Genetic variation in efficiency to deposit fat and lean meat in Norwegian Landrace and Duroc pigs.
Martinsen, K H; Ødegård, J; Olsen, D; Meuwissen, T H E
2015-08-01
Feed costs amount to approximately 70% of the total costs in pork production, and feed efficiency is, therefore, an important trait for improving pork production efficiency. Production efficiency is generally improved by selection for high lean growth rate, reduced backfat, and low feed intake. These traits have given an effective slaughter pig but may cause problems in piglet production due to sows with limited body reserves. The aim of the present study was to develop a measure for feed efficiency that expressed the feed requirements per 1 kg deposited lean meat and fat, which is not improved by depositing less fat. Norwegian Landrace ( = 8,161) and Duroc ( = 7,202) boars from Topigs Norsvin's testing station were computed tomography scanned to determine their deposition of lean meat and fat. The trait was analyzed in a univariate animal model, where total feed intake in the test period was the dependent variable and fat and lean meat were included as random regression cofactors. These cofactors were measures for fat and lean meat efficiencies of individual boars. Estimation of fraction of total genetic variance due to lean meat or fat efficiency was calculated by the ratio between the genetic variance of the random regression cofactor and the total genetic variance in total feed intake during the test period. Genetic variance components suggested there was significant genetic variance among Norwegian Landrace and Duroc boars in efficiency for deposition of lean meat (0.23 ± 0.04 and 0.38 ± 0.06) and fat (0.26 ± 0.03 and 0.17 ± 0.03) during the test period. The fraction of the total genetic variance in feed intake explained by lean meat deposition was 12% for Norwegian Landrace and 15% for Duroc. Genetic fractions explained by fat deposition were 20% for Norwegian Landrace and 10% for Duroc. The results suggested a significant part of the total genetic variance in feed intake in the test period was explained by fat and lean meat efficiency. These new efficiency measures may give the breeders opportunities to select for animals with a genetic potential to deposit lean meat efficiently and at low feed costs in slaughter pigs rather than selecting for reduced the feed intake and backfat.
Development of an ash particle deposition model considering build-up and removal mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kjell Strandstroem; Christian Muellera; Mikko Hupa
2007-12-15
Slagging and fouling on heat exchanger surfaces in power boilers fired with fossil fuels and fuel mixtures has a significant influence on boiler efficiency and availability. Mathematical modelling has long been considered a suitable method to assist boiler operators to determine optimized operating conditions for an existing furnace. The ultimate goal in ash deposition prediction is hereby the determination of the total amount of material deposited and hence the determination of the total reduction in efficiency. Depending on the fuels fired the total deposited mass is a combination of ash particle deposition and ash particle erosion due to non-sticky particles.more » The novel ash particle deposition model presented in this work considers deposition of sticky ash particles, cleansing of deposit by non-sticky sand particles and sticking of sand due to contact with sticky ash. The steady-state modelling results for the total amount of ash deposited on the deposition probe of an entrained flow reactor presented in this work agree well with the experimental data. Only at very high fractions of sand added as non-sticky material, a significant influence of the sand on the overall mass deposited was found. Since the model considers sticking of non-sticking sand due to contact with sticky ash, the fraction of sand deposited on the probe was especially studied. Using a correction factor to consider the influence of operating time on the steady-state simulations led to good agreement between simulations and experimental data. 12 refs., 10 figs.« less
Fluvial sediment in Double Creek subwatershed No. 5, Washington County, Oklahoma
Bednar, Gene A.; Waldrep, Thomas E.
1973-01-01
A total of 21,370 tons of fluvial sediment was transported into reservoir No. 5 and a total of 19,930 tons was deposited. Seventy-eight percent of the total fluvial sediment was deposited during the first 9.2 years, or 63 percent of time of reservoir operation. The computed trap efficiency of reservoir No. 5 was 93 percent.
NASA Astrophysics Data System (ADS)
Vivanco, M. G.; Bessagnet, B.; Cuvelier, C.; Theobald, M. R.; Tsyro, S.; Pirovano, G.; Aulinger, A.; Bieser, J.; Calori, G.; Ciarelli, G.; Manders, A.; Mircea, M.; Aksoyoglu, S.; Briganti, G.; Cappelletti, A.; Colette, A.; Couvidat, F.; D'Isidoro, M.; Kranenburg, R.; Meleux, F.; Menut, L.; Pay, M. T.; Rouïl, L.; Silibello, C.; Thunis, P.; Ung, A.
2017-02-01
In the framework of the UNECE Task Force on Measurement and Modelling (TFMM) under the Convention on Long-range Transboundary Air Pollution (LRTAP), the EURODELTAIII project is evaluating how well air quality models are able to reproduce observed pollutant air concentrations and deposition fluxes in Europe. In this paper the sulphur and nitrogen deposition estimates of six state-of-the-art regional models (CAMx, CHIMERE, EMEP MSC-W, LOTOS-EUROS, MINNI and CMAQ) are evaluated and compared for four intensive EMEP measurement periods (25 Feb-26 Mar 2009; 17 Sep-15 Oct 2008; 8 Jan-4 Feb 2007 and 1-30 Jun 2006). For sulphur, this study shows the importance of including sea salt sulphate emissions for obtaining better model results; CMAQ, the only model considering these emissions in its formulation, was the only model able to reproduce the high measured values of wet deposition of sulphur at coastal sites. MINNI and LOTOS-EUROS underestimate sulphate wet deposition for all periods and have low wet deposition efficiency for sulphur. For reduced nitrogen, all the models underestimate both wet deposition and total air concentrations (ammonia plus ammonium) in the summer campaign, highlighting a potential lack of emissions (or incoming fluxes) in this period. In the rest of campaigns there is a general underestimation of wet deposition by all models (MINNI and CMAQ with the highest negative bias), with the exception of EMEP, which underestimates the least and even overestimates deposition in two campaigns. This model has higher scavenging deposition efficiency for the aerosol component, which seems to partly explain the different behaviour of the models. For oxidized nitrogen, CMAQ, CAMx and MINNI predict the lowest wet deposition and the highest total air concentrations (nitric acid plus nitrates). Comparison with observations indicates a general underestimation of wet oxidized nitrogen deposition by these models, as well as an overestimation of total air concentration for all the campaigns, except for the 2006 campaign. This points to a low efficiency in the wet deposition of oxidized nitrogen for these models, especially with regards to the scavenging of nitric acid, which is the main driver of oxidized N deposition for all the models. CHIMERE, LOTOS-EUROS and EMEP agree better with the observations for both wet deposition and air concentration of oxidized nitrogen, although CHIMERE seems to overestimate wet deposition in the summer period. This requires further investigation, as the gas-particle equilibrium seems to be biased towards the gas phase (nitric acid) for this model. In the case of MINNI, the frequent underestimation of wet deposition combined with an overestimation of atmospheric concentrations for the three pollutants indicates a low efficiency of the wet deposition processes. This can be due to several reasons, such as an underestimation of scavenging ratios, large vertical concentration gradients (resulting in small concentrations at cloud height) or a poor parameterization of clouds. Large differences between models were also found for the estimates of dry deposition. However, the lack of suitable measurements makes it impossible to assess model performance for this process. These uncertainties should be addressed in future research, since dry deposition contributes significantly to the total deposition for the three deposited species, with values in the same range as wet deposition for most of the models, and with even higher values for some of them, especially for reduced nitrogen.
Samadi; Liebert, F
2006-11-01
In addition to dose-response studies, modeling of N utilization, depending on intake of the first limiting amino acid in the diet, is one of the tools for assessing amino acid requirements in growing animals. Based on a verified nonlinear N-utilization model and following the principles of the diet dilution technique, N-balance experiments were conducted to estimate the Thr requirement of fast-growing chickens (genotype Cobb), depending on age, sex, CP deposition. and efficiency of dietary Thr utilization. Different predictions were made for the feed intake to conclude the optimal Thr concentration in the feed. The results are based on N-balance experiments with a total of 144 male and 144 female growing chickens within 4 age periods (I: 10 to 25 d; II: 30 to 45 d; III: 50 to 65 d; IV: 70 to 85 d), using diets with graded protein supply (6.6, 13, 19.6, 25.1, 31.8, and 37.6% CP in DM) from high-protein soybean meal with a constant amino acid ratio and Thr as the first limiting amino acid (3.87 g of Thr/100 g of CP; dietary Lys:Thr = 1:0.54). The observed optimal Thr concentration (% of feed) was influenced by age, sex, level of CP deposition, dietary efficiency of Thr utilization, and predicted feed intake. For male chickens, assuming an average CP deposition (60% of the potential) and average efficiency of Thr utilization, 0.78% (10 to 25 d), 0.73% (30 to 45 d), 0.65% (50 to 65 d), and 0.55% (70 to 85 d) total dietary Thr were observed as optimal total Thr concentration in the diet (corresponding to 60, 135, 160, and 180 g of daily feed intake, respectively). Data are discussed in context with the main factors of influence like age, sex, level of daily CP deposition, efficiency of dietary Thr utilization, and predicted feed intake.
Factors Controlling Black Carbon Deposition in Snow in the Arctic
NASA Astrophysics Data System (ADS)
Qi, L.; Li, Q.; He, C.; Li, Y.
2015-12-01
This study evaluates the sensitivity of black carbon (BC) concentration in snow in the Arctic to BC emissions, dry deposition and wet scavenging efficiency using a 3D global chemical transport model GEOS-Chem driven by meteorological field GEOS-5. With all improvements, simulated median BC concentration in snow agrees with observation (19.2 ng g-1) within 10%, down from -40% in the default GEOS-Chem. When the previously missed gas flaring emissions (mainly located in Russia) are included, the total BC emission in the Arctic increases by 70%. The simulated BC in snow increases by 1-7 ng g-1, with the largest improvement in Russia. The discrepancy of median BC in snow in the whole Arctic reduces from -40% to -20%. In addition, recent measurements of BC dry deposition velocity suggest that the constant deposition velocity of 0.03 cm s-1 over snow and ice used in the GEOS-Chem is too low. So we apply resistance-in-series method to calculate the dry deposition velocity over snow and ice and the resulted dry deposition velocity ranges from 0.03 to 0.24 cm s-1. However, the simulated total BC deposition flux in the Arctic and BC in snow does not change, because the increased dry deposition flux has been compensated by decreased wet deposition flux. However, the fraction of dry deposition to total deposition increases from 16% to 25%. This may affect the mixing of BC and snow particles and further affect the radative forcing of BC deposited in snow. Finally, we reduced the scavenging efficiency of BC in mixed-phase clouds to account for the effect of Wegener-Bergeron-Findeisen (WBF) process based on recent observations. The simulated BC concentration in snow increases by 10-100%, with the largest increase in Greenland (100%), Tromsø (50%), Alaska (40%), and Canadian Arctic (30%). Annual BC loading in the Arctic increases from 0.25 to 0.43 mg m-2 and the lifetime of BC increases from 9.2 to 16.3 days. This indicates that BC simulation in the Arctic is really sensitive to the representation of BC scavenging efficiency. More measurements are needed to better understand the BC-cloud interaction and to constrain the model.
Efficiency of fat deposition from non-starch polysaccharides, starch and unsaturated fat in pigs.
Halas, Veronika; Babinszky, László; Dijkstra, Jan; Verstegen, Martin W A; Gerrits, Walter J J
2010-01-01
The aim was to evaluate under protein-limiting conditions the effect of different supplemental energy sources: fermentable NSP (fNSP), digestible starch (dStarch) and digestible unsaturated fat (dUFA), on marginal efficiency of fat deposition and distribution. A further aim was to determine whether the extra fat deposition from different energy sources, and its distribution in the body, depends on feeding level. A total of fifty-eight individually housed pigs (48 (SD 4) kg) were used in a 3 x 2 factorial design study, with three energy sources (0.2 MJ digestible energy (DE)/kg(0.75) per d of fNSP, dStarch and dUFA added to a control diet) at two feeding levels. Ten pigs were slaughtered at 48 (SD 4) kg body weight and treatment pigs at 106 (SD 3) kg body weight. Bodies were dissected and the chemical composition of each body fraction was determined. The effect of energy sources on fat and protein deposition was expressed relative to the control treatments within both energy intake levels based on a total of thirty-two observations in six treatments, and these marginal differences were subsequently treated as dependent variables. Results showed that preferential deposition of the supplemental energy intake in various fat depots did not depend on the energy source, and the extra fat deposition was similar at each feeding level. The marginal energetic transformation (energy retention; ER) of fNSP, dStarch and dUFA for fat retention (ERfat:DE) was 44, 52 and 49 % (P>0.05), respectively. Feeding level affected fat distribution, but source of energy did not change the relative partitioning of fat deposition. The present results do not support values of energetic efficiencies currently used in net energy-based systems.
Keith, D; Hong, B; Christensen, M
1997-05-01
A quick, simple, and efficient extraction technique was developed for the removal of protein from soft hydrophilic contact lenses. An extraction solvent consisting of a 50:50 mix of 0.2% trifluoroacetic acid and acetonitrile was used to remove protein from in vitro laboratory-deposited and human-worn contact lenses. The protein removed was analyzed using HPLC, bicinchoninic acid (BCA) analysis, and SDS-PAGE gel electreophoresis. Extraction efficiency for lysozyme from laboratory-deposited Group IV lenses was determined to be approximately 100%. Group IV human-worn contact lenses were extracted and analyzed for lysozyme by HPLC and total protein by bicinchoninic acid (BCA) analysis. Groups I, II, III, and IV contact lenses deposited with an artificial tear protein solution and human-worn lenses were extracted and analyzed by SDS-PAGE gel electreophoresis and micro-BCA. The ACN/TFA procedure offers a simple, quick, and efficient extraction technique for removal of protein from contact lenses for subsequent analysis.
Lei, Mei; Wan, Xiaoming; Guo, Guanghui; Yang, Junxing; Chen, Tongbin
2018-01-01
Research on the appropriate method for evaluating phytoremediation efficiency is limited. A 2-year field experiment was conducted to investigate phytoremediation efficiency using the hyperaccumulator Pteris vittata on an arsenic (As)-contaminated site. The remediation efficiency was evaluated through the removal rate of As in soils and extraction rate of heavy metals in plants. After 2 years of remediation, the concentration of total As in soils decreased from 16.27 mg kg -1 in 2012 to 14.58 mg kg -1 in 2014. The total remediation efficiency of As was 10.39% in terms of the removal rate of heavy metals calculated for soils, whereas the remediation efficiency calculated from As uptake by P. vittata was 16.09%. Such a discrepancy aroused further consideration on the potential input of As. A large amount of As was brought in by atmospheric emissions, which possibly biased the calculation of remediation efficiency. In fact, considering also the atmospheric depositions of As, the corrected removal rate of As from soil was 16.57%. Therefore, the results of this work suggest that (i) when evaluating the phytoextraction efficiency, the whole input and output cycle of the element of interest in the targeted ecosystem must be considered, and (ii) P. vittata has the potential to be used to remediate As-contaminated soils in Henan Province, China.
Kolanjiyil, Arun V; Kleinstreuer, Clement
2016-12-01
Computational predictions of aerosol transport and deposition in the human respiratory tract can assist in evaluating detrimental or therapeutic health effects when inhaling toxic particles or administering drugs. However, the sheer complexity of the human lung, featuring a total of 16 million tubular airways, prohibits detailed computer simulations of the fluid-particle dynamics for the entire respiratory system. Thus, in order to obtain useful and efficient particle deposition results, an alternative modeling approach is necessary where the whole-lung geometry is approximated and physiological boundary conditions are implemented to simulate breathing. In Part I, the present new whole-lung-airway model (WLAM) represents the actual lung geometry via a basic 3-D mouth-to-trachea configuration while all subsequent airways are lumped together, i.e., reduced to an exponentially expanding 1-D conduit. The diameter for each generation of the 1-D extension can be obtained on a subject-specific basis from the calculated total volume which represents each generation of the individual. The alveolar volume was added based on the approximate number of alveoli per generation. A wall-displacement boundary condition was applied at the bottom surface of the first-generation WLAM, so that any breathing pattern due to the negative alveolar pressure can be reproduced. Specifically, different inhalation/exhalation scenarios (rest, exercise, etc.) were implemented by controlling the wall/mesh displacements to simulate realistic breathing cycles in the WLAM. Total and regional particle deposition results agree with experimental lung deposition results. The outcomes provide critical insight to and quantitative results of aerosol deposition in human whole-lung airways with modest computational resources. Hence, the WLAM can be used in analyzing human exposure to toxic particulate matter or it can assist in estimating pharmacological effects of administered drug-aerosols. As a practical WLAM application, the transport and deposition of asthma drugs from a commercial dry-powder inhaler is discussed in Part II. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Copper recovery from artificial bioleaching lixivium of waste printed circuit boards].
Cheng, Dan; Zhu, Neng-Wu; Wu, Ping-Xiao; Zou, Ding-Hui; Xing, Yi-Jia
2014-04-01
The key step to realize metal recovery from bioleaching solutions is the recovery of copper from bioleaching lixivium of waste printed circuit boards in high-grade form. The influences of cathode material, current density, initial pH and initial copper ion concentration on the efficiency and energy consumption of copper recovery from artificial bioleaching lixivium under condition of constant current were investigated using an electro-deposition approach. The results showed that the larger specific surface area of the cathode material (carbon felt) led to the higher copper recovery efficiency (the recovery efficiencies of the anode and the cathode chambers were 96.56% and 99.25%, respectively) and the smaller the total and unit mass product energy consumption (the total and unit mass product energy consumptions were 0.022 kW x h and 15.71 kW x h x kg(-1), respectively). The copper recovery efficiency and energy consumption increased with the increase of current density. When the current density was 155.56 mA x cm(-2), the highest copper recovery efficiencies in the anode and cathode chambers reached 98.51% and 99.37%, respectively. Accordingly, the highest total and unit mass product energy consumptions were 0.037 kW x h and 24.34 kW x h x kg(-1), respectively. The copper recovery efficiency was also significantly affected by the initial copper ion concentration. The increase of the initial copper ion concentration would lead to faster decrease of copper ion concentration, higher total energy consumption, and lower unit mass product consumption. However, the initial pH had no significant effect on the copper recovery efficiency. Under the optimal conditions (carbon felt for cathode materials, current density of 111.11 mA x cm(-2), initial pH of 2.0, and initial copper ion concentration of 10 g x L(-1)), the copper recovery efficiencies of the anode and cathode chambers were 96.75% and 99.35%, and the total and unit mass product energy consumptions were 0.021 kW x h and 14.61 kW x h x kg(-1), respectively. The deposited copper on the cathode material was fascicularly distributed and no oxygen was detected.
Controls on mercury and methylmercury deposition for two watersheds in Acadia National Park, Maine.
Johnson, K B; Haines, T A; Kahl, J S; Norton, S A; Amirbahman, Aria; Sheehan, K D
2007-03-01
Throughfall and bulk precipitation samples were collected for two watersheds at Acadia National Park, Maine, from 3 May to 16 November 2000, to determine which landscape factors affected mercury (Hg) deposition. One of these watersheds, Cadillac Brook, burned in 1947, providing a natural experimental design to study the effects of forest type on deposition to forested watersheds. Sites that face southwest received the highest Hg deposition, which may be due to the interception of cross-continental movement of contaminated air masses. Sites covered with softwood vegetation also received higher Hg deposition than other vegetation types because of the higher scavenging efficiency of the canopy structure. Methyl mercury (MeHg) deposition was not affected by these factors. Hg deposition, as bulk precipitation and throughfall was lower in Cadillac Brook watershed (burned) than in Hadlock Brook watershed (unburned) because of vegetation type and watershed aspect. Hg and MeHg inputs were weighted by season and vegetation type because these two factors had the most influence on deposition. Hg volatilization was not determined. The total Hg deposition via throughfall and bulk precipitation was 9.4 microg/m(2)/year in Cadillac Brook watershed and 10.2 microg/m(2)/year in Hadlock Brook watershed. The total MeHg deposition via throughfall and bulk precipitation was 0.05 microg/m(2)/year in Cadillac Brook watershed and 0.10 microg/m(2)/year in Hadlock Brook watershed.
Sources of nitrogen deposition in Federal Class I areas in the US
NASA Astrophysics Data System (ADS)
Lee, H.-M.; Paulot, F.; Henze, D. K.; Travis, K.; Jacob, D. J.; Pardo, L. H.; Schichtel, B. A.
2016-01-01
It is desired to control excessive reactive nitrogen (Nr) deposition due to its detrimental impact on ecosystems. Using a three-dimensional atmospheric chemical transport model, GEOS-Chem, Nr deposition in the contiguous US and eight selected Class I areas (Voyageurs (VY), Smoky Mountain (SM), Shenandoah (SD), Big Bend (BB), Rocky Mountain (RM), Grand Teton (GT), Joshua Tree (JT), and Sequoia (SQ)) is investigated. First, modeled Nr deposition is compared with National Trends Network (NTN) and Clean Air Status and Trends Network (CASTNET) deposition values. The seasonality of measured species is generally well represented by the model (R2 > 0.6), except in JT. While modeled Nr is generally within the range of seasonal observations, large overestimates are present in sites such as SM and SD in the spring and summer (up to 0.6 kg N ha month-1), likely owing to model high-biases in surface HNO3. The contribution of non-measured species (mostly dry deposition of NH3) to total modeled Nr deposition ranges from 1 to 55 %. The spatial distribution of the origin of Nr deposited in each Class I area and the contributions of individual emission sectors are estimated using the GEOS-Chem adjoint model. We find the largest role of long-range transport for VY, where 50 % (90 %) of annual Nr deposition originates within 670 (1670) km of the park. In contrast, the Nr emission footprint is most localized for SQ, where 50 % (90 %) of the deposition originates from within 130 (370) km. Emissions from California contribute to the Nr deposition in remote areas in the western US (RM, GT). Mobile NOx and livestock NH3 are found to be the major sources of Nr deposition in all sites except BB, where contributions of NOx from lightning and soils to natural levels of Nr deposition are significant (˜ 40 %). The efficiency in terms of Nr deposition per kg emissions of NH3-N, NOx-N, and SO2-S are also estimated. Unique seasonal features are found in JT (opposing efficiency distributions for winter and summer), RM (large fluctuations in the range of effective regions), and SD (upwind NH3 emissions hindering Nr deposition). We also evaluate the contributions of emissions to the total area of Class I regions in critical load exceedance, and to the total magnitude of exceedance. We find that while it is effective to control emissions in the western US to reduce the area of regions in CL exceedance, it can be more effective to control emissions in the eastern US to reduce the magnitude of Nr deposition above the CL. Finally, uncertainty in the nitrogen deposition caused by uncertainty in the NH3 emission inventory is explored by comparing results based on two different NH3 inventories; noticeable differences in the emission inventories and thus sensitivities of up to a factor of four found in individual locations.
Tomyn, Ronald L; Sleeth, Darrah K; Thiese, Matthew S; Larson, Rodney R
2016-01-01
In addition to chemical composition, the site of deposition of inhaled particles is important for determining the potential health effects from an exposure. As a result, the International Organization for Standardization adopted a particle deposition sampling convention. This includes extrathoracic particle deposition sampling conventions for the anterior nasal passages (ET1) and the posterior nasal and oral passages (ET2). This study assessed how well a polyurethane foam insert placed in an Institute of Occupational Medicine (IOM) sampler can match an extrathoracic deposition sampling convention, while accounting for possible static buildup in the test particles. In this way, the study aimed to assess whether neutralized particles affected the performance of this sampler for estimating extrathoracic particle deposition. A total of three different particle sizes (4.9, 9.5, and 12.8 µm) were used. For each trial, one particle size was introduced into a low-speed wind tunnel with a wind speed set a 0.2 m/s (∼40 ft/min). This wind speed was chosen to closely match the conditions of most indoor working environments. Each particle size was tested twice either neutralized, using a high voltage neutralizer, or left in its normal (non neutralized) state as standard particles. IOM samplers were fitted with a polyurethane foam insert and placed on a rotating mannequin inside the wind tunnel. Foam sampling efficiencies were calculated for all trials to compare against the normalized ET1 sampling deposition convention. The foam sampling efficiencies matched well to the ET1 deposition convention for the larger particle sizes, but had a general trend of underestimating for all three particle sizes. The results of a Wilcoxon Rank Sum Test also showed that only at 4.9 µm was there a statistically significant difference (p-value = 0.03) between the foam sampling efficiency using the standard particles and the neutralized particles. This is interpreted to mean that static buildup may be occurring and neutralizing the particles that are 4.9 µm diameter in size did affect the performance of the foam sampler when estimating extrathoracic particle deposition.
Sources of nitrogen deposition in Federal Class I areas in the US
NASA Astrophysics Data System (ADS)
Lee, H.-M.; Paulot, F.; Henze, D. K.; Travis, K.; Jacob, D. J.; Pardo, L. H.; Schichtel, B. A.
2015-08-01
It is desired to control excessive reactive nitrogen (Nr) deposition due to its detrimental impact on ecosystems. Using a 3-dimensional atmospheric chemical transport model, GEOS-Chem, Nr deposition in the contiguous US and eight selected Class I areas (Voyageurs (VY), Smoky Mountain (SM), Shenandoah (SD), Big Bend (BB), Rocky Mountain (RM), Grand Teton (GT), Joshua Tree (JT), and Sequoia (SQ)) is investigated. First, modeled Nr deposition is compared with National Trends Network (NTN) and Clean Air Status and Trends Network (CASTNET) measurements. The seasonality of measured species is generally well represented by the model (R2 > 0.6), except in JT. While modeled Nr is generally within the range of seasonal observations, large overestimates are present in sites such as SM and SD in the spring and summer (up to 0.6 kg N ha-1 month-1), likely owing to model high-biases in surface HNO3. The contribution of non-measured species (mostly dry deposition of NH3) to total modeled Nr deposition ranges from 1 to 55 %. The spatial distribution of the origin of Nr deposited in each Class I area and the contributions of individual emission sectors are estimated using the GEOS-Chem adjoint model. We find the largest role of long-range transport for VY, where 50 % (90 %) of annual Nr deposition originates within 670 (1670) km of the park. In contrast, the Nr emission footprint is most localized for SQ, where 50 % (90 %) of the deposition originates from within 130 (370) km. Emissions from California contribute to the Nr deposition in remote areas in the western US (RM, GT). Mobile NOx and livestock NH3 are found to be the major sources of Nr deposition in all sites except BB, where contributions of NOx from lightning and soils to natural levels of Nr deposition are significant (~ 40 %). The efficiency in terms of Nr deposition per kg emissions of NH3-N, NOx-N, and SO2-S are also estimated. Unique seasonal features are found in JT (opposing efficiency distributions for winter and summer), RM (large fluctuations in the range of effective regions), and SD (upwind NH3 emissions hindering Nr deposition). We also evaluate the contributions of emissions to the total area of Class I regions in critical load exceedance, and to the total magnitude of exceedance. We find that while it is effective to control emissions in the western US to reduce the area of regions in CL exceedance, it can be more effective to control emissions in the eastern US to reduce the magnitude of Nr deposition above the CL. Finally, uncertainty in the nitrogen deposition caused by uncertainty in the NH3 emission inventory is explored by comparing results based on two different NH3 inventories; noticeable differences in the emission inventories and thus sensitivities of up to factor of four found in individual locations.
Deposition of biomass combustion aerosol particles in the human respiratory tract.
Löndahl, Jakob; Pagels, Joakim; Boman, Christoffer; Swietlicki, Erik; Massling, Andreas; Rissler, Jenny; Blomberg, Anders; Bohgard, Mats; Sandström, Thomas
2008-08-01
Smoke from biomass combustion has been identified as a major environmental risk factor associated with adverse health effects globally. Deposition of the smoke particles in the lungs is a crucial factor for toxicological effects, but has not previously been studied experimentally. We investigated the size-dependent respiratory-tract deposition of aerosol particles from wood combustion in humans. Two combustion conditions were studied in a wood pellet burner: efficient ("complete") combustion and low-temperature (incomplete) combustion simulating "wood smoke." The size-dependent deposition fraction of 15-to 680-nm particles was measured for 10 healthy subjects with a novel setup. Both aerosols were extensively characterized with regard to chemical and physical particle properties. The deposition was additionally estimated with the ICRP model, modified for the determined aerosol properties, in order to validate the experiments and allow a generalization of the results. The measured total deposited fraction of particles from both efficient combustion and low-temperature combustion was 0.21-0.24 by number, surface, and mass. The deposition behavior can be explained by the size distributions of the particles and by their ability to grow by water uptake in the lungs, where the relative humidity is close to saturation. The experiments were in basic agreement with the model calculations. Our findings illustrate: (1) that particles from biomass combustion obtain a size in the respiratory tract at which the deposition probability is close to its minimum, (2) that particle water absorption has substantial impact on deposition, and (3) that deposition is markedly influenced by individual factors.
Normalization and extension of single-collector efficiency correlation equation
NASA Astrophysics Data System (ADS)
Messina, Francesca; Marchisio, Daniele; Sethi, Rajandrea
2015-04-01
The colloidal transport and deposition are important phenomena involved in many engineering problems. In the environmental engineering field the use of micro- and nano-scale zerovalent iron (M-NZVI) is one of the most promising technologies for groundwater remediation. Colloid deposition is normally studied from a micro scale point of view and the results are then implemented in macro scale models that are used to design field-scale applications. The single collector efficiency concept predicts particles deposition onto a single grain of a complex porous medium in terms of probability that an approaching particle would be retained on the solid grain. In literature, many different approaches and equations exist to predict it, but most of them fail under specific conditions (e.g. very small or very big particle size and very low fluid velocity) because they predict efficiency values exceeding unity. By analysing particle fluxes and deposition mechanisms and performing a mass balance on the entire domain, the traditional definition of efficiency was reformulated and a novel total flux normalized correlation equation is proposed for predicting single-collector efficiency under a broad range of parameters. It has been formulated starting from a combination of Eulerian and Lagrangian numerical simulations, performed under Smoluchowski-Levich conditions, in a geometry which consists of a sphere enveloped by a control volume. In order to guarantee the independence of each term, the correlation equation is derived through a rigorous hierarchical parameter estimation process, accounting for single and mutual interacting transport mechanisms. The correlation equation provides efficiency values lower than one over a wide range of parameters and is valid both for point and finite-size particles. A reduced form is also proposed by elimination of the less relevant terms. References 1. Yao, K. M.; Habibian, M. M.; Omelia, C. R., Water and Waste Water Filtration - Concepts and Applications. Environ Sci Technol 1971, 5, (11), 1105-&. 2. Tufenkji, N., and M. Elimelech, Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environmental Science & Technology 2004 38(2):529-536. 3. Boccardo, G.; Marchisio, D. L.; Sethi, R., Microscale simulation of particle deposition in porous media. J Colloid Interface Sci 2014, 417, 227-37
Comparing Run-Out Efficiency of Fluidized Ejecta on Mars with Terrestrial and Martian Mass Movements
NASA Technical Reports Server (NTRS)
Barnouin-Jha, O. S.; Baloga, S.
2003-01-01
We broadly characterize the rheology of fluidized ejecta on Mars as it flows during its final stages of emplacement by using the concept of run-out efficiency. Run-out efficiency for ejecta can be obtained through an energy balance between the kinetic energy of the excavated ejecta, and the total work lost during its deposition. Such an efficiency is directly comparable to run-out efficiency (i.e., L/H analyzes where L is the run-out distance and H is onset height) of terrestrial and extraterrestrial mass movements. Determination of the L/H ratio is commonly used in terrestrial geology to broadly determine the type and rheology of mass movements
Inspiratory and expiratory aerosol deposition in the upper airway.
Verbanck, S; Kalsi, H S; Biddiscombe, M F; Agnihotri, V; Belkassem, B; Lacor, C; Usmani, O S
2011-02-01
Aerosol deposition efficiency (DE) in the extrathoracic airways during mouth breathing is currently documented only for the inspiratory phase of respiration, and there is a need for quantification of expiratory DE. Our aim was to study both inspiratory and expiratory DE in a realistic upper airway geometry. This was done experimentally on a physical upper airway cast by scintigraphy, and numerically by computational fluid dynamic simulations using a Reynolds Averaged Navier?Stokes (RANS) method with a k-? SST turbulence model coupled with a stochastic Lagrangian approach. Experiments and simulations were carried out for particle sizes (3 and 6 μm) and flow rates (30 and 60 L/min) spanning the ranges of Stokes (Stk) and Reynolds (Re) number pertinent to therapeutic and environmental aerosols. We showed that inspiratory total deposition data obtained by scintigraphy fell onto a previously published deposition curve representative of a range of upper airway geometries. We also found that expiratory and inspiratory DE curves were almost identical. Finally, DE in different compartments of the upper airway model showed a very different distribution pattern of aerosol deposition during inspiration and expiration, with preferential deposition in oral and pharyngeal compartments, respectively. These compartmental deposition patterns were very consistent and only slightly dependent on particle size or flow rate. Total deposition for inspiration and expiration was reasonably well-mimicked by the RANS simulation method we employed, and more convincingly so in the upper range of the Stk and Re number. However, compartmental deposition patterns showed discrepancies between experiments and RANS simulations, particularly during expiration.
Solute deposition from cloud water to the canopy of a puerto rican montane forest
NASA Astrophysics Data System (ADS)
Asbury, Clyde E.; McDowell, William H.; Trinidad-Pizarro, Roberto; Berrios, Samuel
Deposition of cloud water and dissolved solutes onto vegetation was studied by sampling clouds, throughfall and stemflow during 12 cloud-only events at Pico Del Este, a tropical cloud forest in the Luquillo Mountains of Puerto Rico. Liquid water content of the sampled clouds was low (0.016 g m -3), but deposition of water (1.3 mm d -1)was comparable to other sites, apparently due to efficient capture of clouds by epiphyte-laden vegetation. Elemental deposition by cloud water was similar to that in other, more polluted sites, but was only 8-30% of total deposition (cloud-only plus rain) due to the high rainfall at the site (approximately 5 m). Na and CI from marine aerosols dominated cloud chemistry, with concentrations of 400 μeqδ -1. Sulfate and nitrate concentrations were 180 and 60 μedδ -1, respectively. After passage through the canopy, concentrations of base cations in deposited cloud water increased, and concentrations of nitrogen decreased.
Wang, Wei-Cheng; Tsai, Meng-Chen; Yang, Jason; Hsu, Chuck; Chen, Miin-Jang
2015-05-20
In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead of the single Al2O3 passivation layer with a negative oxide charge density, the Al2O3/TiO2 dual-layer passivation stack treated with forming gas annealing provides a high positive oxide charge density and a low interfacial state density, which are essential for the effective field-effect and chemical passivation of the n(+) emitter. In addition, the Al2O3/TiO2 dual-layer passivation stack suppresses the total reflectance over a broad range of wavelengths (400-1000 nm). Therefore, with the Al2O3/TiO2 dual-layer passivation stack, the short-circuit current density and efficiency of the NBSi solar cell were increased by 11% and 20%, respectively. In conclusion, a high efficiency of 18.5% was achieved with the NBSi solar cells by using the n(+)-emitter/p-base structure passivated with the Al2O3/TiO2 stack.
NASA Astrophysics Data System (ADS)
Kumari, Amrita; Das, Suchandan Kumar; Srivastava, Prem Kumar
2016-04-01
Application of computational intelligence for predicting industrial processes has been in extensive use in various industrial sectors including power sector industry. An ANN model using multi-layer perceptron philosophy has been proposed in this paper to predict the deposition behaviors of oxide scale on waterwall tubes of a coal fired boiler. The input parameters comprises of boiler water chemistry and associated operating parameters, such as, pH, alkalinity, total dissolved solids, specific conductivity, iron and dissolved oxygen concentration of the feed water and local heat flux on boiler tube. An efficient gradient based network optimization algorithm has been employed to minimize neural predictions errors. Effects of heat flux, iron content, pH and the concentrations of total dissolved solids in feed water and other operating variables on the scale deposition behavior have been studied. It has been observed that heat flux, iron content and pH of the feed water have a relatively prime influence on the rate of oxide scale deposition in water walls of an Indian boiler. Reasonably good agreement between ANN model predictions and the measured values of oxide scale deposition rate has been observed which is corroborated by the regression fit between these values.
Gamma-ray transfer and energy deposition in supernovae
NASA Technical Reports Server (NTRS)
Swartz, Douglas A.; Sutherland, Peter G.; Harkness, Robert P.
1995-01-01
Solutions to the energy-independent (gray) radiative transfer equations are compared to results of Monte Carlo simulations of the Ni-56 and Co-56 decay gamma-ray energy deposition in supernovae. The comparison shows that an effective, purely absorptive, gray opacity, kappa(sub gamma) approximately (0. 06 +/- 0.01)Y(sub e) sq cm/g, where Y is the total number of electrons per baryon, accurately describes the interaction of gamma-rays with the cool supernova gas and the local gamma-ray energy deposition within the gas. The nature of the gamma-ray interaction process (dominated by Compton scattering in the relativistic regime) creates a weak dependence of kappa(sub gamma) on the optical thickness of the (spherically symmetric) supernova atmosphere: The maximum value of kappa(sub gamma) applies during optically thick conditions when individual gamma-rays undergo multiple scattering encounters and the lower bound is reached at the phase characterized by a total Thomson optical depth to the center of the atmosphere tau(sub e) approximately less than 1. Gamma-ray deposition for Type Ia supernova models to within 10% for the epoch from maximum light to t = 1200 days. Our results quantitatively confirm that the quick and efficient solution to the gray transfer problem provides an accurate representation of gamma-ray energy deposition for a broad range of supernova conditions.
The influence of spray properties on intranasal deposition.
Foo, Mow Yee; Cheng, Yung-Sung; Su, Wei-Chung; Donovan, Maureen D
2007-01-01
While numerous devices, formulations, and spray characteristics have been shown to influence nasal deposition efficiency, few studies have attempted to identify which of these interacting factors plays the greatest role in nasal spray deposition. The deposition patterns of solutions with a wide range of surface tensions and viscosities were measured using an MRI-derived nasal cavity replica. The resulting spray plumes had angles between 29 degrees and 80 degrees and contained droplet sizes (D(v50)) from 37-157 microm. Each formulation contained rhodamine 590 as a fluorescent marker for detection. Administration angles of 30 degrees , 40 degrees , or 50 degrees above horizontal were tested to investigate the role of user technique on nasal deposition. The amount of spray deposited within specific regions of the nasal cavity was determined by disassembling the replica and measuring the amount of rhodamine retained in each section. Most of the spray droplets were deposited onto the anterior region of the model, but sprays with small plume angles were capable of reaching the turbinate region with deposition efficiencies approaching 90%. Minimal dependence on droplet size, viscosity, or device was observed. Changes in inspiratory flow rate (0-60 L/min) had no significant effect on turbinate deposition efficiency. Both plume angle and administration angle were found to be important factors in determining deposition efficiency. For administration angles of 40 degrees or 50 degrees , maximal turbinate deposition efficiency (30-50%) occurred with plume angles of 55-65 degrees , whereas a 30 degrees administration angle gave an approximately 75% deposition efficiency for similar plume angles. Deposition efficiencies of approximately 90% could be achieved with plume angles <30 degrees using 30 degrees administration angles. Both the plume angle and administration angle are critical factors in determining deposition efficiency, while many other spray parameters, including particle size, have relatively minor influences on deposition within the nasal cavity.
Cold Spray Aluminum–Alumina Cermet Coatings: Effect of Alumina Content
NASA Astrophysics Data System (ADS)
Fernandez, Ruben; Jodoin, Bertrand
2018-04-01
Deposition behavior and deposition efficiency were investigated for several aluminum-alumina mixture compositions sprayed by cold spray. An increase in deposition efficiency was observed. Three theories postulated in the literature, explaining this increase in deposition efficiency, were investigated and assessed. Through finite element analysis, the interaction between a ceramic particle peening an impacting aluminum particle was found to be a possible mechanism to increase the deposition efficiency of the aluminum particle, but a probability analysis demonstrated that this peening event is too unlikely to contribute to the increment in deposition efficiency observed. The presence of asperities at the substrate and deposited layers was confirmed by a single-layer deposition efficiency measurement and proved to be a major mechanism in the increment of deposition efficiency of the studied mixtures. Finally, oxide removal produced by the impact of ceramic particles on substrate and deposited layers was evaluated as the complement of the other effects and found to also play a major role in increasing the deposition efficiency. It was found that the coatings retained approximately half of the feedstock powder alumina content. Hardness tests have shown a steady increase with the coating alumina content. Dry wear tests have revealed no improvement in wear resistance in samples with an alumina content lower than 22 wt.% compared to pure aluminum coatings. Adhesion strength showed a steady improvement with increasing alumina content in the feedstock powder from 18.5 MPa for pure aluminum coatings to values above 70 MPa for the ones sprayed with the highest feedstock powder alumina content.
Wang, Lina; Zheng, Xinran; Stevanovic, Svetlana; Xiang, Zhiyuan; Liu, Jing; Shi, Huiwen; Liu, Jing; Yu, Mingzhou; Zhu, Chun
2018-01-01
Mosquito-repellent incense is one of the most popular products used for dispelling mosquitos during summer in China. It releases large amounts of particulate and gaseous pollutants which constitute a potential hazard to human health. We conducted chamber experiment to characterize major pollutants from three types of mosquito-repellent incenses, further assessed the size-fractionated deposition in human respiratory system, and evaluated the indoor removing efficiency by fresh air. Results showed that the released pollutant concentrations were greater than permissible levels in regulations in GB3095-2012, as well as suggested by the World Health Organization (WHO). Formaldehyde accounted for 10-20% of the total amount of pollutants. Fine particles dominated in the total particulate concentrations. Geometric standard deviation (GSD) of particle number size distributions was in the range of 1.45-1.93. Count median diameter (CMD) ranged from 100 to 500 nm. Emission rates, burning rates and emission factors of both particulate and gaseous pollutants were compared and discussed. The deposition fractions in pulmonary airway from the disc solid types reached up to 52.7% of the total deposition, and the largest deposition appeared on juvenile group. Computational Fluid Dynamics (CFD) modellings indicated air-conditioner on and windows closed was the worst case. The highest concentration was 180-200 times over the standard limit. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lipidomic and Antioxidant Response to Grape Seed, Corn and Coconut Oils in Healthy Wistar Rats
Wall-Medrano, Abraham; de la Rosa, Laura A.; Vázquez-Flores, Alma A.; Mercado-Mercado, Gilberto; González-Arellanes, Rogelio; López-Díaz, José A.; González-Córdova, Aarón F.; González-Aguilar, Gustavo A.; Vallejo-Cordoba, Belinda; Molina-Corral, Francisco J.
2017-01-01
Specialty oils differ in fatty acid, phytosterol and antioxidant content, impacting their benefits for cardiovascular health. The lipid (fatty acid, phytosterol) and antioxidant (total phenolics, radical scavenging capacity) profiles of grapeseed (GSO), corn (CO) and coconut (CNO) oils and their physiological (triacylglycerides, total and HDL-cholesterol and antioxidant capacity (FRAP) in serum and fatty acid and phytosterol hepatic deposition) and genomic (HL, LCAT, ApoA-1 and SR-BP1 mRNA hepatic levels) responses after their sub-chronic intake (10% diet for 28 days) was examined in healthy albino rats. Fatty acid, phytosterol and antioxidant profiles differed between oils (p ≤ 0.01). Serum and hepatic triacylglycerides and total cholesterol increased (p ≤ 0.01); serum HDL-Cholesterol decreased (p < 0.05); but serum FRAP did not differ (p > 0.05) in CNO-fed rats as compared to CO or GSO groups. Hepatic phytosterol deposition was higher (+2.2 mg/g; p ≤ 0.001) in CO- than GSO-fed rats, but their fatty acid deposition was similar. All but ApoA-1 mRNA level increased in GSO-fed rats as compared to other groups (p ≤ 0.01). Hepatic fatty acid handling, but not antioxidant response, nor hepatic phytosterol deposition, could be related to a more efficient reverse-cholesterol transport in GSO-fed rats as compared to CO or CNO. PMID:28117688
NASA Astrophysics Data System (ADS)
Sun, Liying; Wu, Zhen; Ma, Yuchun; Liu, Yinglie; Xiong, Zhengqin
2018-05-01
Ammonia is a vital component of the nitrogen (N) cycle of terrestrial ecosystems in terms of volatilization and deposition. Here, a field experiment was undertaken to simultaneously investigate the effects of rice straw and urea incorporation on ammonia volatilization, atmospheric N deposition, yields and agronomic nitrogen use efficiency (NUE) under a rice-wheat system in China. The experiment involved four treatments: control (0 N, 0 straw), NS0 (250 kg N ha-1 season-1, 0 straw), NS1 (250 kg N ha-1 season-1, 3 t ha-1 yr-1 straw), and NS2 (250 kg N ha-1 season-1, 6 t ha-1 yr-1 straw) in the rice-wheat annual rotation system. The results indicated that the NS0, NS1 and NS2 treatments emitted cumulative ammonia of 14.0%, 16.4%, and 19.2%, respectively in the rice season and 7.6%, 11.1%, and 12.3%, respectively in the wheat season among the total urea-N application. Compared to the NS0 treatment, the NS1 and NS2 treatments significantly increased the cumulative ammonia emissions by 15.5% (p < 0.05) and 33.5% (p < 0.05), respectively in the rice season and 39.9% (p < 0.05) and 53.1% (p < 0.05), respectively in the wheat season. There was no significant difference between the NS2 and NS1 treatments during the wheat season. The amount of NH4+-N deposition accounted for 56.1% of the total inorganic N deposition during the whole rice-wheat system. The bulk NH4+-N deposition during the period of fertilization contributed 73.9% and 5.7% to the total NH4+-N deposition in the rice and wheat season, respectively. Overall, straw incorporation increased ammonia volatilization, not affecting the crop grain yield or NUE. The seasonal variation in NH4+-N bulk deposition was closely related to N fertilizer application.
NASA Astrophysics Data System (ADS)
Han, Xiao-Yan; Hou, Guo-Fu; Zhang, Xiao-Dan; Wei, Chang-Chun; Li, Gui-Jun; Zhang, De-Kun; Chen, Xin-Liang; Sun, Jian; Zhang, Jian-Jun; Zhao, Ying; Geng, Xin-Hua
2009-08-01
This paper reports that high-rate-deposition of microcrystalline silicon solar cells was performed by very-high-frequency plasma-enhanced chemical vapor deposition. These solar cells, whose intrinsic μc-Si:H layers were prepared by using a different total gas flow rate (Ftotal), behave much differently in performance, although their intrinsic layers have similar crystalline volume fraction, opto-electronic properties and a deposition rate of ~ 1.0 nm/s. The influence of Ftotal on the micro-structural properties was analyzed by Raman and Fourier transformed infrared measurements. The results showed that the vertical uniformity and the compact degree of μc-Si:H thin films were improved with increasing Ftotal. The variation of the microstructure was regarded as the main reason for the difference of the J-V parameters. Combined with optical emission spectroscopy, we found that the gas temperature plays an important role in determining the microstructure of thin films. With Ftotal of 300 sccm, a conversion efficiency of 8.11% has been obtained for the intrinsic layer deposited at 8.5 Å/s (1 Å = 0.1 nm).
Aerosol Deposition in Health and Disease
2012-01-01
Abstract The success of inhalation therapy is not only dependent upon the pharmacology of the drugs being inhaled but also upon the site and extent of deposition in the respiratory tract. This article reviews the main mechanisms affecting the transport and deposition of inhaled aerosol in the human lung. Aerosol deposition in both the healthy and diseased lung is described mainly based on the results of human studies using nonimaging techniques. This is followed by a discussion of the effect of flow regime on aerosol deposition. Finally, the link between therapeutic effects of inhaled drugs and their deposition pattern is briefly addressed. Data show that total lung deposition is a poor predictor of clinical outcome, and that regional deposition needs to be assessed to predict therapeutic effectiveness. Indeed, spatial distribution of deposited particles and, as a consequence, drug efficiency is strongly affected by particle size. Large particles (>6 μm) tend to mainly deposit in the upper airway, limiting the amount of drugs that can be delivered to the lung. Small particles (<2 μm) deposit mainly in the alveolar region and are probably the most apt to act systemically, whereas the particle in the size range 2–6 μm are be best suited to treat the central and small airways. PMID:22686623
Longest, P. Worth; Tian, Geng
2014-01-01
Purpose To evaluate the efficiency of a new technique for delivering aerosols to intubated infants that employs a new Y-connector, access port administration of a dry powder, and excipient enhanced growth (EEG) formulation particles that change size in the airways. Methods A previously developed CFD model combined with algebraic correlations were used to predict delivery system and lung deposition of typical nebulized droplets (MMAD = 4.9 μm) and EEG dry powder aerosols. The delivery system consisted of a Y-connector [commercial (CM); streamlined (SL); or streamlined with access port (SL-port)] attached to a 4-mm diameter endotracheal tube leading to the airways of a 6-month-old infant. Results Compared to the CM device and nebulized aerosol, the EEG approach with an initial 0.9 μm aerosol combined with the SL and SL-port geometries reduced device depositional losses by factors of 3-fold and >10-fold, respectively. With EEG powder aerosols, the SL geometry provided the maximum tracheobronchial deposition fraction (55.7%), whereas the SL-port geometry provided the maximum alveolar (67.6%) and total lung (95.7%) deposition fractions, respectively. Conclusions Provided the aerosol can be administered in the first portion of the inspiration cycle, the proposed new method can significantly improve the deposition of pharmaceutical aerosols in the lungs of intubated infants. PMID:25103332
Longest, P Worth; Tian, Geng
2015-01-01
To evaluate the efficiency of a new technique for delivering aerosols to intubated infants that employs a new Y-connector, access port administration of a dry powder, and excipient enhanced growth (EEG) formulation particles that change size in the airways. A previously developed CFD model combined with algebraic correlations were used to predict delivery system and lung deposition of typical nebulized droplets (MMAD = 4.9 μm) and EEG dry powder aerosols. The delivery system consisted of a Y-connector [commercial (CM); streamlined (SL); or streamlined with access port (SL-port)] attached to a 4-mm diameter endotracheal tube leading to the airways of a 6-month-old infant. Compared to the CM device and nebulized aerosol, the EEG approach with an initial 0.9 μm aerosol combined with the SL and SL-port geometries reduced device depositional losses by factors of 3-fold and >10-fold, respectively. With EEG powder aerosols, the SL geometry provided the maximum tracheobronchial deposition fraction (55.7%), whereas the SL-port geometry provided the maximum alveolar (67.6%) and total lung (95.7%) deposition fractions, respectively. Provided the aerosol can be administered in the first portion of the inspiration cycle, the proposed new method can significantly improve the deposition of pharmaceutical aerosols in the lungs of intubated infants.
Franjic, Kresimir; Cowan, Michael L; Kraemer, Darren; Miller, R J Dwayne
2009-12-07
Mechanical and thermodynamic responses of biomaterials after impulsive heat deposition through vibrational excitations (IHDVE) are investigated and discussed. Specifically, we demonstrate highly efficient ablation of healthy tooth enamel using 55 ps infrared laser pulses tuned to the vibrational transition of interstitial water and hydroxyapatite around 2.95 microm. The peak intensity at 13 GW/cm(2) was well below the plasma generation threshold and the applied fluence 0.75 J/cm(2) was significantly smaller than the typical ablation thresholds observed with nanosecond and microsecond pulses from Er:YAG lasers operating at the same wavelength. The ablation was performed without adding any superficial water layer at the enamel surface. The total energy deposited per ablated volume was several times smaller than previously reported for non-resonant ultrafast plasma driven ablation with similar pulse durations. No micro-cracking of the ablated surface was observed with a scanning electron microscope. The highly efficient ablation is attributed to an enhanced photomechanical effect due to ultrafast vibrational relaxation into heat and the scattering of powerful ultrafast acoustic transients with random phases off the mesoscopic heterogeneous tissue structures.
NASA Astrophysics Data System (ADS)
Cheng, Irene; Zhang, Leiming; Mao, Huiting
2015-08-01
Relative contributions to mercury wet deposition by gaseous oxidized mercury (%GOM) and fine and coarse particle-bound mercury (%FPBM and %CPBM) were estimated making use of monitored FPBM air concentration and mercury wet deposition at nine North American locations. Scavenging ratios of particulate inorganic ions (K+ and Ca2+, Mg2+ and Na+) were used as a surrogate for those of FPBM and CPBM, respectively. FPBM and CPBM were estimated to contribute 8-36% and 5-27%, respectively, depending on the location, to total wet deposition. The rest of the 39-87% was attributed to the contribution of GOM. The average %GOM, %FPBM and %CPBM among all locations were 65%, 17%, and 18%, respectively. The relative distributions of %GOM, %FPBM, and %CPBM were influenced by Hg(II) gas-particle partitioning, urban site characteristics, and precipitation type. At the regional scale, %GOM dominated over %FPBM and %CPBM. However, the sum of FPBM and CPBM contributed to nearly half of the total Hg wet deposition in urban areas, which was greater than other site categories and is attributed to higher FPBM air concentrations. At four locations, %FPBM exceeded %GOM during winter in contrast to summer, suggesting the efficient snow scavenging of aerosols. The results from this study are useful in improving mercury transport models since most of these models do not estimate CPBM, but frequently use monitored mercury wet deposition data for model evaluation.
Radiative Effects of Atmospheric Aerosols and Impacts on Solar Photovoltaic Electricity Generation
NASA Astrophysics Data System (ADS)
Lund, Cory Christopher
Atmospheric aerosols, by scattering and absorbing radiation, perturbs the Earth's energy balance and reduces the amount of insolation reaching the surface. This dissertation first studies the radiative effects of aerosols by analyzing the internal mixing of various aerosol species. It then examines the aerosol impact on solar PV efficiency and the resulting influence on power systems, including both atmospheric aerosols and deposition of particulate matter (PM) on PV surfaces,. Chapter 2 studies the radiative effects of black carbon (BC), sulfate and organic carbon (OC) internal mixing using a simple radiative transfer model. I find that internal mixing may not result in a positive radiative forcing compared to external mixing, but blocks additional shortwave radiation from the surface, enhancing the surface dimming effect. Chapter 3 estimates the impact of atmospheric aerosol attenuation on solar PV resources in China using a PV performance model with satellite-derived long-term surface irradiance data. I find that, in Eastern China, annual average reductions of solar resources due to aerosols are more than 20%, with comparable impacts to clouds in winter. Improving air quality in China would increase efficiency of solar PV generation. As a positive feedback, increased PV efficiency and deployment would further reduce air pollutant emissions too. Chapter 4 further quantifies the total aerosol impact on PV efficiency globally, including both atmospheric aerosols and the deposition of PM on PV surfaces. I find that, if panels are uncleaned and soiling is only removed by precipitation, deposition of PM accounts for more than two-thirds of the total aerosol impact in most regions. Cleaning the panels, even every few months, would largely increase PV efficiency in resource-abundant regions. Chapter 5 takes a further step to evaluate the impact of PV generation reduction due to aerosols on a projected 2030 power system in China with 400GW of PV. I find that aerosols reduce PV generation by 22% and increase baseload power generation, with almost no additional capacity needed. Due to intermittency of solar generation, 160 GW of backup power is needed to maintain grid stability. However, storage provides an opportunity to reduce the backup power capacity by 66%.
Diffraction efficiency growth of nano-scale holographic recording produced in a corona discharge
NASA Astrophysics Data System (ADS)
Bodurov, I.; Yovcheva, T.; Vlaeva, I.; Viraneva, A.; Todorov, R.; Spassov, G.; Sainov, S.
2012-12-01
The nano-scale holographic gratings ware recorded in 29 nm and 56 nm thick As2S3 films. The chalcogenide layers were deposited on a transparent chromium electrode with thickness 10 nm, produced on a glass substrate. Both chromium and chalcogenide films were deposited in one vacuum cycle by e-beam and thermal evaporation, respectively. The diode 532 nm diode laser was used as a light source in the present holographic experiments. The total internal reflection arrangement (Stetson-Nassenstein) was used in holographic recordings. The reference beam was totally reflected from the air-As2S3 boundary surface by an input glass prism. The object beam was normally incident on the recording medium. The corona charging was performed by a needle fixed at the distance of 1 cm from the holographic recording medium by applying a - 5 kV voltage. The diffraction efficiency increased from 9 to 30 times when the corona discharge was applied during the holographic recording, in comparison to the uncharged recording. The possible reason of the observed effect is discussed on the basis of the Franz-Keldysh effect and Moss rule.
Development of a Sampler for Total Aerosol Deposition in the Human Respiratory Tract
Koehler, Kirsten A.; Clark, Phillip; Volckens, John
2009-01-01
Studies that seek to associate reduced human health with exposure to occupational and environmental aerosols are often hampered by limitations in the exposure assessment process. One limitation involves the measured exposure metric itself. Current methods for personal exposure assessment are designed to estimate the aspiration of aerosol into the human body. Since a large proportion of inhaled aerosol is subsequently exhaled, a portion of the aspirated aerosol will not contribute to the dose. This leads to variable exposure misclassification (for heterogenous exposures) and increased uncertainty in health effect associations. Alternatively, a metric for respiratory deposition would provide a more physiologically relevant estimate of risk. To address this challenge, we have developed a method to estimate the deposition of aerosol in the human respiratory tract using a sampler engineered from polyurethane foam. Using a semi-empirical model based on inertial, gravitational, and diffusional particle deposition, a foam was engineered to mimic aerosol total deposition in the human respiratory tract. The sampler is comprised of commercially available foam with fiber diameter = 49.5 μm (equivalent to industry standard 100 PPI foam) of 8 cm thickness operating at a face velocity of 1.3 m s−1. Additionally, the foam sampler yields a relatively low-pressure drop, independent of aerosol loading, providing uniform particle collection efficiency over time. PMID:19638392
Skylab program payload integration. TO27 sample array
NASA Technical Reports Server (NTRS)
Muscari, J. A.; Westcott, P. A.
1974-01-01
The objective of the TO27 sample array was to determine the change in optical properties of various transmissive windows, mirrors, and diffraction gratings caused by the deposition of contaminants found about the orbital assembly. The expected information to be obtained from the total TO27 sample array program is as follows: (1) effect of space contaminants on transmittance, reflectance, grating efficiency, and polarization; (2) variations in deposition of contaminants due to substrate, solar radiation, period of exposure, direction of exposure, and geometry effects; (3) identification of contaminants and source of evolution; (4) time of contaminant evolution and lingering time; and (5) guidelines for a model of spacecraft contamination.
NASA Astrophysics Data System (ADS)
Lan, Ding-Hung; Hong, Shao-Huan; Chou, Li-Hui; Wang, Xiao-Feng; Liu, Cheng-Liang
2018-06-01
Organometal halide perovskite materials have demonstrated tremendous advances in the photovoltaic field recently because of their advantageous features of simple fabrication and high power conversion efficiency. To meet the high demand for high throughput and cost-effective, we present a wet process method that enables the probing of the parameters for perovskite layer deposition through two-step sequential ultrasonic spray-coating. This paper describes a detailed investigation on the effects of modification of spray precursor solution (PbI2 and CH3NH3I precursor concentration and solvents used) and post-annealing condition (temperature and time), which can be performed to create optimal film quality as well as improve device efficiency. Through the systematic optimization, the inverted planar perovskite solar cells show the reproducible photovoltaic properties with best power conversion efficiency (PCE) of 10.40% and average PCE of 9.70 ± 0.40%. A continuous spray-coating technique for rapid fabrication of total 16 pieces of perovskite films was demonstrated for providing a viable alternative for the high throughput production of the perovskite solar cells.
The total flow concept for geothermal energy conversion
NASA Technical Reports Server (NTRS)
Austin, A. L.
1974-01-01
A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.
Zhao, Hairong; Yang, Wanqin; Wu, Fuzhong; Tan, Bo
2017-01-01
Forest filtering is a well-known and efficient method for diminishing atmospheric pollutant (such as SO42− and Cl−) inputs to soil and water; however, the filtering efficiencies of forests vary depending on the regional vegetation and climate. The rainy area of West China has suffered from heavy rainfall and human activity, which has potentially resulted in large amounts of sulfur and chlorine deposition, but little information is available regarding the filtering effects of typical plantations. Therefore, the migration of SO42− and Cl− from rainfall to throughfall, stemflow and runoff were investigated in a camphor (Cinnamomum camphora) plantation, a cryptomeria (Cryptomeria fortunei) plantation and a mixed plantation in a 9-month forest hydrology experiment. The results indicated the following: (i) The total SO42− and Cl− deposition was 43.05 kg ha−1 and 5.25 kg ha−1, respectively. (ii) The cover layer had the highest interception rate (60.08%), followed by the soil layer (16.02%) and canopy layer (12.85%). (iii) The mixed plantation resulted in the highest SO42− (37.23%) and Cl− (51.91%) interception rates at the forest ecosystem scale, and the interception rate increased with increasing rainfall. These results indicate that mixed plantations can effectively filter SO42− and Cl− in this area and in similar areas. PMID:28134356
Chang, Suyun; Tang, Yinqi; Dong, Lixin; Zhan, Qiang; Xu, Wei
2018-05-01
Impacts of deposits discharged from a municipal pipe on urban river sediment were investigated in the Hucang River in Tianjin, China. At the outlet of the pump station, the average concentrations of total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC) in the sediment increased sharply from 2390, 799, and 14,600 mg/kg to 6500, 3700, and 153,000 mg/kg, respectively, and remained stable at high level after the rainy season. A portion of pollutants would migrate along the river, and the concentration was usually in a negative relationship with the distance. The average Shannon-Wiener value on the upstream section was higher than those on the downstream sections. This revealed that the deposits discharged decreased the bacterial diversity in the sediment, and high concentrations of pollutants may markedly change the bacterial community structure in the sediment. To reduce the pollution of the urban river after rainy season, four kinds of microbial consortiums A (Zhangda), B (Aiersi), C (Qinghe), and D (Inpipe) were applied to bioremediate the polluted sediment in lab scale. Bioaugmentation with microbial consortium A showed good performance on the bioremediation of the polluted sediment. The average removal efficiency of TN, TP, and organic matter reached 35.5, 43.7, and 39.1%, respectively, after 22 days of treatment. Moreover, the bacterial evenness and diversity in the sediment markedly increased, indicating that the microbial environment was more favourable after bioaugmentation and sustainable development would be guaranteed. This study improves our understanding of the impacts of deposits discharged from a stormwater drain system on urban river sediment, and explores the effectiveness of bioaugmentation for the bioremediation of polluted sediment, which will provide the basis of sewer deposit pollution control.
This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2002. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) v5.0.2 run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadab
This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2011. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data
This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2006. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable dat
Reduction of fine particle emissions from wood combustion with optimized condensing heat exchangers.
Gröhn, Arto; Suonmaa, Valtteri; Auvinen, Ari; Lehtinen, Kari E J; Jokiniemi, Jorma
2009-08-15
In this study, we designed and built a condensing heat exchanger capable of simultaneous fine particle emission reduction and waste heat recovery. The deposition mechanisms inside the heat exchanger prototype were maximized using a computer model which was later compared to actual measurements. The main deposition mechanisms were diffusio- and thermophoresis which have previously been examined in similar conditions only separately. The obtained removal efficiency in the experiments was measured in the total number concentration and ranged between 26 and 40% for the given pellet stove and the heat exchanger. Size distributions and number concentrations were measured with a TSI Fast mobility particle sizer (FMPS). The computer model predicts that there exists a specific upper limit for thermo- and diffusiophoretic deposition for each temperature and water vapor concentration in the flue gas.
Impact of the shape of the implantable ports on their efficiency of flow (injection and flushing)
Guiffant, Gérard; Flaud, Patrice; Durussel, Jean Jacques; Merckx, Jacques
2014-01-01
Now widely used, totally implantable venous access devices allow mid- and long-term, frequent, repeated, or continuous injection of therapeutic products by vascular, cavitary, or perineural access. The effective flushing of these devices is a key factor that ensures their long-lasting use. We present experimental results and a numerical simulation to demonstrate that the implementation of rounded edge wall cavities improves flushing efficiency. We use the same approaches to suggest that the deposit amount may be reduced by the use of rounded edge wall cavities. PMID:25258561
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.
2010-01-12
Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain atmore » a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.« less
NASA Astrophysics Data System (ADS)
Muñoz Pinto, D. A.; Cuervo Camargo, S. M.; Orozco Parra, M.; Laverde, D.; García Vergara, S.; Blanco Pinzon, C.
2016-02-01
Fouling in heat exchangers is produced by the deposition of undesired materials on metal surfaces. As fouling progresses, pressure drop and heat transfer resistance is observed and therefore the overall thermal efficiency of the equipment diminishes. Fouling is mainly caused by the deposition of suspended particles, such as those from chemical reactions, crystallization of certain salts, and some corrosion processes. In order to understand the formation of fouling deposits from Colombian heavy oil (API≈12.3) on carbon steel SA 516 Gr 70, a batch stirred tank reactor was used. The reactor was operated at a constant pressure of 340psi while varying the temperature and reaction times. To evaluate the formation of deposits on the metal surfaces, the steel samples were characterized by gravimetric analysis and Scanning Electron Microscopy (SEM). On the exposed surfaces, the results revealed an increase in the total mass derived from the deposition of salt compounds, iron oxides and alkaline metals. In general, fouling was modulated by both the temperature and the reaction time, but under the experimental conditions, the temperature seems to be the predominant variable that controls and accelerates fouling.
da Silva, Gabriel Santana; Chaves Véras, Antônia Sherlanea; de Andrade Ferreira, Marcelo; Moreira Dutra, Wilson; Menezes Wanderley Neves, Maria Luciana; Oliveira Souza, Evaristo Jorge; Ramos de Carvalho, Francisco Fernando; de Lima, Dorgival Morais
2015-10-01
The objective of this study was to evaluate the influence of diets with increasing concentrate levels (170, 340, 510 and 680 g/kg of total dry matter) on dry matter intake, digestibility, performance and carcass characteristics of 25 Holstein-Zebu crossbred dairy steers in a feedlot. A completely randomized design was used, and data were submitted to analysis of variance and regression. The dry matter intake and digestibility coefficients of all nutrients increased linearly. The total weight gain and average daily gain added 1.16 kg and 9.90 g, respectively, for each 10 g/kg increase in concentrate. The empty body weight, hot carcass weight and cold carcass weight responded linearly to increasing concentrate. The hot carcass yield and cold carcass yield, gains in empty body weight and carcass gain were also influenced, as were the efficiencies of carcass deposition and carcass deposition rate. It is concluded that increasing concentrate levels in feedlot diets increase the intake and digestibility of dry matter and other nutrients, improving the feed efficiency, performance and physical characteristics of the carcass. Furthermore and of importance concerning the climate change debate, evidence from the literature indicates that enteric methane production would be reduced with increasing concentrate levels such as those used.
Computational Fluid Dynamics Modeling of Bacillus anthracis ...
Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict
Batz, Nicholas G; Mellors, J Scott; Alarie, Jean Pierre; Ramsey, J Michael
2014-04-01
We describe a chemical vapor deposition (CVD) method for the surface modification of glass microfluidic devices designed to perform electrophoretic separations of cationic species. The microfluidic channel surfaces were modified using aminopropyl silane reagents. Coating homogeneity was inferred by precise measurement of the separation efficiency and electroosmotic mobility for multiple microfluidic devices. Devices coated with (3-aminopropyl)di-isopropylethoxysilane (APDIPES) yielded near diffusion-limited separations and exhibited little change in electroosmotic mobility between pH 2.8 and pH 7.5. We further evaluated the temporal stability of both APDIPES and (3-aminopropyl)triethoxysilane (APTES) coatings when stored for a total of 1 week under vacuum at 4 °C or filled with pH 2.8 background electrolyte at room temperature. Measurements of electroosmotic flow (EOF) and separation efficiency during this time confirmed that both coatings were stable under both conditions. Microfluidic devices with a 23 cm long, serpentine electrophoretic separation channel and integrated nanoelectrospray ionization emitter were CVD coated with APDIPES and used for capillary electrophoresis (CE)-electrospray ionization (ESI)-mass spectrometry (MS) of peptides and proteins. Peptide separations were fast and highly efficient, yielding theoretical plate counts over 600,000 and a peak capacity of 64 in less than 90 s. Intact protein separations using these devices yielded Gaussian peak profiles with separation efficiencies between 100,000 and 400,000 theoretical plates.
Deposition efficiency optimization in cold spraying of metal-ceramic powder mixtures
NASA Astrophysics Data System (ADS)
Klinkov, S. V.; Kosarev, V. F.
2017-10-01
In the present paper, results of optimization of the cold spray deposition process of a metal-ceramic powder mixture involving impacts of ceramic particles onto coating surface are reported. In the optimization study, a two-probability model was used to take into account the surface activation induced by the ceramic component of the mixture. The dependence of mixture deposition efficiency on the concentration and size of ceramic particles was analysed to identify the ranges of both parameters in which the effect due to ceramic particles on the mixture deposition efficiency was positive. The dependences of the optimum size and concentration of ceramic particles, and also the maximum gain in deposition efficiency, on the probability of adhesion of metal particles to non-activated coating surface were obtained.
NASA Astrophysics Data System (ADS)
Benstâali, W.; Harrache, Z.; Belasri, A.
2012-06-01
Plasma display panels (PDPs) are one of the leading technologies in the flat panels market. However, they are facing intense competition. Different fluid models, both one-dimensional (1D) and 2D, have been used to analyze the energy balance in PDP cells in order to find out how the xenon excitation part can be improved to optimize the luminous efficiency. The aim of this work is to present a 1D particle-in-cell with Monte Carlo collision (PIC-MCC) model for PDPs. The discharge takes place in a Xe10-Ne gas mixture at 560 Torr. The applied voltage is 381 V. We show at first that this model reproduces the electric characteristics of a single PDP discharge pulse. Then, we calculate the energy deposited by charged particles in each collision. The total energy is about 19 μJ cm-2, and the energy used in xenon excitation is of the order of 12.5% compared to the total energy deposited in the discharge. The effect of xenon content in a Xe-Ne mixture is also analyzed. The energies deposited in xenon excitation and ionization are more important when the xenon percentage has been increased from 1 to 30%. The applied voltage increases the energy deposited in xenon excitation.
Singer, Donald A.; Kouda, Ryoichi
2011-01-01
Empirical evidence indicates that processes affecting number and quantity of resources in geologic settings are very general across deposit types. Sizes of permissive tracts that geologically could contain the deposits are excellent predictors of numbers of deposits. In addition, total ore tonnage of mineral deposits of a particular type in a tract is proportional to the type’s median tonnage in a tract. Regressions using size of permissive tracts and median tonnage allow estimation of number of deposits and of total tonnage of mineralization. These powerful estimators, based on 10 different deposit types from 109 permissive worldwide control tracts, generalize across deposit types. Estimates of number of deposits and of total tonnage of mineral deposits are made by regressing permissive area, and mean (in logs) tons in deposits of the type, against number of deposits and total tonnage of deposits in the tract for the 50th percentile estimates. The regression equations (R2 = 0.91 and 0.95) can be used for all deposit types just by inserting logarithmic values of permissive area in square kilometers, and mean tons in deposits in millions of metric tons. The regression equations provide estimates at the 50th percentile, and other equations are provided for 90% confidence limits for lower estimates and 10% confidence limits for upper estimates of number of deposits and total tonnage. Equations for these percentile estimates along with expected value estimates are presented here along with comparisons with independent expert estimates. Also provided are the equations for correcting for the known well-explored deposits in a tract. These deposit-density models require internally consistent grade and tonnage models and delineations for arriving at unbiased estimates.
NASA Astrophysics Data System (ADS)
O'Sullivan, M.; Buermann, W.; Spracklen, D. V.; Gloor, E. U.; Arnold, S.
2017-12-01
The global terrestrial carbon sink has increased since the start of this century at a time of rapidly growing carbon dioxide emissions from fossil fuel burning. Here we test the hypothesis that these parallel increases in fossil fuel burning and terrestrial sink are causally linked via increases in atmospheric CO2 and nitrogen deposition (and carbon-nitrogen interaction). Using the dynamic global vegetation model CLM4.5-BGC, we performed factorial analyses, separating the effects of individual drivers to changes in carbon fluxes and sinks. Globally, we found that increases in nitrogen deposition from 1900 to 2016 led to an additional 32 PgC stored. 40% of this increase could be attributed to East Asia and Europe alone, with North America also having a significant contribution. The global, post-2000 anthropogenic nitrogen deposition effect on terrestrial carbon uptake was 0.7 PgC/yr (20% of the total sink). Comparing the past decade (2005-2016) to the previous (1990-2005), regionally, we find nitrogen deposition to be an important driver of changes in net carbon uptake. In East Asia, increases in nitrogen deposition contributed 26% of the total increase in carbon uptake, with direct CO2 fertilization contributing 67%, and the synergistic carbon-nitrogen effect explaining 7% of the sink. Conversely, declining nitrogen deposition rates over North America contributed negatively (-35%) to the carbon sink, with a near zero contribution from the synergistic effect. At global scale, however, our findings suggest that changes in nitrogen deposition (both direct and via increasing the efficiency of the CO2 fertilization effect) played only a minor role in the enhanced plant carbon uptake and sink activity during the most recent decade. This finding is due to regional compensations but also suggesting that other factors (direct CO2, climate, land use change) may have been more important drivers.
Wetherbee, Gregory A.; Martin, RoseAnn; Rhodes, Mark F.; Chesney, Tanya A.
2014-01-01
The U.S. Geological Survey operated six distinct programs to provide external quality-assurance monitoring for the National Atmospheric Deposition Program/National Trends Network (NTN) and Mercury Deposition Network (MDN) during 2009–2010. The field-audit program assessed the effects of onsite exposure, sample handling, and shipping on the chemistry of NTN samples; a system-blank program assessed the same effects for MDN. Two interlaboratory-comparison programs assessed the bias and variability of the chemical analysis data from the Central Analytical Laboratory (CAL) and Mercury (Hg) Analytical Laboratory (HAL). The blind-audit program was also implemented for the MDN to evaluate analytical bias in total Hg concentration data produced by the HAL. The co-located-sampler program was used to identify and quantify potential shifts in NADP data resulting from replacement of original network instrumentation with new electronic recording rain gages (E-gages) and precipitation collectors that use optical sensors. The results indicate that NADP data continue to be of sufficient quality for the analysis of spatial distributions and time trends of chemical constituents in wet deposition across the United States. Results also suggest that retrofit of the NADP networks with the new precipitation collectors could cause –8 to +14 percent shifts in NADP annual precipitation-weighted mean concentrations and total deposition values for ammonium, nitrate, sulfate, and hydrogen ion, and larger shifts (+13 to +74 percent) for calcium, magnesium, sodium, potassium, and chloride. The prototype N-CON Systems bucket collector is more efficient in the catch of precipitation in winter than Aerochem Metrics Model 301 collector, especially for light snowfall.
Disilane as a growth rate catalyst of plasma deposited microcrystalline silicon thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrakellis, P.; Amanatides, E., E-mail: lef@plasmatech.gr; Mataras, D.
2016-07-15
The effect of small disilane addition on the gas phase properties of silane-hydrogen plasmas and the microcrystalline silicon thin films growth is presented. The investigation was conducted in the high pressure regime and for constant power dissipation in the discharge with the support of plasma diagnostics, thin film studies and calculations of discharge microscopic parameters and gas dissociation rates. The experimental data and the calculations show a strong effect of disilane on the electrical properties of the discharge in the pressure window from 2 to 3 Torr that is followed by significant raise of the electron number density and themore » drop of the sheaths electric field intensity. Deposition rate measurements show an important four to six times increase even for disilane mole fractions as low as 0.3 %. The deposition rate enhancement was followed by a drop of the material crystalline volume fraction but films with crystallinity above 40 % were deposited with different combinations of total gas pressure, disilane and silane molar ratios. The enhancement was partly explained by the increase of the electron impact dissociation rate of silane which rises by 40% even for 0.1% disilane mole fraction. The calculations of the gas usage, the dissociation and the deposition efficiencies show that the beneficial effect on the growth rate is not just the result of the increase of Si-containing molecules density but significant changes on the species participating to the deposition and the mechanism of the film growth are caused by the disilane addition. The enhanced participation of the highly sticking to the surface radical such as disilylene, which is the main product of disilane dissociation, was considered as the most probable reason for the significant raise of the deposition efficiency. The catalytic effect of such type of radical on the surface reactivity of species with lower sticking probability is further discussed, while it is also used to explain the restricted and sensitive process window where the disilane effect appears.« less
Disilane as a growth rate catalyst of plasma deposited microcrystalline silicon thin films
NASA Astrophysics Data System (ADS)
Dimitrakellis, P.; Kalampounias, A. G.; Spiliopoulos, N.; Amanatides, E.; Mataras, D.; Lahootun, V.; Coeuret, F.; Madec, A.
2016-07-01
The effect of small disilane addition on the gas phase properties of silane-hydrogen plasmas and the microcrystalline silicon thin films growth is presented. The investigation was conducted in the high pressure regime and for constant power dissipation in the discharge with the support of plasma diagnostics, thin film studies and calculations of discharge microscopic parameters and gas dissociation rates. The experimental data and the calculations show a strong effect of disilane on the electrical properties of the discharge in the pressure window from 2 to 3 Torr that is followed by significant raise of the electron number density and the drop of the sheaths electric field intensity. Deposition rate measurements show an important four to six times increase even for disilane mole fractions as low as 0.3 %. The deposition rate enhancement was followed by a drop of the material crystalline volume fraction but films with crystallinity above 40 % were deposited with different combinations of total gas pressure, disilane and silane molar ratios. The enhancement was partly explained by the increase of the electron impact dissociation rate of silane which rises by 40% even for 0.1% disilane mole fraction. The calculations of the gas usage, the dissociation and the deposition efficiencies show that the beneficial effect on the growth rate is not just the result of the increase of Si-containing molecules density but significant changes on the species participating to the deposition and the mechanism of the film growth are caused by the disilane addition. The enhanced participation of the highly sticking to the surface radical such as disilylene, which is the main product of disilane dissociation, was considered as the most probable reason for the significant raise of the deposition efficiency. The catalytic effect of such type of radical on the surface reactivity of species with lower sticking probability is further discussed, while it is also used to explain the restricted and sensitive process window where the disilane effect appears.
Litterfall mercury deposition in Atlantic forest ecosystem from SE-Brazil.
Teixeira, Daniel C; Montezuma, Rita C; Oliveira, Rogério R; Silva-Filho, Emmanoel V
2012-05-01
Litterfall is believed to be the major flux of Hg to soils in forested landscapes, yet much less is known about this input on tropical environment. The Hg litterfall flux was measured during one year in Atlantic Forest fragment, located within Rio de Janeiro urban perimeter, in the Southeastern region of Brazil. The results indicated a mean annual Hg concentration of 238 ± 52 ng g(-1) and a total annual Hg deposition of 184 ± 8.2 μg m(-2) y(-1). The negative correlation observed between rain precipitation and Hg concentrations is probably related to the higher photosynthetic activity observed during summer. The total Hg concentration in leaves from the most abundant species varied from 60 to 215 ng g(-1). Hg concentration showed a positive correlation with stomatal and trichomes densities. These characteristics support the hypothesis that Tropical Forest is an efficient mercury sink and litter plays a key role in Hg dynamics. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Taverniers, Søren; Tartakovsky, Daniel M.
