Oldham, V E; Swenson, M M; Buck, K N
2014-02-15
Total dissolved copper (Cu) and Cu speciation were examined from inshore waters of Bermuda, in October 2009 and July-August 2010, to determine the relationship between total dissolved Cu, Cu-binding ligands and bioavailable, free, hydrated Cu(2+) concentrations. Speciation was performed using competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV). Mean total dissolved Cu concentrations ranged from 1.4 nM to 19.2 nM, with lowest concentrations at sites further from shore, consistent with previous measurements in the Sargasso Sea, and localized Cu enrichment inshore in enclosed harbors. Ligand concentrations exceeded dissolved [Cu] at most sites, and [Cu(2+)] were correspondingly low at those sites, typically <10(-13) M. One site, Hamilton Harbour, was found to have [Cu] in excess of ligands, resulting in [Cu(2+)] of 10(-10.7) M, and indicating that Cu may be toxic to phytoplankton here. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tonietto, Alessandra Emanuele; Lombardi, Ana Teresa; Choueri, Rodrigo Brasil; Vieira, Armando Augusto Henriques
2015-10-01
This research aimed at evaluating cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) speciation in water samples as well as determining water quality parameters (alkalinity, chlorophyll a, chloride, conductivity, dissolved organic carbon, dissolved oxygen, inorganic carbon, nitrate, pH, total suspended solids, and water temperature) in a eutrophic reservoir. This was performed through calculation of free metal ions using the chemical equilibrium software MINEQL+ 4.61, determination of labile, dissolved, and total metal concentrations via differential pulse anodic stripping voltammetry, and determination of complexed metal by the difference between the total concentration of dissolved and labile metal. Additionally, ligand complexation capacities (CC), such as the strength of the association of metals-ligands (logK'ML) and ligand concentrations (C L) were calculated via Ruzic's linearization method. Water samples were taken in winter and summer, and the results showed that for total and dissolved metals, Zn > Cu > Pb > Cd concentration. In general, higher concentrations of Cu and Zn remained complexed with the dissolved fraction, while Pb was mostly complexed with particulate materials. Chemical equilibrium modeling (MINEQL+) showed that Zn(2+) and Cd(2+) dominated the labile species, while Cu and Pb were complexed with carbonates. Zinc was a unique metal for which a direct relation between dissolved species with labile and complexed forms was obtained. The CC for ligands indicated a higher C L for Cu, followed by Pb, Zn, and Cd in decreasing amounts. Nevertheless, the strength of the association of all metals and their respective ligands was similar. Factor analysis with principal component analysis as the extraction procedure confirmed seasonal effects on water quality parameters and metal speciation. Total, dissolved, and complexed Cu and total, dissolved, complexed, and labile Pb species were all higher in winter, whereas in summer, Zn was mostly present in the complexed form. A high degree of deterioration of the reservoir was confirmed by the results of this study.
Dissolved and colloidal copper in the tropical South Pacific
NASA Astrophysics Data System (ADS)
Roshan, Saeed; Wu, Jingfeng
2018-07-01
Copper (Cu) as a bioactive trace metal in the ocean has widely been studied in the context of chemical speciation. However, this trace metal is extremely understudied in the context of physical speciation (i.e., size- or molecular weight-partitioning), which may help in characterizing dissolved Cu species. In this study, we determine total dissolved Cu (<0.2 μm) distribution and its physical speciation along the US GEOTRACES 2013 cruise, a 4300-km east-west transect in the tropical South Pacific. The distribution of dissolved Cu is rather uniform horizontally and exhibits a linear increase with depth from surface to 2500-3000 m, below which it varies less significantly both vertically and horizontally. Dissolved Cu shows a strong correlation with silicate (SiO44-) in the upper 1500 m, which is in agreement with previous studies in other regions. This correlation is weaker but with higher slope at depths below 1500 m, which supports the sedimentary source hypothesis. Although hydrothermal activity at the East Pacific Rise (EPR) does not show a readily evident impact on the dissolved Cu distribution, high-quality data at 2300-2800 m allow for diagnosing a subtle westward decrease in the background-subtracted dissolved Cu component. This component of dissolved Cu poorly correlates with mantle-derived 3He (R2 = 0.41), indicating a possible hydrothermal source for dissolved Cu, in contrast to previous studies. For the first time in a major basin, we also determined the physical speciation of dissolved Cu, which shows that Cu species lighter than 10 kDa (Da = 1 g mol-1) dominate the pool of dissolved Cu (<0.2 μm) below 1000 m with a contribution of 61 ± 6% (fraction of total dissolved). 39 ± 6% of dissolved Cu at depths below 1000 m, thus, occurs in the pool of colloidal matter (10 kDa-0.2 μm). Moreover, using a suite of molecular weight cutoffs indicate that Cu species are distributed between two distinct molecular weight classes: the lighter than 5 kDa and heavier than 300 kDa classes, which form 53 ± 6% and 37 ± 7% of dissolved Cu at 2200-2800 m, respectively. The Cu species with molecular weight between 5 kDa and 300 kDa contribute only to 10 ± 12% of the pool at 2200-2800 m. These results offer new insights into structure, reactivity and bioavailability of oceanic Cu compounds. As an organic-dominating metal, Cu physical speciation may also shed light on size-reactivity spectrum of dissolved organic matter (DOM) in the deep ocean.
DIEL FLUX OF DISSOLVED CARBOHYDRATE IN A SALT MARSH AND A SIMULATED ESTUARINE ECOSYSTEM
The concentrations of total dissolved carbohydrate (TCHO), monosaccharide (MCHO) and polysaccharide (PCHO) were followed over a total of ten diel cycles in a salt marsh and a 13 cu m seawater tank simulating an estuarine ecosystem. Their patterns are compared to those for total d...
Site Specific Metal Criteria Developed Using Kentucky Division of Water Procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kszos, L.A.; Phipps, T.L.
1999-10-09
Alternative limits for Cu, Ni, Pb, and Zn were developed for treated wastewater from four outfalls at a Gaseous Diffusion Plant. Guidance from the Kentucky Division of Water (KDOW) was used to (1) estimate the toxicity of the effluents using water fleas (Ceriodaphnia dubia) and fathead minnow (Pimephales promelas) larvae; (2) determine total recoverable and dissolved concentrations of Cu, Pb, Ni, and Zn ; (3) calculate ratios of dissolved metal (DM) to total recoverable metal (TRM); and (4) assess chemical characteristics of the effluents. Three effluent samples from each outfall were collected during each of six test periods; thus, amore » total of 18 samples from each outfall were evaluated for toxicity, DM and TRM. Subsamples were analyzed for alkalinity, hardness, pH, conductivity, and total suspended solids. Short-term (6 or 7 d), static renewal toxicity tests were conducted according to EPA methodology. Ceriodaphnia reproduction was reduced in one test of effluent from Outfall A , and effluent from Outfall B was acutely toxic to both test species during one test. However, the toxicity was not related to the metals present in the effluents. Of the 18 samples from each outfall, more than 65% of the metal concentrations were estimated quantities. With the exception of two total recoverable Cu values in Outfall C, all metal concentrations were below the permit limits and the federal water quality criteria. Ranges of TR for all outfalls were: Cd, ,0.1-0.4 {micro}g/L; Cr,1.07-3.93 {micro}g/L; Cu, 1.59-7.24 {micro}g/L; Pb, <0.1-3.20 {micro}g/L; Ni, 0.82-10.7 {micro}g/L, Zn, 4.75-67.3 {micro}g/L. DM:TRM ratios were developed for each outfall. The proportion of dissolved Cu in the effluents ranged from 67 to 82%; the proportion of dissolved Ni ranged from 84 to 91%; and the proportion of dissolved Zn ranged from 74 to 94%. The proportion of dissolved Pb in the effluents was considerably lower (37-51%). TRM and/or DM concentrations of Cu, Ni, Pb, or Zn differed significantly from outfall to outfall but the DM:TRM ratios for Cu, Ni, and Pb did not. Through the use of the KDOW method, the total recoverable metal measured in an effluent is adjusted by the proportion of dissolved metal present. The resulting alternative total recoverable metal concentration is reported in lieu of the measured total recoverable concentration for determining compliance with permit limits. For example, the monthly average permit limit for Pb in Outfall B (3 {micro}g/L) was exceeded at the Gaseous Diffusion Plant. Through the use of the KDOW method for calculating an alternative total recoverable metal concentration, 4.98 {micro}g Pb/L in Outfall B would be reported as 3.00 {micro}g/L, a difference of > 39%. Thus, the alternative, calculated total recoverable metal concentration provides the discharger with a ''cushion'' for meeting permit limits.« less
Trace Metals in Urban Stormwater Runoff and their Management
NASA Astrophysics Data System (ADS)
Li, T.; Hall, K.; Li, L. Y.; Schreier, H.
2009-04-01
In past decades, due to the rapid urbanization, land development has replaced forests, fields and meadows with impervious surfaces such as roofs, parking lots and roads, significantly affecting watershed quality and having an impact on aquatic systems. In this study, non-point source pollution from a diesel bus loop was assessed for the extent of trace metal contamination of Cu, Mn, Fe, and Zn in the storm water runoff. The study was carried out at the University of British Columbia (UBC) in the Greater Vancouver Regional District (GVRD) of British Columbia, Canada. Fifteen storm events were monitored at 3 sites from the diesel bus loop to determine spatial and temporal variations of dissolved and total metal concentrations in the storm water runoff. The dissolved metal concentrations were compared with the provincial government discharge criteria and the bus loop storm water quality was also compared with previous studies conducted across the GVRD urban area. To prevent storm water with hazardous levels of contaminants from being discharged into the urban drainage system, a storm water catch basin filter was installed and evaluated for its efficiency of contaminants removal. The perlite filter media adsorption capacities for the trace metals, oil and grease were studied for better maintenance of the catch basin filter. Dissolved copper exceeded the discharge criteria limit in 2 out of 15 cases, whereas dissolved zinc exceeded the criteria in 4 out of 15 cases, and dissolved manganese was below the criteria in all of the events sampled. Dissolved Cu and Zn accounted for 36 and 45% of the total concentration, whereas Mn and Fe only accounted for 20 and 4% of their total concentration, respectively. Since they are more mobile and have higher bioaccumulation potentials, Zn and Cu are considered to be more hazardous to the aquatic environment than Fe and Mn. With high imperviousness (100%) and intensive traffic at the UBC diesel bus loop, trace metal concentrations were 3, 0.7, 9, and 3.2 times higher than the GVRD urban area limits for Cu, Mn, Fe, and Zn, respectively. The filter showed high and stable capture efficiencies in total metals (Cu 62%, Mn 75%, Fe 83%, Zn 62%), dissolved metals (Cu 39%, Mn 37%, Fe 47%, Zn 32%), turbidity (72%), and suspended solids (74%) removal during the first month of operation. After that, there was gradual degradation. The catch basin filter performance improved significantly for the suspended solids and total metal removal after cleaning. However, the perlite filter medium showed poor performance for dissolved metal removal in the second study period. Based on the findings, a catch basin filter is effective in storm water management to control suspended solids loading from storm water runoff.
Craven, Alison M.; Aiken, George R.; Ryan, Joseph N.
2012-01-01
The ratio of copper to dissolved organic matter (DOM) is known to affect the strength of copper binding by DOM, but previous methods to determine the Cu2+–DOM binding strength have generally not measured binding constants over the same Cu:DOM ratios. In this study, we used a competitive ligand exchange–solid-phase extraction (CLE-SPE) method to determine conditional stability constants for Cu2+–DOM binding at pH 6.6 and 0.01 M ionic strength over a range of Cu:DOM ratios that bridge the detection windows of copper-ion-selective electrode and voltammetry measurements. As the Cu:DOM ratio increased from 0.0005 to 0.1 mg of Cu/mg of DOM, the measured conditional binding constant (cKCuDOM) decreased from 1011.5 to 105.6 M–1. A comparison of the binding constants measured by CLE-SPE with those measured by copper-ion-selective electrode and voltammetry demonstrates that the Cu:DOM ratio is an important factor controlling Cu2+–DOM binding strength even for DOM isolates of different types and different sources and for whole water samples. The results were modeled with Visual MINTEQ and compared to results from the biotic ligand model (BLM). The BLM was found to over-estimate Cu2+ at low total copper concentrations and under-estimate Cu2+ at high total copper concentrations.
Factors affecting the presence of dissolved glutathione in estuarine waters.
Tang, Degui; Shafer, Martin M; Karner, Dawn A; Overdier, Joel; Armstrong, David E
2004-08-15
We investigated factors influencing the presence of the thiol glutathione (GSH) in estuarine waters. Our study addressed thiol phase-association, the biological release from algal cultures, and the role of copper in both thiol release and preservation. Our measurements in three diverse estuaries in the continental United States (San Diego Bay, Cape Fear Estuary, and Norfolk Estuary) show that dissolved GSH, present at sub-nanomolar levels, is preferentially partitioned into the ultra-filtrate fraction (<1 kDa) in comparison with dissolved organic carbon (DOC). Concentrations of GSH generally increased with increases in total copper (Cu)levels, although large variability was observed among estuaries. In 30-h exposure experiments, release of dissolved GSH from the diatom Thalassiosira weissflogii into organic ligand-free experimental media was a strong function of added Cu concentration. The released GSH increased from about 0.02 to 0.27 fmol/cell as Cu was increased from the background level (0.5 nM) to 310 nM in the modified Aquil media. However, excretion of GSH was lower (up to 0.13 fmol/cell) when cells were grown in surface waters of San Diego Bay, despite much higher total Cu concentrations. Experiments conducted in-situ in San Diego Bay water indicated that high concentrations of added Cu destabilized GSH, while both Mn(II) and natural colloids promoted GSH stability. In contrast, laboratory experiments in synthetic media indicated that moderate levels of added Cu enhanced GSH stability.
Photolytic Release of Dissolved Vanadium and Copper from Resuspended Coastal Marine Sediments
NASA Astrophysics Data System (ADS)
Skrabal, S. A.; Hammaker, S. N.; McBurney, A. W.; Avery, G. B., Jr.; Kieber, R. J.; Mead, R. N.
2016-02-01
Sunlight photolysis engenders release of dissolved vanadium (V), copper (Cu), and dissolved organic carbon (DOC) from a wide variety of resuspendable coastal marine sediments. Net photoreleases after 6 h of simulated sunlight were as high as 12 nM for Cu and as high as 15 nM for V. Release of Cu significantly correlated with sediment Cu. Photoreleased Cu (but not V) correlated with sediment Fe content, suggesting that photoreduction of Fe oxide carrier phases may be an important photoproduction mechanism for Cu. Longer term experiments showed continued release of metals that were not immediately readsorbed back onto sediments after 24 h of irradiation suggesting that photoproduced metals persist in the dissolved phase and are not immediately scavenged onto particles. Experiments utilizing differing total suspended sediment (TSS) levels show that, although higher TSS causes more photoproduction of Cu and V, the amount produced per mass of sediment is greatest at the lowest TSS. Vanadium photoproduction increased in Macondo oil-amended sediments compared to controls after a one-month incubation period suggesting that the oil may be a source of this metal to the water column. These results imply that photoproduction is an unrecognized source of the micronutrient metals Cu and V to coastal waters.
Copper speciation and binding by organic matter in copper-contaminated streamwater
Breault, R.F.; Colman, J.A.; Aiken, G.R.; McKnight, D.
1996-01-01
Fulvic acid binding sites (1.3-70 ??M) and EDTA (0.0017-0.18 ??M) accounted for organically bound Cu in seven stream samples measured by potentiometric titration. Cu was 84-99% organically bound in filtrates with 200 nM total Cu. Binding of Cu by EDTA was limited by competition from other trace metals. Water hardness was inversely related to properties of dissolved organic carbon (DOC) that enhance fulvic acid binding: DOC concentration, percentage of DOC that is fulvic acid, and binding sites per fulvic acid carbon. Dissolved trace metals, stabilized by organic binding, occurred at increased concentration in soft water as compared to hard water.
NASA Astrophysics Data System (ADS)
Rivaro, Paola; Luisa Abelmoschi, Maria; Grotti, Marco; Ianni, Carmela; Magi, Emanuele; Margiotta, Francesca; Massolo, Serena; Saggiomo, Vincenzo
2012-04-01
Surface water (<100 m) samples were collected from the Terra Nova Bay polynya region of the Ross Sea (Antarctica) in January 2006, with the aim of evaluating the individual and combined effects of hydrographic structure, iron and copper concentration and availability on the phytoplankton growth. The measurements were conducted within the framework of the Climatic Long Term Interaction for the Mass-balance in Antarctica (CLIMA) Project of the Programma Nazionale di Ricerca in Antartide activities. Dissolved oxygen, nutrients, phytoplankton pigments and concentration and complexation of dissolved trace metals were determined. Experimental data were elaborated by Principal Component Analysis (PCA). As a result of solar heating and freshwater inputs from melting sea-ice, the water column was strongly stratified with an Upper Mixed Layer 4-16 m deep. The integrated Chl a in the layer 0-100 m ranged from 60 mg m-2 to 235 mg m-2, with a mean value of 138 mg m-2. The pigment analysis showed that diatoms dominated the phytoplankton assemblage. Major nutrients were generally high, with the lowest concentration at the surface and they were never fully depleted. The Si:N drawdown ratio was close to the expected value of 1 for Fe-replete diatoms. We evaluated both the total and the labile dissolved fraction of Fe and Cu. The labile fraction was operationally defined by employing the chelating resin Chelex-100, which retains free and loosely bound trace metal species. The total dissolved Fe ranged from 0.48 to 3.02 nM, while the total dissolved Cu from 3.68 to 6.84 nM. The dissolved labile Fe ranged from below the detection limit (0.15 nM) to 1.22 nM, and the dissolved labile Cu from 0.31 to 1.59 nM, respectively. The labile fractions measured at 20 m were significantly lower than values in 40-100 m samples. As two stations were re-sampled 5 days later, we evaluated the short-term variability of the physical and biogeochemical properties. In particular, in a re-sampled station at 20 m, the total dissolved Fe increased and the total dissolved Cu decreased, while their labile fraction was relatively steady. As a result of the increase in total Fe, the percentage of the labile Fe decreased. An increase of the Si:N, Si:P and Si:FUCO ratios was measured also in the re-sampled station. On this basis, we speculated that a switch from a Fe-replete to a Fe-deplete condition was occurring.
Mechanisms for trace metal enrichment at the surface microlayer in an estuarine salt marsh
Lion, Leonard W.
1982-01-01
The relative contributions of adsorption to particulate surfaces, complexation with surface-active organic ligands and uptake by micro-organisms were evaluated with respect to their importance in the surface microlayer enrichment (‘partitioning’) of Cd, Pb and Cu. The contributions of each process were inferred from field data in which partitioning of the dissolved and particulate forms of Cd, Pb and Cu, total and dissolved organic carbon, particles and total bacteria were observed. In the South San Francisco Bay estuary, particle enrichment appears to control trace metal partitioning. Trace metal association with the particulate phase and the levels of partitioning observed were in the order Pb > Cu > Cd and reflect the calculated equilibrium chemical speciation of these metals in computer-simulated seawater matrices.
Vijayaraghavan, K; Joshi, Umid Man; Ping, Han; Reuben, Sheela; Burger, David F
2014-01-01
In this study, in situ hybrid sand filters were designed to remove dissolved and suspended contaminants from eutrophic pond. Currently, there are no attempts made to eradicate dissolved as well as suspended contaminants from eutrophic water system in a single step. Monitoring studies revealed that examined pond contain high chlorophyll-a content (101.8 μg L(-1)), turbidity (39.5 NTU) and total dissolved solids concentration (0.04 g L(-1)). Samples were further exposed to extensive water quality analysis, which include examining physicochemical parameters (pH, conductivity, total dissolved solids, salinity, turbidity and chlorophyll-a), metals (Na, K, Ca, Mg, Al, Fe, Cu, Cd, Pb, Zn, Cr, and Ni) and anions (NO3, NO2, PO4, SO4, Cl, F and Br). To tackle pollutants, filtration system was designed to comprise of several components including fine sand, coarse sand/sorbent mix and gravel from top to bottom loaded in fiberglass tanks. All the filters (activated carbon, Sargassum and zeolite) completely removed algal biomass and showed potential to decrease pH during entire operational period of 20 h at 120 L h(-1). To examine the efficiency of filters in adverse conditions, the pond water was spiked with heavy metals (Cu, Cd, Pb, Zn, Cr, and Ni). Of the different filter systems, Sargassum-loaded filter performed exceedingly well with concentrations of heavy metals never exceeded the Environmental protection agency regulations for freshwater limits during total operational period. The total uptake capacities at the end of the fifth event were 24.9, 20.5, 0.58, 5.2, 0.091 and 2.8 mg/kg for Cr, Ni, Cu, Zn, Cd and Pb, respectively.
NASA Astrophysics Data System (ADS)
Rivaro, Paola; Ianni, Carmela; Massolo, Serena; Abelmoschi, M. Luisa; De Vittor, Cinzia; Frache, Roberto
2011-05-01
The distribution of the dissolved labile and of the particulate Fe and Cu together with dissolved oxygen, nutrients, chlorophyll a and total particulate matter was investigated in the surface waters of Terra Nova Bay polynya in mid-January 2003. The measurements were conducted within the framework of the Italian Climatic Long-term Interactions of the Mass balance in Antarctica (CLIMA) Project activities. The labile dissolved fraction was operationally defined by employing the chelating resin Chelex-100, which retains free and loosely bound trace metal species. The dissolved labile Fe ranges from below the detection limit (0.15 nM) to 3.71 nM, while the dissolved labile Cu from below the detection limit (0.10 nM) to 0.90 nM. The lowest concentrations for both metals were observed at 20 m depth (the shallowest depth for which metals were measured). The concentration of the particulate Fe was about 5 times higher than the dissolved Fe concentration, ranging from 0.56 to 24.83 nM with an average of 6.45 nM. The concentration of the particulate Cu ranged from 0.01 to 0.71 nM with an average of 0.17 nM. The values are in agreement with the previous data collected in the same area. We evaluated the role of the Fe and Cu as biolimiting metals. The N:dissolved labile Fe ratios (18,900-130,666) would or would not allow a complete nitrate removal, on the basis of the N:Fe requirement ratios that we calculated considering the N:P and the C:P ratios estimated for diatoms. This finding partially agrees with the Si:N ratio that we found (2.29). Moreover we considered a possible influence of the dissolved labile Cu on the Fe uptake process.
Illuminati, S; Annibaldi, A; Romagnoli, T; Libani, G; Antonucci, M; Scarponi, G; Totti, C; Truzzi, C
2017-10-01
During the austral summer 2011-2012, the metal quotas of Cd, Pb and Cu in the phytoplankton of Terra Nova Bay (TNB, Antarctica) were measured for the first time. Evolution of all the three metal distributions between dissolved and particulate fractions during the season was also evaluated. Metal concentrations were mainly affected by the dynamic of the pack ice melting and phytoplankton activity. In mid-December when TNB area was covered by a thick pack ice layer and phytoplankton activity was very low, all the three metals were present mainly in their dissolved species. When the pack ice started to melt and the water column characteristics became ideal (i.e. moderate stratification, ice free area), the phytoplankton bloom occurred. Cd showed a nutrient-type behaviour with dissolved and particulate fractions mainly influenced by phytoplankton activity. Cd quota showed a mean value of 0.12 ± 0.07 nmol L -1 (30-100% of the total particulate). Also Cu showed a nutrient-type behaviour, with its quota in phytoplankton varying between 0.08 and 2.1 nmol L -1 (20-100% of the total particulate). Pb features the typical distribution of a scavenged element with very low algal content (0.03 ± 0.02 nmol L -1 , representing 20-50% of the total particulate). The vertical distribution of this element was influenced by several factors (e.g. pack ice melting, atmospheric inputs), the phytoplankton activity affecting Pb behaviour only partially. Metal:C ratios provide valuable information on the biological requirements for Cd, Pb and Cu, leading us to better understand their biogeochemical cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cooper, Christopher A; Tait, Tara; Gray, Holly; Cimprich, Giselle; Santore, Robert C; McGeer, James C; Wood, Christopher M; Smith, D Scott
2014-01-21
Acute copper (Cu) toxicity tests (48-h LC50) using the euryhaline rotifer Brachionus plicatilis were performed to assess the effects of salinity (3, 16, 30 ppt) and dissolved organic carbon (DOC, ∼ 1.1, ∼ 3.1, ∼ 4.9, ∼ 13.6 mg C L(-1)) on Cu bioavailability. Total Cu was measured using anodic stripping voltammetry, and free Cu(2+) was measured using ion-selective electrodes. There was a protective effect of salinity observed in all but the highest DOC concentrations; at all other DOC concentrations the LC50 value was significantly higher at 30 ppt than at 3 ppt. At all salinities, DOC complexation significantly reduced Cu toxicity. At higher concentrations of DOC the protective effect increased, but the increase was less than expected from a linear extrapolation of the trend observed at lower concentrations, and the deviation from linearity was greatest at the highest salinity. Light-scattering data indicated that salt induced colloid formation of DOC could be occurring under these conditions, thereby decreasing the number of available reactive sites to complex Cu. When measurements of free Cu across DOC concentrations at each individual salinity were compared, values were very similar, even though the total Cu LC50 values and DOC concentrations varied considerably. Furthermore, measured free Cu values and predicted model values were comparable, highlighting the important link between the concentration of bioavailable free Cu and Cu toxicity.
NASA Astrophysics Data System (ADS)
Zarazua, G.; Ávila-Pérez, P.; Tejeda, S.; Barcelo-Quintal, I.; Martínez, T.
2006-11-01
The present area of study is located in the Upper Course of the Lerma River (UCLR). The Lerma is one of the most important rivers of Mexico, where it drains highly populated and industrialized regions. The aim of the present study is to determine the heavy metal concentration of Cr, Mn, Fe, Cu and Pb in dissolved and total phases of the UCLR by means of Total Reflection X-ray Fluorescence Spectrometry (TXRF). The surface water samples were collected at 8 sites distributed following the stream flow direction of the river. Four sampling campaigns were carried out in each site in a 1-year period. A sample preparation method was applied in order to obtain the total and dissolved fraction and to destroy the organic matter. The total heavy metal average concentration decrease in the following order: Fe (2566 μg/L) > Mn (300 μg/L) > Cu (66 μg/L) > Cr (21 μg/L) > Pb (15 μg/L). In general, the heavy metal concentrations in water of the UCLR are below the maximum permissible limits.
Balistrieri, L.S.; Seal, R.R.; Piatak, N.M.; Paul, B.
2007-01-01
The authors determine the composition of a river that is impacted by acid-mine drainage, evaluate dominant physical and geochemical processes controlling the composition, and assess dissolved metal speciation and toxicity using a combination of laboratory, field and modeling studies. Values of pH increase from 3.3 to 7.6 and the sum of dissolved base metal (Cd + Co + Cu + Ni + Pb + Zn) concentrations decreases from 6270 to 100 ??g/L in the dynamic mixing and reaction zone that is downstream of the river's confluence with acid-mine drainage. Mixing diagrams and PHREEQC calculations indicate that mixing and dilution affect the concentrations of all dissolved elements in the reach, and are the dominant processes controlling dissolved Ca, K, Li, Mn and SO4 concentrations. Additionally, dissolved Al and Fe concentrations decrease due to mineral precipitation (gibbsite, schwertmannite and ferrihydrite), whereas dissolved concentrations of Cd, Co, Cu, Ni, Pb and Zn decrease due to adsorption onto newly formed Fe precipitates. The uptake of dissolved metals by aquatic organisms is dependent on the aqueous speciation of the metals and kinetics of complexation reactions between metals, ligands and solid surfaces. Dissolved speciation of Cd, Cu, Ni and Zn in the mixing and reaction zone is assessed using the diffusive gradients in thin films (DGT) technique and results of speciation calculations using the Biotic Ligand Model (BLM). Data from open and restricted pore DGT units indicate that almost all dissolved metal species are inorganic and that aqueous labile or DGT available metal concentrations are generally equal to total dissolved concentrations in the mixing zone. Exceptions occur when labile metal concentrations are underestimated due to competition between H+ and metal ions for Chelex-100 binding sites in the DGT units at low pH values. Calculations using the BLM indicate that dissolved Cd and Zn species in the mixing and reaction zone are predominantly inorganic, which is consistent with the DGT results. Although the DGT method indicates that the majority of aqueous Cu species are inorganic, BLM calculations indicate that dissolved Cu is inorganic at pH 5.5. Integrated dissolved labile concentrations of Cd, Cu and Zn in the mixing and reaction zone are compared to calculated acute toxicity concentrations (LC50 values) for fathead minnows (Pimephales promelas) (Cd, Cu and Zn) and water fleas (Ceriodaphnia dubia) (Cd and Cu) using the BLM, and to national recommended water quality criteria [i.e., criteria maximum concentration (CMC) and criterion continuous concentration (CCC)]. Observed labile concentrations of Cd and Zn are below LC50 values and CMC for Cd, but above CCC and CMC for Zn at sites <30 m downstream of the confluence. In contrast, labile Cu concentrations exceed LC50 values for the organisms as well as CCC and CMC at sites <30 m downstream of the confluence. These results suggest that environmental conditions at sites closest to the confluence of the river and acid-mine drainage should not support healthy aquatic organisms. ?? 2007 Elsevier Ltd. All rights reserved.
Distribution of trace metals in anchialine caves of Adriatic Sea, Croatia
NASA Astrophysics Data System (ADS)
Cuculić, Vlado; Cukrov, Neven; Kwokal, Željko; Mlakar, Marina
2011-11-01
This study presents results of the first comprehensive research on ecotoxic trace metals (Cd, Pb, Cu and Zn) in aquatic anchialine ecosystems. Data show the influence of hydrological and geological characteristics on trace metals in highly stratified anchialine water columns. Distribution of Cd, Pb, Cu and Zn in two anchialine water bodies, Bjejajka Cave and Lenga Pit in the Mljet National park, Croatia were investigated seasonally from 2006 to 2010. Behaviour and concentrations of dissolved and total trace metals in stratified water columns and metal contents in sediment, carbonate rocks and soil of the anchialine environment were evaluated. Trace metals and dissolved organic carbon (DOC) concentrations in both anchialine water columns were significantly elevated compared to adjacent seawater. Zn and Cu concentrations were the highest in the Lenga Pit water column and sediment. Elevated concentrations of Zn, Pb and Cu in Bjejajka Cave were mainly terrigenous. Significantly elevated concentrations of cadmium (up to 0.3 μg L -1) were found in the water column of Bjejajka cave, almost two orders of magnitude higher compared to nearby surface seawater. Laboratory analysis revealed that bat guano was the major source of cadmium in Bjejajka Cave. Cadmium levels in Lenga Pit, which lacks accumulations of bat guano, were 20-fold lower. Moreover, low metal amounts in carbonate rocks in both caves, combined with mineral leaching experiments, revealed that carbonates play a minor role as a source of metals in both water columns. We observed two types of vertical distribution pattern of cadmium in the stratified anchialine Bjejajka Cave water column. At lower salinities, non-conservative behaviour was characterized by strong desorption and enrichment of dissolved phase while, at salinities above 20, Cd behaved conservatively and its dissolved concentration decreased. Conservative behaviour of Cu, Pb, Zn and DOC was observed throughout the water column. After heavy rains, Cd showed reduced concentration and uniform vertical distribution, suggesting a non-terrestrial origin. Under the same conditions, concentrations of total and dissolved Pb, Cu, Zn and DOC were significantly elevated. Variations of trace metal vertical distributions in anchialine water columns were caused by large inputs of fresh water (extraordinary rainy events), and were not influenced by seasonal changes.
Sokolowski, A; Wolowicz, M; Hummel, H
2001-10-01
Overlying bottom water samples were collected in the Vistula River plume, southern Baltic Sea, (Poland) and analysed for dissolved and labile particulate (1 M HCl extractable) Cu, Pb, Zn, Mn, Fe and Ni, hydrological parameters being measured simultaneously. Particulate organic matter (POM), chlorophyll a and dissolved oxygen are key factors governing the chemical behaviour of the measured metal fractions. For the dissolved Cu, Pb, Zn, Fe and Ni two maxima, in the shallow and in the deeper part of the river plume, were found. In the shallow zone desorption from seaward fluxing metal-rich riverine particles account for markedly increased metal concentrations, as confirmed also by high particulate metal contents. For Pb, atmospheric inputs were also considered to have contributed to the elevated concentrations of dissolved Pb adjacent to the river mouth. In the deep zone desorption from detrital and/or resuspended particles by aerobic decomposition of organic material may be the main mechanism responsible for enrichment of particle-reactive metals (Cu, Pb, Zn) in the overyling bottom waters. The increased concentrations of dissolved Fe may have been due to reductive dissolution of Fe oxyhydroxides within the deep sediments by which dissolved Ni was released to the water. The distribution of Mn was related to dissolved oxygen concentrations, indicating that Mn is released to the water column under oxygen reduced conditions. However, Mn transfer to the dissolved phase from anoxic sediments in deeper part of the Vistula plume was hardly evidenced suggesting that benthic flux of Mn occurs under more severe reductive regime than is consistent with mobilization of Fe. Behaviour of Mn in a shallower part has been presumably affected by release from porewaters and by oxidization into less soluble species resulting in seasonal removal of this metal (e.g. in April) from the dissolved phase. The particulate fractions represented from about 6% (Ni) and 33% (Mn, Zn, Cu) to 80% (Fe) and 89% (Pb) of the total (labile particulate plus dissolved) concentrations. The affinity of the metals for particulate matter decreased in the following order: Pb > Fe > Zn > or = > Cu > Mn > Ni. Significant relationships between particulate Pb-Zn-Cu reflected the affinity of these metals for organic matter, and the significant relationship between Ni-Fe reflected the adsorption of Ni onto Fe-Mn oxyhydroxides. A comparison of metal concentrations with data from other similar areas revealed that the river plume is somewhat contaminated with Cu, Pb and Zn which is in agreement with previous findings on anthropogenic origin of these metals in the Polish zone of southern Baltic Sea.
Zuo, Xiaojun; Fu, Dafang; Li, He
2012-11-01
Heavy metal pollution in road runoff had caused widespread concern since the last century. However, there are little references on metal speciation in multiple environmental media (e.g., rain, road sediments, and road runoff). Our research targeted the investigation of metal speciation in rain, road sediments, and runoff; the analysis of speciation variation and mass balance of metals among rain, road sediments, and runoff; the selection of main factors by principal component analysis (PCA); and the establishment of equation to evaluate the impact of rain and road sediments to metals in road runoff. Sequential extraction procedure contains five steps for the chemical fractionation of metals. Flame atomic absorption spectrometry (Shimadzu, AA-6800) was used to determine metal speciation concentration, as well as the total and dissolved fractions. The dissolved fractions for both Cu and Zn were dominant in rain. The speciation distribution of Zn was different from that of Cu in road sediments, while speciation distribution of Zn is similar to that of Cu in runoff. The bound to carbonates for both Cu and Zn in road sediments were prone to be dissolved by rain. The levels of Cu and Zn in runoff were not obviously influenced by rain, but significantly influenced by road sediments. The masses for both Cu and Zn among rain, road sediments, and road runoff approximately meet the mass balance equation for all rainfall patterns. Five principal factors were selected for metal regression equation based on PCA, including rainfall, average rainfall intensity, antecedent dry periods, total suspended particles, and temperature. The established regression equations could be used to predict the effect of road runoff on receiving environments.
Aluminium, gallium, and molybdenum toxicity to the tropical marine microalga Isochrysis galbana.
Trenfield, Melanie A; van Dam, Joost W; Harford, Andrew J; Parry, David; Streten, Claire; Gibb, Karen; van Dam, Rick A
2015-08-01
There is a shortage of established chronic toxicity test methods for assessing the toxicity of contaminants to tropical marine organisms. The authors tested the suitability of the tropical microalga Isochrysis galbana for use in routine ecotoxicology and assessed the effects of 72-h exposures to copper (Cu, a reference toxicant), aluminium (Al), gallium (Ga), and molybdenum (Mo), key metals of alumina refinery discharge, on the growth of I. galbana at 3 temperatures: 24 °C, 28 °C, and 31 °C. The sensitivity of both I. galbana and the test method was validated by the response to Cu exposure, with 10% and 50% effect concentrations (EC10 and EC50) of 2.5 μg/L and 18 μg/L, respectively. The EC10 and EC50 values for total Al at 28 °C were 640 μg/L and 3045 μg/L, respectively. The toxicity of both Cu and Al at 24 °C and 31 °C was similar to that at 28 °C. There was no measurable toxicity from dissolved Ga exposures of up to 6000 μg/L or exposures to dissolved Mo of up to 9500 μg/L. Solubility limits at 28 °C for the dissolved fractions (<10 kDa) of Al, Ga, and Mo were approximately 650 μg/L Al, >7000 μg/L Ga, and >6000 μg/L Mo. In test solutions containing >650 μg/L total Al, dissolved and precipitated forms of Al were present, with precipitated Al becoming more dominant as total Al increased. The test method proved suitable for routine ecotoxicology, with I. galbana showing sensitivity to Cu but Al, Ga, and Mo exhibiting little to no toxicity to this species. © 2015 SETAC.
Jiang, Chuanjia; Castellon, Benjamin T.; Matson, Cole W.; Aiken, George R.; Hsu-Kim, Heileen
2017-01-01
The toxicity of soluble metal-based nanomaterials may be due to the uptake of metals in both dissolved and nanoparticulate forms, but the relative contributions of these different forms to overall metal uptake rates under environmental conditions are not quantitatively defined. Here, we investigated the linkage between the dissolution rates of copper(II) oxide (CuO) nanoparticles (NPs) and their bioavailability to Gulf killifish (Fundulus grandis) embryos, with the aim of quantitatively delineating the relative contributions of nanoparticulate and dissolved species for Cu uptake. Gulf killifish embryos were exposed to dissolved Cu and CuO NP mixtures comprising a range of pH values (6.3–7.5) and three types of natural organic matter (NOM) isolates at various concentrations (0.1–10 mg-C L–1), resulting in a wide range of CuO NP dissolution rates that subsequently influenced Cu uptake. First-order dissolution rate constants of CuO NPs increased with increasing NOM concentration and for NOM isolates with higher aromaticity, as indicated by specific ultraviolet absorbance (SUVA), while Cu uptake rate constants of both dissolved Cu and CuO NP decreased with NOM concentration and aromaticity. As a result, the relative contribution of dissolved Cu and nanoparticulate CuO species for the overall Cu uptake rate was insensitive to NOM type or concentration but largely determined by the percentage of CuO that dissolved. These findings highlight SUVA and aromaticity as key NOM properties affecting the dissolution kinetics and bioavailability of soluble metal-based nanomaterials in organic-rich waters. These properties could be used in the incorporation of dissolution kinetics into predictive models for environmental risks of nanomaterials.
Regier, Nicole; Cosio, Claudia; von Moos, Nadia; Slaveykova, Vera I
2015-06-01
In this study, the uptake and sub-toxic effects of CuO nanoparticles (CuO-NPs), dissolved Cu(II) alone or in combination with UV radiation on the aquatic macrophyte Elodea nuttallii were studied. Emphasis was on Cu accumulation, growth, photosynthesis and the oxidative stress related enzymes peroxidase (POD) and superoxide dismutase (SOD). The results showed stronger Cu accumulation in plants exposed to 10 mg L(-1) CuO-NPs, corresponding to 1.4-2 mg L(-1) dissolved Cu(II), than to 256 μg L(-1) Cu(II). However, the ratio between the accumulated Cu and dissolved Cu in CuO treatments was lower than in Cu(II) treatments. Additional UV exposure increased accumulation in both treatments, with the effect being stronger for Cu accumulation from CuO-NPs than for dissolved Cu(II). Photosynthetic capacity was strongly reduced by UV treatment, whereas remained unaffected by Cu(II) or CuO-NP treatments. Similarly, the increase of SOD activity was more pronounced in the UV treatments. On the other hand, POD activity enhancement was strongest in the plants exposed to CuO-NPs for 24 h. Expression of the copper transporter COPT1 as revealed by RT-qPCR was inhibited by Cu(II) and CuO-NP treatment, limiting the uptake of excess Cu into the cells. Overall, the combined exposure of E. nuttallii to UV radiation with CuO-NPs or Cu(II) has a higher impact than exposure to CuO-NPs or Cu(II) alone. The results imply that heavy pollution of natural water with CuO-NPs or dissolved Cu might have stronger effects in combination with natural UV irradiation on organisms in situ. Copyright © 2015 Elsevier Ltd. All rights reserved.
Antarctic snow: metals bound to high molecular weight dissolved organic matter.
Calace, Nicoletta; Nardi, Elisa; Pietroletti, Marco; Bartolucci, Eugenia; Pietrantonio, Massimiliana; Cremisini, Carlo
2017-05-01
In this paper we studied some heavy metals (Cu, Zn, Cd, Pb, As, U) probably associated to high molecular weight organic compounds present in the Antarctic snow. Snow-pit samples were collected and analysed for high molecular weight fraction and heavy metals bound to them by means of ultrafiltration treatment. High molecular weight dissolved organic matter (HMW-DOM) recovered by ultrafiltration showed a dissolved organic carbon concentration (HMW-DOC) of about 18-83% of the total dissolved organic carbon measured in Antarctic snow. The characterisation of HMW-DOM fraction evidenced an ageing of organic compounds going from surface layers to the deepest ones with a shift from aliphatic compounds and proteins/amino sugars to more high unsaturated character and less nitrogen content. The heavy metals associated to HMW-DOM fraction follows the order: Zn > Cu > Pb > Cd ∼ As ∼ U. The percentage fraction of metals bound to HMW-DOM respect to total metal content follows the order: Cu > Pb > Zn, Cd in agreement with humic substance binding ability (Irwing-William series). Going down to depth of trench, all metals except arsenic, showed a high concentration peak corresponding to 2.0-2.5 m layer. This result was attributed to particular structural characteristic of organic matter able to form different type of complexes (1:1, 1:2, 1:n) with metals. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Runkel, R. L.; Jones, P. M.; Elliott, S. M.; Woodruff, L. G.
2017-12-01
Mining sulfide-bearing copper (Cu), nickel (Ni), and platinum-group-elements (PGE) deposits in the Duluth Complex of northeast Minnesota could have detrimental effects on surrounding water resources and associated ecosystems. A study was conducted to 1) assess copper, nickel, and other metal concentrations in surface water, bedrock, streambed sediments, and soils in watersheds where the basal part of the Duluth Complex is exposed or near the land surface; and 2) determine if these concentrations, and metal-bearing deposits, are currently influencing regional water quality in areas of potential base-metal mining. One of the watersheds that was assessed was the Filson Creek watershed, where shallow Cu-Ni-PGE deposits are present. Field water-quality, streambed sediments, soils, bedrock, and streamflow data set were collected in Filson Creek and it's watershed in 2014 and 2015. Surface-water samples were analyzed for 12 trace metals (dissolved and total concentrations), 14 inorganic constituents (dissolved concentrations), alkalinity, 18 O /16O and 2H/1H isotopes, and total and dissolved organic carbon. Background total Cu and Ni concentrations in the creek in 2014 and 2015 ranged from 1.2 to 10.8 micrograms per liter (µg/L), and 1.7 to 8.4 µg/L, respectively. The concentrations of copper, nickel, and other trace metals in surface waters and streambed sediments reflects the geochemistry of underlying rock types and glacially transported unconsolidated material, establishing baseline conditions prior to any mining. Dissolved and total organic carbon (DOC and TOC) concentrations in surface waters are very high compared to most surface waters in Minnesota, ranging from 21.3 to 43.2 milligrams per liter (mg/L), and 22.4 and 53.5 mg/L. Synoptic water-quality and flow data from a tracer test conducted over a stream segment of Filson Creek above a shallow Cu-Ni-PGE deposit (Spruce Road Deposit) was used with the 2014-15 water-quality and synthetic flow data to calibrate the reactive transport model. Results from transport modeling suggest that the high DOC content exert control on copper and other trace metal transport.
Uchimiya, Minori; Bannon, Desmond I
2013-08-14
Biochar is often considered a strong heavy metal stabilizing agent. However, biochar in some cases had no effects on, or increased the soluble concentrations of, heavy metals in soil. The objective of this study was to determine the factors causing some biochars to stabilize and others to dissolve heavy metals in soil. Seven small arms range soils with known total organic carbon (TOC), cation exchange capacity, pH, and total Pb and Cu contents were first screened for soluble Pb and Cu concentrations. Over 2 weeks successive equilibrations using weak acid (pH 4.5 sulfuric acid) and acetate buffer (0.1 M at pH 4.9), Alaska soil containing disproportionately high (31.6%) TOC had nearly 100% residual (insoluble) Pb and Cu. This soil was then compared with sandy soils from Maryland containing significantly lower (0.5-2.0%) TOC in the presence of 10 wt % (i) plant biochar activated to increase the surface-bound carboxyl and phosphate ligands (PS450A), (ii) manure biochar enriched with soluble P (BL700), and (iii) unactivated plant biochars produced at 350 °C (CH350) and 700 °C (CH500) and by flash carbonization (corn). In weak acid, the pH was set by soil and biochar, and the biochars increasingly stabilized Pb with repeated extractions. In pH 4.9 acetate buffer, PS450A and BL700 stabilized Pb, and only PS450A stabilized Cu. Surface ligands of PS450A likely complexed and stabilized Pb and Cu even under acidic pH in the presence of competing acetate ligand. Oppositely, unactivated plant biochars (CH350, CH500, and corn) mobilized Pb and Cu in sandy soils; the putative mechanism is the formation of soluble complexes with biochar-borne dissolved organic carbon. In summary, unactivated plant biochars can inadvertently increase dissolved Pb and Cu concentrations of sandy, low TOC soils when used to stabilize other contaminants.
Grotti, M; Soggia, F; Ardini, F; Magi, E
2011-09-01
In order to provide a new insight into the Antarctic snow chemistry, partitioning of major and trace elements between dissolved and particulate (i.e. insoluble particles, >0.45 μm) phases have been investigated in a number of coastal and inland snow samples, along with their total and acid-dissolvable (0.5% nitric acid) concentrations. Alkaline and alkaline-earth elements (Na, K, Ca, Mg, Sr) were mainly present in the dissolved phase, while Fe and Al were predominantly associated with the particulate matter, without any significant difference between inland and coastal samples. On the other hand, partitioning of trace elements depended on the sampling site position, showing a general decrease of the particulate fraction by moving from the coast to the plateau. Cd, Cu, Pb and Zn were for the most part in the dissolved phase, while Cr was mainly associated with the particulate fraction. Co, Mn and V were equally distributed between dissolved and particulate phases in the samples collected from the plateau and preferentially associated with the particulate in the coastal samples. The correlation between the elements and the inter-sample variability of their concentration significantly decreased for the plateau samples compared to the coastal ones, according to a change in the relative contribution of the metal sources and in good agreement with the estimated marine and crustal enrichment factors. In addition, samples from the plateau were characterised by higher enrichment factors of anthropogenic elements (Cd, Cr, Cu, Pb and Zn), compared to the coastal area. Finally, it was observed that the acid-dissolvable metal concentrations were generally lower than the total concentration values, showing that the acid treatment can dissolve only a given fraction of the metal associated with the particulate (<20% for iron and aluminium).
Goecke, Paul; Ginocchio, Rosanna; Mench, Michel; Neaman, Alexander
2011-07-01
The Puchuncaví valley, central Chile, has been exposed to aerial emissions from a copper smelter. Nowadays, soils in the surroundings are sparsely-vegetated, acidic, and metal-contaminated, and their remediation is needed to reduce environmental risks. We assessed effectiveness of lime, fly ash, compost, and iron grit as amendments to immobilize Cu in soils and promote plant growth. Amended soils were cultivated with Lolium perenne for 60 days under controlled conditions. Total dissolved Cu and Cu2+ activity in the soil solution, ryegrass biomass, and Cu accumulation in plant tissues were measured. Addition of lime and fly ash decreased Cu concentrations and Cu2+ activity in the soil solution, increased plant biomass, and reduced shoot Cu concentration below 22 mg kg(-1) (the phytotoxicity threshold for the species). The most effective amendment with respect to the shoot biomass yield was a combination of lime and compost. Water content of the substrate and the K accumulation were positively correlated with the compost application rate. Compost combined with iron grit decreased dissolved Cu concentrations during the period of highest solubility, i.e., during the first 60 days after the compost application. However, iron grit incorporation into soils amended with lime and compost decreased the shoot biomass of ryegrass.
Sharma, Anitha Kumari; Vezzaro, Luca; Birch, Heidi; Arnbjerg-Nielsen, Karsten; Mikkelsen, Peter Steen
2016-01-01
This study investigated the potential effect of climate changes on stormwater pollution runoff characteristics and the treatment efficiency of a stormwater retention pond in a 95 ha catchment in Denmark. An integrated dynamic stormwater runoff quality and treatment model was used to simulate two scenarios: one representing the current climate and another representing a future climate scenario with increased intensity of extreme rainfall events and longer dry weather periods. 100-year long high-resolution rainfall time series downscaled from regional climate model projections were used as input. The collected data showed that total suspended solids (TSS) and total copper (Cu) concentrations in stormwater runoff were related to flow, rainfall intensity and antecedent dry period. Extreme peak intensities resulted in high particulate concentrations and high loads but did not affect dissolved Cu concentrations. The future climate simulations showed an increased frequency of higher flows and increased total concentrations discharged from the catchment. The effect on the outlet from the pond was an increase in the total concentrations (TSS and Cu), whereas no major effect was observed on dissolved Cu concentrations. Similar results are expected for other particle bound pollutants including metals and slowly biodegradable organic substances such as PAH. Acute toxicity impacts to downstream surface waters seem to be only slightly affected. A minor increase in yearly loads of sediments and particle-bound pollutants is expected, mainly caused by large events disrupting the settling process. This may be important to consider for the many stormwater retention ponds existing in Denmark and across the world.
Cloutier-Hurteau, Benoît; Sauvé, Sébastien; Courchesne, François
2007-12-01
Metal speciation data calculated by modeling could give useful information regarding the fate of metals in the rhizospheric environment. However, no comparative study has evaluated the relative accuracy of speciation models in this microenvironment. Consequently, the present study evaluates the reliability of free Cu ion (Cu2+) activity modeled by WHAM 6 and MINEQL+ 4.5 for 18 bulk and 18 rhizospheric soil samples collected in two Canadian forested areas located near industrial facilities. The modeling of Cu speciation was performed on water extracts using pH, dissolved organic carbon (DOC), major ions, and total dissolved Al, Ca, Cu, Mg, and Zn concentrations as input data. Four scenarios representing the composition of dissolved organic substances using fulvic, humic, and acetic acids were derived from the literature and used in the modeling exercise. Different scenarios were used to contrast soil components (rhizosphere vs bulk) and soil pH levels (acidic vs neutral to alkaline). Reference Cu2+ activity values measured by an ion-selective electrode varied between 0.39 and 41 nM. The model MINEQL+ 4.5 provided good predictions of Cu2+ activities [root-mean-square residual (RMSR)= 0.37], while predictions from WHAM 6 were poor (RMSR = 1.74) because they overestimated Cu complexation with DOC. Modeling with WHAM 6 could be improved by adjusting the proportion of inert DOC and the composition of DOC (RMSR = 0.94), but it remained weaker than predictions with MINEQL+ 4.5. These results suggested that the discrepancies between speciation models were attributed to differences in the binding capacity of humic substances with Cu, where WHAM 6 appeared to be too aggressive. Therefore, we concluded that chemical interactions occurring between Cu and DOC were key factors for an accurate simulation of Cu speciation, especially in rhizospheric forest soils, where high variation of the DOC concentration and composition are observed.
Bu, Hongmei; Wang, Weibo; Song, Xianfang; Zhang, Quanfa
2015-09-01
Dissolved trace elements and physiochemical parameters were analyzed to investigate their physicochemical characteristics and identify their sources at 12 sampling sites of the Jinshui River in the South Qinling Mts., China from October 2006 to November 2008. The two-factor ANOVA indicated significant temporal variations of the dissolved Cu, Fe, Sr, Si, and V (p < 0.001 or p < 0.05). With the exception of Sr (p < 0.001), no significant spatial variations were found. Distributions and concentrations of the dissolved trace elements displayed that dissolved Cu, Fe, Sr, Si, V, and Cr were originated from chemical weathering and leaching from the soil and bedrock. Dissolved Cu, Fe, Sr, As, and Si were also from anthropogenic inputs (farming and domestic effluents). Correlation and regression analysis showed that the chemical and physical processes of dissolved Cu was influenced by water temperature and dissolved oxygen (DO) to some degree. Dissolved Fe and Sr were affected by colloid destabilization or sedimentary inputs. Concentrations of dissolved Si were slightly controlled by biological uptake. Principal component analysis confirmed that Fe, Sr, and V resulted from domestic effluents, agricultural runoff, and confluence, whereas As, Cu, and Si were from agricultural activities, and Cr and Zn through natural processes. The research results provide a reference for ecological restoration and protection of the river environment in the Qinling Mts., China.
NASA Astrophysics Data System (ADS)
Sherman, David M.
2013-10-01
Copper exists as two isotopes: 65Cu (∼30.85%) and 63Cu (∼69.15%). The isotopic composition of copper in secondary minerals, surface waters and oxic groundwaters is 1-12‰ heavier than that of copper in primary sulfides. Changes in oxidation state and complexation should yield substantial isotopic fractionation between copper species but it is unclear to what extent the observed Cu isotopic variations reflect equilibrium fractionation. Here, I calculate the reduced partition function ratios for chalcopyrite (CuFeS2), cuprite (Cu2O), tenorite (CuO) and aqueous Cu+, Cu+2 complexes using periodic and molecular hybrid density functional theory to predict the equilibrium isotopic fractionation of Cu resulting from oxidation of Cu+ to Cu+2 and by complexation of dissolved Cu. Among the various copper(II) complexes in aqueous environments, there is a significant (1.3‰) range in the reduced partition function ratios. Oxidation and congruent dissolution of chalcopyrite (CuFeS2) to dissolved Cu+2 (as Cu(H2O)5+2) yields 65-63δ(Cu+2-CuFeS2) = 3.1‰ at 25 °C; however, chalcopyrite oxidation/dissolution is incongruent so that the observed isotopic fractionation will be less. Secondary precipitation of cuprite (Cu2O) would yield further enrichment of dissolved 65Cu since 65-63δ(Cu+2-Cu2O) is 1.2‰ at 25 °C. However, precipitation of tenorite (CuO) will favor the heavy isotope by +1.0‰ making dissolved Cu isotopically lighter. These are upper-limit estimates for equilibrium fractionation. Therefore, the extremely large (9‰) fractionations between dissolved Cu+2 (or Cu+2 minerals) and primary Cu+ sulfides observed in supergene environments must reflect Rayleigh (open-system) or kinetic fractionation. Finally the previously proposed (Asael et al., 2009) use of δ65Cu in chalcopyrite to estimate the oxidation state of fluids that transported Cu in stratiform sediment-hosted copper deposits is refined.
NASA Astrophysics Data System (ADS)
Kim, Mi Seon; Choi, Man Sik; Kim, Chan-Kook
2016-03-01
To evaluate the applicability of a diffusive gradient in thin film (DGT) probe for monitoring dissolved metals in coastal seawater, DGT-labile metal concentrations were compared with total dissolved metal concentrations using spiked and natural seawater samples in the laboratory and transplanted mussels ( Mytilus galloprovincialis). This was achieved through the simultaneous deployment of DGT probes and transplanted mussels in Ulsan Bay during winter and summer. DGT-labile metal concentrations were 45% (Cu) ~ 90% (Zn) of total dissolved concentrations, and the order of non-labile concentrations was Cu > Pb > Co ~ Ni > Cd ~ Zn in both metal-contaminated and non-contaminated seawater samples, which was similar to the order of stability of metal complexes in the Irving-Williams series. The overall variability of the DGT probe results within and between tanks was less than 10% (relative standard deviation: RSD) for all the metals tested during a 48-h deployment. The accumulation of metals, as determined by DGT probes, represented the spatial gradients better than the transplanted mussels did for all of the metals tested, and the extent of metal accumulation in mussels differed depending on the metal. The comparison of results for the DGT probe and the transplanted mussels in two seasons (winter and summer) suggested that metal accumulation in mussels was controlled by the physiological factors of mussels and partly by their diet (particulate metal loadings). The DGT probe could be used as a monitoring tool for dissolved metals in coastal seawater because its results explained only labile species. When using the DGT probe, slightly more than half of the total dissolved concentration in seawater samples for all the metals investigated displayed timeintegrated properties and distinct spatial gradients from pristine to metal-contaminated seawater.
Smith, Kathleen S.; Ranville, James F.; Lesher, Emily K.; Diedrich, Daniel J.; McKnight, Diane M.; Sofield, Ruth M.
2014-01-01
This study examines the effect on aquatic copper toxicity of the chemical fractionation of fulvic acid (FA) that results from its association with iron and aluminum oxyhydroxide precipitates. Fractionated and unfractionated FAs obtained from streamwater and suspended sediment were utilized in acute Cu toxicity tests on ,i>Ceriodaphnia dubia. Toxicity test results with equal FA concentrations (6 mg FA/L) show that the fractionated dissolved FA was 3 times less effective at reducing Cu toxicity (EC50 13 ± 0.6 μg Cu/L) than were the unfractionated dissolved FAs (EC50 39 ± 0.4 and 41 ± 1.2 μg Cu/L). The fractionation is a consequence of preferential sorption of molecules having strong metal-binding (more aromatic) moieties to precipitating Fe- and Al-rich oxyhydroxides, causing the remaining dissolved FA to be depleted in these functional groups. As a result, there is more bioavailable dissolved Cu in the water and hence greater potential for Cu toxicity to aquatic organisms. In predicting Cu toxicity, biotic ligand models (BLMs) take into account dissolved organic carbon (DOC) concentration; however, unless DOC characteristics are accounted for, model predictions can underestimate acute Cu toxicity for water containing fractionated dissolved FA. This may have implications for water-quality criteria in systems containing Fe- and Al-rich sediment, and in mined and mineralized areas in particular. Optical measurements, such as specific ultraviolet absorbance at 254 nm (SUVA254), show promise for use as spectral indicators of DOC chemical fractionation and inferred increased Cu toxicity.
Balistrieri, L.S.; Blank, R.G.
2008-01-01
In order to evaluate thermodynamic speciation calculations inherent in biotic ligand models, the speciation of dissolved Cd, Cu, Pb, and Zn in aquatic systems influenced by historical mining activities is examined using equilibrium computer models and the diffusive gradients in thin films (DGT) technique. Several metal/organic-matter complexation models, including WHAM VI, NICA-Donnan, and Stockholm Humic model (SHM), are used in combination with inorganic speciation models to calculate the thermodynamic speciation of dissolved metals and concentrations of metal associated with biotic ligands (e.g., fish gills). Maximum dynamic metal concentrations, determined from total dissolved metal concentrations and thermodynamic speciation calculations, are compared with labile metal concentrations measured by DGT to assess which metal/organic-matter complexation model best describes metal speciation and, thereby, biotic ligand speciation, in the studied systems. Results indicate that the choice of model that defines metal/organic-matter interactions does not affect calculated concentrations of Cd and Zn associated with biotic ligands for geochemical conditions in the study area, whereas concentrations of Cu and Pb associated with biotic ligands depend on whether the speciation calculations use WHAM VI, NICA-Donnan, or SHM. Agreement between labile metal concentrations and dynamic metal concentrations occurs when WHAM VI is used to calculate Cu speciation and SHM is used to calculate Pb speciation. Additional work in systems that contain wide ranges in concentrations of multiple metals should incorporate analytical speciation methods, such as DGT, to constrain the speciation component of biotic ligand models. ?? 2008 Elsevier Ltd.
Xiao, Yinlong; Peijnenburg, Willie J G M; Chen, Guangchao; Vijver, Martina G
2018-01-01
Toxicity of metallic nanoparticle suspensions (NP (total) ) is generally assumed to result from the combined effect of the particles present in suspensions (NP (particle) ) and their released ions (NP (ion) ). Evaluation and consideration of how water chemistry affects the particle-specific toxicity of NP (total) are critical for environmental risk assessment of nanoparticles. In this study, it was found that the toxicity of Cu NP (particle) to Daphnia magna, in line with the trends in toxicity for Cu NP (ion) , decreased with increasing pH and with increasing concentrations of divalent cations and dissolved organic carbon (DOC). Without the addition of DOC, the toxicity of Cu NP (total) to D. magna at the LC50 was driven mainly by Cu NP (ion) (accounting for ≥53% of the observed toxicity). However, toxicity of Cu NP (total) in the presence of DOC at a concentration ranging from 5 to 50mg C/L largely resulted from the NP (particle) (57%-85%), which could be attributable to the large reduction of the concentration of Cu NP (ion) and the enhancement of the stability of Cu NP (particle) when DOC was added. Our results indicate that water chemistry needs to be explicitly taken into consideration when evaluating the role of NP (particle) and NP (ion) in the observed toxicity of NP (total) . Copyright © 2017 Elsevier B.V. All rights reserved.
Sun, Fusheng; Li, Yaqing; Wang, Xiang; Chi, Zhilai; Yu, Guanghui
2017-04-01
Understanding the binding characteristics of copper (Cu) to different functional groups in soil dissolved organic matter (DOM) is important to explore Cu toxicity, bioavailability and ultimate fate in the environment. However, the methods used to explore such binding characteristics are still limited. Here, two-dimensional correlation spectroscopy (2DCOS) integrated with Fourier transform infrared (FTIR), 29 Si nuclear magnetic resonance (NMR), 27 Al NMR, and synchrotron-radiation-based FTIR spectromicroscopy were used to explore the binding characteristics of Cu to soil DOM as part of a long-term (23 years) fertilization experiment. Compared with no fertilization and inorganic fertilization (NPK), long-term pig manure fertilization (M) treatment significantly increased the concentration of total and bioavailable Cu in soils. Furthermore, hetero-spectral 2DCOS analyses demonstrated that the binding characteristics of Cu onto functional groups in soil DOM were modified by fertilization regimes. In the NPK treatment, Cu was bound to aliphatic C, whereas in the manure treatment SiO groups had higher affinity toward Cu than aliphatic C. Also, the sequence of binding of functional groups to Cu was modified by the fertilization treatments. Moreover, synchrotron-radiation-based FTIR spectromicroscopy showed that Cu, clay minerals and sesquioxides, and C functional groups were heterogeneously distributed at the micro-scale. Specifically, clay-OH as well as mineral elements had a distribution pattern similar to Cu, but certain (but not all) C forms showed a distribution pattern inconsistent with that of Cu. The combination of synchrotron radiation spectromicroscopy and 2DCOS is a useful tool in exploring the interactions among heavy metals, minerals and organic components in soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Post-depositional behavior of Cu in a metal-mining polishing pond (East Lake, Canada).
Martin, Alan J; Jambor, John L; Pedersen, Tom F; Crusius, John
2003-11-01
The post-depositional behavior of Cu in a gold-mining polishing pond (East Lake, Canada) was assessed after mine closure by examination of porewater chemistry and mineralogy. The near-surface (upper 1.5 cm) sediments are enriched in Cu, with values ranging from 0.4 to 2 wt %. Mineralogical examination revealed that the bulk of the Cu inventory is present as authigenic copper sulfides. Optical microscopy, energy-dispersion spectra, and X-ray data indicate that the main Cu sulfide is covellite (CuS). The formation of authigenic Cu-S phases is supported by the porewater data, which demonstrate that the sediments are serving as a sink for dissolved Cu below sub-bottom depths of 1-2 cm. The zone of Cu removal is consistent with the occurrence of detectable sulfide and the consumption of sulfate. The sediments can be viewed as a passive bioreactorthat permanently removes Cu as insoluble copper sulfides. This process is not unlike that which occurs in other forms of bioremediation, such as wetlands and permeable reactive barriers. Above the zone of Cu removal, dissolved Cu maxima in the interfacial porewaters range from 150 to 450 microg L(-1) and reflect the dissolution of a Cu-bearing phase in the surface sediments. The reactive phase is thought to be a component of treatment sludges delivered to the lake as part of cyanide treatment. Flux calculations indicate that the efflux of dissolved Cu from the sediments to the water column (14-51 microg cm(-2) yr(-1)) can account for the elevated levels of dissolved Cu in lake waters (approximately 50 microg L(-1)). Implications for lake recovery are discussed.
Post-Depositional Behavior of Cu in a Metal-Mining Polishing Pond (East Lake, Canada)
Martin, A.J.; Jambor, J.L.; Pedersen, Thomas F.; Crusius, John
2003-01-01
The post-depositional behavior of Cu in a gold-mining polishing pond (East Lake, Canada) was assessed after mine closure by examination of porewater chemistry and mineralogy. The near-surface (upper 1.5 cm) sediments are enriched in Cu, with values ranging from 0.4 to 2 wt %. Mineralogical examination revealed that the bulk of the Cu inventory is present as authigenic copper sulfides. Optical microscopy, energy-dispersion spectra, and X-ray data indicate that the main Cu sulfide is covellite (CuS). The formation of authigenic Cu-S phases is supported by the porewater data, which demonstrate that the sediments are serving as a sink for dissolved Cu below sub-bottom depths of 1-2 cm. The zone of Cu removal is consistent with the occurrence of detectable sulfide and the consumption of sulfate. The sediments can be viewed as a passive bioreactor that permanently removes Cu as insoluble copper sulfides. This process is not unlike that which occurs in other forms of bioremediation, such as wetlands and permeable reactive barriers. Above the zone of Cu removal, dissolved Cu maxima in the interfacial porewaters range from 150 to 450 ??g L-1 and reflect the dissolution of a Cu-bearing phase in the surface sediments. The reactive phase is thought to be a component of treatment sludges delivered to the lake as part of cyanide treatment. Flux calculations indicate that the efflux of dissolved Cu from the sediments to the water column (14-51 ??g cm-2 yr-1) can account for the elevated levels of dissolved Cu in lake waters (???50 ??g L-1). Implications for lake recovery are discussed.
Wirt, Laurie; Leib, K.J.; Bove, D.J.; Mast, M.A.; Evans, J.B.; Meeker, G.P.
1999-01-01
Prospect Gulch is a major source of iron, aluminum, zinc, and other metals to Cement Creek. Information is needed to prioritize remediation and develop strategies for cleanup of historical abandoned mine sites in Prospect Gulch. Chemical-constituent loads were determined in Prospect Gulch, a high-elevation alpine stream in southwestern Colorado that is affected by natural acid drainage from weathering of hydro-thermally altered igneous rock and acidic metal-laden discharge from historical abandoned mines. The objective of the study was to identify metal sources to Prospect Gulch. A tracer solution was injected into Prospect Gulch during water-quality sampling so that loading of geochemical constituents could be calculated throughout the study reach. A thunderstorm occurred during the tracer study, hence, metal loads were measured for storm-runoff as well as for base flow. Data from different parts of the study reach represents different flow conditions. The beginning of the reach represents background conditions during base flow immediately upstream from the Lark and Henrietta mines (samples PG5 to PG45). Other samples were collected during storm runoff conditions (PG100 to PG291); during the first flush of metal runoff following the onset of rainfall (PG303 to PG504), and samples PG542 to PG700 were collected during low-flow conditions. During base-flow conditions, the percentage increase in loads for major constituents and trace metals was more than an order of magnitude greater than the corresponding 36 % increase in stream discharge. Within the study reach, the highest percentage increases for dissolved loads were 740 % for iron (Fe), 465 % for aluminum (Al), 500 % for lead (Pb), 380 % for copper (Cu), 100 % for sulfate (SO4), and 50 % for zinc (Zn). Downstream loads near the mouth of Prospect Gulch often greatly exceeded the loads generated within the study reach but varied by metal species. For example, the study reach accounts for about 6 % of the dissolved-Fe load, 13 % of the dissolved-Al load, and 18 % of the dissolved-Zn load; but probably contributes virtually all of the dissolved Cu and Pb. The greatest downstream gains in dissolved trace-metal loads occurred near waste-rock dumps for the historical mines. The major sources of trace metals to the study reach were related to mining. The major source of trace metals in the reach near the mouth is unknown, however is probably related to weathering of highly altered igneous rocks, although an unknown component of trace metals could be derived from mining sources The late-summer storm dramatically increased the loads of most dissolved and total constituents. The effects of the storm were divided into two distinct periods; (1) a first flush of higher metal concentrations that occurred soon after rainfall began and (2) the peak discharge of the storm runoff. The first flush contained the highest loads of dissolved Fe, total and dissolved Zn, Cu, and Cd. The larger concentrations of Fe and sulfate in the first flush were likely derived from iron hydroxide minerals such as jarosite and schwertmanite, which are common on mine dumps in the Prospect Gulch drainage basin. Peak storm runoff contained the highest measured loads of total Fe, and of total and dissolved calcium, magnesium, silica and Al, which were probably derived from weathering of igneous rocks and clay minerals in the drainage basin.
The geochemical cycling of trace elements in a biogenic meromictic lake
NASA Astrophysics Data System (ADS)
Balistrieri, Laurie S.; Murray, James W.; Paul, Barbara
1994-10-01
The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d -1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn).
The geochemical cycling of trace elements in a biogenic meromictic lake
Balistrieri, L.S.; Murray, J.W.; Paul, B.
1994-01-01
The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d-1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn). ?? 1994.
Bosse, Casey; Rosen, Gunther; Colvin, Marienne; Earley, Patrick; Santore, Robert; Rivera-Duarte, Ignacio
2014-08-15
The bioavailability and toxicity of copper (Cu) in Shelter Island Yacht Basin (SIYB), San Diego, CA, USA, was assessed with simultaneous toxicological, chemical, and modeling approaches. Toxicological measurements included laboratory toxicity testing with Mytilus galloprovincialis (Mediterranean mussel) embryos added to both site water (ambient) and site water spiked with multiple Cu concentrations. Chemical assessment of ambient samples included total and dissolved Cu concentrations, and Cu complexation capacity measurements. Modeling was based on chemical speciation and predictions of bioavailability and toxicity using a marine Biotic Ligand Model (BLM). Cumulatively, these methods assessed the natural buffering capacity of Cu in SIYB during singular wet and dry season sampling events. Overall, the three approaches suggested negligible bioavailability, and isolated observed or predicted toxicity, despite an observed gradient of increasing Cu concentration, both horizontally and vertically within the water body, exceeding current water quality criteria for saltwater. Published by Elsevier Ltd.
Yang, Jianjun; Zhu, Shenhai; Zheng, Cuiqing; Sun, Lijuan; Liu, Jin; Shi, Jiyan
2015-04-09
Impact of S fertilization on Cu mobility and transformation in contaminated paddy soils has been little reported. In this study, we investigated the dynamics and transformation of dissolved and colloidal Cu in the pore water of a contaminated paddy soil after applying ammonium sulphate (AS) and sulfur coated urea (SCU) with various flooding periods (1, 7 and 60 days). Compared to the control soil, the AS-treated soil released more colloidal and dissolved Cu over the entire flooding period, while the SCU-treated soil had lower colloidal Cu after 7-day flooding but higher colloidal and dissolved Cu after 60-day flooding. Microscopic X-ray fluorescence (μ-XRF) analysis found a close relationship between Fe and Cu distribution on soil colloids after 60-day flooding, implying the formation of colloidal Fe/Cu sulphide coprecipitates. Cu K-edge X-ray absorption near-edge structure (XANES) spectroscopy directly revealed the transformation of outer-sphere complexed Cu(II) species to Cu(II) sulphide and reduced Cu2O in the colloids of S-treated soils after 60-day flooding. These results demonstrated the great influence of S fertilization on pore-water Cu mobility by forming Cu sulphide under flooding conditions, which facilitated our understanding and control of Cu loss in contaminated paddy soils under S fertilization. Copyright © 2015 Elsevier B.V. All rights reserved.
Wu, Yong-li; Shi, Bao-you; Sun, Hui-fang; Zhang, Zhi-huan; Gu, Jun-nong; Wang, Dong-sheng
2013-09-01
To understand the processes of corrosion by-product release and the consequent "red water" problems caused by the variation of water chemical composition in drinking water distribution system, the effect of sulphate and dissolved oxygen (DO) concentration on total iron release in corroded old iron pipe sections historically transporting groundwater was investigated in laboratory using small-scale pipe section reactors. The release behaviors of some low-level metals, such as Mn, As, Cr, Cu, Zn and Ni, in the process of iron release were also monitored. The results showed that the total iron and Mn release increased significantly with the increase of sulphate concentration, and apparent red water occurred when sulphate concentration was above 400 mg x L(-1). With the increase of sulfate concentration, the effluent concentrations of As, Cr, Cu, Zn and Ni also increased obviously, however, the effluent concentrations of these metals were lower than the influent concentrations under most circumstances, which indicated that adsorption of these metals by pipe corrosion scales occurred. Increasing DO within a certain range could significantly inhibit the iron release.
Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Scarponi, Giuseppe
2011-12-01
The study reports for the first time on the heavy metal contamination of the waters surrounding a shipwreck lying on the sea floor. Square wave anodic stripping voltammetry has been used for a survey of the total and dissolved Cd, Pb and Cu contents of the seawater at the site of the sinking of the Nicole M/V (Coastal Adriatic Sea, Italy). Results show that the hulk has a considerable impact as regards all three metals in the bottom water, especially for the particulate fraction concentrations, which increased by factors of ≈ 9 (Cd), ≈ 3 (Pb) and ≈ 5 (Cu). The contaminated plume extended downstream for about 2 miles. Much lower contamination was observed for dissolved bottom concentrations; nevertheless Pb (0.56 ± 0.03 nmol/L) is higher than the Italian legal limits established for 2015 and Cd (0.23 ± 0.03 nmol/L) is very close the limit of Cd will be exceeded if the hulk is not removed. Copyright © 2011. Published by Elsevier Ltd.
Isotopic variations of dissolved copper and zinc in stream waters affected by historical mining
Borrok, D.M.; Nimick, D.A.; Wanty, R.B.; Ridley, W.I.
2008-01-01
Zinc and Cu play important roles in the biogeochemistry of natural systems, and it is likely that these interactions result in mass-dependent fractionations of their stable isotopes. In this study, we examine the relative abundances of dissolved Zn and Cu isotopes in a variety of stream waters draining six historical mining districts located in the United States and Europe. Our goals were to (1) determine whether streams from different geologic settings have unique or similar Zn and Cu isotopic signatures and (2) to determine whether Zn and Cu isotopic signatures change in response to changes in dissolved metal concentrations over well-defined diel (24-h) cycles. Average ??66Zn and ??65Cu values for streams varied from +0.02??? to +0.46??? and -0.7??? to +1.4???, respectively, demonstrating that Zn and Cu isotopes are heterogeneous among the measured streams. Zinc or Cu isotopic changes were not detected within the resolution of our measurements over diel cycles for most streams. However, diel changes in Zn isotopes were recorded in one stream where the fluctuations of dissolved Zn were the largest. We calculate an apparent separation factor of ???0.3??? (66/64Zn) between the dissolved and solid Zn reservoirs in this stream with the solid taking up the lighter Zn isotope. The preference of the lighter isotope in the solid reservoir may reflect metabolic uptake of Zn by microorganisms. Additional field investigations must evaluate the contributions of soils, rocks, minerals, and anthropogenic components to Cu and Zn isotopic fluxes in natural waters. Moreover, rigorous experimental work is necessary to quantify fractionation factors for the biogeochemical reactions that are likely to impact Cu and Zn isotopes in hydrologic systems. This initial investigation of Cu and Zn isotopes in stream waters suggests that these isotopes may be powerful tools for probing biogeochemical processes in surface waters on a variety of temporal and spatial scales.
Banas, D; Marin, B; Skraber, S; Chopin, E I B; Zanella, A
2010-02-01
Copper, a priority substance on the EU-Water Framework Directive list, is widely used to protect grapevines against fungus diseases. Many vineyards being located on steep slopes, large amounts of Cu could be discharged in downstream systems by runoff water. The efficiency of stormwater detention basins to retain copper in a vineyard catchment was estimated. Suspended solids, dissolved (Cu(diss)) and total Cu (Cu(tot)) concentrations were monitored in runoff water, upstream, into and downstream from a detention pond. Mean Cu(tot) concentrations in entering water was 53.6 microg/L whereas it never exceeded 2.4 microg/L in seepage. Cu(tot) concentrations in basin water (>100 microg/L in 24% of the samples) exceeded LC(50) values for several aquatic animals. Copper was principally sequestered by reduced compounds in the basin sediments (2/3 of Cu(tot)). Metal sequestration was reversible since sediment resuspension resulted in Cu remobilization. Wind velocity controlled resuspension, explained 70% of Cu(diss) variability and could help predicting Cu mobilization. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Szymczycha, Beata; Kroeger, Kevin D.; Pempkowiak, Janusz
2016-01-01
Fluxes of dissolved trace metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) via groundwater discharge along the southern Baltic Sea have been assessed for the first time. Dissolved metal concentrations in groundwater samples were less variable than in seawater and were generally one or two orders of magnitude higher: Cd (2.1–2.8 nmol L− 1), Co (8.70–8.76 nmol L− 1), Cr (18.1–18.5 nmol L− 1), Mn (2.4–2.8 μmol L− 1), Pb (1.2–1.5 nmol L− 1), Zn (33.1–34.0 nmol L− 1). Concentrations of Cu (0.5–0.8 nmol L− 1) and Ni (4.9–5.8 nmol L− 1) were, respectively, 32 and 4 times lower, than in seawater. Groundwater-derived trace metal fluxes constitute 93% for Cd, 80% for Co, 91% for Cr, 6% for Cu, 66% for Mn, 4% for Ni, 70% for Pb and 93% for Zn of the total freshwater trace metal flux to the Bay of Puck. Groundwater-seawater mixing, redox conditions and Mn-cycling are the main processes responsible for trace metal distribution in groundwater discharge sites.
Shulkin, Vladimir; Zhang, Jing
2014-11-15
This paper compares the distributions of dissolved and particulate forms of Mn, Fe, Ni, Cu, Zn, Cd, and Pb in the estuaries of the largest rivers in East Asia: the Amur River and the Changjiang (Yangtze River). High suspended solid concentrations, elevated pH, and relatively low dissolved trace metal concentrations are characteristics of the Changjiang. Elevated dissolved Fe and Mn concentrations, neutral pH, and relatively low suspended solid concentrations are characteristics of the Amur River. The transfer of dissolved Fe to suspended forms is typical in the Amur River estuary, though Cd and Mn tend to mobilize to solution, and Cu and Ni are diluted in the estuarine system. Metal concentrations in suspended matter in the Amur River estuary are controlled by the ratio of terrigenous riverine material, enriched in Al and Fe, and marine biogenic particles, enriched in Cu, Mn, Cd, and in some cases Ni. The increase in dissolved forms of Mn, Fe, Ni, Cu, Cd, and Pb compared with river end-member is unique to the Changjiang estuary. Particle-solution interactions are not reflected in bulk suspended-solid metal concentrations in the Changjiang estuary due to the dominance of particulate forms of these metals. Cd is an exception in the Changjiang estuary, where the increase in dissolved Cd is of comparable magnitude to the decrease in particulate Cd. Despite runoff in the Amur River being lower than that in the Changjiang, the fluxes of dissolved Mn, Zn and Fe in the Amur River exceed those in the Changjiang. Dissolved Ni, and Cd fluxes are near equal in both estuaries, but dissolved Cu is lower in the Amur River estuary. The hydrological and physico-chemical river characteristics are dominated at the assessment of river influence on the adjoining coastal sea areas despite differences in estuarine processes. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Ruixia; Lead, Jamie R.; Zhang, Hao
2013-05-01
Cross flow ultrafiltration (CFUF) and diffusive gradients in thin films (DGT) with open pore gel (OP) and restricted pore gel (RP) were used to measure trace metal speciation in selected UK freshwaters. The proportions of metals present in particulate forms (>1 μm) varied widely between 40-85% Pb, 60-80% Al, 7-56% Mn, 10-49% Cu, 0-55% Zn, 20-38% Cr, 20-30% Fe, 6-25% Co, 5-22% Cd and <7% Ni. In the colloidal fraction (2 kDa-1 μm) values varied between 53-91% Pb, 33-55% Al, 21-55% Cu, 20-44% Fe, 34-36% Cr, 20-40% Cd, 7-28% Co and Ni, 2-32% Zn and <8% Mn. Wide variations were also observed in the ultrafiltered fraction (<2 kDa). These results indicated that colloids indeed influenced the occurrence and transport of Al, Fe, Cr, Co, Ni, Cu, Zn, Cr and Pb metals in rivers, while inorganic or organic colloids did not exert an important control on Mn transport in the selected freshwaters. Of total species, total labile metal measured by DGT-OP accounted for 1.4-50% for Al, Fe, Co, Ni, Cu, Cd and Pb in all selected waters. Of these metals total labile Pb concentration was the lowest with value less than 1.4% although this value slightly increased after deducting particulate fractions. In some waters, a majority of total Mn, Zn and Cr is DGT labile, in which the DGT labile Mn fraction accounted for 98-118% of the total dissolved phase. In most cases, the inorganic labile concentration measured by DGT-RP was lower than the total labile metal concentration. By the combination of CFUF and DGT techniques, the concentrations of total labile and inorganic labile metal species in CFUF-derived truly dissolved phase were measured in four water samples. 100% of ultrafiltered Mn species was found to be total DGT labile. The proportions of total labile metal species were lower than those of ultrafiltered fraction for Al, Fe, Co, Ni, Cu, Cd and Pb in all selected waters, and Cr and Zn in some cases, indicating a large amount of natural complexing ligands with smaller size for the metals to form kinetically inert species or thermodynamically stable complexes. Observed discrepancies in metal speciation between metals and within sampling sites were related to the differences in the characteristics of the metals and the nature of water sources.
Good, J F; O'Sullivan, A D; Wicke, D; Cochrane, T A
2012-01-01
In order to evaluate the influence of substrate composition on stormwater treatment and hydraulic effectiveness, mesocosm-scale (180 L, 0.17 m(2)) laboratory rain gardens were established. Saturated (constant head) hydraulic conductivity was determined before and after contaminant (Cu, Zn, Pb and nutrients) removal experiments on three rain garden systems with various proportions of organic topsoil. The system with only topsoil had the lowest saturated hydraulic conductivity (160-164 mm/h) and poorest metal removal efficiency (Cu ≤ 69.0% and Zn ≤ 71.4%). Systems with sand and a sand-topsoil mix demonstrated good metal removal (Cu up to 83.3%, Zn up to 94.5%, Pb up to 97.3%) with adequate hydraulic conductivity (sand: 800-805 mm/h, sand-topsoil: 290-302 mm/h). Total metal amounts in the effluent were <50% of influent amounts for all experiments, with the exception of Cu removal in the topsoil-only system, which was negligible due to high dissolved fraction. Metal removal was greater when effluent pH was elevated (up to 7.38) provided by the calcareous sand in two of the systems, whereas the topsoil-only system lacked an alkaline source. Organic topsoil, a typical component in rain garden systems, influenced pH, resulting in poorer treatment due to higher dissolved metal fractions.
Influence of flow-through and renewal exposures on the toxicity of copper to rainbow trout
Welsh, P.G.; Lipton, J.; Mebane, C.A.; Marr, J.C.A.
