high T 4 vs Pd3G = 9.5 and 8.1 μg/mg Cr for women with medium and low T 4 , respectively) and greater follicular phase maximum E 1 3G (E 1 3G = 41.7 ng/mg Cr for women with high T 4 vs E 1 3G = 34.3 and 33.7 ng/mg Cr for women with medium and low T 4 , respectively). Circulating thyroid hormone concentrations were associated with subtle differences in menstrual cycle function outcomes, particularly sex steroid hormone levels in healthy women. Results contribute to the understanding of the relationship between thyroid function and the menstrual cycle, and may have implications for fertility and chronic disease. © 2018 John Wiley & Sons Ltd.
Zhou, Peng; Guo, Jie; Zhou, Xiaoyu; Zhang, Wei; Liu, Lili; Liu, Yangcheng; Lin, Kuangfei
2014-10-01
A typical Printed Circuit Board (PCB) manufacturer was chosen as the object of this study. During PCB processing, fine particulate matter and heavy metals (Cu, Zn, Pb, Cr, Cd and Ni) will be released into the air and dust, which then impact workers' health and the environment. The concentrations of total suspended particle (TSP), PM10 and PM2.5 in the off-site were 106.3, 90.0 and 50.2μg/m(3), respectively, while the concentrations of TSP, PM10 and PM2.5 in the workshops ranged from 36.1 to 365.3, from 27.1 to 289.8 and from 22.1 to 212.3μg/m(3), respectively. Almost all six of the heavy metals were detected in all of the particle samples except Cd. For each workshop, it was obvious that Zn was the most enriched metal in TSP, followed by Cu>Pb (Cr)>Ni>Cd, and the same trend was found for PM10 and PM2.5. In the dust samples, Cu (which ranged from 4.02 to 56.31mg/g) was the most enriched metal, followed by Zn, Cr, Pb, Ni and Cd, and the corresponding concentrations ranged from 0.77 to 4.47, 0.37 to 1.59, 0.26 to 0.84, 0.13 to 0.44 and nd to 0.078mg/g, respectively. The health risk assessment showed that noncancerous effects are unlikely for Zn, Pb, Cr, Cu, Cd and Ni. The carcinogenic risks for Cd and Ni were all lower than 10(-6), except for Cr. This result indicates that carcinogenic risks for workers are relatively possible in the workshops. These findings suggest that this technology is advanced from the perspective of environmental protection in the waste PCB's recycling industry. Copyright © 2014. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, Z; Ngwa, W; Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School
Purpose: This study investigates the feasibility of exploiting the Cerenkov radiation (CR) present during external beam radiotherapy (EBRT) for significant therapeutic gain, using titanium dioxide nanoparticles (titania) delivered via a new design of radiotherapy biomaterials. Methods: Recently published work has shown that CR generated by radionuclides during PET imaging could substantially enhance damage to cancer cells in the presence of 0.625 µg/g titania. We hypothesize that equal or greater damage can be achieved during EBRT. To test this hypothesis, Monte Carlo simulation was done using GEANT4 in order to get the total CR yield inside a tumor volume during EBRTmore » compared to that of the radionuclides. We considered a novel approach where a sufficiently potent concentration of the titania was delivered directly into the tumor using radiotherapy biomaterials (e.g. fiducials) loaded with the titania. The intra-tumor distribution/diffusion of titania released from the fiducials was calculated. An in-vitro MTS assay experiment was also carried out to establish the relative non-toxicity of titania for concentrations of up to 1 µg/g. Results: For a radiotherapy biomaterial loaded with 15 µg/g of 2-nm titania, at least 0.625 µg/g could be delivered through out a tumor sub-volume of 2-cm diameter after 14 days. This concentration level could inflict substantial damage to tumor cells during EBRT. The Monte Carlo results showed the CR yield in tumor by 6 MV radiation was higher than the radionuclides and hence potentially greater damage may be obtained during EBRT. No significant cell viability change was observed for 1 µg/g titania. Conclusion: Altogether, these preliminary findings demonstrate a potential new approach that can be used to take advantage of the CR present during megavoltage EBRT to boost damage to tumor cells. The results provide significant impetus for further experimental studies towards development of nanoparticle-aided EBRT powered by the Cerenkov effect.« less
Gao, Bo; Li, Qiang; Zhou, Huai-Dong; Gao, Ji-Jun; Zou, Xiao-Wen; Yong, Huang
2014-05-01
The six heavy metal concentrations (Cr, Cr, As, Cd, Cu, Zn and Pb) in water samples collected from five reservoirs of Liao River Basin were studied. The health risk assessment for heavy metals pollution in reservoirs was conducted based on the environmental health risk assessment model recommended by U. S. Environmental Protection Agency. The results showed that the average concentrations of Cr, Cu, Zn, As, Cd and Pb in five reservoirs of Liao River Basin were 3.36, 1.03, 2. 70, 1.23, 0. 02 and 0. 03 microg L-1, respectively. In fact, these heavy metals concentrations were obviously lower than the Standard of National Drinking Water in China (GB 5749-2006). The results also showed that the metal carcinogenic risk was relatively high in this region. The order of the risk level of carcinogenic metals was Cr>As>Cd. The highest carcinogenic risk was from Cr, with the risk for adults ranging from 4. 50 X 10(-5) approximately 7. 53 X 10(-5) a-1' and the risk for children ranging from 6. 29 X 10(-5) to 1. 05 X 10(-4) a-1. The health risk levels caused by non-carcinogenic metals ranging from 10-13 to 10(-10) a-1 were lower than the acceptable range suggested by International Commission on Radiological Protection (ICRP) and the order of the risk level of non-carcinogenic metals was Cu>Zn>Pb. The total health risk of heavy metals for adults ranging from 1. 07X 10(-4) to 1. 72X 10(-4) a-1 and for children ranging from 1. 49 X 10(-4) to 2. 40 X 10(-4) a-1 exceeded the accepted level of 5 X 10(-5) a-1 as suggested by ICRP. The health risk levels of carcinogenic metals were significantly higher than those of non-carcinogenic metals in the reservoirs for Liao River Basin.
Zha, L-Y; Xu, Z-R; Wang, M-Q; Gu, L-Y
2008-04-01
This study was conducted to determine whether chromium nanoparticle (CrNano) exhibited higher absorption efficiency and possessed unique absorption mechanism in comparison to chromium picolinate (CrPic) and chromium chloride (CrCl(3)), as was postulated by previous reports. Twenty-one-day-old Caco-2 cell monolayers grown on semipermeable membranes in Snapwell tissue culture bichambers were incubated with CrNano, CrPic or CrCl(3) to examine their transport and uptake respectively. In the concentration range of 0.2-20 micromol/l, transport of CrNano, CrPic and CrCl(3) across Caco-2 monolayers both in apical-to-basolateral and basolateral-to-apical direction was concentration-, and time-dependent, and temperature independent. The apparent permeability coefficient (P(app)) of CrNano was between 5.89 and 7.92 x 10(-6) cm/s and that of CrPic and CrCl(3) was between 3.52 and 5.31 x 10(-6) cm/s and between 0.97 and 1.37 x 10(-6) cm/s respectively. Uptake of CrNano, CrPic and CrCl(3) by both apical and basolateral membranes was concentration- and time-dependent. Uptake of CrNano by apical membrane was significantly (p < 0.05) decreased when the incubation temperature was reduced from 37 degrees C to 4 degrees C. The transport efficiency of CrNano, CrPic and CrCl(3) after incubation for 120 min at 37 degrees C was 15.83% +/- 0.76%, 9.08% +/- 0.25% and 2.11% +/- 0.53% respectively. The uptake efficiency of CrNano, CrPic and CrCl(3) was 10.08% +/- 0.76%, 4.73% +/- 0.60% and 0.88% +/- 0.08% respectively. It was concluded that the epithelial transport of CrNano, CrPic and CrCl(3) across the Caco-2 cell monolayers was mainly via passive transport pathways. In addition, CrNano exhibited considerably higher absorption efficiency than both CrPic and CrCl(3) in Caco-2 cell monolayers.
Xie, Wen-Ping; Wang, Shao-Bing; Zhu, Xin-Ping; Chen, Kun-Ci; Pan, De-Bo; Hong, Xiao-You; Yin, Yi
2012-06-01
In order to investigate the heavy metal concentrations and their potential ecological risks in surface sediments of lower reaches and estuary of Pearl River, 21 bottom sediment samples were collected from lower reaches and estuary of Pearl River. Total contents of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Pb and Hg in these samples were measured by the inductively coupled plasma mass spectrometry (ICP-MS) and the atomic fluorescence spectrometry (AFS) and using the index of geoaccumulation and the potential ecological risk index to evaluate the pollution degree of heavy metals in the sediments. Results indicated that the concentration of total Fe and total Mn were 41658.73 and 1104.73 mg x kg(-1) respectively and toxic trace metals, such as Cr, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Pb and Hg were 86.62, 18.18, 54.10, 80.20, 543.60, 119.55, 4.28, 10.60, 20.26, 104.58 and 0.520 mg x kg(-1). The descending order of pollution degree of various metals is: Cd > As approximately Zn > Hg > Pb approximately Cu approximately Cr, while the single potential ecological risk followed the order: Cd > Hg > As > Cu > Pb > Zn > Cr. The pollution extent and potential ecological risk of Cd were the most serious among all heavy metals. The distribution pattern of Cd individual potential ecological risk indices is exactly the same as that of general potential ecological risk indices for all heavy metals. Clustering analysis indicates that the sampling stations may be classified into five groups which basically reflected the characteristics of the heavy metal contamination and sedimentation environments along the different river reaches in lower reaches and estuary of Pearl Rive. In general, the serious heavy metal pollution and the high potential ecological risk existed in three river reaches: Chengcun-Shawan, Chengcun-Shundegang and Waihai-Hutiaomen. The pollution degree and potential ecological risk are higher in related river reaches of Beijiang than that in other lower reaches and estuary of Pearl River.
Seeking Optimal Nutrition for Healthy Body Mass Reduction among Former Athletes
Maciejewska, Dominika; Michalczyk, Małgorzata; Czerwińska-Rogowska, Maja; Banaszczak, Marcin; Ryterska, Karina; Jakubczyk, Karolina; Piotrwski, Jakub; Hołowko, Joanna; Drozd, Arleta; Wysokińki, Paweł; Ficek, Krzysztof; Wilk, Krzysztof; Lubkowska, Anna; Cięszczyk, Paweł; Bertrand, Jerzy
2017-01-01
Abstract The aim of the study was to investigate the efficacy of 6 week Mediterranean diet or 30% calorie restriction on the fatty acid profile and eicosanoids (hydroxyoctadecadienoi acids and hydroxyeicosatetraenoic acids) concentration. Furthermore, basic biochemical variables such as insulin, glucose, HOMA-IR, and a lipid profile were estimated. The study enrolled 94 Caucasian former athletes aged 20-42, with body height of 179 ± 16.00 cm and body mass of 89.26 ± 13.25 kg who had not been active for at least 5 years. The subjects were randomly assigned to one of the three intervention groups: CR group – the 30% calorie restriction (n = 32), MD group - the Mediterranean diet (n = 34), and C group - a control group (n = 28). The pattern of nutrition was analysed before and after the experiment using the 72 h food diaries. In order to evaluate the effect of diet intervention, the following variables were measured: anthropometrics, basic biochemical variables (insulin, fasting glucose, HOMA-IR, lipid profile), fatty acids and their blood derivatives profiles. The CR group showed significantly lower levels of several biochemical variables, i.e., BMI, total cholesterol LDL, TG, total lipids, insulin and HOMA – IR (p < 0.05). Subjects consuming the MD diet significantly decreased their BMI and reduced the level of total lipids (p < 0.05). We did not find any significant changes in the C group. The analysis of the fatty acid profile revealed that the CR group had a significantly decreased EPA level (p < 0.05). The MD group showed a significantly increased level of the DHA (p < 0.05) and improvement in the omega - 3 index (p < 0.05). Subjects following the MD also showed significantly lower concentrations of 15 - hydroxyicosatetraenoic acid (15-HETE). We did not observe any significant differences between the CR and C groups. Within short time, calorie restriction helps to improve lipid variables and insulin resistance. The MD diet seems to be more advantageous in the decrease of inflammation, but does not improve basic biochemical variables. We can conclude that calorie restriction can be a good choice for former athletes, although EPA and DHA supplementation is needed. PMID:29339986
Ravikumar, K V G; Kumar, Deepak; Rajeshwari, A; Madhu, G M; Mrudula, P; Chandrasekaran, Natarajan; Mukherjee, Amitava
2016-02-01
In the present communication, we report a comparative study of Cr (VI) removal using biologically synthesized nano zero valent iron (BS-nZVI) and chemically synthesized nZVI (CS-nZVI), both immobilized in calcium alginate beads. The parameters like initial Cr (VI) concentration, nZVI concentration, and the contact time for Cr (VI) removal were optimized based on Box-Behnken design (BBD) by response surface modeling at a constant pH 7. Under the optimized conditions (concentration of nZVI = 1000 mg L(-1), contact time = ∼ 80 min, and initial concentration of Cr (VI) = 10 mg L(-1)), the Cr (VI) removal by the immobilized BS-nZVI and CS-nZVI alginate beads was 80.04 and 81.08 %, respectively. The adsorption of Cr (VI) onto the surface of alginate beads was confirmed by scanning electron microscopy with energy-dispersive x-ray spectroscopy (SEM-EDX), Fourier transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) analysis. The applicability of the process using both the sorbents was successfully test medium Cr (VI) spiked environmental water samples. In order to assess the ecotoxic effects of nZVI, the decline in cell viability, generation of intracellular reactive oxygen species (ROS), cell membrane damage, and biouptake was studied at 1000 mg L(-1) concentration, with five indigenous bacterial isolates from chromium-contaminated lake sediments and their consortium.
NASA Astrophysics Data System (ADS)
Gupta, Ankur; Balomajumder, Chandrajit
2017-12-01
In this study, simultaneous removal of Cr(VI) and phenol from binary solution was carried out using Fe-treated tea waste biomass. The effect of process parameters such as adsorbent dose, pH, initial concentration of Cr(VI) (mg/L), and initial concentration of phenol (mg/L) was optimized. The analysis of variance of the quadratic model demonstrates that the experimental results are in good agreement with the predicted values. Based on experimental design at an initial concentration of 55 mg/L of Cr(VI), 27.50 mg/L of phenol, pH 2.0, 15 g/L adsorbent dose, 99.99% removal of Cr(VI), and phenol was achieved.
Safety of trivalent chromium complexes: no evidence for DNA damage in human HaCaT keratinocytes.
Hininger, Isabelle; Benaraba, Rachida; Osman, Mireille; Faure, Henri; Marie Roussel, Anne; Anderson, Richard A
2007-06-15
Several studies have demonstrated beneficial effects of supplemental trivalent Cr in subjects with reduced insulin sensitivity with no documented signs of toxicity. However, recent studies have questioned the safety of supplemental trivalent Cr complexes. The objective of this study was to evaluate the cytotoxic and genotoxic potential of the Cr(III) complexes (histidinate, picolinate, and chloride) used as nutrient supplements compared with Cr(VI) dichromate. The cytotoxic and genotoxic effects of the Cr complexes were assessed in human HaCaT keratinocytes. The concentrations of Cr required to decrease cell viability were assessed by determining the ability of a keratinocyte cell line (HaCaT) to reduce tetrazolium dye, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. DNA damage using the Comet assay and the production of 8-hydroxy-2'-deoxyguanosine were also determined with and without hydrogen peroxide-induced stress. The LC50 for human cultured HaCaT keratinocytes was 50 microM for hexavalent sodium dichromate and more than 120-fold higher for Cr chloride (6 mM) and Cr histidinate (10 mM). For Cr picolinate at saturating concentration (120 microM) the LC50 was not attained. High Cr(III) concentrations, 250 microM Cr as Cr chloride and Cr histidinate and 120 microM Cr picolinate (highest amount soluble in the system), not only did not result in oxidative DNA damage but exhibited protective antioxidant effects when cells were exposed to hydrogen peroxide-induced oxidative stress. These data further support the low toxicity of trivalent Cr complexes used in nutrient supplements.
Botello, A V; Villanueva, F S; Rivera, R F; Velandia, A L; de la Lanza, G E
2018-07-01
This study focused on dating of a sediment core from the Alvarado Lagoon System, Veracruz, Mexico, calculating the sedimentation rate by using 210 Pb to determine the tendency towards pollution by polycyclic aromatic hydrocarbons, organochlorides, the metals Cd, Cr, Cu, Hg, Ni, Pb, and V, and organic matter content. The activity of total Pb and supported Pb in the samples was 83.1 and 29.5 Bq kg -1 , respectively, whereas the average estimated sedimentation rate was 0.48 ± 0.09 cm per year -1 . The organic matter values exhibited linear behavior throughout the historical profile, with values under 2.5%. Metal concentrations followed the order V > Cr > Ni > Cu > Pb > Hg > Cd. Variations found in Cr, Ni, Pb, and V concentrations are basically due to three meteorological phenomena that hit the region: hurricanes Gladys, Hilda, and Janet in September of 1955. V, Ni, and Hg input comes from anthropogenic and lithogenic sources. The presence of individual polycyclic aromatic hydrocarbons showed no ascending accumulation pattern over time, nor did it show any significant statistical correlation to OM. As for the organochlorine pesticides, 63.61% of the total sum of these compounds were from the ciclodienics family. Concentration of p,p'-DDT was observed only in the earliest profile, from 1929.
Analysis of snow-cap pollution for air quality assessment in the vicinity of an oil refinery.
Krastinyte, Viktorija; Baltrenaite, Edita; Lietuvninkas, Arvydas
2013-01-01
Snow-cap can be used as a simple and effective indicator of industrial air pollution. In this study snow-cap samples were collected from 11 sites located in the vicinity of an oil refinery in Mazeikiai, a region in the north-west of Lithuania, in the winter of 2011. Analysis of snowmelt water and snow-dust was used to determine anthropogenic pollutants such as: sulphates and chlorides, nitrites, nitrates, ammonium nitrogen, total carbon, total nitrogen; heavy metals: lead (Pb), copper (Cu), chromium (Cr), cadmium (Cd). Concentrations of heavy metals in snow-dust were detected thousands of times higher than those in the snowmelt water. In this study, analysis of heavy metal concentration was conducted considering different distances and the wind direction within the impact zone of the oil refinery. The sequence of heavy metals according to their mean concentrations in the snow-dust samples was the following: Pb > Cr > Cu > Cd. Heavy metals highly correlated among each other. The load of snow-dust was evaluated to determine the pollution level in the study area. The highest daily load of snow-dust was 45.81 +/- 12.35 mg/m2 in the north-western direction from the oil refinery. According to classification of the daily load of snow-dust a lower than medium-risk level of pollution was determined in the vicinity of the oil refinery.
Removal of hexavalent chromium by using red mud activated with cetyltrimethylammonium bromide.
Li, Deliang; Ding, Ying; Li, Lingling; Chang, Zhixian; Rao, Zhengyong; Lu, Ling
2015-01-01
The removal of hexavalent chromium [Cr(VI)] from aqueous solution by using red mud activated with cetyltrimethylammonium bromide (CTAB) was studied. The optimum operation parameters, such as CTAB concentration, pH values, contact time, and initial Cr(VI) concentration, were investigated. The best concentration of CTAB for modifying red mud was found to be 0.50% (mCTAB/VHCl,0.6 mol/L). The lower pH (<2) was found to be much more favourable for the removal of Cr(VI). Red mud activated with CTAB can greatly improve the removal ratio of Cr(VI) as high as four times than that of original red mud. Adsorption equilibrium was reached within 30 min under the initial Cr(VI) concentration of 100 mg L(-1). The isotherm data were analysed using Langmuir and Freundlich models. The adsorption of Cr(VI) on activated red mud fitted well to the Langmuir isotherm model, and the maximum adsorption capacity was estimated as 22.20 mg g(-1) (Cr/red mud). The adsorption process could be well described using the pseudo-second-order model. The result shows that activated red mud is a promising agent for low-cost water treatment.
Emissions of chromium (VI) from arc welding.
Heung, William; Yun, Myoung-Jin; Chang, Daniel P Y; Green, Peter G; Halm, Chris
2007-02-01
The presence of Cr in the +6 oxidation state (Cr[VI]) is still observed in ambient air samples in California despite steps taken to reduce emissions from plating operations. One known source of emission of Cr(VI) is welding, especially with high Cr-content materials, such as stainless steels. An experimental effort was undertaken to expand and update Cr(VI) emission factors by conducting tests on four types of arc-welding operations: gas-metal arc welding (GMAW), shielded metal arc welding (SMAW), fluxcore arc welding, and pulsed GMAW. Standard American Welding Society hood results were compared with a total enclosure method that permitted isokinetic sampling for particle size-cut measurement, as well as total collection of the aerosol. The fraction of Cr(VI) emitted per unit mass of Cr electrode consumed was determined. Consistent with AP-42 data, initial results indicate that a significant fraction of the total Cr in the aerosol is in the +6 oxidation state. The fraction of Cr(VI) and total aerosol mass produced by the different arc welding methods varies with the type of welding process used. Self-shielded electrodes that do not use a shield gas, for example, SMAW, produce greater amounts of Cr(VI) per unit mass of electrode consumed. The formation of Cr(VI) from standard electrode wires used for welding mild steel was below the method detection limit after eliminating an artifact in the analytical method used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, Young-Ok; Pratheeshkumar, Poyil; Wang, Lei
Cr(VI) compounds are known human carcinogens that primarily target the lungs. Cr(VI) produces reactive oxygen species (ROS), but the exact effects of ROS on the signaling molecules involved in Cr(VI)-induced carcinogenesis have not been extensively studied. Chronic exposure of human bronchial epithelial cells to Cr(VI) at nanomolar concentrations (10–100 nM) for 3 months not only induced cell transformation, but also increased the potential of these cells to invade and migrate. Injection of Cr(VI)-stimulated cells into nude mice resulted in the formation of tumors. Chronic exposure to Cr(VI) increased levels of intracellular ROS and antiapoptotic proteins. Transfection with catalase or superoxidemore » dismutase (SOD) prevented Cr(VI)-mediated increases in colony formation, cell invasion, migration, and xenograft tumors. While chronic Cr(VI) exposure led to activation of signaling cascades involving PI3K/AKT/GSK-3β/β-catenin and PI3K/AKT/mTOR, transfection with catalase or SOD markedly inhibited Cr(VI)-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the Cr(VI)-mediated increase in total and active β-catenin proteins and colony formation. In particular, Cr(VI) suppressed autophagy of epithelial cells under nutrition deprivation. Furthermore, there was a marked induction of AKT, GSK-3β, β-catenin, mTOR, and carcinogenic markers in tumor tissues formed in mice after injection with Cr(VI)-stimulated cells. Collectively, our findings suggest that ROS is a key mediator of Cr(VI)-induced carcinogenesis through the activation of PI3K/AKT-dependent GSK-3β/β-catenin signaling and the promotion of cell survival mechanisms via the inhibition of apoptosis and autophagy. - Highlights: • Chronic exposure to Cr(VI) induces carcinogenic properties in BEAS-2B cells. • ROS play an important role in Cr(VI)-induced tumorigenicity of BEAS-2B cells. • PI3K/AKT/GSK-3β/β-catenin signaling involved in Cr(VI) carcinogenesis. • The inhibition of apoptosis and autophagy contributes to Cr(VI) carcinogenesis.« less
Modelling biological Cr(VI) reduction in aquifer microcosm column systems.
Molokwane, Pulane E; Chirwa, Evans M N
2013-01-01
Several chrome processing facilities in South Africa release hexavalent chromium (Cr(VI)) into groundwater resources. Pump-and-treat remediation processes have been implemented at some of the sites but have not been successful in reducing contamination levels. The current study is aimed at developing an environmentally friendly, cost-effective and self-sustained biological method to curb the spread of chromium at the contaminated sites. An indigenous Cr(VI)-reducing mixed culture of bacteria was demonstrated to reduce high levels of Cr(VI) in laboratory samples. The effect of Cr(VI) on the removal rate was evaluated at concentrations up to 400 mg/L. Following the detailed evaluation of fundamental processes for biological Cr(VI) reduction, a predictive model for Cr(VI) breakthrough through aquifer microcosm reactors was developed. The reaction rate in batch followed non-competitive rate kinetics with a Cr(VI) inhibition threshold concentration of approximately 99 mg/L. This study evaluates the application of the kinetic parameters determined in the batch reactors to the continuous flow process. The model developed from advection-reaction rate kinetics in a porous media fitted best the effluent Cr(VI) concentration. The model was also used to elucidate the logistic nature of biomass growth in the reactor systems.
Huybrechts, I; Börnhorst, C; Pala, V; Moreno, L A; Barba, G; Lissner, L; Fraterman, A; Veidebaum, T; Hebestreit, A; Sieri, S; Ottevaere, C; Tornaritis, M; Molnár, D; Ahrens, W; De Henauw, S
2011-04-01
Measuring dietary intake in children is notoriously difficult. Therefore, it is crucial to evaluate the performance of dietary intake assessment methods in children. Given the important contribution of milk consumption to calcium (Ca) and potassium (K) intakes, urinary calcium (UCa) and potassium (UK) excretions in spot urine samples could be used for estimating correlations with milk consumption frequencies. The aim of this study was to evaluate the assessment of milk consumption frequencies derived from the Food Frequency Questionnaire section of the Children's Eating Habits Questionnaire (CEHQ-FFQ) used in the IDEFICS (Identification and prevention of dietary- and lifestyle induced health effects in children and infants) study by comparing with UCa and UK excretions in spot urine samples. This study was conducted as a setting-based community-oriented intervention study and results from the first cross-sectional survey have been included in the analysis. A total of 10,309 children aged 2-10 years from eight European countries are included in this analysis. UCa and UK excretions were measured in morning spot urine samples. Calcium and potassium urine concentrations were standardised for urinary creatinine (Cr) excretion. Ratios of UCa/Cr and UK/Cr were used for multivariate regression analyses after logarithmic transformation to obtain normal distributions of data. Milk consumption frequencies were obtained from the CEHQ-FFQ. Multivariate regression analyses were used to investigate the effect of milk consumption frequencies on UCa and UK concentrations, adjusting for age, gender, study centre, soft drink consumption and frequency of main meals consumed at home. A significant positive correlation was found between milk consumption frequencies and ratios of UK/Cr and a weaker but still significant positive correlation with ratios of UCa/Cr, when using crude or partial Spearman's correlations. Multivariate regression analyses showed that milk consumption frequencies were predictive of UCa/Cr and UK/Cr ratios, when adjusted for age, gender, study centre, soft drink consumption and frequency of main meals consumed at home. Mean ratios of UK/Cr for increasing milk consumption frequency tertiles showed a progressive increase in UK/Cr. Children consuming at least two milk servings per day had significantly higher mean UCa/Cr and UK/Cr ratios than children who did not. Large differences in correlations between milk consumption frequencies and ratios of UCa/Cr and UK/Cr were found between the different study centres. Higher milk consumption frequencies resulted in a progressive increase in UK/Cr and UCa/Cr ratios, reflecting the higher Ca and K intakes that coincide with increasing milk consumption, which constitutes a major K and Ca source in children's diet.