2017-11-01
Predictions of the total energy deposited into a brain tumor through X-ray irradiation are notoriously error-prone. We investigate how this predictive uncertainty is affected by uncertainty in both the location of the region occupied by a dose-enhancing iodinated contrast agent and the agent's concentration. This is done within the probabilistic framework in which these uncertain parameters are modeled as random variables. We employ the stochastic collocation (SC) method to estimate statistical moments of the deposited energy in terms of statistical moments of the random inputs, and the global sensitivity analysis (GSA) to quantify the relative importance of uncertainty in these parameters on the overall predictive uncertainty. A nonlinear radiation-diffusion equation dramatically magnifies the coefficient of variation of the uncertain parameters, yielding a large coefficient of variation for the predicted energy deposition. This demonstrates that accurate prediction of the energy deposition requires a proper treatment of even small parametric uncertainty. Our analysis also reveals that SC outperforms standard Monte Carlo, but its relative efficiency decreases as the number of uncertain parameters increases from one to three. A robust GSA ameliorates this problem by reducing this number.
The smog-fog-smog cycle and acid deposition
NASA Astrophysics Data System (ADS)
Pandis, Spyros N.; Seinfeld, John H.; Pilinis, Christodoulos
1990-10-01
A model including descriptions of aerosol and droplet microphysics, gas and aqueous-phase chemistry, and deposition is used to study the transformation of aerosol to fog droplets and back to aerosol in an urban environment. Fogs in polluted environments have the potential to increase aerosol sulfate concentrations but at the same time to cause reductions in the aerosol concentration of nitrate, chloride, ammonium and sodium and well as in the total aerosol mass concentration. The sulfate produced during fog episodes favors the aerosol particles that have access to most of the fog liquid water which are usually the large particles. Aerosol scavenging efficiencies of around 80 percent are calculated for urban fogs. Sampling and subsequent mixing of fog droplets of different sizes may result in measured concentrations that are not fully representative of the fogwater chemical composition and can introduce errors in the reported values of the ionic species deposition velocities. Differences in the major ionic species deposition velocities can be explained by their distribution over the droplet size spectrum and can be correlated with the species average diameter. Two different expressions are derived for use in fog models for the calculation of the liquid water deposition velocity during fog growth and dissipation stages.
Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamer, John; Scott, David
In this project, OLEDWorks developed and demonstrated the innovative high-performance deposition technology required to deliver dramatic reductions in the cost of manufacturing OLED lighting in production equipment. The current high manufacturing cost of OLED lighting is the most urgent barrier to its market acceptance. The new deposition technology delivers solutions to the two largest parts of the manufacturing cost problem – the expense per area of good product for organic materials and for the capital cost and depreciation of the equipment. Organic materials cost is the largest expense item in the bill of materials and is predicted to remain somore » through 2020. The high-performance deposition technology developed in this project, also known as the next generation source (NGS), increases material usage efficiency from 25% found in current Gen2 deposition technology to 60%. This improvement alone results in a reduction of approximately 25 USD/m 2 of good product in organic materials costs, independent of production volumes. Additionally, this innovative deposition technology reduces the total depreciation cost from the estimated value of approximately 780 USD/m 2 of good product for state-of-the-art G2 lines (at capacity, 5-year straight line depreciation) to 170 USD/m 2 of good product from the OLEDWorks production line.« less
NASA Astrophysics Data System (ADS)
Liu, Ruiwen; Jiao, Binbin; Kong, Yanmei; Li, Zhigang; Shang, Haiping; Lu, Dike; Gao, Chaoqun; Chen, Dapeng
2013-09-01
Micro-devices with a bi-material-cantilever (BMC) commonly suffer initial curvature due to the mismatch of residual stress. Traditional corrective methods to reduce the residual stress mismatch generally involve the development of different material deposition recipes. In this paper, a new method for reducing residual stress mismatch in a BMC is proposed based on various previously developed deposition recipes. An initial material film is deposited using two or more developed deposition recipes. This first film is designed to introduce a stepped stress gradient, which is then balanced by overlapping a second material film on the first and using appropriate deposition recipes to form a nearly stress-balanced structure. A theoretical model is proposed based on both the moment balance principle and total equal strain at the interface of two adjacent layers. Experimental results and analytical models suggest that the proposed method is effective in producing multi-layer micro cantilevers that display balanced residual stresses. The method provides a generic solution to the problem of mismatched initial stresses which universally exists in micro-electro-mechanical systems (MEMS) devices based on a BMC. Moreover, the method can be incorporated into a MEMS design automation package for efficient design of various multiple material layer devices from MEMS material library and developed deposition recipes.
Factors controlling black carbon distribution in the Arctic
NASA Astrophysics Data System (ADS)
Qi, Ling; Li, Qinbin; Li, Yinrui; He, Cenlin
2017-01-01
We investigate the sensitivity of black carbon (BC) in the Arctic, including BC concentration in snow (BCsnow, ng g-1) and surface air (BCair, ng m-3), as well as emissions, dry deposition, and wet scavenging using the global three-dimensional (3-D) chemical transport model (CTM) GEOS-Chem. We find that the model underestimates BCsnow in the Arctic by 40 % on average (median = 11.8 ng g-1). Natural gas flaring substantially increases total BC emissions in the Arctic (by ˜ 70 %). The flaring emissions lead to up to 49 % increases (0.1-8.5 ng g-1) in Arctic BCsnow, dramatically improving model comparison with observations (50 % reduction in discrepancy) near flaring source regions (the western side of the extreme north of Russia). Ample observations suggest that BC dry deposition velocities over snow and ice in current CTMs (0.03 cm s-1 in the GEOS-Chem) are too small. We apply the resistance-in-series method to compute a dry deposition velocity (vd) that varies with local meteorological and surface conditions. The resulting velocity is significantly larger and varies by a factor of 8 in the Arctic (0.03-0.24 cm s-1), which increases the fraction of dry to total BC deposition (16 to 25 %) yet leaves the total BC deposition and BCsnow in the Arctic unchanged. This is largely explained by the offsetting higher dry and lower wet deposition fluxes. Additionally, we account for the effect of the Wegener-Bergeron-Findeisen (WBF) process in mixed-phase clouds, which releases BC particles from condensed phases (water drops and ice crystals) back to the interstitial air and thereby substantially reduces the scavenging efficiency of clouds for BC (by 43-76 % in the Arctic). The resulting BCsnow is up to 80 % higher, BC loading is considerably larger (from 0.25 to 0.43 mg m-2), and BC lifetime is markedly prolonged (from 9 to 16 days) in the Arctic. Overall, flaring emissions increase BCair in the Arctic (by ˜ 20 ng m-3), the updated vd more than halves BCair (by ˜ 20 ng m-3), and the WBF effect increases BCair by 25-70 % during winter and early spring. The resulting model simulation of BCsnow is substantially improved (within 10 % of the observations) and the discrepancies of BCair are much smaller during the snow season at Barrow, Alert, and Summit (from -67-47 % to -46-3 %). Our results point toward an urgent need for better characterization of flaring emissions of BC (e.g., the emission factors, temporal, and spatial distribution), extensive measurements of both the dry deposition of BC over snow and ice, and the scavenging efficiency of BC in mixed-phase clouds. In addition, we find that the poorly constrained precipitation in the Arctic may introduce large uncertainties in estimating BCsnow. Doubling precipitation introduces a positive bias approximately as large as the overall effects of flaring emissions and the WBF effect; halving precipitation produces a similarly large negative bias.
Ruiz-Ascacibar, I; Stoll, P; Kreuzer, M; Boillat, V; Spring, P; Bee, G
2017-03-01
Breeding leaner pigs during the last decades may have changed pig's empty body (EB) composition, a key trait for elaborating feeding recommendations. This research aimed to provide new experimental data on changes in the chemical composition of the EB of pigs from 20 to 140 kg BW. In addition, the impact of a reduction in the dietary CP associated with lower lysine, methionine+cystine, threonine and tryptophan levels was determined. In total, 48 males, castrates and females weighing 20 kg BW were allocated either to a control grower-finisher diet formulated according to current Swiss feeding recommendations, or a low CP grower-finisher diet (80% of control). Feed intake was monitored and pigs were weighed weekly. The chemical composition of EB (blood, hairs and hoofs, offals, bile, carcass) was determined at 20, 40, 60, 80, 100, 120 and 140 kg BW on four pigs per gender and diet (eight pigs per gender at 20 kg). The five fractions were weighed and samples were analysed for dry matter, protein, fat and energy. Nutrient deposition rates and N efficiency were calculated by using the 20 kg BW category as reference. Analysis revealed an accurate feed optimisation for the aforementioned essential amino acids (EAA), whereas digestible isoleucine content in the low CP diet was at 70% of the control diet. Despite similar feed intake, daily gain and feed efficiency were impaired (P<0.01) from 20 to 100 kg BW in the low CP compared with the control pigs. In the same growth period, castrates had the greatest feed intake but, together with females, displayed the lowest (P<0.01) feed efficiency. Protein deposition was reduced (P<0.01) by up to 31% with low CP diet and was lower (P<0.01) in castrates and females than males at 100 kg BW. The greatest fat deposition rates were found with low CP diet and castrates. N efficiency improved (P<0.05) by 10% with the low CP diet from 100 to 140 kg. The males displayed the greatest (P<0.05) N efficiency. These findings suggest that the CP content of finisher II diets could be reduced to 102, 102 and 104 g/kg for females, castrates and males, respectively, without a negative impact on protein deposition or growth. It remains unclear whether the negative effects found in the BW range from 20 to 100 kg on the EB deposition were due to the 20% reduction of the dietary CP and the five limiting EAA or to other EAA via an unbalanced EAA profile.
Improved determination of the neutron lifetime.
Yue, A T; Dewey, M S; Gilliam, D M; Greene, G L; Laptev, A B; Nico, J S; Snow, W M; Wietfeldt, F E
2013-11-27
The most precise determination of the neutron lifetime using the beam method was completed in 2005 and reported a result of τ(n)=(886.3±1.2[stat]±3.2[syst]) s. The dominant uncertainties were attributed to the absolute determination of the fluence of the neutron beam (2.7 s). The fluence was measured with a neutron monitor that counted the neutron-induced charged particles from absorption in a thin, well-characterized 6Li deposit. The detection efficiency of the monitor was calculated from the areal density of the deposit, the detector solid angle, and the evaluated nuclear data file, ENDF/B-VI 6Li(n,t)4He thermal neutron cross section. In the current work, we measure the detection efficiency of the same monitor used in the neutron lifetime measurement with a second, totally absorbing neutron detector. This direct approach does not rely on the 6Li(n,t)4He cross section or any other nuclear data. The detection efficiency is consistent with the value used in 2005 but is measured with a precision of 0.057%, which represents a fivefold improvement in the uncertainty. We verify the temporal stability of the neutron monitor through ancillary measurements, allowing us to apply the measured neutron monitor efficiency to the lifetime result from the 2005 experiment. The updated lifetime is τ(n)=(887.7±1.2[stat]±1.9[syst]) s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohtani, Ryota; Yamamoto, Takashi; Janssens, Stoffel D.
2014-12-08
Microwave plasma enhanced chemical vapor deposition is a promising way to generate n-type, e.g., phosphorus-doped, diamond layers for the fabrication of electronic components, which can operate at extreme conditions. However, a deeper understanding of the doping process is lacking and low phosphorus incorporation efficiencies are generally observed. In this work, it is shown that systematically changing the internal design of a non-commercial chemical vapor deposition chamber, used to grow diamond layers, leads to a large increase of the phosphorus doping efficiency in diamond, produced in this device, without compromising its electronic properties. Compared to the initial reactor design, the dopingmore » efficiency is about 100 times higher, reaching 10%, and for a very broad doping range, the doping efficiency remains highly constant. It is hypothesized that redesigning the deposition chamber generates a higher flow of active phosphorus species towards the substrate, thereby increasing phosphorus incorporation in diamond and reducing deposition of phosphorus species at reactor walls, which additionally reduces undesirable memory effects.« less
Measurement of LYSO Intrinsic Light Yield Using Electron Excitation
NASA Astrophysics Data System (ADS)
Turtos, Rosana Martinez; Gundacker, Stefan; Pizzichemi, Marco; Ghezzi, Alessio; Pauwels, Kristof; Auffray, Etiennette; Lecoq, Paul; Paganoni, Marco
2016-04-01
The determination of the intrinsic light yield (LYint) of scintillating crystals, i.e. number of optical photons created per amount of energy deposited, constitutes a key factor in order to characterize and optimize their energy and time resolution. However, until now measurements of this quantity are affected by large uncertainties and often rely on corrections for bulk absorption and surface/edge state. The novel idea presented in this contribution is based on the confinement of the scintillation emission in the central upper part of a 10 mm cubic crystal using a 1.5 MeV electron beam with diameter of 1 mm. A black non-reflective pinhole aligned with the excitation point is used to fix the light extraction solid angle (narrower than total reflection angle), which then sets a light cone travel path through the crystal. The final number of photoelectrons detected using a Hamamatsu R2059 photomultiplier tube (PMT) was corrected for the extraction solid angle, the Fresnel reflection coefficient and quantum efficiency (QE) of the PMT. The total number of optical photons produced per energy deposited was found to be 40000 ph/MeV ± 9% (syst) ±3% (stat) for LYSO. Simulations using Geant4 were successfully compared to light output measurements of 2 × 2 mm2 section crystals with lengths of 5-30 mm, in order to validate the light transport model and set a limit on Light Transfer Efficiency estimations.
Sensitivity of warm-frontal processes to cloud-nucleating aerosol concentrations
NASA Technical Reports Server (NTRS)
Igel, Adele L.; Van Den Heever, Susan C.; Naud, Catherine M.; Saleeby, Stephen M.; Posselt, Derek J.
2013-01-01
An extratropical cyclone that crossed the United States on 9-11 April 2009 was successfully simulated at high resolution (3-km horizontal grid spacing) using the Colorado State University Regional Atmospheric Modeling System. The sensitivity of the associated warm front to increasing pollution levels was then explored by conducting the same experiment with three different background profiles of cloud-nucleating aerosol concentration. To the authors' knowledge, no study has examined the indirect effects of aerosols on warm fronts. The budgets of ice, cloud water, and rain in the simulation with the lowest aerosol concentrations were examined. The ice mass was found to be produced in equal amounts through vapor deposition and riming, and the melting of ice produced approximately 75% of the total rain. Conversion of cloud water to rain accounted for the other 25%. When cloud-nucleating aerosol concentrations were increased, significant changes were seen in the budget terms, but total precipitation remained relatively constant. Vapor deposition onto ice increased, but riming of cloud water decreased such that there was only a small change in the total ice production and hence there was no significant change in melting. These responses can be understood in terms of a buffering effect in which smaller cloud droplets in the mixed-phase region lead to both an enhanced vapor deposition and decreased riming efficiency with increasing aerosol concentrations. Overall, while large changes were seen in the microphysical structure of the frontal cloud, cloud-nucleating aerosols had little impact on the precipitation production of the warm front.
Direct and indirect atmospheric deposition of PCBs to the Delaware River watershed.
Totten, Lisa A; Panangadan, Maya; Eisenreich, Steven J; Cavallo, Gregory J; Fikslin, Thomas J
2006-04-01
Atmospheric deposition can be an important source of PCBs to aquatic ecosystems. To develop the total maximum daily load (TMDL) for polychlorinated biphenyls (PCBs) for the tidal Delaware River (water-quality Zones 2-5), estimates of the loading of PCBs to the river from atmospheric deposition were generated from seven air-monitoring sites along the river. This paper presents the atmospheric PCB data from these sites, estimates direct atmospheric deposition fluxes, and assesses the importance of atmospheric deposition relative to other sources of PCBs to the river. Also, the relationship between indirect atmospheric deposition and PCB loads from minor tributaries to the Delaware River is discussed. Data from these sites revealed high atmospheric PCB concentrations in the Philadelphia/Camden urban area and lower regional background concentrations in the more remote areas. Wet, dry particle, and gaseous absorption deposition are estimated to contribute about 0.6, 1.8, and 6.5 kg year-(-1) sigmaPCBs to the River, respectively, exceeding the TMDL of 0.139 kg year(-1) by more than an order of magnitude. Penta-PCB watershed fluxes were obtained by dividing the tributary loads by the watershed area. The lowest of these watershed fluxes are less than approximately 1 ng m(-2) day(-1) for penta-PCB and probably indicates pristine watersheds in which PCB loads are dominated by atmospheric deposition. In these watersheds, the pass-through efficiency of PCBs is estimated to be on the order of 1%.
NASA Astrophysics Data System (ADS)
Medvedeva, E. A.; Zhenikhov, Yu. N.; Urvantsev, I. V.; Tsyba, V. E.
2017-06-01
This article presents a detailed analysis of the economic efficiency of peat utilization for generating electricity and heat in Russian rural areas and decentralized power consumption areas on the basis of the comparison of power tariffs (prices) and full costs of peat-based electricity and heat production. The research was performed using the model-information complex detailed with respect to municipal areas and major peat deposits that was developed at the Energy Institute, National Research University Higher School of Economics. It is shown that the firing of lignin helium fuel (LHF) granules that are made from peat extracted by the excavating method according to the new, patented technology is considered most efficient. In nongasified areas, the total cost of heat power that is generated in new boiler houses on the basis of LHF granules is often lower than the total heat cost for the gasification of the area and construction of gas boiler houses. In some cases, the heat cost in gasified areas is lower when using a boiler house based on LHF granules than that provided by the conversion of a boiler house to gas fuel. It is also shown that the construction of peat-based heat sources with the overall power of up to 27600 GJ/h that generate a heat power of up to 167.5 million GJ/year will be economically efficient in the coming years, provided that the tariffs for energy sources remain the same. Taking into account the supportive measures that were accepted on a legislative basis in July 2016, sources with the total power of up to 70 GW may be effective for peat-based plants with combined heat-andpower generation. To stimulate the utilization of peat in decentralized power consumption areas and rural areas located in the vicinity of deposits of this fuel type, it is also suggested to make amendments in the normative legal base.
Jaszczur, Marek; Teneta, Janusz; Styszko, Katarzyna; Hassan, Qusay; Burzyńska, Paulina; Marcinek, Ewelina; Łopian, Natalia
2018-04-20
The maximisation of the efficiency of the photovoltaic system is crucial in order to increase the competitiveness of this technology. Unfortunately, several environmental factors in addition to many alterable and unalterable factors can significantly influence the performance of the PV system. Some of the environmental factors that depend on the site have to do with dust, soiling and pollutants. In this study conducted in the city centre of Kraków, Poland, characterised by high pollution and low wind speed, the focus is on the evaluation of the degradation of efficiency of polycrystalline photovoltaic modules due to natural dust deposition. The experimental results that were obtained demonstrated that deposited dust-related efficiency loss gradually increased with the mass and that it follows the exponential. The maximum dust deposition density observed for rainless exposure periods of 1 week exceeds 300 mg/m 2 and the results in efficiency loss were about 2.1%. It was observed that efficiency loss is not only mass-dependent but that it also depends on the dust properties. The small positive effect of the tiny dust layer which slightly increases in surface roughness on the module performance was also observed. The results that were obtained enable the development of a reliable model for the degradation of the efficiency of the PV module caused by dust deposition. The novelty consists in the model, which is easy to apply and which is dependent on the dust mass, for low and moderate naturally deposited dust concentration (up to 1 and 5 g/m 2 and representative for many geographical regions) and which is applicable to the majority of cases met in an urban and non-urban polluted area can be used to evaluate the dust deposition-related derating factor (efficiency loss), which is very much sought after by the system designers, and tools used for computer modelling and system malfunction detection.
Mariz, L D S; Amaral, P M; Valadares Filho, S C; Santos, S A; Detmann, E; Marcondes, M I; Pereira, J M V; Silva Júnior, J M; Prados, L F; Faciola, A P
2018-03-06
The objective of this study was to determine the apparent and true intestinal digestibility of total and individual AA, and to estimate the efficiency of whole-body AA retention from individual and total absorbed AA. Four Nellore animals (241.3 kg initial BW) and four crossbred Angus × Nellore (263.4 kg initial BW) cannulated in rumen and ileum were randomly allocated in two 4 × 4 Latin squares. The experiment lasted four 17 d periods, with 10 d for adaptation to diets and another 7 d for data collection. The diets consisted of increasing CP levels: 100, 120, or 140 g/kg of DM offered ad libitum, and restricted intake diet with 120 g CP/kg DM (experiment 1). In experiment 2, forty-four bulls (22 Nellore and 22 crossbred F1 Angus × Nellore) with 8 months and initial shrunk BW 215.0 ± 15.0 kg (Nellore = 208.0 ± 12.78 kg; Angus × Nellore = 221.9 ± 14.16 kg) were used. Eight of those animals were slaughtered at the beginning of the experiment. The remaining 36 bulls were allocated in a completely randomized design with six replicates, in a 2 (genetic groups) × 3 (CP contents) factorial scheme. The amount of essential AA (EAA) and nonessential AA (NEAA) reaching the small intestine increased linearly (P < 0.05) in response to CP content. The apparent digestibility of EAA was not affected (P > 0.05) by CP content, with exception for histidine (P = 0.07, linear effect), leucine (P = 0.01, linear effect), and methionine (P = 0.05, linear effect). Differences existed among AA when compared the apparent digestibility of NEAA. The apparent digestibility of alanine (P = 0.05), aspartic acid (P = 0.07), glutamic acid (P = 0.02), glycine (P = 0.05), proline (P = 0.02), and serine (P = 0.04) responded quadratically to CP content increase. However, the apparent digestibility of cystine and tyrosine was not affected (P > 0.05) by increasing dietary CP. The true intestinal digestibilities of total, essential, nonessential AA, lysine, and methionine were 75.0%, 77.0%, 74.0%, 77.0%, and 86%, respectively. The true intestinal digestibility of total microbial AA was 80%. The efficiency of utilization of total AA for whole-body protein deposition was 40%. The efficiency of utilization of lysine and methionine was 37% and 58%, respectively. It was concluded that the AA flow to the omasum increases in response to dietary CP content. In addition, there are differences among AA in the efficiency that they are used by beef cattle.
Watershed processing of atmospheric polychlorinated biphenyl inputs.
Rowe, Amy A; Totten, Lisa A; Cavallo, Gregory I; Yagecic, John R
2007-04-01
Indirect atmospheric deposition of PCBs was examined in subwatersheds of the Delaware River Estuary. Tributary PCB loads and atmospheric PCB concentrations were used to understand the pass-through efficiencies for nine rivers/ creeks for which PCB inputs appeared to be dominated by atmospheric deposition. The pass-through efficiency, E, was calculated from tributary loads and atmospheric deposition fluxes. Unfortunately, uncertainties in the gaseous and dry particle deposition velocities, vg and vd, respectively, render the calculated atmospheric deposition fluxes highly uncertain. In order to circumvent this problem, export of PCBs from the watershed was related directly to atmospheric PCB concentrations via a new mass transfer coefficient, the watershed delivery rate or vws, which describes the process by which the watershed transfers PCBs from the airto the River's main stem. vws increases with increasing chlorination and is significantly correlated with vapor pressure. This trend suggests that the transfer of PCBs from the atmosphere to the River via the watershed is more efficient for high molecular weight PCBs than for low molecular weight PCBs. This may indicate that the selected watersheds are at or close to equilibrium with respect to gaseous exchange of PCBs, such that lower molecular weight congeners undergo substantial revolatilization after deposition. The magnitude of the pass-through efficiency, E, depends on the deposition velocities used to calculate the atmospheric deposition flux, but when congener-specific deposition velocities are used, E is independent of vapor pressure and is relatively constant at about 3%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bons, Jeffrey; Ameri, Ali
2016-01-08
The objective of this research effort was to develop a validated computational modeling capability for the characterization of the effects of hot streaks and particulate deposition on the heat load of modern gas turbines. This was accomplished with a multi-faceted approach including analytical, experimental, and computational components. A 1-year no cost extension request was approved for this effort, so the total duration was 4 years. The research effort succeeded in its ultimate objective by leveraging extensive experimental deposition studies complemented by computational modeling. Experiments were conducted with hot streaks, vane cooling, and combinations of hot streaks with vane cooling. Thesemore » studies contributed to a significant body of corporate knowledge of deposition, in combination with particle rebound and deposition studies funded by other agencies, to provide suitable conditions for the development of a new model. The model includes the following physical phenomena: elastic deformation, plastic deformation, adhesion, and shear removal. It also incorporates material property sensitivity to temperature and tangential-normal velocity rebound cross-dependencies observed in experiments. The model is well-suited for incorporation in CFD simulations of complex gas turbine flows due to its algebraic (explicit) formulation. This report contains model predictions compared to coefficient of restitution data available in the open literature as well as deposition results from two different high temperature turbine deposition facilities. While the model comparisons with experiments are in many cases promising, several key aspects of particle deposition remain elusive. The simple phenomenological nature of the model allows for parametric dependencies to be evaluated in a straightforward manner. This effort also included the first-ever full turbine stage deposition model published in the open literature. The simulations included hot streaks and simulated vane cooling. The new deposition model was implemented into the CFD model as a wall boundary condition, with various particle sizes investigated in the simulation. Simulations utilizing a steady mixing plane formulation and an unsteady sliding mesh were conducted and the flow solution of each was validated against experimental data. Results from each of these simulations, including impact and capture distributions and efficiencies, were compared and potential reasons for differences discussed in detail. The inclusion of a large range of particle sizes allowed investigation of trends with particle size, such as increased radial migration and reduced sticking efficiency at the larger particle sizes. The unsteady simulation predicted lower sticking efficiencies on the rotor blades than the mixing plane simulation for the majority of particle sizes. This is postulated to be due to the preservation of the hot streak and cool vane wake through the vane-rotor interface (which are smeared out circumferentially in the mixing-plane simulation). The results reported here represent the successful implementation of a novel deposition model into validated vane-rotor flow solutions that include a non-uniform inlet temperature profile and simulated vane cooling.« less
Optimizing the Ar-Xe infrared laser on the Naval Research Laboratory's Electra generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apruzese, J. P.; Giuliani, J. L.; Wolford, M. F.
2008-07-01
The Ar-Xe infrared laser has been investigated in several series of experiments carried out on the Naval Research Laboratory's Electra generator. Our primary goals were to optimize the efficiency of the laser (within Electra's capabilities) and to gain understanding of the main physical processes underlying the laser's output as a function of controllable parameters such as Xe fraction, power deposition, and gas pressure. We find that the intrinsic efficiency maximizes at {approx}3% at a total pressure of 2.5 atm, Xe fraction of 1%, and electron beam power deposition density of 50-100 kW cm{sup -3}. We deployed an interferometer to measuremore » the electron density during lasing; the ionization fractions of 10{sup -5}-10{sup -4} that it detected well exceed previous theoretical estimates. Some trends in the data as a function of beam power and xenon fraction are not fully understood. The as-yet incomplete picture of Ar-Xe laser physics is likely traceable in large part to significant uncertainties still present in many important rates influencing the atomic and molecular kinetics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabilan, S.; Suffield, S. R.; Recknagle, K. P.
Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation–exhalation breathingmore » conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.« less
Davies, M A
2015-10-01
Salicylic acid (SA) is a widely used active in anti-acne face wash products. Only about 1-2% of the total dose is actually deposited on skin during washing, and more efficient deposition systems are sought. The objective of this work was to develop an improved method, including data analysis, to measure deposition of SA from wash-off formulae. Full fluorescence excitation-emission matrices (EEMs) were acquired for non-invasive measurement of deposition of SA from wash-off products. Multivariate data analysis methods - parallel factor analysis and N-way partial least-squares regression - were used to develop and compare deposition models on human volunteers and porcine skin. Although both models are useful, there are differences between them. First, the range of linear response to dosages of SA was 60 μg cm(-2) in vivo compared to 25 μg cm(-2) on porcine skin. Second, the actual shape of the SA band was different between substrates. The methods employed in this work highlight the utility of the use of EEMs, in conjunction with multivariate analysis tools such as parallel factor analysis and multiway partial least-squares calibration, in determining sources of spectral variability in skin and quantification of exogenous species deposited on skin. The human model exhibited the widest range of linearity, but porcine model is still useful up to deposition levels of 25 μg cm(-2) or used with nonlinear calibration models. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Sun, Liying; Li, Bo; Ma, Yuchun; Wang, Jinyang; Xiong, Zhengqin
2013-06-01
The dry deposition of ammonium, nitrate, and total phosphorus (TP) to both water (DW) and land (DD) surfaces, along with wet deposition, were simultaneously monitored from March 2009 to February 2011 in Nanjing, China. Results showed that wet deposition of total phosphorus was 1.1 kg phosphorus ha (-1)yr(-1), and inorganic nitrogen was 28.7 kg nitrogen ha (-1)yr(-1), with 43% being ammonium nitrogen. Dry deposition of ammonium, nitrate, and total phosphorus, measured by the DW/DD method, was 7.5/2.2 kg nitrogen ha (-1)yr(-1), 6.3/ 4.9 kg nitrogen ha (-1)yr(-1), and 1.9/0.4 kg phosphorus ha (-1)yr(-1), respectively. Significant differences between the DW and DD methods indicated that both methods should be employed simultaneously when analyzing deposition to aquatic and terrestrial ecosystems in watershed areas. The dry deposition of ammonium, nitrate, and total phosphorus contributed 38%, 28%, and 63%, respectively, to the total deposition in the simulated aquatic ecosystem; this has significance for the field of water eutrophication control.
Liu, S W; Divayana, Y; Sun, X W; Wang, Y; Leck, K S; Demir, H V
2011-02-28
We fabricated and demonstrated improved organic light emitting diodes (OLEDs) in a thin film architecture of indium tin oxide (ITO)/ molybdenum trioxide (MoO3) (20 nm)/N,N'-Di(naphth-2-yl)-N,N'-diphenyl-benzidine (NPB) (50 nm)/ tris-(8-hydroxyquinoline) (Alq3) (70 nm)/Mg:Ag (200 nm) using an oblique angle deposition technique by which MoO3 was deposited at oblique angles (θ) with respect to the surface normal. It was found that, without sacrificing the power efficiency of the device, the device current efficiency and external quantum efficiency were significantly enhanced at an oblique deposition angle of θ=60° for MoO3.
Ambient Ammonium Contribution to total Nitrogen Deposition ...
There has been a wealth of evidence over the last decade illustrating the rising importance of reduced inorganic nitrogen (NHx = ammonia gas, NH3, plus particulate ammonium, p-NH4) in the overall atmospheric mass balance and deposition of nitrogen as emissions of oxidized nitrogen have decreased throughout a period of stable or increasing NH3 emissions. In addition, the fraction of ambient ammonia relative to p-NH4 generally has risen as a result of decreases in both oxides of nitrogen and sulfur emissions. EPA plans to consider ecological effects related to deposition of nitrogen, of which NHx is a contributing component, in the review of secondary National Ambient Air Quality Standards (NAAQS) for oxides of nitrogen and sulfur (NOx/SOx standard). Although these ecological effects are associated with total nitrogen deposition, it will be important to understand the emissions sources contributing to the total nitrogen deposition and to understand how much of the total nitrogen deposition is from deposition of NHx versus other nitrogen species. Because p-NH4 contributes to nitrogen deposition and can also be a significant component of particulate matter, there is a potential overlap in addressing nitrogen based deposition effects in the secondary PM and NOx/SOx NAAQS. Consequently, there is a policy interest in quantifying the contribution of p-NH4 to total nitrogen deposition. While dry deposition of p-NH4 is calculated through a variety of modeling app
Tang, Jie; Qiao, Jiyang; Xue, Qiang; Liu, Fei; Chen, Honghan; Zhang, Guochen
2018-05-01
High concentration of ammonium sulfate, a typical leaching agent, was often used in the mining process of the weathering crust elution-deposited rare earth ore. After mining, a lot of ammonia nitrogen and labile heavy metal fractions were residual in tailings, which may result in a huge potential risk to the environment. In this study, in order to achieve the maximum extraction of rare earth elements and reduce the labile heavy metal, extraction effect and fraction changes of lanthanum (La) and lead (Pb) in the weathering crust elution-deposited rare earth ore were studied by using a compound agent of (NH 4 ) 2 SO 4 -EDTA. The extraction efficiency of La was more than 90% by using 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA, which was almost same with that by using 2.0% (NH 4 ) 2 SO 4 solution. In contrast, the extraction efficiency of Pb was 62.3% when use 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA, which is much higher than that (16.16%) achieved by using 2.0% (NH 4 ) 2 SO 4 solution. The released Pb fractions were mainly acid extractable and reducible fractions, and the content of reducible fraction being leached accounted for 70.45% of the total reducible fraction. Therefore, the use of 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA can not only reduce the amount of (NH 4 ) 2 SO 4 , but also decrease the labile heavy metal residues in soil, which provides a new way for efficient La extraction with effective preventing and controlling environmental pollution in the process of mining the weathering crust elution-deposited rare earth ore. Copyright © 2018 Elsevier Ltd. All rights reserved.
The United States Total DEPosition (TDEP) Project for Sulfur and Nitrogen
Estimates of total sulfur and nitrogen deposition are needed for use in critical loads and other ecosystem assessments. Measurements are available for some chemical species at individual locations for air concentration and wet deposition, but not dry deposition. Modeling provid...
Kane, David B; Asgharian, Bahman; Price, Owen T; Rostami, Ali; Oldham, Michael J
2010-02-01
It is known that puffing conditions such as puff volume, duration, and frequency vary substantially among individual smokers. This study investigates how these parameters affect the particle size distribution and concentration of fresh mainstream cigarette smoke (MCS) and how these changes affect the predicted deposition of MCS particles in a model human respiratory tract. Measurements of the particle size distribution made with an electrical low pressure impactor for a variety of puffing conditions are presented. The average flow rate of the puff is found to be the major factor effecting the measured particle size distribution of the MCS. The results of these measurements were then used as input to a deterministic dosimetry model (MPPD) to estimate the changes in the respiratory tract deposition fraction of smoke particles. The MPPD dosimetry model was modified by incorporating mechanisms involved in respiratory tract deposition of MCS: hygroscopic growth, coagulation, evaporation of semivolatiles, and mixing of the smoke with inhaled dilution air. The addition of these mechanisms to MPPD resulted in reasonable agreement between predicted airway deposition and human smoke retention measurements. The modified MPPD model predicts a modest 10% drop in the total deposition efficiency in a model human respiratory tract as the puff flow rate is increased from 1050 to 3100 ml/min, for a 2-s puff.
NASA Astrophysics Data System (ADS)
Janebo, Maria H.; Houghton, Bruce F.; Thordarson, Thorvaldur; Bonadonna, Costanza; Carey, Rebecca J.
2018-05-01
The size distribution of the population of particles injected into the atmosphere during a volcanic explosive eruption, i.e., the total grain-size distribution (TGSD), can provide important insights into fragmentation efficiency and is a fundamental source parameter for models of tephra dispersal and sedimentation. Recent volcanic crisis (e.g. Eyjafjallajökull 2010, Iceland and Córdon Caulle 2011, Chile) and the ensuing economic losses, highlighted the need for a better constraint of eruption source parameters to be used in real-time forecasting of ash dispersal (e.g., mass eruption rate, plume height, particle features), with a special focus on the scarcity of published TGSD in the scientific literature. Here we present TGSD data associated with Hekla volcano, which has been very active in the last few thousands of years and is located on critical aviation routes. In particular, we have reconstructed the TGSD of the initial subplinian-Plinian phases of four historical eruptions, covering a range of magma composition (andesite to rhyolite), eruption intensity (VEI 4 to 5), and erupted volume (0.2 to 1 km3). All four eruptions have bimodal TGSDs with mass fraction of fine ash (<63 μm; m63) from 0.11 to 0.25. The two Plinian dacitic-rhyolitic Hekla deposits have higher abundances of fine ash, and hence larger m63 values, than their andesitic subplinian equivalents, probably a function of more intense and efficient primary fragmentation. Due to differences in plume height, this contrast is not seen in samples from individual sites, especially in the near field, where lapilli have a wider spatial coverage in the Plinian deposits. The distribution of pyroclast sizes in Plinian versus subplinian falls reflects competing influences of more efficient fragmentation (e.g., producing larger amounts of fine ash) versus more efficient particle transport related to higher and more vigorous plumes, displacing relatively coarse lapilli farther down the dispersal axis.
Dong, Bin; Xu, Ying; Lin, Senmin; Dai, Xiaohu
2015-01-01
To dispose of large volumes of oilfield-produced water, an environmentally friendly method that reuses advanced-softened, silica-rich, oilfield-produced water (ASOW) as feedwater was implemented via a 10-month pilot-scale test in oilfield. However, salt deposition detrimental to the efficiency and security of steam injection system was generated in superheated steam pipeline. To evaluate the method, the characteristics and formation mechanism of the deposition were explored. The silicon content and total hardness of the ASOW were 272.20 mg/L and 0.018 mg/L, respectively. Morphology and composition of the deposition were determined by scanning electron microscope–energy dispersive spectrometry (SEM-EDS), inductively coupled plasma–mass spectroscopy (ICP-MS), X-ray diffraction (XRD), laser Raman spectroscopy (LRS) and X-ray photoelectron spectroscopy (XPS). Na2Si2O5, Na2CO3 and trace silanes were identified in the deposition. In addition, the solubility of the deposition was about 99%, suggesting that it is very different from traditional scaling. The results of a simulation experiment and thermal analysis system (TGA and TG-FTIR) proved that Na2CO3 and Si(OH)4 (gas) are involved in the formation of Na2Si2O5, which is ascribed mainly to the temperature difference between the superheated steam and the pipe wall. These findings provide an important reference for improving the reuse of ASOW and reducing its deposition. PMID:26608736
Surface Sampling of Spores in Dry-Deposition Aerosols▿
Edmonds, Jason M.; Collett, Patricia J.; Valdes, Erica R.; Skowronski, Evan W.; Pellar, Gregory J.; Emanuel, Peter A.
2009-01-01
The ability to reliably and reproducibly sample surfaces contaminated with a biological agent is a critical step in measuring the extent of contamination and determining if decontamination steps have been successful. The recovery operations following the 2001 attacks with Bacillus anthracis spores were complicated by the fact that no standard sample collection format or decontamination procedures were established. Recovery efficiencies traditionally have been calculated based upon biological agents which were applied to test surfaces in a liquid format and then allowed to dry prior to sampling tests, which may not be best suited for a real-world event with aerosolized biological agents. In order to ascertain if differences existed between air-dried liquid deposition and biological spores which were allowed to settle on a surface in a dried format, a study was undertaken to determine if differences existed in surface sampling recovery efficiencies for four representative surfaces. Studies were then undertaken to compare sampling efficiencies between liquid spore deposition and aerosolized spores which were allowed to gradually settle under gravity on four different test coupon types. Tests with both types of deposition compared efficiencies of four unique swabbing materials applied to four surfaces with various surface properties. Our studies demonstrate that recovery of liquid-deposited spores differs significantly from recovery of dry aerosol-deposited spores in most instances. Whether the recovery of liquid-deposited spores is overexaggerated or underrepresented with respect to that of aerosol-deposited spores depends upon the surface material being tested. PMID:18997021
High-efficiency solar cells fabricated by vacuum MO-CVD
NASA Technical Reports Server (NTRS)
Fraas, L. M.; Cape, J. A.; Partain, L. D.; Mcleod, P. S.
1984-01-01
High-efficiency, monolithic, two-color, three-terminal solar cells were fabricated by a novel growth technique, vacuum metal-organic chemical vapor deposition. The technique uses the expensive metal alkyls efficiently and toxic gases sparingly. The fact that the outer chamber is constructed of nonbreakable stainless steel is an attractive safety feature associated with this deposition system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabilan, Senthil; Suffield, Sarah R.; Recknagle, Kurtis P.
Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditionsmore » using average species-specific minute volumes. The highest exposure concentration was modeled in the rabbit based upon prior acute inhalation studies. For comparison, human simulation was also conducted at the same concentration. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways compared to the human at the same air concentration of anthrax spores. As a result, higher particle deposition was predicted in the conducting airways and deep lung of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanathan, K.; Mann, J.; Glynn, S.
2012-06-01
Zn(O,S) thin films were deposited by chemical bath deposition (CBD), atomic layer deposition, and sputtering. Composition of the films and band gap were measured and found to follow the trends described in the literature. CBD Zn(O,S) parameters were optimized and resulted in an 18.5% efficiency cell that did not require post annealing, light soaking, or an undoped ZnO layer. Promising results were obtained with sputtering. A 13% efficiency cell was obtained for a Zn(O,S) emitter layer deposited with 0.5%O2. With further optimization of process parameters and an analysis of the loss mechanisms, it should be possible to increase the efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoye, Robert L. Z., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk; Ievskaya, Yulia; MacManus-Driscoll, Judith L., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk
2015-02-01
Electrochemically deposited Cu{sub 2}O solar cells are receiving growing attention owing to a recent doubling in efficiency. This was enabled by the controlled chemical environment used in depositing doped ZnO layers by atomic layer deposition, which is not well suited to large-scale industrial production. While open air fabrication with atmospheric pressure spatial atomic layer deposition overcomes this limitation, we find that this approach is limited by an inability to remove the detrimental CuO layer that forms on the Cu{sub 2}O surface. Herein, we propose strategies for achieving efficiencies in atmospherically processed cells that are equivalent to the high values achievedmore » in vacuum processed cells.« less
Cooney, T.W.
1988-01-01
In 1941 a Coastal Plain reach of the Santee River was impounded to form Lake Marion and diverted into a diked-off part of the Cooper River basin to form Lake Moultrie. Rates of sediment inflow and outflow of the lakes were determined by the U.S. Geological Survey for the periods July 1966 - June 1968 and October 1983 - March 1985. Total sediment discharge was estimated for two inflow stations and continuous streamflow monitors and automatic suspended-sediment samplers were used for computation of suspended-sediment discharge. Bedload discharge was computed by the modified Einstein procedure. Suspended-sediment discharge was monitored at three outflow stations, with the suspended-sediment concentration measured on a weekly basis. During the 1983-1985 study, mean annual suspended-sediment inflow to Lakes Marion and Moultrie was estimated to be 722,000 tons, and the outflow was estimated at 175,000 tons, for a trap efficiency of 76% and a deposition rate of about 547,000 tons/year. This is about 33% less than the deposition rate determined during the 1966-68 study. The deposition rate for suspended and bedload sediment during the 1983 - 1985 study was about 650,000 tons/year. (USGS)
Improved Determination of the Neutron Lifetime
NASA Astrophysics Data System (ADS)
Yue, A.
2013-10-01
The most precise determination of the neutron lifetime using the beam method reported a result of τn = (886 . 3 +/- 3 . 4) s. The dominant uncertainties were attributed to the absolute determination of the fluence of the neutron beam (2.7 s). The fluence was determined with a monitor that counted the neutron-induced charged particles from absorption in a thin, well-characterized 6Li deposit. The detection efficiency of the monitor was calculated from the areal density of the deposit, the detector solid angle, and the ENDF/B-VI 6Li(n,t)4He thermal neutron cross section. We have used a second, totally-absorbing neutron detector to directly measure the detection efficiency of the monitor on a monochromatic neutron beam of precisely known wavelength. This method does not rely on the 6Li(n,t)4He cross section or any other nuclear data. The monitor detection efficiency was measured to an uncertainty of 0.06%, which represents a five-fold improvement in uncertainty. We have verified the temporal stability of the monitor with ancillary measurements, and the measured neutron monitor efficiency has been used to improve the fluence determination in the past lifetime experiment. An updated neutron lifetime based on the improved fluence determination will be presented. Work done in collaboration with M. Dewey, D. Gilliam, J. Nico, National Institute of Standards and Technology; G. Greene, University of Tennessee / Oak Ridge National Laboratory; A. Laptev, Los Alamos National Laboratory; W. Snow, Indiana University; and F. Wietfeldt, Tulane University.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ken-Hui Chang; Fu-Tien Jeng
1996-12-31
The long-range and transboundary transport of precursors of add deposition in East Asia became important due to the industrial development around this area. We started to develop Taiwan Air Quality Model (TAQM) system since 1992, which is based on regional Acid Deposition Model (RADM) system. A typical episode in Mei-Yu season has been selected to study. A case considering all emissions within simulated domain has been run as a reference case, and another perturbed case, not including Taiwan`s emission, has been also run for analyzing quantitatively the influence of long-range transport to Taiwan`s wet deposition during the episode are 31%more » and 24% for total sulfur compounds and total nitrogen compounds respectively; but for dry deposition, only 6% is contributed by long range transport for sulfur compounds and 29% for total nitrogen compounds. Therefore, the percentages of total acid deposition contributed by long-range transport are 27% and 25% for total sulfur compounds and total nitrogen compounds, respectively.« less
NASA Astrophysics Data System (ADS)
De, Rajnarayan; Haque, S. Maidul; Tripathi, S.; Rao, K. Divakar; Singh, Ranveer; Som, T.; Sahoo, N. K.
2017-09-01
Along with other transition metal doped titanium dioxide materials, Ni-TiO2 is considered to be one of the most efficient materials for catalytic applications due to its suitable energy band positions in the electronic structure. The present manuscript explores the possibility of improving the photocatalytic activity of RF magnetron sputtered Ni-TiO2 films upon heat treatment. Optical, structural and morphological and photocatalytic properties of the films have been investigated in detail for as deposited and heat treated samples. Evolution of refractive index (RI) and total film thickness as estimated from spectroscopic ellipsometry characterization are found to be in agreement with the trend in density and total film thickness estimated from grazing incidence X-ray reflectivity measurement. Interestingly, the evolution of these macroscopic properties were found to be correlated with the corresponding microstructural modifications realized in terms of anatase to rutile phase transformation and appearance of a secondary phase namely NiTiO3 at high temperature. Corresponding morphological properties of the films were also found to be temperature dependent which leads to modifications in the grain structure. An appreciable reduction of optical band gap from 2.9 to 2.5 eV of Ni-TiO2 thin films was also observed as a result of post deposition heat treatment. Testing of photocatalytic activity of the films performed under UV illumination demonstrates heat treatment under atmospheric ambience to be an effective means to enhance the photocatalytic efficiency of transition metal doped titania samples.
Floral traits mediate the vulnerability of aloes to pollen theft and inefficient pollination by bees
Hargreaves, Anna L.; Harder, Lawrence D.; Johnson, Steven D.
2012-01-01
Background and Aims Pollen-collecting bees are among the most important pollinators globally, but are also the most common pollen thieves and can significantly reduce plant reproduction. The pollination efficiency of pollen collectors depends on the frequency of their visits to female(-phase) flowers, contact with stigmas and deposition of pollen of sufficient quantity and quality to fertilize ovules. Here we investigate the relative importance of these components, and the hypothesis that floral and inflorescence characteristics mediate the pollination role of pollen collection by bees. Methods For ten Aloe species that differ extensively in floral and inflorescence traits, we experimentally excluded potential bird pollinators to quantify the contributions of insect visitors to pollen removal, pollen deposition and seed production. We measured corolla width and depth to determine nectar accessibility, and the phenology of anther dehiscence and stigma receptivity to quantify herkogamy and dichogamy. Further, we compiled all published bird-exclusion studies of aloes, and compared insect pollination success with floral morphology. Key Results Species varied from exclusively insect pollinated, to exclusively bird pollinated but subject to extensive pollen theft by insects. Nectar inaccessibility and strong dichogamy inhibited pollination by pollen-collecting bees by discouraging visits to female-phase (i.e. pollenless) flowers. For species with large inflorescences of pollen-rich flowers, pollen collectors successfully deposited pollen, but of such low quality (probably self-pollen) that they made almost no contribution to seed set. Indeed, considering all published bird-exclusion studies (17 species in total), insect pollination efficiency varied significantly with floral shape. Conclusions Species-specific floral and inflorescence characteristics, especially nectar accessibility and dichogamy, control the efficiency of pollen-collecting bees as pollinators of aloes. PMID:22278414
NASA Astrophysics Data System (ADS)
Qian, WANG; Feng, LIU; Chuanrun, MIAO; Bing, YAN; Zhi, FANG
2018-03-01
A coaxial dielectric barrier discharge (DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond (ns) pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 °C and 64.3 °C after 900 s operation, respectively. The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs, reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.
Effects of proton irradiation on the performance of InP/GaAs solar cells
NASA Technical Reports Server (NTRS)
Weinberg, Irving; Swartz, C. K.; Brinker, David J.; Wilt, D. M.
1991-01-01
InP solar cells are known to be more radiation resistant than either GaAs or Si. In addition, AMO total area efficiencies approaching 19 percent were attained for InP. However, the present high substrate cost presents a barrier to the eventual widespread use of InP cells in space. In addition, if cell thinning becomes desirable, their relative fragility presents a problem. For these reasons, the NASA Lewis Research Center has initiated a program, aimed at producing thin InP cells, by heteroepitaxial deposition of InP on cheaper, more durable substrates. To date, a short term feasibility study as Spire has resulted in cells processed from InP heteroepitaxially deposited on Si substrates with an intervening thin GaAs layer (InP/GaAs/Si) and cells produced from InP deposited on GaAs (InP/GaAs). As a result of this short study efficiencies of over 7 and 9 percent were achieved for InP/GaAs/Si and InP/GaAs respectively. Although these efficiencies are low, they represent a modest and encouraging starting point for a more intensive program. Obviously, when considering economy and mechanical strength, cells processed on silicon substrates are preferred. However, although the InP/GaAs cells are not the final desirable products of this program, their properties serve to highlight several roadblocks to be overcome in producing cells with the more desirable cost and strength properties. Hence, in the present case, the properties of the InP/GaAs cells before and after irradiation by 10 MeV protons are examined. A similar study of InP/GaAs/Si cells will be reported on at a later date.
Atmospheric nitrogen deposition in the Yangtze River basin: Spatial pattern and source attribution.
Xu, Wen; Zhao, Yuanhong; Liu, Xuejun; Dore, Anthony J; Zhang, Lin; Liu, Lei; Cheng, Miaomiao
2018-01-01
The Yangtze River basin is one of the world's hotspots for nitrogen (N) deposition and likely plays an important role in China's riverine N output. Here we constructed a basin-scale total dissolved inorganic N (DIN) deposition (bulk plus dry) pattern based on published data at 100 observational sites between 2000 and 2014, and assessed the relative contributions of different reactive N (N r ) emission sectors to total DIN deposition using the GEOS-Chem model. Our results show a significant spatial variation in total DIN deposition across the Yangtze River basin (33.2 kg N ha -1 yr -1 on average), with the highest fluxes occurring mainly in the central basin (e.g., Sichuan, Hubei and Hunan provinces, and Chongqing municipality). This indicates that controlling N deposition should build on mitigation strategies according to local conditions, namely, implementation of stricter control of N r emissions in N deposition hotspots but moderate control in the areas with low N deposition levels. Total DIN deposition in approximately 82% of the basin area exceeded the critical load of N deposition for semi-natural ecosystems along the basin. On the basin scale, the dominant source of DIN deposition is fertilizer use (40%) relative to livestock (11%), industry (13%), power plant (9%), transportation (9%), and others (18%, which is the sum of contributions from human waste, residential activities, soil, lighting and biomass burning), suggesting that reducing NH 3 emissions from improper fertilizer (including chemical and organic fertilizer) application should be a priority in curbing N deposition. This, together with distinct spatial variations in emission sector contributions to total DIN deposition also suggest that, in addition to fertilizer, major emission sectors in different regions of the basin should be considered when developing synergistic control measures. Copyright © 2017. Published by Elsevier Ltd.
Nitrogen deposition and its effect on carbon storage in Chinese forests during 1981-2010
NASA Astrophysics Data System (ADS)
Gu, Fengxue; Zhang, Yuandong; Huang, Mei; Tao, Bo; Yan, Huimin; Guo, Rui; Li, Jie
2015-12-01
Human activities have resulted in dramatically increased nitrogen (N) deposition worldwide, which is closely linked to the carbon (C)-cycle processes and is considered to facilitate terrestrial C sinks. In this study, we firstly estimated the spatial and temporal variations of N deposition during 1981-2010 based on a new algorithm; then we used a newly improved process-based ecosystem model, CEVSA2, to examine the effects of N deposition on C storage in Chinese forests. The results show that the rate of N deposition increased by 0.058 g N m-2 yr-1 between 1981 and 2010. The N deposition rate in 2010 was 2.32 g N m-2 yr-1, representing a large spatial variation from 0 to 0.25 g N m-2 yr-1 on the northwestern Qinghai-Tibet Plateau to over 4.5 g N m-2 yr-1 in the southeastern China. The model simulations suggest that N deposition induced a 4.78% increase in the total C storage in Chinese forests, most of which accumulated in vegetation. C storage increased together with the increase in N deposition, in both space and time. However, N use efficiency was highest when N deposition was 0.4-1.0 g N m-2 yr-1. We suggest conducting more manipulation experiments and observations in different vegetation types, which will be greatly helpful to incorporate additional processes and mechanisms into the ecosystem modeling. Further development of ecosystem models and identification of C-N interactions will be important for determining the effects of N input on C cycles on both regional and global scales.
Foan, Louise; Domercq, Maria; Bermejo, Raúl; Santamaría, Jesús Miguel; Simon, Valérie
2015-01-01
Polycyclic aromatic hydrocarbon (PAH) atmospheric deposition was evaluated at a remote site in Northern Spain using moss biomonitoring with Hylocomium splendens (Hedw.) Schimp., and by measuring the total deposition fluxes of PAHs. The year-long study allowed seasonal variations of PAH content in mosses to be observed, and these followed a similar trend to those of PAH fluxes in total deposition. Generally, atmospheric deposition of PAHs is greater in winter than in summer, due to more PAH emissions from domestic heating, less photoreactivity of the compounds, and intense leaching of the atmosphere by wet deposition. However, fractionation of these molecules between the environmental compartments occurs: PAH fluxes in total deposition and PAH concentrations in mosses are correlated with their solubility (r=0.852, p<0.01) and lipophilic properties (KOW, r=0.768, p<0.01), respectively. This annual study therefore showed that atmospheric PAH fluxes can be estimated with moss biomonitoring data if the bioconcentration or 'enriching' factors are known. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qian, Li Peng; Zhou, Li Han; Too, Heng-Phon; Chow, Gan-Moog
2011-02-01
Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion (UC) nanoparticles ( 70-80 nm) were synthesized using tetraethyl orthosilicate and chloroauric acid in a one-step reverse microemulsion method. Gold nanoparticles ( 6 nm) were deposited on the surface of silica shell of these core/shell/shell nanoparticles. The total upconversion emission intensity (green, red, and blue) of the core/shell/shell nanoparticles decreased by 31% after Au was deposited on the surface of silica shell. The upconverted green light was coupled with the surface plasmon of Au leading to rapid heat conversion. These UC/silica/Au nanoparticles were very efficient to destroy BE(2)-C cancer cells and showed strong potential in photothermal therapy.
Effects of the Wegener-Bergeron-Findeisen process on global black carbon distribution
NASA Astrophysics Data System (ADS)
Qi, Ling; Li, Qinbin; He, Cenlin; Wang, Xin; Huang, Jianping
2017-06-01
We systematically investigate the effects of Wegener-Bergeron-Findeisen process (hereafter WBF) on black carbon (BC) scavenging efficiency, surface BCair, deposition flux, concentration in snow (BCsnow, ng g-1), and washout ratio using a global 3-D chemical transport model (GEOS-Chem). We differentiate riming- versus WBF-dominated in-cloud scavenging based on liquid water content (LWC) and temperature. Specifically, we implement an implied WBF parameterization using either temperature or ice mass fraction (IMF) in mixed-phase clouds based on field measurements. We find that at Jungfraujoch, Switzerland, and Abisko, Sweden, where WBF dominates in-cloud scavenging, including the WBF effect strongly reduces the discrepancies of simulated BC scavenging efficiency and washout ratio against observations (from a factor of 3 to 10 % and from a factor of 4-5 to a factor of 2). However, at Zeppelin, Norway, where riming dominates, simulation of BC scavenging efficiency, BCair, and washout ratio become worse (relative to observations) when WBF is included. There is thus an urgent need for extensive observations to distinguish and characterize riming- versus WBF-dominated aerosol scavenging in mixed-phase clouds and the associated BC scavenging efficiency. Our model results show that including the WBF effect lowers global BC scavenging efficiency, with a higher reduction at higher latitudes (8 % in the tropics and up to 76 % in the Arctic). The resulting annual mean BCair increases by up to 156 % at high altitudes and at northern high latitudes because of lower temperature and higher IMF. Overall, WBF halves the model-observation discrepancy (from -65 to -30 %) of BCair across North America, Europe, China and the Arctic. Globally WBF increases BC burden from 0.22 to 0.29-0.35 mg m-2 yr-1, which partially explains the gap between observed and previous model-simulated BC burdens over land. In addition, WBF significantly increases BC lifetime from 5.7 to ˜ 8 days. Additionally, WBF results in a significant redistribution of BC deposition in source and remote regions. Specifically, it lowers BC wet deposition (by 37-63 % at northern mid-latitudes and by 21-29 % in the Arctic), while it increases dry deposition (by 3-16 % at mid-latitudes and by 81-159 % in the Arctic). The resulting total BC deposition is lower at mid-latitudes (by 12-34 %) but higher in the Arctic (by 2-29 %). We find that WBF decreases BCsnow at mid-latitudes (by ˜ 15 %) but increases it in the Arctic (by 26 %) while improving model comparisons with observations. In addition, WBF dramatically reduces the model-observation discrepancy of washout ratios in winter (from a factor of 16 to 4). The remaining discrepancies in BCair, BCsnow and BC washout ratios suggest that in-cloud removal in mixed-phased clouds is likely still excessive over land.
The Growth of InGaAsN for High Efficiency Solar Cells by Metalorganic Chemical Vapor Deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
ALLERMAN,ANDREW A.; BANKS,JAMES C.; GEE,JAMES M.
1999-09-16
InGaAsN alloys are a promising material for increasing the efficiency of multi-junction solar cells now used for satellite power systems. However, the growth of these dilute N containing alloys has been challenging with further improvements in material quality needed before the solar cell higher efficiencies are realized. Nitrogen/V ratios exceeding 0.981 resulted in lower N incorporation and poor surface morphologies. The growth rate was found to depend on not only the total group III transport for a fixed N/V ratio but also on the N/V ratio. Carbon tetrachloride and dimethylzinc were effective for p-type doping. Disilane was not an effectivemore » n-type dopant while SiCl4 did result in n-type material but only a narrow range of electron concentrations (2-5e17cm{sup -3}) were achieved.« less
Nejand, Bahram Abdollahi; Gharibzadeh, Saba; Ahmadi, Vahid; Shahverdi, H. Reza
2016-01-01
We introduced a new approach to deposit perovskite layer with no need for dissolving perovskite precursors. Deposition of Solution-free perovskite (SFP) layer is a key method for deposition of perovskite layer on the hole or electron transport layers that are strongly sensitive to perovskite precursors. Using deposition of SFP layer in the perovskite solar cells would extend possibility of using many electron and hole transport materials in both normal and invert architectures of perovskite solar cells. In the present work, we synthesized crystalline perovskite powder followed by successful deposition on TiO2 and cuprous iodide as the non-sensitve and sensitive charge transport layers to PbI2 and CH3NH3I solution in DMF. The post compressing step enhanced the efficiency of the devices by increasing the interface area between perovskite and charge transport layers. The 9.07% and 7.71% cell efficiencies of the device prepared by SFP layer was achieved in respective normal (using TiO2 as a deposition substrate) and inverted structure (using CuI as deposition substrate) of perovskite solar cell. This method can be efficient in large-scale and low cost fabrication of new generation perovskite solar cells. PMID:27640991
NASA Astrophysics Data System (ADS)
Kingswell, R.; Scott, K. T.; Wassell, L. L.
1993-06-01
The vacuum plasma spray (VPS) deposition of metal, ceramic, and cermet coatings has been investigated using designed statistical experiments. Processing conditions that were considered likely to have a significant influence on the melting characteristics of the precursor powders and hence deposition efficiency were incorporated into full and fractional factorial experimental designs. The processing of an alumina powder was very sensitive to variations in the deposition conditions, particularly the injection velocity of the powder into the plasma flame, the plasma gas composition, and the power supplied to the gun. Using a combination of full and fractional factorial experimental designs, it was possible to rapidly identify the important spraying variables and adjust these to produce a deposition efficiency approaching 80 percent. The deposition of a nickel-base alloy metal powder was less sensitive to processing conditions. Generally, however, a high degree of particle melting was achieved for a wide range of spray conditions. Preliminary experiments performed using a tungsten carbide/cobalt cermet powder indicated that spray efficiency was not sensitive to deposition conditions. However, microstructural analysis revealed considerable variations in the degree of tungsten carbide dissolution. The structure and properties of the optimized coatings produced in the factorial experiments are also discussed.
Kolanjiyil, Arun V; Kleinstreuer, Clement; Sadikot, Ruxana T
2017-05-01
Pulmonary drug delivery is becoming a favored route for administering drugs to treat both lung and systemic diseases. Examples of lung diseases include asthma, cystic fibrosis and chronic obstructive pulmonary disease (COPD) as well as respiratory distress syndrome (ARDS) and pulmonary fibrosis. Special respiratory drugs are administered to the lungs, using an appropriate inhaler device. Next to the pressurized metered-dose inhaler (pMDI), the dry powder inhaler (DPI) is a frequently used device because of the good drug stability and a minimal need for patient coordination. Specific DPI-designs and operations greatly affect drug-aerosol formation and hence local lung deposition. Simulating the fluid-particle dynamics after use of a DPI allows for the assessment of drug-aerosol deposition and can also assist in improving the device configuration and operation. In Part I of this study a first-generation whole lung-airway model (WLAM) was introduced and discussed to analyze particle transport and deposition in a human respiratory tract model. In the present Part II the drug-aerosols are assumed to be injected into the lung airways from a DPI mouth-piece, forming the mouth-inlet. The total as well as regional particle depositions in the WLAM, as inhaled from a DPI, were successfully compared with experimental data sets reported in the open literature. The validated modeling methodology was then employed to study the delivery of curcumin aerosols into lung airways using a commercial DPI. Curcumin has been implicated to possess high therapeutic potential as an antioxidant, anti-inflammatory and anti-cancer agent. However, efficacy of curcumin treatment is limited because of the low bioavailability of curcumin when ingested. Hence, alternative drug administration techniques, e.g., using inhalable curcumin-aerosols, are under investigation. Based on the present results, it can be concluded that use of a DPI leads to low lung deposition efficiencies because large amounts of drugs are deposited in the oral cavity. Hence, the output of a modified DPI has been evaluated to achieve improved drug delivery, especially needed when targeting the smaller lung airways. This study is the first to utilize CF-PD methodology to simulate drug-aerosol transport and deposition under actual breathing conditions in a whole lung model, using a commercial dry-powder inhaler for realistic inlet conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impacts of the Minamata Convention for Mercury Emissions from Coal-fired Power Generation in Asia
NASA Astrophysics Data System (ADS)
Giang, A.; Stokes, L. C.; Streets, D. G.; Corbitt, E. S.; Selin, N. E.
2014-12-01
We explore the potential implications of the recently signed United Nations Minamata Convention on Mercury for emissions from coal-fired power generation in Asia, and the impacts of these emissions changes on deposition of mercury worldwide by 2050. We use qualitative interviews, document analysis, and engineering analysis to create plausible technology scenarios consistent with the Convention, taking into account both technological and political factors. We translate these scenarios into possible emissions inventories for 2050, based on IPCC development scenarios, and then use the GEOS-Chem global transport model to evaluate the effect of these different technology choices on mercury deposition over geographic regions and oceans. We find that China is most likely to address mercury control through co-benefits from technologies for SO2, NOx, and particulate matter (PM) capture that will be required to attain its existing air quality goals. In contrast, India is likely to focus on improvements to plant efficiency such as upgrading boilers, and coal washing. Compared to current technologies, we project that these changes will result in emissions decreases of approximately 140 and 190 Mg/yr for China and India respectively in 2050, under an A1B development scenario. With these emissions reductions, simulated average gross deposition over India and China are reduced by approximately 10 and 3 μg/m2/yr respectively, and the global average concentration of total gaseous mercury (TGM) is reduced by approximately 10% in the Northern hemisphere. Stricter, but technologically feasible, requirements for mercury control in both countries could lead to an additional 200 Mg/yr of emissions reductions. Modeled differences in concentration and deposition patterns between technology suites are due to differences in both the mercury removal efficiency of technologies and their resulting stack speciation.
Wang, Qun; Jin, Xin
2018-01-01
We report the first results of functional properties of nitrogenized silver-permalloy thin films deposited on polyethylene terephthalic ester {PETE (C10H8O4)n} flexible substrates by magnetron sputtering. These new soft magnetic thin films have magnetization that is comparable to pure Ni81Fe19 permalloy films. Two target compositions (Ni76Fe19Ag5 and Ni72Fe18Ag10) were used to study the effect of compositional variation and sputtering parameters, including nitrogen flow rate on the phase evolution and surface properties. Aggregate flow rate and total pressure of Ar+N2 mixture was 60 sccm and 0.55 Pa, respectively. The distance between target and the substrate was kept at 100 mm, while using sputtering power from 100–130 W. Average film deposition rate was confirmed at around 2.05 nm/min for argon atmosphere and was reduced to 1.8 nm/min in reactive nitrogen atmosphere. X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, vibrating sample magnetometer, and contact angle measurements were used to characterize the functional properties. Nano sized character of films was confirmed by XRD and SEM. It is found that the grain size was reduced by the formation of nitride phase, which in turns enhanced the magnetization and lowers the coercivity. Magnetic field coupling efficiency limit was determined from 1.6–2 GHz frequency limit. The results of comparable magnetic performance, lowest magnetic loss, and highest surface free energy, confirming that 15 sccm nitrogen flow rate at 115 W is optimal for producing Ag-doped permalloy flexible thin films having excellent magnetic field coupling efficiency. PMID:29562603
Yang, Michael Y; Verschuer, Jordan; Shi, Yuyu; Song, Yang; Katsifis, Andrew; Eberl, Stefan; Wong, Keith; Brannan, John D; Cai, Weidong; Finlay, Warren H; Chan, Hak-Kim
2016-11-20
The present study investigates the effect of DPI resistance and inhalation flow rates on the lung deposition of orally inhaled mannitol dry powder. Mannitol powder radiolabeled with 99m Tc-DTPA was inhaled from an Osmohaler™ by healthy human volunteers at 50-70L/min peak inhalation flow rate (PIFR) using both a low and high resistance Osmohaler™, and 110-130L/min PIFR using the low resistance Osmohaler™ (n=9). At 50-70L/min PIFR, the resistance of the Osmohaler™ did not significantly affect the total and peripheral lung deposition of inhaled mannitol [for low resistance Osmohaler™, 20% total lung deposition (TLD), 0.3 penetration index (PI); for high resistance Osmohaler™, 17% TLD, 0.23 PI]. Increasing the PIFR 50-70L/min to 110-130L/min (low resistance Osmohaler™) significantly reduced the total lung deposition (10% TLD) and the peripheral lung deposition (PI 0.21). The total lung deposition showed dependency on the in vitro FPF (R 2 =1.0). On the other hand, the PI had a stronger association with the MMAD (R 2 =1.0) than the FPF (R 2 =0.7). In conclusion the resistance of Osmohaler™ did not significantly affect the total and regional lung deposition at 50-70L/min PIFR. Instead, the total and regional lung depositions are dependent on the particle size of the aerosol and inhalation flow rate, the latter itself affecting the particle size distribution. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, L.; Blanchard, P.; Gay, D.A.; Prestbo, E.M.; Risch, M.R.; Johnson, D.; Narayan, J.; Zsolway, R.; Holsen, T.M.; Miller, E.K.; Castro, M.S.; Graydon, J.A.; St. Louis, V.L.; Dalziel, J.
2012-01-01
Dry deposition of speciated mercury, i.e., gaseous oxidized mercury (GOM), particulate-bound mercury (PBM), and gaseous elemental mercury (GEM), was estimated for the year 2008–2009 at 19 monitoring locations in eastern and central North America. Dry deposition estimates were obtained by combining monitored two- to four-hourly speciated ambient concentrations with modeled hourly dry deposition velocities (Vd) calculated using forecasted meteorology. Annual dry deposition of GOM+PBM was estimated to be in the range of 0.4 to 8.1 μg m−2 at these locations with GOM deposition being mostly five to ten times higher than PBM deposition, due to their different modeled Vd values. Net annual GEM dry deposition was estimated to be in the range of 5 to 26 μg m−2 at 18 sites and 33 μg m−2 at one site. The estimated dry deposition agrees very well with limited surrogate-surface dry deposition measurements of GOM and PBM, and also agrees with litterfall mercury measurements conducted at multiple locations in eastern and central North America. This study suggests that GEM contributes much more than GOM+PBM to the total dry deposition at the majority of the sites considered here; the only exception is at locations close to significant point sources where GEM and GOM+PBM contribute equally to the total dry deposition. The relative magnitude of the speciated dry deposition and their good comparisons with litterfall deposition suggest that mercury in litterfall originates primarily from GEM, which is consistent with the limited number of previous field studies. The study also supports previous analyses suggesting that total dry deposition of mercury is equal to, if not more important than, wet deposition of mercury on a regional scale in eastern North America.
NASA Astrophysics Data System (ADS)
Tada, Kazuya; Onoda, Mitsuyoshi
2009-09-01
The material efficiency of electrophoretic deposition of a fluorene-based conjugated polymer, poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene}] (PDOF-MEHPV), from suspensions with a mixture of acetonitrile and toluene as dispersant is studied. It has been found that the recovery rate of the electrophoretic deposition from a suspension containing 90% of the poor solvent acetonitrile reaches 98%. Although the recovery rate decreases with decreasing acetonitrile content, almost 70% of the polymer can be deposited on the substrates from the suspension containing equivalent volumes of the good and poor solvents by electrophoretic deposition, from which smooth and transparent films suitable for electronic devices are obtained.
Impact of future Arctic shipping on high-latitude black carbon deposition (Invited)
NASA Astrophysics Data System (ADS)
Corbett, J. J.; Browse, J.; Carslaw, K. S.; Schmidt, A.
2013-12-01
The retreat of Arctic sea-ice has led to renewed calls to exploit Arctic shipping routes. The diversion of ship traffic through the Arctic will shorten shipping routes and possibly reduce global shipping emissions. However, deposition of black carbon (BC) aerosol emitted by additional Arctic ships could cause a reduction in the albedo of snow and ice, accelerating snow-melt and sea-ice loss. We use recently compiled Arctic shipping emission inventories for 2004 and 2050 together with a global aerosol microphysics model GLOMAP coupled to the chemical transport model TOMCAT to quantify the contribution of future Arctic shipping to high-latitude BC deposition. Emission rates of SOx (SO2 and SO4) and particulate matter (PM) were estimated for 2050 under both business-as-usual and high-growth scenarios. BC particles are assumed to be water-insoluble at emission but can become active in cloud drop formation through soluble material accumulation. After BC particles become cloud-active they are more efficiently wet scavenged, which accounts for 80% of modeled BC deposition. Current-day Arctic shipping contributes 0.3% to the BC mass deposited north of 60N (250 Gg). About 50% of modelled BC deposition is on open ocean, suggesting that current Arctic ship traffic may not significantly contribute to BC deposition on central Arctic sea ice. However, 6 - 8% of deposited BC on the west coast of Greenland originates from local ship traffic. Moreover, in-Arctic shipping contributes some 32% to high-latitude ship-sourced deposition despite accounting for less than 1.0% of global shipping emissions. This suggests that control of in-Arctic shipping BC emissions could yield greater decrease in high-latitude BC deposition than a similar control strategy applied only to the extra-Arctic shipping industry. Arctic shipping in 2050 will contribute less than 1% to the total BC deposition north of 60N due to the much greater relative contribution of BC transported from non-shipping sources at lower-latitudes (with a maximum of about 5%, considering upper bound estimates for transport). In the BAU and HiG scenarios, the total BC deposition averaged north of 60N from Arctic shipping remains small, increasing to only 0.4% and 0.7%, respectively. Several mitigation strategies confirmed that extra-Arctic sources other than shipping contribute significantly more to BC deposition than Arctic shipping, and that regulation solely aimed at the Arctic shipping industry is an insufficient control on high-latitude BC deposition. An exception is the impact of local shipping near the vulnerable Greenland ice-sheet. Over Greenland the deposited BC mass attributable to high-growth shipping emissions in 2050 is significantly higher (10-15%) than over Arctic sea-ice. The increase in local BC deposition over Greenland can be mitigated by a 10% decrease in North American BC emissions, but additional controls over distant stationary sources should be considered alongside international agreements controlling shipping emissions to achieve desired Arctic BC deposition reductions.
Skiba, Grzegorz; Poławska, Ewa; Sobol, Monika; Raj, Stanisława; Weremko, Dagmara
2015-01-01
This study was carried out on 24 gilts (♀ Polish Large White × ♂ Danish Landrace) grown with body weight (BW) of 60 to 105 kg. The pigs were fed diets designed on the basis of a standard diet (appropriate for age and BW of pigs) where a part of the energy content was replaced by different fat supplements: linseed oil in Diet L, rapeseed oil in Diet R and fish oil in Diet F (6 gilts per dietary treatment). The fat supplements were sources of specific fatty acids (FA): in Diet L α-linolenic acid (C18:3 n-3, ALA); in Diet R linoleic acid (C18:2 n-6, LA) and in Diet F eicosapentaenoic acid (C20:5 n-3, EPA), docosapentaenoic acid (C22:5 n-3, DPA) and docosahexaenoic acid (C22:6 n-3, DHA). The protein, fat and total FA contents in the body did not differ among groups of pigs. The enhanced total intake of LA and ALA by pigs caused an increased deposition of these FA in the body (p < 0.01) and an increased potential body pool of these acids for further metabolism/conversions. The conversion efficiency of LA and ALA from the feed to the pig's body differed among groups (p < 0.01) and ranged from 64.4% to 67.2% and from 69.4% to 81.7%, respectively. In Groups L and R, the level of de novo synthesis of long-chain polyunsaturated FA was higher than in Group F. From the results, it can be concluded that the efficiency of deposition is greater for omega-3 FA than for omega-6 FA and depends on their dietary amount. The level of LA and ALA intake influences not only their deposition in the body but also the end products of the omega-3 and omega-6 pathways.
NASA Astrophysics Data System (ADS)
Carnell, E. J.; Misselbrook, T. H.; Dore, A. J.; Sutton, M. A.; Dragosits, U.
2017-09-01
The effects of atmospheric nitrogen (N) deposition are evident in terrestrial ecosystems worldwide, with eutrophication and acidification leading to significant changes in species composition. Substantial reductions in N deposition from nitrogen oxides emissions have been achieved in recent decades. By contrast, ammonia (NH3) emissions from agriculture have not decreased substantially and are typically highly spatially variable, making efficient mitigation challenging. One solution is to target NH3 mitigation measures spatially in source landscapes to maximize the benefits for nature conservation. The paper develops an approach to link national scale data and detailed local data to help identify suitable measures for spatial targeting of local sources near designated Special Areas of Conservation (SACs). The methodology combines high-resolution national data on emissions, deposition and source attribution with local data on agricultural management and site conditions. Application of the methodology for the full set of 240 SACs in England found that agriculture contributes ∼45 % of total N deposition. Activities associated with cattle farming represented 54 % of agricultural NH3 emissions within 2 km of the SACs, making them a major contributor to local N deposition, followed by mineral fertiliser application (21 %). Incorporation of local information on agricultural management practices at seven example SACs provided the means to correct outcomes compared with national-scale emission factors. The outcomes show how national scale datasets can provide information on N deposition threats at landscape to national scales, while local-scale information helps to understand the feasibility of mitigation measures, including the impact of detailed spatial targeting on N deposition rates to designated sites.
NASA Astrophysics Data System (ADS)
El Jouad, Z.; Barkat, L.; Stephant, N.; Cattin, L.; Hamzaoui, N.; Khelil, A.; Ghamnia, M.; Addou, M.; Morsli, M.; Béchu, S.; Cabanetos, C.; Richard-Plouet, M.; Blanchard, P.; Bernède, J. C.
2016-11-01
Use of efficient anode cathode buffer layer (CBL) is crucial to improve the efficiency of organic photovoltaic cells. Here we show that using a double CBL, Ca/Alq3, allows improving significantly cell performances. The insertion of Ca layer facilitates electron harvesting and blocks hole collection, leading to improved charge selectivity and reduced leakage current, whereas Alq3 blocks excitons. After optimisation of this Ca/Alq3 CBL using CuPc as electron donor, it is shown that it is also efficient when SubPc is substituted to CuPc in the cells. In that case we show that the morphology of the SubPc layer, and therefore the efficiency of the cells, strongly depends on the deposition rate of the SubPc film. It is necessary to deposit slowly (0.02 nm/s) the SubPc films because at higher deposition rate (0.06 nm/s) the films are porous, which induces leakage currents and deterioration of the cell performances. The SubPc layers whose formations are kinetically driven at low deposition rates are more uniform, whereas those deposited faster exhibit high densities of pinholes.
Compact Torus plasma ring accelerator: a new type driver for inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, C.W.; Eddleman, J.L.; Hammer, J.H.
1986-08-22
We discuss the acceleration of magnetically-confined plasma rings to provide a driver for ICF. The acceleration of plasma rings is predicted to be efficient and following focusing, to generate ion-bombardment power in the range 10/sup 15/ to 10/sup 16/ W/cm/sup 2/ at a total deposition energy of multimegajoules. The simplicity of plasma ring accelerator suggests that a 5 MJ (on target) driver would cost in the range 1 to 5 $/joule. First experimental tests of the accelerator are described.
Chemical factors influencing colloid-facilitated transport of contaminants in porous media
Roy, Sujoy B.; Dzombak, David A.
1997-01-01
The effects of colloids on the transport of two strongly sorbing solutesa hydrophobic organic compound, phenanthrene, and a metal ion, Ni2+were studied in sand-packed laboratory columns under different pH and ionic strength conditions. Two types of column experiments were performed as follows: (i) sorption/mobilization experiments where the contaminant was first sorbed in the column under conditions where no colloids were released and mobilized under conditions where colloids were released as a result of ionic strength reduction in the influent; and (ii) transport experiments where the contaminant, dissolved or sorbed on colloids, was injected into columns packed with a strongly sorbing porous medium. In the first type of experiment, contaminant mobilization was significant only when all releasable colloids were flushed from the column. In all other cases, although high colloid particle concentrations were encountered, there was no marked effect on total contaminant concentrations. In the second type of experiment, colloid deposition efficiencies were shown to control the enhancement of transport. The deposition efficiency was a function of the pH (for a high organic content sand) and of the contaminant concentration (for a charged species such as Ni2+).
Operations Studies of the Gyrotrons on DIII-D
NASA Astrophysics Data System (ADS)
Storment, Stephen; Lohr, John; Cengher, Mirela; Gorelov, Yuri; Ponce, Dan; Torrezan, Antonio
2017-10-01
The gyrotrons are high power vacuum tubes used in fusion research to provide high power density heating and current drive in precisely localized areas of the plasma. Despite the increasing experience with both the manufacture and operation of these devices, individual gyrotrons with similar design and manufacturing processes can exhibit important operational differences in terms of generated rf power, efficiency and lifetime. This report discusses differences in the performance of several gyrotrons in operation at DIII-D and presents the results of a series of measurements that could lead to improved the performance of single units based on a better understanding of the causes of these differences. The rf power generation efficiency can be different from gyrotron to gyrotron. In addition, the power loading of the collector can feature localized hot spots, where the collector can locally be close to the power deposition limits. Measurements of collector power loading provide maps of the power deposition and can provide understanding of the effect of modulation of the output rf beam on the total loading, leading to improved operational rules increasing the safety margins for the gyrotrons under different operational scenarios. Work supported by US DOE under DE-FC02-04ER54698.