2008-01-01
We examined changes in water chemistry and copper (Cu) toxicity in three paired renewal and flow-through acute bioassays with rainbow trout (Oncorhynchus mykiss). Test exposure methodology influenced both exposure water chemistry and measured Cu toxicity. Ammonia and organic carbon concentrations were higher and the fraction of dissolved Cu lower in renewal tests than in paired flow-through tests. Cu toxicity was also lower in renewal tests; 96 h dissolved Cu LC50 values were 7-60% higher than LC50s from matching flow-through tests. LC50 values in both types of tests were related to dissolved organic carbon (DOC) concentrations in exposure tanks. Increases in organic carbon concentrations in renewal tests were associated with reduced Cu toxicity, likely as a result of the lower bioavailability of Cu-organic carbon complexes. The biotic ligand model of acute Cu toxicity tended to underpredict toxicity in the presence of DOC. Model fits between predicted and observed toxicity were improved by assuming that only 50% of the measured DOC was reactive, and that this reactive fraction was present as fulvic acid. ?? 2007 Elsevier Inc. All rights reserved.
Nimick, D.A.; Gurrieri, J.T.; Furniss, G.
2009-01-01
Methods for assessing natural background water quality of streams affected by historical mining are vigorously debated. An empirical method is proposed in which stream-specific estimation equations are generated from relationships between either pH or dissolved Cu concentration in stream water and the Fe/Cu concentration ratio in Fe-precipitates presently forming in the stream. The equations and Fe/Cu ratios for pre-mining deposits of alluvial ferricrete then were used to reconstruct estimated pre-mining longitudinal profiles for pH and dissolved Cu in three acidic streams in Montana, USA. Primary assumptions underlying the proposed method are that alluvial ferricretes and modern Fe-precipitates share a common origin, that the Cu content of Fe-precipitates remains constant during and after conversion to ferricrete, and that geochemical factors other than pH and dissolved Cu concentration play a lesser role in determining Fe/Cu ratios in Fe-precipitates. The method was evaluated by applying it in a fourth, naturally acidic stream unaffected by mining, where estimated pre-mining pH and Cu concentrations were similar to present-day values, and by demonstrating that inflows, particularly from unmined areas, had consistent effects on both the pre-mining and measured profiles of pH and Cu concentration. Using this method, it was estimated that mining has affected about 480 m of Daisy Creek, 1.8 km of Fisher Creek, and at least 1 km of Swift Gulch. Mean values of pH decreased by about 0.6 pH units to about 3.2 in Daisy Creek and by 1-1.5 pH units to about 3.5 in Fisher Creek. In Swift Gulch, mining appears to have decreased pH from about 5.5 to as low as 3.6. Dissolved Cu concentrations increased due to mining almost 40% in Daisy Creek to a mean of 11.7 mg/L and as much as 230% in Fisher Creek to 0.690 mg/L. Uncertainty in the fate of Cu during the conversion of Fe-precipitates to ferricrete translates to potential errors in pre-mining estimates of as much as 0.25 units for pH and 22% for dissolved Cu concentration. The method warrants further testing in other mined and unmined watersheds. Comparison of pre-mining water-quality estimates derived from the ferricrete and other methods in single watersheds would be particularly valuable. The method has potential for use in monitoring remedial efforts at mine sites with ferricrete deposits. A reasonable remediation objective might be realized when the downstream pattern of Fe/Cu ratios in modern streambed Fe-precipitates corresponds to the pattern in pre-mining alluvial ferricrete deposits along a stream valley.
Slack, L.J.
1987-01-01
Lake Tuscaloosa, created in 1969 by the impoundment of North River, provides the primary water supply for Tuscaloosa, Alabama , and surrounding areas. This report describes the percent contribution of major tributaries to the mean inflow to the lake; water quality; and changes in water quality in the lake and selected tributaries. During base flow, about 60% of the total flow into Lake Tuscaloosa is contributed by Binion and Carroll Creeks, which drain only 22% of the Lake Tuscaloosa basin. Binion and Carroll Creek basins are underlain primarily by sand and gravel deposits of the Coker Formation. Mean inflow to the lake was 1,150 cu ft/sec during 1983, a wet year, and 450 cu ft/sec during 1985, a relatively dry year. More than 80% of the total inflow during both years was contributed by North River and Binion, Cripple, and Carroll Creeks. About 59% was contributed by North River during those years. Except for pH, sulfate, and dissolved and total recoverable iron and manganese, the water quality of the tributaries is generally within drinking water limits and acceptable for most uses. The water quality of Lake Tuscaloosa is generally within drinking water limits and acceptable for most uses. The maximum and median concentrations of sulfate increased every year at the dam from 1979 to 1985 (7.2 to 18 mg/L and 6.2 to 14 mg/L, respectively). The dissolved solids concentrations for water at the dam have varied (1979-86) from 27 to 43 mg/L; the sulfate, 5.2 to 18 mg/L; and the dissolved iron, 10 to 250 micrograms/L--all within the recommended drinking water limits. However, concentrations of dissolved manganese and total recoverable iron and manganese at the dam commonly exceeded the recommended drinking water limits. In November 1985, after the summer warmup and increase in biological activity, the water quality at five depth profiles sites on Lake Tuscaloosa was acceptable for most uses, generally. However, a dissolved oxygen concentration of 1 mg/L or less was observed within 5 to 10 ft of the bottom for several depth profiles. At depths > 35 to 40 ft (out of a total depth of about 50 to 100 ft) the dissolved oxygen concentration was < 5 mg/L at several sites. By mid-January 1986, the temperature and dissolved oxygen depth profiles were virtually constant from top to bottom of the lake at all five sites; this indicated that lake turnover was complete. However, significant variation existed in pH depth profiles. (Author 's abstract)
Luoma, S.N.; VanGeen, A.; Lee, B.-G.; Cloern, J.E.
1998-01-01
The 1994 spring phytoplankton bloom in South San Francisco Bay caused substantial reductions in concentrations of dissolved Cd, Ni, and Zn, but not Cu. We estimate that the equivalent of ~60% of the total annual input of Cd, Ni, and Zn from local waste-water treatment plants is cycled through the phytoplankton in South Bay. The results suggest that processes that affect phytoplankton bloom frequency or intensity in estuaries (e.g. nutrient enrichment) may also affect metal trapping. The bloom was characterized by hydrographic surveys conducted at weekly intervals for 9 weeks. Metal samples were collected from the water column on three occasions, timed to bracket the period when the bloom was predicted. Factors that might confound observations of biological influences, such as freshwater inputs, were relatively constant during the study. Before the bloom, concentrations of dissolved Cd were 0.81 ?? 0.02 nmol kg-1, Zn concentrations were 19.8 ?? 1.5 nmol kg-1, Ni were 42 ?? 1.4 nmol kg-1, and Cu were 37 ?? 1.4 nmol kg-1. The values are elevated relative to riverine and coastal end-members, reflecting inputs from wastewater and(or) sediments. At the height of the bloom, dissolved Zn, Cd, and Ni were reduced to 19, 50, and 75% of their prebloom concentrations, respectively. Dissolved Cu concentrations increased 20%. The mass of Cd taken up by phytoplankton was similar to the mass of Cd removed from solution if particle settling was considered, and Cd concentrations estimated in phytoplankton were higher than concentrations in suspended particulate material (SPM). Particulate concentrations of Zn and Ni during the bloom appeared to be dominated by the influence of changes in resuspension of Zn- and Ni-rich sediments.
NASA Astrophysics Data System (ADS)
Cheng, Bo; Liu, Ying; Yang, Hongsheng; Song, Yi; Li, Xian
2014-09-01
Shrimps ( Litopenaeus vannamei) were intensively cultured in a recirculating aquaculture system for 98 days to investigate effects of 0.3 mg/L Cu on its performance, Cu budget, and Cu distribution. Shrimps in Cu-treated systems had greater mean final weight (11.10 vs 10.50 g), body length (107.23 vs 106.42 mm), survival rate (67.80% vs 66.40%), and yield (6.42 vs 5.99 kg/m3), and lower feed conversion ratio (1.20 vs 1.29) than those in control systems but the differences were not significant. Vibrio numbers remained stable (104-106 colony forming units/mL) in the rearing tanks of both control and treated systems. Total ammonium-N, nitrite-N, nitrate-N, pH, chemical oxygen demand, 5-day carbonaceous biochemical oxygen demand, and total suspended solids were similar in controls and treatments. Dissolved Cu concentration in the treated systems decreased from 0.284 to 0.089 mg/L while in the control systems it increased from 0.006 2 to 0.018 mg/L. The main sources of Cu in the treated systems were the artificially added component (75.7% of total input), shrimp feed (21.0%), water (2.06%), and shrimp biomass (1.22%). The major outputs of Cu occurred via the mechanical filter (41.7%), water renewal (15.6%), and draining of the sediment trap (15.1%). The foam fractionator removed only 0.69% of total Cu input. Harvested shrimp biomass accounted for 11.68% of Cu input. The Cu concentration of shrimps in the Cu-treated systems (30.70 mg/kg wet weight) was significantly higher than that in control systems (22.02 mg/kg). Both were below the maximum permissible concentration (50 mg/kg) for Cu in seafood for human consumption in China. Therefore, recirculating systems can be used for commercial on-growing of Litopenaeus vannamei without loss of shrimp quality, even in water polluted by 0.30 mg/L Cu. The mechanical filter is the main route for Cu removal.
Bioretention storm water control measures decrease the toxicity of copper roof runoff.
LaBarre, William J; Ownby, David R; Rader, Kevin J; Lev, Steven M; Casey, Ryan E
2017-06-01
The present study evaluated the ability of 2 different bioretention storm water control measures (SCMs), planter boxes and swales, to decrease the toxicity of sheet copper (Cu) roofing runoff to Daphnia magna. The present study quantified changes in storm water chemistry as it passed through the bioretention systems and utilized the biotic ligand model (BLM) to assess whether the observed D. magna toxicity could be predicted by variations found in water chemistry. Laboratory toxicity tests were performed using select storm samples with D. magna cultured under low ionic strength conditions that were appropriate for the low ionic strength of the storm water samples being tested. The SCMs decreased toxicity of Cu roof runoff in both the BLM results and the storm water bioassays. Water exiting the SCMs was substantially higher than influent runoff in pH, ions, alkalinity, and dissolved organic carbon and substantially lower in total and dissolved Cu. Daphnids experienced complete mortality in untreated runoff from the Cu roof (the SCM influent); however, for planter and swale effluents, survival averaged 86% and 95%, respectively. The present study demonstrated that conventional bioretention practices, including planter boxes and swales, are capable of decreasing the risk of adverse effects from sheet Cu roof runoff to receiving systems, even before considering dilution of effluents in those receiving systems and associated further reductions in copper bioavailability. Environ Toxicol Chem 2017;36:1680-1688. © 2016 SETAC. © 2016 SETAC.
NASA Astrophysics Data System (ADS)
Stolpe, Björn; Guo, Laodong; Shiller, Alan M.; Aiken, George R.
2013-03-01
Water samples were collected from six small rivers in the Yukon River basin in central Alaska to examine the role of colloids and organic matter in the transport of trace elements in Northern high latitude watersheds influenced by permafrost. Concentrations of dissolved organic carbon (DOC), selected elements (Al, Si, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Ba, Pb, U), and UV-absorbance spectra were measured in 0.45 μm filtered samples. 'Nanocolloidal size distributions' (0.5-40 nm, hydrodynamic diameter) of humic-type and chromophoric dissolved organic matter (CDOM), Cr, Mn, Fe, Co, Ni, Cu, Zn, and Pb were determined by on-line coupling of flow field-flow fractionation (FFF) to detectors including UV-absorbance, fluorescence, and ICP-MS. Total dissolved and nanocolloidal concentrations of the elements varied considerably between the rivers and between spring flood and late summer base flow. Data on specific UV-absorbance (SUVA), spectral slopes, and the nanocolloidal fraction of the UV-absorbance indicated a decrease in aromaticity and size of CDOM from spring flood to late summer. The nanocolloidal size distributions indicated the presence of different 'components' of nanocolloids. 'Fulvic-rich nanocolloids' had a hydrodynamic diameter of 0.5-3 nm throughout the sampling season; 'organic/iron-rich nanocolloids' occurred in the <8 nm size range during the spring flood; whereas 'iron-rich nanocolloids' formed a discrete 4-40 nm components during summer base flow. Mn, Co, Ni, Cu and Zn were distributed between the nanocolloid components depending on the stability constant of the metal (+II)-organic complexes, while stronger association of Cr to the iron-rich nanocolloids was attributed to the higher oxidation states of Cr (+III or +IV). Changes in total dissolved element concentrations, size and composition of CDOM, and occurrence and size of organic/iron and iron-rich nanocolloids were related to variations in their sources from either the upper organic-rich soil or the deeper mineral layer, depending on seasonal variations in hydrological flow patterns and permafrost dynamics.
Diaz, X.; Johnson, W.P.; Fernandez, D.; Naftz, D.L.
2009-01-01
The characterization of trace elements in terms of their apportionment among dissolved, macromolecular, nano- and micro-particulate phases in the water column of the Great Salt Lake carries implications for the potential entry of toxins into the food web of the lake. Samples from the anoxic deep and oxic shallow brine layers of the lake were fractionated using asymmetric flow field-flow fractionation (AF4). The associated trace elements were measured via online collision cell inductively-coupled plasma mass spectrometry (CC-ICP-MS). Results showed that of the total (dissolved + particulate) trace element mass, the percent associated with particulates varied from negligible (e.g. Sb), to greater than 50% (e.g. Al, Fe, Pb). Elements such as Cu, Zn, Mn, Co, Au, Hg, and U were associated with nanoparticles, as well as being present as dissolved species. Particulate-associated trace elements were predominantly associated with particulates larger than 450 nm in size. Among the smaller nanoparticulates (<450 nm), some trace elements (Ni, Zn, Au and Pb) showed higher percent mass (associated with nanoparticles) in the 0.9-7.5 nm size range relative to the 10-250 nm size range. The apparent nanoparticle size distributions were similar between the two brine layers; whereas, important differences in elemental associations to nanoparticles were discerned between the two layers. Elements such as Zn, Cu, Pb and Mo showed increasing signal intensities from oxic shallow to anoxic deep brine, suggesting the formation of sulfide nanoparticles, although this may also reflect association with dissolved organic matter. Aluminum and Fe showed greatly increased concentration with depth and equivalent size distributions that differed from those of Zn, Cu, Pb and Mo. Other elements (e.g. Mn, Ni, and Co) showed no significant change in signal intensity with depth. Arsenic was associated with <2 nm nanoparticles, and showed no increase in concentration with depth, possibly indicating dissolved arsenite. Mercury was associated with <2 nm nanoparticles, and showed greatly increased concentration with depth, possibly indicating association with dissolved organic matter. ?? 2009 Elsevier Ltd.
Zhang, Ruihong; Cho, Seonghyuk; Lim, Daw Gen; ...
2016-03-15
We found that bulk metals and metal chalcogenides dissolve in primary amine–dithiol solvent mixtures at ambient conditions. Thin-films of CuS, SnS, ZnS, Cu 2Sn(Sx,Se 1-x) 3, and Cu 2ZnSn(SxSe 1-x) 4 (0 ≤ x ≤ 1) were deposited using the as-dissolved solutions. Furthermore, Cu 2ZnSn(SxSe 1-x) 4 solar cells with efficiencies of 6.84% and 7.02% under AM1.5 illumination were fabricated from two example solution precursors, respectively.
Kasemets, Kaja; Suppi, Sandra; Künnis-Beres, Kai; Kahru, Anne
2013-03-18
A suite of eight tentatively oxidative stress response-deficient Saccharomyces cerevisiae BY4741 single-gene mutants (sod1Δ, sod2Δ, yap1Δ, cta1Δ, ctt1Δ, gsh1Δ, glr1Δ, and ccs1Δ) and one copper-vulnerable mutant (cup2Δ) was used to elucidate weather the toxicity of CuO nanoparticles to S. cerevisiae is mediated by oxidative stress (OS). Specifically, sensitivity profiles of mutants' phenotypes and wild-type (wt) upon exposure to nano-CuO were compared. As controls, CuSO4 (solubility), bulk-CuO (size), H2O2, and menadione (OS) were used. Growth inhibition of wt and mutant strains was studied in rich YPD medium and cell viability in deionized water (DI). Dissolved Cu-ions were quantified by recombinant metal-sensing bacteria and chemical analysis. To wt strain nano-CuO was 32-fold more toxic than bulk-CuO: 24-h IC50 4.8 and 155 mg/L in DI and 643 and >20000 mg/L in YPD, respectively. In toxicant-free YPD medium, all mutants had practically similar growth patterns as wt. However, the mutant strains sod1Δ, sod2Δ, ccs1Δ, and yap1Δ showed up to 12-fold elevated sensitivity toward OS standard chemicals menadione and H2O2 but not to nano-CuO, indicating that CuO nanoparticles exerted toxicity to yeast cells via different mechanisms. The most vulnerable strain to all studied Cu compounds was the copper stress response-deficient strain cup2Δ (∼16-fold difference with wt), indicating that the toxic effect of CuO (nano)particles proceeds via dissolved Cu-ions. The dissolved copper solely explained the toxicity of nano-CuO in DI but not in YPD. Assumingly, in YPD nano-CuO acquired a coating of peptides/proteins and sorbed onto the yeast's outer surface, resulting in their increased solubility in the close vicinity of yeast cells and increased uptake of Cu-ions that was not registered by the assays used for the analysis of dissolved Cu-ions in the test medium. Lastly, as yeast retained its viability in DI even by 24th hour of incubation, the profiling of the acute basal toxicity of chemicals toward yeasts may be conducted in DI.
NASA Astrophysics Data System (ADS)
Trocine, Robert P.; Trefry, John H.
1988-04-01
Suspended particles were collected from an area of active hydrothermal venting at the Trans-Atlantic Geotraverse (TAG) Hydrothermal Field on the Mid-Atlantic Ridge and analyzed for Fe, Mn, Cd, Zn, Cu, V, Ni, Cr, Pb, Mg, Ca, Al and Si. Rapid advection of vent-derived precipitates produced a lens with total suspended matter (TSM) loadings of 14-60 μg/l at 200-700 m above the seafloor; TSM concentrations > 60 μg/l were observed only at near-vent sites. The distribution of suspended particles correlated well with increased dissolved Mn concentrations and particulate Fe values near the vent source. Particulate Fe values decreased linearly relative to TSM concentrations as hydrothermal precipitates mixed with background suspended matter. Near-vent precipitates were characterized by up to 35% Fe, 2% Zn, 0.6% Cu and > 100 μg/g Cd. In comparison to Fe, particulate Cd, Zn and Cu values decreased dramatically away from the vent source. This trend supports differential settling and/or dissolution of Cd-, Zn- and Cu-bearing phases. Particulate Mn and Fe values were inversely related with only 50 μg Mn/g in the near-vent particles. At near-vent sites, > 99% of the total Mn was in solution; this fraction decreased to 75-80% at background TSM values. In contrast to Cd, Zn and Cu, particulate V levels show a continuous, linear decrease with particulate Fe values. This trend is explained by adsorption of V on Fe-oxides in the vent plume. Scavenging of Cr, Pb and Mg by hydrothermal precipitates is also suggested by the data. Nickel and Al values were low in near-vent particles at < 100 and < 3 μg/g, respectively. The complementary behavior of dissolved Mn and particulate trace metals provides a useful framework for studying broad aspects of hydrothermal plume processes.
Eighteen Dutch soils were extracted in aqueous solutions at varying pH. Extracts were analyzed for Cd, Cu, Ni, Pb and Zn by ICP-AES. Extract dissolved organic carbon (DOC) was also concentrated onto a macroreticular resin and fractionation into three operationally defined fract...
With the growing availability and use of copper-based nanomaterials (Cu-NMs), there is increasing concern regarding their release and potential impact on the environment. In this study, the short term (≤5 d) aging profile and the long-term (135 d) speciation of dissolved Cu, cop...
North Fork Clear Creek (NFCC) in Colorado, an acid-mine drainage (AMD) impacted stream, was chosen to examine the distribution of dissolved and particulate Cu, Fe, Mn, and Zn in the water column, with respect to seasonal hydrologic controls. NFCC is a high-gradient stream with d...
Schemel, L.E.; Kimball, B.A.; Bencala, K.E.
2000-01-01
Stream discharges and concentrations of dissolved and colloidal metals (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn), SO4, and dissolved silica were measured to identify chemical transformations and determine mass transports through two mixing zones in the Animas River that receive the inflows from Cement and Mineral Creeks. The creeks were the dominant sources of Al, Cu, Fe, and Pb, whereas the upstream Animas River supplied about half of the Zn. With the exception of Fe, which was present in dissolved and colloidal forms, the metals were dissolved in the acidic, high-SO4 waters of Cement Creek (pH 3.8). Mixing of Cement Creek with the Animas River increased pH to near-neutral values and transformed Al and some additional Fe into colloids which also contained Cu and Pb. Aluminium and Fe colloids had already formed in the mildly acidic conditions in Mineral Creek (pH 6.6) upstream of the confluence with the Animas River. Colloidal Fe continued to form downstream of both mixing zones. The Fe- and Al-rich colloids were important for transport of Cu, Pb, and Zn, which appeared to have sorbed to them. Partitioning of Zn between dissolved and colloidal phases was dependent on pH and colloid concentration. Mass balances showed conservative transports for Ca, Mg, Mn, SO4, and dissolved silica through the two mixing zones and small losses (< 10%) of colloidal Al, Fe and Zn from the water column.
Sánchez-Marín, Paula; Santos-Echeandía, Juan; Nieto-Cid, Mar; Alvarez-Salgado, Xosé Antón; Beiras, Ricardo
2010-01-31
Water samples of contrasting origin, including natural seawater, two sediment elutriates and sewage-influenced seawater, were collected and obtained to examine the effect of the dissolved organic matter (DOM) present on metal bioavailability. The carbon content (DOC) and the optical properties (absorbance and fluorescence) of the coloured DOM fraction (CDOM) of these materials were determined. Cu and Pb complexation properties were measured by anodic stripping voltammetry (ASV) and the effect of DOM on Cu and Pb bioavailability was studied by means of the Paracentrotus lividus embryo-larval bioassay. Sediment elutriates and sewage-influenced water (1) were enriched 1.4-1.7 times in DOC; (2) absorbed and reemitted more light; and (3) presented higher Cu complexation capacities (L(Cu)) than the natural seawater used for their preparation. L(Cu) varied from 0.08 microM in natural seawater to 0.3 and 0.5 microM in sediment elutriates and sewage-influenced water, respectively. Differences in DOC, CDOM and Cu complexation capacities were reflected in Cu toxicity. DOM enriched samples presented a Cu EC(50) of 0.64 microM, significantly higher than the Cu EC(50) of natural and artificial seawater, which was 0.38 microM. The protecting effect of DOM on Cu toxicity greatly disappeared when the samples were irradiated with high intensity UV-light. Cu toxicity could be successfully predicted considering ASV-labile Cu concentrations in the samples. Pb complexation by DOM was only detected in the DOM-enriched samples and caused little effect on Pb EC(50). This effect was contrary for both elutriates: one elutriate reduced Pb toxicity in comparison with the control artificial seawater, while the other increased it. UV irradiation of the samples caused a marked increase in Pb toxicity, which correlated with the remaining DOC concentration. DOM parameters were related to Cu speciation and toxicity: good correlations were found between DOC and Cu EC(50), while L(Cu) correlated better with the fluorescence of marine humic substances. The present results stress the importance of characterizing not only the amount but also the quality of seawater DOM to better predict ecological effects from total metal concentration data. Copyright (c) 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bigalke, Moritz; Weyer, Stefan; Kobza, Jozef; Wilcke, Wolfgang
2010-12-01
Copper and Zn metals are produced in large quantities for different applications. During Cu production, large amounts of Cu and Zn can be released to the environment. Therefore, the surroundings of Cu smelters are frequently metal-polluted. We determined Cu and Zn concentrations and Cu and Zn stable isotope ratios (δ 65Cu, δ 66Zn) in three soils at distances of 1.1, 3.8, and 5.3 km from a Slovak Cu smelter and in smelter wastes (slag, sludge, ash) to trace sources and transport of Cu and Zn in soils. Stable isotope ratios were measured by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) in total digests. Soils were heavily contaminated with concentrations up to 8087 μg g -1 Cu and 2084 μg g -1 Zn in the organic horizons. The δ 65Cu values varied little (-0.12‰ to 0.36‰) in soils and most wastes and therefore no source identification was possible. In soils, Cu became isotopically lighter with increasing depth down to 0.4 m, likely because of equilibrium reactions between dissolved and adsorbed Cu species during transport of smelter-derived Cu through the soil. The δ 66Zn IRMM values were isotopically lighter in ash (-0.41‰) and organic horizons (-0.85‰ to -0.47‰) than in bedrock (-0.28‰) and slag (0.18‰) likely mainly because of kinetic fractionation during evaporation and thus allowed for separation of smelter-Zn from native Zn in soil. In particular in the organic horizons large variations in δ 66Zn values occur, probably caused by biogeochemical fractionation in the soil-plant system. In the mineral horizons, Zn isotopes showed only minor shifts to heavier δ 66Zn values with depth mainly because of the mixing of smelter-derived Zn and native Zn in the soils. In contrast to Cu, Zn isotope fractionation between dissolved and adsorbed species was probably only a minor driver in producing the observed variations in δ 66Zn values. Our results demonstrate that metal stable isotope ratios may serve as tracer of sources, vertical dislocation, and biogeochemical behavior in contaminated soil.
Foekema, E M; Kaag, N H B M; Kramer, K J M; Long, K
2015-07-15
The Predicted No Effect Concentration (PNEC) for dissolved copper based on the species sensitivity distribution (SSD) of 24 marine single species tests was validated in marine mesocosms. To achieve this, the impact of actively maintained concentrations of dissolved copper on a marine benthic and planktonic community was studied in 18 outdoor 4.6m(3) mesocosms. Five treatment levels, ranging from 2.9 to 31μg dissolved Cu/L, were created in triplicate and maintained for 82days. Clear effects were observed on gastropod and bivalve molluscs, phytoplankton, zooplankton, sponges and sessile algae. The most sensitive biological endpoints; reproduction success of the bivalve Cerastoderma edule, copepod population development and periphyton growth were significantly affected at concentrations of 9.9μg Cu/L and higher. The No Observed Effect Concentration (NOEC) derived from this study was 5.7μg dissolved Cu/L. Taking into account the DOC concentration of the mesocosm water this NOEC is comparable to the PNEC derived from the SSD. Copyright © 2015. Published by Elsevier B.V.
Chakraborty, Parthasarathi; Chakraborty, Sucharita; Jayachandran, Saranya; Madan, Ritu; Sarkar, Arindam; Linsy, P; Nath, B Nagender
2016-10-01
This study describes the effect of varying bottom-water oxygen concentration on geochemical fractionation (operational speciation) of Cu and Pb in the underneath sediments across the oxygen minimum zone (Arabian Sea) in the west coast of India. Both, Cu and Pb were redistributed among the different binding phases of the sediments with changing dissolved oxygen level (from oxic to hypoxic and close to suboxic) in the bottom water. The average lability of Cu-sediment complexes gradually decreased (i.e., stability increased) with the decreasing dissolved oxygen concentrations of the bottom water. Decreasing bottom-water oxygen concentration increased Cu association with sedimentary organic matter. However, Pb association with Fe/Mn-oxyhydroxide phases in the sediments gradually decreased with the decreasing dissolved oxygen concentration of the overlying bottom water (due to dissolution of Fe/Mn oxyhydroxide phase). The lability of Pb-sediment complexes increased with the decreasing bottom-water oxygen concentration. This study suggests that bottom-water oxygen concentration is one of the key factors governing stability and lability of Cu and Pb complexes in the underneath sediment. Sedimentary organic matter and Fe/Mn oxyhydroxide binding phases were the major hosting phases for Cu and Pb respectively in the study area. Increasing lability of Pb-complexes in bottom sediments may lead to positive benthic fluxes of Pb at low oxygen environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Chemical fractionation of Cu and Zn in stormwater, roadway dust and stormwater pond sediments
Camponelli, Kimberly M.; Lev, Steven M.; Snodgrass, Joel W.; Landa, Edward R.; Casey, Ryan E.
2010-01-01
This study evaluated the chemical fractionation of Cu and Zn from source to deposition in a stormwater system. Cu and Zn concentrations and chemical fractionation were determined for roadway dust, roadway runoff and pond sediments. Stormwater Cu and Zn concentrations were used to generate cumulative frequency distributions to characterize potential exposure to pond-dwelling organisms. Dissolved stormwater Zn exceeded USEPA acute and chronic water quality criteria in approximately 20% of storm samples and 20% of the storm duration sampled. Dissolved Cu exceeded the previously published chronic criterion in 75% of storm samples and duration and exceeded the acute criterion in 45% of samples and duration. The majority of sediment Cu (92–98%) occurred in the most recalcitrant phase, suggesting low bioavailability; Zn was substantially more available (39–62% recalcitrant). Most sediment concentrations for Cu and Zn exceeded published threshold effect concentrations and Zn often exceeded probable effect concentrations in surface sediments.
Han, Shuping; Naito, Wataru; Masunaga, Shigeki
To assess the effects of Fe(III) and anthropogenic ligands on the bioavailability of Ni, Cu, Zn, and Pb, concentrations of bioavailable metals were measured by the DGT (diffusive gradients in thin films) method in some urban rivers, and were compared with concentrations calculated by a chemical equilibrium model (WHAM 7.0). Assuming that dissolved Fe(III) (<0.45 μm membrane filtered) was in equilibrium with colloidal iron oxide, the WHAM 7.0 model estimated that bioavailable concentrations of Ni, Cu, and Zn were slightly higher than the corresponding values estimated assuming that dissolved Fe(III) was absent. In contrast, lower levels of free Pb were predicted by the WHAM 7.0 model when dissolved Fe(III) was included. Estimates showed that most of the dissolved Pb was present as colloidal iron-Pb complex. Ethylene-diamine-tetra-acetic acid (EDTA) concentrations at sampling sites were predicted from the relationship between EDTA and the calculated bioavailable concentration of Zn. When both colloidal iron and predicted EDTA concentrations were included in the WHAM 7.0 calculations, dissolved metals showed a strong tendency to form EDTA complexes, in the order Ni > Cu > Zn > Pb. With the inclusion of EDTA, bioavailable concentrations of Ni, Cu, and Zn predicted by WHAM 7.0 were different from those predicted considering only humic substances and colloidal iron.
Oustriere, Nadège; Marchand, Lilian; Galland, William; Gabbon, Lunel; Lottier, Nathalie; Motelica, Mikael; Mench, Michel
2016-10-01
Two biochars, a green waste compost and iron grit were used, alone and in combination, as amendment to improve soil properties and in situ stabilize Cu in a contaminated soil (964mgCukg(-1)) from a wood preservation site. The pot experiment consisted in 9 soil treatments (% w/w): untreated Cu-contaminated soil (Unt); Unt soil amended respectively with compost (5%, C), iron grit (1%, Z), pine bark-derived biochar (1%, PB), poultry-manure-derived biochar (1%, AB), PB or AB+C (5%, PBC and ABC), and PB or AB+Z (1%, PBZ and ABZ). After a 3-month reaction period, the soil pore water (SPW) was sampled in potted soils and dwarf beans were grown for a 2-week period. In the SPW, all amendments decreased the Cu(2+) concentration, but total Cu concentration increased in all AB-amended soils due to high dissolved organic matter (DOM) concentration. No treatment improved root and shoot DW yields, which even decreased in the ABC and ABZ treatments. The PBZ treatment decreased total Cu concentration in the SPW while reducing the gap with common values for root and shoot yields of dwarf bean plants. A field trial is underway before any recommendation for the PB-based treatments. Copyright © 2016 Elsevier B.V. All rights reserved.
Acute and chronic toxicity of copper to the euryhaline rotifer, Brachionus plicatilis ("L" strain).
Arnold, W R; Diamond, R L; Smith, D S
2011-02-01
This article presents data from original research, intended for the use in the development of copper (Cu) criteria for the protection of estuarine and marine organisms and their uses in the United States. Two 48-h static-acute toxicity tests-one with and one without added food-and a 96-h static multigeneration life-cycle test (P1-F2 generations) were performed concurrently using the euryhaline rotifer Brachionus plicatilis ("L" strain) to develop a Cu acute-to-chronic ratio (ACR) for this species. Tests were performed at 15 g/L salinity, at 25°C, and the exposure concentrations of dissolved Cu were verified. Supplemental chemical analyses were performed and reported for the development of a Cu-saltwater biotic ligand model (BLM). Supplemental analyses included alkalinity, calcium, chloride, dissolved organic carbon (DOC), hardness, magnesium, potassium, sodium, and temperature. The acute toxicity test measurement end points were the dissolved Cu median lethal concentration (LC₅₀) values based on rotifer survival. The chronic measurement end points were the dissolved Cu no-observed-effect concentration (NOEC), lowest-observed-effect concentration (LOEC), EC₂₅, EC₂₀, and EC₁₀ based on the intrinsic rate of rotifer population increase (r). The 48-h LC₅₀(Fed), 48-h LC₅₀(Unfed), 96-h NOEC, 96-h LOEC, EC₂₅, EC₂₀, and EC₁₀ were 20.8, 13.4, 6.1, 10.3, 11.7, 10.9, and 8.8 μg Cu/L, respectively. The ACRs were calculated as ratios of each 48-h LC₅₀ value [fed and unfed) and each of the 96-h chronic values (ChV; geometric mean of NOEC and LOEC)], EC₁₀, EC₂₀, and EC₂₅. The ACRs ranged from 1.15 to 2.63.
Maniquiz-Redillas, Marla C; Kim, Lee-Hyung
2016-09-01
Low-impact development (LID) and green infrastructure (GI) have recently become well-known methods to capture, collect, retain, and remove pollutants in stormwater runoff. The research was conducted to assess the efficiency of LID/GI systems applied in removing the particulate and dissolved heavy metals (Zn, Pb, Cu, Ni, Cr, Cd, and Fe) from urban stormwater runoff. A total of 82 storm events were monitored over a four-year period (2010-2014) on six LID/GI systems including infiltration trenches, tree box filter, rain garden, and hybrid constructed wetlands employed for the management of road, parking lot, and roof runoff. It was observed that the heavy metal concentration increased proportionally with the total suspended solids concentration. Among the heavy metal constituents, Fe appeared to be highly particulate-bound and was the easiest to remove followed by Zn and Pb; while metals such as Cr, Ni, Cu, and Cd were mostly dissolved and more difficult to remove. The mass fraction ratios of metal constituents at the effluent were increased relative to the influent. All the systems performed well in the removal of particulate-bound metals and were more efficient for larger storms greater than 15 mm wherein more particulate-bound metals were generated compared to smaller storms less than 5 mm that produced more dissolved metals. The efficiency of the systems in removing the particulate-bound metals was restricted during high average/peak flows; that is, high-intensity storms events and when heavy metals have low concentration levels.
Fingerprinting two metal contaminants in streams with Cu isotopes near the Dexing Mine, China.
Song, Shiming; Mathur, Ryan; Ruiz, Joaquin; Chen, Dandan; Allin, Nicholas; Guo, Kunyi; Kang, Wenkai
2016-02-15
Transition metal isotope signatures are becoming useful for fingerprinting sources in surface waters. This study explored the use of Cu isotope values to trace dissolved metal contaminants in stream water throughout a watershed affected by mining by-products of the Dexing Mine, the largest porphyry Cu operation in Asia. Cu isotope values of stream water were compared to potential mineral sources of Cu in the mining operation, and to proximity to the known Cu sources. The first mineral source, chalcopyrite, CuFeS2 has a 'tight' cluster of Cu isotope values (-0.15‰ to +1.65‰; +0.37 ± 0.6‰, 1σ, n=10), and the second mineral source, pyrite (FeS2), has a much larger range of Cu isotope values (-4‰ to +11.9‰; 2.7 ± 4.3‰, 1σ, n=16). Dissolved Cu isotope values of stream water indicated metal derived from either chalcopyrite or pyrite. Above known Cu mineralization, stream waters are approximately +1.5‰ greater than the average chalcopyrite and are interpreted as derived from weathering of chalcopyrite. In contrast, dissolved Cu isotope values in stream water emanating from tailings piles had Cu isotope values similar to or greater than pyrite (>+6‰, a common mineral in the tailings). These values are interpreted as sourced from the tailings, even in solutions that possess significantly lower concentrations of Cu (<0.05 ppm). Elevated Cu isotope values were also found in two soil and two tailings samples (δ(65)Cu ranging between +2 to +5‰). These data point to the mineral pyrite in tailings as the mineral source for the elevated Cu isotope values. Therefore, Cu isotope values of waters emanating from a clearly contaminated drainage possess different Cu isotope values, permitting the discrimination of Cu derived from chalcopyrite and pyrite in solution. Data demonstrate the utility of Cu isotopic values in waters, minerals, and soils to fingerprint metallic contamination for environmental problems. Copyright © 2015 Elsevier B.V. All rights reserved.
Gourlay-Francé, C; Bressy, A; Uher, E; Lorgeoux, C
2011-01-01
The occurrence and the partitioning of polycyclic aromatic hydrocarbons (PAHs) and seven metals (Al, Cd, Cr, Cu, Ni, Pb and Zn) were investigated in activated sludge wastewater treatment plants by means of passive and active sampling. Concentrations total dissolved and particulate contaminants were determined in wastewater at several points across the treatment system by means of grab sampling. Truly dissolved PAHs were sampled by means of semipermeable membrane devices. Labile (inorganic and weakly complexed) dissolved metals were also sampled using the diffusive gradient in thin film technique. This study confirms the robustness and the validity of these two passive sampling techniques in wastewater. All contaminant concentrations decreased in wastewater along the treatment, although dissolved and labile concentrations sometimes increased for substances with less affinity with organic matter. Solid-liquid and dissolved organic matter/water partitioning constants were estimated. The high variability of both partitioning constants for a simple substance and the poor relation between K(D) and K(OW) shows that the binding capacities of particles and organic matter are not uniform within the treatment and that other process than equilibrium sorption affect contaminant repartition and fate in wastewater.
NASA Astrophysics Data System (ADS)
van Hullebusch, E.; Chatenet, P.; Deluchat, V.; Chazal, P. M.; Froissard, D.; Lens, P. N. L.; Baudu, M.
2003-05-01
Copper sulfate (CuSO4) addition to freshwater for phytoplankton control has been practiced for decades, and remains the most effective algicidal treatment for numerous managed water bodies. A reservoir in the centre of France was the site for an investigation of copper distribution in aquatic systems after a copper sulfate treatment Results of copper monitoring showed a rapid conversion of dissolved Cu to particulate forms, with significant accumulation in the sediments/83% of total copper added). Total sediment Cu content increasedfrom approximately 37.7 to 45.4 μg.g^{-1} dry weight after the first treatment. Sequential extraction suggested that a significanl portion of the sediment-borne Cu was associated with the organic fraction which may release Cu to the water column, although significant release would occur only under extreme changes in water chemistry. Based upon measured Cu concentrations, flows at the down-stream water, and known mass applied during treatment, mass balance calculations indicated that approximately 17% of the Cu was exported from the reservoir over a 70 day period following a 196 μg.L^{-l} Cu^{2+} (as CuSO4, 5 H2O) treatment. The largest amount of copper was probably adsorbed on downstream sediment or lost in running water, Copper bioaccumulation by a moss, Fontinalis antipyretica, in the down-stream water showed that it was possible to distinguish between a treated and an untreated area. The impact of copper treatment in the down-stream reservoir could be followed using mosses. The bioaccumulation data further showed that there is a distance effect which could be exploited to determine potential copper impact on receiving water bodies. Thirty days after copper sulfate addition, Fontinalis still indicated copper exposure.
Hofacker, Anke F; Voegelin, Andreas; Kaegi, Ralf; Kretzschmar, Ruben
2013-07-16
Mercury is a highly toxic priority pollutant that can be released from wetlands as a result of biogeochemical redox processes. To investigate the temperature-dependent release of colloidal and dissolved Hg induced by flooding of a contaminated riparian soil, we performed laboratory microcosm experiments at 5, 14, and 23 °C. Our results demonstrate substantial colloidal Hg mobilization concomitant with Cu prior to the main period of sulfate reduction. For Cu, we previously showed that this mobilization was due to biomineralization of metallic Cu nanoparticles associated with suspended bacteria. X-ray absorption spectroscopy at the Hg LIII-edge showed that colloidal Hg corresponded to Hg substituting for Cu in the metallic Cu nanoparticles. Over the course of microbial sulfate reduction, colloidal Hg concentrations decreased but continued to dominate total Hg in the pore water for up to 5 weeks of flooding at all temperatures. Transmission electron microscopy (TEM) suggested that Hg became associated with Cu-rich mixed metal sulfide nanoparticles. The formation of Hg-containing metallic Cu and metal sulfide nanoparticles in contaminated riparian soils may influence the availability of Hg for methylation or volatilization processes and has substantial potential to drive Hg release into adjacent water bodies.
Chemodynamics of heavy metals in long-term contaminated soils: metal speciation in soil solution.
Kim, Kwon-Rae; Owens, Gary
2009-01-01
The concentration and speciation of heavy metals in soil solution isolated from long-term contaminated soils were investigated. The soil solution was extracted at 70% maximum water holding capacity (MWHC) after equilibration for 24 h. The free metal concentrations (Cd2+, CU2+, Pb2+, and Zn2+) in soil solution were determined using the Donnan membrane technique (DMT). Initially the DMT was validated using artificial solutions where the percentage of free metal ions were significantly correlated with the percentages predicted using MINTEQA2. However, there was a significant difference between the absolute free ion concentrations predicted by MINTEQA2 and the values determined by the DMT. This was due to the significant metal adsorption onto the cation exchange membrane used in the DMT with 20%, 28%, 44%, and 8% mass loss of the initial total concentration of Cd, Cu, Pb, and Zn in solution, respectively. This could result in a significant error in the determination of free metal ions when using DMT if no allowance for membrane cation adsorption was made. Relative to the total soluble metal concentrations the amounts of free Cd2+ (3%-52%) and Zn2+ (11%-72%) in soil solutions were generally higher than those of Cu2+ (0.2%-30%) and Pb2+ (0.6%-10%). Among the key soil solution properties, dissolved heavy metal concentrations were the most significant factor governing free metal ion concentrations. Soil solution pH showed only a weak relationship with free metal ion partitioning coefficients (K(p)) and dissolved organic carbon did not show any significant influence on K(p).
Wang, Jun; Cheng, Qingyu; Xue, Shengguo; Rajendran, Manikandan; Wu, Chuan; Liao, Jiaxin
2018-04-01
A great deal of manganese and associated heavy metals (such as Ni, Cu, Zn, Cd, Pb, etc.) was produced in manganese mining, smelting, and other processes and weathering and leaching of waste slag, which entered rainwater runoff by different means under the action of rainfall runoff. It caused heavy metal pollution in water environment to surrounding areas, and then environmental and human health risks were becoming increasingly serious. In the Xiangtan manganese mine, we studied the characteristics of nutritional pollutants and heavy metals by using the method of bounded runoff plots on the manganese tailing wasteland after carrying out some site treatments using three different approaches, such as (1) exposed tailings, the control treatment (ET), (2) external-soil amelioration and colonization of Cynodon dactylon (Linn.) Pers. turf (EC), and (3) external-soil amelioration and seedling seeding propagation of Cynodon dactylon (Linn.) Pers. (ES). The research showed that the maximum runoff occurred in 20,140,712 rainfall events, and the basic law of runoff was EC area > ET area > ES area in the same rainfall event. The concentration of total suspended solids (TSS) and chemical oxygen demand (COD) of three ecological restoration areas adopted the following rule: ET area > EC area > ES area. Nitrogen (N) existed mainly in the form of water soluble while phosphorus (P) was particulate. The highest concentrations of total nitrogen (TN) and total phosphorus (TP) were 11.57 ± 2.99 mg/L in the EC area and 1.42 ± 0.56 mg/L in the ET area, respectively. Cr, Ni, Pb, Zn, Mn, and Cu in surface runoff from three restoration types all exceeded the class V level of the environmental quality standard for surface water except Cu in EC and ES areas. Pollution levels of heavy metals in surface runoff from three restoration areas are shown as follows: ET area > EC area > ES area. There was a significant positive correlation between TSS and runoff, COD, and TP. And this correlation was significant between total dissolved nitrogen (TDN), TN, total dissolved phosphorus (TDP), and TP. The six heavy metals (Cu, Ni, Pb, Zn, Mn, and Cr) in surface runoff of different ecological restoration areas were strongly related to each other, and were significantly related to the TSS.
Horowitz, A.J.; Elrick, K.A.; Smith, J.J.
2001-01-01
Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes increase in the Mississippi and Columbia Basins, whereas fluxes markedly decrease in the Colorado Basin. No consistent pattern in trace element fluxes was detected in the Rio Grande Basin.
Li, Anding; Zhang, Yan; Zhou, Beihai; Xin, Kailing; Gu, Yingnan; Xu, Weijie; Tian, Jie
2018-05-21
The molecular weight of dissolved organic matter (DOM) is one of the essential factors controlling the properties of metal complexes. A continuous ultrafiltration experiment was designed to study the properties of Cu complexes with different molecular weights in a river before and after eutrophication. The results showed that the concentration of DOM increased from 26.47 to 38.20 mg/L during the eutrophication process, however, DOM was still dominated by the small molecular weight fraction before and after eutrophication. The amount of Cu-DOM complexes increased with the increasing of molecular weight, however, the amounts of DOM-Cu complexes before eutrophication were higher than those after eutrophication. This is because DOM contained more -COOH and -OH before eutrophication and these functional groups are the active sites complexed with Cu.
Photographic Processing Interpretation Facility Wastewater Conceptual Treatment Design.
1983-03-01
Total Chromium (Cr) - - - ɘ.05 - Copper (Cu) - - - ɘ.05 - Iron (Fe) - - - - - Manganese (Mn) - - - ɘ.03 - Mercury (Hg) - - - ɘ.004 - Potassium (K...8.3 - Silver (Ag) 2.2 7.0 17 0.15 2.2 Sodium (Na) - - - 8.2 - Zinc (Zn) - - - 0.12 - Biochemical Oxygen " Demand (BOD_) - - - 40 - Sulfate (SO...nonconventional pollutants include boron, dissolved sol i halides, iron, ammonia, nitrogen, phenols, sulfate and TOC. ,P,, 99 percent of the 11,000
Morgan, M Thomas; Bagchi, Pritha; Fahrni, Christoph J
2011-10-12
Due to the lipophilicity of the metal-ion receptor, previously reported Cu(I)-selective fluorescent probes form colloidal aggregates, as revealed by dynamic light scattering. To address this problem, we have developed a hydrophilic triarylpyrazoline-based fluorescent probe, CTAP-2, that dissolves directly in water and shows a rapid, reversible, and highly selective 65-fold fluorescence turn-on response to Cu(I) in aqueous solution. CTAP-2 proved to be sufficiently sensitive for direct in-gel detection of Cu(I) bound to the metallochaperone Atox1, demonstrating the potential for cation-selective fluorescent probes to serve as tools in metalloproteomics for identifying proteins with readily accessible metal-binding sites.
Nitrate removal by Fe0/Pd/Cu nano-composite in groundwater.
Liu, Hongyuan; Guo, Min; Zhang, Yan
2014-01-01
Nitrate pollution in groundwater shows a great threat to the safety of drinking water. Chemical reduction by zero-valent iron is being considered as a promising technique for nitrate removal from contaminated groundwater. In this paper, Fe0/Pd/Cu nano-composites were prepared by the liquid-phase reduction method, and batch experiments of nitrate reduction by the prepared Fe0/Pd/Cu nano-composites under various operating conditions were carried out. It has been found that nano-Fe0/Pd/Cu composites processed dual functions: catalytic reduction and chemical reduction. The introduction of Pd and Cu not only improved nitrate removal rate, but also reduced the generation of ammonia. Nitrate removal rate was affected by the amount of Fe0/Pd/Cu, initial nitrate concentration, solution pH, dissolved oxygen (DO), reaction temperature, the presence of anions, and organic pollutant. Moreover, nitrate reduction by Fe0/Pd/Cu composites followed the pseudo-first-order reaction kinetics. The removal rate of nitrate and total nitrogen were about 85% and 40.8%, respectively, under the reaction condition of Fe-6.0%Pd-3.0%Cu amount of 0.25 g/L, pH value of 7.1, DO of 0.42 mg/L, and initial nitrate concentration of 100 mg/L. Compared with the previous studies with Fe0 alone or Fe-Cu, nano-Fe-6%Pd-3%Cu composites showed a better selectivity to N2.
[Effects of strong reductive process on transformation of heavy metals in protected vegetable soil].
Sun, Yan Chen; Zeng, Xiang Feng; Yang, Li Qiong; Shi, Ya Nan; Chen, Xi Juan; Zhuang, Jie
2017-11-01
The application of sewage and manure in protected vegetable cultivation can induce the occurrence of heavy metals contamination. The present research studied the transformation of heavy metals (Cd, Cu, Pb and Zn) by incubating contaminated protected soil with maize straw and then leaching. The results showed that soil pH was significantly decreased, being more evident in maize straw treatment; soil Eh dropped quickly below -280 mV. Maize straw treatment promoted the activation of Cd, Cu, Pb and Zn from soil, and the total percent of oxidizable fraction and residual fraction of Cd, Cu, Pb and Zn declined at 9 th day; the amount of Cd, Cu, Pb and Zn in soil reduced 18.1%, 19.0%, 16.1% and 15.7% at 15 th day, respectively. Compared to control, maize straw treatment could increase the concentrations of dissolved Cd and Zn, but Cu decreased. The concentration of colloidal-bound Cd and Pb increased, Cu decreased and no significant change occurred in Zn in maize straw treatment. Strong reductive approach could activate heavy metals in protected vegetable soil, increase the risk of heavy metals accumulation in vegetables, and possibly cause water pollution accompanied with soil water mobilization.
Hall, Lenwood W; Anderson, Ronald D
2013-01-01
The objectives of this study were to determine the relationship between Hyalella sp. abundance in four urban California streams and the following parameters: (1) 8 bulk metals (As, Cd, Cr, Cu, Pb, Hg, Ni, and Zn) and their associated sediment Threshold Effect Levels (TELs); (2) bifenthrin sediment concentrations; (3) 10 habitat metrics and total score; (4) grain size (% sand, silt and clay); (5) Total Organic Carbon (TOC); (6) dissolved oxygen; and (7) conductivity. California stream data used for this study were collected from Kirker Creek (2006 and 2007), Pleasant Grove Creek (2006, 2007 and 2008), Salinas streams (2009 and 2010) and Arcade Creek (2009 and 2010). Hyalella abundance in the four California streams generally declined when metals concentrations were elevated beyond the TELs. There was also a statistically significant negative relationship between Hyalella abundance and % silt for these 4 California streams as Hyalella were generally not present in silt areas. No statistically significant relationships were reported between Hyalella abundance and metals concentrations, bifenthrin concentrations, habitat metrics, % sand, % clay, TOC, dissolved oxygen and conductivity. The results from this study highlight the complexity of assessing which factors are responsible for determining the abundance of amphipods, such as Hyalella sp., in the natural environment.
Coupled mobilization of dissolved organic matter and metals (Cu and Zn) in soil columns
NASA Astrophysics Data System (ADS)
Zhao, Lu Y. L.; Schulin, Rainer; Weng, Liping; Nowack, Bernd
2007-07-01
Dissolved organic carbon (DOC) is a key component involved in metal displacement in soils. In this study, we investigated the concentration profiles of soil-borne DOC, Cu and Zn at various irrigation rates with synthetic rain water under quasi steady-state conditions, using repacked soil columns with a metal-polluted topsoil and two unpolluted subsoils. Soil solution was collected using suction cups installed at centimeter intervals over depth. In the topsoil the concentrations of DOC, dissolved metals (Zn and Cu), major cations (Ca 2+ and Mg 2+) and anions ( NO3- and SO42-) increased with depth. In the subsoil, the Cu and Zn concentrations dropped to background levels within 2 cm. All compounds were much faster mobilized in the first 4 cm than in the rest of the topsoil. DOC and Cu concentrations were higher at higher flow rates for a given depth, whereas the concentrations of the other ions decreased with increasing flow rate. The decomposition of soil organic matter resulted in the formation of DOC, SO42-, and NO3- and was the main driver of the system. Regression analysis indicated that Cu mobilization was governed by DOC, whereas Zn mobilization was primarily determined by Ca and to a lesser extent by DOC. Labile Zn and Cu 2+ concentrations were well predicted by the NICA-Donnan model. The results highlight the value of high-resolution in-situ measurements of DOC and metal mobilization in soil profiles.
Murphy, Louise U; Cochrane, Thomas A; O'Sullivan, Aisling
2015-03-01
Atmospheric pollutants deposited on impermeable surfaces can be an important source of pollutants to stormwater runoff; however, modelling atmospheric pollutant loads in runoff has rarely been done, because of the challenges and uncertainties in monitoring their contribution. To overcome this, impermeable concrete boards (≈ 1m(2)) were deployed for 11 months in different locations within an urban area (industrial, residential and airside) throughout Christchurch, New Zealand, to capture spatially distributed atmospheric deposition loads in runoff over varying meteorological conditions. Runoff was analysed for total and dissolved Cu, Zn, Pb, and total suspended solids (TSS). Mixed-effect regression models were developed to simulate atmospheric pollutant loads in stormwater runoff. In addition, the models were used to explain the influence of different meteorological characteristics (e.g. antecedent dry days and rain depth) on pollutant build-up and wash-off dynamics. The models predicted approximately 53% to 69% of the variation in pollutant loads and were successful in predicting pollutant-load trends over time which can be useful for general stormwater planning processes. Results from the models illustrated the importance of antecedent dry days on pollutant build-up. Furthermore, results indicated that peak rainfall intensity and rain duration had a significant relationship with TSS and total Pb, whereas, rain depth had a significant relationship with total Cu and total Zn. This suggested that the pollutant speciation phase plays an important role in surface wash-off. Rain intensity and duration had a greater influence when the pollutants were predominantly in their particulate phase. Conversely, rain depth exerted a greater influence when a high fraction of the pollutants were predominantly in their dissolved phase. For all pollutants, the models were represented by a log-arctan relationship for pollutant build-up and a log-log relationship for pollutant wash-off. The modelling approach enables the site-specific relationships between individual pollutants and rainfall characteristics to be investigated. Copyright © 2014 Elsevier B.V. All rights reserved.
Varol, Memet
2013-10-01
Water samples were collected at monthly intervals during 1 year of monitoring from Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin to assess the concentrations of dissolved heavy metals and to determine their spatial and seasonal variations. The results indicated that dissolved heavy metal concentrations in the reservoirs were very low, reflecting the natural background levels. The lowest total metal concentrations in the three dam reservoirs were detected at sampling sites close to the dam wall. However, the highest total concentrations were observed at sites, which are located at the entrance of the streams to the reservoirs. Fe, Cr and Ni were the most abundant elements in the reservoirs, whereas Cd and As were the less abundant. The mean concentrations of dissolved metals in the dam reservoirs never exceeded the maximum permitted concentrations established by EC (European Community), WHO and USEPA drinking water quality guidelines. All heavy metals showed significant seasonal variations. As, Cd, Cr, Cu, Fe, Ni and Pb displayed higher values in the dry season, while higher values for Zn in the wet season. Cluster analysis grouped all ten sampling sites into three clusters. Clusters 1 and 2, and cluster 3 corresponded to relatively low polluted and moderate polluted regions, respectively. PCA/FA demonstrated the dissolved metals in the dam reservoirs controlled by natural sources. Copyright © 2013 Elsevier Ltd. All rights reserved.
Butler, Barbara A; Ranville, James F; Ross, Philippe E
2008-06-01
North Fork Clear Creek (NFCC) in Colorado, an acid-mine drainage (AMD) impacted stream, was chosen to examine the distribution of dissolved and particulate Cu, Fe, Mn, and Zn in the water column, with respect to seasonal hydrologic controls. NFCC is a high-gradient stream with discharge directly related to snowmelt and strong seasonal storms. Additionally, conditions in the stream cause rapid precipitation of large amounts of hydrous iron oxides (HFO) that sequester metals. Because AMD-impacted systems are complex, geochemical modeling may assist with predictions and/or confirmations of processes occurring in these environments. This research used Visual-MINTEQ to determine if field data collected over a two and one-half year study would be well represented by modeling with a currently existing model, while limiting the number of processes modeled and without modifications to the existing model's parameters. Observed distributions between dissolved and particulate phases in the water column varied greatly among the metals, with average dissolved fractions being >90% for Mn, approximately 75% for Zn, approximately 30% for Cu, and <10% for Fe. A strong seasonal trend was observed for the metals predominantly in the dissolved phase (Mn and Zn), with increasing concentrations during base-flow conditions and decreasing concentrations during spring-runoff. This trend was less obvious for Cu and Fe. Within hydrologic seasons, storm events significantly influenced in-stream metals concentrations. The most simplified modeling, using solely sorption to HFO, gave predicted percentage particulate Cu results for most samples to within a factor of two of the measured values, but modeling data were biased toward over-prediction. About one-half of the percentage particulate Zn data comparisons fell within a factor of two, with the remaining data being under-predicted. Slightly more complex modeling, which included dissolved organic carbon (DOC) as a solution phase ligand, significantly reduced the positive bias between observed and predicted percentage particulate Cu, while inclusion of hydrous manganese oxide (HMO) yielded model results more representative of the observed percentage particulate Zn. These results indicate that there is validity in the use of an existing model, without alteration and with typically collected water chemistry data, to describe complex natural systems, but that processes considered optimal for one metal might not be applicable for all metals in a given water sample.
Wang, Changyou; Guo, Jinqiang; Liang, Shengkang; Wang, Yunfei; Yang, Yanqun; Wang, Xiulin
2018-03-01
The concentrations of the potentially toxic dissolved elements (PTEs) As, Hg, Cr, Pb, Cd, and Cu in the main rivers into Jiaozhou Bay (JZB) during 1981-2006 were measured, and the impact of the fluvial PTE fluxes on their distributions in the bay was investigated. The overall average concentration in the rivers into JZB ranged from 8.8 to 39.6 μg L -1 for As, 10.1 to 632.6 ng L -1 for Hg, 4.1 to 3003.6 μg L -1 for Cr, 8.5 to 141.9 μg L -1 for Pb, 1.1 to 34.2 μg L -1 for Cd, and 13.2 to 1042.8 μg L -1 for Cu. The interannual average concentration variations of the PTEs in these rivers were enormous, with maximum differences of 41-21,680 times, while their relative seasonal changes were far smaller with maximum differences of 3-12 times. The total annual fluvial fluxes for As, Hg, and Cr into JZB exhibited the inverse "U" pattern, while those for Pb and Cd showed the "N" pattern. As a whole, the total annual Cu flux presented a growing tendency from 1998 to 2006. In general, the changing trends of the PTE concentrations in JZB were similar to those of their annual fluxes from the rivers, indicating a great impact of their fluvial fluxes on their distributions in JZB. The annual concentration of Cd in the bay almost remained constant and differed from the fluvial flux of Cd. The diversified pattern of the environmental Kuznets curve (EKC) represented China's approach to industrialization as "improving while developing."
NASA Astrophysics Data System (ADS)
Lv, Qing-yuan; Li, Xian-yi; Shen, Bao-de; Dai, Ling; Xu, He; Shen, Cheng-ying; Yuan, Hai-long; Han, Jin
2014-06-01
The phospholipid-bile salts-mixed micelles (PL-BS-MMs) are potent carriers used for oral absorption of drugs that are poorly soluble in water; however, there are many limitations associated with liquid formulations. In the current study, the feasibility of preparing the fast dissolving oral films (FDOFs) containing PL-BS-MMs was examined. FDOFs incorporated with Cucurbitacin B (Cu B)-loaded PL-sodium deoxycholate (SDC)-MMs have been developed and characterized. To prepare the MMs and to serve as the micellar carrier, a weight ratio of 1:0.8 and total concentration of 54 mg/mL was selected for the PL/SDC based on the size, size distribution, zeta potential, encapsulation efficiency, and morphology. The concentration of Cu B was determined to be 5 mg/mL. Results showed that a narrow size distributed nanomicelles with a mean particle size of 86.21 ± 6.11 nm and a zeta potential of -31.21 ± 1.17 mV was obtained in our optimized Cu B-PL/SDC-MMs formulation. FDOFs were produced by solvent casting method and the formulation with 50 mg/mL of pullulan and 40 mg/mL of PEG 400 were deemed based on the physico-mechanical properties. The FDOFs containing Cu B-PL/SDC-MMs were easily reconstituted in a transparent and clear solution giving back a colloidal system with spherical micelles in the submicron range. In the in vitro dissolution test, the FDOFs containing Cu B-PL/SDC-MMs showed an increased dissolution velocity markedly. The pharmacokinetics study showed that the FDOFs containing PL-SDC-MMs not only kept the absorption properties as same as the PL-SDC-MMs, but also significantly increased the oral bioavailability of Cu B compared to the Cu B suspension ( p < 0.05). This study showed that the FDOFs containing Cu B-PL/SDC-MMs could represent a novel platform for the delivery of poorly water-soluble drugs via oral administration. Furthermore, the integration with the FDOFs could also provide a simple and cost-effective manner for the solidification of PL-SDC-MMs.
Dissolved organic matter reduces CuO nanoparticle toxicity to duckweed in simulated natural systems.
Rippner, Devin A; Green, Peter G; Young, Thomas M; Parikh, Sanjai J
2018-03-01
With increasing demand for recycled wastewater for irrigation purposes, there is a need to evaluate the potential for manufactured nanomaterials in waste water to impact crop production and agroecosystems. Copper oxide nanoparticles (CuO NPs) have previously been shown to negatively impact the growth of duckweed (Landoltia punctata) a model aquatic plant consumed by water fowl and widely found in agricultural runoff ditches in temperate climates. However, prior studies involving CuO NP toxicity to duckweed have focused on systems without the presence of dissolved organic matter (DOM). In the current study, duckweed growth inhibition was shown to be a function of aqueous Cu 2+ concentration. Growth inhibition was greatest from aqueous CuCl 2 and, for particles, increased with decreasing CuO particle size. The dissolution of CuO NPs in ½ Hoagland's solution was measured to increase with decreasing particle size and in the presence of Suwannee river humic and fulvic acids (HA; FA). However, the current results suggest that HA, and to a lesser extent, FA, decrease the toxicity of both CuO NPs and free ionized Cu to duckweed, likely by inhibiting Cu availability through Cu-DOM complex formation. Such results are consistent with changes to Cu speciation as predicted by speciation modeling software and suggest that DOM changes Cu speciation and therefore toxicity in natural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Copper complexation capacity in surface waters of the Venice Lagoon.
Delgadillo-Hinojosa, Francisco; Zirino, Alberto; Nasci, Cristina
2008-10-01
Total copper (Cu(T)), copper ion activity (pCu) and the copper complexation capacity (CuCC) were determined in samples of seawater collected in July 2003 from the Venice Lagoon. Cu(T) and CuCC showed considerable spatial variability: Cu(T) ranged from 1.8 to 70.0nM, whereas the CuCC varied from 195 to 573nM. pCu values varied from 11.6 to 12.6 and are consistent with those previously reported in estuarine and coastal areas (10.9-14.1). The range of Cu(T) values compares well with those reported in the past in the lagoon and in the adjacent Adriatic Sea. The highest concentrations of Cu(T) were found in samples collected near the industrial area of Porto Marghera, whereas the lowest were measured near the Chioggia and Malamocco inlets, where an intense tidally-driven renewal of seawater takes place. Although CuCC showed a high degree of spatial variability, the values recorded in the Venice Lagoon are comparable to those reported in other estuarine systems. In addition, CuCC was positively correlated with dissolved organic carbon (DOC), suggesting that organic ligands responsible for Cu complexation are part of the bulk organic matter pool in the lagoon. The CuCC:Cu(T) molar ratio was, on average 55:1, indicating that a large excess of complexation capacity exists in the Venice Lagoon. The high levels of CuCC and the narrow range of pCu indicates the importance of the role played by organic ligands in controlling the free ion Cu concentrations in the lagoon, and as a consequence, regulating its availability and/or toxicity.
Christiansen, Karen S; Borggaard, Ole K; Holm, Peter E; Vijver, Martina G; Hauschild, Michael Z; Peijnenburg, Willie J G M
2015-04-01
Accurate knowledge about factors and conditions determining copper (Cu) toxicity in soil is needed for predicting plant growth in various Cu-contaminated soils. Therefore, effects of Cu on growth (biomass production) of lettuce (Lactuca sativa) were tested on seven selected, very different soils spiked with Cu and aged for 2 months at 35 °C. Cu toxicity was expressed as pEC50(Cu(2+)), i.e., the negative logarithm of the EC50(Cu(2+)) activity to plant growth. The determined pEC50(Cu(2+)) was significantly and positively correlated with both the analytically readily available soil pH and concentration of dissolved organic carbon [DOC] which together could explain 87% of the pEC50(Cu(2+)) variation according to the simple equation: pEC50(Cu(2+)) = 0.98 × pH + 345 × [DOC] - 0.27. Other soil characteristics, including the base cation concentrations (Na(+), K(+), Ca(2+), Mg(2+)), the cation exchange capacity at soil pH (ECEC), and at pH 7 (CEC7), soil organic carbon, clay content, and electric conductivity as well as the distribution coefficient (Kd) calculated as the ratio between total soil Cu and water-extractable Cu did not correlate significantly with pEC50(Cu(2+)). Consequently, Cu toxicity, expressed as the negative log of the Cu(2+) activity, to plant growth increases at increasing pH and DOC, which needs to be considered in future management of plant growth on Cu-contaminated soils. The developed regression equation allows identification of soil types in which the phytotoxicity potential of Cu is highest.
Genotoxic potential of copper oxide nanoparticles in the bivalve mollusk Mytilus trossulus
NASA Astrophysics Data System (ADS)
Chelomin, Victor P.; Slobodskova, Valentina V.; Zakhartsev, Maksim; Kukla, Sergey
2017-04-01
Copper oxide nanoparticles (CuO-NPs) are among the most widely used metal oxide nanoparticles, which increases the chance of their being released into the marine environment. As the applications of these particles have increased in recent years, their potential impact on the health of marine biota has also increased. However, the toxicological effects of these NPs in the marine environment are poorly known. In the present study, the DNA damaging potential of CuO-NPs in the marine eastern mussel Mytilus trossulus was evaluated and compared to that of dissolved copper exposures. Genotoxicity was assessed by the single cell gel electrophoresis (comet) assay in mussel gill and digestive gland cells. The results showed that copper in both forms (CuO-NPs and dissolved copper) was accumulated to different extents in mussel tissues. The mussel exposed to the dissolved copper attained higher concentrations of copper in the gills than in the digestive gland. In contrast to these results, it was found that CuO-NPs could induce much higher copper accumulation in the digestive gland than in the gills. A clear and statistically significant increase in DNA damage was found in both tissues of the Cu-exposed group compared to the control mussels. Our results indicated that the CuO-NP exposure produced remarkable effects and increased DNA damage significantly in mussel gill cells only. It should be noted that the digestive gland cells were prone to accumulation following CuO-NPs when compared to the gill cells, while the gill cells were more sensitive to the genotoxic effects of CuO-NPs. These results also suggested the need for a complete risk assessment of engineered particles before its arrival in the consumer market.
Cu-Ni-Fe anodes having improved microstructure
Bergsma, S. Craig; Brown, Craig W.
2004-04-20
A method of producing aluminum in a low temperature electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten electrolyte having alumina dissolved therein in an electrolytic cell containing the electrolyte. A non-consumable anode and cathode is disposed in the electrolyte, the anode comprised of Cu--Ni--Fe alloys having single metallurgical phase. Electric current is passed from the anode, through the electrolyte to the cathode thereby depositing aluminum on the cathode, and molten aluminum is collected from the cathode.
Copper toxicity and organic matter: Resiliency of watersheds in the Duluth Complex, Minnesota, USA
Piatak, Nadine; Seal, Robert; Jones, Perry M.; Woodruff, Laurel G.
2015-01-01
We estimated copper (Cu) toxicity in surface water with high dissolved organic matter (DOM) for unmined mineralized watersheds of the Duluth Complex using the Biotic Ligand Model (BLM), which evaluates the effect of DOM, cation competition for biologic binding sites, and metal speciation. A sediment-based BLM was used to estimate stream-sediment toxicity; this approach factors in the cumulative effects of multiple metals, incorporation of metals into less bioavailable sulfides, and complexation of metals with organic carbon. For surface water, the formation of Cu-DOM complexes significantly reduces the amount of Cu available to aquatic organisms. The protective effects of cations, such as calcium (Ca) and magnesium (Mg), competing with Cu to complex with the biotic ligand is likely not as important as DOM in water with high DOM and low hardness. Standard hardness-based water quality criteria (WQC) are probably inadequate for describing Cu toxicity in such waters and a BLM approach may yield more accurate results. Nevertheless, assumptions about relative proportions of humic acid (HA) and fulvic acid (FA) in DOM significantly influence BLM results; the higher the HA fraction, the higher calculated resiliency of the water to Cu toxicity. Another important factor is seasonal variation in water chemistry, with greater resiliency to Cu toxicity during low flow compared to high flow.Based on generally low total organic carbon and sulfur content, and equivalent metal ratios from total and weak partial extractions, much of the total metal concentration in clastic streambedsediments may be in bioavailable forms, sorbed on clays or hydroxide phases. However, organicrich fine-grained sediment in the numerous wetlands may sequester significant amount of metals, limiting their bioavailability. A high proportion of organic matter in waters and some sediments will play a key role in the resiliency of these watersheds to potential additional metal loads associated with future mining operations.
Hargreaves, Andrew J; Vale, Peter; Whelan, Jonathan; Constantino, Carlos; Dotro, Gabriela; Campo, Pablo; Cartmell, Elise
2017-05-01
The distribution of Cu, Pb, Ni and Zn between particulate, colloidal and truly dissolved size fractions in wastewater from a trickling filter treatment plant was investigated. Samples of influent, primary effluent, humus effluent, final effluent and sludge holding tank returns were collected and separated into particulate (i.e. > 0.45 μm), colloidal (i.e. 1 kDa to 0.45 μm), and truly dissolved (i.e. < 1 kDa) fractions using membrane filters. In the influent, substantial proportions of Cu (60%), Pb (67%), and Zn (32%) were present in the particulate fraction which was removed in conjunction with suspended particles at the works in subsequent treatment stages. In final effluent, sizeable proportions of Cu (52%), Pb (32%), Ni (44%) and Zn (68%) were found within the colloidal size fraction. Calculated ratios of soluble metal to organic carbon suggest the metal to be adsorbed to or complexed with non-humic macromolecules typically found within the colloidal size range. These findings suggest that technologies capable of removing particles within the colloidal fraction have good potential to enhance metals removal from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Metal discharges by Sinaloa Rivers to the coastal zone of NW Mexico.
Frías-Espericueta, M G; Mejía-Cruz, R; Osuna López, I; Muy-Rangel, M D; Rubio-Carrasco, W; Aguilar-Juárez, M; Voltolina, D
2014-02-01
The aim of this work was to survey the discharges of dissolved and particulate Cd, Cu, Fe, Mn, Pb and Zn of the eight main rivers of Sinaloa State to the Mexican coastal environment. Zn was the most abundant dissolved metal and Fe was the most abundant particulate (8.02-16.90 and 51.8-1,140.3 μg/L, respectively). Only particulate Mn had significantly (p = 0.028) higher values in summer-fall (rainy season), whereas the significantly (p = 0.036) higher values of dissolved Zn were observed in winter and spring. The highest annual total discharges to Sinaloa coastal waters were those of the rivers San Lorenzo and Piaxtla (>2 × 10(3) m.t.) and the lowest those of rivers Baluarte and El Fuerte (349 and 119 m.t., respectively). Pb concentrations may become of concern, because they are higher than the value recommended for the welfare of aquatic communities of natural waters.
Turner, Andrew; Mawji, Edward
2005-05-01
The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D(ow), ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant (<1%) to octanol extraction. Distribution coefficients defining the concentration ratio of octanol-soluble particle-bound metal to octanol-soluble dissolved metal were in the range 10(3.3)-10(5.3)mlg(-1). The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision.
Pb, Cu and Cd distribution in five estuary systems of Marche, central Italy.
Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Libani, Giulia; Scarponi, Giuseppe
2015-07-15
Heavy metals are subjected to monitoring in estuarine and marine water by the European Union Water Framework Directive, which requires water body health to be achieved by 2021. This is the first survey of heavy metals content in five estuaries of Marche, a region in central Italy. Results showed that total Pb and Cu concentrations decreased by 70-80%, from 1000-2000 to 100-200 ng L(-1) (Pb) and from 2000-3000 to 500-1000 ng L(-1) (Cu) from river to sea. Cd was consistently 20-40 ng L(-1). Dissolved Pb and Cu concentrations declined by 50% and 70% respectively passing from oligohaline to euhaline water, from 150 to 70 ng L(-1) and from 2000-1000 to 600-400 ng L(-1). Cd decreased slightly from ∼20 to ∼10 ng L(-1). Although such concentrations are in the range allowed by the Water Framework Directive, they far exceed (up to 10×) the ground content ceiling set for 2021. Copyright © 2015 Elsevier Ltd. All rights reserved.
Salt transport extraction of transuranium elements from LWR fuel
Pierce, R.D.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Miller, W.E.
1992-11-03
A process is described for separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl[sub 2] and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750 C to about 850 C to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl[sub 2] having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO[sub 2]. The Ca metal and CaCl[sub 2] is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including MgCl[sub 2] to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy. 2 figs.
Salt transport extraction of transuranium elements from lwr fuel
Pierce, R. Dean; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Miller, William E.
1992-01-01
A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750.degree. C. to about 850.degree. C. to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including Mg Cl.sub.2 to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy.
Lamb, Dane T; Ming, Hui; Megharaj, Mallavarapu; Naidu, Ravi
2009-11-15
We investigated the pore-water content and speciation of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in a range of uncontaminated and long-term contaminated soils in order to establish their potential bioaccessibility to soil biota, plants and humans. Among the samples, soil pH (0.01 M CaCl(2)) ranged from 4.9 to 8.2. The total metal content of the uncontaminated soils ranged from 3.8 to 93.8 mg Cu kg(-1), 10.3 to 95 mg kg(-1) Zn, 0.1 to 1.8 mg Cd kg(-1) and 5.2 to 183 mg kg(-1) Pb, while metal content in the contaminated soils ranged from 104 to 6841 mg Cu kg(-1), 312 to 39,000 mg kg(-1) Zn, 6 to 302 mg Cd kg(-1) and 609 to 12,000 mg kg(-1) Pb. Our analysis of pore-water found the Cu concentrations to be much higher in contaminated soils than in uncontaminated soils, with the distribution coefficients (K(d)) correlating significantly with the log of dissolved organic carbon concentrations. Despite the high total metal content of the contaminated soil, Zn, Cd and Pb were not generally found at elevated levels in the pore-water with the exception of a single contaminated soil. A long period of ageing and soil weathering may have led to a substantial reduction in heavy metal concentrations in the pore-water of contaminated soils. On the other hand, Pb bioaccessibility was found to be comparatively high in Pb contaminated soils, where it tended to exceed the total Pb values by more than 80%. We conclude that, despite the extensive ageing of some contaminated soils, the bioaccessibility of Pb remains relatively high.
Zhu, Xiaoyu; Chen, Yinguang; Chen, Hong; Li, Xiang; Peng, Yongzhen; Wang, Shuying
2013-02-01
In this study, nitrous oxide (N(2)O) production during biological nutrient removal (BNR) from municipal wastewater was reported to be remarkably reduced by controlling copper ion (Cu(2+)) concentration. Firstly, it was observed that the addition of Cu(2+) (10-100 μg/L) reduced N(2)O generation by 54.5-73.2 % and improved total nitrogen removal when synthetic wastewater was treated in an anaerobic-aerobic (with low dissolved oxygen) BNR process. Then, the roles of Cu(2+) were investigated. The activities of nitrite and nitrous oxide reductases were increased by Cu(2+) addition, which accelerated the bio-reductions of both nitrite to nitric oxide (NO (2) (-) → NO) and nitrous oxide to nitrogen gas (N(2)O → N(2)). The quantitative real-time polymerase chain reaction assay indicated that Cu(2+) addition increased the number of N(2)O reducing denitrifiers. Further investigation showed that more polyhydoxyalkanoates were utilized in the Cu(2+)-added system for denitrification. Finally, the feasibility of reducing N(2)O generation by controlling Cu(2+) was examined in two other BNR processes treating real municipal wastewater. As the Cu(2+) in municipal wastewater is usually below 10 μg/L, according to this study, the supplement of influent Cu(2+) to a concentration of 10-100 μg/L is beneficial to reduce N(2)O emission and improve nitrogen removal when sludge concentration in the BNR system is around 3,200 mg/L.
Crawford, Charles G.; Wangsness, David J.
1987-01-01
A diel (24-hour) water-quality survey was done to investigate the sources of dry-weather waste inputs attributable to other than permitted point-source effluent and to evaluate the waste-load assimilative capacity of the Grand Calumet River, Lake County, Indiana, and Cook County, Illinois, in October 1984. Flow in the Grand Calumet River consists almost entirely of municipal and industrial effluents which comprised more than 90% of the 500 cu ft/sec flow observed at the confluence of the East Branch Grand Calumet River and the Indiana Harbor Ship Canal during the study. At the time of the study, virtually all of the flow in the West Branch Grand Calumet River was municipal effluent. Diel variations in streamflow of as much as 300 cu ft/sec were observed in the East Branch near the ship canal. The diel variation diminished at the upstream sampling sites in the East Branch. In the West Branch, the diel variation in flow was quite drastic; complete reversals of flow were observed at sampling stations near the ship canal. Average dissolved-oxygen concentrations at stations in the East Branch ranged from 5.7 to 8.2 mg/L and at stations in the West Branch from 0.8 to 6.6 mg/L. Concentrations of dissolved solids, suspended solids, biochemical-oxygen demand, ammonia, nitrite, nitrate, and phosphorus were substantially higher in the West Branch than in the East Branch. In the East Branch, only the Indiana Stream Pollution Control Board water-quality standards for total phosphorus and phenol were exceeded. In the West Branch, water-quality standards for total ammonia, chloride, cyanide, dissolved solids, fluoride, total phosphorus, mercury, and phenol were exceeded and dissolved oxygen was less than the minimum allowable. Three areas of significant differences between cumulative effluent and instream chemical-mass discharges were identified in the East Branch and one in the West Branch. The presence of unidentified waste inputs in the East Branch were indicated by differences in the chemical-mass discharges at three sites. Elevated suspended solids, biochemical-oxygen demand, and ammonia chemical-mass discharges at Columbia Avenue indicated the presence of a source of what may have been untreated sewage to the West Branch during the survey. (Author 's abstract)
Partition of heavy metals in a tropical river system impacted by municipal waste.
Duc, Trinh Anh; Loi, Vu Duc; Thao, Ta Thi
2013-02-01
A research program was established to identify the governing factors for the partition coefficient (K(D)) of heavy metals between suspended particulate and dissolved phases in the Day River system a tropical, highly alluvial aquatic system, in Vietnam. The targeted river system, draining an urbanized-industrialized catchment where discharged wastewater is mostly untreated, could be separated into the least impacted, pristine area, and the most impacted, polluted area. Organic matter degradation was shown to govern the variation of parameters like total organic carbon, biochemical oxygen demand, chemical oxygen demand, nutrients, conductivity, or redox potential. Heavy metals in both dissolved and particulate phases were enriched in severely polluted area because of wastewater inflow that contains concentrated metals and intensification of metal influx from sediment. Results show log K(D) in the order Mn < As < Zn < Hg < Ni < Cu < Cd < Co < Pb < Cr < Fe and As < Zn < Ni < Mn < Cr < Cu < Co < Fe in the polluted zone and the pristine zone, respectively. A decreasing tendency of partition coefficients of 11 heavy metals considered from the pristine to the impacted zones was observed. Three explanations for the difference are: (1) increase of solubility of most heavy metals in low redox potential, (2) competition for the binding sites with major and minor cations, and (3) complexation with dissolved organic matter concentrated in municipal waste impacted water. Apart from domestic waste impact, statistical analysis has contributed to identify the influence of climate condition and hydrological regime to the partition of heavy metals in the area.
McShane, Heather V A; Sunahara, Geoffrey I; Whalen, Joann K; Hendershot, William H
2014-07-15
Soil toxicity tests for metal oxide nanoparticles often include micrometer-sized oxide and metal salt treatments to distinguish between toxicity from nanometer-sized particles, non-nanometer-sized particles, and dissolved ions. Test result will be confounded if each chemical form has different effects on soil solution chemistry. We report on changes in soil solution chemistry over 56 days-the duration of some standard soil toxicity tests-in three soils amended with 500 mg/kg Cu as nanometer-sized CuO (nano), micrometer-sized CuO (micrometer), or Cu(NO3)2 (salt). In the CuO-amended soils, the log Cu2+ activity was initially low (minimum -9.48) and increased with time (maximum -5.20), whereas in the salt-amended soils it was initially high (maximum -4.80) and decreased with time (minimum -6.10). The Cu2+ activity in the nano-amended soils was higher than in the micrometer-amended soils for at least the first 11 days, and lower than in the salt-amended soils for at least 28 d. The pH, and dissolved Ca and Mg concentrations in the CuO-amended soils were similar, but the salt-amended soils had lower pH for at least 14 d, and higher Ca and Mg concentrations throughout the test. Soil pretreatments such as leaching and aging prior to toxicity tests are suggested.
Peraza-Castro, M; Sauvage, S; Sánchez-Pérez, J M; Ruiz-Romera, E
2016-11-01
An understanding of the processes controlling sediment, organic matter and metal export is critical to assessing and anticipating risk situations in water systems. Concentrations of suspended particulate matter (SPM), dissolved (DOC) and particulate (POC) organic carbon and metals (Cu, Ni, Pb, Cr, Zn, Mn, Fe) in dissolved and particulate phases were monitored in a forest watershed in the Basque Country (Northern Spain) (31.5km(2)) over three hydrological years (2009-2012), to evaluate the effect of flood events on the transport of these materials. Good regression was found between SPM and particulate metal concentration, making it possible to compute the load during the twenty five flood events that occurred during the study period at an annual scale. Particulate metals were exported in the following order: Fe>Mn>Zn>Cr>Pb>Cu>Ni. Annual mean loads of SPM, DOC and POC were estimated at 2267t, 104t and 57t, respectively, and the load (kg) of particulate metals at 76 (Ni), 83 (Cu), 135 (Pb), 256 (Cr), 532 (Zn), 1783 (Mn) and 95170 (Fe). Flood events constituted 91%-SPM, 65%-DOC, 71%-POC, 80%-Cu, 85%-Ni, 72%-Pb, 84%-Cr, 74%-Zn, 87%-Mn and 88%-Fe of total load exported during the three years studied. Flood events were classified into three categories according to their capacity for transporting organic carbon and particulate metals. High intensity flood events are those with high transport capacity of SPM, organic carbon and particulate metals. Most of the SPM, DOC, POC and particulate metal load was exported by this type of flood event, which contributed 59% of SPM, 45% of organic carbon and 54% of metals. Copyright © 2016 Elsevier B.V. All rights reserved.