Serrano, M A; Salvador, A; González-Bono, E G; Sanchís, C; Suay, F
2001-06-01
Relationships between perceived exertion and blood lactate have usually been studied in laboratory or training contexts but not in competition, the most important setting in which sports performance is evaluated. The purpose of this study was to examine the relationships between psychological and physiological indices of the physical effort in a competition setting, taking into account the duration of effort. For this, we employed two Ratings of Perceived Exertion (RPE and CR-10) and lactic acid plasma concentration as a biological marker of the effort performed. 13 male judo fighters who participated in a sports club competition provided capillary blood samples to assay lactate concentrations and indicated on scale their Recall of Perceived Exertion in the total competition and again in just the Last Fight to compare the usefulness of RPE and CR-10 in assessing discrete bouts of effort and a whole session. Analysis showed that perceived exertion or the effort made during the whole competition was positively and significantly related to maximal lactate concentration and lactate increase in competition, thus extending the validity of this scale to sports contests. The Recall of Perceived Exertion scores were not significantly correlated with the duration of effort.
Li, Yu; Li, Hong-Guan; Liu, Fu-Cheng
2017-01-01
Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had significant negative correlations with total Cu, Pb, Cr, Zn, Cd, and heavy metal fractions. This showed that alkaline phosphatase activity was sensitive to heavy metals in heavily contaminated regions, whereas urease and invertase were less affected. The combination of the various methods may offer a powerful analytical technique in the study of heavy metal pollution in street soil.
Sayantan, D; Shardendu
2013-09-01
Chromium (Z=24), a d-block element, is a potent carcinogen, whereas phosphorus is an essential and limiting nutrient for the plant growth and development. This study undertakes the role of phosphorus in moderating the chromium toxicity in Raphanus sativus L., as both of them compete with each other during the uptake process. Two-factor complete randomized experiment (5 chromium × 5 phosphorus concentrations) was conducted for twenty eight days in green house. The individuals of R. sativus were grown in pots supplied with all essential nutrients. The toxic effects of chromium and the moderation of toxicity due to phosphorus amendment were determined as accumulation of chromium, nitrogen, phosphorus in root tissues and their effects were also examined in the changes in biomass, chlorophyll and antioxidant enzyme levels. Cr and N accumulation were almost doubled at the highest concentration of Cr supply, without any P amendment, whereas at the highest P concentration (125 mM), the accumulation was reduced to almost half. A significant reduction in toxic effects of Cr was determined as there was three-fold increase in total chlorophyll and biomass at the highest P amendment. Antioxidant enzymes like superoxide dismutase, catalase, peroxidase and lipid peroxidation were analyzed at various levels of Cr each amended with five levels of P. It was observed that at highest level of P amendment, the reduction percentage in toxicity was 33, 44, 39 and 44, correspondingly. Conclusively, the phosphorus amendment moderates the toxicity caused by the supplied chromium in R. sativus. This finding can be utilized to develop a novel technology for the amelioration of chromium stressed fields. Copyright © 2013 Elsevier Inc. All rights reserved.
Unprecedented concentrations of indigenous amino acids in primitive CR meteorites
NASA Astrophysics Data System (ADS)
Ehrenfreund, Pascale; Martins, Zita; Alexander, Conel; Orzechowska, Grazyna; Fogel, Marylin
CR meteorites are among the most primitive meteorites. We have performed pioneering work determining the compositional characteristics of amino acids in this type of carbonaceous chondrites. We report the first measurements of amino acids in Antarctic CR meteorites, two of which show the highest amino acid concentrations ever found in a chondrite. We have analyzed the amino acid content of the Antarctic CRs EET92042, GRA95229 and GRO95577 using high performance liquid chromatography with UV fluorescence detection (HPLC-FD) and gas chromatography-mass spectrometry (GC-MS). Additionally, compound-specific carbon isotopic measurements for most of the individual amino acids from the EET92042 and GRA95229 meteorites were achieved by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Our data show that EET92042 and GRA95229 are the most amino acid-rich chondrites ever analyzed, with total amino acid concentrations of 180 and 249 parts-per-million (ppm), respectively. GRO95577, however, is depleted in amino acids (<1 ppm). The most abundant amino acids present in the EET92042 and GRA95229 meteorites are the α-amino acids glycine, isovaline, α-aminoisobutyric acid (α-AIB), and alanine, with δ 13 C values ranging from +31.6% to +50.5%. The highly enriched carbon isotope results together with racemic enantiomeric ratios determined for most amino acids indicate that primitive organic matter was preserved in these meteorites. In addition, the relative abundances of α-AIB and β-alanine amongst Antarctic CR meteorites appear to correspond to the degree of aqueous alteration on their respective parent body. Investigating the abundances and isotopic composition of amino acids in primitive chondrites helps to understand the role of meteorites as a source of extraterrestrial prebiotic organic compounds to the early Earth.
Assessment of selected metals in the ambient air PM10 in urban sites of Bangkok (Thailand).
Pongpiachan, Siwatt; Iijima, Akihiro
2016-02-01
Estimating the atmospheric concentrations of PM10-bounded selected metals in urban air is crucial for evaluating adverse health impacts. In the current study, a combination of measurements and multivariate statistical tools was used to investigate the influence of anthropogenic activities on variations in the contents of 18 metals (i.e., Al, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Ba, La, Ce and Pb) in ambient air. The concentrations of PM10-bounded metals were measured simultaneously at eight air quality observatory sites during a half-year period at heavily trafficked roads and in urban residential zones in Bangkok, Thailand. Although the daily average concentrations of Al, V, Cr, Mn and Fe were almost equivalent to those of other urban cities around the world, the contents of the majority of the selected metals were much lower than the existing ambient air quality guidelines and standard limit values. The sequence of average values of selected metals followed the order of Al > Fe > Zn > Cu > Pb > Mn > Ba > V > Sb > Ni > As > Cr > Cd > Se > Ce > La > Co > Sc. The probability distribution function (PDF) plots showed sharp symmetrical bell-shaped curves in V and Cr, indicating that crustal emissions are the predominant sources of these two elements in PM10. The comparatively low coefficients of divergence (COD) that were found in the majority of samples highlight that site-specific effects are of minor importance. A principal component analysis (PCA) revealed that 37.74, 13.51 and 11.32 % of the total variances represent crustal emissions, vehicular exhausts and the wear and tear of brakes and tires, respectively.
Tile drainage phosphorus loss with long-term consistent cropping systems and fertilization.
Zhang, T Q; Tan, C S; Zheng, Z M; Drury, C F
2015-03-01
Phosphorus (P) loss in tile drainage water may vary with agricultural practices, and the impacts are often hard to detect with short-term studies. We evaluated the effects of long-term (≥43 yr) cropping systems (continuous corn [CC], corn-oats-alfalfa-alfalfa rotation [CR], and continuous grass [CS]) and fertilization (fertilization [F] vs. no-fertilization [NF]) on P loss in tile drainage water from a clay loam soil over a 4-yr period. Compared with NF, long-term fertilization increased concentrations and losses of dissolved reactive P (DRP), dissolved unreactive P (DURP), and total P (TP) in tile drainage water, with the increments following the order: CS > CR > CC. Dissolved P (dissolved reactive P [DRP] and dissolved unreactive P [DURP]) was the dominant P form in drainage outflow, accounting for 72% of TP loss under F-CS, whereas particulate P (PP) was the major form of TP loss under F-CC (72%), F-CR (62%), NF-CS (66%), NF-CC (74%), and NF-CR (72%). Dissolved unreactive P played nearly equal roles as DRP in P losses in tile drainage water. Stepwise regression analysis showed that the concentration of P (DRP, DURP, and PP) in tile drainage flow, rather than event flow volume, was the most important factor contributing to P loss in tile drainage water, although event flow volume was more important in PP loss than in dissolved P loss. Continuous grass significantly increased P loss by increasing P concentration and flow volume of tile drainage water, especially under the fertilization treatment. Long-term grasslands may become a significant P source in tile-drained systems when they receive regular P addition. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Sainger, Poonam Ahlawat; Dhankhar, Rajesh; Sainger, Manish; Kaushik, Anubha; Singh, Rana Pratap
2011-11-01
Heavy metals concentrations of (Cr, Zn, Fe, Cu and Ni) were determined in plants and soils contaminated with electroplating industrial effluent. The ranges of total soil Cr, Zn, Fe, Cu and Ni concentrations were found to be 1443-3240, 1376-3112, 683-2228, 263-374 and 234-335 mg kg⁻¹, respectively. Metal accumulation, along with hyperaccumulative characteristics of the screened plants was investigated. Present study highlighted that metal accumulation in different plants varied with species, tissues and metals. Only one plant (Amaranthus viridis) accumulated Fe concentrations over 1000 mg kg⁻¹. On the basis of TF, eight plant species for Zn and Fe, three plant species for Cu and two plant species for Ni, could be used in phytoextraction technology. Although BAF of all plant species was lesser than one, these species exhibited high metal adaptability and could be considered as potential hyperaccumulators. Phytoremediation potential of these plants can be used to remediate metal contaminated soils, though further investigation is still needed. Copyright © 2011 Elsevier Inc. All rights reserved.
Gu, Yang-Guang; Huang, Hong-Hui; Liu, Yong; Gong, Xiu-Yu; Liao, Xiu-Li
2018-04-01
We investigated heavy metal concentrations in wild marine organisms from Maowei Sea, a significant gulf of low-latitude developing regions of the Beibu Gulf, South China Sea. Twenty species, comprising fish, cephalopods, and crustaceans were collected and analyzed for heavy metals. Heavy metal levels (mg/kg, wet weight) in the aquatic organism samples were: 0.003-1.800 for Cd, 0.02-0.14 for Pb, 0.10-0.63 for Cr, 0.20-77.50 for Cu, 9.50-64.60 for Zn, 0.006-0.066 for Hg, and 0.10-1.50 for As. Non-metric multidimensional scaling coupled with cluster analysis revealed two groupings that mainly resulted from different species of the metals in marine organisms. The highest concentrations of Cd, Pb, Cr, Ni, Cu, Zn, Hg, and As were found in species of cephalopods. Health risk assessment based on the target hazard quotients (THQ) and total THQ indicated no significant adverse health effects from consumption of marine organisms. Copyright © 2018 Elsevier B.V. All rights reserved.
Bustamante, P; Garrigue, C; Breau, L; Caurant, F; Dabin, W; Greaves, J; Dodemont, R
2003-01-01
Liver, muscle and blubber tissues of two short-finned pilot whales (Globicephala macrorhynchus) and two pygmy sperm whales(Kogia breviceps) stranded on the coast of New Caledonia have been analysed for 12 trace elements (Al, Cd, Co, Cr, Cu. Fe, organic and total Hg, Mn, Ni, Se, V, and Zn). Liver was shown to be the most important accumulating organ for Cd, Cu, Fe, Hg, Se, and Zn in both species, G. macrorhynchus having the highest Cd, Hg, Se and Zn levels. In this species, concentrations of total Hg are particularly elevated, reaching up to 1452 microg g(-1) dry wt. Only a very low percentage of the total Hg was organic. In both species,the levels of Hg are directly related to Se in liver. Thus, a molar ratio of Hg:Se close to 1.0 was found for all specimens, except for the youngest K. breviceps. Our results suggest that G. macrorhynchus have a physiology promoting the accumulation of high levels of naturally occurring toxic elements. Furthermore, concentrations of Ni, Cr and Co are close to or below the detection limit in the liver and muscles of all specimens. This suggests that mining activity in New Caledonia, which typically elevates the levels of these contaminants in the marine environment, does not seem to be a significant source of contamination for these pelagic marine mammals.
Stackpoole, Sarah M.; Stets, Edward G.; Striegl, Robert G.
2014-01-01
A nested sampling network on the Colorado (CR) and Missouri Rivers (MR) provided data to assess impacts of large-scale reservoir systems and climate on carbon export. The Load Estimator (LOADEST) model was used to estimate both dissolved inorganic and organic carbon (DIC and DOC) fluxes for a total of 22 sites along the main stems of the CR and MR. Both the upper CR and MR DIC and DOC fluxes increased longitudinally, but the lower CR fluxes decreased while the lower MRs continued to increase. We examined multiple factors through space and time that help explain these flux patterns. Seasonal variability in precipitation and temperature, along with site-level concentration versus discharge relationships proved to be significant factors explaining much of the difference among sites located below reservoirs as compared to sites located in more free-flowing segments of the river. The characterization of variability in carbon exports over space and time provides a basis for understanding carbon cycling and transport within river basins affected by large reservoir systems, particular in arid-to semi-arid ecosystems.
Seebeck Coefficient of Cation-Substituted Disulfides CuCr1-x Fe x S2 and Cu1-x Fe x CrS2
NASA Astrophysics Data System (ADS)
Korotaev, Evgeniy V.; Syrokvashin, Mikhail M.; Filatova, Irina Yu.; Pelmenev, Konstantin G.; Zvereva, Valentina V.; Peregudova, Natalya N.
2018-03-01
The effect of cation substitution on the Seebeck coefficient of CuCr1-x Fe x S2 (x = 0 to 0.30) and Cu1-x Fe x CrS2 (x = 0 to 0.03) in the temperature range of 100 K to 450 K has been investigated. Increasing iron concentration led to a metal-insulator transition which suppressed the thermoelectric power. However, for low iron concentration (x < 0.03), the Seebeck coefficient of CuCr1-x Fe x S2 and Cu1-x Fe x CrS2 exceeded the values for the undoped copper-chromium disulfide matrix CuCrS2 at temperature below 300 K.
Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals.
Joe-Wong, Claresta; Brown, Gordon E; Maher, Kate
2017-09-05
Hexavalent chromium is a water-soluble pollutant, the mobility of which can be controlled by reduction of Cr(VI) to less soluble, environmentally benign Cr(III). Iron(II/III)-bearing clay minerals are widespread potential reductants of Cr(VI), but the kinetics and pathways of Cr(VI) reduction by such clay minerals are poorly understood. We reacted aqueous Cr(VI) with two abiotically reduced clay minerals: an Fe-poor montmorillonite and an Fe-rich nontronite. The effects of ionic strength, pH, total Fe content, and the fraction of reduced structural Fe(II) [Fe(II)/Fe(total)] were examined. The last variable had the largest effect on Cr(VI) reduction kinetics: for both clay minerals, the rate constant of Cr(VI) reduction varies by more than 3 orders of magnitude with Fe(II)/Fe(total) and is described by a linear free energy relationship. Under all conditions examined, Cr and Fe K-edge X-ray absorption near-edge structure spectra show that the main Cr-bearing product is a Cr(III)-hydroxide and that Fe remains in the clay structure after reacting with Cr(VI). This study helps to quantify our understanding of the kinetics of Cr(VI) reduction by Fe(II/III)-bearing clay minerals and may improve predictions of Cr(VI) behavior in subsurface environments.
Application of concentration ratios to analyze the phenomenon of "next-door" pharmacy in Taiwan.
Ji Chen, Tzeng; Chou, Li-Fang; Hwang, Shinn Jang
2006-08-01
In Taiwan, a policy of separation of prescribing and dispensing practices of practitioners at Western medical and dental clinics was implemented on an incremental basis in 1997. The purpose of this policy was to promote pharmacists' autonomy and increase the transparency and safety of prescribing medications. To avoid profit loss from no longer being able to dispense prescription medications, some clinics opened pharmacies located under the same roof as the clinic ("next-door" pharmacies) or hired an on-site pharmacist. This practice might compromise pharmacists' professional autonomy and patients' benefit in pharmaceutical care. The aim of the current study was to clarify the relationship between practicing pharmacies and clinics that resulted from contracts between pharmacies and the Bureau of National Health Insurance from 1996 to 2004. The National Health Research Institutes database in Taiwan supplied the complete claims data sets of practicing pharmacies from 1997 to 2004. The prescribing source of every dispensed prescription was used to calculate the 1-firm concentration ratio (CR-1) (ie, the proportion of prescriptions issued by the largest prescribing clinic/hospital in the total number of dispensed prescriptions of a pharmacy in each year). Similar processing was applied to the clinics. We identified each clinic's largest cooperating pharmacy and compared their CR-1s. Pharmacies that dispensed >900 prescriptions/mo during the study period were considered thriving. Pharmacies with a CR-1 > or =0.99 and whose largest cooperating clinic had a CR-1 > or =0.99 were considered to have a close business relationship, possibly indicating a next-door pharmacy. The total number of prescriptions dispensed at all pharmacies in the database grew from 226,901 in 1996 to 59,785,039 in 2004, and the number of pharmacies, from 481 to 3529. An increasing number of pharmacies had a higher CR-1 after 1999. We found that most prescriptions could be dispensed at only 1 pharmacy during the study period. In 2004, 1429 clinics had >900 prescriptions/mo dispensed externally and a CR-1 > or =0.99. They had released 75.8% of all prescriptions to be dispensed at practicing pharmacies; 811 of these clinics had a cooperating pharmacy with a CR-1 > or =0.99. In this data analysis in Taiwan, most prescriptions from practitioners at Western medical and dental clinics could be dispensed at only 1 pharmacy during the study period, suggesting that pharmacists' professional autonomy and the patients' benefit in pharmaceutical care might be compromised in Taiwan.
Dragicevic, Ivan; Eich-Greatorex, Susanne; Sogn, Trine A; Horn, Svein J; Krogstad, Tore
2018-07-01
Biogas digestate use as organic fertilizer has been widely promoted in recent years as a part of the global agenda on recycling waste and new sustainable energy production. Although many studies have confirmed positive effects of digestates on soil fertility, there is still lack of information on the potential adverse effects of digestates on natural soil heavy metal content, metal leaching and leaching of other pollutants. We have investigated the release of aluminium (Al) and chromium (Cr) from different soils treated with commercial digestates high in mentioned potentially problematic metals in a field experiment, while a greenhouse and a laboratory column experiment were used to address mobility of these metals in two other scenarios. Results obtained from the field experiment showed an increase in total concentrations for both investigated metals on plots treated with digestates as well as a significant increase of water-soluble Al concentrations. Factors that were found to be mostly affecting the metal mobility were dissolved organic carbon (DOC), pH and type of soil. Metal binding and free metal concentrations were modelled using the WHAM 7.0 software. Results indicated that the use of digestates with high metal content are comparable to use of animal manure with respect to metal leaching. Data obtained through chemical modelling for the samples from the field experiment suggested that an environmental risk from higher metal mobility has to be considered for Al. In the greenhouse experiment, measured concentrations of leached Cr at the end of the growing season were low for all treatments, while the concentration of leached Al from digestates was higher. The high irrigation column leaching experiment showed an increased leaching rate of Cr with addition of digestates. Copyright © 2018 Elsevier Ltd. All rights reserved.
Presence of heavy metals in fruits and vegetables: Health risk implications in Bangladesh.
Shaheen, Nazma; Irfan, Nafis Md; Khan, Ishrat Nourin; Islam, Saiful; Islam, Md Saiful; Ahmed, Md Kawser
2016-06-01
The presence of toxic heavy metals such as As, Cd, Pb, Cr, Mn, Ni, Cu, and Zn in nationally representative samples of highly consumed fruits and vegetables was determined by inductively coupled plasma mass spectrometry (ICP-MS). Their concentrations exceeded the maximum allowable concentration (MAC) set by FAO/WHO for Pb in mango and Cd in tomato among the analyzed fruits and vegetables. Pb content in mango was found to be six times higher than the safe limit at production level. Health risks associated with the intake of these metals were evaluated in terms of estimated daily intake (EDI), and carcinogenic and noncarcinogenic risks by target hazard quotient (THQ) and hazard index (HI). EDI values of all the metals were found to be below the maximum tolerable daily intake (MTDI). The THQs of all metals were <1, suggesting no health hazards for adult population. However, total THQs of Mn and Cu were >1 through consumption of all vegetables, indicating significant health risks. HI was found to be <1 (0.825) for consumption of fruits; however, it was >1 (3.727) for vegetable consumption, suggesting adverse health effects from vegetable consumption only. The total carcinogenic risk (CR) of As was below the threshold level (10(-6)) and 9.82E-05 for Pb, suggesting no potential CR from As consumption, but indicating the risk of Pb-induced carcinogenesis. The findings of this study reveal the health risks associated with the consumption of heavy metals through the intake of selected fruits and vegetables in adult population of Bangladesh. Copyright © 2016 Elsevier Ltd. All rights reserved.
Heavy metal content of combustible municipal solid waste in Denmark.
Riber, Christian; Fredriksen, Gry S; Christensen, Thomas H
2005-04-01
Data on the heavy metal composition of outlets from Danish incinerators was used to estimate the concentration of Zn, Cu, Pb, Cr, Ni, Cd, As and Hg in combustible waste (wet as received) at 14 Danish incinerators, representing about 80% of the waste incinerated in Denmark. Zn (1020 mg kg(-1)), Cu (620 mg kg(-1)) and Pb (370 mg kg(-1)) showed the highest concentration, whereas Hg (0.6 mg kg(-1)) showed the lowest concentration. The variation among the incinerators was in most cases within a factor of two to three, except for Cr that in two cases showed unexplained high concentrations. The fact that the data represent many incinerators and, in several cases, observations from a period of 4 to 5 years provides a good statistical basis for evaluating the content of heavy metals in combustible Danish waste. Such data may be used for identifying incinerators receiving waste with high concentrations of heavy metals suggesting the introduction of source control, or, if repeated in time, the data must also be used for monitoring the impacts of national regulation controlling heavy metals. It is recommended that future investigations consider the use of sample digestion methods that ensure complete digestion in order to use the data for determining the total heavy metal content of waste.
Padoan, Elio; Romè, Chiara; Ajmone-Marsan, Franco
2017-12-01
Road dust (RD), together with surface soils, is recognized as one of the main sinks of pollutants in urban environments. Over the last years, many studies have focused on total and bioaccessible concentrations while few have assessed the bioaccessibility of size-fractionated elements in RD. Therefore, the distribution and bioaccessibility of Fe, Mn, Cd, Cr, Cu, Ni, Pb, Sb and Zn in size fractions of RD and roadside soils (<2.5μm, 2.5-10μm and 10-200μm) have been studied using aqua regia extraction and the Simple Bioaccessibility Extraction Test. Concentrations of metals in soils are higher than legislative limits for Cu, Cr, Ni, Pb and Zn. Fine fractions appear enriched in Fe, Mn, Cu, Pb, Sb and Zn, and 2.5-10μm particles are the most enriched. In RD, Cu, Pb, Sb and Zn derive primarily from non-exhaust sources, while Zn is found in greater concentrations in the <2.5μm fraction, where it most likely has an industrial origin. Elemental distribution across soils is dependent on land use, with Zn, Ni, Cu and Pb being present in higher concentrations at traffic sites. In addition, Fe, Ni and Cr feature greater bioaccessibility in the two finer fractions, while anthropic metals (Cu, Pb, Sb and Zn) do not. In RD, only Zn has significantly higher bioaccessibility at traffic sites compared to background, and the finest particles are always the most bioaccessible; >90% of Pb, Zn and Cu is bioaccessible in the <2.5μm fraction, while for Mn, Ni, Sb, Fe and Cr, values vary from 76% to 5%. In the 2.5-10μm fraction, the values were 89% for Pb, 67% for Zn and 60% for Cu. These results make the evaluation of the bioaccessibility of size-fractionated particles appear to be a necessity for correct estimation of risk in urban areas. Copyright © 2017 Elsevier B.V. All rights reserved.
Ribeiro, Danielle Regina Gomes; Faccin, Henrique; Molin, Thaís Ramos Dal; de Carvalho, Leandro Machado; Amado, Lílian Lund
2017-12-15
Concentrations of As, Cd, Cu, Cr, Pb, Hg, and Ni were analyzed during rainy and dry seasons in water, sediment, soil, and two fish species. The analysis took place at four points in the Xingu River, one point in the Fresco River, and two mining pits in the southeastern area of the Eastern Amazon, Brazil. In the water, the total concentration of As (>0.14μg/L) was higher than the local reference values at all sampling points and in both seasons. Ordination analysis (PCA) highlighted As and Cu elements in the water. PERMANOVA showed that the metals behaved differently in the water throughout the monitored season and between sampling points. The sites with mining activity were the regions that were the most contaminated by metals. Samples of sediment (Ni>18mg/kg and Cr>37.30mg/kg) and soil (Pb>72mg/kg, Cr>75mg/kg and Ni>30mg/Kg) showed concentrations above the recommended by local legislation. Metal values in the muscle of both fish species were relatively low at all sampling points and in both monitored seasons. Concentrations in water, sediment, and soil showed that some points of the Xingu River, Fresco River and mining pits are contaminated by trace elements, mainly As, Hg, Cr, Pb, and Ni. This was the first study about trace elements in the Middle Xingu River, which leads us to conclude that rainfall and cassiterite mining activities strongly influence the mobilization of metals, especially in abiotic compartments. However, the fish analyzed did not exhibit relevant levels of contamination. This indicates low risk for human consumption. Additionally, results highlight the need to establish local criteria to define contamination limits for different metals while taking into account local geochemistry particularities and biome diversity. Copyright © 2017 Elsevier B.V. All rights reserved.