NASA Astrophysics Data System (ADS)
Pan, Yuepeng; Liu, Yongwen; Wentworth, Gregory R.; Zhang, Lin; Zhao, Yuanhong; Li, Yi; Liu, Xuejun; Du, Enzai; Fang, Yunting; Xiao, Hongwei; Ma, Hongyuan; Wang, Yuesi
2017-03-01
In a publication in Atmospheric Environment (http://dx.doi.org/10.1016/j.atmosenv.2015.10.081), Gu et al. (2015) estimated that "the total nitrogen (N) deposition in 2010 was 2.32 g N m-2 yr-1" in China. This value is comparable with previous estimations based on a synthesized dataset of wet/bulk inorganic N deposition observations, which underestimates the total N deposition since their algorithm (equations (2) and (3) in their paper) does not account for dry deposition of NH3, HNO3, NOx and wet/dry deposition of HONO and organic nitrogen (e.g. amines, amides, PAN). Indeed, Gu et al. (2015) mixed the terminology of wet/bulk deposition and total deposition. Another flawed assumption by Gu et al. (2015) is that all inorganic N in precipitation estimated by their algorithm originates from fertilizer and coal combustion. This is incorrect and almost certainly causes biases in the spatial and temporal distribution of estimated wet/bulk inorganic N deposition (Fig. 5 in their paper), further considering the fact that they neglected important N sources like livestock and they did not consider the nonlinearity between various sources and deposition. Besides the input data on N deposition, the model validation (Sect. 2.3.2) described in their paper also requires clarification because the detailed validation information about the time series of observational dataset versus modeling results was not given. As a result of these combined uncertainties in their estimation of N deposition and the lack of detail for model-measurement comparison, their estimates of the impacts of N deposition on carbon storage in Chinese forests may need further improvement. We suggest the clarification of the terminology regarding N deposition, especially for wet deposition, bulk deposition, gaseous and particulate dry deposition or total deposition since the accurate distinction between these terms is crucial to investigating and estimating the effects of N deposition on ecosystems.
Electrodeposition of ZnO-doped films as window layer for Cd-free CIGS-based solar cells
NASA Astrophysics Data System (ADS)
Tsin, Fabien; Vénérosy, Amélie; Hildebrandt, Thibaud; Hariskos, Dimitrios; Naghavi, Negar; Lincot, Daniel; Rousset, Jean
2016-02-01
The Cu(In,Ga)Se2 (CIGS) thin film solar cell technology has made a steady progress within the last decade reaching efficiency up to 22.3% on laboratory scale, thus overpassing the highest efficiency for polycrystalline silicon solar cells. High efficiency CIGS modules employ a so-called buffer layer of cadmium sulfide CdS deposited by Chemical Bath Deposition (CBD), which presence and Cd-containing waste present some environmental concerns. A second potential bottleneck for CIGS technology is its window layer made of i-ZnO/ZnO:Al, which is deposited by sputtering requiring expensive vacuum equipment. A non-vacuum deposition of transparent conductive oxide (TCO) relying on simpler equipment with lower investment costs will be more economically attractive, and could increase competitiveness of CIGS-based modules with the mainstream silicon-based technologies. In the frame of Novazolar project, we have developed a low-cost aqueous solution photo assisted electrodeposition process of the ZnO-based window layer for high efficiency CIGS-based solar cells. The window layer deposition have been first optimized on classical CdS buffer layer leading to cells with efficiencies similar to those measured with the sputtered references on the same absorber (15%). The the optimized ZnO doped layer has been adapted to cadmium free devices where the CdS is replaced by chemical bath deposited zinc oxysulfide Zn(S,O) buffer layer. The effect of different growth parameters has been studied on CBD-Zn(S,O)-plated co-evaporated Cu(In,Ga)Se2 substrates provided by the Zentrum für Sonnenenergie-und Wasserstoff-Forschung (ZSW). This optimization of the electrodeposition of ZnO:Cl on CIGS/Zn(S,O) stacks led to record efficiency of 14%, while the reference cell with a sputtered (Zn,Mg)O/ZnO:Al window layer has an efficiency of 15.2%.
Applied-field MPD thruster geometry effects
NASA Technical Reports Server (NTRS)
Myers, Roger M.
1991-01-01
Eight MPD thruster configurations were used to study the effects of applied field strength, propellant, and facility pressure on thruster performance. Vacuum facility background pressures higher than approx. 0.12 Pa were found to greatly influence thruster performance and electrode power deposition. Thrust efficiency and specific impulse increased monotonically with increasing applied field strength. Both cathode and anode radii fundamentally influenced the efficiency specific impulse relationship, while their lengths influence only the magnitude of the applied magnetic field required to reach a given performance level. At a given specific impulse, large electrode radii result in lower efficiencies for the operating conditions studied. For all test conditions, anode power deposition was the largest efficiency loss, and represented between 50 and 80 pct. of the input power. The fraction of the input power deposited into the anode decreased with increasing applied field and anode radii. The highest performance measured, 20 pct. efficiency at 3700 seconds specific impulse, was obtained using hydrogen propellant.
Cappellato, R.; Peters, N.E.; Meyers, T.P.
1998-01-01
Atmospheric deposition and above-ground cycling of sulfur (S) were evaluated in adjacent deciduous and coniferous forests at the Panola Mountain Research Watershed (PMRW), Georgia U.S.A. Total atmospheric S deposition (wet plus dry) was 12.9 and 12.7 kg ha-1 yr-1 for the deciduous and coniferous forests, respectively, from October 1987 through November 1989. Dry deposition contributes more than 40% to the total atmospheric S deposition, and SO2 is the major source (~55%) of total dry S deposition. Dry deposition to these canopies is similar to regional estimates suggesting that 60-km proximity to emission sources does not noticeably impact dry deposition at PMRW. Below-canopy S fluxes (throughfall plus stemflow) in each forest are 37% higher annually in the deciduous forest than in the coniferous forest. An excess in below-canopy S flux in the deciduous forest is attributed to leaching and higher dry deposition than in the coniferous forest. Total S deposition to the forest floor by throughfall, stemflow and litterfall was 2.4 and 2.8 times higher in the deciduous and coniferous forests, respectively, than annual S growth requirement for foliage and wood. Although A deposition exceeds growth requirement, more than 95% of the total atmospheric S deposition was retained by the watershed in 1988 and 1989. The S retention at PMRW is primarily due to SO2+4 adsorption by iron oxides and hydroxides in watershed soils. The S content in while oak and loblolly pine boles have increased more than 200% in the last 20 yr, possibly reflecting increases in emissions.
Kause, Antti; Kiessling, Anders; Martin, Samuel A M; Houlihan, Dominic; Ruohonen, Kari
2016-11-01
In farmed fish, selective breeding for feed conversion ratio (FCR) may be possible via indirectly selecting for easily-measured indicator traits correlated with FCR. We tested the hypothesis that rainbow trout with low lipid% have genetically better FCR, and that lipid% may be genetically related to retention efficiency of macronutrients, making lipid% a useful indicator trait. A quantitative genetic analysis was used to quantify the benefit of replacing feed intake in a selection index with one of three lipid traits: body lipid%, muscle lipid% or viscera% weight of total body weight (reflecting visceral lipid). The index theory calculations showed that simultaneous selection for weight gain and against feed intake (direct selection to improve FCR) increased the expected genetic response in FCR by 1·50-fold compared with the sole selection for growth. Replacing feed intake in the selection index with body lipid%, muscle lipid% or viscera% increased genetic response in FCR by 1·29-, 1·49- and 1·02-fold, respectively, compared with the sole selection for growth. Consequently, indirect selection for weight gain and against muscle lipid% was almost as effective as direct selection for FCR. Fish with genetically low body and muscle lipid% were more efficient in turning ingested protein into protein weight gain. Both physiological and genetic mechanisms promote the hypothesis that low-lipid% fish are more efficient. These results highlight that in breeding programmes of rainbow trout, control of lipid deposition improves not only FCR but also protein-retention efficiency. This improves resource efficiency of aquaculture and reduces nutrient load to the environment.
Effect of Mach number on the efficiency of microwave energy deposition in supersonic flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lashkov, V. A., E-mail: valerial180150@gmail.com; Karpenko, A. G., E-mail: aspera.2003.ru@mail.ru; Khoronzhuk, R. S.
The article is devoted to experimental and numerical studies of the efficiency of microwave energy deposition into a supersonic flow around the blunt cylinder at different Mach numbers. Identical conditions for energy deposition have been kept in the experiments, thus allowing to evaluate the pure effect of varying Mach number on the pressure drop. Euler equations are solved numerically to model the corresponding unsteady flow compressed gas. The results of numerical simulations are compared to the data obtained from the physical experiments. It is shown that the momentum, which the body receives during interaction of the gas domain modified bymore » microwave discharge with a shock layer before the body, increases almost linearly with rising of Mach number and the efficiency of energy deposition also rises.« less
Making Record-efficiency SnS Solar Cells by Thermal Evaporation and Atomic Layer Deposition
Jaramillo, Rafael; Steinmann, Vera; Yang, Chuanxi; Hartman, Katy; Chakraborty, Rupak; Poindexter, Jeremy R.; Castillo, Mariela Lizet; Gordon, Roy; Buonassisi, Tonio
2015-01-01
Tin sulfide (SnS) is a candidate absorber material for Earth-abundant, non-toxic solar cells. SnS offers easy phase control and rapid growth by congruent thermal evaporation, and it absorbs visible light strongly. However, for a long time the record power conversion efficiency of SnS solar cells remained below 2%. Recently we demonstrated new certified record efficiencies of 4.36% using SnS deposited by atomic layer deposition, and 3.88% using thermal evaporation. Here the fabrication procedure for these record solar cells is described, and the statistical distribution of the fabrication process is reported. The standard deviation of efficiency measured on a single substrate is typically over 0.5%. All steps including substrate selection and cleaning, Mo sputtering for the rear contact (cathode), SnS deposition, annealing, surface passivation, Zn(O,S) buffer layer selection and deposition, transparent conductor (anode) deposition, and metallization are described. On each substrate we fabricate 11 individual devices, each with active area 0.25 cm2. Further, a system for high throughput measurements of current-voltage curves under simulated solar light, and external quantum efficiency measurement with variable light bias is described. With this system we are able to measure full data sets on all 11 devices in an automated manner and in minimal time. These results illustrate the value of studying large sample sets, rather than focusing narrowly on the highest performing devices. Large data sets help us to distinguish and remedy individual loss mechanisms affecting our devices. PMID:26067454
ZnO/ZnSxSe1-x core/shell nanowire arrays as photoelectrodes with efficient visible light absorption
NASA Astrophysics Data System (ADS)
Wang, Zhenxing; Zhan, Xueying; Wang, Yajun; Safdar, Muhammad; Niu, Mutong; Zhang, Jinping; Huang, Ying; He, Jun
2012-08-01
ZnO/ZnSxSe1-x core/shell nanowires have been synthesized on n+-type silicon substrate via a two-step chemical vapor deposition method. Transmission electron microscopy reveals that ZnSxSe1-x can be deposited on the entire surface of ZnO nanowire, forming coaxial heterojunction along ZnO nanowire with very smooth shell surface and high shell thickness uniformity. The photoelectrode after deposition of the ternary alloy shell significantly improves visible light absorption efficiency. Electrochemical impedance spectroscopy results explicitly indicate that the introduction of ZnSxSe1-x shell to ZnO nanowires effectively improves the photogenerated charge separation process. Our finding opens up an efficient means for achieving high efficient energy conversion devices.
Estimating Total Deposition Using NADP & CASTNET Data
For more than 40 years, efforts have been made to estimate total sulfur and nitrogen deposition in the United States using a combination of measured concentrations in precipitation and in the air, precipitation amounts for wet deposition, and various modeled or estimated depositi...
SIX-YEAR TREND (1990-1995) OF WET MERCURY DEPOSITION IN THE UPPER MIDWEST, USA
Precipitation maxima occurences in the Upper Midwest in 1993 significantly affected total mercury concentrations and deposition as compared with 1990-92, 1994, and 1995. Methylmercury depositions strongly correlated with total mercury, major ions, and precepitation depth. Indepe...
NASA Astrophysics Data System (ADS)
Chonsut, T.; Kayunkid, N.; Rahong, S.; Rangkasikorn, A.; Wirunchit, S.; Kaewprajak, A.; Kumnorkaew, P.; Nukeaw, J.
2017-09-01
Polymer solar cells is one of the promising technologies that gain tremendous attentions in the field of renewable energy. Optimization of thickness for each layer is an important factor determining the efficiency of the solar cells. In this work, the optimum thickness of Poly(3,4-ethylenedioxythione): poly(styrenesulfonate) (PEDOT:PSS), a famous polymer widely used as hole transporting layer in polymer solar cells, is determined through the analyzing of device’s photovoltaic parameters, e.g. short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF) as well as power conversion efficiency (PCE). The solar cells were prepared with multilayer of ITO/PEDOT:PSS/PCDTBT:PC70BM/TiOx/Al by rapid convective deposition. In such preparation technique, the thickness of the thin film is controlled by the deposition speed. The faster deposition speed is used, the thicker film is obtained. Furthermore, double layer deposition of PEDOT:PSS was introduced as an approach to improve solar cell efficiency. The results obviously reveal that, with the increase of PEDOT:PSS thickness, the increments of Jsc and FF play the important role to improve PCE from 3.21% to 4.03%. Interestingly, using double layer deposition of PEDOT:PSS shows the ability to enhance the performance of the solar cells to 6.12% under simulated AM 1.5G illumination of 100 mW/cm2.
NASA Astrophysics Data System (ADS)
Panda, A. B.; Mahapatra, S. K.; Barhai, P. K.; Das, A. K.; Banerjee, I.
2012-10-01
Nanostructured TiO2 thin films were deposited using RF reactive magnetron sputtering at different O2 flow rates (20, 30, 50 and 60 sccm) and constant RF power of 200 W. In situ investigation of the nucleation and growth of the films was made by Optical Emission Spectroscopy (OES). The nano amorphous nature as revealed from X-ray diffraction (XRD) of the as deposited films and abundance of the Ti3+ surface oxidation states and surface hydroxyl group (OH-) in the films deposited at 50 sccm as determined from X-ray photo electron spectroscopy (XPS) was explained on the basis of emission spectra studies. The increase in band gap and decrease in particle size with O2 flow rate was observed from transmission spectra of UV-vis spectroscopy. Photoinduced hydrophilicity has been studied using Optical Contact Angle (OCA) measurement. The post irradiated films showed improved hydrophilicity. The bactericidal efficiency of these films was investigated taking Escherichia coli as model bacteria. The films deposited at 50 sccm shows better bactericidal activity as revealed from the optical density (OD) measurement. The qualitative analysis of the bactericidal efficiency was depicted from Scanning Electron Microscope images. A correlation between bactericidal efficiency and the deposited film has been established and explained on the basis of nucleation growth, band gap and hydrophilicity of the films.
Visualizing Oil Process Dynamics in Porous Media with Micromodels
NASA Astrophysics Data System (ADS)
Biswal, S. L.
2016-12-01
The use of foam in enhanced oil recovery (EOR) applications is being considered for gas mobility control to ensure pore-trapped oil can be effectively displaced. In fractured reservoirs, gas tends to channel only through the highly permeability regions, bypassing the less permeable porous matrix, where most of the residual oil remains. Because of the unique transport problems presented by the large permeability contrast between fractures and adjacent porous media, we aim to understand the mechanism by which foam transitions from the fracture to the matrix and how initially trapped oil can be displaced and ultimately recovered. My lab has generated micromodels, which are combined with high-speed imaging to visualize foam transport in models with permeability contrasts, fractures, and multiple phases. The wettability of these surfaces can be altered to mimic the heterogeneous wettability found in reservoir systems. We have shown how foam quality can be modulated by adjusting the ratio of gas flow ratio to aqueous flow rate in a flow focusing system and this foam quality influences sweep efficiency in heterogeneous porous media systems. I will discuss how this understanding has allowed us to design better foam EOR processes. I will also highlight our recent efforts in ashaltene deposition. Asphaltene deposition is a common cause of significant flow assurance problems in wellbores and production equipment as well as near-wellbore regions in oil reservoirs. I will present our results for visualizing real time asphaltene deposition from model and crude oils using microfluidic devices. In particular, we consider porous-media micromodel designs to represent various flow conditions typical of that found in oil flow processes. Also, four stages of deposition have been found and investigated in the pore scale and with qualitatively macroscopic total collector efficiency as well as Hamaker expressions for interacting asphaltenes with surfaces. By understanding the nature and the mechanisms of asphaltene deposits, we increase our ability to design cost effective mitigation strategies that includes the development of a new generation of asphaltene deposition inhibitors and improved methods for prevention and treatment of this problem.
Aerosol Deposition Efficiencies and Upstream Release Positions for Different Inhalation Modes in an Upper Bronchial Airway Model
Zhe Zhang, Clement Kleinstreuer, and Chong S. Kim
Center for Environmental Medicine and Lung Biology, University of North Carolina at Ch...
Sorbitol as an efficient reducing agent for laser-induced copper deposition
NASA Astrophysics Data System (ADS)
Kochemirovsky, V. A.; Logunov, L. S.; Safonov, S. V.; Tumkin, I. I.; Tver'yanovich, Yu. S.; Menchikov, L. G.
2012-10-01
We have pioneered in revealing the fact that sorbitol may be used as an efficient reducing agent in the process of laser-induced copper deposition from solutions; in this case, it is possible to obtain copper lines much higher quality than by using conventional formalin.
Estimating Total Deposition Using NADP & CASTNET Data (NADP 2016 poster)
For more than 40 years, efforts have been made to estimate total sulfur and nitrogen deposition in the United States using a combination of measured concentrations in precipitation and in the air, precipitation amounts for wet deposition, and various modeled or estimated depositi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyas, Josef; Johnson, Bradley R.; Cabe, James E.
Portland General Electric (PGE) potentially plans to replace the coal with torrefied Arundo donax for their Boardman coal-fired power plant by 2020. Since there is only a limited amount of experience with this high yield energy crop, PGE would like to characterize raw and torrefied Arundo before a test burn and therefore avoid possible ash related operational problems such as slagging, deposit formation and corrosion. This report describes the results from characterization of ground and cross-sectioned samples of Arundo with a high-resolution scanning electron microscopy and energy dispersive spectroscopy, and also includes analytical results from a short water-leaching test formore » concentrations of Ca, Mg, K, Na, S, and Cl in the non-leached and leached Arundo and leachates. SEM-EDS analysis of torrefied Arundo revealed that condensation of volatile components during torrefaction can result in their undesirable re-deposition on the outside surfaces in the form of amorphous or crystallized clusters with a size from a few µm’s to as large as 100 µm. A short exposure of Arundo to water resulted in an efficient removal of volatile species from the raw and torrefied Arundo, e.g., ~ 98 wt% of total K and Cl, and ~75 wt% of total S were removed from raw Arundo, and more than 90 wt% of total K and Cl, and 70 wt% of S from torrefied Arundo, suggesting that water-leaching of Arundo before combustion can be an effective pre-treatment method because high concentrations of Cl increase emissions of HCl, and in combination with K can form large amounts of KCl deposits on boiler surfaces and in combination with H2O or SO3 cause corrosion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okwen, Roland; Frailey, Scott; Leetaru, Hannes
2014-09-30
The storage potential and fluid movement within formations are dependent on the unique hydraulic characteristics of their respective depositional environments. Storage efficiency (E) quantifies the potential for storage in a geologic depositional environment and is used to assess basinal or regional CO 2 storage resources. Current estimates of storage resources are calculated using common E ranges by lithology and not by depositional environment. The objectives of this project are to quantify E ranges and identify E enhancement strategies for different depositional environments via reservoir simulation studies. The depositional environments considered include deltaic, shelf clastic, shelf carbonate, fluvial deltaic, strandplain, reef,more » fluvial and alluvial, and turbidite. Strategies considered for enhancing E include CO 2 injection via vertical, horizontal, and deviated wells, selective completions, water production, and multi-well injection. Conceptual geologic and geocellular models of the depositional environments were developed based on data from Illinois Basin oil fields and gas storage sites. The geologic and geocellular models were generalized for use in other US sedimentary basins. An important aspect of this work is the development of conceptual geologic and geocellular models that reflect the uniqueness of each depositional environment. Different injection well completions methods were simulated to investigate methods of enhancing E in the presence of geologic heterogeneity specific to a depositional environment. Modeling scenarios included horizontal wells (length, orientation, and inclination), selective and dynamic completions, water production, and multiwell injection. A Geologic Storage Efficiency Calculator (GSECalc) was developed to calculate E from reservoir simulation output. Estimated E values were normalized to diminish their dependency on fluid relative permeability. Classifying depositional environments according to normalized baseline E ranges ranks fluvial deltaic and turbidite highest and shelf carbonate lowest. The estimated average normalized baseline E of turbidite, and shelf carbonate depositional environments are 42.5% and 13.1%, with corresponding standard deviations of 11.3%, and 3.10%, respectively. Simulations of different plume management techniques suggest that the horizontal well, multi-well injection with brine production from blanket vertical producers are the most efficient E enhancement strategies in seven of eight depositional environments; for the fluvial deltaic depositional environment, vertical well with blanket completions is the most efficient. This study estimates normalized baseline E ranges for eight depositional environments, which can be used to assess the CO 2 storage resource of candidate formations. This study also improves the general understanding of depositional environment’s influence on E. The lessons learned and results obtained from this study can be extrapolated to formations in other US basins with formations of similar depositional environments, which should be used to further refine regional and national storage resource estimates in future editions of the Carbon Utilization and Storage Atlas of the United States. Further study could consider the economic feasibility of the E enhancement strategies identified here.« less
Grosz, A.E.; Kosanke, Kenneth L.
1983-01-01
Total-count contoured aeroradiometric maps for the Coastal Plain of Virginia were used in an effort to locate economic heavy-mineral placer deposits. The principle behind this approach is that heavy- mineral suites commonly contain radioactive minerals that, if the concentration of heavy minerals is exposed at or within inches of the surface, enable the deposit to be located by use of airborne instruments because of its radiometric contrast with the host sediment. Detailed and regional geologic maps, soil maps, land-use and land- cover maps, information on fertilizer use, and ground-spectrometer data were used to study aeroradiometric anomalies for efficient exploration. Aeroradiometric anomalies in the Coastal Plain of Virginia have three general causes. First, the most intense anomalies are associated with cultural features, such as roads made of granitic material. Second, most anomalies of high to intermediate intensity are associated with land used for agricultural purposes and evidently are caused by applications of radioactive fertilizer. Third, anomalies of intermediate to low intensity are associated with heavy-mineral deposits. Results of this study show that aeroradiometric anomalies associated with heavy-mineral accumulations in the Coastal Plain of Virginia have ground radiometric spectra in which thorium is the strongest component and uranium and potassium are lesser components. Heavy-mineral accumulations found in this study by use of the aeroradiometric data are not considered to be of economic importance, mostly because of the low percentage of economic minerals in the heavy-mineral suites and also because of other factors such as the very fine grained nature of the host sediments and competing land use.
NASA Astrophysics Data System (ADS)
Huang, Ping; Zhang, Jiabao; Ma, Donghao; Wen, Zhaofei; Wu, Shengjun; Garland, Gina; Pereira, Engil Isadora Pujol; Zhu, Anning; Xin, Xiuli; Zhang, Congzhi
2016-03-01
Atmospheric nitrogen (N) deposition, an important N source to agro-ecosystems, has increased intensively in China during recent decades. However, knowledge on temporal variations of total N deposition and their influencing factors is limited due to lack of systematic monitoring data. In this study, total N deposition, including dry and wet components, was monitored using the water surrogate surface method for a typical agro-ecosystem with a winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system in the Huang-Huai-Hai Plain from May 2008 to April 2012. The results indicated that annual total N deposition ranged from 23.8 kg N ha-1 (2009-2010) to 40.3 kg N ha-1 (2008-2009) and averaged 31.8 kg N ha-1. Great inter-annual variations were observed during the sampling period, due to differences in annual rainfall and gaseous N losses from farmlands. Monthly total N deposition varied greatly, from less than 0.6 kg N ha-1 (January, 2010) to over 8.0 kg N ha-1 (August, 2008), with a mean value of 2.6 kg N ha-1. In contrast to wet deposition, dry portions generally contributed more to the total, except in the precipitation-intensive months, accounting for 65% in average. NH4+ -N was the dominant species in N deposition and its contribution to total deposition varied from 6% (December, 2009) to 79% (July, 2008), averaging 53%. The role of organic N (O-N) in both dry and wet deposition was equal to or even greater than that of NO3- -N. Influencing factors such as precipitation and its seasonal distribution, reactive N sources, vegetation status, field management practices, and weather conditions were responsible for the temporal variations of atmospheric N deposition and its components. These results are helpful for reducing the knowledge gaps in the temporal variations of atmospheric N deposition and their influencing factors in different ecosystems, to improve the understandings on N budget in the typical agro-ecosystem, and to provide references and recommendations for field nutrient management in this region.
Wetlands with greater degree of urbanization improve PM2.5 removal efficiency.
Liu, Jiakai; Yan, Guoxin; Wu, Yanan; Wang, Yu; Zhang, Zhenming; Zhang, Mingxiang
2018-09-01
In recent decades, China has experienced both rapid urbanization and heavy air pollution and the rapid urbanization trend would be continue in the next decade. Wetlands have been shown to be efficient in particle removal, primarily through dry deposition and leaf accumulation. Thus, a more comprehensive understanding of PM2.5 removal by wetlands during urbanization processes could inform urban planning. In the current study, three wetland plots, Cuihu Lake Park (CL), Summer Palace (SP), and Olympic Park (OP), were selected as low, medium, and highly degrees of urbanization site respectively based on the proportions of building and traffic district areas to compare the removal efficiencies. Results show the average dry deposition velocity in OP was significantly higher than CL and SP. Dry deposition is mainly influenced by meteorological conditions. Buildings and other infrastructure make the meteorological conditions conducive to deposition, resulting in higher wind velocity, higher temperature, and more intense turbulence between buildings. Variation in leaf accumulation was not statistically significant between the three plots, and plant species was the major factor affecting the amount of accumulation. The dry deposition contribution to particle removal increases with degree of urbanization. The average dry deposition accounted for 39.74%, 52.55%, and 62.75% at low, middle and high level respectively. Therefore, Wetlands with greater degree of urbanization improve PM2.5 removal efficiency primarily by accelerating the dry deposition process. The result emphasizes the importance of wetlands in particle removal in highly urbanized areas and thus more wetlands should be preserved and/or created during urban expansion. Copyright © 2018 Elsevier Ltd. All rights reserved.
Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach.
Milenkovic, J; Alexopoulos, A H; Kiparissides, C
2014-01-30
In this work the dynamic flow as well as the particle motion and deposition in a commercial dry powder inhaler, DPI (i.e., Turbuhaler) is described using computational fluid dynamics, CFD. The dynamic flow model presented here is an extension of a steady flow model previously described in Milenkovic et al. (2013). The model integrates CFD simulations for dynamic flow, an Eulerian-fluid/Lagrangian-particle description of particle motion as well as a particle/wall interaction model providing the sticking efficiency of particles colliding with the DPI walls. The dynamic flow is imposed by a time varying outlet pressure and the particle injections into the DPI are assumed to occur instantaneously and follow a prescribed particle size distribution, PSD. The total particle deposition and the production of fine particles in the DPI are determined for different peak inspiratory flow rates, PIFR, flow increase rates, FIR, and particle injection times. The simulation results for particle deposition are found to agree well with available experimental data for different values of PIFR and FIR. The predicted values of fine particle fraction are in agreement with available experimental results when the mean size of the injected PSD is taken to depend on the PIFR. Copyright © 2013 Elsevier B.V. All rights reserved.
Templated fabrication of hollow nanospheres with 'windows' of accurate size and tunable number.
Xie, Duan; Hou, Yidong; Su, Yarong; Gao, Fuhua; Du, Jinglei
2015-01-01
The 'windows' or 'doors' on the surface of a closed hollow structure can enable the exchange of material and information between the interior and exterior of one hollow sphere or between two hollow spheres, and this information or material exchange can also be controlled through altering the window' size. Thus, it is very interesting and important to achieve the fabrication and adjustment of the 'windows' or 'doors' on the surface of a closed hollow structure. In this paper, we propose a new method based on the temple-assisted deposition method to achieve the fabrication of hollow spheres with windows of accurate size and number. Through precisely controlling of deposition parameters (i.e., deposition angle and number), hollow spheres with windows of total size from 0% to 50% and number from 1 to 6 have been successfully achieved. A geometrical model has been developed for the morphology simulation and size calculation of the windows, and the simulation results meet well with the experiment. This model will greatly improve the convenience and efficiency of this temple-assisted deposition method. In addition, these hollow spheres with desired windows also can be dispersed into liquid or arranged regularly on any desired substrate. These advantages will maximize their applications in many fields, such as drug transport and nano-research container.
Numerical Simulation of the Motion of Aerosol Particles in Open Cell Foam Materials
NASA Astrophysics Data System (ADS)
Solovev, S. A.; Soloveva, O. V.; Popkova, O. S.
2018-03-01
The motion of aerosol particles in open cell foam material is studied. The porous medium is investigated for a three-dimensional case with detailed simulation of cellular structures within an ordered geometry. Numerical calculations of the motion of particles and their deposition due to inertial and gravitational mechanisms are performed. Deposition efficiency curves for a broad range of particle sizes are constructed. The effect deposition mechanisms have on the efficiency of the porous material as a filter is analyzed.
Möller, Winfried; Schuschnig, Uwe; Celik, Gülnaz; Münzing, Wolfgang; Bartenstein, Peter; Häussinger, Karl; Kreyling, Wolfgang G.; Knoch, Martin
2013-01-01
Objectives Chronic rhinosinusitis (CRS) is a common chronic disease of the upper airways and has considerable impact on quality of life. Topical delivery of drugs to the paranasal sinuses is challenging, therefore the rate of surgery is high. This study investigates the delivery efficiency of a pulsating aerosol in comparison to a nasal pump spray to the sinuses and the nose in healthy volunteers and in CRS patients before and after sinus surgery. Methods 99mTc-DTPA pulsating aerosols were applied in eleven CRSsNP patients without nasal polyps before and after sinus surgery. In addition, pulsating aerosols were studied in comparison to nasal pump sprays in eleven healthy volunteers. Total nasal and frontal, maxillary and sphenoidal sinus aerosol deposition and lung penetration were assessed by anterior and lateral planar gamma camera imaging. Results In healthy volunteers nasal pump sprays resulted in 100% nasal, non-significant sinus and lung deposition, while pulsating aerosols resulted 61.3+/-8.6% nasal deposition and 38.7% exit the other nostril. 9.7+/-2.0 % of the nasal dose penetrated into maxillary and sphenoidal sinuses. In CRS patients, total nasal deposition was 56.7+/-13.3% and 46.7+/-12.7% before and after sinus surgery, respectively (p<0.01). Accordingly, maxillary and sphenoidal sinus deposition was 4.8+/-2.2% and 8.2+/-3.8% of the nasal dose (p<0.01). Neither in healthy volunteers nor in CRS patients there was significant dose in the frontal sinuses. Conclusion In contrast to nasal pump sprays, pulsating aerosols can deliver significant doses into posterior nasal spaces and paranasal sinuses, providing alternative therapy options before and after sinus surgery. Patients with chronic lung diseases based on clearance dysfunction may also benefit from pulsating aerosols, since these diseases also manifest in the upper airways. PMID:24040372
NASA Astrophysics Data System (ADS)
Nandur, Abhishek S.
Thin film solar cells are gaining momentum as a renewable energy source. Reduced material requirements (< 2 mum in total film thickness) coupled with fast, low-cost production processes make them an ideal alternative to Si (>15 mum in total thickness) solar cells. Among the various thin film solar absorbers that have been proposed, CZTS (Cu2ZnSnS4) has become the subject of intense interest because of its optimal band gap (1.45 eV), high absorption coefficient (104 cm--1 ) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since films are deposited under high vacuum with excellent stoichiometry transfer from the target. Defect-free, near-stoichiometric poly-crystalline CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of fabrication parameters such as laser energy density, deposition time, substrate temperature and sulfurization (annealing in sulfur) on the surface morphology, composition and optical absorption of the CZTS thin films were examined. The results show that the presence of secondary phases, present both in the bulk and on the surface, affected the electrical and optical properties of the CZTS thin films and the CZTS based TFSCs. After selectively etching away the secondary phases with DIW, HCl and KCN, it was observed that their removal improved the performance of CZTS based TFSCs. Optimal CZTS thin films exhibited an optical band gap of 1.54 eV with an absorption coefficient of 4x10 4cm-1 with a low volume of secondary phases. A TFSC fabricated with the best CZTS thin film obtained from the experimental study done in this thesis showed a conversion efficiency of 6.41% with Voc = 530 mV, Jsc= 27.5 mA/cm2 and a fill factor of 0.44.
Kuki, Kacilda Naomi; Oliva, Marco Antônio; Pereira, Eduardo Gusmão; Costa, Alan Carlos; Cambraia, José
2008-09-15
Particulate matter is a natural occurrence in the environment, but some industries, such as the iron ore sector, can raise the total amount of particles in the atmosphere. This industry is primarily a source of iron and sulfur dioxide particulates. The effects of the pollutants from the iron ore industries on representatives of restinga vegetation in a Brazilian coastal ecosystem were investigated using physiological and biochemical measures. Two species, Schinus terebinthifolius and Sophora tomentosa, were exposed to simulated deposition of acid mist and iron ore particulate matter in acrylic chambers in a greenhouse. Parameters such as gas exchange, fluorescence emission, chlorophyll content, total iron content, antioxidant enzyme activity and malondialdehyde content were assessed in order to evaluate the responses of the two species. Neither treatment was capable of inducing oxidative stress in S. terebinthifolius. Nevertheless, the deposition of iron ore particulates on this species increased chlorophyll content, the maximum quantum efficiency of photosystem II and the electron transport rate, while iron content was unaltered. On the other hand, S. tomentosa showed a greater sensitivity to the treatments. Plants of S. tomentosa that were exposed to acid mist had a decrease in photosynthesis, while the deposition of iron particulate matter led to an increase in iron content and membrane permeability of the leaves. The activities of antioxidant enzymes, such as catalases and superoxide dismutase, were enhanced by both treatments. The results suggested that the two restinga species use different strategies to overcome the stressful conditions created by the deposition of particulate matter, either solid or wet. It seems that while S. terebinthifolius avoided stress, S. tomentosa used antioxidant enzyme systems to partially neutralize oxidative stress. The findings also point to the potential use of S. tomentosa as a biomarker species under field conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Soren A.; Glynn, Stephen; Kanevce, Ana
World-record power conversion efficiencies for Cu(In,Ga)Se2 (CIGS) solar cells have been achieved via a post-deposition treatment with alkaline metals, which increases the open-circuit voltage and fill factor. We explore the role of the potassium fluoride (KF) post-deposition treatment in CIGS by employing energy- and time-resolved photoluminescence spectroscopy and electrical characterization combined with numerical modeling. The bulk carrier lifetime is found to increase with post-deposition treatment from 255 ns to 388 ns, which is the longest charge carrier lifetime reported for CIGS, and within ~40% of the radiative limit. We find evidence that the post-deposition treatment causes a decrease in themore » electronic potential fluctuations. These potential fluctuations have previously been shown to reduce the open-circuit voltage and the device efficiency in CIGS. Additionally, numerical simulations based on the measured carrier lifetimes and mobilities show a diffusion length of ~10 um, which is ~4 times larger than the film thickness. Thus, carrier collection in the bulk is not a limiting factor for device efficiency. By considering differences in doping, bandgap, and potential fluctuations, we present a possible explanation for the voltage difference between KF-treated and untreated samples.« less
Evidence for the Importance of Atmospheric Nitrogen Deposition to Eutrophic Lake Dianchi, China
NASA Astrophysics Data System (ADS)
Zhan, X.; Bo, Y.; Zhou, F.; Liu, X.; Paerl, H. W.; Shen, J.; Wang, R.; Li, F. R.; Tao, S.; Yanjun, D.; Tang, X.
2017-12-01
Elevated atmospheric nitrogen (N) deposition has significantly influenced aquatic ecosystems, especially with regard to their N budgets and phytoplankton growth potentials. Compared to a considerable number of studies on oligotrophic lakes and oceanic waters, little evidence for the importance of N deposition has been generated for eutrophic lakes, even though emphasis has been placed on reducing external N inputs to control eutrophication in these lakes. Our high-resolution observations of atmospheric depositions and riverine inputs of biologically reactive N species into eutrophic Lake Dianchi (the sixth largest freshwater lake in China) shed new light onto the contribution of N deposition to total N loads. Annual N deposition accounted for 15.7% to 16.6% of total N loads under variable precipitation conditions, 2-fold higher than previous estimates (7.6%) for the Lake Dianchi. The proportion of N deposition to total N loads further increased to 27-48% in May and June when toxic blooms of the ubiquitous non-N2 fixing cyanobacteria Microcystis spp. are initiated and proliferate. Our observations reveal that reduced N (59%) contributes a greater amount than oxidized N to total N deposition, reaching 56-83% from late spring to summer. Progress toward mitigating eutrophication in Lake Dianchi and other bloom-impacted eutrophic lakes will be difficult without reductions in ammonia emissions and subsequent N deposition.
Feedback control of the lower hybrid power deposition profile on Tore Supra
NASA Astrophysics Data System (ADS)
Barana, O.; Mazon, D.; Laborde, L.; Turco, F.
2007-07-01
The Tore Supra facility is well suited to study ITER relevant topics such as the real-time control of plasma current and the sustaining of steady-state discharges. This work describes a tool that was recently developed and implemented on Tore Supra to control in real time, by means of the direct knowledge of the suprathermal electron local emission profile, the width of the lower hybrid power deposition profile. This quantity can be considered to some extent equivalent to the width of the plasma current density profile in case of fully non-inductive discharges. This system takes advantage of an accurate hard x-ray diagnostics, of an efficient lower hybrid additional heating and of a reliable real-time communication network. The successful experiments carried out to test the system employed, as actuators, the parallel refractive index n// and the total power PLH. The control of the suprathermal electron local emission profile through n// was also integrated with the feedback control of the total plasma current IP with PLH and of the loop voltage Vloop with the central solenoid flux. These results demonstrate that the system is robust, reliable and able to counterbalance destabilizing events. This tool can be effectively used in the future in fully non-inductive discharges to improve the MHD stability and to maintain internal transport barriers or lower hybrid enhanced performance modes. The real-time control of the lower hybrid power deposition profile could also be used in conjunction with the electron-cyclotron radiofrequency heating for synergy studies.
He, Chun-E; Wang, Xin; Liu, Xuejun; Fangmeier, Andreas; Christie, Peter; Zhang, Fusuo
2010-01-01
Interest in nitrogen inputs via atmospheric deposition to agricultural ecosystems has increased recently, especially on the North China Plain because of extremely intensive agricultural systems and rapid urbanization in this region. Nitrogen deposition may make a significant contribution to crop N requirements but may also impose a considerable nutrient burden on the environment in general. We quantified total N deposition at two locations, Dongbeiwang near Beijing and Quzhou in Hebei province, over a two-year period from 2005 to 2007 using an 15N tracer method, the integrated total N input (ITNI) system. Total airborne N inputs to a maize wheat rotation system at both locations ranged from 99 to 117 kg N x ha(-1) x yr(-1), with higher N deposition during the maize season (57-66 kg N/ha) than the wheat season (42-51 kg N/ha). Plant available N from deposition for maize and wheat was about 52 kg N x ha(-1) x yr(-1), accounting for 50% of the total N deposition or 31% of total N uptake by the two crop species. In addition, a correction factor was derived for the maize season to adjust values obtained from small pots (0.057 m2) compared with field trays (0.98 m2) because of higher plant density in the pots. The results indicate that atmospheric N deposition is a very important N input and must be taken into account when calculating nutrient budgets in very intensively managed agricultural ecosystems.
A novel hybrid approach for estimating total deposition in the United States
NASA Astrophysics Data System (ADS)
Schwede, Donna B.; Lear, Gary G.
2014-08-01
Atmospheric deposition of nitrogen and sulfur causes many deleterious effects on ecosystems including acidification and excess eutrophication. Assessments to support development of strategies to mitigate these effects require spatially and temporally continuous values of nitrogen and sulfur deposition. In the U.S., national monitoring networks exist that provide values of wet and dry deposition at discrete locations. While wet deposition can be interpolated between the monitoring locations, dry deposition cannot. Additionally, monitoring networks do not measure the complete suite of chemicals that contribute to total sulfur and nitrogen deposition. Regional air quality models provide spatially continuous values of deposition of monitored species as well as important unmeasured species. However, air quality modeling values are not generally available for an extended continuous time period. Air quality modeling results may also be biased for some chemical species. We developed a novel approach for estimating dry deposition using data from monitoring networks such as the Clean Air Status and Trends Network (CASTNET), the National Atmospheric Deposition Program (NADP) Ammonia Monitoring Network (AMoN), and the Southeastern Aerosol Research and Characterization (SEARCH) network and modeled data from the Community Multiscale Air Quality (CMAQ) model. These dry deposition values estimates are then combined with wet deposition values from the NADP National Trends Network (NTN) to develop values of total deposition of sulfur and nitrogen. Data developed using this method are made available via the CASTNET website.
NASA Astrophysics Data System (ADS)
Galloway, W.; Ganey-Curry, P. E.
2010-12-01
The Cenozoic fill of the Gulf of Mexico basin contains a continuous record of sediment supply from the North American continental interior for the past 65 million years. Regional mapping of unit thickness and paleogeography for 18 depositional episodes defines patterns of shifting entry points of continental fluvial systems and quantifies the total volume of sediment supplied during each episode. Eight fluvio-deltaic depocenters, named for geographic similarities to entry points and drainage basins of modern rivers, are present. From southwest to northeast, they are the Rio Bravo, Rio Grande, Guadalupe, Colorado, Houston-Brazos, Red, Mississippi, and Tennessee axes. Sediment volume was calculated from hand-contoured unit thickness maps compiled from basin-wide well and seismic control. Using a GIS algorithm to sum volumes within polygons bounding interpreted North American river contribution, the total extant volume was then calculated. General compaction factors were used to convert modern volume to quantitative approximations of total grain volume. Grain volume rate of supply for each depositional episode was then calculated. Values vary by more than an order of magnitude. Supply rate has commonly varied by two-fold or more between successive depositional episodes. Sediment supply is a significant, independent variable in development of stratigraphic sequences within the Gulf basin. Paleogeographic maps of the continental interior for eleven Cenozoic time intervals display the evolving and complex interplay of intracontinental tectonism, climate change, and drainage basin evolution. Five tectono-climatic eras are differentiated: Paleocene late Laramide era; early to middle Eocene terminal Laramide era; middle Cenozoic (Late Eocene—Early Miocene) dry, volcanogenic era; middle Neogene (Middle—Late Miocene) arid, extensional era; and late Neogene (Plio—Pleistocene) monsoonal, epeirogenic uplift era. Sediment supply to the GOM reflects the interplay of (1) areal extent of river drainage basins, (2) source area relief, (3) climate of the source areas and tributary systems, (4) source lithology, and (5) sediment storage within the upper drainage basin. Climate has played an important and complex role in modulating supply. In wet tropical to temperate climate regimes, abundant runoff efficiently removed entrained sediment. Arid climate limited runoff; resultant transport-limited tributaries and trunk streams deposited aggradational alluvial aprons, storing sediment in the drainage basin even in the absence of a structural depression. Eolian deposition commonly accompanied such alluvial aggradation. In contrast, seasonality and consequent runoff variability favored erosion and efficient sediment evacuation from the upper parts of drainage basins. Tectonism has played a prominent but equally complex role. Elevation of uplands by compression, crustal heating, or extrusive volcanism created primary loci of erosion and high sediment yield. At the same time, accompanying subsidence sometimes created long-lived sediment repositories that intercepted and sequestered sediment adjacent to sources. Regional patterns of uplift and subsidence relocated drainage divides and redirected trunk stream paths to the Gulf margin.
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Harris, Jerry D.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Smith, Mark A.; Cowen, Jonathan E.
2001-01-01
The key to achieving high specific power (watts per kilogram) space photovoltaic arrays is the development of high-efficiency thin-film solar cells that are fabricated on lightweight, space-qualified substrates such as Kapton (DuPont) or another polymer film. Cell efficiencies of 20 percent air mass zero (AM0) are required. One of the major obstacles to developing lightweight, flexible, thin-film solar cells is the unavailability of lightweight substrate or superstrate materials that are compatible with current deposition techniques. There are two solutions for working around this problem: (1) develop new substrate or superstrate materials that are compatible with current deposition techniques, or (2) develop new deposition techniques that are compatible with existing materials. The NASA Glenn Research Center has been focusing on the latter approach and has been developing a deposition technique for depositing thin-film absorbers at temperatures below 400 C.
NASA Astrophysics Data System (ADS)
Sow, Mamadou; Goossens, Dirk; Rajot, Jean Louis
2006-12-01
Wind tunnel experiments were conducted to determine the efficiency of sediment samplers designed to measure the deposition of aeolian dust. Efficiency was ascertained relative to a water surface, which was considered the best alternative for simulating a perfectly absorbent surface. Two types of samplers were studied: the Marble Dust Collector (MDCO) and the inverted frisbee sampler. Four versions of the latter catcher were tested: an empty frisbee, an empty frisbee surrounded by an aerodynamic flow deflector ring, a frisbee filled with glass marbles, and a frisbee filled with glass marbles and surrounded by a flow deflector ring. Efficiency was ascertained for five wind velocities (range: 1-5 m s - 1 ) and eight grain size classes (range: 10-89 μm). The efficiency of dust deposition catchers diminishes rapidly as the wind speed increases. It also diminishes as the particles caught become coarser. Adding a flow deflector ring to a catcher substantially improves the catcher's efficiency, by up to 100% in some cases. The addition of glass marbles to a catcher, on the other hand, does not seem to increase the efficiency, at least not at wind velocities inferior to the deflation threshold. For higher velocities the marbles protect the settled particles from resuspension, keeping them in the catcher. The following five parameters determine the accumulation of aeolian dust in a catcher: the horizontal dust flux, the weight of the particles, atmospheric turbulence, resuspension, and the dust shadow effect created by the catcher. The final accumulation flux depends on the combination of these parameters. The catchers tested in this study belong to the best catchers currently in use in earth science and have been the subject of various aerodynamic studies to improve their efficiency. Nevertheless the catching efficiency remains low, in the order of 20-40% for wind speeds above 2 m s - 1 . Other catchers suffer from the same low efficiencies. There is, thus, evidence to believe that dust deposition rates published in the aeolian literature and obtained by collecting the sediment in a catcher largely underestimate the true deposition. The errors are considerable, of the order of 100% and more. A reconsideration of the literature data on aeolian dust deposition measured by catchers is, therefore, required.
NASA Astrophysics Data System (ADS)
Moon, Byung Seuk; Lee, Soo-Hyoung; Huh, Yoon Ho; Kwon, O. Eun; Park, Byoungchoo; Lee, Bumjoo; Lee, Seung-Hyun; Hwang, Inchan
2015-04-01
We herein report an investigation of the effect of rough thin films of SiO2 granules deposited on glass substrates of organic light-emitting devices (OLEDs) by using a simple, low-cost and scalable process based on a powder spray of SiO2 granules in vacuum, known as the aerosol-deposition method, with regard to their external light-extraction capabilities. The rough and hazy thin SiO2 films produced by using aerosol-deposition and acting as scattering centers were able to efficiently reduce the light-trapping loss in the glass substrate (glass mode) for internally-generated photons and to enhance the external quantum efficiency (EQE) of the OLEDs. Based on aerosol-deposited silica films with a thickness of 800 nm and a haze of 22% on glass substrates, the EQE of phosphorescent green OLEDs was found to be enhanced by 17%, from an EQE of 7.0% for smooth bare glass substrates to an EQE of 8.2%. Furthermore, the EQEs of fluorescent blue and phosphorescent red OLEDs were shown to be enhanced by 16%, from an EQE of 3.7% to 4.3%, and by 16%, from an EQE of 9.3% to 10.8%, respectively. These improvements in the EQEs without serious changes in the emission spectra or the Lambertian emitter property clearly indicate the high potential of the aerosol-deposition technique for the realization of highly-efficient light extraction in colorful OLED lighting.
Electrophoretic deposition of fluorescent Cu and Au sheets for light-emitting diodes
NASA Astrophysics Data System (ADS)
Liu, Jiale; Wu, Zhennan; Li, Tingting; Zhou, Ding; Zhang, Kai; Sheng, Yu; Cui, Jianli; Zhang, Hao; Yang, Bai
2015-12-01
Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to building blocks with 2D features. However, the studies are mainly focused on simplex building blocks. The utilization of multiplex building blocks is rarely reported. In this work, we demonstrate a controlled EPD of Cu and Au sheets, which are 2D assemblies of luminescent Cu and Au nanoclusters. Systematic investigations reveal that both the deposition efficiency and the thickness are determined by the lateral size of the sheets. For Cu sheets with a large lateral size, a high ζ-potential and strong face-to-face van der Waals interactions facilitate the deposition with high efficiency. However, for Au sheets, the small lateral size and ζ-potential limit the formation of a thick film. To solve this problem, the deposition dynamics are controlled by increasing the concentration of the Au sheets and adding acetone. This understanding permits the fabrication of a binary EPD film by the stepwise deposition of Cu and Au sheets, thus producing a luminescent film with both Cu green emission and Au red emission. A white light-emitting diode prototype with color coordinates (x, y) = (0.31, 0.36) is fabricated by employing the EPD film as a color conversion layer on a 365 nm GaN clip and further tuning the amount of deposited Cu and Au sheets.Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to building blocks with 2D features. However, the studies are mainly focused on simplex building blocks. The utilization of multiplex building blocks is rarely reported. In this work, we demonstrate a controlled EPD of Cu and Au sheets, which are 2D assemblies of luminescent Cu and Au nanoclusters. Systematic investigations reveal that both the deposition efficiency and the thickness are determined by the lateral size of the sheets. For Cu sheets with a large lateral size, a high ζ-potential and strong face-to-face van der Waals interactions facilitate the deposition with high efficiency. However, for Au sheets, the small lateral size and ζ-potential limit the formation of a thick film. To solve this problem, the deposition dynamics are controlled by increasing the concentration of the Au sheets and adding acetone. This understanding permits the fabrication of a binary EPD film by the stepwise deposition of Cu and Au sheets, thus producing a luminescent film with both Cu green emission and Au red emission. A white light-emitting diode prototype with color coordinates (x, y) = (0.31, 0.36) is fabricated by employing the EPD film as a color conversion layer on a 365 nm GaN clip and further tuning the amount of deposited Cu and Au sheets. Electronic supplementary information (ESI) available: Additional experimental information, and SEM images of Cu EPD films. See DOI: 10.1039/c5nr06599b
NASA Astrophysics Data System (ADS)
Cohen, Bat-El; Gamliel, Shany; Etgar, Lioz
2014-08-01
Perovskite is a promising light harvester for use in photovoltaic solar cells. In recent years, the power conversion efficiency of perovskite solar cells has been dramatically increased, making them a competitive source of renewable energy. An important parameter when designing high efficiency perovskite-based solar cells is the perovskite deposition, which must be performed to create complete coverage and optimal film thickness. This paper describes an in-depth study on two-step deposition, separating the perovskite deposition into two precursors. The effects of spin velocity, annealing temperature, dipping time, and methylammonium iodide concentration on the photovoltaic performance are studied. Observations include that current density is affected by changing the spin velocity, while the fill factor changes mainly due to the dipping time and methylammonium iodide concentration. Interestingly, the open circuit voltage is almost unaffected by these parameters. Hole conductor free perovskite solar cells are used in this work, in order to minimize other possible effects. This study provides better understanding and control over the perovskite deposition through highly efficient, low-cost perovskite-based solar cells.
Zhu, Pingting; Long, Guoyu; Ni, Jinren; Tong, Meiping
2009-08-01
The deposition kinetics of extracellular polymeric substances (EPS) on silica surfaces were examined in both monovalent and divalent solutions under a variety of environmentally relevant ionic strength and pH conditions by employing a quartz crystal microbalance with dissipation (DCM-D). Soluble EPS (SEPS) and bound EPS (BEPS) were extracted from four bacterial strains with different characteristics. Maximum favorable deposition rates (k(fa)) were observed for all EPS at low ionic strengths in both NaCl and CaCl2 solutions. With the increase of ionic strength, k(fa) decreased due to the simultaneous occurrence of EPS aggregation in solutions. Deposition efficiency (alpha; the ratio of deposition rates obtained under unfavorable versus corresponding favorable conditions) for all EPS increased with increasing ionic strength in both NaCl and CaCl2 solutions, which agreed with the trends of zeta potentials and was consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Comparison of alpha for SEPS and BEPS extracted from the same strain showed that the trends of alpha did not totally agree with trends of zeta potentials, indicating the deposition kinetics of EPS on silica surfaces were not only controlled by DLVO interactions, but also non-DLVO forces. Close comparison of alpha for EPS extracted from different sources showed alpha increased with increasing proteins to polysaccharides ratio. Subsequent experiments for EPS extracted from the same strain but with different proteins to polysaccharides ratios and from activated sludge also showed that alpha were largest for EPS with greatest proteins to polysaccharides ratio. Additional experiments for pure protein and solutions with different pure proteins to pure saccharides ratios further corroborated that larger proteins to polysaccharides ratio resulted in greater EPS deposition.
Sediment deposition in the White River Reservoir, northwestern Wisconsin
Batten, W.G.; Hindall, S.M.
1980-01-01
The history of deposition in the White River Reservoir was reconstructed from a study of sediment in the reservoir. Suspended-sediment concentrations, particle size, and streamflow characteristics were measured at gaging stations upstream and downstream from the reservoir from November 1975 through September 1977. Characteristics of the sediments were determined from borings and samples taken while the reservoir was drained in September 1976. The sediment surface and the pre-reservoir topography were mapped. Sediment thickness ranged from less than 1 foot near the shore to more than 20 feet in the old stream channel. The original reservoir capacity and the volume of deposited sediment were calculated to be 815 acre-feet and 487 acre-feet, respectively. Sediment size ranged from clay and silt in the pool area to large cobbles and boulders at the upstream end of the reservoir. Analyses of all samples averaged 43 percent sand, 40 percent silt, and 17 percent clay, and particle size typically increased upstream. Cobbles, boulders, and gravel deposits were not sampled. The average density of the deposited sediment was about 80 pounds per cubic foot for the entire reservoir. The reservoir was able to trap about 80 percent of the sediment entering from upstream, early in its history. This trap efficiency has declined as the reservoir filled with sediment. Today (1976), it traps only sand and silt-sized sediment, or only about 20 percent of the sediment entering from upstream. Data collected during this study indicate that essentially all of the clay-sized sediment (<0.062 mm) passes through the reservoir. The gross rate of deposition was 7.0 acre-feet per year over the reservoir history, 1907-76. Rates during 1907-63 and 1963-76 were 7.4 and 5.7 acre-feet per year, respectively, determined by the cesium-137 method. Based on scant data, the average annual sediment yield of the total 279 square mile drainage area above the gaging station at the powerhouse was about 50 tons per square mile. Analysis of the drainage-basin characteristics indicates that most of this sediment was derived from less than 10 percent of the total drainage area and from steep unvegetated streambanks.
Mineral deposit densities for estimating mineral resources
Singer, Donald A.
2008-01-01
Estimates of numbers of mineral deposits are fundamental to assessing undiscovered mineral resources. Just as frequencies of grades and tonnages of well-explored deposits can be used to represent the grades and tonnages of undiscovered deposits, the density of deposits (deposits/area) in well-explored control areas can serve to represent the number of deposits. Empirical evidence presented here indicates that the processes affecting the number and quantity of resources in geological settings are very general across many types of mineral deposits. For podiform chromite, porphyry copper, and volcanogenic massive sulfide deposit types, the size of tract that geologically could contain the deposits is an excellent predictor of the total number of deposits. The number of mineral deposits is also proportional to the type’s size. The total amount of mineralized rock is also proportional to size of the permissive area and the median deposit type’s size. Regressions using these variables provide a means to estimate the density of deposits and the total amount of mineralization. These powerful estimators are based on analysis of ten different types of mineral deposits (Climax Mo, Cuban Mn, Cyprus massive sulfide, Franciscan Mn, kuroko massive sulfide, low-sulfide quartz-Au vein, placer Au, podiform Cr, porphyry Cu, and W vein) from 108 permissive control tracts around the world therefore generalizing across deposit types. Despite the diverse and complex geological settings of deposit types studied here, the relationships observed indicate universal controls on the accumulation and preservation of mineral resources that operate across all scales. The strength of the relationships (R 2=0.91 for density and 0.95 for mineralized rock) argues for their broad use. Deposit densities can now be used to provide a guideline for expert judgment or used directly for estimating the number of most kinds of mineral deposits.
Cena, Lorenzo G.; Chisholm, William P.; Keane, Michael J.; Cumpston, Amy; Chen, Bean T.
2016-01-01
A laboratory study was conducted to determine the mass of total Cr, Cr(VI), Mn, and Ni in 15 size fractions for mild and stainless steel gas-metal arc welding (GMAW) fumes. Samples were collected using a nano multi orifice uniform deposition impactor (MOUDI) with polyvinyl chloride filters on each stage. The filters were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography. Limits of detection (LODs) and quantitation (LOQs) were experimentally calculated and percent recoveries were measured from spiked metals in solution and dry, certified welding-fume reference material. The fraction of Cr(VI) in total Cr was estimated by calculating the ratio of Cr(VI) to total Cr mass for each particle size range. Expected, regional deposition of each metal was estimated according to respiratory-deposition models. The weight percent (standard deviation) of Mn in mild steel fumes was 9.2% (6.8%). For stainless steel fumes, the weight percentages were 8.4% (5.4%) for total Cr, 12.2% (6.5%) for Mn, 2.1% (1.5%) for Ni and 0.5% (0.4%) for Cr(VI). All metals presented a fraction between 0.04 and 0.6 μm. Total Cr and Ni presented an additional fraction <0.03 μm. On average 6% of the Cr was found in the Cr(VI) valence state. There was no statistical difference between the smallest and largest mean Cr(VI) to total Cr mass ratio (p-value D 0.19), hence our analysis does not show that particle size affects the contribution of Cr(VI) to total Cr. The predicted total respiratory deposition for the metal particles was ∼25%. The sites of principal deposition were the head airways (7–10%) and the alveolar region (11–14%). Estimated Cr(VI) deposition was highest in the alveolar region (14%). PMID:26848207
Cena, Lorenzo G; Chisholm, William P; Keane, Michael J; Cumpston, Amy; Chen, Bean T
A laboratory study was conducted to determine the mass of total Cr, Cr(VI), Mn, and Ni in 15 size fractions for mild and stainless steel gas-metal arc welding (GMAW) fumes. Samples were collected using a nano multi orifice uniform deposition impactor (MOUDI) with polyvinyl chloride filters on each stage. The filters were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography. Limits of detection (LODs) and quantitation (LOQs) were experimentally calculated and percent recoveries were measured from spiked metals in solution and dry, certified welding-fume reference material. The fraction of Cr(VI) in total Cr was estimated by calculating the ratio of Cr(VI) to total Cr mass for each particle size range. Expected, regional deposition of each metal was estimated according to respiratory-deposition models. The weight percent (standard deviation) of Mn in mild steel fumes was 9.2% (6.8%). For stainless steel fumes, the weight percentages were 8.4% (5.4%) for total Cr, 12.2% (6.5%) for Mn, 2.1% (1.5%) for Ni and 0.5% (0.4%) for Cr(VI). All metals presented a fraction between 0.04 and 0.6 μ m. Total Cr and Ni presented an additional fraction <0.03 μ m. On average 6% of the Cr was found in the Cr(VI) valence state. There was no statistical difference between the smallest and largest mean Cr(VI) to total Cr mass ratio ( p -value D 0.19), hence our analysis does not show that particle size affects the contribution of Cr(VI) to total Cr. The predicted total respiratory deposition for the metal particles was ∼25%. The sites of principal deposition were the head airways (7-10%) and the alveolar region (11-14%). Estimated Cr(VI) deposition was highest in the alveolar region (14%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, G.E.; Sorensen, J.A.; Schmidt, K.W.
Studies in the Upper Midwest have shown significant amounts of total mercury in the air, precipitation, surface waters, sediments, and biota. We now report on measurements of methylmercury in precipitation from nine wet deposition monitoring stations (MIC Type B Collectors) located in and around Minnesota near: Lamberton, Bethel, Duluth, Finland, Ely, Tower, International Falls, MN; Cavalier, ND; and Raco, MI using the analytical methods previously described. Methyl and total mercury concentration means, std. dev., and ranges (in parentheses) were found to be 0.18{plus_minus}0.09 ng/L (<0.04, 0.48) and 15.1{plus_minus}7.6 ng/L (4.7, 34), respectively, for one week samples of precipitation collected duringmore » each of the months, June through September, 1993. Methylmercury averaged 1.3 to 1.8% of the total mercury concentration. The calculated one-week mean wet deposition values (across sites) for the same months were 4.8, 5.9, 3.5, and 3.2 ng/m{sup 2} methylmercury, and 341, 354, 320, and 322 ng/m{sup 2} total mercury, respectively. Methylmercury concentrations correlated significantly (r value signs, p<.01, n=37) with total mercury concentrations (+) and precipitation volume (-), and chloride concentrations (+), while methylmercury depositions correlated significantly with depositions of total mercury (+), nitrate (+), chloride (+), and sulfate (+), ammonium (+), and pH (-). Winter concentrations of methylmercury and % methyl of total mercury in snow were significantly higher. Urban sites show significantly higher depositions than remote sites. The mercury depositions are similar to those observed in Scandinavia that have contaminated aquatic and terrestrial ecosystems.« less
NASA Astrophysics Data System (ADS)
Shen, Jianlin; Li, Yong; Liu, Xuejun; Luo, Xiaosheng; Tang, Hong; Zhang, Yangzhu; Wu, Jinshui
2013-03-01
Atmospheric emissions of reactive nitrogen (N) species are at high levels in China in recent years, but few studies have employed N deposition monitoring techniques that measure both dry and wet deposition for comprehensive evaluation of the impacts of N deposition on ecosystems. In this study, to quantify the total N deposition, both dry and wet N depositions were monitored using denuder/filter pack systems, passive samplers and wet-only samplers at three sites with different land use types (forest, paddy field and tea field) in a 135-km2 catchment in subtropical central China from September 2010 to August 2011. At the three sampling sites, the annual mean concentrations of total N (the sum of NH, NO and DON) in rainwater were 1.2-1.6 mg N L-1, showing small variation across sites. Annual mean concentrations of total N (the sum of NH3, NO2, HNO3, particulate NH and NO) in the air were 13-18 μg N m-3. High NH3 concentrations in the air were observed at the agricultural sites of tea and paddy fields, indicating significant NH3 emissions from N fertiliser application; and high NO2 concentrations were found at the upland sites of forest and tea field, suggesting high NO emissions from soils due to high N deposition or high N fertiliser input. The annual total N deposition for the three sites of paddy field, tea field and forest was estimated as 22, 34 and 55 kg N ha-1 yr-1, in which the dry N deposition components contributed to 21%, 36% and 63% of the annual total N deposition, respectively. The annual deposition of reduced N species was 1.1-1.8 times of the annual deposition of oxidised N species. To minimise the adverse effects of atmospheric N deposition on natural/semi-natural ecosystems, it is crucial to reduce the reactive N emissions from anthropogenic activities (e.g., N fertiliser application, animal production and fossil fuel combustion) in subtropical central China.
Particulate matter in the air is known for causing adverse health effects and yet estimating lung deposition dose is difficult because exposure conditions vary widely. We measured total deposition fraction (TDF) of monodisperse aerosols in the size range of 0.04 - 5 micron in dia...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, A.; Tsiounis, Y.; Frankel, Y.
Recently, there has been an interest in making electronic cash protocols more practical for electronic commerce by developing e-cash which is divisible (e.g., a coin which can be spent incrementally but total purchases are limited to the monetary value of the coin). In Crypto`95, T. Okamoto presented the first practical divisible, untraceable, off-line e-cash scheme, which requires only O(log N) computations for each of the withdrawal, payment and deposit procedures, where N = (total coin value)/(smallest divisible unit). However, Okamoto`s set-up procedure is quite inefficient (on the order of 4,000 multi-exponentiations and depending on the size of the RSA modulus).more » The authors formalize the notion of range-bounded commitment, originally used in Okamoto`s account establishment protocol, and present a very efficient instantiation which allows one to construct the first truly efficient divisible e-cash system. The scheme only requires the equivalent of one (1) exponentiation for set-up, less than 2 exponentiations for withdrawal and around 20 for payment, while the size of the coin remains about 300 Bytes. Hence, the withdrawal protocol is 3 orders of magnitude faster than Okamoto`s, while the rest of the system remains equally efficient, allowing for implementation in smart-cards. Similar to Okamoto`s, the scheme is based on proofs whose cryptographic security assumptions are theoretically clarified.« less
The aggregation efficiency of very fine volcanic ash
NASA Astrophysics Data System (ADS)
Del Bello, E.; Taddeucci, J.; Scarlato, P.
2013-12-01
Explosive volcanic eruptions can discharge large amounts of very small sized pyroclasts (under 0.090 mm) into the atmosphere that may cause problems to people, infrastructures and environment. The transport and deposition of fine ash are ruled by aggregation that causes premature settling of fine ash and, as consequence, significantly reduces the concentration of airborne material over long distances. Parameterizing the aggregation potential of fine ash is then needed to provide accurate modelling of ash transport and deposition from volcanic plumes. Here we present the first results of laboratory experiments investigating the aggregation efficiency of very fine volcanic particles. Previous laboratory experiments have shown that collision kinetic and relative humidity provide the strongest effect on aggregation behaviour but were only limited to particles with size > 0.125 mm. In our work, we focus on natural volcanic ash at ambient humidity with particles size < 0.090 mm, by taking into account the effect of grain size distribution on aggregation potential. Two types of ash were used in our experiments: fresh ash, collected during fall-out from a recent plume-forming eruption at Sakurajima (Japan -July 2013) and old ash, collected from fall-out tephra deposits at Campi Flegrei (Italy, ca. 10 ka), to account for the different chemical composition and morphoscopic effects of altered ash on aggregation efficiency. Total samples were hand sieved to obtain three classes with unimodal grain size distributions (<0.090 mm, <0.063 mm, <0.032 mm). Bimodal grain size distributions were also obtained by mixing the three classes in different proportions. During each experiments, particles were sieved from the top of a transparent tank where a fan, placed at the bottom, allows turbulent dispersion of particles. Collision and sticking of particles on a vertical glass slide were filmed with a high speed cameras at 6000 fps. Our lenses arrangement provide high image resolution allowing to capture particles down to 0.005 mm in diameter. Video sequences of particles motion and collision were then processed with image analysis and particle tracking tools to determine i) the particle number density and ii) the grain size distribution of particles in the turbulent dispersion, and iii) the number of adhered particles as a function of time. Optical laser granulometry provided constrains on grain size distribution of ash particles effectively adhered to the glass slide at the end of each run. Results obtained from our data-set allowed to provide a relationship for determining aggregation rate as a function of particle number density across a range of particle size distributions. This empirical model can be used to determine the aggregation fraction starting from a given total grain size distribution, thus providing fundamental parameters to incorporate aggregation into numerical models of ash dispersal and deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzanyan, A S; Kuzanyan, A A; Petrosyan, V A
The factors determining the efficiency of the target material utilisation for pulsed laser deposition of films are considered. The target volume is calculated, which is evaporated in the ablation process by the focused laser radiation having a rectangular form. The new device is suggested and developed for obtaining thin films by the method of laser deposition, which is specific in the employment of a simple optical system mounted outside a deposition chamber that comprises two lenses and the diaphragm and focuses the laser beam onto a target in the form of a sector-like spot. Thin films of CuO and YBaCuOmore » were deposited with this device. Several deposition cycles revealed that the target material is consumed uniformly from the entire surface of the target. A maximal spread of the target thickness was not greater than ±2% both prior to deposition and after it. The device designed provides a high coefficient of the target material utilisation efficiency. (laser deposition of thin films)« less
Liao, Yu-Kuang; Liu, Yung-Tsung; Hsieh, Dan-Hua; Shen, Tien-Lin; Hsieh, Ming-Yang; Tzou, An-Jye; Chen, Shih-Chen; Tsai, Yu-Lin; Lin, Wei-Sheng; Chan, Sheng-Wen; Shen, Yen-Ping; Cheng, Shun-Jen; Chen, Chyong-Hua; Wu, Kaung-Hsiung; Chen, Hao-Ming; Kuo, Shou-Yi; Charlton, Martin D. B.; Hsieh, Tung-Po; Kuo, Hao-Chung
2017-01-01
Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs) with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD) and chemical bath deposition (CBD) as used by the Cu(In,Ga)Se2 (CIGS) thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase. PMID:28383488
NASA Astrophysics Data System (ADS)
Messina, F.; Tosco, T.; Sethi, R.
2017-12-01
Colloidal transport and deposition in saturated porous media are phenomena of considerable importance in a large number of natural processes and engineering applications, such as the contaminant and microorganism propagation in aquifer systems, the development of innovative groundwater remediation technologies, air and water filtration, and many others. Therefore, a thorough understanding of particle filtration is essential for predicting the transport and fate of colloids in the subsurface environment. The removal efficiency of a filter is a key aspect for colloid transport in porous media. Several efforts were devoted to derive accurate correlations for the single collector efficiency, one of the key concept in the filtration theory. However, up scaling this parameter to the entire porous medium is still a challenge. The common up-scaling approach assumes the deposition to be independent of the transport history, which means that the collector efficiency is considered uniform along the porous medium. However, previous works showed that this approach is inadequate under unfavorable deposition conditions. This study demonstrates that it is not adequate even in the simplest case of favorable deposition. Computational Fluid Dynamics simulations were run for a simplify porous media geometry, composed of a vertical array of 50 identical spherical collectors. A combination of Lagrangian and Eulerian simulations were performed to analyze the particle transport under a broad range of parameters (i.e., particle size, particle density, water velocity). The results show the limits of the existing models to interpret the experimental data. In fact, the outcome evidenced that when particle deposition is not controlled by Brownian diffusion, non-exponential concentration profiles are retrieved, in contrast with the assumption of uniform efficiency. Moreover, when the deposition mechanisms of sedimentation and interception dominate, the efficiency of the first sphere of the column is significantly higher compared to the others, and then it declines along the array down to an asymptotic value. A more rigorous procedure to evaluate the filtration processes in presence of a series of collectors was developed, and a new correlation for the up-scaled removal efficiency of the entire array was derived and proposed.
He, L B; Wang, Y L; Xie, X; Han, M; Song, F Q; Wang, B J; Cheng, W L; Xu, H X; Sun, L T
2017-02-15
Gas-phase deposited Ag nanoparticle assemblies are one of the most commonly used plasmonic substrates benefiting from their remarkable advantages such as clean particle surface, tunable particle density, available inter-particle gaps, low-cost and scalable fabrication, and excellent industry compatibility. However, their performance efficiencies are difficult to optimize due to the lack of knowledge of the hotspots inside their structures. We here report a design of delicate rainbow-like Ag nanoparticle assemblies, based on which the hotspots can be revealed through a combinatorial approach. The findings show that the hotspots in gas-phase deposited Ag nanoparticle assemblies are uniquely entangled by the excitation energy and specific inter-particle gaps, differing from the matching conditions in periodic arrays. For Ag nanoparticle assemblies deposited on Formvar-filmed substrates, the mean particle size is maintained around 10 nm, while the particle density can be widely tuned. The one possessing the highest SERS efficiency (under 473 nm excitation) have a particle number density of around 7100 μm -2 . Gaps with an inter-particle spacing of around 3 nm are found to serve as SERS hotspots, and these hotspots contribute to 68% of the overall SERS intensity. For Ag nanoparticle assemblies fabricated on carbon-filmed substrates, the mean particle size can be feasibly tuned. The one possessing the highest SERS efficiency under 473 nm excitation has a particle number density of around 460 μm -2 and a mean particle size of around 42.1 nm. The construction of Ag-analyte-Ag sandwich-like nanoparticle assemblies by a two-step-deposition method slightly improves the SERS efficiency when the particle number density is low, but suppresses the SERS efficiency when the particle number density is high.
An analysis of the dust deposition on solar photovoltaic modules.
Styszko, Katarzyna; Jaszczur, Marek; Teneta, Janusz; Hassan, Qusay; Burzyńska, Paulina; Marcinek, Ewelina; Łopian, Natalia; Samek, Lucyna
2018-03-29
Solid particles impair the performance of the photovoltaic (PV) modules. This results in power losses which lower the efficiency of the system as well as the increases of temperature which additionally decreases the performance and lifetime. The deposited dust chemical composition, concentration and formation of a dust layer on the PV surface differ significantly in reference to time and location. In this study, an evaluation of dust deposition on the PV front cover glass during the non-heating season in one of the most polluted European cities, Kraków, was performed. The time-dependent particle deposition and its correlation to the air pollution with particulate matter were analysed. Dust deposited on several identical PV modules during variable exposure periods (from 1 day up to 1 week) and the samples of total suspended particles (TSP) on quartz fibre filters using a low volume sampler were collected during the non-heating season in the period of 5 weeks. The concentration of TSP in the study period ranged between 12.5 and 60.05 μg m -3 while the concentration of PM10 observed in the Voivodeship Inspectorate of Environmental Protection traffic station, located 1.2 km from the TSP sampler, ranged from 14 to 47 μg m -3 . It was revealed that dust deposition density on a PV surface ranged from 7.5 to 42.1 mg m -2 for exposure periods of 1 day while the measured weekly dust deposition densities ranged from 25.8 to 277.0 mg m -2 . The precipitation volume and its intensity as well as humidity significantly influence the deposited dust. The rate of dust accumulation reaches approximately 40 mg m -2 day -1 in the no-precipitation period and it was at least two times higher than fluxes calculated on the basis of PM10 and TSP concentrations which suggest that additional forces such as electrostatic forces significantly influence dust deposition.
High-efficiency indium tin oxide/indium phosphide solar cells
NASA Technical Reports Server (NTRS)
Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.
1989-01-01
Improvements in the performance of indium tin oxide (ITO)/indium phosphide solar cells have been realized by the dc magnetron sputter deposition of n-ITO onto an epitaxial p/p(+) structure grown on commercial p(+) bulk substrates. The highest efficiency cells were achieved when the surface of the epilayer was exposed to an Ar/H2 plasma before depositing the bulk of the ITO in a more typical Ar/O2 plasma. With H2 processing, global efficiencies of 18.9 percent were achieved. It is suggested that the excellent performance of these solar cells results from the optimization of the doping, thickness, transport, and surface properties of the p-type base, as well as from better control over the ITO deposition procedure.
Yang, Xinjian; Gao, Zhiqiang
2015-04-25
On the basis of enzyme-catalysed reduction of silver ions and consequent deposition of ultrathin silver shells on gold nanorods, a highly efficient signal amplification method for immunoassay is developed. For a model analyte prostate-specific antigen, a 10(4)-fold improvement over conventional enzyme-linked immunosorbent assay is accomplished by leveraging on the cumulative nature of the enzymatic reaction and the sensitive response of plasnomic gold nanorods to the deposition the silver shells.
Weaver, J.C.
1994-01-01
A reservoir sedimentation study was conducted at 508-acre Lake Michie, a municipal water-supply reservoir in northeastern Durham County, North Carolina, during 1990-92. The effects of sedimentation in Lake Michie were investigated, and current and historical rates of sedimentation were evaluated. Particle-size distributions of lake-bottom sediment indicate that, overall, Lake Michie is rich in silt and clay. Nearly all sand is deposited in the upstream region of the lake, and its percentage in the sediment decreases to less than 2 percent in the lower half of the lake. The average specific weight of lake-bottom sediment in Lake Michie is 73.6 pounds per cubic foot. The dry-weight percentage of total organic carbon in lake-bottom sediment ranges from 1.1 to 3.8 percent. Corresponding carbon-nitrogen ratios range form 8.6 to 17.6. Correlation of the total organic carbon percentages with carbon-nitrogen ratios indicates that plant and leaf debris are the primary sources of organic material in Lake Michie. Sedimentation rates were computed using comparisons of bathymetric volumes. Comparing the current and previous bathymetric volumes, the net amount of sediment deposited (trapped) in Lake Michie during 1926-92 is estimated to be about 2,541 acre-feet or slightly more than 20 percent of the original storage volume computed in 1935. Currently (1992), the average sedimentation rate is 38 acre-feet per year, down from 45.1 acre-feet per year in 1935. To confirm the evidence that sedimentation rates have decreased at Lake Michie since its construction in 1926, sediment accretion rates were computed using radionuclide profiles of lake-bottom sediment. Sediment accretion rates estimated from radiochemical analyses of Cesium-137 and lead-210 and radionuclides in the lake-bottom sediment indicate that rates were higher in the lake?s early years prior to 1962. Estimated suspended-sediment yields for inflow and outflow sites during 1983-91 indicate a suspended-sediment trap efficiency of 89 percent. An overall trap efficiency for the period of 1983-91 was computed using the capacity-inflow ratio. The use of this ratio indicates that the trap efficiency for Lake Michie is 85 percent. However, the suspended-sediment trap efficiency indicates that the actual overall trap efficiency for Lake Michie was probably greater than 89 percent during this period.
NASA Astrophysics Data System (ADS)
Sato, K.; Tsuyoshi, O.; Endo, T.; Yagoh, H.; Matsuda, K.
2011-12-01
Emission of sulfur and nitrogen compounds in Asian region has been remarkably increased with recent rapid economical growth (Ohara et al., 2007). To appropriately assess the influence of air pollutants on the ecosystem, it is important to quantitatively determine the atmospheric deposition of air pollutants. Here, Seasonal and annual variations and regional characteristics of estimated wet and dry deposition amounts at 27 monitoring sites of Acid Deposition Monitoring Network in East Asia (EANET) from 2003 to 2009 are discussed. Wet deposition sample was collected every 24 hours or 1 week by a wet only sampler. Wet deposition amounts were calculated by the product of the volume-weighted concentrations of ionic species (SO42-, NO3-, and NH4+) in the precipitation and precipitation amount measured by a standard rain gauge at each site. Dry deposition amount was estimated by the inferential method which was originated the model developed by Wesely and Hicks (1977) and modified by Matsuda (2008). The components examined for dry deposition were sulfur compounds (gaseous SO2 and particulate SO42-) and nitrogen compounds (gaseous HNO3 and NH3, particulate NO3- and NH4+). Dry deposition was calculated by the product of the deposition velocity estimated by the inferential method for forest and grass surfaces and the monitored air concentration of each compound. The mean annual dry deposition amounts for sulfur and nitrogen compounds in Japanese sites were in the range of 5-37 and 7-50 mmol m-2 year-1, respectively. The regional characteristics of dry deposition amounts in Japan were similar between sulfur and nitrogen compounds, which showed higher deposition in the Sea of Japan side and the western Japan. The mean annual total (wet + dry) deposition amounts for sulfur and nitrogen compounds in Japanese sites were in the range of 28-77 and 22-130 mmol m-2 year-1, respectively. The contributions of dry deposition to the total deposition amounts were 10-55% and 13-56% for sulfur and nitrogen compounds, respectively. The regional characteristic of total deposition in Japan was different between sulfur and nitrogen compounds, which showed higher total deposition amounts for sulfur compounds at remote sites caused by long-range transboundary air pollution. When it is focused on the annual trend, the total deposition amounts of sulfur and nitrogen compounds increased remarkably at some sites in Japan, especially in the coast of Sea of Japan. Average dry and wet deposition amounts of sulfur or nitrogen compounds among Japanese EANET sites, 78 CASTNET sites in USA and 2447 EMEP domain grids in Europe were compared. Averages of total S (54 mmol m-2 year-1) and N (77 mmol m-2 year-1) deposition amounts in Japanese sites were larger than those in CASTNET and EMEP because of remarkably high wet deposition amounts. Especially, the higher deposition amounts of sulfur compounds in Japan were possibly caused by the long-range transboundary air pollution and natural emission sources, such as volcanic eruptions in the Japanese Archipelago. The recently increasing SO2 and NOx emissions in East Asian region would cause higher atmospheric depositions in Japan than those in other networks.