Complexation of copper by aquatic humic substances from different environments
McKnight, Diane M.; Feder, Gerald L.; Thurman, E. Michael; Wershaw, Robert L.
1983-01-01
The copper-complexing properties of aquatic humic substances isolated from eighteen different environments were characterized by potentiometric titration, using a cupric ion selective electrode. Potentiometric data were analyzed using FITEQL, a computer program for the determination of chemical equilibrium constants from experimental data. All the aquatic humic substances could be modelled as having two types of Cu(II)-binding sites: one with K equal to about 106 and a concentration of 1.0 ± 0.4 × 10−6 M(mg C)−1 and another with K equal to about 108 and a concentration of 2.6 ± 1.6 × 10−7 M(mg C)−1.A method is described for estimating the Cu(II)-binding sites associated with dissolved humic substances in natural water based on a measurement of dissolved organic carbon, which may be helpful in evaluating chemical processes controlling speciation of Cu and bioavailability of Cu to aquatic organisms.
A three-stage treatment system for highly polluted urban road runoff.
Hilliges, Rita; Schriewer, Alexander; Helmreich, Brigitte
2013-10-15
A three-stage treatment device for polluted urban road runoff was installed and tested at a highly trafficked urban road over a period of one year. In the first stage coarse material and particles from the runoff are removed by a special gutter system. The second stage eliminates particles using a hydrodynamic separator. In the third stage dissolved pollutants are adsorbed in a filter unit with lignite as filter material. Twenty-four rain events were sampled over the one year period and analyzed for dissolved and particulate copper (Cu), zinc (Zn), lead (Pb), suspended solids (SS), total organic carbon (TOC), sodium (Na), and pH value. The treatment system was able to safely retain all relevant pollutants during the investigated period, except Na. In the effluent of the treatment device Pb could never be detected, values measured for Zn were in the range of the detection limit. Cu, the element most frequently detected in the effluent, never exceeded the critical value of 50 μg/L set by the German Federal Soil Protection Act and Ordinance. The median Cu concentration in the effluent of the treatment system was 8.13 μg/L. The treatment system proved to be very effective. Highly polluted road runoff can be purified by the system to an extent that no contamination risk for soil and groundwater remains when infiltrated into the soil. Copyright © 2013 Elsevier Ltd. All rights reserved.
Speciation of Cu and Zn in drainage water from agricultural soils.
Aldrich, Annette P; Kistler, David; Sigg, Laura
2002-11-15
Inputs of copper and zinc from agricultural soils into the aquatic system were investigated in this study, because of their heavy agricultural usage as feed additives and components of fertilizers and fungicides. As the mobility and bioavailability of these metals are affected by their speciation, the lipophilic, colloidal and organic fractions were determined in drainage water from a loamy and a humic soil treated with fungicides or manure. This study therefore investigates the impact of agricultural activity on a natural environment and furthers our understanding of the mobility of metals in agricultural soils and aquatic pollution in rural areas. Marked increases in the total dissolved metal concentrations were observed in the drainage water during rain events with up to 0.3 microM Cu and 0.26 microM Zn depending on the intensity of the rainfall and soil type. The mobile metal fractions were of a small molecular size (<10 kD) and mainly hydrophilic. Lipophilic complexes originating from a dithiocarbamate (DTC) fungicide could not be observed in the drainage water; however, small amounts of lipophilic metal complexes may be of natural origin. Cu was organically complexed to > 99.9% by abundant organic ligands (log K 10.5-11.0). About 50% of dissolved Zn were electrochemically labile, and the other 50% were complexed by strong organic ligands (log K 8.2-8.6). Therefore very little free metal species were found suggesting a low bioavailability of these metals in the drainage water even at elevated metal concentrations.
Method of producing .sup.67 Cu
O'Brien, Jr., Harold A.; Barnes, John W.; Taylor, Wayne A.; Thomas, Kenneth E.; Bentley, Glenn E.
1984-01-01
A method of producing carrier-free .sup.67 Cu by proton spallation combined with subsequent chemical separation and purification is disclosed. A target consisting essentially of pressed zinc oxide is irradiated with a high energy, high current proton beam to produce a variety of spallogenic nuclides, including .sup.67 Cu and other copper isotopes. The irradiated target is dissolved in a concentrated acid solution to which a palladium salt is added. In accordance with the preferred method, the spallogenic copper is twice coprecipitated with palladium, once with metallic zinc as the precipitating agent and once with hydrogen sulfide as the precipitating agent. The palladium/copper precipitate is then dissolved in an acid solution and the copper is separated from the palladium by liquid chromatography on an anion exchange resin.
Method for producing /sup 67/Cu
O'Brien, H.A. Jr.; Barnes, J.W.; Taylor, W.A.; Thomas, K.E.; Bentley, G.E.
A method of producing carrier-free /sup 67/Cu by proton spallation combined with subsequent chemical separation and purification is disclosed. A target consisting essentially of pressed zinc oxide is irradiated with a high energy, high current proton beam to produce a variety of spallogenic nuclides, including /sup 67/Cu and other copper isotopes. The irradiated target is dissolved in a concentrated acid solution to which a palladium salt is added. In accordance with the preferred method, the spallogenic copper is twice coprecipitated with palladium, once with metallic zinc as the precipitating agent and once with hydrogen sulfide as the precipitating agent. The palladium/copper precipitate is then dissolved in an acid solution and the copper is separated from the palladium by liquid chromatography on an anion exchange resin.
Liu, Jia-Ming; Jiao, Li; Lin, Li-Ping; Cui, Ma-Lin; Wang, Xin-Xing; Zhang, Li-Hong; Zheng, Zhi-Yong; Jiang, Shu-Lian
2013-12-15
A label-free non-aggregation colorimetric sensor has been designed for the detection of Cu(2+), based on Cu(2+) catalyzing etching of gold nanorods (AuNRs) along longitudinal axis induced by dissolve oxygen in the presence of S2O3(2-), which caused the aspect ratio (length/width) of AuNRs to decrease and the color of the solution to distinctly change. The linear range and the detection limit (LD, calculated by 10 Sb/k, n=11) of this sensor were 0.080-4.8 µM Cu(2+) and 0.22 µM Cu(2+), respectively. This sensor has been utilized to detect Cu(2+) in tap water and human serum samples with the results agreeing well with those of inductively coupled plasma-mass spectroscopy (ICP-MS), showing its remarkable practicality. In order to prove the possibility of catalyzing AuNRs non-aggregation colorimetric sensor for the detection of Cu(2+), the morphological structures of AuNRs were characterized by high resolution transmission electron microscopy (HRTEM) and the sensing mechanism of colorimetric sensor for the detection of Cu(2+) was also discussed. © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lou Ziyang; State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092; Chai Xiaoli
2009-01-15
Leachate was collected from an anaerobic lagoon at Shanghai Laogang refuse landfill, the largest landfill in China, and the sample was separated into six fractions using micro-filtration membranes, followed by ultra-filtration membranes. Several parameters of the samples were measured, including chemical oxygen demand (COD), total organic carbon (TOC), total solids (TS), pH, total phosphate (TP), total nitrogen (TN), fixed solids (FS), NH{sub 4}{sup +}, orthophosphate, color, turbidity, and conductivity. These parameters were then quantitatively correlated with the molecular weight cutoff of the membrane used. Organic matter in the dissolved fraction (MW < 1 kDa) predominated in the leachate, accounting formore » 65% of TOC. Thermal infrared spectroscopy was used to characterize the filter residues. Asymmetric and symmetric stretching of methyl and methylene groups, and of functional groups containing nitrogen and oxygen atoms, were observed. In addition, the ability of two different samples to adsorb heavy metals was tested. Cu{sup 2+} was chosen as the representative heavy metal in this study, and the samples were soil; aged refuse, which had spent 8 years in a conventional sanitary landfill; and samples of soil and aged refuse treated for 48 h with leachate in the ratio of 5 g of sample per 50 ml of leachate. Cu{sup 2+} uptake by the raw soil was {approx}4.60 {mu}g/g, while uptake by the leachate-contacted soil and leachate-contacted aged refuse were 5.66 and 5.11 {mu}g/g, respectively. These results show that the organic matter in the leachate enhanced the capacity of aqueous solutions to adsorb Cu{sup 2+}.« less
Effects of channel modifications on the hydrology of Chicod Creek basin, North Carolina, 1975-87
Mason, R.R.; Simmons, C.E.; Watkins, S.A.
1990-01-01
Drainage modifications in this Coastal Plain basin from 1978 to 1981 consisted of channel excavation and clearing of blockages. A study was begun in 1975 to define hydrologic conditions of the basin before, during, and after modifications and to determine what changes were attributed to modifications. Surface-water conditions were altered during and following modifications. Minimum flow at Juniper Branch was increased from less than 0.1 cu ft/sec to 0.4 cu ft/second;streamflow variability was reduced from an index of 0.87 to 0.49. In-channel velocity at Chicod Creek was increased from a mean of 0.4 ft/sec to 1.5 ft/sec. Substantial groundwater level declines were observed in wells 180 and 250 ft from Juniper Branch during the modifications phase;these were 0.4 and 0.2 ft, respectively. However, most surface-water and groundwater conditions returned nearly to premodification levels by 1987. Water-quality characteristics monitored during the investigation included physical, chemical, and bacteriological characteristics. Physical characteristics monitored were suspended sediment, temperature, dissolved oxygen, and pH. Of these physical characteristics, only sediment concentrations increased substantially during channel modifications. Chemical characteristics studied were major dissolved constituents, nutrients, trace metals, and pesticides. Substantial changes ranged from a decline in total iron concentrations of 77% to an increase in total nitrite concentrations of 130%. Changes in many chemical characteristics persisted following channel modifications. Bacterial counts did not change substantially.
A novel fractionation approach for water constituents - distribution of storm event metals.
McKenzie, Erica R; Young, Thomas M
2013-05-01
A novel fractionation method, based on both particle size and settling characteristics, was employed to examine metal distributions among five fractions. In-stream and stormwater runoff samples were collected from four land use types: highway, urban, agricultural (storm event and irrigation), and natural. Highway samples contained the highest dissolved concentrations for most metals, and freshwater ambient water quality criteria were exceeded for Cd, Cu, Pb, and Zn in the first storm of the water year. Anthropogenic sources were indicated for Cu, Zn, Cd, and Pb in highway and urban samples, and total metal loadings (mg km(-2)) were observed to be as follows: highway > urban > agricultural storm event ∼ natural > agricultural irrigation. Notably, ∼10-fold higher suspended solids concentration was observed in the agricultural storm event sample, and suspended solids-associated metals were correspondingly elevated. Distribution coefficients revealed the following affinities: Zn, Ni, Cd, and Pb to large dense particles; and Cu, Zn, Cr, Ni, and Pb to colloidal organic matter.
A novel fractionation approach for water constituents – distribution of storm event metals
McKenzie, Erica R.; Young, Thomas M.
2014-01-01
A novel fractionation method, based on both particle size and settling characteristics, was employed to examine metal distributions among five fractions. In-stream and stormwater runoff samples were collected from four land use types: highway, urban, agricultural (storm event and irrigation), and natural. Highway samples contained the highest dissolved concentrations for most metals, and freshwater ambient water quality criteria were exceeded for Cd, Cu, Pb, and Zn in the first storm of the water year. Anthropogenic sources were indicated for Cu, Zn, Cd, and Pb in highway and urban samples, and total metal loadings (mg/km2) were observed to be as follows: highway > urban > agricultural storm event ~ natural > agricultural irrigation. Notably, ~10-fold higher suspended solids concentration was observed in the agricultural storm event sample, and suspended solids-associated metals were correspondingly elevated. Distribution coefficients revealed the following affinities: Zn, Ni, Cd, and Pb to large dense particles; and Cu, Zn, Cr, Ni, and Pb to colloidal organic matter. PMID:23535891
Rodriguez-Espinosa, P F; Jonathan, M P; Morales-García, S S; Villegas, Lorena Elizabeth Campos; Martínez-Tavera, E; Muñoz-Sevilla, N P; Cardona, Miguel Alvarado
2015-11-01
We analyzed the total (Zn, Pb, Ni, Hg, Cr, Cd, Cu, As) and partially leachable metals (PLMs) in 25 ash and soil samples from recent (2012-2013) eruptions of the Popocatépetl Volcano in Central Mexico. More recent ash and soil samples from volcanic activity in 2012-2013 had higher metal concentrations than older samples from eruptions in 1997 suggesting that the naturally highly volatile and mobile metals leach into nearby fresh water sources. The higher proportions of As (74.72%), Zn (44.64%), Cu (42.50%), and Hg (32.86%) reflect not only their considerable mobility but also the fact that they are dissolved and accumulated quickly following an eruption. Comparison of our concentration patterns with sediment quality guidelines indicates that the Cu, Cd, Cr, Hg, Ni, and Pb concentrations are higher than permissible limits; this situation must be monitored closely as these concentrations may reach lethal levels in the future.
Wirt, Laurie; Leib, Kenneth J.; Melick, Roger; Bove, Dana J.
2001-01-01
strongly affected by natural acidity from pyrite weathering. Metal content in the water column is a composite of multiple sources affected by hydrologic, geologic, climatic, and anthropogenic conditions. Identifying sources of metals from various drainage areas was determined using a tracer injection approach and synoptic sampling during low flow conditions on September 29, 1999 to determine loads. The tracer data was interpreted in conjunction with detailed geologic mapping, topographic profiling, geochemical characterization, and the occurrence and distribution of trace metals to identify sources of ground-water inflows. For this highly mineralized sub-basin, we demonstrate that SO4, Al, and Fe load contributions from drainage areas that have experienced historical mining?although substantial?are relatively insignificant in comparison with SO4, Al, and Fe loads from areas experiencing natural weathering of highlyaltered, pyritic rocks. Regional weathering of acid-sulfate mineral assemblages produces moderately low pH waters elevated in SO4, Al, and Fe; but generally lacking in Cu, Cd, Ni, and Pb. Samples impacted by mining are also characterized by low pH and large concentrations of SO4, Al, and Fe; but contained elevated dissolved metals from ore-bearing vein minerals such as Cu, Zn, Cd, Ni, and Pb. Occurrences of dissolved trace metals were helpful in identifying ground-water sources and flow paths. For example, cadmium was greatest in inflows associated with drainage from inactive mine sites and absent in inflows that were unaffected by past mining activities and thus served as an important indicator of mining contamination for this environmental setting. The most heavily mine-impacted reach (PG153 to PG800), contributed 8% of the discharge, and 11%, 9%, and 12% of the total SO4, Al, and Fe loads in Prospect Gulch. The same reach yielded 59% and 37% of the total Cu and Zn loads for the subbasin. In contrast, the naturally acidic inflows from the Red Chemotroph iron spring yielded 39% of the discharge and 54%, 73%, and 87% of the SO4, Al, and Fe loads; but only 4% of the total Cu and 30% of the total Zn loads in Prospect Gulch. Base flow from the Prospect Gulch sub-basin contributes about 4.8 percent of the total discharge at the mouth of Cement Creek; compared with sampled instream loads of 1.8%, 8.8%, 15.9%, 28%, and 8.6% for SO4, Al, Fe, Cu and Zn, respectively. Water-shed scale remediation efforts targeted at reducing loads of SO4, Al, and Fe at inactive mine sites are likely to fail because the major sources of these constituents in Prospect Gulch are predominantly discharged from natural sources. Remediation goals aimed at reducing acidity and loads of Cu and other base metals, may succeed, however, because changes in pH and loads are disproportionately greater than increases in discharge over the same reach, and a substantial fraction of the metal loading is from mining-impacted reaches. Whether remediation of abandoned mines in Prospect Gulch can be successful depends on how goals are defined?that is, whether the objective is to reduce loads of SO4, Al, and Fe; or whether loads of Cu and other base metals and pH are targeted.
Oustriere, Nadège; Marchand, Lilian; Lottier, Nathalie; Motelica, Mikael; Mench, Michel
2017-02-01
A 2-year pot experiment was carried out to examine the aging effect of biochar (B), alone or combined with iron grit (Z), on Cu stabilization and plant growth in a contaminated soil (964mg Cu kg -1 ) from a wood preservation site. The experiment consisted in 3 soil treatments, either planted with Arundo donax L. (Ad) or Populus nigra L. (Pn): (1) untreated Cu-contaminated soil (Ad, Pn); (2) Unt+1% (w/w) B (AdB, PnB), and (3) Unt+1% B+1% Z (AdBZ, PnBZ). After 22months, the soil pore water (SPW) was sampled and roots and shoots were harvested. The SPW compositions at 3 and 22months were compared, showing that the SPW Cu 2+ concentration increased again in the PnB and PnBZ soils. Cultivation of A. donax enhanced the dissolved organic matter concentration in the SPW, which decreased its Cu 2+ concentration but promoted its total Cu concentration in the Ad and AdB soils. Adding Z with B reduced both SPW Cu 2+ and Cu concentrations in the pots cultivated by A. donax and P. nigra as compared to B alone. The B and BZ treatments did not enhance root and shoot yields of both plant species as compared to the Unt soil but their shoot Cu concentrations were in the range of common values. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dimkpa, Christian O.; McLean, Joan E.; Latta, Drew E.; Manangón, Eliana; Britt, David W.; Johnson, William P.; Boyanov, Maxim I.; Anderson, Anne J.
2012-09-01
Metal oxide nanoparticles (NPs) are reported to impact plant growth in hydroponic systems. This study describes the impact of commercial CuO (<50 nm) and ZnO (<100 nm) NPs on wheat ( Triticum aestivum) grown in a solid matrix, sand. The NPs contained both metallic and non-metallic impurities to different extents. Dynamic light scattering and atomic force microscopy (AFM) assessments confirmed aggregation of the NPs to submicron sizes. AFM showed transformation of ZnO NPs from initial rhomboid shapes in water to elongated rods in the aqueous phase of the sand matrix. Solubilization of metals occurred in the sand at similar rates from CuO or ZnO NPs as their bulk equivalents. Amendment of the sand with 500 mg Cu and Zn/kg sand from the NPs significantly ( p = 0.05) reduced root growth, but only CuO NPs impaired shoot growth; growth reductions were less with the bulk amendments. Dissolved Cu from CuO NPs contributed to their phytotoxicity but Zn release did not account for the changes in plant growth. Bioaccumulation of Cu, mainly as CuO and Cu(I)-sulfur complexes, and Zn as Zn-phosphate was detected in the shoots of NP-challenged plants. Total Cu and Zn levels in shoot were similar whether NP or bulk materials were used. Oxidative stress in the NP-treated plants was evidenced by increased lipid peroxidation and oxidized glutathione in roots and decreased chlorophyll content in shoots; higher peroxidase and catalase activities were present in roots. These findings correlate with the NPs causing increased production of reactive oxygen species. The accumulation of Cu and Zn from NPs into edible plants has relevance to the food chain.
Water quality of streams and springs, Green River Basin, Wyoming
DeLong, L.L.
1986-01-01
Data concerning salinity, phosphorus, and trace elements in streams and springs within the Green River Basin in Wyoming are summarized. Relative contributions of salinity are shown through estimates of annual loads and average concentrations at 11 water quality measurements sites for the 1970-77 water years. A hypothetical diversion of 20 cu ft/sec from the Big Sandy River was found to lower dissolved solids concentration in the Green River at Green River, Wyoming. This effect was greatest during the winter months, lowering dissolved solids concentration as much as 13%. Decrease in dissolved solids concentrations during the remainder of the year was generally less than 2%. Unlike the dilution effect that overland runoff has on perennial streams, runoff in ephemeral and intermittent streams within the basin was found to be enriched by the flushing of salts from normally dry channels and basin surfaces. Relative concentrations of sodium and sulfate in streams within the basin appear to be controlled by solubility. A downstream trend of increasing relative concentrations of sodium, sulfate, or both with increasing dissolved solids concentration was evident in all streams sampled. Estimates of total phosphorus concentration at water quality measurement sites indicate that phosphorus is removed from the Green River water as it passes through Fontenelle and Flaming Gorge Reservoirs. Total phosphorus concentration at some stream sites is directly or inversely related to streamflow, but at most sites a simple relation between concentration and streamflow is not discernable. (USGS)
Cu isotopes in marine black shales record the Great Oxidation Event
Rodríguez, Nathalie P.; Partin, Camille A.; Andersson, Per; Weiss, Dominik J.; El Albani, Abderrazak; Rodushkin, Ilia; Konhauser, Kurt O.
2016-01-01
The oxygenation of the atmosphere ∼2.45–2.32 billion years ago (Ga) is one of the most significant geological events to have affected Earth’s redox history. Our understanding of the timing and processes surrounding this key transition is largely dependent on the development of redox-sensitive proxies, many of which remain unexplored. Here we report a shift from negative to positive copper isotopic compositions (δ65CuERM-AE633) in organic carbon-rich shales spanning the period 2.66–2.08 Ga. We suggest that, before 2.3 Ga, a muted oxidative supply of weathering-derived copper enriched in 65Cu, along with the preferential removal of 65Cu by iron oxides, left seawater and marine biomass depleted in 65Cu but enriched in 63Cu. As banded iron formation deposition waned and continentally sourced Cu became more important, biomass sampled a dissolved Cu reservoir that was progressively less fractionated relative to the continental pool. This evolution toward heavy δ65Cu values coincides with a shift to negative sedimentary δ56Fe values and increased marine sulfate after the Great Oxidation Event (GOE), and is traceable through Phanerozoic shales to modern marine settings, where marine dissolved and sedimentary δ65Cu values are universally positive. Our finding of an important shift in sedimentary Cu isotope compositions across the GOE provides new insights into the Precambrian marine cycling of this critical micronutrient, and demonstrates the proxy potential for sedimentary Cu isotope compositions in the study of biogeochemical cycles and oceanic redox balance in the past. PMID:27091980
Blewett, Tamzin A; Simon, Robyn A; Turko, Andy J; Wright, Patricia A
2017-08-01
Elevated levels of metals have been reported in mangrove ecosystems worldwide. Mangrove fishes also routinely experience severe environmental stressors, such as hypoxia. In the amphibious fish Kryptolebias marmoratus (mangrove rivulus), a key behavioural response to avoid aquatic stress is to leave water (emersion). We hypothesized that copper (Cu) exposure would increase the sensitivity of this behavioural hypoxia avoidance response due to histopathological effects of Cu on gill structure and function. K. marmoratus were exposed to either control (no added Cu) or Cu (300μg/L) for 96h. Following this period, fish were exposed to an acute hypoxic challenge (decline in dissolved oxygen to ∼0% over 15min), and the emersion response was recorded. Gills were examined for histological changes. Fish exposed to Cu emersed at a higher dissolved oxygen level (7.5±0.6%), relative to the control treatment group (5.8±0.4%). Histological analysis showed that the gill surface area increased and the interlamellar cell mass (ILCM) was reduced following Cu exposure, contrary to our prediction. Overall, these data indicate that Cu induces hypoxia-like changes to gill morphology and increases the sensitivity of the hypoxia emersion response. Copyright © 2017 Elsevier B.V. All rights reserved.
Milosev, I; Minović, A
2001-01-01
The mechanism of corrosion of Cu-xZn alloys (x = 10-40 wt %) in slightly alkaline chloride solutions was investigated by analysing solid reaction products by energy dispersive X-ray analysis (EDS) and dissolved reaction products by differential anodic pulse stripping (DAPS) voltammetry. The corrosion process was studied under open circuit and under potentiostatic conditions at selected potentials. Pure metals were studied comparatively so that an interacting effect of particular metal components in the alloy could be determined. All four Cu-xZn alloys show an improved behaviour compared to pure metals. Under open-circuit condition both components dissolve simultaneously in the solution. With increasing immersion time the preferential, dissolution of zinc in the solution becomes pronounced. It is the highest for Cu-10Zn and the lowest for Cu-30Zn alloy. Under potentiostatic control the dissolution mechanism depends on the electrode potential and changes from exclusive dissolution of zinc to simultaneous dissolution of both components with preferential dissolution of zinc. The latter decreases, as the electrode potential becomes more positive.
Morabito, Elisa; Radaelli, Marta; Corami, Fabiana; Turetta, Clara; Toscano, Giuseppa; Capodaglio, Gabriele
2018-04-01
In order to study the role of sediment re-suspension and deposition versus the role of organic complexation, we investigated the speciation of cadmium (Cd), copper (Cu) and lead (Pb) in samples collected in the Venice Lagoon during several campaigns from 1992 to 2006. The increment in Cd and Pb concentration in the dissolved phases, observed in the central and northern basins, can be linked to important alterations inside the lagoon caused by industrial and urban factors. The study focuses on metal partition between dissolved and particulate phases. The analyses carried out in different sites illustrate the complex role of organic matter in the sedimentation process. While Cd concentration in sediments can be correlated with organic matter, no such correlation can be established in the case of Pb, whose particulate concentration is related only to the dissolved concentration. In the case of Cu, the role of organic complexation remains unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.
Improved urban stormwater treatment and pollutant removal pathways in amended wet detention ponds.
Istenič, Darja; Arias, Carlos A; Vollertsen, Jes; Nielsen, Asbjørn H; Wium-Andersen, Tove; Hvitved-Jacobsen, Thorkild; Brix, Hans
2012-01-01
Dissolved and colloidal bound pollutants are generally poorly removed from stormwater in wet detention ponds. These fractions are, however, the most bio-available, and therefore three wet detention ponds were amended with planted sand filters, sorption filters and addition of precipitation chemicals to enhance the removal of dissolved pollutants and pollutants associated with fine particles and colloids. The three systems treated runoff from industrial, residential and combined (residential and highway) catchments and had permanent volumes of 1,990, 6,900 and 2,680 m(3), respectively. The treatment performance of the ponds for elimination of total suspended solids (TSS), total nitrogen (Tot-N), total phosphorous (Tot-P), PO(4)-P, Pb, Zn, Cd, Ni, Cr, Cu, Hg were within the range typically reported for wet detention ponds, but the concentrations of most of the pollutants were efficiently reduced by the planted sand filters at the outlets. The sorption filters contributed to further decrease the concentration of PO(4)-P from 0.04 ± 0.05 to 0.01 ± 0.01 mg L(-1) and were also efficient in removing heavy metals. Dosing of iron sulphate to enrich the bottom sediment with iron and dosing of aluminium salts to the inlet water resulted in less growth of phytoplankton, but treatment performance was not significantly affected. Heavy metals (Pb, Zn, Cd, Ni, Cr and Cu) accumulated in the sediment of the ponds. The concentrations of Zn, Ni, Cu and Pb in the roots of the wetland plants were generally correlated to the concentrations in the sediments. Among 13 plant species investigated, Rumex hydrolapathum accumulated the highest concentrations of heavy metals in the roots (Concentration Factor (CF) of 4.5 and 5.9 for Zn and Ni, respectively) and Iris pseudacorus the lowest (CF < 1). The translocation of heavy metals from roots to the aboveground tissues of plants was low. Therefore the potential transfer of heavy metals from the metal-enriched sediment to the surrounding ecosystem via plant uptake and translocation is negligible.
Adam, Nathalie; Vergauwen, Lucia; Blust, Ronny; Knapen, Dries
2015-04-01
There is still a lot of contradiction on whether metal ions are solely responsible for the observed toxicity of ZnO and CuO nanoparticles to aquatic species. While most experiments have studied nanoparticle effects at organismal levels (e.g. mortality, reproduction), effects at lower levels of biological organization may clarify the role of metal ions, nanoparticles and nanoparticle aggregates. In this study, the effect of ZnO and CuO nanoparticles was tested at two lower levels: energy reserves and gene transcription and compared with zinc and copper salts. Daphnia magna was exposed during 96h to 10% immobilization concentrations of all chemicals, after which daphnids were sampled for determination of glycogen, lipid and protein concentration and for a differential gene transcription analysis using microarray. The dissolved, nanoparticle and aggregated fraction in the medium was characterized. The results showed that ZnO nanoparticles had largely dissolved directly after addition to the test medium. The CuO nanoparticles mostly formed aggregates, while only a small fraction dissolved. The exposure to zinc (both nano and metal salt) had no effect on the available energy reserves. However, in the copper exposure, the glycogen, lipid and protein concentration in the exposed daphnids was lower than in the unexposed ones. When comparing the nanoparticle (ZnO or CuO) exposed daphnids to the metal salt (zinc or copper salt) exposed daphnids, the microarray results showed no significantly differentially transcribed gene fragments. The results indicate that under the current exposure conditions the toxicity of ZnO and CuO nanoparticles to D. magna is solely caused by toxic metal ions. Copyright © 2015 Elsevier Inc. All rights reserved.
Djae, Tanalou; Bravin, Matthieu N; Garnier, Cédric; Doelsch, Emmanuel
2017-04-01
Parameterizing speciation models by setting the percentage of dissolved organic matter (DOM) that is reactive (% r-DOM) toward metal cations at a single 65% default value is very common in predictive ecotoxicology. The authors tested this practice by comparing the free copper activity (pCu 2+ = -log 10 [Cu 2+ ]) measured in 55 soil sample solutions with pCu 2+ predicted with the Windermere humic aqueous model (WHAM) parameterized by default. Predictions of Cu toxicity to soil organisms based on measured or predicted pCu 2+ were also compared. Default WHAM parameterization substantially skewed the prediction of measured pCu 2+ by up to 2.7 pCu 2+ units (root mean square residual = 0.75-1.3) and subsequently the prediction of Cu toxicity for microbial functions, invertebrates, and plants by up to 36%, 45%, and 59% (root mean square residuals ≤9 %, 11%, and 17%), respectively. Reparametrizing WHAM by optimizing the 2 DOM binding properties (i.e., % r-DOM and the Cu complexation constant) within a physically realistic value range much improved the prediction of measured pCu 2+ (root mean square residual = 0.14-0.25). Accordingly, this WHAM parameterization successfully predicted Cu toxicity for microbial functions, invertebrates, and plants (root mean square residual ≤3.4%, 4.4%, and 5.8%, respectively). Thus, it is essential to account for the real heterogeneity in DOM binding properties for relatively accurate prediction of Cu speciation in soil solution and Cu toxic effects on soil organisms. Environ Toxicol Chem 2017;36:898-905. © 2016 SETAC. © 2016 SETAC.
Ahmed, Golam; Miah, M Arzu; Anawar, Hossain M; Chowdhury, Didarul A; Ahmad, Jasim U
2012-07-01
Industrial wastewater discharged into aquatic ecosystems either directly or because of inadequate treatment of process water can increase the concentrations of pollutants such as toxic metals and others, and subsequently deteriorate water quality, environmental ecology and human health in the Dhaka Export Processing Zone (DEPZ), the largest industrial belt of 6-EPZ in Bangladesh. Therefore, in order to monitor the contamination levels, this study collected water samples from composite effluent points inside DEPZ and the surrounding surface water body connected to effluent disposal sites and determined the environmental hazards by chemical analysis and statistical approach. The water samples were analysed by inductively coupled plasma mass spectrometry to determine 12 trace metals such as As, Ag, Cr, Co, Cu, Li, Ni, Pb, Se, Sr, V and Zn in order to assess the influence of multi-industrial activities on metal concentrations. The composite effluents and surface waters from lagoons were characterized by a strong colour and high concentrations of biochemical oxygen demand, chemical oxygen demand, electrical conductivity, pH, total alkalinity, total hardness, total organic carbon, Turb., Cl(-), total suspended solids and total dissolved solids, which were above the limit of Bangladesh industrial effluent standards, but dissolved oxygen concentration was lower than the standard value. The measurement of skewness and kurtosis values showed asymmetric and abnormal distribution of the elements in the respective phases. The mean trend of variation was found in a decreasing order: Zn > Cu > Sr > Pb > Ni > Cr > Li > Co > V > Se > As > Ag in composite industrial effluents and Zn > Cu > Sr > Pb > Ni > Cr > Li > V > As > Ag > Co > Se in surface waters near the DEPZ. The strong correlations between effluent and surface water metal contents indicate that industrial wastewaters discharged from DEPZ have a strong influence on the contamination of the surrounding water bodies by toxic metals. The average contamination factors were reported to be 0.70-96.57 and 2.85-1,462 for industrial effluents and surface waters, respectively. The results reveal that the surface water in the area is highly contaminated with very high concentrations of some heavy/toxic metals like Zn, Pb, Cu, Ni and Cr; their average contamination factors are 1,460, 860, 136, 74.71 and 4.9, respectively. The concentrations of the metals in effluent and surface water were much higher than the permissible limits for drinking water and the world average concentrations in surface water. Therefore, the discharged effluent and surface water may create health hazards especially for people working and living inside and in the surrounding area of DEPZ.
DISSOLVED ORGANIC MATTER AND METALS: EFFECTS OF PH ON PARTITIONING
Eighteen Dutch soils were extracted in aqueous solutions at varying pH. Extracts were analyzed for Cd, Cu, Ni, Pb, and Zn by ICP-AES. Extract dissolved organic carbon (DOC) was fractionated into three operationally defined fractions: hydrophilic acids (Hyd), fulvic acids (FA), an...
Heavy metals content in acid mine drainage at abandoned and active mining area
NASA Astrophysics Data System (ADS)
Hatar, Hazirah; Rahim, Sahibin Abd; Razi, Wan Mohd; Sahrani, Fathul Karim
2013-11-01
This study was conducted at former Barite Mine, Tasik Chini and former iron mine Sungai Lembing in Pahang, and also active gold mine at Lubuk Mandi, Terengganu. This study was conducted to determine heavy metals content in acid mine drainage (AMD) at the study areas. Fourteen water sampling stations within the study area were chosen for this purpose. In situ water characteristic determinations were carried out for pH, electrical conductivity (EC), redox potential (ORP) and total dissolved solid (TDS) using multi parameter YSI 556. Water samples were collected and analysed in the laboratory for sulfate, total acidity and heavy metals which follow the standard methods of APHA (1999) and HACH (2003). Heavy metals in the water samples were determined directly using Inductive Coupled Plasma Mass Spectrometry (ICP-MS). Data obtained showed a highly acidic mean of pH values with pH ranged from 2.6 ± 0.3 to 3.2 ± 0.2. Mean of electrical conductivity ranged from 0.57 ± 0.25 to 1.01 ± 0.70 mS/cm. Redox potential mean ranged from 487.40 ± 13.68 to 579.9 ± 80.46 mV. Mean of total dissolved solids (TDS) in AMD ranged from 306.50 ± 125.16 to 608.14 ± 411.64 mg/L. Mean of sulfate concentration in AMD ranged from 32.33 ± 1.41 to 207.08 ± 85.06 mg/L, whereas the mean of total acidity ranged from 69.17 ± 5.89 to 205.12 ± 170.83 mgCaCO3/L. Heavy metals content in AMD is dominated by Fe, Cu, Mn and Zn with mean concentrations range from 2.16 ± 1.61 to 36.31 ± 41.02 mg/L, 0.17 ± 0.13 to 11.06 ± 2.85 mg/L, 1.12 ± 0.65 to 7.17 ± 6.05 mg/L and 0.62 ± 0.21 to 6.56 ± 4.11 mg/L, respectively. Mean concentrations of Ni, Co, As, Cd and Pb were less than 0.21, 0.51, 0.24, 0.05 and 0.45 mg/L, respectively. Significant correlation occurred between Fe and Mn, Cu, Zn, Co and Cd. Water pH correlated negatively with all the heavy metals, whereas total acidity, sulfate, total dissolved solid, and redox potential correlated positively. The concentration of heavy metals in the AMD appeared to be influenced by acidity and the formation of Fe, Mn oxide and hydroxide.
NASA Astrophysics Data System (ADS)
Skrabal, Stephen A.; Donat, John R.; Burdige, David J.
2000-06-01
The distributions and seasonal variability of total dissolved Cu (TDCu) and Cu-complexing ligands in sediment pore waters have been investigated at two contrasting sites in the Chesapeake Bay. Two ligand classes, which differ on the basis of the conditional stability constants ( K'cond) of their Cu complexes, were detected at all depths at both sites. At the sulfidic, muddy, mid-Bay Sta. M, concentrations and values of log K'cond ranged from 390-12,500 nM and ≥7.2->8.9, respectively, for the stronger ligand class ( L1 S) and 75-6,420 nM and 6.2-7.9 for the weaker ligand class ( L2 S). At the bioturbated, sandy Sta. S in the lower Bay, respective concentrations and values of log K'cond ranged from 135-807 nM and ≥7.6-≥10.2 for L1 S and 40-1,410 nM and 6.6-9.2 for L2 S. For comparison, one pore water profile from a slope station off of the Chesapeake Bay also showed the presence of two ligand classes, with respective concentrations and values of log K'cond of 140-270 nM and 8->11 for L1 S and 30-180 nM and 7-10 for L2 S. These ligands are in large excess relative to ambient TDCu concentrations (<0.1-24.3 nM), thereby maintaining very low inorganic Cu concentrations (typically <0.1 to <100 pM) and a high degree of organic complexation (87.2->99.9%) of Cu in Bay and slope sediment pore waters. Thus, virtually all TDCu fluxing from these sediments is complexed during sediment-water exchange. A relatively small fraction of the TDCu is exchanged as inorganic species, which are widely regarded as the most bioavailable form of Cu. Higher ligand concentrations at Sta. M suggest that sulfide or organic ligands containing reduced S contribute to the pool of complexing ligands; however, the exact nature and sources of the ligands in Bay pore waters are not known. The progressive increase in conditional stability constants of the CuL 2 S complexes from the mid-Bay to the slope sediments may reflect differences in biological or chemical processes at each site, as well as differences in the type of Cu-complexing organic matter. Total ligand concentrations ( L1 S + L2 S) are 15 to >100 times higher in the upper intervals of the pore waters relative to ligand concentrations in the bottom waters of the Chesapeake Bay (30-60 nM), consistent with previous observations of fluxes of these ligands from the sediments to overlying waters. These results suggest that sediments are potentially significant sources of Cu-complexing ligands to the overlying waters of the Chesapeake Bay, and perhaps, other shallow water estuarine and coastal environments. Copper-complexing ligands released from sediment pore waters may play an important role in influencing Cu speciation in overlying waters.
Armah, Frederick A; Obiri, Samuel; Yawson, David O; Onumah, Edward E; Yengoh, Genesis T; Afrifa, Ernest K A; Odoi, Justice O
2010-11-01
The levels of heavy metals in surface water and their potential origin (natural and anthropogenic) were respectively determined and analysed for the Obuasi mining area in Ghana. Using Hawth's tool an extension in ArcGIS 9.2 software, a total of 48 water sample points in Obuasi and its environs were randomly selected for study. The magnitude of As, Cu, Mn, Fe, Pb, Hg, Zn and Cd in surface water from the sampling sites were measured by flame Atomic Absorption Spectrophotometry (AAS). Water quality parameters including conductivity, pH, total dissolved solids and turbidity were also evaluated. Principal component analysis and cluster analysis, coupled with correlation coefficient analysis, were used to identify possible sources of these heavy metals. Pearson correlation coefficients among total metal concentrations and selected water properties showed a number of strong associations. The results indicate that apart from tap water, surface water in Obuasi has elevated heavy metal concentrations, especially Hg, Pb, As, Cu and Cd, which are above the Ghana Environmental Protection Agency (GEPA) and World Health Organisation (WHO) permissible levels; clearly demonstrating anthropogenic impact. The mean heavy metal concentrations in surface water divided by the corresponding background values of surface water in Obuasi decrease in the order of Cd > Cu > As > Pb > Hg > Zn > Mn > Fe. The results also showed that Cu, Mn, Cd and Fe are largely responsible for the variations in the data, explaining 72% of total variance; while Pb, As and Hg explain only 18.7% of total variance. Three main sources of these heavy metals were identified. As originates from nature (oxidation of sulphide minerals particularly arsenopyrite-FeAsS). Pb derives from water carrying drainage from towns and mine machinery maintenance yards. Cd, Zn, Fe and Mn mainly emanate from industry sources. Hg mainly originates from artisanal small-scale mining. It cannot be said that the difference in concentration of heavy metals might be attributed to difference in proximity to mining-related activities because this is inconsistent with the cluster analysis. Based on cluster analysis SN32, SN42 and SN43 all belong to group one and are spatially similar. But the maximum Cu concentration was found in SN32 while the minimum Cu concentration was found in SN42 and SN43.
The feasibility of using hard and soft wood tree mulch and processed jute fiber, as filter media, for treating mixtures of dissolved pollutants (toxic organic compounds and heavy metals) in urban stormwater (SW) runoff was evaluated. Copper (Cu), cadmium (Cd), chromium (Cr+6), l...
Herrero-Hernández, E; Andrades, M S; Rodríguez-Cruz, M S; Sánchez-Martín, M J
2011-07-01
The effect of the addition of spent mushroom substrate (SMS) to the soil as an amendment on the distribution and/or fate of copper from a copper-based fungicide applied to a vineyard soil in La Rioja (N. Spain) was studied. The study was carried out on experimental plots amended or not with SMS at rates of 40 and 100 t ha(-1). The variation in total Cu content in the topsoil (0-10 cm) and in the soil profile (0-50 cm), and the distribution of Cu in different fractions of the topsoil were studied as a function of the dose of Cu added (5 and 10 kg ha(-1)) and of the time elapsed since application (0-12 months). In addition, the changes in the chemical properties (solid organic carbon (OC), dissolved organic carbon (DOC) and pH) of the soils were studied. A greater capacity for Cu retention by the amended soils than by the unamended one was observed only when the fungicide was applied at the high dose. No effect of the amendment rate was noted on this retention capacity. The metal content in the topsoil decreased over time in step with the disappearance of the OC in the amended soil due to its oxidation, mineralization and/or leaching. This decrease in total Cu content was possibly due to the formation of soluble Cu complexes with the DOC, which facilitated its transport through the soil. A re-distribution of Cu in the different soil fractions was also observed over time, mainly from the organic to the residual fraction. The results obtained indicate that the increase in OC due to the application of SMS at the rates used does not lead to any significant increase in the persistence of Cu in the soil over time. Of greater interest would be the assessment of the risk for groundwater quality, owing to possible leaching of the fungicide enhanced by the SMS when SMS and Cu-based fungicides are jointly applied to vineyard soils. Copyright © 2011 Elsevier Ltd. All rights reserved.
Runkel, R.L.; Kimball, B.A.
2002-01-01
A reactive transport model based on one-dimensional transport and equilibrium chemistry is applied to synoptic data from an acid mine drainage stream. Model inputs include streamflow estimates based on tracer dilution, inflow chemistry based on synoptic sampling, and equilibrium constants describing acid/base, complexation, precipitation/dissolution, and sorption reactions. The dominant features of observed spatial profiles in pH and metal concentration are reproduced along the 3.5-km study reach by simulating the precipitation of Fe(III) and Al solid phases and the sorption of Cu, As, and Pb onto freshly precipitated iron-(III) oxides. Given this quantitative description of existing conditions, additional simulations are conducted to estimate the streamwater quality that could result from two hypothetical remediation plans. Both remediation plans involve the addition of CaCO3 to raise the pH of a small, acidic inflow from ???2.4 to ???7.0. This pH increase results in a reduced metal load that is routed downstream by the reactive transport model, thereby providing an estimate of post-remediation water quality. The first remediation plan assumes a closed system wherein inflow Fe(II) is not oxidized by the treatment system; under the second remediation plan, an open system is assumed, and Fe(II) is oxidized within the treatment system. Both plans increase instream pH and substantially reduce total and dissolved concentrations of Al, As, Cu, and Fe(II+III) at the terminus of the study reach. Dissolved Pb concentrations are reduced by ???18% under the first remediation plan due to sorption onto iron-(III) oxides within the treatment system and stream channel. In contrast, iron(III) oxides are limiting under the second remediation plan, and removal of dissolved Pb occurs primarily within the treatment system. This limitation results in an increase in dissolved Pb concentrations over existing conditions as additional downstream sources of Pb are not attenuated by sorption.
Zhou, L X; Zhou, S G; Zhan, X H
2004-01-01
Bacterial extracellular polymers (BEP) affect the translocation and fate of organic and inorganic pollutants in terrestrial and aquatic ecosystems. In this study, BEP from activated sludge was compared with sludge dissolved organic matter (DOM) in terms of behavior and effects on the mobilization and bioavailability of Cu in a well-aged Cu-contaminated orchard sandy loam. Addition of sludge BEP (10-200 mg dissolved organic carbon [DOC] L(-1)) to the soil resulted in 1.6- to 12.8-fold-higher soil soluble Cu concentration over the control and 1.3- to 2.2-fold over sludge DOM of the same concentration. Consequently, the Cu uptake by the ryegrass (Lolium perenne L., cv. Target) grown in the soil was increased by 31% due to interval watering of 100 mg DOC L(-1) of sludge BEP solution in a 35-d period. The influence of sludge BEP on mobilizing soil Cu could be maintained as long as 60 d or more, depending on BEP biodegradation status. The findings that sludge BEP promoted Cu mobilization and bioavailability could be attributed to less adsorption of BEP by soil, slow degradation, and higher affinity with Cu. For example, after 3 wk of aerobic incubation, the soluble Cu present in the sludge DOM-treated soil was reduced to about the level of the control, while the concentration of soluble Cu in BEP-treated soil was 6.2 times higher than that in the control. Therefore, sludge BEP could act as a facilitated-transport carrier of Cu. The environmental risk of Cu should receive much attention if BEP is incorporated into soils.
Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones
Glass, Jennifer B.; Kretz, Cecilia B.; Ganesh, Sangita; Ranjan, Piyush; Seston, Sherry L.; Buck, Kristen N.; Landing, William M.; Morton, Peter L.; Moffett, James W.; Giovannoni, Stephen J.; Vergin, Kevin L.; Stewart, Frank J.
2015-01-01
Iron (Fe) and copper (Cu) are essential cofactors for microbial metalloenzymes, but little is known about the metalloenyzme inventory of anaerobic marine microbial communities despite their importance to the nitrogen cycle. We compared dissolved O2, NO3−, NO2−, Fe and Cu concentrations with nucleic acid sequences encoding Fe and Cu-binding proteins in 21 metagenomes and 9 metatranscriptomes from Eastern Tropical North and South Pacific oxygen minimum zones and 7 metagenomes from the Bermuda Atlantic Time-series Station. Dissolved Fe concentrations increased sharply at upper oxic-anoxic transition zones, with the highest Fe:Cu molar ratio (1.8) occurring at the anoxic core of the Eastern Tropical North Pacific oxygen minimum zone and matching the predicted maximum ratio based on data from diverse ocean sites. The relative abundance of genes encoding Fe-binding proteins was negatively correlated with O2, driven by significant increases in genes encoding Fe-proteins involved in dissimilatory nitrogen metabolisms under anoxia. Transcripts encoding cytochrome c oxidase, the Fe- and Cu-containing terminal reductase in aerobic respiration, were positively correlated with O2 content. A comparison of the taxonomy of genes encoding Fe- and Cu-binding vs. bulk proteins in OMZs revealed that Planctomycetes represented a higher percentage of Fe genes while Thaumarchaeota represented a higher percentage of Cu genes, particularly at oxyclines. These results are broadly consistent with higher relative abundance of genes encoding Fe-proteins in the genome of a marine planctomycete vs. higher relative abundance of genes encoding Cu-proteins in the genome of a marine thaumarchaeote. These findings highlight the importance of metalloenzymes for microbial processes in oxygen minimum zones and suggest preferential Cu use in oxic habitats with Cu > Fe vs. preferential Fe use in anoxic niches with Fe > Cu. PMID:26441925
Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones.
Glass, Jennifer B; Kretz, Cecilia B; Ganesh, Sangita; Ranjan, Piyush; Seston, Sherry L; Buck, Kristen N; Landing, William M; Morton, Peter L; Moffett, James W; Giovannoni, Stephen J; Vergin, Kevin L; Stewart, Frank J
2015-01-01
Iron (Fe) and copper (Cu) are essential cofactors for microbial metalloenzymes, but little is known about the metalloenyzme inventory of anaerobic marine microbial communities despite their importance to the nitrogen cycle. We compared dissolved O2, NO[Formula: see text], NO[Formula: see text], Fe and Cu concentrations with nucleic acid sequences encoding Fe and Cu-binding proteins in 21 metagenomes and 9 metatranscriptomes from Eastern Tropical North and South Pacific oxygen minimum zones and 7 metagenomes from the Bermuda Atlantic Time-series Station. Dissolved Fe concentrations increased sharply at upper oxic-anoxic transition zones, with the highest Fe:Cu molar ratio (1.8) occurring at the anoxic core of the Eastern Tropical North Pacific oxygen minimum zone and matching the predicted maximum ratio based on data from diverse ocean sites. The relative abundance of genes encoding Fe-binding proteins was negatively correlated with O2, driven by significant increases in genes encoding Fe-proteins involved in dissimilatory nitrogen metabolisms under anoxia. Transcripts encoding cytochrome c oxidase, the Fe- and Cu-containing terminal reductase in aerobic respiration, were positively correlated with O2 content. A comparison of the taxonomy of genes encoding Fe- and Cu-binding vs. bulk proteins in OMZs revealed that Planctomycetes represented a higher percentage of Fe genes while Thaumarchaeota represented a higher percentage of Cu genes, particularly at oxyclines. These results are broadly consistent with higher relative abundance of genes encoding Fe-proteins in the genome of a marine planctomycete vs. higher relative abundance of genes encoding Cu-proteins in the genome of a marine thaumarchaeote. These findings highlight the importance of metalloenzymes for microbial processes in oxygen minimum zones and suggest preferential Cu use in oxic habitats with Cu > Fe vs. preferential Fe use in anoxic niches with Fe > Cu.
Characterization of Raw and Decopperized Anode Slimes from a Chilean Refinery
NASA Astrophysics Data System (ADS)
Melo Aguilera, Evelyn; Hernández Vera, María Cecilia; Viñals, Joan; Graber Seguel, Teófilo
2016-04-01
This work characterizes raw and decopperized slimes, with the objective of identifying the phases in these two sub-products. The main phases in copper anodes are metallic copper, including CuO, which are present in free form or associated with the presence of copper selenide or tellurides (Cu2(Se,Te)) and several Cu-Pb-Sb-As-Bi oxides. During electrorefining, the impurities in the anode release and are not deposited in the cathode, part of them dissolving and concentrated in the electrolyte, and others form a raw anode slime that contains Au, Ag, Cu, As, Se, Te and PGM, depending on the composition of the anode. There are several recovery processes, most of which involve acid leaching in the first step to dissolve copper, whose product is decopperized anode slime. SEM analysis revealed that the mineralogical species present in the raw anode slime under study were mainly eucarite (CuAgSe), naumannite (Ag2Se), antimony arsenate (SbAsO4), and lead sulfate (PbSO4). In the case of decopperized slime, the particles were mainly composed of SbAsO4 (crystalline appearance), non-stoichiometric silver selenide (Ag(2- x)Se), and chlorargyrite (AgCl).
Garduño Ruiz, E P; Rosales Hoz, L; Carranza Edwards, A
2016-10-01
In order to estimate the effects of a thermal power plant, physicochemical parameters and the concentrations of copper, nickel and lead were evaluated in water from both Tampamachoco Lagoon and the estuary of the Tuxpan River. Average salinities were 33.66 ups in the lagoon area, 32.77 ups in the channel that joins the lagoon and the river, and 24.74 ups in the river estuary. Total average metal concentrations were 21.95 for Cu, 29.67 for Ni and 4.31 µ/L for Pb. Sampling point 1 and samples from the bottom water of the lagoon present the highest salinities and concentrations of suspended matter, TOC, Cu, Ni and Pb.These high values may be associated with the infiltration of sea water either from plant operation or from the channel that connects the lagoon with the sea.
Lu, Xueqiang; Zhang, Yan; Liu, Honglei; Xing, Meinan; Shao, Xiaolong; Zhao, Feng; Li, Xiaojuan; Liu, Qiongqiong; Yu, Dan; Yuan, Xuezhu; Yuan, Min
2014-11-15
The influence of early diagenesis on the vertical distribution of metal forms in the sediments of Bohai Bay was discussed in this paper. The results showed that the concentrations were: Al > Fe ≈ Ca > Mn > Cr > Zn > Cu > Pb > Cd. In vertical distribution, the forms of Cr and Pb were stable from the top to the bottom. However, the exchangeable forms and acid-extracted forms of Cd, Cu and Zn presented an obvious declining trend. The metals would be transformed to more stable forms during the early-diagenesis process. Further analysis found that early diagenesis can change the sedimentary environment, affecting pH, oxidation-reduction potential (ORP), total dissolved solid (TDS) and the structure of organic matter (OM), all main factors influencing metal forms in the sediments of Bohai Bay. Copyright © 2014 Elsevier Ltd. All rights reserved.
Eighteen Dutch soils were extracted in aqueous solutions at varying pH. Extracts were analyzed for Cd, Cu, Ni, Pb, and Zn by ICP-AES. Extract dissolved organic carbon (DOC) was fractionated into three operationally defined fractions: hydrophilic acids (Hyd), fulvic acids (FA), an...
In vitro Solubility of Copper(II) Sulfate and Dicopper Chloride Trihydroxide for Pigs.
Park, C S; Kim, B G
2016-11-01
This study was conducted to determine the solubility of copper (Cu) in two sources of copper(II) sulfate (CuSO 4 ) including monohydrate and pentahydrate and three sources of dicopper chloride trihydroxide (dCCTH) including α-form (dCCTH-α), β-form (dCCTH-β), and a mixture of α- and β-form (dCCTH-αβ) at different pH and a 3-step in vitro digestion assay for pigs. In Exp. 1, Cu sources were incubated in water-based buffers at pH 2.0, 3.0, 4.8, and 6.8 for 4 h using a shaking incubator at 39°C. The CuSO 4 sources were completely dissolved within 15 min except at pH 6.8. The solubility of Cu in dCCTH-α was greater (p<0.05) than dCCTH-β but was not different from dCCTH-αβ during 3-h incubation at pH 2.0 and during 2-h incubation at pH 3.0. At pH 4.8, there were no significant differences in solubility of Cu in dCCTH sources. Copper in dCCTH sources were non-soluble at pH 6.8. In Exp. 2, the solubility of Cu was determined during the 3-step in vitro digestion assay for pigs. All sources of Cu were completely dissolved in step 1 which simulated digestion in the stomach. In Exp. 3, the solubility of Cu in experimental diets including a control diet and diets containing 250 mg/kg of additional Cu from five Cu sources was determined during the in vitro digestion assay. The solubility of Cu in diets containing additional Cu sources were greater (p<0.05) than the control diet in step 1. In conclusion, the solubility of Cu was influenced by pH of digesta but was not different among sources based on the in vitro digestion assay.
In vitro Solubility of Copper(II) Sulfate and Dicopper Chloride Trihydroxide for Pigs
Park, C. S.; Kim, B. G.
2016-01-01
This study was conducted to determine the solubility of copper (Cu) in two sources of copper(II) sulfate (CuSO4) including monohydrate and pentahydrate and three sources of dicopper chloride trihydroxide (dCCTH) including α-form (dCCTH-α), β-form (dCCTH-β), and a mixture of α- and β-form (dCCTH-αβ) at different pH and a 3-step in vitro digestion assay for pigs. In Exp. 1, Cu sources were incubated in water-based buffers at pH 2.0, 3.0, 4.8, and 6.8 for 4 h using a shaking incubator at 39°C. The CuSO4 sources were completely dissolved within 15 min except at pH 6.8. The solubility of Cu in dCCTH-α was greater (p<0.05) than dCCTH-β but was not different from dCCTH-αβ during 3-h incubation at pH 2.0 and during 2-h incubation at pH 3.0. At pH 4.8, there were no significant differences in solubility of Cu in dCCTH sources. Copper in dCCTH sources were non-soluble at pH 6.8. In Exp. 2, the solubility of Cu was determined during the 3-step in vitro digestion assay for pigs. All sources of Cu were completely dissolved in step 1 which simulated digestion in the stomach. In Exp. 3, the solubility of Cu in experimental diets including a control diet and diets containing 250 mg/kg of additional Cu from five Cu sources was determined during the in vitro digestion assay. The solubility of Cu in diets containing additional Cu sources were greater (p<0.05) than the control diet in step 1. In conclusion, the solubility of Cu was influenced by pH of digesta but was not different among sources based on the in vitro digestion assay. PMID:27456425
Grout, J A; Levings, C D
2001-04-01
Juvenile mussels (Mytilus edulis) were transplanted to Howe Sound, British Columbia, Canada, along an apparent pollution gradient of acid mine drainage (AMD) from an abandoned copper (Cu) mine. Cages containing 75 mussels each were placed at a total of 15 stations and were exposed to concentrations of dissolved Cu in surface waters ranging from 5 to 1009 micrograms/l for a period of 41 days. Mussels located at stations closer to the source of AMD at the mouth of Britannia Creek bioaccumulated higher concentrations of Cu and zinc (Zn) in their tissues. Mussel growth was adversely affected by Cu tissue concentrations above 20 micrograms/g dry wt., while declines in survival and condition index occurred in mussels that bioaccumulated greater than 40 micrograms/g dry wt. Cu. Tissue Zn concentrations (117-192 micrograms/g dry wt.) were likely not high enough to have a direct impact on mussel health. Reduced survival of transplanted mussels was supported by an absence of natural mussels in contaminated areas. Phytoplankton was also severely reduced in areas contaminated by mine waters. Based on the weight of evidence, AMD from the Britannia mine had a deleterious impact on mussel survival in a zone extending at least 2.1 km to the north and 1.7 km to the south of Britannia Creek on the east shore of Howe Sound.
Pham, Van Luan; Kim, Do-Gun; Ko, Seok-Oh
2018-01-01
Novel Cu@Fe 3 O 4 core-shell nanoparticles prepared via a simple reduction method were evaluated for degradation of oxytetracycline (OTC) in pre-treated leachate (L p-TREA ) (leachate treated by conventional methods). Changes in the characteristics of dissolved organic matter (DOM) in the leachate were also investigated to gain a better understanding of the effects of DOM on the performance of Cu@Fe 3 O 4 . An excellent OTC degradation of >99% was achieved within 30 min under conditions of 1 g/L Cu@Fe 3 O 4 , 20 mg/L OTC, 20 mM H 2 O 2 , and initial pH 3.0, which was similar to the efficiency obtained in deionized water (90% even at pH 9.05). Humic acid (HA) and fulvic acid (FA) were completely degraded at initial pH 3, while aromatic protein (AP) with 32.7% of 1-3 kDa constituents were totally transformed to 0.5-1 kDa compounds, and 17% < 0.5 kDa material was degraded. The OTC removal rate decreased gradually as Cu@Fe 3 O 4 was repeatedly used, but it was significantly enhanced when Cu@Fe 3 O 4 was washed after five uses to remove the organic matter on its surface. The results suggest that Cu@Fe 3 O 4 is a promising and effective catalyst for pharmaceutical and personal care product degradation in landfill leachates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Trace metals in the Ob and Yenisei Rivers' Estuaries (the Kara Sea).
NASA Astrophysics Data System (ADS)
Demina, L. L.
2014-12-01
Behavior of some trace metals (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni and Pb) in water column (soluble <0.45 µm and particulate fractions) and bottom sediments (surface and cores) along the two transects from the Ob River and Yenisei River Estuaries to the Kara Sea was studied. The length of both transects was about 700 km. Water depth was 12-63 m, O2 dissolved :5.36-9.55 ml l-1. Along the transects salinity increased from 0.07 to 34.2 psu, while the SPM' concentration decreased from 10.31 to 0.31 mg/l. Total suspended particulate matter load is more than one order of magnitude higher in the Ob River Estuary comparing to that of the Yenisei River. It has led to a significant difference between the suspended trace metals' concentrations (µg/l) in water of the two estuaries. With salinity increase along transects Fe susp., Mn susp. and Zn susp. decreased by a factor of 100-500, that has led to a growth of a relative portion of dissolved trace metals followed by their bioaccumulation (Demina et al., 2010). A strong direct correlation between suspended Cu, Fe and SPM mass concentration was found. For the first time along the Yenisei River' Estuary -the Kara Sea transect a direct positive correlation between Cu suspended and volume concentration of SPM (mg/ml3) was found, that was attributed to contribution of phytoplankton aggregates in the SPM composition. A trend of relationship between content of suspended As and pelitic fraction (2-10 µm) of SPM was firstly found in theses basins also. Study of trace metal speciation in the bottom sediments (adsorbed, associated with Fe-Mn (oxyhydr)oxides, organic matter and fixed in the mineral lattice or refractory) has revealed the refractory fraction to be prevailing (70-95% total content) for Fe, Zn, Cu, Co, Ni, Cr, Cd and Pb. That means that toxic heavy metals were not available for bottom fauna. Mn was predominantly found in the adsorbed and (oxyhydr)oxides geochemically labile forms, reflecting the redox condition change along both transects and within the sedimentary cores. References. Demina L.L., Gordeev V.V., Galkin S.V., Kravchishina M.D. Biogeochemistry of some heavy metals and metalloids along the transect the Ob River Estuary - the Kara Sea. Oceanology, 2010, vo. 50, No 5, pp. 729- 742.
Bobay, Keith E.
1986-01-01
Two U.S. Geological Survey computer programs are modified and linked to predict the cumulative impact of iron and manganese oxidation in coal-mine discharge water on the dissolved chemical quality of a receiving stream. The coupled programs calculate the changes in dissolved iron, dissolved manganese, and dissolved oxygen concentrations; alkalinity; and, pH of surface water downstream from the point of discharge. First, the one-dimensional, stead-state stream, water quality program uses a dissolved oxygen model to calculate the changes in concentration of elements as a function of the chemical reaction rates and time-of-travel. Second, a program (PHREEQE) combining pH, reduction-oxidation potential, and equilibrium equations uses an aqueous-ion association model to determine the saturation indices and to calculate pH; it then mixes the discharge with a receiving stream. The kinetic processes of the first program dominate the system, whereas the equilibrium thermodynamics of the second define the limits of the reactions. A comprehensive test of the technique was not possible because a complete set of data was unavailable. However, the cumulative impact of representative discharges from several coal mines on stream quality in a small watershed in southwestern Indiana was simulated to illustrate the operation of the technique and to determine its sensitivity to changes in physical, chemical, and kinetic parameters. Mine discharges averaged 2 cu ft/sec, with a pH of 6.0, and concentrations of 7.0 mg/L dissolved iron, 4.0 mg/L dissolved manganese, and 8.08 mg/L dissolved oxygen. The receiving stream discharge was 2 cu ft/sec, with a pH of 7.0, and concentrations of 0.1 mg/L dissolved iron, 0.1 mg/L dissolved manganese, and 8.70 mg/L dissolved oxygen. Results of the simulations indicated the following cumulative impact on the receiving stream from five discharges as compared with the effect from one discharge: 0.30 unit decrease in pH, 1.82 mg/L increase in dissolved iron, 1.50 mg/L increase in dissolved manganese, and 0.24 mg/L decrease in dissolved oxygen concentration.
Water quality assessment and hydrochemical characterization of Zamzam groundwater, Saudi Arabia
NASA Astrophysics Data System (ADS)
Al-Barakah, Fahad N.; Al-jassas, Abdurahman M.; Aly, Anwar A.
2017-11-01
This study focuses on chemical and microbial analyses of 50 Zamzam water samples, Saudi Arabia. The soluble ions, trace elements, total colony counts, total coliform group, and E. coli were determined and compared with WHO standards. The obtained results indicated that the dissolved salts, soluble cations and anions, Pb, Cd, As, Zn, Cu, Ni, Co, Fe, Mn, Cr, PO4 3-, NO2 -, Br-, F-, NH4 +, and Li+, were within permissible limits for all samples. Yet, 2% of waters contain NO3 - at slightly high concentration. The water quality index (WQI) reveals that 94% of the samples were excellent for drinking (class I). While the remaining was unsuitable due to total coliform group contamination "class (V)". Durov diagram suggest no clear facies and dominant water type can be noted. It indicates mixing processes of two or more different facies might be occurring in the groundwater system. All studied waters were undersaturated with respect to halite, gypsum, fluorite, and anhydrite. These minerals tend to dissolve and increase water salinity. A direct relationship between Zamzam water salinity and rainfall is recorded. The water salinity fluctuated between 4500 mg L-1 (year 1950) and 500 mg L-1 (year 2015) based on rainfall extent. The approach applied can be used to similar groundwater worldwide.
Wang, Ning; Mebane, Christopher A.; Kunz, James L.; Ingersoll, Christopher G.; Brumbaugh, William G.; Santore, Robert C.; Gorsuch, Joseph W.; Arnold, W. Ray
2011-01-01
Acute and chronic toxicity of copper (Cu) to a unionid mussel (Villosa iris) and a cladoceran (Ceriodaphnia dubia) were determined in water exposures at four concentrations of dissolved organic carbon (DOC; nominally 0.5, 2.5, 5, and 10 mg/L as carbon [C]). Test waters with DOC concentrations of 2.5 to 10 mg C/L were prepared by mixing a concentrate of natural organic matter (Suwannee River, GA, USA) in diluted well water (hardness 100 mg/L as CaCO3, pH 8.3, DOC 0.5 mg C/L). Acute median effect concentrations (EC50s) for dissolved Cu increased approximately fivefold (15–72 μg Cu/L) for mussel survival in 4-d exposures and increased about 11-fold (25–267 μg Cu/L) for cladoceran survival in 2-d exposures across DOC concentrations from 0.5 to 10 mg C/L. Similarly, chronic 20% effect concentrations (EC20s) for the mussel in 28-d exposures increased about fivefold (13–61 μg Cu/L for survival; 8.8–38 μg Cu/L for biomass), and the EC20s for the cladoceran in 7-d exposures increased approximately 17-fold (13–215 μg Cu/L) for survival or approximately fourfold (12–42 μg Cu/L) for reproduction across DOC concentrations from 0.5 to 10 mg C/L. The acute and chronic values for the mussel were less than or approximately equal to the values for the cladoceran. Predictions from the biotic ligand model (BLM) used to derive the U.S. Environmental Protection Agency's ambient water quality criteria (AWQC) for Cu explained more than 90% of the variation in the acute and chronic endpoints for the two species, with the exception of the EC20 for cladoceran reproduction (only 46% of variation explained). The BLM-normalized acute EC50s and chronic EC20s for the mussel and BLM-normalized chronic EC20s for the cladoceran in waters with DOC concentrations of 2.5 to 10 mg C/L were equal to or less than the final acute value and final chronic value in the BLM-based AWQC for Cu, respectively, indicating that the Cu AWQC might not adequately protect the mussel from acute and chronic exposure, and the cladoceran from chronic exposure.
Nasr, Samir M; Okbah, Mohamed A; El Haddad, Huda S; Soliman, Naglaa F
2015-07-01
A five-step sequential extraction technique, following Tessier's protocol, has been applied to determine the chemical association of Cd, Cu, Fe, Pb, and Zn with major sedimentary phases (exchangeable, carbonate, manganese and iron oxides, organic and residual fraction) in surface sediments from 14 stations off the Libyan Mediterranean coast. This study is a first approach of chemical fractionation of these metals in one of the most economically important area of the Libyan coastline in Mediterranean Sea. The total metal content was also determined. The total concentration of metals ranged from 5-10.5 mg/kg for Cd, 9.1-22.7 mg/kg for Cu, 141.8-1056.8 mg/kg for Fe, 18.9-56.9 mg/kg for Pb, and 11.6-30.5 mg/kg for Zn. The results of the partitioning study showed that the residual form was the dominant fraction of the selected metals among most of the studied locations. The degree of surface sediment contamination was computed for risk assessment code (RAC), individual contamination factor (ICF), and Global contamination factor (GCF). Risk assessment code classification showed that the relative amounts of easily dissolved phase of trace metals in the sediments are in the order of Pb>Zn>Cd>Cu>Fe. The results of ICF and GCF showed that Sirt and Abu Kammashand had higher GCF than other sites indicating higher environmental risk. In terms of ICF value, a decrease order in environmental risk by trace metals was Pb>Zn>Cu>Cd>Fe. Therefore, Pb had highest risk to water body.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wixtroma, Alex I.; Buhlera, Jessica E.; Reece, Charles E.
2013-06-01
Recent research has shown that choline chloride-based solutions can be used to replace acid-based electrochemical polishing solutions. In this study niobium metal was successfully deposited on the surface of copper substrate via electrochemical deposition using a novel choline chloride-based ionic liquid. The niobium metal used for deposition on the Cu had been dissolved in the solution from electrochemical polishing of a solid niobium piece prior to the deposition. The visible coating on the surface of the Cu was analyzed using scanning electron microscopy (SEM) and electron dispersive x-ray spectroscopy (EDX). This deposition method effectively recycles previously dissolved niobium from electrochemicalmore » polishing.« less
Revisiting Mn and Fe removal in humic rich estuaries
NASA Astrophysics Data System (ADS)
Oldham, Véronique E.; Miller, Megan T.; Jensen, Laramie T.; Luther, George W.
2017-07-01
Metal removal by estuarine mixing has been studied for several decades, but few studies emphasize dissolved metal speciation and organic ligand complexation. Findings from the last decade indicate that metal-humic complexation can be significant for dissolved metals including Cu(II), Al(III) and Fe(III), but little consideration is given to the precipitation of these complexes with humic material at pH < 2. Given that total soluble metal analysis involves an acidification step for sample preservation, we show that Mn and other metal concentrations may have been underestimated in estuaries, especially when humic substance concentrations are high. A competitive ligand assay of selected samples from our study site, a coastal waterway bordered by wetlands (Broadkill River, DE), showed that Mn(III)-humic complexation is significant, and that some Mn(III)-L complexes precipitate during acidification. In the oxygenated surface waters of the Broadkill River, total dissolved Mn (dMnT) was up to 100% complexed to ambient ligands as Mn(III)-L, and we present evidence for humic-type Mn(III)-L complexes. The Mn(III) complexes were kinetically stabilized against Fe(II) reduction, even when [Fe(II)] was 17 times higher than [dMnT]. Unlike typical oceanic surface waters, [Fe(II)] > [Fe(III)-L] in surface waters, which may be attributed to high rates of photoreduction of Fe(III)-L complexes. Total [Mn(III)-L] ranged from 0.22 to 8.4 μM, in excess of solid MnOx (below 0.28 μM in all samples). Filtration of samples through 0.02 μm filters indicated that all Mn(III)-L complexes pass through the filters and were not colloidal species in contrast to dissolved Fe. Incubation experiments indicated that the reductive dissolution of solid MnOx by ambient ligands may be responsible for Mn(III) formation in this system. Unlike previous studies of estuarine mixing, which demonstrated metal removal during mixing, we show significant export of dMn and dissolved Fe (dFe) in the summer and fall of 2015. Thus, we propose that estuarine removal should be considered seasonal for dMn and dFe, with export in the summer and fall and removal during the winter.
Yin, Yujun; Impellitteri, Christopher A; You, Sun-Jae; Allen, Herbert E
2002-03-15
The lability (mobility and bioavailability) of metals varies significantly with soil properties for similar total soil metal concentrations. We studied desorption of Cu, Ni and Zn, from 15 diverse, unamended soils. These studies included evaluation of the effects of soil:solution extraction ratio and the roles of soil properties on metal desorption. Dcsorption was examined for each metal by computing distribution coefficients (Kd) for each metal in each soil where Kd = [M]soil/[M]solution, Results from soil:solution ratio studies demonstrated that Kd values for the metals tended to increase with increasing soil:solution ratio. This result also held true for distribution of soil organic matter (SOM). Because the soil:solution ratio has a significant effect on measured metal distributions, we selected a high soil:solution ratio to more closely approach natural soil conditions. Copper showed strong affinity to operationally defined dissolved organic matter (DOM). In this study, DOM was operationally defined based on the total organic carbon (TOC) content in 0.45-microm or 0.22-microm filtrates of the extracts. The Kd of Cu correlated linearly (r2 = 0.91) with the Kd of organic matter (Kd-om) where the Kd-om is equal to SOM as measured by Walkley-Black wet combustion and converted to total carbon (TC) by a factor of 0.59. These values representing solid phase TC were then divided by soluble organic carbon as measured by TOC analysis (DOM). The conversion factor of 0.59 was employed in order to construct Kd-om values based on solid phase carbon and solution phase carbon. SOM plays a significant role in the fate of Cu in soil systems. Soil-solution distribution of Ni and Zn, as well as the activity of free Cu2+, were closely related to SOM, but not to DOM. Kd values for Ni, Zn and free Cu2+ in a particular soil were divided by the SOM content in the same soil. This normalization of the Kd values for Ni, Zn, and free Cu2+ to the SOM content resulted in significant improvements in the linear relationships between non-normalized Kd values and soil pH. The semi-empirical normalized regression equations can be used to predict the solubility of Ni and Zn and the activity of free Cu2+ as a function of pH.
NASA Astrophysics Data System (ADS)
Amerioun, M. H.; Ghazi, M. E.; Izadifard, M.; Bahramian, B.
2016-04-01
CuInSe2 , CuInS2 ( CIS2 and CuInGaS2 alloys and their compounds with band gaps between 1.05 and 1.7eV are absorbance materials based on chalcopyrite, in which, because of their suitable direct band gap, high absorbance coefficient and short carrier diffusion are used as absorbance layers in solar cells. In this work, the effects of decrease in p H and thickness variation on characteristics of the CIS2 absorber layers, grown by spin coating on glass substrates, are investigated. Furthermore by using thiourea as a sulphur source in solvent, the sulfurization of layers was done easier than other sulfurization methods. Due to the difficulty in dissolving thiourea in the considered solvent that leads to a fast deposition during the dissolving process, precise conditions are employed in order to prepare the solution. In fact, this procedure can facilitate the sulfurization process of CuIn layers. The results obtained from this investigation indicate reductions in absorbance and band gap in the visible region of the spectrum as a result of decrease in p H. Finally, conductivity of layers is studied by the current vs. voltage curve that represents reduction of electrical resistance with decrease and increase in p H and thickness, respectively.
Saiki, Michael K.; Palawski, Donald U.
1990-01-01
Concentrations of selenium and other trace elements were determined in 55 whole body samples of juvenile anadromous striped bass (Morone saxatilis) from the San Joaquin Valley and San Francisco Estuary, California. The fish (≤1 yr old—the predominant life stage in the San Joaquin Valley) were collected in September–December 1986 from 19 sites in the Valley and 3 sites in the Estuary, and analyzed for the following elements: aluminum (Al), arsenic (As), boron (B), barium (Ba), beryllium (Be), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), magnesium (Mg), molybdenum (Mo), nickel (Ni), lead (Pb), selenium (Se), strontium (Sr), vanadium (V), and zinc (Zn). When compared to concentrations in whole freshwater fish measured by surveys from other waters, a few samples contained higher levels, of As, Cd, Cu, Pb, and Se. The median concentrations of Al, As, Cu, Fe, Mg, Se, and Sr also differed significantly (P⩽0.05) among sites. However, only Se concentrations were highest (up to 7.9 μg/g dry weight) in samples from Valley sites exposed to agricultural subsurface (tile) drainwater; concentrations were lower in samples collected elsewhere. Water quality variables—especially those strongly influenced by tile drainwater (conductivity, total dissolved solids, total alkalinity, and total hardness)—were also significantly correlated (P⩽0.05) with Se concentrations in fish. Selenium concentrations in striped bass from the Estuary were only one-fourth to one-half the concentrations measured in the most contaminated fish from the San Joaquin River.
Copper in the intake and discharge zones of the Surry and Salem Nuclear Power Stations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, F.L.; Bishop, D.J.; Rice, D.W. Jr.
Copper concentrations were measured in the soluble and particulate fractions of water samples and bedload sediments collected in intake and discharge areas of the Surry and Salem Nuclear Power Stations during normal operations. Additional samples of water and suspended particles were collected during startup of Unit 2 at the Salem Power Station. In water samples collected from Surry, total copper ranged from 6.5 to 24.7 and labile copper from 0.5 to 2.9 ..mu..g/L; in those from Salem, total copper ranged from 6.7 to 10.6 and labile from 0.9 to 3.8 ..mu..g/L. At both sites the highest total copper concentration wasmore » measured in January 1979 during a period of high runoff. In general, differences between influent and effluent waters were small; the maximum was 4.2 ..mu..g Cu/L. Copper concentration in the water during startup of Unit 2 of Salem was high initially (>2500 ..mu..g Cu/L) but was almost entirely in the particulate fraction; labile copper was only 0.6 ..mu..g/L. The apparent complexing capacity (ACC) of the waters from Surry ranged from 6 to 40 and those from Salem from 5 to 60 ..mu..g Cu/L. Ranges in dissolved organic carbon were smaller, 2.9 to 5.1 and 2.2 to 5.0 mg C/L for Surry and Salem, respectively, and showed no relationship with ACC. Ultrafiltration of discharge waters indicated that, in most samples, the largest fraction of copper in the untreated water was in the >10,000 <100,000 molecular weight fraction; in waters treated to destroy dissolved organic carbon, it was generally in the >100,000 molecular weight fraction.Copper concentrations in intact bedload sediments from the intake area of Surry ranged from 2.3 to 26 and of Salem from 36 to 74 ..mu..g/g dry weight; those in the discharge area of Surry ranged from 13 to 30 and of Salem from 3 to 67. We noted considerable spatial heterogeneity both at the intake and discharge areas, and higher copper concentrations in the <62-..mu..m fraction than in intact sediments.« less
Reconnaissance of surface-water resources in the Kobuk River basin, Alaska, 1979-80
Childers, J.M.; Kernodle, D.R.
1983-01-01
Surface water data were collected at selected sites in the Kobuk River Basin in northwest Alaska in August 1979 and April 1980. In August 1979, frequent heavy rains caused abnormally high flows in the basin; unit runoff values, computed from discharge measurements at 25 sites, ranged from 0.08 to 12.2 cu ft/sec/sq mi. Mean unit runoff for August computed from 13 years of record at a stream gaging station on the Kobuk River ranged from 1 to 3 cu ft/sec/sq mi. Unit runoff computed from discharge measurements made at eight sites in April 1980 ranged from 0 to 0.30 cubic feet per second per square mile. These values are in reasonable agreement with those derived from the record at the gaging station. High-water marks of maximum evident floods and evidence of ice-affected flooding were found at near bankfull stages at 17 sites on the Kobuk River and its tributaries. Computed unit runoff for the maximum evident floods generally decreases with increasing drainage area. Unit runoff ranges from about 50 to 75 cu ft/sec/sq mi for drainage areas < 1,000 sq mi to < 25 cu ft/sec/sq mi for larger areas. Field determinations were made of water temperature, pH, alkalinity, dissolved-oxygen concentration, and specific conductance, and discharge was measured at about 40 stream sites and one spring. Water samples for laboratory analysis of dissolved inorganic constituents and biological samples were collected in August 1979. Water quality data indicate that the surface waters would be acceptable for most uses; they are a calcium bicarbonate type having dissolved-solids concentrations between 50 and 140 milligm/liter. The pristine nature of the waters is also indicated by the overall diversity and composition of its benthic invertebrate community. A more highly mineralized (about 550 milligm/liter dissolved solids) sodium bicarbonate water flows from Reed River Hot Spring. (USGS)
NASA Astrophysics Data System (ADS)
Rapp, I.; Schlosser, C.; Gledhill, M.; Achterberg, E. P.
2016-02-01
Fe availability in surface waters determines primary production, N2 fixation and microbial community structure and thus plays an important role in ocean carbon and nitrogen cycles. Eastern boundary upwelling areas with oxygen minimum zones, such as the Mauritanian shelf region, are typically associated with elevated Fe concentrations with shelf sediments as key source of Fe to bottom and surface waters. The magnitude of vertical and horizontal Fe fluxes from shelf sediments to onshore and offshore surface waters are not well constrained and there are still large uncertainties concerning the stabilisation of Fe once released from sediments into suboxic and oxic waters. Supportive data of other trace metals can be used as an indicator of sediment release, scavenging processes and biological utilisation. Here we present soluble (<0.02 µm), dissolved (<0.2 µm) and total dissolvable (unfiltered) trace metal data collected at 10 stations on a 90 nautical mile transect across the Mauritanian shelf region in June 2014 (cruise Meteor 107). The samples were pre-concentrated using an automated off-line pre-concentration device and analysed simultaneously for Cd, Pb, Fe, Ni, Cu, Zn, Mn and Co using a high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS). First results indicate the importance of benthic sources to the overall Fe budget in this region. Both dissolved Fe and Mn showed enhanced concentrations close to the shelf at depths between 40 and 180 m corresponding with low oxygen concentrations (<50 µmol L-1). Elevated soluble, dissolved, and total dissolvable Fe and Mn concentrations at an offshore station coincided with the location of a cyclonic Eddie that was characterised by an oxygen depleted water body. To further assess the accuracy of vertical and horizontal fluxes of Fe and other trace metals, we compare diffusivity estimates determined by a microstructure profiler and the scale length method (de Jong et al. 2012) with observed isotopic Ra data.
Copper use and accumulation in catfish culture in the Mekong Delta, Vietnam.
Marcussen, Helle; Løjmand, Helle; Dalsgaard, Anders; Hai, Dao M; Holm, Peter E
2014-01-01
Aquaculture of Pangasius hypophthalmus (striped catfish) in Vietnam reached 1.1 million tonnes in 2011 and catfish fillets are exported worldwide. The intensive cultures of catfish mainly in earth ponds have made it necessary to apply CuSO4 and other chemicals to control external parasites and other pathogens. However, accumulation of Cu in aquaculture ponds may pose a hazard to growth of fish or to the aquatic environment. The aim of this study was to determine accumulation of Cu in sediment, water and fish in a catfish pond with a history of repeated treatment with CuSO4 in the Mekong Delta, Vietnam. Copper concentrations in pond sediment were in the interval 21.3-45.7 mg kg(-1) dw and did not exceed the Vietnamese values for soil to be used for agricultural production (70 mg kg(-1) dw.). During three samplings the total mean concentration of Cu in pond water (4 μg L(-1)) did not exceed the LC50-value (70 μg L(-1)) for catfish and the mean dissolved concentration of Cu (0.986 μg L(-1)) did not seem to constitute a risk for the stability of the aquatic ecosystem. No significant variation in Cu concentrations between sampling sites in the pond and depth of sediment profile were determined. The accumulation of Cu in catfish was highest in the liver compared to the skin, gills and muscle tissue. With the current practice of removing pond sludge three to four times during a production cycle little if any Cu seems to accumulate in catfish ponds despite repeated anti-parasite treatments with CuSO4. Further studies are needed to assess the eco-toxicity and impact on agricultural production when pond sediment is discharged into aquatic recipients and used as soil fertilizer.
Rosales-Hoz, L; Carranza-Edwards, A; Sanvicente-Añorve, L; Alatorre-Mendieta, M A; Rivera-Ramirez, F
2009-11-01
A reef system in the southwestern Gulf of Mexico is affected by anthropogenic activities, sourced by urban, fluvial, and sewage waters. Dissolved metals have higher concentrations during the rainy season. V and Pb, were derived from an industrial source and transported to the study area by rain water. On the other hand, Jamapa River is the main source for Cu and Ni, which carries dissolved elements from adjacent volcanic rocks. Principal Component Analysis shows a common source for dissolved nitrogen, phosphates, TOC, and suspended matters probably derived from a sewage treatment plant, which is situated near to the study area.