Kelepertzis, Efstratios
2014-02-01
The present study investigates the possible influence of human activities on metal loadings of topsoil in a typical small rural city in central Greece and the chemical quality of tap water in surrounding villages. Furthermore, the study aimed to examine potential health risks of naturally enriched heavy metals to exposed population taking into account the soil and drinking water as exposure pathways. The mean concentrations of Ni, Cr, Co, Mn, Pb, Cu, Zn and Cd in the soil were 1777, 285, 99, 946, 30, 26, 78 and 0.67 mg/kg respectively. Combination of pollution indexes based on local reference background soils and statistical analyses (correlation analysis, cluster analysis and principal component analysis) revealed that anthropogenic activities have not modified the natural soil chemistry at least in a large scale. High Hazard Quotient (HQ) values for children were estimated for Ni, Cr and Co based on total metal concentrations for the soil ingestion route (9.26E-01, 9.75E-01 and 3.45E+00 respectively). However, evaluation of HQs based on published bioaccessible concentrations suggested that the population groups would not likely experience potential health risks as a result of exposure to contaminated soils. Concentrations of Cr(VI) in tap waters were within the allowable limits. However, the risk assessment model revealed that local residents (adults) of Eleonas and Neochori villages are at some carcinogenic risks considering lifetime ingestion of water (potential cancer risks 2.05E-04 and 1.29E-04 respectively). Despite the uncertainties accompanying these procedures and the great deal of debate regarding the human carcinogenicity of Cr(VI) by the oral route, results of this study drive attention to remediation measures that should include epidemiological studies for the local population. © 2013 Published by Elsevier Inc.
Chai, Yuan; Guo, Jia; Chai, Sheli; Cai, Jing; Xue, Linfu; Zhang, Qingwei
2015-09-01
The characterization of the concentration, chemical speciation and source of heavy metals in soils is an imperative for pollution monitoring and the potential risk assessment of the metals to animal and human health. A total of 154 surface horizons and 53 underlying horizons of grassland soil were collected from the Baicheng-Songyuan area in Jilin Province, Northeast China, in which the concentrations and chemical fractionations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn were investigated. The mean concentrations of heavy metals in grassland topsoil were 7.2, 0.072, 35, 16.7, 0.014, 15.2, 18.3 and 35 mg kg(-)(1) for As, Cd, Cr, Cu, Hg, Ni, Pb and Zn, respectively, and those averaged contents were lower than their China Environmental Quality Standard values for the Soils, implying that heavy metal concentrations in the studied soils were of the safety levels. The mobility sequence of the heavy metals based on the sum of the soluble, exchangeable, carbonate-bound and humic acid-bound fractions among the seven fractions decreased in the order of Cd 50.4%)>Hg (39.8%)>Cu (26.5%)>As (19.9%)>Zn (19.1%)>Ni (15.9%)>Pb (14.1%)>Cr (4.3%), suggesting Cd and Hg may pose more potential risk of soil contamination than other metals. Multivariate statistical analysis suggested that As, Cr, Cu, Ni, Pb, Zn, Cd and Hg had the similar lithogenic sources, however, Cd and Hg were more relevant to organic matter than other heavy metals, which was confirmed by the chemical speciation analysis of the metals. The study provides a base for local authority in the studied area to monitor the long term accession of heavy metals into grassland soil. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gao, Xiaofeng; Gu, Yilu; Xie, Tian; Zhen, Guangyin; Huang, Sheng; Zhao, Youcai
2015-06-01
Total concentrations of heavy metals (Cu, Zn, Pb, Cr, Cd, and Ni) were measured among 63 samples of construction and demolition (C&D) wastes collected from chemical, metallurgical and light industries, and residential and recycled aggregates within China for risk assessment. The heavy metal contamination was primarily concentrated in the chemical and metallurgical industries, especially in the electroplating factory and zinc smelting plant. High concentrations of Cd were found in light industry samples, while the residential and recycled aggregate samples were severely polluted by Zn. Six most polluted samples were selected for deep research. Mineralogical analysis by X-ray fluorescence (XRF) spectrometry and X-ray diffraction (XRD), combined with element speciation through European Community Bureau of Reference (BCR) sequential extraction, revealed that a relatively slight corrosion happened in the four samples from electroplating plants but high transfer ability for large quantities of Zn and Cu. Lead arsenate existed in the acid extractable fraction in CI7-8 and potassium chromium oxide existed in the mobility fraction. High concentration of Cr could be in amorphous forms existing in CI9. The high content of sodium in the two samples from zinc smelter plants suggested severe deposition and erosion on the workshop floor. Large quantities of Cu existed as copper halide and most of the Zn appeared to be zinc, zinc oxide, barium zinc oxide, and zincite. From the results of the risk assessment code (RAC), the samples from the electroplating factory posed a very high risk of Zn, Cu, and Cr, a high risk of Ni, a middle risk of Pb, and a low risk of Cd. The samples from the zinc smelting plant presented a high risk of Zn, a middle risk of Cu, and a low risk of Pb, Cr, Cd, and Ni.
Chen, Hualin; Arocena, Joselito M; Li, Jianbing; Thring, Ronald W; Zhou, Jiangmin
2014-10-01
Chromium (Cr) commonly enters the food chain through uptake by vegetables. However, accurate prediction of plant uptake of Cr (and other metals) still remains a challenge. In this study, we evaluated 5 indices of availability for Cr (and other metals) to identify reliable predictors of metal transfer from soils to garlic, onion, bokchoy, radish and celery grown in soils impacted by tannery wastes. The potential bio-accumulation of Cr in humans was calculated from the Cr content of vegetable predicted by the best bio-availability index, amounts of vegetable consumed and recommended daily doses for Cr. Our results show that soil total Cr is the best predictor of Cr transfer from soils to onion (Cr in onion=8.51+0.005 Total Cr) while Cr extractable by Synthetic Precipitation Leaching Procedure at pH 5 correlates very well with Cr uptake by bokchoy (Cr bokchoy=5.86+7.32 SPLP-5 Cr) and garlic (Cr garlic=7.63+2.36 SPLP-5 Cr). The uptake of Cr by radish and celery could not be reliably estimated by any of the 5 indices of availability tested in this study. Potential bio-accumulation of Cr in humans (BA-Cr) increases from soils with low Cr (BA-Cr=11.5) to soil with high total Cr (BA-Cr=31.3). Due to numerous soil factors affecting the behavior of Cr in soils and the physiological differences among vegetables, we suggest that the prediction of the transfer of Cr (and other metals) from soils to plants should be specific to site, metal and vegetable. Potential bio-accumulation of Cr in humans can be derived from a transfer function of Cr from soils to plants and the human consumption of vegetables. Copyright © 2014 Elsevier Ltd. All rights reserved.
Malisetty, Venkateswarlu; Yerradoddi, Ramana Reddy; Devanaboina, Nagalakshmi; Mallam, Mahender; Mitta, Pavani
2014-06-01
An experiment was conducted by feeding sorghum straw (Sorghum bicolor) based complete rations at roughage concentrate ratio 70:30 (CR-I), 60:40 (CR-II), 50:50 (CR-III), and 40:60 (CR-IV) for 180 days to find out suitable ratio of sorghum straw in the complete ration (mash form) on nutrient utilization and nitrogen balance in Nellore ram lambs. The DMI (g/day) increased significantly (P < 0.05) as level of concentrate increased in complete rations. No significant difference was found in digestibilities of proximate nutrients. However, CP digestibility was higher either significantly or nonsignificantly by 2.12, 5.50, and 9.36 %, respectively, in lambs fed with CR-II (P > 0.05), CR-III (P > 0.05), and CR-IV (P < 0.05) rations in comparison to lambs fed with CR-I ration. Furthermore, CP digestibility was higher by 7.09 and 3.66 % in lambs fed with CR-IV ration than those fed with CR-II (P < 0.05) and CR-III (P > 0.05) ration. The average CWC digestibility coefficients were comparable among four rations. The N intake (g/day) was significantly (P < 0.01) different and progressively increased by 31.46, 48.69, and 82.86 % in ram lambs fed with CR-II, CR-III, and CR-IV rations, respectively, in comparison to CR-I ration. The N balance (g/day) was higher either significantly or nonsignificantly by 34.46 (P > 0.05), 133.46 (P < 0.01), and 198.87 % (P < 0.01) with CR-II, CR-III, and CR-IV rations, respectively, in comparison to CR-I ration. Based on results, it is inferred that the level of sorghum straw in complete ration had no effect on digestibility of nutrients barring crude protein in Nellore ram lambs.
[Chemical Exchange Saturation Transfer Imaging of Creatine Metabolites: a 3.0 T MRI Pilot].
Guo, Ying-kun; Li, Zhen-lin; Rong, Yu; Xia, Chun-chao; Zhang, Li-zhi; Peng, Wan-ling; Liu, Xi; Xu, Hua-yan; Zhang, Ti-jiang; Zuo, Pan-li; Schmitt, Benjamin
2016-03-01
To determine the feasibility of using chemical exchange saturation transfer (CEST) imaging to measure creatine (Cr) metabolites with 3.0 T MR. Phantoms containing different concentrations of Cr under various pH conditions were studied with CEST sequence on 3.0 T MR imaging. CEST effect and Z spectra were analyzed. Cr exhibited significant CEST effect (± 1.8 ppm, F = 99.08, P < 0.001) on 3.0 T MR imaging, and positive correlation was found between the signal intensity and concentration of Cr (r = 0.963, P < 0.001). The CEST effect showed pH dependency of Cr (r = 0.41, P = 0.035). Creatine CEST imaging can be performed on 3.0 T MR imaging. Creatine concentrations and pH influence CEST effect.
Saqib, Naeem; Bäckström, Mattias
2015-10-01
Impact of waste fuels (virgin/waste wood, mixed biofuel (peat, bark, wood chips) industrial, household, mixed waste fuel) and incineration technologies on partitioning and leaching behavior of trace elements has been investigated. Study included 4 grate fired and 9 fluidized boilers. Results showed that mixed waste incineration mostly caused increased transfer of trace elements to fly ash; particularly Pb/Zn. Waste wood incineration showed higher transfer of Cr, As and Zn to fly ash as compared to virgin wood. The possible reasons could be high input of trace element in waste fuel/change in volatilization behavior due to addition of certain waste fractions. The concentration of Cd and Zn increased in fly ash with incineration temperature. Total concentration in ashes decreased in order of Zn>Cu>Pb>Cr>Sb>As>Mo. The concentration levels of trace elements were mostly higher in fluidized boilers fly ashes as compared to grate boilers (especially for biofuel incineration). It might be attributed to high combustion efficiency due to pre-treatment of waste in fluidized boilers. Leaching results indicated that water soluble forms of elements in ashes were low with few exceptions. Concentration levels in ash and ash matrix properties (association of elements on ash particles) are crucial parameters affecting leaching. Leached amounts of Pb, Zn and Cr in >50% of fly ashes exceeded regulatory limit for disposal. 87% of chlorine in fly ashes washed out with water at the liquid to solid ratio 10 indicating excessive presence of alkali metal chlorides/alkaline earths. Copyright © 2015. Published by Elsevier B.V.
Interdiffusion in the Ni/TD-NiCr and Cr/TD-NiCr systems
NASA Technical Reports Server (NTRS)
Pawar, A. V.; Tenney, D. R.
1974-01-01
The diffusion of Ni and Cr into TD-NiCr has been studied over the 900 to 1100 C temperature range. The diffusion couples were prepared by electroplating Cr and Ni on polished TD-NiCr wafers. Concentration profiles produced as a result of isothermal diffusion at 905, 1000, and 1100 C were determined by electron microprobe analysis. The Boltzmann-Matano analysis was used to determine concentration-dependent diffusion coefficients which were found to compare favorably with previously reported values. These data suggest that 2 vol % ThO2 distribution has no appreciable effect on the rates of diffusion in TD-NiCr with a large grain size. This supports the view that an inert dispersoid in an alloy matrix will not in itself lead to enhanced diffusion unless a short-circuit diffusion structure is stabilized.
Meena, Amanda H; Arai, Yuji
2016-01-01
Reductive precipitation of hexavalent chromium (Cr(VI)) with magnetite is a well-known Cr(VI) remediation method to improve water quality. The rapid (
Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.; Verplanck, Philip L.; Sturtevant, Sabin A.
2002-01-01
Sixty-seven water analyses are reported for samples collected from 44 hot springs and their overflow drainages and two ambient-temperature acid streams in Yellowstone National Park (YNP) during 1990-2000. Thirty-seven analyses are reported for 1999, 18 for June of 2000, and 12 for September of 2000. These water samples were collected and analyzed as part of research investigations in YNP on microbially mediated sulfur oxidation in stream water, arsenic and sulfur redox speciation in hot springs, and chemical changes in overflow drainages that affect major ions, redox species, and trace elements. Most samples were collected from sources in the Norris Geyser Basin. Two ambient-temperature acidic stream systems, Alluvium and Columbine Creeks and their tributaries in Brimstone Basin, were studied in detail. Analyses were performed at or near the sampling site, in an on-site mobile laboratory truck, or later in a USGS laboratory, depending on stability of the constituent and whether or not it could be preserved effectively. Water temperature, specific conductance, pH, Eh, dissolved oxygen (D.O.), and dissolved H2S were determined on-site at the time of sampling. Alkalinity, acidity, and F were determined within a few days of sample collection by titration with acid, titration with base, and ion-selective electrode or ion chromatography (IC), respectively. Concentrations of S2O3 and SxO6 were determined as soon as possible (minutes to hours later) by IC. Concentrations of Br, Cl, NH4, NO2, NO3, SO4, Fe(II), and Fe(total) were determined within a few days of sample collection. Densities were determined later in the USGS laboratory. Concentrations of Li and K were determined by flame atomic absorption spectrometry. Concentrations of Al, As(total), B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), K, Li, Mg, Mn, Na, Ni, Pb, Se, Si, Sr, V, and Zn were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of Cd, Cr, Cu, Pb, and Sb were determined by Zeeman-corrected graphitefurnace atomic-absorption spectrometry. Trace concentrations of As(total) and As(III) were determined by hydride generation atomic-absorption spectrometry using a flow-injection analysis system. Concentrations of Cl, NO3, Br, and SO4 were determined by IC. Concentrations of Fe(II) and Fe(total) were determined by the ferrozine colorimetric method. Concentrations of NO2 were determined by colorimetry using matrix-matched standards. Concentrations of NH4 were determined by IC, with reanalysis by colorimetry where separation of Na and NH4 peaks was poor. Dissolved organic carbon (DOC) concentrations were determined by the wet persulfate oxidation method.
Kumari, Nagireddy Nalini; Reddy, Yerradoddi Ramana; Blummel, Michel; Nagalakshmi, Devanaboyina; Monika, Thamatam; Reddy, Belum Venkata Subba; Reddy, Chintalapani Ravinder
2013-02-01
Different roughage-to-concentrate ratios of sweet sorghum bagasse (SSB) (a by-product of the biofuel industry)-based complete diets were assessed. Twenty four growing Nellore × Deccani ram lambs aged about 3 months (average body wt., 10.62 ± 0.25 kg) were randomly allotted to four complete rations (CR) varying in roughage-to-concentrate ratios viz. 60:40 (CR-I), 50:50 (CR-II), 40:60 (CR-III) and 30:70(CR-IV) for a period of 180 days. The feed intake was comparable among the lambs fed different experimental complete diets. Average daily weight gain (in grams) was 77.31 ± 4.90, 81.76 ± 5.16, 85.83 ± 2.83 and 86.30 ± 3.25, and feed conversion ratio (in kilograms of feed per kilogram gain) averaged 11.42 ± 0.68, 10.57 ± 0.64, 10.17 ± 0.37 and 9.96 ± 0.38 in ram lambs fed CR-I, CR-II, CR-III and CR-IV rations, respectively. Statistically, differences in daily weight gain and feed conversion ratio among the lambs fed four experimental rations were not significant (P > 0.05). The cost per kilogram gain was significantly (P < 0.01) higher in ram lambs fed CR-IV and CR-III rations compared to CR-I ration, and it was comparable between CR-I and CR-II rations. Dressing percentage averaged 44.90 ± 0.15, 42.57 ± 0.72, 43.67 ± 0.16 and 44.42 ± 0.76 for the respective diets. No significant difference and trend was observed in preslaughter weight, empty body weight, carcass weights, dressing percentage, wholesale cuts and edible and non-edible portions of experimental animals. Similarly, no significant variation could be seen in bone and meat yield (in per cent) and their ratios in various wholesale cuts among the dietary treatments. The roughage-to-concentrate ratio did not affect the chemical composition of meat; however, the fat content of meat was linearly increased with increase in the proportion of concentrate in the diets. The results of the experiment indicated that SSB can be included at 60 % level in the complete diet for economical mutton production from growing Nellore × Deccani ram lambs.
Xu, Jiawen; Wu, Cuiyu; Deng, Jianbin; Liao, Wenwei; Ling, Yuxiang; Yang, Yuanxiu; Zhao, Yina; Zhao, Yunlin; Hu, Xi; Wang, Hui; Liu, Yunguo
2017-01-01
A method for grafting ethylenediamine to a magnetic graphene oxide composite (EDA-GO@Fe3O4) was developed for Cr(VI) decontamination. The physicochemical properties of EDA-GO@Fe3O4 were characterized using HRTEM, EDS, FT-IR, TG-DSC, and XPS. The effects of pH, sorbent dose, foreign anions, time, Cr(VI) concentration, and temperature on decontamination process were studied. The solution pH can largely affect the decontamination process. The pseudo-second-order model is suitable for being applied to fit the adsorption processes of Cr(VI) with GO@Fe3O4 and EDA-GO@Fe3O4. The intra-particle diffusion is not the rate-controlling step. Isotherm experimental data can be described using the Freundlich model. The effects of multiple factors on the Cr(VI) decontamination was investigated by a 25−1 fractional factorial design (FFD). The adsorption process can significantly be affected by the main effects of A (pH), B (Cr(VI) concentration), and E (Adsorbent dose). The combined factors of AB (pH × Cr(VI) concentration), AE (pH × Adsorbent dose), and BC (Cr(VI) concentration × Temperature) had larger effects than other factors on Cr(VI) removal. These results indicated that EDA-GO@Fe3O4 is a potential and suitable candidate for treatment of heavy metal wastewater. PMID:29084287
Kerr, B J; Weber, T E; Ziemer, C J
2015-05-01
Use of indigestible markers such as Cr2O3, Fe2O3, and TiO2 are commonly used in animal studies to evaluate digesta rate of passage and nutrient digestibility. Yet, the potential impact of indigestible markers on fecal microbial ecology and subsequent VFA generation is not known. Two experiments utilizing a total of 72 individually fed finishing pigs were conducted to describe the impact of dietary markers on fecal microbial ecology, fecal ammonia and VFA concentrations, nutrient digestibility, and pig performance. All pigs were fed a common diet with no marker or with 0.5% Cr2O3, Fe2O3, or TiO2. In Exp. 1, after 33 d of feeding, fresh fecal samples were collected for evaluation of microbial ecology, fecal ammonia and VFA concentrations, and nutrient digestibility, along with measures of animal performance. No differences were noted in total microbes or bacterial counts in pig feces obtained from pigs fed the different dietary markers while Archaea counts were decreased (P = 0.07) in feces obtained from pigs fed the diet containing Fe2O 3compared to pigs fed the control diet. Feeding Cr2O3, Fe2O3, or TiO2 increased fecal bacterial richness (P = 0.03, 0.01, and 0.10; respectively) when compared to pigs fed diets containing no marker, but no dietary marker effects were noted on fecal microbial evenness or the Shannon-Wiener index. Analysis of denaturing gradient gel electrophoresis gels did not reveal band pattern alterations due to inclusion of dietary markers in pig diets. There was no effect of dietary marker on fecal DM, ammonia, or VFA concentrations. Pigs fed diets containing Cr2O3 had greater Ca, Cu, Fe, and P (P ≤ 0.02), but lower Ti ( P= 0.08) digestibility compared to pigs fed the control diet. Pigs fed diets containing Fe2O3 had greater Ca (P = 0.08) but lower Ti (P = 0.01) digestibility compared to pigs fed the control diet. Pigs fed diets containing TiO2 had greater Fe and Zn (P ≤ 0.09), but lower Ti ( P= 0.01) digestibility compared to pigs fed the control diet. In Exp. 2, no effect of dietary marker on pig performance was noted. Overall, the data indicate that the inclusion of Cr2O3, Fe2O3, or TiO2 as digestibility markers have little to no impact on microbial ecology, fecal ammonia or VFA concentrations, nutrient digestibility, or pig growth performance indicating they are suitable for use in digestion studies.
Ostojic, Sergej M; Stojanovic, Marko; Drid, Patrik; Hoffman, Jay R
2014-12-01
Guanidinoacetic acid (GAA) is an intermediate in the biosynthesis of creatine (Cr), yet its use in human nutrition is limited due to a lack of a clear understanding of its' dose-response effect. Thus, the purpose of this study was to investigate the effect of three different dosages of GAA (1.2, 2.4 and 4.8 g/day) administered for 6 weeks on serum and urinary variables related to GAA metabolism. Forty-eight healthy volunteers participated in the randomized, placebo-controlled, double-blind, repeated-measure study. At baseline, after 1, 2, 4 and 6 weeks, participants provided both fasting blood samples and 24-h urine. GAA intervention significantly increased serum and urinary GAA, Cr and creatinine as compared to placebo (P < 0.05). Differences were found for serum GAA and Cr responses between the three GAA dosages, with high-dose GAA resulting in a greater increase (P < 0.05) in the plasma concentration of both variables as compared to other GAA dosages. In GAA groups, fasting plasma total homocysteine (T-Hcy) increased by 3.5 μmol/L on average at post-administration, yet no dose-response differences were found between trials. Serum B vitamins were not affected by either placebo or GAA intervention (P > 0.05). Results indicate that low-to-high dosages of exogenous GAA can increase serum concentrations of Cr and T-Hcy while not depleting the B vitamins pool available for remethylation of homocysteine. ClinicalTrials.gov, identification number NCT01133899.
Li, De'an; Jiang, Jianguo; Li, Tianran; Wang, Jiaming
2016-07-01
Soil was examined for vanadium (V) and related metal contamination near a stone coal mine in Hubei Province, China. In total, 92 surface and vertical (0-200 cm) soil samples were collected from the site. A handheld X-ray fluorescence spectrometer was used for in situ analysis of the soil concentrations of heavy metals, including V, chromium (Cr), copper (Cu), manganese (Mn), zinc (Zn), and lead (Pb). The mean concentrations of these metals were 931, 721, 279, 223, 163, and 11 mg/kg, respectively. Based on the Chinese Environmental Quality Standard for Soils guidelines, up to 88.0, 76.1, and 56.5 % of the soil samples had single factor pollution indices >3 for V, Cr, and Cu, respectively. Furthermore, 2.2 % of samples were slightly polluted with Zn, while there was no Mn or Pb contamination. GaussAmp curve fitting was performed based on the sample frequency distribution of the Nemerow pollution index. The fitted mean was 5.99, indicating severe pollution. The heavy metals were clustered into two groups, V/Cr/Cu/Zn and Mn/Pb, based on the spatial distributions, the Pearson correlation and principal component analyses. The positive correlations within the V/Cr/Cu/Zn group suggested that they originated from roasted stone coal slag. Finally, the negative correlation between the two groups was attributed to mechanical mixing of the slag and original soil.
Simultaneous Cr(VI) bio-reduction and methane production by anaerobic granular sludge.
Hu, Qian; Sun, Jiaji; Sun, Dezhi; Tian, Lan; Ji, Yanan; Qiu, Bin
2018-08-01
Wastewater containing toxic hexavalent chromium (Cr(VI)) were treated with well-organized anaerobic granular sludge in this study. Results showed that the anaerobic granular sludge rapidly removed Cr(VI), and 2000 µg·L -1 Cr(VI) was completely eliminated within 6 min, which was much faster than the reported duration of removal by reported artificial materials. Sucrose added as a carbon source acted as an initial electron donor to reduce Cr(VI) to Cr(III). This process was considered as the main mechanism of Cr(VI) removal. Methane production by anaerobic granular sludge was improved by the addition of Cr(VI) at a concentration lower than 500 µg·L -1 . Anaerobic granular sludge had a well-organized structure, which presented good resistance against toxic Cr(VI). Trichoccus accelerated the degradation of organic substances to generate acetates with a low Cr(VI) concentration, thereby enhancing methane production by acetotrophic methanogens. Copyright © 2018 Elsevier Ltd. All rights reserved.
Alloying and Properties of C14–NbCr2 and A15–Nb3X (X = Al, Ge, Si, Sn) in Nb–Silicide-Based Alloys
Tsakiropoulos, Panos
2018-01-01
The oxidation of Nb–silicide-based alloys is improved with Al, Cr, Ge or Sn addition(s). Depending on addition(s) and its(their) concentration(s), alloyed C14-AB2 Laves and A15-A3X phases can be stable in the microstructures of the alloys. In both phases, A is the transition metal(s), and B and X respectively can be Cr, Al, Ge, Si or Sn, and Al, Ge, Si or Sn. The alloying, creep and hardness of these phases were studied using the composition weighted differences in electronegativity (∆χ), average valence electron concentrations (VEC) and atomic sizes. For the Laves phase (i) the VEC and ∆χ were in the ranges 4.976 < VEC < 5.358 and −0.503 < ∆χ < −0.107; (ii) the concentration of B (=Al + Cr + Ge + Si + Sn) varied from 50.9 to 64.5 at %; and (iii) the Cr concentration was in the range of 35.8 < Cr < 51.6 at %. Maps of ∆χ versus Cr, ∆χ versus VEC, and VEC versus atomic size separated the alloying behaviours of the elements. Compared with unalloyed NbCr2, the VEC decreased and ∆χ increased in Nb(Cr,Si)2, and the changes in both parameters increased when Nb was substituted by Ti, and Cr by Si and Al, or Si and Ge, or Si and Sn. For the A15 phase (i) the VEC and ∆χ were in the ranges 4.38 < VEC < 4.89 and 0.857 < ∆χ < 1.04, with no VEC values between 4.63 and 4.72 and (ii) the concentration of X (=Al + Ge + Si + Sn) varied from 16.3 to 22.7 at %. The VEC versus ∆χ map separated the alloying behaviours of elements. The hardness of A15-Nb3X was correlated with the parameters ∆χ and VEC. The hardness increased with increases in ∆χ and VEC. Compared with Nb3Sn, the ∆χ and hardness of Nb3(Si,Sn) increased. The substitution of Nb by Cr had the same effect on ∆χ and hardness as Hf or Ti. The ∆χ and hardness increased with Ti concentration. The addition of Al in Nb3(Si,Sn,Al) decreased the ∆χ and increased the hardness. When Ti and Hf, or Ti, Hf and Cr, were simultaneously present with Al, the ∆χ was decreased and the hardness was unchanged. The better creep of Nb(Cr,Si)2 compared with the unalloyed Laves phase was related to the decrease in the VEC and ∆χ parameters. PMID:29518920
Insulin-sensitizing and cholesterol-lowering effects of chromium (D-Phenylalanine)3.