Influence of laser irradiation on deposition characteristics of cold sprayed Stellite-6 coatings
NASA Astrophysics Data System (ADS)
Li, Bo; Jin, Yan; Yao, Jianhua; Li, Zhihong; Zhang, Qunli; Zhang, Xin
2018-03-01
Depositing hard materials such as Stellite-6 solely by cold spray (CS) is challengeable due to limited ability of plastic deformation. In this study, the deposition of Stellite-6 powder was achieved by supersonic laser deposition (SLD) which combines CS with synchronous laser irradiation. The surface morphology, deposition efficiency, track shape of Stellite-6 coatings produced over a range of laser irradiation temperatures were examined so as to reveal the effects of varying laser energy inputting on the deposition process of high strength material. The microstructure, phase composition and wear/corrosion resistant properties of the as-deposited Stellite-6 coatings were also investigated. The experimental results demonstrate that the surface flatness and deposition efficiency increase with laser irradiation temperature due to the softening effect induced by laser heating. The as-deposited Stellite-6 tracks show asymmetric shapes which are influenced by the relative configuration of powder stream and laser beam. The SLD coatings can preserve the original microstructure and phase of the feedstock material due to relatively low laser energy inputting, which result in the superior wear/corrosion resistant properties as compared to the counterpart prepared by laser cladding.
Zheng, Qiantao; Lin, Jun; Huang, Jiaojiao; Zhang, Hongyong; Zhang, Rui; Zhang, Xueying; Cao, Chunwei; Hambly, Catherine; Qin, Guosong; Yao, Jing; Song, Ruigao; Jia, Qitao; Wang, Xiao; Li, Yongshun; Zhang, Nan; Piao, Zhengyu; Ye, Rongcai; Speakman, John R.; Wang, Hongmei; Zhou, Qi; Wang, Yanfang; Jin, Wanzhu
2017-01-01
Uncoupling protein 1 (UCP1) is localized on the inner mitochondrial membrane and generates heat by uncoupling ATP synthesis from proton transit across the inner membrane. UCP1 is a key element of nonshivering thermogenesis and is most likely important in the regulation of body adiposity. Pigs (Artiodactyl family Suidae) lack a functional UCP1 gene, resulting in poor thermoregulation and susceptibility to cold, which is an economic and pig welfare issue owing to neonatal mortality. Pigs also have a tendency toward fat accumulation, which may be linked to their lack of UCP1, and thus influences the efficiency of pig production. Here, we report application of a CRISPR/Cas9-mediated, homologous recombination (HR)-independent approach to efficiently insert mouse adiponectin-UCP1 into the porcine endogenous UCP1 locus. The resultant UCP1 knock-in (KI) pigs showed an improved ability to maintain body temperature during acute cold exposure, but they did not have alterations in physical activity levels or total daily energy expenditure (DEE). Furthermore, ectopic UCP1 expression in white adipose tissue (WAT) dramatically decreased fat deposition by 4.89% (P < 0.01), consequently increasing carcass lean percentage (CLP; P < 0.05). Mechanism studies indicated that the loss of fat upon UCP1 activation in WAT was linked to elevated lipolysis. UCP1 KI pigs are a potentially valuable resource for agricultural production through their combination of cold adaptation, which improves pig welfare and reduces economic losses, with reduced fat deposition and increased lean meat production. PMID:29078316
NASA Astrophysics Data System (ADS)
Cui, Jian; Zhou, Jing; Peng, Ying; He, Yuanqiu; Yang, Hao; Mao, Jingdong
2014-01-01
Biological processes in agroecosystems have been affected by atmospheric nitrogen (N) and sulfur (S) deposition, but there is uncertainty about their deposition characteristics in the monsoon season. We collected rain samples using an ASP-2 sampler, recorded rainfall and rain frequency by an auto-meteorological experiment sub-station, and determined total N, NO3--N and NH4+-N levels in precipitation with an AutoAnalyzer 3 and SO42--S with a chromatography, in order to characterize the wet deposition of N and S to a typical red soil agroecosystem by a ten-year monitoring experiment in Southeast China. The results indicated that N and S wet deposition had an increased trend with the flux of total N (3.34-65.17 kg ha-1 N) and total S (SO42--S) (7.17-23.44 kg ha-1 S) during the monsoon seasons. The additional applications of pig mature in 2006 and 2007 led to the peaks of DON (dissolved organic nitrogen) and total N wet deposition. On average, NH4+-N was the major N form, accounting for 48.5% of total N wet deposition and DON was not a negligible N form, accounting for 20.8% during the ten-year monsoon seasons (except 2006 and 2007). Wet deposition of N and S has been intensively influenced by human activities in the monsoon season, and would increase the potential ecological risk in the red soil agricultural ecosystem.
Characteristics of intraretinal deposits in acute central serous chorioretinopathy.
Plateroti, Andrea M; Witmer, Matthew T; Kiss, Szilárd; D'Amico, Donald J
2014-01-01
To describe the temporal and spatial characteristics of intraretinal deposits in patients with acute central serous chorioretinopathy (CSC) using spectral domain optical coherence tomography (OCT). We retrospectively reviewed the medical records of all patients that presented with acute CSC to Weill Cornell Medical College from January 2012 to May 2013. Acute CSC was defined as a diagnosis of CSC within 4 months of the onset of symptoms. Only one eye per patient was included in the study. Each patient was imaged with spectral domain OCT at the initial office visit. The decision to reimage these patients was made by the treating physician. A total of 25 patients (25 eyes; 17 men and eight nonpregnant women) were included in this review. Seven of 25 patients (28%) demonstrated intraretinal deposits within the outer plexiform layer during the initial OCT, with deposits appearing as early as the same day as the onset of symptoms. A total of 25 of 25 patients (100%) demonstrated intraretinal deposits in the outer nuclear layer upon initial (76%) or follow-up OCT, as early as 2 days after the onset of symptoms. A total of 24 of 25 patients (96%) demonstrated deposits in the external limiting membrane upon a follow-up OCT, as early as 7 days from symptoms appearing. A total of 24 of 25 patients (96%) developed intraretinal deposits in the inner segment/outer segment layer upon follow-up OCT, appearing as early as 14 days after symptom onset. At the time of resolution of subretinal fluid, 20 of 25 patients (80%) demonstrated intraretinal deposits. Intraretinal deposits are present in the outer retinal layers in patients with acute CSC, with the deposits appearing progressively deeper within the retina as the condition evolves. Upon resolution of subretinal fluid, the deposits slowly resolve.
The effect of CO2 on the plasma remediation of NxOy
NASA Astrophysics Data System (ADS)
Gentile, Ann C.; Kushner, Mark J.
1996-04-01
Plasma remediation is being investigated for the removal of oxides of nitrogen (NxOy) from atmospheric pressure gas streams. In previous works we have investigated the plasma remediation of NxOy from N2/O2/H2O mixtures using repetitively pulsed dielectric barrier discharges. As combustion effluents contain large percentages of CO2, in this paper we discuss the consequences of CO2 in the gas mixture on the efficiency of remediation and on the end products. We find that there is a small increase in the efficiency of total NxOy remediation (molecules/eV) with increasing CO2 fraction, however the efficiency of NO remediation alone generally decreases with increasing CO2. This differential is more pronounced at low energy deposition per pulse. More remediation occurs through the reduction channel with increasing CO2 while less NO2 and HNOx are produced through the oxidation channel. CO is produced by electron impact of CO2 though negligible amounts of cyanides are generated.
Recent developments in indium phosphide space solar cell research
NASA Technical Reports Server (NTRS)
Brinker, David J.; Weinberg, Irving
1987-01-01
Recent developments and progress in indium phosphide solar cell research for space application are reviewed. Indium phosphide homojunction cells were fabricated in both the n+p and p+n configurations with total area efficiencies of 17.9 and 15.9% (air mass 0 and 25 C) respectively. Organometallic chemical vapor deposition, liquid phase epitaxy, ion implantation and diffusion techniques were employed in InP cell fabrication. A theoretical model of a radiation tolerant, high efficiency homojunction cell was developed. A realistically attainable AMO efficiency of 20.5% was calculated using this model with emitter and base doping of 6 x 10 to the 17th power and 5 x 10 the the 16th power/cu cm respectively. Cells of both configurations were irradiated with 1 MeV electrons and 37 MeV protons. For both proton and electron irradiation, the n+p cells are more radiation resistant at higher fluences than the p+n cells. The first flight module of four InP cells was assembled for the Living Plume Shield III satellite.
NASA Astrophysics Data System (ADS)
Perrone, A.; Gontad, F.; Lorusso, A.; Di Giulio, M.; Broitman, E.; Ferrario, M.
2013-11-01
Pb thin films were prepared at room temperature and in high vacuum by thermal evaporation and pulsed laser deposition techniques. Films deposited by both the techniques were investigated by scanning electron microscopy to determine their surface topology. The structure of the films was studied by X-ray diffraction in θ-2θ geometry. The photoelectron performances in terms of quantum efficiency were deduced by a high vacuum photodiode cell before and after laser cleaning procedures. Relatively high quantum efficiency (>10-5) was obtained for all the deposited films, comparable to that of corresponding bulk. Finally, film to substrate adhesion was also evaluated using the Daimler-Benz Rockwell-C adhesion test method. Weak and strong points of these two competitive techniques are illustrated and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, S. A., E-mail: Soren.Jensen@nrel.gov, E-mail: Darius.Kuciauskas@nrel.gov; Glynn, S.; Kanevce, A.
World-record power conversion efficiencies for Cu(In,Ga)Se{sub 2} (CIGS) solar cells have been achieved via a post-deposition treatment with alkaline metals, which increases the open-circuit voltage and fill factor. We explore the role of the potassium fluoride (KF) post-deposition treatment in CIGS by employing energy- and time-resolved photoluminescence spectroscopy and electrical characterization combined with numerical modeling. The bulk carrier lifetime is found to increase with post-deposition treatment from 255 ns to 388 ns, which is the longest charge carrier lifetime reported for CIGS, and within ∼40% of the radiative limit. We find evidence that the post-deposition treatment causes a decrease in the electronicmore » potential fluctuations. These potential fluctuations have previously been shown to reduce the open-circuit voltage and the device efficiency in CIGS. Additionally, numerical simulations based on the measured carrier lifetimes and mobilities show a diffusion length of ∼10 μm, which is ∼4 times larger than the film thickness. Thus, carrier collection in the bulk is not a limiting factor for device efficiency. By considering differences in doping, bandgap, and potential fluctuations, we present a possible explanation for the voltage difference between KF-treated and untreated samples.« less
Spatial distribution and seasonal variations of atmospheric sulfur deposition over Northern China
NASA Astrophysics Data System (ADS)
Pan, Y. P.; Wang, Y. S.; Tang, G. Q.; Wu, D.
2012-09-01
The increasing anthropogenic emissions of acidic compounds have induced acid deposition accompanied by acidification in the aquatic and terrestrial ecosystems worldwide. However, comprehensive assessment of spatial patterns and long-term trends of acid deposition in China remains a challenge due to a paucity of field-based measurement data, in particular for dry deposition. Here we quantify the sulfur (S) deposition on a regional scale via precipitation, particles and gases during a 3-yr observation campaign at ten selected sites in Northern China. Results show that the total S deposition flux in the target area ranged from 35.0 to 100.7 kg S ha-1 yr-1, categorized as high levels compared to those documented in Europe, North America, and East Asia. The ten-site, 3-yr average total S deposition was 64.8 kg S ha-1 yr-1, with 32% attributed to wet deposition, and the rest attributed to dry deposition. Compared with particulate sulfate, gaseous SO2 was the major contributor of dry-deposited S, contributing approximately 49% to the total flux. Wet deposition of sulfate showed pronounced seasonal variations with maximum in summer and minimum in winter, corresponding to precipitation patterns in Northern China. However, the spatial and inter-annual differences in the wet deposition were not significant, which were influenced by the precipitation amount, scavenging ratio and the concentrations of atmospheric S compounds. In contrast, the relatively large dry deposition of SO2 and sulfate during cold season, especially at industrial areas, was reasonably related to the local emissions from home heating. Although seasonal fluctuations were constant, clear spatial differences were observed in the total S deposition flux and higher values were also found in industrial areas with huge emissions of SO2. These findings indicate that human activity has dramatically altered the atmospheric S deposition and thus regional S cycles. To systematically illustrate the potential effects of acidifying deposition on the receiving environment, we calculated the deposition of "potential acidity" that takes into account the microbial transformation of ammonium to nitrate in the ecosystems, resulting in the release of hydrogen ions. The estimated total "acid equivalents" deposition of S and nitrogen (N) fell within the range of 4.2-11.6 keq ha-1 yr-1, with a ten-site, 3-yr mean of 8.4 keq ha-1 yr-1. This value is significantly higher than that of other regions in the world and exceeds the critical loads for natural ecosystems in Northern China, thus prompting concerns regarding ecological impacts. The contribution of S to total acid deposition was comparable to that of N at most of sites; however, the importance of S on acidification risks was more pronounced in the industrial sites, highlighting that further SO2 abatement from industrial emissions is still needed. Taking these findings and our previous studies together, a multi-pollutant perspective and joint mitigate strategies to abate SO2 and NH3 simultaneously in the target areas are recommended to protect the natural ecosystems from excess acid deposition caused by anthropogenic emissions.
Modeling Flight Attendants’ Exposures to Pesticide in Disinsected Aircraft Cabins
Zhang, Yong; Isukapalli, Sastry; Georgopoulos, Panos; Weisel, Clifford
2014-01-01
Aircraft cabin disinsection is required by some countries to kill insects that may pose risks to public health and native ecological systems. A probabilistic model has been developed by considering the microenvironmental dynamics of the pesticide in conjunction with the activity patterns of flight attendants, to assess their exposures and risks to pesticide in disinsected aircraft cabins under three scenarios of pesticide application. Main processes considered in the model are microenvironmental transport and deposition, volatilization, and transfer of pesticide when passengers and flight attendants come in contact with the cabin surfaces. The simulated pesticide airborne mass concentration and surface mass loadings captured measured ranges reported in the literature. The medians (means±standard devitions) of daily total exposures intakes were 0.24 (3.8±10.0), 1.4 (4.2±5.7) and 0.15 (2.1±3.2) μg/(day kg BW) for scenarios of Residual Application, Preflight and Top-of-Descent spraying, respectively. Exposure estimates were sensitive to parameters corresponding to pesticide deposition, body surface area and weight, surface-to-body transfer efficiencies, and efficiency of adherence to skin. Preflight spray posed 2.0 and 3.1 times higher pesticide exposure risk levels for flight attendants in disinsected aircraft cabins than Top-of-Descent spray and Residual Application, respectively. PMID:24251734
Ellinwood, N Matthew; Ausseil, Jérôme; Desmaris, Nathalie; Bigou, Stéphanie; Liu, Song; Jens, Jackie K; Snella, Elizabeth M; Mohammed, Eman E A; Thomson, Christopher B; Raoul, Sylvie; Joussemet, Béatrice; Roux, Françoise; Chérel, Yan; Lajat, Yaouen; Piraud, Monique; Benchaouir, Rachid; Hermening, Stephan; Petry, Harald; Froissart, Roseline; Tardieu, Marc; Ciron, Carine; Moullier, Philippe; Parkes, Jennifer; Kline, Karen L; Maire, Irène; Vanier, Marie-Thérèse; Heard, Jean-Michel; Colle, Marie-Anne
2011-02-01
Recent trials in patients with neurodegenerative diseases documented the safety of gene therapy based on adeno-associated virus (AAV) vectors deposited into the brain. Inborn errors of the metabolism are the most frequent causes of neurodegeneration in pre-adulthood. In Sanfilippo syndrome, a lysosomal storage disease in which heparan sulfate oligosaccharides accumulate, the onset of clinical manifestation is before 5 years. Studies in the mouse model showed that gene therapy providing the missing enzyme α-N-acetyl-glucosaminidase to brain cells prevents neurodegeneration and improves behavior. We now document safety and efficacy in affected dogs. Animals received eight deposits of a serotype 5 AAV vector, including vector prepared in insect Sf9 cells. As shown previously in dogs with the closely related Hurler syndrome, immunosuppression was necessary to prevent neuroinflammation and elimination of transduced cells. In immunosuppressed dogs, vector was efficiently delivered throughout the brain, induced α-N-acetyl-glucosaminidase production, cleared stored compounds and storage lesions. The suitability of the procedure for clinical application was further assessed in Hurler dogs, providing information on reproducibility, tolerance, appropriate vector type and dosage, and optimal age for treatment in a total number of 25 treated dogs. Results strongly support projects of human trials aimed at assessing this treatment in Sanfilippo syndrome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, Shanique L.; Kim, Myoungwoo; Lin, Peng
The Great Lakes eco-region is one of the largest sources of fresh water in North America; however it is chronically exposed to heavy metal loadings such as mercury. In this study a comprehensive model evaluation was conducted to determine mercury loadings to the Great Lakes. The study also evaluated the relative impact of anthropogenic mercury emissions from China, regional and global sources on deposition to the Great Lakes. For the 2005 study period, CMAQ 4.7.1 model estimated a total of 6.4 ± 0.5 metric tons of mercury deposited in the Great Lakes. The total deposition breakdown showed a net loadingmore » for Lake Superior of 1906 ± 246 kg/year which is the highest of all the lakes. Lake Michigan followed with 1645 ± 203 kg/year and 1511 ± 107 kg/year in Lake Huron. The lowest total deposition was seen in Lakes Erie and Ontario amassing annual totals of 837 ± 107 kg and 506 ± 63 kg, respectively. Wet and dry deposition of mercury were both significant pathways and exhibited strong seasonal variability with higher deposition occurring in the warmer months (June–November) and the lowest in winter. Wet deposition of RGM significantly influenced the deposition proportions accounting for roughly 90% of all mercury deposited. Of the three emission sources (global background, integrated planning management (IPM) and Chinese), global background concentrations represented the maximum impact to deposition loading in the Great Lakes, except for Lake Erie and parts of Lake Michigan. There was minimal seasonality for the global background, but differences in percentage contribution between dry (28–97%) and wet deposition (43–98%) was predicted. The contributions were seen mainly in the northern sections of the Great Lakes further away from IPM point sources. These findings suggest strong localized impact of IPM sources on the southernmost lakes. Deposition as a result of emissions from China exhibited seasonality in both wet and dry deposition and showed significant contributions ranging from 0.2 to 9%.« less
Impacts of urbanization on nitrogen deposition in the Pearl River Delta region, China
NASA Astrophysics Data System (ADS)
Wang, X.; Fan, Q.
2015-12-01
The Pearl River Delta (PRD) region is one of the most advanced economic districts in China, which has experienced remarkable economic development and urbanization in the past two decades. Accompanied with the rapid economy development and urbanization, the PRD region encountered both severe nitrogen pollution and deposition. In this study, the characteristics of nitrogen deposition and impacts of urbanization on nitrogen deposition in the PRD region were investigated by combining the methods of field study and numerical model. According to the field measurements, the total dry and wet atmospheric deposition of reactive N at a urban site (SYSU) was up to 55.0 kg ha-1 yr-1 in 2010, slightly lower than the results at a rural forest site (DHS) (57.6 kg ha-1 yr-1). Wet deposition was the main form of the total deposition (64-76%). Organic nitrogen (ON) was found to be dominant in the total N deposition, with a contribution of 53% at DHS and 42% at SYSU. NH4+-N and NO3--N accounted for a similar portion of the total N deposition (23-29%). Atmospheric nitrogen deposition was further simulated by using the improved WRF-Chem model. The simulated N deposition flux was high in the north of PRD (i.e., Guangzhou, Foshan, Zhaoqing) and relative low in the east (Huizhou) and south (Zhuhai), with an average N deposition flux of about 24 kg ha-1 yr-1 for the whole PRD. The distribution of N dry deposition was mainly controlled by the concentration of reactive N compounds and precipitation governed the wet deposition distribution. The modeling results also indicate that the PRD area is the source region in which the emissions exceed the deposition while the outside area of the PRD is the receptor region in which the deposition exceeds emissions. The impact of emission change and land use change due to urbanization was also investigated using the WRF-Chem model. The results showed that atmospheric N deposition exhibits a direct response to emission change while the land use change impacts the atmospheric N deposition indirectly mainly through the modification of precipitation. As a result of great challenges in reduction of the reactive N emission, a scenario of rising N deposition in the PRD cannot be discarded in the future.
Attribution of nitrogen deposition driven by urbanization over Pearl River Delta region China
NASA Astrophysics Data System (ADS)
Wang, X.; Wu, Z.
2016-12-01
The Pearl River Delta (PRD) region is one of the most advanced economic districts in China, which has experienced remarkable economic development and urbanization in the past two decades. Accompanied with the rapid economy development and urbanization, the PRD region encountered both severe nitrogen pollution and deposition. In this study, the characteristics of nitrogen deposition and impacts of urbanization on nitrogen deposition in the PRD region were investigated by combining the methods of field study and numerical model. According to the field measurements, the total dry and wet atmospheric deposition of reactive N at a urban site (SYSU) was up to 55.0 kg ha-1 yr-1 in 2010, slightly lower than the results at a rural forest site (DHS) (57.6 kg ha-1 yr-1). Wet deposition was the main form of the total deposition (64-76%). Organic nitrogen (ON) was found to be dominant in the total N deposition, with a contribution of 53% at DHS and 42% at SYSU. NH4+-N and NO3-N accounted for a similar portion of the total N deposition (23-29%). Atmospheric nitrogen deposition was further simulated by using the improved WRF-Chem model. The simulated N deposition flux was high in the north of PRD (i.e.,Guangzhou, Foshan, Zhaoqing) and relative low in the east (Huizhou) and south (Zhuhai), with an average N deposition flux of about 24 kg ha-1 yr-1 for the whole PRD. The distribution of N dry deposition was mainly controlled by the concentration of reactive N compounds and precipitation governed the wet deposition distribution. The modeling results also indicate that the PRD area is the source region in which the emissions exceed the deposition while the outside area of the PRD is the receptor region in which the deposition exceeds emissions. The impact of emission change and land use change due to urbanization was also investigated using the WRF-Chem model. The results showed that atmospheric N deposition exhibits a direct response to emission change while the land use change impacts the atmospheric N deposition indirectly mainly through the modification of precipitation. As a result of great challenges in reduction of the reactive N emission, a scenario of rising N deposition in the PRD cannot be discarded in the future.
Harvey, Taylor B; Mori, Isao; Stolle, C Jackson; Bogart, Timothy D; Ostrowski, David P; Glaz, Micah S; Du, Jiang; Pernik, Douglas R; Akhavan, Vahid A; Kesrouani, Hady; Vanden Bout, David A; Korgel, Brian A
2013-09-25
The power conversion efficiency of photovoltaic devices made with ink-deposited Cu(InxGa1-x)Se2 (CIGS) nanocrystal layers can be enhanced by sintering the nanocrystals with a high temperature selenization process. This process, however, can be challenging to control. Here, we report that ink deposition followed by annealing under inert gas and then selenization can provide better control over CIGS nanocrystal sintering and yield generally improved device efficiency. Annealing under argon at 525 °C removes organic ligands and diffuses sodium from the underlying soda lime glass into the Mo back contact to improve the rate and quality of nanocrystal sintering during selenization at 500 °C. Shorter selenization time alleviates excessive MoSe2 formation at the Mo back contact that leads to film delamination, which in turn enables multiple cycles of nanocrystal deposition and selenization to create thicker, more uniform absorber films. Devices with power conversion efficiency greater than 7% are fabricated using the multiple step nanocrystal deposition and sintering process.
Water quality of an urban wet detention pond in Madison, Wisconsin, 1987-88
House, L.B.; Waschbusch, R.J.; Hughes, P.E.
1993-01-01
A 5,670-sq m wet detention pond was monitored by the U.S. Geological Survey to determine its effect on the water quality of urban runoff. The pond has a drainage area of 0.96-sq km, composed primarily of single-family residential land use. Event-mean concentrations (EMC) were determined from samples collected for sediment, nutrients, and selected metals at the pond's inflow and outflow sites. EMC samples were collected for 64 runoff events during the study period from February 1987 to April 1988. Storm precipitation ranged from 1 to 51 mm during these events. Inflow and outflow EMC and constituent loads were compared to determine the trap efficiency of the pond. Trap efficiency varied considerably among water-quality constituents. In general, the detention pond decreased the EMC of sampled constituents at the outlet compared to the inlet. The median decrease in EMC for suspended solids was 88 percent, 60 percent for total chemical oxygen demand (COD), 43 percent for total phosphorus, 38 percent for total Kjeldahl nitrogen, 65 percent for total nitrite plus nitrate, and 71 percent for total lead. A notable exception to the general decrease in EMC is for chloride. The EMC for chloride was generally higher in outflow from the pond than in the inflow. This is attributed to an unmonitored influx of chloride to the pond during the winter that subsequently was flushed out during monitored runoff events. The total study-period loads of most constituents were less leaving the pond than the loads entering it. This decrease is attributed to the constituents transported on suspended sediment being deposited in the pond. The decrease in total load of suspended solids was 88 percent, 62 percent for total COD, 58 percent for total phosphorus, 46 percent for total Kjeldahl nitrogen, 62 percent for total nitrite plus nitrate, 97 percent for total copper, and 93 percent for total lead. (USGS)
Staatz, M.H.
1983-01-01
The Bear Lodge Mountains are a small northerly trending range approximately 16 km northwest of the Black Hills in the northeast corner of Wyoming. Thorium and rare-earth deposits occur over an area of 16 km 2 in the southern part of these mountains. These deposits occur in the core of the Bear Lodge dome in a large multiple intrusive body made up principally of trachyte and phonolite. Two types of deposits are recognized: disseminated deposits and veins. The disseminated deposits are made up of altered igneous rocks cut by numerous crisscrossing veinlets. The disseminated deposits contain thorium and rare-earth minerals in a matrix consisting principally of potassium feldspar, quartz, and iron and manganese oxides. Total rare-earth content of these deposits is about 27 times that of the thorium content. The general size and shape of the disseminated deposits were outlined by making a radiometric map using a scintillation counter of the entire Bear Lodge core, an area of approximately 30 km 2 . The most favorable part of this area, which was outlined by the 40 countJs (count-per-second) isograd on the radiometric map, was sampled in detail. A total of 341 samples were taken over an area of 10.6 km 2 and analyzed for as many as 60 elements. Rare earths and thorium are the principal commodities of interest in these deposits. Total rare-earth content of these samples ranged from 47 to 27,145 ppm (parts per million), and the thorium content from 9.3 to 990 ppm. The amount of total rare earths of individual samples shows little correlation with that of thorium. Contour maps were constructed using the analytical data for total rare earths, thorium, uranium, and potassium. The total rare-earth and thorium maps can be used to define the size of the deposits based on what cut-off grade may be needed during mining. The size is large as the 2,000 ppm total rare-earth isograd encloses several areas that total 3.22 km 2 in size, and the 200 ppm thorium isograd encloses several areas that total 1.69 km 2 . These deposits could be mined by open pit. The Bear Lodge disseminated deposits have one of the largest resources of both total rare earths and thorium in the United States, and although the grade of both commodities is lower than some other deposits, their large size and relative cheapness of mining make them an important future resource. Vein deposits in the Bear Lodge Mountains include all tabular bodies at least 5 cm thick. Twenty-six veins were noted in this area. These veins are thin and short; the longest vein was traced for only 137 m. Minerals vary greatly in the amount present. Gangue minerals are commonly potassium feldspar, quartz, or cristobalite intermixed with varying amounts of limonite, hematite, and various manganese oxides. Rare earths and thorium occur in the minerals monazite, brockite, and bastnaesite. Thorium content of 35 samples ranged from 0.01 to 1.2 percent, and the total rare-earth content of 21 samples from 0.23 to 9.8 percent. Indicated reserves were calculated to a depth of one-third the exposed length of the vein. Inferred reserves lie in a block surrounding indicated reserves. Indicated reserves of all veins are only 50 t of Th0 2 and 1,360 t of total rare-earth oxides; inferred reserves are 250 t of Th0 2 and 6,810 t of total rare-earth oxides. The Bear Lodge dome, which underlies the greater part of this area, is formed by multiple intrusive bodies of Tertiary age that dome up the surrounding sedimentary rocks. In the southern part of the core, the younger intrusive bodies surround and partly replace a granite of Precambrian age. This granite is approximately 2.6 b.y. old. The sedimentary rocks around the core are (from oldest to youngest): Deadwood Formation of Late Cambrian and Early Ordovician age, Whitewood Limestone of Late Ordovician age, Pahasapa Limestone of Early Mississippian age, Minnelusa Sandstone of Pennsylvanian and Early Permian age, Opeche Formation of Permian age, Minnek
Modeling Natural Space Ionizing Radiation Effects on External Materials
NASA Technical Reports Server (NTRS)
Alstatt, Richard L.; Edwards, David L.; Parker, Nelson C. (Technical Monitor)
2000-01-01
Predicting the effective life of materials for space applications has become increasingly critical with the drive to reduce mission cost. Programs have considered many solutions to reduce launch costs including novel, low mass materials and thin thermal blankets to reduce spacecraft mass. Determining the long-term survivability of these materials before launch is critical for mission success. This presentation will describe an analysis performed on the outer layer of the passive thermal control blanket of the Hubble Space Telescope. This layer had degraded for unknown reasons during the mission, however ionizing radiation (IR) induced embrittlement was suspected. A methodology was developed which allowed direct comparison between the energy deposition of the natural environment and that of the laboratory generated environment. Commercial codes were used to predict the natural space IR environment model energy deposition in the material from both natural and laboratory IR sources, and design the most efficient test. Results were optimized for total and local energy deposition with an iterative spreadsheet. This method has been used successfully for several laboratory tests at the Marshall Space Flight Center. The study showed that the natural space IR environment, by itself, did not cause the premature degradation observed in the thermal blanket.
NASA Astrophysics Data System (ADS)
Budak, S.; Guner, S.; Minamisawa, R. A.; Muntele, C. I.; Ila, D.
2014-08-01
We prepared multilayers of superlattice thin film system with 50 periodic alternating nano-layers of semiconducting half-Heusler β-Zn4Sb3 and skutterudite CeFe2Co2Sb12 compound thin films using ion beam assisted deposition (IBAD) with Au layers deposited on both sides as metal contacts. The deposited multilayer thin films have alternating layers about 5 nm thick. The total thickness of the multilayer system is 275 nm. The superlattices were then bombarded by 5 MeV Si ion at six different fluences to form nano-cluster structures. The film thicknesses and composition were monitored by Rutherford backscattering spectrometry (RBS) before and after MeV ion bombardment. We have measured the thermoelectric efficiency, Figure of Merit ZT, of the fabricated device by measuring the cross plane thermal conductivity by the 3rd harmonic (3ω) method, the cross plane Seebeck coefficient, and the electrical conductivity using the van der Pauw method before and after the MeV ion bombardments. We reached the remarkable thermoelectric Figure of Merit results at optimal fluences.
Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;
NASA Astrophysics Data System (ADS)
Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil
2017-09-01
In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.
Modeling natural space ionizing radiation effects on external materials
NASA Astrophysics Data System (ADS)
Altstatt, Richard L.; Edwards, David L.
2000-10-01
Predicting the effective life of materials for space applications has become increasingly critical with the drive to reduce mission cost. Programs have considered many solutions to reduce launch costs including novel, low mass materials and thin thermal blankets to reduce spacecraft mass. Determining the long-term survivability of these materials before launch is critical for mission success. This presentation will describe an analysis performed on the outer layer of the passive thermal control blanket of the Hubble Space Telescope. This layer had degraded for unknown reasons during the mission, however ionizing radiation (IR) induced embrittlement was suspected. A methodology was developed which allowed direct comparison between the energy deposition of the natural environment and that of the laboratory generated environment. Commercial codes were used to predict the natural space IR environment, model energy deposition in the material from both natural and laboratory IR sources, and design the most efficient test. Results were optimized for total and local energy deposition with an iterative spreadsheet. This method has been used successfully for several laboratory tests at the Marshall Space Flight Center. The study showed that the natural space IR environment, by itself, did not cause the premature degradation observed in the thermal blanket.
Dietary choline requirement of juvenile hybrid striped bass.
Griffin, M E; Wilson, K A; White, M R; Brown, P B
1994-09-01
Two experiments were conducted to estimate the dietary choline requirement and to determine the effects of dietary choline on liver lipid deposition in juvenile hybrid striped bass (Monrone saxatilis x M. chrysops). Experimental diets contained 0.73 g total sulfur amino acids/100 g diet (0.47 g methionine + 0.26 g cyst(e)ine/100 g diet), thus meeting, but not exceeding, the requirement. Graded levels of choline bitartrate in Experiment 1 and choline chloride in Experiment 2 were added to the basal diet, resulting in eight dietary treatments in each experiment. Dietary treatments were 0, 250, 500, 1000, 2000, 4000, 6000 and 8000 mg choline/kg dry diet. Diets were fed for 12 and 10 wk in Experiments 1 and 2, respectively. Dietary choline concentrations significantly affected weight gain, feed efficiency, survival and total liver lipid concentrations in each experiment. Weight gain and feed efficiency were greatest in fish fed 500 mg choline/kg dry diet as choline bitartrate. Total liver lipid concentrations were variable but tended to be lowest in fish fed diets containing at least 2000 mg choline/kg diet. Survival was significantly lower in the group of fish fed 8000 mg choline/kg diet supplied by choline bitartrate. Weight gain and feed efficiency were greatest and total liver lipid concentration was lowest in groups of fish fed at least 500 mg choline/kg diet as choline chloride; survival was unaffected by dietary treatment. Therefore, choline chloride seems to be a better source of dietary choline than choline bitartrate and 500 mg choline/kg diet is adequate for maximum weight gain and prevention of increased liver lipid concentration in juvenile hybrid striped bass.
Mihalasky, Mark J.; Bookstrom, Arthur A.; Frost, Thomas P.; Ludington, Steve
2011-01-01
Western Canada has been thoroughly explored for porphyry copper deposits. The total estimated copper contained in known deposits is about 66.8 Mt (based on 2010 data), as compared to a 49 Mt mean of estimated copper in undiscovered deposits and a 34 Mt median of estimated copper in undiscovered deposits. The copper contained in known porphyry copper deposits represents about 58 percent of the total of known and undiscovered porphyry copper deposits (based on mean values). About 86 percent of the increase in estimated copper resources between 1993 and 2009 resulted from the discovery of extensions to known deposits. Nevertheless, exploration for undiscovered deposits continues, especially in and around significant prospects and in parts of permissive tracts that are mostly hidden beneath younger volcanic, sedimentary, or vegetated surficial cover.
Park, Ik Jae; Kang, Gyeongho; Park, Min Ah; Kim, Ju Seong; Seo, Se Won; Kim, Dong Hoe; Zhu, Kai; Park, Taiho; Kim, Jin Young
2017-06-22
Given that the highest certified conversion efficiency of the organic-inorganic perovskite solar cell (PSC) already exceeds 22 %, which is even higher than that of the polycrystalline silicon solar cell, the significance of new scalable processes that can be utilized for preparing large-area devices and their commercialization is rapidly increasing. From this perspective, the electrodeposition method is one of the most suitable processes for preparing large-area devices because it is an already commercialized process with proven controllability and scalability. Here, a highly uniform NiO x layer prepared by electrochemical deposition is reported as an efficient hole-extraction layer of a p-i-n-type planar PSC with a large active area of >1 cm 2 . It is demonstrated that the increased surface roughness of the NiO x layer, achieved by controlling the deposition current density, facilitates the hole extraction at the interface between perovskite and NiO x , and thus increases the fill factor and the conversion efficiency. The electrochemically deposited NiO x layer also exhibits extremely uniform thickness and morphology, leading to highly efficient and uniform large-area PSCs. As a result, the p-i-n-type planar PSC with an area of 1.084 cm 2 exhibits a stable conversion efficiency of 17.0 % (19.2 % for 0.1 cm 2 ) without showing hysteresis effects. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Park, Ik Jae; Kang, Gyeongho; Park, Min Ah; ...
2017-05-10
Here, given that the highest certified conversion efficiency of the organic-inorganic perovskite solar cell (PSC) already exceeds 22%, which is even higher than that of the polycrystalline silicon solar cell, the significance of new scalable processes that can be utilized for preparing large-area devices and their commercialization is rapidly increasing. From this perspective, the electrodeposition method is one of the most suitable processes for preparing large-area devices because it is an already commercialized process with proven controllability and scalability. Here, a highly uniform NiO x layer prepared by electrochemical deposition is reported as an efficient hole-extraction layer of a p-i-n-typemore » planar PSC with a large active area of >1 cm 2. It is demonstrated that the increased surface roughness of the NiO x layer, achieved by controlling the deposition current density, facilitates the hole extraction at the interface between perovskite and NiO x, and thus increases the fill factor and the conversion efficiency. The electrochemically deposited NiO x layer also exhibits extremely uniform thickness and morphology, leading to highly efficient and uniform large-area PSCs. As a result, the p-i-n-type planar PSC with an area of 1.084 cm 2 exhibits a stable conversion efficiency of 17.0% (19.2% for 0.1 cm 2) without showing hysteresis effects.« less
Method for measuring and controlling beam current in ion beam processing
Kearney, Patrick A.; Burkhart, Scott C.
2003-04-29
A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.
Code of Federal Regulations, 2011 CFR
2011-07-01
... deposits formed in the carburetor during operation of a carburetted gasoline engine which can disrupt the... additive package to prevent the formation of deposits in gasoline engines. Deposit control efficiency means... and after operation of a gasoline engine, as evaluated by the reduction in the gasoline flow rate...
Code of Federal Regulations, 2014 CFR
2014-07-01
... deposits formed in the carburetor during operation of a carburetted gasoline engine which can disrupt the... additive package to prevent the formation of deposits in gasoline engines. Deposit control efficiency means... and after operation of a gasoline engine, as evaluated by the reduction in the gasoline flow rate...
Code of Federal Regulations, 2010 CFR
2010-07-01
... deposits formed in the carburetor during operation of a carburetted gasoline engine which can disrupt the... additive package to prevent the formation of deposits in gasoline engines. Deposit control efficiency means... and after operation of a gasoline engine, as evaluated by the reduction in the gasoline flow rate...
NASA Astrophysics Data System (ADS)
Matsumoto, Shigeaki; Toyooka, Satoru; Hoshino, Mitsuo
2002-09-01
In order to measure the total mass per unit area of dew droplets deposited on a metal plate in the dew-point hygrometer, the shape of a dew droplet deposited on a copper plate was measured accurately by using an interference microscope that employed a phase-shift technique. The microscope was constructed by adding a piezoelectric transducer to an usual interference microscope. A simple method that uses a conventional speaker horn and an optical fiber cable was introduced to depress speckle noise. The shape of a dew droplet deposited on the copper plate surface with 0.1 μm in average roughness was measured with an accuracy of +/-3nm. The mass of a dew droplet could be calculated numerically from the volume of its shape and was of the order of 10-9 g. The total mass of dew droplets deposited per unit area and the deposition velocity were obtained under a gentle wind. The total mass was the order of 10-5 g/cm2 at the beginning of deposition and the deposition velocity was ranged from 2x10-6 to 6x10-5 g/cm2.min.
Electrogeochemical sampling with NEOCHIM - results of tests over buried gold deposits
Leinz, R.W.; Hoover, D.B.; Fey, D.L.; Smith, D.B.; Patterson, T.
1998-01-01
Electrogeochemical extraction methods are based on the migration of ions in an electric field. Ions present in soil moisture are transported by an applied current into fluids contained in special electrodes placed on the soil. The fluids are then collected and analyzed. Extractions are governed by Faraday's and Ohm's laws and are modeled by the operation of a simple Hittord transference apparatus. Calculations show that the volume of soil sampled in an ideal electrogeochemical extraction can be orders of magnitude greater than the volumes used in more popular geochemical extraction methods, although this has not been verified experimentally. CHIM is a method of in-situ electrogeochemical extraction that was developed in the former Soviet Union and has been tested and applied internationally to exploration for buried mineral deposits. Tests carried out at the US Geological Survey (USGS) indicated that there were problems inherent in the use of CHIM technology. The cause of the problems was determined to be the diffusion of acid from the conventional electrode into the soil. The NEOCHIM electrode incorporates two compartments and a salt bridge in a design that inhibits diffusion of acid and enables the collection of anions or cations. Tests over a gold-enriched vein in Colorado and over buried, Carlin-type, disseminated gold deposits in northern Nevada show that there are similarities and differences between NEOCHIM results and those by partial extractions of soils which include simple extractions with water, dilute acids and solutions of salts used as collector fluids in the electrodes. Results of both differ from the results obtained by total chemical digestion. The results indicate that NEOCHIM responds to mineralized faults associated with disseminated gold deposits whereas partial and total chemical extraction methods do not. This suggests that faults are favored channels for the upward migration of metals and that NEOCHIM may be more effective in exploration for the deposits. It defines anomalies that are often narrow and intense, an observation previously made by CHIM researchers. The field tests show that NEOCHIM is less affected by surface contamination. A test over the Mike disseminated gold deposit indicates that the method may not be effective for locating deposits with impermeable cover. Faradaic extraction efficiencies of 20-30%, or more, are frequently achieved with NEOCHIM and the method generally shows good reproducibility, especially in extraction of major cations. However, ions of other metals that are useful in exploration, including Au and As, may be collected in low and temporally variable concentrations. The reason for this variability is unclear and requires further investigation.CHIM is a method of in-situ electrogeochemical extraction developed for the exploration of buried mineral deposits. However, electrode problems like diffusion of acid into the soil were encountered during the use of CHIM. The NEOCHIM electrode was developed to inhibit the diffusion of acid and enable collection of anions or cations. Tests over buried gold deposits showed that NEOCHIM responds to mineralized faults associated with disseminated gold deposits whereas partial and total chemical extraction methods do not. This suggests that faults are favored channels for the upward migration of metals and NEOCHIM may be effective in exploration for the deposits. But ions of metals may be collected in low and variable concentration.
Electrodeposition of organic-inorganic tri-halide perovskites solar cell
NASA Astrophysics Data System (ADS)
Charles, U. A.; Ibrahim, M. A.; Teridi, M. A. M.
2018-02-01
Perovskite (CH3NH3PbI3) semiconductor materials are promising high-performance light energy absorber for solar cell application. However, the power conversion efficiency of perovskite solar cell is severely affected by the surface quality of the deposited thin film. Spin coating is a low-cost and widely used deposition technique for perovskite solar cell. Notably, film deposited by spin coating evolves surface hydroxide and defeats from uncontrolled precipitation and inter-diffusion reaction. Alternatively, vapor deposition (VD) method produces uniform thin film but requires precise control of complex thermodynamic parameters which makes the technique unsuitable for large scale production. Most deposition techniques for perovskite require tedious surface optimization to improve the surface quality of deposits. Optimization of perovskite surface is necessary to significantly improve device structure and electrical output. In this review, electrodeposition of perovskite solar cell is demonstrated as a scalable and reproducible technique to fabricate uniform and smooth thin film surface that circumvents the need for high vacuum environment. Electrodeposition is achieved at low temperatures, supports precise control and optimization of deposits for efficient charge transfer.
Code of Federal Regulations, 2010 CFR
2010-10-01
... withdrawals (exhibit A-3) 450 Fund total (agrees with balance sheet submitted at this date) on deposit for... fund Thousands Balance brought forward $403 Deposits 82 Total “CCF: Security Amount” 485 Exhibit A-1... made from general fund—hull 210 250 Net accrued deposits and withdrawals in capital construction fund...
Brown, M A; Hutchins, T A; Gamsky, C J; Wagner, M S; Page, S H; Marsh, J M
2010-06-01
An approach is described to increase the deposition efficiency of silicone conditioning actives from a shampoo on colour-treated hair via liquid crystal (LC) colloidal structures, created with a high charge density cationic polymer, poly(diallyldimethyl ammonium chloride) and negatively charged surfactants. LCs are materials existing structurally between the solid crystalline and liquid phases, and several techniques, including polarized light microscopy, small angle X-Ray analysis, and differential scanning calorimetry, were used to confirm the presence of the LC structures in the shampoo formula. Silicone deposition from the LC-containing shampoo and a control shampoo was measured on a range of hair substrates, and data from inductively coupled plasma optical emission spectroscopy analysis and ToF-SIMS imaging illustrate the enhancement in silicone deposition for the LC shampoo on all hair types tested, with the most pronounced enhancement occurring on hair that had undergone oxidative treatments, such as colouring. A model is proposed in which the LC structure deposits from the shampoo onto the hair to: (i) provide 'slip planes' along the hair surface for wet conditioning purposes and (ii) form a hydrophobic layer which changes the surface energy of the fibres. This increase in hydrophobicity of the hair surface thereby increases the deposition efficiency of silicone conditioning ingredients. Zeta potential measurements, dynamic absorbency testing analysis and ToF-SIMS imaging were used to better understand the mechanisms of action. This approach to increasing silicone deposition is an improvement relative to conventional conditioning shampoos, especially for colour-treated hair.
Identification of sewer pipes to be cleaned for reduction of CSO pollutant load.
Nagaiwa, Akihiro; Settsu, Katsushi; Nakajima, Fumiyuki; Furumai, Hiroaki
2007-01-01
To reduce the CSO (Combined Sewer Overflow) pollutant discharge, one of the effective options is cleaning of sewer pipes before rainfall events. To maximize the efficiency, identification of pipes to be cleaned is necessary. In this study, we discussed the location of pipe deposit in dry weather in a combined sewer system using a distributed model and investigated the effect of pipe cleaning to reduce the pollutant load from the CSO. First we simulated the dry weather flow in a combined sewer system. The pipe deposit distribution in the network was estimated after 3 days of dry weather period. Several specific pipes with structural defect and upper end pipes tend to have an accumulation of deposit. Wet weather simulations were conducted with and without pipe cleaning in rainfall events with different patterns. The SS loads in CSO with and without the pipe cleaning were compared. The difference in the estimated loads was interpreted as the contribution of wash-off in the cleaned pipe. The effect of pipe cleaning on reduction of the CSO pollutant load was quantitatively evaluated (e.g. the cleaning of one specific pipe could reduce 22% of total CSO load). The CSO simulations containing pipe cleaning options revealed that identification of pipes with accumulated deposit using the distributed model is very useful and informative to evaluate the applicability of pipe cleaning option for CSO pollutant reduction.
Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements.
Jia, Yanlong; Yu, Guirui; Gao, Yanni; He, Nianpeng; Wang, Qiufeng; Jiao, Cuicui; Zuo, Yao
2016-01-27
Atmospheric nitrogen (N) dry deposition is an important component in total N deposition. However, uncertainty exists in the assessment of global dry deposition. Here, we develop empirical models for estimating ground N concentrations using NO2 satellite measurements from the Ozone Monitoring Instrument (OMI) and ground measurements from 555 monitoring sites. Global patterns and trends in the fluxes of NO2, HNO3, NH4(+), and NO3(-) were assessed for 2005-2014. Moreover, we estimated global NH3 dry deposition directly using data from 267 monitoring sites. Our results showed that East Asia, the United States, and Europe were important regions of N deposition, and the total annual amount of global inorganic N deposition was 34.26 Tg N. The dry deposition fluxes were low in Africa and South America, but because of their large area, the total amounts in these regions were comparable to those in Europe and North America. In the past decade, the western United States and Eurasia, particularly eastern China, experienced the largest increases in dry deposition, whereas the eastern United States, Western Europe, and Japan experienced clear decreases through control of NOx and NH3 emissions. These findings provide a scientific background for policy-makers and future research into global changes.
Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements
Jia, Yanlong; Yu, Guirui; Gao, Yanni; He, Nianpeng; Wang, Qiufeng; Jiao, Cuicui; Zuo, Yao
2016-01-01
Atmospheric nitrogen (N) dry deposition is an important component in total N deposition. However, uncertainty exists in the assessment of global dry deposition. Here, we develop empirical models for estimating ground N concentrations using NO2 satellite measurements from the Ozone Monitoring Instrument (OMI) and ground measurements from 555 monitoring sites. Global patterns and trends in the fluxes of NO2, HNO3, NH4+, and NO3− were assessed for 2005–2014. Moreover, we estimated global NH3 dry deposition directly using data from 267 monitoring sites. Our results showed that East Asia, the United States, and Europe were important regions of N deposition, and the total annual amount of global inorganic N deposition was 34.26 Tg N. The dry deposition fluxes were low in Africa and South America, but because of their large area, the total amounts in these regions were comparable to those in Europe and North America. In the past decade, the western United States and Eurasia, particularly eastern China, experienced the largest increases in dry deposition, whereas the eastern United States, Western Europe, and Japan experienced clear decreases through control of NOx and NH3 emissions. These findings provide a scientific background for policy-makers and future research into global changes. PMID:26813440
Wet and dry nitrogen deposition in the central Sichuan Basin of China
NASA Astrophysics Data System (ADS)
Kuang, Fuhong; Liu, Xuejun; Zhu, Bo; Shen, Jianlin; Pan, Yuepeng; Su, Minmin; Goulding, Keith
2016-10-01
Reactive nitrogen (Nr) plays a key role in the atmospheric environment and its deposition has induced large negative impacts on ecosystem health and services. Five-year continuous in-situ monitoring of N deposition, including wet (total nitrogen (WTN), total dissolved nitrogen (WTDN), dissolved organic nitrogen (WDON), ammonium nitrogen (WAN) and nitrate nitrogen (WNN)) and dry (DNH3, DHNO3, DpNH4+, DpNO3- and DNO2) deposition, had been conducted since August 2008 to December 2013 (wet) and May 2011 to December 2013 (dry) in Yan-ting, China, a typical agricultural area in the central Sichuan Basin. Mean annual total N deposition from 2011 to 2013 was 30.8 kg N ha-1 yr-1, and speculated that of 2009 and 2010 was averaged 28.2 kg N ha-1 yr-1, respectively. Wet and dry N deposition accounted for 76.3% and 23.7% of annual N deposition, respectively. Reduced N (WAN, DNH3 and DpNH4+) was 1.7 times of oxidized N (WNN, DHNO3, DNO2 and DpNO3-) which accounted for 50.9% and 30.3% of TN, respectively. Maximum loadings of all N forms of wet deposition, gaseous NH3, HNO3 and particulate NH4+ in dry deposition occurred in summer and minimum loadings in winter. Whether monthly, seasonal or annual averaged, dissolved N accounted for more than 70% of the total. N deposition in the central Sichuan Basin increased during the sampling period, especially that of ammonium compounds, and has become a serious threat to local aquatic ecosystems, the surrounding forest and other natural or semi-natural ecosystems in the upper reaches of the Yangtze River.
Kenjereš, Saša; Tjin, Jimmy Leroy
2017-12-01
In the present study, we investigate the concept of the targeted delivery of pharmaceutical drug aerosols in an anatomically realistic geometry of the human upper and central respiratory system. The geometry considered extends from the mouth inlet to the eighth generation of the bronchial bifurcations and is identical to the phantom model used in the experimental studies of Banko et al. (2015 Exp. Fluids 56 , 1-12 (doi:10.1007/s00348-015-1966-y)). In our computer simulations, we combine the transitional Reynolds-averaged Navier-Stokes (RANS) and the wall-resolved large eddy simulation (LES) methods for the air phase with the Lagrangian approach for the particulate (aerosol) phase. We validated simulations against recently obtained magnetic resonance velocimetry measurements of Banko et al. (2015 Exp. Fluids 56 , 1-12. (doi:10.1007/s00348-015-1966-y)) that provide a full three-dimensional mean velocity field for steady inspiratory conditions. Both approaches produced good agreement with experiments, and the transitional RANS approach is selected for the multiphase simulations of aerosols transport, because of significantly lower computational costs. The local and total deposition efficiency are calculated for different classes of pharmaceutical particles (in the 0.1 μm≤ d p ≤10 μm range) without and with a paramagnetic core (the shell-core particles). For the latter, an external magnetic field is imposed. The source of the imposed magnetic field was placed in the proximity of the first bronchial bifurcation. We demonstrated that both total and local depositions of aerosols at targeted locations can be significantly increased by an applied magnetization force. This finding confirms the possible potential for further advancement of the magnetic drug targeting technique for more efficient treatments for respiratory diseases.
2015-01-27
The Plasma Spray-Physical Vapor Deposition (PS-PVD) Rig at NASA Glenn Research Center. The rig helps develop coatings for next-generation aircraft turbine components and create more efficient engines.
NO sub X Deposited in the Stratosphere by the Space Shuttle Solid Rocket Motors
NASA Technical Reports Server (NTRS)
Pergament, H. S.; Thorpe, R. D.; Hwang, B.
1975-01-01
The possible effects of the interaction of the plumes from the two solid rocket motors (SRM) from the space shuttles and mixing of the rocket exhaust products and ambient air in the base recirculation region on the total nitrous oxide deposition rate in the stratosphere were investigated. It was shown that these phenomena will not influence the total NOx deposition rate. It was also shown that uncertainties in the particle size of Al2O3, size distributions and particle/gas drag and heat transfer coefficients will not have a significant effect on the predicted NOx deposition rate. The final results show that the total mass flow of NOx leaving the plume at 30 km altitude is 4000 g./sec with a possible error factor of 3. For a vehicle velocity of 1140 meter/sec this yields an NOx deposition rate of about 3.5 g./meter. The corresponding HCl deposition rate at this altitude is about a factor of 500 greater than this value.
Scholl, M.A.; Ingebritsen, S.E.
1995-01-01
Six-month cumulative precipitation samples provide estimates of bulk deposition of sulfate and chloride for the southeast part of the Island of Hawaii during four time periods: August 1991 to February 1992, February 1992 to September 1992, March 1993 to September 1993, and September 1993 to February 1994. Total estimated bulk deposition rates for sulfate ranged from 0.12 to 24 grams per square meter per 180 days, and non-seasalt sulfate deposition ranged from 0.06 to 24 grams per square meter per 180 days. Patterns of non-seasalt sulfate deposition were generally related to prevailing wind directions and the proximity of the collection site to large sources of sulfur gases, namely Kilauea Volcano's summit and East Rift Zone eruption. Total chloride deposition from bulk precipitation samples ranged from 0.01 to 17 grams per square meter per 180 days. Chloride appeared to be predominantly from oceanic sources, as non- seasalt chloride deposition was near zero for most sites.
Optimization of Cold Spray Deposition of High-Density Polyethylene Powders
NASA Astrophysics Data System (ADS)
Bush, Trenton B.; Khalkhali, Zahra; Champagne, Victor; Schmidt, David P.; Rothstein, Jonathan P.
2017-10-01
When a solid, ductile particle impacts a substrate at sufficient velocity, the resulting heat, pressure and plastic deformation can produce bonding between the particle and the substrate. The use of a cool supersonic gas flow to accelerate these solid particles is known as cold spray deposition. The cold spray process has been commercialized for some metallic materials, but further research is required to unlock the exciting potential material properties possible with polymeric particles. In this work, a combined computational and experimental study was employed to study the cold spray deposition of high-density polyethylene powders over a wide range of particle temperatures and impact velocities. Cold spray deposition of polyethylene powders was demonstrated across a range broad range of substrate materials including several different polymer substrates with different moduli, glass and aluminum. A material-dependent window of successful deposition was determined for each substrate as a function of particle temperature and impact velocity. Additionally, a study of deposition efficiency revealed the optimal process parameters for high-density polyethylene powder deposition which yielded a deposition efficiency close to 10% and provided insights into the physical mechanics responsible for bonding while highlighting paths toward future process improvements.
NASA Astrophysics Data System (ADS)
Hsu, F.; Lin, S.; Wang, C.; Huh, C.
2007-12-01
Terrestrial organic carbon exported from small mountainous river to the continental margin may play an important role in global carbon cycle and it?|s biogeochemical process. A huge amount of suspended materials from small rivers in southwestern Taiwan (104 million tons per year) could serve as major carbon source to the adjacent ocean. However, little is know concerning fate of this terrigenous organic carbon. The purpose of this study is to calculate flux of terrigenous organic carbon deposited in the continental margin, offshore southwestern Taiwan through investigating spatial variation of organic carbon content, organic carbon isotopic compositions, organic carbon deposition rate and burial efficiency. Results show that organic carbon compositions in sediment are strongly influenced by terrestrial material exported from small rivers in the region, Kaoping River, Tseng-wen River and Er-jan Rver. In addition, a major part of the terrestrial materials exported from the Kaoping River may bypass shelf region and transport directly into the deep sea (South China Sea) through the Kaoping Canyon. Organic carbon isotopic compositions with lighter carbon isotopic values are found near the Kaoping River and Tseng-wen River mouth and rapidly change from heavier to lighter values through shelf to slope. Patches of lighter organic carbon isotopic compositions with high organic carbon content are also found in areas west of Kaoping River mouth, near the Kaoshiung city. Furthermore, terrigenous organic carbons with lighter isotopic values are found in the Kaoping canyon. A total of 0.028 Mt/yr of terrestrial organic carbon was found in the study area, which represented only about 10 percent of all terrestrial organic carbon deposited in the study area. Majority (~90 percent) of the organic carbon exported from the Kaoping River maybe directly transported into the deep sea (South China Sea) and become a major source of organic carbon in the deep sea.
NASA Astrophysics Data System (ADS)
Huang, Jung-Jie; Chiu, Shih-Ping; Wu, Menq-Jion; Hsu, Chun-Fa
2016-11-01
In this study, titanium dioxide films were deposited on indium tin oxide glass substrates by liquid-phase deposition (LPD) for application as the compact layer in dye-sensitized solar cells (DSSCs). A deposition solution of ammonium hexafluorotitanate and boric acid was used for TiO2 deposition. Compact layer passivation can improve DSSC performance by decreasing carrier losses from recombination at the ITO/electrolyte interface and improving the electrical contact between the ITO and the TiO2 photo-electrode. The optimum thickness of the compact layer was found to be 48 nm, which resulted in a 50 % increase in the conversion efficiency compared with cells without compact layers. The conversion efficiency can be increased from 3.55 to 5.26 %. Therefore, the LPD-TiO2 compact layer inhibits the dark current and increases the short-circuit current density effectively.
Dry deposition is a major component of total nitrogen deposition and thus an important source of bioavailable nitrogen to ecosystems. However, relative to wet deposition, less is known regarding the sources and spatial variability of dry deposition. This is in part due to diffi...
Wolters, André; Linnemann, Volker; van de Zande, Jan C; Vereecken, Harry
2008-11-01
A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done according to good agricultural practice. Deposition was measured by horizontal collectors in various arrangements in and outside the treated area. Airborne spray drift was measured both with a passive and an active air collecting system. Spray deposits on top of the treated canopy ranged between 68 and 71% of the applied dose and showed only small differences for various arrangements of the collectors. Furthermore, only small variations were measured within the various groups of collectors used for these arrangements. Generally, the highest spray deposition outside the treated area was measured close to the sprayed plot and was accompanied by a high variability of values, while a rapid decline of deposits was detected in more remote areas. Estimations of spray deposits with the IMAG Drift Calculator were in accordance with experimental findings only for areas located at a distance of 0.5-4.5 m from the last nozzle, while there was an overestimation of a factor of 4 at a distance of 2.0-3.0 m, thus revealing a high level of uncertainty of the estimation of deposition for short distances. Airborne spray drift measured by passive and active air collecting systems was approximately at the same level, when taking into consideration the collector efficiency of the woven nylon wire used as sampling material for the passive collecting system. The maximum value of total airborne spray drift for both spray applications (0.79% of the applied dose) was determined by the active collecting system. However, the comparatively high variability of measurements at various heights above the soil by active and passive collecting systems revealed need for further studies to elucidate the spatial pattern of airborne spray drift.
Fettig, Christopher J; Munson, A Steven; McKelvey, Stephen R; Bush, Parshall B; Borys, Robert R
2008-01-01
Bark beetles (Coleoptera: Curculionidae, Scolytinae) are recognized as the most important tree mortality agent in western coniferous forests. A common method of protecting trees from bark beetle attack is to saturate the tree bole with carbaryl (1-naphthyl methylcarbamate) using a hydraulic sprayer. In this study, we evaluate the amount of carbaryl drift (ground deposition) occurring at four distances from the tree bole (7.6, 15.2, 22.9, and 38.1 m) during conventional spray applications for protecting individual lodgepole pine (Pinus contorta Dougl. ex Loud.) from mountain pine beetle (Dendroctonus ponderosae Hopkins) attack and Engelmann spruce (Picea engelmannii Parry ex Engelm.) from spruce beetle (D. rufipennis [Kirby]) attack. Mean deposition (carbaryl + alpha-naphthol) did not differ significantly among treatments (nozzle orifices) at any distance from the tree bole. Values ranged from 0.04 +/- 0.02 mg carbaryl m(-2) at 38.1 m to 13.30 +/- 2.54 mg carbaryl m(-2) at 7.6 m. Overall, distance from the tree bole significantly affected the amount of deposition. Deposition was greatest 7.6 m from the tree bole and quickly declined as distance from the tree bole increased. Approximately 97% of total spray deposition occurred within 15.2 m of the tree bole. Application efficiency (i.e., percentage of insecticide applied that is retained on trees) ranged from 80.9 to 87.2%. Based on review of the literature, this amount of drift poses little threat to adjacent aquatic environments. No-spray buffers of 7.6 m should be sufficient to protect freshwater fish, amphibians, crustaceans, bivalves, and most aquatic insects. Buffers >22.9 m appear sufficient to protect the most sensitive aquatic insects (Plecoptera).
Enhanced performance of a structured cyclo olefin copolymer-based amorphous silicon solar cell
NASA Astrophysics Data System (ADS)
Zhan, Xinghua; Chen, Fei; Gao, Mengyu; Tie, Shengnian; Gao, Wei
2017-07-01
The submicron array was fabricated onto a cyclo olefin copolymer (COC) film by a hot embossing method. An amorphous silicon p-i-n junction and transparent conductive layers were then deposited onto it through a plasma enhanced chemical vapor deposition (PECVD) and magnetron sputtering. The efficiency of the fabricated COC-based solar cell was measured and the result demonstrated 18.6% increase of the solar cell efficiency when compared to the sample without array structure. The imprinted polymer solar cells with submicron array indeed increase their efficiency.
Growth of the Maize Primary Root at Low Water Potentials 1
Sharp, Robert E.; Hsiao, Theodore C.; Silk, Wendy Kuhn
1990-01-01
Primary roots of maize (Zea mays L. cv WF9 × Mo17) seedlings growing in vermiculite at various water potentials exhibited substantial osmotic adjustment in the growing region. We have assessed quantitatively whether the osmotic adjustment was attributable to increased net solute deposition rates or to slower rates of water deposition associated with reduced volume expansion. Spatial distributions of total osmotica, soluble carbohydrates, potassium, and water were combined with published growth velocity distributions to calculate deposition rate profiles using the continuity equation. Low water potentials had no effect on the rate of total osmoticum deposition per unit length close to the apex, and caused decreased deposition rates in basal regions. However, rates of water deposition decreased more than osmoticum deposition. Consequently, osmoticum deposition rates per unit water volume were increased near the apex and osmotic potentials were lower throughout the growing region. Because the stressed roots were thinner, osmotic adjustment occurred without osmoticum accumulation per unit length. The effects of low water potential on hexose deposition were similar to those for total osmotica, and hexose made a major contribution to the osmotic adjustment in middle and basal regions. In contrast, potassium deposition decreased at low water potentials in close parallel with water deposition, and increases in potassium concentration were small. The results show that growth of the maize primary root at low water potentials involves a complex pattern of morphogenic and metabolic events. Although osmotic adjustment is largely the result of a greater inhibition of volume expansion and water deposition than solute deposition, the contrasting behavior of hexose and potassium deposition indicates that the adjustment is a highly regulated process. PMID:16667622
C.J. Allan; A. Heyes
1998-01-01
Abstract. Results from a preliminary sampling program designed to investigate total (THg) and methyl Hg (MeHg) deposition, cycling and transport at the Coweeta Hydrologic Laboratory western North Carolina are presented. Wet deposition samples were collected in June and July 1994 and throughfall, seep and streamwaters were intensively collected during...
Hahn, Melinda W; O'Meliae, Charles R
2004-01-01
The deposition and reentrainment of particles in porous media have been examined theoretically and experimentally. A Brownian Dynamics/Monte Carlo (MC/BD) model has been developed that simulates the movement of Brownian particles near a collector under "unfavorable" chemical conditions and allows deposition in primary and secondary minima. A simple Maxwell approach has been used to estimate particle attachment efficiency by assuming deposition in the secondary minimum and calculating the probability of reentrainment. The MC/BD simulations and the Maxwell calculations support an alternative view of the deposition and reentrainment of Brownian particles under unfavorable chemical conditions. These calculations indicate that deposition into and subsequent release from secondary minima can explain reported discrepancies between classic model predictions that assume irreversible deposition in a primary well and experimentally determined deposition efficiencies that are orders of magnitude larger than Interaction Force Boundary Layer (IFBL) predictions. The commonly used IFBL model, for example, is based on the notion of transport over an energy barrier into the primary well and does not address contributions of secondary minimum deposition. A simple Maxwell model based on deposition into and reentrainment from secondary minima is much more accurate in predicting deposition rates for column experiments at low ionic strengths. It also greatly reduces the substantial particle size effects inherent in IFBL models, wherein particle attachment rates are predicted to decrease significantly with increasing particle size. This view is consistent with recent work by others addressing the composition and structure of the first few nanometers at solid-water interfaces including research on modeling water at solid-liquid interfaces, surface speciation, interfacial force measurements, and the rheological properties of concentrated suspensions. It follows that deposition under these conditions will depend on the depth of the secondary minimum and that some transition between secondary and primary depositions should occur when the height of the energy barrier is on the order of several kT. When deposition in secondary minima predominates, observed deposition should increase with increasing ionic strength, particle size, and Hamaker constant. Since an equilibrium can develop between bound and bulk particles, the collision efficiency [alpha] can no longer be considered a constant for a given physical and chemical system. Rather, in many cases it can decrease over time until it eventually reaches zero as equilibrium is established.
Development of X-ray Microscopy at IPOE
NASA Astrophysics Data System (ADS)
Zhu, J.; Mu, B.; Huang, Q.; Huang, C.; Yi, S.; Zhang, Z.; Wang, F.; Wang, Z.; Chen, L.
2011-09-01
In order to meet the different requirements of applications in synchrotron radiation and plasma diagnosis in China, focusing and imaging optics based on Kirkpatrick-Baez (KB) mirrors, compound refractive lenses (CRLs), and multilayer Laue lenses (MLLs) were studied in our lab. A one-dimensional KB microscope using mirrors with a dual-periodic multilayer coating was developed. The multilayer mirror can reflect both 4.75 keV (Ti K-line) and 8.05 keV (Cu K-line) simultaneously, which makes alignment easier. For hard x-ray microscopy, CRL was studied. Using a SU-8 resist planar parabolic CRL, a focal line of 28.8-μm width was obtained. To focus hard x-rays to nanometer levels efficiently, an MLL was fabricated using a WSi2/Si multilayer. The MLL consists of 324 alternating WSi2 and Si layers with a total thickness of 7.9 μm. (Recently, a much thicker multilayer has been deposited with a layer number of n = 1582 and a total thickness of 27 μm.) After deposition, the sample was sliced and polished into an approximate ideal aspect ratio (depth of the zone plate to outmost layer thickness); the measured results show an intact structure remains, and the surface roughness of the cross section is about 0.4 nm after grinding and polishing processes.
Characterization of heavy metal desorption from road-deposited sediment under acid rain scenarios.
Zhao, Bo; Liu, An; Wu, Guangxue; Li, Dunzhu; Guan, Yuntao
2017-01-01
Road-deposited sediments (RDS) on urban impervious surfaces are important carriers of heavy metals. Dissolved heavy metals that come from RDS influenced by acid rain, are more harmful to urban receiving water than particulate parts. RDS and its associated heavy metals were investigated at typical functional areas, including industrial, commercial and residential sites, in Guangdong, Southern China, which was an acid rain sensitive area. Total and dissolved heavy metals in five particle size fractions were analyzed using a shaking method under acid rain scenarios. Investigated heavy metals showed no difference in the proportion of dissolved fraction in the solution under different acid rain pHs above 3.0, regardless of land use. Dissolved loading of heavy metals related to organic carbon content were different in runoff from main traffic roads of three land use types. Coarse particles (>150μm) that could be efficiently removed by conventional street sweepers, accounted for 55.1%-47.1% of the total dissolved metal loading in runoff with pH3.0-5.6. The obtained findings provided a significant scientific basis to understand heavy metal release and influence of RDS grain-size distribution and land use in dissolved heavy metal pollution affected by acid rain. Copyright © 2016. Published by Elsevier B.V.
Mansilla, W D; Htoo, J K; de Lange, C F M
2017-10-01
Amino acid usage for protein retention, and, consequently, the AA profile of retained protein, is the main factor for determining AA requirements in growing animals. The objective of the present study was to determine the effect of supplementing ammonia N on whole-body N retention and the AA profile of retained protein in growing pigs fed a diet deficient in nonessential AA (NEAA) N. In total, 48 barrows with a mean initial BW of 13.6 kg (SD 0.7) were used. At the beginning of the study, 8 pigs were euthanized for determination of initial protein mass. The remaining animals were individually housed and fed 1 of 5 dietary treatments. A common basal diet (95% of experimental diets) was formulated to meet the requirements for all essential AA (EAA) but to be deficient in NEAA N (CP = 8.01%). The basal diet was supplemented (5%) with cornstarch (negative control) or 2 N sources (ammonia or NEAA) at 2 levels each to supply 1.35 or 2.70% extra CP. The final standardized ileal digestible (SID) NEAA content in the high-NEAA-supplemented diet (positive control) was based on the NEAA profile of whole-body protein of 20-kg pigs, and it was expected to reduce the endogenous synthesis of NEAA. Pigs were fed at 3.0 times maintenance energy requirements for ME in 3 equal meals daily. At the end of a 3-wk period, pigs were euthanized and the carcass and visceral organs were weighed, frozen, and ground for determination of protein mass. From pigs in the initial, negative control, high-ammonia, and high-NEAA groups, AA contents in the carcass and pooled visceral organs were analyzed to determine the total and deposited protein AA profile, dietary EAA efficiencies, and minimal de novo synthesis of NEAA. Carcass weight and whole-body N retention linearly increased ( < 0.05) with N supplementation. The AA profile of protein and deposited protein in the carcass was not different ( > 0.10) between N sources, but Cys content increased ( < 0.05) with NEAA compared with ammonia in visceral organ protein and deposited protein. The dietary SID EAA efficiency for increasing EAA deposition in whole-body protein increased ( < 0.05) with N supplementation, but it was not different ( > 0.10) between N sources. The de novo synthesis of NEAA increased ( < 0.05) for ammonia compared with NEAA supplementation. In conclusion, adding ammonia as a N source to diets deficient in NEAA N increases whole-body N retention without affecting the carcass AA profile.
NASA Astrophysics Data System (ADS)
Saikia, D.; Sarma, R.
2017-06-01
Vanadium pentoxide layer deposited on the fluorine-doped tin oxide (FTO) anode by vacuum deposition has been investigated in organic light-emitting diode (OLED). With 12 nm optimal thickness of V2O5, the luminance efficiency is increased by 1.66 times compared to the single FTO-based OLED. The improvement of current efficiency implies that there is a better charge injection and better controlling of hole current. To investigate the performance of OLED by the buffer layer, V2O5 films of different thicknesses were deposited on the FTO anode and their J- V and L- V characteristics were studied. Further analysis was carried out by measuring sheet resistance, optical transmittance and surface morphology with the FE-SEM images. This result indicates that the V2O5 (12 nm) buffer layer is a good choice for increasing the efficiency of FTO-based OLED devices within the tunnelling region. Here the maximum value of current efficiency is found to be 2.83 cd / A.
Method for sealing remote leaks in an enclosure using an aerosol
Modera, Mark P.; Carrie, Francois R.
1999-01-01
The invention is a method and device for sealing leaks remotely by means of injecting a previously prepared aerosol into the enclosure being sealed according to a particular sealing efficiency defined by the product of a penetration efficiency and a particle deposition efficiency. By using different limits in the relationship between penetration efficiency and flowrate, the same method according the invention can be used for coating the inside of an enclosure. Specifically the invention is a method and device for preparing, transporting, and depositing a solid phase aerosol to the interior surface of the enclosure relating particle size, particle carrier flow rate, and pressure differential, so that particles deposited there can bridge and substantially seal each leak, with out providing a substantial coating at inside surfaces of the enclosure other than the leak. The particle size and flow parameters can be adjusted to coat the interior of the enclosure (duct) without substantial plugging of the leaks depending on how the particle size and flowrate relationships are chosen.
ERIC Educational Resources Information Center
Xie, Qingji; Li, Zhili; Deng, Chunyan; Liu, Meiling; Zhang, Youyu; Ma, Ming; Xia, Shaoxi; Xiao, Xiaoming; Yin, Dulin; Yao, Shouzhuo
2007-01-01
A real-time, labeled-free and nanogram-sensitive mass sensor, electrochemical quartz crystal microbalance (EQCM) is used to monitor a cyclic voltammetric deposition of polyaniline (PANI). The results determined that the efficiency for PANI deposition and the anion-doping ratio is calculated in one single cyclic voltammetric.
The impact of deposition site on vaccination efficiency of a live bacterial poultry vaccine.
Evans, J D; Leigh, S A; Purswell, J L; Collier, S D; Kim, E J; Boykin, D L; Branton, S L
2015-08-01
Vaccines are utilized within the poultry industry to minimize disease-associated losses and spray vaccination is a commonly utilized means for the mass application of poultry vaccines. During this process, vaccine-laden particles are deposited upon target areas (e.g., eyes, nares, and oral cavity) resulting in the direct internalization of the vaccine. However, particles are also deposited on nontarget areas such as the exterior of the subject and its surrounding environment. To better determine the fate of particles deposited upon nontarget areas and the impact of deposition site on the efficiency of vaccine application, a live bacterial poultry vaccine (AviPro(®) MG F) was applied via spray using a spray cabinet with a slotted partition allowing for head-only, body-only, and whole-bird spray application. At 11 wk age, Hy-Line(®) W-36 pullets (n = 280) were allocated equally among 7 treatments including: nonvaccinated controls, pullets spray-vaccinated at the manufacturer's recommended dose (1X) in a site-specific manner (head-only, body-only, and whole-bird), pullets spray-vaccinated at 5X the recommended level (body-only), pullets vaccinated by manual eye-drop application (1X), and pullets eye-drop vaccinated at a level approximating that achieved during the spray vaccination process (1/700X). At 6 to 7 wk postvaccination, vaccination efficiency was assessed via serological-based assays [serum plate agglutination (SPA) and ELISA] and the detection of vaccine-derived in vivo populations. Results indicate an additive contribution of the vaccine deposited on the body to the overall vaccination efficiency of this live bacterial live poultry vaccine. © 2015 Poultry Science Association Inc.
Yousefi, Morteza; Inthavong, Kiao; Tu, Jiyuan
2017-10-01
A key issue in pulmonary drug delivery is improvement of the delivery device for effective and targeted treatment. Pressurized metered dose inhalers (pMDIs) are the most popular aerosol therapy device for treating lung diseases. This article studies the effect of spray characteristics: injection velocity, spray cone angle, particle size distribution (PSD), and its mass median aerodynamic diameter (MMAD) on drug delivery. An idealized oral airway geometry, extending from mouth to the main bronchus, was connected to a pMDI device. Inhalation flow rates of 15, 30, and 60 L/min were used and drug particle tracking was a one-way coupled Lagrangian model. The results showed that most particles deposited in the pharynx, where the airway has a reduced cross-sectional area. Particle deposition generally decreased with initial spray velocity and with increased spray cone angle for 30 and 60 L/min flow rates. However, for 15 L/min flow rate, the deposition increased slightly with an increase in the spray velocity and cone angle. The effect of spray cone angle was more significant than the initial spray velocity on particle deposition. When the MMAD of a PSD was reduced, the deposition efficiency also reduces, suggesting greater rates of particle entry into the lung. The deposition rate showed negligible change when the MMAD was more than 8 μm. Spray injection angle and velocity change the drug delivery efficacy; however, the efficiency shows more sensitivity to the injection angle. The 30 L/min airflow rate delivers spray particles to the lung more efficiently than 15 and 60 L/min airflow rate, and reducing MMAD can help increase drug delivery to the lung.
Acid deposition and water use efficiency in Appalachian forests
NASA Astrophysics Data System (ADS)
Malcomb, J.
2017-12-01
Multiple studies have reported increases in forest water use efficiency in recent decades, but the drivers of these trends remain uncertain. While acid deposition has profoundly altered the biogeochemistry of Appalachian forests in the past century, its impacts on forest water use efficiency have been largely overlooked. Plant ecophysiology literature suggests that plants up-regulate transpiration in response to soil nutrient limitation in order to maintain sufficient mass flow of nutrients. To test the impacts of acid deposition on forest eco-hydrology in central Appalachia, we integrated dendrochronological techniques, including tree ring δ13C analysis, with catchment water balance data from the Fernow Experimental Forest in West Virginia. Tree cores from four species were collected in Fernow Watershed 3, which has received experimental ammonium sulfate additions since 1989, and Watershed 7, an adjacent control catchment. Initial results suggest that acidification treatments have not significantly influenced tree productivity compared to a control watershed, but the effect varies by species, with tulip poplar showing greatest sensitivity to acidification. Climatic water balance, defined as the difference between growing season precipitation and evapotranspiration, is significantly related to annual tree ring growth, suggesting that climate may be driving tree growth trends in chronically acidified Appalachian forests. Tree ring 13C analysis from Fernow cores is underway and these data will be integrated with catchment hydrology data from five other sites in central Appalachia and the U.S. Northeast, representing a range of forest types, soil base saturations, and acid deposition histories. This work will advance understanding of how climate and acid deposition interact to influence forest productivity and water use efficiency, and improve our ability to model carbon and water cycling in forested ecosystems impacted by acid deposition.
Cataphoretic assembly of cationic dyes and deposition of carbon nanotube and graphene films.