New method for the direct determination of dissolved Fe(III) concentration in acid mine waters
To, T.B.; Nordstrom, D. Kirk; Cunningham, K.M.; Ball, J.W.; McCleskey, R. Blaine
1999-01-01
A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II) >> Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes in Fe reduction-oxidation distribution. Complexed Fe(II) is cleanly removed using a silica-based, reversed-phase adsorbent, yielding excellent isolation of the Fe(III) complex. Iron(III) concentration is measured colorimetrically or by graphite furnace atomic absorption spectrometry (GFAAS). The method requires inexpensive commercial reagents and simple procedures that can be used in the field. Calcium(II), Ni(II), Pb(II), AI(III), Zn(II), and Cd(II) cause insignificant colorimetric interferences for most acid mine waters. Waters containing >20 mg of Cu/L could cause a colorimetric interference and should be measured by GFAAS. Cobalt(II) and Cr(III) interfere if their molar ratios to Fe(III) exceed 24 and 5, respectively. Iron(II) interferes when its concentration exceeds the capacity of the complexing ligand (14 mg/L). Because of the GFAAS elemental specificity, only Fe(II) is a potential interferent in the GFAAS technique. The method detection limit is 2 ??g/L (40 nM) using GFAAS and 20 ??g/L (0.4 ??M) by colorimetry.A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II)???Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes in Fe reduction-oxidation distribution. Complexed Fe(II) is cleanly removed using a silica-based, reversed-phase adsorbent, yielding excellent isolation of the Fe(III) complex. Iron(III) concentration is measured colorimetrically or by graphite furnace atomic absorption spectrometry (GFAAS). The method requires inexpensive commercial reagents and simple procedures that can be used in the field. Calcium(II), Ni(II), Pb(II), Al(III), Zn(II), and Cd(II) cause insignificant colorimetric interferences for most acid mine waters. Waters containing >20 mg of Cu/L could cause a colorimetric interference and should be measured by GFAAS. Cobalt(II) and Cr(III) interfere if their molar ratios to Fe(III) exceed 24 and 5, respectively. Iron(II) interferes when its concentration exceeds the capacity of the complexing ligand (14 mg/L). Because of the GFAAS elemental specificity, only Fe(II) is a potential interferent in the GFAAS technique. The method detection limit is 2/??g/L (40 nM) using GFAAS and 20 ??g/L (0.4 ??M) by colorimetry.
Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts
NASA Astrophysics Data System (ADS)
Little, S. H.; Sherman, D. M.; Vance, D.; Hein, J. R.
2014-06-01
The isotopic systems of the transition metals are increasingly being developed as oceanic tracers, due to their tendency to be fractionated by biological and/or redox-related processes. However, for many of these promising isotope systems the molecular level controls on their isotopic fractionations are only just beginning to be explored. Here we investigate the relative roles of abiotic and biotic fractionation processes in controlling modern seawater Cu and Zn isotopic compositions. Scavenging to Fe-Mn oxides represents the principal output for Cu and Zn to sediments deposited under normal marine (oxic) conditions. Using Fe-Mn crusts as an analogue for these dispersed phases, we investigate the phase association and crystal chemistry of Cu and Zn in such sediments. We present the results of an EXAFS study that demonstrate unequivocally that Cu and Zn are predominantly associated with the birnessite (δ-MnO2) phase in Fe-Mn crusts, as previously predicted from sequential leaching experiments (e.g., Koschinsky and Hein, 2003). The crystal chemistry of Cu and Zn in the crusts implies a reduction in coordination number in the sorbed phase relative to the free metal ion in seawater. Thus, theory would predict equilibrium fractionations that enrich the heavy isotope in the sorbed phase (e.g., Schauble, 2004). In natural samples, Fe-Mn crusts and nodules are indeed isotopically heavy in Zn isotopes (at ∼1‰) compared to deep seawater (at ∼0.5‰), consistent with the predicted direction of equilibrium isotopic fractionation based on our observations of the coordination environment of sorbed Zn. Further, ∼50% of inorganic Zn‧ is chloro-complexed (the other ∼50% is present as the free Zn2+ ion), and complexation by Cl- is also predicted to favour equilibrium partitioning of light Zn isotopes into the dissolved phase. The heavy Zn isotopic composition of Fe-Mn crusts and nodules relative to seawater can therefore be explained by an inorganic fractionation during uptake. However, Cu in Fe-Mn crusts is isotopically light (at ∼0.3 to 0.5‰) compared to the dissolved phase in seawater (at ∼0.9‰). We suggest that this is because dissolved Cu in the oceans is overwhelmingly complexed to strong organic ligands, which are better competitors for the heavy isotope.
Olson, M.L.; Cleckner, L.B.; Hurley, J.P.; Krabbenhoft, D.P.; Heelan, T.W.
1997-01-01
Aqueous samples from the Florida Everglades present several problems for the analysis of total mercury (HgT) and methyl mercury (MeHg). Constituents such as dissolved organic carbon (DOC) and sulfide at selected sites present particular challenges due to interferences with standard analytical techniques. This is manifested by 1) the inability to discern when bromine monochloride (BrCl) addition is sufficient for sample oxidation for HgT analysis; and 2) incomplete spike recoveries using the distillation/ethylation technique for MeHg analysis. Here, we suggest ultra-violet (UV) oxidation prior to addition of BrCl to ensure total oxidation of DOC prior to HgT analysis and copper sulfate (CuSO4) addition to aid in distillation in the presence of sulfide for MeHg analysis. Despite high chloride (Cl-) levels, we observed no effects on MeHg distillation/ethylation analyses. ?? Springer-Verlag 1997.
Environmental impact assessment of oilfield upgrades in Bohai Sea
NASA Astrophysics Data System (ADS)
Chen, Ruihui; Xiong, Yanna; Li, Jiao; Li, Xianbo
2018-02-01
This paper designed 65 environmental monitoring sites to collect samples and analyze for better evaluating the environmental impact generated by cuttings, mud, produced water with oil and oil pollutions that produced during the upgrading in the Bohai Sea where the oil field 34-1 upgraded. Collecting samples include ocean water, marine life and sediments and test items involve PH, dissolved oxygen (DO), salinity, chemical oxygen demand (COD), phosphate, organic carbon, sulfide, inorganic nitrogen, petroleum, copper (Cu), lead (Pb), zinc (Zn), cadmium (Cd), total chromium (Cr), total mercury (Hg) and arsenic (As). Meanwhile sample sites collect and analyze the abundance and diversity of marine plants and elaborated the environmental impact caused by upgrading renovation project from the aspects of sea water, marine life and marine sediments. Through analysis and comparison we found that seawater quality conform the Ш seawater quality standards, the excessive rate of Cu is 10%, the average diversity index of marine life is 2.34 and evenness is 0.68. Influence range of marine sediments and pollutants of production is within 2.68km and basically has no serious impact in the surrounding sea area. It’s worth nothing that reconstruction project has the risk of oil spilling and protective measures must be prepared.
Zhang, Ziyang; Li, Kun; Zhang, Xiaoran; Li, Haiyan
2017-07-01
In this work, dissolved organic matter (DOM) was extracted from storm sewer sediments collected in four typical regions (residential, campus, traffic and business regions) in Beijing, China. The basic characteristics of DOM were analyzed by UV-visible spectroscopy (UV-Vis), excitation-emission matrix Fluorescence Spectroscopy and Fourier Transform Infrared Spectroscopy. Furthermore, the complexation between DOM and Cu(II) were investigated. The results showed that there were large amount of aromatic structure in the DOM extracted from storm sewer sediments. The microbial activities had also made a contribution to the DOM in storm sewer sediments. The composition of DOM influenced the complexing capacity of Cu(II) greatly, which may be attributed to the protein-like and humic-like substances in storm sewer sediments. This study demonstrated valuable information on the structure present in the DOM of storm sewer sediments and provided new insight for exploring the relationship between DOM and co-existing heavy metals in storm sewer sediments.
Casares, María Victoria; de Cabo, Laura I.; Seoane, Rafael S.; Natale, Oscar E.; Castro Ríos, Milagros; Weigandt, Cristian; de Iorio, Alicia F.
2012-01-01
In order to determine copper toxicity (LC50) to a local species (Cnesterodon decemmaculatus) in the South American Pilcomayo River water and evaluate a cross-fish-species extrapolation of Biotic Ligand Model, a 96 h acute copper toxicity test was performed. The dissolved copper concentrations tested were 0.05, 0.19, 0.39, 0.61, 0.73, 1.01, and 1.42 mg Cu L−1. The 96 h Cu LC50 calculated was 0.655 mg L−1 (0.823 − 0.488). 96-h Cu LC50 predicted by BLM for Pimephales promelas was 0.722 mg L−1. Analysis of the inter-seasonal variation of the main water quality parameters indicates that a higher protective effect of calcium, magnesium, sodium, sulphate, and chloride is expected during the dry season. The very high load of total suspended solids in this river might be a key factor in determining copper distribution between solid and solution phases. A cross-fish-species extrapolation of copper BLM is valid within the water quality parameters and experimental conditions of this toxicity test. PMID:22523491
NASA Astrophysics Data System (ADS)
Chen, J.; Gaillardet, J.; Louvat, P.; Birck, J.
2009-05-01
Metal contamination is a major issue of human impact on the aqueous environment. River water is particularly susceptible to contamination for both dissolved and particulate loads, displaying a major challenge in understanding the dominant sources and pathways of metals in polluted drainage basins. Recent improvements in mass spectrometry allow isotopic measurements of "non-traditional" metals (Zn, Cu, Fe, etc.), making their isotopes a new potential device to investigate contamination of metals under dissolved and particulate forms in rivers. We focus here on Zn isotope geochemistry in the largely anthropized Seine River (France). A new protocol of two-column separation of Zn from dilute aqueous solution has been developed and proven to be reproducible and satisfactory for accurate measurement of Zn isotopic ratios in water samples by MC-ICP-MS (2σ = 0.04‰). Preliminary results show a total variation of 0.65‰ for δ66Zn in dissolved phases of the Seine basin, and a light isotope enrichment in anthropogenic sources compared to other water samples. The determined conservative behavior of Zn in river water makes its isotopes an effective probe of anthropogenic contamination. The natural and anthropogenic inputs were clearly identified and calculated based on Zn isotope compositions for dissolved loads. Suspended particular matters (SPM) display different Zn isotope compositions compared to dissolved loads, with a total δ66Zn variation of 0.22‰. Zn concentrations and its isotope compositions in SPM reveal inverse relationships as function of the distance from the headwater and the SPM content for geographical and temporal samples, respectively. The δ66Zn data in SPM are interpreted as reflecting the mixture of natural and anthropogenic particles. The correlation between dissolved and particulate δ66Zn shows that adsorption processes are not the dominant process making Zn enrichment in SPM. We report here for the first time systematic δ66Zn data in waters of a whole river basin, showing Zn isotopes a powerful probe to trace contamination sources and biogeochemical processes in hydrologic systems.
Assessment of the labile fractions of copper and zinc in marinas and port areas in Southern Brazil.
Costa, Luiza Dy Fonseca; Wallner-Kersanach, Mônica
2013-08-01
The dissolved labile and labile particulate fractions (LPF) of Cu and Zn were analyzed during different seasons and salinity conditions in estuarine waters of marina, port, and shipyard areas in the southern region of the Patos Lagoon (RS, Brazil). The dissolved labile concentration was determined using the diffusive gradients in thin films technique (DGT). DGT devices were deployed in seven locations of the estuary for 72 h and the physicochemical parameters were also measured. The LPF of Cu and Zn was determined by daily filtering of water samples. Seasonal variation of DGT-Cu concentrations was only significant (p < 0.05) at one shipyard area, while DGT-Zn was significant (p < 0.05) in every locations. The LPF of Cu and Zn concentrations demonstrated seasonal and spatial variability in all locations, mainly at shipyard areas during high salinity conditions. In general, except the control location, the sampling locations showed mean variations of 0.11-0.45 μg L(-1) for DGT-Cu, 0.89-9.96 μg L(-1) for DGT-Zn, 0.65-3.69 μg g(-1) for LPF-Cu, and 1.35-10.87 μg g(-1) for LPF-Zn. Shipyard areas demonstrated the most expressive values of labile Cu and Zn in both fractions. Strong relationship between DGT-Zn and LPF-Zn was found suggesting that the DGT-Zn fraction originates from the suspended particulate matter. Water salinity and suspended particulate matter content indicated their importance for the control of the labile concentrations of Cu and Zn in the water column. These parameters must be taken into consideration for comparison among labile metals in estuaries.
Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton.
Bielmyer-Fraser, Gretchen K; Jarvis, Tayler A; Lenihan, Hunter S; Miller, Robert J
2014-11-18
Discharges of metal oxide nanoparticles into aquatic environments are increasing with their use in society, thereby increasing exposure risk for aquatic organisms. Separating the impacts of nanoparticle from dissolved metal pollution is critical for assessing the environmental risks of the rapidly growing nanomaterial industry, especially in terms of ecosystem effects. Metal oxides negatively affect several species of marine phytoplankton, which are responsible for most marine primary production. Whether such toxicity is generally due to nanoparticles or exposure to dissolved metals liberated from particles is uncertain. The type and severity of toxicity depends in part on whether phytoplankton cells take up and accumulate primarily nanoparticles or dissolved metal ions. We compared the responses of the marine diatom, Thalassiosira weissflogii, exposed to ZnO, AgO, and CuO nanoparticles with the responses of T. weissflogii cells exposed to the dissolved metals ZnCl2, AgNO3, and CuCl2 for 7 d. Cellular metal accumulation, metal distribution, and algal population growth were measured to elucidate differences in exposure to the different forms of metal. Concentration-dependent metal accumulation and reduced population growth were observed in T. weissflogii exposed to nanometal oxides, as well as dissolved metals. Significant effects on population growth were observed at the lowest concentrations tested for all metals, with similar toxicity for both dissolved and nanoparticulate metals. Cellular metal distribution, however, markedly differed between T. weissflogii exposed to nanometal oxides versus those exposed to dissolved metals. Metal concentrations were highest in the algal cell wall when cells were exposed to metal oxide nanoparticles, whereas algae exposed to dissolved metals had higher proportions of metal in the organelle and endoplasmic reticulum fractions. These results have implications for marine plankton communities as well as higher trophic levels, since metal may be transferred from phytoplankton through food webs vis à vis grazing by zooplankton or other pathways.
[Cu(aq)]2+ is structurally plastic and the axially elongated octahedron goes missing
NASA Astrophysics Data System (ADS)
Frank, Patrick; Benfatto, Maurizio; Qayyum, Munzarin
2018-05-01
High resolution (k = 18 Å-1 or k = 17 Å-1) copper K-edge EXAFS and MXAN (Minuit X-ray Absorption Near Edge) analyses have been used to investigate the structure of dissolved [Cu(aq)]2+ in 1,3-propanediol (1,3-P) or 1,5-pentanediol (1,5-P) aqueous frozen glasses. EXAFS analysis invariably found a single axially asymmetric 6-coordinate (CN6) site, with 4×Oeq = 1.97 Å, Oax1 = 2.22 Å, and Oax2 = 2.34 Å, plus a second-shell of 4×Owater = 3.6 Å. However, MXAN analysis revealed that [Cu(aq)]2+ occupies both square pyramidal (CN5) and axially asymmetric CN6 structures. The square pyramid included 4×H2O = 1.95 Å and 1×H2O = 2.23 Å. The CN6 sites included either a capped, near perfect, square pyramid with 5×H2O = 1.94 ± 0.04 Å and H2Oax = 2.22 Å (in 1,3-P) or a split axial configuration with 4×H2O = 1.94, H2Oax1 = 2.14 Å, and H2Oax2 = 2.28 Å (in 1,5-P). The CN6 sites also included an 8-H2O second-shell near 3.7 Å, which was undetectable about the strictly pyramidal sites. Equatorial angles averaging 94° ± 5° indicated significant departures from tetragonal planarity. MXAN assessment of the solution structure of [Cu(aq)]2+ in 1,5-P prior to freezing revealed the same structures as previously found in aqueous 1M HClO4, which have become axially compressed in the frozen glasses. [Cu(aq)]2+ in liquid and frozen solutions is dominated by a 5-coordinate square pyramid, but with split axial CN6 appearing in the frozen glasses. Among these phases, the Cu-O axial distances vary across 1 Å, and the equatorial angles depart significantly from the square plane. Although all these structures remove the dx2-y2, dz2 degeneracy, no structure can be described as a Jahn-Teller (JT) axially elongated octahedron. The JT-octahedral description for dissolved [Cu(aq)]2+ should thus be abandoned in favor of square pyramidal [Cu(H2O)5]2+. The revised ligand environments have bearing on questions of the Cu(i)/Cu(ii) self-exchange rate and on the mechanism for ligand exchange with bulk water. The plasticity of dissolved Cu(ii) complex ions falsifies the foundational assumption of the rack-induced bonding theory of blue copper proteins and obviates any need for a thermodynamically implausible protein constraint.
Mobility of nutrients and trace metals during weathering in the late Archean
NASA Astrophysics Data System (ADS)
Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.
2017-08-01
The evolution of the geosphere and biosphere depends on the availability of bio-essential nutrients and trace metals. Consequently, the chemical and isotopic variability of trace elements in the sedimentary record have been widely used to infer the existence of early life and fluctuations in the near-surface environment on the early Earth, particularly fluctuations in the redox state of the atmosphere. In this study, we applied late Archean weathering models (Hao et al., 2017), developed to estimate the behavior of major elements and the composition of late Archean world average river water, to explore the behavior of nutrient and trace metals and their potential for riverine transport. We focused on P, Mn, Cr, and Cu during the weathering of olivine basalt. In our standard late Archean weathering model (pCO2,g = 10-1.5 bars, pH2,g = 10-5.0 bars), crustal apatite was totally dissolved by the acidic rainwater during weathering. Our model quantitatively links the pCO2,g of the atmosphere to phosphate levels transported by rivers. The development of late Archean river water (pH = 6.4) resulted in riverine phosphate of at least 1.7 μmolar, much higher than at the present-day. At the end of the early Proterozoic snowball Earth event when pCO2,g could be 0.01-0.10 bars, river water may have transported up to 70 μmolar phosphate, depending on the availability of apatite, thereby stimulating high levels of oxygenic photosynthesis in the marine environment. Crustal levels of Mn in olivine dissolved completely during weathering, except at large extents of weathering where Mn was stored as a component of a secondary carbonate mineral. The corresponding Mn content of river water, about 1.2 μmolar, is higher than in modern river water. Whiffs of 10-5 mole O2 gas or HNO3 kg-1 H2O resulted in the formation of pyrolusite (MnO2) and abundant hematite and simultaneous dramatic decreases in the concentration of Mn(II) in the river water. Chromite dissolution resulted in negligible dissolved Cr in Archean river water. However, amorphous Cr(OH)3 representing easily-weatherable Cr-bearing minerals dissolved totally during the weathering simulations, resulting in concentrations of Cr(III) in the river water of up to 0.14 μmolar, higher than at the present-day. Late Archean weathering of accessory chalcopyrite produced chalcocite and bornite, and extremely low concentrations of Cu (<10-15 molar) because of the low solubilities of the copper sulfides. However, pulses of either O2,g or HNO3 produced native copper, chalcocite, and bornite, much more hematite, and river water containing levels of dissolved Cu comparable to the present-day. Copper mineralogy predicted by weathering models might provide a new correlation with evidence from studies of copper mineral evolution. Overall, our results implied that the redox state of the atmosphere, the pH of surface waters, and the availability of easily-weatherable minerals are all important factors controlling the dissolution of trace elements in river water. Interpretation of the sedimentary signatures of trace elements should consider not only the redox state but also the pH and availability of accessory minerals.
NASA Astrophysics Data System (ADS)
Trenouth, William R.; Gharabaghi, Bahram
2015-10-01
Concentrations of dissolved metals in stormwater runoff from urbanized watersheds are much higher than established guidelines for the protection of aquatic life. Five potential soil amendment materials derived from affordable, abundant sources have been tested as filter media using shaker tests and were found to remove dissolved metals in stormwater runoff. Blast furnace (BF) slag and basic oxygenated furnace (BOF) slag from a steel mill, a drinking water treatment residual (DWTR) from a surface water treatment plant, goethite-rich overburden (IRON) from a coal mine, and woodchips (WC) were tested. The IRON and BOF amendments were shown to remove 46-98% of dissolved metals (Cr, Co, Cu, Pb, Ni, Zn) in repacked soil columns. Freundlich adsorption isotherm constants for six metals across five materials were calculated. Breakthrough curves of dissolved metals and total metal accumulation within the filter media were measured in column tests using synthetic runoff. A reduction in system performance over time occurred due to progressive saturation of the treatment media. Despite this, the top 7 cm of each filter media removed up to 72% of the dissolved metals. A calibrated HYDRUS-1D model was used to simulate long-term metal accumulation in the filter media, and model results suggest that for these metals a BOF filter media thickness as low as 15 cm can be used to improve stormwater quality to meet standards for up to twenty years. The treatment media evaluated in this research can be used to improve urban stormwater runoff discharging to environmentally sensitive areas (ESAs).
Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.; Verplanck, Philip L.; Sturtevant, Sabin A.
2002-01-01
Sixty-seven water analyses are reported for samples collected from 44 hot springs and their overflow drainages and two ambient-temperature acid streams in Yellowstone National Park (YNP) during 1990-2000. Thirty-seven analyses are reported for 1999, 18 for June of 2000, and 12 for September of 2000. These water samples were collected and analyzed as part of research investigations in YNP on microbially mediated sulfur oxidation in stream water, arsenic and sulfur redox speciation in hot springs, and chemical changes in overflow drainages that affect major ions, redox species, and trace elements. Most samples were collected from sources in the Norris Geyser Basin. Two ambient-temperature acidic stream systems, Alluvium and Columbine Creeks and their tributaries in Brimstone Basin, were studied in detail. Analyses were performed at or near the sampling site, in an on-site mobile laboratory truck, or later in a USGS laboratory, depending on stability of the constituent and whether or not it could be preserved effectively. Water temperature, specific conductance, pH, Eh, dissolved oxygen (D.O.), and dissolved H2S were determined on-site at the time of sampling. Alkalinity, acidity, and F were determined within a few days of sample collection by titration with acid, titration with base, and ion-selective electrode or ion chromatography (IC), respectively. Concentrations of S2O3 and SxO6 were determined as soon as possible (minutes to hours later) by IC. Concentrations of Br, Cl, NH4, NO2, NO3, SO4, Fe(II), and Fe(total) were determined within a few days of sample collection. Densities were determined later in the USGS laboratory. Concentrations of Li and K were determined by flame atomic absorption spectrometry. Concentrations of Al, As(total), B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), K, Li, Mg, Mn, Na, Ni, Pb, Se, Si, Sr, V, and Zn were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of Cd, Cr, Cu, Pb, and Sb were determined by Zeeman-corrected graphitefurnace atomic-absorption spectrometry. Trace concentrations of As(total) and As(III) were determined by hydride generation atomic-absorption spectrometry using a flow-injection analysis system. Concentrations of Cl, NO3, Br, and SO4 were determined by IC. Concentrations of Fe(II) and Fe(total) were determined by the ferrozine colorimetric method. Concentrations of NO2 were determined by colorimetry using matrix-matched standards. Concentrations of NH4 were determined by IC, with reanalysis by colorimetry where separation of Na and NH4 peaks was poor. Dissolved organic carbon (DOC) concentrations were determined by the wet persulfate oxidation method.
Cravotta, C.A.
2008-01-01
Water-quality data for discharges from 140 abandoned mines in the Anthracite and Bituminous Coalfields of Pennsylvania reveal complex relations among the pH and dissolved solute concentrations that can be explained with geochemical equilibrium models. Observed values of pH ranged from 2.7 to 7.3 in the coal-mine discharges (CMD). Generally, flow rates were smaller and solute concentrations were greater for low-pH CMD samples; pH typically increased with flow rate. Although the frequency distribution of pH was similar for the anthracite and bituminous discharges, the bituminous discharges had smaller median flow rates; greater concentrations of SO4, Fe, Al, As, Cd, Cu, Ni and Sr; comparable concentrations of Mn, Cd, Zn and Se; and smaller concentrations of Ba and Pb than anthracite discharges with the same pH values. The observed relations between the pH and constituent concentrations can be attributed to (1) dilution of acidic water by near-neutral or alkaline ground water; (2) solubility control of Al, Fe, Mn, Ba and Sr by hydroxide, sulfate, and/or carbonate minerals; and (3) aqueous SO4-complexation and surface-complexation (adsorption) reactions. The formation of AlSO4+ and AlHSO42 + complexes adds to the total dissolved Al concentration at equilibrium with Al(OH)3 and/or Al hydroxysulfate phases and can account for 10-20 times greater concentrations of dissolved Al in SO4-laden bituminous discharges compared to anthracite discharges at pH of 5. Sulfate complexation can also account for 10-30 times greater concentrations of dissolved FeIII concentrations at equilibrium with Fe(OH)3 and/or schwertmannite (Fe8O8(OH)4.5(SO4)1.75) at pH of 3-5. In contrast, lower Ba concentrations in bituminous discharges indicate that elevated SO4 concentrations in these CMD sources could limit Ba concentrations by the precipitation of barite (BaSO4). Coprecipitation of Sr with barite could limit concentrations of this element. However, concentrations of dissolved Pb, Cu, Cd, Zn, and most other trace cations in CMD samples were orders of magnitude less than equilibrium with sulfate, carbonate, and/or hydroxide minerals. Surface complexation (adsorption) by hydrous ferric oxides (HFO) could account for the decreased concentrations of these divalent cations with increased pH. In contrast, increased concentrations of As and, to a lesser extent, Se with increased pH could result from the adsorption of these oxyanions by HFO at low pH and desorption at near-neutral pH. Hence, the solute concentrations in CMD and the purity of associated "ochres" formed in CMD settings are expected to vary with pH and aqueous SO4 concentration, with potential for elevated SO4, As and Se in ochres formed at low pH and elevated Cu, Cd, Pb and Zn in ochres formed at near-neutral pH. Elevated SO4 content of ochres could enhance the adsorption of cations at low pH, but decrease the adsorption of anions such as As. Such information on environmental processes that control element concentrations in aqueous samples and associated precipitates could be useful in the design of systems to reduce dissolved contaminant concentrations and/or to recover potentially valuable constituents in mine effluents.
Omanović, Dario; Pižeta, Ivanka; Vukosav, Petra; Kovács, Elza; Frančišković-Bilinski, Stanislav; Tamás, János
2015-04-01
The distribution and speciation of elements along a stream subjected to neutralised acid mine drainage (NAMD) effluent waters (Mátra Mountain, Hungary; Toka stream) were studied by a multi-methodological approach: dissolved and particulate fractions of elements were determined by HR-ICPMS, whereas speciation was carried out by DGT, supported by speciation modelling performed by Visual MINTEQ. Before the NAMD discharge, the Toka is considered as a pristine stream, with averages of dissolved concentrations of elements lower than world averages. A considerable increase of element concentrations caused by effluent water inflow is followed by a sharp or gradual concentration decrease. A large difference between total and dissolved concentrations was found for Fe, Al, Pb, Cu, Zn and As in effluent water and at the first downstream site, with high correlation factors between elements in particulate fraction, indicating their common behaviour, governed by the formation of ferri(hydr)oxides (co)precipitates. In-situ speciation by the DGT technique revealed that Zn, Cd, Ni, Co, Mn and U were predominantly present as a labile, potentially bioavailable fraction (>90%). The formation of strong complexes with dissolved organic matter (DOM) resulted in a relatively low DGT-labile concentration of Cu (42%), while low DGT-labile concentrations of Fe (5%) and Pb (12%) were presumably caused by their existence in colloidal (particulate) fraction which is not accessible to DGT. Except for Fe and Pb, a very good agreement between DGT-labile concentrations and those predicted by the applied speciation model was obtained, with an average correlation factor of 0.96. This study showed that the in-situ DGT technique in combination with model-predicted speciation and classical analysis of samples could provide a reasonable set of data for the assessment of the water quality status (WQS), as well as for the more general study of overall behaviour of the elements in natural waters subjected to high element loads. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Boobalan, T.; Pavithradevi, S.; Suriyanarayanan, N.; Manivel Raja, M.; Ranjith Kumar, E.
2017-04-01
Nanocrystalline spinel ferrite of composition Cu0.2Ni0.2Mg0.2Ca0.4Fe2O4 is synthesized by wet hydroxyl co-precipitation method in ethylene glycol as chelating agent and sodium hydroxide as precipitator at pH 8. Ethylene glycol is utilized as the medium which serves as the dissolvable and in addition a complexing specialist. The synthesized particles are annealed at various temperatures. Thermogravimetric investigation affirms that at 280 °C ethylene glycol is dissipated totally and stable phase arrangement happens over 680 °C. FTIR spectra of as synthesized and annealed at 1050 °C recorded between 400 cm-1 and 4000 cm-1. Structural characterizations of all the samples are carried out by X-ray diffraction (XRD) technique. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) affirm that the particles are spherical and cubic shape with the crystallite size of 12 nm to 32 nm. Magnetic measurements are performed utilizing vibrating sample magnetometer at room temperature.
Viets, J.G.; Clark, J.R.; Campbell, W.L.
1984-01-01
A solution of dilute hydrochloric acid, ascorbic acid, and potassium iodide has been found to dissolve weakly bound metals in soils, stream sediments, and oxidized rocks. Silver, Bi, Cd, Cu, Mo, Pb, Sb, and Zn are selectively extracted from this solution by a mixture of Aliquat 336 (tricaprylyl methyl ammonium chloride) and MIBK (methyl isobutyl ketone). Because potentially interfering major and minor elements do not extract, the organic separation allows interference-free determinations of Ag and Cd to the 0.05 ppm level, Mo, Cu, and Zn to 0.5 ppm, and Bi, Pb, and Sb to 1 ppm in the sample using flame atomic absorption spectroscopy. The analytical absorbance values of the organic solution used in the proposed method are generally enhanced more than threefold as compared to aqueous solutions, due to more efficient atomization and burning characteristics. The leaching and extraction procedures are extremely rapid; as many as 100 samples may be analyzed per day, yielding 800 determinations, and the technique is adaptable to field use. The proposed method was compared to total digestion methods for geochemical reference samples as well as soils and stream sediments from mineralized and unmineralized areas. The partial leach showed better anomaly contrasts than did total digestions. Because the proposed method is very rapid and is sensitive to pathfinder elements for several types of ore deposits, it should be useful for reconnaissance surveys for concealed deposits. ?? 1984.
NASA Astrophysics Data System (ADS)
Zhang, Jinlong; Lu, Zhenlin; Zhao, Yuntao; Jia, Lei; Xie, Hui; Tao, Shiping
2017-09-01
Cu-Ni-Si alloys with 90% Cu content and Ni to Si ratios of 5:1 were fabricated by fusion casting, and severe plastic deformation of the Cu-Ni-Si alloy was carried out by multi-direction forging (MDF). The results showed that the as-cast and homogenized Cu-Ni-Si alloys consisted of three phases, namely the matrix phase α-Cu (Ni, Si), the reticular grain boundary phase Ni31Si12 and the precipitated phase Ni2Si. MDF significantly destroyed the net-shaped grain boundary phase, the Ni31Si12 phase and refined the grain size of the Cu matrix, and also resulted in the dissolving of Ni2Si precipitates into the Cu matrix. The effect of MDF on the conductivity of the solid solution Cu-Ni-Si alloy was very significant, with an average increase of 165.16%, and the hardness of the Cu-Ni-Si alloy also increased obviously.
Han, Baisui; Altansukh, Batnasan; Haga, Kazutoshi; Stevanović, Zoran; Jonović, Radojka; Avramović, Ljiljana; Urosević, Daniela; Takasaki, Yasushi; Masuda, Nobuyuki; Ishiyama, Daizo; Shibayama, Atsushi
2018-06-15
Sulfide copper mineral, typically Chalcopyrite (CuFeS 2 ), is one of the most common minerals for producing metallic copper via the pyrometallurgical process. Generally, flotation tailings are produced as a byproduct of flotation and still consist of un‒recovered copper. In addition, it is expected that more tailings will be produced in the coming years due to the increased exploration of low‒grade copper ores. Therefore, this research aims to develop a copper recovery process from flotation tailings using high‒pressure leaching (HPL) followed by solvent extraction. Over 94.4% copper was dissolved from the sample (CuFeS 2 as main copper mineral) by HPL in a H 2 O media in the presence of pyrite, whereas the iron was co‒dissolved with copper according to an equation given as C Cu = 38.40 × C Fe . To avoid co‒dissolved iron giving a negative effect on the subsequent process of electrowinning, solvent extraction was conducted on the pregnant leach solution for improving copper concentration. The result showed that 91.3% copper was recovered in a stripped solution and 98.6% iron was removed under the optimal extraction conditions. As a result, 86.2% of copper was recovered from the concentrate of flotation tailings by a proposed HPL‒solvent extraction process. Copyright © 2018 Elsevier B.V. All rights reserved.
Baken, Stijn; Degryse, Fien; Verheyen, Liesbeth; Merckx, Roel; Smolders, Erik
2011-04-01
Dissolved organic matter (DOM) in surface waters affects the fate and environmental effects of trace metals. We measured variability in the Cd, Cu, Ni, and Zn affinity of 23 DOM samples isolated by reverse osmosis from freshwaters in natural, agricultural, and urban areas. Affinities at uniform pH and ionic composition were assayed at low, environmentally relevant free Cd, Cu, Ni, and Zn activities. The C-normalized metal binding of DOM varied 4-fold (Cu) or about 10-fold (Cd, Ni, Zn) among samples. The dissolved organic carbon concentration ranged only 9-fold in the waters, illustrating that DOM quality is an equally important parameter for metal complexation as DOM quantity. The UV-absorbance of DOM explained metal affinity only for waters receiving few urban inputs, indicating that in those waters, aromatic humic substances are the dominant metal chelators. Larger metal affinities were found for DOM from waters with urban inputs. Aminopolycarboxylate ligands (mainly EDTA) were detected at concentrations up to 0.14 μM and partly explained the larger metal affinity. Nickel concentrations in these surface waters are strongly related to EDTA concentrations (R2=0.96) and this is underpinned by speciation calculations. It is concluded that metal complexation in waters with anthropogenic discharges is larger than that estimated with models that only take into account binding on humic substances.
Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.).
Wang, Zhenyu; Xie, Xiaoyan; Zhao, Jian; Liu, Xiaoyun; Feng, Wenqiang; White, Jason C; Xing, Baoshan
2012-04-17
This work reports on the toxicity of CuO nanoparticles (NPs) to maize (Zea mays L.) and their transport and redistribution in the plant. CuO NPs (100 mg L(-1)) had no effect on germination, but inhibited the growth of maize seedlings; in comparison the dissolved Cu(2+) ions and CuO bulk particles had no obvious effect on maize growth. CuO NPs were present in xylem sap as examined by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), showing that CuO NPs were transported from roots to shoots via xylem. Split-root experiments and high-resolution TEM observation further showed that CuO NPs could translocate from shoots back to roots via phloem. During this translocation, CuO NPs could be reduced from Cu (II) to Cu (I). To our knowledge, this is the first report of root-shoot-root redistribution of CuO NPs within maize. The current study provides direct evidence for the bioaccumulation and biotransformation of CuO NPs (20-40 nm) in maize, which has significant implications on the potential risk of NPs and food safety.
Nieto, José Miguel; Sarmiento, Aguasanta M; Olías, Manuel; Canovas, Carlos R; Riba, Inmaculada; Kalman, Judit; Delvalls, T Angel
2007-05-01
The Tinto and Odiel rivers are seriously affected by acid mine drainage (AMD) from the long-term mining activities in Iberian Pyrite Belt (IPB). As a consequence, the Huelva estuary is heavily contaminated by metals and metalloids. This study presents an estimation of the seasonal variation, and the dissolved contaminant load transported by both rivers from February 2002 to September 2004. Besides, toxicity and bioaccumulation tests with the sediments of the estuary have been conducted in order to measure the mobility of the toxic metals. Results show that the Tinto and Odiel rivers transport enormous quantities of dissolved metals to the estuary: 7900 t yr(-1) of Iron (Fe), 5800 t yr(-1) Aluminium (Al), 3500 t yr(-1) Zinc (Zn), 1700 t yr(-1) Copper (Cu), 1600 t yr(-1) Manganese (Mn) and minor quantities of other metals and metalloids. These values represent 37% of the global gross flux of dissolved Zn transported by rivers in to the ocean, and 15% of the global gross flux of dissolved Cu. These metals and metalloids usually sink in the estuarine sediments due to pH and salinity changes. The increase of salinity in the estuary favours the adsorption and trapping of metals. For this reason, the mobility and bioavailability of metals such as Zn, Cd and Cu is higher in sediments located in the area of fresh water influence that in sediments located in the marine influenced area of the estuary, showing a higher percentage of fractionation and bioaccumulation of these metals in the station influenced by the fresh water environment.
Phytoplankton responses to atmospheric metal deposition in the coastal and open-ocean Sargasso Sea
Mackey, Katherine R. M.; Buck, Kristen N.; Casey, John R.; Cid, Abigail; Lomas, Michael W.; Sohrin, Yoshiki; Paytan, Adina
2012-01-01
This study investigated the impact of atmospheric metal deposition on natural phytoplankton communities at open-ocean and coastal sites in the Sargasso Sea during the spring bloom. Locally collected aerosols with different metal contents were added to natural phytoplankton assemblages from each site, and changes in nitrate, dissolved metal concentration, and phytoplankton abundance and carbon content were monitored. Addition of aerosol doubled the concentrations of cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), and nickel (Ni) in the incubation water. Over the 3-day experiments, greater drawdown of dissolved metals occurred in the open ocean water, whereas little metal drawdown occurred in the coastal water. Two populations of picoeukaryotic algae and Synechococcus grew in response to aerosol additions in both experiments. Particulate organic carbon increased and was most sensitive to changes in picoeukaryote abundance. Phytoplankton community composition differed depending on the chemistry of the aerosol added. Enrichment with aerosol that had higher metal content led to a 10-fold increase in Synechococcus abundance in the oceanic experiment but not in the coastal experiment. Enrichment of aerosol-derived Co, Mn, and Ni were particularly enhanced in the oceanic experiment, suggesting the Synechococcus population may have been fertilized by these aerosol metals. Cu-binding ligand concentrations were in excess of dissolved Cu in both experiments, and increased with aerosol additions. Bioavailable free hydrated Cu2+ concentrations were below toxicity thresholds throughout both experiments. These experiments show (1) atmospheric deposition contributes biologically important metals to seawater, (2) these metals are consumed over time scales commensurate with cell growth, and (3) growth responses can differ between distinct Synechococcus or eukaryotic algal populations despite their relatively close geographic proximity and taxonomic similarity. PMID:23181057
Porewater chemistry in a treatment wetland: links to metal retention and release
NASA Astrophysics Data System (ADS)
Vadas, T. M.; Zhang, J.
2011-12-01
Constructed wetlands are gaining increased support for treatment of nonpoint source pollutants. A subsurface flow wetland treating runoff from an agricultural milkhouse floor and roof drainage has been monitored for metal removal. Influent dissolved concentrations from 5 to 30 ppb Cu and 60 to 800 ppb Zn were observed. Effluent concentrations of Zn were always lower from about 3 to 60 ppb Zn, however, Cu was typically around 10 ppb, and much larger at certain points in time, up to 95 ppb Cu. The results were similar in vegetated and non-vegetated wetlands, suggesting abiotic chemistry or microbial activity is controlling metal mobility. Porewater samples were taken using soil moisture lysimeters during both non-storm and storm events to examine metal and related chemistry with depth and distance in the wetland. Under non storm conditions, Cu and Zn average porewater concentrations were 64 and 250 ppb, respectively and did not vary much along the length of the wetland. During a storm event, Zn concentrations in the porewater initially increased near the inlet shortly after a storm, but typically decreased along the length and depth of the wetland to less than 60 ppb. Observed porewater Cu concentrations also increased near the inlet in some cases up to 700 ppb, but dropped rapidly with distance to less than 30 ppb near the middle of the wetland and increased again near the outlet. The dissolved Fe and Mn concentrations follow nearly opposite trends as Cu, increasing and then decreasing along the length of the wetland, suggesting possibly different roles in controlling Cu retention in each stage of the wetland, either co-precipitation with Cu initially, or reductive dissolution and release of Cu in later stages. An understanding of what controls metal retention and release is relevant to optimizing future design parameters of these wetlands.
Toxicity of seabird guano to sea urchin embryos and interaction with Cu and Pb.
Rial, Diego; Santos-Echeandía, Juan; Álvarez-Salgado, Xosé Antón; Jordi, Antoni; Tovar-Sánchez, Antonio; Bellas, Juan
2016-02-01
Guano is an important source of marine-derived nutrients to seabird nesting areas. Seabirds usually present high levels of metals and other contaminants because the bioaccumulation processes and biotic depositions can increase the concentration of pollutants in the receiving environments. The objectives of this study were to investigate: the toxicity of seabird guano and the joint toxicity of guano, Cu and Pb by using the sea urchin embryo-larval bioassay. In a first experiment, aqueous extracts of guano were prepared at two loading rates (0.462 and 1.952 g L(-1)) and toxicity to sea-urchin embryos was tested. Toxicity was low and not dependent of the load of guano used (EC50 0.42 ± 0.03 g L(-1)). Trace metal concentrations were also low either in guano or in aqueous extracts of guano and the toxicity of extracts were apparently related to dissolved organic matter. In a second experiment, the toxicity of Cu-Pb mixtures in artificial seawater and in extracts of guano (at two loadings: 0.015 and 0.073 g L(-1)), was tested. According to individual fittings, Cu added to extracts of guano showed less toxicity than when dissolved in artificial seawater. The response surfaces obtained for mixtures of Cu and Pb in artificial seawater, and in 0.015 g L(-1) and 0.073 g L(-1) of guano, were better described by Independent Action model adapted to describe antagonism, than by the other proposed models. This implied accepting that EC50 for Cu and Pb increased with the load of guano and with a greater interaction for Cu than for Pb. Copyright © 2015 Elsevier Ltd. All rights reserved.
de Vries, Wim; Lofts, Steve; Tipping, Ed; Meili, Markus; Groenenberg, Jan E; Schütze, Gudrun
2007-01-01
Risk assessment for metals in terrestrial ecosystems, including assessments of critical loads, requires appropriate critical limits for metal concentrations in soil and soil solution. This chapter presents an overview of methodologies used to derive critical (i) reactive and total metal concentrations in soils and (ii) free metal ion and total metal concentrations in soil solution for Cd, Pb, Cu, Zn, and Hg, taking into account the effect of soil properties related to ecotoxicological effects. Most emphasis is given to the derivation of critical free and total metal concentrations in soil solution, using available NOEC soil data and transfer functions relating solid-phase and dissolved metal concentrations. This approach is based on the assumption that impacts on test organisms (plants, microorganisms, and soil invertebrates) are mainly related to the soil solution concentration (activity) and not to the soil solid-phase content. Critical Cd, Pb, Cu, Zn, and Hg concentrations in soil solution vary with pH and DOC level. The results obtained are generally comparable to those derived for surface waters based on impacts to aquatic organisms. Critical soil metal concentrations, related to the derived soil solution limits, can be described as a function of pH and organic matter and clay content, and varying about one order of magnitude between different soil types.
NASA Astrophysics Data System (ADS)
Soja, Gerhard; Fristak, Vladimir; Wimmer, Bernhard; Bell, Stephen; Chamier Glisczinski, Julia; Pardeller, Georg; Dersch, Georg; Rosner, Franz; Wenzel, Walter; Zehetner, Franz
2016-04-01
Copper is an important ingredient for several fungicides that have been used in agriculture. For organic viticulture, several diseases as e.g. downy mildew (Plasmopara viticola) can only be antagonized with Cu-containing fungicides. This long-lasting dependence on Cu-fungicides has led to a gradual Cu enrichment of vineyard soils in traditional wine-growing areas, occasionally exceeding 300 mg/kg. Although these concentrations do not affect the vines or wine quality, they may impair soil microbiological functions in the top soil layer or the root growth of green cover plants. Therefore measures are demanded that reduce the bioavailability of copper, thereby reducing the ecotoxicological effects. The use of biochar and compost as soil amendment has been suggested as a strategy to immobilize Cu and reduce the exchangeable fractions. This study consisted of lab and greenhouse experiments that were designed to test the sorption and desorption behavior of copper in vineyard soils with or without biochar and/or compost as soil amendment. Slightly acidic soils (pH<6) showed a clearer biochar-induced immobilization of copper with biochar than neutral or alkaline soils. The analyses of leachate waters of microlysimeter experiments showed that the biochar effects were more evident for a reduction of the ionic form Cu2+ than for total soluble copper, even in alkaline soils. Biochar modified with citric or tartaric acid did not significantly decrease the solubility of copper based on total dissolved concentrations although CEC was higher than in unmodified biochar. Treatments consisting of compost only or that had an equal amount of compost and biochar rather had a mobilizing effect on biochar. Sorption experiments with different DOC concentrations and biochar, however, showed a positive effect on copper sorption. Apparently in vineyard soils the predisposition to form organic-Cu-complexes may outbalance the binding possibilities of these complexes to biochar, occasionally resulting in enhanced mobilization. Presumably immobilization of copper with biochar would work best in acidic soils low in organic carbon and with low or no compost addition although this might be at odds with standard vineyard soil management practices.
A new strain for recovering precious metals from waste printed circuit boards.
Ruan, Jujun; Zhu, Xingjiong; Qian, Yiming; Hu, Jian
2014-05-01
A new strain, Pseudomonas Chlororaphis (PC), was found for dissolving gold, silver, and copper from the metallic particles of crushed waste printed circuit boards (PCBs). The optimized conditions that greatly improved the ability of producing CN- (for dissolving metals) were obtained. Dissolving experiments of pure gold, silver, and copper showed that the metals could be changed into Au+, Ag+, and Cu2+. PC cells and their secreta would adsorb metallic ions. Meanwhile, metallic ions destroyed the growth of PC. Dissolving experiments of metallic particles from crushed waste PCBs were performed by PC. The results indicated that 8.2% of the gold, 12.1% silver, and 52.3% copper were dissolved into solution. This paper contributed significance information to recovering precious metals from waste PCBs by bioleaching. Copyright © 2014 Elsevier Ltd. All rights reserved.
Han, Bin; Cao, Lei; Zheng, Li; Zang, Jia-ye; Wang, Xiao-ru
2012-01-01
Using three pipe clamp solenoid valves to replace the traditional six-port valve for sample quota, a set of multi-channel flow injection analyzer was designed in the present paper. The authors optimized optimum instrumental testing condition, and realized determination and analysis of total dissolved nitrogen in seawaters. The construction of apparatus is simple and it has the potential to be used for analysis of total dissolved nitrogen. The sample throughput of total dissolved nitrogen was 27 samples per hour. The linear range of total dissolved nitrogen was 50.0-1 000.0 microgN x L(-3) (r > or = 0.999). The detection limit was 7.6 microgN x L(-3). The recovery of total dissolved nitrogen was 87.3%-107.2%. The relative standard deviation for total dissolved nitrogen was 1.35%-6.32% (n = 6). After the t-test analysis, it does not have the significance difference between this method and national standard method. It is suitable for fast analysis of total dissolved nitrogen in seawater.
Kumar, Vinod; Chopra, A K
2018-01-01
Phytoremediation experiments were carried out to assess the phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater collected from the activated sludge process- (ASP) based municipal wastewater treatment plant. The results revealed that T. natans significantly (P ≤ .05/P ≤ .01/P ≤ .001) reduced the contents of total dissolved solids (TDS), electrical conductivity (EC), biochemical oxygen demand (BOD 5 ), chemical oxygen demand, total Kjeldahl nitrogen, phosphate ([Formula: see text]), sodium (Na + ), potassium (K + ), calcium (Ca 2+ ), magnesium (Mg 2+ ), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), zinc (Zn), standard plate count, and most probable number of the municipal wastewater after phytoremediation experiments. The maximum removal of these parameters was obtained at 60 days of the phytoremediation experiments, but the removal rate of these parameters was gradually increased from 15 to 45 days and it was slightly decreased at 60 days. Most contents of Cd, Cu, Fe, Mn and Zn were translocated in the leaves of T. natans, whereas most contents of Cr and Pb were accumulated in the root of T. natans after phytoremediation experiments. The contents of different biochemical components were recorded in the order of total sugar > crude protein > total ash > crude fiber > total fat in T. natans after phytoremediation of municipal wastewater. Therefore, T. natans was found to be effective for the removal of different parameters of municipal wastewater and can be used effectively to reduce the pollution load of municipal wastewater drained from the ASP-based treatment plants.
Modeling the Transport of Heavy Metals in Soils
1990-09-01
vii NOMENCLATURE Term Definition a aggregate radius (cm) b Freundlich parameter (dimensionless) c concentration of dissolved chemical in soil solution (mg...metals (e.g., Cu, Hg, Cr, Cd, and Zn). retention-release reactions in the soil solution have been observed to be strongly time-dependent. Recent...of the dissolved chemical in the soil solution (mg L 2 s = mount of solute retained per unit mass of the soil matrix (mg kg- )-, D = hydrodynamic
NASA Astrophysics Data System (ADS)
Ganaha, S.; ITOH, A.
2011-12-01
Coastal seawater on coral reef near Okinawa island in Japan, which is in oligotrophic condition, has a diverse and unique ecosystem. It is possible that nutritive sals and trace metals, classified into nutrient type, are effectively supplied to marine phytoplankton and zooxanthellae from seawater. However, the concentrations and chemical forms of trace metals in coastal seawater on coral reef have been scarcely reported so far. In the present study, the characteristics of the concentrations and chemical forms of trace metals in such a seawater were investigated with seasonal variation by analyzing the coastal seawater at every month, after an analytical method for a simple chemical speciation including on-site treatment was established. The analytical method using a chelating resin and a disposable syringe was employed for de-salt and preconcentration of trace metals in costal seawater. After that, trace metals in the concentrated solution were measured by ICP-MS. Three types of chemical forms of an ionic, a dissolved, and an acid-soluble were separated without any treatment, by filtering with membrane filter of 0.45 μm, and by filtering after adding nitric acid, respectively. Then, a monitoring investigation of the coastal seawater on coral reef, located at Sesoko island near the northern part of Okinawa island, was carried out once at every month from Sep. 2010 to Aug. 2011. As a result, 10 elements in the dissolved form in each sample could be determined. The average concentrations for all samples from Sep. 2010 to Apr. 2011 were as follows: Mo:10.7 ppb, U:3.2 ppb, V:1.5 ppb, Mn:0.17 ppb, Ni:0.16 ppb, Zn:0.13 ppb, Cu:0.070 ppb, Pb:0.024 ppb, Co:0.0022 ppb, Cd:0.0016ppb. The concentrations for most trace metals were almost close to ones in open surface seawater of the Pacific ocean. For the acid-soluble form, the concentrations of V, Mo, and U were almost same with those of the dissolved form, and ones of Mn, Co, Ni, Cu, and Cd were slightly larger than ones in the dissolved form, while ones in Zn and Pb were 3.1- and 2.5-fold larger. These results suggest that a part of trace metals in the nutrient type exists as biogenic particulate matters. For the ionic form, the concentration of Cu was 3-fold smaller than one in the dissolved form. It is considered from the result that a part of Cu in the dissolved form exists not only as the ionic form but also as the colloids and organic complexes. The seasonal variation for each chemical form is now being investigated.
Lee, Hongshin; Lee, Hye-Jin; Seo, Jiwon; Kim, Hyung-Eun; Shin, Yun Kyung; Kim, Jae-Hong; Lee, Changha
2016-08-02
This study reports that the combination of Cu(II) with hydroxylamine (HA) (referred to herein as Cu(II)/HA system) in situ generates H2O2 by reducing dissolved oxygen, subsequently producing reactive oxidants through the reaction of Cu(I) with H2O2. The external supply of H2O2 to the Cu(II)/HA system (i.e., the Cu(II)/H2O2/HA system) was found to further enhance the production of reactive oxidants. Both the Cu(II)/HA and Cu(II)/H2O2/HA systems effectively oxidized benzoate (BA) at pH between 4 and 8, yielding a hydroxylated product, p-hydroxybenzoate (pHBA). The addition of a radical scavenger, tert-butyl alcohol, inhibited the BA oxidation in both systems. However, electron paramagnetic resonance (EPR) spectroscopy analysis indicated that (•)OH was not produced under either acidic or neutral pH conditions, suggesting that the alternative oxidant, cupryl ion (Cu(III)), is likely a dominant oxidant.
NASA Astrophysics Data System (ADS)
Ma, Yun-long; Li, Jin-feng
2017-09-01
The effect of small rare earth (RE) addition of 0.11%Ce, 0.2%Er and 0.082%Sc on aging precipitates and mechanical strength of an Al-(3.3-4.2)Cu-1.2Li-X alloy were investigated. It is found that Cu-rich residual particles containing RE element exist in the solutionized alloy, which leads to a decrease of dissolved Cu concentration in the solutionized matrix. Like RE-free alloy, the main aging precipitate types in RE-containing alloy are T1 (Al2CuLi) and θ' (Al2Cu), but their fraction is decreased. The strength of the corresponding alloys is therefore lowered by the small RE addition. Combined with the analysis of some reported references, it is proposed that the effect of small RE addition on Al-Cu-Li alloy strength is also associated with the Cu and Li concentrations and their ratio.
Bernstein, Hans C; Beam, Jacob P; Kozubal, Mark A; Carlson, Ross P; Inskeep, William P
2013-08-01
The role of dissolved oxygen as a principal electron acceptor for microbial metabolism was investigated within Fe(III)-oxide microbial mats that form in acidic geothermal springs of Yellowstone National Park (USA). Specific goals of the study were to measure and model dissolved oxygen profiles within high-temperature (65-75°C) acidic (pH = 2.7-3.8) Fe(III)-oxide microbial mats, and correlate the abundance of aerobic, iron-oxidizing Metallosphaera yellowstonensis organisms and mRNA gene expression levels to Fe(II)-oxidizing habitats shown to consume oxygen. In situ oxygen microprofiles were obtained perpendicular to the direction of convective flow across the aqueous phase/Fe(III)-oxide microbial mat interface using oxygen microsensors. Dissolved oxygen concentrations dropped from ∼ 50-60 μM in the bulk-fluid/mat surface to below detection (< 0.3 μM) at a depth of ∼ 700 μm (∼ 10% of the total mat depth). Net areal oxygen fluxes into the microbial mats were estimated to range from 1.4-1.6 × 10(-4) μmol cm(-2) s(-1) . Dimensionless parameters were used to model dissolved oxygen profiles and establish that mass transfer rates limit the oxygen consumption. A zone of higher dissolved oxygen at the mat surface promotes Fe(III)-oxide biomineralization, which was supported using molecular analysis of Metallosphaera yellowstonensis 16S rRNA gene copy numbers and mRNA expression of haem Cu oxidases (FoxA) associated with Fe(II)-oxidation. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
Effect of HIP temperature on microstructure and low cycle fatigue strength of CuCrZr alloy
NASA Astrophysics Data System (ADS)
Nishi, Hiroshi; Enoeda, Mikio
2011-10-01
In order to investigate the effect of the HIP cycle temperatures on the metallurgic degradation and the mechanical properties of CuCrZr alloy, assessments of the microstructure, tensile test, Charpy impact test and low cycle fatigue test are performed for various heat treated CuCrZr alloys, which were solution-annealed followed by water-quenched and aged state of CuCrZr with simulated HIP cycle at temperatures of 980 and 1045 °C. Grain growth occurred on 1045 °C HIP CuCrZr, though slightly on 980 °C HIP CuCrZr. Metallurgic degradation such as voids was not found by optical and SEM observations. There were coarse precipitates in all the CuCrZr and the precipitates did not easily dissolve at 980 °C. The low cycle fatigue strength of 1045 °C HIP CuCrZr was lower than that of other CuCrZr because of the metallurgic degradation caused by the heat cycle, while that of other CuCrZr was corresponding to the best fit curve of ITER MPH.
Solder/Substrate Interfacial Reactions in the Sn-Cu-Ni Interconnection System
NASA Astrophysics Data System (ADS)
Yu, H.; Vuorinen, V.; Kivilahti, J. K.
2007-02-01
In order to obtain a better understanding of the effects of interconnection microstructures on the reliability of soldered assemblies, one of the most important ternary systems used in electronics, the Sn-Cu-Ni system, has been assessed thermodynamically. Based on the data obtained, some recent experimental observations related to the formation of interfacial intermetallic compounds in solder interconnections have been studied analytically. First, the effect of Cu content on the formation of the interfacial intermetallic compounds between the SnAgCu solder alloys and Ni substrate was investigated. The critical Cu content for (Cu,Ni)6Sn5 formation was evaluated as a function of temperature. Second, we analyzed how the Ni dissolved in the Cu6Sn5 compound affects the driving forces for the diffusion of components and hence the growth kinetics of (Cu,Ni)6Sn5 and (Cu,Ni)3Sn reaction layers. With the thermodynamic description, other experimental observations related to the Sn-Cu-Ni system can be rationalized as well. The system can be used also as a subsystem for industrially important higher order solder systems.
Filipek, L.H.; Theobald, P.K.
1981-01-01
Samples of minus-80-mesh (<180 ??m) stream sediment, rock containing exposed fracture coatings, and jarosite and chrysocolla were collected from an area surrounding the North Silver Bell porphyry Cu deposit near Tucson, Arizona. The samples were subjected to a series of extractions in a scheme originally designed for use on samples from humid or sub-humid environments, in which the following fractions can effectively be separated: (1) carbonates and exchangeable metals; (2) Mn oxides; (3) organic compounds and sulfides; (4) hydrous Fe oxides; and (5) residual crystalline minerals. Jarosite and chrysocolla, two major minerals of the North Silver Bell area, were found to dissolve over two or more steps of the extraction scheme. The results represent only a limited number of samples from one copper deposit. Nevertheless, they do suggest that in a semiarid to arid environment, where mechanical dispersion of such minerals predominates, uncritical assignment of unique phases, such as Mn oxides or organics to a given extraction would lead to false interpretations of weathering processes. However, the relative proportions of elements dissolved in each step of the jarosite and chrysocolla extractions could be used as a "fingerprint" for recognition of the presence of these two minerals in the stream-sediment and rock samples. The relative abundance of hydrous Fe oxide and jarosite and the alteration zoning could be mapped using data from jarosite and chrysocolla extractions. Manganese oxides were also found to have a greater influence on Zn than on Cu or Pb during supergene alteration. The rapid change in relative importance of the first (1M-acetic acid) extraction for Cu, Zn, and Pb near the mineralized zone suggested the occurrence of minor hydromorphic processes within the stream sediments. Thus, the acetic acid extraction proved the most effective for pinpointing mineralization in sediments. In contrast, the residual fraction had the longest dispersion train, suggesting that total metal concentrations are most effective in arid environments for reconnaissance surveys. ?? 1981.
Chen, A; Lin, C; Lu, W; Ma, Y; Bai, Y; Chen, H; Li, J
2010-03-15
A column leaching experiment was conducted to investigate the chemical dynamics of the percolating water and washed soil during decontamination of an acidic mine water-polluted soil. The results show that leaching of the contaminated soil with clean water rapidly reduced soluble acidity and ion concentrations in the soils. However, only <20% of the total actual acidity in the soil column was eliminated after 30 leaching cycles. It is likely that the stored acidity continues to be released to the percolating water over a long period of time. During the column leaching, dissolved Cu and Pb were rapidly leached out, followed by mobilization of colloidal Cu and Pb from the exchangeable and the oxide-bound fractions as a result of reduced ionic strength in the soil solution. The soluble Fe contained in the soil was rare, probably because the soil pH was not sufficiently low; marked mobility of colloidal Fe took place after the ionic strength of the percolating water was weakened and the mobilized Fe was mainly derived from iron oxides. In contrast with Cu, Pb and Fe, the concentration of leachate Zn and Mn showed a continuously decreasing trend during the entire period of the experiment. (c) 2009 Elsevier B.V. All rights reserved.
Courchesne, François; Turmel, Marie-Claude; Cloutier-Hurteau, Benoît; Constantineau, Simon; Munro, Lara; Labrecque, Michel
2017-06-03
The phytoextraction of the trace elements (TEs) As, Cd, Cu, Ni, Pb, and Zn by willow cultivars (Fish Creek, SV1 and SX67) was measured during a 3-year field trial in a mildly contaminated soil. Biomass ranged from 2.8 to 4.4 Mg/ha/year at 30,000 plants/ha. Shoots (62%) were the main component followed by leaves (23%) and roots (15%). Biomass was positively linked to soluble soil dissolved organic carbon, K, and Mg, while TEs, not Cd and Zn, had a negative effect. The TE concentration ranking was: Zn > Cu > Cd > Ni, Pb > As, and distribution patterns were: (i) minima in shoots (As, Ni), (ii) maxima in leaves (Cd, Zn), or (iii) maxima in roots (Cu, Pb). Correlations between soil and plant TE were significant for the six TEs in roots. The amounts extracted were at a maximum for Zn, whereas Fish Creek and SV1 extracted more TE than SX67. More than 60% (91-94% for Cd and Zn) of the total TE was in the aboveground parts. Uptake increased with time because of higher biomass. Fertilization, the selection of cultivars, and the use of complementary plants are required to improve productivity and Cd and Zn uptake.
Validation of an in vitro exposure system for toxicity assessment of air-delivered nanomaterials
Kim, Jong Sung; Peters, Thomas M.; O’Shaughnessy, Patrick T.; Adamcakova-Dodd, Andrea; Thorne, Peter S.
2013-01-01
To overcome the limitations of in vitro exposure of submerged lung cells to nanoparticles (NPs), we validated an integrated low flow system capable of generating and depositing airborne NPs directly onto cells at an air–liquid interface (ALI). The in vitro exposure system was shown to provide uniform and controlled dosing of particles with 70.3% efficiency to epithelial cells grown on transwells. This system delivered a continuous airborne exposure of NPs to lung cells without loss of cell viability in repeated 4 h exposure periods. We sequentially exposed cells to air-delivered copper (Cu) NPs in vitro to compare toxicity results to our prior in vivo inhalation studies. The evaluation of cellular dosimetry indicated that a large amount of Cu was taken up, dissolved and released into the basolateral medium (62% of total mass). Exposure to Cu NPs decreased cell viability to 73% (p < 0.01) and significantly (p < 0.05) elevated levels of lactate dehydrogenase, intracellular reactive oxygen species and interleukin-8 that mirrored our findings from subacute in vivo inhalation studies in mice. Our results show that this exposure system is useful for screening of NP toxicity in a manner that represents cellular responses of the pulmonary epithelium in vivo. PMID:22981796
Electrochemical Corrosion Properties of Commercial Ultra-Thin Copper Foils
NASA Astrophysics Data System (ADS)
Yen, Ming-Hsuan; Liu, Jen-Hsiang; Song, Jenn-Ming; Lin, Shih-Ching
2017-08-01
Ultra-thin electrodeposited Cu foils have been developed for substrate thinning for mobile devices. Considering the corrosion by residual etchants from the lithography process for high-density circuit wiring, this study investigates the microstructural features of ultra-thin electrodeposited Cu foils with a thickness of 3 μm and their electrochemical corrosion performance in CuCl2-based etching solution. X-ray diffraction and electron backscatter diffraction analyses verify that ultra-thin Cu foils exhibit a random texture and equi-axed grains. Polarization curves show that ultra-thin foils exhibit a higher corrosion potential and a lower corrosion current density compared with conventional (220)-oriented foils with fan-like distributed fine-elongated columnar grains. Chronoamperometric results also suggest that ultra-thin foils possess superior corrosion resistance. The passive layer, mainly composed of CuCl and Cu2O, forms and dissolves in sequence during polarization.
Hevroni, Bosmat Levi; Major, Dan Thomas; Dixit, Mudit; Mhashal, Anil Ranu; Das, Susanta; Fischer, Bilha
2016-05-18
Currently, there is an urgent need for biocompatible metal-ion chelators capable of antioxidant activity and disassembly of amyloid beta (Aβ)-aggregates as potential therapeutics for Alzheimer's disease (AD). We recently demonstrated the promising antioxidant activity of adenine/guanine 2',3' or 3',5'-bis(thio)phosphate analogues, 2'-dA/G3'5'PO/S and A2'3'PO/S, and their affinity to Zn(ii)-ions. These findings encouraged us to evaluate them as agents for the dissolution of Aβ42-Zn(ii)/Cu(ii) aggregates. Specifically, we explored their ability to bind Cu(ii)/Zn(ii)-ions, the geometry and stoichiometry of these complexes, Cu(ii)/Zn(ii)-binding-sites and binding mode, and the ability of these analogues to dissolve Aβ42-Zn(ii)/Cu(ii) aggregates, as well as their effect on the secondary structure of those aggregates. Finally, we identified the most promising agents for dissolution of Aβ42-Zn(ii)/Cu(ii) aggregates. Specifically, we observed the formation of a 1 : 1 complex between 2'-dG3'5'PO and Cu(ii), involving O4 ligands. Zn(ii) was coordinated by both thiophosphate groups of 2'-dA3'5'PS and A2'3'PS involving O2S2 ligands in a 1 : 1 stoichiometry. A2'3'PS dissolves Aβ42-Zn(ii) and Aβ42-Cu(ii) aggregates as effectively as, and 2.5-fold more effectively than EDTA, respectively. Furthermore, 2'-dG3'5'PS and A2'3'PS reverted the Aβ42-M(ii) structure, back to that of the free Aβ42. Finally, cryo-TEM and TEM images confirmed the disassembly of Aβ42 and Aβ42-M(ii) aggregates by A2'3'PS. Hence, 2'-dG3'5'PS and A2'3'PS may serve as promising scaffolds for new AD therapeutics, acting as both effective antioxidants and agents for solubilization of Aβ42-Cu(ii)/Zn(ii) aggregates.
NASA Astrophysics Data System (ADS)
Laik, A.; Shirzadi, A. A.; Sharma, G.; Tewari, R.; Jayakumar, T.; Dey, G. K.
2015-02-01
Microstructural evolution and interfacial reactions during vacuum brazing of grade-2 Ti and 304L-type stainless steel (SS) using eutectic alloy Ag-28 wt pct Cu were investigated. A thin Ni-depleted zone of -Fe(Cr, Ni) solid solution formed on the SS-side of the braze zone (BZ). Cu from the braze alloy, in combination with the dissolved Fe and Ti from the base materials, formed a layer of ternary compound , adjacent to Ti in the BZ. In addition, four binary intermetallic compounds, CuTi, CuTi, CuTi and CuTi formed as parallel contiguous layers in the BZ. The unreacted Ag solidified as islands within the layers of CuTi and CuTi. Formation of an amorphous phase at certain locations in the BZ could be revealed. The -Ti(Cu) layer, formed due to diffusion of Cu into Ti-based material, transformed to an -Ti + CuTi eutectoid with lamellar morphology. Tensile test showed that the brazed joints had strength of 112 MPa and failed at the BZ. The possible sequence of events that led to the final microstructure and the mode of failure of these joints were delineated.
The Dart estuary, Devon, UK: a case study of chemical dynamics and pollutant mobility
NASA Astrophysics Data System (ADS)
Schuwerack, P.-M. M.; Neal, M.; Neal, C.
2007-01-01
Water, sediments and gill and digestive gland tissues of adult common shore crab (Carcinus maenas), collected at Noss Marina, Sandquay (Britannia Royal Naval College), the Dartmouth Pier, Warfleet Cove and Sugary Cove in the Dart estuary, Devon, UK, were analysed for major, minor and trace elements in spring 2004. Total acid-available measurements analysed included the truly dissolved component and acid-available sediments. Trace metal concentrations are associated largely with particulate and micro-particulate/colloidal phases, the latter being able to pass through standard filter papers. Wide ranges of chemical concentrations were found in the water, sediments and tissues at all the locations. In the water column, 48% of the variance is linked to the sea-salt component (Cl, Na, K, Ca, Mg, B, Li and Sr) and the sediment-associated acid-available fractions are linked to Fe-rich lithogenous materials (Ba, Co, Cu, Fe, Mn, V and Zn). In the sediments, trace elements of Cd, Co, Cr, Fe, Pb, Mn, Ni and V are correlated with the sea salts and associated with the fraction of fine sediments within the total sediment. In the gills and the digestive gland tissues of crabs, high concentrations of Al, Cu and Fe are found and there are correlations between acid-available trace metals of Cu, Cr, Fe, Mn, Ni, Sr and Zn. The relationships between trace metal contaminants, their site-specific concentrations, their temporal and spatial variability and the effects of human activities, such as moorland/agriculture with historic mining and recreational activities in the lower Dart estuary, are discussed.
Comparison of three corrosion inhibitors in simulated partial lead service line replacements.
Kogo, Aki; Payne, Sarah Jane; Andrews, Robert C
2017-05-05
Partial lead service line replacements (PLSLR) were simulated using five recirculating pipe loops treated with either zinc orthophosphate (1mg/L as P), orthophosphate (1mg/L as P) or sodium silicate (10mg/L). Two pipe loops served as inhibitor-free (Pb-Cu) and galvanic free (Pb-PVC) controls. Changes in water quality (CSMR [0.2 or 1], conductivity [330mS/cm or 560mS/cm], chlorine [1.4mg/L]) were not observed to provide a significant impact on lead or copper release, although galvanic corrosion was shown to be a driving factor. Generally, both orthophosphate and zinc orthophosphate provided better corrosion control for both total and dissolved lead (30min, 6h, 65h) and copper (30min, 6h), when compared to either the inhibitor-free control or the sodium silicate treated system. This work highlights the importance of understanding the complex interplay of corrosion inhibitors on particulate and dissolved species when considering both lead and copper. Copyright © 2017 Elsevier B.V. All rights reserved.
The effect of membrane filtration on dissolved trace element concentrations
Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.
1996-01-01
The almost universally accepted operational definition for dissolved constituents is based on processing whole-water samples through a 0.45-??m membrane filter. Results from field and laboratory experiments indicate that a number of factors associated with filtration, other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample), can produce substantial variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. These variations result from the inclusion/exclusion of colloidally- associated trace elements. Thus, 'dissolved' concentrations quantitated by analyzing filtrates generated by processing whole-water through similar pore- sized membrane filters may not be equal/comparable. As such, simple filtration through a 0.45-??m membrane filter may no longer represent an acceptable operational definition for dissolved chemical constituents. This conclusion may have important implications for environmental studies and regulatory agencies.
Critical load analysis in hazard assessment of metals using a Unit World Model.
Gandhi, Nilima; Bhavsar, Satyendra P; Diamond, Miriam L
2011-09-01
A Unit World approach has been used extensively to rank chemicals for their hazards and to understand differences in chemical behavior. Whereas the fate and effects of an organic chemical in a Unit World Model (UWM) analysis vary systematically according to one variable (fraction of organic carbon), and the chemicals have a singular ranking regardless of environmental characteristics, metals can change their hazard ranking according to freshwater chemistry, notably pH and dissolved organic carbon (DOC). Consequently, developing a UWM approach for metals requires selecting a series of representative freshwater chemistries, based on an understanding of the sensitivity of model results to this chemistry. Here we analyze results from a UWM for metals with the goal of informing the selection of appropriate freshwater chemistries for a UWM. The UWM loosely couples the biotic ligand model (BLM) to a geochemical speciation model (Windermere Humic Adsorption Model [WHAM]) and then to the multi-species fate transport-speciation (Transpec) model. The UWM is applied to estimate the critical load (CL) of cationic metals Cd, Cu, Ni, Pb, and Zn, using three lake chemistries that vary in trophic status, pH, and other parameters. The model results indicated a difference of four orders of magnitude in particle-to-total dissolved partitioning (K(d)) that translated into minimal differences in fate because of the short water residence time used. However, a maximum 300-fold difference was calculated in Cu toxicity among the three chemistries and three aquatic organisms. Critical loads were lowest (greatest hazard) in the oligotrophic water chemistry and highest (least hazard) in the eutrophic water chemistry, despite the highest fraction of free metal ion as a function of total metal occurring in the mesotrophic system, where toxicity was ameliorated by competing cations. Water hardness, DOC, and pH had the greatest influence on CL, because of the influence of these factors on aquatic toxicity. Copyright © 2011 SETAC.
Choudhury, Dharitri; Gupta, Susmita
2017-10-06
Water and aquatic insects were collected seasonally from site 1, the low-lying area of the dump near Deepor Beel, and from sites 2 and 3 of the main wetland and analysed. While dissolved oxygen (DO) increased from site 1 to site 3 in each season, electrical conductivity (EC), total dissolved solid (TDS), total alkalinity (TA) and free CO 2 (F-CO 2 ) decreased. Pb and Cd were found to exceed the limits set for drinking water in all the sites and seasons. Species richness (SpR) was found highest (23) at site 2 and lowest (14) at site 1. Sensitive species was absent. The Shannon (H') values at site 1 were < 1 while at sites 2 and 3 were > 1 in most of the seasons. Biological monitoring scores (Biological Monitoring Working Party and Stream Invertebrate Grade Number-Average Level) in different sites and seasons inferred severely poor to moderate water quality. At site 1, significant negative correlations were seen for Pb and Cr with SpR while Ni and Cu with insect density (ID). At site 2, TA had highly significant positive correlations with SpR and ID while Cu showed negative correlation with SpR. At site 3, ID had significant negative relationships with air temperature, water temperature, depth, TA, F-CO 2 , PO 4 3- and Cr. Canonical correspondence analysis triplot has clearly separated site 1 associated with tolerant species and highly influenced by TA, TDS, EC, F-CO 2, Cr, Ni, Cd and Zn confirming high anthropogenic activities on that site. Tolerant and semitolerant species were present at site 2 (influenced by depth and transparency) and site 3 (influenced by Pb and WT) both. Results of this study discerned that the dump site is the point source of pollution.
NASA Astrophysics Data System (ADS)
Bingham, J.; Dryden, C.; Gordon, A.
2002-12-01
Copper is both an important nutrient and a pollutant in the marine environment. By studying the interactions between microorganisms and copper in the Elizabeth River (VA), home to a major Naval Base, we field tested the hypothesis that picoplankton and/or bacterioplankton produce strong, copper-complexing ligands in response to elevated copper concentrations. A simple light/ dark test was used to distinguish between heterotrophic and phototrophic ligand production. Samples were bottled and moored, submerged one meter, for a week. Direct counts using DAPI stain and epiflourescence were conducted to find concentrations of picoplankton and bacterioplankton. Using cathodic stripping voltammetry, we found the total copper concentrations, and then from a titration of the ligands by copper, the ligand concentrations and conditional stability constants were obtained. The Elizabeth River naturally had between 10-20 nM total dissolved copper concentrations. However when copper complexation was considered we found that the levels of bio-available Cu(II) ions were much lower. In fact in the natural samples the levels were not high enough to affect the relative reproductive rates of several microorganisms. Naturally there was a 50 nM "buffer zone" of ligand to total dissolved copper concentration. Furthermore, when stressed with excess copper, healthy picoplankton produced enough ligand to alleviate toxicity, and rebuild the buffer zone. However bacterioplankton only produced enough ligand so that they were no longer affected. Therefore, intact estuarine communities regulate copper bioavailability and toxicity with ligand production.
Malassa, Husam; Al-Rimawi, Fuad; Al-Khatib, Mahmoud; Al-Qutob, Mutaz
2014-10-01
Rainwater samples harvested for drinking from the west part of Hebron (south of West Bank in Palestine), the largest city in the West Bank, were analyzed for the content of different trace heavy metals (Cr, Mn, Co, Ni, Cu, Zn, Mo, Ag, Cd, Bi, and Pb) by inductively coupled plasma mass spectrometry (ICP-MS). This study was conducted to determine the water quality of harvested rainwater used for drinking of south West Bank (case study, Hebron area). A total of 44 water samples were collected in November 2012 from 44 house cisterns used to collect rainwater from the roofs of houses. The samples were analyzed for their pH, temperature, electrical conductivity, total dissolved solids, and different heavy metal contents. The pH of all water samples was within the US Environmental Protection Agency limits (6.5-8.5), while some water samples were found to exceed the allowed WHO limit for total dissolved solids (TDSs) in drinking water. Results showed that concentrations of the heavy metals vary significantly between the 44 samples. Results also showed that the concentration of five heavy metals (Cr, Mn, Ni, Ag, and Pb) is higher than the WHO limits for these heavy metals in drinking water. Overall, our findings revealed that harvested rainwater used for drinking of this part of south West Bank is contaminated with heavy metals that might affect human health.
Shaheen, Sabry M; Frohne, Tina; White, John R; DeLaune, Ron D; Rinklebe, Jörg
2017-01-15
Studies about the mobilization of potentially toxic elements (PTEs) in deltaic soils can be challenging, provide critical information on assessing the potential risk and fate of these elements and for sustainable management of these soils. The impact of redox potential (E H ), pH, iron (Fe), manganese (Mn), sulfate (SO 4 2- ), chloride (Cl - ), aliphatic dissolved organic carbon (DOC), and aromatic dissolved organic carbon (DAC) on the mobilization of copper (Cu), selenium (Se), and zinc (Zn) was studied in two soils collected from the Nile and Mississippi Rivers deltaic plains focused on increasing our understanding of the fate of these toxic elements. Soils were exposed to a range of redox conditions stepwise from reducing to oxidizing soil conditions using an automated biogeochemical microcosm apparatus. Concentrations of DOC and Fe were high under reducing conditions as compared to oxidizing conditions in both soils. The proportion of DAC in relation to DOC in solution (aromaticity) was high in the Nile Delta soil (NDS) and low in the Mississippi Delta soil (MDS) under oxidizing conditions. Mobilization of Cu was low under reducing conditions in both soils which was likely caused by sulfide precipitation and as a result of reduction of Cu 2+ to Cu 1+ . Mobilization of Se was high under low E H in both soils. Release of Se was positively correlated with DOC, Fe, Mn, and SO 4 2- in the NDS, and with Fe in the MDS. Mobilization of Zn showed negative correlations with E H and pH in the NDS while these correlations were non-significant in the MDS. The release dynamics of dissolved Zn could be governed mainly by the chemistry of Fe and Mn in the NDS and by the chemistry of Mn in the MDS. Our findings suggest that a release of Se and Zn occurs under anaerobic conditions, while aerobic conditions favor the release of Cu in both soils. In conclusion, the release of Cu, Se, and Zn under different reducing and oxidizing conditions in deltaic wetland soils should be taken into account due to increased mobilization and the potential environmental risks associated with food security in utilizing these soils for flooded agricultural and fisheries systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Philipps, Rebecca R; Xu, Xiaoyu; Mills, Gary L; Bringolf, Robert B
2018-06-01
We conducted an exposure experiment with Diffusive Gradients in Thin- Films (DGT), fathead minnow (Pimephales promelas), and yellow lampmussel (Lampsilis cariosa) to estimate bioavailability and bioaccumulation of Cu. We hypothesized that Cu concentrations measured by DGT can be used to predict Cu accumulation in aquatic animals and alterations of water chemistry can affect DGT's predict ability. Three water chemistries (control soft water, hard water, and addition of natural organic matter (NOM)) and three Cu concentrations (0, 30, and 60 μg/L) were selected, so nine Cu-water chemistry combinations were used. NOM addition treatments resulted in decreased concentrations of DGT-measured Cu and free Cu ion predicted by Biotic Ligand Model (BLM). Both hard water and NOM addition treatments had reduced concentrations of Cu ion and Cu-dissolved organic matter complexes compared to other treatments. DGT-measured Cu concentrations were linearly correlated to fish accumulated Cu, but not to mussel accumulated Cu. Concentrations of bioavailable Cu predicted by BLM, the species complexed with biotic ligands of aquatic organisms and, was highly correlated to DGT-measured Cu. In general, DGT-measured Cu fit Cu accumulations in fish, and this passive sampling technique is acceptable at predicting Cu concentrations in fish in waters with low NOM concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Content of trace elements and chromium speciation in Neem powder and tea infusions.
Novotnik, Breda; Zuliani, Tea; Ščančar, Janez; Milačič, Radmila
2015-01-01
Total concentrations of selected trace elements in Neem powder and in Neem tea were determined by inductively coupled plasma mass spectrometry (ICP-MS). The data revealed that despite high total concentrations of the potentially toxic elements Al and Ni in Neem powder, their amounts dissolved in Neem tea were low. Total concentrations of the other toxic elements Pb, As and Cd were also very low and do not represent a health hazard. In contrast, total concentrations of the essential elements Fe, Cu, Zn, Se Mo and Cr in Neem powder were high and also considerable in Neem tea. Consuming one cup of Neem tea (2g per 200 mL of water) covers the recommended daily intakes for Cr and Se and represents an important source of Mo and Cu. Speciation analysis of Cr by high performance liquid chromatography (HPLC) coupled to ICP-MS with the use of enriched Cr isotopic tracers to follow species interconversions during the analytical procedure demonstrated that toxic Cr(VI) was not present either in Neem powder or in Neem tea. Its concentrations were below the limits of detection of the HPLC-ICP-MS procedure applied. The speciation analysis data confirmed that even Cr(VI) was added, it was rapidly reduced by the presence of antioxidants in Neem leaves. By the use of enriched Cr isotopic spike solutions it was also demonstrated that for obtaining reliable analytical data it is essential to apply the extraction procedures which prevent Cr species interconversions, or to correct for species transformation. Copyright © 2015 Elsevier GmbH. All rights reserved.
Recovery of critical and value metals from mobile electronics enabled by electrochemical processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tedd E. Lister; Peiming Wang; Andre Anderko
2014-10-01
Electrochemistry-based schemes were investigated as a means to recover critical and value metals from scrap mobile electronics. Mobile electronics offer a growing feedstock for replenishing value and critical metals and reducing need to exhaust primary sources. The electrorecycling process generates oxidizing agents at an anode to dissolve metals from the scrap matrix while reducing dissolved metals at the cathode. The process uses a single cell to maximize energy efficiency. E vs pH diagrams and metals dissolution experiments were used to assess effectiveness of various solution chemistries. Following this work, a flow chart was developed where two stages of electrorecycling weremore » proposed: 1) initial dissolution of Cu, Sn, Ag and magnet materials using Fe+3 generated in acidic sulfate and 2) final dissolution of Pd and Au using Cl2 generated in an HCl solution. Experiments were performed using a simulated metal mixture equivalent to 5 cell phones. Both Cu and Ag were recovered at ~ 97% using Fe+3 while leaving Au and Pd intact. Strategy for extraction of rare earth elements (REE) from dissolved streams is discussed as well as future directions in process development.« less
He, Guangli; Hu, Weihua; Li, Chang Ming
2015-11-01
We herein report the spontaneous interfacial reaction between copper foil with 0.01 M phosphate buffered saline (PBS) to form free-standing cupric phosphate (Cu3(PO4)2) nanoflowers at ambient temperature. The underlying chemistry was thoroughly investigated and it is found that the formation of nanoflower is synergistically caused by dissolved oxygen, chlorine ions and phosphate ions. Enzyme-Cu3(PO4)2 hybrid nanoflower was further prepared successfully by using an enzyme-dissolving PBS solution and the enzymes in the hybrid exhibit enhanced biological activity. This work provides a facile route for large-scale synthesis of hierarchical inorganic and functional protein-inorganic hybrid architectures via a simple one-step solution-immersion reaction without using either template or surfactant, thus offering great potential for biosensing application among others. Copyright © 2015 Elsevier B.V. All rights reserved.
Cu--Ni--Fe anode for use in aluminum producing electrolytic cell
Bergsma, S. Craig; Brown, Craig W.; Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.