Yang, Xiaoping; Li, Shi-Yan; Dong, Feng; Ren, Jun; Sreejayan, Nair
2006-07-01
Low-molecular weight organic chromium complexes are thought to play a key role in carbohydrate and lipid metabolism and therefore have been gaining popularity as nutritional supplement for patients with diabetes and concomitant lipid disorders. The aim of the present study was to evaluate the effects of a novel synthetic chromium (d-phenylalanine)(3) complex on insulin-sensitivity, plasma lipid-profile and oxidant stress in a mouse model of type II diabetes. Plasma glucose levels following intraperitoneal insulin-challenge (1U/kg) to obese ob/ob(+/+) mice treated with Cr(d-Phe)(3) (150 microg/kg/day for 6 weeks) were significantly lower compared to vehicle-control (control: 175.8+/-43.2mg/dL versus Cr(d-Phe)(3) 115.3+/-18.0mg/dL, p<0.01, n=12). Total serum cholesterol to high-density lipoprotein ratio was significantly reduced following Cr(d-Phe)(3)-treatment (control: 2.19+/-0.08 versus Cr(d-Phe)(3) 1.63+/-0.05; p<0.05). Hepatic oxidant stress, assessed as malondialdehyde equivalents and protein-carbonyl content were significantly attenuated following Cr(d-Phe)(3) treatment. The complex also inhibited lipid-peroxidation in vitro, in a concentration dependent manner. Taken together, these data suggest that Cr(d-Phe)(3) may be of potential value in the therapy or prophylaxis of insulin-resistance and dyslipidemia associated with obesity.
Mehrim, Ahmed I
2014-05-01
Chromium has been recognized as a new and important micro-nutrient, essential for both human and animal nutrition. This study was conducted to evaluate the appropriateness and/or the use of safety level of dietary chromium picolinate (Cr-Pic), and its effects on the physiological responses, the histometric characteristics, and the chemical analysis of dorsal muscles of mono-sex Nile tilapia, Oreochromis niloticus. A total of 420 fingerlings (28.00 ± 0.96 g) were randomly distributed into 21 fiberglass tanks representing seven treatments at a rate of 20 fish m(-3). The control fish group (T1) was fed a Cr-Pic free basal diet. Other fish groups were fed the basal diet supplemented with 200 (T2), 400 (T3), 600 (T4), 800 (T5), 1000 (T6) and 1200 μg Cr-Pic kg(-1) diet (T7). Diets were offered to fish at a feeding rate of 3% of life body weight for 12 weeks. Results revealed that blood hematological parameters (hemoglobin, red blood cells, packed cell volume, mean corpuscular hemoglobin concentration, blood platelets, and white blood cells lymphocytes); serum biochemical measurements (total testosterone, high density lipoprotein, total protein, albumin, and globulin); and the dry matter and crude protein of the fish dorsal muscles all have significantly increased (P ⩽ 0.05) in the T3 treatment compared with the other treatments. Meanwhile, no significant differences were found among all treatments with regard to the histometric characteristics. It can be concluded that Cr-Pic at 400 μg kg(-1) diet (T3) seems to be the most appropriate level for O. niloticus fingerlings.
Topham, Nathan; Wang, Jun; Kalivoda, Mark; Huang, Joyce; Yu, Kuei-Min; Hsu, Yu-Mei; Wu, Chang-Yu; Oh, Sewon; Cho, Kuk; Paulson, Kathleen
2012-03-01
Hexavalent chromium (Cr(6+)) emitted from welding poses serious health risks to workers exposed to welding fumes. In this study, tetramethylsilane (TMS) was added to shielding gas to control hazardous air pollutants produced during stainless steel welding. The silica precursor acted as an oxidation inhibitor when it decomposed in the high-temperature welding arc, limiting Cr(6+) formation. Additionally, a film of amorphous SiO(2) was deposited on fume particles to insulate them from oxidation. Experiments were conducted following the American Welding Society (AWS) method for fume generation and sampling in an AWS fume hood. The results showed that total shielding gas flow rate impacted the effectiveness of the TMS process. Increasing shielding gas flow rate led to increased reductions in Cr(6+) concentration when TMS was used. When 4.2% of a 30-lpm shielding gas flow was used as TMS carrier gas, Cr(6+) concentration in gas metal arc welding (GMAW) fumes was reduced to below the 2006 Occupational Safety and Health Administration standard (5 μg m(-3)) and the efficiency was >90%. The process also increased fume particle size from a mode size of 20 nm under baseline conditions to 180-300 nm when TMS was added in all shielding gas flow rates tested. SiO(2) particles formed in the process scavenged nanosized fume particles through intercoagulation. Transmission electron microscopy imagery provided visual evidence of an amorphous film of SiO(2) on some fume particles along with the presence of amorphous SiO(2) agglomerates. These results demonstrate the ability of vapor phase silica precursors to increase welding fume particle size and minimize chromium oxidation, thereby preventing the formation of hexavalent chromium.
NASA Astrophysics Data System (ADS)
Wang, Lijun; Tao, Wendong; Smardon, Richard C.; Xu, Xue; Lu, Xinwei
2017-07-01
Intensive anthropogenic activities can lead to soil heavy metal contamination resulting in potential risks to the environment and to human health. To reveal the concentrations, speciation, sources, pollution level, and ecological risk of heavy metals in vegetable garden soil, a total of 136 soil samples were collected from three vegetable production fields in the suburbs of Xianyang City, Northwest China. These samples were analyzed by inductively coupled plasma- atomic emission spectrometry and atomic fluorescence spectrometry. The results showed that the mean concentrations of Cd, Co, Cu, Mn, Pb, Zn, and Hg in vegetable garden soil were higher than the corresponding soil element background values of Shaanxi Province. The heavy metals studied in vegetable garden soil were primarily found in the residual fraction, averaging from 31.26% (Pb) to 90.23% (Cr). Considering the non-residual fractions, the mobility or potential risk was in the order of Pb (68.74%)>Co (60.54%)>Mn (59.28%) >Cd (53.54%) ≫Ni (23.36%) >Zn (22.73%)>Cu (14.93%)>V (11.81%)>Cr (9.78%). Cr, Mn, Ni, V, and As in the studied soil were related to soilforming parent materials, while Cu, Hg, Zn, Cd, Co, and Pb were associated with the application of plastic films, fertilizers, and pesticides, as well as traffic emissions and industrial fumes. Cr, Ni, V, and As presented low contamination levels, whereas Co, Cu, Mn, Pb, and Zn levels were moderate, and Cd and Hg were high. Ecological risk was low for Co, Cr, Cu, Mn, Pb, Zn, and As, with high risk observed for Cd and Hg. The overall pollution level and ecological risk of these heavy metals were high.
NASA Astrophysics Data System (ADS)
Wang, Lijun; Tao, Wendong; Smardon, Richard C.; Xu, Xue; Lu, Xinwei
2018-06-01
Intensive anthropogenic activities can lead to soil heavy metal contamination resulting in potential risks to the environment and to human health. To reveal the concentrations, speciation, sources, pollution level, and ecological risk of heavy metals in vegetable garden soil, a total of 136 soil samples were collected from three vegetable production fields in the suburbs of Xianyang City, Northwest China. These samples were analyzed by inductively coupled plasma- atomic emission spectrometry and atomic fluorescence spectrometry. The results showed that the mean concentrations of Cd, Co, Cu, Mn, Pb, Zn, and Hg in vegetable garden soil were higher than the corresponding soil element background values of Shaanxi Province. The heavy metals studied in vegetable garden soil were primarily found in the residual fraction, averaging from 31.26% (Pb) to 90.23% (Cr). Considering the non-residual fractions, the mobility or potential risk was in the order of Pb (68.74%)>Co (60.54%)>Mn (59.28%) >Cd (53.54%) ≫Ni (23.36%) >Zn (22.73%)>Cu (14.93%)>V (11.81%)>Cr (9.78%). Cr, Mn, Ni, V, and As in the studied soil were related to soilforming parent materials, while Cu, Hg, Zn, Cd, Co, and Pb were associated with the application of plastic films, fertilizers, and pesticides, as well as traffic emissions and industrial fumes. Cr, Ni, V, and As presented low contamination levels, whereas Co, Cu, Mn, Pb, and Zn levels were moderate, and Cd and Hg were high. Ecological risk was low for Co, Cr, Cu, Mn, Pb, Zn, and As, with high risk observed for Cd and Hg. The overall pollution level and ecological risk of these heavy metals were high.
Sahin, Kazim; Tuzcu, Mehmet; Orhan, Cemal; Sahin, Nurhan; Kucuk, Osman; Ozercan, Ibrahim H; Juturu, Vijaya; Komorowski, James R
2013-07-28
The objective of the present study was to evaluate anti-diabetic effects of chromium picolinate (CrPic) and biotin supplementations in type 2 diabetic rats. The type 2 diabetic rat model was induced by high-fat diet (HFD) and low-dose streptozotocin. The rats were divided into five groups as follows: (1) non-diabetic rats fed a regular diet; (2) diabetic rats fed a HFD; (3) diabetic rats fed a HFD and supplemented with CrPic (80 μg/kg body weight (BW) per d); (4) diabetic rats fed a HFD and supplemented with biotin (300 μg/kg BW per d); (5) diabetic rats fed a HFD and supplemented with both CrPic and biotin. Circulating glucose, cortisol, total cholesterol, TAG, NEFA and malondialdehyde concentrations decreased (P< 0·05), but serum insulin concentrations increased (P< 0·05) in diabetic rats treated with biotin and CrPic, particularly with a combination of the supplements. Feeding a HFD to diabetic rats decreased PPAR-γ expression in adipose tissue and phosphorylated insulin receptor substrate 1 (p-IRS-1) expression of liver, kidney and muscle tissues, while the supplements increased (P< 0·001) PPAR-γ and p-IRS-1 expressions in relevant tissues. Expression of NF-κB in the liver and kidney was greater in diabetic rats fed a HFD, as compared with rats fed a regular diet (P< 0·01). The supplements decreased the expression of NF-κB in diabetic rats (P< 0·05). Results of the present study revealed that supplementing CrPic and biotin alone or in a combination exerts anti-diabetic activities, probably through modulation of PPAR-γ, IRS-1 and NF-κB proteins.
Fontana, Luigi; Villareal, Dennis T; Das, Sai K; Smith, Steven R; Meydani, Simin N; Pittas, Anastassios G; Klein, Samuel; Bhapkar, Manjushri; Rochon, James; Ravussin, Eric; Holloszy, John O
2016-02-01
Young-onset calorie restriction (CR) in rodents decreases serum IGF-1 concentration and increases serum corticosterone levels, which have been hypothesized to play major roles in mediating its anticancer and anti-aging effects. However, little is known on the effects of CR on the IGF-1 system and cortisol in humans. To test the sustained effects of CR on these key hormonal adaptations, we performed a multicenter randomized trial of a 2-year 25% CR intervention in 218 nonobese (body mass index between 22 and 27.8 kg m(-2) ) young and middle-aged (20-50 years age range) men and women. Average CR during the first 6 months was 19.5 ± 0.8% and 9.1 ± 0.7% over the next 18 months of the study. Weight loss averaged 7.6 ± 0.3 kg over the 2-years period of which 71% was fat mass loss (P < 0.0001). Average CR during the CR caused a significant 21% increase in serum IGFBP-1 and a 42% reduction in IGF-1:IGFBP-1 ratio at 2 years (P < 0.008), but did not change IGF-1 and IGF-1:IGFBP-3 ratio levels. Serum cortisol concentrations were slightly but significantly increased by CR at 1 year only (P = 0.003). Calorie restriction had no effect on serum concentrations of PDGF-AB and TGFβ-1. We conclude, on the basis of the present and previous findings, that, in contrast to rodents, humans do not respond to CR with a decrease in serum IGF-1 concentration or with a sustained and biological relevant increase in serum cortisol. However, long-term CR in humans significantly and persistently increases serum IGFBP-1 concentration. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, B.L.; Scott, P.K.; Norton, R.L.
1996-08-09
This study evaluates the significance of increased urinary chromium concentrations as a marker of chromium exposure and potential health risk. Six human volunteers ingested trivalent chromium [Cr(III)] and hexavalent chromium [Cr(VI)] at doses that are known to be safe but higher than typical levels. The following dosing regimen was used: d 1-7, 200 {mu}g/d chromium picolinate; d 8-10, Cr(VI) ingestion at the U.S. Environmental Protection Agency (EPA) reference dose (RfD) of 0.005 mg/kg/d; d 11-13, no dose; d 14-16, Cr(III) ingestion at the U.S. EPA RfD of 1.0 mg/kg/d; and 17-18, postdose. Findings are as follows: (1) ingestion of 200more » {mu}g/d of chromium picolinate yielded significantly elevated urine concentrations such that each participant routinely exceeded background, (2) ingestion of the Cr(VI) RfD (0.005 mg/kg/d) yielded individual mean urinary chromium levels (1.2-2.3 {mu}g/L) and a pooled mean urinary chromium level (2.4 {mu}g/L) that significantly exceeded background, and (3) ingestion of the Cr(III) RfD yielded no significantly exceeded background, and (3) ingestion of the Cr(III) RfD yielded no significant increase in urinary chromium concentrations, indicating that little, if any, absorption occurred. Our work identified three critical issues that need to be accounted for in any future studies that will use urinary chromium as a marker of exposure. First, a minimum urinary chromium concentration of approximately 2 {mu}g/L should be used as a screening level to critically identify individuals who may have experienced elevated exposures to chromium. Second, if Cr(III) levels in soils are known to be less than 80,000 ppm and the Cr(III) is insoluble, urinary chromium concentrations are not an appropriate marker of exposure. Third, newer forms of chromium supplements that contain organic forms of Cr(III) must be considered potential confounders and their contribution to residential chromium uptake must be carefully evaluated. 19 refs., 7 figs., 3 tabs.« less
Creatine uptake in mouse hearts with genetically altered creatine levels
Hove, Michiel ten; Makinen, Kimmo; Sebag-Montefiore, Liam; Hunyor, Imre; Fischer, Alexandra; Wallis, Julie; Isbrandt, Dirk; Lygate, Craig; Neubauer, Stefan
2008-01-01
Creatine plays an important role in energy metabolism in the heart. Cardiomyocytes accumulate creatine via a specific creatine transporter (CrT), the capacity of which is reduced in the failing heart, resulting in lower myocardial creatine concentration. Therefore, to gain insight into how the CrT is regulated, we studied two mouse models of severely altered myocardial creatine levels. Cardiac creatine uptake levels were measured in isolated hearts from creatine-free guanidinoacetate-N-methyl transferase knock out (GAMT−/−) mice and from mice overexpressing the myocardial CrT (CrT-OE) using 14C-radiolabeled creatine. CrT mRNA levels were measured using real time RT-PCR and creatine levels with HPLC. Hearts from GAMT−/− mice showed a 7-fold increase in Vmax of creatine uptake and a 1.4-fold increase in CrT mRNA levels. The increase in Cr uptake and in CrT mRNA levels, however, was almost completely prevented when mice were fed a creatine supplemented diet, indicating that creatine uptake is subject to negative feedback regulation. Cardiac creatine uptake levels in CrT-OE mice were increased on average 2.7-fold, showing a considerable variation, in line with a similar variation in creatine content. Total CrT mRNA levels correlated well with myocardial creatine content (r = 0.67; p < 0.0001) but endogenous CrT mRNA levels did not correlate at all with myocardial creatine content (r = 0.01; p = 0.96). This study shows that creatine uptake can be massively upregulated in the heart, by almost an order of magnitude and that this upregulation is subject to feedback inhibition. In addition, our results strongly suggest that CrT activity is predominantly regulated by mechanisms other than alterations in gene expression. PMID:18602925
The role of EDTA in phytoextraction of hexavalent and trivalent chromium by two willow trees.
Yu, Xiao-Zhang; Gu, Ji-Dong
2008-04-01
Effects of the synthetic chelator ethylenediamine tetraacetate (EDTA) on uptake and internal translocation of hexavalent and trivalent chromium by plants were investigated. Two different concentrations of EDTA were studied for enhancing the uptake and translocation of Cr from the hydroponic solution spiked with K(2)CrO(4) or CrCl(3) maintained at 24.0 +/- 1 degrees C. Faster removal of Cr(3+) than Cr(6+) by hybrid willows (Salix matsudana Koidz x Salix alba L.) from the plant growth media was observed. Negligible effect of EDTA on the uptake of Cr(6+) was found, but significant decrease of the Cr concentration in roots was measured. Although the translocation of Cr(6+) within plant materials was detected in response to EDTA concentration, the amount of Cr(6+) translocated to the lower stems was considerably small. EDTA in the nutrient media showed a negative effect on the uptake of Cr(3+ )by hybrid willows; the removal rates of Cr(3+ )were significantly decreased. Translocation of Cr(3+) into the stems and leaves was undetectable, but roots were the exclusive sink for Cr(3+) accumulation. Weeping willows (Salix babylonica L.) showed lower removal rates for both chemical forms of Cr than hybrid willows. Although EDTA had a minor effect on Cr(6+ )uptake by weeping willows, positive effect on Cr(6+ )translocation within plant materials was observed. It was also determined that EDTA in plant growth media significantly decreased the amount of Cr(3+) taken up by plants, but significantly increased Cr(3+) mobilization from roots to stems. Results indicated that EDTA was unable to increase the uptake of Cr(6+) by both plant species, but translocation of Cr(6+)-EDTA within plant materials was possible. Addition of EDTA in the nutrient media showed a strong influence on the uptake and translocation of Cr(3+) in both willows. Cr(3+)-EDTA in tissues of weeping willows was more mobile than that in hybrid willows. The information has important implications for the use of metal chelator in plant nutritional research.
Composition of water and suspended sediment in streams of urbanized subtropical watersheds in Hawaii
De Carlo, E. H.; Beltran, V.L.; Tomlinson, M.S.
2004-01-01
Urbanization on the small subtropical island of Oahu, Hawaii provides an opportunity to examine how anthropogenic activity affects the composition of material transferred from land to ocean by streams. This paper investigates the variability in concentrations of trace elements (Pb, Zn, Cu, Ba, Co, As, Ni, V and Cr) in streams of watersheds on Oahu, Hawaii. The focus is on water and suspended particulate matter collected from the Ala Wai Canal watershed in Honolulu and also the Kaneohe Stream watershed. As predicted, suspended particulate matter controls most trace element transport. Elements such as Pb, Zn, Cu, Ba and Co exhibit increased concentrations within urbanized portions of the watersheds. Particulate concentrations of these elements vary temporally during storms owing to input of road runoff containing elevated concentrations of elements associated with vehicular traffic and other anthropogenic activities. Enrichments of As in samples from predominantly conservation areas are interpreted as reflecting agricultural use of fertilizers at the boundaries of urban and conservation lands. Particulate Ni, V and Cr exhibit distributions during storm events that suggest a mineralogical control. Principal component analysis of particulate trace element concentrations establishes eigenvalues that account for nearly 80% of the total variance and separates trace elements into 3 factors. Factor 1 includes Pb, Zn, Cu, Ba and Co, interpreted to represent metals with an urban anthropogenic enrichment. Factor 2 includes Ni, V and Cr, elements whose concentrations do not appear to derive from anthropogenic activity and is interpreted to reflect mineralogical control. Another, albeit less significant, anthropogenic factor includes As, Cd and U and is thought to represent agricultural inputs. Samples collected during a storm derived from an offshore low-pressure system suggest that downstream transport of upper watershed material during tradewind-derived rains results in a 2-3-fold dilution of the particulate concentrations of Pb, Zn and Cu in the Ala Wai canal watershed. ?? 2004 Elsevier Ltd. All rights reserved.
Yamakawa, Akane; Yamashita, Katsuyuki; Makishima, Akio; Nakamura, Eizo
2009-12-01
A sequential chemical separation technique for Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial silicate rocks was developed for precise and accurate determination of elemental concentration by the isotope dilution method (ID). The technique uses a combination of cation-anion exchange chromatography and Eichrom nickel specific resin. The method was tested using a variety of matrixes including bulk meteorite (Allende), terrestrial peridotite (JP-1), and basalt (JB-1b). Concentrations of each element was determined by thermal ionization mass spectrometry (TIMS) using W filaments and a Si-B-Al type activator for Cr, Fe, Ni, and Zn and a Re filament and silicic acid-H3PO4 activator for Cu. The method can be used to precisely determine the concentrations of these elements in very small silicate samples, including meteorites, geochemical reference samples, and mineral standards for microprobe analysis. Furthermore, the Cr mass spectrometry procedure developed in this study can be extended to determine the isotopic ratios of 53Cr/52Cr and 54Cr/52Cr with precision of approximately 0.05epsilon and approximately 0.10epsilon (1epsilon = 0.01%), respectively, enabling cosmochemical applications such as high precision Mn-Cr chronology and investigation of nucleosynthetic isotopic anomalies in meteorites.
Wallimann, Theo; Riek, Uwe; Möddel, Michael
2017-02-01
The CK/PCr-system, with creatine (Cr) as an energy precursor, plays a crucial role in cellular physiology. In the kidney, as in other organs and cells with high and fluctuating energy requirements, energy-charged phospho-creatine (PCr) acts as an immediate high-energy source and energy buffer, and as an intracellular energy transport vehicle. A maximally filled total Cr (Cr plus PCr) pool is a prerequisite for optimal functioning of the body and its organs, and health. Skeletal- and cardiac muscles of dialysis patients with chronic kidney disease (CKD) are depleted of Cr in parallel with the duration of dialysis. The accompanying accumulation of cellular damage seen in CKD patients lead to a deterioration of musculo-skeletal and neurological functioning and poor quality of life (QOL). Therefore, to counteract Cr depletion, it is proposed to supplement CKD patients with Cr. The anticipated benefits include previously documented improvements in the musculo-skeletal system, brain and peripheral nervous system, as well as improvements in the common comorbidities of CKD patients (see below). Thus, with a relatively simple, safe and inexpensive Cr supplementation marked improvements in quality of life (QOL) and life span are likely reached. To avoid Cr and fluid overload by oral Cr administration, we propose intradialytic Cr supplementation, whereby a relatively small amount of Cr is added to the large volume of dialysis solution to a final concentration of 1-10mM. From there, Cr enters the patient's circulation by back diffusion during dialysis. Because of the high affinity of the Cr transporter (CRT) for Cr affinity for Cr (Vmax of CRT for Cr=20-40μM Cr), Cr is actively transported from the blood stream into the target cells and organs, including skeletal and cardiac muscle, brain, proximal tubules of kidney epithelial cells, neurons, and leukocytes and erythrocytes, which all express CRT and depend on the CK/PCr system. By this intradialytic strategy, only as much Cr is taken up by the body as is needed to fill the tissue Cr pools and no excess Cr has to be excreted, as is the case with oral Cr. Because aqueous solutions of Cr are not very stable, Cr must be added immediately before dialysis either as solid Cr powder or from a frozen Cr stock solution to the dialysate, or alternatively, Cr could become an additional component of a novel dry dialysate mixture in a cartridge device. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Farag, A M; Harper, D D; Cleveland, L; Brumbaugh, W G; Little, E E
2006-05-01
The Hanford Nuclear Reservation in south central Washington was claimed by the federal government as a site for the production of plutonium. During the course of production and operation of the facilities at Hanford, radionuclides and chromium were discharged directly into the river and also contaminated the groundwater. This study was designed to assess the effects of chromium (Cr) on Chinook salmon (Oncorhynchus tshawytscha) fertilization under exposure conditions similar to those of the Hanford Reach of the Columbia River. Chinook salmon gametes were exposed to aqueous Cr concentrations ranging from 0 to 266 microg Cr l(-1). The current ambient water-quality criteria (AWQC) established for the protection of aquatic life (United States Environmental Protection Agency [USEPA] 1986) is 11 microg Cr l(-1). Cr has been measured in pore water from bottom sediments of the Columbia River at concentrations >600 microg Cr l(-1). Under exposure conditions designed to closely mimic events that occur in the river, the fertilization of Chinook salmon eggs was not affected by concentrations of Cr ranging from 11 to 266 microg Cr l(-1). Data suggest that the instantaneous nature of fertilization likely limits the potential effects of Cr on fertilization success. As a result, the current AWQC of 11 mug Cr l(-1) is most likely protective of Chinook salmon fertilization.
Farag, A.M.; Harper, D.D.; Cleveland, L.; Brumbaugh, W.G.; Little, E.E.
2006-01-01
The Hanford Nuclear Reservation in south central Washington was claimed by the federal government as a site for the production of plutonium. During the course of production and operation of the facilities at Hanford, radionuclides and chromium were discharged directly into the river and also contaminated the groundwater. This study was designed to assess the effects of chromium (Cr) on Chinook salmon (Oncorhynchus tshawytscha) fertilization under exposure conditions similar to those of the Hanford Reach of the Columbia River. Chinook salmon gametes were exposed to aqueous Cr concentrations ranging from 0 to 266 μg Cr l−1. The current ambient water-quality criteria (AWQC) established for the protection of aquatic life (United States Environmental Protection Agency [USEPA] 1986) is 11 μg Cr l−1. Cr has been measured in pore water from bottom sediments of the Columbia River at concentrations >600 μg Cr l−1. Under exposure conditions designed to closely mimic events that occur in the river, the fertilization of Chinook salmon eggs was not affected by concentrations of Cr ranging from 11 to 266 μg Cr l−1. Data suggest that the instantaneous nature of fertilization likely limits the potential effects of Cr on fertilization success. As a result, the current AWQC of 11 μg Cr l−1 is most likely protective of Chinook salmon fertilization.