Su, Y; Zhitomirsky, I
2013-06-01
Cathodic electrophoretic deposition (EPD) method has been developed for the fabrication of thin films from aqueous solutions of crystal violet (CV) dyes. The films contained rod-like particles with a long axis oriented perpendicular to the substrate surface. The proposed deposition mechanism involved cataphoresis of cationic CV(+) species, base generation in the cathodic reactions, and charge neutralization at the electrode surface. The assembly of rod-like particles was governed by π-π interactions of polyaromatic CV molecules. The deposition kinetics was studied by quartz crystal microbalance. CV dyes allowed efficient dispersion of multiwalled carbon nanotubes (MWCNTs) and graphene in water at relatively low CV concentrations. The feasibility of cathodic EPD of MWCNT and graphene from aqueous suspensions, containing CV, has been demonstrated. The deposition yield was investigated at different CV concentrations and deposition voltages. The relatively high deposition yield of MWCNT and graphene indicated that CV is an efficient dispersing, charging, and film forming agent for EPD. Electron microscopy data showed that at low CV concentrations in MWCNT or graphene suspensions and low deposition voltages, the films contained mainly MWCNT or graphene. The increase in the CV concentration and/or deposition voltage resulted in enhanced co-deposition of CV. The EPD method developed in this investigation paves the way for the fabrication of advanced nanocomposites by cathodic electrodeposition. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Tsai-Te; Raghunath, P.; Lu, Yun-Fang; Liu, Yu-Chang; Chiou, Chwei-Huawn; Lin, M. C.
2011-06-01
We have studied the effect of InN deposited over TiO2 nanoparticle (NP) films on the performance of dye-sensitized solar cells (DSSCs) using N3 dye with I/I3- electrolyte. A 10-20% increase in efficiency was observed for InN deposited, N3 sensitized 5-8.5 μm thick TiO2 films as compared to similar non-treated films. The deposition of InN was carried out in the temperature range of 573-723 K organometallic chemical vapor deposition (OMCVD). Spectral shifts and DFT calculations with a model anchoring group (R‧COOH) both suggest binding of the N3 dye directly to both InN and the InN/TiO2 sites.
Daily reservoir sedimentation model: Case study from the Fena Valley Reservoir, Guam
Marineau, Mathieu D.; Wright, Scott A.
2017-01-01
A model to compute reservoir sedimentation rates at daily timescales is presented. The model uses streamflow and sediment load data from nearby stream gauges to obtain an initial estimate of sediment yield for the reservoir’s watershed; it is then calibrated to the total deposition calculated from repeat bathymetric surveys. Long-term changes to reservoir trapping efficiency are also taken into account. The model was applied to the Fena Valley Reservoir, a water supply reservoir on the island of Guam. This reservoir became operational in 1951 and was recently surveyed in 2014. The model results show that the highest rate of deposition occurred during two typhoons (Typhoon Alice in 1953 and Typhoon Tingting in 2004); each storm decreased reservoir capacity by approximately 2–3% in only a few days. The presented model can be used to evaluate the impact of an extreme event, or it can be coupled with a watershed runoff model to evaluate potential impacts to storage capacity as a result of climate change or other hydrologic modifications.
Laser deposition of resonant silicon nanoparticles on perovskite for photoluminescence enhancement
NASA Astrophysics Data System (ADS)
Tiguntseva, E. Y.; Zalogina, A. S.; Milichko, V. A.; Zuev, D. A.; Omelyanovich, M. M.; Ishteev, A.; Cerdan Pasaran, A.; Haroldson, R.; Makarov, S. V.; Zakhidov, A. A.
2017-11-01
Hybrid lead halide perovskite based optoelectronics is a promising area of modern technologies yielding excellent characteristics of light emitting diodes and lasers as well as high efficiencies of photovoltaic devices. However, the efficiency of perovskite based devices hold a potential of further improvement. Here we demonstrate high photoluminescence efficiency of perovskites thin films via deposition of resonant silicon nanoparticles on their surface. The deposited nanoparticles have a number of advances over their plasmonic counterparts, which were applied in previous studies. We show experimentally the increase of photoluminescence of perovskite film with the silicon nanoparticles by 150 % as compared to the film without the nanoparticles. The results are supported by numerical calculations. Our results pave the way to high throughput implementation of low loss resonant nanoparticles in order to create highly effective perovskite based optoelectronic devices.
NASA Astrophysics Data System (ADS)
Munshi, Amit Harenkumar
CdTe based photovoltaics have been commercialized at multiple GWs/year level. The performance of CdTe thin film photovoltaic devices is sensitive to process conditions. Variations in deposition temperatures as well as other treatment parameters have a significant impact on film microstructure and device performance. In this work, extensive investigations are carried out using advanced microstructural characterization techniques in an attempt to relate microstructural changes due to varying deposition parameters and their effects on device performance for cadmium telluride based photovoltaic cells deposited using close space sublimation (CSS). The goal of this investigation is to apply advanced material characterization techniques to aid process development for higher efficiency CdTe based photovoltaic devices. Several techniques have been used to observe the morphological changes to the microstructure along with materials and crystallographic changes as a function of deposition temperature and treatment times. Traditional device structures as well as advanced structures with electron reflector and films deposited on Mg1-xZnxO instead of conventional CdS window layer are investigated. These techniques include Scanning Electron Microscopy (SEM) with Electron Back Scattered Diffraction (EBSD) and Energy dispersive X-ray spectroscopy (EDS) to study grain structure and High Resolution Transmission Electron Microscopy (TEM) with electron diffraction and EDS. These investigations have provided insights into the mechanisms that lead to change in film structure and device performance with change in deposition conditions. Energy dispersive X-ray spectroscopy (EDS) is used for chemical mapping of the films as well as to understand interlayer material diffusion between subsequent layers. Electrical performance of these devices has been studied using current density vs voltage plots. Devices with efficiency over 18% have been fabricated on low cost commercial glass substrates with processes suitable for mass production. These are the highest efficiencies reported by any university or national laboratory for polycrystalline thin-film CdTe photovoltaics bettered only by researchers at First Solar Inc. Processing experiments are traditionally designed based on simulation results however in these study microscopic materials characterization has been used as the primary driving force to understand the effects of processing conditions. Every structure and efficiency reported in this study has been extensively studied using microscopic imaging and materials characterization and processing conditions accordingly altered to achieve higher efficiencies. Understanding CdCl2 passivation treatment out of this has been critical to this process. Several observations with regard to effect of CdCl 2 passivation have allowed the use to this treatment to achieve optimum performance. The effects of deposition temperature are also studied in rigorous details. All of these studies have played an important role in optimization of process that lead to high efficiency thin-film CdTe photovoltaic devices. An effort is made in this study to better understand and establish a 3-way relationship between processing conditions, film microstructure and device efficiency for sublimated thin-film CdTe photovoltaics. Some crucial findings include impact of grain size on efficiency of photovoltaic devices and improvement in fill-factor resulting from use of thicker CdTe absorber with larger grain size. An attempt is also made to understand the microstructure as the device efficiency improves from 1% efficiency to over 18% efficiency.
Characteristic evaluation of a Lithium-6 loaded neutron coincidence spectrometer.
Hayashi, M; Kaku, D; Watanabe, Y; Sagara, K
2007-01-01
Characteristics of a (6)Li-loaded neutron coincidence spectrometer were investigated from both measurements and Monte Carlo simulations. The spectrometer consists of three (6)Li-glass scintillators embedded in a liquid organic scintillator BC-501A, which can detect selectively neutrons that deposit the total energy in the BC-501A using a coincidence signal generated from the capture event of thermalised neutrons in the (6)Li-glass scintillators. The relative efficiency and the energy response were measured using 4.7, 7.2 and 9.0 MeV monoenergetic neutrons. The measured ones were compared with the Monte Carlo calculations performed by combining the neutron transport code PHITS and the scintillator response calculation code SCINFUL. The experimental light output spectra were in good agreement with the calculated ones in shape. The energy dependence of the detection efficiency was reproduced by the calculation. The response matrices for 1-10 MeV neutrons were finally obtained.
Investigation of applications for high-power, self-critical fissioning uranium plasma reactors
NASA Technical Reports Server (NTRS)
Rodgers, R. J.; Latham, T. S.; Krascella, N. L.
1976-01-01
Analytical studies were conducted to investigate potentially attractive applications for gaseous nuclear cavity reactors fueled by uranium hexafluoride and its decomposition products at temperatures of 2000 to 6000 K and total pressures of a few hundred atmospheres. Approximate operating conditions and performance levels for a class of nuclear reactors in which fission energy removal is accomplished principally by radiant heat transfer from the high temperature gaseous nuclear fuel to surrounding absorbing media were determined. The results show the radiant energy deposited in the absorbing media may be efficiently utilized in energy conversion system applications which include (1) a primary energy source for high thrust, high specific impulse space propulsion, (2) an energy source for highly efficient generation of electricity, and (3) a source of high intensity photon flux for heating working fluid gases for hydrogen production or MHD power extraction.
Baumgardner, Ralph E; Lavery, Thomas F; Rogers, Christopher M; Isil, Selma S
2002-06-15
The Clean Air Status and Trends Network (CASTNet) was established by the U.S. EPA in response to the requirements of the 1990 Clean Air Act Amendments. To satisfy these requirements CASTNet was designed to assess and report on geographic patterns and long-term, temporal trends in ambient air pollution and acid deposition in order to gauge the effectiveness of current and future mandated emission reductions. This paper presents an analysis of the spatial patterns of deposition of sulfur and nitrogen pollutants for the period 1990-2000. Estimates of deposition are provided for two 4-yr periods: 1990-1993 and 1997-2000. These two periods were selected to contrast deposition before and after the large decrease in SO2 emissions that occurred in 1995. Estimates of dry deposition were obtained from measurements at CASTNet sites combined with deposition velocities that were modeled using the multilayer model, a 20-layer model that simulates the various atmospheric processes that contribute to dry deposition. Estimates of wet deposition were obtained from measurements at sites operated bythe National Atmospheric Deposition Program. The estimates of dry and wet deposition were combined to calculate total deposition of atmospheric sulfur (dry SO2, dry and wet SO4(2-)) and nitrogen (dry HNO3, dry and wet NO3-, dry and wet NH4+). An analysis of the deposition estimates showed a significant decline in sulfur deposition and no change in nitrogen deposition. The highest rates of sulfur deposition were observed in the Ohio River Valley and downwind states. This region also observed the largest decline in sulfur deposition. The highest rates of nitrogen deposition were observed in the Midwest from Illinois to southern New York State. Sulfur and nitrogen deposition fluxes were significantly higher in the eastern United States as compared to the western sites. Dry deposition contributed approximately 38% of total sulfur deposition and 30% of total nitrogen deposition in the eastern United States. Percentages are similar for the two 4-yr periods. Wet sulfate and dry SO2 depositions were the largest contributors to sulfur deposition. Wet nitrate, wet ammonium, and dry HNO3 depositions were the largest contributors to nitrogen deposition.
Quantitation of total protein deposits on contact lenses by means of amino acid analysis.
Yan, G; Nyquist, G; Caldwell, K D; Payor, R; McCraw, E C
1993-04-01
This study was done to characterize and quantify the protein deposits on worn contact lenses and to measure the residual deposits after extraction in 2% sodium dodecyl sulfate and the total protein deposits on worn vifilcon, atlafilcon, and tefilcon lenses (Food and Drug Administration Types IV, II, and I, respectively). Contact lens extracts were separated with gel electrophoresis, and the amount of protein was estimated after silver staining and densitometry. To determine the residual deposits, the contact lenses were hydrolyzed, and amino acid analysis was carried out by reverse-phase high-performance liquid chromatography after precolumn derivatization with phenylisothiocyanate. Refinement of the hydrolysis conditions was undertaken to minimize interference by the lens polymers. The extraction removed only approximately 25% of the protein deposits. Mild hydrolytic conditions, 20 hr in 6 N HCl at 105 degrees C, were found to cause minimal polymer interference. Of the 350, 10, and 20 micrograms of protein typically determined on whole vifilcon, atlafilcon, and tefilcon lenses, the polymers were estimated to account for 4, 0.5, and less than 0.4 micrograms, respectively. Hydrolysis of worn contact lenses with subsequent amino acid separation can be applied to determine the total protein deposits without the uncertainty inherent in extraction of the deposits.
Epitaxial regrowth of silicon for the fabrication of radial junction nanowire solar cells
NASA Astrophysics Data System (ADS)
Kendrick, Chito E.; Eichfeld, Sarah M.; Ke, Yue; Weng, Xiaojun; Wang, Xin; Mayer, Theresa S.; Redwing, Joan M.
2010-08-01
Radial p-n silicon nanowire (SiNW) solar cells are of interest as a potential pathway to increase the efficiency of crystalline silicon photovoltaics by reducing the junction length and surface reflectivity. Our studies have focused on the use of vapor-liquid-solid (VLS) growth in combination with chemical vapor deposition (CVD) processing for the fabrication of radial p-n junction SiNW array solar cells. High aspect ratio p-type SiNW arrays were initially grown on gold-coated (111) Si substrates by CVD using SiCl4 as the source gas and B2H6 as the p-type dopant source. The epitaxial re-growth of n-type Si shell layers on the Si nanowires was then investigated using SiH4 as the source gas and PH3 as the dopant. Highly conformal coatings were achieved on nanowires up to 25 μm in length. The microstructure of the Si shell layer changed from polycrystalline to single crystal as the deposition temperature was raised from 650oC to 950oC. Electrical test structures were fabricated by aligning released SiNWs onto pre-patterned substrates via fieldassisted assembly followed by selective removal of the n-type shell layer and contact deposition. Current-voltage measurements of the radial p-n SiNWs diodes fabricated with re-grown Si shell layers at 950°C demonstrate rectifying behavior with an ideality factor of 1.93. Under illumination from an AM1.5g spectrum and efficiency for this single SiNW radial p-n junction was determined to be 1.8%, total wire diameter was 985 nm.
The effect of substrate on thermodynamic and kinetic anisotropies in atomic thin films.
Haji-Akbari, Amir; Debenedetti, Pablo G
2014-07-14
Glasses have a wide range of technological applications. The recent discovery of ultrastable glasses that are obtained by depositing the vapor of a glass-forming liquid onto the surface of a cold substrate has sparked renewed interest in the effects of confinements on physicochemical properties of liquids and glasses. Here, we use molecular dynamics simulations to study the effect of substrate on thin films of a model glass-forming liquid, the Kob-Andersen binary Lennard-Jones system, and compute profiles of several thermodynamic and kinetic properties across the film. We observe that the substrate can induce large oscillations in profiles of thermodynamic properties such as density, composition, and stress, and we establish a correlation between the oscillations in total density and the oscillations in normal stress. We also demonstrate that the kinetic properties of an atomic film can be readily tuned by changing the strength of interactions between the substrate and the liquid. Most notably, we show that a weakly attractive substrate can induce the emergence of a highly mobile region in its vicinity. In this highly mobile region, structural relaxation is several times faster than in the bulk, and the exploration of the potential energy landscape is also more efficient. In the subsurface region near a strongly attractive substrate, however, the dynamics is decelerated and the sampling of the potential energy landscape becomes less efficient than the bulk. We explain these two distinct behaviors by establishing a correlation between the oscillations in kinetic properties and the oscillations in lateral stress. Our findings offer interesting opportunities for designing better substrates for the vapor deposition process or developing alternative procedures for situations where vapor deposition is not feasible.
Steichen, Marc; Thomassey, Matthieu; Siebentritt, Susanne; Dale, Phillip J
2011-03-14
The electrochemical deposition of Ga and Cu-Ga alloys from the deep eutectic solvent choline chloride/urea (Reline) is investigated to prepare CuGaSe(2) (CGS) semiconductors for their use in thin film solar cells. Ga electrodeposition is difficult from aqueous solution due to its low standard potential and the interfering hydrogen evolution reaction (HER). Ionic liquid electrolytes offer a better thermal stability and larger potential window and thus eliminate the interference of solvent breakdown reactions during Ga deposition. We demonstrate that metallic Ga can be electrodeposited from Reline without HER interference with high plating efficiency on Mo and Cu electrodes. A new low cost synthetic route for the preparation of CuGaSe(2) absorber thin films is presented and involves the one-step electrodeposition of Cu-Ga precursors from Reline followed by thermal annealing. Rotating disk electrode (RDE) cyclic voltammetry (CV) is used in combination with viscosity measurements to determine the diffusion coefficients of gallium and copper ions in Reline. The composition of the codeposited Cu-Ga precursor layers can be controlled to form Cu/Ga thin films with precise stoichiometry, which is important for achieving good optoelectronic properties of the final CuGaSe(2) absorbers. The morphology, the chemical composition and the crystal structure of the deposited thin films are analysed by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) and X-ray diffraction (XRD). Annealing of the Cu-Ga films in a selenium atmosphere allowed the formation of high quality CuGaSe(2) absorber layers. Completed CGS solar cells achieved a 4.1% total area power conversion efficiency.
"Total Deposition (TDEP) Maps"
The presentation provides an update on the use of a hybrid methodology that relies on measured values from national monitoring networks and modeled values from CMAQ to produce of maps of total deposition for use in critical loads and other ecological assessments. Additionally, c...
On the Total Energy Deposition Between Periodically Occurring Activations of the Aurora
NASA Technical Reports Server (NTRS)
Spann, James F., Jr.; Germany, G. A.; Parks, G. K.; Brittnacher, M. J.; Winglee, R. W.
1998-01-01
Total energy deposition in the northern latitudes is used in models to determine the state of the magnetosphere. It is known that on occasion, a series of intensifications of the aurora occur that are regularly spaced. The energy profile of the total energy deposited reflects this occurance. What can be said of the state of the magnetosphere based on these profiles. We present the result of a study which looks at several of these periods when a series of intensifications occur. Conclusions as to what the magnetosphere may be doing are presented.
NASA Astrophysics Data System (ADS)
Ponken, Tanachai; Tagsin, Kamonlapron; Suwannakhun, Chuleerat; Luecha, Jakkrit; Choawunklang, Wijit
2017-09-01
Pt counter electrode was coated by electrochemical method. Electrolyte solution was synthesized by platinum (IV) choloride (PtCl4) powder dissolved in hydrochloric acid solution. Pt films were deposited on the FTO substrate. Deposition time of 10, 30 and 60 minutes, the coating current of 5, 10, 15 and 20 mA and electrolyte solution temperatures for Pt layer synthesis of 25, 30 and 40°C were varied. Surface morphology and optical properties was analyzed by digital microscopic and UV-vis spectrophotometer. Pt films exhibit uniform surface area highly for all the conditions of coating current in the deposition time of 30 and 40 minutes at 40°C. Transmittance values of Pt films deposited on FTO substrate has approximately of 5 to 50 % show that occur high reflection corresponding to dye molecule absorption increases. DSSC device was fabricated from the TiO2 standard and immersed in dye N719 for 24 hours. Efficiency was measured by solar simulator. Efficiency value obtains as high as 5.91 % for the coating current, deposition time and solution temperature of 15 mA, 30 minutes and 40°C. Summary, influence of temperature effects efficiency increasing. Pt counter electrode can be prepared easily and the suitable usefully for DSSC.
Global Atmosphere Watch Workshop on Measurement-Model ...
The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) Programme coordinates high-quality observations of atmospheric composition from global to local scales with the aim to drive high-quality and high-impact science while co-producing a new generation of products and services. In line with this vision, GAW’s Scientific Advisory Group for Total Atmospheric Deposition (SAG-TAD) has a mandate to produce global maps of wet, dry and total atmospheric deposition for important atmospheric chemicals to enable research into biogeochemical cycles and assessments of ecosystem and human health effects. The most suitable scientific approach for this activity is the emerging technique of measurement-model fusion for total atmospheric deposition. This technique requires global-scale measurements of atmospheric trace gases, particles, precipitation composition and precipitation depth, as well as predictions of the same from global/regional chemical transport models. The fusion of measurement and model results requires data assimilation and mapping techniques. The objective of the GAW Workshop on Measurement-Model Fusion for Global Total Atmospheric Deposition (MMF-GTAD), an initiative of the SAG-TAD, was to review the state-of-the-science and explore the feasibility and methodology of producing, on a routine retrospective basis, global maps of atmospheric gas and aerosol concentrations as well as wet, dry and total deposition via measurement-model
78 FR 56583 - Deposit Insurance Regulations; Definition of Insured Deposit
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
... as a potential global deposit insurer, preserve confidence in the FDIC deposit insurance system, and... the United States.\\2\\ The FDIC generally pays out deposit insurance on the next business day after a... since 2001 and total approximately $1 trillion today. In many cases, these branches do not engage in...
[Current situation and impact factors of acid deposition in main cites of Shandong Province].
Jia, Hong-yu; Zhang, Qiao-xian; Deng, Hong-bing; Zhao, Jing-zhu; Mu, Jin-bo; Zhang, De-zhi
2006-12-01
Based on the monitoring data for years in Shandong Province, current situation of acid rain in every city was assessed, and the temporal distribution of the dry, wet and total sulfur deposition in Jinan and Qingdao were studied. The results showed that Qingdao which had the largest precipitation acidity was the single city whose annul average precipitation pH was below 5. 60. The precipitation acidities in the main cities of Shandong Province were in a descent tendency. The total sulfur desposition in Jinan and Qingdao was basically stable or in a descent tendency, but also reached 10 t/(km(2)x a) or so. Among the total sulfur deposition flux, the dry deposition of sulfur had the greater contribution, and the contribution of SO2 dry deposition was higher than that of SO42- dry deposition. By analyzing the relation between the precipitation acidity and the SO2 discharge intensity, soil acidity and meteorological condition, the impact factors of acid precipitation in the cities of Shandong Province were revealed.
Chemical-Vapor Deposition Of Silicon Carbide
NASA Technical Reports Server (NTRS)
Cagliostro, D. E.; Riccitiello, S. R.; Ren, J.; Zaghi, F.
1993-01-01
Report describes experiments in chemical-vapor deposition of silicon carbide by pyrolysis of dimethyldichlorosilane in hydrogen and argon carrier gases. Directed toward understanding chemical-kinetic and mass-transport phenomena affecting infiltration of reactants into, and deposition of SiC upon, fabrics. Part of continuing effort to develop method of efficient and more nearly uniform deposition of silicon carbide matrix throughout fabric piles to make improved fabric/SiC-matrix composite materials.
Local Variations in the Chemistry of Precipitation in the Vicinity of Leeds
NASA Astrophysics Data System (ADS)
Lambert, David Robert
Available from UMI in association with The British Library. Requires signed TDF. This research was instigated by the first Report of the United Kingdom Review Group on Acid Rain, which highlighted the need for investigations into the precipitation chemistry associated with urban areas. Ten bulk and two wet-only rain-water samplers were built within the Department of Fuel and Energy, and located in an area stretching from Bramham in the Vale of York, through Leeds, to Thruscross in the Pennines, approximately 30 km. to the north west. The two wet-only samplers were located at an urban (University) and rural (Haverah Park) site, and additional SO_2 monitoring was conducted at these locations. Weekly precipitation sampling and subsequent analysis was carried out for the period 31st March, 1986 to 30th March, 1987. Both of the sampling devices showed good sampling efficiencies, although a few problems were encountered with the wet-only samplers. Results have shown the presence of a peak in volume weighted hydrogen ion concentration associated with the city outskirts. This is a result of high concentrations of neutralising ions within the city, the calcium concentrations are more than twice as high at the University than at Thruscross. This trend is also seen in the contribution of non-marine ions to the total deposition, which generally decreases with distance towards Thruscross. The greatest deposition of hydrogen ion occurs at Thruscross, located in the area most susceptible to 'acid rain'. The total amounts of ions deposited in the north west of the investigation area are generally greater due to the larger precipitation volumes found in the Pennines. Chloride was found to contribute significantly to acidity, in addition to nitrate and sulphate derived from emissions of NO_{rm x} and SO_2. The chloride contribution showed large seasonal variations, the reason for which is unclear. The comparison between bulk and wet-only samplers shows that for most ions significant proportions are dry deposited, and further work showed its probable origin is the deposition of aerosols. A comparison with the surrounding Secondary Network Sites shows similar levels of deposition for the ions, apart from enhanced calcium and magnesium levels associated with this investigation, and high ammonium (as nitrogen) levels in the Secondary Network.
Deposition and re-erosion studies by means of local impurity injection in TEXTOR
NASA Astrophysics Data System (ADS)
Textor Team Kirschner, A.; Kreter, A.; Wienhold, P.; Brezinsek, S.; Coenen, J. W.; Esser, H. G.; Pospieszczyk, A.; Schulz, Ch.; Breuer, U.; Borodin, D.; Clever, M.; Ding, R.; Galonska, A.; Huber, A.; Litnovsky, A.; Matveev, D.; Ohya, K.; Philipps, V.; Samm, U.; Schmitz, O.; Schweer, B.; Stoschus, H.
2011-08-01
Pioneering experiments to study local erosion and deposition processes have been carried out in TEXTOR by injecting 13C marked hydrocarbons (CH4 and C2H4) as well as silane (SiD4) and tungsten-hexafluoride (WF6) through test limiters exposed to the edge plasma. The influence of various limiter materials (C, W, Mo) and surface roughness, different geometries (spherical or roof-like) and local plasma parameters has been studied. Depending on these conditions the local deposition efficiency of injected species varies between 0.1% and 9% - the largest deposition has been found for 13CH4 injection through unpolished, spherical C test limiter and ohmic plasma conditions. The most striking result is that ERO modelling cannot reproduce these low deposition efficiencies using the common assumptions on sticking probabilities and physical and chemical re-erosion yields. As an explanation large re-erosion due to background plasma and possibly low "effective sticking" of returning species is applied. This has been interpreted as enhanced re-erosion of re-deposits under simultaneous impact of high ion fluxes from plasma background.
Non-conventional photocathodes based on Cu thin films deposited on Y substrate by sputtering
NASA Astrophysics Data System (ADS)
Perrone, A.; D'Elia, M.; Gontad, F.; Di Giulio, M.; Maruccio, G.; Cola, A.; Stankova, N. E.; Kovacheva, D. G.; Broitman, E.
2014-07-01
Copper (Cu) thin films were deposited on yttrium (Y) substrate by sputtering. During the deposition, a small central area of the Y substrate was shielded to avoid the film deposition and was successively used to study its photoemissive properties. This configuration has two advantages: the cathode presents (i) the quantum efficiency and the work function of Y and (ii) high electrical compatibility when inserted into the conventional radio-frequency gun built with Cu bulk. The photocathode was investigated by scanning electron microscopy to determine surface morphology. X-ray diffraction and atomic force microscopy studies were performed to compare the structure and surface properties of the deposited film. The measured electrical resistivity value of the Cu film was similar to that of high purity Cu bulk. Film to substrate adhesion was also evaluated using the Daimler-Benz Rockwell-C adhesion test method. Finally, the photoelectron performance in terms of quantum efficiency was obtained in a high vacuum photodiode cell before and after laser cleaning procedures. A comparison with the results obtained with a twin sample prepared by pulsed laser deposition is presented and discussed.
Improvements to the treatment of organic nitrogen chemistry & deposition in CMAQ
Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...
Improvements to the characterization of organic nitrogen chemistry and deposition in CMAQ
Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...
Simple Approaches for Measuring Dry Atmospheric Nitrogen Deposition to Watersheds
Assessing the effects of atmospheric nitrogen (N) deposition on surface water quality requires accurate accounts of total N deposition (wet, dry, and cloud vapor); however, dry deposition is difficult to measure and is often spatially variable. Affordable passive sampling methods...
Chiu, Jui C; Shen, Yun H; Li, Hsing W; Chang, Shun S; Wang, Lin C; Chang-Chien, Guo P
2011-01-01
The objectives of the present study were to investigate particulate matter (PM) and polycyclic aromatic hydrocarbon (PAH) concentrations in ambient air during rice straw open burning and non-open burning periods. In the ambient air of a rice field, the mean PM concentration during and after an open burning event were 1828 and 102 μg m⁻³, respectively, which demonstrates that during a rice field open burning event, the PM concentration in the ambient air of rice field is over 17 times higher than that of the non-open burning period. During an open burning event, the mean total PAH and total toxic equivalence (BaP(eq)) concentrations in the ambient air of a rice field were 7206 ng m⁻³ and 10.3 ng m⁻³, respectively, whereas after the open burning event, they were 376 ng m⁻³ and 1.50 ng m⁻³, respectively. Open burning thus increases total PAH and total BaP(eq) concentrations by 19-fold and 6.8-fold, respectively. During a rice straw open burning event, in the ambient air of a rice field, the mean dry deposition fluxes of total PAHs and total BaP(eq) were 1222 μg m⁻² day⁻¹ and 4.80 μg m⁻² day⁻¹, respectively, which are approximately 60- and 3-fold higher than those during the non-open burning period, respectively. During the non-open burning period, particle-bound PAHs contributed 79.2-84.2% of total dry deposition fluxes (gas + particle) of total PAHs. However, an open burning event increases the contribution to total PAH dry deposition by particle-bound PAHs by up to 85.9-95.5%. The results show that due to the increased amount of PM in the ambient air resulting from rice straw open burning, particle-bound PAHs contributed more to dry deposition fluxes of total PAHs than they do during non-open burning periods. The results show that biomass (rice straw) open burning is an important PAH emission source that significantly increases both PM and PAH concentration levels and PAH dry deposition in ambient air.
Pannatier, Elisabeth Graf; Thimonier, Anne; Schmitt, Maria; Walthert, Lorenz; Waldner, Peter
2011-03-01
Trends in atmospheric acid deposition and in soil solution acidity from 1995 or later until 2007 were investigated at several forest sites throughout Switzerland to assess the effects of air pollution abatements on deposition and the response of the soil solution chemistry. Deposition of the major elements was estimated from throughfall and bulk deposition measurements at nine sites of the Swiss Long-Term Forest Ecosystem Research network (LWF) since 1995 or later. Soil solution was measured at seven plots at four soil depths since 1998 or later. Trends in the molar ratio of base cations to aluminum (BC/Al) in soil solutions and in concentrations and fluxes of inorganic N (NO(3)-N + NH(4)-N), sulfate (SO(4)-S), and base cations (BC) were used to detect changes in soil solution chemistry. Acid deposition significantly decreased at three out of the nine study sites due to a decrease in total N deposition. Total SO(4)-S deposition decreased at the nine sites, but due to the relatively low amount of SO(4)-S load compared to N deposition, it did not contribute to decrease acid deposition significantly. No trend in total BC deposition was detected. In the soil solution, no trend in concentrations and fluxes of BC, SO(4)-S, and inorganic N were found at most soil depths at five out of the seven sites. This suggests that the soil solution reacted very little to the changes in atmospheric deposition. A stronger reduction in base cations compared to aluminum was detected at two sites, which might indicate that acidification of the soil solution was proceeding faster at these sites.
Estimating 40 years of nitrogen deposition in global biomes using the SCIAMACHY NO2 column
Lu, Xuehe; Zhang, Xiuying; Liu, Jinxun; Jin, Jiaxin
2016-01-01
Owing to human activity, global nitrogen (N) cycles have been altered. In the past 100 years, global N deposition has increased. Currently, the monitoring and estimating of N deposition and the evaluation of its effects on global carbon budgets are the focus of many researchers. NO2 columns retrieved by space-borne sensors provide us with a new way of exploring global N cycles and these have the ability to estimate N deposition. However, the time range limitation of NO2 columns makes the estimation of long timescale N deposition difficult. In this study we used ground-based NOx emission data to expand the density of NO2columns, and 40 years of N deposition (1970–2009) was inverted using the multivariate linear model with expanded NO2 columns. The dynamic of N deposition was examined in both global and biome scales. The results show that the average N deposition was 0.34 g N m–2 year–1 in the 2000s, which was an increase of 38.4% compared with the 1970s’. The total N deposition in different biomes is unbalanced. N deposition is only 38.0% of the global total in forest biomes; this is made up of 25.9%, 11.3, and 0.7% in tropical, temperate, and boreal forests, respectively. As N-limited biomes, there was little increase of N deposition in boreal forests. However, N deposition has increased by a total of 59.6% in tropical forests and croplands, which are N-rich biomes. Such characteristics may influence the effects on global carbon budgets.
Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.
Tian, Lin; Inthavong, Kiao; Lidén, Göran; Shang, Yidan; Tu, Jiyuan
2016-07-01
Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition in olfactory mucosa on particle size implies that the occupation deposition of welding fume manganese can be expected to vary with welding method. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
NASA Astrophysics Data System (ADS)
Wu, M.; Tan, H. N.; Lo, W. C.; Tsai, C. T.
2015-12-01
The river upstream of watersheds in Taiwan is very steep, where soil and rock are often unstable so that the river watershed typically has the attribute of high sand yield and turbid runoff due to the excessive erosion in the heavy rainfall seasons. If flood water overflows the river bank, it would lead to a disaster in low-altitude plains. When flood retards or recesses, fine sediment would deposit. Over recent decades, many landslides arise in the Zengwen river watershed due to climate changes, earthquakes, and typhoons. The rocks and sands triggered by these landslides would move to the river channel through surface runoff, which may induce sediment disasters and also render an impact on the stability and sediment transport of the river channel. The risk of the sediment disaster could be reduced by implementing dredging works. However, because of the nature of the channel, the dredged river sections may have sediment depositions back; thus, causing an impact on flood safety. Therefore, it is necessary to evaluate the effectiveness of dredged works from the perspectives of hydraulic, sediment transport, and flood protection to achieve the objective of both disaster prevention and river bed stability. We applied the physiographic soil erosion-deposition (PSED) model to simulate the sediment yield, the runoff, and sediment transport rate of the Zengwen river watershed corresponding to one-day rainstorms of the return periods of 25, 50, and 100 year. The potential of sediment deposition and erosion in the river sections of the Zengwen river could be simulated by utilizing the alluvial river-movable bed two dimensional (ARMB-2D) model. The results reveal that the tendency for the potential of river sediment deposition and erosion obtained from these two models is agreeable. Furthermore, in order to evaluate the efficiency of sediment deposition reduction, two quantized values, the rate of sediment deposition reduction and the ratio of sediment deposition reduction were utilized. According to the simulation results obtained from the PESD and ARMB-2D models, the river sections with severe sediment depositions and high efficiency of sediment deposition reduction will be referred to as the dredging-to-be areas.
The Nature and Use of Copper Reserve and Resource Data
Cox, Dennis P.; Wright, Nancy A.; Coakley, George J.
1981-01-01
Copper reserve, resource, and production data can be combined to produce disaggregated resource estimates and trends and, when combined with demand forecasts, can be used to predict future exploration and development requirements. Reserve estimates are subject to uncertainties due mainly to incomplete exploration and rapidly changing economic conditions. United States' reserve estimates in the past have been low mainly because knowledge of the magnitude of very large porphyry-copper deposits has been incomplete. Present estimates are considerably more reliable because mining firms tend to drill out deposits fully before mining and to release their reserve estimates to the public. The sum of reserves and past production yields an estimate of the total ore, total metal contained in ore, and average grade of ore originally in each of the deposits known in the United States. For most deposits, estimates of total copper in ore are low relative to the total copper in mineralized rock, and many estimates are strongly affected by the economic behavior of mining firms. A better estimate of the real distribution of copper contained in deposits can be obtained by combining past production data with resource estimates. Copper resource data are disaggregated into categories that include resources in undeveloped deposits similar to those mined in the past, resources in mines closed because of unfavorable economic conditions, resources in deep deposits requiring high-cost mining methods, arid resources in deposits located in areas where environmental restrictions have contributed to delays in development. The largest resource is located in the five largest porphyry deposits. These deposits are now being mined but the resources are not included in the present mining plan. Resources in this last category will not contribute to supply until some future time when ores presently being mined are depleted. A high correlation exists between total copper contained in deposits and annual production from deposits. This correlation can be used to predict roughly the potential production from undeveloped deposits. Large deposits annually produce relatively less metal per ton of copper contained than do medium and small deposits. Dividing reserves by annual production gives a depletion date for each copper mine. The sum of annual production capacity of all mines not yet depleted at any year of interest gives the minimum production capacity for that year. A graph of minimum production capacity by year combined with curves representing potential capacity from undeveloped identified resources can be compared with various demand scenarios to yield a measure of copper requirements from new sources. Since 1950 reserves have been developed in the United States at a rate of about 1 million tons of copper per year. Since 1960 the number of deposits developed per 10-year period has greatly increased without a commensurate increase in tonnage of copper. This is in part due to the fact that recent exploration successes have been increasingly represented by smaller and (or) lower grade deposits containing less metal.
Precipitation Efficiency in the Tropical Deep Convective Regime
NASA Technical Reports Server (NTRS)
Li, Xiaofan; Sui, C.-H.; Lau, K.-M.; Lau, William K. M. (Technical Monitor)
2001-01-01
Precipitation efficiency in the tropical deep convective regime is analyzed based on a 2-D cloud resolving simulation. The cloud resolving model is forced by the large-scale vertical velocity and zonal wind and large-scale horizontal advections derived from TOGA COARE for a 20-day period. Precipitation efficiency may be defined as a ratio of surface rain rate to sum of surface evaporation and moisture convergence (LSPE) or a ratio of surface rain rate to sum of condensation and deposition rates of supersaturated vapor (CMPE). Moisture budget shows that the atmosphere is moistened (dryed) when the LSPE is less (more) than 100 %. The LSPE could be larger than 100 % for strong convection. This indicates that the drying processes should be included in cumulus parameterization to avoid moisture bias. Statistical analysis shows that the sum of the condensation and deposition rates is bout 80 % of the sum of the surface evaporation rate and moisture convergence, which ads to proportional relation between the two efficiencies when both efficiencies are less han 100 %. The CMPE increases with increasing mass-weighted mean temperature and creasing surface rain rate. This suggests that precipitation is more efficient for warm environment and strong convection. Approximate balance of rates among the condensation, deposition, rain, and the raindrop evaporation is used to derive an analytical solution of the CMPE.
An Exponential Luminous Efficiency Model for Hypervelocity Impact into Regolith
NASA Technical Reports Server (NTRS)
Swift, W. R.; Moser, D. E.; Suggs, R. M.; Cooke, W. J.
2011-01-01
The flash of thermal radiation produced as part of the impact-crater forming process can be used to determine the energy of the impact if the luminous efficiency is known. From this energy the mass and, ultimately, the mass flux of similar impactors can be deduced. The luminous efficiency, eta, is a unique function of velocity with an extremely large variation in the laboratory range of under 6 km/s but a necessarily small variation with velocity in the meteoric range of 20 to 70 km/s. Impacts into granular or powdery regolith, such as that on the moon, differ from impacts into solid materials in that the energy is deposited via a serial impact process which affects the rate of deposition of internal (thermal) energy. An exponential model of the process is developed which differs from the usual polynomial models of crater formation. The model is valid for the early time portion of the process and focuses on the deposition of internal energy into the regolith. The model is successfully compared with experimental luminous efficiency data from both laboratory impacts and from lunar impact observations. Further work is proposed to clarify the effects of mass and density upon the luminous efficiency scaling factors. Keywords hypervelocity impact impact flash luminous efficiency lunar impact meteoroid 1
NASA Astrophysics Data System (ADS)
Bi, Jinlian; Yao, Liyong; Ao, Jianping; Gao, Shoushuai; Sun, Guozhong; He, Qing; Zhou, Zhiqiang; Sun, Yun; Zhang, Yi
2016-09-01
The issues of rough surface morphology and the incorporated additives of the electro-deposited Cu layers, which exists in electrodeposition-based processes, is one of the major obstacles to improve the efficiency of Cu(In,Ga)Se2 (CIGSe) and Cu2ZnSnSe4 (CZTSe) solar cells. In this study, the pulse current electro-deposition method is employed to deposit smooth Cu film on Mo substrate in CuSO4 solution without any additives. Grain size of the deposited Cu film is decreased by high cathode polarization successfully. And the concentration polarization, which results from high pulse current density, is controlled successfully by adjusting the pulse frequency. Flat Cu film with smooth surface and compact structure is deposited as pulse current density @ 62.5 mA cm-2, pulse frequency @100,000 Hz, and duty cycle @ 25%. CIGSe and CZTSe absorber films with flat surface and uniform elemental distribution are prepared by selenizing the stacking metal layers electro-deposited by pulse current method. Finally, the CIGSe and CZTSe solar cells with conversion efficiency of 10.39% and 7.83% respectively are fabricated based on the smooth Cu films, which are better than the solar cells fabricated by the rough Cu film deposited by direct current electro-deposition method.
Juracek, Kyle E.
2003-01-01
A combination of bathymetric surveying and bottom-sediment coring was used to investigate sediment deposition and the occurrence of selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 26 metals and trace elements, 15 organochlorine compounds, 1 radionuclide, and diatoms in bottom sediment of Perry Lake, northeast Kansas. The total estimated volume and mass of bottom sediment deposited from 1969 through 2001 in the original conservation-pool area of the lake was 2,470 million cubic feet (56,700 acre-feet) and 97,200 million pounds (44,100 million kilograms), respectively. The estimated sediment volume occupied about 23 percent of the original conservation-pool, water-storage capacity of the lake. Mean annual net sediment deposition since 1969 was estimated to be 3,040 million pounds (1,379 million kilograms). Mean annual sediment yield from the Perry Lake Basin was estimated to be 2,740,000 pounds per square mile (4,798 kilograms per hectare). The estimated mean annual net loads of total nitrogen and total phosphorus deposited in the bottom sediment of Perry Lake were 7,610,000 pounds per year (3,450,000 kilograms per year) and 3,350,000 pounds per year (1,520,000 kilograms per year), respectively. The estimated mean annual yields of total nitrogen and total phosphorus from the Perry Lake Basin were 6,850 pounds per square mile per year (12.0 kilograms per hectare per year) and 3,020 pounds per square mile per year (5.29 kilograms per hectare per year), respectively. A statistically significant positive trend for total nitrogen deposition in the bottom sediment of Perry Lake was indicated. However, the trend may be due solely to analytical variance. No statistically significant trend for total phosphorus deposition was indicated. Overall, the transport and deposition of these constituents have been relatively uniform throughout the history of Perry Lake. On the basis of nonenforceable sediment-quality guidelines established by the U.S. Environmental Protection Agency, concentrations of arsenic, chromium, copper, and nickel in the bottom sediment of Perry Lake typically exceeded the threshold-effects levels, which represent the concentrations above which toxic biological effects occasionally occur. Most nickel concentrations also exceeded the probable-effects level, which represents the concentration above which toxic biological effects usually or frequently occur. Sediment concentrations of metals and trace elements were relatively uniform over time. Statistically significant positive depositional trends for arsenic and manganese and statistically significant negative depositional trends for beryllium, chromium, titanium, and vanadium were indicated. However, the trends may be due solely to analytical variance. Organochlorine compounds either were not detected or were detected at concentrations less than the threshold-effects levels. Evidence of a negative depositional trend for DDE (degradation product of DDT) was consistent with the history of DDT use. Other organochlorine compounds detected were DDD and dieldrin. Diatom occurrence in the bottom sediment of Perry Lake was dominated by species that are indicators of eutrophic (nutrient-rich) conditions. Thus, it was concluded that eutrophic conditions have existed during much of the history of Perry Lake. However, an increase in the relative percentage abundance of the oligotrophic (nutrient-poor) species, combined with the significant positive depositional trends for two oligotrophic species (Aulacoseira islandica and Cyclotella radiosa) and the significant negative depositional trend for one eutrophic species (Stephanodiscus niagarae), indicated that conditions in Perry Lake may have become less eutrophic in recent years. Notable changes in human activity within the basin included a substantial decrease in alfalfa production and a substantial increase in soybean production from 1965 to 2000. These and other changes in human activi
Weiss, Lee; Thé, Jesse; Winter, Jennifer; Gharabaghi, Bahram
2018-04-18
Excessive phosphorus loading to inland freshwater lakes around the globe has resulted in nuisance plant growth along the waterfronts, degraded habitat for cold water fisheries, and impaired beaches, marinas and waterfront property. The direct atmospheric deposition of phosphorus can be a significant contributing source to inland lakes. The atmospheric deposition monitoring program for Lake Simcoe, Ontario indicates roughly 20% of the annual total phosphorus load (2010-2014 period) is due to direct atmospheric deposition (both wet and dry deposition) on the lake. This novel study presents a first-time application of the Genetic Algorithm (GA) methodology to optimize the application of best management practices (BMPs) related to agriculture and mobile sources to achieve atmospheric phosphorus reduction targets and restore the ecological health of the lake. The novel methodology takes into account the spatial distribution of the emission sources in the airshed, the complex atmospheric long-range transport and deposition processes, cost and efficiency of the popular management practices and social constraints related to the adoption of BMPs. The optimization scenarios suggest that the optimal overall capital investment of approximately $2M, $4M, and $10M annually can achieve roughly 3, 4 and 5 tonnes reduction in atmospheric P load to the lake, respectively. The exponential trend indicates diminishing returns for the investment beyond roughly $3M per year and that focussing much of this investment in the upwind, nearshore area will significantly impact deposition to the lake. The optimization is based on a combination of the lowest-cost, most-beneficial and socially-acceptable management practices that develops a science-informed promotion of implementation/BMP adoption strategy. The geospatial aspect to the optimization (i.e. proximity and location with respect to the lake) will help land managers to encourage the use of these targeted best practices in areas that will most benefit from the phosphorus reduction approach.
Liquid-phase-deposited siloxane-based capping layers for silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veith-Wolf, Boris; Wang, Jianhui; Hannu-Kuure, Milja
2015-02-02
We apply non-vacuum processing to deposit dielectric capping layers on top of ultrathin atomic-layer-deposited aluminum oxide (AlO{sub x}) films, used for the rear surface passivation of high-efficiency crystalline silicon solar cells. We examine various siloxane-based liquid-phase-deposited (LPD) materials. Our optimized AlO{sub x}/LPD stacks show an excellent thermal and chemical stability against aluminum metal paste, as demonstrated by measured surface recombination velocities below 10 cm/s on 1.3 Ωcm p-type silicon wafers after firing in a belt-line furnace with screen-printed aluminum paste on top. Implementation of the optimized LPD layers into an industrial-type screen-printing solar cell process results in energy conversion efficiencies ofmore » up to 19.8% on p-type Czochralski silicon.« less
NASA Astrophysics Data System (ADS)
Krumdieck, Susan Pran
Several years ago, a method for depositing ceramic coatings called the Pulsed-MOCVD system was developed by the Raj group at Cornell University in association with Dr. Harvey Berger and Sono-Tek Corporation. The process was used to produce epitaxial thin films of TiO2 on sapphire substrates under conditions of low pressure, relatively high temperature, and very low growth rate. The system came to CU-Boulder when Professor Raj moved here in 1997. It is quite a simple technique and has several advantages over typical CVD systems. The purpose of this dissertation is two-fold; (1) understand the chemical processes, thermodynamics, and kinetics of the Pulsed-MOCVD technique, and (2) determine the possible applications by studying the film structure and morphology over the entire range of deposition conditions. Polycrystalline coatings of ceramic materials were deposited on nickel in the low-pressure, cold-wall reactor from metalorganic precursors, titanium isopropoxide, and a mixture of zirconium isopropoxide and yttria isopropoxide. The process utilized pulsed liquid injection of a dilute precursor solution with atomization by ultrasonic nozzle. Thin films (less than 1mum) with fine-grained microstructure and thick coatings (up to 1mum) with columnar-microstructure were deposited on heated metal substrates by thermal decomposition of a single liquid precursor. The influence of each of the primary deposition parameters, substrate temperature, total flow rate, and precursor concentration on growth rate, conversion efficiency and morphology were investigated. The operating conditions were determined for kinetic, mass transfer, and evaporation process control regimes. Kinetic controlled deposition was found to produce equiaxed morphology while mass transfer controlled deposition produced columnar morphology. A kinetic model of the deposition process was developed and compared to data for deposition of TiO2 from Ti(OC3H7) 4 precursor. The results demonstrate that growth rate and morphology over the range of process operating conditions would make the Pulsed-MOCVD system suitable for application of thermal barrier coatings, electrical insulating layers, corrosion protection coatings, and the electrolyte layers in solid oxide fuel cells.
Park, Jae Hong; Yoon, Ki Young; Na, Hyungjoo; Kim, Yang Seon; Hwang, Jungho; Kim, Jongbaeg; Yoon, Young Hun
2011-09-01
We grew multi-walled carbon nanotubes (MWCNTs) on a glass fiber air filter using thermal chemical vapor deposition (CVD) after the filter was catalytically activated with a spark discharge. After the CNT deposition, filtration and antibacterial tests were performed with the filters. Potassium chloride (KCl) particles (<1 μm) were used as the test aerosol particles, and their number concentration was measured using a scanning mobility particle sizer. Antibacterial tests were performed using the colony counting method, and Escherichia coli (E. coli) was used as the test bacteria. The results showed that the CNT deposition increased the filtration efficiency of nano and submicron-sized particles, but did not increase the pressure drop across the filter. When a pristine glass fiber filter that had no CNTs was used, the particle filtration efficiencies at particle sizes under 30 nm and near 500 nm were 48.5% and 46.8%, respectively. However, the efficiencies increased to 64.3% and 60.2%, respectively, when the CNT-deposited filter was used. The reduction in the number of viable cells was determined by counting the colony forming units (CFU) of each test filter after contact with the cells. The pristine glass fiber filter was used as a control, and 83.7% of the E. coli were inactivated on the CNT-deposited filter. Copyright © 2011 Elsevier B.V. All rights reserved.
Vertically aligned carbon nanotubes black coatings from roll-to-roll deposition process
NASA Astrophysics Data System (ADS)
Goislard de Monsabert, Thomas; Papciak, L.; Sangar, A.; Descarpentries, J.; Vignal, T.; de Longiviere, Xavier; Porterat, D.; Mestre, Q.; Hauf, H.
2017-09-01
Vertically aligned carbon nanotubes (VACNTs) have recently attracted growing interest as a very efficient light absorbing material over a broad spectral range making them a superior coating in space optics applications such as radiometry, optical calibration, and stray light elimination. However, VACNT coatings available to-date most often result from batch-to-batch deposition processes thus potentially limiting the manufacturing repeatability, substrate size and cost efficiency of this material.
NASA Astrophysics Data System (ADS)
Zuzel, G.; Wójcik, M.; Majorovits, B.; Lampert, M. O.; Wendling, P.
2012-06-01
Removal and deposition efficiencies of the long-lived 222Rn daughters during etching from and onto surfaces of standard and high purity germanium were investigated. The standard etching procedure of Canberra-France used during production of high purity n-type germanium diodes was applied to germanium discs, which have been exposed earlier to a strong radon source for deposition of its progenies. An uncontaminated sample was etched in a solution containing 210Pb, 210Bi and 210Po. All isotopes were measured before and after etching with appropriate detectors. In contrast to copper and stainless steel, they were removed from germanium very efficiently. However, the reverse process was also observed. Considerable amounts of radioactive lead, bismuth and polonium isotopes present initially in the artificially polluted etchant were transferred to the clean high purity surface during processing of the sample.
Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...
NASA Astrophysics Data System (ADS)
Sprovieri, Francesca; Pirrone, Nicola; Bencardino, Mariantonia; D'Amore, Francesco; Angot, Helene; Barbante, Carlo; Brunke, Ernst-Günther; Arcega-Cabrera, Flor; Cairns, Warren; Comero, Sara; Diéguez, María del Carmen; Dommergue, Aurélien; Ebinghaus, Ralf; Feng, Xin Bin; Fu, Xuewu; Garcia, Patricia Elizabeth; Gawlik, Bernd Manfred; Hageström, Ulla; Hansson, Katarina; Horvat, Milena; Kotnik, Jože; Labuschagne, Casper; Magand, Olivier; Martin, Lynwill; Mashyanov, Nikolay; Mkololo, Thumeka; Munthe, John; Obolkin, Vladimir; Ramirez Islas, Martha; Sena, Fabrizio; Somerset, Vernon; Spandow, Pia; Vardè, Massimiliano; Walters, Chavon; Wängberg, Ingvar; Weigelt, Andreas; Yang, Xu; Zhang, Hui
2017-02-01
The atmospheric deposition of mercury (Hg) occurs via several mechanisms, including dry and wet scavenging by precipitation events. In an effort to understand the atmospheric cycling and seasonal depositional characteristics of Hg, wet deposition samples were collected for approximately 5 years at 17 selected GMOS monitoring sites located in the Northern and Southern hemispheres in the framework of the Global Mercury Observation System (GMOS) project. Total mercury (THg) exhibited annual and seasonal patterns in Hg wet deposition samples. Interannual differences in total wet deposition are mostly linked with precipitation volume, with the greatest deposition flux occurring in the wettest years. This data set provides a new insight into baseline concentrations of THg concentrations in precipitation worldwide, particularly in regions such as the Southern Hemisphere and tropical areas where wet deposition as well as atmospheric Hg species were not investigated before, opening the way for future and additional simultaneous measurements across the GMOS network as well as new findings in future modeling studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishihara, S.; Kitagawa, M.; Hirao, T.
1987-07-15
A systematic deposition of hydrogenated amorphous silicon films from pureSiH/sub 4/ plasma was made in a capacitively coupled RF glow-discharge system by changing anode--cathode spacing d and chamber pressure p simultaneously. The data of the deposition rate in the p-vs-d space had two boundaries. One was pd = const. The other seems to be pd/sup 2/ = const. The RF plasma can stably sustain between the boundaries. The boundaries are discussed with RF power per SiH/sub 4/ molecule and with overlapping Paschen's lines of various fragments, especially H/sub 2/ due to the SiH/sub 4/ dissociation. We found the optimum conditionsmore » in which the deposition rate was more than 10 A/s without large photo-induced degradation. 10% efficient p-i-n solar cells were achieved with the intrinsic layer deposition rate of 3.9 A/s and more than 6% efficiency with 10 A/s.« less
Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil.
Medina Jimenez, Ana Carolina; Nordi, Guilherme Henrique; Palacios Bereche, Milagros Cecilia; Bereche, Reynaldo Palacios; Gallego, Antonio Garrido; Nebra, Silvia Azucena
2017-11-01
Brazil has a large population with a high waste generation. The municipal solid waste (MSW) generated is deposited mainly in landfills. However, a considerable fraction of the waste is still improperly disposed of in dumpsters. In order to overcome this inadequate deposition, it is necessary to seek alternative routes. Between these alternatives, it is possible to quote gasification and incineration. The objective of this study is to compare, from an energetic and economic point of view, these technologies, aiming at their possible implementation in Brazilian cities. A total of two configurations were evaluated: (i) waste incineration with energy recovery and electricity production in a steam cycle; and (ii) waste gasification, where the syngas produced is used as fuel in a boiler of a steam cycle for electricity production. Simulations were performed assuming the same amount of available waste for both configurations, with a composition corresponding to the MSW from Santo André, Brazil. The thermal efficiencies of the gasification and incineration configurations were 19.3% and 25.1%, respectively. The difference in the efficiencies was caused by the irreversibilities associated with the gasification process, and the additional electricity consumption in the waste treatment step. The economic analysis presented a cost of electrical energy produced of 0.113 (US$ kWh -1 ) and 0.139 (US$ kWh -1 ) for the incineration and gasification plants respectively.
Xie, Junqi; Demarteau, Marcel; Wagner, Robert; ...
2017-04-24
Reduction of roughness to the nm level is critical of achieving the ultimate performance from photocathodes used in high gradient fields. The thrust of this paper is to explore the evolution of roughness during sequential growth, and to show that deposition of multilayer structures consisting of very thin reacted layers results in an nm level smooth photocathode. Synchrotron x-ray methods were applied to study the multi-step growth process of a high efficiency K 2CsSb photocathode. We observed a transition point of the Sb film grown on Si at the film thickness of similar to 40 angstrom with the substrate temperaturemore » at 100 degrees C and the growth rate at 0.1 Å s -1. The final K 2CsSb photocathode exhibits a thickness of around five times that of the total deposited Sb film regardless of how the Sb film was grown. The film surface roughening process occurs first at the step when K diffuses into the crystalline Sb. Furthermore, the photocathode we obtained from the multi-step growth exhibits roughness in an order of magnitude lower than the normal sequential process. X-ray diffraction measurements show that the material goes through two structural changes of the crystalline phase during formation, from crystalline Sb to K 3Sb and finally to K 2CsSb.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Junqi; Demarteau, Marcel; Wagner, Robert
Reduction of roughness to the nm level is critical of achieving the ultimate performance from photocathodes used in high gradient fields. The thrust of this paper is to explore the evolution of roughness during sequential growth, and to show that deposition of multilayer structures consisting of very thin reacted layers results in an nm level smooth photocathode. Synchrotron x-ray methods were applied to study the multi-step growth process of a high efficiency K 2CsSb photocathode. We observed a transition point of the Sb film grown on Si at the film thickness of similar to 40 angstrom with the substrate temperaturemore » at 100 degrees C and the growth rate at 0.1 Å s -1. The final K 2CsSb photocathode exhibits a thickness of around five times that of the total deposited Sb film regardless of how the Sb film was grown. The film surface roughening process occurs first at the step when K diffuses into the crystalline Sb. Furthermore, the photocathode we obtained from the multi-step growth exhibits roughness in an order of magnitude lower than the normal sequential process. X-ray diffraction measurements show that the material goes through two structural changes of the crystalline phase during formation, from crystalline Sb to K 3Sb and finally to K 2CsSb.« less
Attanasi, E.D.; DeYoung, J.H.
1988-01-01
Physical measures of mineral deposit characteristics, such as grade and tonnage, long have been used in both subjective and analytic models to predict favorability of areas for the occurrence of mineral deposits of particular types. After a deposit has been identified, however, the explorationist must decide whether to continue data collection, begin an economic feasibility study, or abandon the prospect. The decision maker can estimate the probability that a deposit will be commercial by examining physical measures. The amount of sampling data required before such a probability estimate can be considered reliable can be determined. A logit probability model estimated from onshore titanium-bearing heavy-mineral deposit data identifies and quantifies the relative influence of a deposit's physical measures on the chances of the deposit becoming commercial. A principal conclusion that can be drawn from the analysis is that, along with a measure of deposit size, the characteristics most important in predicting commercial potential are grades of the constituent minerals. Total heavy-mineral-bearing sand grade or even total titanium grade (without data on constituent mineral grades) are poor predictors of the deposit's commercial potential. ?? 1988 International Association for Mathematical Geology.
Eom, Tae Sung; Kim, Kyung Hwan; Bark, Chung Wung; Choi, Hyung Wook
2014-10-01
Titanium tetrachloride (TiCl4) treatment processed by chemical bath deposition is usually adopted as pre- and post-treatment for nanocrystalline titanium dioxide (TiO2) film deposition in the dye-sensitized solar cells (DSSCs) technology. TiCl4 post-treatment is a widely known method capable of improving the performance of dye-sensitized solar cells. In this work, the effect of TiCl4 post-treatment on the TiO2 electrode is proposed and compared to the untreated film. A TiO2 passivating layer was deposited on FTO glass by RF magnetron sputtering. The TiO2 sol prepared sol-gel method, nanoporous TiO2 upper layer was deposited by screen printing method on the passivating layer. TiCl4 post-treatment was deposited on the substrate by hydrolysis of TiCl4 aqueous solution. Crystalline structure was adjusted by various TiCl4 concentration and dipping time: 20 mM-150 mM and 30 min-120 min. The conversion efficiency was measured by solar simulator (100 mW/cm2). The dye-sensitized solar cell using TiCl4 post-treatment was measured the maximum conversion efficiency of 5.04% due to electron transport effectively. As a result, the DSSCs based on TiCl4 post-treatment showed better photovoltaic performance than cells made purely of TiO2 nanoparticles. The relative DSSCs devices are characterized in terms of short circuit current density, open circuit voltage, fill factor, conversion efficiency.
NASA Astrophysics Data System (ADS)
Freire, F. L., Jr.; Senna, L. F.; Achete, C. A.; Hirsch, T.
1998-03-01
Hard TiCN films were deposited by dc-magnetron sputter-ion plating technique onto high-speed carbon steel S-6-5-2 (M 2). For selected deposition conditions, TiCN films were also deposited onto Si substrates. A Ti target was sputtered in ArCH 4N 2 atmosphere. The argon flux (12 sccm) was fixed and corresponds to 90% of the total flux, whereas the N 2 flux ranged from 3% to 9% of the total flux. The total pressure in the chamber during film deposition was 8-9 × 10 -2Pa. The substrate bias, Vb, was between 0 and -140V and the substrate temperature, Ts, was 350°C. Film composition and depth profile of the elements were obtained by Rutherford backscattering spectrometry (RBS) and glow discharge optical spectroscopy (GDOS). Some limitations of both techniques in analysing TiCN films were presented. The effect of methane poisoing of the Ti target and how it influences the film composition was discussed.
Funderburg, D.E.
1977-01-01
The U.S. Geological Survey, in cooperation with the U.S. Soil Conservation Service, began an investigation of sedimentation of Bernalillo Floodwater Retarding Reservoir No. 1 (Piedra Lisa Arroyo) near Bernalillo, New Mexico in 1956. This investigation was part of a nationwide investigation of the trap efficiency of detention reservoirs. Reservoirs No. 1 is normally a dry reservoir and runoff from the 10.6 sq km drainage area generally occurs from high-intensity summer thundershowers. The mesa area of the drainage basin was treated to prevent erosion and gullying and to retard rapid runoff of rainfall. The land treatment consisted of pits, terraces, seeding, and restricted grazing. The total outflow recorded for the period of record (July 19, 1956 to June 30, 1974) was 133 acre-feet, yielding 1 ,439 tons of sediment. Over 99 percent of the coarse sediments and a high percentage of the silts and clays were deposited in the reservoir before reaching the outflow pipe. The determined trap efficiency of Reservoir No. 1 was 96 percent for the period of record. (Woordard-USGS)
Internal shocks in microquasar jets with a continuous Lorentz factor modulation
NASA Astrophysics Data System (ADS)
Pjanka, Patryk; Stone, James M.
2018-06-01
We perform relativistic hydrodynamic simulations of internal shocks formed in microquasar jets by continuous variation of the bulk Lorentz factor, in order to investigate the internal shock model. We consider one-, two-, and flicker noise 20-mode variability. We observe emergence of a forward-reverse shock structure for each peak of the Lorentz factor modulation. The high pressure in the shocked layer launches powerful outflows perpendicular to the jet beam into the ambient medium. These outflows dominate the details of the jet's kinetic energy thermalization. They are responsible for mixing between the jet and the surrounding medium and generate powerful shocks in the latter. These results do not concur with the popular picture of well-defined internal shells depositing energy as they collide within the confines of the jet, in fact collisions between internal shells themselves are quite rare in our continuous formulation of the problem. For each of our simulations, we calculate the internal energy deposited in the system, the `efficiency' of this deposition (defined as the ratio of internal to total flow energy), and the maximum temperature reached in order to make connections to emission mechanisms. We probe the dependence of these diagnostics on the Lorentz factor variation amplitudes, modulation frequencies, as well as the initial density ratio between the jet and the ambient medium.
Klump, J.V.; Edgington, D. N.; Sager, P.E.; Robertson, Dale M.
2011-01-01
The tributaries of Green Bay have long been recognized as major sources of phosphorus in the Lake Michigan basin. The status of Green Bay as a sink or source of phosphorus for Lake Michigan proper has been less well defined. The bay receives nearly 70% of its annual load of phosphorus ( 700 metric tons (t) · year-1) from a single source: the Fox River. Most of this phosphorus is deposited in sediments accumulating at rates that reach 160 mg · cm-2 · year-1 with an average of 20 mg · cm-2 · year-1. The phosphorus content of these sediments varies from <5 to >70 µmol · g-1. Deposition is highly focused, with ~70% of the total sediment accumulation and at least 80% of the phosphorus burial occurring within 20% of the surface area of the bay. Diagenetic and stoichiometric models of phosphorus cycling imply that >80% of the phosphorus deposited is permanently buried. External phosphorus loading to the bay is combined with sediment fluxes of phophorus to arrive at a simple phosphorus budget. Green Bay acts as an efficient nutrient trap, with the sediments retaining an estimated 70-90% of the external phosphorus inputs before flowing into Lake Michigan.
Modeling the long-term deposition trends in US over 1990 ...
Reactive nitrogen (Nr) is very important pollutant which at the same time plays a very important role on air and water quality, human health and biological diversity. The atmospheric nitrogen deposition can cause acidification and excess eutrophication, which brings damages to the ecosystems. Quantifying the total deposition is US is still a challenge due to the lack of the long-term observation data for the dry deposition. For this study, we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate deposition changes in US over 1990—2010. The WRF-CMAQ model was run for the continental US using a 36km by 36km horizontal grid spacing, by using a consistent emission inventory recently developed by Jia et al., (2013). We found significant decreasing trend for the total inorganic nitrogen over the East and West coast of California, and increasing trend in the East North Central. The decreased total deposition was controlled by the oxidized nitrogen, as a result of the recent consistent NOx emission reductions due to air regulations such as the Clean Air Act and the NOx State Implementation Plan, consistent with other studies (Li et al., 2016; Schwede and Lear, 2014). The increased inorganic nitrogen deposition was dominated by the reduced nitrogen, which was attributed to the unregulated increasing ammonia (NH3) emissions. The dry and wet inorganic nitrogen deposition trends also have a different spatial patterns: wet deposition was decreasi
NASA Astrophysics Data System (ADS)
Contini, D.; Donateo, A.; Belosi, F.; Grasso, F. M.; Santachiara, G.; Prodi, F.
2010-08-01
This work reports an analysis of the concentration, size distribution, and deposition velocity of atmospheric particles over snow and iced surfaces on the Nansen Ice Sheet (Antarctica). Measurements were performed using the eddy-correlation method at a remote site during the XXII Italian expedition of the National Research Program in Antarctica (PNRA) in 2006. The measurement system was based on a condensation particle counter (CPC) able to measure particles down to 9 nm in diameter with a 50% efficiency and a Differential Mobility Particle Sizer for evaluating particle size distributions from 11 to 521 nm diameter in 39 channels. A method based on postprocessing with digital filters was developed to take into account the effect of the slow time response of the CPC. The average number concentration was 1338 cm-3 (median, 978 cm-3; interquartile range, 435-1854 cm-3). Higher concentrations were observed at low wind velocities. Results gave an average deposition velocity of 0.47 mm/s (median, 0.19 mm/s; interquartile range, -0.21 -0.88 mm/s). Deposition increased with the friction velocity and was on average 0.86 mm/s during katabatic wind characterized by velocities higher than 4 m/s. Observed size distributions generally presented two distinct modes, the first at approximately 15-20 nm and the second (representing on average 70% of the total particles) at 60-70 nm. Under strong-wind conditions, the second mode dominated the average size distribution.
NASA Astrophysics Data System (ADS)
Mazumder, Malay; Yellowhair, Julius; Stark, Jeremy; Heiling, Calvin; Hudelson, John; Hao, Fang; Gibson, Hannah; Horenstein, Mark
2014-10-01
Large-scale solar plants are mostly installed in semi-arid and desert areas. In those areas, dust layer buildup on solar collectors becomes a major cause for energy yield loss. Development of transparent electrodynamic screens (EDS) and their applications for self-cleaning operation of solar mirrors are presented with a primary focus on the removal dust particles smaller than 30 µm in diameter while maintaining specular reflection efficiency < 90%. An EDS consists of thin rectangular array of parallel transparent conducting electrodes deposited on a transparent dielectric surface. The electrodes are insulated from each other and are embedded within a thin transparent dielectric film. The electrodes are activated using three-phase high-voltage pulses at low current (< 1 mA/m2 ). The three-phase electric field charges the deposited particles, lifts them form the substrate by electrostatic forces and propels the dust layer off of the collector's surface by a traveling wave. The cleaning process takes less than 2 minutes; needs energy less than 1 Wh/m2 without requiring any water or manual labor. The reflection efficiency can be restored > 95% of the original clean-mirror efficiency. We briefly present (1) loss of specular reflection efficiency as a function of particle size distribution of deposited dust, and (2) the effects of the electrode design and materials used for minimizing initial loss of specular reflectivity in producing EDS-integrated solar mirrors. Optimization of EDS by using a figure of merit defined by the ratio of dust removal efficiency to the initial loss of specular reflection efficiency is discussed.
Protein deposition on a lathe-cut silicone hydrogel contact lens material.
Subbaraman, Lakshman N; Woods, Jill; Teichroeb, Jonathan H; Jones, Lyndon
2009-03-01
To determine the quantity of total protein, total lysozyme, and the conformational state of lysozyme deposited on a novel, lathe-cut silicone hydrogel (SiHy) contact lens material (sifilcon A) after 3 months of wear. Twenty-four subjects completed a prospective, bilateral, daily-wear, 9-month clinical evaluation in which the subjects were fitted with a novel, custom-made, lathe-cut SiHy lens material. The lenses were worn for three consecutive 3-month periods, with lenses being replaced after each period of wear. After 3 months of wear, the lenses from the left eye were collected and assessed for protein analysis. The total protein deposited on the lenses was determined by a modified Bradford assay, total lysozyme using Western blotting and the lysozyme activity was determined using a modified micrococcal assay. The total protein recovered from the custom-made lenses was 5.3 +/- 2.3 microg/lens and the total lysozyme was 2.4 +/- 1.2 microg/lens. The denatured lysozyme found on the lenses was 1.9 +/- 1.0 microg/lens and the percentage of lysozyme denatured was 80 +/- 10%. Even after 3 months of wear, the quantity of protein and the conformational state of lysozyme deposited on these novel lens materials was very similar to that found on similar surface-coated SiHy lenses after 2 to 4 weeks of wear. These results indicate that extended use of the sifilcon A material is not deleterious in terms of the quantity and quality of protein deposited on the lens.
NASA Astrophysics Data System (ADS)
Trofimovs, J.; Sparks, S.; Talling, P.
2006-12-01
What happens when pyroclastic flows enter the ocean? To date, the subject of submarine pyroclastic flow behaviour has been controversial. Ambiguity arises from inconclusive evidence of a subaqueous depositional environment in ancient successions, to difficulty in sampling the in situ products of modern eruptions. A research voyage of the RRS James Clark Ross (9-18 May 2005) sampled 52 sites offshore from the volcanic island of Montserrat. The Soufrière Hills volcano, Montserrat, has been active since 1995 with eruptive behaviour dominated by andesite lava dome growth and collapse. Over 90% of the pyroclastic material produced has been deposited into the ocean. In July 2003 the Soufrière Hills volcano produced the largest historically documented dome collapse event. 210 x 106 m3 of pyroclastic material avalanched down the Tar River Valley, southeast Montserrat, to be deposited into the ocean. Bathymetric imaging and coring of offshore pyroclastic deposits, with a specific focus on the July 2003 units, reveals that the pyroclastic flows mix rapidly and violently with the water as they enter the ocean. Mixing takes place between the shore and 500 m depth where the deposition of basal coarse-grained parts of the flow initiates on slopes of 15° or less. The coarse components (pebbles to boulders) are deposited proximally from dense basal slurries to form steep sided, near linear ridges that amalgamate to form a kilometer-scale submarine fan. These proximal deposits contain <1% of ash-grade material. The finer components (dominantly ash-grade) are mixed into the overlying water column to form turbidity currents that flow distances >40 km from source. The total volume of pyroclastic material deposited within the submarine environment during this event exceeds 170 x 106 m3, with 65% deposited in proximal lobes and 35% deposited as distal turbidites. This broadly correlates with the block and ash components respectively, of the source subaerial pyroclastic flow. However, the efficient sorting and physical differentiation of the submarine flows, in comparison to the original mixture of their subaerial counterparts, suggests that the pyroclastic flows mix thoroughly with seawater and generate sediment gravity currents which are stratified in grain size and concentration.
Ros, Carles; Andreu, Teresa; Giraldo, Sergio; Izquierdo-Roca, Victor; Saucedo, Edgardo; Morante, Joan Ramon
2018-04-25
CZTS/Se kesterite-based solar cells have been protected by conformal atomic layer deposition (ALD)-deposited TiO 2 demonstrating its feasibility as powerful photocathodes for water splitting in highly acidic conditions (pH < 1), achieving stability with no detected degradation and with current density levels similar to photovoltaic productivities. The ALD has allowed low deposition temperatures of 200 °C for TiO 2 , preventing significant variations to the kesterite structure and CdS heterojunction, except for the pure-sulfide stoichiometry, which was studied by Raman spectroscopy. The measured photocurrent at 0 V vs reversible hydrogen electrode, 37 mA·cm -2 , is the highest reported to date, and the associated half-cell solar-to-hydrogen efficiency reached 7%, being amongst the largest presented for kesterite-based photocathodes, corroborating the possibility of using them as abundant low-cost alternative photoabsorbers as their efficiencies are improved toward those of chalcopyrites. An electrical circuit has been proposed to model the photocathode, which comprises the photon absorption, charge transfer through the protective layer, and catalytic performance, which paves the way to the design of highly efficient photoelectrodes.
Metallic nanoparticle deposition techniques for enhanced organic photovoltaic cells
NASA Astrophysics Data System (ADS)
Cacha, Brian Joseph Gonda
Energy generation via organic photovoltaic (OPV) cells provide many advantages over alternative processes including flexibility and price. However, more efficient OPVs are required in order to be competitive for applications. One way to enhance efficiency is through manipulation of exciton mechanisms within the OPV, for example by inserting a thin film of bathocuproine (BCP) and gold nanoparticles between the C60/Al and ZnPc/ITO interfaces, respectively. We find that BCP increases efficiencies by 330% due to gains of open circuit voltage (Voc) by 160% and short circuit current (Jsc) by 130%. However, these gains are complicated by the anomalous photovoltaic effect and an internal chemical potential. Exploration in the tuning of metallic nanoparticle deposition on ITO was done through four techniques. Drop casting Ag nanoparticle solution showed arduous control on deposited morphology. Spin-coating deposited very low densities of nanoparticles. Drop casting and spin-coating methods showed arduous control on Ag nanoparticle morphology due to clustering and low deposition density, respectively. Sputtered gold on glass was initially created to aid the adherence of Ag nanoparticles but instead showed a quick way to deposit aggregated gold nanoparticles. Electrodeposition of gold nanoparticles (AuNP) proved a quick method to tune nanoparticle morphology on ITO substrates. Control of deposition parameters affected AuNP size and distribution. AFM images of electrodeposited AuNPs showed sizes ranging from 39 to 58 nm. UV-Vis spectroscopy showed the presence of localized plasmon resonance through absorption peaks ranging from 503 to 614 nm. A linear correlation between electrodeposited AuNP size and peak absorbance was seen with a slope of 3.26 wavelength(nm)/diameter(nm).
Selenium deposition kinetics of different selenium sources in muscle and feathers of broilers.
Couloigner, Florian; Jlali, Maamer; Briens, Mickael; Rouffineau, Friedrich; Geraert, Pierre-André; Mercier, Yves
2015-11-01
The objective of this study was to determine selenium (Se) deposition kinetics in muscles and feathers of broilers in order to develop a rapid method to compare bioavailability of selenium sources. Different Se sources such as 2-hydroxy-4-methylselenobutanoic acid (HMSeBA, SO), sodium selenite (SS) and seleno-yeast (SY) were compared for their kinetics on Se deposition in muscles and feathers in broiler chicks from 0 to 21 d of age. A total of 576 day-old broilers were divided into four treatments with 8 replicates of 18 birds per pen. The diets used in the experiment were a negative control (NC) not supplemented with Se and 3 diets supplemented with 0.2 mg Se/kg as SS, SY or SO. Total Se content in breast muscle and feathers were assessed on days 0, 7, 14 and 21. At 7 d of age, SO increased muscle Se content compared to D0 (P < 0.05), whereas with the other treatments, muscle Se concentration decreased (P < 0.05). After 21 days, organic Se sources maintained (SY) or increased (SO) (P < 0.05) breast muscle Se concentration compared to hatch value whereas inorganic source (SS) or non-supplemented group (NC) showed a significant decrease in tissue Se concentration (P < 0.05). At D21, Se contents of muscle and feathers were highly correlated (R(2) = 0.927; P < 0.0001). To conclude, these results indicate that efficiency of different Se sources can be discriminated through a 7 d using muscle Se content in broiler chickens. Muscle and feathers Se contents were highly correlated after 21 days. Also feather sampling at 21 days of age represents a reliable and non-invasive procedure for Se bioefficacy comparison. © 2015 Poultry Science Association Inc.
A Hybrid Approach for Estimating Total Deposition in the ...
Atmospheric deposition of nitrogen and sulfur causes many deleterious effects on ecosystems including acidification and excess eutrophication. Assessments to support development of strategies to mitigate these effects require spatially and temporally continuous values of nitrogen and sulfur deposition. In the U.S., national monitoring networks exist that provide values of wet and dry deposition at discrete locations. While wet deposition can be interpolated between the monitoring locations, dry deposition cannot. Additionally, monitoring networks do not measure the complete suite of chemicals that contribute to total sulfur and nitrogen deposition. Regional air quality models provide spatially continuous values of deposition of monitored species as well as important unmeasured species. However, air quality modeling values are not generally available for an extended continuous time period. Air quality modeling results may also be biased for some chemical species. We developed a novel approach for estimating dry deposition using data from monitoring networks such as the Clean Air Status and Trends Network (CASTNET), the National Atmospheric Deposition Program (NADP) Ammonia Monitoring Network (AMoN), and the Southeastern Aerosol Research and Characterization (SEARCH) network and modeled data from the Community Multiscale Air Quality (CMAQ) model. These dry deposition values estimates are then combined with wet deposition values from the NADP National Trends Networ
A Novel Hybrid Approach for Estimating Total Deposition in ...
Atmospheric deposition of nitrogen and sulfur causes many deleterious effects on ecosystems including acidification and excess eutrophication. Assessments to support development of strategies to mitigate these effects require spatially and temporally continuous values of nitrogen and sulfur deposition. In the U.S., national monitoring networks exist that provide values of wet and dry deposition at discrete locations. While wet deposition can be interpolated between the monitoring locations, dry deposition cannot. Additionally, monitoring networks do not measure the complete suite of chemicals that contribute to total sulfur and nitrogen deposition. Regional air quality models provide spatially continuous values of deposition of monitored species as well as important unmeasured species. However, air quality modeling values are not generally available for an extended continuous time period. Air quality modeling results may also be biased for some chemical species. We developed a novel approach for estimating dry deposition using data from monitoring networks such as the Clean Air Status and Trends Network (CASTNET), the National Atmospheric Deposition Program (NADP) Ammonia Monitoring Network (AMoN), and the Southeastern Aerosol Research and Characterization (SEARCH) network and modeled data from the Community Multiscale Air Quality (CMAQ) model. These dry deposition values estimates are then combined with wet deposition values from the NADP National Trends Networ
Measurements and Modeling to Enhance Estimates of NH3 Total Deposition
Values for the total (wet + dry) deposition of ammonia are needed as input to nitrogen budget studies and ecological assessments. Concentrations of ammonia are measured at NADP’s Ammonia Monitoring Network (AMoN) sites. Research is focusing on the use of the concentration...
Zarazúa, Isaac; Sidhik, Siraj; Lopéz-Luke, Tzarara; Esparza, Diego; De la Rosa, Elder; Reyes-Gomez, Juan; Mora-Seró, Iván; Garcia-Belmonte, Germà
2017-12-21
The performance of perovskite solar cell (PSC) is highly sensitive to deposition conditions, the substrate, humidity, and the efficiency of solvent extraction. However, the physical mechanism involved in the observed changes of efficiency with different deposition conditions has not been elucidated yet. In this work, PSCs were fabricated by the antisolvent deposition (AD) and recently proposed air-extraction antisolvent (AAD) process. Impedance analysis and J-V curve fitting were used to analyze the photogeneration, charge transportation, recombination, and leakage properties of PSCs. It can be elucidated that the improvement in morphology of perovskite film promoted by AAD method leads to increase in light absorption, reduction in recombination sites, and interstitial defects, thus enhancing the short-circuit current density, open-circuit voltage, and fill factor. This study will open up doors for further improvement of device and help in understanding its physical mechanism and its relation to the deposition methods.