2006-07-18
A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900.degree. C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable Cu--Ni--Fe anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.
Ultraviolet optical absorptions of semiconducting copper phosphate glasses
NASA Technical Reports Server (NTRS)
Bae, Byeong-Soo; Weinberg, Michael C.
1993-01-01
Results are presented of a quantitative investigation of the change in UV optical absorption in semiconducting copper phosphate glasses with batch compositions of 40, 50, and 55 percent CuO, as a function of the Cu(2+)/Cu(total) ratio in the glasses for each glass composition. It was found that optical energy gap, E(opt), of copper phosphate glass is a function of both glass composition and Cu(2+)/Cu(total) ratio in the glass. E(opt) increases as the CuO content for fixed Cu(2+)/Cu(total) ratio and the Cu(2+)/Cu(total) ratio for fixed glass composition are reduced.
NASA Astrophysics Data System (ADS)
Shea, Damian; Helz, George R.
1989-02-01
The equilibrium constant at 25°C for the following reaction has been measured in NaCl media by an indirect method: CuS(cov) + H +(aq) ⇄ Cu 2+(aq) + HS -(qa), Ksp = MCu 2+MHS -(10 +pH) where CuS(cov) designates synthetic covellite. Values of pKsp are 21.39, 21.04 and 20.95 at NaCl = 0.2, 0.7 and 1.0 M, respectively; the uncertainty in these Ksp values is ±0.15. The free energy of formation of covellite, for which published values are discordant, is calculated to be -11.83±0.4 kcal/mole at 298 K (-49.50 ± 1.7 kJ/mole). This value is obtained by extrapolating the meaured pKsp values to infinite dilution with corrections for Cl - complexing. Applying similar Cl - complexing corrections, based on recent measurements by Seward, to previously published solubility data for galena yields a revised pKsp0 for galena of 12.78. A poorly crystalline precipitate, obtained by mixing Cu 2+ and HS - solutions, yielded a reversible solubility product 3 orders of magnitude greater than that of covellite but about 3 orders of magnitude less than that of a truly amorphous phase, super-cooled liquid CuS. The poorly crystalline phase has not been studied previously. Its bulk composition was Cu 1.18S, but microprobe analysis revealed that it was a partially exsolved mixture of roughly Cu 1.11S and Cu 1.32S (similar to known blaubleibender covellites). It was kinetically unstable, and converted to covellite when thermally annealed or when exposed to polysulfide solutions. Because of its instability, a material of this nature is unlikely to account for the amorphous copper sulfide alleged to occur in the Red Sea Brine deposits. However, it is possible that on short time scales dissolved Cu in sulfidic waters is controlled by metastable, rather than stable phases, as is known to be the case with dissolved Fe.
Stillings, L.L.; Foster, A.L.; Koski, R.A.; Munk, L.; Shanks, Wayne C.
2008-01-01
Several abandoned Cu mines are located along the shore of Prince William Sound, AK, where the effect of mining-related discharge upon shoreline ecosystems is unknown. To determine the magnitude of this effect at the former Beatson mine, the largest Cu mine in the region and a Besshi-type massive sulfide ore deposit, trace metal concentration and flux were measured in surface run-off from remnant, mineralized workings and waste. Samples were collected from seepage waters; a remnant glory hole which is now a pit lake; a braided stream draining an area of mineralized rock, underground mine workings, and waste piles; and a background location upstream of the mine workings and mineralized rock. In the background stream pH averaged ???7.3, specific conductivity (SC) was ???40 ??S/cm, and the aqueous components indicative of sulfide mineral weathering, SO4 and trace metals, were at detection limits or lower. In the braided stream below the mine workings and waste piles, pH usually varied from 6.7 to 7.1, SC varied from 40 to 120 ??S/cm, SO4 had maximum concentrations of 32 mg/L, and the trace metals Cu, Ni, Pb, and Zn showed maximum total acid extractable concentrations of 186, 5.9, 6.2 and 343 ??g/L, respectively. With an annual rainfall of ???340 cm (estimated from the 2006 water year) it was expected that rain water would have a large effect on the chemistry of the braided stream draining the mine site. A linear mixing model with two end members, seepage water from mineralized rock and background water, estimated that the braided stream contained 10-35% mine drainage. After rain events the braided stream showed a decrease in pH, SC, Ca + Mg, SO4, and alkalinity, due to dilution. The trace metals Ni and Zn followed this same pattern. Sodium + K and Cl did not vary between the background and braided stream, nor did they vary with rainfall. At approximately 2 and 3 mg/L, respectively, these concentrations are similar to concentrations found in rainfall on the coasts of North America. High concentrations of total acid extractable Al and Fe were found at near-neutral pH in most of the waters collected at the site. Equilibrium solubility simulations, performed with PHREEQC, show that the stream waters are saturated with respect to Al, Fe and SiO2 solid phases. Because the "dissolved" sample fractions (acid preserved and filtered to 0.45 ??m) show significant concentrations of Al and Fe it is presumed that these are present as colloids. The relationship between concentrations of Al and Fe, and rainfall was the opposite of that observed for the major ions Ca + Mg, SO4, and alkalinity, in that Al and Fe concentrations increased with increasing rainfall. Concentrations of Cu and Pb followed the same pattern. Adsorption calculations were performed with Visual MINTEQ, using the diffuse double layer electrostatic model and surface complexation constants for the ferrihydrite surface. These results suggest that 30-93% of Cu and 58-97% of Pb was adsorbed to ferrihydrite precipitates in the stream waters. Ni and Zn showed little adsorption in this pH range. Flux calculations show that the total mass of trace metals transported from the mine site, during the 60 day study period, was ranked as Zn (196 kg) > Cu (87 kg) > Pb(1.9 kg) ??? Ni(1.9 kg). Nickel and Zn were transported mostly as dissolved species while Cu and Pb were transported mostly as adsorbed species. pH control on adsorption was evident when Cu and Pb isotherms were normalized by ferrihydrite flux. Decreased stream water pH due to periods of frequent and high volume rain events would cause desorption of Cu and Pb from the ferrihydrite surface, thus changing not only their speciation in solution but also their mechanism of transport. ?? 2007 Elsevier Ltd. All rights reserved.
Knoth de Zarruk, K; Scholer, G; Dudal, Y
2007-09-01
Land spreading of organic materials introduces large amounts of dissolved organic matter (DOM) into the soil. DOM has the ability to form stable complexes with heavy metals and can facilitate their transport towards the groundwater. The effects on soil processes are difficult to assess, because different DOM components might react differently towards metal ions. The objective of this study was to investigate the fluorescence signature and the Cu2+-binding capacity of individual molecular size fractions of DOM from various sources. DOM extracted from leaf compost, chicken manure, sugar cane vinasse and a fulvic hypercalcaric cambisol was fractionated by the means of dialysis into four molecular size classes: MW<500, 500
Gasperi, J; Gromaire, M C; Kafi, M; Moilleron, R; Chebbo, G
2010-12-01
An observatory of urban pollutants was created in Paris for the purpose of assessing the dynamics of wastewater and wet weather flow (WW and WWF) pollutant loads within combined sewers. This observatory is composed of six urban catchments, covering land areas ranging in size from 42 ha to 2581 ha. For a wide array of parameters including total suspended solids (TSS), chemical and biochemical oxygen demand (COD and BOD(5)), total organic carbon (TOC), total Kjeldahl nitrogen (TKN), heavy metals (Cu and Zn) and polycyclic aromatic hydrocarbons (PAHs), this article is intended to evaluate the contributions of wastewater, runoff and in-sewer processes to WWF pollutant loads through the use of an entry-exit mass balance approach. To achieve this objective, a total of 16 rain events were sampled on these sites between May 2003 and February 2006. This study has confirmed that at the considered catchment scale (i.e. from 42 ha to 2581 ha) the production and transfer processes associated with WWF pollutant loads do not vary with basin scale. Entry-exit chemical mass balances over all catchments and for a large number of rain events indicate that wastewater constitutes the main source of organic and nitrogenous pollution, while runoff is the predominant source of Zn. For Cu, PAHs and TSS, the calculation underscores the major role played by in-sewer processes, specifically by sediment erosion, as a source of WWF pollution. A significant loss of dissolved metals was also observed during their transfer within the sewer network, likely as a consequence of the adsorption of dissolved metals on TSS and/or on sewer deposits. Moreover, the nature of eroded particles was examined and compared to the various sewer deposits. This comparison has highlighted that such particles exhibit similar organic and PAH contents to those measured in the organic layer, thus suggesting that the deposit eroded during a wet weather period is organic and of a nature comparable to the organic layer. Despite the extent of initial field investigations, no organic deposit was observed to be present on sewer lines within the catchments, which implies that this organic deposit is probably present in another form or to be found elsewhere in the main trunks. Copyright © 2010 Elsevier Ltd. All rights reserved.
Synthesis of ultrafine powders by microwave heating
Meek, T.T.; Sheinberg, H.; Blake, R.D.
1987-04-24
A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has dissolved. The resulting material is an ultrafine powder. This method can be used to make Al/sub 2/O/sub 3/, NiO /plus/ Al/sub 2/O/sub 3/ and NiO as well as a number of other materials including GaBa/sub 2/Cu/sub 3/O/sub x/. 1 tab.
NASA Astrophysics Data System (ADS)
Xie, Hanjie; Zhu, Lianjie; Zheng, Wenjun; Zhang, Jing; Gao, Fubo; Wang, Yan
2016-11-01
An energy-efficient and environmentally friendly microwave-assisted method was adopted for synthesis of butterfly-like CuO assembled by nanosheets through a Cu2Cl(OH)3 precursor, using no template. Formation mechanism of the butterfly-like CuO was explored and discussed systematically for the first time on the basis of both experimental results and crystal structure transformations in atomic level. The electrochemical sensing properties of the butterfly-like CuO modified electrode to ascorbic acid (AA) were studied for the first time. The results reveal that Cu(OH)2 nanowires were formed once the Cu2+ ions, located in between two CuO4 parallelogram chains of a Cu2Cl(OH)3 precursor, dissolve into the solution as Cu(OH)42- complex ions after ion exchange reactions and simultaneous assemble along a axis. Upon microwave irradiation, the adjacent CuO4 parallelogram chains of the Cu(OH)2 nanowires dehydrate and assemble along c axis, forming CuO nanosheets with (002) as the main exposed facet, which were further assembled to butterfly-like CuO under the action of microwave field, suggesting that microwave field functions like a 'directing agent'. The butterfly-like CuO modified electrode shows good electrochemical sensing properties to AA with a low detecting limit, short response time and wide linear response range.
[Studies on six heavy metal elements dissolution characteristics of Andrographis herb by ICP-OES].
Tang, Rui; Li, Tian-Peng; Gu, Xue-Shi; Li, Yong-Jian; Yang, Yi
2010-02-01
A simple and accurate method for the simultaneous determination of As, Ba, Cd, Cr, Cu and Pb in andrographis herb by inductively coupled plasma optical emission spectrometry (ICP-OES) was developed. The samples were digested by HNO3-HClO4. The digestion-determination method was evaluated with the relative standard deviations for all these elements between 2.1% and 4.6%, and the recoveries were between 92.0% and 103.2%. The measuring method was proved to be simple, reliable and highly sensitive. The dissolution characteristics of the 6 heavy metal elements in different solvents and with different extraction methods such as refluxing, soaking, and ultrasonic assisted extraction were studied. The experimental results showed that Ba was in the highest concentration followed by Cu and Cr, and the concentration of As, Pb and Cd was relatively lower in the herb. With the increase in ethanol concentration, the dissolution amount of Ba decreased but that of Cu and Cr increased, and the highest concentration of Cd was dissolved in acidic solution. Overall, Cd and Pb were difficult to dissolve out with 85% ethanol refluxing, but As dissolved comparatively more under the same condition. Comparing the extraction methods, the higher concentration of these 6 metals was obtained by refluxing water or alkaline water than that by 85% ethanol maceration. These differences might be related to the existent forms of these six elements in the herb. The determination and study on dissolution characteristics of these elements by using ICP-OES was important for rational using medicinal resources and ensuring the safety of drugs.
Fonseca, Juliana da Silva; Marangoni, Laura Fernandes de Barros; Marques, Joseane Aparecida; Bianchini, Adalto
2017-09-01
Effects of increasing temperature alone and in combination with exposure to dissolved copper (Cu) were evaluated in the zooxanthellate scleractinian coral Mussismilia harttii using a marine mesocosm system. Endpoints analyzed included parameters involved in metabolism [maximum photosynthetic capacity of zooxanthellae (Fv/Fm), chlorophyll a and ATP concentrations], calcification [carbonic anhydrase (CA) and Ca 2+ -Mg 2+ -ATPase activity], and oxidative status [antioxidant capacity against peroxyl radicals (ACAP) and lipid peroxidation (LPO)]. Coral polyps were collected, acclimated and exposed to three increasing temperature conditions [25.0±0.1°C (control; average temperature of local seawater), 26.6±0.1°C and 27.3±0.1°C] using a marine mesocosm system. They were tested alone and in combination with four environmentally relevant concentrations of dissolved Cu in seawater [2.9±0.7 (control; average concentration in local seawater), 3.8±0.8, 5.4±0.9 and 8.6±0.3μg/L] for 4, 8 and 12days. Fv/Fm reduced over the experimental period with increasing temperature. Combination of increasing temperature with Cu exposure enhanced this effect. CA and Ca 2+ -Mg 2+ -ATPase activities increased up to 8days of exposure, but recovered back after 12days of experiment. Short-term exposure to increasing temperature or long-term exposure to the combination of stressors reduced LPO, suggesting the occurrence of a remodeling process in the lipid composition of biological membranes. ACAP, ATP and chlorophyll a were not significantly affected by the stressors. These findings indicate that increasing temperature combined with exposure to dissolved Cu increase susceptibility to bleaching and reduce growth in the zooxanthellate scleractinian coral M. harttii. Copyright © 2017 Elsevier B.V. All rights reserved.
Transportation and Bioavailability of Copper and Zinc in a Storm Water Retention Pond
NASA Astrophysics Data System (ADS)
Camponelli, K.; Casey, R. E.; Wright, M. E.; Lev, S. M.; Landa, E. R.
2006-05-01
Highway runoff has been identified as a non-point source of metals to storm water retention ponds. Zinc and copper are major components of tires and brake pads, respectively. As these automobile parts degrade, they deposit particulates onto the roadway surface. During a storm event, these metal containing particulates are washed into a storm water retention pond where they can then accumulate over time. These metals may be available to organisms inhabiting the pond and surrounding areas. This study focuses on tracking the metals from their deposition on the roadway to their transport and accumulation into a retention pond. The retention pond is located in Owings Mills, MD and collects runoff from an adjacent four lane highway. Pond sediments, background soils, road dust samples, and storm events were collected and analyzed. Copper and zinc concentrations in the pond sediments are higher than local background soils indicating that the pond is storing anthropogenically derived metals. Storm event samples also reveal elevated levels of copper and zinc transported through runoff, along with a large concentration of total suspended solids. After looking at the particulate and dissolved fractions of both metals in the runoff, the majority of the Zn and Cu are in the particulate fraction. Changes in TSS are proportional with changes in particulate bound Zn, indicating that the solid particulates that are entering into the pond are a major contributor of the total metal loading. Sequential extractions carried out on the road dust show that the majority of zinc is extracted in the second and third fractions and could become available to organisms in the pond. There is a small amount of Cu that is being released in the more available stages of the procedure; however the bulk of the Cu is seen in the more recalcitrant steps. In the pond sediments however, both Cu and Zn are only being released from the sediments in the later steps and are most likely not highly available.
NASA Astrophysics Data System (ADS)
Baldisserri, Carlo; Costa, Anna Luisa
2016-04-01
We performed explorative cyclic voltammetry in phosphate-buffered saline buffers, Dulbecco's modified Eagle's medium (DMEM), and fetal bovine serum-added DMEM using Au wire as working electrode, both in the absence and in the presence of known nominal concentrations of Cu2+ ions or 15 nm CuO nanoparticles. Addition of either Cu2+ ions or aqueous suspension of CuO nanoparticles caused a single anodic peak to appear in the double-layer region of all three pristine media. The height of the anodic peak was found to increase in a monotonic fashion vs. Cu2+ concentration in Cu2+-added media, and versus time since CuO addition in CuO-added media. Stepwise addition of glycine to Cu2+-added phosphate-buffered saline buffer caused an increasing cathodic shift of the anodic peak accompanied by decreasing peak currents. Results indicate that preparing Cu2+-free suspensions of CuO nanoparticles in such media is difficult, owing to the presence of leached copper ions. The implications on results of experiments in which CuO nanoparticle-added biological media are used as cell culture substrates are discussed. Literature data on the interactions between Cu2+ ions, dissolved carbon dioxide in aqueous CuO suspensions, and amino acids present in such media are compared to our results.
Tanner, Dwight Q.; Harrison, Howard E.; McKenzie, Stuart W.
1996-01-01
Increased levels of total dissolved gas pressure can cause gas-bubble trauma in fish downstream from dams on the Columbia River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey collected data on total dissolved gas pressure, barometric pressure, water temperature, and dissolved oxygen pressure at 11 stations on the lower Columbia River from the John Day forebay (river mile 215.6) to Wauna Mill (river mile 41.9) from March to September 1996. Methods of data collection, review, and processing are described in this report. Summaries of daily minimum, maximum, and mean hourly values are presented for total dissolved gas pressure, barometric pressure, and water temperature. Hourly values for these parameters are presented graphically. Dissolved oxygen data are not presented in this report because the quality-control data show that the data have poor precision and high bias. Suggested changes to monitoring procedures for future studies include (1) improved calibration procedures for total dissolved gas and dissolved oxygen to better define accuracy at elevated levels of supersaturation and (2) equipping dissolved oxygen sensors with stirrers because river velocities at the shoreline monitoring stations probably cannot maintain an adequate flow of water across the membrane surface of the dissolved oxygen sensor.
Ardelan, Murat V; Steinnes, Eiliv; Lierhagen, Syverin; Linde, Sven Ove
2009-12-01
The impact of CO(2) leakage on solubility and distribution of trace metals in seawater and sediment has been studied in lab scale chambers. Seven metals (Al, Cr, Ni, Pb, Cd, Cu, and Zn) were investigated in membrane-filtered seawater samples, and DGT samplers were deployed in water and sediment during the experiment. During the first phase (16 days), "dissolved" (<0.2 microm) concentrations of all elements increased substantially in the water. The increase in dissolved fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb in the CO(2) seepage chamber was respectively 5.1, 3.8, 4.5, 3.2, 1.4, 2.3 and 1.3 times higher than the dissolved concentrations of these metals in the control. During the second phase of the experiment (10 days) with the same sediment but replenished seawater, the dissolved fractions of Al, Cr, Cd, and Zn were partly removed from the water column in the CO(2) chamber. DNi and DCu still increased but at reduced rates, while DPb increased faster than that was observed during the first phase. DGT-labile fractions (Me(DGT)) of all metals increased substantially during the first phase of CO(2) seepage. DGT-labile fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb were respectively 7.9, 2.0, 3.6, 1.7, 2.1, 1.9 and 2.3 times higher in the CO(2) chamber than that of in the control chamber. Al(DGT), Cr(DGT), Ni(DGT), and Pb(DGT) continued to increase during the second phase of the experiment. There was no change in Cd(DGT) during the second phase, while Cu(DGT) and Zn(DGT) decreased by 30% and 25%, respectively in the CO(2) chamber. In the sediment pore water, DGT labile fractions of all the seven elements increased substantially in the CO(2) chamber. Our results show that CO(2) leakage affected the solubility, particle reactivity and transformation rates of the studied metals in sediment and at the sediment-water interface. The metal species released due to CO(2) acidification may have sufficiently long residence time in the seawater to affect bioavailability and toxicity of the metals to biota.
Lindskov, K.L.
1986-01-01
The impact of anticipated coal mining in Utah on the salinity of the Price, San Rafael, and Green Rivers is to be addressed in the repermitting of existing mines and permitting of new mines. To determine the potential impacts, mathematical models were developed for the Price and San Rafael River basins. Little impact on the quantity and quality of streamflow is expected for the Price and San Rafael Rivers. The increase in mean monthly flow of the Price River downstream from Scofield Reservoir is projected as 3.5 cu ft/sec, ranging from 1.7% in June to 140% in February. The potential increase in dissolved solids concentration downstream from Scofield Reservoir would range from 10.4% in June and July (from 202 to 223 mg/L) to 97.0% in February (from 202 to 398 mg/L). However, the concentration of the mixture of mine water with the existing flow released from Scofield Reservoir would contain less than 500 mg/L of dissolved solids. At the mouth of the Price River, the potential increase in mean monthly flow is projected as 12.6 cu ft/sec, ranging from 3.7% in May to 37.7% in January. The potential changes in dissolved solids concentration would range from a 20.7% decrease in January (from 3,677 to 2,917 mg/L) to a 1.3% increase in June (from 1,911 to 1,935 mg/L). At the mouth of the San Rafael River , the potential increase in mean monthly flow ranges from 2.9 cu ft/sec in February to 6.7 cu ft/sec in May, with the increase ranging from 0.8% in June to 12.6% in November. The potential changes in dissolved solids concentration would range from a 5.3 % decrease in March (from 2,318 to 2,195 mg/L) to a 0.6% increase in May (from 1,649 to 1,659 mg/L). The anticipated mining in the Price and San Rafael River basins is not expected to cause a detectable change in the quantity and quality of streamflow in the Green River. The projected peak increase in flow resulting from discharge from the mines is less than 0.3% of the average flow in the Green River. (Author 's abstract)
Recycling 100Mo for direct production of 99mTc on medical cyclotrons
NASA Astrophysics Data System (ADS)
Kumlin, Joel O.; Zeisler, Stefan K.; Hanemaayer, Victoire; Schaffer, Paul
2018-05-01
A scalable recycling technique for the recovery of 100Mo from previously irradiated and chemically processed targets is described. A combined process for both Cu and Ta supported targets and the respective `waste' solutions has been developed. This process involves selectively dissolving Cu target backings from undissolved portions of 100Mo pellets; precipitating Cu(OH)2 at pH 9; electrochemical removal of Cu traces; precipitating (NH4)2MoO4 at pH 2.5-3; thermally decomposing (NH4)2MoO4; and H2 reduction of MoO3 to Mo metal. Radionuclidic decontamination by a factor of 100 is observed, while overall 100Mo recovery from initial target plating to recycled Mo metal of 96% is achieved.
NASA Astrophysics Data System (ADS)
Mamyrbekova, A. K.
2013-03-01
Physicochemical properties (density, dynamic viscosity, refraction index) of the DMSO-Cu(NO3)2 · 3H2O system are studied in the concentration range of 0.01-2 M at 298 K. The refraction index of a solution of copper(II) nitrate in dimethylsulfoxide (DMSO) is measured at 288-318 K. The excess and partial molar volumes of the solvent and dissolved substance are calculated analytically.
Gao, Hong-Wen; Chen, Fang-Fang; Chen, Ling; Zeng, Teng; Pan, Lu-Ting; Li, Jian-Hua; Luo, Hua-Fei
2007-03-21
A novel detection approach named chromophore-decolorizing with free radicals is developed for determination of trace heavy metal. The hydroxyl radicals (HO) generated from Fe(III) and hydrogen peroxide will oxidize the free chromophore into almost colorless products. The copper-acid chrome dark blue (ACDB) complexation was investigated at pH 5.07. In the presence of Fe(III) and hydrogen peroxide, the excess ACDB was decolorized in the Cu-ACDB reaction solution, and the final solution contained only one color compound, the Cu-ACDB complex. After oxidation of free hydroxyl radicals, the complexation becomes sensitive and selective and it has been used for the quantitation of trace amounts of Cu(II) dissolved in natural water. Beer's law is obeyed in the range from 0 to 0.500 microg mL(-1) Cu(II) and the limit of detection is only 6 microg L(-1) Cu(II). Besides, the Cu-ACDB complex formed was characterized.
Arnold, W Ray; Warren-Hicks, William J
2007-01-01
The object of this study was to estimate site- and region-specific dissolved copper criteria for a large embayment, the Chesapeake Bay, USA. The intent is to show the utility of 2 copper saltwater quality site-specific criteria estimation models and associated region-specific criteria selection methods. The criteria estimation models and selection methods are simple, efficient, and cost-effective tools for resource managers. The methods are proposed as potential substitutes for the US Environmental Protection Agency's water effect ratio methods. Dissolved organic carbon data and the copper criteria models were used to produce probability-based estimates of site-specific copper saltwater quality criteria. Site- and date-specific criteria estimations were made for 88 sites (n = 5,296) in the Chesapeake Bay. The average and range of estimated site-specific chronic dissolved copper criteria for the Chesapeake Bay were 7.5 and 5.3 to 16.9 microg Cu/L. The average and range of estimated site-specific acute dissolved copper criteria for the Chesapeake Bay were 11.7 and 8.3 to 26.4 microg Cu/L. The results suggest that applicable national and state copper criteria can increase in much of the Chesapeake Bay and remain protective. Virginia Department of Environmental Quality copper criteria near the mouth of the Chesapeake Bay, however, need to decrease to protect species of equal or greater sensitivity to that of the marine mussel, Mytilus sp.
Trace metals in bulk precipitation and throughfall in a suburban area of Japan
NASA Astrophysics Data System (ADS)
Hou, H.; Takamatsu, T.; Koshikawa, M. K.; Hosomi, M.
Throughfall and bulk precipitation samples were collected monthly for 1.5 years over bare land and under canopies of Japanese cedar ( Cryptomeria japonica), Japanese red pine ( Pinus densiflora), Japanese cypress ( Chamaecyparis obtusa), and bamboo-leafed oak ( Quercus myrsinaefolia) in a suburban area of Japan. Samples were analyzed for dissolved Al, Mn, Fe, Cu, Zn, Ag, In, Sn, Sb and Bi by ICP-AES and ICP-MS. The metal concentrations were higher in throughfall, especially that of C. japonica, than bulk precipitation. Enrichment ratios (ERs: ratios of metal concentrations in throughfall to those in bulk precipitation) ranged from 2.5 (Zn) to 5.3 (Ag) (3.9 on average), and ERs for slightly soluble metals were generally higher than those for easily soluble metals. Concentrations of Mn, Fe, Cu, and Zn accounted for 99% of the total concentration of heavy metals in rainwater, whereas those of rare metals such as Ag, In, Sn, and Bi totaled <0.23%. Average concentrations of rare metals were 0.002 and 0.010 μg l -1 for Ag, 0.001 and 0.005 μg l -1 for In, 0.062 and 0.21 μg l -1 for Sn, and 0.006 and 0.023 μg l -1 for Bi in bulk precipitation and throughfall, respectively. The metal concentrations in rainwater were negatively correlated to the volume of rainwater, indicating that washout is the main mechanism that incorporates metals into rainwater. From the enrichment factors, that is, (X/Al) rain/(X/Al) crust, metals other than Fe were shown to be more enriched in rainwater than in the Earth's crust, including those present as a result of leaching from soil dust (Mn) and from anthropogenic sources (Cu, Zn, Ag, In, Sn, Sb, and Bi).
Al-Shami, Salman; Rawi, Che Salmah M; Nor, Siti Azizah M; Ahmad, Abu Hassan; Ali, Arshad
2010-02-01
Morphological deformities in parts of the head capsule of Chironomus spp. larvae inhabiting three polluted rivers (Permatang Rawa [PRR], Pasir [PR], and Kilang Ubi [KUR]) in the Juru River Basin, northeastern peninsular Malaysia, were studied. Samples of the fourth-instar larvae at one location in each river were collected monthly from November 2007 to March 2008 and examined for deformities of the mentum, antenna, mandible, and epipharyngis. At each sample location, in situ measurements of water depth, river width, water pH, dissolved oxygen, and water temperature were made. Samples of river water and benthic sediments were also collected monthly from each larval sample location in each river and taken to the laboratory for appropriate analysis. Total suspended solids (TSSs), ammonium-N, nitrate-N, phosphate-P, chloride, sulfate, and aluminum content in water were analyzed. Total organic matter and nonresidual metals in the sediment samples were also analyzed. Among the three rivers, the highest mean deformity (47.17%) was recorded in larvae collected from KUR that received industrial discharges from surrounding garment and rubber factories, followed by PRR (33.71%) receiving primarily residues of fertilizers and pesticides from adjacent rice fields, and PR (30.34%) contaminated primarily by anthropogenic wastes from the surrounding residential areas. Among the various head capsule structures, deformity of the mentum was strongly reflective of environmental stress and amounted to 27.9, 20.87, and 30.19% in the PRR, PR, and KUR, respectively. Calculated Lenat's toxic score index satisfactorily explained the influence of prevailing environmental variables on the severity of mentum deformities. Redundancy analysis and forward selection selected TSSs, sediment Zn, Mn, Cu, and Ni, and water pH, dissolved oxygen, water temperature, total organic matter, nitrate-N, chloride, phosphate-P, ammonium-N, sulfate, and aluminum as parameters that significantly affected some proportion of deformities. The total deformities correlated closely with deformities of mentum but only weakly with deformities in other parts of head. The total deformity incidence was strongly correlated with high contents of sediment Mn and Ni. The mentum and epipharyngis deformities incidence was highly correlated with an increase of TSSs, total aluminum, and ammonium-N and a decrease in pH and dissolved oxygen.
Money, Cathryn; Braungardt, Charlotte B; Jha, Awadhesh N; Worsfold, Paul J; Achterberg, Eric P
2011-07-01
As part of the PREDICT Tamar Workshop, the toxicity of estuarine waters in the Tamar Estuary (southwest England) was assessed by integration of metal speciation determination with bioassays. High temporal resolution metal speciation analysis was undertaken in situ by deployment of a Voltammetric In situ Profiling (VIP) system. The VIP detects Cd (cadmium), Pb (lead) and Cu (copper) species smaller than 4 nm in size and this fraction is termed 'dynamic' and considered biologically available. Cadmium was mainly present in the dynamic form and constituted between 56% and 100% of the total dissolved concentration, which was determined subsequently in the laboratory in filtered discrete samples. In contrast, the dynamic Pb and Cu fractions were less important, with a much larger proportion of these metals associated with organic ligands and/or colloids (45-90% Pb and 46-85% Cu), which probably reduced the toxicological impact of these elements in this system. Static toxicity tests, based on the response of Crassostrea gigas larva exposed to discrete water samples showed a high level of toxicity (up to 100% abnormal development) at two stations in the Tamar, particularly during periods of the tidal cycle when the influence of more pristine coastal water was at its lowest. Competitive ligand-exchange Cu titrations showed that natural organic ligands reduced the free cupric ion concentration to levels that were unlikely to have been the sole cause of the observed toxicity. Nonetheless, it is probable that the combined effect of the metals determined in this work contributed significantly to the bioassay response. Copyright © 2011 Elsevier Ltd. All rights reserved.
Brumbaugh, W. G.; Ingersoll, C.G.; Kemble, N.E.; May, T.W.; Zajicek, J.L.
1994-01-01
The upper Clark Fork River basin in western Montana is widely contaminated by metals from past mining, milling, and smelting activities As part of a comprehensive ecological risk assessment for the upper Clark Fork River, we measured physical and chemical characteristics of surficial sediment samples that were collected from depositional zones for subsequent toxicity evaluations Sampling stations included five locations along the upper 200 km of the river, six locations in or near Milltown Reservoir (about 205 km from the river origin), and two tributary reference sites Concentrations of As, Cd, Cu, Mn, Pb, and Zn decreased from the upper stations to the downstream stations in the Clark Fork River but then increased in all Milltown Reservoir stations to levels similar to uppermost river stations Large percentages (50 to 90%) of the total Cd, Cu, Pb, and Zn were extractable by dilute (3 n) HCl for all samples Copper and zinc accounted for greater than 95% of extractable metals on a molar basis Acid-volatile sulfide (AVS) concentrations were typically moderate (0 6 to 23 μmol/g) in grab sediment samples and appeared to regulate dissolved (filterable) concentrations of Cd, Cu, and Zn in sediment pore waters Acid volatile sulfide is important in controlling metal solubility in the depositional areas of the Clark Fork River and should be monitored in any future studies Spatial variability within a sampling station was high for Cu, Zn, and AVS, therefore, the potential for toxicity to sediment dwelling organisms may be highly localized.
NASA Astrophysics Data System (ADS)
van Schaik, Joris W. J.; Kleja, Dan B.; Gustafsson, Jon Petter
2010-02-01
Vast amounts of knowledge about the proton- and metal-binding properties of dissolved organic matter (DOM) in natural waters have been obtained in studies on isolated humic and fulvic (hydrophobic) acids. Although macromolecular hydrophilic acids normally make up about one-third of DOM, their proton- and metal-binding properties are poorly known. Here, we investigated the acid-base and Cu-binding properties of the hydrophobic (fulvic) acid fraction and two hydrophilic fractions isolated from a soil solution. Proton titrations revealed a higher total charge for the hydrophilic acid fractions than for the hydrophobic acid fraction. The most hydrophilic fraction appeared to be dominated by weak acid sites, as evidenced by increased slope of the curve of surface charge versus pH at pH values above 6. The titration curves were poorly predicted by both Stockholm Humic Model (SHM) and NICA-Donnan model calculations using generic parameter values, but could be modelled accurately after optimisation of the proton-binding parameters (pH ⩽ 9). Cu-binding isotherms for the three fractions were determined at pH values of 4, 6 and 9. With the optimised proton-binding parameters, the SHM model predictions for Cu binding improved, whereas the NICA-Donnan predictions deteriorated. After optimisation of Cu-binding parameters, both models described the experimental data satisfactorily. Iron(III) and aluminium competed strongly with Cu for binding sites at both pH 4 and pH 6. The SHM model predicted this competition reasonably well, but the NICA-Donnan model underestimated the effects significantly at pH 6. Overall, the Cu-binding behaviour of the two hydrophilic acid fractions was very similar to that of the hydrophobic acid fraction, despite the differences observed in proton-binding characteristics. These results show that for modelling purposes, it is essential to include the hydrophilic acid fraction in the pool of 'active' humic substances.
NASA Astrophysics Data System (ADS)
Du, Ke; Li, Hongxu; Zhang, Mingming
2017-11-01
Copper and cobalt are two of the most valuable metals that can be recovered from copper converter slag. In the reduction-vulcanization process, copper is reduced before cobalt, while FeS vulcanizes Cu2O into Cu2S and forms the matte phase. The matte phase can dissolve the reduced metals as solvent. In this study, the distribution coefficient of cobalt between metallic cobalt in matte and CoO in slag, namely L Co, was calculated to be 5000-8500 at the reaction temperature of 1600-1700 K, while the distribution coefficient between CoS and CoO, namely L_{Co}^{{^' } }}, was calculated to be between 6 and 8. The distribution coefficient of copper between metallic copper in matte and Cu2O in slag, namely L Cu, was calculated to be in the range of 7500-8500, while the coefficient between Cu2S and Cu2O, namely L_{Cu}^{{^' } }}, was calculated to be in the range of 60,000-75,000.
Qi, Yafang; Tian, Qingwen; Meng, Yuena; Kou, Dongxing; Zhou, Zhengji; Zhou, Wenhui; Wu, Sixin
2017-06-28
The partial substitution of Cu + with Ag + into the host lattice of Cu 2 ZnSn(S,Se) 4 thin films can reduce the open-circuit voltage deficit (V oc,deficit ) of Cu 2 ZnSn(S,Se) 4 (CZTSSe) solar cells. In this paper, elemental Cu, Ag, Zn, Sn, S, and Se powders were dissolved in solvent mixture of 1,2-ethanedithiol (edtH 2 ) and 1,2-ethylenediamine (en) and used for the formation of (Cu 1-x Ag x ) 2 ZnSn(S,Se) 4 (CAZTSSe) thin films with different Ag/(Ag + Cu) ratios. The key feature of this approach is that the impurity atoms can be absolutely excluded. Further results indicate that the variations of grain size, band gap, and depletion width of the CAZTSSe layer are generally determined by Ag substitution content. Benefiting from the V oc enhancement (∼50 mV), the power conversion efficiency is successfully increased from 7.39% (x = 0) to 10.36% (x = 3%), which is the highest efficiency of Ag substituted devices so far.
Developing a Water Quality Index (WQI) for an Irrigation Dam.
De La Mora-Orozco, Celia; Flores-Lopez, Hugo; Rubio-Arias, Hector; Chavez-Duran, Alvaro; Ochoa-Rivero, Jesus
2017-04-29
Pollution levels have been increasing in water ecosystems worldwide. A water quality index (WQI) is an available tool to approximate the quality of water and facilitate the work of decision-makers by grouping and analyzing numerous parameters with a single numerical classification system. The objective of this study was to develop a WQI for a dam used for irrigation of about 5000 ha of agricultural land. The dam, La Vega, is located in Teuchitlan, Jalisco, Mexico. Seven sites were selected for water sampling and samples were collected in March, June, July, September, and December 2014 in an initial effort to develop a WQI for the dam. The WQI methodology, which was recommended by the Mexican National Water Commission (CNA), was used. The parameters employed to calculate the WQI were pH, electrical conductivity (EC), dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (Alk), total phosphorous (TP), Cl - , NO₃, SO₄, Ca, Mg, K, B, As, Cu, and Zn. No significant differences in WQI values were found among the seven sampling sites along the dam. However, seasonal differences in WQI were noted. In March and June, water quality was categorized as poor. By July and September, water quality was classified as medium to good. Quality then decreased, and by December water quality was classified as medium to poor. In conclusion, water treatment must be applied before waters from La Vega dam reservoir can be used for irrigation or other purposes. It is recommended that the water quality at La Vega dam is continually monitored for several years in order to confirm the findings of this short-term study.
Microbial biofilms for the removal of Cu²⁺ from CMP wastewater.
Mosier, Aaron P; Behnke, Jason; Jin, Eileen T; Cady, Nathaniel C
2015-09-01
The modern semiconductor industry relies heavily on a process known as chemical mechanical planarization, which uses physical and chemical processes to remove excess material from the surface of silicon wafers during microchip fabrication. This process results in large volumes of wastewater containing dissolved metals including copper (Cu(2+)), which must then be filtered and treated before release into municipal waste systems. We have investigated the potential use of bacterial and fungal biomass as an alternative to the currently used ion-exchange resins for the adsorption of dissolved Cu(2+) from high-throughput industrial waste streams. A library of candidate microorganisms, including Lactobacillus casei and Pichia pastoris, was screened for ability to bind Cu(2+) from solution and to form static biofilm communities within packed-bed adsorption columns. The binding efficiency of these biomass-based adsorption columns was assessed under various flow conditions and compared to that of industrially used ion-exchange resins. We demonstrated the potential to regenerate the biomass within the adsorption columns through the use of a hydrochloric acid wash, and subsequently reuse the columns for additional copper binding. While the binding efficiency and capacity of the developed L. casei/P. pastoris biomass filters was inferior to ion-exchange resin, the potential for repeated reuse of these filters, coupled with the advantages of a more sustainable "green" adsorption process, make this technique an attractive candidate for use in industrial-scale CMP wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dissolved Oxygen (DO) and Nutrients Analysis in the Río Piedras River, San Juan, Puerto Rico
NASA Astrophysics Data System (ADS)
Santiago, I.; Infante, G.
2016-02-01
The Río Piedras is the only River in the metropolitan area of Puerto Rico. This River was the first water supplier and is part of the ancient aqueduct, the first treatment plant of the San Juan urban area. Because of its cultural and historic importance the ancient aqueduct was cataloged as a National Treasure by the National Trust of History Preservation in 2014. Actually, is protected by Para La Naturaleza (before named in Spanish as the "Fideicomiso de Conservación de Puerto Rico"). The research objectives were to evaluate and measure the dissolved oxygen (DO), total phosphorus (TP) and the heavy metals (HM) concentrations of the River. Also, to examine if the DO, TP and HM (Cu, Fe, Pb, Mn, Al, and Zn) concentrations were in compliance with the Environmental Protection Agency (EPA) standards. Using DO bottles, water samples were collected on three points during six dates. DO concentrations were measured with the YSI Pro GBOD. TP concentrations were analyzed using the UV-Vis spectrophotometer "HACH" (DR 5000). Utilizing the ICP (Inductively Coupled Plasma) spectrophotometer emission technique and the EPA protocols HM concentrations were measured. Preliminary results show that the DO measurements were from 5.00 mg/L to 7.00 mg/L (p-value=0.282). HM concentrations findings were 0.456 (correlation coefficient=0.9997), 1.205 (correlation coefficient=0.9972) and 3.287 (correlation coefficient=0.9950) for Zn, Cu and Cr, respectively. We expected highest HM concentrations in our finals results due to the drought weather during each samples collection. Data analysis for DO, TP and HM concentrations will be presented. Finally, the results obtained and the project details will be explained during the poster presentation.
Kim, Kwon-Rae; Owens, Gary; Kwon, Soon-lk
2010-01-01
This study investigated the influence of Indian mustard (Brassica juncea) root exudation on soil solution properties (pH, dissolved organic carbon (DOC), metal solubility) in the rhizosphere using a rhizobox. Measurement was conducted following the cultivation of Indian mustard in the rhizobox filled four different types of heavy metal contaminated soils (two alkaline soils and two acidic soils). The growth of Indian mustard resulted in a significant increase (by 0.6 pH units) in rhizosphere soil solution pH of acidic soils and only a slight increase (< 0.1 pH units) in alkaline soils. Furthermore, the DOC concentration increased by 17-156 mg/L in the rhizosphere regardless of soil type and the extent of contamination, demonstrating the exudation of DOC from root. Ion chromatographic determination showed a marked increase in the total dissolved organic acids (OAs) in rhizosphere. While root exudates were observed in all soils, the amount of DOC and OAs in soil solution varied considerably amongst different soils, resulting in significant changes to soil solution metals in the rhizosphere. For example, the soil solution Cd, Cu, Pb, and Zn concentrations increased in the rhizosphere of alkaline soils compared to bulk soil following plant cultivation. In contrast, the soluble concentrations of Cd, Pb, and Zn in acidic soils decreased in rhizosphere soil when compared to bulk soils. Besides the influence of pH and DOC on metal solubility, the increase of heavy metal concentration having high stability constant such as Cu and Pb resulted in a release of Cd and Zn from solid phase to liquid phase.
Ramskov, Tina; Thit, Amalie; Croteau, Marie-Noele; Selck, Henriette
2015-01-01
Copper oxide (CuO) nanoparticles (NPs) are widely used, and likely released into the aquatic environment. Both aqueous (i.e., dissolved Cu) and particulate Cu can be taken up by organisms. However, how exposure routes influence the bioavailability and subsequent toxicity of Cu remains largely unknown. Here, we assess the importance of exposure routes (water and sediment) and Cu forms (aqueous and nanoparticulate) on Cu bioavailability and toxicity to the freshwater oligochaete, Lumbriculus variegatus, a head-down deposit-feeder. We characterize the bioaccumulation dynamics of Cu in L. variegatus across a range of exposure concentrations, covering both realistic and worst-case levels of Cu contamination in the environment. Both aqueous Cu (Cu-Aq; administered as Cu(NO3)2) and nanoparticulate Cu (CuO NPs), whether dispersed in artificial moderately hard freshwater or mixed into sediment, were weakly accumulated by L. variegatus. Once incorporated into tissues, Cu elimination was negligible, i.e., elimination rate constants were in general not different from zero for either exposure route or either Cu form. Toxicity was only observed after waterborne exposure to Cu-Aq at very high concentration (305 µgL-1), where all worms died. There was no relationship between exposure route, Cu form or Cu exposure concentration on either worm survival or growth. Slow feeding rates and low Cu assimilation efficiency (approximately 30%) characterized the uptake of Cu from the sediment for both Cu forms. In nature, L. variegatus is potentially exposed to Cu via both water and sediment. However, sediment progressively becomes the predominant exposure route for Cu in L. variegatus as Cu partitioning to sediment increases.
Xu, Huacheng; Guan, Dong-Xing; Zou, Li; Lin, Hui; Guo, Laodong
2018-08-01
Effects of photochemical and microbial degradation on variations in composition and molecular-size of dissolved organic matter (DOM) from different sources (algal and soil) and the subsequent influence on Cu(II) binding were investigated using UV-Vis, fluorescence excitation-emission matrices coupled with parallel factor analysis, flow field-flow fractionation (FlFFF), and metal titration. The degradation processes resulted in an initial rapid decline in the bulk dissolved organic carbon and chromophoric and fluorescent DOM components, followed by a small or little decrease. Specifically, photochemical reaction decreased the aromaticity, humification and apparent molecular weights of all DOM samples, whereas a reverse trend was observed during microbial degradation. The FlFFF fractograms revealed that coagulation of both protein- and humic-like DOM induced an increase in molecular weights for algal-DOM, while the molecular weight enhancement for allochthonous soil samples was mainly attributed to the self-assembly of humic-like components. The Cu(II) binding capacity of algal-derived humic-like and fulvic-like DOM consistently increased during photo- and bio-degradation, while the soil-derived DOM exhibited a slight decline in Cu(II) binding capacity during photo-degradation but a substantial increase during microbial degradation, indicating source- and degradation-dependent metal binding heterogeneities. Pearson correlation analysis demonstrated that the Cu(II) binding potential was mostly related with aromaticity and molecular size for allochthonous soil-derived DOM, but was regulated by both DOM properties and specific degradation processes for autochthonous algal-derived DOM. This study highlighted the coupling role of inherent DOM properties and external environmental processes in regulating metal binding, and provided new insights into metal-DOM interactions and the behavior and fate of DOM-bound metals in aquatic environments. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lv, Lina; Yang, Yanling; Tian, Junguo; Li, Yaojian; Li, Jun; Yan, Shengjun
2018-02-01
In this study, a salinity wastewater was produced during the fly ash treatment in the waste incineration plant. Chemical precipitation method was applied for heavy metals removal in the salinity wastewater. The effect of salinity on the removal of dissolved heavy metal ions (Zn2+, Cu2+, Pb2+, Ni2+ and Cd2+) was studied, especially on the removal of Pb2+ and Cd2+. Because of the formation of [PbCl3]- and [PbCl4]2- complexes, the residual concentration of dissolved Pb2+ increased from 0.02 mg/L to 4.08 mg/L, as the NaCl concentration increased from 0 % to 10 %. And the residual concentration of dissolved Cd2+ increased from 0.02 mg/L to 1.39 mg/L, due to the formation of [CdCl3]-, [CdCl4]2- and [CdCl6]4- complexes.
Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.
1996-01-01
Field and laboratory experiments indicate that a number of factors associated with filtration other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample) can produce significant variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. The bulk of these variations result from the inclusion/exclusion of colloidally associated trace elements in the filtrate, although dilution and sorption/desorption from filters also may be factors. Thus, dissolved trace element concentrations quantitated by analyzing filtrates generated by processing whole water through similar pore-sized filters may not be equal or comparable. As such, simple filtration of unspecified volumes of natural water through unspecified 0.45-??m membrane filters may no longer represent an acceptable operational definition for a number of dissolved chemical constituents.
Zhang, Ming-Kui; Wang, Yang; Huang, Chao
2011-12-01
By the method of site-specific observation, and selecting 27 field plots with 7 planting patterns in Shaoxing county of Zhejiang Province as test objects, this paper studied the characteristics of nitrogen (N) and phosphorous (P) runoff losses, loads, and their affecting factors in the croplands with different planting patterns in riverine plain area of the Province under natural rainfall. The mean annual runoff loads of total P, dissolved P, and particulate P from the field plots were 4.75, 0.74 and 4.01 kg x hm(-2), respectively, and the load of particulate P was much higher than that of dissolved P. The mean annual runoff loads of total N, dissolved total N, dissolved organic N, NH4(+)-N, and NO3(-)-N were 21.87, 17.19, 0.61, 3.63 and 12.95 kg x hm(-2), respectively, and the load of different fractions of dissolved total N was in the sequence of NO3(-)-N > NH4(+)-N > dissolved organic N. As for the field plots with different planting patterns, the runoff loads of total N, dissolved total N, dissolved organic N, and NO3(-)-N were in the sequence of fallow land < nursery land < single late rice field < double rice field < rape (or wheat)-single late rice field < wheat-early rice-late rice field < vegetable field, while those of total P and particulate P were in the sequence of fallow land < nursery land < single late rice field and double rice field < wheat-early rice-late rice field < rape (wheat)-single late rice field < vegetable field. No significant difference was observed in the load of water-dissolved P among the test plots with different planting patterns. The runoff losses of N and P mainly occurred in crop growth period, and the proportions of N and P losses in the growth period increased with increasing multiple crop index. The runoff losses of total N, dissolved N, and NO3(-)-N were mainly related to the application rate of N fertilizer, and soil NO3(-)-N content also had obvious effects on the runoff losses of total N and dissolved N. The runoff loss of dissolved organic N was related not only to N application rate, but also to soil total N and organic carbon. The runoff loss of NH4(+)-N was mainly related to soil available NH4(+)-N, but not related to N application rate. The runoff losses of total P and particulate P were related to both P application rate and soil available P, while the runoff loss of water dissolved P was less related to P application rate but had relations to soil total P and available P.
Characterization of urban runoff pollution between dissolved and particulate phases.
Wei, Zhang; Simin, Li; Fengbing, Tang
2013-01-01
To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%-30.91%, 83.29%-90.51%, and 61.54-68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff.
Thermochemical process for recovering Cu from CuO or CuO.sub.2
Richardson, deceased, Donald M.; Bamberger, Carlos E.
1981-01-01
A process for producing hydrogen comprises the step of reacting metallic Cu with Ba(OH).sub.2 in the presence of steam to produce hydrogen and BaCu.sub.2 O.sub.2. The BaCu.sub.2 O.sub.2 is reacted with H.sub.2 O to form Cu.sub.2 O and a Ba(OH).sub.2 product for recycle to the initial reaction step. Cu can be obtained from the Cu.sub.2 O product by several methods. In one embodiment the Cu.sub.2 O is reacted with HF solution to provide CuF.sub.2 and Cu. The CuF.sub.2 is reacted with H.sub.2 O to provide CuO and HF. CuO is decomposed to Cu.sub.2 O and O.sub.2. The HF, Cu and Cu.sub.2 O are recycled. In another embodiment the Cu.sub.2 O is reacted with aqueous H.sub.2 SO.sub.4 solution to provide CuSO.sub.4 solution and Cu. The CuSO.sub.4 is decomposed to CuO and SO.sub.3. The CuO is decomposed to form Cu.sub.2 O and O.sub.2. The SO.sub.3 is dissolved to form H.sub.2 SO.sub.4. H.sub.2 SO.sub.4, Cu and Cu.sub.2 O are recycled. In another embodiment Cu.sub.2 O is decomposed electrolytically to Cu and O.sub.2. In another aspect of the invention, Cu is recovered from CuO by the steps of decomposing CuO to Cu.sub.2 O and O.sub.2, reacting the Cu.sub.2 O with aqueous HF solution to produce Cu and CuF.sub.2, reacting the CuF.sub.2 with H.sub.2 O to form CuO and HF, and recycling the CuO and HF to previous reaction steps.
Stabilization of electrogenerated copper species on electrodes modified with quantum dots.
Martín-Yerga, Daniel; Costa-García, Agustín
2017-02-15
Quantum dots (QDs) have special optical, surface, and electronic properties that make them useful for electrochemical applications. In this work, the electrochemical behavior of copper in ammonia medium is described using bare screen-printed carbon electrodes and the same modified with CdSe/ZnS QDs. At the bare electrodes, the electrogenerated Cu(i) and Cu(0) species are oxidized by dissolved oxygen in a fast coupled chemical reaction, while at the QDs-modified electrode, the re-oxidation of Cu(i) and Cu(0) species can be observed, which indicates that they are stabilized by the nanocrystals present on the electrode surface. A weak adsorption is proposed as the main cause for this stabilization. The electrodeposition on electrodes modified with QDs allows the generation of random nanostructures with copper nanoparticles, avoiding the preferential nucleation onto the most active electrode areas.
Zhao, Jian; Ren, Wenting; Dai, Yanhui; Liu, Lijiao; Wang, Zhenyu; Yu, Xiaoyu; Zhang, Junzhe; Wang, Xiangke; Xing, Baoshan
2017-07-05
Engineered nanoparticles (NPs) are being released into aquatic environments with their increasing applications. In this work, we investigated the interaction of CuO NPs with a floating plant, water hyacinth (Eichhornia crassipes). CuO NPs (50 mg/L) showed significant growth inhibition on both roots and shoots of E. crassipes after 8-day exposure, much higher than that of the bulk CuO particles (50 mg/L) and their corresponding dissolved Cu 2+ ions (0.30 mg/L). Scanning electron and light microscopic observations showed that the root caps and meristematic zone of E. Crassipes were severely damaged after CuO NP exposure, with disordered cell arrangement and a destroyed elongation zone of root tips. It is confirmed that CuO NPs could be translocated to shoot from both roots and submerged leaves. As detected by X-ray absorption near-edge spectroscopy analysis (XANES), CuO NPs were observed in roots, submerged leaves, and emerged leaves. Cu 2 S and other Cu species were also detected in these tissues, providing solid evidence of the transformation of CuO NPs. In addition, stomatal closure was observed during CuO NPs-leaf contact, which was induced by the production of H 2 O 2 and increased Ca level in leaf guard cells. These findings are helpful for better understanding the fate of NPs in aquatic plants and related biological responses.
Al-Reasi, Hassan A; Smith, D Scott; Wood, Chris M
2012-03-01
Various quality predictors of seven different natural dissolved organic matter (DOM) and humic substances were evaluated for their influence on protection of Daphnia magna neonates against copper (Cu) toxicity. Protection was examined at 3 and 6 mg l(-1) of dissolved organic carbon (DOC) of each DOM isolate added to moderately hard, dechlorinated water. Other water chemistry parameters (pH, concentrations of DOC, calcium, magnesium and sodium) were kept relatively constant. Predictors included absorbance ratios Abs(254/365) (index of molecular weight) and Abs-octanol(254)/Abs-water(254) (index of lipophilicity), specific absorption coefficient (SAC(340); index of aromaticity), and fluorescence index (FI; index of source). In addition, the fluorescent components (humic-like, fulvic-like, tryptophan-like, and tyrosine-like) of the isolates were quantified by parallel factor analysis (PARAFAC). Up to 4-fold source-dependent differences in protection were observed amongst the different DOMs. Significant correlations in toxicity amelioration were found with Abs(254/365), Abs-octanol(254)/Abs-water(254), SAC(340), and with the humic-like fluorescent component. The relationships with FI were not significant and there were no relationships with the tryptophan-like or tyrosine-like fluorescent components at 3 mg C l(-1), whereas a negative correlation was seen with the fulvic-like component. In general, the results indicate that larger, optically dark, more lipophilic, more aromatic DOMs of terrigenous origin, with higher humic-like content, are more protective against Cu toxicity. A method for incorporating SAC(340) as a DOM quality indicator into the Biotic Ligand Model is presented; this may increase the accuracy for predicting Cu toxicity in natural waters.
Vanotti, Matias B; Szogi, Ariel A
2008-01-01
Current trends of animal production concentration and new regulations promote the need for environmentally safe alternatives to land application of liquid manure. These technologies must be able to substantially remove nutrients, heavy metals, and emissions of ammonia and odors and disinfect the effluent. A new treatment system was tested full-scale in a 4360-swine farm in North Carolina to demonstrate environmentally superior technology (EST) that could replace traditional anaerobic lagoon treatment. The system combined liquid-solids separation with nitrogen and phosphorus removal processes. Water quality was monitored at three sites: (i) the treatment plant as the raw manure liquid was depurated in the various processes, (ii) the converted lagoon as it was being cleaned up with the treated effluent, and (iii) an adjacent traditional anaerobic lagoon. The treatment plant removed 98% of total suspended solids (TSS), 76% of total solids (TS), 100% of 5-d biochemical oxygen demand (BOD(5)), 98% of total Kjeldahl nitrogen (TKN) and NH(4)-N, 95% of total phosphorus (TP), 99% of Zn, and 99% of Cu. The quality of the liquid in the converted lagoon improved rapidly as cleaner effluent from the plant replaced anaerobic lagoon liquid. The converted lagoon liquid became aerobic (dissolved oxygen, 6.95 mg L(-1); Eh, 342 mv) with the following mean reductions in the second year of the conversion: 73% of TSS, 40% of TS, 77% of BOD(5), 85% of TKN, 92% of NH(4)-N, 38% of TP, 37% of Zn, and 39% of Cu. These findings overall showed that EST can have significant positive impacts on the environment and on the livestock industries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fazeli, M.S.; Sathyanarayan, S.; Satish, P.N.
Physicochemical characteristics of wastewater from one of the paper mills near Nanjangud and the differential accumulation of heavy metals in parts of coconut trees growing in the area irrigated directly by the wastewaters of a paper mill were investigated. The total dissolved and suspended oils of wastewater were 1,136.9 mg/l and 2,185.4 mg/l, respectively. Biological oxygen demand (BOD) expands and COD is beyond the tolerance limit proposed by Indian standards. The concentrations of heavy meals like Cu, Pb, Zn, Ni, Coo, and Cd in coconut water, root, and leaf are higher than the limits suggested by World Health Organization. Survivalmore » of coconut trees irrigated by polluted waters indicates tolerance to toxic heavy metals. Since coconut forms part of human food chain, accumulation of toxic heavy metals may lead to organic disorders.« less
Hydrogen production from water using copper and barium hydroxide
Bamberger, Carlos E.; Richardson, deceased, Donald M.
1979-01-01
A process for producing hydrogen comprises the step of reacting metallic Cu with Ba(OH).sub.2 in the presence of steam to produce hydrogen and BaCu.sub.2 O.sub.2. The BaCu.sub.2 O.sub.2 is reacted with H.sub.2 O to form Cu.sub.2 O and a Ba(OH).sub.2 product for recycle to the initial reaction step. Cu can be obtained from the Cu.sub.2 O product by several methods. In one embodiment the Cu.sub.2 O is reacted with HF solution to provide CuF.sub.2 and Cu. The CuF.sub.2 is reacted with H.sub.2 O to provide CuO and HF. CuO is decomposed to Cu.sub.2 O and O.sub.2. The HF, Cu and Cu.sub.2 O are recycled. In another embodiment the Cu.sub.2 O is reacted with aqueous H.sub.2 SO.sub.4 solution to provide CuSO.sub.4 solution and Cu. The CuSO.sub.4 is decomposed to CuO and SO.sub.3. The CuO is decomposed to form Cu.sub.2 O and O.sub.2. The SO.sub.3 is dissolved to form H.sub.2 SO.sub.4. H.sub.2 SO.sub.4, Cu and Cu.sub.2 O are recycled. In another embodiment Cu.sub.2 O is decomposed electrolytically to Cu and O.sub.2. In another aspect of the invention, Cu is recovered from CuO by the steps of decomposing CuO to Cu.sub.2 O and O.sub.2, reacting the Cu.sub.2 O with aqueous HF solution to produce Cu and CuF.sub.2, reacting the CuF.sub.2 with H.sub.2 O to form CuO and HF, and recycling the CuO and HF to previous reaction steps.
Metal transfer to plants grown on a dredged sediment: use of radioactive isotope 203Hg and titanium.
Caille, Nathalie; Vauleon, Clotilde; Leyval, Corinne; Morel, Jean-Louis
2005-04-01
Improperly disposed of dredged sediments contaminated with metals may induce long-term leaching and an increase of metal concentrations in ground waters and vegetal cover plants. The objective of the study was to quantify the sediment-to-plant transfer of Cu, Pb, Hg and Zn with a particular focus on the pathway of Hg and to determine whether the establishment of vegetal cover modifies the metal availability. A pot experiment with rape (Brassica napus), cabbage (Brassica oleraccea) and red fescue (Festuca rubra) was set up using a sediment first spiked with the radioisotope 203Hg. Zinc concentrations (197-543 mg kg(-1) DM) in leaves were higher than Cu concentration (197-543 mg kg(-1) DM), Pb concentration (2.3-2.6 mg kg(-1) DM) and Hg concentration (0.9-1.7 mg kg(-1) DM). Leaves-to-sediment ratios decreased as follows: Zn > Cu > Hg > Pb. According to Ti measurements, metal contamination by dry deposition was less than 1%. Mercury concentration in plant leaves was higher than European and French thresholds. Foliar absorption of volatile Hg was a major pathway for Hg contamination with a root absorption of Hg higher in rape than in cabbage and red fescue. Growth of each species increased Cu solubility. Zinc solubility was increased only in the presence of rape. The highest increase of Cu solubility was observed for red fescue whereas this species largely decreased Zn solubility. Dissolved organic carbon (DOC) measurements suggested that Cu solubilisation could result from organic matter or release of natural plant exudates. Dissolved inorganic carbon (DIC) measures suggested that the high Zn solubility in the presence of rape could originate from a generation of acidity in rape rhizosphere and a subsequent dissolution of calcium carbonates. Consequently, emission of volatile Hg from contaminated dredged sediments and also the potential increase of metal solubility by a vegetal cover of grass when used in phytostabilisation must be taken into account by decision makers.
NASA Astrophysics Data System (ADS)
Soto-Varela, Fátima; Rodríguez-Blanco, M. Luz; Mercedes Taboada-Castro, M.; Taboada-Castro, M. Teresa
2017-12-01
Evaluation of levels and spatial variations of metals in surface waters within a catchment are critical to understanding the extent of land-use impact on the river system. The aims of this study were to investigate the spatial and temporal variations of five dissolved metals (Al, Fe, Mn, Cu and Zn) in surface waters of a small agroforestry catchment (16 km2) in NW Spain. The land uses include mainly forests (65%) and agriculture (pastures: 26%, cultivation: 4%). Stream water samples were collected at four sampling sites distributed along the main course of the Corbeira stream (Galicia, NW Spain) between the headwaters and the catchment outlet. The headwater point can be considered as pristine environment with natural metal concentrations in waters because of the absence of any agricultural activity and limited accessibility. Metal concentrations were determined by ICP-MS. The results showed that metal concentrations were relatively low (Fe > Al > Mn > Zn > Cu), suggesting little influence from agricultural activities in the area. Mn and Zn did not show significant differences between sampling points along main stream, while for Fe and Cu significant differences were found between the headwaters and all other points. Al tended to decrease from the headwaters to the catchment outlet.
Gabka, Grzegorz; Bujak, Piotr; Ostrowski, Andrzej; Tomaszewski, Waldemar; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam
2016-07-05
Cu-Fe-S nanocrystals exhibiting a strong localized surface plasmon resonance (LSPR) effect were synthesized for the first time. The elaborated reproducible preparation procedure involved copper(II) oleate, iron(III) stearate, and sulfur powder dissolved in oleylamine (OLA) as precursors. The wavelength of the plasmonic resonance maximum could be tuned by changing the Cu/Fe ratio in the resulting nanocrystals, being the most energetic for the 1:1 ratio (486 nm) and undergoing a bathochromic shift to ca. 1200 nm with an increase to 6:1. LSPR could also be observed in nanocrystals prepared from the same metal precursors and sulfur powder dissolved in 1-octadecene (ODE), provided that the sulfur precursor was taken in excess. Detailed analysis of the reaction mixture by chromatographic techniques, supplemented by mass spectrometry and (1)H NMR spectroscopy enabled the identification of the true chemical nature of the sulfur precursor in S/OLA, namely, (C18H35NH3(+))(C18H35NH-S8(-)), a reactive product of the reduction of elemental sulfur by the amine groups of OLA. In the case of the S/ODE precursor, the true precursors are much less reactive primary or secondary thioethers and dialkyl polysulfides.
Rosen, Michael R.
2003-01-01
Analysis of trends in nitrate and total dissolved-solids concentrations over time in Carson Valley, Nevada, indicates that 56 percent of 27 monitoring wells that have long-term records of nitrate concentrations show increasing trends, 11 percent show decreasing trends, and 33 percent have not changed. Total dissolved-solids concentrations have increased in 52 percent of these wells and are stable in 48 percent. None of these wells show decreasing trends in total dissolved-solids concentrations. The wells showing increasing trends in nitrate and total dissolved-solids concentrations were always in areas that use septic waste-disposal systems. Therefore, the primary cause of these increases is likely the increase in septic-tank usage over the past 40 years.
Passivation of high temperature superconductors
NASA Technical Reports Server (NTRS)
Vasquez, Richard P. (Inventor)
1991-01-01
The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.
Water quality of Lake Whitney, north-central Texas
Strause, Jeffrey L.; Andrews, Freeman L.
1983-01-01
Seasonal temperature variations and variations in the concentration of dissolved oxygen result in dissolved iron, dissolved manganese, total inorganic nitrogen, and total phosphorus being recycled within the lake; however, no significant accumulations of these constituents were detected.
Sorption of Cu and Pb to kaolinite-fulvic acid colloids: Assessment of sorbent interactions
NASA Astrophysics Data System (ADS)
Heidmann, Ilona; Christl, Iso; Kretzschmar, Ruben
2005-04-01
The sorption of Cu(II) and Pb(II) to kaolinite-fulvic acid colloids was investigated by potentiometric titrations. To assess the possible interactions between kaolinite and fulvic acid during metal sorption, experimental sorption isotherms were compared with predictions based on a linear additivity model (LAM). Suspensions of 5 g L -1 kaolinite and 0.03 g L -1 fulvic acid in 0.01 M NaNO 3 were titrated with Cu and Pb solutions, respectively. The suspension pH was kept constant at pH 4, 6, or 8. The free ion activities of Cu 2+ and Pb 2+ were monitored in the titration vessel using ion selective electrodes. Total dissolved concentrations of metals (by ICP-MS) and fulvic acid (by UV-absorption) were determined in samples taken after each titration step. The amounts of metals sorbed to the solid phase, comprised of kaolinite plus surface-bound fulvic acid, were calculated by difference. Compared to pure kaolinite, addition of fulvic acid to the clay strongly increased metal sorption to the solid phase. This effect was more pronounced at pH 4 and 6 than at pH 8, because more fulvic acid was sorbed to the kaolinite surface under acidic conditions. Addition of Pb enhanced the sorption of fulvic acid onto kaolinite at pH 6 and 8, but not at pH 4. Addition of Cu had no effect on the sorption of fulvic acid onto kaolinite. In the LAM, metal sorption to the kaolinite surface was predicted by a two-site, 1-pK basic Stern model and metal sorption to the fulvic acid was calculated with the NICA-Donnan model, respectively. The LAM provided good predictions of Cu sorption to the kaolinite-fulvic acid colloids over the entire range in pH and free Cu 2+ ion activity (10 -12 to 10 -5). The sorption of Pb was slightly underestimated by the LAM under most conditions. A fractionation of the fulvic acid during sorption to kaolinite was observed, but this could not explain the observed deviations of the LAM predictions from the experimental Pb sorption isotherms.
Vijayaraghavan, K; Joshi, Umid Man
2014-11-01
The present study examines whether green roofs act as a sink or source of contaminants based on various physico-chemical parameters (pH, conductivity and total dissolved solids) and metals (Na, K, Ca, Mg, Al, Fe, Cr, Cu, Ni, Zn, Cd and Pb). The performance of green roof substrate prepared using perlite, vermiculite, sand, crushed brick, and coco-peat, was compared with local garden soil based on improvement of runoff quality. Portulaca grandiflora was used as green roof vegetation. Four different green roof configurations, with vegetated and non-vegetated systems, were examined for several artificial rain events (un-spiked and metal-spiked). In general, the vegetated green roof assemblies generated better-quality runoff with less conductivity and total metal ion concentration compared to un-vegetated assemblies. Of the different green roof configurations examined, P. grandiflora planted on green roof substrate acted as sink for various metals and showed the potential to generate better runoff. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thanh-Nho, Nguyen; Strady, Emilie; Nhu-Trang, Tran-Thi; David, Frank; Marchand, Cyril
2018-04-01
Mangroves can be considered as biogeochemical reactors along (sub)tropical coastlines, acting both as sinks or sources for trace metals depending on environmental factors. In this study, we characterized the role of a mangrove estuary, developing downstream a densely populated megacity (Ho Chi Minh City, Vietnam), on the fate and partitioning of trace metals. Surface water and suspended particulate matter were collected at four sites along the estuarine salinity gradient during 24 h cycling in dry and rainy seasons. Salinity, pH, DO, TSS, POC, DOC, dissolved and particulate Fe, Mn, Cr, As, Cu, Ni, Co and Pb were measured. TSS was the main trace metals carrier during their transit in the estuary. However, TSS variations did not explain the whole variability of metals distribution. Mn, Cr and As were highly reactive metals while the other metals (Fe, Ni, Cu, Co and Pb) presented stable log K D values along the estuary. Organic matter dynamic appeared to play a key role in metals fractioning. Its decomposition during water transit in the estuary induced metal desorption, especially for Cr and As. Conversely, dissolved Mn concentrations decreased along the estuary, which was suggested to result from Mn oxidative precipitation onto solid phase due to oxidation and pH changes. Extra sources as pore-water release, runoff from adjacent soils, or aquaculture effluents were suggested to be involved in trace metal dynamic in this estuary. In addition, the monsoon increased metal loads, notably dissolved and particulate Fe, Cr, Ni and Pb. Copyright © 2018 Elsevier Ltd. All rights reserved.
Grotti, Marco; Soggia, Francesco; Ardini, Francisco; Magi, Emanuele; Becagli, Silvia; Traversi, Rita; Udisti, Roberto
2015-11-01
From January to December 2010, surface snow samples were collected with monthly resolution at the Concordia station (75°06'S, 123°20'E), on the Antarctic plateau, and analysed for major and trace elements in both dissolved and particulate (i.e. insoluble particles, >0.45 μm) phase. Additional surface snow samples were collected with daily resolution, for the determination of sea-salt sodium and not-sea-salt calcium, in order to support the discussion on the seasonal variations of trace elements. Concentrations of alkaline and alkaline-earth elements were higher in winter (April-October) than in summer (November-March) by a factor of 1.2-3.3, in agreement with the higher concentration of sea-salt atmospheric particles reaching the Antarctic plateau during the winter. Similarly, trace elements were generally higher in winter by a factor of 1.2-1.5, whereas Al and Fe did not show any significant seasonal trend. Partitioning between dissolved and particulate phases did not change with the sampling period, but it depended only on the element: alkaline and alkaline-earth elements, as well as Co, Cu, Mn, Pb and Zn were for the most part (>80%) in the dissolved phase, whereas Al and Fe were mainly associated with the particulate phase (>80%) and Cd, Cr, V were nearly equally distributed between the phases. Finally, the estimated marine and crustal enrichment factors indicated that Cd, Cr, Cu, Pb and Zn have a dominant anthropogenic origin, with a possible contribution from the Concordia station activities. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mahdavi, Hamed; Liu, Yang; Ulrich, Ania C
2013-02-01
This paper studies the partitioning and bioaccumulation of ten target metals ((53)Cr, Mn, Co, (60)Ni, (65)Cu, (66)Zn, As, (88)Sr, (95)Mo and Ba) from oil sands tailings pond water (TPW) by indigenous Parachlorella kessleri. To determine the role of extracellular and intracellular bioaccumulation in metal removal by P. kessleri, TPW samples taken from two oil sands operators (Syncrude Canada Ltd. and Albian Sands Energy Inc.) were enriched with nutrient supplements. Results indicate that intracellular bioaccumulation played the main role in metal removal from TPW; whereas extracellular bioaccumulation was only observed to some extent for Mn, Co, (60)Ni, (65)Cu, (88)Sr, (95)Mo and Ba. The FTIR scan and titration of functional groups on the cell surface indicated low metal binding capacity by indigenous P. kessleri. However, it is believed that the dissolved cations and organic ligand content in TPW (such as naphthenic acids) may interfere with metal binding on the cell surface and lower extracellular bioaccumulation. In addition, the total bioaccumulation and bioconcentration factor (BCF) varied during the cultivation period in different growth regimes. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hidayat, Taufiq; Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni
2018-04-01
New experimental data were obtained on the gas/slag/matte/spinel equilibria in the Cu-Fe-O-S-Si system at 1473 K (1200 °C) and P(SO2) = 0.25 atm covering Cu concentrations in matte between 42 and 78 wt pct Cu. Accurate measurements were obtained using high-temperature equilibration and the rapid quenching technique, followed by electron-probe X-ray microanalysis of equilibrium phase compositions. The use of spinel substrates made to support the samples ensures equilibrium with this primary phase solid, eliminates crucible contamination, and facilitates direct gas-condensed phase equilibrium and high quenching rates. Particular attention was given to the confirmation of the achievement of equilibrium. The results quantify the relationship between Cu in matte and oxygen partial pressure, sulfur in matte, oxygen in matte, Fe/SiO2 at slag liquidus, sulfur in slag, and dissolved copper in slag.
Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases
Wei, Zhang; Simin, Li; Fengbing, Tang
2013-01-01
To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%–30.91%, 83.29%–90.51%, and 61.54–68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff. PMID:23935444
NASA Astrophysics Data System (ADS)
Fujii, Toshiyuki; Moynier, Frédéric; Abe, Minori; Nemoto, Keisuke; Albarède, Francis
2013-06-01
Isotope fractionation between the common Cu species present in solution (Cu+, Cu2+, hydroxide, chloride, sulfide, carbonate, oxalate, and ascorbate) has been investigated using both ab initio methods and experimental solvent extraction techniques. In order to establish unambiguously the existence of equilibrium isotope fractionation (as opposed to kinetic isotope fractionation), we first performed laboratory-scale liquid-liquid distribution experiments. Upon exchange between HCl medium and a macrocyclic complex, the 65Cu/63Cu ratio fractionated by -1.06‰ to -0.39‰. The acidity dependence of the fractionation was appropriately explained by ligand exchange reactions between hydrated H2O and Cl- via intramolecular vibrations. The magnitude of the Cu isotope fractionation among important Cu ligands was also estimated by ab initio methods. The magnitude of the nuclear field shift effect to the Cu isotope fractionation represents only ˜3% of the mass-dependent fractionation. The theoretical estimation was expanded to chlorides, hydroxides, sulfides, sulfates, and carbonates under different conditions of pH. Copper isotope fractionation of up to 2‰ is expected for different forms of Cu present in seawater and for different sediments (carbonates, hydroxides, and sulfides). We found that Cu in dissolved carbonates and sulfates is isotopically much heavier (+0.6‰) than free Cu. Isotope fractionation of Cu in hydroxide is minimal. The relevance of these new results to the understanding of metabolic processes was also discussed. Copper is an essential element used by a large number of proteins for electron transfer. Further theoretical estimates of δ65Cu in hydrated Cu(I) and Cu(II) ions, Cu(II) ascorbates, and Cu(II) oxalate predict Cu isotope fractionation during the breakdown of ascorbate into oxalate and account for the isotopically heavy Cu found in animal kidneys.
Mueller, Julia S.; Grabowski, Timothy B.; Brewer, Shannon K.; Worthington, Thomas A.
2017-01-01
Decreases in the abundance and diversity of stream fishes in the North American Great Plains have been attributed to habitat fragmentation, altered hydrological and temperature regimes, and elevated levels of total dissolved solids and total suspended solids. Pelagic-broadcast spawning cyprinids, such as the Arkansas River Shiner Notropis girardi, may be particularly vulnerable to these changing conditions because of their reproductive strategy. Our objectives were to assess the effects of temperature, total dissolved solids, and total suspended solids on the developmental and survival rates of Arkansas River Shiner larvae. Results suggest temperature had the greatest influence on the developmental rate of Arkansas River Shiner larvae. However, embryos exposed to the higher levels of total dissolved solids and total suspended solids reached developmental stages earlier than counterparts at equivalent temperatures. Although this rapid development may be beneficial in fragmented waters, our data suggest it may be associated with lower survival rates. Furthermore, those embryos incubating at high temperatures, or in high levels of total dissolved solids and total suspended solids resulted in less viable embryos and larvae than those incubating in all other temperature, total dissolved solid, and total suspended solid treatment groups. As the Great Plains ecoregion continues to change, these results may assist in understanding reasons for past extirpations and future extirpation threats as well as predict stream reaches capable of sustaining Arkansas River Shiners and other species with similar early life-history strategies.
Highly reflective Ag-Cu alloy-based ohmic contact on p-type GaN using Ru overlayer.
Son, Jun Ho; Jung, Gwan Ho; Lee, Jong-Lam
2008-12-15
We report on a metallization scheme of high reflectance, low resistance, and smooth surface morphology ohmic contact on p-type GaN. Ag-Cu alloy/Ru contact showed low contact resistivity as low as 6.2 x 10(-6) Ohms cm(2) and high reflectance of 91% at 460 nm after annealing at 400 degrees C in air ambient. The oxidation annealing promoted the out-diffusion of Ga atoms to dissolve in an Ag-Cu layer with the formation of an Ag-Ga solid solution, lowering the contact resistivity. The Ru overlayer acts as a diffusion barrier for excessive oxygen incorporation during oxidation annealing, resulting in high reflectance, good thermal stability, and smooth surface quality of the contact.
NASA Astrophysics Data System (ADS)
Kessaci, Kahina; Coynel, Alexandra; Blanc, Gérard; Deycard, Victoria N.; Derriennic, Hervé; Schäfer, Jörg
2014-05-01
Recent European legislation (2000/60/CE) has listed eight trace metal elements as priority toxic substances for water quality. Urban metal inputs into hydrosystems are of increasing interest to both scientists and managers facing restrictive environmental protection policies, population increase and changing metal applications. The Gironde Estuary (SW France; 625 km2) is known for its metal/metalloid pollution originating from industrial (e.g. Cd, Zn, Cu, As, Ag, Hg) or agricultural sources (e.g. Cu) in the main fluvial tributaries (Garonne and Dordogne Rivers). However, little peer-reviewed scientific work has addressed the impact of urban sources on the Gironde Estuary, especially the Urban Agglomeration of Bordeaux (~1 million inhabitants) located on the downstream branch of the Garonne River. In this study, a snapshot sampling campaign was performed in 2011 for characterizing the spatial distribution of dissolved and particulate metal/metalloid (As, Ag, Cd, Pb, Zn, Cu) concentrations in three suburban watersheds: the Jalle of Blanquefort (330 km2), Eau Bourde (140 km2), and Peugue (112 km2). Furthermore, particulate metal Enrichment Factors (EF) were calculated using local geochemical background measured at the bottom of a sediment core (492 cm). Results indicated that metal concentrations displayed a high spatial variability depending on the suburban watershed and the studied element. Local concentrations anomalies were observed for: (i) As in the Eau Bourde River in dissolved (4.2 μg/l) and particulate phases (246 mg/kg; EF= 20) and attributed to a nearby industrial incinerator; (ii) Zn in the Peugue River with maximum dissolved and particulate concentrations of 87 μg/l and 1580 mg/kg (EF=17), respectively, probably due to urban habitation runoff; (iii) Ag in the Jalle of Blanquefort River with high dissolved (74 ng/l) and particulate concentrations (33.7 mg/kg; EF=117) due to industrial activities in the downstream part. Based on hydro-geochemical monitoring of both suburban rivers and local wastewater treatment plants (WWTPs), we present a first estimate of metal/metalloid fluxes and compare them to the respective loads in the Garonne River. Our results suggest that suburban metal inputs may significantly increase metal concentrations and fluxes in the fluvial Gironde Estuary, especially for Ag due to inputs exported by WWTPS and the Jalle of Blanquefort River.
Characterisation of heavy metal discharge into the Ria of Huelva.
Sainz, A; Grande, J A; de la Torre, M L
2004-06-01
The Ria of Huelva estuary, in SW Spain, is known to be one of the most heavy metal contaminated estuaries in the world. River contribution to the estuary of dissolved Cu, Zn, Mn, Cr, Ni, Cd, and As were analysed for the period 1988-2001. The obtained mean values show that this contribution, both because of the magnitude of total metals (895.1 kg/h), composition, toxicity (8.7 kg/h of As+Cd+Pb) and persistence, is an incomparable case in heavy metal contamination of estuaries. The amount and typology of heavy metal discharge to the Ria of Huelva are related to freshwater flow (and, consequently, to rainfall); as a result, two different types of heavy metal discharge can be distinguished in the estuary: during low water (50% of the days), with only 19.3 kg/h of heavy metals, and during high water or flood (17% of the days), where daily maximum discharge of 72,475 kg of heavy metals were recorded, from which 1481 kg were of As, 470 kg of Pb, and 170 kg of Cd. In the most frequent situation (77% of the days), the Odiel River discharges from 90% to 100% of the freshwater received by the estuary. Despite this, the high concentration of heavy metals in the Tinto River water causes this river to discharge into the Ria of Huelva 12.5% of fluvial total dissolved metal load received by the estuary.
Guo, Jing; Pei, Yingli; Zhou, Zhengji; Zhou, Wenhui; Kou, Dongxing; Wu, Sixin
2015-12-01
Solution-processed approach for the deposition of Cu2ZnSn (S,Se)4 (CZTSSe) absorbing layer offers a route for fabricating thin film solar cell that is appealing because of simplified and low-cost manufacturing, large-area coverage, and better compatibility with flexible substrates. In this work, we present a simple solution-based approach for simultaneously dissolving the low-cost elemental Cu, Zn, Sn, S, and Se powder, forming a homogeneous CZTSSe precursor solution in a short time. Dense and compact kesterite CZTSSe thin film with high crystallinity and uniform composition was obtained by selenizing the low-temperature annealed spin-coated precursor film. Standard CZTSSe thin film solar cell based on the selenized CZTSSe thin film was fabricated and an efficiency of 6.4 % was achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jinhyun; Yim, Sanggyu, E-mail: sgyim@kookmin.ac.kr
2012-10-15
Variations in the electronic absorption (EA) and surface morphology of three types of phthalocyanine (Pc) thin film systems, i.e. copper phthalocyanine (CuPc) single layer, zinc phthalocyanine (ZnPc) single layer, and ZnPc on CuPc (CuPc/ZnPc) double layer film, treated with saturated acetone vapor were investigated. For the treated CuPc single layer film, the surface roughness slightly increased and bundles of nanorods were formed, while the EA varied little. In contrast, for the ZnPc single layer film, the relatively high solubility of ZnPc led to a considerable shift in the absorption bands as well as a large increase in the surface roughnessmore » and formation of long and wide nano-beams, indicating a part of the ZnPc molecules dissolved in acetone, which altered their molecular stacking. For the CuPc/ZnPc film, the saturated acetone vapor treatment resulted in morphological changes in mainly the upper ZnPc layer due to the significantly low solubility of the underlying CuPc layer. The treatment also broadened the EA band, which involved a combination of unchanged CuPc and changed ZnPc absorption.« less
Enhanced thermal stability of Cu alloy films by strong interaction between Ni and Zr (or Fe)
NASA Astrophysics Data System (ADS)
Zheng, Yuehong; Li, Xiaona; Cheng, Xiaotian; Li, Zhuming; Liu, Yubo; Dong, Chuang
2018-04-01
Low resistivity, phase stability and nonreactivity with surrounding dielectrics are the key to the application of Cu to ultra-large-scale integrated circuits. Here, a stable solid solution cluster model was introduced to design the composition of barrierless Cu-Ni-Zr (or Fe) seed layers. The third elements Fe and Zr were dissolved into Cu via a second element Ni, which is soluble in both Cu and Zr (or Fe). The films were prepared by magnetron sputtering on the single-crystal p-Si (1 0 0) wafers. Since the diffusion characteristics of the alloying elements are different, the effects of the strong interaction between Ni and Zr (or Fe) on the film’s stability and resistivity were studied. The results showed that a proper addition of Zr-Ni (Zr/Ni ⩽ 0.6/12) into Cu could form a large negative lattice distortion, which inhibits Cu-Si interdiffusion and enhances the stability of Cu film. When Fe-Ni was co-added into Cu, the lattice distortion of Cu reached a lower value, 0.0029 Å ⩽ |Δa| ⩽ 0.0046 Å, and the films showed poor stability. Therefore, when the model is applied to the composition design of the films, the strong interaction between the elements and the addition ratio should be taken into consideration.