Occurrence of Cr(VI) in drinking water of Greece and relation to the geological background.
Kaprara, E; Kazakis, N; Simeonidis, K; Coles, S; Zouboulis, A I; Samaras, P; Mitrakas, M
2015-01-08
This study provides a survey on potential Cr(VI) exposure attributed to drinking water in Greece. For this reason, a wide sampling and chemical analysis of tap waters from around 600 sites, supplied by groundwater resources, was conducted focusing on areas in which the geological substrate is predominated by ultramafic minerals. Results indicate that although violations of the current chromium regulation limit in tap water are very rare, 25% of cases showed Cr(VI) concentrations above 10 μg/L, whereas Cr(VI) was detectable in 70% of the samples (>2 μg/L). Mineralogy and conditions of groundwater reservoirs were correlated to suggest a possible Cr(VI) leaching mechanism. Higher Cr(VI) values are observed in aquifers in alluvial and neogene sediments of serpentine and amphibolite, originating from the erosion of ophiolithic and metamorphic rocks. In contrast, Cr(VI) concentration in samples from ophiolithic and metamorphic rocks was always below 10 μg/L due to both low contact time and surface area, as verified by low conductivity and salt concentration values. These findings indicate that under specific conditions, pollution of water by Cr(VI) is favorable by a slow MnO2-catalyzed oxidation of soluble Cr(III) to Cr(VI) in which manganese products [Mn(III)/Mn(II)] are probably re-oxidized by oxygen. Copyright © 2014 Elsevier B.V. All rights reserved.
Rao, S V Rama; Prakash, B; Raju, M V L N; Panda, A K; Kumari, R K; Reddy, E Pradeep Kumar
2016-08-01
Two experiments were conducted to study the effect of supplementing organic forms of zinc (Zn), selenium (Se) and chromium (Cr) on performance, anti-oxidant activities and immune responses in broiler chickens from 1 to 21 days of age, which were reared in cyclic heat-stressed condition under tropical summer in open-sided poultry house. A total of 200 (experiment I) and 450-day-old (experiment II) broiler male chicks (Cobb 400) were randomly distributed in stainless steel battery brooders (610 mm × 762 mm × 475 mm) at the rate of five birds per pen. A maize-soybean meal-based control diet (CD) containing recommended (Vencobb 400, Broiler Management Guide) concentrations of inorganic trace minerals and other nutrients was prepared. The CD was supplemented individually with organic form of selenium (Se, 0.30 mg/kg), chromium (Cr, 2 mg/kg) and zinc (Zn, 40 mg/kg) in experiment I. In experiment II, two concentrations of each Zn (20 and 40 mg/kg), Se (0.15 and 0.30 mg/kg) and Cr (1 and 2 mg/kg) were supplemented to the basal diet in 2 × 2 × 2 factorial design. A group without supplementing inorganic trace minerals was maintained as control group in both experiments. Each diet was allotted randomly to ten replicates in both experiments and fed ad libitum from 1 to 21 days of age. At 19th day of age, blood samples were collected for estimation of anti-oxidant and immune responses. Supplementation of Se, Cr and Zn increased (P < 0.05) body mass gain (BMG) and feed intake compared to those fed the CD in experiment I. The feed efficiency (FE) in Cr-fed group was higher (P < 0.05) compared to the CD-fed group. Se or Cr supplementation reduced lipid peroxidation (LP) compared to broilers fed the CD. In experiment II, BMG was not affected (P > 0.05) by the interaction between levels of Zn, Se and Cr in broiler diet. The FE improved (P < 0.05) with supplementation of the trace minerals tested at both concentrations except in group fed 40 mg Zn, 0.5 mg Se and 1 mg Cr/kg. Reduction in lipid peroxidation (LP, P < 0.05) and increased (P < 0.05) activity of superoxide dismutase were observed in broiler fed organic Zn, Se and Cr compared to the CD-fed group. The dietary concentrations of Zn, Se and Cr did not influence (P > 0.05) the immune responses (Newcastle disease titre and cell-mediated immune response to phytohaemagglutinin-P) in both the experiments. Based on the results, it is concluded that supplementation of organic form of Se, Cr and Zn (0.30, 2 and 40 mg/kg, respectively) either alone or in combination significantly improved performance and anti-oxidant responses (reduced LP and increased superoxide dismutase) in commercial broiler chicks (21 days of age) reared in cyclic heat stress conditions in open-sided poultry house during summer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaspar, Tiffany C.; Sushko, Peter V.; Bowden, Mark E.
Epitaxial thin films of Cr2-xTixO3 were deposited by oxygen-plasma-assisted molecular beam epitaxy (OPA-MBE) for 0.04 ≤ x ≤ 0.26. Ti speciation is verified by both x-ray photoelectron spectroscopy (XPS) and Ti K-edge x-ray absorption near-edge spectroscopy (XANES) to be Ti4+. Substitution of Ti for Cr in the corundum lattice is confirmed by modeling of the Ti K-edge extended x-ray absorption fine structure (EXAFS). Room temperature electrical transport measurements confirm the highly insulating nature of Ti-doped Cr2O3, despite the presence of aliovalent Ti4+. The resistivity of highly pure, undoped Cr2O3 was measured to be three orders of magnitude higher than formore » Ti-doped Cr2O3. Although the formation of Cr vacancies in Ti-doped Cr2O3 is found by density functional theory (DFT) calculations to be the energetically preferable defect compensation mechanism to maintain charge neutrality, an analysis of the XPS and EXAFS data reveal the presence of both Cr vacancies and oxygen interstitials at intermediate and high Ti concentrations, with a weak trend towards Cr vacancies as the Ti concentration increases. At low Ti concentrations, a strong dependence of the XPS Ti 2p core level peak width on concentration is observed. This dependence is attributed to the presence of widely spaced Ti dopants, which renders compensation of two or three Ti by a single oxygen interstitial or Cr vacancy, respectively, less probable. Instead, defect clusters of unknown type occur, although they may involve Cr vacancies. The defect compensation model developed here provides insight into previous, conflicting reports of n-type versus p-type conductivity in Ti-doped Cr2O3 at high temperature, and will inform future studies to exploit the wide variety of electronic and magnetic properties of corundum-structure oxides.« less
Sallah-Ud-Din, Rasham; Farid, Mujahid; Saeed, Rashid; Ali, Shafaqat; Rizwan, Muhammad; Tauqeer, Hafiz Muhammad; Bukhari, Syed Asad Hussain
2017-07-01
Phytoextraction is a cost-effective and eco-friendly technique for the removal of pollutants, mainly heavy metal(loids) especially from polluted water and metal-contaminated soils. The phytoextraction of heavy metals is, in general, limited due to the low availability of heavy metals in the growth medium. Organic chelators can help to improve the phytoextraction by increasing metal mobility and solubility in the growth medium. The present research was carried out to examine the possibility of citric acid (CA) in improving chromium (Cr) phytoextraction by Lemna minor (duckweed). For this purpose, healthy plants were collected from nearby marsh and grown in hydroponics under controlled conditions. Initial metal contents of both marsh water and plant were measured along with physico-chemical properties of the marsh water. Different concentrations of Cr and CA were applied in the hydroponics in different combinations after defined intervals. Continuous aeration was supplied and pH maintained at 6.5 ± 0.1. Results showed that increasing concentration of Cr significantly decreased the plant biomass, photosynthetic pigments, leaf area, and antioxidant enzyme activities (like catalase, ascorbate peroxidase, superoxide dismutase, peroxidase). Furthermore, Cr stress increased the Cr concentrations, electrolyte leakage, hydrogen peroxide, and malondialdehyde contents in plants. The addition of CA alleviated the Cr-induced toxicity in plants and further enhanced the Cr uptake and its accumulation in L. minor. The addition of CA enhanced the Cr concentration in L. minor by 6.10, 26.5, 20.5, and 20.2% at 0, 10, 100, and 200 μM Cr treatments, respectively, compared to the respective Cr treatments without CA. Overall, the results of the present study showed that CA addition may enhance the Cr accumulation and tolerance in L. minor by enhancing the plant growth and activities of antioxidant enzymes.
The Dart estuary, Devon, UK: a case study of chemical dynamics and pollutant mobility
NASA Astrophysics Data System (ADS)
Schuwerack, P.-M. M.; Neal, M.; Neal, C.
2007-01-01
Water, sediments and gill and digestive gland tissues of adult common shore crab (Carcinus maenas), collected at Noss Marina, Sandquay (Britannia Royal Naval College), the Dartmouth Pier, Warfleet Cove and Sugary Cove in the Dart estuary, Devon, UK, were analysed for major, minor and trace elements in spring 2004. Total acid-available measurements analysed included the truly dissolved component and acid-available sediments. Trace metal concentrations are associated largely with particulate and micro-particulate/colloidal phases, the latter being able to pass through standard filter papers. Wide ranges of chemical concentrations were found in the water, sediments and tissues at all the locations. In the water column, 48% of the variance is linked to the sea-salt component (Cl, Na, K, Ca, Mg, B, Li and Sr) and the sediment-associated acid-available fractions are linked to Fe-rich lithogenous materials (Ba, Co, Cu, Fe, Mn, V and Zn). In the sediments, trace elements of Cd, Co, Cr, Fe, Pb, Mn, Ni and V are correlated with the sea salts and associated with the fraction of fine sediments within the total sediment. In the gills and the digestive gland tissues of crabs, high concentrations of Al, Cu and Fe are found and there are correlations between acid-available trace metals of Cu, Cr, Fe, Mn, Ni, Sr and Zn. The relationships between trace metal contaminants, their site-specific concentrations, their temporal and spatial variability and the effects of human activities, such as moorland/agriculture with historic mining and recreational activities in the lower Dart estuary, are discussed.
Uysal, Y
2013-12-15
The aim of this study was to determine the ability of Lemna minor to remove Cr (VI) ions from wastewater in a continuous flow pond system. This system was used to simulate a wastewater treatment pond and a natural wetland as habitat of plants. In order to find optimal conditions for chromium removal, ponds were operated with aqueous solutions having different pH (4.0-7.0) and chromium concentration of 0.25 mgCr(+6)/L, then plants were exposed to different chromium concentrations (0.25-5.0 mgCr(+6)/L) at pH 4.0. Chromium concentrations, both in biomass and wastewater, were measured and removal efficiency was determined throughout water flow. Growth factors such as growth rates, chlorophyll contents and dry/fresh weight ratios of plants were also determined to measure toxic effects of chromium. The percentages of chromium uptake (PMU) and bioconcentration factors (BCF) were calculated for each run. The highest accumulated chromium concentration (4.423 mgCr/g) was found in plants grown in the first chamber of pond operated at pH 4.0 and 5.0 mgCr/L, while the minimum accumulated chromium concentration (0.122 mgCr/g) was in plants grown in the last chamber of pond operated at pH 4.0 and 0.25 mgCr(+6)/L. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Loan, Trinh Thi; Bang, Ngac An; Huong, Vu Hoang; Long, Nguyen Ngoc
2017-07-01
TiO2 powders doped with different amounts of Cr3+ions (from 0 to 10 mol%) have been prepared by hydrothermal technique. TiO2:Cr3+ powders were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, diffuse reflection, absorption, photoluminescence and photoluminescence excitation spectra. The results showed that the Cr3+ dopant concentrations did not affect on the lattice constants of TiO2 crystal, but affected on shift and broadening of the Raman modes for both anatase and rutile phases. The band gap of both the anatase and rutile TiO2 host lattice was strongly decreased with increasing Cr3+ dopant concentration. The photoluminescence spectra of TiO2:Cr3+ anatase phase exhibited a weak narrow peak (the so-called R-line) at 698 nm, meanwhile those of TiO2:Cr3+ rutile phase consisted of a very intense narrow zero-phonon R-line at 695 nm assigned to the 2E(2G) → 4A2(4F) transition of Cr3+ ions in strong octahedral field and its phonon-sidebands. In particular, in the PL spectrum of TiO2:Cr3+ rutile phase is also observed an abroad emission band centered at 813 nm assigned to the 4T2(4F) → 4A2(4F) transition of ions Cr3+ in weak octahedral field.
Speer, Rachel M; Wise, Catherine F; Young, Jamie L; Aboueissa, AbouEl-Makarim; Martin Bras, Mark; Barandiaran, Mike; Bermúdez, Erick; Márquez-D'Acunti, Lirio; Wise, John Pierce
2018-05-01
Hexavalent chromium [Cr(VI)] is a marine pollution of concern as recent studies show it has a global distribution, with some regions showing high Cr concentrations in marine animal tissue, and it is extensively used. Leatherback sea turtles (Dermochelys coriacea) are an endangered marine species that may experience prolonged exposures to environmental contaminants including Cr(VI). Human activities have led to global Cr(VI) contamination of the marine environment. While Cr(VI) has been identified as a known human carcinogen, the health effects in marine species are poorly understood. In this study, we assessed the cytotoxic and genotoxic effects of particulate and soluble Cr(VI) in leatherback sea turtle lung cells. Both particulate and soluble Cr(VI) induced a concentration-dependent increase in cytotoxicity. Next, using a chromosome aberration assay, we assessed the genotoxic effects of Cr(VI) in leatherback sea turtle lung cells. Particulate and soluble Cr(VI) induced a concentration-dependent increase in clastogenicity in leatherback sea turtle lung cells. These data indicate that Cr(VI) may be a health concern for leatherback sea turtles and other long-lived marine species. Additionally, these data provide foundational support to use leatherback sea turtles as a valuable model species for monitoring the health effects of Cr(VI) in the environment and possibly as an indicator species to assess environmental human exposures and effects. Copyright © 2018 Elsevier B.V. All rights reserved.
Chen, Zhaoqiong; Wang, KeXiu; Ai, Ying Wei; Li, Wei; Gao, Hongying; Fang, Chen
2014-02-01
Heavy metal contamination in the artificial soils on the railway cut slopes may have great influence on the revegetation of the cut slopes. The purpose of this study was to assess the variation of heavy metal contamination levels with railway operation time and analyze their possible resources. A total of 100 soil samples from four cut slopes, which were affected by railway transportation for different years, were analyzed for metal pollution (Cd, Pb, Cr, Cu, Zn, Fe). The concentrations of Cd, Pb showed increasing trend with increasing operation time of railways, while such trend was not found in Cr, Cu, Zn, Fe. According to the soil quality standard of China, Cd was considered to have considerable contamination, while Pb has less, but Cr, Cu, Zn, Fe have none. Moreover, cadmium exhibited remarkably higher levels rather than those reported in other studies. Enrichment factors and ecological index showed that Cd and Pb showed a moderate enrichment and a considerable ecological risk in most of the soil samples. The results of descriptive statistic, principal component analysis, cluster analysis and correlation analysis were totally consistent with each other. Their results revealed that Cr, Cu, Zn and Fe had common origins, and they may come from natural resources. While Cd and Pb were significantly influenced by railway transportation, leaked cargos, fuel combustion, the use of lubricate oils and sleeper impregnation oils during railway transportation may be their main resources.
Metal speciation in soil and health risk due to vegetables consumption in Bangladesh.
Islam, Md Saiful; Ahmed, Md Kawser; Habibullah-Al-Mamun, Md
2015-05-01
This study was conducted to investigate the contamination level of heavy metals in soil and vegetables, chemical speciation, and their transfer to the edible part of vegetables. Metals were analyzed using inductively coupled plasma mass spectrometer (ICP-MS). The ranges of Cr, Ni, Cu, As, Cd, and Pb in agricultural soils were 3.7-41, 3.9-36, 3.7-46, 2.3-26, 0.6-13, and 4.5-32 mg/kg, respectively. The metals were predominantly associated with the residual fractions of 39, 41, 40, 40, 34, and 41 % for Cr, Ni, Cu, As, Cd, and Pb, respectively. Considering the metal transfer from soil to the edible part of vegetables, the mean transfer factors (TFs) were in the descending order of Cu > Ni > Cr > Pb > As > Cd. In the edible tissues of vegetables, the concentrations of As, Cd, and Pb in most vegetable samples exceeded the maximum permissible levels, indicating not safe for human consumption. Total target hazard quotient (THQ) of the studied metals (except Cr) from all vegetables were higher than 1, indicated that if people consume these types of vegetables in their diet, they might pose risk to these metals. Total values of carcinogenic risk (CR) were 3.2 for As and 0.15 for Pb which were higher than the US Environmental Protection Agency (USEPA) threshold level (0.000001), indicating that the inhabitants consuming these vegetables are exposed to As and Pb with a lifetime cancer risk.
Legrand, Ludovic; El Figuigui, Alaaeddine; Mercier, Florence; Chausse, Annie
2004-09-01
This work describes the heterogeneous reaction between FeII in carbonate green rust and aqueous chromate, in NaHCO3 solutions at 25 degrees C, and at pH values of 9.3-9.6. Evidence for reduction of CrVI to CrIII and concomitant solid-state oxidation of lattice FeII to FeIII was found from FeII titration and from structural analysis of the solids using FTIR, XRD, SEM, and XPS methods. Results indicate the formation of ferric oxyhydroxycarbonate and the concomitant precipitation of CrIII monolayers at the surface of the iron compound that induce passivation effects and progressive rate limitations. The number of CrIII monolayers formed at the completion of the reaction depends on [FeII]t=0, the molar concentration of FeII(solid) at t=0; on [n(o)]t=0, the molar concentration of reaction sites present at the surface of the solid phase at t=0; and on [CrVI]t=0, the molar concentration of CrVI at t=0. Kinetic data were modeled using a model based on the formation of successive CrIII monolayers, -(d[CrVI]/dt) = sigma(1)j k(i)[S] [CrVI]([n(i - 1)] - [n(i)]) with k(i)[S] (in s(-1) L mol(-1)), the rate coefficient of formation of CrIII monolayer i, and [n(i)] and [n(i - 1)], the molar concentration of CrIII precipitated in monolayer i and monolayer i - 1, respectively. Good matching curves were obtained with kinetic coefficients: k(1)[S] = 5-8 x 10(-4), k(2)[S] = 0.5-3 x 10(-5), and k(3)[S] about 1.7 x 10(-6) s(-1) m(-2) L. The CrVI removal efficiency progressively decreases along with the accumulation of CrIII monolayers at the surface of carbonate green rust particles. In the case of thick green rust particles resulting from the corrosion of iron in permeable reactive barriers, the quantity of FeII readily accessible for efficient CrVI removal should be rather low.
Zhang, Yuanjing; Qian, Jin; Xin, Xu; Hu, Sihai; Zhang, Shuai; Wei, Jianguo
2017-01-01
In this study, Fe(III)-cross-linked chitosan beads (Fe(III)-CBs) were synthesized and employed to explore the characteristics and primary mechanism of their hexavalent chromium (Cr(VI)) adsorption under low concentration Cr(VI) (less than 20.0 mg l−1) and a pH range from 2.0 to 8.0. Batch tests were conducted to determine the Cr(VI) adsorption capacity and kinetics, and the effects of pH and temperature on the adsorption under low concentration Cr(VI) and a pH range from 2.0 to 8.0. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy were employed to explore the characteristics of Fe(III)-CBs and their Cr(VI) adsorption mechanisms. The results show that, unlike the adsorption of other absorbents, the Cr(VI) adsorption was efficient in a wide pH range from 2.0 to 6.0, and well described by the pseudo-first-order model and the Langmuir–Freundlich isotherm model. The capacity of Cr(VI) adsorption by Fe(III)-CBs was as high as 166.3 mg g−1 under temperature 25°C and pH 6.0. The desorption test was also carried out by 0.1 mol l−1 NaOH solution for Fe(III)-CBs regeneration. It was found that Fe(III)-CBs could be re-used for five adsorption–desorption cycles without significant decrease in Cr(VI) adsorption capacity. Ion exchange was confirmed between functional groups (i.e. amino group) and Cr(VI) anions (i.e. CrO42−). The amino-like functional groups played a key role in Cr(VI) distribution on the Fe(III)-CBs surface; Cr(VI) adsorbed on Fe(III)-CBs was partially reduced to Cr(III) with alcoholic group served as electron donor, and then formed another rate-limiting factor. So, Fe(III)-CBs has a good prospect in purifying low concentration Cr(VI) water with a pH range from 2.0 to 6.0. PMID:29291084
Xie, Ying; Zhong, Caigao; Zeng, Ming; Guan, Lan; Luo, Lei
2013-01-01
In the present study, we explored reactive axygen species (ROS) production in mitochondria, the mechanism of hexavalent chromium (Cr(VI)) hepatotoxicity, and the role of protection by GSH. Intact mitochondria were isolated from rat liver tissues and mitochondrial basal respiratory rates of NADH and FADH2 respiratory chains were determined. Mitochondria were treated with Cr(VI), GSH and several complex inhibitors. Mitochondria energized by glutamate/malate were separately or jointly treated with Rotenone (Rot), diphenyleneiodonium (DPI) and antimycinA (Ant), while mitochondria energized by succinate were separately or jointly treated with Rot, DPI ' thenoyltrifluoroacetone (TTFA) and Ant. Cr(VI) concentration-dependently induced ROS production in the NADH and FADH2 respiratory chain in liver mitochondria. Basal respiratory rate of the mitochondrial FADH2 respiratory chain was significantly higher than that of NADH respiratory chain. Hepatic mitochondrial electron leakage induced by Cr(VI) from NADH respiratory chain were mainly from ubiquinone binding sites of complex I and complex III. Treatment with 50µM Cr(VI) enhances forward movement of electrons through FADH2 respiratory chain and leaking through the ubiquinone binding site of complex III. Moreover, the protective effect of GSH on liver mitochondria electron leakage is through removing excess H2O2 and reducing total ROS. Copyright © 2013 S. Karger AG, Basel.
Olawoyin, Richard; Schweitzer, Linda; Zhang, Kuangyuan; Okareh, Oladapo; Slates, Kevin
2018-02-01
The impacts of air emissions as a consequence of industrial activities around communities of human habitation have been extensively reported. This study is the first to assess potential adverse human health effects in the Chemical Valley Sarnia (CVS) area, around the St. Clair River, using health risk models, ecological and pollution indices. Large quantities of particulate matters (PM) are generated from anthropogenic activities, which contain several heavy metals in trace quantities with potentially adverse effects to humans and environmental health. The distribution, and human health impact assessment of trace element concentrations in PM fractions were examined. Elemental concentrations of As, Cd, Cr (VI), Cu, Fe, Mn, Pb, Ni, Zn were determined in the PM size-segregated samples collected from the CVS area between 2014 and 2017. The results showed relatively high concentration of PM <2.5 (87.19±8.1(mgm 3 )) which is approximately 4 times the WHO air quality guidelines. Pb concentration (143.03 ± 46.87ηg/m 3 ) was 3.6 times higher than the air quality standards of NAAQS. Cr (VI) showed moderate to considerable contamination ( C f =4) in the CVS while Cr (VI), Pb, and Ni had enrichment factor E f < 3 (minimal), signifying contributions from anthropogenic activities. Pollution load index (P Li ) value observed was 1.4 indicating human health risk from the PM, especially for the children in the area. The deposition fluxes (DΦ) showed that PM-bound metals could potentially bypass the head airways and cause damages to the tracheobronchial tree, increasing the human health risks of nephroblastomasis development. The main route of entry for the heavy metal bound PM in humans were observed as through ingestion and inhalation. The highest total excess cancer risks observed for children (6.7×10 -4 ) and adult (1.0×10 -4 ) indicating potential cancer effects. The Incremental Lifetime Cancer Risk (ILCR) increased from Pb < Ni < Cd < Cr (VI) < As. Overall, children are more likely to develop carcinogenic and non-carcinogenic health effects from exposures to elemental concentrations of airborne PM in the study area. Copyright © 2017 Elsevier Inc. All rights reserved.