Graphene as a transparent conducting and surface field layer in planar Si solar cells.
Kumar, Rakesh; Mehta, Bodh R; Bhatnagar, Mehar; S, Ravi; Mahapatra, Silika; Salkalachen, Saji; Jhawar, Pratha
2014-01-01
This work presents an experimental and finite difference time domain (FDTD) simulation-based study on the application of graphene as a transparent conducting layer on a planar and untextured crystalline p-n silicon solar cell. A high-quality monolayer graphene with 97% transparency and 350 Ω/□ sheet resistance grown by atmospheric pressure chemical vapor deposition method was transferred onto planar Si cells. An increase in efficiency from 5.38% to 7.85% was observed upon deposition of graphene onto Si cells, which further increases to 8.94% upon SiO2 deposition onto the graphene/Si structure. A large increase in photon conversion efficiency as a result of graphene deposition shows that the electronic interaction and the presence of an electric field at the graphene/Si interface together play an important role in this improvement and additionally lead to a reduction in series resistance due to the conducting nature of graphene.
Development of a polysilicon process based on chemical vapor deposition, phase 1 and phase 2
NASA Technical Reports Server (NTRS)
Plahutnik, F.; Arvidson, A.; Sawyer, D.; Sharp, K.
1982-01-01
High-purity polycrystalline silicon was produced in an experimental, intermediate and advanced CVD reactor. Data from the intermediate and advanced reactors confirmed earlier results obtained in the experimental reactor. Solar cells were fabricated by Westinghouse Electric and Applied Solar Research Corporation which met or exceeded baseline cell efficiencies. Feedstocks containing trichlorosilane or silicon tetrachloride are not viable as etch promoters to reduce silicon deposition on bell jars. Neither are they capable of meeting program goals for the 1000 MT/yr plant. Post-run CH1 etch was found to be a reasonably effective method of reducing silicon deposition on bell jars. Using dichlorosilane as feedstock met the low-cost solar array deposition goal (2.0 gh-1-cm-1), however, conversion efficiency was approximately 10% lower than the targeted value of 40 mole percent (32 to 36% achieved), and power consumption was approximately 20 kWh/kg over target at the reactor.
From field data to volumes: constraining uncertainties in pyroclastic eruption parameters
NASA Astrophysics Data System (ADS)
Klawonn, Malin; Houghton, Bruce F.; Swanson, Donald A.; Fagents, Sarah A.; Wessel, Paul; Wolfe, Cecily J.
2014-07-01
In this study, we aim to understand the variability in eruption volume estimates derived from field studies of pyroclastic deposits. We distributed paper maps of the 1959 Kīlauea Iki tephra to 101 volcanologists worldwide, who produced hand-drawn isopachs. Across the returned maps, uncertainty in isopach areas is 7 % across the well-sampled deposit but increases to over 30 % for isopachs that are governed by the largest and smallest thickness measurements. We fit the exponential, power-law, and Weibull functions through the isopach thickness versus area1/2 values and find volume estimate variations up to a factor of 4.9 for a single map. Across all maps and methodologies, we find an average standard deviation for a total volume of s = 29 %. The volume uncertainties are largest for the most proximal ( s = 62 %) and distal field ( s = 53 %) and small for the densely sampled intermediate deposit ( s = 8 %). For the Kīlauea Iki 1959 eruption, we find that the deposit beyond the 5-cm isopach contains only 2 % of the total erupted volume, whereas the near-source deposit contains 48 % and the intermediate deposit 50 % of the total volume. Thus, the relative uncertainty within each zone impacts the total volume estimates differently. The observed uncertainties for the different deposit regions in this study illustrate a fundamental problem of estimating eruption volumes: while some methodologies may provide better fits to the isopach data or rely on fewer free parameters, the main issue remains the predictive capabilities of the empirical functions for the regions where measurements are missing.
Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing
2015-01-01
In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.
Event-based precipitation samples were collected at a downtown industrial and a predominantly upwind rural location in the Cleveland, Ohio metropolitan area from July 2009 through December 2010 to investigate the potential local total mercury (Hg) wet deposition enhancement in a ...
An accurate dose estimation under various inhalation conditions is important for assessing both the potential health effects of pollutant particles and the therapeutic efficacy of medical aerosols. We measured total deposition fraction (TDF) of monodisperse micron-sized particles...
Park, Soon-Ung; Lee, In-Hye; Joo, Seung Jin
2016-01-15
Aerosol Modeling System (AMS) that is consisted of the Asian Dust Aerosol Model2 (ADAM2) and the Community Multi-scale Air Quality (CMAQ) modeling system has been employed to document the spatial distributions of the monthly and the annual averaged concentration of both the Asian dust (AD) aerosol and the anthropogenic aerosol (AA), and their total depositions in the Asian region for the year 2010. It is found that the annual mean surface aerosol (PM10) concentrations in the Asian region affect in a wide region as a complex mixture of AA and AD aerosols; they are predominated by the AD aerosol in the AD source region of northern China and Mongolia with a maximum concentration exceeding 300 μg m(-3); AAs are predominated in the high pollutant emission regions of southern and eastern China and northern India with a maximum concentration exceeding 110 μg m(-3); while the mixture of AA and AD aerosols is dominated in the downwind regions extending from the Yellow Sea to the Northwest Pacific Ocean. It is also found that the annual total deposition of aerosols in the model domain is found to be 485 Tg (372 Tg by AD aerosol and 113 Tg by AA), of which 66% (319 Tg) is contributed by the dry deposition (305 Tg by AD aerosol and 14 Tg by AA) and 34% (166 Tg) by the wet deposition (66 Tg by AD aerosol and 100 Tg by AA), suggesting about 77% of the annual total deposition being contributed by the AD aerosol mainly through the dry deposition process and 24% of it by AA through the wet deposition process. The monthly mean aerosol concentration and the monthly total deposition show a significant seasonal variation with high in winter and spring, and low in summer. Copyright © 2015 Elsevier B.V. All rights reserved.
K.C. Weathers; J.A. Lynch
2011-01-01
To determine the effects of air pollution on ecological systems using the critical load approach, accurate estimates of total nitrogen (N) deposition are essential. Empirical critical loads are set by relating observed ecosystem responses to N deposition (measured, experimentally manipulated, or modeled).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurapov, Denis; Reiss, Jennifer; Trinh, David H.
2007-07-15
Alumina thin films were deposited onto tempered hot working steel substrates from an AlCl{sub 3}-O{sub 2}-Ar-H{sub 2} gas mixture by plasma-assisted chemical vapor deposition. The normalized ion flux was varied during deposition through changes in precursor content while keeping the cathode voltage and the total pressure constant. As the precursor content in the total gas mixture was increased from 0.8% to 5.8%, the deposition rate increased 12-fold, while the normalized ion flux decreased by approximately 90%. The constitution, morphology, impurity incorporation, and the elastic properties of the alumina thin films were found to depend on the normalized ion flux. Thesemore » changes in structure, composition, and properties induced by normalized ion flux may be understood by considering mechanisms related to surface and bulk diffusion.« less
Removal efficiency of particulate matters at different underlying surfaces in Beijing.
Liu, Jiakai; Mo, Lichun; Zhu, Lijuan; Yang, Yilian; Liu, Jiatong; Qiu, Dongdong; Zhang, Zhenming; Liu, Jinglan
2016-01-01
Particulate matter (PM) pollution has been increasingly becoming serious in Beijing and has drawn the attention of the local government and general public. This study was conducted during early spring of 2013 and 2014 to monitor the concentration of PM at three different land surfaces (bare land, urban forest, and lake) in the Olympic Park in Beijing and to analyze its effect on the concentration of meteorological factors and the dry deposition onto different land cover types. The results showed that diurnal variation of PM concentrations at the three different land surfaces had no significant regulations, and sharp short-term increases in PM10 (particulate matter having an aerodynamic diameter <10 μm) occurred occasionally. The concentrations also differed from one land cover type to another at the same time, but the regulation was insignificant. The most important meteorological factor influencing the PM concentration is relative humidity; it is positively correlated with the PM concentration. While in the forests, the wind speed and irradiance also influenced the PM concentration by affecting the capture capacity of trees and dry deposition velocity. Other factors were not correlated with or influenced by the PM concentration. In addition, the hourly dry deposition in unit area (μg/m(2)) onto the three types of land surfaces and the removal efficiency based on the ratio of dry deposition and PM concentration were calculated. The results showed that the forest has the best removal capacity for both PM2.5 (particulate matter having an aerodynamic diameter <2.5 μm) and PM10 because of the faster deposition velocity and relatively low resuspension rate. The lake's PM10 removal efficiency is higher than that of the bare land because of the relatively higher PM resuspension rates on the bare land. However, the PM2.5 removal efficiency is lower than that of the bare land because of the significantly lower dry deposition velocity.
Maillard, Florie; Pereira, Bruno; Boisseau, Nathalie
2018-02-01
High-intensity interval training (HIIT) is promoted as a time-efficient strategy to improve body composition. The aim of this meta-analysis was to assess the efficacy of HIIT in reducing total, abdominal, and visceral fat mass in normal-weight and overweight/obese adults. Electronic databases were searched to identify all related articles on HIIT and fat mass. Stratified analysis was performed using the nature of HIIT (cycling versus running, target intensity), sex and/or body weight, and the methods of measuring body composition. Heterogeneity was also determined RESULTS: A total of 39 studies involving 617 subjects were included (mean age 38.8 years ± 14.4, 52% females). HIIT significantly reduced total (p = 0.003), abdominal (p = 0.007), and visceral (p = 0.018) fat mass, with no differences between the sexes. A comparison showed that running was more effective than cycling in reducing total and visceral fat mass. High-intensity (above 90% peak heart rate) training was more successful in reducing whole body adiposity, while lower intensities had a greater effect on changes in abdominal and visceral fat mass. Our analysis also indicated that only computed tomography scan or magnetic resonance imaging showed significant abdominal and/or visceral fat-mass loss after HIIT interventions. HIIT is a time-efficient strategy to decrease fat-mass deposits, including those of abdominal and visceral fat mass. There was some evidence of the greater effectiveness of HIIT running versus cycling, but owing to the wide variety of protocols used and the lack of full details about cycling training, further comparisons need to be made. Large, multicenter, prospective studies are required to establish the best HIIT protocols for reducing fat mass according to subject characteristics.
Yu, Junbao; Ning, Kai; Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei; Gao, Yongjun
2014-01-01
The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 (2-) and Na(+) were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m(-2), in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 (-)-N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 (+)-N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 (-)-N and NH4 (+)-N was ~31.38% and ~20.50% for the contents of NO3 (-)-N and NH4 (+)-N in 0-10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.
Increasing importance of deposition of reduced nitrogen in the United States
Li, Yi; Schichtel, Bret A.; Walker, John T.; Schwede, Donna B.; Chen, Xi; Lehmann, Christopher M. B.; Puchalski, Melissa A.; Gay, David A.; Collett, Jeffrey L.
2016-01-01
Rapid development of agriculture and fossil fuel combustion greatly increased US reactive nitrogen emissions to the atmosphere in the second half of the 20th century, resulting in excess nitrogen deposition to natural ecosystems. Recent efforts to lower nitrogen oxides emissions have substantially decreased nitrate wet deposition. Levels of wet ammonium deposition, by contrast, have increased in many regions. Together these changes have altered the balance between oxidized and reduced nitrogen deposition. Across most of the United States, wet deposition has transitioned from being nitrate-dominated in the 1980s to ammonium-dominated in recent years. Ammonia has historically not been routinely measured because there are no specific regulatory requirements for its measurement. Recent expansion in ammonia observations, however, along with ongoing measurements of nitric acid and fine particle ammonium and nitrate, permit new insight into the balance of oxidized and reduced nitrogen in the total (wet + dry) US nitrogen deposition budget. Observations from 37 sites reveal that reduced nitrogen contributes, on average, ∼65% of the total inorganic nitrogen deposition budget. Dry deposition of ammonia plays an especially key role in nitrogen deposition, contributing from 19% to 65% in different regions. Future progress toward reducing US nitrogen deposition will be increasingly difficult without a reduction in ammonia emissions. PMID:27162336
Bohdalkova, Leona; Novak, Martin; Voldrichova, Petra; Prechova, Eva; Veselovsky, Frantisek; Erbanova, Lucie; Krachler, Michael; Komarek, Arnost; Mikova, Jitka
2012-11-15
Little is known about atmospheric input of beryllium (Be) into ecosystems, despite its highly toxic behavior. For three consecutive winters (2009-2011), we measured Be concentrations in horizontal deposition (rime) and vertical deposition (snow) at 10 remote mountain-top locations in the Czech Republic, Central Europe. Beryllium was determined both in filtered waters, and in HF digests of insoluble particles. Across the sites, soluble Be concentrations in rime were 7 times higher, compared to snow (6.1 vs. 0.9ng·L(-1)). Rime scavenged the pollution-rich lower segments of clouds. The lowest Be concentrations were detected in the soluble fraction of snow. Across the sites, 34% of total Be deposition occurred in the form of soluble (bioavailable) Be, the rest were insoluble particles. Beryllium fluxes decreased in the order: vertical dry deposition insoluble>vertical dry deposition soluble>horizontal deposition soluble>vertical wet deposition insoluble>vertical wet deposition soluble>horizontal deposition insoluble. The average contributions of these Be forms to total deposition were 56, 21, 8, 7, 5 and 3%, respectively. Sites in the northeast were more Be-polluted than the rest of the country with sources of pollution in industrial Silesia. Copyright © 2012 Elsevier B.V. All rights reserved.
Towards fully spray coated organic light emitting devices
NASA Astrophysics Data System (ADS)
Gilissen, Koen; Stryckers, Jeroen; Manca, Jean; Deferme, Wim
2014-10-01
Pi-conjugated polymer light emitting devices have the potential to be the next generation of solid state lighting. In order to achieve this goal, a low cost, efficient and large area production process is essential. Polymer based light emitting devices are generally deposited using techniques based on solution processing e.g.: spin coating, ink jet printing. These techniques are not well suited for cost-effective, high throughput, large area mass production of these organic devices. Ultrasonic spray deposition however, is a deposition technique that is fast, efficient and roll to roll compatible which can be easily scaled up for the production of large area polymer light emitting devices (PLEDs). This deposition technique has already successfully been employed to produce organic photovoltaic devices (OPV)1. Recently the electron blocking layer PEDOT:PSS2 and metal top contact3 have been successfully spray coated as part of the organic photovoltaic device stack. In this study, the effects of ultrasonic spray deposition of polymer light emitting devices are investigated. For the first time - to our knowledge -, spray coating of the active layer in PLED is demonstrated. Different solvents are tested to achieve the best possible spray-able dispersion. The active layer morphology is characterized and optimized to produce uniform films with optimal thickness. Furthermore these ultrasonic spray coated films are incorporated in the polymer light emitting device stack to investigate the device characteristics and efficiency. Our results show that after careful optimization of the active layer, ultrasonic spray coating is prime candidate as deposition technique for mass production of PLEDs.
Gray, Floyd; Hammarstrom, Jane M.; Ludington, Stephen; Zürcher, Lukas; Nelson, Carl E.; Robinson, Gilpin R.; Miller, Robert J.; Moring, Barry C.
2014-01-01
This assessment estimated a total mean of 37 undiscovered porphyry copper deposits within the assessed permissive tracts in Central America and the Caribbean Basin. This represents more than five times the seven known deposits. Predicted mean (arithmetic) resources that could be associated with these undiscovered deposits are about 130 million metric tons of copper and about 5,200 metric tons of gold, as well as byproduct molybdenum and silver. The reported identified resources for the seven known deposits total about 39 million metric tons of copper and about 930 metric tons of gold. The assessment area is estimated to contain nearly four times as much copper and six times as much gold in undiscovered porphyry copper deposits as has been identified to date.
Photoinduced surface plasmon switching at VO2/Au interface.
Kumar, Nardeep; Rúa, Armando; Aldama, Jennifer; Echeverría, Karla; Fernández, Félix E; Lysenko, Sergiy
2018-05-28
Angle-resolved reflection, light scattering and ultrafast pump-probe spectroscopy combined with a surface plasmon-polariton (SPP) resonance technique in attenuated total reflection geometry was used to investigate the light-induced plasmonic switching in a photorefractive VO 2 /Au hybrid structure. Measurements of SPP scattering and reflection shows that the optically-induced formation of metallic state in a vanadium dioxide layer deposited on a gold film significantly alters the electromagnetic field enhancement and SPP propagation length at the VO 2 /Au interface. The ultrafast optical manipulation of SPP resonance is shown on a picosecond timescale. Obtained results demonstrate high potential of photorefractive vanadium oxides as efficient plasmonic modulating materials for ultrafast optoelectronic devices.
Sand deposition in the Colorado River in the Grand Canyon from flooding of the Little Colorado River
Wiele, S.M.; Graf, J.B.; Smith, J.D.
1996-01-01
Methods for computing the volume of sand deposited in the Colorado River in Grand Canyon National Park by floods in major tributaries and for determining redistribution of that sand by main-channel flows are required for successful management of sand-dependent riparian resources. We have derived flow, sediment transport, and bed evolution models based on a gridded topography developed from measured channel topography and used these models to compute deposition in a short reach of the river just downstream from the Little Colorado River, the largest tributary in the park. Model computations of deposition from a Little Colorado River flood in January 1993 were compared to bed changes measured at 15 cross sections. The total difference between changes in cross-sectional area due to deposition computed by the model and the measured changes was 6%. A wide reach with large areas of recirculating flow and large depressions in the main channel accumulated the most sand, whereas a reach with similar planimetric area but a long, narrow shape and relatively small areas of recirculating flow and small depressions in the main channel accumulated only about a seventh as much sand. About 32% of the total deposition was in recirculation zones, 65% was in the main channel, and 3% was deposited along the channel margin away from the recirculation zone. Overall, about 15% of the total input of sand from this Little Colorado River flood was deposited in the first 3 km below the confluence, suggesting that deposition of the flood-derived material extended for only several tens of kilometers downstream from the confluence.
An Exponential Luminous Efficiency Model for Hypervelocity Impact into Regolith
NASA Technical Reports Server (NTRS)
Swift, Wesley R.; Moser, D.E.; Suggs, Robb M.; Cooke, W.J.
2010-01-01
The flash of thermal radiation produced as part of the impact-crater forming process can be used to determine the energy of the impact if the luminous efficiency is known. From this energy the mass and, ultimately, the mass flux of similar impactors can be deduced. The luminous efficiency, Eta is a unique function of velocity with an extremely large variation in the laboratory range of under 8 km/s but a necessarily small variation with velocity in the meteoric range of 20 to 70 km/s. Impacts into granular or powdery regolith, such as that on the moon, differ from impacts into solid materials in that the energy is deposited via a serial impact process which affects the rate of deposition of internal (thermal) energy. An exponential model of the process is developed which differs from the usual polynomial models of crater formation. The model is valid for the early time portion of the process and focuses on the deposition of internal energy into the regolith. The model is successfully compared with experimental luminous efficiency data from laboratory impacts and from astronomical determinations and scaling factors are estimated. Further work is proposed to clarify the effects of mass and density upon the luminous efficiency scaling factors
Improvements to the Characterization of Organic Nitrogen Chemistry
Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...
2016-01-01
Background Inhaled ultrafine particles (UFP) may induce greater adverse respiratory effects than larger particles occurring in the ambient atmosphere. Due to this potential of UFP to act as triggers for diverse lung injuries medical as well as physical research has been increasingly focused on the exact deposition behavior of the particles in lungs of various probands. Main purpose of the present study was the presentation of experimental and theoretical data of total, regional, and local UFP deposition in the lungs of men and women. Methods Both experiments and theoretical simulations were carried out by using particle sizes of 0.04, 0.06, 0.08, and 0.10 µm [number median diameters (NMD)]. Inhalation of UFP took place by application of predefined tidal volumes (500, 750, and 1,000 mL) and respiratory flow rates (150, 250, 375, and 500 mL·s−1). For male subjects a functional residual capacity (FRC) of 3,911±892 mL was measured, whereas female probands had a FRC of 3,314±547 mL. Theoretical predictions were based on (I) a stochastic model of the tracheobronchial tree; (II) particle transport computations according to a random walk algorithm; and (III) empirical formulae for the description of UFP deposition. Results Total deposition fractions (TDF) are marked by a continuous diminution with increasing particle size. Whilst particles measuring 0.04 µm in size deposit in the respiratory tract by 40–70%, particles with a size of 0.10 µm exhibit deposition values ranging from 20% to 45%. Except for the largest particles studied here TDF of female probands are higher than those obtained for male probands. Differences between experimental and theoretical results are most significant for 0.10 µm particles, but never exceed 20%. Predictions of regional (extrathoracic, tracheobronchial, alveolar) UFP deposition show clearly that females tend to develop higher tracheobronchial and alveolar deposition fractions than males. This discrepancy is also confirmed by airway generation-specific deposition, which is permanently higher in women than in men. Conclusions From the experimental data and modeling predictions it can be concluded that females bear a slightly higher potential to develop lung insufficiencies after exposure to UFP than males. Besides higher deposition fractions occurring in female subjects, also total lung deposition dose is noticeably enhanced. PMID:27429960
Sturm, Robert
2016-06-01
Inhaled ultrafine particles (UFP) may induce greater adverse respiratory effects than larger particles occurring in the ambient atmosphere. Due to this potential of UFP to act as triggers for diverse lung injuries medical as well as physical research has been increasingly focused on the exact deposition behavior of the particles in lungs of various probands. Main purpose of the present study was the presentation of experimental and theoretical data of total, regional, and local UFP deposition in the lungs of men and women. Both experiments and theoretical simulations were carried out by using particle sizes of 0.04, 0.06, 0.08, and 0.10 µm [number median diameters (NMD)]. Inhalation of UFP took place by application of predefined tidal volumes (500, 750, and 1,000 mL) and respiratory flow rates (150, 250, 375, and 500 mL·s(-1)). For male subjects a functional residual capacity (FRC) of 3,911±892 mL was measured, whereas female probands had a FRC of 3,314±547 mL. Theoretical predictions were based on (I) a stochastic model of the tracheobronchial tree; (II) particle transport computations according to a random walk algorithm; and (III) empirical formulae for the description of UFP deposition. Total deposition fractions (TDF) are marked by a continuous diminution with increasing particle size. Whilst particles measuring 0.04 µm in size deposit in the respiratory tract by 40-70%, particles with a size of 0.10 µm exhibit deposition values ranging from 20% to 45%. Except for the largest particles studied here TDF of female probands are higher than those obtained for male probands. Differences between experimental and theoretical results are most significant for 0.10 µm particles, but never exceed 20%. Predictions of regional (extrathoracic, tracheobronchial, alveolar) UFP deposition show clearly that females tend to develop higher tracheobronchial and alveolar deposition fractions than males. This discrepancy is also confirmed by airway generation-specific deposition, which is permanently higher in women than in men. From the experimental data and modeling predictions it can be concluded that females bear a slightly higher potential to develop lung insufficiencies after exposure to UFP than males. Besides higher deposition fractions occurring in female subjects, also total lung deposition dose is noticeably enhanced.
Influence of Biochar on Deposition and Release of Clay Colloids in Saturated Porous Media.
Haque, Muhammad Emdadul; Shen, Chongyang; Li, Tiantian; Chu, Haoxue; Wang, Hong; Li, Zhen; Huang, Yuanfang
2017-11-01
Although the potential application of biochar in soil remediation has been recognized, the effect of biochar on the transport of clay colloids, and accordingly the fate of colloid-associated contaminants, is unclear to date. This study conducted saturated column experiments to systematically examine transport of clay colloids in biochar-amended sand porous media in different electrolytes at different ionic strengths. The obtained breakthrough curves were simulated by the convection-diffusion equation, which included a first-order deposition and release terms. The deposition mechanisms were interpreted by calculating Derjaguin-Landau-Verwey-Overbeek interaction energies. A linear relationship between the simulated deposition rate or the attachment efficiency and the fraction of biochar was observed ( ≥ 0.91), indicating more favorable deposition in biochar than in sand. The interaction energy calculations show that the greater deposition in biochar occurs because the half-tube-like cavities on the biochar surfaces favor deposition in secondary minima and the nanoscale physical and chemical heterogeneities on the biochar surfaces increase deposition in primary minima. The deposited clay colloids in NaCl can be released by reduction of ionic strength, whereas the presence of a bivalent cation (Ca) results in irreversible deposition due to the formation of cation bridging between the colloids and biochar surfaces. The deposition and release of clay colloids on or from biochar surfaces not only change their mobilizations in the soil but also influence the efficiency of the biochar for removal of pollutants. Therefore, the influence of biochar on clay colloid transport must be considered before application of the biochar in soil remediation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Mercury in Precipitation in Indiana, January 2004-December 2005
Risch, Martin R.; Fowler, Kathleen K.
2008-01-01
Mercury in precipitation was monitored during 2004-2005 at five locations in Indiana as part of the National Atmospheric Deposition Program-Mercury Deposition Network (NADP-MDN). Monitoring stations were operated at Roush Lake near Huntington, Clifty Falls State Park near Madison, Fort Harrison State Park near Indianapolis, Monroe County Regional Airport near Bloomington, and Indiana Dunes National Lakeshore near Porter. At these monitoring stations, precipitation amounts were measured continuously and weekly samples were collected for analysis of mercury by methods achieving detection limits as low as 0.05 ng/L (nanograms per liter). Wet deposition was computed as the product of mercury concentration and precipitation. The data were analyzed for seasonal patterns, temporal trends, and geographic differences. In the 2 years, 520 weekly samples were collected at the 5 monitoring stations and 448 of these samples had sufficient precipitation to compute mercury wet deposition. The 2-year mean mercury concentration at the five monitoring stations (normalized to the sample volume) was 10.6 ng/L. As a reference for comparison, the total mercury concentration in 41 percent of the samples analyzed was greater than the statewide Indiana water-quality standard for mercury (12 ng/L, protecting aquatic life) and 99 percent of the concentrations exceeded the most conservative Indiana water-quality criterion (1.3 ng/L, protecting wild mammals and birds). The normalized annual mercury concentration at Clifty Falls in 2004 was the fourth highest in the NADP-MDN in eastern North America that year. In 2005, the mercury concentrations at Clifty Falls and Indiana Dunes were the ninth highest in the NADP-MDN in eastern North America. At the five monitoring stations during the study period, the mean weekly total mercury deposition was 0.208 ug/m2 (micrograms per square meter) and mean annual total mercury deposition was 10.8 ug/m2. The annual mercury deposition at Clifty Falls in 2004 and 2005 was in the top 25 percent of the NADP-MDN stations in eastern North America. Mercury concentrations and deposition varied at the five monitoring stations during 2004-2005. Mercury concentrations in wet-deposition samples ranged from 1.2 to 116.6 ng/L and weekly mercury deposition ranged from 0.002 to 1.74 ug/m2. Data from weekly samples exhibited seasonal patterns. During April through September, total mercury concentrations and deposition were higher than the median for all samples. Annual precipitation at four of the five monitoring stations was within 10 percent of normal both years, with the exception of Indiana Dunes, where precipitation was 23 percent below normal in 2005. Episodes of high mercury deposition, which were the top 10 percent of weekly mercury deposition at the five monitoring stations, contributed 39 percent of all mercury deposition during 2004-2005. Mercury deposition more than 1.04 ug/m2 (5 times the mean weekly deposition) was recorded for 12 samples. These episodes of highest mercury deposition were recorded at all five monitoring stations, but the most (7 of 12) were at Clifty Falls and contributed 34.4 percent of the total deposition at that station during 2004-2005. Weekly samples with high mercury deposition may help to explain the differences in annual mercury deposition among the five monitoring stations in Indiana. A statistical evaluation of the monitoring data for 2001-2005 indicated several statistically significant temporal trends. A statewide (5-station) decrease (p = 0.007) in mercury deposition and a statewide decrease (p = 0.059) in mercury concentration were shown. Decreases in mercury deposition (p = 0.061 and p = 0.083) were observed at Roush Lake and Bloomington. A statistically significant trend was not observed for precipitation at the five monitoring stations during this 5-year period. A potential explanation for part of the statewide decrease in mercury concentration and mercury deposition was a 2
Self-ordering and complexity in epizonal mineral deposits
Henley, Richard W.; Berger, Byron R.
2000-01-01
Giant deposits are relatively rare and develop where efficient metal deposition is spatially focused by repetitive brittle failure in active fault arrays. Some brief case histories are provided for epithermal, replacement, and porphyry mineralization. These highlight how rock competency contrasts and feedback between processes, rather than any single component of a hydrothermal system, govern the size of individual deposits. In turn, the recognition of the probabilistic nature of mineralization provides a firmer foundation through which exploration investment and risk management decisions can be made.
Birgül, Askin; Tasdemir, Yücel
2012-01-01
Atmospheric concentration and deposition samples were collected between June 2008 and June 2009 in an urban sampling site Yavuzselim, Turkey. Eighty-three polychlorinated biphenyl (PCB) congeners were targeted in the collected samples. It was found that 90% of the total PCB concentration was in the gas phase. Deposition samples were collected by a wet-dry deposition sampler (WDDS) and a bulk deposition sampler (BDS). Average total deposition fluxes measured with the BDS in dry periods was 5500 ± 2400 pg/(m2day); average dry deposition fluxes measured by the WDDS in the same period were 6400 ± 3300 pg/(m2day). The results indicated that the sampler type affected the measured flux values. Bulk deposition samples were also collected in rainy periods by using the BDS and the average flux value was 8700 ± 3100 pg/(m2day). The measured flux values were lower than the values reported for the urban and industrial areas. Dry deposition velocities for the WDDS and BDS samples were calculated 0.48 ± 0.35 cm/s and 0.13 ± 0.15 cm/s, respectively. PMID:22629199
Development of electro-optic systems for self cleaning concentrated solar reflectors
NASA Astrophysics Data System (ADS)
Stark, Jeremy W.
The current demand for energy usage in the world is increasing at a rapid pace; in China alone, the electricity usage has increased by 12% per year from 2006-2010, where more than 75% of electrical power is produced by coal burning facilities. Numerous studies have shown the effects of carbon dioxide emissions on global climate change, and even showing the permanence of high carbon dioxide levels after emissions cease. Current trends away from carbon emitting power facilities are pushing solar energy into a position for many new solar power plants to be constructed. Terrestrial solar energy at AM1.5 is generally given at 1kW/m2, which is a vast free source of energy that can be be harvested to meet the global demand for electricity. Aside from some areas receiving intermittent levels of solar insolation, one of the largest hindrances to large scale solar power production is obscuration of sunlight on solar collectors caused by dust deposition. In areas with the highest average solar insolation, dust deposition is a major problem for maintaining a constant maximum power output. The southern Negev desert in Israel receives on average 17g/m2 per month in dust deposition on solar installations, which in turn causes losses of a third of the total power output of the installation. In these areas, water is a scarce commodity, which can only be used to clean solar installations at a prohibitive cost. To resolve this problem, a cost effective solution would be the application of electrodynamic screens (EDS), which can be implemented by embedding a set of parallel electrodes into the sun facing surface of solar collectors, including concentrating mirrors or photovoltaic (PV) modules, and applying a low frequency pulsed voltage to these electrodes. Three major contributions made in the course of this research in advancing (EDS) for self-cleaning solar mirrors are: (1) development of non-contact specular reflectometer for solar mirrors that allows measurement of reflectance loss as a function of dust deposition, (2) development of a dust deposition analyzer capable of measuring size distribution of deposited dust and provides mass concentration of dust on the surface of the mirror, and (3) optimization of electrode geometry of EDS film for minimizing optical reflection losses caused by the lamination of the film on the mirror surface while maintaining high reflection efficiency with high dust removal efficiency. The non-contact specular reflectometer and the dust deposition analyzer allowed experimental investigation of reflection losses as functions of surface mass concentration of dust on mirrors for validation of the optical model presented in this study.
Improvement of silicon solar cell efficiency by ion beam sputtered deposition of AlOxNy thin films.
Chen, Sheng-Hui; Hsu, Chun-Che; Wang, Hsuan-Wen; Yeh, Chi-Li; Tseng, Shao-Ze; Lin, Hung-Ju; Lee, Cheng-Chung; Peng, Cheng-Yu
2011-03-20
Negative charge material, AlOxNy, has been fabricated to passivate the surface of p-type silicon. The fabrication of AlOxNy was possible by using ion beam sputtering deposition to deposit AlN thin film on the surface of a p-type silicon wafer and following annealing in oxygen ambient. Capacitance-voltage analysis shows the fixed charge density has increased from 10(11) cm(-2) to 2.26×10(12) cm(-2) after annealing. The solar cell efficiency increased from 15.9% to 17.3%, which is also equivalent to the reduction of surface recombination velocity from 1×10(5) to 32 cm/s.
NASA Astrophysics Data System (ADS)
Icli, Kerem Cagatay; Kocaoglu, Bahadir Can; Ozenbas, Macit
2018-01-01
Fluorine-doped tin dioxide (FTO) thin films were produced via conventional spray pyrolysis and ultrasonic spray pyrolysis (USP) methods using alcohol-based solutions. The prepared films were compared in terms of crystal structure, morphology, surface roughness, visible light transmittance, and electronic properties. Upon investigation of the grain structures and morphologies, the films prepared using ultrasonic spray method provided relatively larger grains and due to this condition, carrier mobilities of these films exhibited slightly higher values. Dye-sensitized solar cells and 10×10 cm modules were prepared using commercially available and USP-deposited FTO/glass substrates, and solar performances were compared. It is observed that there exists no remarkable efficiency difference for both cells and modules, where module efficiency of the USP-deposited FTO glass substrates is 3.06% compared to commercial substrate giving 2.85% under identical conditions. We demonstrated that USP deposition is a low cost and versatile method of depositing commercial quality FTO thin films on large substrates employed in large area dye-sensitized solar modules or other thin film technologies.
Titanium dioxide antireflection coating for silicon solar cells by spray deposition
NASA Technical Reports Server (NTRS)
Kern, W.; Tracy, E.
1980-01-01
A high-speed production process is described for depositing a single-layer, quarter-wavelength thick antireflection coating of titanium dioxide on metal-patterned single-crystal silicon solar cells for terrestrial applications. Controlled atomization spraying of an organotitanium solution was selected as the most cost-effective method of film deposition using commercial automated equipment. The optimal composition consists of titanium isopropoxide as the titanium source, n-butyl acetate as the diluent solvent, sec-butanol as the leveling agent, and 2-ethyl-1-hexanol to render the material uniformly depositable. Application of the process to the coating of circular, large-diameter solar cells with either screen-printed silver metallization or with vacuum-evaporated Ti/Pd/Ag metallization showed increases of over 40% in the electrical conversion efficiency. Optical characteristics, corrosion resistance, and several other important properties of the spray-deposited film are reported. Experimental evidence indicates a wide tolerance in the coating thickness upon the overall efficiency of the cell. Considerations pertaining to the optimization of AR coatings in general are discussed, and a comprehensive critical survey of the literature is presented.
Liao, Shih-Yun; Yang, Ya-Chu; Huang, Sheng-Hsin; Gan, Jon-Yiew
2017-04-29
Pt@TiO2@CNTs hierarchical structures were prepared by first functionalizing carbon nanotubes (CNTs) with nitric acid at 140 °C. Coating of TiO2 particles on the CNTs at 300 °C was then conducted by atomic layer deposition (ALD). After the TiO2@CNTs structure was fabricated, Pt particles were deposited on the TiO2 surface as co-catalyst by plasma-enhanced ALD. The saturated deposition rates of TiO2 on a-CNTs were 1.5 Å/cycle and 0.4 Å/cycle for substrate-enhanced process and linear process, respectively. The saturated deposition rate of Pt on TiO2 was 0.39 Å/cycle. The photocatalytic activities of Pt@TiO2@CNTs hierarchical structures were higher than those without Pt co-catalyst. The particle size of Pt on TiO2@CNTs was a key factor to determine the efficiency of methylene blue (MB) degradation. The Pt@TiO2@CNTs of 2.41 ± 0.27 nm exhibited the best efficiency of MB degradation.
Liao, Shih-Yun; Yang, Ya-Chu; Huang, Sheng-Hsin; Gan, Jon-Yiew
2017-01-01
Pt@TiO2@CNTs hierarchical structures were prepared by first functionalizing carbon nanotubes (CNTs) with nitric acid at 140 °C. Coating of TiO2 particles on the CNTs at 300 °C was then conducted by atomic layer deposition (ALD). After the TiO2@CNTs structure was fabricated, Pt particles were deposited on the TiO2 surface as co-catalyst by plasma-enhanced ALD. The saturated deposition rates of TiO2 on a-CNTs were 1.5 Å/cycle and 0.4 Å/cycle for substrate-enhanced process and linear process, respectively. The saturated deposition rate of Pt on TiO2 was 0.39 Å/cycle. The photocatalytic activities of Pt@TiO2@CNTs hierarchical structures were higher than those without Pt co-catalyst. The particle size of Pt on TiO2@CNTs was a key factor to determine the efficiency of methylene blue (MB) degradation. The Pt@TiO2@CNTs of 2.41 ± 0.27 nm exhibited the best efficiency of MB degradation. PMID:28468248
Improving X-Ray Optics via Differential Deposition
NASA Technical Reports Server (NTRS)
Kilaru, Kiranmayee; Ramsey, Brian D.; Atkins, Carolyn
2017-01-01
Differential deposition, a post-fabrication figure correction technique, has the potential to significantly improve the imaging quality of grazing-incidence X-ray optics. DC magnetron sputtering is used to selectively coat the mirror in order to minimize the figure deviations. Custom vacuum chambers have been developed at NASA MSFC that will enable the implementation of the deposition on X-ray optics. A factor of two improvement has been achieved in the angular resolution of the full-shell X-ray optics with first stage correction of differential deposition. Current efforts are focused on achieving higher improvements through efficient implementation of differential deposition.
AEROSOL TRANSPORT AND DEPOSITION IN SEQUENTIALLY BIFURCATING AIRWAYS
Deposition patterns and efficiencies of a dilute suspension of inhaled particles in three-dimensional double bifurcating airway models for both in-plane and 90 deg out-of-plane configurations have been numerically simulated assuming steady, laminar, constant-property air flow wit...
23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability
NASA Astrophysics Data System (ADS)
Bush, Kevin A.; Palmstrom, Axel F.; Yu, Zhengshan J.; Boccard, Mathieu; Cheacharoen, Rongrong; Mailoa, Jonathan P.; McMeekin, David P.; Hoye, Robert L. Z.; Bailie, Colin D.; Leijtens, Tomas; Peters, Ian Marius; Minichetti, Maxmillian C.; Rolston, Nicholas; Prasanna, Rohit; Sofia, Sarah; Harwood, Duncan; Ma, Wen; Moghadam, Farhad; Snaith, Henry J.; Buonassisi, Tonio; Holman, Zachary C.; Bent, Stacey F.; McGehee, Michael D.
2017-02-01
As the record single-junction efficiencies of perovskite solar cells now rival those of copper indium gallium selenide, cadmium telluride and multicrystalline silicon, they are becoming increasingly attractive for use in tandem solar cells due to their wide, tunable bandgap and solution processability. Previously, perovskite/silicon tandems were limited by significant parasitic absorption and poor environmental stability. Here, we improve the efficiency of monolithic, two-terminal, 1-cm2 perovskite/silicon tandems to 23.6% by combining an infrared-tuned silicon heterojunction bottom cell with the recently developed caesium formamidinium lead halide perovskite. This more-stable perovskite tolerates deposition of a tin oxide buffer layer via atomic layer deposition that prevents shunts, has negligible parasitic absorption, and allows for the sputter deposition of a transparent top electrode. Furthermore, the window layer doubles as a diffusion barrier, increasing the thermal and environmental stability to enable perovskite devices that withstand a 1,000-hour damp heat test at 85 ∘C and 85% relative humidity.
NASA Astrophysics Data System (ADS)
Katsev, S.; Li, J.
2017-12-01
Predicting the time scales on which lake ecosystems respond to changes in anthropogenic phosphorus loadings is critical for devising efficient management strategies and setting regulatory limits on loading. Internal loading of phosphorus from sediments, however, can significantly contribute to the lake P budget and may delay recovery from eutrophication. The efficiency of mineralization and recycling of settled P in bottom sediments, which is ultimately responsible for this loading, is often poorly known and is surprisingly poorly characterized in the societally important systems such as the Great Lakes. We show that a simple mass-balance model that uses only a minimum number of parameters, all of which are measurable, can successfully predict the time scales over which the total phosphorus (TP) content of lakes responds to changes in external loadings, in a range of situations. The model also predicts the eventual TP levels attained under stable loading conditions. We characterize the efficiency of P recycling in Lake Superior based on a detailed characterization of sediments at 13 locations that includes chemical extractions for P and Fe fractions and characterization of sediment-water exchange fluxes of P. Despite the low efficiency of P remobilization in these deeply oxygenated sediments (only 12% of deposited P is recycled), effluxes of dissolved phosphorus (2.5-7.0 μmol m-2 d-1) still contribute 37% to total P inputs into the water column. In this oligotrophic large lake, phosphate effluxes are regulated by organic sedimentation rather than sediment redox conditions. By adjusting the recycling efficiency to conditions in other Laurentian Great Lakes, we show that the model reproduces the historical data for total phosphorus levels. Analysis further suggests that, in the Lower Lakes, the rate of P sequestration from water column into sediments has undergone a significant change in recent decades, possibly in response to their invasion by quagga mussels. Importantly, even for lakes where P budgets are dominated by internal loading, mass balance arguments show that, over multi-year time scales, lakes should respond to changes in external P inputs faster than their hydrological residence times.
Neijat, M; Ojekudo, O; House, J D
2016-12-01
The incorporation of omega-3 polyunsaturated fatty acids (PUFA) in the egg is dependent on both the transfer efficiency of preformed dietary omega-3 fatty acids to the eggs as well as endogenous PUFA metabolism and deposition. Employing an experimental design consisting of 70 Lohmann LSL-Classic hens (n=10/treatment) in a 6-week feeding trial, we examined the impact of graded levels of either flaxseed oil (alpha-linolenic acid, ALA) or algal DHA (preformed docosahexaenoic acid, DHA), each supplying 0.20%, 0.40% and 0.60% total omega-3s. The control diet was practically low in omega-3s. Study parameters included monitoring the changes of fatty acid contents in yolk, measures of hen performance, eggshell quality, total lipids and fatty acid contents of plasma. Data were analysed as a complete randomized design using Proc Mixed procedure of SAS. No significant differences were observed between treatments with respect to hen performance, eggshell quality and cholesterol content in plasma and egg yolk. Individual and total omega-3 PUFA in the yolk and plasma increased (P<0.0001) linearly as a function of total omega-3 PUFA intake. At the highest inclusion levels, DHA-fed hens incorporated 3-fold more DHA in eggs compared with ALA-fed hens (179±5.55 vs. 66.7±2.25mg/yolk, respectively). In both treatment groups, maximal enrichment of total n-3 PUFA was observed by week-2, declined by week-4 and leveled thereafter. In addition, accumulation of DHA in egg yolk showed linear (P<0.0001) and quadratic (P<0.05) effects for flaxseed oil (R 2 =0.89) and algal DHA (R 2 =0.95). The current data, based on defined level of total omega-3s in the background diet, provides evidence to suggest that exogenous as well as endogenous synthesis of DHA may be subject to a similar basis of regulation, and serve to highlight potential regulatory aspects explaining the limitations in the deposition of endogenously produced omega-3 LCPUFA. Copyright © 2016 Elsevier Ltd. All rights reserved.
Atmospheric wet and dry deposition of trace elements at ten sites in Northern China
NASA Astrophysics Data System (ADS)
Pan, Y. P.; Wang, Y. S.
2014-08-01
Atmospheric deposition is considered to be a major process that removes pollutants from the atmosphere and an important source of nutrients and contaminants for ecosystems. Trace elements (TEs), especially toxic metals deposited on plants and into soil and water, can cause substantial damage to the environment and human health due to their transfer and accumulation in food chains. Despite public concerns, quantitative knowledge of metal deposition from the atmosphere to ecosystems remains scarce. To advance our understanding of the spatio-temporal variations in the magnitudes, pathways, compositions and impacts of atmospherically deposited TEs, precipitation (rain and snow) and dry-deposited particles were collected simultaneously at ten sites in Northern China from December 2007 to November 2010. The measurements showed that the wet and dry depositions of TEs in the target areas were orders of magnitude higher than previous observations within and outside China, generating great concern over the potential risks. The spatial distribution of the total (wet plus dry) deposition flux was consistent with that of the dry deposition, with a significant decrease from industrial and urban areas to suburban, agricultural and rural sites. In contrast, the wet deposition exhibited less spatial variation. The seasonal variation of wet deposition was also different from that of dry deposition, although they were both governed by the precipitation and emission patterns. For the majority of TEs that exist as coarse particles, dry deposition dominated the total flux at each site. This was not the case for K, Ni, As, Pb, Zn, Cd, Se, Ag and Tl, for which the relative importance between wet and dry deposition fluxes varied by site. Whether wet deposition is the major atmospheric cleansing mechanism for the TEs depends on the size distribution and solubility of the particles. We found that atmospheric inputs of Cu, Pb, Zn, Cd, As and Se were of the same magnitude as their increases in the topsoil of agricultural systems. In addition, the total deposition flux of Pb observed at a forest site in this study was twice that of the critical load (7.0 mg m-2 yr-1) calculated for temperate forest ecosystems in Europe. These findings provide baseline data needed for future targeting policies to protect various ecosystems from long-term heavy metal input via atmospheric deposition.
Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China
NASA Astrophysics Data System (ADS)
Pan, Y. P.; Wang, Y. S.
2015-01-01
Atmospheric deposition is considered to be a major process that removes pollutants from the atmosphere and an important source of nutrients and contaminants for ecosystems. Trace elements (TEs), especially toxic metals deposited on plants and into soil or water, can cause substantial damage to the environment and human health due to their transfer and accumulation in food chains. Despite public concerns, quantitative knowledge of metal deposition from the atmosphere to ecosystems remains scarce. To advance our understanding of the spatiotemporal variations in the magnitudes, pathways, compositions and impacts of atmospherically deposited TEs, precipitation (rain and snow) and dry-deposited particles were collected simultaneously at 10 sites in Northern China from December 2007 to November 2010. The measurements showed that the wet and dry depositions of TEs in the target areas were orders of magnitude higher than previous observations within and outside China, generating great concern over the potential risks. The spatial distribution of the total (wet plus dry) deposition flux was consistent with that of the dry deposition, with a significant decrease from industrial and urban areas to suburban, agricultural and rural sites, while the wet deposition exhibited less spatial variation. In addition, the seasonal variation of wet deposition was also different from that of dry deposition, although they were both governed by the precipitation and emission patterns. For the majority of TEs that exist as coarse particles, dry deposition dominated the total flux at each site. This was not the case for potassium, nickel, arsenic, lead, zinc, cadmium, selenium, silver and thallium, for which the relative importance between wet and dry deposition fluxes varied by site. Whether wet deposition is the major atmospheric cleansing mechanism for the TEs depends on the size distribution of the particles. We found that atmospheric inputs of copper, lead, zinc, cadmium, arsenic and selenium were of the same magnitude as their increases in the topsoil of agricultural systems. At a background forest site in Northern China, the total deposition flux of lead observed in this study (14.1 mg m-2 yr-1) was twice that of the critical load calculated for temperate forest ecosystems in Europe. These findings provide baseline data needed for future targeting policies to protect various ecosystems from long-term heavy metal input via atmospheric deposition.
NASA Astrophysics Data System (ADS)
Adon, Marcellin; Galy-Lacaux, Corinne; Serça, Dominique; Guerin, Frederic; Guedant, Pierre; Vonghamsao, Axay; Rode, Wanidaporn
2016-04-01
With 490 km² at full level of operation, Nam Theun 2 (NT2) is one of the largest hydro-reservoir in South East Asia. NT2 is a trans-basin hydropower project that diverts water from the Nam Theun river (a Mekong tributary) to the Xe Ban Fai river (another Mekong tributary). Atmospheric deposition is an important source of nitrogen (N), and it has been shown that excessive fluxes of N from the atmosphere has resulted in eutrophication of many coastal waters. A large fraction of atmospheric N input is in the form of inorganic N. This study presents an estimation of the atmospheric inorganic nitrogen budget into the NT2 hydroelectric reservoir based on a two-year monitoring (July 2010 to July 2012) including gas concentrations and precipitation. Dry deposition fluxes are calculated from monthly mean surface measurements of NH3, HNO3 and NO2 concentrations (passive samplers) together with simulated deposition velocities, and wet deposition fluxes from NH4+ and NO3- concentrations in single event rain samples (automated rain sampler). Annual rainfall amount was 2500 and 3160 mm for the two years. The average nitrogen deposition flux is estimated at 1.13 kgN.ha-1.yr-1 from dry processes and 5.52 kgN.ha-1.yr-1 from wet ones, i.e., an average annual total nitrogen flux of 6.6 kgN.ha-1.yr-1 deposited into the NT2 reservoir. The wet deposition contributes to 83% of the total N deposition. The nitrogen deposition budget has been also calculated over the rain tropical forest surrounding the reservoir. Due to higher dry deposition velocities above forested ecosystems, gaseous dry deposition flux is estimated at 4.0 kgN.ha-1.yr-1 leading to a total nitrogen deposition about 9.5 kgN.ha-1.yr-1. This result will be compared to nitrogen deposition in the African equatorial forested ecosystems in the framework of the IDAF program (IGAC-DEBITS-AFrica).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuno, T., E-mail: t093507@edu.imc.tut.ac.jp; Kawamura, G., E-mail: gokawamura@ee.tut.ac.jp; Muto, H., E-mail: muto@ee.tut.ac.jp
Mesoporous SiO{sub 2} templates deposited TiO{sub 2} nanocrystals are synthesized via a sol–gel route, and Au nanoparticles (NPs) are deposited in the tubular mesopores of the templates by a photodeposition method (Au/SiO{sub 2}–TiO{sub 2}). The photocatalytic characteristics of Au/SiO{sub 2}–TiO{sub 2} are discussed with the action spectra of photoreactions of 2-propanol and methylene blue. Photocatalytic activities of SiO{sub 2}–TiO{sub 2} under individual ultraviolet (UV) and visible (Vis) light illumination are enhanced by deposition of Au NPs. Furthermore, Au/SiO{sub 2}–TiO{sub 2} shows higher photocatalytic activities under simultaneous irradiation of UV and Vis light compared to the activity under individual UV andmore » Vis light irradiation. Since the photocatalytic activity under simultaneous irradiation is almost the same as the total activities under individual UV and Vis light irradiation, it is concluded that the electrons and the holes generated by lights of different wavelengths are efficiently used for photocatalysis without carrier recombination. - Graphical abstract: This graphic shows the possible charge behavior in Au/SiO{sub 2}–TiO{sub 2} under independent light irradiation of ultraviolet and visible light irradiation. Both reactions under independent UV and Vis light irradiation occurred in parallel when Au/SiO{sub 2}–TiO{sub 2} photocatalyst was illuminated UV and Vis light simultaneously, and then photocatalytic activity is improved by simultaneous irradiation. - Highlights: • Au nanoparticles were deposited in mesoporous SiO{sub 2}–TiO{sub 2} by a photodeposition method. • Photocatalytic activity under UV and Vis light was enhanced by deposition of Au. • Photocatalytic activity of Au/SiO{sub 2}–TiO{sub 2} was improved by simultaneous irradiation.« less
NASA Astrophysics Data System (ADS)
Shi, Jin-Hui; Zhang, Jing; Gao, Hui-Wang; Tan, Sai-Chun; Yao, Xiao-Hong; Ren, Jing-Ling
2013-12-01
Satellite images showed that two large dust storms swept over the Yellow Sea from 31 Mach to 1 April 2007; both were accompanied by precipitation. Three to four days after the dust episodes, blooms occurred in the Yellow Sea. As an important and potential controlling factor of the bloom, nutrients in the total suspended particle (TSP) and size-segregated particle samples during the cruise campaign were measured and their atmospheric deposition fluxes of nutrients are reported in this paper. Concentrations of total P and TIN (NH4+, NO2- and NO3-) in TSP varied from 0.01 to 1.05 μg m-3, and from 1.21 to 22.28 μg m-3, with the maximum occurring concurrently with the dust storm events. In addition, the measured solubility of Fe in these particles varied from 1.0 to 20.1%, while it ranged from 0.8 to 15% for Al. The total deposition fluxes of Asian dust as well as the contained nutrients were estimated on the basis of an episodic increment of the measured concentration of dissolved Al in the surface ocean during the dust events. The estimated fluxes of atmospheric deposition of soluble Fe, P and inorganic nitrogen over the Yellow Sea during the dust episodes were 42.5±10.9, 10.3±2.6 and 772.0±198.0 mg m-2, respectively. The estimated fluxes of nutrients via dry atmospheric deposition accounted for only ~2% of the total fluxes. The deposition fluxes of particulate Fe and P during the two dust storm events associated with precipitation were about 500-1000 times of that daily averaged flux during non-dust days, indicating the importance of the episodic inputs to the annual budget of these metals deposited into the ocean.
From field data to volumes: constraining uncertainties in pyroclastic eruption parameters
Klawonn, Malin; Houghton, Bruce F.; Swanson, Don; Fagents, Sarah A.; Wessel, Paul; Wolfe, Cecily J.
2014-01-01
In this study, we aim to understand the variability in eruption volume estimates derived from field studies of pyroclastic deposits. We distributed paper maps of the 1959 Kīlauea Iki tephra to 101 volcanologists worldwide, who produced hand-drawn isopachs. Across the returned maps, uncertainty in isopach areas is 7 % across the well-sampled deposit but increases to over 30 % for isopachs that are governed by the largest and smallest thickness measurements. We fit the exponential, power-law, and Weibull functions through the isopach thickness versus area1/2 values and find volume estimate variations up to a factor of 4.9 for a single map. Across all maps and methodologies, we find an average standard deviation for a total volume of s = 29 %. The volume uncertainties are largest for the most proximal (s = 62 %) and distal field (s = 53 %) and small for the densely sampled intermediate deposit (s = 8 %). For the Kīlauea Iki 1959 eruption, we find that the deposit beyond the 5-cm isopach contains only 2 % of the total erupted volume, whereas the near-source deposit contains 48 % and the intermediate deposit 50 % of the total volume. Thus, the relative uncertainty within each zone impacts the total volume estimates differently. The observed uncertainties for the different deposit regions in this study illustrate a fundamental problem of estimating eruption volumes: while some methodologies may provide better fits to the isopach data or rely on fewer free parameters, the main issue remains the predictive capabilities of the empirical functions for the regions where measurements are missing.
Li experiments at the tokamak T-11 M in field of steady state PFC investigations
NASA Astrophysics Data System (ADS)
Mirnov, S. V.; Lazarev, V. B.
2011-08-01
The renewable plasma facing components (PFCs) of steady state tokamak-reactor can be created in framework of Lithium emitter-collector concept, which suggests Li-loop development close the Li-PFC and plasma periphery. It should ensure: Li-emission from PFC into the plasma, plasma periphery cooling by non-coronal Li radiation, Li ions collection before their loss on the wall and Li return into emitter. The subjects of the last T-11 M investigations were the Lithium collection by limiters and Lithium removal from the wall during tokamak conditioning. The Lithium behavior was studied with witness samples and mobile graphite probe. It was shown that Li-deposit on the sides of rail Li-limiter (collector) is proportional to the Li-emission from the Li-limiter (emitter). Lithium deposit on the ion-drift side of Li-limiter is up to 2-3 times more than on the electron-side. The efficiency of Li-collection by T-11 M limiters can be 60 ± 20% of total Lithium emission from Li-limiter during plasma discharges.
Yu, Jung-Hoon; Nam, Sang-Hun; Lee, Ji Won; Boo, Jin-Hyo
2016-07-09
This paper presents the preparation of high-quality vanadium dioxide (VO₂) thermochromic thin films with enhanced visible transmittance (T vis ) via radio frequency (RF) sputtering and plasma enhanced chemical vapor deposition (PECVD). VO₂ thin films with high T vis and excellent optical switching efficiency (E os ) were successfully prepared by employing SiO₂ as a passivation layer. After SiO₂ deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO₂ coating, the phase transition temperature (T c ) of the prepared films was not affected. Compared with pristine VO₂, the total layer thickness after SiO₂ coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO₂ thin films showed a higher T vis value (λ 650 nm, 58%) compared with the pristine samples (λ 650 nm, 43%). This enhancement of T vis while maintaining high E os is meaningful for VO₂-based smart window applications.
Szoboszlai, Z; Kertész, Zs; Szikszai, Z; Angyal, A; Furu, E; Török, Zs; Daróczi, L; Kiss, A Z
2012-02-15
In this case study, the elemental composition and mass size distribution of indoor aerosol particles were determined in a working environment where soldering of printed circuit boards (PCB) took place. Single particle analysis using ion and electron microscopy was carried out to obtain more detailed and reliable data about the origin of these particles. As a result, outdoor and indoor aerosol sources such as wave soldering, fluxing processes, workers' activity, mineral dust, biomass burning, fertilizing and other anthropogenic sources could be separated. With the help of scanning electron microscopy, characteristic particle types were identified. On the basis of the mass size distribution data, a stochastic lung deposition model was used to calculate the total and regional deposition efficiencies of the different types of particles within the human respiratory system. The information presented in this study aims to give insights into the detailed characteristics and the health impact of aerosol particles in a working environment where different kinds of soldering activity take place. Copyright © 2011 Elsevier B.V. All rights reserved.
Effect of chronic nitrogen additions on soil nitrogen fractions in red spruce stands
David, M.B.; Cupples, A.M.; Lawrence, G.B.; Shi, G.; Vogt, K.; Wargo, P.M.
1998-01-01
The responses of temperate and boreal forest ecosystems to increased nitrogen (N) inputs have been varied, and the responses of soil N pools have been difficult to measure. In this study, fractions and pool sizes of N were determined in the forest floor of red spruce stands at four sites in the northeastern U.S. to evaluate the effect of increased N inputs on forest floor N. Two of the stands received 100 kg N ha-1 yr-1 for three years, one stand received 34 kg N ha-1 yr-1 for six years, and the remaining stand received only ambient N inputs. No differences in total N content or N fractions were measured in samples of the Oie and Oa horizons between treated and control plots in the three sites that received N amendments. The predominant N fraction in these samples was amino acid N (31-45 % of total N), followed by hydrolyzable unidentified N (16-31% of total N), acid- soluble N (18-22 % of total N), and NH4/+-N (9-13 % of total N). Rates of atmospheric deposition varied greatly among the four stands. Ammonium N and amino acid N concentrations in the Oie horizon were positively related to wet N deposition, with respective r2 values of 0.92 and 0.94 (n = 4, p < 0.05). These relationships were somewhat stronger than that observed between atmospheric wet N deposition and total N content of the forest floor, suggesting that these pools retain atmospherically deposited N. The NH4/+- N pool may represent atmospherically deposited N that is incorporated into organic matter, whereas the amino acid N pool could result from microbial immobilization of atmospheric N inputs. The response of forest floor N pools to applications of N may be masked, possibly by the large soil N pool, which has been increased by the long-term input of N from atmospheric deposition, thereby overwhelming the short-term treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y. M.
2004-12-01
The key objective of this subcontract was to take the first steps to extend the radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) manufacturing technology of Energy Photovoltaics, Inc. (EPV), to the promising field of a-Si/nc-Si solar cell fabrication by demonstrating ''proof-of-concept'' devices of good efficiencies that previously were believed to be unobtainable in single-chamber reactors owing to contamination problems. A complementary goal was to find a new high-rate deposition method that can conceivably be deployed in large PECVD-type reactors. We emphasize that our goal was not to produce 'champion' devices of near-record efficiencies, but rather, to achieve modestly high efficiencies usingmore » a far simpler (cheaper) system, via practical processing methods and materials. To directly attack issues in solar-cell fabrication at EPV, the nc-Si thin films were studied almost exclusively in the p-i-n device configuration (as absorbers or i-layers), not as stand-alone films. Highly efficient, p-i-n type, nc-Si-based solar cells are generally grown on expensive, laboratory superstrates, such as custom ZnO/glass of high texture (granular surface) and low absorption. Also standard was the use of a highly effective back-reflector ZnO/Ag, where the ZnO can be surface-textured for efficient diffuse reflection. The high-efficiency ''champion'' devices made by the PECVD methods were invariably prepared in sophisticated (i.e., expensive), multi-chamber, or at least load-locked deposition systems. The electrode utilization efficiency, defined as the surface-area ratio of the powered electrode to that of the substrates, was typically low at about one (1:1). To evaluate the true potential of nc-Si absorbers for cost-competitive, commercially viable manufacturing of large-area PV modules, we took a more down-to-earth approach, based on our proven production of a-Si PV modules by a massively parallel batch process in single-chamber RF-PECVD systems, to the study of nc-Si solar cells, with the aim of producing high-efficiency a-Si/nc-Si solar cells and sub-modules.« less
Reduced-droop green III-nitride light-emitting diodes utilizing GaN tunnel junction
NASA Astrophysics Data System (ADS)
Alhassan, Abdullah I.; Young, Erin C.; Alyamani, Ahmed Y.; Albadri, Abdulrahman; Nakamura, Shuji; DenBaars, Steven P.; Speck, James S.
2018-04-01
We report the fabrication of low-droop high-efficiency green c-plane light-emitting diodes (LEDs) utilizing GaN tunnel junction (TJ) contacts. The LED epitaxial layers with a top p-GaN layer were grown by metal organic chemical vapor deposition and an n++-GaN layer was deposited by molecular beam epitaxy to form a TJ. The TJ LEDs were then compared with equivalent LEDs having a tin-doped indium oxide (ITO) contact. The TJ LEDs exhibited a higher performance and a lower efficiency droop than did the ITO LEDs. At 35 A/cm2, the external quantum efficiencies for the TJ and ITO LEDs were 31.2 and 27%, respectively.
NASA Astrophysics Data System (ADS)
Dao, Van-Duong; Bui, Van-Tien; Choi, Ho-Suk
2018-02-01
The Pt layer deposited on a cylindrical micro cavity patterned Petri dish, which is produced using a one-step solvent-immersion phase separation, is fabricated for the first time as an FTO-free counter electrode (CE) for dye-sensitized solar cells (DSCs). Due to the high specific active surface area of the Pt-deposited honeycomb substrate CE, the efficiency of the DSC using the developed CE substrate is enhanced by 14.5% compared with the device using a Pt-sputtered flat substrate. This design strategy has potential in fabricating highly efficient and low-cost CE materials with FTO-free substrates for DSCs.
Tang, Zhi; Chen, Xiaoping; Liu, Daoyin; Zhuang, Yaming; Ye, Minghua; Sheng, Hongchan; Xu, Shaojuan
2016-10-01
Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction, as well as a source of renewable energy. During MSW combustion, increased formation of deposits on convection heating exchanger surfaces can pose severe operational problems, such as fouling, slagging and corrosion. These problems can cause lower heat transfer efficiency from the hot flue gas to the working fluid inside the tubes. A study was performed where experiments were carried out to examine the ash deposition characteristics in a full-scale MSW circulating fluidized bed (CFB) incinerator, using a newly designed deposit probe that was fitted with six thermocouples and four removable half rings. The influence of probe exposure time and probe surface temperature (500, 560, and 700°C) on ash deposit formation rate was investigated. The results indicate that the deposition mass and collection efficiency achieve a minimum at the probe surface temperature of 560°C. Ash particles are deposited on both the windward and leeward sides of the probe by impacting and thermophoretic/condensation behavior. The major inorganic elements present in the ash deposits are Ca, Al and Si. Compared to ash deposits formed on the leeward side of the probe, windward-side ash deposits contain relatively higher Ca and S concentrations, but lower levels of Al and Si. Among all cases at different surface temperatures, the differences in elemental composition of the ash deposits from the leeward side are insignificant. However, as the surface temperature increases, the concentrations of Al, Si, K and Na in the windward-side ash deposits increase, but the Ca concentration is reduced. Finally, governing mechanisms are proposed on the basis of the experimental data, such as deposit morphology, elemental composition and thermodynamic calculations. Copyright © 2016. Published by Elsevier B.V.
Hybrid solar cells based on dc magnetron sputtered films of n-ITO on APMOVPE grown p-InP
NASA Technical Reports Server (NTRS)
Coutts, T. J.; Li, X.; Wanlass, M. W.; Emery, K. A.; Gessert, T. A.
1988-01-01
Hybrid indium-tin-oxide (ITO)/InP solar cells are discussed. The cells are constructed by dc magnetron sputter deposition of ITO onto high-quality InP films grown by atmospheric pressure metal-organic vapor-phase epitaxy (APMOVPE). A record efficiency of 18.9 percent, measured under standard Solar Energy Research Institute reporting conditions, has been obtained. The p-InP surface is shown to be type converted, principally by the ITO, but with the extent of conversion being modified by the nature of the sputtering gas. The deposition process, in itself, is not responsible for the type conversion. Dark currents have been suppressed by more than three orders of magnitude by the addition of hydrogen to the sputtering gas during deposition of a thin (5 nm) interface layer. Without this layer, and using only the more usual argon/oxygen mixture, the devices had poorer efficiencies and were unstable. A discussion of associated quantum efficiencies and capacitance/voltage measurements is also presented from which it is concluded that further improvements in efficiency will result from better control over the type-conversion process.
Nitrogen fluxes in a high elevation Colorado Rocky Mountain basin
Baron, Jill S.; Campbell, D.H.
1997-01-01
Measured, calculated and simulated values were combined to develop an annual nitrogen budget for Loch Vale Watershed (LVWS) in the Colorado Front Range. Nine-year average wet nitrogen deposition values were 1??6 (s = 0??36) kg NO3-N ha-1, and 1??0 (s = 0??3) kg NH4-N ha-1. Assuming dry nitrogen deposition to be half that of measured wet deposition, this high elevation watershed receives 3??9 kg N ha-1. Although deposition values fluctuated with precipitation, measured stream nitrogen outputs were less variable. Of the total N input to the watershed (3??9 kg N ha-1 wet plus dry deposition), 49% of the total N input was immobilized. Stream losses were 2??0 kg N ha-1 (1125 kg measured dissolved inorganic N in 1992, 1-2 kg calculated dissolved organic N, plus an average of 203 kg algal N from the entire 660 ha watershed). Tundra and aquatic algae were the largest reservoirs for incoming N, at approximately 18% and 15% of the total 2574 kg N deposition, respectively. Rocky areas and forest stored the remaining 11% and 5%, respectively. Fully 80% of N losses from the watershed came from the 68% of LVWS that is alpine. ?? 1997 by John Wiley & Sons, Ltd.
Szklarek, S; Wagner, I; Jurczak, T; Zalewski, M
2018-01-01
The study analyses the efficiency of a Sequentional Sedimentation-Biofiltration System (SSBS) built on the Sokolowka river in Lodz (Poland). It was constructed to purify a small urban river whose hydrological regime is dominated by stormwater and meltwater. The SSBS was constructed on a limited area as multi-zone constructed wetlands. The SSBS consists of three zones: sedimentation zone with structures added to improve sedimentation, a geochemical barrier made of limestone deposit and biofiltration zone. The purification processes of total suspended solids (TSS), total phosphorus (TP), total nitrogen (TP) and other nutrients: phosphates (PO 4 3- ), ammonium (NH 4 + ) and nitrates (NO 3 - ) of the SSBS were analyzed. Chloride (Cl - ) reduction was investigated. Monitoring conducted in the first two hydrological years after construction indicated that the SSBS removed 61.4% of TSS, 37.3% of TP, 30.4% of PO 4 3- , 46.1% of TN, 2.8% of NH4+, 44.8% of NO 3 - and 64.0% of Cl - . The sedimentation zone played a key role in removing TSS and nutrients. The geochemical barrier and biofiltration zone each significantly improved overall efficiency by 4-10% for TSS, PO 4 3- , TN, NO 3 - and Cl - . Although the system reduced the concentration of chloride, further studies are needed to determine the circulation of Cl - in constructed wetlands (CWs), and to assess its impact on purification processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Distribution and Sources of Black Carbon in the Arctic
NASA Astrophysics Data System (ADS)
Qi, Ling
The Arctic is warming at twice the global rate over recent decades. To slow down this warming trend, there is growing interest in reducing the impact from short-lived climate forcers, such as black carbon (BC), because the benefits of mitigation are seen more quickly relative to CO2 reduction. To propose efficient mitigation policies, it is imperative to improve our understanding of BC distribution in the Arctic and to identify the sources. In this dissertation, we investigate the sensitivity of BC in the Arctic, including BC concentrations in snow (BCsnow) and BC concentrations in air (BCair), to emissions, dry deposition and wet scavenging using a global 3-D chemical transport model (CTM) GEOS-Chem. By including flaring emissions, estimating dry deposition velocity using resistance-in-series method, and including Wegener-Bergeron-Findeisen (WBF) in wet scavenging, simulated BCsnow in the eight Arctic sub-regions agree with the observations within a factor of two, and simulated BCair fall within the uncertainty range of observations. Specifically, we find that natural gas flaring emissions in Western Extreme North of Russia (WENR) strongly enhance BCsnow (by up to ?50%) and BCair (by 20-32%) during snow season in the so-called 'Arctic front', but has negligible impact on BC in the free troposphere. The updated dry deposition velocity over snow and ice is much larger than those used in most of global CTMs and agrees better with observation. The resulting BCsnow changes marginally because of the offsetting of higher dry and lower wet deposition fluxes. In contrast, surface BCair decreases strongly due to the faster dry deposition (by 27-68%). WBF occurs when the environmental vapor pressure is in between the saturation vapor pressure of ice crystals and water drops in mixed-phase clouds. As a result, water drops evaporate and releases BC particles in them back into the interstitial air. In most CTMs, WBF is either missing or represented by a uniform and low BC scavenging efficiency. In this dissertation, we relate WBF with temperature and ice mass fraction based on long-term observations in mixed-phase clouds. We find that WBF reduces BC scavenging efficiency globally, with larger decrease at higher latitude and altitude (from 8% in the tropics to 76% in the Arctic). WBF slows down and reduces wet deposition of BC and leave more BC in the atmosphere. Higher BC air results in larger dry deposition. The resulting total deposition is lower in mid-latitudes (by 12-34%) and higher in the Arctic (2-29%). Globally, including WBF significantly reduces the discrepancy of BCsnow (by 50%), BCair (by 50%), and washout ratios (by a factor of two to four). The remaining discrepancies in these variables suggest that in-cloud removal is likely still excessive over land. In the last part, we identify sources of surface atmospheric BC in the Arctic in springtime, when radiative forcing is the largest due to the high insolation and surface albedo. We find a large contribution from Asian anthropogenic sources (40-43%) and open biomass burning emissions from forest fires in South Siberia (29-41%). Outside the Arctic front, BC is strongly enhanced by episodic, direct transport events from Asia and Siberia after 12 days of transport. In contrast, in the Arctic front, a large fraction of the Asian contribution is in the form of 'chronic' pollution on 1-2 month timescale. As such, it is likely that previous studies using 5- or 10-day trajectory analyses strongly underestimated the contribution from Asia to surface BC in the Arctic. Our results point toward an urgent need for better characterization of flaring emissions of BC (e.g. the emission factors, temporal and spatial distribution), extensive measurements of both the dry deposition of BC over snow and ice, and the scavenging efficiency of BC in mixed-phase clouds, particularly over Ocean. More measurements of 14C are needed to better understand sources of BC (fossil fuel combustion versus biomass burning) and to provide additional constrain on BC simulations.
Dong, Jingliang; Shang, Yidan; Inthavong, Kiao; Chan, Hak-Kim; Tu, Jiyuan
2017-12-29
Nose-to-brain drug administration along the olfactory and trigeminal nerve pathways offers an alternative route for the treatment of central nervous system (CNS) disorders. The characterization of particle deposition remains difficult to achieve in experiments. Alternative numerical approach is applied to identify suitable aerosol particle size with maximized inhaled doses. This study numerically compared the drug delivery efficiency in a realistic human nasal cavity between two aerosol drug administration systems targeting the olfactory region: the aerosol mask system and the breath-powered bi-directional system. Steady inhalation and exhalation flow rates were applied to both delivery systems. The discrete phase particle tracking method was employed to capture the aerosol drug transport and deposition behaviours in the nasal cavity. Both overall and regional deposition characteristics were analysed in detail. The results demonstrated the breath-powered drug delivery approach can produce superior olfactory deposition with peaking olfactory deposition fractions for diffusive 1 nm particles and inertial 10 μm. While for particles in the range of 10 nm to 2 μm, no significant olfactory deposition can be found, indicating the therapeutic agents should avoid this size range when targeting the olfactory deposition. The breath-powered bi-directional aerosol delivery approach shows better drug delivery performance globally and locally, and improved drug administration doses can be achieved in targeted olfactory region.
Schöllnberger, H; Aden, J; Scott, B R
2002-01-01
Forest-fire smoke inhaled by humans can cause various health effects. This smoke contains toxic chemicals and naturally occurring radionuclides. In northern New Mexico, a large wildfire occurred in May 2000. Known as the Cerro Grande Fire, it devastated the town of Los Alamos and damaged Los Alamos National Laboratory (LANL). Residents were concerned about the possible dissemination of radionuclides from LANL via smoke from the fire. To evaluate potential health effects of inhaling radionuclides contained in the smoke from the Cerro Grande Fire, it was first necessary to evaluate how much smoke would deposit in the human respiratory tract. The purpose of this study was to evaluate respiratory-tract deposition efficiencies of airborne forest-fire smoke for persons of different ages exposed while inside their homes. Potential non-radiological health effects of a forest fire are reviewed. The deposition efficiencies presented can be used to evaluate in-home smoke deposition in the respiratory tract and expected radionuclide intake related to forest fires. The impact of smoke exposure on firemen fighting a forest fire is quantitatively discussed and compared. They primarily inhaled forest-fire smoke while outdoors where the smoke concentration was much higher than inside. Radionuclides released at the LANL site via the Cerro Grande Fire were restricted to naturally occurring radionuclides from burning trees and vegetation. Radiation doses from inhaled airborne radionuclides to individuals inside and outside the Los Alamos area were likely very small.
Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei
2014-01-01
The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 2− and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 −–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 +–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 −–N and NH4 +–N was ~31.38% and ~20.50% for the contents of NO3 −–N and NH4 +–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD. PMID:24977238
Yin, Shaohua; Pei, Jiannan; Jiang, Feng; Li, Shiwei; Peng, Jinhui; Zhang, Libo; Ju, Shaohua; Srinivasakannan, Chandrasekar
2018-03-01
The in situ leaching process of China's unique ion-adsorption rare earth ores has caused severe environmental damages due to the use of (NH 4 ) 2 SO 4 solution. This study reports that magnesium sulfate (MgSO 4 ) as a leaching agent would replace (NH 4 ) 2 SO 4 by ultrasonically assisted leaching to deal with the ammonia-nitrogen pollution problem and enhance leaching process. At leaching conditions of 3wt% MgSO 4 concentration, 3:1L/S ratio and 30min, the total rare earth leaching efficiency reaches 75.5%. Ultrasound-assisted leaching experiments show that the leaching efficiency of rare earths is substantially increased by introducing ultrasound, and nearly completely leached out after two stage leaching process. Thus, ultrasonic-assisted leaching process with MgSO 4 is not only effective but also environmentally friendly, and beneficial to leach rare earths at laboratory scale. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Badoni, D.; Bizzarri, M.; Bonaiuto, V.; Checcucci, B.; De Simone, N.; Federici, L.; Fucci, A.; Paoluzzi, G.; Papi, A.; Piccini, M.; Salamon, A.; Salina, G.; Santovetti, E.; Sargeni, F.; Venditti, S.
2014-01-01
The goal of the NA62 experiment at the CERN SPS is the measurement of the Branching Ratio of the very rare kaon decay K+→π+ ν bar nu with a 10% accuracy by collecting 100 events in two years of data taking. An efficient photon veto system is needed to reject the K+→π+ π0 background and a liquid krypton electromagnetic calorimeter will be used for this purpose in the 1-10 mrad angular region. The L0 trigger system for the calorimeter consists of a peak reconstruction algorithm implemented on FPGA by using a mixed parallel architecture based on soft core Altera NIOS II embedded processors together with custom VHDL modules. This solution allows an efficient and flexible reconstruction of the energy-deposition peak. The system will be totally composed of 36 TEL62 boards, 108 mezzanine cards and 215 high-performance FPGAs. We describe the design, current status and the results of the first performance tests.
Multilayer polymer light-emitting diodes by blade coating method
NASA Astrophysics Data System (ADS)
Tseng, Shin-Rong; Meng, Hsin-Fei; Lee, Kuan-Chen; Horng, Sheng-Fu
2008-10-01
Multilayer polymer light-emitting diodes fabricated by blade coating are presented. Multilayer of polymers can be easily deposited by blade coating on a hot plate. The multilayer structure is confirmed by the total thickness and the cross section view in the scanning electron microscope. The film thickness variation is only 3.3% in 10cm scale and the film roughness is about 0.3nm in the micron scale. The efficiency of single layer poly(para-phenylene vinylene) copolymer Super Yellow and poly(9,9-dioctylfluorene) (PFO, deep blue) devices are 9 and 1.7cd/A, respectively, by blade coating. The efficiency of the PFO device is raised to 2.9cd/A with a 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole (PBD) hole-blocking layer and to 2.3cd/A with a poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenylamine)] elec-tron-blocking layer added by blade coating.
Application Prospects of Multilayer Film Shields for Space Research Instrumentation
NASA Astrophysics Data System (ADS)
Nyunt, P. W.; Vlasik, K. F.; Grachev, V. M.; Dmitrenko, V. V.; Novikov, A. S.; Petrenko, D. V.; Ulin, S. E.; Uteshev, Z. M.; Chernysheva, I. V.; Shustov, A. E.
We have studied the magnetic properties of multilayer film cylindrical configuration shields (MFS) based on NiFe / Cu. The studied samples were prepared by electrode position. MFS were constituted by alternating layers of NiFe and Cu, deposited on an aluminum cylinder with diameter of 4 cm, length of 13 cm and 0.5 cm thickness. The thickness of each ferromagnetic layer varied from 10 to 150 μm, and the thickness of Cu layers was 5 μm. Five-samples in which the number of ferromagnetic layers varied from 3 to 45 and copper - from 2 to 44 were tested. The best shielding efficiency was achieved at the maximum number of layers and comprised about 102. Permalloy multilayer foil shield at the same total thickness has several times less efficiency in comparison with MFS. The description of a prototype of the charged particles telescope for space application is presented. Results of its testing regarding sensitivity to the constant magnetic field are described.
Rissler, Jenny; Gudmundsson, Anders; Nicklasson, Hanna; Swietlicki, Erik; Wollmer, Per; Löndahl, Jakob
2017-04-08
Exposure to airborne particles has a major impact on global health. The probability of these particles to deposit in the respiratory tract during breathing is essential for their toxic effects. Observations have shown that there is a substantial variability in deposition between subjects, not only due to respiratory diseases, but also among individuals with healthy lungs. The factors determining this variability are, however, not fully understood. In this study we experimentally investigate factors that determine individual differences in the respiratory tract depositions of inhaled particles for healthy subjects at relaxed breathing. The study covers particles of diameters 15-5000 nm and includes 67 subjects aged 7-70 years. A comprehensive examination of lung function was performed for all subjects. Principal component analyses and multiple regression analyses were used to explore the relationships between subject characteristics and particle deposition. A large individual variability in respiratory tract deposition efficiency was found. Individuals with high deposition of a certain particle size generally had high deposition for all particles <3500 nm. The individual variability was explained by two factors: breathing pattern, and lung structural and functional properties. The most important predictors were found to be breathing frequency and anatomical airway dead space. We also present a linear regression model describing the deposition based on four variables: tidal volume, breathing frequency, anatomical dead space and resistance of the respiratory system (the latter measured with impulse oscillometry). To understand why some individuals are more susceptible to airborne particles we must understand, and take into account, the individual variability in the probability of particles to deposit in the respiratory tract by considering not only breathing patterns but also adequate measures of relevant structural and functional properties.