NASA Astrophysics Data System (ADS)
Wang, Hongli; Cai, Yun; Zhou, Jian; Fang, Jun; Yang, Yang
2017-04-01
We report simple and cost-effective fabrication of amorphous CuxO (x = 1, 2)/crystalline CuI p-p type heterojunctions based on crystallization-mediated approaches including antisolvent crystallization and crystal reconstruction. Starting from CuI acetonitrile solution, large crystals in commercial CuI can be easily converted to aggregates consisting of small particles by the crystallization processes while the spontaneous oxidation of CuI by atmospheric/dissolved oxygen can induce the formation of trace CuxO on CuI surface. As a proof of concept, the as-fabricated CuxO/CuI heterojunctions exhibit effective photocatalytic activity towards the degradation of methyl blue and other organic pollutants under visible light irradiation, although the wide band-gap semiconductor CuI is insensible to visible light. Unexpectedly, the CuxO/CuI heterojunctions exhibit restrained photocatalytic activity when ultraviolet light is applied in addition to the visible. It is suggested that the CuxO/CuI interface can enhance the spatial separation of the electron-hole pairs with the excitation of CuxO under visible light and prolong the lifetime of photogenerated charges with high redox ability. The present work represents a critically important step in advancing the crystallization technique for potential mass production of semiconductor heterojunctions in a mild manner.
Arnold, W R; Diamond, R L; Smith, D S
2010-08-01
This paper presents data from original research for use in the development of a marine biotic ligand model and, ultimately, copper criteria for the protection of estuarine and marine organisms and their uses. Ten 48-h static acute (unfed) copper toxicity tests using the euryhaline rotifer Brachionus plicatilis ("L" strain) were performed to assess the effects of salinity, pH, and dissolved organic matter (measured as dissolved organic carbon; DOC) on median lethal dissolved copper concentrations (LC50). Reconstituted and natural saltwater samples were tested at seven salinities (6, 11, 13, 15, 20, 24, and 29 g/L), over a pH range of 6.8-8.6 and a range of dissolved organic carbon of <0.5-4.1 mg C/L. Water chemistry analyses (alkalinity, calcium, chloride, DOC, hardness, magnesium, potassium, sodium, salinity, and temperature) are presented for input parameters to the biotic ligand model. In stepwise multiple regression analysis of experimental results where salinity, pH, and DOC concentrations varied, copper toxicity was significantly related only to the dissolved organic matter content (pH and salinity not statistically retained; alpha=0.05). The relationship of the 48-h dissolved copper LC50 values and dissolved organic carbon concentrations was LC50 (microg Cu/L)=27.1xDOC (mg C/L)1.25; r2=0.94.
Crystallization of copper metaphosphate glass
NASA Technical Reports Server (NTRS)
Bae, Byeong-Soo; Weinberg, Michael C.
1993-01-01
The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.
DOT National Transportation Integrated Search
2011-04-01
The objectives of this study were to 1) identify the effects of site location, storm hydrology, and water quality parameters on the concentration of dissolved copper (Cu2+diss) in Oregon highway runoff; 2) establish an analytical technique suitable f...
Complexation by dissolved humic substances has an important influence on
trace metal behavior in natural systems. Unfortunately, few analytical
techniques are available with adequate sensitivity and selectivity to measure
free metal ions reliably at the low concent...
Summary and evaluation of the quality of stormwater in Denver, Colorado, 2006-2010
Stevens, Michael R.; Slaughter, Cecil B.
2012-01-01
Stormwater in the Denver area was sampled by the U.S. Geological Survey, in cooperation with the Urban Drainage and Flood Control District, in a network of 5 monitoring stations - 3 on the South Platte River and 2 on streams tributary to the South Platte River, Sand Creek, and Toll Gate Creek beginning in January 2006 and continuing through December 2010. Stormwater samples were analyzed at the U.S. Geological Survey National Water Quality Laboratory during 2006-2010 for water-quality properties such as pH, specific conductance, hardness, and residue on evaporation at 105 degrees Celsius; for constituents such as major ions (calcium, magnesium), organic carbon and nutrients, including ammonia plus organic nitrogen, ammonia, dissolved nitrite plus nitrate, total phosphorus, and orthophosphate; and for metals, including total recoverable and dissolved phases of copper, lead, manganese, and zinc. Samples collected during selected storms were also analyzed for bacteriological indicators such as Escherichia coli and fecal coliform at the Metro Wastewater Reclamation Laboratory. About 200 stormwater samples collected during storms characterize the quality of storm runoff during 2006-2010. In general, the quality of stormwater (2006-2010) has improved for many water-quality constituents, many of which had lower values and concentrations than those in stormwater collected in 2002-2005. However, the physical basis, processes, and the role of dilution that account for these changes are complex and beyond the scope of this report. The water-quality sampling results indicate few exceptions to standards except for dissolved manganese, dissolved zinc, and Escherichia coli. Stormwater collected at the South Platte River below Union Avenue station had about 10 percent acute or chronic dissolved manganese exceedances in samples; samples collected at the South Platte River at Denver station had less than 5 percent acute or chronic dissolved manganese exceedances. In contrast, samples collected at Toll Gate Creek above 6th Avenue at Aurora station, Sand Creek at mouth near Commerce City station, and the South Platte River at Henderson station, each had about 30 to 50 percent exceedances of both acute and chronic dissolved manganese standards. Of the samples collected at Sand Creek at mouth near Commerce City, 1 sample exceeded the acute standard and 4 samples exceeded the chronic standard for dissolved zinc, but no samples collected from the other sites exceeded either standard for zinc. Almost all samples of stormwater analyzed for Escherichia coli exceeded Colorado numeric standards. A numerical standard for fecal coliform is no longer applicable as of 2004. Results from the 2002-2005 study indicated that the general quality of stormwater had improved during 2002-2005 compared to 1998-2001, having fewer exceedances of Colorado standards, and showing downward trends for many water-quality values and concentrations. These trends coincided with general downward or relatively similar mean streamflows for the 2002-2005 compared to 1998-2001, which indicates that dilution may be a smaller influence on values and concentrations than other factors. For this report, downward trends were indicated for many constituents at each station during 2006-2010 compared to 2002-2005. The trends for mean streamflow for 2006-2010 compared to 2002-2005 are upward at all sites except for the South Platte River at Henderson, indicating that dilution by larger flows could be a factor in the downward concentration trends. At the South Platte River below Union Avenue station, downward trends were indicated for hardness, dissolved ammonia, dissolved orthophosphate, and dissolved copper. Upward trends at South Platte River below Union Avenue were indicated for pH. At the South Platte River at Denver station, downward trends were indicated for total ammonia plus organic nitrogen, dissolved ammonia, dissolved nitrite plus nitrate, dissolved orthophosphate, total phosphorus, dissolved organic carbon, and dissolved lead, manganese, and zinc, and total recoverable zinc. An upward trend in properties and constituents at South Platte River at Denver was indicated for pH. At Toll Gate Creek above 6th Avenue at Aurora, downward trends were indicated for residue on evaporation, total ammonia plus organic nitrogen, dissolved ammonia, dissolved orthophosphate, total phosphorus, and total recoverable copper, lead, manganese, and zinc. Upward trends in properties and constituents at Toll Gate Creek above 6th Avenue at Aurora were indicated for pH, specific conductance, and dissolved nitrite plus nitrate. At Sand Creek at mouth near Commerce City, downward trends were indicated for hardness, dissolved calcium, total ammonia plus organic nitrogen, and dissolved ammonia, orthophosphate, manganese, and zinc. An upward trend in properties and constituents at Sand Creek at mouth near Commerce City was indicated for pH. Downward trends at South Platte River at Henderson were indicated for specific conductance, hardness, dissolved magnesium, residue on evaporation, total ammonia plus organic nitrogen, dissolved ammonia, dissolved nitrite plus nitrate, dissolved orthophosphate, total phosphorus, dissolved lead and manganese, and total recoverable copper, lead, manganese, and zinc.
Developing a Water Quality Index (WQI) for an Irrigation Dam
De La Mora-Orozco, Celia; Flores-Lopez, Hugo; Rubio-Arias, Hector; Chavez-Duran, Alvaro; Ochoa-Rivero, Jesus
2017-01-01
Pollution levels have been increasing in water ecosystems worldwide. A water quality index (WQI) is an available tool to approximate the quality of water and facilitate the work of decision-makers by grouping and analyzing numerous parameters with a single numerical classification system. The objective of this study was to develop a WQI for a dam used for irrigation of about 5000 ha of agricultural land. The dam, La Vega, is located in Teuchitlan, Jalisco, Mexico. Seven sites were selected for water sampling and samples were collected in March, June, July, September, and December 2014 in an initial effort to develop a WQI for the dam. The WQI methodology, which was recommended by the Mexican National Water Commission (CNA), was used. The parameters employed to calculate the WQI were pH, electrical conductivity (EC), dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (Alk), total phosphorous (TP), Cl−, NO3, SO4, Ca, Mg, K, B, As, Cu, and Zn. No significant differences in WQI values were found among the seven sampling sites along the dam. However, seasonal differences in WQI were noted. In March and June, water quality was categorized as poor. By July and September, water quality was classified as medium to good. Quality then decreased, and by December water quality was classified as medium to poor. In conclusion, water treatment must be applied before waters from La Vega dam reservoir can be used for irrigation or other purposes. It is recommended that the water quality at La Vega dam is continually monitored for several years in order to confirm the findings of this short-term study. PMID:28468230
Peyton, D P; Healy, M G; Fleming, G T A; Grant, J; Wall, D; Morrison, L; Cormican, M; Fenton, O
2016-01-15
Treated municipal sewage sludge ("biosolids") and dairy cattle slurry (DCS) may be applied to agricultural land as an organic fertiliser. This study investigates losses of nutrients in runoff water (nitrogen (N) and phosphorus (P)), metals (copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr)), and microbial indicators of pollution (total and faecal coliforms) arising from the land application of four types of treated biosolids and DCS to field micro-plots at three time intervals (24, 48, 360 h) after application. Losses from biosolids-amended plots or DCS-amended plots followed a general trend of highest losses occurring during the first rainfall event and reduced losses in the subsequent events. However, with the exception of total and faecal coliforms and some metals (Ni, Cu), the greatest losses were from the DCS-amended plots. For example, average losses over the three rainfall events for dissolved reactive phosphorus and ammonium-nitrogen from DCS-amended plots were 5 and 11.2 mg L(-1), respectively, which were in excess of the losses from the biosolids plots. When compared with slurry treatments, for the parameters monitored biosolids generally do not pose a greater risk in terms of losses along the runoff pathway. This finding has important policy implications, as it shows that concern related to the reuse of biosolids as a soil fertiliser, mainly related to contaminant losses upon land application, may be unfounded. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Samanta, Saumik; Dalai, Tarun K.
2018-05-01
The Ganga River System is a major contributor to the global sediment and water discharge to the oceans. The estuary of Ganga (Hooghly) River in India is under increasing influence of anthropogenic contributions via discharge of the industrial and urban effluents. Here we document, based on the investigation of water and suspended sediment samples collected during six periods over two years, that there is extensive production of heavy metals (Co, Ni and Cu) in the estuary such that the annual dissolved fluxes of metals from the Hooghly River are enhanced by up to 230-1770%. Furthermore, the estuarine dissolved metal fluxes, when normalized with water fluxes, are the highest among estuaries of the major rivers in the world. Our simultaneous data on the dissolved, suspended particulate and exchangeable phases allow us to identify the ion-exchange process (coupled adsorption and desorption) as the dominant contributor to the generation of heavy metals in the middle and lower estuary where the estimated anthropogenic contribution is negligible. The estimated contributions from the groundwater are also insufficient to explain the measured metal concentrations in the estuary. A strong positive correlation that is observed between the dissolved heavy metal fluxes and the suspended particulate matter (SPM) fluxes, after normalizing them with the water fluxes, for estuaries of the major global rivers imply that the solute-particle interaction is a globally significant process in the estuarine production of metals. Based on this correlation that is observed for major estuaries around the world, we demonstrate that the South Asian Rivers which supply only ∼9% of the global river water discharge but carry elevated SPM load, contribute a far more significant proportion (∼40 ± 2% Ni and 15 ± 1% Cu) to the global supply of the dissolved metals from the rivers.
Taylor, Howard E.; Antweiler, Ronald C.; Brinton, Terry I.; Roth, David A.; Moody, John A.
1994-01-01
Extensive flooding in the upper Mississippi River Basin during summer 1993 had a significant effect on the water quality of the Mississippi River. To evaluate the change in temporal distribution and transport of dissolved constituents in the Mississippi River, six water samples were collected by a discharge-weighted method from July through September 1993 near Thebes, Illinois. Sampling at this location provided water-quality information from the upper Mississippi, the Missouri, and the Illinois River Basins. Dissolved major constituents that were analyzed in each of the samples included bicarbonate, calcium (Ca), carbonate (C03), chloride (Cl), dissolved organic carbon, magnesium (Mg), potassium (K), silica NOD, sodium (Na), and sulfate (S04). Dissolved nutrients included ammonium ion (NH4), nitrate (N03), nitrite (N02), and orthophosphate (P04) . Dissolved trace elements included aluminum (Al), arsenic (As), barium (Ba), boron (B), beryllium (Be), bromide (Br), cadmium (Cd), chromium (Cr), cobalt, (Co), copper (Cu), fluoride (F), iron (Fe), lead, lithium (Li), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), strontium (Sr), thallium, uranium (U), vanadium (V), and zinc (Zn). Other physical properties of water that were measured included specific conductance, pH and suspended-sediment concentration (particle size, less than 63 micrometers). Results of this study indicated that large quantities of dissolved constituents were transported through the river system. Generally, pH, alkalinity, and specific conductance and the concentrations of B, Br, Ca, Cl, Cr, K, Li, Mg, Mo, Na, S04, Sr, U, and V increased as water discharge decreased, while concentrations of F, Hg, and suspended sediment sharply decreased as water discharge decreased after the crest of the flood. Concentrations of other constituents, such as Al, As, Ba, Be, Co, Cu, Ni, N03, N02, NH4, P04, and Si02, varied with time as discharge decreased after the crest of the flood. For most constituents, the load transported during floods generally is much greater than that transported during low-flow conditions. How ever, for Cd, Cr, Fe, Mn, V, and Zn, loads increased substantially as water discharge decreased after the crest of the flood.
Solubility of copper in a sulfur-free mafic melt
NASA Astrophysics Data System (ADS)
Ripley, Edward M.; Brophy, James G.
1995-12-01
The solubility of Cu in S-free mafic melts has been measured at a series of ƒ O2 values and temperatures of 1245 and 1300°C. At constant temperature Cu solubility increases from 0.04 wt% at log ƒ O2 = -11.9 to 1.10 wt% at log ƒ O 2 = -7.4 . Copper solubilities were in excess of 8 wt% in two runs controlled at very high ƒ O2 conditions of 10 -1.4 and 10 -22 Partitioning of Cu between metal and glass shows a strong ƒ O2 dependence, with D Cumet/gl ranging from 90 at log ƒ O2 = -7.4 to 2190 at log ƒ O2 = -11.9 . Slopes of Cu solubility and DCumet/gl vs. log ƒ O2 suggest that Cu dissolves predominantly in the +1 valence state. Copper solubility decreases with increasing temperature at constant ƒ O2, similar to experimental results for Ni, Co, and Mo (Dingwell et al., 1994; Holzheid et al., 1994). The data are consistent with Cu dissolution as an oxide (represented by CuO 0.5) and suggest that changes in ƒ O2 ( Fe2+/Fe3+ variations and Cu 1+ complexation with Fe 3+) may have large effects on the distribution of Cu between silicate and sulfide magmas. Results also suggest that the extraction of oxide-bonded Cu in mafic magmas by externally derived S may be an important mechanism in the generation of Cu-rich sulfide ores.
Xiong, Zhaokun; Lai, Bo; Yang, Ping; Zhou, Yuexi; Wang, Juling; Fang, Shuping
2015-10-30
In order to further compare the degradation capacity of Fe(0) and Fe/Cu bimetallic system under different aeration conditions, the mineralization of PNP under different aeration conditions has been investigated thoroughly. The results show that the removal of PNP by Fe(0) or Fe/Cu system followed the pseudo-first-order reaction kinetics. Under the optimal conditions, the COD removal efficiencies obtained through Fe(0) or Fe/Cu system under different aeration conditions followed the trend that Fe/Cu (air)>Fe/Cu (N2: 0-30 min, air: 30-120 min)>control-Fe (air)>Fe/Cu (without aeration)>Fe/Cu (N2)>control-Fe (N2). It revealed that dissolved oxygen (DO) could improve the mineralization of PNP, and Cu could enhance the reactivity of Fe(0). In addition, the degradation of PNP was further analyzed by using UV-vis, FTIR and GC/MS, and the results suggest that Fe/Cu bimetallic system with air aeration could completely break the benzene ring and NO2 structure of PNP and could generate the nontoxic and biodegradable intermediate products. Meanwhile, most of these intermediate products were further mineralized into CO2 and H2O, which brought about a high COD removal efficiency (83.8%). Therefore, Fe/Cu bimetallic system with air aeration would be a promising process for toxic refractory industry wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.
Ultrasonic soldering of Cu alloy using Ni-foam/Sn composite interlayer.
Xiao, Yong; Wang, Qiwei; Wang, Ling; Zeng, Xian; Li, Mingyu; Wang, Ziqi; Zhang, Xingyi; Zhu, Xiaomeng
2018-07-01
In this study, Cu alloy joints were fabricated with a Ni-foam reinforced Sn-based composite solder with the assistance of ultrasonic vibration. Effects of ultrasonic soldering time on the microstructure and mechanical properties of Cu/Ni-Sn/Cu joints were investigated. Results showed that exceptional metallurgic bonding could be acquired with the assistance of ultrasonic vibration using a self-developed Ni-foam/Sn composite solder. For joint soldered for 5 s, a (Cu,Ni) 6 Sn 5 intermetallic compound (IMC) layer was formed on the Cu substrate surface, Ni skeletons distributed randomly in the soldering seam and a serrated (Ni,Cu) 3 Sn 4 IMC layer was formed on the Ni skeleton surface. Increasing the soldering time to 20 s, the (Ni,Cu) 3 Sn 4 IMC layer grew significantly and exhibited a loose porous structure on the Ni skeleton surface. Further increase the soldering time to 30 s, Ni skeletons were largely dissolved in the Sn base solder, and micro-sized (Ni,Cu) 3 Sn 4 particles were formed and dispersed homogeneously in the soldering seam. The formation of (Ni,Cu) 3 Sn 4 particles was mainly ascribed to acoustic cavitations induced erosion and grain refining effects. The joint soldered for 30 s exhibited the highest shear strength of 64.9 ± 3.3 MPa, and the shearing failure mainly occurred at the soldering seam/Cu substrate interface. Copyright © 2018 Elsevier B.V. All rights reserved.
Dust in Rain During Drought: An Overlooked Pathway for Elemental Flux to Ecosystems
NASA Astrophysics Data System (ADS)
Ponette-González, A.; Collins, J. D., Jr.; Manuel, J. E.; Byers, T. A.; Glass, G. A.; Weathers, K. C.; Gill, T. E.
2017-12-01
Airborne dust has the potential to alter ecosystem productivity and biogeochemical cycles at local to global scales by enhancing atmospheric deposition of critical limiting nutrients and toxic pollutants. Suspended dust particles are delivered to ecosystems directly via dry deposition or in precipitation (wet deposition) by rainout and washout. Compared to dry deposition, dust removal by precipitation (dust-in-rain) is a seldom quantified yet potentially significant flux between the atmosphere and ecosystems. We quantified dust effects on the ionic and elemental composition of precipitation and on wet deposition rates at a National Atmospheric Deposition Program (NADP) monitoring site in west Texas during the extreme 2012 drought. Dust events were identified using meteorological data for stations within a 150-km radius buffer surrounding the NADP site. Data on the dissolved chemistry of weekly wet deposition samples and elemental analysis of the particulate fraction were analyzed. Calcium was the dominant dissolved ion in rainwater, comprising 61% of the total measured solute content during dust-in rain weeks. In the particulate fraction, Fe alone made up 81% of the elemental composition during dust-in-rain weeks. At this site, five dust-in-rain weeks delivered 19% of the annual water input (51 mm water). However, these weeks contributed 46-70% of the annual dissolved Ca2+, Mg2+, K+, Na+, PO43-, and Cl- flux and >55% of the particulate Fe, Ti, V, Ni, Rb, Ga, and Br flux. Sourcing analysis, conducted using an End-Member Mixing Algorithm (EMMA) on the particulate fraction identified Fe, Cu, Rb, and Sr end-members, representing 87% of the total elemental variance. In addition, EMMA showed that dust-in-rain weeks were more well mixed than other rainfall weeks. Preliminary findings for this west Texas site show that infrequent dust-in-rain events constitute an important but overlooked proportion of the elemental flux to ecosystems during severe drought.
NASA Astrophysics Data System (ADS)
Golgovici, Florentina; Catrangiu, Adriana-Simona; Stoian, Andrei Bogdan; Anicai, Liana; Visan, Teodor
2016-07-01
Cathodic processes of direct co-reduction of Cu+ and Te4+ ions on Pt electrode at 60°C were investigated using cyclic voltammetry and electrochemical impedance spectroscopy techniques. The ionic liquid as background electrolyte consisted of a mixture of choline chloride and ethylene glycol (ChCl-EG 1:2 mol ratio) in which 5-20 mM CuCl and 8 mM TeO2 were dissolved. The voltammograms exhibited the following successive cathodic processes: Cu2+/Cu+ reduction, Te underpotential deposition, simultaneous deposition of Cu metal and CuTe compound, and deposition of Te-rich CuTe compound at the most negative potentials (from -0.5 V to -0.8 V). Corresponding dissolution or oxidation peaks were recorded on the anodic branch. The voltammetric results were confirmed by electrochemical impedance spectra. Copper telluride films have been synthesized on platinum substrate via potentiostatic electrodeposition at 60°C. It was found from atomic force microscopy that CuTe film samples prepared from ChCl-EG + 5 mM CuCl + 8 mM TeO2 ionic liquid have high growth rates. The x-ray diffraction patterns of the deposited films from ChCl-EG + 10 mM CuCl + 8 mM TeO2 ionic liquid indicated the presence of a Cu2Te phase for film deposited at -0.7 V and a Cu0.656Te0.344 phase for film deposited at -0.6 V.
Ates, Mehmet; Arslan, Zikri; Demir, Veysel; Daniels, James; Farah, Ibrahim O.
2014-01-01
Dietary and waterborne exposure to CuO and ZnO nanoparticles (NPs) was conducted using a simplified model of an aquatic food chain consisting of zooplankton (Artemia salina) and goldfish (Carassius auratus) to determine bioaccumulation, toxic effects and particle transport through trophic levels. Artemia contaminated with NPs were used as food in dietary exposure. Fish were exposed to suspensions of the NPs in waterborne exposure. ICP-MS analysis showed that accumulation primarily occurred in the intestine, followed by the gills and liver. Dietary uptake was lower, but was found to be a potential pathway for transport of NPs to higher organisms. Waterborne exposure resulted in about a tenfold higher accumulation in the intestine. The heart, brain and muscle tissue had no significant Cu or Zn. However, concentrations in muscle increased with NP concentration, which was ascribed to bioaccumulation of Cu and Zn released from NPs. Free Cu concentration in the medium was always higher than that of Zn, indicating CuO NPs dissolved more readily. ZnO NPs were relatively benign, even in waterborne exposure (p≥0.05). In contrast, CuO NPs were toxic. Malondialdehyde levels in the liver and gills increased substantially (p<0.05). Despite lower Cu accumulation, the liver exhibited significant oxidative stress, which could be from chronic exposure to Cu ions. PMID:24860999
Ates, Mehmet; Arslan, Zikri; Demir, Veysel; Daniels, James; Farah, Ibrahim O
2015-01-01
Dietary and waterborne exposure to copper oxide (CuO) and zinc oxide (ZnO) nanoparticles (NPs) was conducted using a simplified model of an aquatic food chain consisting of zooplankton (Artemia salina) and goldfish (Carassius auratus) to determine bioaccumulation, toxic effects, and particle transport through trophic levels. Artemia contaminated with NPs were used as food in dietary exposure. Fish were exposed to suspensions of the NPs in waterborne exposure. ICP-MS analysis showed that accumulation primarily occurred in the intestine, followed by the gills and liver. Dietary uptake was lower, but was found to be a potential pathway for transport of NPs to higher organisms. Waterborne exposure resulted in about a 10-fold higher accumulation in the intestine. The heart, brain, and muscle tissue had no significant Cu or Zn. However, concentrations in muscle increased with NP concentration, which was ascribed to bioaccumulation of Cu and Zn released from NPs. Free Cu concentration in the medium was always higher than that of Zn, indicating CuO NPs dissolved more readily. ZnO NPs were relatively benign, even in waterborne exposure (p ≥ 0.05). In contrast, CuO NPs were toxic. Malondialdehyde levels in the liver and gills increased substantially (p < 0.05). Despite lower Cu accumulation, the liver exhibited significant oxidative stress, which could be from chronic exposure to Cu ions. © 2014 Wiley Periodicals, Inc.
Jong, Tony; Parry, David L
2004-07-01
The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.
Baseline models of trace elements in major aquifers of the United States
Lee, L.; Helsel, D.
2005-01-01
Trace-element concentrations in baseline samples from a survey of aquifers used as potable-water supplies in the United States are summarized using methods appropriate for data with multiple detection limits. The resulting statistical distribution models are used to develop summary statistics and estimate probabilities of exceeding water-quality standards. The models are based on data from the major aquifer studies of the USGS National Water Quality Assessment (NAWQA) Program. These data were produced with a nationally-consistent sampling and analytical framework specifically designed to determine the quality of the most important potable groundwater resources during the years 1991-2001. The analytical data for all elements surveyed contain values that were below several detection limits. Such datasets are referred to as multiply-censored data. To address this issue, a robust semi-parametric statistical method called regression on order statistics (ROS) is employed. Utilizing the 90th-95th percentile as an arbitrary range for the upper limits of expected baseline concentrations, the models show that baseline concentrations of dissolved Ba and Zn are below 500 ??g/L. For the same percentile range, dissolved As, Cu and Mo concentrations are below 10 ??g/L, and dissolved Ag, Be, Cd, Co, Cr, Ni, Pb, Sb and Se are below 1-5 ??g/L. These models are also used to determine the probabilities that potable ground waters exceed drinking water standards. For dissolved Ba, Cr, Cu, Pb, Ni, Mo and Se, the likelihood of exceeding the US Environmental Protection Agency standards at the well-head is less than 1-1.5%. A notable exception is As, which has approximately a 7% chance of exceeding the maximum contaminant level (10 ??g/L) at the well head.
Evaluation of the Multi-Chambered Treatment Train, a retrofit water-quality management device
Corsi, Steven R.; Greb, Steven R.; Bannerman, Roger T.; Pitt, Robert E.
1999-01-01
This paper presents the results of an evaluation of the benefits and efficiencies of a device called the Multi-Chambered Treatment Train (MCTT), which was installed below the pavement surface at a municipal maintenance garage and parking facility in Milwaukee, Wisconsin. Flow-weighted water samples were collected at the inlet and outlet of the device during 15 storms, and the efficiency of the device was based on reductions in the loads of 68 chemical constituents and organic compounds. High reduction efficiencies were achieved for all particulate-associated constituents, including total suspended solids (98 percent), total phosphorus (88 percent), and total recoverable zinc (91 percent). Reduction rates for dissolved fractions of the constituents were substantial, but somewhat lower (dissolved solids, 13 percent; dissolved phosphorus, 78 percent; dissolved zinc, 68 percent). The total dissolved solids load, which originated from road salt storage, was more than four times the total suspended solids load. No appreciable difference was detected between particle-size distributions in inflow and outflow samples.
Tanner, Dwight Q.; Bragg, Heather M.
2002-03-06
At times in July and August 2001, the total-dissolved-gas probe at Warrendale could not be positioned below the minimum compensation depth because the river was too shallow at that location. Consequently, degassing at probe depth may have occurred, and total dissolved gas may have been larger in locations with greater depths.
Copper in soil fractions and runoff in a vineyard catchment: Insights from copper stable isotopes.
Babcsányi, Izabella; Chabaux, François; Granet, Mathieu; Meite, Fatima; Payraudeau, Sylvain; Duplay, Joëlle; Imfeld, Gwenaël
2016-07-01
Understanding the fate of copper (Cu) fungicides in vineyard soils and catchments is a prerequisite to limit the off-site impact of Cu. Using Cu stable isotopes, Cu retention in soils and runoff transport was investigated in relation to the use of Cu fungicides and the hydrological conditions in a vineyard catchment (Rouffach, Haut-Rhin, France; mean slope: 15%). The δ(65)Cu values of the bulk vineyard soil varied moderately through the depth of the soil profiles (-0.12 to 0.24‰±0.08‰). The values were in the range of those of the fungicides (-0.21 to 0.11‰) and included the geogenic δ(65)Cu value of the untreated soil (0.08‰). However, δ(65)Cu values significantly differed between particle-size soil fractions (-0.37±0.10‰ in fine clays and 0.23±0.07‰ in silt). Together with the soil mineralogy, the results suggested Cu isotope fractionation primarily associated with the clay and fine clay fractions that include both SOM and mineral phases. The vegetation did not affect the Cu isotope patterns in the vineyard soils. Cu export by runoff from the catchment accounted for 1% of the applied Cu mass from 11th May to 20(th) July 2011, covering most of the Cu use period. 84% of the exported Cu mass was Cu bound to suspended particulate matter (SPM). The runoff displayed δ(65)Cu values from 0.52 to 1.35‰ in the dissolved phase (<0.45μm) compared to -0.34 to -0.02‰ in the SPM phase, indicating that clay and fine clay fractions were the main vectors of SPM-bound Cu in runoff. Overall, this study shows that Cu stable isotopes may allow identifying the Cu distribution in the soil fractions and their contribution to Cu export in runoff from Cu-contaminated catchments. Copyright © 2016 Elsevier B.V. All rights reserved.
Hattab-Hambli, Nour; Motelica-Heino, Mikael; Mench, Michel
2016-02-01
Copper-contaminated soils were managed with aided phytoextraction in 31 field plots at a former wood preservation site, using a single incorporation of compost (OM) and dolomitic limestone (DL) followed by a crop rotation with tobacco and sunflower. Six amended plots, with increasing total soil Cu, and one unamended plot were selected together with a control uncontaminated plot. The mobility and phytoavailability of Cu, Zn, Cr and As were investigated after 2 and 3 years in soil samples collected in these eight plots. Total Cu, Zn, Cr and As concentrations were determined in the soil pore water (SPW) and available soil Cu and Zn fractions by DGT. The Cu, Zn, Cr and As phytoavailability was characterized by growing dwarf beans on potted soils and determining the biomass of their plant parts and their foliar ionome. Total Cu concentrations in the SPW increased with total soil Cu. Total Cu, Zn, Cr and As concentrations in the SPW decreased in year 3 as compared to year 2, likely due to annual shoot removals by the plants and the lixiviation. Available soil Cu and Zn fractions also declined in year 3. The Cu, Zn, Cr and As phytoavailability, assessed by their concentration and mineral mass in the primary leaves of beans, was reduced in year 3. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modification of CuI based Hole Transport Material for Solid State DSSC Application
NASA Astrophysics Data System (ADS)
Hanif, Q. A.; Ramelan, A. H.; Saputri, L. N. M. Z.; Wahyuningsih, S.
2018-03-01
Modification of Hole Transport Material (HTM) with addition of tetramethylethylenediamine (TMED) and ammonium thiocyanate (NH4SCN) have been conducted. Copper Iodide (CuI) were used as the main component of HTM. Several volume variations of TMED (0.1; 0.2; and 0.4 mL) was added into 0.05 M CuI solutions. While TMED: NH4SCN ratio were 1:1,1:2,2:1 also introduced to the dissolved CuI. Optical properties of these materials showed the band gap energy value ranging from 2.38 to 3.79 eV. The conductivity of HTM has been measured and showed the maximum value in CuI added with 0.4 mL TMED = 0.29 S m-1, and ratio of TMED: NH4SCN=2:1 added into CuI = 0.39 S m-1, these value were increased compared to the CuI conductivity itself (0.26 S m-1). The effect of this modification towards SS DSSC efficiency also has been monitored. The SS DSSC construction consists of TiO2 nanorods sensitized by N3, HTM, and platinum as a counter electrode. The performance of SS DSSC showed rising efficiency as follows TiO2|N3|CuI
Wear behavioral study of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy at constant load
NASA Astrophysics Data System (ADS)
Harlapur, M. D.; Sondur, D. G.; Akkimardi, V. G.; Mallapur, D. G.
2018-04-01
In the current study, the wear behavior of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy has been investigated. Microstructure, SEM and EDS results confirm the presence of different intermetallic and their effects on wear properties of Al25Mg2Si2Cu4Ni alloy in as cast as well as aged condition. Alloying main elements like Si, Cu, Mg and Ni partly dissolve in the primary α-Al matrix and to some amount present in the form of intermetallic phases. SEM structure of as cast alloy shows blocks of Mg2Si which is at random distributed in the aluminium matrix. Precipitates of Al2Cu in the form of Chinese script are also observed. Also `Q' phase (Al-Si-Cu-Mg) be distributed uniformly into the aluminium matrix. Few coarsened platelets of Ni are seen. In case of 7 hr homogenized samples blocks of Mg2Si get rounded at the corners, Platelets of Ni get fragmented and distributed uniformly in the aluminium matrix. Results show improved volumetric wear resistance and reduced coefficient of friction after homogenizing heat treatment.
Influence of Homogenization on Microstructural Response and Mechanical Property of Al-Cu-Mn Alloy.
Wang, Jian; Lu, Yalin; Zhou, Dongshuai; Sun, Lingyan; Li, Renxing; Xu, Wenting
2018-05-29
The evolution of the microstructures and properties of large direct chill (DC)-cast Al-Cu-Mn alloy ingots during homogenization was investigated. The results revealed that the Al-Cu-Mn alloy ingots had severe microsegregation and the main secondary phase was Al₂Cu, with minimal Al₇Cu₂Fe phase. Numerous primary eutectic phases existed in the grain boundary and the main elements were segregated at the interfaces along the interdendritic region. The grain boundaries became discontinuous, residual phases were effectively dissolved into the matrix, and the segregation degree of all elements was reduced dramatically during homogenization. In addition, the homogenized alloys exhibited improved microstructures with finer grain size, higher number density of dislocation networks, higher density of uniformly distributed θ' or θ phase (Al₂Cu), and higher volume fraction of high-angle grain boundaries compared to the nonhomogenized samples. After the optimal homogenization scheme treated at 535 °C for 10 h, the tensile strength and elongation% were about 24 MPa, 20.5 MPa, and 1.3% higher than those of the specimen without homogenization treatment.
Microstructures of Pd-containing dispersants for admixed dental amalgams.
Chern Lin, J H; Greener, E H
1991-10-01
Blended Pd-containing dispersants were developed by the utilization of a Ag-Cu eutectic into which Pd was substituted for Ag or Cu in concentrations of up to 20 wt%. Compositions were melted either in argon-filled sealed vycor tubes or in a graphite-linked carbon crucible of an induction furnace with an argon blanket. Ingots of approximately 1.5 cm in diameter were sectioned to 0.2 cm in thickness and polished through standard metallographic polishing procedures. The possible compounds were identified by XRD. The microstructures of the alloys were examined by SEM/EDS. XRD analysis of the alloys revealed the preferential dissolution of Pd in Cu when the Pd concentration was less than or equal to 10 wt%. When the Pd concentration exceeded 20 wt%, Pd was found to be dissolved in both Ag and Pd. No Cu3Pd x-ray diffraction peaks were found for alloys with Pd concentration of up to 20 wt%. SEM/EDS analysis confirmed XRD results; lamellae of Ag and Cu-Pd were found in alloys with Pd concentration less than or equal to 10 wt%.
Xie, Qunfang; Weng, Xiuhua; Lu, Lijun; Lin, Zhenyu; Xu, Xiongwei; Fu, Caili
2016-03-15
A novel fluoresencent immunosensor for determination of cancer biomarkers such as alpha-fetoprotein (AFP) was designed by utilizing both the high specificity of antigen-antibody sandwich structure and the high sensitivity of the click chemistry based fluorescence detection. Instead of an enzyme or fluorophore, the CuO nanoparticles are labeled on the detection antibody, which was not susceptible to the change of the external environments. The CuO nanoparticles which were modified on the sandwich structure can be dissolved to produce Cu(2+) ions with the help of HCl and then the Cu(2+) ions were reduced by sodium ascorbate to produce Cu(+) ions which triggered the Cu(+) catalyzed alkyne-azide cycloaddition (CuAAC) reaction between the weak fluorescent compound (3-azido-7-hydroxycoumarin) and propargyl alcohol to form a strong fluorescent compound. A good linear relationship was observed between the fluorescence increase factor of the system and the concentration of AFP in the range of 0.025-5.0 ng/mL with a detection limit of 12 pg/mL (S/N=3). The proposed fluorescent sensor had been applied to detect AFP in the human serum samples and gave satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linkskov, K.L.
1986-01-01
The impact of anticipated coal mining in Utah on the salinity of the Price, San Rafael, and Green Rivers is to be addressed in the repermitting of existing mines and permitting of new mines. To determine the potential impacts, mathematical models were developed for the Price and San Rafael River basins. Little impact on the quantity and quality of streamflow is expected for the Price and San Rafael Rivers. The increase in mean monthly flow of the Price River downstream from Scofield Reservoir is projected as 3.5 cu ft/sec, ranging from 1.7% in June to 140% in February. At themore » mouth of the Price River, the potential increase in mean monthly flow is projected as 12.6 cu ft/sec, ranging from 3.7% in May to 37.7% in January. The potential changes in dissolved solids concentration would range from a 20.7% decrease in January to a 1.3% increase in June. At the mouth of the San Rafael River, the potential increase in mean monthly flow ranges from 2.9 cu ft/sec in February to 6.7 cu ft/sec in May, with the increase ranging from 0.8% in June to 12.6% in November. The potential changes in dissolved solids concentration would range from a 5.3% decrease in March to a 0.6% increase in May. The anticipated mining in the Price and San Rafael River basins is not expected to cause a detectable change in the quantity and quality of streamflow in the Green River. The projected peak increase in flow resulting from discharge from the mines is less than 0.3% of the average flow in the Green River. 18 refs., 6 figs., 17 tabs.« less
Jia, La-jiang; Jin, Pu-jun
2015-01-01
The present paper analyzes the interior rust that occurred in bronze alloy sample from 24 pieces of Early Qin bronze wares. Firstly, samples were processed by grinding, polishing and ultrasonic cleaning-to make a mirror surface. Then, a confocal micro-Raman spectrometer was employed to carry out spectroscopic study on the inclusions in samples. The conclusion indicated that corrosive phases are PbCO3 , PbO and Cu2O, which are common rusting production on bronze alloy. The light-colored circular or massive irregular areas in metallographic structure of samples are proved as Cu2O, showing that bronze wares are not only easy to be covered with red Cu2O rusting layer, but also their alloy is easy to be eroded by atomic oxygen. In other words, the rust Cu2O takes place in both the interior and exterior parts of the bronze alloy. In addition, Raman spectrum analysis shows that the dark grey materials are lead corrosive products--PbCO3 and PbO, showing the corroding process of lead element as Pb -->PbO-->PbCO3. In the texture of cast state of bronze alloy, lead is usually distributed as independent particles between the different alloy phases. The lead particles in bronze alloy would have oxidation reaction and generate PbO when buried in the soil, and then have chemical reaction with CO3(2-) dissolved in the underground water to generate PbCO3, which is a rather stable lead corrosive production. A conclusion can be drawn that the external corrosive factors (water, dissolved oxygen and carbonate, etc) can enter the bronze ware interior through the passageway between different phases and make the alloy to corrode gradually.
Minoda, Ayumi; Sawada, Hitomi; Suzuki, Sonoe; Miyashita, Shin-ichi; Inagaki, Kazumi; Yamamoto, Takaiku; Tsuzuki, Mikio
2015-02-01
The demand for rare earth elements has increased dramatically in recent years because of their numerous industrial applications, and considerable research efforts have consequently been directed toward recycling these materials. The accumulation of metals in microorganisms is a low-cost and environmentally friendly method for the recovery of metals present in the environment at low levels. Numerous metals, including rare earth elements, can be readily dissolved in aqueous acid, but the efficiency of metal biosorption is usually decreased under the acidic conditions. In this report, we have investigated the use of the sulfothermophilic red alga Galdieria sulphuraria for the recovery of metals, with particular emphasis on the recovery of rare earth metals. Of the five different growth conditions investigated where G. sulphuraria could undergo an adaptation process, Nd(III), Dy(III), and Cu(II) were efficiently recovered from a solution containing a mixture of different metals under semi-anaerobic heterotrophic condition at a pH of 2.5. G. sulphuraria also recovered Nd(III), Dy(III), La(III), and Cu(II) with greater than 90% efficiency at a concentration of 0.5 ppm. The efficiency remained unchanged at pH values in the range of 1.5-2.5. Furthermore, at pH values in the range of 1.0-1.5, the lanthanoid ions were collected much more efficiently into the cell fractions than Cu(II) and therefore successfully separated from the Cu(II) dissolved in the aqueous acid. Microscope observation of the cells using alizarin red suggested that the metals were accumulating inside of the cells. Experiments using dead cells suggested that this phenomenon was a biological process involving specific activities within the cells.
Pradhan, Sulena; Hedberg, Jonas; Rosenqvist, Jörgen; Jonsson, Caroline M; Wold, Susanna; Blomberg, Eva; Odnevall Wallinder, Inger
2018-01-01
This work focuses on kinetic aspects of stability, mobility, and dissolution of bare Cu, Al and Mn, and SiO2 NPs in synthetic freshwater (FW) with and without the presence of natural organic matter (NOM). This includes elucidation of particle and surface interactions, metal dissolution kinetics, and speciation predictions of released metals in solution. Dihydroxy benzoic acid (DHBA) and humic acid adsorbed rapidly on all metal NPs (<1 min) via multiple surface coordinations, followed in general by rapid agglomeration and concomitant sedimentation for a large fraction of the particles. In contrast, NOM did not induce agglomeration of the SiO2 NPs during the test duration (21 days). DHBA in concentrations of 0.1 and 1 mM was unable to stabilize the metal NPs for time periods longer than 6 h, whereas humic acid, at certain concentrations (20 mg/L) was more efficient (>24 h). The presence of NOM increased the amount of released metals into solution, in particular for Al and Cu, whereas the effect for Mn was minor. At least 10% of the particle mass was dissolved within 24 h and remained in solution for the metal NPs in the presence of NOM. Speciation modeling revealed that released Al and Cu predominantly formed complexes with NOM, whereas less complexation was seen for Mn. The results imply that potentially dispersed NPs of Cu, Al and Mn readily dissolve or sediment close to the source in freshwater of low salinity, whereas SiO2 NPs are more stable and therefore more mobile in solution.
Pradhan, Sulena; Rosenqvist, Jörgen; Jonsson, Caroline M.; Wold, Susanna; Blomberg, Eva; Odnevall Wallinder, Inger
2018-01-01
This work focuses on kinetic aspects of stability, mobility, and dissolution of bare Cu, Al and Mn, and SiO2 NPs in synthetic freshwater (FW) with and without the presence of natural organic matter (NOM). This includes elucidation of particle and surface interactions, metal dissolution kinetics, and speciation predictions of released metals in solution. Dihydroxy benzoic acid (DHBA) and humic acid adsorbed rapidly on all metal NPs (<1 min) via multiple surface coordinations, followed in general by rapid agglomeration and concomitant sedimentation for a large fraction of the particles. In contrast, NOM did not induce agglomeration of the SiO2 NPs during the test duration (21 days). DHBA in concentrations of 0.1 and 1 mM was unable to stabilize the metal NPs for time periods longer than 6 h, whereas humic acid, at certain concentrations (20 mg/L) was more efficient (>24 h). The presence of NOM increased the amount of released metals into solution, in particular for Al and Cu, whereas the effect for Mn was minor. At least 10% of the particle mass was dissolved within 24 h and remained in solution for the metal NPs in the presence of NOM. Speciation modeling revealed that released Al and Cu predominantly formed complexes with NOM, whereas less complexation was seen for Mn. The results imply that potentially dispersed NPs of Cu, Al and Mn readily dissolve or sediment close to the source in freshwater of low salinity, whereas SiO2 NPs are more stable and therefore more mobile in solution. PMID:29420670
Lares, M L; Marinone, S G; Rivera-Duarte, I; Beck, A; Sañudo-Wilhelmy, S
2009-05-01
Dissolved and particulate metals (Ag, Cd, Co, Cu, Ni, and Zn) and nutrients (PO(4), NO(3), and H(4)SiO(4)) were measured in Todos Santos Bay (TSB) in August 2005. Two sources producing local gradients were identified: one from a dredge discharge area (DDA) and another south of the port and a creek. The average concentrations of dissolved Cd and Zn (1.3 and 15.6 nM, respectively) were higher by one order of magnitude than the surrounding Pacific waters, even during upwelling, and it is attributed to the presence of a widespread and long-lasting red tide coupled with some degree of local pollution. A clear spatial gradient (10 to 6 pM), from coast to offshore, of dissolved Ag was evident, indicating the influence of anthropogenic inputs. The particulate fraction of all metals, except Cu, showed a factor of ~3 decrease in concentrations from the DDA to the interior of the bay. The metal distributions were related to the bay's circulation by means of a numerical model that shows a basically surface-wind-driven offshore current with subsurface compensation currents toward the coast. Additionally, the model shows strong vertical currents over the DDA. Principal component analysis revealed three possible processes that could be influencing the metal concentrations within TSB: anthropogenic inputs (Cd, Ag, and Co), biological proceses (NO(3), Zn, and Cu), and upwelling and mixing (PO(4), H(4)SiO(4), Cd, and Ni). The most striking finding of this study was the extremely high Cd concentrations, which have been only reported in highly contaminated areas. As there was a strong red tide, it is hypothesized that the dinoflagellates are assimilating the Cd, which is rapidly remineralized and being concentrated on the stratified surface layers.
Rahman, Ismail Md Mofizur; Islam, M Monirul; Hossain, M Mosharraf; Hossain, M Shahadat; Begum, Zinnat A; Chowdhury, Didarul A; Chakraborty, Milan K; Rahman, M Azizur; Nazimuddin, M; Hasegawa, Hiroshi
2011-02-01
The concern over ensuing freshwater scarcity has forced the developing countries to delve for alternative water resources. In this study, we examined the potential of stagnant surface water bodies (SSWBs) as alternative freshwater resources in the densely populated Chittagong metropolitan area (CMPA) of Bangladesh--where there is an acute shortage of urban freshwater supply. Water samples were collected at 1-month intervals for a period of 1 year from 12 stations distributed over the whole metropolis. Samples were analyzed for pH, water temperature (WTemp), turbidity, electrical conductivity (EC), total dissolved solids, total solids, total hardness, dissolved oxygen (DO), chloride, orthophosphates, ammonia, total coliforms (TC), and trace metal (Cd, Cr, Cu, Pb, As, and Fe) concentrations. Based on these parameters, different types of water quality indices (WQIs) were deduced. WQIs showed most of CMPA-SSWBs as good or medium quality water bodies, while none were categorized as bad. Moreover, it was observed that the minimal water quality index (WQIm), computed using five parameters: WTemp, pH, DO, EC, and turbidity, gave a reliable estimate of water quality. The WQIm gave similar results in 72% of the cases compared with other WQIs that were based on larger set of parameters. Based on our finding, we suggest the wider use WQIm in developing countries for assessing health of SSWBs, as it will minimize the analytical cost to overcome the budget constraints involved in this kind of evaluations. It was observed that except turbidity and TC content, all other quality parameters fluctuated within the limit of the World Health Organization suggested standards for drinking water. From our findings, we concluded that if the turbidity and TC content of water from SSWBs in CMPA are taken care of, they will become good candidates as alternative water resources all round the year.
NASA Technical Reports Server (NTRS)
Zhang, Jiming; Gardiner, Robin A.; Kirlin, Peter S.; Boerstler, Robert W.; Steinbeck, John
1992-01-01
High quality YBa2Cu3O(7-x) films were grown in-situ on LaAlO3 (100) by a novel single liquid source plasma-enhanced metalorganic chemical vapor deposition process. The metalorganic complexes M(thd) (sub n), (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate; M = Y, Ba, Cu) were dissolved in an organic solution and injected into a vaporizer immediately upstream of the reactor inlet. The single liquid source technique dramatically simplifies current CVD processing and can significantly improve the process reproducibility. X-ray diffraction measurements indicated that single phase, highly c-axis oriented YBa2Cu3O(7-x) was formed in-situ at substrate temperature 680 C. The as-deposited films exhibited a mirror-like surface, had transition temperature T(sub cO) approximately equal to 89 K, Delta T(sub c) less than 1 K, and Jc (77 K) = 10(exp 6) A/sq cm.
Michálková, Zuzana; Komárek, Michael; Šillerová, Hana; Della Puppa, Loïc; Joussein, Emmanuel; Bordas, François; Vaněk, Aleš; Vaněk, Ondřej; Ettler, Vojtěch
2014-12-15
The potential of three Fe- and Mn-(nano)oxides for stabilizing Cd, Cu and Pb in contaminated soils was investigated using batch and column experiments, adsorption tests and tests of soil microbial activity. A novel synthetic amorphous Mn oxide (AMO), which was recently proposed as a stabilizing amendment, proved to be the most efficient in decreasing the mobility of the studied metals compared to nano-maghemite and nano-magnetite. Its application resulted in significant decreases of exchangeable metal fractions (92%, 92% and 93% decreases of Cd, Cu and Pb concentrations, respectively). The adsorption capacity of the AMO was an order of magnitude higher than those recorded for the other amendments. It was also the most efficient treatment for reducing Cu concentrations in the soil solution. No negative effects on soil microorganisms were recorded. On the other hand, the AMO was able to dissolve soil organic matter to some extent. Copyright © 2014 Elsevier Ltd. All rights reserved.
Srinivasa Reddy, M; Basha, Shaik; Joshi, H V; Ramachandraiah, G
2005-12-01
Alang-Sosiya situated on the Gulf of Cambay is one of the largest ship breaking yard in the world. The seasonal distribution and contamination levels of dissolved and/or dispersed total petroleum hydrocarbons (PHCs), total polycyclic aromatic hydrocarbons (PAHs) and heavy metals in seawater during high tide are investigated. The concentrations of petroleum hydrocarbons and heavy metals are higher in the winter than in the monsoon and summer. The concentrations of total PHCs and PAHs are about three times higher in the winter and two times in the monsoon or summer at Along-Sosiya and about twice in all seasons at two stations one on either side 5 km away from it as compared to the reference station at Mahuva, 60 km away towards the south. Further, the levels of PHCs are correlated with salinity and compared with those of other regions. The concentration of all metals is the highest in the winter season followed by the monsoon and summer. We carried out the quantitative analysis of the possible relationships among 13 variables such as Al, Fe, Pb, Mn, Cu, Zn, Cd, Cr, Co, pH, NO3-, NO2 and PO4(3-).
Dielectric Relaxation of CaCu3Ti4O12 synthesized from a pyrolysis method
NASA Astrophysics Data System (ADS)
Liu, Jianjun; Mei, W. N.; Smith, R. W.; Hardy, J. R.
2006-03-01
Giant dielectric constant material CaCu3Ti4O12 has been synthesized by using a pyrolysis method. A stable solution was made by dissolving calcium nitrate, copper nitrate, and titanium isopropoxide in 2-methoxyethanol; the solution was then heated at 500 and 700 ^oC for 2 hours to obtain a pure phase of CaCu3Ti4O12. The frequency and temperature dependences of dielectric permittivity were examined in the ranges of 10-1˜10^6 Hz and -150˜200 ^oC. We found that the dielectric properties of the sample were the same as those made from solid state reaction. Specifically, there is a Debye-like relaxation at low temperature and its giant dielectric constant about 11000 is independent of the temperature and frequency over a wide range.
Kolbas, A; Mench, M; Herzig, R; Nehnevajova, E; Bes, C M
2011-01-01
Use of sunflower (Helianthus annuus L.) for Cu phytoextraction and oilseed production on Cu-contaminated topsoils was investigated in afield trial at a former wood preservation site. Six commercial cultivars and two mutant lines were cultivated in plots with and without the addition of compost (5% w/w) and dolomitic limestone (0.2% w/w). Total soil Cu ranged from 163 to 1170 mg kg(-1). In soil solutions, Cu concentration varied between 0.16-0.93 mg L(-1). The amendment increased soil pH, reduced Cu exposure and promoted sunflower growth. Stem length, shoot and capitulum biomasses, seed yield, and shoot and leaf Cu concentrations were measured. At low total soil Cu, shoot Cu mineralomass was higher in commercial cultivars, Le., Salut, Energic, and Countri, whereas competition and shading affected morphological traits of mutants. Based on shoot yield (7 Mg DW ha(-1)) and Cu concentration, the highest removal was 59 g Cu ha(-1). At high total soil Cu, shoot Cu mineralomass peaked for mutants (e.g., 52 g Cu ha(-1) for Mutant 1 line) and cultivars Energic and Countri. Energic seed yield (3.9 Mg air-DW ha(-1)) would be sufficient to produce oil Phenotype traits and shoot Cu removal depended on sunflower types and Cu exposure.
NASA Astrophysics Data System (ADS)
Zhang, Xudong; Hu, Xiaowu; Jiang, Xiongxin; Li, Yulong
2018-04-01
The formation and growth of intermetallic compound (IMC) layer at the interface between Sn3.0Ag0.5Cu (SAC305) solder and Cu- xNi ( x = 0, 0.5, 1.5, 5, 10 wt%) substrate during reflowing and aging were investigated. The soldering was conducted at 270 °C using reflowing method, following by aging treatment at 150 °C for up to 360 h. The experimental results indicated that the total thickness of IMC increased with increasing aging time. The scallop-like Cu6Sn5 and planar-like Cu3Sn IMC layer were observed between SAC305 solder and purely Cu substrate. As the content of Ni element in Cu substrate was 0.5% or 1.5%, the scallop-like Cu6Sn5 and planar-like Cu3Sn IMC layer were still found between solder and Cu-Ni substrate and the total thickness of IMC layer decreased with the increasing Ni content. Besides, when the Ni content was up to 5%, the long prismatic (Cu,Ni)6Sn5 phase was the only product between solder and substrate and the total thickness of IMC layer increased significantly. Interestingly, the total thickness of IMC decreased slightly as the Ni addition was up to 10%. In the end, the grains of interfacial IMC layer became coarser with aging time increasing while the addition of Ni in Cu substrate could refine IMC grains.
Luo, Y M; Yan, W D; Christie, P
2001-01-01
A pot experiment was conducted to study soil solution dynamics of Cu and Zn in a Cu/Zn-polluted soil as influenced by gamma-irradiation and Cu-Zn interaction. A slightly acid sandy loam was amended with Cu and Zn (as nitrates) either singly or in combination (100 mg Cu and 150 mg Zn kg(-1) soil) and was then gamma-irradiated (10 kGy). Unamended and unirradiated controls were included, and spring barley (Hordeum vulgare L. cv. Forrester) was grown for 50 days. Soil solution samples obtained using soil moisture samplers immediately before transplantation and every ten days thereafter were used directly for determination of Cu, Zn, pH and absorbance at 360 nm (A360). Cu and Zn concentrations in the solution of metal-polluted soil changed with time and were affected by gamma-irradiation and metal interaction. gamma-Irradiation raised soil solution Cu substantially but generally decreased soil solution Zn. These trends were consistent with increased dissolved organic matter (A360) and solution pH after gamma-irradiation. Combined addition of Cu and Zn usually gave higher soil solution concentrations of Cu or Zn compared with single addition of Cu or Zn in gamma-irradiated and non-irradiated soils, indicating an interaction between Cu and Zn. Cu would have been organically complexed and consequently maintained a relatively high concentration in the soil solution under higher pH conditions. Zn tends to occur mainly as free ion forms in the soil solution and is therefore sensitive to changes in pH. The extent to which gamma-irradiation and metal interaction affected solubility and bioavailability of Cu and Zn was a function of time during plant growth. Studies on soil solution metal dynamics provide very useful information for understanding metal mobility and bioavailability.
Water Quality Characteristics of Sembrong Dam Reservoir, Johor, Malaysia
NASA Astrophysics Data System (ADS)
Mohd-Asharuddin, S.; Zayadi, N.; Rasit, W.; Othman, N.
2016-07-01
A study of water quality and heavy metal content in Sembrong Dam water was conducted from April - August 2015. A total of 12 water quality parameters and 6 heavy metals were measured and classified based on the Interim National Water Quality Standard of Malaysia (INWQS). The measured and analyzed parameter variables were divided into three main categories which include physical, chemical and heavy metal contents. Physical and chemical parameter variables were temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solid (TSS), turbidity, pH, nitrate, phosphate, ammonium, conductivity and salinity. The heavy metals measured were copper (Cu), lead (Pb), aluminium (Al), chromium (Cr), ferum (Fe) and zinc (Zn). According to INWQS, the water salinity, conductivity, BOD, TSS and nitrate level fall under Class I, while the Ph, DO and turbidity lie under Class IIA. Furthermore, values of COD and ammonium were classified under Class III. The result also indicates that the Sembrong Dam water are not polluted with heavy metals since all heavy metal readings recorded were falls far below Class I.
PROCESS FOR THE PURIFICATION OF URANIUM
Rosenfeld, S.
1959-01-20
A proccss is described for reclaiming uranium values from aqueous solutions containing U, Fe, Ni, Cu, and Cr comprising treating the solution with NH/sub 3/ to precipitate the: U, Fc, and Cr and leaving Cu and Ni in solution as ammonia complex ions. The precipitate is chlorinated with CCl/sub 4/ at an elevated temperature to convert the U, Tc, and Cr into their chlorides. The more volatile FeCl/sub 3/ and CrCl/sub 3/ are separated from the UCl/sub 4/. The process is used when U is treated in a calutron, and composite solutions are produccd which contain dissolved products of stainless steel.
NASA Astrophysics Data System (ADS)
Fazeli, M. Sharif; Sathyanarayan, S.; Satish, P. N.; Muthanna, Lata
1991-01-01
Physicochemical characteristics of wastewater from one of the paper mills near Nanjangud and the differential accumulation of heavy metals in parts of coconut trees growing in the area irrigated directly by the wastewaters of a paper mill were investigated. The total dissolved and suspended solids of wastewater were 1,136.9 mg/l and 2,185.4 mg/l, respectively. Biological oxygen demand (BOD) expands and COD is beyond the tolerance limit proposed by Indian standards. The concentrations of heavy metals like Cu, Pb, Zn, Ni, Co, and Cd in coconut water, root, and leaf are higher than the limits suggested by World Health Organization. Survival of coconut trees irrigated by polluted waters indicates tolerance to toxic heavy metals. Since coconut forms part of human food chain, accumulation of toxic heavy metals may lead to organic disorders.
NASA Astrophysics Data System (ADS)
Szczepański, M.; Szajdak, L.; Bogacz, A.
2009-04-01
The investigation of peatland is used to show the water quality functioning with respect to different forms of nitrogen and carbon. The purification of ground water by the transect of 4.5 km long consisting organic soils (peat-moorsh soils) was estimated. This transect is located in the Agroecological Landscape Park in Turew, 40 km South-West of Poznan, West Polish Lowland. There is this transect along Wyskoć ditch. pH, the contents of total and dissolved organic carbon, total nitrogen, N-NO3-, N-NH4+ was measured. Additionally C/N factors of peats were estimated. The investigation has shown the impact of the peatland located on the secondary transformed peat - moorsh soils on the lowering of total nitrogen, ammonium, and nitrates as well as total and dissolved organic carbon in ground water. Peat-moorsh soils were described and classified according to Polish hydrogenic soil classification and World Reference Base Soil Notation. There are these investigated points along to Wyskoc ditch. Two times a month during entire vegetation season the following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo: samples of peat, from the depth of 0-20 cm, samples of water from the ditch, samples of ground water from wells established for this investigation. Samples of peat-moorsh soils were collected at the depth 0-20 cm. Soils were sampled two times a month from 10 sites of each site. Samples were air dried and crushed to pass a 1 mm-mesh sieve. These 10 sub-samples were mixed for the reason of preparing a "mean sample", which used for the determination of pH (in 1M KCl), dissolved organic carbon (DOC), total organic carbon (TOC), total nitrogen (Ntotal), and N-NO3- as well as N-NH4+. In water from Wyskoć ditch pH, Ntotal, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) was measured. Ground water samples were collected from four wells established for this investigation. The water was filtered by the middle velocity separation and pH, N-total, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) ware measured. Peatland located on the secondary transformed peat - moorsh soils has revealed the lowering in ground water: nitrates 38.5%, N-organic 10%, N-total 24.5%, ammonium 38.7%, dissolved total carbon 33.1%, dissolved total inorganic carbon 10%, and dissolved organic carbon 57.5%. The dissolution of soil organic matter from peat-moorsh soils in broad range of pH and ionic strength was investigated. The rates of the reaction were calculated from the kinetics of first order reaction model. The investigations have shown the impact of the properties of secondary transformed peat-moorsh soils on the rates of the dissolution of organic matter.
Stormwater Effects on Heavy Metal Sequestration in a Bioretention System in Culver City, California
NASA Astrophysics Data System (ADS)
Yousavich, D. J.; Ellis, A. S.; Dorsey, J.; Johnston, K.
2017-12-01
Rain Gardens, also referred to as bioretention or biofilters, are often used to capture or filter urban runoff before it drains into surface or groundwater systems. The Culver City Rain Garden (CCRG) is one such system that is designed to capture and filter runoff from approximately 11 acres of mixed-use commercial and industrial land before it enters Ballona Creek. The EPA has designated Ballona Creek as an impaired waterway and established Total Maximum Daily Loads for heavy metals. Previous research has utilized sequential extractions to establish trends in heavy metal sequestration for Cu, Pb, and Zn in bioretention media. The aim of this project is to evaluate if there is a difference in heavy metal sequestration between dry and wetted bioretention media. To characterize the stormwater at the site, influent and surface water were collected and analyzed for sulfate and heavy metals 3 times during the 2016-2017 storm season. Two soil cores from the CCRG were acquired in the summer of 2017 to analyze soil metal sequestration trends. They will be subjected to different wetting conditions, sectioned into discrete depths, and digested with an established sequential extraction technique. Surface water in the CCRG shows average Dissolved Oxygen during wet conditions of 2.92 mg/L and average pH of 6.1 indicating reducing conditions near the surface and the possible protonation of adsorption sites during wet weather conditions. Influent metal data indicate average dissolved iron levels near 1 ppm and influent Cu, Pb, and Zn levels near 0.05, 0.01, and 0.5 ppm respectively. This coupled with average surface water sulfate levels near 3 ppm indicates the potential for iron oxide and sulfide mineral formation depending on redox conditions. The sequential extraction results will elucidate whether heavy metals are adsorbed or are being sequestered in mineral formation. These results will allow for the inclusion of heavy metal sequestration trends in the design of further bioretention projects and maintenance of current sites.
Gammons, C.H.; Nimick, D.A.; Parker, S.R.; Cleasby, T.E.; McCleskey, R. Blaine
2005-01-01
Three simultaneous 24-h samplings at three sites over a downstream pH gradient were conducted to examine diel fluctuations in heavy metal concentrations in Fisher Creek, a small mountain stream draining abandoned mine lands in Montana. Average pH values at the upstream (F1), middle (F2), and downstream (F3) monitoring stations were 3.31, 5.46, and 6.80, respectively. The downstream increase in pH resulted in precipitation of hydrous ferric oxide (HFO) and hydrous aluminum oxide (HAO) on the streambed. At F1 and F2, Fe showed strong diel cycles in dissolved concentration and Fe(II)/Fe(III) ratio; these cycles were attributed to daytime photoreduction of Fe(III) to Fe(II), reoxidation of Fe(II) to Fe(III), and temperature-dependent hydrolysis and precipitation of HFO. At the near-neutral downstream station, no evidence of Fe(III) photoreduction was observed, and suspended particles of HFO dominated the total Fe load. HFO precipitation rates between F2 and F3 were highest in the afternoon, due in part to reoxidation of a midday pulse of Fe2+ formed by photoreduction in the upper, acidic portions of the stream. Dissolved concentrations of Fe(II) and Cu decreased tenfold and 2.4-fold, respectively, during the day at F3. These changes were attributed to sorption onto fresh HFO surfaces. Results of surface complexation modeling showed good agreement between observed and predicted Cu concentrations at F3, but only when adsorption enthalpies were added to the thermodynamic database to take into account diel temperature variations. The field and modeling results illustrate that the degree to which trace metals adsorb onto actively forming HFO is strongly temperature dependent. This study is an example of how diel Fe cycles caused by redox and hydrolysis reactions can induce a diel cycle in a trace metal of toxicological importance in downstream waters. Copyright ?? 2005 Elsevier Ltd.
Anti-biofilm formation of a novel stainless steel against Staphylococcus aureus.
Nan, Li; Yang, Ke; Ren, Guogang
2015-06-01
Staphylococcus aureus (S. aureus) is a bacterium frequently found proliferating on metal surfaces such as stainless steels used in healthcare and food processing facilities. Past research has shown that a novel Cu-bearing 304 type stainless steel (304CuSS) exhibits excellent antibacterial ability (i.e. against S. aureus) in a short time period (24h.). This work was dedicated to investigate the 304CuSS's inhibition ability towards the S. aureus biofilm formation for an extended period of 7days after incubation. It was found that the antibacterial rate of the 304CuSS against sessile bacterial cells reached over 99.9% in comparison with the 304SS. The thickness and sizes of the biofilms on the 304SS surfaces increased markedly with period of contact, and thus expected higher risk of bio-contamination, indicated by the changes of surface free energy between biofilm and the steel surfaces. The results demonstrated that the 304CuSS exhibited strong inhibition on the growth and adherence of the biofilms. The surface free energy of the 304CuSS after contact with sessile bacterial cells was much lower than that of the 304SS towards the same culture times. The continuously dissolved Cu(2+) ions well demonstrated the dissolution ability of Cu-rich precipitates after exposure to S. aureus solution, from 3.1ppm (2days) to 4.5ppm (7days). For this to occur, a hypothesis mechanism might be established for 304CuSS in which the Cu(2+) ions were released from Cu-rich phases that bond with extracellular polymeric substances (EPS) of the microorganisms. And these inhibited the activities of cell protein/enzymes and effectively prevented planktonic bacterial cells attaching to the 304CuSS metal surface. Copyright © 2015. Published by Elsevier B.V.
Balistrieri, L.S.; Borrok, D.M.; Wanty, R.B.; Ridley, W.I.
2008-01-01
Fractionation of Cu and Zn isotopes during adsorption onto amorphous ferric oxyhydroxide is examined in experimental mixtures of metal-rich acid rock drainage and relatively pure river water and during batch adsorption experiments using synthetic ferrihydrite. A diverse set of Cu- and Zn-bearing solutions was examined, including natural waters, complex synthetic acid rock drainage, and simple NaNO3 electrolyte. Metal adsorption data are combined with isotopic measurements of dissolved Cu (65Cu/63Cu) and Zn (66Zn/64Zn) in each of the experiments. Fractionation of Cu and Zn isotopes occurs during adsorption of the metal onto amorphous ferric oxyhydroxide. The adsorption data are modeled successfully using the diffuse double layer model in PHREEQC. The isotopic data are best described by a closed system, equilibrium exchange model. The fractionation factors (??soln-solid) are 0.99927 ?? 0.00008 for Cu and 0.99948 ?? 0.00004 for Zn or, alternately, the separation factors (??soln-solid) are -0.73 ?? 0.08??? for Cu and -0.52 ?? 0.04??? for Zn. These factors indicate that the heavier isotope preferentially adsorbs onto the oxyhydroxide surface, which is consistent with shorter metal-oxygen bonds and lower coordination number for the metal at the surface relative to the aqueous ion. Fractionation of Cu isotopes also is greater than that for Zn isotopes. Limited isotopic data for adsorption of Cu, Fe(II), and Zn onto amorphous ferric oxyhydroxide suggest that isotopic fractionation is related to the intrinsic equilibrium constants that define aqueous metal interactions with oxyhydroxide surface sites. Greater isotopic fractionation occurs with stronger metal binding by the oxyhydroxide with Cu > Zn > Fe(II).
[Distribution characteristics of copper in soil and rape around Tongling mining area].
Shen, Chang-Gao; Gao, Chao; Wang, Deng-Feng; Wang, Lei; Chen, Fu-Rong
2007-10-01
Soil and rape samples around Tongling mining area were collected, and their copper (Cu) contents were investigated. The results showed that the upland soil developed on the slope deposit around the mining area as well as the paddy soil distributed in lower reaches was heavily polluted by Cu, while the fluvo-aquic soil further from the mining area was less contaminated. Though the Cu content in paddy soil and upland soil was nearly the same, its bioavailability was higher in paddy soil, due to the Cu pollution of irrigated water. There was a significant correlation between available and total Cu in these three types of soil. The activation rate of soil Cu (percentage of available Cu in total Cu) was 15.0% on average, which was positively correlated with soil total Cu and organic matter while negatively correlated with soil pH and Mn. The average Cu content in rape seed and stalk was 4.0 and 5.8 mg x kg(-1), respectively. The rape Cu content increased obviously with increasing soil available Cu content when the soil available Cu content was relatively low, but the Cu absorption and accumulation by rape decreased gradually when the soil available copper content was higher than 30 mg x kg(-1).
Code of Federal Regulations, 2013 CFR
2013-07-01
... specifies the limitation for the metal in the dissolved or valent or total form; or (2) In establishing... the metal in the dissolved or valent or total form to carry out the provisions of the CWA; or (3) All approved analytical methods for the metal inherently measure only its dissolved form (e.g., hexavalent...
Code of Federal Regulations, 2012 CFR
2012-07-01
... specifies the limitation for the metal in the dissolved or valent or total form; or (2) In establishing... the metal in the dissolved or valent or total form to carry out the provisions of the CWA; or (3) All approved analytical methods for the metal inherently measure only its dissolved form (e.g., hexavalent...
NASA Astrophysics Data System (ADS)
Sunesh, Chozhidakath Damodharan; Gopi, Chandu V. V. M.; Muthalif, Mohammed Panthakkal Abdul; Kim, Hee-Je; Choe, Youngson
2017-09-01
CuS counter electrodes (CEs) were prepared to fabricate efficient quantum-dot-sensitized solar cells (QDSSCs) based on a CdS/CdSe photo sensitizer. The CEs were prepared on a fluorine-doped tin oxide (FTO) glass substrate by a facile chemical bath deposition (CBD) method by dissolving CuSO4·5H2O and CH3CSNH2 in water, followed by adding 0.25 mM polyvinylpyrrolidone (PVP). The CBD was performed at 60 °C for 1 h, 2 h, and 3 h, and the samples were labeled as CuS 1 h, CuS 2 h, and CuS 3 h, respectively. The QDSSCs were assembled using prepared CuS CEs and a TiO2/CdS/CdSe/ZnS photoanode, and the effect of the growth time of CuS CEs on the QDSSC performance was investigated. As the CuS growth time increases, the short-circuit current density (Jsc), fill factor (FF), and open-circuit voltage (Voc) of the QDSSCs gradually increases, leading to an enhanced power conversion efficiency (η). QDSSCs that use the CuS 2 h CE exhibit a high Jsc of 14.31 mA cm-2, Voc of 0.603 V, and FF of 0.49, which are higher than that using conventional Pt electrodes as well as CuS 1 h and CuS 3 h electrodes. The electrochemical impedance spectroscopy results show that the CuS 2 h CE exhibits an inferior charge transfer resistance of only 2.93 Ω, which is 33 times lesser than that of the Pt CE. The enhanced device performance of CuS 2 h is ascribed to the high catalytic activity and low charge transfer resistance of the CuS CE in the reduction process of oxidized polysulfide. Consequently, a superior power conversion efficiency of 4.27% is achieved for QDSSCs utilizing CuS 2 h.
Zhang, Hong; Andrews, Susan A
2012-05-15
This study investigated the effect of copper corrosion products, including Cu(II), Cu(2)O, CuO and Cu(2)(OH)(2)CO(3), on chlorine degradation, HAA formation, and HAA speciation under controlled experimental conditions. Chlorine decay and HAA formation were significantly enhanced in the presence of copper with the extent of copper catalysis being affected by the solution pH and the concentration of copper corrosion products. Accelerated chlorine decay and increased HAA formation were observed at pH 8.6 in the presence of 1.0 mg/L Cu(II) compared with that observed at pH 6.6 and pH 7.6. Further investigation of chlorine decay in the presence of both Suwannee River NOM and Cu(II) indicated that an increased reactivity of NOM with dissolved and/or solid surface-associated Cu(II), rather than chlorine auto-decomposition, was a primary reason for the observed rapid chlorine decay. Copper corrosion solids [Cu(2)O, CuO, Cu(2)(OH)(2)CO(3)] exhibited catalytic effects on both chlorine decay and HAA formation. Contrary to the results observed when in the absence of copper corrosion products, DCAA formation was consistently predominant over other HAA species in the presence of copper corrosion products, especially at neutral and high pH. This study improves the understanding for water utilities and households regarding chlorine residuals and HAA concentrations in distribution systems, in particular once the water reaches domestic plumbing where copper is widely used. Copyright © 2012 Elsevier Ltd. All rights reserved.
Geochemistry and potential environmental impact of the mine tailings at Rosh Pinah, southern Namibia
NASA Astrophysics Data System (ADS)
Nejeschlebová, L.; Sracek, O.; Mihaljevič, M.; Ettler, V.; Kříbek, B.; Knésl, I.; Vaněk, A.; Penížek, V.; Dolníček, Z.; Mapani, B.
2015-05-01
Mine tailings at Rosh Pinah located in semiarid southern Namibia were investigated by the combination of mineralogical methods and leaching using water and simulated gastric solution. They are well-neutralized with leachate pH > 7 and neutralization potential ratios (NPR) up to 4. Neutralization is mainly due to abundant Mn-rich dolomite in the matrix. Concentrations of released contaminants in water leachate follow the order Zn > Pb > Cu > As. Relatively high leached concentrations of Zn and partly also of Pb are caused by their link to relatively soluble carbonates and Mn-oxyhydroxides. In contrast, As is almost immobile by binding into Fe-oxyhydroxides, which are resistant to dissolution. Barium is released by the dissolution of Ba-carbonate (norsethite) and precipitates in sulfate-rich pore water as barite. Dissolved concentrations in neutral mine drainage water collected in the southern pond are low, but when total concentrations including colloidal fraction are taken into account, more than 70% of Zn is in colloidal form. Groundwater upgradient of the mine tailings is of poor quality and there seems to be no negative impact on groundwater downgradient from mine tailings. Contaminant concentrations in simulated gastric leachates are in the order Ba > Pb > Zn > Cu > As with a maximum gastric bioaccessibility of 86.6% for Ba and a minimum of 3.3% for As. These results demonstrate that total contaminant content and toxicity in the solid phase are poor predictors of risk, and therefore mineralogical and bioavailability/bioaccessibility studies are necessary for evaluation of contaminant environmental impact.
Angel, Brad M; Simpson, Stuart L; Jarolimek, Chad V; Jung, Rob; Waworuntu, Jorina; Batterham, Grant
2013-08-15
The Batu Hijau copper-gold mine on the island of Sumbawa, Indonesia operates a deep-sea tailings placement (DSTP) facility to dispose of the tailings within the offshore Senunu Canyon. The concentrations of trace metals in tailings, waters, and sediments from locations in the vicinity of the DSTP were determined during surveys in 2004 and 2009. In coastal and deep seawater samples from Alas Strait and the South Coast of Sumbawa, the dissolved concentrations of Ag, As, Cd, Cr, Hg, Pb and Zn were in the sub μg/L range. Dissolved copper concentrations ranged from 0.05 to 0.65 μg/L for all depths at these sites. Dissolved copper concentrations were the highest in the bottom-water from within the tailings plume inside Senunu Canyon, with up to 6.5 μg Cu/L measured in close proximity to the tailings discharge. In general, the concentrations of dissolved and particulate metals were similar in 2004 and 2009. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mondaca, Pedro; Catrin, Joanie; Verdejo, José; Sauvé, Sébastien; Neaman, Alexander
2017-04-01
To better determine phytotoxicity thresholds for metals in the soil, studies should use actual field-contaminated soil samples rather than metal-spiked soil preparations. However, there are surprisingly few such data available for Cu phytotoxicity in field-contaminated soils. Moreover, these studies differ from each other with regards to soil characteristics and experimental setups. This study aimed at more accurately estimating Cu phytotoxicity thresholds using field-collected agricultural soils (Entisols) from areas exposed to contamination from Cu mining. For this purpose, the exposure to Cu was assessed by measuring total soil Cu, soluble Cu, free Cu 2+ activity, and Cu in the plant aerial tissues. On the other hand, two bioassay durations (short-term and long-term), three plant species (Avena sativa L., Brassica rapa CrGC syn. Rbr, and Lolium perenne L.), and five biometric endpoints (shoot length and weight, root length and weight, and number of seed pods) were considered. Overall plant growth was best predicted by total Cu content of the soil. Despite some confounding factors, it was possible to determine EC 10 , EC 25 and EC 50 of total Cu in the soil. Brassica rapa was more sensitive than Avena sativa for all endpoints, while Lolium perenne was of intermediate sensitivity. For the short-term bioassay (21 days for all three species), the averaged EC 10 , EC 25 and EC 50 values of total soil Cu (in mg kg -1 ) were 356, 621, and 904, respectively. For the long-term bioassay (62 days for oat and 42 days for turnip), the averaged EC 10 , EC 25 and EC 50 values of total soil Cu (in mg kg -1 ) were 355, 513, and 688, respectively. The obtained results indicate that chronic test is a suitable method for assessing Cu phytotoxicity in field-contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kinetic trapping through coalescence and the formation of patterned Ag-Cu nanoparticles
NASA Astrophysics Data System (ADS)
Grammatikopoulos, Panagiotis; Kioseoglou, Joseph; Galea, Antony; Vernieres, Jerome; Benelmekki, Maria; Diaz, Rosa E.; Sowwan, Mukhles
2016-05-01
In recent years, due to its inherent flexibility, magnetron-sputtering has been widely used to synthesise bi-metallic nanoparticles (NPs) via subsequent inert-gas cooling and gas-phase condensation of the sputtered atomic vapour. Utilising two separate sputter targets allows for good control over composition. Simultaneously, it involves fast kinetics and non-equilibrium processes, which can trap the nascent NPs into metastable configurations. In this study, we observed such configurations in immiscible, bi-metallic Ag-Cu NPs by scanning transmission electron microscopy (S/TEM) and electron energy-loss spectroscopy (EELS), and noticed a marked difference in the shape of NPs belonging to Ag- and Cu-rich samples. We explained the formation of Janus or Ag@Cu core/shell metastable structures on the grounds of in-flight mixed NP coalescence. We utilised molecular dynamics (MD) and Monte Carlo (MC) computer simulations to demonstrate that such configurations cannot occur as a result of nanoalloy segregation. Instead, sintering at relatively low temperatures can give rise to metastable structures, which eventually can be stabilised by subsequent quenching. Furthermore, we compared the heteroepitaxial diffusivities along various surfaces of both Ag and Cu NPs, and emphasised the differences between the sintering mechanisms of Ag- and Cu-rich NP compositions: small Cu NPs deform as coherent objects on large Ag NPs, whereas small Ag NPs dissolve into large Cu NPs, with their atoms diffusing along specific directions. Taking advantage of this observation, we propose controlled NP coalescence as a method to engineer mixed NPs of a unique, patterned core@partial-shell structure, which we refer to as a ``glass-float'' (ukidama) structure.In recent years, due to its inherent flexibility, magnetron-sputtering has been widely used to synthesise bi-metallic nanoparticles (NPs) via subsequent inert-gas cooling and gas-phase condensation of the sputtered atomic vapour. Utilising two separate sputter targets allows for good control over composition. Simultaneously, it involves fast kinetics and non-equilibrium processes, which can trap the nascent NPs into metastable configurations. In this study, we observed such configurations in immiscible, bi-metallic Ag-Cu NPs by scanning transmission electron microscopy (S/TEM) and electron energy-loss spectroscopy (EELS), and noticed a marked difference in the shape of NPs belonging to Ag- and Cu-rich samples. We explained the formation of Janus or Ag@Cu core/shell metastable structures on the grounds of in-flight mixed NP coalescence. We utilised molecular dynamics (MD) and Monte Carlo (MC) computer simulations to demonstrate that such configurations cannot occur as a result of nanoalloy segregation. Instead, sintering at relatively low temperatures can give rise to metastable structures, which eventually can be stabilised by subsequent quenching. Furthermore, we compared the heteroepitaxial diffusivities along various surfaces of both Ag and Cu NPs, and emphasised the differences between the sintering mechanisms of Ag- and Cu-rich NP compositions: small Cu NPs deform as coherent objects on large Ag NPs, whereas small Ag NPs dissolve into large Cu NPs, with their atoms diffusing along specific directions. Taking advantage of this observation, we propose controlled NP coalescence as a method to engineer mixed NPs of a unique, patterned core@partial-shell structure, which we refer to as a ``glass-float'' (ukidama) structure. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08256k
Soft plasma electrolysis with complex ions for optimizing electrochemical performance
NASA Astrophysics Data System (ADS)
Kamil, Muhammad Prisla; Kaseem, Mosab; Ko, Young Gun
2017-03-01
Plasma electrolytic oxidation (PEO) was a promising surface treatment for light metals to tailor an oxide layer with excellent properties. However, porous coating structure was generally exhibited due to excessive plasma discharges, restraining its performance. The present work utilized ethylenediaminetetraacetic acid (EDTA) and Cu-EDTA complexing agents as electrolyte additives that alter the plasma discharges to improve the electrochemical properties of Al-1.1Mg alloy coated by PEO. To achieve this purpose, PEO coatings were fabricated under an alternating current in silicate electrolytes containing EDTA and Cu-EDTA. EDTA complexes were found to modify the plasma discharging behaviour during PEO that led to a lower porosity than that without additives. This was attributed to a more homogeneous electrical field throughout the PEO process while the coating growth would be maintained by an excess of dissolved Al due to the EDTA complexes. When Cu-EDTA was used, the number of discharge channels in the coating layer was lower than that with EDTA due to the incorporation of Cu2O and CuO altering the dielectric behaviour. Accordingly, the sample in the electrolyte containing Cu-EDTA constituted superior corrosion resistance to that with EDTA. The electrochemical mechanism for excellent corrosion protection was elucidated in the context of equivalent circuit model.