Chromium fractionation and plant availability in tannery-sludge amended soil
NASA Astrophysics Data System (ADS)
Allué, Josep; Moya Garcés, Alba; Bech, Jaume; Barceló, Juan; Poschenrieder, Charlotte
2013-04-01
The leather industry represents an important economic sector in both developed and developing countries. Chromium tanning is the major process used to obtain high quality leather. Within the REACH regulation the use of Cr, especially CrVI, in the tanning process is under discussion in Europe. High Cr concentration in shoes and other Cr-tanned leather products can cause contact dermatitis in sensitive population. Moreover, the high Cr concentration is the major limiting factor for the use of tannery sludge as a source of organic matter in agricultural soils. Interest in Cr, however is not limited to its potential toxic effects. Chromium III is used as a dietary supplement because there are reports, but also controversy, about the positive effects of Cr III in glucose tolerance and type-2 diabetes. Adequate intake levels for Cr by the diet have been established between 25 and 35 µg/day for adult females and males, respectively. Sufficient supply of Cr III by the diet is preferable to the use of CrIII-salt based dietary supplements. The objective of the present work was to investigate whether Cr from tannery sludge-amended soil is available to Trigonella foenum-graecum plants, a plant used both as a spice and as a medicinal herb, because of its hypoglucemic effects. For this purpose clay loam soil (pH 7.8) was sieved (2mm) and thoroughly mixed with tannery sludge from a depuration station (Igualadina Depuració i Recuperació S.L., Igualada, Barcelona, Spain). The sludge had a Cr concentration of 6,034mg kg-1 and a 0.73 % of NH4-nitrogen. All the Cr was in the form of CrIII. Three treatments were disposed. Control soil receiving no sludge, a 60 mg kg-1 Cr treatment (10 g fresh sludge kg-1 soil) and a 120 mg kg-1 Cr treatment (20 g fresh sludge kg-1 soil). Control soil and the soil treated with 10g kg-1 sludge received NPK fertilizer in the form of ammonium sulfate, superfosfate, and KCl to rise the N,P, and K concentrations to similar levels to those achieved in the soils with the highest sludge dose (20 g kg-1). Soils from the different treatments were potted (5 L) and planted with Trigonella foenum graecum seeds (1 plant per pot). Plants were harvested in the vegetative stage and processed for tissue analysis of Cr, Fe, Zn and Pb. A sequential extraction procedure was applied to the soil for getting insight into the operationally defined soil fractions that incorporate the tannery sludge derived Cr. In any of the treatments Cr was detectable in the exchangeable and easily reducible fractions. In control soils around 10% of soil Cr was in the moderately reducible fraction and the rest in the residual fraction. Contrastingly tannery sludge amended soils incorporated most Cr in the moderately reducible fraction extracted by acid oxalate. This distribution in relation to plant Cr concentrations will be discussed. Acknowledgement: Supported by the Spanish Government (project BFU2010-14873)
NASA Astrophysics Data System (ADS)
Tian, Hezhong; Cheng, Ke; Wang, Yan; Zhao, Dan; Lu, Long; Jia, Wenxiao; Hao, Jiming
2012-04-01
Multiple-year inventory of atmospheric emissions of cadmium (Cd), chromium (Cr), and lead (Pb) from coal burning in China have been established for the period 1980-2008 by using best available emission factors and annual activity data which are specified by different sub-categories of combustion facilities, coal types, and air pollution control devices. Our results show that the total emissions of Cd, Cr, and Pb have rapidly increased from 31.14 t, 1019.07 t, and 2671.73 t in 1980 to 261.52 t, 8593.35 t, and 12 561.77 t in 2008, respectively. The industrial sector ranks as the leading source, contributing ˜88.3%, ˜86.7%, and ˜81.8% of the total Cd, Cr, and Pb emissions, respectively. Remarkably uneven spatial allocation features are observed. The emissions are primarily concentrated in the provinces of the northern and eastern region of China owing to the dramatic difference in coal use by the industrial and power sectors. Monthly temporal emission profiles for different sectors are established by using indexes such as monthly thermal electricity generation, monthly gross industrial output values and monthly average ambient temperature. For the power plants, there are two peaks during cold and hot season while for the industrial sector, emissions are most substantial in the summer and autumn season. Further, uncertainties in the bottom-up inventories are quantified by Monte Carlo simulation, and the overall uncertainties are demonstrated as -16% to 45% for Cd, -13% to 20% for Cr, and -21% to 48% for Pb, respectively. To better understand the emissions of these metals and to adopt effective measures to prevent poisoning, more specific data collection and analysis are necessary.
Assessment of electrokinetic removal of heavy metals from soils by sequential extraction analysis.
Reddy, K R; Xu, C Y; Chinthamreddy, S
2001-06-29
Electrokinetic remediation of metal-contaminated soils is strongly affected by soil-type and chemical species of contaminants. This paper investigates the speciation and extent of migration of heavy metals in soils during electrokinetic remediation. Laboratory electrokinetic experiments were conducted using two diverse soils, kaolin and glacial till, contaminated with chromium as either Cr(III) or Cr(VI). Initial total chromium concentrations were maintained at 1000mg/kg. In addition, Ni(II) and Cd(II) were used in concentrations of 500 and 250mg/kg, respectively. The contaminated soils were subjected to a voltage gradient of 1 VDC/cm for over 200h. The extent of migration of contaminants after the electric potential application was determined. Sequential extractions were performed on the contaminated soils before and after electrokinetic treatment to provide an understanding of the distribution of the contaminants in the soils. The initial speciation of contaminants was found to depend on the soil composition as well as the type and amounts of different contaminants present. When the initial form of chromium was Cr(III), exchangeable and soluble fractions of Cr, Ni, and Cd ranged from 10 to 65% in kaolin; however, these fractions ranged from 0 to 4% in glacial till. When the initial form of chromium was Cr(VI), the exchangeable and soluble fractions of Cr, Ni and Cd ranged from 66 to 80% in kaolin. In glacial till, however, the exchangeable and soluble fraction for Cr was 38% and Ni and Cd fractions were 2 and 10%, respectively. The remainder of the contaminants existed as the complex and precipitate fractions. During electrokinetic remediation, Cr(VI) migrated towards the anode, whereas Cr(III), Ni(II) and Cd(II) migrated towards the cathode. The speciation of contaminants after electrokinetic treatment showed that significant change in exchangeable and soluble fractions occurred. In kaolin, exchangeable and soluble Cr(III), Ni(II), and Cd(II) decreased near the anode and increased near the cathode, whereas exchangeable and soluble Cr(VI) decreased near the cathode and increased near the anode. In glacial till, exchangeable and soluble Cr(III), Ni(II), and Cd(II) were low even before electrokinetic treatment and no significant changes were observed after the electrokinetic treatment. However, significant exchangeable and soluble Cr(VI) that was present in glacial till prior to electrokinetic treatment decreased to non-detectable levels near the cathode and increased significantly near the anode. In both kaolin and glacial till, low migration rates occurred as a result of contaminants existing as immobile complexes and precipitates. The overall contaminant removal efficiency was very low (less than 20%) in all tests.
Cai, Limei; Xu, Zhencheng; Ren, Mingzhong; Guo, Qingwei; Hu, Xibang; Hu, Guocheng; Wan, Hongfu; Peng, Pingan
2012-04-01
One hundred and four surface samples and 40 profiles samples in agricultural soils collected from Huizhou in south-east China were monitored for total contents of 8 heavy metals, and analyzed by multivariate statistical techniques and enrichment factor (EF), in order to investigate their origins. The results indicate that the concentrations of Cu, Zn, Ni, Cr, Pb, Cd, As and Hg in soils are 16.74, 57.21, 14.89, 27.61, 44.66, 0.10, 10.19 and 0.22 mg/kg, respectively. Compared to the soil background contents in Guangdong Province, the mean concentrations of Hg, Cd, Zn, Pb and As in soil of Huizhou are higher, especially Hg and Cd, which are 2.82 and 1.79 times the background values, respectively. Cr, Ni, Cu, partially, Zn and Pb mainly originate from a natural source. Cd, As, partially, Zn mainly come from agricultural practices. However, Hg, partially, Pb originate mainly from industry and traffic sources. Copyright © 2011 Elsevier Inc. All rights reserved.
Electronic structure and magnetic properties of quaternary Heusler alloy Co2CrGa1-xGex (x=0-1)
NASA Astrophysics Data System (ADS)
Seema, K.; Kumar, Ranjan
2015-03-01
The electronic structure of Co-based quaternary Heusler compounds Co2CrGa1-xGex (x=0.00, 0.25, 0.50, 0.75, 1.00) are calculated by first-principles density functional theory. The substitution of Ga by Ge leads to increase in the number of valence electrons. With increasing concentration of Ge, lattice constant decreases linearly whereas bulk modulus and total magnetic moment increases. This shows that the magnetic properties of the compound are dependent on electron concentration of main group element. The calculations show that the alloys with x=0.00, 0.25, 0.50 are not true half-metallic materials whereas alloy with x=0.75, 1.00 exhibit 100% spin polarization at the Fermi level. It shows that the Fermi level can be shifted within the energy-gap to achieve 100% spin polarization. The effect of volumetric and tetragonal strain on magnetic properties is also studied.
Dichromated Gelatine as a Material of Optical Element
NASA Astrophysics Data System (ADS)
Lee, Hyuk-Soo; Cho, Dong-Hyun; Choi, Yong-Jin; Son, Jung-Young; Park, Seung-Han
1999-04-01
In the fabrication process of optical elements (OEs) by the laser scanning method using a dichromated gelatin (DCG) photoplate, the expansion and drying stress of gelatine caused by inhomogeneous liquid flow inside the gelatine affects the shape of OEs. The reason this inhomogeneous liquid flow exists in the energy oversaturated parts of OEs is the presence of surplus energy. In order to obtain the OEs of desired spherical lens shape, the drying stress should be reduced and therefore the maximum energy of the illuminating laser should be defined not to cause the surplus energy. The maximum energy is investigated according to the relative concentrations of (NH4)2Cr2O7 to DCG. The use of photoplates with a relative concentration of (NH4)2Cr2O7 to gelatin of more than 20% has some advantages when making the lens raster, especially a short-focal-length lens raster. It is also very important to increase the drying time to reduce the total drying stress by maintaining high humidity during the drying process.
Material for a luminescent solar concentrator
Andrews, L.J.
1984-01-01
A material for use in a luminescent solar concentrator, formed by ceramitizing the luminescent ion Cr/sup 3 +/ with a transparent ceramic glass containing mullite. The resultant material has tiny Cr/sup 3 +/-bearing crystallites dispersed uniformly through an amorphous glass. The invention combines the high luminescent efficiency of Cr/sup 3 +/ in the crystalline phase with the practical and economical advantages of glass technology.
Cr(VI) remediation by enriched sediment with anthraquinone-2,6-disulfonate as electron shuttles
NASA Astrophysics Data System (ADS)
Chen, Hong; Li, Xiaojuan; Xu, Zhiwei
Hexavalent chromium (Cr(VI)) is a priority pollutant in the USA and many other countries. This study investigated the simultaneous remediation of Cr(VI) in sediment enriched with quinone-reducing microorganisms via a closely coupled, biotic-abiotic pathway. The results showed that Cr(VI) remediation was achieved by sediment adsorption and reduction of quinone-reducing microorganism. Moreover, microorganism reduction of Cr(VI) could be continued when sediment adsorption was saturated after long-term Cr(VI) remediation. The acetate and anthraquinone-2,6-disulfonate (AQDS), which acted as exogenous carbon and electron shuttle, respectively, were two crucial factors. The optimum concentrations of acetate and AQDS were 5 mM and 1 mM when the initial Cr(VI) concentration was 10 mg/L. AQDS was recycled, and it acted in a catalytic-type manner for the bacterial reduction of Cr(VI). Thus, biological humus reduction might provide an extensive pathway for the sequestration and detoxification of Cr(VI) in anaerobic soils, water, and industrial effluents.
Carlson, D B; Reed, J J; Borowicz, P P; Taylor, J B; Reynolds, L P; Neville, T L; Redmer, D A; Vonnahme, K A; Caton, J S
2009-02-01
The objectives were to examine effects of dietary Se supplementation and nutrient restriction during defined periods of gestation on maternal adaptations to pregnancy in primigravid sheep. Sixty-four pregnant Western Whiteface ewe lambs were assigned to treatments in a 2 x 4 factorial design. Treatments were dietary Se [adequate Se (ASe; 3.05 microg/kg of BW) vs. high Se (HSe; 70.4 microg/kg of BW)] fed as Se-enriched yeast, and plane of nutrition [control (C; 100% of NRC requirements) vs. restricted (R; 60% of NRC requirements]. Selenium treatments were fed throughout gestation. Plane of nutrition treatments were applied during mid (d 50 to 90) and late gestation (d 90 to 130), which resulted in 4 distinct plane of nutrition treatments [treatment: CC (control from d 50 to 130), RC (restricted from d 50 to 90, and control d 90 to 130), CR (control from d 50 to 90, and restricted from d 90 to 130), and RR (restricted from d 50 to 130)]. All of the pregnant ewes were necropsied on d 132 +/- 0.9 of gestation (length of gestation approximately 145 d). Nutrient restriction treatments decreased ewe ADG and G:F, as a result, RC and CR ewes had similar BW and maternal BW (MBW) at necropsy, whereas RR ewes were lighter than RC and CR ewes. From d 90 to 130, the HSe-CC ewes had greater ADG (Se x nutrition; P = 0.05) than did ASe-CC ewes, whereas ADG and G:F (Se x nutrition; P = 0.08) were less for HSe-RR ewes compared with ASe-RR ewes. The CR and RR treatments decreased total gravid uterus weight (P = 0.01) as well as fetal weight (P = 0.02) compared with RC and CC. High Se decreased total (g; P = 0.09) and relative heart mass (g/kg of MBW; P = 0.10), but increased total and relative mass of liver (P < or = 0.05) and perirenal fat (P < or = 0.06) compared with ASe. Total stomach complex mass was decreased (P < 0.01) by all the nutrient restriction treatments, but was reduced to a greater extent in CR and RR compared with RC. Total small intestine mass was similar between RC and CC ewes, but was markedly reduced (P < 0.01) in CR and RR ewes. The mass of the stomach complex and the small and large intestine relative to MBW was greater (P = 0.01) for RC than for CR ewes. Increased Se decreased jejunal DNA concentration (P = 0.07), total jejunal cell number (P = 0.03), and total proliferating jejunal cell number (P = 0.05) compared with ASe. These data indicate that increased dietary Se affected whole-body and organ growth of pregnant ewes, but the results differed depending on the plane of nutrition. In addition, the timing and duration of nutrient restriction relative to stage of pregnancy affected visceral organ mass in a markedly different fashion.
Lin, Yuesheng; Fang, Fengman; Wang, Fei; Xu, Minglu
2015-09-01
Zn, Pb, Cu, Cr, V, Ni, Co, and As concentrations of indoor dust in Anhui rural were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The degrees of metal pollution in indoor dust ranked as follows: Zn > Pb > Cr > Cu > V > Ni > Co > As, on average. The arithmetic means of Zn, Pb, Cu, Cr, V, Ni, Co, and As were 427.17, 348.73, 107.05, 113.68, 52.64, 38.93, 10.29, and 4.46 mg/kg, respectively. These were higher than background values of Anhui soil for Zn, Pb, Cu, Cr, and Ni, especially for Pb with the mean value of 13.21 times the background value. Heavy metal concentrations of indoor dust were different from different rural areas. House type (bungalows or storied house), sweeping frequency, and external environment around the house (such as the road grade) affected heavy metal concentrations in indoor dust. The results of factor analysis and correlation analysis indicated that Cu, Cr, Ni, Zn, and Co concentrations were mainly due to interior paint, metal objects, and building materials. Pb and As concentrations were due to vehicle emissions. V concentration was mainly of natural source. Average daily doses for the exposure pathway of the studied heavy metals decreased in children in the following order: hand-to-mouth ingestion > dermal contact > inhalation. The non-carcinogenic risks of heavy metals ranked as Pb > V > Cr > Cu > Zn > As > Co > Ni, and the carcinogenic risks of metals decreased in the order of Cr > Co > As > Ni. The non-carcinogenic hazard indexes and carcinogenic risks of metals in indoor dust were both lower than the safe values.
The use of stable isotopes for Cr(VI) determination in silty-clay soil solution.
Zuliani, Tea; Sčančar, Janez; Milačič, Radmila
2013-09-01
In assessing the environmental hazard of Cr(VI) present in soil, exchangeable Cr(VI) is important, since it can be easily washed out from the upper part of the soil into subsurface soil, surface and ground water, and taken up by plants. The aim of this study was to evaluate the degree of species interconversion that may occur during the extraction of exchangeable Cr(VI) from silty-clay soil with phosphate buffer in order to establish an extraction method that would be effective, accurate and with minimal or no species interconversions. The Cr(VI) concentration in soil extracts was determined by speciated isotope dilution inductively coupled plasma mass spectrometry (SID-ICP-MS). The study was performed on soil samples from a field treated with tannery waste for 17 years. Samples were spiked by enriched stable isotopic solutions of (50)Cr(VI) and (53)Cr(III) that were added to phosphate buffers (0.1 M KH2PO4-K2HPO4 (pH 7.2) and/or 0.1 M K2HPO4 (pH 8)). To optimize extraction, mechanical shaking and/or ultrasound-assisted extraction were compared. The separation and detection of Cr species was performed by high-performance liquid chromatography (HPLC) ICP-MS. When mechanical shaking was applied, 90 % reduction of Cr(VI) was induced by extraction with 0.1 M KH2PO4-K2HPO4, while with 0.1 M K2HPO4 reduction was around 40 %. To shorten the extraction time and the possibility of species interconversions, ultrasound-assisted extraction was further applied only with 0.1 M K2HPO4. For total extraction of exchangeable Cr(VI) with a maximum 10 % reduction of Cr(VI), five consecutive ultrasound-assisted extractions were needed.
Trace element mobility and transfer to vegetation within the Ethiopian Rift Valley lake areas.
Kassaye, Yetneberk A; Skipperud, Lindis; Meland, Sondre; Dadebo, Elias; Einset, John; Salbu, Brit
2012-10-26
To evaluate critical trace element loads in native vegetation and calculate soil-to-plant transfer factors (TFs), 11 trace elements (Cr, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Pb and Mn) have been determined in leaves of 9 taxonomically verified naturally growing terrestrial plant species as well as in soil samples collected around 3 Ethiopian Rift Valley lakes (Koka, Ziway and Awassa). The Cr concentration in leaves of all the plant species was higher than the "normal" range, with the highest level (8.4 mg per kg dw) being observed in Acacia tortilis from the Lake Koka area. Caper species (Capparis fascicularis) and Ethiopian dogstooth grass (Cynodon aethiopicus) from Koka also contained exceptionally high levels of Cd (1 mg per kg dw) and Mo (32.8 mg per kg dw), respectively. Pb, As and Cu concentrations were low in the plant leaves from all sites. The low Cu level in important fodder plant species (Cynodon aethiopicus, Acacia tortilis and Opuntia ficus-indicus) implies potential deficiency in grazing and browsing animals. Compared to the Canadian environmental quality guideline and maximum allowable concentration in agricultural soils, the total soil trace element concentrations at the studied sites are safe for agricultural crop production. Enrichment factor was high for Zn in soils around Lakes Ziway and Awassa, resulting in moderate to high transfer of Zn to the studied plants. A six step sequential extraction procedure on the soils revealed a relatively high mobility of Cd, Se and Mn. Strong association of most trace elements with the redox sensitive fraction and mineral lattice was also confirmed by partial redundancy analysis. TF (mg per kg dw plants/mg per kg dw soil) values based on the total (TF(total)) and mobile fractions (TF(mobile)) of soil trace element concentrations varied widely among elements and plant species, with the averaged TF(total) and TF(mobile) values ranging from 0.01-2 and 1-60, respectively. Considering the mobile fraction in soils should be available to plants, TF(mobile) values could reflect trace elements transfer to plants in the most realistic way. However, the present study indicates that TF(total) values also reflect the transfer of elements such as Mn, Cd and Se to plants more realistically than TF(mobile) values did.
Gope, Manash; Masto, Reginald Ebhin; George, Joshy; Balachandran, Srinivasan
2018-06-15
Street dust samples from Durgapur, the steel city of eastern India, were collected from five different land use patterns, i.e., national highways, urban residential area, sensitive area, industrial area and busy traffic zone during summer, monsoon, and winter to analyze the pollution characteristics, chemical fractionation, source apportionment and health risk of heavy metals (HMs). The samples were fractionated into ≤ 53 µm and analyzed for potentially harmful elements (PHEs) viz. Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn. Summer season indicated higher concentrations of PHEs when compared to the other two seasons. Mean enrichment factor (EF), geo-accumulation index (Igeo), and contamination factor (CF) were high for Cd followed by Pb during all the three season in Durgapur. Chemical fractionation was executed in order to obtain distribution patterns of PHEs and to evaluate their bioavailable fractions in street dust samples. Mn was found to be highly bioavailable and bioavailability of the PHEs were in the order of Mn > Zn > Pb > Ni > Cd > Cu > Fe > Cr. Principal Component Analysis (PCA), cluster analysis, correlation analysis indicated the main sources of PHEs could be industrial, especially coal powered thermal plant, iron and steel industries and cement industries and vehicular. Multivariate analysis of variance (MANOVA) indicated that sites, seasons and their interaction were significantly affected by different PHEs as a whole. The health risk was calculated with total metal as well as mobile fraction of PHEs, which indicated that the actual non-carcinogenic risk due to bioavailable PHEs was less (HI < 1) when compared to total concentrations of PHEs. Carcinogenic risk was observed for total Cr in street dust (Child: 4.6E-06; Adult: 3.6E-06). Copyright © 2018 Elsevier Inc. All rights reserved.
Electrochemical high-temperature gas sensors
NASA Astrophysics Data System (ADS)
Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.
2012-06-01
Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.
Soil pollution in Central district of Saint-Petersburg (Russia)
NASA Astrophysics Data System (ADS)
Terekhina, Natalia; Ufimtseva, Margarita
2015-04-01
Analysis of soil samples of upper horizon for the content of chemical elements (Fe, Mn, Cu, Zn, Pb, Ni, Cr, Co, Cd, Ba, Sr) was carried out by atomic emission with inductively coupled plasma. A relative indicator of soil contamination degree is a concentration coefficient, representing the ratio of metal content in tested soil samples to the local background value of the corresponding element. Total pollution index is calculated by the concentration coefficients, which are greater than 1, taking into account the hazard class of metals (1 class - Zn, Pb ,Cd; 2 - class Cr, Ni, Cu ,Со; 3 class - Fe, Mn, Sr, Ba). Analysis of trace element of urban soils demonstrated mosaic patterns of pollution for Central district. The method of correlation sets constructing and factor analysis revealed three groups of chemical elements having a strong and significant association with each other: Pb-Cu-Cd-Zn-Ba, Ni-Cr-Co, Fe-Mn. Elements of the first group are characterized by high values of concentration coefficient and are the main pollutants - their average content is 3-11 times higher than background values. Strontium does not have strong correlation with the other elements, and its lowest concentration coefficient indicates that the element can not be regarded as a pollutant. The spatial distribution of the total pollution index identified several sources of pollution, the origin of which may be different. The main reason is probably the impact of vehicle emissions, although local pollution of soil is possible (the soils, contaminated during reconstruction of lawns, dumping of construction materials, etc.). Differentiated assessment of database shows that 48% of samples refer to dangerous pollution category, 37% - to moderately dangerous category, 15% - to allowable category. Thus, almost half of the district is characterized as dangerous in terms of soil contamination. Solution of the problem of soil contamination is recommended in three ways: reducing the intensity of vehicular traffic through the historic center of the city, improving the quality of transport emissions, removal of contaminated soil layers in particularly polluted areas and the introduction of clean soil, optimization of verdurization of the urban environment, as a means of reducing the flow of atmospheric pollutants in soil.
Vučković, Vladan; Vujović, Dragana
2017-02-01
A chemistry module with the aqueous chemistry coupled with the complex 3D nonhydrostatic atmospheric model is used to investigate how the representation of gas-aqueous mass transfer and ice retention affect the SO 2 redistribution in the presence of a convective cloud. Gas uptake to the liquid water is calculated using both Henry's law equilibrium (HE) and kinetic mass transport (KMT). The constant retention coefficients for SO 2 (k ret = 0.46) and for H 2 O 2 (k ret = 0.64) are used. It is shown that the amount of SO 2 in the air at higher altitudes (10-12 km) is greater when partial retention (PR) is included. All values of k ret between 0 and 1 represented the partial retention (PR), while complete retention (CR) means the entire mass of the gas from the solution remained in the ice phase (k ret = 1). Total mass of SO 2 in the air in the entire domain was greater in the case of PR than in the case when the CR was assumed (at the end of the integration time, 0.11% for HE and 0.61% for KMT) and in KMT than in the HE case (0.9% for CR and 1.4% for PR). The amount of SO 2 in the ice phase was lower in the case of PR for both HE and KMT. The highest concentrations of S(IV) in rainwater were in the case of HE-CR, while the smallest values were in the case of KMT-PR. Total precipitation of S(IV) in PR exhibits 90% relative to CR, if HE was assumed. When KMT was used, PR gives 81.7% S(IV) relative to CR. Scavenging was the highest in the HE-CR case and the lowest in the KMT-PR case. If HE is assumed, averaged cumulative mass (ACM) of S(IV) precipitation per unit of domain surface for the CR case was 11.1% greater than in the PR case (if KMT was assumed, this difference was greater, 22.4%). Similarly, ACM for HE is 24.1% greater than KMT for the CR case and 36.8% for the PR case.
Li, Tianyuan; Song, Yinxian; Yuan, Xuyin; Li, Jizhou; Ji, Junfeng; Fu, Xiaowen; Zhang, Qiang; Guo, Shuhai
2018-06-06
A systematic investigation into total and bioaccessible heavy metal concentrations in rice grains harvested from heavy metal-contaminated regions was carried out to assess the potential health risk to local residents. Arsenic, Cr, Cu, Pb, and Zn concentrations were within acceptable levels while Cd and Ni concentrations appeared to be much higher than in other studies. The bioaccessibity of As, Cd, and Ni was high (>25%) and could be well predicted from their total concentrations. The noncarcinogenic risk posed by As and Cd was significant. The carcinogenic risk posed by all bioaccessible heavy metals at the fifth percentile was 10-fold higher than the acceptable level, and Cd and Ni were the major contributors. The contribution of each metal to the combined carcinogenic risk indicates that taking pertinent precautions for different types of cancer, aimed at individuals with different levels of exposure to heavy metals, will greatly reduce morbidity and mortality rates.
Double shroud delivery of silica precursor for reducing hexavalent chromium in welding fume.
Wang, Jun; Kalivoda, Mark; Guan, Jianying; Theodore, Alexandros; Sharby, Jessica; Wu, Chang-Yu; Paulson, Kathleen; Es-Said, Omar
2012-01-01
The welding process yields a high concentration of nanoparticles loaded with hexavalent chromium (Cr(6+)), a known human carcinogen. Previous studies have demonstrated that using tetramethylsilane (TMS) as a shielding gas additive can significantly reduce the Cr(6+) concentration in welding fume particles. In this study, a novel insulated double shroud torch (IDST) was developed to further improve the reduction of airborne Cr(6+) concentration by separating the flows of the primary shielding gas and the TMS carrier gas. Welding fumes were collected from a welding chamber in the laboratory and from a fixed location near the welding arc in a welding facility. The Cr(6+) content was analyzed with ion chromatography and X-ray photoelectron spectroscopy (XPS). Results from the chamber sampling demonstrated that the addition of 3.2 ≈ 5.1% of TMS carrier gas to the primary shielding gas resulted in more than a 90% reduction of airborne Cr(6+) under all shielding gas flow rates. The XPS result confirmed complete elimination of Cr(6+) inside the amorphous silica shell. Adding 100 ≈ 1000 ppm of nitric oxide or carbon monoxide to the shielding gas could also reduce Cr(6+) concentrations up to 57% and 35%, respectively; however, these reducing agents created potential hazards from the release of unreacted agents. Results of the field test showed that the addition of 1.6% of TMS carrier gas to the primary shielding gas reduced Cr(6+) concentration to the limitation of detection (1.1 μg/m(3)). In a worst-case scenario, if TMS vapor leaked into the environment without decomposition and ventilation, the estimated TMS concentration in the condition of field sampling would be a maximum 5.7 ppm, still well below its flammability limit (1%). Based on a previously developed cost model, the use of TMS increases the general cost by 3.8%. No visual deterioration of weld quality caused by TMS was found, although further mechanical testing is necessary.