Elser, J.J.; Kyle, M.; Steuer, L.; Nydick, K.R.; Baron, Jill S.
2009-01-01
Atmospheric nitrogen (N) deposition to lakes and watersheds has been increasing steadily due to various anthropogenic activities. Because such anthropogenic N is widely distributed, even lakes relatively removed from direct human disturbance are potentially impacted. However, the effects of increased atmospheric N deposition on lakes are not well documented, We examined phytoplankton biomass, the absolute and relative abundance of limiting nutrients (N and phosphorus [P]), and phytoplankton nutrient limitation in alpine lakes of the Rocky Mountains of Colorado (USA) receiving elevated (>6 kg N??ha-1??yr-1) or low (<2 kg N??ha-1??yr-1) levels of atmospheric N deposition. Highdeposition lakes had higher NO3-N and total N concentrations and higher total N : total P ratios. Concentrations of chlorophyll and seston carbon (C) were 2-2.5 times higher in highdeposition relative to low-deposition lakes, while high-deposition lakes also had higher seston C:N and C:P (but not N:P) ratios. Short-term enrichment bioassays indicated a qualitative shift in the nature of phytoplankton nutrient limitation due to N deposition, as highdeposition lakes had an increased frequency of primary P limitation and a decreased frequency and magnitude of response to N and to combined N and P enrichment. Thus elevated atmospheric N deposition appears to have shifted nutrient supply from a relatively balanced but predominantly N-deficient regime to a more consistently P-limited regime in Colorado alpine lakes. This adds to accumulating evidence that sustained N deposition may have important effects on lake phytoplankton communities and plankton-based food webs by shifting the quantitative and qualitative nature of nutrient limitation. ?? 2009 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darquenne, Chantal; Lamm, Wayne J.; Fine, Janelle M.
Despite substantial development of sophisticated subject-specific computational models of aerosol transport and deposition in human lungs, experimental validation of predic- tions from these new models is sparse. We collected aerosol retention and exhalation profiles in seven healthy volunteers and six subjects with mild-to-moderate COPD (FEV1 ¼ 50–80%predicted) in the supine posture. Total deposition was measured during continuous breathing of 1 and 2.9 mm-diameter particles (tidal volume of 1 L, flow rate of 0.3 L/s and 0.75 L/s). Bolus inhalations of 1 mm particles were performed to penetration volumes of 200, 500 and 800 mL (flow rate of 0.5 L/s). Aerosolmore » bolus dispersion (H), deposition, and mode shift (MS) were calculated from these data. There was no significant difference in total deposition between healthy subjects and those with COPD. Total deposition increased with increasing particle size and also with increasing flow rate. Similarly, there was no significant difference in aerosol bolus deposition between subject groups. Yet, the rate of increase in dispersion and of decrease in MS with increasing penetration volume was higher in subjects with COPD than in healthy volunteers (H: 0.79870.205 vs. 0.52770.122 mL/mL, p¼ 0.01; MS: - 0.27170.129 vs. - 0.145 70.076 mL/mL, p¼ 0.05) indicating larger ventilation inhomogeneities (based on H) and increased flow sequencing (based on MS) in the COPD than in the healthy group. In conclusion, in the supine posture, deposition appears to lack sensitivity for assessing the effect of lung morphology and/or ventilation distribution alteration induced by mild-to- moderate lung disease on the fate of inhaled aerosols. However, other parameters such as aerosol bolus dispersion and mode shift may be more sensitive parameters for evaluating models of lungs with moderate disease.« less
Sediment transport and deposition in Lakes Marion and Moultrie, South Carolina, 1942-85
Patterson, G.G.; Cooney, T.W.; Harvey, R.M.
1996-01-01
Lakes Marion and Moultrie, two large reservoirs in the South Carolina Coastal Plain, receive large inflows of sediment from the Santee River. The average rate of sediment deposition for both lakes during the period 1942-85 was about 0.06 inch per year, or about 800 acre-feet per year. The rate during 1983-85 was about 0.037 inch per year, or about 490 acre-feet per year, reflecting the decreasing trend in sediment inflow. This is a reversal of a trend toward increasing suspended- sediment concentrations in streams that were caused by farming practices in the southern Piedmont from about 1800 to about 1920. Only a small part of the eroded sediment has been carried out of the Piedmont, but the remaining sediment is becoming less available for transport. Sediment deposition is concentrated in several areas of upper Lake Marion where the velocity of the incoming water decreases significantly. Beds of aquatic macrophytes appear to encourage deposition which, in turn, creates favorable habitat for the plants. The rate of sediment accumulation in Lakes Marion and Moultrie averaged 650,000 tons per year during 1983-85, reflecting a trap efficiency of 79 percent of the total sediment inflow of 825,000 tons per year. Thickness of post-impoundment sediment varies from about 11 feet near the mouth of the Santee River in Lake Marion to 0 feet in Lake Moultrie near Bonneau. Sediments in Lake Marion tend to have finer texture and higher contents of organic matter, nutrients, and trace metals than those in Lake Moultrie.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunningham, D.W.; Skinner, D.E.
1999-10-26
The objective of this Phase 1 subcontract was to establish an efficient production plating system capable of depositing thin-film CdTe and CdS on substrates up to 0.55 m{sup 2}. This baseline would then be used to build on and extend deposition areas to 0.94 m{sup 2} in the next two phases. The following achievements have been demonstrated: {sm{underscore}bullet} Chemical-bath deposition of CdS and electrochemical deposition of CdTe was demonstrated on 0.55 m{sup 2} substrates. The films were characterized using optical and electrical techniques, to increase the understanding of the materials and aid in loss analysis. {sm{underscore}bullet} A stand-alone, prototype CdTemore » reaction tank was built and commissioned, allowing the BP Solar team to perform full-scale trials as part of this subcontract. {sm{underscore}bullet} BP Solar installed two outdoor systems for reliability and performance testing. {sm{underscore}bullet} The 2-kW, ground-mounted, grid-connected system contains seventy-two 0.43-m{sup 2} Apollo{reg{underscore}sign} module interconnects. {sm{underscore}bullet} Two modules have been supplied to NREL for evaluation on their Performance and Energy Rating Test bed (PERT) for kWh evaluation. {sm{underscore}bullet} BP Solar further characterized the process waste stream with the aim to close-loop the system. Currently, various pieces of equipment are being investigated for suitability of particle and total organic compound removal.« less
Juracek, K.E.; Mau, D.P.
2002-01-01
A combination of bathymetric surveying and bottom-sediment coring was used to investigate sediment deposition and the occurrence of selected nutrients (total ammonia plus organic nitrogen and total phosphorus), 44 metals and trace elements, 15 organochlorine compounds, and 1 radionuclide in bottom sediment of Tuttle Creek Lake, northeast Kansas. The total estimated volume and mass of bottom sediment deposited from 1962 through 1999 in the original conservation-pool area of the lake was 6,170 million cubic feet (142,000 acre-feet) and 292,400 million pounds (133,000 million kilograms), respectively. The volume of sediment occupies about 33 percent of the original conservation-pool, water-storage capacity of the lake. Mean annual net sediment deposition since 1962 was estimated to be 7,900 million pounds (3,600 million kilograms). Mean annual net sediment yield from the Tuttle Creek Lake Basin was estimated to be 821,000 pounds per square mile (1,440 kilograms per hectare). The estimated mean annual net loads of total ammonia plus organic nitrogen and total phosphorus deposited in the bottom sediment of Tuttle Creek Lake were 6,350,000 pounds per year (2,880,000 kilograms per year) and 3,330,000 pounds per year (1,510,000 kilograms per year), respectively. The estimated mean annual net yields of total ammonia plus organic nitrogen and total phosphorus from the Tuttle Creek Lake Basin were 657 pounds per square mile per year (1.15 kilograms per hectare per year) and 348 pounds per square mile per year (0.61 kilograms per hectare per year), respectively. No statistically significant trend for total phosphorus deposition in the bottom sediment of Tuttle Creek Lake was indicated (trend analysis for total ammonia plus organic nitrogen was not performed). On the basis of available sediment-quality guidelines, the concentrations of arsenic, chromium, copper, nickel, silver, and zinc in the bottom sediment of Tuttle Creek Lake frequently or typically exceeded the threshold-effects levels established by the U.S. Environmental Protection Agency. Sediment concentrations of metals and trace elements were relatively uniform over time. Organochlorine compounds either were not detected or were detected at concentrations generally less than the threshold-effects levels. Following an initial positive trend, a statistically significant negative depositional trend was indicated for DDE (degradation product of DDT), which was consistent with the history of DDT use. Other organochlorine compounds detected included aldrin, DDD, and dieldrin. Notable changes in human activity within the basin included a substantial increase in the production of grain corn and soybeans from the 1960s to the 1990s. This increase in production was accompanied by a pronounced increase in the number of irrigated acres. Also, during the same time period, there was an overall increase in hog production. These changes in human activity have not had a discernible effect on the deposition of chemical constituents in the bottom sediment of Tuttle Creek Lake.
NASA Astrophysics Data System (ADS)
Zhao, Yuanhong; Zhang, Lin; Chen, Youfan; Liu, Xuejun; Xu, Wen; Pan, Yuepeng; Duan, Lei
2017-03-01
We present a national-scale model analysis on the sources and processes of inorganic nitrogen deposition over China using the GEOS-Chem model at 1/2° × 1/3° horizontal resolution. Model results for 2008-2012 are evaluated with an ensemble of surface measurements of wet deposition flux and gaseous ammonia (NH3) concentration, and satellite measurements of tropospheric NO2 columns. Annual total inorganic nitrogen deposition fluxes are simulated to be generally less than 10 kg N ha-1 a-1 in western China (less than 2 kg N ha-1 a-1 over Tibet), 15-50 kg N ha-1 a-1 in eastern China, and 16.4 kg N ha-1 a-1 averaged over China. Annual total deposition to China is 16.4 Tg N, with 10.2 Tg N (62%) from reduced nitrogen (NHx) and 6.2 Tg N from oxidized nitrogen (NOy). Domestic anthropogenic sources contribute 86% of the total deposition; foreign anthropogenic sources 7% and natural sources 7%. Annually 23% of domestically emitted NH3 and 36% for NOx are exported outside the terrestrial land of China. We find that atmospheric nitrogen deposition is about half of the nitrogen input from fertilizer application (29.6 Tg N a-1), and is much higher than that from natural biological fixation (7.3 Tg N a-1) over China. A comparison of nitrogen deposition with critical load estimates for eutrophication indicates that about 15% of the land over China experiences critical load exceedances, demonstrating the necessity of nitrogen emission controls to avoid potential negative ecological effects.
Ritenour, Andrew J.; Boucher, Jason W.; DeLancey, Robert; ...
2014-09-01
The high balance-of-system costs of photovoltaic (PV) installations indicate that reductions in cell $/W costs alone are likely insufficient for PV electricity to reach grid parity unless energy conversion efficiency is also increased. Technologies which yield both high-efficiency cells (>25%) and maintain low costs are needed. GaAs and related III-V semiconductors are used in the highest-efficiency single- and multi-junction photovoltaics, but the technology is too expensive for non-concentrated terrestrial applications. This is due in part to the difficulty of scaling the metal-organic chemical vapor deposition (MOCVD) process, which relies on expensive reactors and employs toxic and pyrophoric gas-phase precursors suchmore » as arsine and trimethyl gallium, respectively. In this study, we describe GaAs films made by an alternative close-spaced vapor transport (CSVT) technique which is carried out at atmospheric pressure and requires only bulk GaAs, water vapor, and a temperature gradient in order to deposit crystalline films with similar electronic properties to that of GaAs deposited by MOCVD. CSVT is similar to the vapor transport process used to deposit CdTe thin films and is thus a potentially scalable low-cost route to GaAs thin films.« less
Zhou, Long; Chang, Jingjing; Liu, Ziye; Sun, Xu; Lin, Zhenhua; Chen, Dazheng; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue
2018-02-08
Perovskite/PCBM heterojunctions are efficient for fabricating perovskite solar cells with high performance and long-term stability. In this study, an efficient perovskite/PCBM heterojunction was formed via conventional sequential deposition and one-step formation processes. Compared with conventional deposition, the one-step process was more facile, and produced a perovskite thin film of substantially improved quality due to fullerene passivation. Moreover, the resulting perovskite/PCBM heterojunction exhibited more efficient carrier transfer and extraction, and reduced carrier recombination. The perovskite solar cell device based on one-step perovskite/PCBM heterojunction formation exhibited a higher maximum PCE of 17.8% compared with that from the conventional method (13.7%). The device also showed exceptional stability, retaining 83% of initial PCE after 60 days of storage under ambient conditions.
Su, Chengguo; Yin, Bin; Zhu, Zhaoliang; Shen, Qirong
2003-11-01
Plot and field experiments showed that the NH3 volatilization loss from rice field reached its maximum in 1-3 days after N-fertilization, which was affected by the local climate conditions (e.g., sun illumination, temperature, humidity, wind speed, and rainfall), fertilization time, and ammonium concentration in surface water of the rice field. The wet deposition of atmospheric nitrogen was correlated with the application rate of N fertilizer and the rainfall. The amount of nitrogen brought into soil or surface water by the wet deposition in rice growing season reached 7.5 kg.hm-2. The percent of NH4(+)-N in the wet deposition was about 39.8%-73.2%, with an average of 55.5%. There was a significant correlation of total ammonia volatilization loss with the average concentration of NH4(+)-N in wet deposition and total amount of wet deposition in rice growing season.
Overall elemental dry deposition velocities measured around Lake Michigan
NASA Astrophysics Data System (ADS)
Yi, Seung-Muk; Shahin, Usama; Sivadechathep, Jakkris; Sofuoglu, Sait C.; Holsen, Thomas M.
Overall dry deposition velocities of several elements were determined by dividing measured fluxes by measured airborne concentrations in different particle size ranges. The dry deposition measurements were made with a smooth surrogate surface on an automated dry deposition sampler (Eagle II) and the ambient particle concentrations were measured with a dichotomous sampler. These long-term measurements were made in Chicago, IL, South Haven, MI, and Sleeping Bear Dunes, MI, from December 1993 through October 1995 as part of the Lake Michigan Mass Balance Study. In general, the dry deposition fluxes of elements were highly correlated with coarse particle concentrations, slightly less well correlated with total particle concentrations, and least well correlated with fine particle concentrations. The calculated overall dry deposition velocities obtained using coarse particle concentrations varied from approximately 12 cm s -1 for Mg in Chicago to 0.2 cm s -1 for some primarily anthropogenic metals at the more remote sites. The velocities calculated using total particle concentrations were slightly lower. The crustal elements (Mg, Al, and Mn) had higher deposition velocities than anthropogenic elements (V, Cr, Cu, Zn, Mo, Ba and Pb). For crustal elements, overall dry deposition velocities were higher in Chicago than at the other sites.
A method for predicting optimized processing parameters for surfacing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupont, J.N.; Marder, A.R.
1994-12-31
Welding is used extensively for surfacing applications. To operate a surfacing process efficiently, the variables must be optimized to produce low levels of dilution with the substrate while maintaining high deposition rates. An equation for dilution in terms of the welding variables, thermal efficiency factors, and thermophysical properties of the overlay and substrate was developed by balancing energy and mass terms across the welding arc. To test the validity of the resultant dilution equation, the PAW, GTAW, GMAW, and SAW processes were used to deposit austenitic stainless steel onto carbon steel over a wide range of parameters. Arc efficiency measurementsmore » were conducted using a Seebeck arc welding calorimeter. Melting efficiency was determined based on knowledge of the arc efficiency. Dilution was determined for each set of processing parameters using a quantitative image analysis system. The pertinent equations indicate dilution is a function of arc power (corrected for arc efficiency), filler metal feed rate, melting efficiency, and thermophysical properties of the overlay and substrate. With the aid of the dilution equation, the effect of processing parameters on dilution is presented by a new processing diagram. A new method is proposed for determining dilution from welding variables. Dilution is shown to depend on the arc power, filler metal feed rate, arc and melting efficiency, and the thermophysical properties of the overlay and substrate. Calculated dilution levels were compared with measured values over a large range of processing parameters and good agreement was obtained. The results have been applied to generate a processing diagram which can be used to: (1) predict the maximum deposition rate for a given arc power while maintaining adequate fusion with the substrate, and (2) predict the resultant level of dilution with the substrate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohan, Nagaboopathy; Raghavan, Srinivasan; Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012
2015-10-07
AlGaN/GaN high electron mobility transistor stacks deposited on a single growth platform are used to compare the most common transition, AlN to GaN, schemes used for integrating GaN with Si. The efficiency of these transitions based on linearly graded, step graded, interlayer, and superlattice schemes on dislocation density reduction, stress management, surface roughness, and eventually mobility of the 2D-gas are evaluated. In a 500 nm GaN probe layer deposited, all of these transitions result in total transmission electron microscopy measured dislocations densities of 1 to 3 × 10{sup 9}/cm{sup 2} and <1 nm surface roughness. The 2-D electron gas channels formed atmore » an AlGaN-1 nm AlN/GaN interface deposited on this GaN probe layer all have mobilities of 1600–1900 cm{sup 2}/V s at a carrier concentration of 0.7–0.9 × 10{sup 13}/cm{sup 2}. Compressive stress and changes in composition in GaN rich regions of the AlN-GaN transition are the most effective at reducing dislocation density. Amongst all the transitions studied the step graded transition is the one that helps to implement this feature of GaN integration in the simplest and most consistent manner.« less
Garg, Saryu; Chandra, Boggarapu Praphulla; Sinha, Vinayak; Sarda-Esteve, Roland; Gros, Valerie; Sinha, Baerbel
2016-01-19
Angstrom exponent measurements of equivalent black carbon (BCeq) have recently been introduced as a novel tool to apportion the contribution of biomass burning sources to the BCeq mass. The BCeq is the mass of ideal BC with defined optical properties that, upon deposition on the aethalometer filter tape, would cause equal optical attenuation of light to the actual PM2.5 aerosol deposited. The BCeq mass hence is identical to the mass of the total light-absorbing carbon deposited on the filter tape. Here, we use simultaneously collected data from a seven-wavelength aethalometer and a high-sensitivity proton-transfer reaction mass spectrometer installed at a suburban site in Mohali (Punjab), India, to identify a number of biomass combustion plumes. The identified types of biomass combustion include paddy- and wheat-residue burning, leaf litter, and garbage burning. Traffic plumes were selected for comparison. We find that the combustion efficiency, rather than the fuel used, determines αabs, and consequently, the αabs can be ∼1 for flaming biomass combustion and >1 for older vehicles that operate with poorly optimized engines. Thus, the absorption angstrom exponent is not representative of the fuel used and, therefore, cannot be used as a generic tracer to constrain source contributions.
An Artificial Turf-Based Surrogate Surface Collector for the ...
This paper describes the development of a new artificial turf surrogate surface (ATSS) sampler for use in the measurement of mercury (Hg) dry deposition. In contrast to many existing surrogate surface designs, the ATSS utilizes a three-dimensional deposition surface that may more closely mimic the physical structure of many natural surfaces than traditional flat surrogate surface designs (water, filter, greased Mylar film). The ATSS has been designed to overcome several complicating factors that can impact the integrity of samples with other direct measurement approaches by providing a passive system which can be deployed for both short and extended periods of time (days to weeks), and is not contaminated by precipitation and/or invalidated by strong winds. Performance characteristics including collocated precision, in-field procedural and laboratory blanks were evaluated. The results of these performance evaluations included a mean collocated precision of 9%, low blanks (0.8 ng), high extraction efficiency (97%–103%), and a quantitative matrix spike recovery (100%). In recent years, a growing number of intensive field campaigns and routine measurement networks have provided valuable information on the rates of total mercury (Hg) wet deposition in North America (Guentzel et al., 1995; Rea et al., 1996; Dvonch et al., 1999; Landis and Keeler, 2002; Dvonch et al., 2005; Hall et al., 2005; Keeler et al., 2005; Keeler et al., 2006; Butler et al., 2008; Prestbo an
Kot, Malgorzata; Das, Chittaranjan; Wang, Zhiping; Henkel, Karsten; Rouissi, Zied; Wojciechowski, Konrad; Snaith, Henry J; Schmeisser, Dieter
2016-12-20
In this work, solar cells with a freshly made CH 3 NH 3 PbI 3 perovskite film showed a power conversion efficiency (PCE) of 15.4 % whereas the one with 50 days aged perovskite film only 6.1 %. However, when the aged perovskite was covered with a layer of Al 2 O 3 deposited by atomic layer deposition (ALD) at room temperature (RT), the PCE value was clearly enhanced. X-ray photoelectron spectroscopy study showed that the ALD precursors are chemically active only at the perovskite surface and passivate it. Moreover, the RT-ALD-Al 2 O 3 -covered perovskite films showed enhanced ambient air stability. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
King, Donald B.; Sadwick, Laurence P.; Wernsman, Bernard R.
2002-06-25
Methods of manufacturing microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures using MEMS manufacturing techniques including chemical vapor deposition. The MTCs made using the methods of the invention incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices can be fabricated at modest costs.
Characterization of dynamic droplet impaction and deposit formation on leaf surfaces
USDA-ARS?s Scientific Manuscript database
Elucidation of droplet dynamic impaction and deposition formation on leaf surfaces would assist to optimize application strategies, improve biological control efficiency, and minimize pesticide waste. A custom-designed system consisting of two high-speed digital cameras and a uniform-size droplet ge...
Graphene as a transparent conducting and surface field layer in planar Si solar cells
2014-01-01
This work presents an experimental and finite difference time domain (FDTD) simulation-based study on the application of graphene as a transparent conducting layer on a planar and untextured crystalline p-n silicon solar cell. A high-quality monolayer graphene with 97% transparency and 350 Ω/□ sheet resistance grown by atmospheric pressure chemical vapor deposition method was transferred onto planar Si cells. An increase in efficiency from 5.38% to 7.85% was observed upon deposition of graphene onto Si cells, which further increases to 8.94% upon SiO2 deposition onto the graphene/Si structure. A large increase in photon conversion efficiency as a result of graphene deposition shows that the electronic interaction and the presence of an electric field at the graphene/Si interface together play an important role in this improvement and additionally lead to a reduction in series resistance due to the conducting nature of graphene. PMID:25114642
Cu(In,Ga)Se2 solar cells with In2S3 buffer layer deposited by thermal evaporation
NASA Astrophysics Data System (ADS)
Kim, SeongYeon; Rana, Tanka R.; Kim, JunHo; Yun, JaeHo
2017-12-01
We report on physical vapor deposition of indium sulfide (In2S3) buffer layers and its application to Cu(In,Ga)Se2 (CIGSe) thin film solar cell. The Indium sulfide buffer layers were evaporated onto CIGSe at various substrate temperatures from room temperature (RT) to 350 °C. The effect of deposition temperature of buffer layers on the solar cell device performance were investigated by analyzing temperature dependent current-voltage ( J- V- T), external quantum efficiency (EQE) and Raman spectroscopy. The fabricated device showed the highest power conversion efficiency of 6.56% at substrate temperature of 250 °C, which is due to the decreased interface recombination. However, the roll-over in J- V curves was observed for solar cell device having buffer deposited at substrate temperature larger than 250 °C. From the measurement results, the interface defect and roll-over related degradation were found to have limitation on the performance of solar cell device.
Lee, Jaehyeong; Choi, Wonseok; Lee, Kyuil; Lee, Daedong; Kang, Hyunil
2016-05-01
HIT (Heterojunction with Intrinsic Thin-layer) photovoltaic cells is one of the highest efficiencies in the commercial solar cells. The pyramid texturization for reducing surface reflectance of HIT solar cells silicon wafers is widely used. For the low leakage current and high shunt of solar cells, the intrinsic amorphous silicon (a-Si:H) on substrate must be uniformly thick of pyramid structure. However, it is difficult to control the thickness in the traditional pyramid texturing process. Thus, we textured the intrinsic a-Si:H thin films with the round pyramidal structure by using HNO3, HF, and CH3COOH solution. The characteristics of round pyramid a-Si:H solar cells deposited at pressure of 500, 1000, 1500, and 2000 mTorr by PECVD (Plasma Enhanced Chemical Vapor Deposition) was investigated. The lifetime, open circuit voltage, fill factor and efficiency of a-Si:H solar cells were investigated with respect to various deposition pressure.
Deposition Nucleation or Pore Condensation and Freezing?
NASA Astrophysics Data System (ADS)
David, Robert O.; Mahrt, Fabian; Marcolli, Claudia; Fahrni, Jonas; Brühwiler, Dominik; Lohmann, Ulrike; Kanji, Zamin A.
2017-04-01
Ice nucleation plays an important role in moderating Earth's climate and precipitation formation. Over the last century of research, several mechanisms for the nucleation of ice have been identified. Of the known mechanisms for ice nucleation, only deposition nucleation occurs below water saturation. Deposition nucleation is defined as the formation of ice from supersaturated water vapor on an insoluble particle without the prior formation of liquid. However, recent work has found that the efficiency of so-called deposition nucleation shows a dependence on the homogeneous freezing temperature of water even though no liquid phase is presumed to be present. Additionally, the ability of certain particles to nucleate ice more efficiently after being pre-cooled (pre-activation) raises questions on the true mechanism when ice nucleation occurs below water saturation. In an attempt to explain the dependence of the efficiency of so-called deposition nucleation on the onset of homogeneous freezing of liquid water, pore condensation and freezing has been proposed. Pore condensation and freezing suggests that the liquid phase can exist under sub-saturated conditions with respect to liquid in narrow confinements or pores due to the inverse Kelvin effect. Once the liquid-phase condenses, it is capable of nucleating ice either homogeneously or heterogeneously. The role of pore condensation and freezing is assessed in the Zurich Ice Nucleation Chamber, a continuous flow diffusion chamber, using spherical nonporous and mesoporous silica particles. The mesoporous silica particles have a well-defined particle size range of 400 to 600nm with discreet pore sizes of 2.5, 2.8, 3.5 and 3.8nm. Experiments conducted between 218K and 238K show that so-called deposition nucleation only occurs below the homogenous freezing temperature of water and is highly dependent on the presence of pores and their size. The results strongly support pore condensation and freezing, questioning the role of deposition nucleation as an ice nucleation pathway.
Pimenta, Alexandre Dias; Monteiro, Júlio César; Barbosa, André Favaretto; Salgado, Norma Campos; Coelho, Arnaldo Campos Dos Santos
2014-03-20
A curatorial revision of the type specimens deposited in the Mollusca Collection of the Museu Nacional / UFRJ, Rio de Janeiro, Brazil (MNRJ) revealed the existence of 518 lots of type specimens (holotypes, neotypes, syntypes and paratypes) for 285 names of molluscan taxa from 88 families, including 247 gastropods, 30 bivalves, three cephalopods and five scaphopods. A total of 106 holotypes and one neotype are deposited in the MNRJ. Type material for ten nominal taxa described as being deposited in the MNRJ was not located; the probable reasons are discussed. Some previously published erroneous information about types in the MNRJ is rectified. A total of 37 type specimens are illustrated.
Chemical Vapor Deposition of Turbine Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Haven, Victor E.
1999-01-01
Ceramic thermal barrier coatings extend the operating temperature range of actively cooled gas turbine components, therefore increasing thermal efficiency. Performance and lifetime of existing ceram ic coatings are limited by spallation during heating and cooling cycles. Spallation of the ceramic is a function of its microstructure, which is determined by the deposition method. This research is investigating metalorganic chemical vapor deposition (MOCVD) of yttria stabilized zirconia to improve performance and reduce costs relative to electron beam physical vapor deposition. Coatings are deposited in an induction-heated, low-pressure reactor at 10 microns per hour. The coating's composition, structure, and response to the turbine environment will be characterized.
Food web flows through a sub-arctic deep-sea benthic community
NASA Astrophysics Data System (ADS)
Gontikaki, E.; van Oevelen, D.; Soetaert, K.; Witte, U.
2011-11-01
The benthic food web of the deep Faroe-Shetland Channel (FSC) was modelled by using the linear inverse modelling methodology. The reconstruction of carbon pathways by inverse analysis was based on benthic oxygen uptake rates, biomass data and transfer of labile carbon through the food web as revealed by a pulse-chase experiment. Carbon deposition was estimated at 2.2 mmol C m -2 d -1. Approximately 69% of the deposited carbon was respired by the benthic community with bacteria being responsible for 70% of the total respiration. The major fraction of the labile detritus flux was recycled within the microbial loop leaving merely 2% of the deposited labile phytodetritus available for metazoan consumption. Bacteria assimilated carbon at high efficiency (0.55) but only 24% of bacterial production was grazed by metazoans; the remaining returned to the dissolved organic matter pool due to viral lysis. Refractory detritus was the basal food resource for nematodes covering ∼99% of their carbon requirements. On the contrary, macrofauna seemed to obtain the major part of their metabolic needs from bacteria (49% of macrofaunal consumption). Labile detritus transfer was well-constrained, based on the data from the pulse-chase experiment, but appeared to be of limited importance to the diet of the examined benthic organisms (<1% and 5% of carbon requirements of nematodes and macrofauna respectively). Predation on nematodes was generally low with the exception of sub-surface deposit-feeding polychaetes that obtained 35% of their energy requirements from nematode ingestion. Carnivorous polychaetes also covered 35% of their carbon demand through predation although the preferred prey, in this case, was other macrofaunal animals rather than nematodes. Bacteria and detritus contributed 53% and 12% to the total carbon ingestion of carnivorous polychaetes suggesting a high degree of omnivory among higher consumers in the FSC benthic food web. Overall, this study provided a unique insight into the functioning of a deep-sea benthic community and demonstrated how conventional data can be exploited further when combined with state-of-the-art modelling approaches.
NASA Astrophysics Data System (ADS)
Xu, Yu; Xiao, Huayun
2017-09-01
Free amino acid δ15N values and concentrations of current-year new (new), current-year mature (middle-age) and previous-year (old) Pinus massoniana (Lamb.) needles were determined for five sites with different distances from a highway in a forest in Guiyang (SW China). Needle free amino acid concentrations decreased with increasing distance from the highway, and only the free amino acid concentrations (total free amino acid, arginine, γ-aminobutyric acid, valine, alanine and proline) in the middle-aged needles demonstrated a strong correlation with distance from the highway, indicating that free amino acid concentrations in middle-aged needles may be a more suitable indicator of nitrogen (N) deposition compared to new and old needles. Needle free amino acid δ15N values were more positive near the highway compared to the more distant sites and increased with increasing needle age, indicating that N deposition in this site may be dominated by isotopically heavy NOx-N from traffic emissions. In sites beyond 400 m from the highway, the δ15N values of total free amino acids, histidine, glutamine, proline, alanine, aspartate, isoleucine, lysine, arginine and serine in each age of needle were noticeably negative compared to their respective δ15N values near the highway. This suggested that needle free amino acid δ15N values from these sites were more affected by 15N-depleted atmospheric NHx-N from soil emissions. This result was further supported by the similarity in the negative moss δ15N values at these sites to the δ15N values of soil-derived NHx-N. Needle free amino acid δ15N values therefore have the potential to provide information about atmospheric N sources. We conclude that needle free amino acid concentrations are sensitive indicators of N deposition and that the age-related free amino acid δ15N values in needles can efficiently reflect atmospheric N sources. This would probably promote the application of the combined plant tissue amino acid concentration and δ15N analyses in N deposition bio-monitoring.
Environmental Effects of Space Shuttle Solid Rocket Motor Exhaust Plumes
NASA Technical Reports Server (NTRS)
Hwang, B.; Pergament, H. S.
1976-01-01
The deposition of NOx and HCl in the stratosphere from the space shuttle solid rocket motors (SRM) and exhaust plume is discussed. A detailed comparison between stratospheric deposition rates using the baseline SRM propellant and an alternate propellant, which replaces ammonium perchlorate by ammonium nitrate, shows the total NOx deposition rate to be approximately the same for each propellant. For both propellants the ratio of the deposition rates of NOx to total chlorine-containing species is negligibly small. Rocket exhaust ground cloud transport processes in the troposphere are also examined. A brief critique of the multilayer diffusion models (presently used for predicting pollutant deposition in the troposphere) is presented, and some detailed cloud rise calculations are compared with data for Titan 3C launches. The results show that, when launch time meteorological data are used as input, the model can reasonably predict measured cloud stabilization heights.
METHODS OF CALCULATINAG LUNG DELIVERY AND DEPOSITION OF AEROSOL PARTICLES
Lung deposition of aerosol is measured by a variety of methods. Total lung deposition can be measured by monitoring inhaled and exhaled aerosols in situ by laser photometry or by collecting the aerosols on filters. The measurements can be performed accurately for stable monod...
Methylmercury is a known neurotoxin with deleterious health effects on humans and wildlife. Atmospheric deposition is the largest source of mercury loading to most terrestrial and aquatic ecosystems. Regional scale air quality models are needed to quantify mercury deposition resu...
NASA Astrophysics Data System (ADS)
Sidali, Tarik; Bou, Adrien; Coutancier, Damien; Chassaing, Elisabeth; Theys, Bertrand; Barakel, Damien; Garuz, Richard; Thoulon, Pierre-Yves; Lincot, Daniel
2018-03-01
In this paper, a new way of preparing semi-transparent solar cells using Cu(In1-xGax)Se2 (CIGS) chalcopyrite semiconductors as absorbers for BIPV applications is presented. The key to the elaboration process consists in the co-electrodeposition of Cu-In-Ga mixed oxides on submillimetric hole-patterned molybdenum substrate, followed by thermal reduction to metallic alloys and selenisation. This method has the advantage of being a selective deposition technique where the thin film growth is carried out only on Mo covered areas. Thus, after annealing, the transparency of the sample is always preserved, allowing light to pass through the device. A complete device (5 × 5 cm2) with 535 μm diameter holes and total glass aperture of around 35% shows an open circuit voltage (VOC) of 400 mV. Locally, the I-V curves reveal a maximum efficiency of 7.7%, VOC of 460 mV, JSC of 24 mA.cm-2 in an area of 0.1 cm2 with 35% aperture. This efficiency on the semi-transparent area is equivalent to a record efficiency of 11.9% by taking into account only the effective area.
Wetherbee, Gregory A.; Martin, RoseAnn
2016-07-05
The Mercury Deposition Network programs include the system blank program and an interlaboratory comparison program. System blank results indicated that maximum total mercury contamination concentrations in samples were less than the third percentile of all Mercury Deposition Network sample concentrations. The Mercury Analytical Laboratory produced chemical concentration results with low bias and variability compared with other domestic and international laboratories that support atmospheric-deposition monitoring.
NASA Astrophysics Data System (ADS)
Watanabe, Masashi; Goto, Kazuhisa; Bricker, Jeremy D.; Imamura, Fumihiko
2018-02-01
We examined the quantitative difference in the distribution of tsunami and storm deposits based on numerical simulations of inundation and sediment transport due to tsunami and storm events on the Sendai Plain, Japan. The calculated distance from the shoreline inundated by the 2011 Tohoku-oki tsunami was smaller than that inundated by storm surges from hypothetical typhoon events. Previous studies have assumed that deposits observed farther inland than the possible inundation limit of storm waves and storm surge were tsunami deposits. However, confirming only the extent of inundation is insufficient to distinguish tsunami and storm deposits, because the inundation limit of storm surges may be farther inland than that of tsunamis in the case of gently sloping coastal topography such as on the Sendai Plain. In other locations, where coastal topography is steep, the maximum inland inundation extent of storm surges may be only several hundred meters, so marine-sourced deposits that are distributed several km inland can be identified as tsunami deposits by default. Over both gentle and steep slopes, another difference between tsunami and storm deposits is the total volume deposited, as flow speed over land during a tsunami is faster than during a storm surge. Therefore, the total deposit volume could also be a useful proxy to differentiate tsunami and storm deposits.
Spray deposition inside multiple-row nursery trees with a laser-guided sprayer
USDA-ARS?s Scientific Manuscript database
Multiple-row container-grown trees require specially designed sprayers to achieve efficient spray delivery quality. A five-port air-assisted sprayer with both automatic and manual control modes was developed to discharge adequate spray deposition inside multiple-row tree plants. The sprayer resulted...
NASA Astrophysics Data System (ADS)
Choueikani, Fadi; Delmotte, Franck; Bridou, Françoise; Lagarde, Bruno; Mercere, Pascal; Otero, Edwige; Ohresser, Philippe; Polack, François
2013-03-01
This paper presents a study of B4C/Mo2C multilayers mirrors with the aim of using it in the achievement of Alternate MultiLayer (AML) grating. Such component allows a high efficiency in the 500-2500 eV energy range for the DEIMOS beamline. Multilayers were deposited on silicon substrate. They are characterized by reflectometry under grazing incidence. Numerical adjustments were performed with a model of two layers in the period without any interfacial. A prototype of AML grating was fabricated and characterized. The efficiency of the first order of diffraction was worth 15% at 1700 eV.
NASA Astrophysics Data System (ADS)
Sánchez Bisquert, David; Matías Peñas Castejón, José; García Fernández, Gregorio
2017-03-01
It is understood that particulate matter in the atmosphere from metallic mining waste has adverse health effects on populations living nearby. Atmospheric deposition is a process connecting the mining wasteswith nearby ecosystems. Unfortunately, very limited information is available about atmospheric deposition surrounding rural metallic mining areas. This article will focus on the deposition from mining areas, combined with its impact on nearby rural built areas and populations. Particle samples were collected between June 2011 and March 2013. They were collected according to Spanish legislation in ten specialised dust collectors. They were located near populations close to a former Mediterranean mining area, plus a control, to assess the impact of mining waste on these villages. This article and its results have been made through an analysis of atmospheric deposition of these trace elements (Mn, Zn, As, Cd and Pb). It also includes an analysis of total dust flux. Within this analysis it has considered the spatial variations of atmospheric deposition flux in these locations. The average annual level of total bulk deposition registered was 42.0 g m-2 per year. This was higher than most of the areas affected by a Mediterranean climate or in semi-arid conditions around the world. Regarding the overall analysis of trace elements, the annual bulk deposition fluxes of total Zn far exceeded the values of other areas. While Mn, Cd and Pb showed similar or lower values, and in part much lower than those described in other Mediterranean mining areas. This study confirmed some spatial variability of dust and trace elements, contained within the atmospheric deposition. From both an environmental and a public health perspective, environmental managers must take into account the cumulative effect of the deposition of trace elements on the soil and air quality around and within the villages surrounding metallic mining areas.
Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model
NASA Astrophysics Data System (ADS)
Zhou, Putian; Ganzeveld, Laurens; Rannik, Üllar; Zhou, Luxi; Gierens, Rosa; Taipale, Ditte; Mammarella, Ivan; Boy, Michael
2017-01-01
A multi-layer ozone (O3) dry deposition model has been implemented into SOSAA (a model to Simulate the concentrations of Organic vapours, Sulphuric Acid and Aerosols) to improve the representation of O3 concentration and flux within and above the forest canopy in the planetary boundary layer. We aim to predict the O3 uptake by a boreal forest canopy under varying environmental conditions and analyse the influence of different factors on total O3 uptake by the canopy as well as the vertical distribution of deposition sinks inside the canopy. The newly implemented dry deposition model was validated by an extensive comparison of simulated and observed O3 turbulent fluxes and concentration profiles within and above the boreal forest canopy at SMEAR II (Station to Measure Ecosystem-Atmosphere Relations II) in Hyytiälä, Finland, in August 2010. In this model, the fraction of wet surface on vegetation leaves was parametrised according to the ambient relative humidity (RH). Model results showed that when RH was larger than 70 % the O3 uptake onto wet skin contributed ˜ 51 % to the total deposition during nighttime and ˜ 19 % during daytime. The overall contribution of soil uptake was estimated about 36 %. The contribution of sub-canopy deposition below 4.2 m was modelled to be ˜ 38 % of the total O3 deposition during daytime, which was similar to the contribution reported in previous studies. The chemical contribution to O3 removal was evaluated directly in the model simulations. According to the simulated averaged diurnal cycle the net chemical production of O3 compensated up to ˜ 4 % of dry deposition loss from about 06:00 to 15:00 LT. During nighttime, the net chemical loss of O3 further enhanced removal by dry deposition by a maximum ˜ 9 %. Thus the results indicated an overall relatively small contribution of airborne chemical processes to O3 removal at this site.
Effects and empirical critical loads of nitrogen for ecoregions of the United States
Linda H. Pardo; Molly J. Robin-Abbot; Mark E. Fenn; Christine L. Goodale; Linda H. Geiser; Charles T. Driscoll; Edith B. Allen; Jill S. Baron; Roland Bobbink; William D. Bowman; Christopher M. Clark; Bridget Emmett; Frank S. Gilliam; Tara L. Greaver; Sharon J. Hall; Erik A. Lilleskov; Lingli Liu; Jason A. Lynch; Knute J. Nadelhoffer; Steven J. Perakis; John L. Stoddard; Kathleen C. Weathers; Robin L. Dennis
2015-01-01
Human activity in the last century has led to a significant increase in nitrogen (N) emissions and deposition (Galloway et al. 2004). Total N emissions in the United States have increased significantly since the 1950s (Galloway 1998, Galloway et al. 2003). As S deposition has declined in response to regulation, the rate of N deposition relative to S deposition has...
Sheng, Wenping; Yu, Guirui; Fang, Huajun; Jiang, Chunming; Yan, Junhua; Zhou, Mei
2014-01-01
We added the stable isotope 15N in the form of (15NH4)2SO4 and K15NO3 to forest ecosystems in eastern China under two different N deposition levels to study the fate of the different forms of deposited N. Prior to the addition of the 15N tracers, the natural 15N abundance ranging from −3.4‰ to +10.9‰ in the forest under heavy N deposition at Dinghushan (DHS), and from −3.92‰ to +7.25‰ in the forest under light N deposition at Daxinganling (DXAL). Four months after the tracer application, the total 15N recovery from the major ecosystem compartments ranged from 55.3% to 90.5%. The total 15N recoveries were similar under the (15NH4)2SO4 tracer treatment in both two forest ecosystems, whereas the total 15N recovery was significantly lower in the subtropical forest ecosystem at DHS than in the boreal forest ecosystem at DXAL under the K15NO3 tracer treatment. The 15N assimilated into the tree biomass represented only 8.8% to 33.7% of the 15N added to the forest ecosystems. In both of the tracer application treatments, more 15N was recovered from the tree biomass in the subtropical forest ecosystem at DHS than the boreal forest ecosystem at DXAL. The amount of 15N assimilated into tree biomass was greater under the K15NO3 tracer treatment than that of the (15NH4)2SO4 treatment in both forest ecosystems. This study suggests that, although less N was immobilized in the forest ecosystems under more intensive N deposition conditions, forest ecosystems in China strongly retain N deposition, even in areas under heavy N deposition intensity or in ecosystems undergoing spring freezing and thawing melts. Compared to ammonium deposition, deposited nitrate is released from the forest ecosystem more easily. However, nitrate deposition could be retained mostly in the plant N pool, which might lead to more C sequestration in these ecosystems. PMID:24586688
Sheng, Wenping; Yu, Guirui; Fang, Huajun; Jiang, Chunming; Yan, Junhua; Zhou, Mei
2014-01-01
We added the stable isotope (15)N in the form of ((15)NH4)2SO4 and K(15)NO3 to forest ecosystems in eastern China under two different N deposition levels to study the fate of the different forms of deposited N. Prior to the addition of the (15)N tracers, the natural (15)N abundance ranging from -3.4‰ to +10.9‰ in the forest under heavy N deposition at Dinghushan (DHS), and from -3.92‰ to +7.25‰ in the forest under light N deposition at Daxinganling (DXAL). Four months after the tracer application, the total (15)N recovery from the major ecosystem compartments ranged from 55.3% to 90.5%. The total (15)N recoveries were similar under the ((15)NH4)2SO4 tracer treatment in both two forest ecosystems, whereas the total (15)N recovery was significantly lower in the subtropical forest ecosystem at DHS than in the boreal forest ecosystem at DXAL under the K(15)NO3 tracer treatment. The (15)N assimilated into the tree biomass represented only 8.8% to 33.7% of the (15)N added to the forest ecosystems. In both of the tracer application treatments, more (15)N was recovered from the tree biomass in the subtropical forest ecosystem at DHS than the boreal forest ecosystem at DXAL. The amount of (15)N assimilated into tree biomass was greater under the K(15)NO3 tracer treatment than that of the ((15)NH4)2SO4 treatment in both forest ecosystems. This study suggests that, although less N was immobilized in the forest ecosystems under more intensive N deposition conditions, forest ecosystems in China strongly retain N deposition, even in areas under heavy N deposition intensity or in ecosystems undergoing spring freezing and thawing melts. Compared to ammonium deposition, deposited nitrate is released from the forest ecosystem more easily. However, nitrate deposition could be retained mostly in the plant N pool, which might lead to more C sequestration in these ecosystems.
Yang, Yefeng; Zhen, Chenghuang; Yang, Bo; Yu, Yonghua; Pan, Jinming
2018-06-01
Though previous study indicated that the 580 nm-yellow-LED-light showed an stimulating effect on growth of chickens, the low luminous efficiency of the yellow LED light cannot reflect the advantage of energy saving. In present study, the cool white LED chips and yellow LED chips have been combined to fabricate the white × yellow mixed LED light, with an enhanced luminous efficiency. A total 300 newly hatched chickens were reared under various mixed LED light. The results indicated that the white × yellow mixed LED light had "double-edged sword" effects on bird's body weight, bone development, adipose deposition, and body temperature, depending on variations in ratios of yellow component. Low yellow ratio of mixed LED light (Low group) inhibited body weight, whereas medium and high yellow ratio of mixed LED light (Medium and High groups) promoted body weight, compared with white LED light (White group). A progressive change in yellow component gave rise to consistent changes in body weight over the entire experiment. Moreover, a positive relationship was observed between yellow component and feed conversion ratio. High group-treated birds had greater relative abdominal adipose weight than Medium group-treated birds (P = 0.048), whereas Medium group-treated birds had greater relative abdominal adipose weight than Low group-treated birds (P = 0.044). We found that mixed light improved body weight by enhancing skeletal development (R 2 = 0.5023, P = 0.0001) and adipose deposition (R 2 = 0.6012, P = 0.0001). Birds in the Medium, High and Yellow groups attained significantly higher surface temperatures compared with the White group (P = 0.010). The results suggest that the application of the mixed light with high level of yellow component can be used successfully to improve growth and productive performance in broilers. Copyright © 2018. Published by Elsevier B.V.
Singh, Akanksha; Gupta, Rupali; Srivastava, Madhumita; Gupta, M M; Pandey, Rakesh
2016-04-01
In the present investigation, metabolites of Streptomyces sp. MTN14 and Trichoderma harzianum ThU significantly enhanced biomass yield (3.58 and 3.48 fold respectively) in comparison to the control plants. The secondary metabolites treatments also showed significant augmentation (0.75-2.25 fold) in withanolide A, a plant secondary metabolite. Lignin deposition, total phenolic and flavonoid content in W. somnifera were maximally induced in treatment having T. harzianum metabolites. Also, Trichoderma and Streptomyces metabolites were found much better in invoking in planta contents and antioxidants compared with their live culture treatments. Therefore, identification of new molecular effectors from metabolites of efficient microbes may be used as biopesticide and biofertilizer for commercial production of W. somnifera globally.
Chételat, John; Hickey, M Brian C; Poulain, Alexandre J; Dastoor, Ashu; Ryjkov, Andrei; McAlpine, Donald; Vanderwolf, Karen; Jung, Thomas S; Hale, Lesley; Cooke, Emma L L; Hobson, Dave; Jonasson, Kristin; Kaupas, Laura; McCarthy, Sara; McClelland, Christine; Morningstar, Derek; Norquay, Kaleigh J O; Novy, Richard; Player, Delanie; Redford, Tony; Simard, Anouk; Stamler, Samantha; Webber, Quinn M R; Yumvihoze, Emmanuel; Zanuttig, Michelle
2018-06-01
Wildlife are exposed to neurotoxic mercury at locations distant from anthropogenic emission sources because of long-range atmospheric transport of this metal. In this study, mercury bioaccumulation in insectivorous bat species (Mammalia: Chiroptera) was investigated on a broad geographic scale in Canada. Fur was analyzed (n=1178) for total mercury from 43 locations spanning 20° latitude and 77° longitude. Total mercury and methylmercury concentrations in fur were positively correlated with concentrations in internal tissues (brain, liver, kidney) for a small subset (n=21) of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus), validating the use of fur to indicate internal mercury exposure. Brain methylmercury concentrations were approximately 10% of total mercury concentrations in fur. Three bat species were mainly collected (little brown bats, big brown bats, and northern long-eared bats [M. septentrionalis]), with little brown bats having lower total mercury concentrations in their fur than the other two species at sites where both species were sampled. On average, juvenile bats had lower total mercury concentrations than adults but no differences were found between males and females of a species. Combining our dataset with previously published data for eastern Canada, median total mercury concentrations in fur of little brown bats ranged from 0.88-12.78μg/g among 11 provinces and territories. Highest concentrations were found in eastern Canada where bats are most endangered from introduced disease. Model estimates of atmospheric mercury deposition indicated that eastern Canada was exposed to greater mercury deposition than central and western sites. Further, mean total mercury concentrations in fur of adult little brown bats were positively correlated with site-specific estimates of atmospheric mercury deposition. This study provides the largest geographic coverage of mercury measurements in bats to date and indicates that atmospheric mercury deposition is important in determining spatial patterns of mercury accumulation in a mammalian species. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Status and Progress of High-efficiency Silicon Solar Cells
NASA Astrophysics Data System (ADS)
Xiao, Shaoqing; Xu, Shuyan
High-efficiency Si solar cells have attracted more and more attention from researchers, scientists, engineers of photovoltaic (PV) industry for the past few decades. Many high-quality researchers and engineers in both academia and industry seek solutions to improve the cell efficiency and reduce the cost. This desire has stimulated a growing number of major research and research infrastructure programmes, and a rapidly increasing number of publications in this filed. This chapter reviews materials, devices and physics of high-efficiency Si solar cells developed over the last 20 years. In this chapter there is a fair number of topics, not only from the material viewpoint, introducing various materials that are required for high-efficiency Si solar cells, such as base materials (FZ-Si, CZ-Si, MCZ-Si and multi-Si), emitter materials (diffused emitter and deposited emitter), passivation materials (Al-back surface field, high-low junction, SiO2, SiO x , SiN x , Al2O3 and a-Si:H), and other functional materials (antireflective layer, TCO and metal electrode), but also from the device and physics point of view, elaborating on physics, cell concept, development and status of all kinds of high-efficiency Si solar cells, such as passivated emitter and rear contact (PERC), passivated emitter and rear locally diffused (PERL), passivated emitter and rear totally diffused (PERT), Pluto, interdigitated back-contacted (IBC), emitter-wrap-through (EWT), metallization-wrap-through (MWT), Heterojunction with intrinsic thin-layer (HIT) and so on. Some representative examples of high-efficiency Si solar cell materials and devices with excellent performance and competitive advantages are presented.
Geographical variation in the response to nitrogen deposition in Arabidopsis lyrata petraea.
Vergeer, Philippine; van den Berg, Leon L J; Bulling, Mark T; Ashmore, Mike R; Kunin, William E
2008-01-01
The adaptive responses to atmospheric nitrogen deposition for different European accessions of Arabidopsis lyrata petraea were analysed using populations along a strong atmospheric N-deposition gradient. Plants were exposed to three N-deposition rates, reflecting the rates at the different locations, in a full factorial design. Differences between accessions in the response to N were found for important phenological and physiological response variables. For example, plants from low-deposition areas had higher nitrogen-use efficiencies (NUE) and C : N ratios than plants from areas high in N deposition when grown at low N-deposition rates. The NUE decreased in all accessions at higher experimental deposition rates. However, plants from high-deposition areas showed a limited capacity to increase their NUE at lower experimental deposition rates. Plants from low-deposition areas had faster growth rates, higher leaf turnover rates and shorter times to flowering, and showed a greater increase in growth rate in response to N deposition than those from high-deposition areas. Indications for adaptation to N deposition were found, and results suggest that adaptation of plants from areas high in N deposition to increased N deposition has resulted in the loss of plasticity.
Carlson, David E.
1982-01-01
An improved process for fabricating amorphous silicon solar cells in which the temperature of the substrate is varied during the deposition of the amorphous silicon layer is described. Solar cells manufactured in accordance with this process are shown to have increased efficiencies and fill factors when compared to solar cells manufactured with a constant substrate temperature during deposition of the amorphous silicon layer.
MERCURY DEPOSITION AND WATER QUALITY IN THE UPPER MIDWEST, USA
Total wet mercury deposition was monitored weekly at six Upper-Midwest, USA sites for a period of six years, 1990-195, to assess temporal and spatial patterns, and contributions to surface waters. Annual wet mercury deposition averaged 7.4 g Hg/m2yr., showed significant variation...
The Watershed Deposition Tool: A Tool for Incorporating Atmospheric Deposition in Watershed Analysis
The tool for providing the linkage between air and water quality modeling needed for determining the Total Maximum Daily Load (TMDL) and for analyzing related nonpoint-source impacts on watersheds has been developed. The Watershed Deposition Tool (WDT) takes gridded output of at...
24 CFR 880.608 - Security deposits.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Security deposits. 880.608 Section... PROGRAM) SECTION 8 HOUSING ASSISTANCE PAYMENTS PROGRAM FOR NEW CONSTRUCTION Management § 880.608 Security... a security deposit in an amount equal to one month's Total Tenant Payment or $50, whichever is...
NASA Astrophysics Data System (ADS)
Ma, Wei-Wei; Zhu, Mao-Xu; Yang, Gui-Peng; Li, Tie
2018-02-01
In marine sediments factors that influence iron (Fe) geochemistry and its interactions with other elements are diverse and remain poorly understood. Here we comparatively study Fe speciation and reactive Fe-bound organic carbon (Fe-OC) in surface sediments of the East China Sea (ECS) and the south Yellow Sea (SYS). The objectives are to better understand the potential impacts of geochemically distinct sediment sources and depositional/diagenetic settings on Fe geochemistry and OC preservation by Fe (hydr)oxides in sediments of the two extensive shelf seas around the world. Contents of carbonate- and acid-volatile-sulfide (AVS)-associated Fe(II) (FeAVS + carb) and magnetite (Femag) in the ECS sediments are about 5 and 9 times higher, respectively, than in the SYS. This could be ascribed to the ferruginous conditions of the ECS sediments that favor the formation/accumulation of Fecarb and Femag, a unique feature of marine unsteady depositional regimes. Much lower total Fe(II) contents in the SYS than in the ECS suggest that lower availability of highly reactive Fe (FeHR) and/or weak Fe reduction is a factor limiting Fe(II) formation and accumulation in the SYS sediments. The ratio of FeHR to total Fe is, on average, markedly higher (2.4 times) in the ECS sediments than in the SYS, which may be a combined result of several factors relevant to different sediment sources and depositional/diagenetic settings. In comparison with many other marine sediments, the percent fractions (fFe-OC) of Fe-OC to total organic carbon (TOC) in the ECS and the SYS are low, which can be ascribed to surface adsorption of OC rather than coprecipitation or organic complexation as the dominant binding mechanisms. Based on the fFe-OC in this study, total Fe-OC estimated for global continental shelves is equivalent to 38% of the atmospheric CO2 pool, which indicates the important role of sorptive stabilization of Fe-OC in continental shelf sediments for buffering CO2 release to the atmosphere. In the SYS, consistently less 13C-depleted Fe-OC relative to 13C of non-Fe-bound OC (13Cnon-Fe-OC) suggests selective sequestration of labile marine OC in the marine OC-dominated sediments of the central SYS. In the ECS, however, efficient oxidation of OC and frequent redox cycling of Fe in the unsteady depositional regimes may complicate the isotopic compositions of Fe-OC. A combination of our results and literature data demonstrates that Fe-OC contents are strongly dependent on the availability of TOC and reactive Fe, but the fFe-OC is primarily controlled by the processes of Fe redox cycling in the sediments.
Energy deposition calculated by PHITS code in Pb spallation target
NASA Astrophysics Data System (ADS)
Yu, Quanzhi
2016-01-01
Energy deposition in a Pb spallation target irradiated by high energetic protons was calculated by PHITS2.52 code. The validation of the energy deposition and neutron production calculated by PHITS code was performed. Results show good agreements between the simulation results and the experimental data. Detailed comparison shows that for the total energy deposition, PHITS simulation result was about 15% overestimation than that of the experimental data. For the energy deposition along the length of the Pb target, the discrepancy mainly presented at the front part of the Pb target. Calculation indicates that most of the energy deposition comes from the ionizations of the primary protons and the produced secondary particles. With the event generator mode of PHITS, the deposit energy distribution for the particles and the light nulclei is presented for the first time. It indicates that the primary protons with energy more than 100 MeV are the most contributors to the total energy deposition. The energy depositions peaking at 10 MeV and 0.1 MeV, are mainly caused by the electrons, pions, d, t, 3He and also α particles during the cascade process and the evaporation process, respectively. The energy deposition density caused by different proton beam profiles are also calculated and compared. Such calculation and analyses are much helpful for better understanding the physical mechanism of energy deposition in the spallation target, and greatly useful for the thermal hydraulic design of the spallation target.
Impact of dust deposition on the albedo of Vatnajökull ice cap, Iceland
NASA Astrophysics Data System (ADS)
Wittmann, Monika; Dorothea Groot Zwaaftink, Christine; Steffensen Schmidt, Louise; Guðmundsson, Sverrir; Pálsson, Finnur; Arnalds, Olafur; Björnsson, Helgi; Thorsteinsson, Throstur; Stohl, Andreas
2017-03-01
Deposition of small amounts of airborne dust on glaciers causes positive radiative forcing and enhanced melting due to the reduction of surface albedo. To study the effects of dust deposition on the mass balance of Brúarjökull, an outlet glacier of the largest ice cap in Iceland, Vatnajökull, a study of dust deposition events in the year 2012 was carried out. The dust-mobilisation module FLEXDUST was used to calculate spatio-temporally resolved dust emissions from Iceland and the dispersion model FLEXPART was used to simulate atmospheric dust dispersion and deposition. We used albedo measurements at two automatic weather stations on Brúarjökull to evaluate the dust impacts. Both stations are situated in the accumulation area of the glacier, but the lower station is close to the equilibrium line. For this site ( ˜ 1210 m a.s.l.), the dispersion model produced 10 major dust deposition events and a total annual deposition of 20.5 g m-2. At the station located higher on the glacier ( ˜ 1525 m a.s.l.), the model produced nine dust events, with one single event causing ˜ 5 g m-2 of dust deposition and a total deposition of ˜ 10 g m-2 yr-1. The main dust source was found to be the Dyngjusandur floodplain north of Vatnajökull; northerly winds prevailed 80 % of the time at the lower station when dust events occurred. In all of the simulated dust events, a corresponding albedo drop was observed at the weather stations. The influence of the dust on the albedo was estimated using the regional climate model HIRHAM5 to simulate the albedo of a clean glacier surface without dust. By comparing the measured albedo to the modelled albedo, we determine the influence of dust events on the snow albedo and the surface energy balance. We estimate that the dust deposition caused an additional 1.1 m w.e. (water equivalent) of snowmelt (or 42 % of the 2.8 m w.e. total melt) compared to a hypothetical clean glacier surface at the lower station, and 0.6 m w.e. more melt (or 38 % of the 1.6 m w.e. melt in total) at the station located further upglacier. Our findings show that dust has a strong influence on the mass balance of glaciers in Iceland.
Thermal release of D2 from new Be-D co-deposits on previously baked co-deposits
NASA Astrophysics Data System (ADS)
Baldwin, M. J.; Doerner, R. P.
2015-12-01
Past experiments and modeling with the TMAP code in [1, 2] indicated that Be-D co-deposited layers are less (time-wise) efficiently desorbed of retained D in a fixed low-temperature bake, as the layer grows in thickness. In ITER, beryllium rich co-deposited layers will grow in thickness over the life of the machine. Although, compared with the analyses in [1, 2], ITER presents a slightly different bake efficiency problem because of instances of prior tritium recover/control baking. More relevant to ITER, is the thermal release from a new and saturated co-deposit layer in contact with a thickness of previously-baked, less-saturated, co-deposit. Experiments that examine the desorption of saturated co-deposited over-layers in contact with previously baked under-layers are reported and comparison is made to layers of the same combined thickness. Deposition temperatures of ∼323 K and ∼373 K are explored. It is found that an instance of prior bake leads to a subtle effect on the under-layer. The effect causes the thermal desorption of the new saturated over-layer to deviate from the prediction of the validated TMAP model in [2]. Instead of the D thermal release reflecting the combined thickness and levels of D saturation in the over and under layer, experiment differs in that, i) the desorption is a fractional superposition of desorption from the saturated over-layer, with ii) that of the combined over and under -layer thickness. The result is not easily modeled by TMAP without the incorporation of a thin BeO inter-layer which is confirmed experimentally on baked Be-D co-deposits using X-ray micro-analysis.
A new temperature and humidity dependent surface site density approach for deposition ice nucleation
NASA Astrophysics Data System (ADS)
Steinke, I.; Hoose, C.; Möhler, O.; Connolly, P.; Leisner, T.
2014-07-01
Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol surface area concentration. Additionally, a contact angle parameterization according to classical nucleation theory was fitted to the experimental data in order to relate the ice nucleation efficiencies to contact angle distributions. From this study it can be concluded that the INAS density formulation is a very useful tool to decribe the temperature and humidity dependent ice nucleation efficiency of ATD particles. Deposition nucleation on ATD particles can be described by a temperature and relative humidity dependent INAS density function ns(T, Sice) with ns(xtherm) = 1.88 × 105 \\centerdot exp(0.2659 \\centerdot xtherm) [m-2] (1) where the thermodynamic variable xtherm is defined as xtherm = -(T - 273.2) + (Sice-1) × 100 (2) with Sice>1 and within a temperature range between 226 and 250 K. For lower temperatures, xtherm deviates from a linear behavior with temperature and relative humidity over ice. Two different approaches for describing the time dependence of deposition nucleation initiated by ATD particles are proposed. Box model estimates suggest that the time dependent contribution is only relevant for small cooling rates and low number fractions of ice-active particles.
Dulloo, A G; Mensi, N; Seydoux, J; Girardier, L
1995-02-01
The energetics of body weight recovery after low food intake was examined in the rat during refeeding for 2 weeks with isocaloric amounts of high-fat (HF) diets providing 50% of energy as either lard, coconut oil, olive oil, safflower oil, menhaden fish oil, or a mixture of all these fat types. The results indicate that for both body fat and protein, the efficiency of deposition was dependent on the dietary fat type. The most striking differences were found (1) between diets rich in n-3 and n-6 polyunsaturated fatty acids (PUFA), with the diet high in fish oil resulting in a greater body fat deposition and lower protein gain than the diet high in safflower oil; and (2) between diets rich in long-chain (LCT) and medium-chain triglycerides (MCT), with the diet high in lard resulting in a greater gain in both body fat and protein than the diet high in coconut oil. Furthermore, the diet high in olive oil (a monounsaturated fat) and the mixed-fat diet (containing all fat types) were found to be similar to the fish oil diet in that the efficiency of fat deposition was greater (and that of protein gain lower) than with the diet high in safflower oil. Neither the efficiency of fat gain nor that of protein gain were found to correlate with fasting plasma insulin, the insulin to glucose ratio, or plasma lipids.(ABSTRACT TRUNCATED AT 250 WORDS)
Liu, Yue; Williams, Mackenzie G.; Miller, Timothy J.; Teplyakov, Andrew V.
2015-01-01
This paper establishes a strategy for chemical deposition of functionalized nanoparticles onto solid substrates in a layer-by-layer process based on self-limiting surface chemical reactions leading to complete monolayer formation within the multilayer system without any additional intermediate layers – nanoparticle layer deposition (NPLD). This approach is fundamentally different from previously established traditional layer-by-layer deposition techniques and is conceptually more similar to well-known atomic and molecular – layer deposition processes. The NPLD approach uses efficient chemical functionalization of the solid substrate material and complementary functionalization of nanoparticles to produce a nearly 100% coverage of these nanoparticles with the use of “click chemistry”. Following this initial deposition, a second complete monolayer of nanoparticles is deposited using a copper-catalyzed “click reaction” with the azide-terminated silica nanoparticles of a different size. This layer-by-layer growth is demonstrated to produce stable covalently-bound multilayers of nearly perfect structure over macroscopic solid substrates. The formation of stable covalent bonds is confirmed spectroscopically and the stability of the multilayers produced is tested by sonication in a variety of common solvents. The 1-, 2- and 3-layer structures are interrogated by electron microscopy and atomic force microscopy and the thickness of the multilayers formed is fully consistent with that expected for highly efficient monolayer formation with each cycle of growth. This approach can be extended to include a variety of materials deposited in a predesigned sequence on different substrates with a highly conformal filling. PMID:26726273
NASA Astrophysics Data System (ADS)
Che, Xiaozhou; Li, Yongxi; Qu, Yue; Forrest, Stephen R.
2018-05-01
Multijunction solar cells are effective for increasing the power conversion efficiency beyond that of single-junction cells. Indeed, the highest solar cell efficiencies have been achieved using two or more subcells to adequately cover the solar spectrum. However, the efficiencies of organic multijunction solar cells are ultimately limited by the lack of high-performance, near-infrared absorbing organic subcells within the stack. Here, we demonstrate a tandem cell with an efficiency of 15.0 ± 0.3% (for 2 mm2 cells) that combines a solution-processed non-fullerene-acceptor-based infrared absorbing subcell on a visible-absorbing fullerene-based subcell grown by vacuum thermal evaporation. The hydrophilic-hydrophobic interface within the charge-recombination zone that connects the two subcells leads to >95% fabrication yield among more than 130 devices, and with areas up to 1 cm2. The ability to stack solution-based on vapour-deposited cells provides significant flexibility in design over the current, all-vapour-deposited multijunction structures.
Darquenne, Chantal; Prisk, G Kim
2008-08-01
Lunar dust presents a potential toxic challenge to future explorers of the moon. The extent of the inflammatory response to lunar dust will in part depend on where in the lung particles deposit. To determine the effect of lowered gravity, we measured deposition of 0.5 and 1 microm diameter particles in six subjects on the ground (1G) and during short periods of lunar gravity (1/6G) aboard the NASA Microgravity Research Aircraft. Total deposition was measured during continuous aerosol breathing, and regional deposition by aerosol bolus inhalations at penetration volumes (V (p)) of 200, 500 and 1,200 ml. For both particle sizes (d (p)), deposition was gravity-dependent with the lowest deposition occurring at the lower G-level. Total deposition decreased by 25 and 32% from 1G to 1/6G for 0.5 and 1 microm diameter particles, respectively. In the bolus tests, deposition increased with increasing V (p). However, the penetration volume required to achieve a given deposition level was larger in 1/6G than in 1G. For example, for d (p) = 1 microm (0.5 microm), a level of 25% deposition was reached at V (p) = 260 ml (370 ml) in 1G but not until V (p) = 730 ml (835 ml) in 1/6G. Thus in 1G, deposition in more central airways reduces the transport of fine particles to the lung periphery. In the fractional gravity environment of a lunar outpost, while inhaled fine particle deposition may be lower than on earth, those particles that are deposited will do so in more peripheral regions of the lung.
Indium oxide/n-silicon heterojunction solar cells
Feng, Tom; Ghosh, Amal K.
1982-12-28
A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Compaan, A. D.; Deng, X.; Bohn, R. G.
2003-10-01
This is the final report covering about 42 months of this subcontract for research on high-efficiency CdTe-based thin-film solar cells and on high-efficiency a-Si-based thin-film solar cells. Phases I and II have been extensively covered in two Annual Reports. For this Final Report, highlights of the first two Phases will be provided and then detail will be given on the last year and a half of Phase III. The effort on CdTe-based materials is led by Prof. Compaan and emphasizes the use of sputter deposition of the semiconductor layers in the fabrication of CdS/CdTe cells. The effort on high-efficiency a-Simore » materials is led by Prof. Deng and emphasizes plasma-enhanced chemical vapor deposition for cell fabrication with major efforts on triple-junction devices.« less
NASA Astrophysics Data System (ADS)
Sarangi, C.; Qian, Y.; Painter, T. H.; Liu, Y.; Lin, G.; Wang, H.
2017-12-01
Radiative forcing induced by light-absorbing particles (LAP) deposited on snow is an important surface forcing. It has been debated that an aerosol-induced increase in atmospheric and surface warming over Tibetan Plateau (TP) prior to the South Asian summer monsoon can have a significant effect on the regional thermodynamics and South Asian monsoon circulation. However, knowledge about the radiative effects due to deposition of LAP in snow over TP is limited. In this study we have used a high-resolution WRF-Chem (coupled with online chemistry and snow-LAP-radiation model) simulations during 2013-2014 to estimate the spatio-temporal variation in LAP deposition on snow, specifically black carbon (BC) and dust particles, in Himalayas. Simulated distributions in meteorology, aerosol concentrations, snow albedo, snow grain size and snow depth are evaluated against satellite and in-situ measurements. The spatio-temporal change in snow albedo and snow grain size with variation in LAP deposition is investigated and the resulting shortwave LAP radiative forcing at surface is calculated. The LAP-radiative forcing due to aerosol deposition, both BC and dust, is higher in magnitude over Himalayan slopes (terrain height below 4 km) compared to that over TP (terrain height above 4 km). We found that the shortwave aerosol radiative forcing efficiency at surface due to increase in deposited mass of BC particles in snow layer ( 25 (W/m2)/ (mg/m2)) is manifold higher than the efficiency of dust particles ( 0.1 (W/m2)/ (mg/m2)) over TP. However, the radiative forcing of dust deposited in snow is similar in magnitude (maximum 20-30 W/m2) to that of BC deposited in snow over TP. This is mainly because the amount of dust deposited in snow over TP can be about 100 times greater than the amount of BC deposited in snow during polluted conditions. The impact of LAP on surface energy balance, snow melting and atmospheric thermodynamics is also examined.
Total dissolved atmospheric nitrogen deposition in the anoxic Cariaco basin
NASA Astrophysics Data System (ADS)
Rasse, R.; Pérez, T.; Giuliante, A.; Donoso, L.
2018-04-01
Atmospheric deposition of total dissolved nitrogen (TDN) is an important source of nitrogen for ocean primary productivity that has increased since the industrial revolution. Thus, understanding its role in the ocean nitrogen cycle will help assess recent changes in ocean biogeochemistry. In the anoxic Cariaco basin, the place of the CARIACO Ocean Time-Series Program, the influence of atmospherically-deposited TDN on marine biogeochemistry is unknown. In this study, we measured atmospheric TDN concentrations as dissolved organic (DON) and inorganic (DIN) nitrogen (TDN = DIN + DON) in atmospheric suspended particles and wet deposition samples at the northeast of the basin during periods of the wet (August-September 2008) and dry (March-April 2009) seasons. We evaluated the potential anthropogenic N influences by measuring wind velocity and direction, size-fractionated suspended particles, chemical traces and by performing back trajectories. We found DIN and DON concentration values that ranged between 0.11 and 0.58 μg-N m-3 and 0.11-0.56 μg-N m-3 in total suspended particles samples and between 0.08 and 0.54 mg-N l-1 and 0.02-1.3 mg-N l-1 in wet deposition samples, respectively. Continental air masses increased DON and DIN concentrations in atmospheric suspended particles during the wet season. We estimate an annual TDN atmospheric deposition (wet + particles) of 3.6 × 103 ton-N year-1 and concluded that: 1) Atmospheric supply of TDN plays a key role in the C and N budget of the basin because replaces a fraction of the C (20% by induced primary production) and N (40%) removed by sediment burial, 2) present anthropogenic N could contribute to 30% of TDN atmospheric deposition in the basin, and 3) reduced DON (gas + particles) should be a significant component of bulk N deposition.
Zhang, Yaohong; Wu, Guohua; Ding, Chao; Liu, Feng; Yao, Yingfang; Zhou, Yong; Wu, Congping; Nakazawa, Naoki; Huang, Qingxun; Toyoda, Taro; Wang, Ruixiang; Hayase, Shuzi; Zou, Zhigang; Shen, Qing
2018-06-18
Lead selenide (PbSe) colloidal quantum dots (CQDs) are considered to be a strong candidate for high-efficiency colloidal quantum dot solar cells (CQDSCs) due to its efficient multiple exciton generation. However, currently, even the best PbSe CQDSCs can only display open-circuit voltage ( V oc ) about 0.530 V. Here, we introduce a solution-phase ligand exchange method to prepare PbI 2 -capped PbSe (PbSe-PbI 2 ) CQD inks, and for the first time, the absorber layer of PbSe CQDSCs was deposited in one step by using this PbSe-PbI 2 CQD inks. One-step-deposited PbSe CQDs absorber layer exhibits fast charge transfer rate, reduced energy funneling, and low trap assisted recombination. The champion large-area (active area is 0.35 cm 2 ) PbSe CQDSCs fabricated with one-step PbSe CQDs achieve a power conversion efficiency (PCE) of 6.0% and a V oc of 0.616 V, which is the highest V oc among PbSe CQDSCs reported to date.
NASA Astrophysics Data System (ADS)
Guo, Yingnan; Ong, Thiam Min Brian; Levchenko, I.; Xu, Shuyan
2018-01-01
A comparative study on the application of two quite different plasma-based techniques to the preparation of amorphous/crystalline silicon (a-Si:H/c-Si) interfaces for solar cells is presented. The interfaces were fabricated and processed by hydrogen plasma treatment using the conventional plasma-enhanced chemical vacuum deposition (PECVD) and inductively coupled plasma chemical vapour deposition (ICP-CVD) methods The influence of processing temperature, radio-frequency power, treatment duration and other parameters on interface properties and degree of surface passivation were studied. It was found that passivation could be improved by post-deposition treatment using both ICP-CVD and PECVD, but PECVD treatment is more efficient for the improvement on passivation quality, whereas the minority carrier lifetime increased from 1.65 × 10-4 to 2.25 × 10-4 and 3.35 × 10-4 s after the hydrogen plasma treatment by ICP-CVD and PECVD, respectively. In addition to the improvement of carrier lifetimes at low temperatures, low RF powers and short processing times, both techniques are efficient in band gap adjustment at sophisticated interfaces.
TEST METHODS TO CHARACTERIZE PARTICULATE MATTER EMISSIONS AND DEPOSITION RATES IN A RESEARCH HOUSE
The paper discusses test methods to characterize particulate matter (PM) emissions and deposition rates in a research house. In a room in the research house, specially configured for PM source testing, a high-efficiency particulate air (HEPA)-filtered air supply system, used for...
An exposure chamber, the "clambox", was developed to measure ventilation rate, sediment processing rate, and efficiency of pollutant uptake byMacoma nasuta Conrad, a surface surface deposit-feeding clams. Clams, collected from Yaquina, Bay, Oregon, USA, were cemented into a hole ...
Thick tellurium target preparation by vacuum deposition
NASA Astrophysics Data System (ADS)
Stolarz, Anna
1999-12-01
Tellurium targets of thickness up to 6.5 mg/cm 2 on carbon backings were prepared by vacuum deposition. The influence of the crucible dimension, treatment of the backing foil by glow discharge and substrate cooling on the Te sticking efficiency was studied in order to achieve the best yield.
Martinez, R C; Roshchenko, A; Minev, P; Finlay, W H
2013-02-01
Aerosolized chemotherapy has been recognized as a potential treatment for lung cancer. The challenge of providing sufficient therapeutic effects without reaching dose-limiting toxicity levels hinders the development of aerosolized chemotherapy. This could be mitigated by increasing drug-delivery efficiency with a noninvasive drug-targeting delivery method. The purpose of this study is to use direct numerical simulations to study the resulting local enhancement of deposition due to magnetic field alignment of high aspect ratio particles. High aspect ratio particles were approximated by a rigid ellipsoid with a minor diameter of 0.5 μm and fluid particle density ratio of 1,000. Particle trajectories were calculated by solving the coupled fluid particle equations using an in-house micro-macro grid finite element algorithm based on a previously developed fictitious domain approach. Particle trajectories were simulated in a morphologically realistic geometry modeling a symmetrical terminal bronchiole bifurcation. Flow conditions were steady inspiratory air flow due to typical breathing at 18 L/min. Deposition efficiency was estimated for two different cases: [1] particles aligned with the streamlines and [2] particles with fixed angular orientation simulating the magnetic field alignment of our previous in vitro study. The local enhancement factor defined as the ratio between deposition efficiency of Case [1] and Case [2] was found to be 1.43 and 3.46 for particles with an aspect ratio of 6 and 20, respectively. Results indicate that externally forcing local alignment of high aspect ratio particles can increase local deposition considerably.
Viets, J.G.; Clark, J.R.; Campbell, W.L.
1984-01-01
A solution of dilute hydrochloric acid, ascorbic acid, and potassium iodide has been found to dissolve weakly bound metals in soils, stream sediments, and oxidized rocks. Silver, Bi, Cd, Cu, Mo, Pb, Sb, and Zn are selectively extracted from this solution by a mixture of Aliquat 336 (tricaprylyl methyl ammonium chloride) and MIBK (methyl isobutyl ketone). Because potentially interfering major and minor elements do not extract, the organic separation allows interference-free determinations of Ag and Cd to the 0.05 ppm level, Mo, Cu, and Zn to 0.5 ppm, and Bi, Pb, and Sb to 1 ppm in the sample using flame atomic absorption spectroscopy. The analytical absorbance values of the organic solution used in the proposed method are generally enhanced more than threefold as compared to aqueous solutions, due to more efficient atomization and burning characteristics. The leaching and extraction procedures are extremely rapid; as many as 100 samples may be analyzed per day, yielding 800 determinations, and the technique is adaptable to field use. The proposed method was compared to total digestion methods for geochemical reference samples as well as soils and stream sediments from mineralized and unmineralized areas. The partial leach showed better anomaly contrasts than did total digestions. Because the proposed method is very rapid and is sensitive to pathfinder elements for several types of ore deposits, it should be useful for reconnaissance surveys for concealed deposits. ?? 1984.
Experimental studies and simulations of hydrogen pellet ablation in the stellarator TJ-II
NASA Astrophysics Data System (ADS)
Panadero, N.; McCarthy, K. J.; Koechl, F.; Baldzuhn, J.; Velasco, J. L.; Combs, S. K.; de la Cal, E.; García, R.; Hernández Sánchez, J.; Silvagni, D.; Turkin, Y.; TJ-II Team; W7-X Team
2018-02-01
Plasma core fuelling is a key issue for the development of steady-state scenarios in large magnetically-confined fusion devices, in particular for helical-type machines. At present, cryogenic pellet injection is the most promising technique for efficient fuelling. Here, pellet ablation and fuelling efficiency experiments, using a compact pellet injector, are carried out in electron cyclotron resonance and neutral beam injection heated plasmas of the stellarator TJ-II. Ablation profiles are reconstructed from light emissions collected by silicon photodiodes and a fast-frame camera system, under the assumptions that such emissions are loosely related to the ablation rate and that pellet radial acceleration is negligible. In addition, pellet particle deposition and fuelling efficiency are determined using density profiles provided by a Thomson scattering system. Furthermore, experimental results are compared with ablation and deposition profiles provided by the HPI2 pellet code, which is adapted here for the stellarators Wendelstein 7-X (W7-X) and TJ-II. Finally, the HPI2 code is used to simulate ablation and deposition profiles for pellets of different sizes and velocities injected into relevant W7-X plasma scenarios, while estimating the plasmoid drift and the fuelling efficiency of injections made from two W7-X ports.