Soft plasma electrolysis with complex ions for optimizing electrochemical performance
Kamil, Muhammad Prisla; Kaseem, Mosab; Ko, Young Gun
2017-01-01
Plasma electrolytic oxidation (PEO) was a promising surface treatment for light metals to tailor an oxide layer with excellent properties. However, porous coating structure was generally exhibited due to excessive plasma discharges, restraining its performance. The present work utilized ethylenediaminetetraacetic acid (EDTA) and Cu-EDTA complexing agents as electrolyte additives that alter the plasma discharges to improve the electrochemical properties of Al-1.1Mg alloy coated by PEO. To achieve this purpose, PEO coatings were fabricated under an alternating current in silicate electrolytes containing EDTA and Cu-EDTA. EDTA complexes were found to modify the plasma discharging behaviour during PEO that led to a lower porosity than that without additives. This was attributed to a more homogeneous electrical field throughout the PEO process while the coating growth would be maintained by an excess of dissolved Al due to the EDTA complexes. When Cu-EDTA was used, the number of discharge channels in the coating layer was lower than that with EDTA due to the incorporation of Cu2O and CuO altering the dielectric behaviour. Accordingly, the sample in the electrolyte containing Cu-EDTA constituted superior corrosion resistance to that with EDTA. The electrochemical mechanism for excellent corrosion protection was elucidated in the context of equivalent circuit model. PMID:28281672
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Shuhua, E-mail: liangsh@xaut.edu.cn; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, Xi'an 710048; Chen, Long
In this article, novel W–Cu composites reinforced with topologically-inserted tungsten fibers (W{sub f}) have been fabricated by hot-press sintering and infiltration method. By pre-sputtering of ~ 100 nm thick chromium layer onto the surface of W{sub f}, the contiguity or connectivity between W{sub f} and neighboring tungsten particles (W{sub p}) or Cu after sintering and infiltration was enhanced. Combined SEM, TEM and STEM techniques confirmed that the intact interfaces of W{sub f}/W{sub p} and W{sub f}/Cu free from precipitates, impurities and porosities would provide desirable strength and ductility. Further mechanical tests also validated its superior compressive strength and plasticity atmore » various temperatures, together with significantly improved tensile strength (by 23.6%) and hardness (by 9.3%) for the W–Cu composite after reinforcement with Cr-coated W{sub f}, which promotes the engineering application of the composite greatly. - Highlights: • W-fibers reinforced W–Cu composites were fabricated by sintering and infiltration. • The sputtered Cr onto W{sub f} has dissolved into adjacent W{sub f} and W{sub p} during fabrication. • The intact interfaces of W{sub f}/W{sub p} and W{sub f}/Cu confer enhanced strength and ductility. • Tensile strength and hardness improve by 23.6% and 9.3% after interface tuning.« less
Activation of persulfate/copper by hydroxylamine via accelerating the cupric/cuprous redox couple.
Zhou, Peng; Zhang, Jing; Liang, Juan; Zhang, Yongli; Liu, Ya; Liu, Bei
2016-01-01
Cuprous copper [Cu(I)] reacts with sodium persulfate (PDS) to generate sulfate radical SO4(-)•, but it has been seldom investigated owing to its instability and difficulty in dissolving it. This study proposes a new method to regenerate Cu(I) from cupric copper [Cu(II)] by addition of hydroxylamine (HA) to induce the continuous production of radicals through active PDS, and investigates the resulting enhanced methyl orange (MO) degradation efficiency and mechanism in the new system. HA accelerated the degradation of MO markedly in the pH range from 6.0 to 8.0 in the HA/Cu(II)/PDS process. Both SO4(-)• and hydroxyl radicals (•OH) were considered as the primary reactive radicals in the process. The MO degradation in the HA/Cu(II)/PDS process can be divided into three stages: the fast stage, the transitory stage, and the low stage. MO degradation was enhanced with increased dosage of PDS. Although high dosage of HA could accelerate the transformation of the Cu(II)/Cu(I) cycle to produce more reactive radicals, excess HA can quench the reactive radicals. This study indicates that through a copper-redox cycling mechanism by HA, the production of SO4(-)• and •OH can be strongly enhanced, and the effective pH range can be expanded to neutral conditions.
Kim, Hyung-Eun; Nguyen, Thuy T M; Lee, Hongshin; Lee, Changha
2015-12-15
The inactivation of Escherichia coli and MS2 coliphage by Cu(II) is found to be significantly enhanced in the presence of hydroxylamine (HA). The addition of a small amount of HA (i.e., 5-20 μM) increased the inactivation efficacies of E. coli and MS2 coliphage by 5- to 100-fold, depending on the conditions. Dual effects were anticipated to enhance the biocidal activity of Cu(II) by the addition of HA, viz. (i) the accelerated reduction of Cu(II) into Cu(I) (a stronger biocide) and (ii) the production of reactive oxidants from the reaction of Cu(I) with dissolved oxygen (evidenced by the oxidative transformation of methanol into formaldehyde). Deaeration enhanced the inactivation of E. coli but slightly decreased the inactivation efficacy of MS2 coliphage. The addition of 10 μM hydrogen peroxide (H2O2) greatly enhanced the MS2 inactivation, whereas the same concentration of H2O2 did not significantly affect the inactivation efficacy of E. coli Observations collectively indicate that different biocidal actions lead to the inactivation of E. coli and MS2 coliphage. The toxicity of Cu(I) is dominantly responsible for the E. coli inactivation. However, for the MS2 coliphage inactivation, the oxidative damage induced by reactive oxidants is as important as the effect of Cu(I).
Study of Sn and SnAgCu Solders Wetting Reaction on Ni/Pd/Au Substrates
NASA Astrophysics Data System (ADS)
Liu, C. Y.; Wei, Y. S.; Lin, E. J.; Hsu, Y. C.; Tang, Y. K.
2016-12-01
Wetting reactions of pure Sn and Sn-Ag-Cu solder balls on Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates were investigated. The (Au, Pd)Sn4 phase formed in the initial interfacial reaction between pure Sn and Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates. Then, the initially formed (Au, Pd)Sn4 compound layer either dissolved or spalled into the molten Sn solder with 3 s of reflowing. The exposed Ni under-layer reacted with Sn solder and formed an interfacial Ni3Sn4 compound. We did not observe spalling compound in the Sn-Ag-Cu case, either on the thin Au (100 Å) or the thick Au (1000 Å) substrates. This implies that the Cu content in the Sn-Ag-Cu solder can efficiently suppress the spalling effect and really stabilize the interfacial layer. Sn-Ag-Cu solder has a better wetting than that of the pure Sn solder, regardless of the Au thickness of the Au/Pd/Ni substrate. For both cases of pure Sn and Sn-Ag-Cu, the initial wetting (<3-s reflowing) on the thin Au (100 Å) substrate is better than that of the thick Au (1000 Å) substrate. Over 3-s reflowing, the wetting on the thicker Au layer (1000 Å) substrate becomes better than the wetting on the thinner Au layer (100 Å) substrate.
NASA Astrophysics Data System (ADS)
Charles, A.; Karam, A.; Jaouich, A.
2009-04-01
Organic amendment and NPK-fertilizer could affect the distribution of copper (Cu) among Cu-mine tailing compounds and hence the availability or phytotoxicity of Cu to plants. A laboratory incubation experiment was conducted to investigate the forms of Cu in a Cu-mine tailing (pH 7.70) amended with a commercial garden growth substratum (GGS) containing peat moss and natural mycorrhizae (Glomus intraradices) in combination with a commercial NPK-fertilizer (20-20-20), by a sequential extraction method. There were eight treatments after the combination of four rates of GGS (0, 12.4, 50 and 100 g/kg tailing) and two rates of fertilizer (0 and 20 g/kg tailing). At the end of a 52-week incubation period, tailing Cu was sequentially extracted to fractionate Cu into five operationally defined geochemical forms, namely ‘water-soluble' (Cu-sol), ‘exchangeable' (Cu-exc), ‘specifically adsorbed on carbonates or carbonate-bound' (Cu-car), ‘organic-bound' (Cu-org) and ‘residual' (Cu-res) fractions. After treatments, the most labile Cu pool (Cu-sol + Cu-exc) represented about 0.94 % of the total Cu, the Cu-car and Cu-org accounted for 22.7 and 5.0% of total Cu, and the residual Cu accounted for nearly 71.3% of total Cu. Compared with the control, the application of GGS decreased Cu-car and increased CuORG whereas the addition of fertilizer increased Cu-sol + Cu-exc and decreased Cu-carb. Fertilizer-treated tailings had the highest amount of Cu-sol + Cu-exc. High rates of GGS resulted in Cu-org levels in GGS-treated tailings which were more than 2.0-2.8 times those obtained in the untreated tailing (control). The partition of Cu in GGS-treated tailings followed the order: Cu-sol + Cu-exc < Cu-car < Cu-org < Cu-res. This study suggests that NPK-fertilizer promotes the formation of labile Cu forms in the calcite-containing Cu-mine tailing. GGS in the tailing matrix acts as effective sorbent for Cu.
NASA Astrophysics Data System (ADS)
Zhang, Xuetao; Zhou, Jinyuan; Dou, Wei; Wang, Junya; Mu, Xuemei; Zhang, Yue; Abas, Asim; Su, Qing; Lan, Wei; Xie, Erqing; Zhang, Chuanfang (John)
2018-04-01
The fast growing of portable electronics has greatly stimulated the development of energy storage materials, such as transition metal oxides (TMOs). However, TMOs usually involve harsh synthesis conditions, such as high temperature. Here we take advantage of the metastable nature of Cu(OH)2 and grow CuO nanoblades (NBs) on Cu foam under the electric field at room temperature. The electrochemical polarization accelerates the dissolution of Cu(OH)2 nanorods, guides the deposition of the as-dissolved Cu(OH)42- species and eventually leads to the phase transformation of CuO NBs. The unique materials architecture render the vertically-aligned CuO NBs with enhanced electronic and ionic diffusion kinetics, high charge storage (∼779 mC cm-2 at 1 mA cm-2), excellent rate capability and long-term cycling performances. Further matching with activated carbon electrode results in high-performance hybrid device, which displays a wide voltage window (1.7 V) in aqueous electrolyte, high energy density (0.17 mWh cm-2) and power density (34 mW cm-2) coupled with long lifetime, surpassing the best CuO based device known. The hybrid device can be randomly connected and power several light-emitting diodes. Importantly, such an electrochemical restructuring approach is cost-effective, environmentally green and universal, and can be extended to synthesize other metastable hydroxides to in-situ grow corresponding oxides.
Fabrication of Cu2SnS3 thin films by ethanol-ammonium solution process by doctor-blade technique
NASA Astrophysics Data System (ADS)
Wang, Yaguang; Li, Jianmin; Xue, Cong; Zhang, Yan; Jiang, Guoshun; Liu, Weifeng; Zhu, Changfei
2017-11-01
In the present study, a low-cost and simple method is applied to fabricate Cu2SnS3 (CTS) thin films. Namely CTS thin films are prepared by a doctor-blade method with a slurry dissolving the Cu2O and SnS powders obtained from CBD reaction solution into ethanol-ammonium solvents. Series of characterization methods including XRD, Raman spectra, SEM and UV-Vis analyses are introduced to investigate the phase structure, morphology and optical properties of CTS thin films. As a result, monoclinic CTS films have been obtained with the disappearance of binary phases CuS and SnS2 while increasing the annealing temperature and time, high quality monoclinic CTS thin films consisting of compact and large grains have been successfully prepared by this ethanol-ammonium method. Moreover, the secondary phase Cu2Sn3S7 is also observed during the annealing process. In addition, the post-annealed CTS film with a band-gap about 0.89 eV shows excellent absorbance between 400 and 1200 nm, which is proper for the bottom layer in multi-junction thin film solar cells.[Figure not available: see fulltext.
Trihalomethane and nonpurgeable total organic-halide formation potentials of the Mississippi river
Rathbun, R.E.
1996-01-01
Trihalomethane and nonpurgeable total organic-hallide formation potentials were determined for water samples from 12 sites along the Mississippi River from Minneapolis, MN, to New Orleans, LA, for the summer and fall of 1991 and the spring of 1992. The formation potentials increased with distance upstream, approximately paralleling the increase of the dissolved organic- carbon concentration. The pH and the dissolved organic-carbon and free- chlorine concentrations were significant variables in the prediction of the formation potentials. The trihalomethane formation potential increased as the pH increased, whereas the nonpurgeable total organic-halide formation potential decreased. All formation potentials increased as the dissolved organic-carbon and free-chlorine concentrations increased, with the dissolved organic-carbon concentration having a much greater effect.
Effect of surface oxide films on the properties of pulse electric-current sintered metal powders
NASA Astrophysics Data System (ADS)
Xie, Guoqiang; Ohashi, Osamu; Yamaguchi, Norio; Wang, Airu
2003-11-01
Metallic powders with various thermodynamic stability oxide films (Ag, Cu, and Al powders) were sintered using a pulse electric-current sintering (PECS) process. Behavior of oxide films at powder surfaces and their effect on the sintering properties were investigated. The results showed that the sintering properties of metallic powders in the PECS process were subject to the thermodynamic stability of oxide films at particles surfaces. The oxide films at Ag powder surfaces are decomposed during sintering with the contact region between the particles being metal/metal bond. The oxide films at Cu powder surfaces are mainly broken via loading pressure at a low sintering temperature. At a high sintering temperature, they are mainly dissolved in the parent metal, and the contact regions turn into the direct metal/metal bonding. Excellent sintering properties can be received. The oxide films at Al powder surfaces are very stable, and cannot be decomposed and dissolved, but broken by plastic deformation of particles under loading pressure at experimental temperatures. The interface between particles is partially bonded via the direct metal/metal bonding making it difficult to achieve good sintered properties.
Yang, Show-Yi; Lin, Jia-Ming; Young, Li-Hao; Chang, Ching-Wen
2018-04-07
We investigate exposure to welding fume metals in pipeline construction, which are responsible for severe respiratory problems. We analyzed air samples obtained using size-fractioning cascade impactors that were attached to the welders performing shielded metal and gas tungsten arc welding outdoors. Iron, aluminum, zinc, chromium, manganese, copper, nickel, and lead concentrations in the water-soluble (WS) and water-insoluble (WI) portions were determined separately, using inductively coupled plasma mass spectrometry. The mass-size distribution of welding fume matches a log-normal distribution with two modes. The metal concentrations in the welding fume were ranked as follows: Fe > Al > Zn > Cr > Mn > Ni > Cu > Pb. In the WS portion, the capacities of metals dissolving in water are correlated with the metal species but particle sizes. Particularly, Zn, Mn, and Pb exhibit relatively higher capacities than Cu, Cr, Al, Fe, and Ni. Exposure of the gas-exchange region of the lungs to WS metals were in the range of 4.9% to 34.6% of the corresponding metals in air by considering the particle-size selection in lungs, metal composition by particle size, and the capacities of each metal dissolving in water.
Li, Chongning; Ouyang, Huixiang; Tang, Xueping; Wen, Guiqing; Liang, Aihui; Jiang, Zhiliang
2017-01-15
With development of economy and society, there is an urgent need to develop convenient and sensitive methods for detection of Cu 2+ pollution in water. In this article, a simple and sensitive SERS sensor was proposed to quantitative analysis of trace Cu 2+ in water. The SERS sensor platform was prepared a common gold nanoparticle (AuNP)-SiO 2 sol substrate platform by adsorbing HSA, coupling with the catalytic reaction of Cu 2+ -ascorbic acid (H 2 A)-dissolved oxygen, and using label-free Victoria blue B (VBB) as SERS molecular probes. The SERS sensor platform response to the AuNP aggregations by hydroxyl radicals (•OH) oxidizing from the Cu 2+ catalytic reaction, which caused the SERS signal enhancement. Therefore, by monitoring the increase of SERS signal, Cu 2+ in water can be determined accurately. The results show that the SERS sensor platforms owns a linear response with a range from 0.025 to 25μmol/L Cu 2+ , and with a detection limit of 0.008μmol/L. In addition, the SERS method demonstrated good specificity for Cu 2+ , which can determined accurately trace Cu 2+ in water samples, and good recovery and accuracy are obtained for the water samples. With its high selectivity and good accuracy, the sensitive SERS quantitative analysis method is expected to be a promising candidate for determining copper ions in environmental monitoring and food safety. Copyright © 2016 Elsevier B.V. All rights reserved.
Gormley-Gallagher, Aine Marie; Douglas, Richard William; Rippey, Brian
2015-01-01
Separate phases of metal partitioning behaviour in freshwater lakes that receive varying degrees of atmospheric contamination and have low concentrations of suspended solids were investigated to determine the applicability of the distribution coefficient, K D. Concentrations of Pb, Ni, Co, Cu, Cd, Cr, Hg and Mn were determined using a combination of filtration methods, bulk sample collection and digestion and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Phytoplankton biomass, suspended solids concentrations and the organic content of the sediment were also analysed. By distinguishing between the phytoplankton and (inorganic) lake sediment, transient variations in K D were observed. Suspended solids concentrations over the 6-month sampling campaign showed no correlation with the K D (n = 15 for each metal, p > 0.05) for Mn (r 2 = 0.0063), Cu (r 2 = 0.0002, Cr (r 2 = 0.021), Ni (r 2 = 0.0023), Cd (r 2 = 0.00001), Co (r 2 = 0.096), Hg (r 2 = 0.116) or Pb (r 2 = 0.164). The results implied that colloidal matter had less opportunity to increase the dissolved (filter passing) fraction, which inhibited the spurious lowering of K D. The findings conform to the increasingly documented theory that the use of K D in modelling may mask true information on metal partitioning behaviour. The root mean square error of prediction between the directly measured total metal concentrations and those modelled based on the separate phase fractions were ± 3.40, 0.06, 0.02, 0.03, 0.44, 484.31, 80.97 and 0.1 μg/L for Pb, Cd, Mn, Cu, Hg, Ni, Cr and Co respectively. The magnitude of error suggests that the separate phase models for Mn and Cu can be used in distribution or partitioning models for these metals in lake water. PMID:26200885
Treatment of kitchen wastewater using Eichhornia crassipes
NASA Astrophysics Data System (ADS)
Parwin, Rijwana; Karar Paul, Kakoli
2018-03-01
The efficiency of Eichhornia crassipes for treatment of raw kitchen wastewater was studied in the present research work. An artificial wetland of 30 liter capacity was created for phytoremediation of kitchen wastewater using Eichhornia crassipes. Kitchen wastewater samples were collected from hostel of an educational institute in India. Samples were characterized based on physical and chemical parameters such as pH, turbidity, total hardness, nitrate-nitrogen, ammonium-nitrogen, sulphate, dissolved oxygen, total organic carbon and total dissolved solid. The physico-chemical parameter of kitchen wastewater samples were analysed for durations of 0 (initial day), 4 and 8 days. After 8 days of retention period, it was observed that pH value increases from 6.25 to 6.63. However, percentage reduction for turbidity, total hardness, nitrate-nitrogen, ammonium-nitrogen, sulphate, dissolved oxygen, total organic carbon and total dissolved solid were found to be 74.71%, 50%, 78.75%, 60.28%, 25.31%, 33.33%, 15.38% and 69.97%, respectively. Hence water hyacinth (Eichhornia crassipes) is found efficient and easy to handle and it can be used for low cost phytoremediation technique.
Influence of copper recovery on the water quality of the acidic Berkeley Pit lake, Montana, U.S.A.
Tucci, Nicholas J; Gammons, Christopher H
2015-04-07
The Berkeley Pit lake in Butte, Montana, formed by flooding of an open-pit copper mine, is one of the world's largest accumulations of acidic, metal-rich water. Between 2003 and 2012, approximately 2 × 10(11) L of pit water, representing 1.3 lake volumes, were pumped from the bottom of the lake to a copper recovery plant, where dissolved Cu(2+) was precipitated on scrap iron, releasing Fe(2+) back to solution and thence back to the pit. Artificial mixing caused by this continuous pumping changed the lake from a meromictic to holomictic state, induced oxidation of dissolved Fe(2+), and caused subsequent precipitation of more than 2 × 10(8) kg of secondary ferric compounds, mainly schwertmannite and jarosite, which settled to the bottom of the lake. A large mass of As, P, and sulfate was also lost from solution. These unforeseen changes in chemistry resulted in a roughly 25-30% reduction in the lake's calculated and measured total acidity, which represents a significant potential savings in the cost of lime treatment, which is not expected to commence until 2023. Future monitoring is needed to verify that schwertmannite and jarosite in the pit sediment do not convert to goethite, a process which would release stored acidity back to the water column.
Raffo, Simona; Vassura, Ivano; Chiavari, Cristina; Martini, Carla; Bignozzi, Maria C; Passarini, Fabrizio; Bernardi, Elena
2016-06-01
Surface and building runoff can significantly contribute to the total metal loading in urban runoff waters, with potential adverse effects on the receiving ecosystems. The present paper analyses the corrosion-induced metal dissolution (Fe, Mn, Cr, Ni, Cu) from weathering steel (Cor-Ten A) with or without artificial patinas, exposed for 3 years in unsheltered conditions at a marine urban site (Rimini, Italy). The influence of environmental parameters, atmospheric pollutants and surface finish on the release of dissolved metals in rain was evaluated, also by means of multivariate analysis (two-way and three-way Principal Component Analysis). In addition, surface and cross-section investigations were performed so as to monitor the patina evolution. The contribution provided by weathering steel runoff to the dissolved Fe, Mn and Ni loading at local level is not negligible and pre-patination treatments seem to worsen the performance of weathering steel in term of metal release. Metal dissolution is strongly affected by extreme events and shows seasonal variations, with different influence of seasonal parameters on the behaviour of bare or artificially patinated steel, suggesting that climate changes could significantly influence metal release from this alloy. Therefore, it is essential to perform a long-term monitoring of the performance, the durability and the environmental impact of weathering steel. Copyright © 2016 Elsevier Ltd. All rights reserved.
Metal ion complex formation in small lakes of the Western Siberian Arctic zone
NASA Astrophysics Data System (ADS)
Kremleva, Tatiana; Dinu, Marina
2017-04-01
The paper is based on joint investigation of the Tyumen State University (Russia, Tyumen) and the Geochemistry and Analytical Chemistry Vernadsky Institute of Russian Academy of Sciences (Moscow, Russia) during 2012-2014 period. It presents the results of research of chemical composition of about 70 small lakes located in the area of tundra and northern taiga of West Siberia (Russia, Yamal-Nenets and Khanty-Mansi Autonomous Districts of the Tyumen region). The investigation includes determination of different parameters of natural water samples: • content of trace elements (Al, Fe, Mn, Cr, Cu, Ni, Zn, Cd, Co, Pb, etc., total more than 60 elements) by emission method with an inductively coupled plasma (ICP-MS) using mass spektrometrometre Element 2 equipment; • content of inorganic and total carbon (TIC and TC) by elemental analysis and the difference between the total and inorganic carbon gives the organic carbon content (TOC); • pH value by potentiometric method; • content of basic ions (Na+, Ca2+, K+, Mg2+, NH4+, Cl-, SO42-, NO3-, PO43-) by ion chromatography. Determination of the chemical composition of samples was conducted in the accredited laboratory according to standard procedures with regular quality control of results. Heavy metals in natural waters can exist in various forms: free (hydrated) ions bound in complexes with organic or inorganic ligands, as well as in the form of suspensions. The form of metal existence has a significant influence on their availability to transport in aquatic organisms. Metal ions associated in stable complexes with organic substances are considered less toxic. From the previous investigations state that the most stable complexes are ligands with organic ions Fe3+, Al3+. The main conclusion of the present research states that if the total content of aluminum, iron and manganese ions (meq/dm3) is equal to or greater than the concentration of dissolved organic carbon (TOC, mg/dm3) in lakes water other heavy metals will be predominantly in free, ionic or bound form with inorganic ligands. This state means paradox consequence that the increase of dissolved Fe content will lead to toxicity rise of other elements having less affinity to organic material. For surface waters of Western Siberian Arctic zone this situation is quite common. The total concentration of iron and aluminum ions in most lakes of tundra and northern taiga zones is approximately equal to water complexing ability. From the other side humic substances participation in inactivation of other more toxic metals (Cu, Pb, Cd, Cr, Ni et al.) will be poor. Arctic part of Western Siberia undergoes significant anthropogenic load due to extensive oil and gas recovery in this zone. Surface waters of Western Siberia are characterized by high natural content of iron, aluminum and copper ions and anthropogenic load of heavy metals makes the situation more serious.
NASA Astrophysics Data System (ADS)
Fitzsimmons, J. N.; Parker, C.; Sherrell, R. M.
2016-02-01
The physicochemical speciation of trace metals in seawater influences their cycling as essential micronutrients for microorganisms or as tracers of anthropogenic influences on the marine environment. While chemical speciation affects lability, the size of metal complexes influences their ability to be accessed biologically and also influences their fate in the aggregation pathway to marine particles. In this study, we show that multiple trace metals in shelf and open ocean waters off northern California (IRN-BRU cruise, July 2014) have colloidal-sized components. Colloidal fractions were operationally defined using two ultrafiltration methods: a 0.02 µm Anopore membrane and a 10 kDa ( 0.003 µm) cross flow filtration (CFF) system. Together these two methods distinguished small (0.003 - 0.02 µm) and large (0.02 µm - 0.2 µm) colloids. As has been found previously for seawater in other ocean regimes, dissolved Fe had a broad size distribution with 50% soluble (<10 kDa) complexes and both small and large colloidal species. Dissolved Mn had no measurable colloidal component, consistent with its predicted chemical speciation as free Mn(II). Dissolved Cu, which like Fe is thought to be nearly fully organically bound in seawater, was only 25% colloidal, and these colloids were all small. Surprisingly Cd, Ni, and Pb also showed colloidal components (8-20%, 25-40%, and 10-50%) despite their hypothesized low organic speciation. Zn and Pb were nearly completely sorbed onto the Anopore membrane, making CFF the only viable ultrafiltration method for those elements. Zn suffered incomplete recovery ( 50-75%) through the CFF system but showed 30-85% colloidal contribution; thus, verifying a Zn colloidal phase with these methods is challenging. Conclusions will reveal links between the physical and chemical speciation for these metals and what role these metal colloids might have on trace metal exchange between the ocean margin and offshore waters.
Trends in the quality of water in New Jersey streams, water years 1998-2007
Hickman, R. Edward; Gray, Bonnie J.
2010-01-01
Trends were determined in flow-adjusted values of selected water-quality characteristics measured year-round during water years 1998-2007 (October 1, 1997, through September 30, 2007) at 70 stations on New Jersey streams. Water-quality characteristics included in the analysis are dissolved oxygen, pH, total dissolved solids, total phosphorus, total organic nitrogen plus ammonia, and dissolved nitrate plus nitrite. In addition, trend tests also were conducted on measurements of dissolved oxygen made only during the growing season, April to September. Nearly all the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the New Jersey Department of Environmental Protection Ambient Surface-Water Quality Monitoring Network. Monotonic trends in flow-adjusted values of water quality were determined by use of procedures in the ESTREND computer program. A 0.05 level of significance was selected to indicate a trend. Results of tests were not reported if there were an insufficient number of measurements or insufficient number of detected concentrations, or if the results of the tests were affected by a change in data-collection methods. Trends in values of dissolved oxygen, pH, and total dissolved solids were identified using the Seasonal Kendall test. Trends or no trends in year-round concentrations of dissolved oxygen were determined for 66 stations; decreases at 4 stations and increases at 0 stations were identified. Trends or no trends in growing-season concentrations of dissolved oxygen were determined for 65 stations; decreases at 4 stations and increases at 4 stations were identified. Tests of pH values determined trends or no trends at 26 stations; decreases at 2 stations and increases at 3 stations were identified. Trends or no trends in total dissolved solids were reported for all 70 stations; decreases at 0 stations and increases at 24 stations were identified. Trends in total phosphorus, total organic nitrogen plus ammonia, and dissolved nitrate plus nitrite were identified by use of Tobit regression. Two sets of trend tests were conducted-one set with all measurements and a second set with all measurements except the most extreme outlier if one could be identified. The result of the test with all measurements is reported if the results of the two tests are equivalent. The result of the test without the outlier is reported if the results of the two tests are not equivalent. Trends or no trends in total phosphorus were determined for 69 stations. Decreases at 12 stations and increases at 5 stations were identified. Of the five stations on the Delaware River included in this study, decreases in concentration were identified at four. Trends or no trends in total organic nitrogen plus ammonia were determined for 69 stations. Decreases and increases in concentrations were identified at six and nine stations, respectively. Trends or no trends in dissolved nitrate plus nitrite were determined for 66 stations. Decreases and increases in concentration were identified at 4 and 19 stations, respectively.
Lu, Yi-Hsuan; Lin, Wei-Hao; Yang, Chao-Yao; Chiu, Yi-Hsuan; Pu, Ying-Chih; Lee, Min-Han; Tseng, Yuan-Chieh; Hsu, Yung-Jung
2014-08-07
An environmentally benign antisolvent method has been developed to prepare Cu(2+)-doped ZnO nanocrystals with controllable dopant concentrations. A room temperature ionic liquid, known as a deep eutectic solvent (DES), was used as the solvent to dissolve ZnO powders. Upon the introduction of the ZnO-containing DES into a bad solvent which shows no solvation to ZnO, ZnO was precipitated and grown due to the dramatic decrease of solubility. By adding Cu(2+) ions to the bad solvent, the growth of ZnO from the antisolvent process was accompanied by Cu(2+) introduction, resulting in the formation of Cu(2+)-doped ZnO nanocrystals. The as-prepared Cu(2+)-doped ZnO showed an additional absorption band in the visible range (400-800 nm), which conduced to an improvement in the overall photon harvesting efficiency. Time-resolved photoluminescence spectra, together with the photovoltage information, suggested that the doped Cu(2+) may otherwise trap photoexcited electrons during the charge transfer process, inevitably depressing the photoconversion efficiency. The photoactivity of Cu(2+)-doped ZnO nanocrystals for photoelectrochemical water oxidation was effectively enhanced in the visible region, which achieved the highest at 2.0 at% of Cu(2+). A further increase in the Cu(2+) concentration however led to a decrease in the photocatalytic performance, which was ascribed to the significant carrier trapping caused by the increased states given by excessive Cu(2+). The photocurrent action spectra illustrated that the enhanced photoactivity of the Cu(2+)-doped ZnO nanocrystals was mainly due to the improved visible photon harvesting achieved by Cu(2+) doping. These results may facilitate the use of transition metal ion-doped ZnO in other photoconversion applications, such as ZnO based dye-sensitized solar cells and magnetism-assisted photocatalytic systems.
Physicochemical quality and health implications of bottled water brands sold in Ethiopia.
Amogne, Wossen T; Gizaw, Melaku; Abera, Daniel
2015-06-01
Water bottling companies often assert that their products are of the highest quality and are conforming to the standards. The objective of the study was to assess the physicochemical quality of bottled waters consumed in Ethiopia and to compare the findings with the national and international water quality standards. Eleven domestic and two imported bottled water brands were randomly purchased in Addis Ababa, Ethiopia at three different occasions from July 2013 to May 2014. A total of 39 composite samples were examined for aggregate parameters, major anions, and common cations in accordance with the procedures described in the standard methods. We found that 7.7% of the samples were containing higher levels of alkalinity, hardness, total dissolved solids, pH, HCO3-, Na+, and Ca2+ than the national standards and the WHO guidelines. However, the deviations from standards for all the above parameters were not statistically significant (one-sample t-test, P>0.05). Conversely, in some of the brands, some of the essential elements like Ca2+, K+, Mg2+, and F- were found at very low concentrations. The rest of the parameters, including CO3(2-), SO4(2-), PO4(3-) (orthophosphates), Cl-, F-, NO3-, NO2-, K+, Mg2+, Fe, Mn, Cr, Cd, Cu, Ni, and Pb were within the acceptable ranges in all the brands. Bottled water brands containing very high concentrations of dissolved substances may pose health risks for individuals living with heart and kidney related problems. On the other hand, brands having chemicals lower than the optimum level may also harm the health of consumers who choose those brands as a sole source of drinking water. Thus, we suggest those responsible authorities to ensure regular monitoring and testing for chemical compositions of bottled water.
Bayly, Simon R; King, Robert C; Honess, Davina J; Barnard, Peter J; Betts, Helen M; Holland, Jason P; Hueting, Rebekka; Bonnitcha, Paul D; Dilworth, Jonathan R; Aigbirhio, Franklin I; Christlieb, Martin
2008-11-01
A water-soluble glucose conjugate of the hypoxia tracer 64Cu-diacetyl-bis(N4-methylthiosemicarbazone) (64Cu-ATSM) was synthesized and radiolabeled (64Cu-ATSE/A-G). Here we report our initial biological experiments with 64Cu-ATSE/A-G and compare the results with those obtained for 64Cu-ATSM and 18F-FDG. The uptake of 64Cu-ATSE/A-G and 64Cu-ATSM into HeLa cells in vitro was investigated at a range of dissolved oxygen concentrations representing normoxia, hypoxia, and anoxia. Small-animal PET with 64Cu-ATSE/A-G was performed in male BDIX rats implanted with P22 syngeneic carcinosarcomas. Images of 64Cu-ATSM and 18F-FDG were obtained in the same model for comparison. 64CuATSE/A-G showed oxygen concentration-dependent uptake in vitro and, under anoxic conditions, showed slightly lower levels of cellular uptake than 64Cu-ATSM; uptake levels under hypoxic conditions were also lower. Whereas the normoxic uptake of 64Cu-ATSM increased linearly over time, 64Cu-ATSE/A-G uptake remained at low levels over the entire time course. In the PET study, 64CuATSE/A-G showed good tumor uptake and a biodistribution pattern substantially different from that of each of the controls. In marked contrast to the findings for 64Cu-ATSM, renal clearance and accumulation in the bladder were observed. 64Cu-ATSE/A-G did not display the characteristic brain and heart uptake of 18F-FDG. The in vitro cell uptake studies demonstrated that 64Cu-ATSE/A-G retained hypoxia selectivity and had improved characteristics when compared with 64Cu-ATSM. The in vivo PET results indicated a difference in the excretion pathways, with a shift from primarily hepatointestinal for 64Cu-ATSM to partially renal with 64Cu-ATSE/A-G. This finding is consistent with the hydrophilic nature of the glucose conjugate. A comparison with 18F-FDG PET results revealed that 64Cu-ATSE/A-G was not a surrogate for glucose metabolism. We have demonstrated that our method for the modification of Cu-bis(thiosemicarbazonato) complexes allows their biodistribution to be modified without negating their hypoxia selectivity or tumor uptake properties.
de Santiago-Martín, Ana; van Oort, Folkert; González, Concepción; Quintana, José R; Lafuente, Antonio L; Lamy, Isabelle
2015-01-01
The contribution of the nature instead of the total content of soil parameters relevant to metal bioavailability in lettuce was tested using a series of low-polluted Mediterranean agricultural calcareous soils offering natural gradients in the content and composition of carbonate, organic, and oxide fractions. Two datasets were compared by canonical ordination based on redundancy analysis: total concentrations (TC dataset) of main soil parameters (constituents, phases, or elements) involved in metal retention and bioavailability; and chemically defined reactive fractions of these parameters (RF dataset). The metal bioavailability patterns were satisfactorily explained only when the RF dataset was used, and the results showed that the proportion of crystalline Fe oxides, dissolved organic C, diethylene-triamine-pentaacetic acid (DTPA)-extractable Cu and Zn, and a labile organic pool accounted for 76% of the variance. In addition, 2 multipollution scenarios by metal spiking were tested that showed better relationships with the RF dataset than with the TC dataset (up to 17% more) and new reactive fractions involved. For Mediterranean calcareous soils, the use of reactive pools of soil parameters rather than their total contents improved the relationships between soil constituents and metal bioavailability. Such pool determinations should be systematically included in studies dealing with bioavailability or risk assessment. © 2014 SETAC.
Obrador, Ana; Gonzalez, Demetrio; Alvarez, Jose M
2013-05-22
To ensure an optimal concentration of Cu in food crops, the effectiveness of eight liquid Cu fertilizers was studied in a spinach ( Spinacia oleracea L.) crop grown on Cu-deficient soil under greenhouse conditions. Plant dry matter yields, Cu concentrations in spinach plants (total and morpholino acid (MES)- and ethylenediaminedisuccinic acid (EDDS)-extractable), and Cu uptakes were studied. The behavior of Cu in soil was evaluated by both single and sequential extraction procedures. The highest quantities of Cu in labile forms in the soil, total uptakes, and Cu concentrations in the plants were associated with the application of the two sources that contained Cu chelated by EDTA and/or DTPA. The fertilizers containing these Cu chelates represent a promising approach to achieve high levels of agronomic biofortification. The stronger correlations obtained between low-molecular-weight organic acid-extractable Cu in soil and the Cu concentrations and Cu uptakes by the plants show the suitability of this soil extraction method for predicting Cu available to spinach plants.
Ryberg, Karen R.
2006-01-01
This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Bureau of Reclamation, U.S. Department of the Interior, to estimate water-quality constituent concentrations in the Red River of the North at Fargo, North Dakota. Regression analysis of water-quality data collected in 2003-05 was used to estimate concentrations and loads for alkalinity, dissolved solids, sulfate, chloride, total nitrite plus nitrate, total nitrogen, total phosphorus, and suspended sediment. The explanatory variables examined for regression relation were continuously monitored physical properties of water-streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen. For the conditions observed in 2003-05, streamflow was a significant explanatory variable for all estimated constituents except dissolved solids. pH, water temperature, and dissolved oxygen were not statistically significant explanatory variables for any of the constituents in this study. Specific conductance was a significant explanatory variable for alkalinity, dissolved solids, sulfate, and chloride. Turbidity was a significant explanatory variable for total phosphorus and suspended sediment. For the nutrients, total nitrite plus nitrate, total nitrogen, and total phosphorus, cosine and sine functions of time also were used to explain the seasonality in constituent concentrations. The regression equations were evaluated using common measures of variability, including R2, or the proportion of variability in the estimated constituent explained by the regression equation. R2 values ranged from 0.703 for total nitrogen concentration to 0.990 for dissolved-solids concentration. The regression equations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.1 for dissolved solids to 35.2 for total nitrite plus nitrate. Regression equations also were used to estimate daily constituent loads. Load estimates can be used by water-quality managers for comparison of current water-quality conditions to water-quality standards expressed as total maximum daily loads (TMDLs). TMDLs are a measure of the maximum amount of chemical constituents that a water body can receive and still meet established water-quality standards. The peak loads generally occurred in June and July when streamflow also peaked.
Kuhn, M. Keshia; Neubauer, Elisabeth; Hofmann, Thilo; von der Kammer, Frank; Aiken, George R.; Maurice, Patricia A.
2015-01-01
Concentrations and distributions of metals in Suwannee River (SR) raw filtered surface water (RFSW) and dissolved organic matter (DOM) processed by reverse osmosis (RO), XAD-8 resin (for humic and fulvic acids [FA]), and XAD-4 resin (for “transphilic” acids) were analyzed by asymmetrical flow field-flow fractionation (AsFlFFF). SR samples were compared with DOM samples from Nelson's Creek (NLC), a wetland-draining stream in northern Michigan; previous International Humic Substances Society (IHSS) FA and RO samples from the SR; and an XAD-8 sample from Lake Fryxell (LF), Antarctica. Despite application of cation exchange during sample processing, all XAD and RO samples contained substantial metal concentrations. AsFlFFF fractograms allowed metal distributions to be characterized as a function of DOM component molecular weight (MW). In SR RFSW, Fe, Al, and Cu were primarily associated with intermediate to higher than average MW DOM components. SR RO, XAD-8, and XAD-4 samples from May 2012 showed similar MW trends for Fe and Al but Cu tended to associate more with lower MW DOM. LF DOM had abundant Cu and Zn, perhaps due to amine groups that should be present due to its primarily algal origins. None of the fractograms showed obvious evidence for mineral nanoparticles, although some very small mineral nanoparticles might have been present at trace concentrations. This research suggests that AsFlFFF is important for understanding how metals are distributed in different DOM samples (including IHSS samples), which may be key to metal reactivity and bioavailability.
Lim, H S; Lim, W; Hu, J Y; Ziegler, A; Ong, S L
2015-01-01
The filter media in biofiltration systems play an important role in removing potentially harmful pollutants from urban stormwater runoff. This study compares the heavy metal removal potential (Cu, Zn, Cd, Pb) of five materials (potting soil, compost, coconut coir, sludge and a commercial mix) using laboratory columns. Total/dissolved organic carbon (TOC/DOC) was also analysed because some of the test materials had high carbon content which affects heavy metal uptake/release. Potting soil and the commercial mix offered the best metal uptake when dosed with low (Cu: 44.78 μg/L, Zn: 436.4 μg/L, Cd, 1.82 μg/L, Pb: 51.32 μg/L) and high concentrations of heavy metals (Cu: 241 μg/L, Zn: 1127 μg/L, Cd: 4.57 μg/L, Pb: 90.25 μg/L). Compost and sludge also had high removal efficiencies (>90%). Heavy metal leaching from these materials was negligible. A one-month dry period between dosing experiments did not affect metal removal efficiencies. TOC concentrations from all materials increased after the dry period. Heavy metal removal was not affected by filter media depth (600 mm vs. 300 mm). Heavy metals tended to accumulate at the upper 5 cm of the filter media although potting soil showed bottom-enriched concentrations. We recommend using potting soil as the principal media mixed with compost or sludge since these materials perform well and are readily available. The use of renewable materials commonly found in Singapore supports a sustainable approach to urban water management. Copyright © 2014 Elsevier Ltd. All rights reserved.
Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.
2007-01-30
At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previousmore » work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the monitoring at both sites are then presented in both text and graphics. The findings and recommendations for further research are discussed, followed by a listing of the references cited in the report.« less
Guo, Yuedong; Song, Changchun; Wan, Zhongmei; Tan, Wenwen; Lu, Yongzheng; Qiao, Tianhua
2014-11-01
Permafrost soils act as large sinks of organic carbon but are highly sensitive to interference such as changes in land use, which can greatly influence dissolved carbon loads in streams. This study examines the effects of long-term land reclamation on seasonal concentrations of dissolved carbons in the upper reaches of the Nenjiang River, northeast China. A comparison of streams in natural and agricultural systems shows that the dissolved organic carbon (DOC) concentration is much lower in the agricultural stream (AG) than in the two natural streams (WAF, wetland dominated; FR, forest dominated), suggesting that land use change is associated with reduced DOC exporting capacity. Moreover, the fluorescence indexes and the ratio of dissolved carbon to nitrogen also differ greatly between the natural and agricultural streams, indicating that the chemical characteristics and the origin of the DOC released from the whole reaches are also altered to some extent. Importantly, the exporting concentration of dissolved inorganic carbon (DIC) and its proportion of total dissolved carbon (TDC) substantially increase following land reclamation, which would largely alter the carbon cycling processes in the downstream fluvial system. Although the strong association between the stream discharge and the DOC concentration was unchanged, the reduction in total soil organic carbon following land reclamation led to remarkable decline of the total flux and exporting coefficient of the dissolved carbons. The results suggest that dissolved carbons in permafrost streams have been greatly affected by changes in land use since the 1970s, and the changes in the concentration and chemical characteristics of dissolved carbons will last until the alteration in both the traditional agriculture pattern and the persistent reclamation activities.
Zhao, Yaqi; Huang, Lei; Chen, Yucheng
2018-07-01
Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.
NASA Astrophysics Data System (ADS)
Kiikkilä, O.; Nieminen, T.; Starr, M.; Ukonmaanaho, L.
2012-04-01
Boreal peatlands form an important terrestrial carbon reserve and are a major source of dissolved organic matter (DOM) to surface waters, particularly when disturbed through forestry practices such as draining or timber harvesting. Heavy metals show a strong affinity to organic matter and so, along with DOM, heavy metals can be mobilized and transported from the soil to surface waters and sediments where they may become toxic to aquatic organisms and pass up the food chain. The complexation of heavy metals with DOM can be expected to be related and determined by the chemical characteristics of DOM and oxidation/reducing conditions in the peat. We extracted interstitial water from peat samples and determined the concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and Al, Cu, Zn and Fe in various fractions of DOM isolated by adsorption properties (XAD-8 fractionation) and molecular-weight (ultrafiltration). The peat samples were taken from 0-30 and 30-50 cm depth in drained peatland catchments two years after whole-tree or stem-only clear-cut harvesting (Scots pine or Norway spruce) had been carried out. The samples from the upper layer had been subject to alternating saturation/aeration conditions while the deeper layer had been continuously under the water table. The fractionation of DOC and DON according to both adsorption properties and molecular-weight fractions clearly differed between the upper and lower peat layers. While the hydrophobic acid fraction contained proportionally more DOC and DON than the hydrophilic acid fraction in the upper peat layer the results were vice versa in the lower peat layer. High-molecular-weight compounds (> 100 kDa) were proportionally more abundant in the upper and low-molecular-weight compounds (< 1 kDa) in the lower peat layer. These differences are assumed to reflect differences in the aerobic/ anaerobic conditions and degree of decomposition between the two layers. The concentrations of Zn, Al, Fe and DON correlated positively with DOC concentrations whereas the concentration Cu did not correlate with DOC concentrations. Heavy metal concentrations in different molecular-weight fractions indicated that Al, Cu, Zn and Fe were mostly associated with high-molecular-weight compounds and only a small fraction existed as free metal ions in solution. There were no clear differences in the chemical characteristics of DOC or DON or heavy metal concentrations between the two harvesting treatments.
NASA Astrophysics Data System (ADS)
Shevchenko, Vladimir P.; Pokrovsky, Oleg S.; Vorobyev, Sergey N.; Krickov, Ivan V.; Manasypov, Rinat M.; Politova, Nadezhda V.; Kopysov, Sergey G.; Dara, Olga M.; Auda, Yves; Shirokova, Liudmila S.; Kolesnichenko, Larisa G.; Zemtsov, Valery A.; Kirpotin, Sergey N.
2017-11-01
In order to better understand the chemical composition of snow and its impact on surface water hydrochemistry in the poorly studied Western Siberia Lowland (WSL), the surface layer of snow was sampled in February 2014 across a 1700 km latitudinal gradient (ca. 56.5 to 68° N). We aimed at assessing the latitudinal effect on both dissolved and particulate forms of elements in snow and quantifying the impact of atmospheric input to element storage and export fluxes in inland waters of the WSL. The concentration of dissolved+colloidal (< 0.45 µm) Fe, Co, Cu, As and La increased by a factor of 2 to 5 north of 63° N compared to southern regions. The pH and dissolved Ca, Mg, Sr, Mo and U in snow water increased with the rise in concentrations of particulate fraction (PF). Principal component analyses of major and trace element concentrations in both dissolved and particulate fractions revealed two factors not linked to the latitude. A hierarchical cluster analysis yielded several groups of elements that originated from alumino-silicate mineral matrix, carbonate minerals and marine aerosols or belonging to volatile atmospheric heavy metals, labile elements from weatherable minerals and nutrients. The main sources of mineral components in PF are desert and semi-desert regions of central Asia. The snow water concentrations of DIC, Cl, SO4, Mg, Ca, Cr, Co, Ni, Cu, Mo, Cd, Sb, Cs, W, Pb and U exceeded or were comparable with springtime concentrations in thermokarst lakes of the permafrost-affected WSL zone. The springtime river fluxes of DIC, Cl, SO4, Na, Mg, Ca, Rb, Cs, metals (Cr, Co, Ni, Cu, Zn, Cd, Pb), metalloids (As, Sb), Mo and U in the discontinuous to continuous permafrost zone (64-68° N) can be explained solely by melting of accumulated snow. The impact of snow deposition on riverine fluxes of elements strongly increased northward, in discontinuous and continuous permafrost zones of frozen peat bogs. This was consistent with the decrease in the impact of rock lithology on river chemical composition in the permafrost zone of the WSL, relative to the permafrost-free regions. Therefore, the present study demonstrates significant and previously underestimated atmospheric input of many major and trace elements to their riverine fluxes during spring floods. A broader impact of this result is that current estimations of river water fluxes response to climate warming in high latitudes may be unwarranted without detailed analysis of winter precipitation.
Colorimetric sensing of selenocystine using gold nanoparticles.
Liu, Liyang; Wang, Xia; Yang, Juan; Bai, Yan
2017-10-15
We present a highly selective and sensitive colorimetric method for the detection of selenocystine (SeCys) coexisting with other amino acids, especially cysteine (Cys) using the gold nanoparticles (AuNPs). Firstly, Cys was oxidized to cystine (Cys-Cys) by dissolved oxygen under Cu 2+ catalysis in the pre-reaction, which eliminated the interference of Cys in the SeCys sensing process. Then SeCys induced the rapid aggregation of AuNPs through Au-Se bond and complex formation of Cu 2+ -SeCys in the colorimetric reaction, in which the color change of AuNPs from red to blue or purple with the naked eye detection or with a UV-vis spectrophotometric determination. The concentration of SeCys was quantified by the value at 670 nm from the second-derivative SPR absorbance spectrum. The linear range was from 2 μM to 14 μM with correlation coefficient of 0.999 and a detection limit (LOD) was 0.14 μM. Moreover, the colorimetric response of AuNPs exhibited remarkable specificity to SeCys coexisting with 18 amino acids in a simulation sample, in which the total concentration of Cys and Cys-Cys was less than 15 μM and the each concentration of other 16 common amino acids was 10 μM. Copyright © 2017 Elsevier Inc. All rights reserved.
Kalnejais, Linda H.; Martin, W. R.; Bothner, Michael H.
2015-01-01
To determine the conditions that lead to a diffusive release of dissolved metals from coastal sediments, porewater profiles of Ag, Cu, and Pb have been collected over seven years at two contrasting coastal sites in Massachusetts, USA. The Hingham Bay (HB) site is a contaminated location in Boston Harbor, while the Massachusetts Bay (MB) site is 11 km offshore and less impacted. At both sites, the biogeochemical cycles include scavenging by Fe-oxyhydroxides and release of dissolved metals when Fe-oxyhydroxides are reduced. Important differences in the metal cycles at the two sites, however, result from different redox conditions. Porewater sulfide and seasonal variation in redox zone depth is observed at HB, but not at MB. In summer, as the conditions become more reducing at HB, trace metals are precipitated as sulfides and are no longer associated with Fe-oxyhydroxides. Sulfide precipitation close to the sediment–water interface limits the trace metal flux in summer and autumn at HB, while in winter, oxidation of the sulfide phases drives high benthic fluxes of Cu and Ag, as oxic conditions return. The annual diffusive flux of Cu at HB is found to be significant and contributes to the higher than expected water column Cu concentrations observed in Boston Harbor. At MB, due to the lower sulfide concentrations, the association of trace metals with Fe-oxyhydroxides occurs throughout the year, leading to more stable fluxes. A surface enrichment of solid phase trace metals was found at MB and is attributed to the persistent scavenging by Fe-oxyhydroxides. This process is important, particularly at sites that are less reducing, because it maintains elevated metal concentrations at the surface despite the effects of bioturbation and sediment accumulation, and because it may increase the persistence of metal contamination in surface sediments.
Guan, Ming; Jin, Zexin; Li, Junmin; Pan, Xiaocui; Wang, Suizi; Li, Yuelin
2016-01-01
The aim of this study was to investigate the effects of temperature and Cu on the morphological and physiological traits of Elsholtzia haichowensis grown in soils amended with four Cu concentrations (0, 50, 500, and 1000 mg kg(-1)) under ambient temperature and slight warming. At the same Cu concentration, the height, shoot dry weight, total plant dry weight, and root morphological parameters such as length, surface area and tip number of E. haichowensis increased due to the slight warming. The net photosynthetic rate, stomatal conductance, transpiration, light use efficiency were also higher under the slight warming than under ambient temperature. The increased Cu concentrations, total Cu uptake, bioaccumulation factors and tolerance indexes of shoots and roots were also observed at the slight warming. The shoot dry weight, root dry weight, total plant dry weight and the bioaccumulation factors of shoots and roots at 50 mg Cu kg(-1) were significantly higher than those at 500 and 1000 mg Cu kg(-1) under the slight warming. Therefore, the climate warming may improve the ability of E. haichowensis to phytoremediate Cu-contaminated soil, and the ability improvement greatly depended on the Cu concentrations in soils.
Effect of Water Nutrient Pollution on Long-Term Corrosion of 90:10 Copper Nickel Alloy
Melchers, Robert E.
2015-01-01
Due to their good corrosion resistance, copper and copper alloys such as 90:10 Cu-Ni are used extensively in high-quality marine and industrial piping systems and also in marine, urban, and industrial environments. Their corrosion loss and pitting behaviour tends to follow a bi-modal trend rather than the classic power law. Field data for 90:10 copper nickel immersed in natural seawater are used to explore the effect of water pollution and in particular the availability of critical nutrients for microbiologically induced corrosion. It is shown, qualitatively, that increased dissolved inorganic nitrogen increases corrosion predominantly in the second, long-term, mode of the model. Other, less pronounced, influences are salinity and dissolved oxygen concentration. PMID:28793696
Chemical modifications of estuarine water by a power plant using continuous chlorination
Helz, G.R.; Sugam, R.; Sigleo, A.C.
1984-01-01
A season long study at a major electric power plant on the Patuxent Estuary, MD, indicated that more than 88% of the applied chlorine (22-38 ??N) disappeared within the plant. The remainder decayed in a manner approximated by a first-order rate law (T1/2 = 0.6-4.6 h). Increases in dissolved ammonia (contrary to conventional breakpoint chemistry) and losses in dissolved manganese were generally observed between the intake and discharge canals. The ammonia buildup must have derived either from the particulate (e.g., microorganism) nitrogen or from dissolved organic nitrogen. Only traces of trihalomethanes were observed, but there was evidence for a >6 km long discharge plume containing colloidal bromocarbons. The near absence of trihalomethanes is believed to be a result of the extremely rapid disappearance of free halogen oxidants. Sediments in the discharge canal were notably enriched in copper, probably from the Cu90Ni10 condenser tubes, but negligible enrichment was observed beyond the discharge canal. ?? 1984 American Chemical Society.
An Atom-Probe Tomographic Study of Arc Welds in a Multi-Component High-Strength Low-Alloy Steel
NASA Astrophysics Data System (ADS)
Hunter, Allen H.; Farren, Jeffrey D.; DuPont, John N.; Seidman, David N.
2013-04-01
An experimental plate steel with the composition Fe-1.39Cu-2.7Ni-0.58Al-0.48Mn-0.48Si-0.065Nb-0.05C (wt pct) or alternatively Fe-1.43Cu-2.61Ni-1.21Al-0.48Mn-0.98Si-0.039Nb-0.23C at. pct has been recently produced at Northwestern University for use in Naval hull and deck applications—it is designated NUCu-140. To understand the microstructural changes occurring in NUCu-140 steel after gas-metal arc welding (GMAW), a detailed study of the heat-affected and fusion zones was performed throughout the weld cross section using microhardness, metallographic, chemical, and atom-probe tomographic analyses. Local-electrode atom-probe (LEAP) tomography was employed to measure the morphology and compositions of Cu-rich precipitates from each region. The mean radius, number density, volume fraction, and compositions of the precipitates, as well as the interfacial concentration profiles, are measured. The Cu precipitates dissolve partially from the heat-affected zone (HAZ) thermal cycle, and freshly formed sub-nanometer radius Cu-rich precipitates nucleate in both the HAZ and fusion zone (FZ) during cooling; however, the precipitation of Cu during cooling in the HAZ and FZ is not sufficient to restore the lost strength. The precipitation in the FZ is reduced compared to the HAZ due to a mismatched Cu composition of the weld. Multi-pass welding is suggested to restore strength in the GMAW sample by promoting Cu precipitate nucleation and growth in the HAZ and FZ.
Wesolowski, Edwin A.
1996-01-01
Two separate studies to simulate the effects of discharging treated wastewater to the Red River of the North at Fargo, North Dakota, and Moorhead, Minnesota, have been completed. In the first study, the Red River at Fargo Water-Quality Model was calibrated and verified for icefree conditions. In the second study, the Red River at Fargo Ice-Cover Water-Quality Model was verified for ice-cover conditions.To better understand and apply the Red River at Fargo Water-Quality Model and the Red River at Fargo Ice-Cover Water-Quality Model, the uncertainty associated with simulated constituent concentrations and property values was analyzed and quantified using the Enhanced Stream Water Quality Model-Uncertainty Analysis. The Monte Carlo simulation and first-order error analysis methods were used to analyze the uncertainty in simulated values for six constituents and properties at sites 5, 10, and 14 (upstream to downstream order). The constituents and properties analyzed for uncertainty are specific conductance, total organic nitrogen (reported as nitrogen), total ammonia (reported as nitrogen), total nitrite plus nitrate (reported as nitrogen), 5-day carbonaceous biochemical oxygen demand for ice-cover conditions and ultimate carbonaceous biochemical oxygen demand for ice-free conditions, and dissolved oxygen. Results are given in detail for both the ice-cover and ice-free conditions for specific conductance, total ammonia, and dissolved oxygen.The sensitivity and uncertainty of the simulated constituent concentrations and property values to input variables differ substantially between ice-cover and ice-free conditions. During ice-cover conditions, simulated specific-conductance values are most sensitive to the headwatersource specific-conductance values upstream of site 10 and the point-source specific-conductance values downstream of site 10. These headwater-source and point-source specific-conductance values also are the key sources of uncertainty. Simulated total ammonia concentrations are most sensitive to the point-source total ammonia concentrations at all three sites. Other input variables that contribute substantially to the variability of simulated total ammonia concentrations are the headwater-source total ammonia and the instream reaction coefficient for biological decay of total ammonia to total nitrite. Simulated dissolved-oxygen concentrations at all three sites are most sensitive to headwater-source dissolved-oxygen concentration. This input variable is the key source of variability for simulated dissolved-oxygen concentrations at sites 5 and 10. Headwatersource and point-source dissolved-oxygen concentrations are the key sources of variability for simulated dissolved-oxygen concentrations at site 14.During ice-free conditions, simulated specific-conductance values at all three sites are most sensitive to the headwater-source specific-conductance values. Headwater-source specificconductance values also are the key source of uncertainty. The input variables to which total ammonia and dissolved oxygen are most sensitive vary from site to site and may or may not correspond to the input variables that contribute the most to the variability. The input variables that contribute the most to the variability of simulated total ammonia concentrations are pointsource total ammonia, instream reaction coefficient for biological decay of total ammonia to total nitrite, and Manning's roughness coefficient. The input variables that contribute the most to the variability of simulated dissolved-oxygen concentrations are reaeration rate, sediment oxygen demand rate, and headwater-source algae as chlorophyll a.
NASA Astrophysics Data System (ADS)
Zhang, Tao; Shen, Jun; Sang, Jia-Xin; Li, Yang; He, Pei-Pei
2015-08-01
In this paper, Mg-6Zn-3Cu- xSn (ZC63- xSn) magnesium alloys with different Sn contents (0, 1, 2, 4 wt pct) were fabricated and subjected to different heat treatments. The microstructures and mechanical properties of the obtained ZC63- xSn samples were investigated by optical microscopy, X-ray diffraction, scanning electron microscopy, Vickers hardness testing, and tensile testing. It was found that the As-cast Mg-6Zn-3Cu (ZC63) magnesium alloy mainly contained α-Mg grains and Mg(Zn,Cu) particles. Sn dissolved in α-Mg grains when Sn content was below 2 wt pct while Mg2Sn phase forms in the case of Sn content was above 4 wt pct. Addition of Sn refined both α-Mg grains and Mg(Zn,Cu) particles, and increased the volume fraction of Mg(Zn,Cu) particles. Compared with the Sn-free alloy, the microhardness of Sn-containing alloys increased greatly and that of As-extrude ZC63-4Sn sample achieved the highest value. The strength of ZC63 magnesium alloy was significantly enhanced because of Sn addition, which was attributed to grain refinement strengthening, solid solution strengthening, and precipitation strengthening. Furthermore, the ultimate yield stress, yield strength, and elongation of ZC63- xSn magnesium alloys were increased owing to the deceasing grain size induced by extrusion process.
Yıldırım, Gülşen; Tokalıoğlu, Şerife
2016-02-01
A total of 36 street dust samples were collected from the streets of the Organised Industrial District in Kayseri, Turkey. This region includes a total of 818 work places in various industrial areas. The modified BCR (the European Community Bureau of Reference) sequential extraction procedure was applied to evaluate the mobility and bioavailability of trace elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in street dusts of the study area. The BCR was classified into three steps: water/acid soluble fraction, reducible and oxidisable fraction. The remaining residue was dissolved by using aqua regia. The concentrations of the metals in street dust samples were determined by flame atomic absorption spectrometry. Also the effect of the different grain sizes (<38µm, 38-53µm and 53-74µm) of the 36 street dust samples on the mobility of the metals was investigated using the modified BCR procedure. The mobility sequence based on the sum of the first three phases (for <74µm grain size) was: Cd (71.3)>Cu (48.9)>Pb (42.8)=Cr (42.1)>Ni (41.4)>Zn (40.9)>Co (36.6)=Mn (36.3)>Fe (3.1). No significant difference was observed among metal partitioning for the three particle sizes. Correlation, principal component and cluster analysis were applied to identify probable natural and anthropogenic sources in the region. The principal component analysis results showed that this industrial district was influenced by traffic, industrial activities, air-borne emissions and natural sources. The accuracy of the results was checked by analysis of both the BCR-701 certified reference material and by recovery studies in street dust samples. Copyright © 2015 Elsevier Inc. All rights reserved.
Cary, L.E.
1989-01-01
Data for selected water quality variables were evaluated for trends at two sampling stations--Flathead River at Flathead, British Columbia (Flathead station) and Flathead River at Columbia Falls, Montana (Columbia Falls station). The results were compared between stations. The analyses included data from water years 1975-86 at the Flathead station and water years 1979-86 at the Columbia Falls station. The seasonal Kendall test was applied to adjusted concentrations for variables related to discharge and to unadjusted concentrations for the remaining variables. Slope estimates were made for variables with significant trends unless data were reported as less than the detection limit. At the Flathead station, concentrations of dissolved solids, calcium, magnesium, sodium, dissolved nitrite plus nitrate nitrogen, ammonia nitrogen (total and dissolved), total organic nitrogen, and total phosphorus increased during the study period. Concentrations of total nitrite plus nitrate nitrogen and dissolved iron decreased during the same period. At the Columbia Falls station, concentrations increased for calcium and magnesium and decreased for sulfate and dissolved phosphorus. No trends were detected for 10 other variables tested at each station. Data for the Flathead station were reanalyzed for water years 1979-86. Trends in the data increased for magnesium and dissolved nitrite plus nitrate nitrogen and decreased for dissolved iron. Magnesium was the only variable that displayed a trend (increasing) at both stations. The increasing trends that were detected probably will not adversely affect the water quality of the Flathead River in the near future. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komolov, A. S., E-mail: akomolov07@ya.ru; Lazneva, E. F.; Pshenichnyuk, S. A.
2013-07-15
The formation of an interface during the deposition of unsubstituted copper phthalocyanine (CuPc) films on the surface of hexadecafluoro copper phthalocyanine (F{sub 16}-CuPc) films is studied. An incident low-energy electron beam with energies from 0 to 25 eV is used to test the surface under study according to the very-low-energy electron-diffraction technique (VLEED) in the mode of total current spectroscopy. For F{sub 16}-CuPc films, the structure of the maxima in the total current spectra and its main differences from the structure of the maxima for the CuPc film are determined in the energy range from 5 to 15 eV abovemore » the Fermi level. The differences in the structure of vacant electron orbitals for CuPc and F{sub 16}-CuPc are also revealed using density functional theory calculations. As a result of an analysis of variations in the intensities of the total current spectra of the CuPc and F{sub 16}-CuPc films, it is assumed that an intermediate layer up to 1 nm thick appears during the formation of an interface between these films, which is characterized by a spread of the features in the total current spectrum. The height, width, and change in the work function are determined for the studied F{sub 16}-CuPc/NuPc interface barrier. A decrease in the level of vacuum by 0.7 eV occurs in the boundary region, which corresponds to electron density transfer from the CuPc film toward the F{sub 16}-CuPc substrate.« less
Effects of elevated total dissolved solids on bivalves
A series of experiments were performed to assess the toxicity of different dominant salt recipes of excess total dissolved solids (TDS) to organisms in mesocosms. Multiple endpoints were measured across trophic levels. We report here the effects of four different TDS recipes on b...
COMMUNITY SCALE STREAM TAXA SENSITIVITIES TO DIFFERENT COMPOSITIONS OF EXCESS TOTAL DISSOLVED SOLIDS
Model stream chronic dosing studies (42 d) were conducted with three total dissolved solids (TDS) recipes. The recipes differed in composition of major ions. Community scale emergence was compared with single-species responses conducted simultaneously using the whole effluent tox...
Eddins, W.H.; Crawford, J.K.
1984-01-01
In 1979-81, water samples were collected from 119 sites on streams throughout the City of Charlotte and Mecklenburg County, North Carolina, and were analyzed for specific conductance, dissolved chloride, hardness, pH, total alkalinity, total phosphorus, trace elements, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, silver, and zinc and biological measures including dissolved oxygen, biochemical oxygen demand, fecal coliform bacteria, and fecal streptococcus bacteria. Sampling was conducted during both low flow (base flow) and high flow. Several water-quality measures including pH, total arsenic, total cadmium, total chromium, total copper, total iron, total lead, total manganese, total mercury, total silver, total zinc, dissolved oxygen, and fecal coliform bacteria at times exceeded North Carolina water-quality standards in various streams. Runoff from non-point sources appears to contribute more to the deterioration of streams in Charlotte and Mecklenburg County than point-source effluents. Urban and industrial areas contribute various trace elements. Residential and rural areas and municipal waste-water treatment plants contribute high amounts of phosphorus.
Water-quality data for Smith and Bybee Lakes, Portland, Oregon, June to November, 1982
Clifton, Daphne G.
1983-01-01
Water-quality monitoring at Smith and Bybee Lakes included measurement of water temperature, dissolved oxygen concentration and percent saturation, pH, specific conductance, lake depth, alkalinity, dissolved carbon, total dissolved solids, secchi disk light transparency, nutrients, and chlorophyll a and b. In addition, phytoplankton, zooplankton, and benthic invertebrate populations were identified and enumerated. Lakebed sediment was analyzed for particle size, volatile solids, immediate oxygen demand, trace metals, total organic carbon, nutrients, and organic constituents. (USGS)
Dissolved carbon biogeochemistry and export in mangrove-dominated rivers of the Florida Everglades
NASA Astrophysics Data System (ADS)
Ho, David T.; Ferrón, Sara; Engel, Victor C.; Anderson, William T.; Swart, Peter K.; Price, René M.; Barbero, Leticia
2017-05-01
The Shark and Harney rivers, located on the southwest coast of Florida, USA, originate in the freshwater, karstic marshes of the Everglades and flow through the largest contiguous mangrove forest in North America. In November 2010 and 2011, dissolved carbon source-sink dynamics was examined in these rivers during SF6 tracer release experiments. Approximately 80 % of the total dissolved carbon flux out of the Shark and Harney rivers during these experiments was in the form of inorganic carbon, either via air-water CO2 exchange or longitudinal flux of dissolved inorganic carbon (DIC) to the coastal ocean. Between 42 and 48 % of the total mangrove-derived DIC flux into the rivers was emitted to the atmosphere, with the remaining being discharged to the coastal ocean. Dissolved organic carbon (DOC) represented ca. 10 % of the total mangrove-derived dissolved carbon flux from the forests to the rivers. The sum of mangrove-derived DIC and DOC export from the forest to these rivers was estimated to be at least 18.9 to 24.5 mmol m-2 d-1, a rate lower than other independent estimates from Shark River and from other mangrove forests. Results from these experiments also suggest that in Shark and Harney rivers, mangrove contribution to the estuarine flux of dissolved carbon to the ocean is less than 10 %.
Al-Bairuty, Genan A; Boyle, David; Henry, Theodore B; Handy, Richard D
2016-05-01
A few studies have investigated the interaction between copper toxicity and water pH in fishes, but little is known about the effects of acidic pH on the toxicity of copper nanoparticles (Cu-NPs). This study aimed to describe the sub-lethal toxic effects of Cu-NPs compared to CuSO4 at neutral and acidic water pH values in juvenile rainbow trout. Fish were exposed in triplicate (3 tanks/treatment) to control (no added Cu), or 20μgl(-1) of either Cu as CuSO4 or Cu-NPs, at pH 7 and 5 in a semi-static aqueous exposure regime for up to 7 days. Acidification of the water altered the mean primary particle size (at pH 7, 60±2nm and pH 5, 55±1nm) and dialysis experiments to measure dissolution showed an increased release of dissolved Cu from Cu-NPs at pH 5 compared to pH 7. Copper accumulation was observed in the gills of trout exposed to CuSO4 and Cu-NPs at pH 7 and 5, with a greater accumulation from the CuSO4 treatment than Cu-NPs at each pH. The liver also showed Cu accumulation with both Cu treatments at pH 7 only, whereas, the spleen and kidney did not show measurable accumulation of Cu at any of the water pH values. Exposure to acid water caused changes in the ionoregulatory physiology of control fish and also altered the observed effects of Cu exposure; at pH 5, branchial Na(+)/K(+)-ATPase activity was greater than at pH 7 and the inhibition of Na(+)/K(+)-ATPase activity caused by exposure to CuSO4 at pH 7 was also not observed. There were some changes in haematology and depletion of plasma Na(+) at pH 7 and 5 due to Cu exposure, but there were few material-type or pH effects. Overall, the data show that the accumulation of Cu is greater from CuSO4 than Cu-NPs; however, understanding of the effects of low pH on bioavailability of CuSO4 may not be directly transferred to Cu-NPs without further consideration of the physico-chemical behaviour of Cu-NPs in acid water. Copyright © 2016 Elsevier B.V. All rights reserved.
Lorenz, David L.; Robertson, Dale M.; Hall, David W.; Saad, David A.
2009-01-01
Many actions have been taken to reduce nutrient and suspended-sediment concentrations and the amount of nutrients and sediment transported in streams as a result of the Clean Water Act and subsequent regulations. This report assesses how nutrient and suspended-sediment concentrations and loads in selected streams have changed during recent years to determine if these actions have been successful. Flow-adjusted and overall trends in concentrations and trends in loads from 1993 to 2004 were computed for total nitrogen, dissolved ammonia, total organic nitrogen plus ammonia, dissolved nitrite plus nitrate, total phosphorus, dissolved phosphorus, total suspended material (total suspended solids or suspended sediment), and total suspended sediment for 49 sites in the Upper Mississippi, Ohio, Red, and Great Lakes Basins. Changes in total nitrogen, total phosphorus, and total suspended-material loads were examined from 1975 to 2003 at six sites to provide a longer term context for the data examined from 1993 to 2004. Flow-adjusted trends in total nitrogen concentrations at 19 of 24 sites showed tendency toward increasing concentrations, and overall trends in total nitrogen concentrations at 16 of the 24 sites showed a general tendency toward increasing concentrations. The trends in these flow-adjusted total nitrogen concentrations are related to the changes in fertilizer nitrogen applications. Flow-adjusted trends in dissolved ammonia concentrations from 1993 to 2004 showed a widespread tendency toward decreasing concentrations. The widespread, downward trends in dissolved ammonia concentrations indicate that some of the ammonia reduction goals of the Clean Water Act are being met. Flow-adjusted and overall trends in total organic plus ammonia nitrogen concentrations from 1993 to 2004 did not show a distinct spatial pattern. Flow-adjusted and overall trends in dissolved nitrite plus nitrate concentrations from 1993 to 2004 also did not show a distinct spatial pattern. Flow-adjusted trends in total phosphorus concentrations were upward at 24 of 40 sites. Overall trends in total phosphorus concentrations were mixed and showed no spatial pattern. Flow-adjusted and overall trends in dissolved phosphorus concentrations were consistently downward at all of the sites in the eastern part of the basins studied. The reduction in phosphorus fertilizer use and manure production east of the Mississippi River could explain most of the observed trends in dissolved phosphorus. Flow-adjusted trends in total suspended-material concentrations showed distinct spatial patterns of increasing tendencies throughout the western part of the basins studied and in Illinois and decreasing concentrations throughout most of Wisconsin, Iowa, and in the eastern part of the basins studied. Flow-adjusted trends in total phosphorus were strongly related to the flow-adjusted trends in suspended materials. The trends in the flow-adjusted suspended-sediment concentrations from 1993 to 2004 resembled those for suspended materials. The long-term, nonmonotonic trends in total nitrogen, total phosphorus, and suspended-material loads for 1975 to 2003 were described by local regression, LOESS, smoothing for six sites. The statistical significance of those trends cannot be determined; however, the long-term changes found for annual streamflow and load data indicate that the monotonic trends from 1993 to 2004 should not be extrapolated backward in time.
A recent conceptual model links high bulk electrical conductivities at hydrocarbon impacted sites to higher total dissolved solids (TDS) resulting from enhanced mineral weathering due to acids produced during biodegradation. In this study, we investigated the vertical distributio...
THE DETERMINATION OF TOTAL ORGANIC HALIDE IN WATER: A COMPARATIVE STUDY OF TWO INSTRUMENTS
Total organic halide (TOX) analyzers are commonly used to measure the amount of dissolved halogenated organic byproducts in disinfected waters. ecause of the lack of information on the identity of disinfection byproducts, rigorous testing of the dissolved organic halide (DOX) pro...
Cu2ZnSnS4 Nanoparticles Synthesized by a Novel Diethylenetriamine-Assisted Hydrothermal Method
NASA Astrophysics Data System (ADS)
Liang, Feng; Gao, Juan; Zou, Changwei; Shao, Lexi
2018-05-01
A diethylenetriamine (DETA)-assisted hydrothermal method was explored for the synthesis of kesterite Cu2ZnSnS4 (CZTS) nanoparticles. As complexing agent, DETA was employed to dissolve sulfur and to form complex with metal ions. By introducing DETA to the system, pure CZTS nanoparticles with bandgap of 1.54 eV could be successfully obtained and the agglomeration of samples could be restrained by increasing the concentration of DETA. From the discussion about the experimental results, the formation mechanism of CZTS nanoparticles was proposed. As the reagents used in this experiment is low-toxic and inexpensive, this method was considered as an effective and green route for the synthesis of CZTS nanoparticles.
Sorption of Molecular Oxygen by Metal-Ion Exchanger Nanocomposites
NASA Astrophysics Data System (ADS)
Krysanov, V. A.; Plotnikova, N. V.; Kravchenko, T. A.
2018-03-01
Kinetic features are studied of the chemisorption and reduction of molecular oxygen from water by metal-ion exchanger nanocomposites that differ in the nature of the dispersed metal and state of oxidation. In the Pd < Ag < Cu series, the increasing chemical activity of metal nanoparticles raises the degree of oxygen sorption due to its chemisorption and subsequent reduction, while the role of the molecular chemisorption stage increases in the Cu < Ag < Pd series. Metal particles or their oxides are shown to act as adsorption sites on the surface and in the pores of the ion-exchanger matrix; the equilibrium sorption coefficient for oxygen dissolved in water ranges from 20 to 50, depending on the nature and oxidation state of the metal component.
Trend analysis of selected water-quality constituents in the Verde River Basin, central Arizona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldys, S.
1990-01-01
Temporal trends of eight water quality constituents at six data collection sites in the Verde River basin in central Arizona were investigated using seasonal Kendall tau and ordinary least-squares regression methods of analysis. The constituents are dissolved solids, dissolved sulfate, dissolved arsenic, total phosphorus, pH, total nitrite plus nitrate-nitrogen, dissolved iron, and fecal coliform bacteria. Increasing trends with time in dissolved-solids concentrations of 7 to 8 mg/L/yr at Verde River near Camp Verde were found at significant level. An increasing trend in dissolved-sulfate concentrations of 3.59 mg/L/yr was also found at Verde River near Camp Verde, although at nonsignificant levels.more » Statistically significant decreasing trends with time in dissolved-solids and dissolved-sulfate concentrations were found at Verde River above Horseshoe Reservoir, which is downstream from Verde River near Camp Verde. Observed trends in the other constituents do not indicate the emergence of water quality problems in the Verde River basin. Analysis of the eight water quality constituents generally indicate nonvarying concentration levels after adjustment for seasonality and streamflow were made.« less
NASA Astrophysics Data System (ADS)
Johnson, C. Annette; Kaeppeli, Michael; Brandenberger, Sandro; Ulrich, Andrea; Baumann, Werner
1999-12-01
The leachate composition of the Landfill Lostorf, Buchs, Switzerland has been examined as a function rain events and dry periods between November 1994 and November 1996. Discharge and electrical conductivity of the central drainage discharge were monitored continuously, whilst samples for chemical analysis were taken at discrete intervals. The average total concentrations of Na, Cl, K, Mg, Ca and SO 4 are 44.5, 47.1, 11.8, 0.63, 8.2 and 12.4 mM, respectively. During rain events, the leachate is diluted by the preferential flow of rainwater into the drainage discharge. Drainage discharge pH values range between 8.68 and 11.28, the latter under dry conditions. Thermodynamic calculations indicate that CaSO 4, ettringite (3CaOAl 2O 3CaSO 4·32H 2O) and Al(OH) 3 may control the concentrations of the components Ca, SO 4 and Al. Dissolved Si may be in thermodynamic equilibrium with either Ca silicate hydrate or imogolite. Cadmium, Mo, V, Mn and Zn are also diluted during rain events and concentration changes agree with those of conductivity (representing the major constituents). Average concentrations are 0.012, 5.4, 2.3, 0.085, and 0.087 μM, respectively. Components such as Al, Cu, Sb and Cr increase in concentration with increased discharge. Average concentrations are 1.6, 0.27 and 0.21 μM, respectively. For Cu, the explanation lies in its affinity for total organic carbon (TOC). Thermodynamic calculations indicate that whilst dissolution/precipitation reactions with metal hydroxides and carbonates can explain the observed concentrations of Cd, sorption and complexation reactions probably influence the concentrations of Cu, Pb (average measurable concentration 0.013 μM), Zn and Mn. For the oxyanion species such as MoO 4 and WO 4 (average concentration 0.61 μM), it is probable that Ca metallate formation plays a dominant role in determining concentration ranges. Geochemical processes appear to determine concentration ranges and the hydrological factors, the fluctuations in concentration.
Highly charged swelling mica reduces Cu bioavailability in Cu-contaminated soils.
Stuckey, Jason W; Neaman, Alexander; Ravella, Ramesh; Komarneni, Sridhar; Martínez, Carmen Enid
2009-01-01
This is the first test of a highly charged swelling mica's (Na-2-mica) ability to reduce the plant-absorbed Cu in Cu-contaminated soils from Chile. Perennial ryegrass (Lolium perenne L.) was grown in two acid soils (Sector 2: pH 4.2, total Cu = 172 mg Cu kg(-1) and Sector 3: pH 4.2, total Cu = 112 mg Cu kg(-1)) amended with 0.5% and 1% (w/w) mica, and 1% (w/w) montmorillonite. At 10 weeks of growth, both mica treatments decreased the shoot Cu of ryegrass grown in Sector 2 producing shoot Cu concentrations above 21-22 mg Cu kg(-1) (the phytotoxicity threshold for that species), yet the mica treatments did not reduce shoot Cu concentrations when grown in Sector 3, which were at a typical level. The mica treatments improved shoot growth in Sector 3 by reducing free and extractable Cu to low enough levels where other nutrients could compete for plant absorption and translocation. In addition, the mica treatments improved root growth in both soils, and the 1% mica treatment reduced root Cu in both soils. This swelling mica warrants further testing of its ability to assist re-vegetation and reduce Cu bioavailability in Cu-contaminated surface soils.
Brown, C.J.; Misut, P.E.
2010-01-01
The effects of injecting oxic water from the New York city (NYC) drinking-water supply and distribution system into a nearby anoxic coastal plain aquifer for later recovery during periods of water shortage (aquifer storage and recovery, or ASR) were simulated by a 3-dimensional, reactive-solute transport model. The Cretaceous aquifer system in the NYC area of New York and New Jersey, USA contains pyrite, goethite, locally occurring siderite, lignite, and locally varying amounts of dissolved Fe and salinity. Sediment from cores drilled on Staten Island and western Long Island had high extractable concentrations of Fe, Mn, and acid volatile sulfides (AVS) plus chromium-reducible sulfides (CRS) and low concentrations of As, Pb, Cd, Cr, Cu and U. Similarly, water samples from the Lloyd aquifer (Cretaceous) in western Long Island generally contained high concentrations of Fe and Mn and low concentrations of other trace elements such as As, Pb, Cd, Cr, Cu and U, all of which were below US Environmental Protection Agency (USEPA) and NY maximum contaminant levels (MCLs). In such aquifer settings, ASR operations can be complicated by the oxidative dissolution of pyrite, low pH, and high concentrations of dissolved Fe in extracted water.The simulated injection of buffered, oxic city water into a hypothetical ASR well increased the hydraulic head at the well, displaced the ambient groundwater, and formed a spheroid of injected water with lower concentrations of Fe, Mn and major ions in water surrounding the ASR well, than in ambient water. Both the dissolved O2 concentrations and the pH of water near the well generally increased in magnitude during the simulated 5-a injection phase. The resultant oxidation of Fe2+ and attendant precipitation of goethite during injection provided a substrate for sorption of dissolved Fe during the 8-a extraction phase. The baseline scenario with a low (0.001M) concentration of pyrite in aquifer sediments, indicated that nearly 190% more water with acceptably low concentrations of dissolved Fe could be extracted than was injected. Scenarios with larger amounts of pyrite in aquifer sediments generally resulted in less goethite precipitation, increased acidity, and increased concentrations of dissolved Fe in extracted water. In these pyritic scenarios, the lower amounts of goethite precipitated and the lower pH during the extraction phase resulted in decreased sorption of Fe2+ and a decreased amount of extractable water with acceptably low concentrations of dissolved Fe (5.4??10-6M). A linear decrease in recovery efficiency with respect to dissolved Fe concentrations is caused by pyrite dissolution and the associated depletion of dissolved O2 (DO) and increase in acidity. Simulations with more than 0.0037M of pyrite, which is the maximum amount dissolved in the baseline scenario, had just over a 50% recovery efficiency. The precipitation of ferric hydroxide minerals (goethite) at the well screen, and a possible associated decrease in specific capacity of the ASR well, was not apparent during the extraction phase of ASR simulations, but the model does not incorporate the microbial effects and biofouling associated with ferric hydroxide precipitation.The host groundwater chemistry in calcite-poor Cretaceous aquifers of the NYC area consists of low alkalinity and moderate to low pH. The dissolution of goethite in scenarios with unbuffered injectate indicates that corrosion of the well could occur if the injectate is not buffered. Simulations with buffered injectate resulted in greater precipitation of goethite, and lower concentrations of dissolved Fe, in the extracted water. Dissolved Fe concentrations in extracted water were highest in simulations of aquifers (1) in which pyrite and siderite in the aquifer were in equilibrium, and (2) in coastal areas affected by saltwater intrusion, where high dissolved-cation concentrations provide a greater exchange of Fe2+ (FeX2). Results indicate that ASR in pyrite-beari
[Effects of low molecular weight organic acids on speciation of exogenous Cu in an acid soil].