Liu, Tailiang; Wen, Hua; Jiang, Ming; Yuan, Danning; Gao, Pan; Zhao, Yujiang; Wu, Fan; Liu, Wei
2010-09-01
An experiment was conducted to investigate the effect of dietary chromium picolinate supplement on growth and haematology parameters of grass carp, Ctenopharyngodon idellus. Six diets with increasing dietary chromium picolinate levels 0, 0.2, 0.4, 0.8, 1.6 and 3.2 mg kg(-1) were fed to triplicate groups of 20 fish (initial weight of 12.78 +/- 1.16 g, mean +/- SD) in a flow water system for 10 weeks. Fish fed the diet supplemented with 0.8 mg Cr kg(-1) had significantly improved weight gain (WG), feed efficiency ratio (FER), protein efficiency ratio (PER) and protein retention (PR). Fish fed high-chromium diets exhibited lower whole-body crude lipid contents than fish fed low-chromium diets. Liver glycogen concentrations for fish fed the diet with 0.2 mg Cr kg(-1) was the highest (77.67 mg g(-1)). Fish fed the diet supplemented with 1.6 and 3.2 mg Cr kg(-1) had significantly lower liver glycogen concentrations than other groups (P < 0.05). The highest serum insulin concentrations were observed in fish fed the diet supplemented with 0.8 mg Cr kg(-1), but serum insulin concentrations decreased (P < 0.05) when dietary supplementation of chromium was higher than 0.8 mg Cr kg(-1). Cholesterol concentrations decreased in direct proportion to dietary chromium level and achieved the lowest level when the fish were fed the 0.8 mg Cr kg(-1) diet, but increased when the fish were fed the diet with more than 0.8 mg Cr kg(-1) (P < 0.05). Fish fed the diet supplemented with 0.8 mg Cr kg(-1) had higher triglyceride and high-density lipoprotein cholesterol (HDL-C) concentrations compared to other treatments. The results of the present study suggested that chromium picolinate could modify serum carbohydrate and lipid metabolism profile, and that the optimal dietary chromium level was 0.8 mg kg(-1) for grass carp according to growth.
NASA Astrophysics Data System (ADS)
Geraldo, S. M.; Canteras, F. B.; Moreira, S.
2014-02-01
Currently, many studies use the bioindicators to qualitatively and/or quantitatively measure pollution. The analyses of tree growth rings represent one such bioindicator as changes in the environment are often recorded as impressions in the wood. The main objective of the present study is to examine the growth rings of Tipuana tipu - a member of the Leguminosae family that is native to Argentina and Bolivia and was introduced in Brazil as an ornamental plant - for potentially toxic elements. T. tipu is one of the most common trees in the urban landscape of Sao Paulo city and would provide an accurate reflection of environment changes. Tree ring samples previously dated using Synchrotron Radiation Total Reflection X-ray Fluorescence were collected from strategic locations in Sao Paulo. These locations include Piracicaba (SP) that has little access and small flow traffic and the campus of the University of São Paulo. Some trace elements present concentrations higher than considered as normal in some periods. In São Paulo city, samples collected from the campus of University of São Paulo (Butantã), showed the highest toxicity, with concentrations above the tolerable limit for the elements: Cr, Cu, and Pb. For the samples collected in Piracicaba city, one sample presented highest concentrations for the majority of the elements when compared to the other four samples collected at the same place, exceeding the toxicity limits for: Cr, Ni, Cu, and Pb.
Schwiesau, Jens; Fritz, Bernhard; Kutzner, Ines; Bergmann, Georg; Grupp, Thomas M
2014-01-01
The wear behaviour of total knee arthroplasty (TKA) is dominated by two wear mechanisms: the abrasive wear and the delamination of the gliding components, where the second is strongly linked to aging processes and stress concentration in the material. The addition of vitamin E to the bulk material is a potential way to reduce the aging processes. This study evaluates the wear behaviour and delamination susceptibility of the gliding components of a vitamin E blended, ultra-high molecular weight polyethylene (UHMWPE) cruciate retaining (CR) total knee arthroplasty. Daily activities such as level walking, ascending and descending stairs, bending of the knee, and sitting and rising from a chair were simulated with a data set received from an instrumented knee prosthesis. After 5 million test cycles no structural failure of the gliding components was observed. The wear rate was with 5.62 ± 0.53 mg/million cycles falling within the limit of previous reports for established wear test methods.
Schwiesau, Jens; Fritz, Bernhard; Kutzner, Ines; Bergmann, Georg; Grupp, Thomas M.
2014-01-01
The wear behaviour of total knee arthroplasty (TKA) is dominated by two wear mechanisms: the abrasive wear and the delamination of the gliding components, where the second is strongly linked to aging processes and stress concentration in the material. The addition of vitamin E to the bulk material is a potential way to reduce the aging processes. This study evaluates the wear behaviour and delamination susceptibility of the gliding components of a vitamin E blended, ultra-high molecular weight polyethylene (UHMWPE) cruciate retaining (CR) total knee arthroplasty. Daily activities such as level walking, ascending and descending stairs, bending of the knee, and sitting and rising from a chair were simulated with a data set received from an instrumented knee prosthesis. After 5 million test cycles no structural failure of the gliding components was observed. The wear rate was with 5.62 ± 0.53 mg/million cycles falling within the limit of previous reports for established wear test methods. PMID:25506594
Cation distribution and optical properties of Cr-doped MgGa2O4 nanocrystals
NASA Astrophysics Data System (ADS)
Duan, Xiulan; Liu, Jian; Wang, Xinqiang; Jiang, Huaidong
2014-11-01
The distribution of cations in the spinel-type MgCr2yGa2-2yO4 (y = 0-0.6) nanocrystals and their optical properties as a function of annealing temperature and chromium content were investigated by using X-ray photoelectron spectroscopy (XPS) in combination with absorption spectroscopy. The cations in MgCr2yGa2-2yO4 nanocrystals are disorderly distributed with mixing of divalent and trivalent cations occupying the tetrahedral and octahedral sites. With the increase of annealing temperature, the inversion parameter (the fraction of Mg2+ ions in octahedral sites) decreases, which has the same varying tendency with the proportion of tetrahedral Ga3+ or Cr3+ ions. The inversion parameter increases with increasing Cr3+ concentration. The absorption spectra indicate that Cr3+ ions are located in the octahedral sites as well as in the tetrahedral sites. The fraction of tetrahedral Cr3+ decreases with Cr-enrichment. The optical absorption properties of Cr-doped MgGa2O4 nanocrystals may be tuned by varying the preparation temperature or Cr concentration.
Enhanced photoelectrochemical and optical performance of ZnO films tuned by Cr doping
NASA Astrophysics Data System (ADS)
Salem, M.; Akir, S.; Massoudi, I.; Litaiem, Y.; Gaidi, M.; Khirouni, K.
2017-04-01
In this paper, pure and Cr-doped nanostructured Zinc oxide thin films were synthesized by simple and low cost co-precipitation and spin-coating method with Cr concentration varying between 0.5 and 5 at.%. Crystalline structure of the prepared films was investigated by X-ray diffraction (XRD) and Raman spectroscopy techniques. XRD analysis indicated that the films were indexed as the hexagonal phase of wurtzite-type structure and demonstrated a decrease in the crystallite size with increasing Cr doping content. Cr doping revealed a significant effect on the optical measurements such as transmission and photoluminescence properties. The optical measurements indicated that Cr doping decreases the optical band gap and it has been shifted from 3.41 eV for pure ZnO film to 3.31 eV for 5 at.% Cr-doped one. The photoelectrochemical (PEC) sensing characteristics of Cr-doped ZnO layers were investigated. Amongst all photo-anodes with different Cr dopant concentration, the 2 at.% Cr incorporated ZnO films exhibited fast response and higher photoconduction sensitivity.
Risk Assessment of Heavy Metals in Surface Sediments from the Yanghe River, China
Li, Jing
2014-01-01
The magnitude and ecological relevance of metal pollution from the upstream of water sources after emergency pollution events was investigated by applying a set of complementary sediment quality assessment methods: (1) geochemical assessment based on background value (the geoaccumulation index); (2) comparisons with sediment quality guidelines (SQGs); (3) an evaluation of the combined pollution according to the risk index (RI); and (4) investigation of the chemical patterns of target heavy metals (Cd, Zn, Cr, Pb, Ni). The geoaccumulation indices (Igeo) suggested that the magnitude of heavy metal pollution of the sediment of Yanghe River decreased in the order of Cd > Zn > Pb > Cr > Ni. Risk analysis also suggested that Cd and Zn concentrations were sufficiently elevated as to cause adverse biological effects in this study area. According to the RI values, 27% of total sampling sites showed considerable ecological risk for the water body, and 53% of total sampling sites showed very high ecological risk for the waterbody. Sediment-bound Cd was found to be predominantly associated with the exchangeable phase of the sediment (25%–68%), while Cr, Ni, Zn and Pb showed the strongest association with the residual fractions (60%–92%, 53%–67%, 24%–85% and 35%–67%, respectively). PMID:25464136
NASA Astrophysics Data System (ADS)
Devi, Upama; Bhattacharyya, Krishna G.
2018-03-01
The sediments in stormwater runoff are recognised as the major sink of the heavy metals and affect the soil quality in the catchment. The runoff sediments are also important in the management of contaminant transport to receiving water bodies. In the present work, stormwater during several major rain events was collected from nine principal locations of Guwahati, India. The solid phase was separated from the liquid phase and was investigated for the total contents of Cd, Co, Cr, Cu, Mn and Zn as well as their distribution among the prominent chemical phases. Sequential extraction procedure was used for the chemical fractionation of the metals that contains five steps. The total metal concentration showed the trend, Cd < Co < Cu < Cr < Zn < Mn. The relative distribution of the metals showed that Cd was available mostly in the exchangeable and the carbonate bound fractions, which were the most mobile and high-risk fractions. Co with medium mobility was also found to be in the high-risk category. On the other hand, the mobilities of Cu and Zn were relatively low and these were, therefore, the least bioavailable metals in the runoff sediments falling in medium-risk category.
Ghorai, Soumitra; Sarkar, Amit Kumar; Panda, A B; Pal, Sagar
2013-09-01
The aim of this work is to study the feasibility of XG-g-PAM/SiO2 nanocomposite towards its potential application as high performance adsorbent for removal of Congo red (CR) dye from aqueous solution. The surface area, average pore size and total pore volume of the developed nanocomposite has been determined. The efficiency of CR dye adsorption depends on various factors like pH, temperature of the solution, equilibrium time of adsorption, agitation speed, initial concentration of dye and adsorbent dosage. It has been observed that the nanocomposite is having excellent CR dye adsorption capacity (Q0=209.205 mg g(-1)), which is considerably high. The dye adsorption process is controlled by pseudo-second order and intraparticle diffusion kinetic models. The adsorption equilibrium data correlates well with Langmuir isotherm. Desorption study indicates the efficient regeneration ability of the dye loaded nanocomposite. Copyright © 2013 Elsevier Ltd. All rights reserved.
First-principles studies of chromium line-ordered alloys in a molybdenum disulfide monolayer
NASA Astrophysics Data System (ADS)
Andriambelaza, N. F.; Mapasha, R. E.; Chetty, N.
2017-08-01
Density functional theory calculations have been performed to study the thermodynamic stability, structural and electronic properties of various chromium (Cr) line-ordered alloy configurations in a molybdenum disulfide (MoS2) hexagonal monolayer for band gap engineering. Only the molybdenum (Mo) sites were substituted at each concentration in this study. For comparison purposes, different Cr line-ordered alloy and random alloy configurations were studied and the most thermodynamically stable ones at each concentration were identified. The configurations formed by the nearest neighbor pair of Cr atoms are energetically most favorable. The line-ordered alloys are constantly lower in formation energy than the random alloys at each concentration. An increase in Cr concentration reduces the lattice constant of the MoS2 system following the Vegard’s law. From density of states analysis, we found that the MoS2 band gap is tunable by both the Cr line-ordered alloys and random alloys with the same magnitudes. The reduction of the band gap is mainly due to the hybridization of the Cr 3d and Mo 4d orbitals at the vicinity of the band edges. The band gap engineering and magnitudes (1.65 eV to 0.86 eV) suggest that the Cr alloys in a MoS2 monolayer are good candidates for nanotechnology devices.
Chromium distribution in an Amazonian river exposed to tannery effluent.
de Sousa, Eduardo Araujo; Luz, Cleber Calado; de Carvalho, Dario Pires; Dorea, Caetano Chang; de Holanda, Igor Bruno Barbosa; Manzatto, Ângelo Gilberto; Bastos, Wanderley Rodrigues
2016-11-01
This study aims to evaluate the Cr concentrations in surface water, suspended particles, and bottom sediments exposed to tannery effluent releases in the Candeias River. Cr concentrations were compared in relation to environmental thresholds imposed by United States Environmental Protection Agency (USEPA) and the Brazilian Environmental Council (CONAMA), and the geoaccumulation index (Igeo) was calculated in bottom sediment. Samples were collected in flood and dry seasons. Cr extraction was done by an acid extraction and quantified by flame atomic absorption spectrometry. Most samples were found to be below the environmental thresholds imposed by CONAMA and USEPA, except in the one from the discharge zone sampled during the dry season, showing values 1.5 and 6.1 higher than CONAMA in water and bottom sediment, respectively. Cr concentrations were significantly higher (P < 0.001) in suspended particles during dry season than flood season. Surface water and bottom sediment did not show significant differences between the seasons. The Igeo revealed an enrichment of Cr in bottom sediments after discharge zone, indicating that the effluent may be contributing to metal accumulation in the sediment. Apparently, the Candeias River shows a wash behavior on the river bottom, leaching the accumulated metal deposited on the riverbed to other areas during the flood pulses, which decreases Cr concentration in the discharge zone during dry seasons. Thus, this behavior can promote Cr dispersion to unpolluted areas.
Study on anaerobic treatment of wastewater containing hexavalent chromium.
Xu, Yan-bin; Xiao, Hua-hua; Sun, Shui-yu
2005-06-01
A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and COD(Cr) of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms.
Marine and freshwater concentration ratios (CR(wo-water)): review of Japanese data.
Tagami, K; Uchida, S
2013-12-01
The water-to-organism (whole body) concentration ratio (CR(wo-water)), which is defined as the ratio of the concentration of a radionuclide in the biota (Bq kg(-1) fresh weight) to that in water (Bq L(-1)), has been used in mathematical models for environmental radiation protection. In the present paper, published global fallout (90)Sr, (137)Cs, (106)Ru, (144)Ce and (239+240)Pu activity concentration data and stable element concentration data for Na, K, Ca, Mg, Fe, Cu and Mn for organisms living in freshwater or seawater areas in Japan were collated. The data suitable for obtaining CR(wo-water) values were identified. CR(wo-water) values of (137)Cs were similar for pelagic fish, benthic fish and whitebait (immature, small fish) with respective geometric means of 30 (range: 4.4-69), 32 (range: 15-54) and 33 (range: 13-84). The calculated CR(wo-water) values of the other radionuclides and stable elements were generally similar to other previously reported values; with the exception that those for Ce were lower for marine biota and those of Cu were higher for freshwater fish. Copyright © 2012 Elsevier Ltd. All rights reserved.
Quantitation of NAD+ biosynthesis from the salvage pathway in Saccharomyces cerevisiae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sporty, J; Lin, S; Kato, M
2009-02-18
Nicotinamide adenine dinucleotide (NAD{sup +}) is synthesized via two major pathways in prokaryotic and eukaryotic systems: the de novo biosynthesis pathway from tryptophan precursors, or by the salvage biosynthesis pathway from either extracellular nicotinic acid or various intracellular NAD{sup +} decomposition products. NAD{sup +} biosynthesis via the salvage pathway has been linked to an increase in yeast replicative lifespan under calorie restriction (CR). However, the relative contribution of each pathway to NAD{sup +} biosynthesis under both normal and CR conditions is not known. Here, we have performed lifespan, NAD{sup +} and NADH (the reduced form of NAD{sup +}) analyses onmore » BY4742 wild type, NAD+ salvage pathway knockout (npt1{Delta}), and NAD+ de novo pathway knockout (qpt1{Delta}) yeast strains cultured in media containing either 2% glucose (normal growth) or 0.5% glucose (CR). We have utilized {sup 14}C labeled nicotinic acid in the culture media combined with HPLC speciation and both UV and {sup 14}C detection to quantitate the total amounts of NAD{sup +} and NADH and the amounts derived from the salvage pathway. We observe that wild type and qpt1{Delta} yeast exclusively utilize extracellular nicotinic acid for NAD{sup +} and NADH biosynthesis under both the 2% and 0.5% glucose growth conditions suggesting that the de novo pathway plays little role if a functional salvage pathway is present. We also observe that NAD{sup +} concentrations decrease in all three strains under CR. However, unlike the wild type strain, NADH concentrations do not decrease and NAD{sup +}:NADH ratios do not increase under CR for either knockout strain. Lifespan analyses reveal that CR results in a lifespan increase of approximately 25% for the wild type and qpt1{Delta} strains, while no increase in lifespan is observed for the npt1{Delta} strain. In combination these data suggest that having a functional salvage pathway is more important than the absolute levels of NAD{sup +} or NADH for lifespan extension under CR.« less
Improved urban stormwater treatment and pollutant removal pathways in amended wet detention ponds.
Istenič, Darja; Arias, Carlos A; Vollertsen, Jes; Nielsen, Asbjørn H; Wium-Andersen, Tove; Hvitved-Jacobsen, Thorkild; Brix, Hans
2012-01-01
Dissolved and colloidal bound pollutants are generally poorly removed from stormwater in wet detention ponds. These fractions are, however, the most bio-available, and therefore three wet detention ponds were amended with planted sand filters, sorption filters and addition of precipitation chemicals to enhance the removal of dissolved pollutants and pollutants associated with fine particles and colloids. The three systems treated runoff from industrial, residential and combined (residential and highway) catchments and had permanent volumes of 1,990, 6,900 and 2,680 m(3), respectively. The treatment performance of the ponds for elimination of total suspended solids (TSS), total nitrogen (Tot-N), total phosphorous (Tot-P), PO(4)-P, Pb, Zn, Cd, Ni, Cr, Cu, Hg were within the range typically reported for wet detention ponds, but the concentrations of most of the pollutants were efficiently reduced by the planted sand filters at the outlets. The sorption filters contributed to further decrease the concentration of PO(4)-P from 0.04 ± 0.05 to 0.01 ± 0.01 mg L(-1) and were also efficient in removing heavy metals. Dosing of iron sulphate to enrich the bottom sediment with iron and dosing of aluminium salts to the inlet water resulted in less growth of phytoplankton, but treatment performance was not significantly affected. Heavy metals (Pb, Zn, Cd, Ni, Cr and Cu) accumulated in the sediment of the ponds. The concentrations of Zn, Ni, Cu and Pb in the roots of the wetland plants were generally correlated to the concentrations in the sediments. Among 13 plant species investigated, Rumex hydrolapathum accumulated the highest concentrations of heavy metals in the roots (Concentration Factor (CF) of 4.5 and 5.9 for Zn and Ni, respectively) and Iris pseudacorus the lowest (CF < 1). The translocation of heavy metals from roots to the aboveground tissues of plants was low. Therefore the potential transfer of heavy metals from the metal-enriched sediment to the surrounding ecosystem via plant uptake and translocation is negligible.
Liu, K; Husler, J; Ye, J; Leonard, S S; Cutler, D; Chen, F; Wang, S; Zhang, Z; Ding, M; Wang, L; Shi, X
2001-06-01
Cr (VI) compounds are widely used industrial chemicals and are recognized human carcinogens. The mechanisms of carcinogenesis associated with these compounds remain to be investigated. The present study focused on dose-dependence of Cr (VI)-induced uptake and cellular responses. The results show that Cr (VI) is able to enter the cells (human lung epithelial cell line A549) at low concentration (< 10 microM) and that the Cr (VI) uptake appears to be a combination of saturable transport and passive diffusion. Electron spin resonance (ESR) trapping measurements showed that upon stimulation with Cr (VI), A549 cells were able to generate reactive oxygen species (ROS). The amount of ROS generated depended on the Cr (VI) concentration. ROS generation involved NADPH-dependent flavoenzymes. Cr (VI) affected the following cellular parameters in a dose-dependent manner, (a) activation of nuclear transcription factors NF-kappaB, and p53, (b) DNA damage, (c) induction of cell apoptosis, and (d) inhibition of cell proliferation. The activation of transcription factors was assessed by electrophoretic mobility shift assay and western blot analysis, DNA damage by single cell gel electrophoresis assay, cell apoptosis by DNA fragmentation assay, and cell proliferation by a non-radioactive ELISA kit. At the concentration range used in the present study, no thresholds were found in all of these cell responses to Cr (VI). The results may guide further research to better understand and evaluate the risk of Cr (VI)-induced carcinogenesis at low levels of exposure.
Haines, T.A.; May, T.W.; Finlayson, R.T.; Mierzykowski, S.E.
2003-01-01
The influence of the Nyanza Chemical Waste Dump Superfund Site on the Sudbury River, Massachusetts, was assessed by analysis of sediment, fish prey organisms, and predator fish from four locations in the river system. Whitehall Reservoir is an impoundment upstream of the site, and Reservoir #2 is an impoundment downstream of the site. Cedar Street is a flowing reach upstream of the site, and Sherman Bridge is a flowing reach downstream of the site. Collections of material for analysis were made three times, in May, July, and October. Sediment was analyzed for acid-volatile sulfide (AVS), simultaneously-extracted (SEM) metals (As, Cd, Cr, Hg, Pb, Sb, Zn), and total recoverable Hg. The dominant predatory fish species collected at all sites, largemouth bass (Micropterus salmoides), was analyzed for the same suite of metals as sediment. Analysis of stomach contents of bass identified small fish (yellow perch Perca flavescens, bluegill Lepomis macrochirus, and pumpkinseed Lepomis gibbosus), crayfish, and dragonfly larvae as the dominant prey organisms. Samples of the prey were collected from the same locations and at the same times as predator fish, and were analyzed for total and methyl mercury. Results of AVS and SEM analyses indicated that sediments were not toxic to aquatic invertebrates at any site. The SEM concentrations of As, Cd, and Cr were significantly higher at Reservoir #2 than at the reference sites, and SEM As and Cd were significantly higher at Sherman Bridge than at Cedar St. Sediment total Hg was elevated only at Reservoir #2. Hg was higher at site-influenced locations in all fish species except brown bullhead (Ameiurus nebulosus). Cd was higher in bluegill, black crappie (Pomoxis nigromaculatus), and brown bullhead, and Cr was higher in largemouth bass fillet samples but not in whole-body samples. There were no seasonal differences in sediment or prey organism metals, but some metals in some fish species did vary over time in an inconsistent manner. Predator fish Hg concentration was significantly linearly related to weighted prey organism methyl Hg concentration. Largemouth bass Hg was significantly lower at Reservoir #2 in our study than in previous investigations in 1989 and 1990. High concentrations of inorganic Hg remain in river sediment as a result of operation of the Nyanza site, and fish Hg concentrations in river reaches downstream of the site are elevated compared to upstream reference sites. However, the differences are relatively small and Hg concentrations in largemouth bass from the site-influenced locations are no higher than those from some other, nearby uncontaminated sites. We hypothesize that this results from burial of contaminated sediment with cleaner material, which reduces bioavailability of contaminants and possibly reduces methylation of mercury.
Gormley-Gallagher, Aine Marie; Douglas, Richard William; Rippey, Brian
2015-01-01
Separate phases of metal partitioning behaviour in freshwater lakes that receive varying degrees of atmospheric contamination and have low concentrations of suspended solids were investigated to determine the applicability of the distribution coefficient, K D. Concentrations of Pb, Ni, Co, Cu, Cd, Cr, Hg and Mn were determined using a combination of filtration methods, bulk sample collection and digestion and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Phytoplankton biomass, suspended solids concentrations and the organic content of the sediment were also analysed. By distinguishing between the phytoplankton and (inorganic) lake sediment, transient variations in K D were observed. Suspended solids concentrations over the 6-month sampling campaign showed no correlation with the K D (n = 15 for each metal, p > 0.05) for Mn (r 2 = 0.0063), Cu (r 2 = 0.0002, Cr (r 2 = 0.021), Ni (r 2 = 0.0023), Cd (r 2 = 0.00001), Co (r 2 = 0.096), Hg (r 2 = 0.116) or Pb (r 2 = 0.164). The results implied that colloidal matter had less opportunity to increase the dissolved (filter passing) fraction, which inhibited the spurious lowering of K D. The findings conform to the increasingly documented theory that the use of K D in modelling may mask true information on metal partitioning behaviour. The root mean square error of prediction between the directly measured total metal concentrations and those modelled based on the separate phase fractions were ± 3.40, 0.06, 0.02, 0.03, 0.44, 484.31, 80.97 and 0.1 μg/L for Pb, Cd, Mn, Cu, Hg, Ni, Cr and Co respectively. The magnitude of error suggests that the separate phase models for Mn and Cu can be used in distribution or partitioning models for these metals in lake water. PMID:26200885
Malassa, Husam; Al-Rimawi, Fuad; Al-Khatib, Mahmoud; Al-Qutob, Mutaz
2014-10-01
Rainwater samples harvested for drinking from the west part of Hebron (south of West Bank in Palestine), the largest city in the West Bank, were analyzed for the content of different trace heavy metals (Cr, Mn, Co, Ni, Cu, Zn, Mo, Ag, Cd, Bi, and Pb) by inductively coupled plasma mass spectrometry (ICP-MS). This study was conducted to determine the water quality of harvested rainwater used for drinking of south West Bank (case study, Hebron area). A total of 44 water samples were collected in November 2012 from 44 house cisterns used to collect rainwater from the roofs of houses. The samples were analyzed for their pH, temperature, electrical conductivity, total dissolved solids, and different heavy metal contents. The pH of all water samples was within the US Environmental Protection Agency limits (6.5-8.5), while some water samples were found to exceed the allowed WHO limit for total dissolved solids (TDSs) in drinking water. Results showed that concentrations of the heavy metals vary significantly between the 44 samples. Results also showed that the concentration of five heavy metals (Cr, Mn, Ni, Ag, and Pb) is higher than the WHO limits for these heavy metals in drinking water. Overall, our findings revealed that harvested rainwater used for drinking of this part of south West Bank is contaminated with heavy metals that might affect human health.