NASA Astrophysics Data System (ADS)
Perez, Luis
Dye-sensitized solar cells (DSSC) have the potential to replace traditional and cost-inefficient crystalline silicon or ruthenium solar cells. This can only be accomplished by optimizing DSSC's energy efficiency. One of the major components in a dye-sensitized solar cell is the porous layer of titanium dioxide. This layer is coated with a molecular dye that absorbs sunlight. The research conducted for this paper focuses on the different methods used to dye the porous TiO2 layer with ferritin-encapsulated quantum dots. Multiple anodes were dyed using a method known as SILAR which involves deposition through alternate immersion in two different solutions. The efficiencies of DSSCs with ferritin-encapsulated lead sulfide dye deposited using SILAR were subsequently compared against the efficiencies produced by cells using the traditional immersion method. It was concluded that both methods resulted in similar efficiencies (? .074%) however, the SILAR method dyed the TiO2 coating significantly faster than the immersion method. On a related note, our experiments concluded that conducting 2 SILAR cycles yields the highest possible efficiency for this particular binding method. National Science Foundation.
NASA Astrophysics Data System (ADS)
Reddy, Araveeti Eswar; Rao, S. Srinivasa; Gopi, Chandu V. V. M.; Anitha, Tarugu; Thulasi-Varma, Chebrolu Venkata; Punnoose, Dinah; Kim, Hee-Je
2017-11-01
Cobalt sulfide (CoS) agglomerated nanoparticle thin films obtained by a facile chemical bath method at different deposition times. The CoS counter electrode (CE) deposited at 3 h deposition time (CC-3h) based quantum dot sensitized solar cells (QDSSCs) achieves higher power conversion efficiency (η) of 3.67% than those of CC-2h (1.83%), CC-4h (2.52%), and Pt (1.48%) CEs, under one sun illumination (100 mW cm-2, AM 1.5 G). The electrochemical analysis revealed that CC-3h CE shows a smaller charge transfer resistance (9.22 Ω) at the CE/electrolyte interface than the CC-2h (23.34 Ω), CC-4h (19.73 Ω) and Pt (139.92 Ω) CEs, respectively.
Atmospheric Nitrogen Deposition at Two Sites in an Arid Environment of Central Asia.
Li, Kaihui; Liu, Xuejun; Song, Wei; Chang, Yunhua; Hu, Yukun; Tian, Changyan
2013-01-01
Arid areas play a significant role in the global nitrogen cycle. Dry and wet deposition of inorganic nitrogen (N) species were monitored at one urban (SDS) and one suburban (TFS) site at Urumqi in a semi-arid region of central Asia. Atmospheric concentrations of NH3, NO2, HNO3, particulate ammonium and nitrate (pNH4 (+) and pNO3 (-)) concentrations and NH4-N and NO3-N concentrations in precipitation showed large monthly variations and averaged 7.1, 26.6, 2.4, 6.6, 2.7 µg N m(-3) and 1.3, 1.0 mg N L(-1) at both SDS and TFS. Nitrogen dry deposition fluxes were 40.7 and 36.0 kg N ha(-1) yr(-1) while wet deposition of N fluxes were 6.0 and 8.8 kg N ha(-1) yr(-1) at SDS and TFS, respectively. Total N deposition averaged 45.8 kg N ha(-1) yr(-1)at both sites. Our results indicate that N dry deposition has been a major part of total N deposition (83.8% on average) in an arid region of central Asia. Such high N deposition implies heavy environmental pollution and an important nutrient resource in arid regions.
NASA Astrophysics Data System (ADS)
Shigeaki, Matsumoto
2003-12-01
The shape of a dew droplet deposited on the mirror surface of a copper plate was measured accurately using an interference microscope that employed a phase-shift technique. The microscope was constructed by adding a piezoelectric transducer to an interference microscope. A simple method that uses a conventional speaker horn and an optical fibre cable was used to depress any speckle noise. The shape of a dew droplet deposited at dew point on the plate surface with average roughness of 0.1 µm was measured with an accuracy of ± 3 nm. The mass of a tiny dew droplet could be determined from the volume of its shape and was of the order of 10-9 g. The total mass of a dew droplet deposited per unit area and the deposition velocity under a gentle wind were also obtained in a similar way. The total mass was of the order of 10-5 g cm-2 at the beginning of deposition and the deposition velocity ranged from 1 × 10-5 to 6 × 10-5 g cm-2 min-1 at room temperature.
Vapor phase growth technique of III-V compounds utilizing a preheating step
NASA Technical Reports Server (NTRS)
Olsen, Gregory Hammond (Inventor); Zamerowski, Thomas Joseph (Inventor); Buiocchi, Charles Joseph (Inventor)
1978-01-01
In the vapor phase epitaxy fabrication of semiconductor devices and in particular semiconductor lasers, the deposition body on which a particular layer of the laser is to be grown is preheated to a temperature about 40.degree. to 60.degree. C. lower than the temperature at which deposition occurs. It has been discovered that by preheating at this lower temperature there is reduced thermal decomposition at the deposition surface, especially for semiconductor materials such as indium gallium phosphide and gallium arsenide phosphide. A reduction in thermal decomposition reduces imperfections in the deposition body in the vicinity of the deposition surface, thereby providing a device with higher efficiency and longer lifetime.
Deposition of Mercury in Forests along a Montane Elevation Gradient.
Blackwell, Bradley D; Driscoll, Charles T
2015-05-05
Atmospheric mercury (Hg) deposition varies along elevation gradients and is influenced by both orographic and biological factors. We quantified total Hg deposition over a 2 year period at 24 forest sites at Whiteface Mountain, NY, USA, that ranged from 450 to 1450 m above sea level and covered three distinct forest types: deciduous/hardwood forest (14.1 μg/m2-yr), spruce/fir forest (33.8 μg/m2-yr), and stunted growth alpine/fir forest (44.0 μg/m2-yr). Atmospheric Hg deposition increased with elevation, with the dominant deposition pathways shifting from litterfall in low-elevation hardwoods to throughfall in midelevation spruce/fir to cloudwater in high-elevation alpine forest. Soil Hg concentrations (ranging from 69 to 416 ng/g for the Oi/Oe and 72 to 598 ng/g for the Oa horizons) were correlated with total Hg deposition, but the weakness of the correlations suggests that additional factors such as climate and tree species also contribute to soil Hg accumulation. Meteorological conditions influenced Hg deposition pathways, as cloudwater Hg diminished in 2010 (dry conditions) compared to 2009 (wet conditions). However, the dry conditions in 2010 led to increased Hg dry deposition and subsequent significant increases in throughfall Hg fluxes compared to 2009. These findings suggest that elevation, forest characteristics, and meteorological conditions are all important drivers of atmospheric Hg deposition to montane forests.
Deuterium retention and release behaviours of tungsten and deuterium co-deposited layers
NASA Astrophysics Data System (ADS)
Qiao, L.; Zhang, H. W.; Xu, J.; Chai, L. Q.; Hu, M.; Wang, P.
2018-04-01
Tungsten (W) layer deposited in argon and deuterium atmosphere by magnetron sputtering was used as a model system to study the deuterium (D) retention and release behavior in co-deposited W layer. After deposition several selected samples were exposed in deuterium plasma at 370 K with a flux of 4.0 × 1021 D/(m2 s) up to a fluence of 1.1 × 1025 D/m2. Structures of co-deposited W layers are investigated by field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD), and the corresponding D retention and release behaviors are studied as functions of deposition and exposure parameters using thermal desorption spectroscopy (TDS). Two main D release peaks were detected from TDS spectra located near 600 and 800 K in these W and D co-deposited layers, and total deuterium retention increased linearly as a function of W layer's thickness. After deuterium plasma exposure, the total D retention amount in W layer increases significantly and D release peak shifts to lower temperature. Clearly, despite the high density of defects expected in co-deposited W layers, the initial deuterium retention before exposure to the deuterium plasma is low even for the samples with a W&D layer. But due to the high densities of defects, during the deuterium plasma exposure the deuterium retention increases faster for co-deposited layer than for the bulk W sample.
Fine-grained sediment storage conditioned by Large Woody Debris in a gravel-bed river
NASA Astrophysics Data System (ADS)
Skalak, K. J.; Narinesingh, P.; Pizzuto, J. E.
2006-05-01
The purposes of this study are 1) to determine the quantity of mud and sand stored in the channel margins and near-bank regions of South River, a steep gravel-bedded stream in western Virginia, and 2) to understand the geomorphic and hydrologic processes that control the erosion and deposition of these fine-grained deposits. The volume of storage in these deposits is equivalent to about 5-10 percent of the river's annual suspended sediment load. Sediment storage in the near-bank regions is a result of reduced velocity caused by the bank obstructions. Storage occurs in four different geomorphic settings: 1) long pooled sections caused by bedrock or old mill dams, 2) regions downstream of riffles in channel margins with LWD accumulations, 3) bank obstructions usually caused by trees, 4) side channel backwaters where flow separates around islands. Most storage occurs in regions downstream of riffles (approximately 44 percent of the total). Long pooled sections account for roughly 37 percent of the total storage, bank obstructions account for 13 percent, and backwaters account for roughly 6 percent. In approximately 17 km of river, there are 38 separate fine-grained deposits (total volume more than 1600 m3). On average, these deposits are about 35 cm deep, 20 m long, and 4 m wide. They average 30 percent mud, 68 percent sand, and 2 percent gravel. These deposits have been cored and analyzed for Hg, grain size, loss-on-ignition, and bomb radiocarbon. High Hg concentrations in fish tissue are an ongoing problem along South River, further motivating detailed study of these deposits.
Photobiomolecular deposition of metallic particles and films
Hu, Zhong-Cheng
2005-02-08
The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.
Method for forming indium oxide/n-silicon heterojunction solar cells
Feng, Tom; Ghosh, Amal K.
1984-03-13
A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.
NASA Astrophysics Data System (ADS)
Altamura, Giovanni; Wang, Mingqing; Choy, Kwang-Leong
2016-02-01
Electrostatic Spray-Assisted Vapor Deposition (ESAVD) is a non-vacuum and cost-effective method to deposit metal oxide, various sulphide and chalcogenide at large scale. In this work, ESAVD was used to deposit Cu2ZnSn(S1-xSex)4 (CZTSSe) absorber. Different alkali metals like Na, Li and Rb were incorporated in CZTSSe compounds to further improve the photovoltaic performances of related devices. In addition, to the best of our knowledge, no experimental study has been carried out to test the effect of Li and Rb incorporation in CZTSSe solar cells. X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and glow discharge spectroscopy have been used to characterize the phase purity, morphology and composition of as-deposited CZTSSe thin films. Photovoltaic properties of the resulting devices were determined by completing the solar cells as follows: Mo/CZTSSe/CdS/i-ZnO/Al:ZnO/Ni/Al. The results showed that Li, Na and Rb incorporation can increase power conversion efficiency of CZTS devices up to 5.5%. The introduction of a thiourea treatment, has improved the quality of the absorber|buffer interface, pushed the device efficiency up to 6.3% which is at the moment the best reported result for ESAVD deposited CZTSSe solar cells.
The boron-tailing myth in hydrogenated amorphous silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuckelberger, M., E-mail: michael.stuckelberger@alumni.ethz.ch; Bugnon, G.; Despeisse, M.
The boron-tailing effect in hydrogenated amorphous silicon (a-Si:H) solar cells describes the reduced charge collection specifically in the blue part of the spectrum for absorber layers deposited above a critical temperature. This effect limits the device performance of state-of-the art solar cells: For enhanced current density (reduced bandgap), the deposition temperature should be as high as possible, but boron tailing gets detrimental above 200 °C. To investigate this limitation and to show potential paths to overcome it, we deposited high-efficiency a-Si:H solar cells, varying the deposition temperatures of the p-type and the intrinsic absorber (i) layers between 150 and 250 °C. Usingmore » secondary ion mass spectroscopy, we study dedicated stacks of i-p-i layers deposited at different temperatures. This allows us to track boron diffusion at the p-i and i-p interfaces as they occur in the p-i-n and n-i-p configurations of a-Si:H solar cells for different deposition conditions. Finally, we prove step-by-step that the common explanation for boron tailing—boron diffusion from the p layer into the i layer leading to enhanced recombination—is not generally true and propose an alternative explanation for the experimentally observed drop in the external quantum efficiency at short wavelengths.« less
Spatial Modeling of the Influence of Mining-Geometric Indices on the Efficiency of Mining
NASA Astrophysics Data System (ADS)
Sobolevskyi, Ruslan; Korobiichuk, Igor; Nowicki, Michał; Szewczyk, Roman; Shlapak, Vladimir
2017-12-01
The regularities of the changes of horizontal and sub-horizontal systems of cracks at different locations of Holovyne labradorite deposits are studied. The trend for stress to increase has been established in the quarry LLS "Optima" for Holovyne labradorite deposits in Volodar-Volynsk district, Zhytomyr region at the deepening of excavation. The duration of the working cycle of borehole drilling in a solid and cracked massif is calculated using a new method. The calendar planning method of mining is developed taking into account the dependence of drilling efficiency on horizontal and sub-horizontal systems of cracks.
Aidoud, Roumaissa; Kahoul, Abdelkrim; Naamoune, Farid
2017-01-01
The antiscale properties of the aqueous extract of olive (Olea europaea L.) leaves as a natural scale inhibitor for stainless steel surface in Hammam raw water were investigated using chronoamperometry (CA) and electrochemical impedance spectroscopy techniques in conjunction with a microscopic examination. The X-ray diffraction analysis reveals that the scale deposited over the pipe walls consists of pure CaCO 3 calcite. The CA, in accordance with electrochemical impedance spectra and scanning electron microscopy, shows that the inhibition efficiency increases with increasing extract concentration. This efficiency is considerably reduced as the temperature is increased.
NASA Technical Reports Server (NTRS)
Lewis, C. R.; Ford, C. W.; Werthen, J. G.
1984-01-01
Magnesium has been substituted for zinc in GaAs and Ga(0.75)In(0.25)As solar cells grown by metalorganic chemical vapor deposition (MOCVD). Bis(cyclopentadienyl)magnesium (Cp2Mg) is used as the MOCVD transport agent for Mg. Full retention of excellent material quality and efficient cell performance results. The substitution of Mg for Zn would enhance the abruptness and reproducibility of doping profiles, and facilitate high temperature processing and operation, due to the much lower diffusion coefficient of Mg, relative to Zn, in these materials.
Experimental optimization during SERS application
NASA Astrophysics Data System (ADS)
Laha, Ranjit; Das, Gour Mohan; Ranjan, Pranay; Dantham, Venkata Ramanaiah
2018-05-01
The well known surface enhanced Raman scattering (SERS) needs a lot of experimental optimization for its proper implementation. In this report, we demonstrate the efficient SERS using gold nanoparticles (AuNPs) on quartz plate. The AuNPs were prepared by depositing direct current sputtered Au thin film followed by suitable annealing. The parameters varied for getting best SERS effect were 1) Numerical Aperture of Raman objective lens and 2) Sputtering duration of Au film. It was found that AuNPs formed from the Au layer deposited for 40s and Raman objective lens of magnification 50X are the best combination for obtaining efficient SERS effect.
High efficiency epitaxial GaAs/GaAs and GaAs/Ge solar cell technology using OM/CVD
NASA Technical Reports Server (NTRS)
Wang, K. L.; Yeh, Y. C. M.; Stirn, R. J.; Swerdling, S.
1980-01-01
A technology for fabricating high efficiency, thin film GaAs solar cells on substrates appropriate for space and/or terrestrial applications was developed. The approach adopted utilizes organometallic chemical vapor deposition (OM-CVD) to form a GaAs layer epitaxially on a suitably prepared Ge epi-interlayer deposited on a substrate, especially a light weight silicon substrate which can lead to a 300 watt per kilogram array technology for space. The proposed cell structure is described. The GaAs epilayer growth on single crystal GaAs and Ge wafer substrates were investigated.
NASA Astrophysics Data System (ADS)
Bussi, G.; Rodríguez, X.; Francés, F.; Benito, G.; Sánchez-Moya, Y.; Sopeña, A.
2012-04-01
When using hydrological and sedimentological models, lack of historical records is often one of the main problems to face, since observed data are essential for model validation. If gauged data are poor or absent, a source of additional proxy data may be the slack-water deposits accumulated in check dams. The aim of this work is to present the result of the reconstruction of the recent hydrological and sediment yield regime of a semi-arid Mediterranean catchment (Rambla del Poyo, Spain, 184 square km) by coupling palaeoflood techniques with a distributed hydrological and sediment cycle model, using as proxy data the sandy slack-water deposits accumulated upstream a small check dam (reservoir volume 2,500 square m) located in the headwater basin (drainage area 13 square km). The solid volume trapped into the reservoir has been estimated using differential GPS data and an interpolation technique. Afterwards, the total solid volume has been disaggregated into various layers (flood units), by means of a stratigraphical description of a depositional sequence in a 3.5 m trench made across the reservoir sediment deposit, taking care of identifying all flood units; the separation between flood units is indicated by a break in deposition. The sedimentary sequence shows evidence of 15 flood events that occurred after the dam construction (early '90). Not all events until the present are included; for the last ones, the stream velocity and energy conditions for generating slack-water deposits were not fulfilled due to the reservoir filling. The volume of each flood unit has been estimated making the hypothesis that layers have a simple pyramidal shape (or wedge); every volume represents an estimation of the sediments trapped into the reservoir corresponding to each flood event. The obtained results have been compared with the results of modeling a 20 year time series (1990 - 2009) with the distributed conceptual hydrological and sediment yield model TETIS-SED, in order to assign a date to every flood unit. The TETIS-SED model provides the sediment yield series divided into textural fractions (sand, silt and clay). In order to determine the amount of sediments trapped into the ponds, trap efficiency of each check dam is computed by using the STEP model (Sediment Trap Efficiency model for small Ponds, Verstraeten and Poesen, 2001). Sediment dry bulk density is calculated according to Lane and Koelzer (1943) formulae. In order to improve the reliability of the flood reconstruction, distributed historical fire data has also been used for dating carbon layers found in the depositional sequence. Finally, a date has been assigned to every flood unit, corresponding to an extreme rainfall event; the result is a sediment volume series from 1990 to 2009, which may be very helpful for validating both hydrological and sediment yield models and can improve our understanding on erosion and sediment yield in this catchment.
Kim, Min-cheol; Kim, Byeong Jo; Yoon, Jungjin; Lee, Jin-wook; Suh, Dongchul; Park, Nam-gyu; Choi, Mansoo; Jung, Hyun Suk
2015-12-28
The spin-coating method, which is widely used for thin film device fabrication, is incapable of large-area deposition or being performed continuously. In perovskite hybrid solar cells using CH(3)NH(3)PbI(3) (MAPbI(3)), large-area deposition is essential for their potential use in mass production. Prior to replacing all the spin-coating process for fabrication of perovskite solar cells, herein, a mesoporous TiO(2) electron-collection layer is fabricated by using the electro-spray deposition (ESD) system. Moreover, impedance spectroscopy and transient photocurrent and photovoltage measurements reveal that the electro-sprayed mesoscopic TiO(2) film facilitates charge collection from the perovskite. The series resistance of the perovskite solar cell is also reduced owing to the highly porous nature of, and the low density of point defects in, the film. An optimized power conversion efficiency of 15.11% is achieved under an illumination of 1 sun; this efficiency is higher than that (13.67%) of the perovskite solar cell with the conventional spin-coated TiO(2) films. Furthermore, the large-area coating capability of the ESD process is verified through the coating of uniform 10 × 10 cm(2) TiO(2) films. This study clearly shows that ESD constitutes therefore a viable alternative for the fabrication of high-throughput, large-area perovskite solar cells.
Pavlova, Viola; Nabe-Nielsen, Jacob; Dietz, Rune; Svenning, Jens-Christian; Vorkamp, Katrin; Rigét, Frank Farsø; Sonne, Christian; Letcher, Robert J; Grimm, Volker
2014-01-01
Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus). Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB) congener, 2,2',4,4',55-hexaCB (CB153) in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR) and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears.
Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications
NASA Astrophysics Data System (ADS)
Onozuka, Katsuhiro; Ding, Bin; Tsuge, Yosuke; Naka, Takayuki; Yamazaki, Michiyo; Sugi, Shinichiro; Ohno, Shingo; Yoshikawa, Masato; Shiratori, Seimei
2006-02-01
We have recently fabricated dye-sensitized solar cells (DSSCs) comprising nanofibrous TiO2 membranes as electrode materials. A thin TiO2 film was pre-deposited on fluorine doped tin oxide (FTO) coated conducting glass substrate by immersion in TiF4 aqueous solution to reduce the electron back-transfer from FTO to the electrolyte. The composite polyvinyl acetate (PVac)/titania nanofibrous membranes can be deposited on the pre-deposited thin TiO2 film coated FTO by electrospinning of a mixture of PVac and titanium isopropoxide in N,N-dimethylformamide (DMF). The nanofibrous TiO2 membranes were obtained by calcining the electrospun composite nanofibres of PVac/titania as the precursor. Spectral sensitization of the nanofibrous TiO2 membranes was carried out with a ruthenium (II) complex, cis-dithiocyanate-N,N'-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) dihydrate. The results indicated that the photocurrent and conversion efficiency of electrodes can be increased with the addition of the pre-deposited TiO2 film and the adhesion treatment using DMF. Additionally, the dye loading, photocurrent, and efficiency of the electrodes were gradually increased by increasing the average thickness of the nanofibrous TiO2 membranes. The efficiency of the fibrous TiO2 photoelectrode with the average membrane thickness of 3.9 µm has a maximum value of 4.14%.
Pavlova, Viola; Nabe-Nielsen, Jacob; Dietz, Rune; Svenning, Jens-Christian; Vorkamp, Katrin; Rigét, Frank Farsø; Sonne, Christian; Letcher, Robert J.; Grimm, Volker
2014-01-01
Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus). Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB) congener, 2,2′,4,4′,55-hexaCB (CB153) in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR) and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears. PMID:25101837
The characterization of haboobs and the deposition of dust in Tempe, AZ from 2005 to 2014
NASA Astrophysics Data System (ADS)
Eagar, Jershon Dale; Herckes, Pierre; Hartnett, Hilairy Ellen
2017-02-01
Dust storms known as 'haboobs' occur in Tempe, AZ during the North American monsoon season. This work presents a catalog of haboob occurrence over the time period 2005-2014. A classification method based on meteorological and air quality measurements is described. The major factors that distinguish haboobs events from other dust events and from background conditions are event minimum visibility, maximum wind or gust speed, and maximum PM10 (particulate matter with aerodynamic diameters of 10 μm or less) concentration. We identified from 3 to 20 haboob events per year over the period from 2005 to 2014. The calculated annual TSP (total suspended particulate) dry deposition ranged from a low of 259 kg ha-1 in 2010 to a high of 2950 kg ha-1 in 2011 with a mean of 950 kg ha-1 yr-1. The deposition of large particles (PM>10) is greater than the deposition of PM10. The TSP dry deposition during haboobs is estimated to contribute 74% of the total particulate mass deposited in Tempe.
Dry deposition of gaseous oxidized mercury in Western Maryland.
Castro, Mark S; Moore, Chris; Sherwell, John; Brooks, Steve B
2012-02-15
The purpose of this study was to directly measure the dry deposition of gaseous oxidized mercury (GOM) in western Maryland. Annual estimates were made using passive ion-exchange surrogate surfaces and a resistance model. Surrogate surfaces were deployed for seventeen weekly sampling periods between September 2009 and October 2010. Dry deposition rates from surrogate surfaces ranged from 80 to 1512 pgm(-2)h(-1). GOM dry deposition rates were strongly correlated (r(2)=0.75) with the weekly average atmospheric GOM concentrations, which ranged from 2.3 to 34.1 pgm(-3). Dry deposition of GOM could be predicted from the ambient air concentrations of GOM using this equation: GOM dry deposition (pgm(-2)h(-1))=43.2 × GOM concentration-80.3. Dry deposition velocities computed using GOM concentrations and surrogate surface GOM dry deposition rates, ranged from 0.2 to 1.7 cms(-1). Modeled dry deposition rates were highly correlated (r(2)=0.80) with surrogate surface dry deposition rates. Using the overall weekly average surrogate surface dry deposition rate (369 ± 340 pg m(-2)h(-1)), we estimated an annual GOM dry deposition rate of 3.2 μg m(-2)year(-1). Using the resistance model, we estimated an annual GOM dry deposition rate of 3.5 μg m(-2)year(-1). Our annual GOM dry deposition rates were similar to the dry deposition (3.3 μg m(-2)h(-1)) of gaseous elemental mercury (GEM) at our site. In addition, annual GOM dry deposition was approximately 1/2 of the average annual wet deposition of total mercury (7.7 ± 1.9 μg m(-2)year(-1)) at our site. Total annual mercury deposition from dry deposition of GOM and GEM and wet deposition was approximately 14.4 μg m(-2)year(-1), which was similar to the average annual litterfall deposition (15 ± 2.1 μg m(-2)year(-1)) of mercury, which was also measured at our site. Copyright © 2012 Elsevier B.V. All rights reserved.
Jung, Jae Hee; Hwang, Gi Byoung; Lee, Jung Eun; Bae, Gwi Nam
2011-08-16
Carbon nanotubes (CNTs) have been widely used in a variety of applications because of their unique structure and excellent mechanical and electrical properties. Additionally, silver (Ag) nanoparticles exhibit broad-spectrum biocidal activity toward many different bacteria, fungi, and viruses. In this study, we prepared Ag-coated CNT hybrid nanoparticles (Ag/CNTs) using aerosol nebulization and thermal evaporation/condensation processes and tested their usefulness for antimicrobial air filtration. Droplets were generated from a CNT suspension using a six-jet collison nebulizer, passed through a diffusion dryer to remove moisture, and entered a thermal tube furnace where silver nanoparticles were generated by thermal evaporation/condensation at ∼980 °C in a nitrogen atmosphere. The CNT and Ag nanoparticle aerosols mixed together and attached to each other, forming Ag/CNTs. For physicochemical characterization, the Ag/CNTs were introduced into a scanning mobility particle sizer (SMPS) for size distribution measurements and were sampled by the nanoparticle sampler for morphological and elemental analyses. For antimicrobial air filtration applications, the airborne Ag/CNT particles generated were deposited continuously onto an air filter medium. Physical characteristics (fiber morphology, pressure drop, and filtration efficiency) and biological characteristics (antimicrobial tests against Staphylococcus epidermidis and Escherichia coli bioaerosols) were evaluated. Real-time SMPS and transmission electron microscopy (TEM) data showed that Ag nanoparticles that were <20 nm in diameter were homogeneously dispersed and adhered strongly to the CNT surfaces. Because of the attachment of Ag nanoparticles onto the CNT surfaces, the total particle surface area concentration measured by a nanoparticle surface area monitor (NSAM) was lower than the summation of each Ag nanoparticle and CNT generated. When Ag/CNTs were deposited on the surface of an air filter medium, the antimicrobial activity against test bacterial bioaerosols was enhanced, compared with the deposition of CNTs or Ag nanoparticles alone, whereas the filter pressure drop and bioaerosol filtration efficiency were similar to those of CNT deposition only. At a residence time of 2 h, the relative microbial viabilities of gram-positive S. epidermidis were ∼32, 13, 5, and 0.9% on the control, CNT-, Ag nanoparticle-, and Ag/CNT-deposited filters, respectively, and those of gram-negative E. coli were 13, 2.1, 0.4, and 0.1% on the control, CNTs, Ag nanoparticles, and Ag/CNTs, respectively. These Ag/CNT hybrid nanoparticles may be useful for applications in biomedical devices and antibacterial control systems.
A 270-year Ice Core Record of Atmospheric Mercury Deposition to Western North America
NASA Astrophysics Data System (ADS)
Schuster, P. F.; Krabbenhoft, D. P.; Naftz, D. L.; Cecil, L. D.; Olson, M. L.; DeWild, J. F.; Susong, D. D.; Green, J. R.
2001-05-01
The Upper Fremont Glacier (UFG), a mid-latitude glacier in the Wind River Range, Wyoming, U.S.A., contains a record of atmospheric mercury deposition. Although some polar ice-core studies have provided a limited record of past mercury deposition, polar cores are, at best, proxy indicators of historic mercury deposition in the mid-latitudes. Two ice cores removed from the UFG in 1991 and 1998 (totaling 160 meters in length) provided a chronology and paleoenvironmental framework. This aids in the interpretation of the mercury deposition record. For the first time reported from a mid-latitude ice core, using low-level procedures, 97 ice core samples were analyzed to reconstruct a 270-year atmospheric mercury deposition record based in the western United States. Trends in mercury concentration from the UFG record major releases to the atmosphere of both natural and anthropogenic mercury from regional and global sources. We find that mercury concentrations are significantly, but for relatively short time intervals, elevated during periods corresponding to volcanic eruptions with global impact. This indicates that these natural events "punctuate" the record. Anthropogenic activities such as industrialization (global scale), gold mining and war-time manufacturing (regional scale), indicate that chronic levels of elevated mercury emissions have a greater influence on the historical atmospheric deposition record from the UFG. In terms of total mercury deposition recorded by the UFG during approximately the past 270 years: anthropogenic inputs contributed 52 percent; volcanic events contributed 6 percent; and pre-industrialization or background accounted for 42 percent of the total input. More significantly, during the last 100 years, anthropogenic sources contributed 70 percent of the total mercury input. A declining trend in mercury concentrations is obvious during the past 20 years. Declining mercury concentrations in the upper section of the ice core are corroborated by recent declining trends observed in sediment cores. This is also verified by similar concentrations in UFG snow samples collected in 1999. This decline may be in response to the United States Clean Air Act of 1970.
Variable temperature semiconductor film deposition
Li, X.; Sheldon, P.
1998-01-27
A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.
Variable temperature semiconductor film deposition
Li, Xiaonan; Sheldon, Peter
1998-01-01
A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.
Highly efficient fully transparent inverted OLEDs
NASA Astrophysics Data System (ADS)
Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Kröger, M.; Görrn, P.; Johannes, H.-H.; Riedl, T.; Lang, E.; Becker, D.; Dobbertin, T.; Kowalsky, W.
2007-09-01
One of the unique selling propositions of OLEDs is their potential to realize highly transparent devices over the visible spectrum. This is because organic semiconductors provide a large Stokes-Shift and low intrinsic absorption losses. Hence, new areas of applications for displays and ambient lighting become accessible, for instance, the integration of OLEDs into the windshield or the ceiling of automobiles. The main challenge in the realization of fully transparent devices is the deposition of the top electrode. ITO is commonly used as transparent bottom anode in a conventional OLED. To obtain uniform light emission over the entire viewing angle and a low series resistance, a TCO such as ITO is desirable as top contact as well. However, sputter deposition of ITO on top of organic layers causes damage induced by high energetic particles and UV radiation. We have found an efficient process to protect the organic layers against the ITO rf magnetron deposition process of ITO for an inverted OLED (IOLED). The inverted structure allows the integration of OLEDs in more powerful n-channel transistors used in active matrix backplanes. Employing the green electrophosphorescent material Ir(ppy) 3 lead to IOLED with a current efficiency of 50 cd/A and power efficiency of 24 lm/W at 100 cd/m2. The average transmittance exceeds 80 % in the visible region. The on-set voltage for light emission is lower than 3 V. In addition, by vertical stacking we achieved a very high current efficiency of more than 70 cd/A for transparent IOLED.
Heterogeneity of Particle Deposition by Pixel Analysis of 2D Gamma Scintigraphy Images
Xie, Miao; Zeman, Kirby; Hurd, Harry; Donaldson, Scott
2015-01-01
Abstract Background: Heterogeneity of inhaled particle deposition in airways disease may be a sensitive indicator of physiologic changes in the lungs. Using planar gamma scintigraphy, we developed new methods to locate and quantify regions of high (hot) and low (cold) particle deposition in the lungs. Methods: Initial deposition and 24 hour retention images were obtained from healthy (n=31) adult subjects and patients with mild cystic fibrosis lung disease (CF) (n=14) following inhalation of radiolabeled particles (Tc99m-sulfur colloid, 5.4 μm MMAD) under controlled breathing conditions. The initial deposition image of the right lung was normalized to (i.e., same median pixel value), and then divided by, a transmission (Tc99m) image in the same individual to obtain a pixel-by-pixel ratio image. Hot spots were defined where pixel values in the deposition image were greater than 2X those of the transmission, and cold spots as pixels where the deposition image was less than 0.5X of the transmission. The number ratio (NR) of the hot and cold pixels to total lung pixels, and the sum ratio (SR) of total counts in hot pixels to total lung counts were compared between healthy and CF subjects. Other traditional measures of regional particle deposition, nC/P and skew of the pixel count histogram distribution, were also compared. Results: The NR of cold spots was greater in mild CF, 0.221±0.047(CF) vs. 0.186±0.038 (healthy) (p<0.005) and was significantly correlated with FEV1 %pred in the patients (R=−0.70). nC/P (central to peripheral count ratio), skew of the count histogram, and hot NR or SR were not different between the healthy and mild CF patients. Conclusions: These methods may provide more sensitive measures of airway function and localization of deposition that might be useful for assessing treatment efficacy in these patients. PMID:25393109
Prenni, Anthony J.; Sullivan, Amy P.; Evanoski-Cole, Ashley R.; Fischer, Emily V.; Callahan, Sara; Sive, Barkley C.; Zhou, Yong; Schichtel, Bret A.; Collett Jr, Jeffrey L.
2018-01-01
Human influenced atmospheric reactive nitrogen (RN) is impacting ecosystems in Rocky Mountain National Park (ROMO). Due to ROMO’s protected status as a Class 1 area, these changes are concerning, and improving our understanding of the contributions of different types of RN and their sources is important for reducing impacts in ROMO. In July–August 2014 the most comprehensive measurements (to date) of RN were made in ROMO during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ). Measurements included peroxyacetyl nitrate (PAN), C1–C5 alkyl nitrates, and high-time resolution NOx, NOy, and ammonia. A limited set of measurements was extended through October. Co-located measurements of a suite of volatile organic compounds provide information on source types impacting ROMO. Specifically, we use ethane as a tracer of oil and gas operations and tetrachloroethylene (C2Cl4) as an urban tracer to investigate their relationship with RN species and transport patterns. Results of this analysis suggest elevated RN concentrations are associated with emissions from oil and gas operations, which are frequently co-located with agricultural production and livestock feeding areas in the region, and from urban areas. There also are periods where RN at ROMO is impacted by long-range transport. We present an atmospheric RN budget and a nitrogen deposition budget with dry and wet components. Total deposition for the period (7/1–9/30) was estimated at 1.58 kg N/ha, with 87% from wet deposition during this period of above average precipitation. Ammonium wet deposition was the dominant contributor to total nitrogen deposition followed by nitrate wet deposition and total dry deposition. Ammonia was estimated to be the largest contributor to dry deposition followed by nitric acid and PAN (other species included alkyl nitrates, ammonium and nitrate). All three species are challenging to measure routinely, especially at high time resolution.
Improving Model Representation of Reduced Nitrogen in the Greater Yellowstone Area
NASA Astrophysics Data System (ADS)
Thompson, T. M.
2015-12-01
Human activity, including fossil fuel combustion and agriculture has greatly increased the amount of reactive nitrogen (RN) in the atmosphere and its subsequent deposition to land. Increases in deposition of RN compounds can adversely affect sensitive ecosystems and is a growing problem in many natural areas. The National Park Service in conjunction with Colorado State University researchers and assistance from the Forest Service conducted the Grand Teton Reactive Nitrogen Deposition Study (GrandTReNDS) involving spatially and temporally detailed measurements of RN during spring/summer 2011. In this work it was found that during summer months at the high elevation site Grand Targhee, 62% of the nitrogen deposition was due to reduced nitrogen, about equally split between dry and wet deposition, oxidized nitrogen accounted for 27% of the total, and the remaining was wet deposited organic nitrogen. An important next step to GrandTReNDS is the use of chemical transport models (CTMs) to estimate source contributions to RN in the park. Given the large contribution of reduced nitrogen species to total nitrogen deposition in the park, understanding and properly characterizing ammonia in CTMs is critical to estimating the total nitrogen deposition. A model performance evaluation of the CAMx uni-directional model and CMAQ bi-direction and uni-directional 2011 model simulations versus GrandTReNDS and other datasets was conducted. Preliminary results suggest that, in some areas, model performance of ambient ammonia concentration is more sensitive to the spatial resolution of the model and the accuracy of the spatial representation of emissions than to the incorporation of bi-directional flux. Additional model sensitivity runs, including sensitivity to resolution (with and without bi-directional flux capabilities), changes to model estimated ammonia dry deposition velocities, and improved representation of the spatial distribution of ammonia emissions, are used to identify the best set of options for GrandTReNDS modeling, and to provide a measure of uncertainties. This will help atmospheric scientists identify deficiencies in the models and inform future model development.
NASA Astrophysics Data System (ADS)
Angstmann, J. L.; Hall, S.; February, E.; West, A. G.; Allsopp, N.; Bond, W.
2011-12-01
Anthropogenic nitrogen (N) emissions have increased dramatically since the agricultural and industrial revolutions leading to N deposition in the northern hemisphere that is estimated to be an order of magnitude greater than preindustrial fluxes. N deposition rates of 5-15 kg N ha-1 yr-1 in Europe and N. America decrease plant species diversity, increase invasive species, and lead to eutrophication of surface waters. The southern hemisphere is home to over 50% of the world's biodiversity hotspots, including the 90,000 km2 Cape Floristic Region which houses 9,030 vascular plant species, 69% of which are endemic. However, to date, N deposition rates in the southern hemisphere are highly uncertain, with global models of N deposition based upon sparse datasets at best. Many terrestrial systems, such as fynbos shrublands, are adapted to low N availability and exhibit high species diversity and endemism, rendering them susceptible to ecological changes from N deposition. In this research, we quantified the spatial and temporal distribution of wet and dry N deposition across 30 protected fynbos ecosystems within the urban airshed of Cape Town, South Africa. We predicted that 1) total inorganic N deposition varies predictably along the urban-rural gradient (highest near the city centre), 2) N deposition varies seasonally, with higher fluxes in the winter months when atmospheric stability causes a build-up of N gases in and around the city, and 3) total inorganic N deposition will exceed the critical load of 10-15 kg N ha-1 yr-1 for Mediterranean shrublands, past which negative ecosystem effects have been shown to occur. Estimates of N deposition based on NO2 concentrations within the city suggest that total N deposition ranges from 8-13 kg N ha-1 yr-1 . However, we show that N deposition measured by ion-exchange resin collectors is far less than expected, averaging less than 2 kg N ha-1 yr-1 (range 0.5 - 5.5 kg N ha-1 yr-1 ), and is is dominated by NO3-, suggesting combustion sources. Despite low rates compared to northern hemisphere studies, throughfall N fluxes are lower on average than bulk N fluxes, suggesting significant N uptake through the canopy. Preliminary analyses of cloud water + dry deposition show concentrations of N up to an order of magnitude higher than rainfall. These results suggest that dry and cloud water deposition may contribute high N loads to fynbos shrublands, but these areas may be localized to mountain tops near the city center.
Meta-analysis of radiocesium contamination data in Japanese forest trees over the period 2011-2013.
Gonze, M-A; Calmon, P
2017-12-01
The fate and dispersion of radiocesium in forests affected by the Fukushima atmospheric fallouts have been efficiently characterized by Japanese scientists thanks to monitoring surveys of radioactive contents in contaminated soil, water, and vegetation samples at numerous sites. In this paper, we carry out a meta-analysis of the field surveys conducted over the period 2011-2013 in evergreen coniferous and deciduous broadleaf forests of Fukushima or neighboring prefectures. The review focuses on contamination data acquired in tree vegetation - about 1500 spatio-temporal measurements of concentrations, inventories and depuration fluxes - with a particular interest for organs that were directly exposed to the atmospheric fallouts and subjected to depuration mechanisms (foliage, branches and outer bark). To reduce the spatial variability between the sites, radioactive data were normalized by the total deposit estimated at each site. Our analysis highlights the overall consistency of field observations despite the variety of experimental protocols, disparate sampling periods, differences in the forest stand characteristics and variability of the atmospheric deposition conditions. Assuming that the sites conformed to the same dynamics (within the range of residual variability), we then derive, discuss, and compare the mean representative evolutions of radiocesium contamination in the two categories of forest. Thanks to a simple mass balance approach, we finally demonstrate that: (i) about 90% of the radiocesium deposit was intercepted by evergreen coniferous vegetation, (ii) 80% of the deposit was gradually transferred to the forest floor in 3years, according to a well characterized depuration kinetics, and (iii) about 4% was readily absorbed by the foliage and translocated to internal organs (inner bark, stem wood and roots) at a rate of about 10 -4 d -1 . Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, C.; Yu, J.; Ho, T.-Y.; Wang, L.; Song, S.; Kong, L.; Liu, H.
2012-04-01
Recent studies have demonstrated atmospheric deposition as an important source of bioreactive compounds to the ocean. The South China Sea (SCS), where aerosol loading is among the highest in the world, however, is poorly studied, particularly on the in situ response of phytoplankton community structures to atmospheric deposition. By conducting a series of microcosm bioassays at different hydrographical locations and simulating different aerosol event scales, we observed both positive and negative responses to the input of East Asian (EA) aerosol with high nitrogen (N) and trace metal contents, in terms of biomass, composition and physiological characteristics of phytoplankton communities. High levels of aerosol loading relieved phytoplankton nitrogen and trace metal limitations in SCS, and thus increased total phytoplankton biomass, enhanced their physiological indicators (e.g. photosynthetic efficiency) and shifted phytoplankton assemblages from being dominated by picoplankton to microphytoplanton, especially diatoms. However, under low levels of aerosol loading, the composition shift and biomass accumulation were not apparent, suggesting that the stimulation effects might be counterbalanced by enhanced grazing mortality indicated by increased abundance of protist grazers. Trace metal toxicity of the aerosols might also be the reason for the reduction of picocyanobacteria when amended with high EA aerosols. The magnitude and duration of the deposition event, as well as the hydrographical and trophic conditions of receiving waters are also important factors when predicting the influence of an aerosol deposition event. Our results demonstrated different responses of phytoplankton and microbial food web dynamics to different scales of atmospheric input events in SCS and highlighted the need for achieving an accurate comprehension of atmospheric nutrient on the biogeochemical cycles of the oceans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovorka, S.D.; Dutton, A.R.; Ruppel, S.C.
1994-09-01
The three-dimensional distribution of water in the Edwards aquifer was assessed using a core and log-based study. Porosity distribution reflects both depositional fabric and subsequent diagenesis. Vertical facies stacking patterns influence the depositional porosity as well as dolomitization and diagentic porosity modification. Subtidal facies deposited during sea level highstands are generally undolomitized and exhibit low porosity (5-10%); platform grainstones typically have high depositional porosity and significant solution enhancement (20-42% porosity). Dolomitized subtidal facies in tidal-flat-capped cycles have very high porosity (20-40%) because of selective dolomite dissolution in the freshwater aquifer. Porosity in gypsum beds is high in some areas becausemore » of dissolution and collapse, but low where gypsum was replaced by calcite cement. Low-energy subtidal and evaporitic units in the Maverick basin have porosity generally less than 15%. The overlying basinal packstones and grainstones have solution-enhanced porosities of 25 to 35%. Diagenesis associated with fluctuations in water chemistry near the saline-freshwater interface may explain one high-porosity trend. Other complex patterns of high and low porosity are attributed to structurally and hydrologically controlled porosity enhancement and cementation. Three-dimensional mapping of porosity trends provides data for improved aquifer management. Only about 3% of the maximum stored water lies above the water table at which natural spring flow is diminished. An average specific yield of 42% in the unconfined aquifer is determined from total porosity, changes in the water-table elevation, and changes in estimated recharge and discharge. Average storativity of 2.6 x 10{sup -4} in the confined Edwards is estimated using average porosity and barometric efficiency calculated from comparing water-level hydrographs and atmospheric pressure changes.« less
Guo, Yong; Fujimura, Reiko; Sato, Yoshinori; Suda, Wataru; Kim, Seok-won; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Narisawa, Kazuhiko; Ohta, Hiroyuki
2014-01-01
The 2000 eruption of Mount Oyama on the island of Miyake (Miyake-jima) created a unique opportunity to study the early ecosystem development on newly exposed terrestrial substrates. In this study, bacterial and fungal communities on 9- and 11-year-old volcanic deposits at poorly to fully vegetation-recovered sites in Miyake-jima, Japan, were characterized by conventional culture-based methods and pyrosequencing of 16S rRNA and 18S rRNA genes. Despite the differences in the vegetation cover, the upper volcanic deposit layer samples displayed low among-site variation for chemical properties (pH, total organic carbon, and total nitrogen) and microbial population densities (total direct count and culturable count). Statistical analyses of pyrosequencing data revealed that the microbial communities of volcanic deposit samples were phylogenetically diverse, in spite of very low-carbon environmental conditions, and their diversity was comparable to that in the lower soil layer (buried soil) samples. Comparing with the microbial communities in buried soil, the volcanic deposit communities were characterized by the presence of Betaproteobacteria and Gammaproteobacteria as the main bacterial class, Deinococcus- Thermus as the minor bacterial phyla, and Ascomycota as the major fungal phyla. Multivariate analysis revealed that several bacterial families and fungal classes correlated positively or negatively with plant species. PMID:24463576
Branched nanostructured anodes for dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Alayashi, Wissal
The high relative efficiency demonstrated in dye-sensitized solar cells (DSSCs) arises from a combination of light scattering within, and photo-generated electron transport through, the porous structure of a TiO2 anodes. However, the convoluted conduction path for extracting photo-generated electrons through the sponge-like structure of conventional DSSC anodes has limited further improvement. This thesis is an investigation of thin film deposited TiO2 anodes with branched tree-like structures that mimic the highly-efficient natural flow structures of trees, rivers, and the human vascular system, which can providing uninterrupted paths for photo-generated electron transport through the hierarchical branches. The main goal has been the development of a robust fabrication process for the study of DSSCs with anodes deposited with glancing angle deposition (GLAD) as it is a new area of research and the first DSSCs produced in our lab. The anodes are deposited as thin films using electron-beam evaporation with two different source of material: metallic Ti and TiO2. Ti films are shown to exhibit highly branched characteristics, with distinct branches when deposited at rate of 15 A/s versus 5 A/s (i.e. rate dependence). A thermal oxidation study for these films is performed using H2/ O2 at 450°C-520°C. For TiO2 films, post deposition annealing is performed in O2 at 450°C. Two methods are explored to create defined active areas of the films: dilute hydrofluoric acid (HF) wet etching, and lift-off lithography. DSSCs are constructed using standard components (N719 dye, I-/I3- electrolyte, and Pt cathode) paired with the photoanodes. The films are characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). The properties of DSSCs are investigated with current density-voltage measurements (J-V). Annealed TiO2 films with thickness ranging from 1 microm-3.3 microm exhibit power conversion efficiency of DSSC of 0.5% -3.7%, respectively, which are high efficiency than GLAD DSSCs reported in the literature for coatings of this thickness. The high fill factors (0.82) indicate good shunt and series resistances for the cells, which are also higher than DSSCs reported in the literature. The enhancement in efficiency and thus in short-circuit current is attributed to good cell performance (i.e. uniform active area), increase in the specific surface area for dye adsorption, and continuous electron transport in the interconnectivity structures.
NASA Astrophysics Data System (ADS)
Guo, Lei; Zaera, Francisco
2014-12-01
A simple procedure has been developed for the processing of silicon wafers in order to facilitate the spatially resolved growth of thin solid films on their surfaces. Specifically, a combination of silylation and UV/ozonolysis was tested as a way to control the concentration of the surface hydroxo groups required for subsequent atomic layer deposition (ALD) of metals or oxides. Water contact angle measurements were used to evaluate the hydrophilicity/hydrophobicity of the surface, a proxy for OH surface coverage, and to optimize the UV/ozonolysis treatment. Silylation with hexamethyldisilazane, trichloro(octadecyl)silane, or trimethylchlorosilane was found to be an efficient way to block the hydroxo sites and to passivate the underlying surface, and UV/O3 treatments were shown to effectively remove the silylation layer and to regain the surface reactivity. Both O3 and 185 nm UV radiation were determined necessary for the removal of the silylation layer, and additional 254 nm radiation was found to enhance the process. Attenuated total reflection-infrared absorption spectroscopy was employed to assess the success of the silylation and UV/O3 removal steps, and atomic force microscopy data provided evidence for the retention of the original smoothness of the surface. Selective growth of HfO2 films via TDMAHf + H2O ALD was seen only on the UV/O3 treated surfaces; total inhibition of the deposition was observed on the untreated silylated surfaces (as determined by x-ray photoelectron spectroscopy and ellipsometry). Residual film growth was still detected on the latter if the ALD was carried out at high temperatures (250 °C), because the silylation layer deteriorates under such harsh conditions and forms surface defects that act as nucleation sites for the growth of oxide grains (as identified by electron microscopy and scanning electron microscopy). We believe that the silylation-UV/O3 procedure advanced here could be easily implemented for the patterning of surfaces in many microelectronic applications.
Aligned Carbon Nanotubes for Highly Efficient Energy Generation and Storage Devices
2012-01-24
solution processing methods, including filtration, solution-casting, electrophoretic deposition, and Langmuir - Blodgett deposition. However, most...supercapacitors with environmentally friendly ionic liquid electrolytes. These new nanocomposite electrodes consist of the high-surface-area activated...carbons, carbon nanotubes, and ionic liquids as the integrated constituent components. The resultant composites show significantly improved charge
Silicon surface passivation by silicon nitride deposition
NASA Technical Reports Server (NTRS)
Olsen, L. C.
1984-01-01
Silicon nitride deposition was studied as a method of passivation for silicon solar cell surfaces. The following three objectives were the thrust of the research: (1) the use of pecvd silicon nitride for passivation of silicon surfaces; (2) measurement techniques for surface recombination velocity; and (3) the importance of surface passivation to high efficiency solar cells.
Enhanced Dissolution of Platinum Group Metals Using Electroless Iron Deposition Pretreatment
NASA Astrophysics Data System (ADS)
Taninouchi, Yu-ki; Okabe, Toru H.
2017-12-01
In order to develop a new method for efficiently recovering platinum group metals (PGMs) from catalyst scraps, the authors investigated an efficient dissolution process where the material was pretreated by electroless Fe deposition. When Rh-loaded alumina powder was kept in aqua regia at 313 K (40 °C) for 30 to 60 minutes, the Rh hardly dissolved. Meanwhile, after electroless Fe plating using a bath containing sodium borohydride and potassium sodium tartrate as the reducing and complexing agents, respectively, approximately 60 pct of Rh was extracted by aqua regia at 313 K (40 °C) after 30 minutes. Furthermore, when heat treatment was performed at 1200 K (927 °C) for 60 minutes in vacuum after electroless plating, the extraction of Rh approached 100 pct for the same leaching conditions. The authors also confirmed that the Fe deposition pretreatment enhanced the dissolution of Pt and Pd. These results indicate that an effective and environmentally friendly process for the separation and extraction of PGMs from catalyst scraps can be developed utilizing this Fe deposition pretreatment.
NASA Astrophysics Data System (ADS)
Anisuzzaman, S. M.; Abang, S.; Bono, A.; Krishnaiah, D.; Karali, R.; Safuan, M. K.
2017-06-01
Wax precipitation and deposition is one of the most significant flow assurance challenges in the production system of the crude oil. Wax inhibitors are developed as a preventive strategy to avoid an absolute wax deposition. Wax inhibitors are polymers which can be known as pour point depressants as they impede the wax crystals formation, growth, and deposition. In this study three formulations of wax inhibitors were prepared, ethylene vinyl acetate, ethylene vinyl acetate co-methyl methacrylate (EVA co-MMA) and ethylene vinyl acetate co-diethanolamine (EVA co-DEA) and the comparison of their efficiencies in terms of cloud point¸ pour point, performance inhibition efficiency (%PIE) and viscosity were evaluated. The cloud point and pour point for both EVA and EVA co-MMA were similar, 15°C and 10-5°C, respectively. Whereas, the cloud point and pour point for EVA co-DEA were better, 10°C and 10-5°C respectively. In conclusion, EVA co-DEA had shown the best % PIE (28.42%) which indicates highest percentage reduction of wax deposit as compared to the other two inhibitors.
Preliminary insights into a model for mafic magma fragmentation
NASA Astrophysics Data System (ADS)
Edwards, Matt; Pioli, Laura; Andronico, Daniele; Cristaldi, Antonio; Scollo, Simona
2017-04-01
Fragmentation of mafic magmas remains a poorly understood process despite the common occurrence of low viscosity explosive eruptions. In fact, it has been commonly overlooked based on the assumption that low viscosity magmas have very limited explosivity and low potential to undergo brittle fragmentation. However, it is now known that highly explosive, ash forming eruptions can be relatively frequent at several mafic volcanoes. Three questions arise due to this - What is the specific fragmentation mechanism occuring in these eruptions? What are the primary factors controlling fragmentation efficiency? Can a link between eruption style and fragmentation efficiency be quantified? We addressed these questions by coupling theoretical observations and field analysis of the recent May 2016 eruption at Mount Etna volcano. Within this complex 10-day event three paroxysmal episodes of pulsating basaltic lava jets alternating with small lava flows were recorded from a vent within the Voragine crater. The associated plumes which were produced deposited tephra along narrow axes to the east and south east. Sampling was done on the deposits associated with the first two plumes and the third one. We briefly characterise the May 2016 eruption by assessing plume height, eruption phases, total erupted masses and fallout boundaries and comparing them to previous eruptions. We also analyse the total grainsize distribution (TGSD) of the scoria particles formed in the jets. Conventional methods for obtaining grainsize and total distributions of an eruption are based on mass and provide limited information on fragmentation though. For this reason, the TGSD was assessed by coupling particle analyser data and conventional sieving data to assess both particle size and number of particle distributions with better precision. This allowed for more accurate testing of several existing models describing the shape of the TGSD. Coupled further with observations on eruption dynamics and eruption phase durations obtained from the network of fixed INGV cameras, early insight into possible links between fragmentation and eruption conditions are identified. A link between fragmentation and magma properties is also examined. We discuss the relationship between the conventional and new analytical methods and their potential in unraveling key information on the fragmentation process and analyse how the dataset on the May eruption can be modelled with the current fragmentation theories. Finally, we suggest the systematic use of a comprehensive TGSD dataset to develop a fragmentation model for mafic eruptions.
Water-magma interaction and plume processes in the 2008 Okmok eruption, Alaska
Unema, Joel; Ort, Michael H.; Larsen, Jessica D; Neal, Christina; Schaefer, Janet R.
2016-01-01
Eruptions of similar explosivity can have divergent effects on the surroundings due to differences in the behavior of the tephra in the eruption column and atmosphere. Okmok volcano, located on Umnak Island in the eastern Aleutian Islands, erupted explosively between 12 July and 19 August 2008. The basaltic andesitic eruption ejected ∼0.24 km3dense rock equivalent (DRE) of tephra, primarily directed to the northeast of the vent area. The first 4 h of the eruption produced dominantly coarse-grained tephra, but the following 5 wk of the eruption deposited almost exclusively ash, much of it very fine and deposited as ash pellets and ashy rain and mist. Meteorological storms combined with abundant plume water to efficiently scrub ash from the eruption column, with a rapid decrease in deposit thickness with distance from the vent. Grain-size analysis shows that the modes (although not their relative proportions) are very constant throughout the deposit, implying that the fragmentation mechanisms did not vary much. Grain-shape features consistent with molten fuel-coolant interaction are common. Surface and groundwater drainage into the vents provided the water for phreatomagmatic fragmentation. The available water (water that could reach the vent area during the eruption) was ∼2.8 × 1010 kg, and the erupted magma totaled ∼7 × 1011 kg, which yield an overall water:magma mass ratio of ∼0.04, but much of the water was not interactive. Although magma flux dropped from 1 × 107 kg/s during the initial 4 h to 1.8 × 105 kg/s for the remainder of the eruption, most of the erupted material was ejected during the lower-mass-flux period due to its much greater length, and this tephra was dominantly deposited within 10 km downwind of the vent. This highlights the importance of ash scrubbing in the evaluation of hazards from explosive eruptions.
A Lagrangian Approach for Calculating Microsphere Deposition in a One-Dimensional Lung-Airway Model.
Vaish, Mayank; Kleinstreuer, Clement
2015-09-01
Using the open-source software openfoam as the solver, a novel approach to calculate microsphere transport and deposition in a 1D human lung-equivalent trumpet model (TM) is presented. Specifically, for particle deposition in a nonlinear trumpetlike configuration a new radial force has been developed which, along with the regular drag force, generates particle trajectories toward the wall. The new semi-empirical force is a function of any given inlet volumetric flow rate, micron-particle diameter, and lung volume. Particle-deposition fractions (DFs) in the size range from 2 μm to 10 μm are in agreement with experimental datasets for different laminar and turbulent inhalation flow rates as well as total volumes. Typical run times on a single processor workstation to obtain actual total deposition results at comparable accuracy are 200 times less than that for an idealized whole-lung geometry (i.e., a 3D-1D model with airways up to 23rd generation in single-path only).
Houle, D; Marty, C; Duchesne, L
2015-01-01
A few studies have reported a recent and rapid decline in NO3(-) deposition in eastern North America. Whether this trend can be observed at remote boreal sites with low rates of N deposition and how it could impact canopy uptake (CU) of N remain unknown. Here we report trends between 1997/1999 and 2012 for precipitation, throughfall N deposition as well as inorganic N CU for two boreal forest sites of Quebec, Canada, with contrasted N deposition rates and tree species composition. NO3(-) bulk deposition declined by approximately 50% at both sites over the studied period while no change was observed for NH4(+). As a result, the contribution of NH4(+) to inorganic N deposition changed from ~33% to more than 50% during the study period. On average, 52-59% of N deposition was intercepted by the canopy, the retention being higher for NH4(+) (60-67%) than for NO3(-) (45-54%). The decrease in NO3(-) bulk deposition and the increase in the NH4(+):NO3(-) ratio had important impacts on N-canopy interactions. The contribution of NH4(+) CU to that of total inorganic N CU increased at both sites but the trend was significant only at Tirasse (lowest N deposition). At this site, absolute NO3(-) CU significantly decreased (as did total N CU) during the study period, a consequence of the strong relationship (r(2) = 0.88) between NO3(-) bulk deposition and NO3(-) CU. Our data suggest that N interactions with forest canopies may change rapidly with changes in N deposition as well as with tree species composition.
NASA Astrophysics Data System (ADS)
Hegenbart, L.; Na, Y. H.; Zhang, J. Y.; Urban, M.; Xu, X. George
2008-10-01
There are currently no physical phantoms available for calibrating in vivo counting devices that represent women with different breast sizes because such phantoms are difficult, time consuming and expensive to fabricate. In this work, a feasible alternative involving computational phantoms was explored. A series of new female voxel phantoms with different breast sizes were developed and ported into a Monte Carlo radiation transport code for performing virtual lung counting efficiency calibrations. The phantoms are based on the RPI adult female phantom, a boundary representation (BREP) model. They were created with novel deformation techniques and then voxelized for the Monte Carlo simulations. Eight models have been selected with cup sizes ranging from AA to G according to brassiere industry standards. Monte Carlo simulations of a lung counting system were performed with these phantoms to study the effect of breast size on lung counting efficiencies, which are needed to determine the activity of a radionuclide deposited in the lung and hence to estimate the resulting dose to the worker. Contamination scenarios involving three different radionuclides, namely Am-241, Cs-137 and Co-60, were considered. The results show that detector efficiencies considerably decrease with increasing breast size, especially for low energy photon emitting radionuclides. When the counting efficiencies of models with cup size AA were compared to those with cup size G, a difference of up to 50% was observed. The detector efficiencies for each radionuclide can be approximated by curve fitting in the total breast mass (polynomial of second order) or the cup size (power).
NASA Astrophysics Data System (ADS)
McKay, R. A.
1984-06-01
A 1-MW wellhead generator was tested in 1980, 1981, and 1982 by Mexico, Italy, and New Zealand at Cerro Prieto, Cesano, and Broadlands, respectively. The total flow helical screw expander portable power plant, Model 76-1, had been built for the U.S. Government and field-tested in Utah, USA, in 1978 and 1979. The expander had oversized internal clearances designed for self-cleaning operation on fluids that deposit adherent scale normally detrimental to the utiliation of liquid dominated fields. Conditions with which the expander was tested included inlet pressures of 64 to 220 psia, inlet qualities of 0% to 100%, exhaust pressures of 3.1 to 40 psia, electrial loads of idle and 110 to 933 kW, electrical frequencies of 50 and 60 Hz, male rotor speeds of 2500 to 4000 rpm, and fluid characteristics to 310,000 ppm total dissolved solids and noncondensables to 38 wt % of the vapor. Some testing was done on-grid. Typical expander isentropic efficiency was 40% to 50% with the clearances not closed, and 5 percentage points or more higher with the clearances partly closed. The expander efficiency increased approximately logarithmically with shaft power for most operations, while inlet quality, speed, and pressure ratio across the machine had only small effects. These findings are all in agreement with the Utah test results.
NASA Technical Reports Server (NTRS)
Mckay, R. A.
1984-01-01
A 1-MW wellhead generator was tested in 1980, 1981, and 1982 by Mexico, Italy, and New Zealand at Cerro Prieto, Cesano, and Broadlands, respectively. The total flow helical screw expander portable power plant, Model 76-1, had been built for the U.S. Government and field-tested in Utah, USA, in 1978 and 1979. The expander had oversized internal clearances designed for self-cleaning operation on fluids that deposit adherent scale normally detrimental to the utiliation of liquid dominated fields. Conditions with which the expander was tested included inlet pressures of 64 to 220 psia, inlet qualities of 0% to 100%, exhaust pressures of 3.1 to 40 psia, electrial loads of idle and 110 to 933 kW, electrical frequencies of 50 and 60 Hz, male rotor speeds of 2500 to 4000 rpm, and fluid characteristics to 310,000 ppm total dissolved solids and noncondensables to 38 wt % of the vapor. Some testing was done on-grid. Typical expander isentropic efficiency was 40% to 50% with the clearances not closed, and 5 percentage points or more higher with the clearances partly closed. The expander efficiency increased approximately logarithmically with shaft power for most operations, while inlet quality, speed, and pressure ratio across the machine had only small effects. These findings are all in agreement with the Utah test results.
Mercury in Precipitation in Indiana, January 2001-December 2003
Risch, Martin R.
2007-01-01
Total mercury deposition that was more than 10 percent of the mean annual deposition (1,262 ng/m2 ) was recorded in 11 of 551 weekly samples from the study period. These samples contained approximately 3 inches or more of rain and most were collected in spring and summer 2003. The highest deposition (2,456 ng/m2 in a sample from Roush Lake) was 15.7 percent of the annual deposition at that station and approximately 10 times the mean weekly deposition for Indiana. High deposition recorded in three weekly samples at Clifty Falls contributed 31 percent of the annual deposition at that station in 2003. Weekly samples with high mercury deposition may help to explain the differences in annual mercury deposition among the four monitoring stations in Indiana.
Analysis of heavy metals in road-deposited sediments.
Herngren, Lars; Goonetilleke, Ashantha; Ayoko, Godwin A
2006-07-07
Road-deposited sediments were analysed for heavy metal concentrations at three different landuses (residential, industrial, commercial) in Queensland State, Australia. The sediments were collected using a domestic vacuum cleaner which was proven to be highly efficient in collecting sub-micron particles. Five particle sizes were analysed separately for eight heavy metal elements (Zn, Fe, Pb, Cd, Cu, Cr, Al and Mn). At all sites, the maximum concentration of the heavy metals occurred in the 0.45-75 microm particle size range, which conventional street cleaning services do not remove efficiently. Multicriteria decision making methods (MCDM), PROMETHEE and GAIA, were employed in the data analysis. PROMETHEE, a non-parametric ranking analysis procedure, was used to rank the metal contents of the sediments sampled at each site. The most polluted site and particle size range were the industrial site and the 0.45-75 microm range, respectively. Although the industrial site displayed the highest metal concentrations, the highest heavy metal loading coincided with the highest sediment load, which occurred at the commercial site. GAIA, a special form of principal component analysis, was applied to determine correlations between the heavy metals and particle size ranges and also to assess possible correlation with total organic carbon (TOC). The GAIA-planes revealed that irrespective of the site, most of the heavy metals are adsorbed to sediments below 150 microm. A weak correlation was found between Zn, Mn and TOC at the commercial site. This could lead to higher bioavailability of these metals through complexation reactions with the organic species in the sediments.
Template-directed deposition of amyloid
NASA Astrophysics Data System (ADS)
Ha, Chanki
The formation of amyloid plaques in tissue is a pathological feature of many neurodegenerative diseases. Amyloid deposition, the process of amyloid plaque growth by the association of individual soluble amyloid molecules with a pre-existing amyloid template (i.e. plaque), is known to be critical for amyloid formation in vivo. In order to characterize amyloid deposition, we developed novel, synthetic amyloid templates like amyloid plaques in the human Alzheimer's brain by attaching amyloid seeds covalently onto an N-hydroxysuccinimide-activated surface. Amyloid plaques with a characteristic beta-sheet structure formed through a conformational rearrangement of soluble insulin or Abeta monomers upon interaction with the template. The amyloid deposition rate followed saturation kinetics with respect to insulin concentration in the solution. According to visualization of temporal evolution of Abeta plaque deposition on a template, it was found that mature amyloid plaques serve as a sink of soluble Abeta in a solution as well as a reservoir of small aggregates such as oligomers and protofibrils. Quantitative analysis of seeding efficiencies of three different Abeta species revealed that oligomeric forms of Abeta act more efficiently as seeds than monomers or fibrils do. Furthermore, studies on the interaction between Abeta40 and 42 showed an important role of Abeta42 in amyloid deposition. A slightly acidic condition was found to be unfavorable for amyloid plaque formation. Effects of metal ions on amyloid deposition indicated that Fe3+, but not Cu3 and Zn2+, is important for the deposition of amyloid plaques. The binding of Fe3+ to Abeta42 peptide was confirmed by using SIMS analysis. Zn2+ induced nonfibrillar amorphous aggregates, but the release of Zn2+ from Abeta42 deposits by Fe3+ triggered the formation of amyloid fibers. Effects or metal ion chelators such as ethylenediamine tetraacetic acid, deferoxamine, and clioquinol on amyloid deposition were tested to determine if they can be effective in preventing the deposition of amyloid plaques. The results may give insights into understanding the effects of environmental factors on amyloid plaque deposition and important information for therapeutic development for Alzheimer's disease.
NASA Astrophysics Data System (ADS)
Steinke, I.; Hoose, C.; Möhler, O.; Connolly, P.; Leisner, T.
2015-04-01
Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol surface area concentration. Additionally, a contact angle parameterization according to classical nucleation theory was fitted to the experimental data in order to relate the ice nucleation efficiencies to contact angle distributions. From this study it can be concluded that the INAS density formulation is a very useful tool to describe the temperature- and humidity-dependent ice nucleation efficiency of ATD particles. Deposition nucleation on ATD particles can be described by a temperature- and relative-humidity-dependent INAS density function ns(T, Sice) with ns(xtherm) = 1.88 ×105 · exp(0.2659 · xtherm) [m-2] , (1) where the temperature- and saturation-dependent function xtherm is defined as xtherm = -(T-273.2)+(Sice-1) ×100, (2) with the saturation ratio with respect to ice Sice >1 and within a temperature range between 226 and 250 K. For lower temperatures, xtherm deviates from a linear behavior with temperature and relative humidity over ice. Also, two different approaches for describing the time dependence of deposition nucleation initiated by ATD particles are proposed. Box model estimates suggest that the time-dependent contribution is only relevant for small cooling rates and low number fractions of ice-active particles.
NASA Astrophysics Data System (ADS)
Miao, Chuanrun; Liu, Feng; Wang, Qian; Cai, Meiling; Fang, Zhi
2018-03-01
In this paper, an oscillating microsecond pulsed power supply with rise time of several tens of nanosecond (ns) is used to excite a coaxial DBD with double layer dielectric barriers. The effects of various electrode geometries by changing the size of inner quartz tube (different electrode gaps) on the discharge uniformity, power deposition, energy efficiency, and operation temperature are investigated by electrical, optical, and temperature diagnostics. The electrical parameters of the coaxial DBD are obtained from the measured applied voltage and current using an equivalent electrical model. The energy efficiency and the power deposition in air gap of coaxial DBD with various electrode geometries are also obtained with the obtained electrical parameters, and the heat loss and operation temperature are analyzed by a heat conduction model. It is found that at the same applied voltage, with the increasing of the air gap, the discharge uniformity becomes worse and the discharge power deposition and the energy efficiency decrease. At 2.5 mm air gap and 24 kV applied voltage, the energy efficiency of the coaxial DBD reaches the maximum value of 68.4%, and the power deposition in air gap is 23.6 W and the discharge uniformity is the best at this case. The corresponding operation temperature of the coaxial DBD reaches 64.3 °C after 900 s operation and the temperature of the inner dielectric barrier is 114.4 °C under thermal balance. The experimental results provide important experimental references and are important to optimize the design and the performance of coaxial DBD reactor.
Heat Treatment of Gas-Atomized Powders for Cold Spray Deposition
NASA Astrophysics Data System (ADS)
Story, William A.; Brewer, Luke N.
2018-02-01
This communication demonstrates the efficacy of heat treatment on the improved deposition characteristics of aluminum alloy powders. A novel furnace was constructed for solutionizing of feedstock powders in an inert atmosphere while avoiding sintering. This furnace design achieved sufficiently high cooling rates to limit re-precipitation during powder cooling. Microscopy showed homogenization of the powder particle microstructures after heat treatment. Cold spray deposition efficiency with heat-treated powders substantially increased for the alloys AA2024, AA6061, and AA7075.
Morpho-Structural Characterization of WC20Co Deposited Layers
NASA Astrophysics Data System (ADS)
Tugui, C. A.; Vizureanu, P.
2017-06-01
Hydroelectric power plants use the power of water to produce electricity. In this paper we propose a solution that will increase the efficiency of turbine operation by implementing new innovative technologies to increase the working characteristics by depositing hard thin films of tungsten carbide. For this purpose hard tough deposits with WC20Co and Jet Plasma Jet on X3CrNiMo13-4 stainless steel were used for the realization of the Francis turbine with vertical shaft.
Fabrication of Carbon Nanotube Networks on Three-Dimensional Building Blocks and Their Applications
2012-10-27
increases the detection efficiency via sorting of analyte. There are some reports for sorting or separating blood cell, colloidal and bacteria by...the substrates for cyclic voltammetry (CV), pulsed bias of ECD was applied at -1.2 V during 90, 120 and 150 sec for 1, 3 and 5 μm pillar substrates...Deposition with Al2O3: The atomic layer deposition (ALD, Cyclic 4000, Genitech) was introduced to deposit the Al2O3 on the surfaces of network
Influence of the forest canopy on total and methyl mercury deposition in the boreal forest
E.L. Witt; R.K. Kolka; E.A. Nater; T.R. Wickman
2009-01-01
Atmospheric mercury deposition by wet and dry processes contributes mercury to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to boreal forests were identified in this study. Throughfall and open canopy precipitation samples were collected in 2005 and 2006 using passive precipitation collectors from pristine sites located across...
Yu, Jung-Hoon; Nam, Sang-Hun; Lee, Ji Won; Boo, Jin-Hyo
2016-01-01
This paper presents the preparation of high-quality vanadium dioxide (VO2) thermochromic thin films with enhanced visible transmittance (Tvis) via radio frequency (RF) sputtering and plasma enhanced chemical vapor deposition (PECVD). VO2 thin films with high Tvis and excellent optical switching efficiency (Eos) were successfully prepared by employing SiO2 as a passivation layer. After SiO2 deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO2 coating, the phase transition temperature (Tc) of the prepared films was not affected. Compared with pristine VO2, the total layer thickness after SiO2 coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO2 thin films showed a higher Tvis value (λ 650 nm, 58%) compared with the pristine samples (λ 650 nm, 43%). This enhancement of Tvis while maintaining high Eos is meaningful for VO2-based smart window applications. PMID:28773679
Chuang, Shih-Hao; Tsung, Cheng-Sheng; Chen, Ching-Ho; Ou, Sin-Liang; Horng, Ray-Hua; Lin, Cheng-Yi; Wuu, Dong-Sing
2015-02-04
In this study, a spin coating process in which the grating structure comprises an Ag nanoparticle layer coated on a p-GaN top layer of InGaN/GaN light-emitting diode (LED) was developed. Various sizes of plasmonic nanoparticles embedded in a transparent conductive layer were clearly observed after the deposition of indium tin oxide (ITO). The plasmonic nanostructure enhanced the light extraction efficiency of blue LED. Output power was 1.8 times the magnitude of that of conventional LEDs operating at 350 mA, but retained nearly the same current-voltage characteristic. Unlike in previous research on surface-plasmon-enhanced LEDs, the metallic nanoparticles were consistently deposited over the surface area. However, according to microstructural observation, ITO layer mixed with Ag-based nanoparticles was distributed at a distance of approximately 150 nm from the interface of ITO/p-GaN. Device performance can be improved substantially by using the three-dimensional distribution of Ag-based nanoparticles in the transparent conductive layer, which scatters the propagating light randomly and is coupled between the localized surface plasmon and incident light internally trapped in the LED structure through total internal reflection.
Highly Controlled Codeposition Rate of Organolead Halide Perovskite by Laser Evaporation Method.
Miyadera, Tetsuhiko; Sugita, Takeshi; Tampo, Hitoshi; Matsubara, Koji; Chikamatsu, Masayuki
2016-10-05
Organolead-halide perovskites can be promising materials for next-generation solar cells because of its high power conversion efficiency. The method of precise fabrication is required because both solution-process and vacuum-process fabrication of the perovskite have problems of controllability and reproducibility. Vacuum deposition process was expected to achieve precise control; however, vaporization of amine compound significantly degrades the controllability of deposition rate. Here we achieved the reduction of the vaporization by implementing the laser evaporation system for the codeposition of perovskite. Locally irradiated continuous-wave lasers on the source materials realized the reduced vaporization of CH 3 NH 3 I. The deposition rate was stabilized for several hours by adjusting the duty ratio of modulated laser based on proportional-integral control. Organic-photovoltaic-type perovskite solar cells were fabricated by codeposition of PbI 2 and CH 3 NH 3 I. A power-conversion efficiency of 16.0% with reduced hysteresis was achieved.
Fast and accurate determination of the detergent efficiency by optical fiber sensors
NASA Astrophysics Data System (ADS)
Patitsa, Maria; Pfeiffer, Helge; Wevers, Martine
2011-06-01
An optical fiber sensor was developed to control the cleaning efficiency of surfactants. Prior to the measurements, the sensing part of the probe is covered with a uniform standardized soil layer (lipid multilayer), and a gold mirror is deposited at the end of the optical fiber. For the lipid multilayer deposition on the fiber, Langmuir-Blodgett technique was used and the progress of deposition was followed online by ultraviolet spectroscopy. The invention provides a miniaturized Surface Plasmon Resonance dip-sensor for automated on-line testing that can replace the cost and time consuming existing methods and develop a breakthrough in detergent testing in combining optical sensing, surface chemistry and automated data acquisition. The sensor is to be used to evaluate detergency of different cleaning products and also indicate how formulation, concentration, lipid nature and temperature affect the cleaning behavior of a surfactant.
NASA Astrophysics Data System (ADS)
Chang, Po-Han; Liu, Shang-Yi; Lan, Yu-Bing; Tsai, Yi-Chen; You, Xue-Qian; Li, Chia-Shuo; Huang, Kuo-You; Chou, Ang-Sheng; Cheng, Tsung-Chin; Wang, Juen-Kai; Wu, Chih-I.
2017-04-01
In this work, graphene-methylammonium lead iodide (MAPbI3) perovskite hybrid phototransistors fabricated by sequential vapor deposition are demonstrated. Ultrahigh responsivity of 1.73 × 107 A W-1 and detectivity of 2 × 1015 Jones are achieved, with extremely high effective quantum efficiencies of about 108% in the visible range (450-700 nm). This excellent performance is attributed to the ultra-flat perovskite films grown by vapor deposition on the graphene sheets. The hybrid structure of graphene covered with uniform perovskite has high exciton separation ability under light exposure, and thus efficiently generates photocurrents. This paper presents photoluminescence (PL) images along with statistical analysis used to study the photo-induced exciton behavior. Both uniform and dramatic PL intensity quenching has been observed over entire measured regions, consistently demonstrating excellent exciton separation in the devices.
Chang, Po-Han; Liu, Shang-Yi; Lan, Yu-Bing; Tsai, Yi-Chen; You, Xue-Qian; Li, Chia-Shuo; Huang, Kuo-You; Chou, Ang-Sheng; Cheng, Tsung-Chin; Wang, Juen-Kai; Wu, Chih-I
2017-01-01
In this work, graphene-methylammonium lead iodide (MAPbI3) perovskite hybrid phototransistors fabricated by sequential vapor deposition are demonstrated. Ultrahigh responsivity of 1.73 × 107 A W−1 and detectivity of 2 × 1015 Jones are achieved, with extremely high effective quantum efficiencies of about 108% in the visible range (450–700 nm). This excellent performance is attributed to the ultra-flat perovskite films grown by vapor deposition on the graphene sheets. The hybrid structure of graphene covered with uniform perovskite has high exciton separation ability under light exposure, and thus efficiently generates photocurrents. This paper presents photoluminescence (PL) images along with statistical analysis used to study the photo-induced exciton behavior. Both uniform and dramatic PL intensity quenching has been observed over entire measured regions, consistently demonstrating excellent exciton separation in the devices. PMID:28422117
Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency.
Wen, Xixing; Chen, Chao; Lu, Shuaicheng; Li, Kanghua; Kondrotas, Rokas; Zhao, Yang; Chen, Wenhao; Gao, Liang; Wang, Chong; Zhang, Jun; Niu, Guangda; Tang, Jiang
2018-06-05
Antimony selenide is an emerging promising thin film photovoltaic material thanks to its binary composition, suitable bandgap, high absorption coefficient, inert grain boundaries and earth-abundant constituents. However, current devices produced from rapid thermal evaporation strategy suffer from low-quality film and unsatisfactory performance. Herein, we develop a vapor transport deposition technique to fabricate antimony selenide films, a technique that enables continuous and low-cost manufacturing of cadmium telluride solar cells. We improve the crystallinity of antimony selenide films and then successfully produce superstrate cadmium sulfide/antimony selenide solar cells with a certified power conversion efficiency of 7.6%, a net 2% improvement over previous 5.6% record of the same device configuration. We analyze the deep defects in antimony selenide solar cells, and find that the density of the dominant deep defects is reduced by one order of magnitude using vapor transport deposition process.