Dokpikul, Nattawut; Chaiyasith, Wipharat Chuachuad; Sananmuang, Ratana; Ampiah-Bonney, Richmond J
2018-04-25
A novel method was developed by SAE-DLLME for chromium speciation in water and rice samples using 2-thenoyltrifluoroacetone (TTA) as a chelating reagent by ETAAS. The speciation of Cr(III) and Cr(VI) was achieved by complexation of Cr(III)-TTA and the total Cr was measured after reduction of Cr(VI) to Cr. The calibration graph was linear in the range of 0.02-2.50 µg L -1 , with a detection limit of 0.0052 µg L -1 . The %RSD was in range of 2.90-3.30% at 0.5, 1.5 and 2.5 µg L -1 of Cr(III), n = 5 and the EF was 54.47. The method was applied to chromium speciation and total chromium determination in real samples and gave recoveries in the range of 96.2-103.5% and 97.1-102.7% for Cr(III) and Cr(VI) in water samples and 93.7-103.5% of total Cr in rice samples. The accuracy of the method was evaluated by analysis of SRM 1573a with good agreement compared to the certified value. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Jun-Hwan; Kang, Ju-Chan
2016-01-01
Juvenile rockfish (mean length 13.7±1.7 cm, and mean weight 55.6±4.8 g) were exposed for 4 weeks with the different levels of dietary chromium (Cr(6+)) at 0, 30, 60, 120 and 240 mg/kg. The profile of chromium in the tissues of rockfish is dependent on the exposure periods and chromium concentration. After 4 weeks, the order of chromium accumulation in tissues was liver>kidney>spleen>intestine>gill>muscle. The dietary chromium exposure decreased the growth rate and hepatosomatic index of rockfish. The major hematological findings were significant decrease in the red blood cell (RBC) count, hematocrit (Ht) value, and hemoglobin (Hb) concentration exposed to ≥120 mg/kg chromium concentrations. The dietary chromium exposure (≥120 mg/kg) led to notable increase in glucose, cholesterol, glutamic oxalate transaminase (GOT), and glutamic pyruvate transaminase (GPT) in plasma, whereas there was no considerable change in calcium, magnesium, total protein, and alkaline phosphatase (ALP). The results indicated that the dietary chromium exposure to rockfish can induce significant chromium accumulation in the specific tissues, inhibition of growth, and hematological alterations. Copyright © 2015 Elsevier B.V. All rights reserved.
Azam, Iqra; Afsheen, Sumera; Zia, Ahmed; Javed, Muqaddas; Saeed, Rashid; Sarwar, Muhammad Kaleem; Munir, Bushra
2015-01-01
To study the accumulation and contamination of heavy metals (i.e., Cd, Cr, Cu, Ni, and Zn) in soil, air, and water, few insect species were assayed as ecological indicators. Study area comes under industrial zone of district Gujrat of Punjab, Pakistan. Insects used as bioindicators included a libellulid dragonfly (Crocothemis servilia), an acridid grasshopper (Oxya hyla hyla), and a nymphalid butterfly (Danaus chrysippus) near industrial zone of Gujrat. Accumulation of Cd was highest in insect species followed by Cu, Cr, Zn, and Ni at p < 0.05. Hierarchical cluster analysis (HACA) was carried out to study metal accumulation level in all insects. Correlation and regression analysis confirmed HACA observations and declared concentration of heavy metals above permissible limits. Metal concentrations in insects were significantly higher near industries and nallahs in Gujrat and relatively higher concentrations of metals were found in Orthoptera than Odonata and Lepidoptera. The total metal concentrations in insects were pointed significantly higher at sites S3 (Mid of HalsiNala), S9 (End of HalsiNala), and S1 (Start of HalsiNala), whereas lowest value was detected at site S6 (Kalra Khasa) located far from industrial area. HACA indicates that these insect groups are potential indicators of metal contamination and can be used in biomonitoring. PMID:26167507
Azam, Iqra; Afsheen, Sumera; Zia, Ahmed; Javed, Muqaddas; Saeed, Rashid; Sarwar, Muhammad Kaleem; Munir, Bushra
2015-01-01
To study the accumulation and contamination of heavy metals (i.e., Cd, Cr, Cu, Ni, and Zn) in soil, air, and water, few insect species were assayed as ecological indicators. Study area comes under industrial zone of district Gujrat of Punjab, Pakistan. Insects used as bioindicators included a libellulid dragonfly (Crocothemis servilia), an acridid grasshopper (Oxya hyla hyla), and a nymphalid butterfly (Danaus chrysippus) near industrial zone of Gujrat. Accumulation of Cd was highest in insect species followed by Cu, Cr, Zn, and Ni at p < 0.05. Hierarchical cluster analysis (HACA) was carried out to study metal accumulation level in all insects. Correlation and regression analysis confirmed HACA observations and declared concentration of heavy metals above permissible limits. Metal concentrations in insects were significantly higher near industries and nallahs in Gujrat and relatively higher concentrations of metals were found in Orthoptera than Odonata and Lepidoptera. The total metal concentrations in insects were pointed significantly higher at sites S3 (Mid of HalsiNala), S9 (End of HalsiNala), and S1 (Start of HalsiNala), whereas lowest value was detected at site S6 (Kalra Khasa) located far from industrial area. HACA indicates that these insect groups are potential indicators of metal contamination and can be used in biomonitoring.
Growth and characterization of a-axis oriented Cr-doped AlN films by DC magnetron sputtering
NASA Astrophysics Data System (ADS)
Panda, Padmalochan; Ramaseshan, R.; Krishna, Nanda Gopala; Dash, S.
2016-05-01
Wurtzite type Cr-doped AlN thin films were grown on Si (100) substrates using DC reactive magnetron sputtering with a function of N2 concentration (15 to 25%). Evolution of crystal structure of these films was studied by GIXRD where a-axis preferred orientation was observed. The electronic binding energy and concentration of Cr in these films were estimated by X-ray photoemission spectroscopy (XPS). We have observed indentation hardness (HIT) of around 28.2 GPa for a nitrogen concentration of 25%.
Growth and characterization of a-axis oriented Cr-doped AlN films by DC magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panda, Padmalochan; Ramaseshan, R., E-mail: seshan@igcar.gov.in; Dash, S.
2016-05-23
Wurtzite type Cr-doped AlN thin films were grown on Si (100) substrates using DC reactive magnetron sputtering with a function of N{sub 2} concentration (15 to 25%). Evolution of crystal structure of these films was studied by GIXRD where a-axis preferred orientation was observed. The electronic binding energy and concentration of Cr in these films were estimated by X-ray photoemission spectroscopy (XPS). We have observed indentation hardness (H{sub IT}) of around 28.2 GPa for a nitrogen concentration of 25%.
Ramalingam, Chidambaram
2015-01-01
This study is focused on the possible use of Ceratocystis paradoxa MSR2 native biomass for Cr(VI) biosorption. The influence of experimental parameters such as initial pH, temperature, biomass dosage, initial Cr(VI) concentration and contact time were optimized using batch systems as well as response surface methodology (RSM). Maximum Cr(VI) removal of 68.72% was achieved, at an optimal condition of biomass dosage 2g L−1, initial Cr(VI) concentration of 62.5 mg L−1 and contact time of 60 min. The closeness of the experimental and the predicted values exhibit the success of RSM. The biosorption mechanism of MSR2 biosorbent was well described by Langmuir isotherm and a pseudo second order kinetic model, with a high regression coefficient. The thermodynamic study also revealed the spontaneity and exothermic nature of the process. The surface characterization using FT-IR analysis revealed the involvement of amine, carbonyl and carboxyl groups in the biosorption process. Additionally, desorption efficiency of 92% was found with 0.1 M HNO3. The Cr(VI) removal efficiency, increased with increase in metal ion concentration, biomass concentration, temperature but with a decrease in pH. The size of the MSR2 biosorbent material was found to be 80 μm using particle size analyzer. Atomic force microscopy (AFM) visualizes the distribution of Cr(VI) on the biosorbent binding sites with alterations in the MSR2 surface structure. The SEM-EDAX analysis was also used to evaluate the binding characteristics of MSR2 strain with Cr(VI) metals. The mechanism of Cr(VI) removal of MSR2 biomass has also been proposed. PMID:25822726
Optimizing the application of magnetic nanoparticles in Cr(VI) removal
NASA Astrophysics Data System (ADS)
Simeonidis, Konstantinos; Kaprara, Efthymia; Mitrakas, Manassis; Tziomaki, Magdalini; Angelakeris, Mavroidis; Vourlias, Georgios; Andritsos, Nikolaos
2013-04-01
The presence of heavy metals in aqueous systems is an intense health and environmental problem as implied by their harmful effects on human and other life forms. Among them, chromium is considered as an acutely hazardous compound contaminating the surface water from industrial wastes or entering the groundwater, the major source of drinking water, by leaching of chromite rocks. Chromium occurs in two stable oxidation states, Cr(III) and Cr(VI), with the hexavalent form being much more soluble and mobile in water having the ability to enter easily into living tissues or cells and thus become more toxic. Despite the established risks from Cr(VI)-containing water consumption and the increasing number of incidents, the E.U. tolerance limit for total chromium in potable water still stands at 50 μg/L. However, in the last years a worldwide debate concerning the establishment of a separate and very strict limit for the hexavalent form takes place. In practice, Cr(VI) is usually removed from water by various methods such as chemical coagulation/filtration, ion exchange, reverse osmosis and adsorption. Adsorption is considered as the simplest method which may become very effective if the process is facilitated by the incorporation of a Cr(VI) to Cr(III) reduction stage. This work studies the potential of using magnetic nanoparticles as adsorbing agents for Cr(VI) removal at the concentration levels met in contaminated drinking water. A variety of nanoparticles consisting of ferrites MFe2O4 (M=Fe, Co, Ni, Cu, Mn, Mg, Zn) were prepared by precipitating the corresponding bivalent or trivalent sulfate salts under controlled acidity and temperature. Electron microscopy and X-ray diffraction techniques were used to verify their crystal structure and determine the morphological characteristics. The mean particle size of the samples was found in the range 10-50 nm. Batch Cr(VI) removal tests were performed in aqueous nanoparticles dispersions showing the efficiency of ferrite nanoparticles to reduce Cr(VI) concentration below the regulation limit. The removal capacity is maximized for Fe3O4 nanoparticles due to the high reducing potential of the Fe2+ cations. Furthermore, their applicability was tested in a pilot-scale magnetic separator for the continuous flow removal of nanoparticles after water treatment that takes advantage of the magnetic properties. Acknowledgment This work was implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State.
NASA Astrophysics Data System (ADS)
Relic, Dubravka; Sakan, Sanja; Andjelkovic, Ivan; Djordjevic, Dragana
2017-04-01
Within this study the investigation of pollution state of metal and metalloids contamination in soils and sediments samples of the petrochemical and nearby residential area is present. The pseudo-total concentrations of Ba, Cd, Co, Cu, Cr, Mn, Ni, Pb, V, Zn, As, Hg, and Se were monitored with ICP/OES. The pollution indices applied in this work, such as the enrichment factor, the pollution load index, the total enrichment factor, and the ecological risk index showed that some of the soil and sediment samples were highly polluted by Hg, Ba, Pb, Cd, Cr Cu and Zn. The highest pollution indices were calculated for Hg in samples from the petrochemical area: chloralkali plant, electrolysis factory, mercury disposal area, and in samples from the waste channel. The pollution indices of the samples from the residential area indicated that this area is not polluted by investigated elements. Besides the pollution indices, the metal and metalloids concentrations were used in the equations for calculating the health risk criteria. We calculate no carcinogenic and carcinogenic risks for the composite worker and residential people by usage adequate equations. In analyzed samples, the no carcinogenic risks were lower than 1. The highest values of carcinogenic risk were obtained in sediment samples from the waste channel within the petrochemical industry and the metal that mostly contributes to the highest carcinogenic risk is Cr. Correlation analysis of pollution indices and carcinogenic risks calculated from the residential area samples showed good correlations while this is not the case for an industrial area.
Heavy metals in wild rice from northern Wisconsin
Bennett, J.P.; Chiriboga, E.; Coleman, J.; Waller, D.M.
2000-01-01
Wild rice grain samples from various parts of the world have been found to have elevated concentrations of heavy metals, raising concern for potential effects on human health. It was hypothesized that wild rice from north-central Wisconsin could potentially have elevated concentrations of some heavy metals because of possible exposure to these elements from the atmosphere or from water and sediments. In addition, no studies of heavy metals in wild rice from Wisconsin had been performed, and a baseline study was needed for future comparisons. Wild rice plants were collected from four areas in Bayfield, Forest, Langlade, Oneida, Sawyer and Wood Counties in September, 1997 and 1998 and divided into four plant parts for elemental analyses: roots, stems, leaves and seeds. A total of 194 samples from 51 plants were analyzed across the localities, with an average of 49 samples per part depending on the element. Samples were cleaned of soil, wet digested, and analyzed by ICP for Ag, As, Cd, Cr, Cu, Hg, Mg, Pb, Se and Zn. Roots contained the highest concentrations of Ag, As, Cd, Cr, Hg, Pb, and Se. Copper was highest in both roots and seeds, while Zn was highest just in seeds. Magnesium was highest in leaves. Seed baseline ranges for the 10 elements were established using the 95% confidence intervals of the medians. Wild rice plants from northern Wisconsin had normal levels of the nutritional elements Cu, Mg and Zn in the seeds. Silver, Cd, Hg, Cr, and Se were very low in concentration or within normal limits for food plants. Arsenic and Pb, however, were elevated and could pose a problem for human health. The pathway for As, Hg and Pb to the plants could be atmospheric.
Munyangane, Portia; Mouri, Hassina; Kramers, Jan
2017-10-01
The present investigation was conducted in order to evaluate the occurrence and distribution patterns of some potentially harmful trace elements in the borehole water of the Greater Giyani area, Limpopo, South Africa, and their possible implications on human health. Twenty-nine borehole water samples were collected in the dry season (July/August 2012) and another 27 samples from the same localities in the wet season (March 2013) from the study area. The samples were analysed for trace elements arsenic (As), cadmium (Cd), chromium (Cr), selenium (Se), and lead (Pb) using the inductively coupled plasma mass spectrometry technique. The average concentrations of As, Cd, Cr, Se, and Pb were 11.3, 0.3, 33.1, 7.1, and 6.0 µg/L in the dry season and 11.0, 0.3, 28.3, 4.2, and 6.6 µg/L in the wet season, respectively. There was evidence of seasonal fluctuations in concentrations of all analysed elements except for As, though Cd and Pb displayed low concentrations (<0.2 and <6.0 µg/L, respectively) in almost all sampled boreholes. Se and Cr concentrations slightly exceed the South African National Standard permissible limits for safe drinking water in few boreholes. A total of four boreholes exceeded the water quality guideline for As with two of these boreholes containing five times more As than the prescribed limit. The spatial distribution patterns of elevated As closely correlate with the underlying geology. The findings of this investigation have important implications for human health of the communities drinking from the affected boreholes.
Shashidhar, T; Bhallamudi, S Murty; Philip, Ligy
2007-07-16
Bench scale transport and biotransformation experiments and mathematical model simulations were carried out to study the effectiveness of bio-barriers for the containment of hexavalent chromium in contaminated confined aquifers. Experimental results showed that a 10cm thick bio-barrier with an initial biomass concentration of 0.205mg/g of soil was able to completely contain a Cr(VI) plume of 25mg/L concentration. It was also observed that pore water velocity and initial biomass concentration are the most significant parameters in the containment of Cr(VI). The mathematical model developed is based on one-dimensional advection-dispersion reaction equations for Cr(VI) and molasses in saturated, homogeneous porous medium. The transport of Cr(VI) and molasses is coupled with adsorption and Monod's inhibition kinetics for immobile bacteria. It was found that, in general, the model was able to simulate the experimental results satisfactorily. However, there was disparity between the numerically simulated and experimental breakthrough curves for Cr(VI) and molasses in cases where there was high clay content and high microbial activity. The mathematical model could contribute towards improved designs of future bio-barriers for the remediation of Cr(VI) contaminated aquifers.
Rodriguez-Valadez, Francisco; Ortiz-Exiga, Carlos; Ibanez, Jorge G; Alatorre-Ordaz, Alejandro; Gutierrez-Granados, Silvia
2005-03-15
The reduction of Cr(VI) to Cr(III) is achieved in a flow-by, parallel-plate reactor equipped with reticulated vitreous carbon (RVC) electrodes;this reduction can be accomplished by the application of relatively small potentials. Treatment of synthetic samples and field samples (from an electrodeposition plant) results in final Cr(VI) concentrations of 0.1 mg/L (i.e., the detection limit of the UV-vis characterization technique used here) in 25 and 43 min, respectively. Such concentrations comply with typical environmental legislation for wastewaters that regulate industrial effluents (at presenttime = 0.5 mg/L for discharges). The results show the influence of the applied potential, pH, electrode porosity, volumetric flow, and solution concentration on the Cr(VI) reduction percentage and on the required electrolysis time. Values for the mass transfer coefficient and current efficiencies are also obtained. Although current efficiencies are not high, the fast kinetics observed make this proposed treatment an appealing alternative. The lower current efficiency obtained in the case of a field sample is attributed to electrochemical activation of impurities. The required times for the reduction of Cr(VI) are significantly lower than those reported elsewhere.
Chemical Properties And Toxicity of Chromium(III) Nutritional Supplements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levina, A.; Lay, P.A.
2009-05-19
The status of Cr(III) as an essential micronutrient for humans is currently under question. No functional Cr(III)-containing biomolecules have been definitively described as yet, and accumulated experience in the use of Cr(III) nutritional supplements (such as [Cr(pic){sub 3}], where pic = 2-pyridinecarboxylato) has shown no measurable benefits for nondiabetic people. Although the use of large doses of Cr(III) supplements may lead to improvements in glucose metabolism for type 2 diabetics, there is a growing concern over the possible genotoxicity of these compounds, particularly of [Cr(pic){sub 3}]. The current perspective discusses chemical transformations of Cr(III) nutritional supplements in biological media, withmore » implications for both beneficial and toxic actions of Cr(III) complexes, which are likely to arise from the same biochemical mechanisms, dependent on concentrations of the reactive species. These species include: (1) partial hydrolysis products of Cr(III) nutritional supplements, which are capable of binding to biological macromolecules and altering their functions; and (2) highly reactive Cr(VI/V/IV) species and organic radicals, formed in reactions of Cr(III) with biological oxidants. Low concentrations of these species are likely to cause alterations in cell signaling (including enhancement of insulin signaling) through interactions with the active centers of regulatory enzymes in the cell membrane or in the cytoplasm, while higher concentrations are likely to produce genotoxic DNA lesions in the cell nucleus. These data suggest that the potential for genotoxic side-effects of Cr(III) complexes may outweigh their possible benefits as insulin enhancers, and that recommendations for their use as either nutritional supplements or antidiabetic drugs need to be reconsidered in light of these recent findings.« less
Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas
Koda, Eugeniusz; Bilgin, Ayla; Vaverková, Mgdalena D.
2017-01-01
The experiment was carried out in order to evaluate the effects of trace element immobilizing soil amendments, i.e., chalcedonite, dolomite, halloysite, and diatomite on the chemical characteristics of soil contaminated with Cr and the uptake of metals by plants. The study utilized analysis of variance (ANOVA), principal component analysis (PCA) and Factor Analysis (FA). The content of trace elements in plants, pseudo-total and extracted by 0.01 M CaCl2, were determined using the method of spectrophotometry. All of the investigated element contents in the tested parts of Indian mustard (Brassica juncea L.) differed significantly in the case of applying amendments to the soil, as well as Cr contamination. The greatest average above-ground biomass was observed when halloysite and dolomite were amended to the soil. Halloysite caused significant increases of Cr concentrations in the roots. The obtained values of bioconcentration and translocation factors observed for halloysite treatment indicate the effectiveness of using Indian mustard in phytostabilization techniques. The addition of diatomite significantly increased soil pH. Halloysite and chalcedonite were shown to be the most effective and decreased the average Cr, Cu and Zn contents in soil. PMID:29295511
Demirbas, Umit; Baali, Ilyes
2015-10-15
We report significant average power and efficiency scaling of diode-pumped Cr:LiSAF lasers in continuous-wave (cw), cw frequency-doubled, and mode-locked regimes. Four single-emitter broad-area laser diodes around 660 nm were used as the pump source, which provided a total pump power of 7.2 W. To minimize thermal effects, a 20 mm long Cr:LiSAF sample with a relatively low Cr-concentration (0.8%) was used as the gain medium. In cw laser experiments, 2.4 W of output power, a slope efficiency of 50%, and a tuning range covering the 770-1110 nm region were achieved. Intracavity frequency doubling with beta-barium borate (BBO) crystals generated up to 1160 mW of blue power and a record tuning range in the 387-463 nm region. When mode locked with a saturable absorber mirror, the laser produced 195 fs pulses with 580 mW of average power around 820 nm at a 100.3 MHz repetition rate. The optical-to-optical conversion efficiency of the system was 33% in cw, 16% in cw frequency-doubled, and 8% in cw mode-locked regimes.
Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas.
Radziemska, Maja; Koda, Eugeniusz; Bilgin, Ayla; Vaverková, Mgdalena D
2017-12-23
The experiment was carried out in order to evaluate the effects of trace element immobilizing soil amendments, i.e., chalcedonite, dolomite, halloysite, and diatomite on the chemical characteristics of soil contaminated with Cr and the uptake of metals by plants. The study utilized analysis of variance (ANOVA), principal component analysis (PCA) and Factor Analysis (FA). The content of trace elements in plants, pseudo-total and extracted by 0.01 M CaCl₂, were determined using the method of spectrophotometry. All of the investigated element contents in the tested parts of Indian mustard ( Brassica juncea L.) differed significantly in the case of applying amendments to the soil, as well as Cr contamination. The greatest average above-ground biomass was observed when halloysite and dolomite were amended to the soil. Halloysite caused significant increases of Cr concentrations in the roots. The obtained values of bioconcentration and translocation factors observed for halloysite treatment indicate the effectiveness of using Indian mustard in phytostabilization techniques. The addition of diatomite significantly increased soil pH. Halloysite and chalcedonite were shown to be the most effective and decreased the average Cr, Cu and Zn contents in soil.
Mendiola-Alvarez, S Y; Guzmán-Mar, J L; Turnes-Palomino, G; Maya-Alejandro, F; Hernández-Ramírez, A; Hinojosa-Reyes, L
2017-05-01
Photocatalytic degradation of 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous solution using Cr(III)-doped TiO 2 under UV and visible light was investigated. The semiconductor material was synthesized by a microwave-assisted sol-gel method with Cr(III) doping contents of 0.02, 0.04, and 0.06 wt%. The catalyst was characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), nitrogen physisorption, UV-Vis diffuse reflectance spectroscopy (DRS), and atomic absorption spectroscopy (AAS). The photocatalytic activity for the photodegradation of MCPA was followed by reversed-phase high-performance liquid chromatography (HPLC) and total organic carbon (TOC) analysis. The intermediates formed during degradation were identified using gas chromatography-mass spectrometry (GC-MS). Chloride ion evolution was measured by ion chromatography. Characterization results showed that Cr(III)-doped TiO 2 materials possessed a small crystalline size, high surface area, and mesoporous structure. UV-Vis DRS showed enhanced absorption in the visible region as a function of the Cr(III) concentration. The Cr(III)-doped TiO 2 catalyst with 0.04 wt% of Cr(III) was more active than bare TiO 2 for the degradation of MCPA under both UV and visible light. The intermediates identified during MCPA degradation were 4-chloro-2-methylphenol (CMP), 2-(4-hydroxy-2-methylphenoxy) acetic acid (HMPA), and 2-hydroxybuta-1,3-diene-1,4-diyl-bis (oxy)dimethanol (HBDM); the formation of these intermediates depended on the radiation source.
Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits.
Wójcik, Małgorzata; Sugier, Piotr; Siebielec, Grzegorz
2014-07-15
Metal (Zn, Pb, Cd, Cu, Ni, Cr) accumulation in shoots of 38 plant species spontaneously colonizing three Zn-Pb waste deposits in southern Poland was studied in order to find out if the age of the waste (30-130 years) or its type (slag or flotation residues) influence metal content in plants and to identify species potentially suitable for biomonitoring and phytoremediation. The total metal concentrations in the waste upper layers ranged from 7300 to 171,790 mg kg(-1) for Zn, from 1390 to 22,265 mg kg(-1) for Pb, and from 66 to 1,464 mg kg(-1) for Cd, whereas CaCl2-extracted fractions accounted for 0.034-0.11 %, 0.005-0.03 %, and 0.28-0.62 % of total Zn, Pb and Cd concentrations, respectively. The concentrations of Cu, Ni, and Cr in substrates and in plants were low and ranged within the background values. Metal accumulation in plant shoots was poorly correlated with both total and CaCl2-extracted forms of metals in the substrate and was highly variable among species and also specimens of the same species. The highest mean concentrations of Zn, Pb and Cd were found in Anthyllis vulneraria L. (901.5 mg kg(-1)), Echium vulgare L. (116.92 mg kg(-1)), and Hieracium piloselloides Vill. (26.86 mg kg(-1)), respectively. Besides Reseda lutea L., no species appeared to be a good indicator of polymetallic environment pollution based on chemical analysis of shoots; however, metal accumulation in the whole plant communities of a particular contaminated area might be an accurate tool for assessment of metal transfer to vegetation irrespective of the type or age of the waste. All the species studied developed a metal exclusion strategy, thus exhibiting potential for phytostabilization of metalliferous wastelands. Copyright © 2014 Elsevier B.V. All rights reserved.