Huang, Guo-Yong; Fu, Qing-Ling; Zhu, Jun; Wan, Tian-Ying; Hu, Hong-Qing
2014-08-01
In order to ascertain the effect of LMWOA (citric acid, tartaric acid, oxalic acid) on Cu-contaminated soils and to investigate the change of Cu species, a red soil derived from quartz sandstone deposit was added by Cu (copper) in the form of CuSO4 x 5H2O so as to simulate soil Cu pollution, keeping the additional Cu concentrations were 0, 100, 200, 400 mg x kg(-1) respectively. After 9 months, different LMWOA was also added into the simulated soil, keeping the additional LMWOAs in soil were 0, 5, 10, 20 mmol x kg(-1) respectively. After 2 weeks incubation, the modified sequential extraction method on BCR (European Communities Bureau of Reference) was used to evaluate the effects of these LMWOAs on the changes of copper forms in soil. The result showed that the percentage of weak acid dissolved Cu, the most effective form in the soil increased with three organic acids increase in quantity in the simulated polluted soil. And there was a good activation effect on Cu in the soil when organic acid added. Activation effects on Cu increased with concentration of citric acid increasing, but it showed a rise trend before they are basically remained unchanged in the case of tartaric acid and oxalic acid added in the soil. On the contrary, the state of the reduction of copper which was regarded as a complement for effective state decreased with the increased concentration of organic acid in the soil, especially with citric acid. When 20 mmol x kg(-1) oxalic acid and citric acid were added into the soil, the activation effect was the best; whereas for tartaric, the concentration was 10 mmol x kg(-1). In general, the effect on the changes of Cu forms in the soil is citric acid > tartaric acid > oxalic acid.
Pathway Ranking for In-place Sediment Management (CU1209). Site 2 Report - Pearl Harbor
2006-04-01
type resistance cell. The probe is configured with two pairs of stainless steel electrodes, the outer pair through which a known current is imposed...the “bioinhibited” (no oxygen control) deployment at BPA . Vertical axis is dissolved oxygen concentration, and horizontal axis is sample record at 6...99 Table 5-7. BFSD results from site BPA . Numbers in the Flux Rate Confidence column indicate the
Predicting the toxicity of metal mixtures
Balistrieri, Laurie S.; Mebane, Christopher A.
2013-01-01
The toxicity of single and multiple metal (Cd, Cu, Pb, and Zn) solutions to trout is predicted using an approach that combines calculations of: (1) solution speciation; (2) competition and accumulation of cations (H, Ca, Mg, Na, Cd, Cu, Pb, and Zn) on low abundance, high affinity and high abundance, low affinity biotic ligand sites; (3) a toxicity function that accounts for accumulation and potency of individual toxicants; and (4) biological response. The approach is evaluated by examining water composition from single metal toxicity tests of trout at 50% mortality, results of theoretical calculations of metal accumulation on fish gills and associated mortality for single, binary, ternary, and quaternary metal solutions, and predictions for a field site impacted by acid rock drainage. These evaluations indicate that toxicity of metal mixtures depends on the relative affinity and potency of toxicants for a given aquatic organism, suites of metals in the mixture, dissolved metal concentrations and ratios, and background solution composition (temperature, pH, and concentrations of major ions and dissolved organic carbon). A composite function that incorporates solution composition, affinity and competition of cations for two types of biotic ligand sites, and potencies of hydrogen and individual metals is proposed as a tool to evaluate potential toxicity of environmental solutions to trout.
Modeling metal binding to soils: the role of natural organic matter.
Gustafsson, Jon Petter; Pechová, Pavlina; Berggren, Dan
2003-06-15
The use of mechanistically based models to simulate the solution concentrations of heavy metals in soils is complicated by the presence of different sorbents that may bind metals. In this study, the binding of Zn, Pb, Cu, and Cd by 14 different Swedish soil samples was investigated. For 10 of the soils, it was found that the Stockholm Humic Model (SHM) was able to describe the acid-base characteristics, when using the concentrations of "active" humic substances and Al as fitting parameters. Two additional soils could be modeled when ion exchange to clay was also considered, using a component additivity approach. For dissolved Zn, Cd, Ca, and Mg reasonable model fits were produced when the metal-humic complexation parameters were identical for the 12 soils modeled. However, poor fits were obtained for Pb and Cu in Aquept B horizons. In two of the soil suspensions, the Lund A and Romfartuna Bhs, the calculated speciation agreed well with results obtained by using cation-exchange membranes. The results suggest that organic matter is an important sorbent for metals in many surface horizons of soils in temperate and boreal climates, and the necessity of properly accounting for the competition from Al in simulations of dissolved metal concentrations is stressed.
Paulson, Anthony J.; Balistrieri, Laurie S.
1999-01-01
Removal of Pb, Cu, Zn, and Cd during neutralization of acid rock drainage is examined using model simulations of field conditions and laboratory experiments involving mixing of natural drainage and surface waters or groundwaters. The simulations consider sorption onto hydrous Fe and Al oxides and particulate organic carbon, mineral precipitation, and organic and inorganic solution complexation of metals for two physical systems where newly formed oxides and particulate organic matter are either transported or retained along the chemical pathway. The calculations indicate that metal removal is a strong function of the physical system. Relative to direct discharge of ARD into streams, lower metal removals are observed where ARD enters streamwaters during the latter stages of neutralization by ambient groundwater after most of the Fe has precipitated and been retained in the soils. The mixing experiments, which represent the field simulations, also demonstrated the importance of dissolved metal to particle Fe ratios in controlling dissolved metal removal along the chemical pathway. Finally, model calculations indicate that hydrous Fe oxides and particulate organic carbon are more important than hydrous Al oxides in removing metals and that both inorganic and organic complexation must be considered when modeling metal removal from aquatic systems that are impacted by sulfide oxidation.
Transformation of metals speciation in a combined landfill leachate treatment.
Wu, Yanyu; Zhou, Shaoqi; Chen, Dongyu; Zhao, Rong; Li, Huosheng; Lin, Yiming
2011-04-01
Landfill leachate was treated by a combined sequential batch reactor (SBR), coagulation, Fenton oxidation and biological aerated filter (BAF) technology. The metals in treatment process were fractionated into three fractions: particulate and colloidal (size charge filtration), free ion/labile (cation exchange) and non-labile fractions. Fifty percent to 66% Cu, Ni, Zn, Mn, Pb and Cd were present as particulate/colloidal matter in raw leachate, whereas Cr was present 94.9% as non-labile complexes. The free ion/labile fractions of Ni, Zn, Mg, Mn, Pb and Cd increased significantly after treatment except Cr. Fifty-nine percent to 100% of Al was present mainly as particulate/colloidal matter >0.45 μm and the remaining portions were predicted as non-labile complexes except in coagulation effluent. The speciation of Fe varied significantly in various individual processes. Visual MINTEQ simulation showed that 95-100% colloidal species for Cu, Cd and Pb were present as metal-humic complexes even with the lower dissolved organic carbon. Optimum agreements for the free ion/labile species were within acidic solution, whereas under-estimated in alkaline effluents. Overestimated particulate/colloidal fraction consisted with the hypothesis that a portion of colloids in fraction <0.45 μm were considered as dissolved. Copyright © 2011 Elsevier B.V. All rights reserved.
A SURROGATE SUBCHRONIC TOXICITY TEST METHOD FOR WATERS WITH HIGH TOTAL DISSOLVED SOLIDS
Total dissolved solids (TDS) are often identified as a toxicant in whole-effluent toxicity (WET) testing. The primary test organism used in WET testing, Ceriodaphnia dubia, is very sensitive to TDS ions, which can be problematic when differentiating the toxicity of TDS from those...
Total organic halide (TOX) analyzers are commonly used to measure the amount of dissolved halogenated organic byproducts in disinfected waters. Because of the lack of information on the identity of disinfection byproducts, rigorous testing of the dissolved organic halide (DOX) pr...
Community-Level Effects of Excess Total Dissolved Solids Doses Using Model Streams
Model stream chronic dosing studies (42 days) were conducted with four different total dissolved solids (TDS) recipes. The recipes differed in their relative dominance of major ions. One was made from sodium and calcium chloride salts only. Another was similar to the first, but a...
TOTAL DISSOLVED AND BIOAVAILABLE METALS AT LAKE TEXOMA MARINAS
Dissolved metals in water and total metals in sediments have been measured at marina areas in Lake Texoma during June 1999 to October 2001, and October 2001, respectively. The metals most often found in the highest concentrations in marina water were Na and Ca, followed by Mg an...
Microbial sulfate reduction and metal attenuation in pH 4 acid mine water
Church, C.D.; Wilkin, R.T.; Alpers, Charles N.; Rye, R.O.; Blaine, R.B.
2007-01-01
Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 ??? heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. ?? 2007 Church et al; licensee BioMed Central Ltd.
NASA Astrophysics Data System (ADS)
Koschinsky, Andrea
Heavy metal distributions in deep-sea surface sediments and pore water profiles from five areas in the Peru Basin were investigated with respect to the redox environment and diagenetic processes in these areas. The 10-20-cm-thick Mn oxide-rich and minor metal-rich top layer is underlain by an increase in dissolved Mn and Ni concentrations resulting from the reduction of the MnO 2 phase below the oxic zone. The mobilised associated metals like Co, Zn and Cu are partly immobilised by sorption on clay, organic or Fe compounds in the post-oxic environment. Enrichment of dissolved Cu, Zn, Ni, Co, Pb, Cd, Fe and V within the upper 1-5 cm of the oxic zone can be attributed to the degradation of organic matter. In a core from one area at around 22-25 cm depth, striking enrichments of these metals in dissolved and solid forms were observed. Offset distributions between oxygen penetration and Mn reduction and the thickness of the Mn oxide-rich layer indicate fluctuations of the Mn redox boundary on a short-term time scale. Within the objectives of the German ATESEPP research programme, the effect of an industrial impact such as manganese nodule mining on the heavy metal cycle in the surface sediment was considered. If the oxic surface were to be removed or disturbed, oxygen would penetrate deep into the formerly suboxic sediment and precipitate Mn 2+ and metals like Ni and Co which are preferably scavenged by MnO 2. The solid enrichments of Cd, V, and other metals formed in post-oxic environments would move downward with the new redox boundary until a new equilibrium between oxygen diffusion and consumption is reached.
Microbial sulfate reduction and metal attenuation in pH 4 acid mine water
Church, Clinton D; Wilkin, Richard T; Alpers, Charles N; Rye, Robert O; McCleskey, R Blaine
2007-01-01
Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. PMID:17956615
Environmental setting of benchmark streams in agricultural areas of eastern Wisconsin
Rheaume, S.J.; Stewart, J.S.; Lenz, B.N.
1996-01-01
Differences in land use/land cover, and riparian vegetation and instream habitat characteristics are presented. Summaries of field measurements of water temperature, pH, specific conductance and concentrations of dissolved oxygen, total organic plus ammonia nitrogen, dissolved ammonium, nitrate plus nitrte as nitrogen, total phosphorus, dissolved orthophosphate, and atrazine are listed. Concentrations of dissolved oxygen for the sampled streams ranged from 6 A to 14.3 and met the standards set by the Wisconsin Department of Natural Resources (WDNR) for supporting fish and aquatic life. Specific conductance ranged from 98 to 753 u,Scm with values highest in RHU's 1 and 3, where streams are underlain by carbonate bedrock. Median pH did not vary greatly among the four RHU's and ranged from 6.7 to 8.8 also meeting the WDNR standards. Concentrations of total organic plus ammonia nitrogen, dissolved ammonium, total phosphorus, and dissolved orthophosphate show little variation between streams and are generally low, compared to concentrations measured in agriculturally-affected streams in the same RHU's during the same sampling period. Concentrations of the most commonly used pesticide in the study unit, atrazine, were low in all streams, and most concentrations were below trn 0.1 u,g/L detection limit. Riparian vegetation for the benchmark streams were characterized by lowland species of the native plant communities described by John T. Curtis in the "Vegetation of Wisconsin." Based on the environmental setting and water-quality information collected to date, these streams appear to show minimal adverse effects from human activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silversmith, Geert; Poelman, Hilde; Poelman, Dirk
2007-02-02
A CuOx-CeOx/Al2O3 catalyst was studied with in-situ transmission Cu K XAS for the total oxidation of propane as model reaction for the catalytic elimination of volatile organic compounds. The local Cu structure was determined for the catalyst as such, after pre-oxidation and after reduction with propane. The catalyst as such has a local CuO structure. No structural effect was observed upon heating in He up to 600 deg. C or after pre-oxidation at 150 deg. C. A full reduction of the Cu2+ towards metallic Cu0 occurred, when propane was fed to the catalyst. The change in local Cu structure duringmore » propane reduction was followed with a time resolution of 1 min. The {chi}(k) scans appeared as linear combinations of start and end spectra, CuO and Cu structure, respectively. However, careful examination of the XANES edge spectra indicates the presence of a small amount of additional Cu1+ species.« less
Tekere, Memory; Sibanda, Timothy; Maphangwa, Khumbudzo Walter
2016-06-01
The assessment of the quality of carwash effluents has received scant attention as a potential source of public and environmental health hazard in South Africa as demonstrated by the lack of literature in this subject. The physicochemical quality and potential ramifications of carwash effluents on receiving waterbodies were investigated in this study. Grab effluent samples were collected from six carwash outlets in Gauteng Province of South Africa and analysed for selected physicochemical qualities including biological oxygen demand (BOD), oil and grease, total petroleum hydrocarbons-gasoline range organics (TPH-GRO), pH, dissolved oxygen (DO), total solids (TS) and total dissolved solids (TDS), electrical conductivity (EC), nutrients (nitrates, nitrites and phosphates), anionic surfactants and heavy metals (zinc [Zn], copper [Cu], lead [Pb] and chromium [Cr]). Further, the toxicity potential of the effluent samples was assessed using organisms from four trophic levels ranging from Selenastrum capricornutum (primary producer), Daphnia magna (primary consumer), Poecilia reticulata (secondary-tertiary consumer) and Vibrio fischeri (decomposer). High pollutant levels were observed in all effluents with BOD ranging from 27 ± 2.1 to 650 ± 4.9 mg/l, TDS from 362 ± 8.5 to 686 ± 8.5 mg/l, GRO-TPH from 0.01 ± 0.0 to 7.6 ± 0.2 mg/l, DO from 0.0 to 0.1 mg/l, Zn from 0.79 ± 0.08 to 20 ± 2.12 mg/l, Cu from 0.77 ± 0.03 to 13 ± 0.71 mg/l and oil and grease from 12 ± 2.8 to 43 ± 2.1 mg/l. Ammonium concentrations ranged from 0.4 ± 0.1 to 75 ± 6.4 mg/l; turbidity from 109 ± 0.7 to 4000 ± 29.7 mg/l, anionic surfactants from 1.4 ± 0.1 to 5.8 ± 0.3 mg/l and TPH from <0.01 to 7.6 mg/l. Toxicity assessment assays resulted in 100 % mortality for fish and Daphnia after 96 and 24 h, respectively, and significant bioluminescence and growth reduction in V. fischeri and algae after 15 min and 72 h, respectively. Most of the measured physicochemical parameters were in concentrations above the Environmental Management Agency (EPA) stipulated guidelines. Additionally, the effluents demonstrated acute toxicity against all four test species.
Salati, S; Quadri, G; Tambone, F; Adani, F
2010-05-01
In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. Copyright 2009 Elsevier Ltd. All rights reserved.
Status of trace metals in surface seawater of the Gulf of Aqaba, Saudi Arabia.
Al-Taani, Ahmed A; Batayneh, Awni; Nazzal, Yousef; Ghrefat, Habes; Elawadi, Eslam; Zaman, Haider
2014-09-15
The Gulf of Aqaba (GoA) is of significant ecological value with unique ecosystems that host one of the most diverse coral communities in the world. However, these marine environments and biodiversity have been threatened by growing human activities. We investigated the levels and distributions of trace metals in surface seawater across the eastern coast of the Saudi GoA. Zn, Cu, Fe, B and Se in addition to total dissolved solids and seawater temperature exhibited decreasing trends northwards. While Mn, Cd, As and Pb showed higher average levels in the northern GoA. Metal input in waters is dependent on the adjacent geologic materials. The spatial variability of metals in water is also related to wave action, prevailing wind direction, and atmospheric dry deposition from adjacent arid lands. Also, water discharged from thermal desalination plants, mineral dust from fertilizer and cement factories are potential contributors of metals to seawater water, particularly, in the northern GoA. Copyright © 2014 Elsevier Ltd. All rights reserved.
The occurrence and distribution of trace metals in the Mississippi River and its tributaries
Taylor, Howard E.; Garbarino, J.R.; Brinton, T.I.
1990-01-01
Quantitative and semiquantitative analyses of dissolved trace metals are reported for designated sampling sites on the Mississippi River and its main tributaries utilizing depth-integrated and width-integrated sampling technology to collect statistically representative samples. Data are reported for three sampling periods, including: July-August 1987, November-December 1987, and May-June 1988. Concentrations of Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Pb, Sr, Tl, U, V, and Zn are reported quantitatively, with the remainder of the stable metals in the periodic table reported semiquantitatively. Correlations between As and V, Ba and U, Cu and Zn, Li and Ba, and Li and U are significant at the 99% confidence level for each of the sampling trips. Comparison of the results of this study for selected metals with other published data show generally good agreement for Cr, Cu, Fe, and Zn, moderate agreement for Mo, and poor agreement for Cd and V.
Yao, Qingzhen; Wang, Xiaojing; Jian, Huimin; Chen, Hongtao; Yu, Zhigang
2016-02-15
Suspended particulate matter (SPM) samples were collected along a salinity gradient in the Changjiang Estuary in June 2011. A custom-built water elutriation apparatus was used to separate the suspended sediments into five size fractions. The results indicated that Cr and Pb originated from natural weathering processes, whereas Cu, Zn, and Cd originated from other sources. The distribution of most trace metals in different particle sizes increased with decreasing particle size. The contents of Fe/Mn and organic matter were confirmed to play an important role in increasing the level of heavy metal contents. The Cu, Pb, Zn, and Cd contents varied significantly with increasing salinity in the medium-low salinity region, thus indicating the release of Cu, Pb, Zn, and Cd particles. Thus, the transfer of polluted fine particles into the open sea is probably accompanied by release of pollutants into the dissolved compartment, thereby amplifying the potential harmful effects to marine organisms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Qu, Chang-feng; Song, Jin-ming; Li, Ning; Li, Xue-gang; Yuan, Hua-mao; Duan, Li-qin
2016-01-01
Abstract: Jellyfish bloom has been increasing in Chinese seas and decomposition after jellyfish bloom has great influences on marine ecological environment. We conducted the incubation of Nemopilema nomurai decomposing to evaluate its effect on carbon, nitrogen and phosphorus recycling of water column by simulated experiments. The results showed that the processes of jellyfish decomposing represented a fast release of biogenic elements, and the release of carbon, nitrogen and phosphorus reached the maximum at the beginning of jellyfish decomposing. The release of biogenic elements from jellyfish decomposition was dominated by dissolved matter, which had a much higher level than particulate matter. The highest net release rates of dissolved organic carbon and particulate organic carbon reached (103.77 ± 12.60) and (1.52 ± 0.37) mg · kg⁻¹ · h⁻¹, respectively. The dissolved nitrogen was dominated by NH₄⁺-N during the whole incubation time, accounting for 69.6%-91.6% of total dissolved nitrogen, whereas the dissolved phosphorus was dominated by dissolved organic phosphorus during the initial stage of decomposition, being 63.9%-86.7% of total dissolved phosphorus and dominated by PO₄³⁻-P during the late stage of decomposition, being 50.4%-60.2%. On the contrary, the particulate nitrogen was mainly in particulate organic nitrogen, accounting for (88.6 ± 6.9) % of total particulate nitrogen, whereas the particulate phosphorus was mainly in particulate. inorganic phosphorus, accounting for (73.9 ±10.5) % of total particulate phosphorus. In addition, jellyfish decomposition decreased the C/N and increased the N/P of water column. These indicated that jellyfish decomposition could result in relative high carbon and nitrogen loads.
NASA Astrophysics Data System (ADS)
Mallmann, F. J. K.; Miotto, A.; Bender, M. A.; Gubiani, E.; Rheinheimer, D. D. S.; Kaminski, J.; Ceretta, C. A.; Šimůnek, J.
2015-12-01
Bordeaux mixture is a copper-based (Cu) fungicide and bactericide applied in vineyards to control plant diseases. Since it is applied several times per year, it accumulates in large quantities on plants and in soil. This study evaluates the Cu accumulation in, and desorption kinetics and adsorption capability of a sandy Ultisol in a natural field and in 3 vineyards for 5 (V1), 11 (V2), and 31 (V3) years in South of Brazil. Soil samples were collected in 8 depths (0-60 cm) of all four soil profiles, which all displayed similar soil properties. The following soil properties were measured: pH, organic matter (OM), soil bulk density, Cu total concentration, and Cu desorption and adsorption curves. A two first-order reactions model and the Langmuir isotherm were fitted to the desorption and adsorption curves, respectively. An increase in the total mass of Cu in the vineyards followed a linear regression curve, with an average annual increase of 7.15 kg ha-1. Cu accumulated down to a depth of 5, 20, and 30 cm in V1, V2 and V3, respectively, with the highest Cu content reaching 138.4 mg kg-1 in the 0-5 cm soil layer of V3. Cu desorption parameters showed a high correlation with its total concentration. Approximately 57 and 19% of total Cu were immediately and slowly available, respectively, indicating a high potential for plant absorption and/or downward movement. Cu concentrations extracted by EDTA from soil layers not affected by anthropogenic Cu inputs were very low. The maximum Cu adsorption capacity of the 0-5 and 5-10 cm soil layers increased with the vineyard age, reaching concentrations higher than 900 mg kg-1. This increase was highly related to OM and pH, which both increased with cultivation duration. Despite of low clay content of these soils, there is low risk of groundwater Cu contamination for actual conditions. However, high Cu concentrations in the surface layer of the long-term vineyards could cause toxicity problems for this and for companion crops.
NASA Astrophysics Data System (ADS)
Laraque, Alain; Moquet, Jean-Sébastien; Alkattan, Rana; Steiger, Johannes; Mora, Abrahan; Adèle, Georges; Castellanos, Bartolo; Lagane, Christèle; Lopez, José Luis; Perez, Jesus; Rodriguez, Militza; Rosales, Judith
2013-07-01
Seasonal variations of total dissolved fluxes of the lower Orinoco River were calculated taking into account four complete hydrological cycles during a five-year period (2005-2010). The modern concentrations of total dissolved solids (TDS) of the Orinoco surface waters were compared with data collected during the second half of the last century published in the literature. This comparison leads to the conclusion that chemical composition did not evolve significantly at least over the last thirty to forty years. Surface waters of the Orinoco at Ciudad Bolivar are between bicarbonated calcic and bicarbonated mixed. In comparison to mean values of concentrations of total dissolved solids (TDS) of world river surface waters (89.2 mg l-1), the Orinoco River at Ciudad Bolivar presents mainly low mineralized surface waters (2005-10: TDS 30 mg l-1). The TDS fluxes passing at this station in direction to the Atlantic Ocean between 2005 and 2010 were estimated at 30 × 106 t yr-1, i.e. 36 t km-2 yr-1. It was observed that the seasonal variations (dry season vs wet season) of total dissolved fluxes (TDS and dissolved organic carbon (DOC)) are mainly controlled by discharge variations. Two groups of elements have been defined from dilution curves and molar ratio diagrams. Ca2+, Mg2+, HCO3-, Cl- and Na+ mainly come from the same geographic and lithologic area, the Andes. K+ and SiO2 essentially come from the Llanos and the Guayana Shield. These findings are important for understanding fundamental geochemical processes within the Orinoco River basin, but also as a baseline study in the perspective of the development of numerous mining activities related with aluminum and steel industries; and the plans of the Venezuelan government to construct new fluvial ports on the lower Orinoco for the transport of hydrocarbons.
David E. Pelster; Randall K. Kolka; Ellie E. Prepas
2009-01-01
Nitrate, ammonium, total dissolved nitrogen (TDN), dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) concentrations and flux were measured for one year in bulk deposition and throughfall from three stand types (upland deciduous, upland conifer and wetland conifer) on the Boreal Plain, Canada. Annual (November 2006 to October 2007 water year) flux...
Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; ...
2017-05-19
Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here in this work, we have measured themore » redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). Lastly, we present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.
Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here in this work, we have measured themore » redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). Lastly, we present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.« less
NASA Astrophysics Data System (ADS)
Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; Till, Claire P.; Lee, Jong-Mi; Toner, Brandy M.; Marcus, Matthew A.
2017-08-01
Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here we have measured the redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). We present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.
Journey, Celeste A.; Caldwell, Andral W.; Feaster, Toby D.; Petkewich, Mattew D.; Bradley, Paul M.
2011-01-01
The U.S. Geological Survey, in cooperation with Spartanburg Water, evaluated the concentrations, loads, and yields of suspended sediment, dissolved ammonia, dissolved nitrate plus nitrite, total organic nitrogen, total nitrogen, dissolved orthophosphate, dissolved phosphorus, and total phosphorus at sites in the South Pacolet, North Pacolet, and Pacolet Rivers in northern South Carolina and southwestern North Carolina from October 1, 2005, to September 30, 2009 (water years 2006 to 2009). Nutrient and sediment loads and yields also were computed for the intervening subbasin of the Pacolet River not represented by the South and North Pacolet River Basins. Except for a few outliers, the majority of the measurements of total nitrogen concentrations were well below the U.S. Environmental Protection Agency recommended guideline of 0.69 milligram per liter for streams and rivers in the nutrient ecoregion IX, which includes the study area within the Pacolet River Basin. Dissolved orthophosphate, dissolved phosphorus, and total phosphorus concentrations were significantly lower at the South Pacolet River site compared to the North Pacolet and Pacolet River sites. About 90 percent of the total phosphorus concentrations at the South Pacolet River site were below the U.S. Environmental Protection Agency recommended guideline of 0.37 milligram per liter, and more than 75 percent of the total phosphorus concentrations at the North Pacolet and Pacolet River sites were above that guideline. At all sites, minimum annual nutrient loads for the estimation period were observed during water year 2008 when severe drought conditions were present. An estimated mean annual total nitrogen load of 37,770 kilograms per year and yield of 2.63 kilograms per hectare per year were determined for the South Pacolet River site for the estimation period. The North Pacolet River site had a mean annual total nitrogen load of 65,890 kilograms per year and yield of 2.19 kilograms per hectare per year. The Pacolet River had a mean annual total nitrogen load of 99,780 kilograms per year and yield of 1.82 kilograms per hectare per year. Mean annual total phosphorus loads of 2,576; 9,404; and 11,710 kilograms per year and yields of 0.180, 0.313, and 0.213 kilograms per hectare per year were estimated at the South Pacolet, North Pacolet, and Pacolet River sites, respectively. Annually, the intervening subbasin of the Pacolet River contributed negligible amounts of total nitrogen and total phosphorus loads, and large losses of dissolved nitrate plus nitrite and orthophosphate loads were determined for the subbasin. Biological (algal) uptake in the two reservoirs in this intervening area was considered the likely explanation for the loss of these constituents. Estimated mean annual suspended-sediment loads were 21,190,000; 9,895,000; and 6,547,000 kilograms per year at the South Pacolet, North Pacolet, and Pacolet River sites, respectively. In the intervening Pacolet River subbasin, computed annual suspended-sediment loads were consistently negative, indicating large percentage losses in annual suspended-sediment load. Sedimentation processes in the two reservoirs are the most likely explanations for these apparent losses. At all sites, the winter season tended to have the highest estimated seasonal dissolved orthophosphate and dissolved nitrate plus nitrite fluxes, and the summer and fall seasons tended to have the lowest fluxes. The reverse pattern, however, was observed in the intervening drainage area in the Pacolet River where the lowest fluxes of dissolved orthophosphate and nitrate plus nitrite occurred during the winter and spring seasons and the highest occurred during the summer and fall seasons. Synoptic samples were collected during a high-flow event in August 2009 at eight sites that represented shoreline and minor tributary drainages. The South Pacolet River site was identified as contributing greater than 80 percent of the cumulative nutrient and sediment l
Different recycle behavior of Cu2+ and Fe3+ ions for phenol photodegradation over TiO2 and WO3.
Wan, Lianghui; Sheng, Jiayi; Chen, Haihang; Xu, Yiming
2013-11-15
Photocatalytic degradation of organic pollutants on TiO2 and WO3 have been widely studied, but the effects of Cu(2+) and Fe(3+) ions still remain unclear. In this work, we have found that the recycle behavior of Cu(2+) and Fe(3+) are greatly dependent on the photocatalytic activity of metal oxide used. With TiO2 (P25, anatase, and rutile), all the time profiles of phenol degradation in water under UV light well fitted to the apparent first-order rate equation. On the addition of Cu(2+), phenol degradation on anatase, rutile and WO3 also followed the first-order kinetics. On the addition of Fe(3+), the initial rate of phenol degradation on each oxide was increased, but only the reactions on three TiO2 became to follow the first order kinetics after half an hour. The relevant rate constants for phenol degradation in the presence of Cu(2+) or Fe(3+) were larger than those in the absence of metal ions. Under visible light, phenol degradation on WO3 was also accelerated on the addition of Fe(3+) or Cu(2+). Moreover, several influencing factors were examined, including the metal ion photolysis in solution. It becomes clear that as electron scavengers of TiO2 and WO3, Fe(3+) is better than Cu(2+), while they are better than O2. We propose that Fe(3+) recycle occurs through H2O2, photogenerated from TiO2, not from WO3, while Cu(2+) regeneration on a moderate photocatalyst is through the dissolved O2 in water. Copyright © 2013. Published by Elsevier B.V.
O'Sullivan, Aisling; Wicke, Daniel; Cochrane, Tom
2012-03-01
Urban waterways are impacted by diffuse stormwater runoff, yet other discharges can unintentionally contaminate them. The Okeover stream in Christchurch, New Zealand, receives air-conditioning discharge, while its ephemeral reach relies on untreated stormwater flow. Despite rehabilitation efforts, the ecosystem is still highly disturbed. It was assumed that stormwater was the sole contamination source to the stream although water quality data were sparse. We therefore investigated its water and sediment quality and compared the data with appropriate ecotoxicological thresholds from all water sources. Concentrations of metals (Zn, Cu and Pb) in stream baseflow, stormwater runoff, air-conditioning discharge and stream-bed sediments were quantified along with flow regimes to ascertain annual contaminant loads. Metals were analysed by ICP-MS following accredited techniques. Zn, Cu and Pb concentrations from stormflow exceeded relevant guidelines for the protection of 90% of aquatic species by 18-, 9- and 5-fold, respectively, suggesting substantial ecotoxicity potential. Sporadic copper (Cu) inputs from roof runoff exceeded these levels up to 3,200-fold at >4,000 μg L⁻¹ while Cu in baseflow from air-conditioning inputs exceeded them 5.4-fold. There was an 11-fold greater annual Cu load to the stream from air-conditioning discharge compared to stormwater runoff. Most Zn and Cu were dissolved species possibly enhancing metal bioavailability. Elevated metal concentrations were also found throughout the stream sediments. Environmental investigations revealed unsuspected contamination from air-conditioning discharge that contributed greater Cu annual loads to an urban stream compared to stormwater inputs. This discovery helped reassess treatment strategies for regaining ecological integrity in the ecosystem.
NASA Astrophysics Data System (ADS)
Tripathy, Haraprasanna; Subramanian, Raju; Hajra, Raj Narayan; Rai, Arun Kumar; Rengachari, Mythili; Saibaba, Saroja; Jayakumar, Tammana
2016-12-01
The sequence of phase instabilities that take place in a Fe-17.7Cr-9.3Ni-0.58Nb-2.95Cu-0.12N (wt pct) austenitic stainless steel (304H Cu grade) as a function of temperature has been investigated using dynamic calorimetry. The results obtained from this investigation are supplemented by Thermocalc-based equilibrium and Scheil-Gulliver nonequilibrium solidification simulation. The following phase transformation sequence is found upon slow cooling from liquid: L → L + γ → L + γ + MX → γ + MX + δ → γ +MX + M23C6 → γ + MX + M23C6 + Cu. Under slow cooling, the solidification follows austenite + ferrite (AF) mode, which is in accordance with Thermocalc prediction and Scheil-Gulliver simulation. However, higher cooling rates result in skeletal δ-ferrite formation, due to increased segregation tendency of Nb and Cr to segregate to interdendritic liquid. The solidification mode is found to depend on combined Nb + Cu content. Experimental estimates of enthalpy change associated with melting and secondary phase precipitation are also obtained. In addition a semi-quantitative study on the dissolution kinetics of M23C6 type carbides has also been investigated. The standard solution treatment at 1413 K (1140 °C) is found to be adequate to dissolve both Cu and M23C6 into γ-austenite; but the complete dissolution of MX type carbonitrides occurs near the melting region.
Fu, Chaoqun; Xu, Lijun; Dan, Zhenhua; Makino, Akihiro; Hara, Nobuyoshi; Qin, Fengxiang; Chang, Hui
2017-01-01
Nanoporous electrodes have been fabricated by selectively dissolving the less noble α-Fe crystalline phase from nanocrystalline Fe85.2B14–xPxCu0.8 alloys (x= 0, 2, 4 at.%). The preferential dissolution is triggered by the weaker electrochemical stability of α-Fe nanocrystals than amorphous phase. The final nanoporous structure is mainly composed of amorphous residual phase and minor undissolved α-Fe crystals and can be predicted from initial microstructure of nanocrystalline precursor alloys. The structural inheritance is proved by the similarity of the size and outlines between nanopores formed after dealloying in 0.1 M H2SO4 and α-Fe nanocrystals precipitated after annealing of amorphous Fe85.2B14−xPxCu0.8 (x = 0, 2, 4 at.%) alloys. The Redox peak current density of the nanoporous electrodes obtained from nanocrystalline Fe85.2B10P4Cu0.8 alloys is more than one order higher than those of Fe plate electrode and its counterpart nanocrystalline alloys due to the large surface area and nearly-amorphous nature of ligaments. PMID:28594378
NASA Astrophysics Data System (ADS)
Zhang, Yuanchun; Zhang, Qian; Hong, Junming
2017-11-01
A novel iron coupled copper oxidate (Fe2O3@Cu2O) catalyst was synthesized to activate persulfate (PS) for acetaminophen (APAP) degradation. The catalysts were characterized via field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry. The effects of the catalyst, PS concentration, catalyst dosage, initial pH, dissolved oxygen were analyzed for treatment optimization. Results indicated that Fe2O3@Cu2O achieved higher efficiency in APAP degradation than Fe2O3/PS and Cu2O/PS systems. The optimal removal efficiency of APAP (90%) was achieved within 40 min with 0.6 g/L PS and 0.3 g/L catalyst. To clarify the mechanism for APAP degradation, intermediates were analyzed with gas chromatography-mass spectrometry. Three possible degradation pathways were identified. During reaction, Cu(I) was found to react with Fe(III) to generate Fe(II), which is the most active phase for PS activation. Through the use of methanol and tert-butyl alcohol (TBA) as radical trappers, SO4rad - was identified as the main radical species that is generated during oxidation.
Liu, Yu; Huang, Yuanchun; Xiao, Zhengbing; Jia, Guangze
2017-07-19
To better understand the effect of the components of molten 2219 Al alloy on the hydrogen content dissolved in it, the H adsorption on various positions of alloying element clusters of Cu, Mn and Al, as well as the inclusion of Al₂O₃, MgO and Al₄C₃, were investigated by means of first principles calculation, and the thermodynamic stability of H adsorbed on each possible site was also studied on the basis of formation energy. Results show that the interaction between Al, MgO, Al₄C₃ and H atoms is mainly repulsive and energetically unfavorable; a favorable interaction between Cu, Mn, Al₂O₃ and H atoms was determined, with H being more likely to be adsorbed on the top of the third atomic layer of Cu(111), the second atomic layer of Mn(111), and the O atom in the third atomic layer of Al₂O₃, compared with other sites. It was found that alloying elements Cu and Mn and including Al₂O₃ may increase the hydrogen adsorption in the molten 2219 Al alloy with Al₂O₃ being the most sensitive component in this regard.
Intermetallic Compounds Formed in Sn-20In-2.8Ag Solder BGA Packages with Ag/Cu Pads
NASA Astrophysics Data System (ADS)
Jain, C. C.; Wang, S. S.; Huang, K. W.; Chuang, T. H.
2009-03-01
The interfacial reactions in a Sn-20In-2.8Ag solder ball grid array (BGA) package with immersion Ag surface finish are investigated. After reflow, the Ag thin film dissolves quickly into the solder matrix, and scallop-shaped intermetallic layers, with compositions of (Cu0.98Ag0.02)6(In0.59Sn0.41)5, appear at the interfaces between Sn-20In-2.8Ag solder ball and Cu pad. No evident growth of the (Cu0.98Ag0.02)6(Sn0.59In0.41)5 intermetallic compounds was observed after prolonged aging at 100 °C. However, the growth accelerated at 150 °C, with more intermetallic scallops floating into the solder matrix. The intermetallic thickness versus the square root of reaction time ( t 1/2) shows a linear relation, indicating that the growth of intermetallic compounds is diffusion-controlled. Ball shear tests show that the strength of Sn-20In-2.8Ag solder joints after reflow is 4.4 N, which increases to 5.18 N and 5.14 N after aging at 100 and 150 °C, respectively.
Javed, Rabia; Ahmed, Madiha; Haq, Ihsan Ul; Nisa, Sobia; Zia, Muhammad
2017-10-01
Search for biologically active nanoparticles is prerequisite for biomedical applications. CuO nanoparticles synthesized by co-precipitation method are capped by polyethylene-glycol (PEG) and polyvinyl-pyrrolidone (PVP) on the surface by simple adsorption. Physical and chemical properties carried out by SEM, XRD and FTIR confirm nanometer in size and efficient capping of PVP and PEG on CuO NPs. Biological assays reveal higher activities of CuO-PEG and CuO-PVP as compared to the uncapped CuO nanoparticles. CuO-PEG shows better antitumor activity against Streptomyces as compared with CuO-PVP and CuO NPs. Both the capped NPs are significantly active for α-amylase inhibition assay. CuO-PVP demonstrates significantly better activity against bacterial strains followed by CuO-PEG and uncapped CuO. PVP coated CuO NPs also shows strong DPPH based free radical scavenging activity, total reducing power potential, total antioxidative potential and also carries flavonoid and phenolics properties determines to querecetin and gallic acid equivalence, respectively. It can be concluded that PVP and PEG capped CuO NPs are more capable to be used in biomedical applications as drug and diagnostic carrier molecules. Copyright © 2017 Elsevier B.V. All rights reserved.
DeForest, David K; Gensemer, Robert W; Van Genderen, Eric J; Gorsuch, Joseph W
2011-07-01
Copper (Cu) can impair olfaction in juvenile Pacific salmon (as well as other fishes), thus potentially inhibiting the ability of juveniles to avoid predators or to find food. Because Cu is commonly elevated in stormwater runoff in urban environments, storm events may result in elevated Cu concentrations in salmon-bearing streams. Accordingly, there is concern that existing Cu criteria, which were not derived using data for olfactory-related endpoints, may not be adequately protective of juvenile salmon. However, a modification of the US Environmental Protection Agency (USEPA) biotic ligand model (BLM) for deriving site-specific Cu criteria was recently proposed, which accounted for the sensitivity of olfactory endpoints. The modification was based on olfactory inhibition in juvenile coho salmon (Oncorhynchus kisutch) exposed to Cu in various combinations of pH, hardness, alkalinity, and dissolved organic carbon (DOC) concentrations. We used that olfactory-based BLM to derive 20% inhibition concentrations (IC20) values for Cu for 133 stream locations in the western United States. The olfactory BLM-based IC20 values were compared to the existing hardness-based Cu criteria and the USEPA's BLM-based Cu criteria for these representative natural waters of the western United States. Of the 133 sampling locations, mean hardness-dependent acute and chronic Cu criteria were below the mean olfactory-based BLM IC20 value in 122 (92%) and 129 (97%) of the waters, respectively (i.e., <20% olfactory impairment would have been predicted at the mean hardness-based Cu criteria concentrations). Waters characterized by a combination of high hardness and very low DOC were most likely to have hardness-based Cu criteria that were higher than the olfactory-based BLM IC20 values, because DOC strongly influences Cu bioavailability in the BLM. In all waters, the USEPA's current BLM-based criteria were below the mean olfactory-based BLM IC20 values, indicating that the USEPA's BLM-based criteria are protective of olfactory impairment in juvenile salmon. Copyright © 2011 SETAC.
Effect of copper doping on the photocatalytic activity of ZnO thin films prepared by sol-gel method
NASA Astrophysics Data System (ADS)
Saidani, T.; Zaabat, M.; Aida, M. S.; Boudine, B.
2015-12-01
In the present work, we prepared undoped and copper doped ZnO thin films by the sol-gel dip coating method on glass substrates from zinc acetate dissolved in a solution of ethanol. The objective of our work is to study the effect of Cu doping with different concentrations on structural, morphological, optical properties and photocatalytic activity of ZnO thin films. For this purpose, we have used XRD to study the structural properties, and AFM to determine the morphology of the surface of the ZnO thin films. The optical properties and the photocatalytic degradation of the films were examined by UV-visibles spectrophotometer. The Tauc method was used to estimate the optical band gap. The XRD spectra indicated that the films have an hexagonal wurtzite structure, which gradually deteriorated with increasing Cu concentration. The results showed that the incorporation of Cu decreases the crystallite size. The AFM study showed that an increase of the concentration of Cu causes the decrease of the surface roughness, which passes from 20.2 for Un-doped ZnO to 12.16 nm for doped ZnO 5 wt% Cu. Optical measurements have shown that all the deposited films show good optical transmittance (77%-92%) in the visible region and increases the optical gap with increasing Cu concentration. The presence of copper from 1% to 5 wt% in the ZnO thin films is found to decelerate the photocatalytic process.
Lockwood, Cindy L; Stewart, Douglas I; Mortimer, Robert J G; Mayes, William M; Jarvis, Adam P; Gruiz, Katalin; Burke, Ian T
2015-07-01
Red mud is a highly alkaline (pH >12) waste product from bauxite ore processing. The red mud spill at Ajka, Hungary, in 2010 released 1 million m(3) of caustic red mud into the surrounding area with devastating results. Aerobic and anaerobic batch experiments and solid phase extraction techniques were used to assess the impact of red mud addition on the mobility of Cu and Ni in soils from near the Ajka spill site. Red mud addition increases aqueous dissolved organic carbon (DOC) concentrations due to soil alkalisation, and this led to increased mobility of Cu and Ni complexed to organic matter. With Ajka soils, more Cu was mobilised by contact with red mud than Ni, despite a higher overall Ni concentration in the solid phase. This is most probably because Cu has a higher affinity to form complexes with organic matter than Ni. In aerobic experiments, contact with the atmosphere reduced soil pH via carbonation reactions, and this reduced organic matter dissolution and thereby lowered Cu/Ni mobility. These data show that the mixing of red mud into organic rich soils is an area of concern, as there is a potential to mobilise Cu and Ni as organically bound complexes, via soil alkalisation. This could be especially problematic in locations where anaerobic conditions can prevail, such as wetland areas contaminated by the spill.
Assessment of the hazard posed by metal forms in water and sediments.
Wojtkowska, Małgorzata; Bogacki, Jan; Witeska, Anna
2016-05-01
This study aimed to describe the prevalence heavy metals (Zn, Cu, Pb, and Cd) forms in the ecosystem of the Utrata river in order to determine the mobile forms and bioavailability of metals. To extract the dissolved forms of metals in the water of the Utrata PHREEQC2 geochemical speciation model was used. The river waters show a high percentage of mobile and eco-toxic forms of Zn, Cu and Pb. The percentage of carbonate forms for all the studied metals was low (<1%). The content of carbonates in the water and the prevailing physical and chemical conditions (pH, hardness, alkalinity) reduce the share of toxic metal forms, which precipitate as hardly soluble carbonate salts of Zn, Cu, Cd and Pb. Cu in the water in 90% of cases appeared in the form of hydroxyl compounds. To identify the forms of metal occurrence in the sediments Tessier's sequential extraction was used, allowing to assay bound metals in five fractions (ion exchange, carbonate, adsorption, organic, residual), whose nature and bioavailability varies in aquatic environments. The study has shown a large share of metals in labile and bioavailable forms. The speciation analysis revealed an absolute dominance of the organic fraction in the binding of Cu and Pb. Potent affinity for this fraction was also exhibited by Cd. The rations of exchangeable Zn and Cu forms in the sediments were similar. Both these metals had the lowest share in the most mobile ion exchange fraction. Copyright © 2016. Published by Elsevier B.V.
Ji, Hoon; Hwang, Sunhyun; Kim, Keonmok; Kim, CheolGi; Jeong, Nak Cheon
2016-11-30
The fabrication of metal-organic framework (MOF) films on conducting substrates has demonstrated great potential in applications such as electronic conduction and sensing. For these applications, direct contact of the film to the conducting substrate without a self-assembled monolayer (SAM) is a desired step that must be achieved prior to the use of MOF films. In this report, we propose an in situ strategy for the rapid one-step conversion of Cu metal into HKUST-1 films on conducting Cu substrates. The Cu substrate acts both as a conducting substrate and a source of Cu 2+ ions during the synthesis of HKUST-1. This synthesis is possible because of the simultaneous reaction of an oxidizing agent and a deprotonating agent, in which the former agent dissolves the metal substrate to form Cu 2+ ions while the latter agent deprotonates the ligand. Using this strategy, the HKUST-1 film could not only be rapidly synthesized within 5 min but also be directly attached to the Cu substrate. Based on microscopic studies, we propose a plausible mechanism for the growth reaction. Furthermore, we show the versatility of this in situ conversion methodology, applying it to ZIF-8, which comprises Zn 2+ ions and imidazole-based ligands. Using an I 2 -filled HKUST-1 film, we further demonstrate that the direct contact of the MOF film to the conducting substrate makes the material more suitable for use as a sensor or electronic conductor.
Zhang, Hua; Jiang, Yinghui; Wang, Min; Wang, Peng; Shi, Guangxun; Ding, Mingjun
2017-01-01
Surface water samples were collected from 20 sampling sites throughout the Ganjiang River during pre-monsoon, monsoon, and post-monsoon seasons, and the concentrations of dissolved trace elements were determined by inductively coupled plasma-mass spectrometry (ICP-MS) for the spatial and seasonal variations, risk assessment, source identification, and categorization for risk area. The result demonstrated that concentrations of the elements exhibited significant seasonality. The high total element concentrations were detected at sites close to the intensive mining and urban activities. The concentrations of the elements were under the permissible limits as prescribed by related standards with a few exceptions. The most of heavy metal pollution index (HPI) values were lower than the critical index limit, indicating the basically clean water used as habitat for aquatic life. As was identified as the priority pollutant of non-carcinogenic and carcinogenic concerns, and the inhabitants ingesting the surface water at particular site might be subjected to the integrated health risks for exposure to the mixed trace elements. Multivariate statistical analyses confirmed that Zn, As, Cd, and Tl were derived from mining and urban activities; V, Cd, and Pb exhibited mixed origin; and Co, Ni, and Cu mainly resulted from natural processes. Three categorized risk areas corresponded to high, moderate, and low risks, respectively. As a whole, the upstream of the Ganjiang River was identified as the high-risk area relatively.
Quality of Tourist Beaches in Huatulco, SW of Mexico: Multiproxy Studies
NASA Astrophysics Data System (ADS)
Retama, I.; Jonathan, M. P.; Rodriguez-Espinosa, P. F.
2014-12-01
40 beach water and sediment samples were collected from the inter-tidal zones of tourist beaches of Huatulco in the State of Oaxaca, South Western part of Mexico. The samples were collected in an aim to know the concentration pattern of metals (Cu, Cd, Cr, Ni, Pb, Zn, Co, Mn, Fe, As, Hg) in sediments and microplastics. Physico-chemical parameters like temperature, pH, dissolved oxygen, conductivity and total dissolved solids, salinity and redox potential. Collection of samples was done during the peak season in April 2013. Our results from water samples indicate that the physico-chemical conditions of the beach water have been altered due to human activities in large numbers. The bioavailable metal concentrations indicate that enrichment of Pb, Cd, Cr and As and it is also supported by the higher values observed from the calculation of enrichment factor and geoaccumulation index. The higher values in the sediments is either due to natural sources like chemical weathering of rocks and external sources, which points to high tourism, agricultural activities in the region. Identification of micro-plastics was done through SEM photographs, indicating the type of plastic wastes deposited into the beach regions which can indicate the density, durability and the persistence level in the sediments. Eventhough the enrichment of metals and modification of beach water quality is observed, care need to be taken to avoid further damage to the coastal ecosystem. Keywords: Tourism, Beach sediments, Beach water, Micro plastics, Trace metals, Contamination indices, Huatulco, Mexico.
NASA Astrophysics Data System (ADS)
Shan, Tan Chu; Matar, Manaf Al; Makky, Essam A.; Ali, Eman N.
2017-06-01
Moringa oleifera (MO) is a multipurpose tree with considerable potential and its cultivation is currently being actively promoted in many developing countries. Seeds of this tropical tree contain water-soluble, positively charged proteins that act as an effective coagulant for water and wastewater treatment. Based on this, water quality of "Sungai baluk" river was examined before and after the treatment using MO seed. MO seed exhibited high efficiency in the reduction and prevention of the bacterial growth in both wastewater and "Sungai baluk" river samples. The turbidity was removed up to 85-94% and dissolved oxygen (DO) was improved from 2.58 ± 0.01 to 4.00 ± 0.00 mg/L. The chemical oxygen demand (COD) and biological oxygen demand (BOD) were increased after the treatment from 99.5 ± 0.71 to 164.0 ± 2.83 mg/L for COD and from 48.00 ± 0.42 to 76.65 ± 2.33 mg/L for BOD, respectively. Nevertheless, there was no significant alteration of pH, conductivity, salinity and total dissolved solid after the treatment. Heavy metals such as Fe were fully eliminated, whereas Cu and Cd were successfully removed by up to 98%. The reduction of Pb was also achieved by up to 78.1%. Overall, 1% of MO seed cake was enough to remove heavy metals from the water samples. This preliminary laboratory result confirms the great potential of MO seed in wastewater treatment applications.
NASA Astrophysics Data System (ADS)
Onojake, M. C.; Sikoki, F. D.; Omokheyeke, O.; Akpiri, R. U.
2017-05-01
Surface water samples from three stations in the Bonny/New Calabar River Estuary were analyzed for the physicochemical characteristics and trace metal level in 2011 and 2012, respectively. Results show pH ranged from 7.56 to 7.88 mg/L; conductivity, 33,489.00 to 33,592.00 µScm-1; salinity, 15.33 to 15.50 ‰; turbidity, 4.35 to 6.65 NTU; total dissolved solids, 22111.00 to 23263.00 gm-3; dissolved oxygen, 4.53 to 6.65 mg/L; and biochemical oxygen demand, 1.72 mg/L. The level of some trace metals (Ca, Mg, K, Zn, Pb, Cd, Co, Cr, Cu, Fe, Ni, and Na) were also analyzed by Atomic absorption spectrometry with K, Zn, and Co being statistically significant ( P < 0.05). The results were compared with USEPA and WHO Permissible Limits for water quality standards. It was observed that the water quality parameters in the Bonny Estuary show seasonal variation with higher values for pH, DO, BOD, temperature, and salinity during the dry season than wet season. Concentrations of trace metals such as Pb, Cd, Zn, Ni, and Cr were higher than stipulated limits by WHO (2006). The result of the Metal Pollution Index suggests that the river was slightly affected and therefore continuous monitoring is necessary to avert possible public health implications of these metals on consumers of water and seafood from the study area.
Isolated single-species exposures were conducted in parallel with 42 d mesocosm dosing studies that measured in-situ and whole community responses to different recipes of excess total dissolved solids (TDS). The studies were conducted with cultured species and native taxa from mo...
Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have establishe...
Total Dissolved Solids (TDS) dosing studies representing different sources of ions were conducted from 2011-2015. Emergence responses in stream mesocosms were compared to single-species exposures using a whole effluent testing (WET) format and an ex-situ method (single species te...
Gross, Eliza L.; Lindsey, Bruce D.; Rupert, Michael G.
2012-01-01
Field blank samples help determine the frequency and magnitude of contamination bias, and replicate samples help determine the sampling variability (error) of measured analyte concentrations. Quality control data were evaluated for calcium, magnesium, sodium, potassium, chloride, sulfate, fluoride, silica, and total dissolved solids. A 99-percent upper confidence limit is calculated from field blanks to assess the potential for contamination bias. For magnesium, potassium, chloride, sulfate, and fluoride, potential contamination in more than 95 percent of environmental samples is less than or equal to the common maximum reporting level. Contamination bias has little effect on measured concentrations greater than 4.74 mg/L (milligrams per liter) for calcium, 14.98 mg/L for silica, 4.9 mg/L for sodium, and 120 mg/L for total dissolved solids. Estimates of sampling variability are calculated for high and low ranges of concentration for major ions and total dissolved solids. Examples showing the calculation of confidence intervals and how to determine whether measured differences between two water samples are significant are presented.
Acosta, Daiane da Silva; Danielle, Naissa Maria; Altenhofen, Stefani; Luzardo, Milene Dornelles; Costa, Patrícia Gomes; Bianchini, Adalto; Bonan, Carla Denise; da Silva, Rosane Souza; Dafre, Alcir Luiz
2016-01-01
Metal contamination at low levels is an important issue because it usually produces health and environmental effects, either positive or deleterious. Contamination of surface waters with copper (Cu) is a worldwide event, usually originated by mining, agricultural, industrial, commercial, and residential activities. Water quality criteria for Cu are variable among countries but allowed limits are generally in the μg/L range, which can disrupt several functions in the early life-stages of fish species. Behavioral and biochemical alterations after Cu exposure have also been described at concentrations close to the allowed limits. Aiming to search for the effects of Cu in the range of the allowed limits, larvae and adult zebrafish (Danio rerio) were exposed to different concentrations of dissolved Cu (nominally: 0, 5, 9, 20 and 60μg/L; measured: 0.4, 5.7, 7.2 16.6 and 42.3μg/L, respectively) for 96h. Larvae swimming and body length, and adult behavior and biochemical biomarkers (activity of glutathione-related enzymes in gills, muscle, and brain) were assessed after Cu exposure. Several effects were observed in fish exposed to 9μg/L nominal Cu, including increased larvae swimming distance and velocity, abolishment of adult inhibitory avoidance memory, and decreased glutathione S-transferase (GST) activity in gills of adult fish. At the highest Cu concentration tested (nominally: 60μg/L), body length of larvae, spatial memory of adults, and gill GST activity were decreased. Social behavior (aggressiveness and conspecific interaction), and glutathione reductase (GR) activity were not affected in adult zebrafish. Exposure to Cu, at concentrations close to the water quality criteria for this metal in fresh water, was able to alter larvae swimming performance and to induce detrimental effects on the behavior of adult zebrafish, thus indicating the need for further studies to reevaluate the currently allowed limits for Cu in fresh water. Copyright © 2016 Elsevier Inc. All rights reserved.
Lin, Sijie; Taylor, Alicia A.; Zhaoxia, Ji; Chang, Chong Hyun; Kinsinger, Nichola M.; Ueng, William; Walker, Sharon L.; Nel, André E.
2015-01-01
Although copper-containing nanoparticles are used in commercial products such as fungicides and bactericides, we presently do not understand the environmental impact on other organisms that may be inadvertently exposed. In this study, we used the zebrafish embryo as a screening tool to study the potential impact of two nano Cu-based materials, CuPRO and Kocide, in comparison to nano-sized and micron-sized Cu and CuO particles in their pristine form (0 – 10 ppm) as well as following their transformation in an experimental wastewater treatment system. This was accomplished by construction of a modeled domestic septic tank system from which effluents could be retrieved at different stages following particle introduction (10 ppm). The Cu speciation in the effluent was identified as non-dissolvable inorganic Cu(H2PO2)2 and non-diffusible organic Cu by X-ray diffraction, inductively coupled plasma mass spectrometry (ICP-MS), diffusive gradients in thin-films (DGT), and Visual MINTEQ software. While the nanoscale materials, including the commercial particles, were clearly more potent (showing 50% hatching interference above 0.5 ppm) than the micron-scale particulates with no effect on hatching up to 10 ppm, the Cu released from the particles in the septic tank underwent transformation into non-bioavailable species that failed to interfere with the function of the zebrafish embryo hatching enzyme. Moreover, we demonstrate that the addition of humic acid, as an organic carbon component, could lead to a dose-dependent decrease in Cu toxicity in our high content zebrafish embryo screening assay. Thus, the use of zebrafish embryo screening, in combination with the effluents obtained from a modeled exposure environment, enables a bioassay approach to follow the change in the speciation, and hazard potential of Cu particles instead of difficult-to-perform direct particle tracking. PMID:25625504
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Chuck; Scofield, Ben; Pavlik, Deanne
2003-03-01
A slightly dryer than normal year yielded flows in Lake Roosevelt that were essentially equal to the past ten year average. Annual mean inflow and outflow were 3,160.3 m3/s and 3,063.4 m3/s respectively. Mean reservoir elevation was 387.2 m above sea level at the Grand Coulee Dam forebay. The forebay elevation was below the mean elevation for a total of 168 days. During the first half of the 2000 forebay elevation changed at a rate of 0.121 m/d and during the last half changed at a rate of 0.208 m/d. The higher rate of elevation change earlier in the yearmore » is due to the drawdown to accommodate spring runoff. Mean annual water retention time was 40 days. Annual mean total dissolved gas was 108%. Total dissolved gas was greatest at upriver locations (110% = US/Canada Border annual mean) and decreased moving toward Grand Coulee Dam (106% = Grand Coulee Dam Forebay annual mean). Total dissolved gas was greatest in May (122% reservoir wide monthly mean). Gas bubble trauma was observed in 16 fish primarily largescale suckers and was low in severity. Reservoir wide mean temperatures were greatest in August (19.5 C) and lowest in January (5.5 C). The Spokane River and Sanpoil River Arms experienced higher temperatures than the mainstem reservoir. Brief stratification was observed at the Sanpoil River shore location in July. Warm water temperatures in the Spokane Arm contributed to low dissolved oxygen concentrations in August (2.6 mg/L at 33 m). However, decomposition of summer algal biomass was likely the main cause of depressed dissolved oxygen concentrations. Otherwise, dissolved oxygen profiles were relatively uniform throughout the water column across other sampling locations. Annual mean Secchi depth throughout the reservoir was 5.7 m. Nutrient concentrations were generally low, however, annual mean total phosphorus (0.016 mg/L) was in the mesotrophic range. Annual mean total nitrogen was in the meso-oligotrophic range. Total nitrogen to total phosphorus ratios were large (31:1 annual mean) likely indicating phosphorus limitations to phytoplankton.« less
The distribution of organic matter was studied in northern San Francisco Bay monthly through spring and summer 1996 along the salinity gradient from the Sacramento River to Central Bay. Dissolved constituents included monosaccharides (MONO), total carbohydrates (TCHO), dissolved ...
Li, Lingxiangyu; Wu, Jianyang; Tian, Guangming; Xu, Zhenlan
2009-08-15
To investigate the effect of the transit through the gut of earthworm (Eisenia fetida) on the fractionation of Cu and Zn in pig manure, earthworms were reared with pig manure in the greenhouse. Both the pig manure and the earthworm casts were subjected to a five-step sequential extraction of Cu and Zn. The content of Cu bound to organic matter in pig manure increased from 60% to 75% after transit through the gut of earthworm, whereas that of Zn decreased from 50% to 25%. It demonstrated that Cu had a strong affinity towards organic matter. The share of Cu and Zn in the exchangeable fraction was reduced by the transit through the gut of earthworm. Based on these changes, Cu was more bioavailable, whereas Zn was less bioavailable. The factors affecting metal fractionation, like pH, organic matter (OM) and total phosphorous (TP) contents, and total metal concentration, were also affected significantly by the transit through the gut of earthworm. Stepwise multiple regression analysis revealed that the fractionation of Cu in the earthworm casts was influenced by OM, TP and the amount of Cu in the earthworm casts. The total Zn concentration in the earthworm casts was the primary factor that explained most of the variation in Zn fractionation. The present study demonstrated that the digestive activity in the gut of E. fetida played an important role in the fraction redistribution of Cu and Zn in pig manure.
Brain electrophysiology in Sprague-Dawley rats fed low copper diets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penland, J.G.; Sawler, B.G.; Klevay, L.M.
1986-03-01
Electrical activity of the brain was assessed in 38 unanesthetized male rats fed a Cu deficient diet for c.100 days after weaning. Rats were supplemented with drinking solutions containing 0, 0.75, or 2 ..mu..g Cu/ml and 10 ..mu..g Zn/ml (as sulfate and acetate, respectively). Three weeks prior to recording, dural ball electrodes were placed bilaterally 1 mm anterior to the lambda and 4 mm lateral to the midline, with a midline reference 2 mm anterior to the bregma. Cu deficiency was verified by atomic absorption spectroscopy of plasma Cu (p < .0001). The electroencephalogram revealed dietary effects on both logmore » power and arcsin percent-total power in each of four frequency bands (1-3, 4-7, 8-12, 13-18 Hz). Low dietary Cu resulted in less log power and percent-total power in the lowest frequencies, and log power evidenced lateralized effects in the higher frequencies. Rats fed the diet most deficient in Cu had lower left and higher right hemisphere power than did rats fed the more adequate Cu diets. Percent-total power was higher in the mid-range frequencies in both hemispheres for rats fed the Cu deficient diets, compared to rats supplemented with the largest amount of Cu. The findings confirm a previous experiment (unpublished) and suggest that dietary Cu influences the electrical activity of the brain in a select (i.e., frequency and location specific) rather than undifferentiated manner.« less
Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.
2008-01-01
Water analyses are reported for 157 samples collected from numerous hot springs, their overflow drainages, and Lemonade Creek in Yellowstone National Park (YNP) during 2003-2005. Water samples were collected and analyzed for major and trace constituents from ten areas of YNP including Terrace and Beryl Springs in the Gibbon Canyon area, Norris Geyser Basin, the West Nymph Creek thermal area, the area near Nymph Lake, Hazle Lake, and Frying Pan Spring, Lower Geyser Basin, Washburn Hot Springs, Mammoth Hot Springs, Potts Hot Spring Basin, the Sulphur Caldron area, and Lemonade Creek near the Solfatara Trail. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, and sulfur redox distribution in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved onsite. Water temperature, specific conductance, pH, Eh (redox potential relative to the Standard Hydrogen Electrode), and dissolved hydrogen sulfide were measured onsite at the time of sampling. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally minutes to hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved-iron and ferrous-iron concentrations often were measured onsite in the mobile laboratory vehicle. Concentrations of dissolved aluminum, arsenic, boron, barium, beryllium, calcium, cadmium, cobalt, chromium, copper, iron, potassium, lithium, magnesium, manganese, molybdenum, sodium, nickel, lead, selenium, silica, strontium, vanadium, and zinc were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of dissolved antimony, cadmium, cobalt, chromium, copper, lead, and selenium were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Dissolved concentrations of total arsenic, arsenite, total antimony, and antimonite were determined by hydride-generation atomic-absorption spectrometry using a flow-injection analysis system. Dissolved concentrations of total mercury and methyl mercury were determined by cold-vapor atomic-fluorescence spectrometry. Concentrations of dissolved chloride, fluoride, nitrate, bromide, and sulfate were determined by ion chromatography. Concentrations of dissolved ferrous and total iron were determined by the FerroZine colorimetric method. Concentrations of dissolved nitrite were determined by colorimetry or chemiluminescence. Concentrations of dissolved ammonium were determined by ion chromatography, with reanalysis by colorimetry when separation of sodium and ammonia peaks was poor. Dissolved organic carbon concentrations were determined by the wet persulfate oxidation method. Hydrogen and oxygen isotope ratios were determined using the hydrogen and CO2 equilibration techniques, respectively.
Aparecida Maranho, Lucineide; Teresinha Maranho, Leila; Grossi Botelho, Rafael; Luiz Tornisielo, Valdemar
2014-09-29
The aim of this one-year study (August 2009 to July 2010) was to evaluate the Corumbataí River water polluted by anthropogenic sources and see how it affects the reproduction of the microcrustacean Ceriodaphnia dubia (Richard, 1984) in laboratory conditions over seven days of exposure to water samples collected monthly at six different locations. We determined the concentrations of zinc (Zn), copper (Cu), nickel (Ni), lead (Pb), and cadmium (Cd), as well as physicochemical parameters such as dissolved oxygen, conductivity, water temperature, and pH. Dissolved oxygen and conductivity demonstrated anthropogenic influence, as dissolved oxygen concentration decreased and conductivity increased from the upstream to the downstream stretch of the river. The effects on C. dubia were observed in the months with high precipitation, but the toxicity cannot be associated with any particular contaminant. Heavy metal levels kept well below the limit values. Zn and Pb had the highest concentrations in the water during the sampling period, probably due to the industrial and agricultural influence. However, these levels do not seem to be associated with precipitation, which suggests that their primary source was industry. Physicochemical parameters, the ecotoxicological assay, and determination of heavy metals proved to be efficient tools to evaluate aquatic environments.
Trace element distributions in the water column near the Deepwater Horizon well blowout.
Joung, DongJoo; Shiller, Alan M
2013-03-05
To understand the impact of the Deepwater Horizon well blowout on dissolved trace element concentrations, samples were collected from areas around the oil rig explosion site during four cruises in early and late May 2010, October 2010, and October 2011. In surface waters, Ba, Fe, Cu, Ni, Mn, and Co were relatively well correlated with salinity during all cruises, suggesting mixing with river water was the main influence on metal distributions in these waters. However, in deep oil/gas plumes (1000-1400 m depth), modestly elevated concentrations of Co and Ba were observed in late May, compared with postblowout conditions. Analysis of the oil itself along with leaching experiments confirm the oil as the source of the Co, whereas increased Ba was likely due to drilling mud used in the top kill attempt. Deep plume dissolved Mn largely reflected natural benthic input, though some samples showed slight elevation probably associated with the top kill. Dissolved Fe concentrations were low and also appeared largely topographically controlled and reflective of benthic input. Estimates suggest that microbial Fe demand may have affected the Fe distribution but probably not to the extent of Fe becoming a growth-limiting factor. Experiments showed that the dispersant can have some limited impact on dissolved-particulate metal partitioning.
Variations in statewide water quality of New Jersey streams, water years 1998-2009
Heckathorn, Heather A.; Deetz, Anna C.
2012-01-01
Statistical analyses were conducted for six water-quality constituents measured at 371 surface-water-quality stations during water years 1998-2009 to determine changes in concentrations over time. This study examined year-round concentrations of total dissolved solids, dissolved nitrite plus nitrate, dissolved phosphorus, total phosphorus, and total nitrogen; concentrations of dissolved chloride were measured only from January to March. All the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the cooperative Ambient Surface-Water-Quality Monitoring Network. Stations were divided into groups according to the 1-year or 2-year period that the stations were part of the Ambient Surface-Water-Quality Monitoring Network. Data were obtained from the eight groups of Statewide Status stations for water years 1998, 1999, 2000, 2001-02, 2003-04, 2005-06, 2007-08, and 2009. The data from each group were compared to the data from each of the other groups and to baseline data obtained from Background stations unaffected by human activity that were sampled during the same time periods. The Kruskal-Wallis test was used to determine whether median concentrations of a selected water-quality constituent measured in a particular 1-year or 2-year group were different from those measured in other 1-year or 2-year groups. If the median concentrations were found to differ among years or groups of years, then Tukey's multiple comparison test on ranks was used to identify those years with different or equal concentrations of water-quality constituents. A significance level of 0.05 was selected to indicate significant changes in median concentrations of water-quality constituents. More variations in the median concentrations of water-quality constituents were observed at Statewide Status stations (randomly chosen stations scattered throughout the State of New Jersey) than at Background stations (control stations that are located on reaches of streams relatively unaffected by human activity) during water years 1998-2009. Results of tests on concentrations of total dissolved solids, dissolved chloride, dissolved nitrite plus nitrate, total phosphorus, and total nitrogen indicate a significant difference in water quality at Statewide Status stations but not at Background stations during the study period. Excluding water year 2009, all significant changes that were observed in the median concentrations were ultimately increases, except for total phosphorus, which varied significantly but in an inconsistent pattern during water years 1998-2009. Streamflow data aided in the interpretation of the results for this study. Extreme values of water-quality constituents generally followed inverse patterns of streamflow. Low streamflow conditions helped explain elevated concentrations of several constituents during water years 2001-02. During extreme drought conditions in 2002, maximum concentrations occurred for four of the six water-quality constituents examined in this study at Statewide Status stations (maximum concentration of 4,190 milligrams per liter of total dissolved solids) and three of six constituents at Background stations (maximum concentration of 179 milligrams per liter of total dissolved solids). The changes in water quality observed in this study parallel many of the findings from previous studies of trends in New Jersey.
NASA Astrophysics Data System (ADS)
Sherrell, R. M.; Fitzsimmons, J. N.; Roccanova, J.; Schofield, O.; Meredith, M. P.
2016-02-01
The Western Antarctic Peninsula (WAP) shelf region is is a natural Fe fertilization zone where primary production exceeds that of the adjacent open Southern Ocean. Until recently, however, distributions of Fe and of other bioactive metals were completely lacking for the WAP, and the sources and delivery mechanisms of Fe to the euphotic zone were only speculated upon. We have previously presented surface water (2m) dissolved (dTM, <0.2µm) and particulate (pTM, >0.45µm) distributions for Fe and a suite of other bioactive metals over the WAP shelf, covering the Palmer LTER sampling grid for Jan. 2010, 2011 and 2012. We now report the first complete 3D distribution of dissolved and colloidal Fe (and Mn, Zn, Cu, Ni, Cd and Pb) over the LTER grid in Jan. 2015, allowing assessment of dFe size speciation, sources and transport pathways in this dynamic shelf system. Dissolved metals were analyzed by automated offline preconcentration (seaFAST-pico, ESI) followed by sector-field ICP-MS. We confirm previous findings of low ( 0.1nM) dFe in surface waters on the mid-outer shelf in the northern portion of the grid, and now find that concentrations at this level or below persist through the euphotic zone. However, dFe increases rapidly with depth, with low surface values underlain by substantially higher concentrations even at 50m. Inner shelf surface waters are generally substantially > 0.1nM, suggesting Fe replete conditions in this region. Vertical profiles reveal that dFe generally increases with depth, much moreso in the inner shelf (dFe up to 5.0nM) than the outer shelf. A general N-S gradient in dFe is also evident, with concentrations higher in the southern WAP, especially in Marguerite Bay. In addition, shelf stations often show a dFe maximum suggesting remineralization from sinking biogenic particles. These findings for dFe and for the other metals, will be used to help unravel the biogeochemical workings of natural Fe fertilization in this region.
Ball, James W.; McMleskey, R. Blaine; Nordstrom, D. Kirk
2010-01-01
Water analyses are reported for 104 samples collected from numerous thermal and non-thermal features in Yellowstone National Park (YNP) during 2006-2008. Water samples were collected and analyzed for major and trace constituents from 10 areas of YNP including Apollinaris Spring and Nymphy Creek along the Norris-Mammoth corridor, Beryl Spring in Gibbon Canyon, Norris Geyser Basin, Lower Geyser Basin, Crater Hills, the Geyser Springs Group, Nez Perce Creek, Rabbit Creek, the Mud Volcano area, and Washburn Hot Springs. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, iron, nitrogen, and sulfur redox species in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved on-site. Water temperature, specific conductance, pH, emf (electromotive force or electrical potential), and dissolved hydrogen sulfide were measured on-site at the time of sampling. Dissolved hydrogen sulfide was measured a few to several hours after sample collection by ion-specific electrode on samples preserved on-site. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally a few to several hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved iron and ferrous iron concentrations often were measured on-site in the mobile laboratory vehicle. Concentrations of dissolved aluminum, arsenic, boron, barium, beryllium, calcium, cadmium, cobalt, chromium, copper, iron, potassium, lithium, magnesium, manganese, molybdenum, sodium, nickel, lead, selenium, silica, strontium, vanadium, and zinc were determined by inductively coupled plasma-optical emission spectrometry. Trace concentrations of dissolved antimony, cadmium, cobalt, chromium, copper, lead, and selenium were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Dissolved concentrations of total arsenic, arsenite, total antimony, and antimonite were determined by hydride generation atomic-absorption spectrometry using a flow-injection analysis system. Dissolved concentrations of total mercury and methylmercury were determined by cold-vapor atomic fluorescence spectrometry. Concentrations of dissolved chloride, fluoride, nitrate, bromide, and sulfate were determined by ion chromatography. For many samples, concentrations of dissolved fluoride also were determined by ion-specific electrode. Concentrations of dissolved ferrous and total iron were determined by the FerroZine colorimetric method. Concentrations of dissolved ammonium were determined by ion chromatography, with reanalysis by colorimetry when separation of sodium and ammonia peaks was poor. Dissolved organic carbon concentrations were determined by the wet persulfate oxidation method. Hydrogen and oxygen isotope ratios were determined using the hydrogen and CO2 equilibration techniques, respectively.
Guerzoni, S; Rampazzo, G; Molinaroli, E; Rossini, P
2005-09-01
Multivariate statistical analyses were applied to measurements of atmospheric deposition of total particulate (TSP), inorganic elements (Al, Ca, Na, K, Mg, Si, Mn, Fe, Zn, Ni, Cr, Cu, Pb, Cd, As, Hg, V and S) and organic compounds (PAH, PCB, HCB and PCDD/F) collected in four stations, all located in the Lagoon of Venice. Aerosols at the scale of the basin (i.e., within a distance of 20 km) were mainly characterised by two end-members, one natural (composed of mineral particulate and marine spray) and one anthropogenic (with at least two different source components), affecting the sites in various ways. Variability at the two distant (>20 km) sites (Valle Dogà, Valle Figheri) was mainly due to natural components, whereas the other two stations (city of Venice, Dogaletto, approximately 5 km) were mainly impacted by industrial (and urban) sources. Total annual inputs were compared with the limits recently set by law (maximum allowed discharge=MAD). In the year of study, MAD values were exceeded for total As, Cd, Hg, Pb, dissolved Zn, PAH and PCDD/F. These results indicate that industrial sources gave rise to a quasi-permanent compositional (background) effect near the industrial area. The risk associated with atmospheric deposition should be quantified within the DSPIR framework to avoid future negative consequences in populations living in the vicinity of Porto Marghera.
Shivaraju, H Puttaiah; Egumbo, Henok; Madhusudan, P; Anil Kumar, K M; Midhun, G
2018-02-01
Affordable clay-based ceramic filters with multifunctional properties were prepared using low-cost and active ingredients. The characterization results clearly revealed well crystallinity, structural elucidation, extensive porosity, higher surface area, higher stability, and durability which apparently enhance the treatment efficiency. The filtration rates of ceramic filter were evaluated under gravity and the results obtained were compared with a typical gravity slow sand filter (GSSF). All ceramic filters showed significant filtration rates of about 50-180 m/h, which is comparatively higher than the typical GSSF. Further, purification efficiency of clay-based ceramic filters was evaluated by considering important drinking water parameters and contaminants. A significant removal potential was achieved by the clay-based ceramic filter with 25% and 30% activated carbon along with active agents. Desired drinking water quality parameters were achieved by potential removal of nitrite (98.5%), nitrate (80.5%), total dissolved solids (62%), total hardness (55%), total organic pollutants (89%), and pathogenic microorganisms (100%) using ceramic filters within a short duration. The remarkable purification and disinfection efficiencies were attributed to the extensive porosity (0.202 cm 3 g -1 ), surface area (124.61 m 2 g -1 ), stability, and presence of active nanoparticles such as Cu, TiO 2 , and Ag within the porous matrix of the ceramic filter.
Huang, Zhuo; Ito, Kazuaki; Morita, Isamu; Yokota, Kuriko; Fukushi, Keiichi; Timerbaev, Andrei R; Watanabe, Shuichi; Hirokawa, Takeshi
2005-08-01
Using a novel high-sensitivity capillary electrophoretic method, vertical distributions of iodate, iodide, total inorganic iodine, dissolved organic iodine and total iodine in the North Pacific Ocean (0-5500 m) were determined without any sample pre-treatment other than UV irradiation before total iodine analysis. An extensive set of data demonstrated that the iodine behaviour in the ocean water collected during a cruise in the North Pacific Ocean in February-March 2003 was not conservative but correlated with variations in concentrations of dissolved oxygen and nutrient elements such as silicon, nitrogen and phosphorus. This suggests that the vertical distribution of iodine is associated with biological activities. The dissolved organic iodine was found in the euphotic zone in accord with observations elsewhere in the oceans. The vertical profile of dissolved organic iodine also appears to be related to biogeochemical activity. The concentrations of all measured iodine species vary noticeably above 1000 m but only minor latitudinal changes occur below 1000 m and slight vertical alterations can be observed below 2400 m. These findings are thought to reflect the stratification of nutrients and iodine species with different biological activities in the water column.
Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.
2015-09-02
Following coagulation, but prior to passage through the wetland cells, coagulation treatments transferred dissolved mercury and carbon to the particulate fraction relative to untreated source water: at the wetland cell inlets, the coagulation treatments decreased concentrations of filtered total mercury by 59–76 percent, filtered monomethyl mercury by 40–70 percent, and dissolved organic carbon by 65–86 percent. Passage through the wetland cells decreased the particulate fraction of mercury in wetland cells that received coagulant-treated water. Changes in total mercury, monomethyl mercury, and dissolved organic carbon concentrations resulting from wetland passage varied both by treatment and season. Despite increased monomethyl mercury in the filtered fraction during wetland passage between March and August, the coagulation-wetland systems generally decreased total mercury (filtered plus particulate) and monomethyl mercury (filtered plus particulate) concentrations relative to source water. Coagulation—either alone or in association with constructed wetlands—could be an effective way to decrease concentrations of mercury and dissolved organic carbon in surface water as well as the bioavailability of mercury in the Sacramento–San Joaquin Delta.
Singhania, Amit; Gupta, Shipra Mital
2017-01-01
Zirconia (ZrO 2 ) nanoparticles co-doped with Cu and Pt were applied as catalysts for carbon monoxide (CO) oxidation. These materials were prepared through solution combustion in order to obtain highly active and stable catalytic nanomaterials. This method allows Pt 2+ and Cu 2+ ions to dissolve into the ZrO 2 lattice and thus creates oxygen vacancies due to lattice distortion and charge imbalance. High-resolution transmission electron microscopy (HRTEM) results showed Cu/Pt co-doped ZrO 2 nanoparticles with a size of ca. 10 nm. X-ray diffraction (XRD) and Raman spectra confirmed cubic structure and larger oxygen vacancies. The nanoparticles showed excellent activity for CO oxidation. The temperature T 50 (the temperature at which 50% of CO are converted) was lowered by 175 °C in comparison to bare ZrO 2 . Further, they exhibited very high stability for CO reaction (time-on-stream ≈ 70 h). This is due to combined effect of smaller particle size, large oxygen vacancies, high specific surface area and better thermal stability of the Cu/Pt co-doped ZrO 2 nanoparticles. The apparent activation energy for CO oxidation is found to be 45.6 kJ·mol -1 . The CO conversion decreases with increase in gas hourly space velocity (GHSV) and initial CO concentration.
Dynamic chemical characteristics of soil solution after pig manure application: a column study.
Hao, Xiuzhen; Zhou, Dongmei; Sun, Lei; Li, Lianzhen; Zhang, Hailin
2008-06-01
When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.
Richaud, R; Lazaro, M J; Lachas, H; Miller, B B; Herod, A A; Dugwell, D R; Kandiyoti, R
2000-01-01
1-Methyl-2-pyrrolidinone (NMP) was used to extract samples of wood (forest residue) and coal; the extracts were analysed by inductively coupled plasma mass spectrometry (ICP-MS) using two different sample preparation methods, in order to identify trace elements associated with the organic part of the samples. A sample of fly ash was similarly extracted and analysed in order to assess the behaviour of the mineral matter contained within the wood and coal samples. 32% of the biomass was extracted at the higher temperature and 12% at room temperature while only 12% of the coal was extracted at the higher temperature and 3% at room temperature. Less than 2% of the ash dissolved at the higher temperature. Size exclusion chromatograms of the extracts indicated the presence of significant amounts of large molecular mass materials (>1000 mu) in the biomass and coal extracts but not in the ash extract. Trace element analyses were carried out using ICP-MS on the acid digests prepared by 'wet ashing' and microwave extraction. Sixteen elements (As, Ba, Be, Cd, Co, Cr, Cu, Ga, Mn, Mo, Ni, Pb, Sb, Se, V and Zn) were quantified, in the samples before extraction, in the extracts and in the residues. Concentrations of trace elements in the original biomass sample were lower than in the coal sample while the concentrations in the ash sample were the highest. The major trace elements in the NMP extracts were Ba, Cu, Mn and Zn from the forest residue; Ba, Cu, Mn, Pb and Zn from the coal; Cu and Zn from the ash. These elements are believed to be associated with the organic extracts from the forest residue and coal, and also from the ash. Be and Sb were not quantified in the extracts because they were present at too low concentrations; up to 40% of Mn was extracted from the biomass sample at 202 degrees C, while Se was totally extracted from the ash sample. For the forest residue, approximately 7% (at room temperature) and 45% (at 202 degrees C) of the total trace elements studied were in the extract; for the coal, approximately 8% (at room temperature) and 23% (at 202 degrees C) were in the extract. For the ash, only 1.4% of the trace elements were extracted at 202 degrees C, comprising 25% of Cd but less than 1% of Pb. Copyright 2000 John Wiley & Sons, Ltd.
Biswas, Haimanti; Bandyopadhyay, Debasmita
2017-10-01
Trace amount of copper (Cu) is essential for many physiological processes; however, it can be potentially toxic at elevated levels. The impact of variable Cu concentrations on a coastal phytoplankton community was investigated along a coastal transect in SW Bay of Bengal. A small increase in Cu supply enhanced the concentrations of particulate organic carbon, particulate organic nitrogen, biogenic silica, total pigment, phytoplankton cell and total bacterial count. At elevated Cu levels all these parameters were adversely affected. δ 13 C POM and δ 15 N POC reflected a visible signature of both beneficial and toxic impacts of Cu supply. Skeletonema costatum, the dominant diatom species, showed higher tolerance to increasing Cu levels relative to Chaetoceros sp. Cyanobacteria showed greater sensitivity to copper than diatoms. The magnitude of Cu toxicity on the phytoplankton communities was inversely related to the distance from the coast. Co-enrichment of iron alleviated Cu toxicity to phytoplankton. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Xinghua; Shen, Yixing; Lou, Laiqing; Ding, Chenglong; Cai, Qingsheng
2009-01-01
Pot trials were conducted to study the influence of copper (Cu) on the growth and biomass of Elephant grass (EG, Pennisetum purpureum Schumach), Vetiver grass (VG, Vetiveria zizanioides) and the upland reed (UR, Phragmites australis). Cu toxicity in EG, VG and UR was positively correlated with the total and bioavailable Cu concentrations in the soil. Based on the EC50, dry weights, Cu contents, chlorophyll contents and photosynthesis rates, the Cu tolerance of the three species followed the trend EGNVGNUR. There were no significant differences in the unit calorific values among the different plants, though the total calorific values of EG were higher than those of VG and UR due to its higher biomass. The addition of KH2PO4 to the soil decreased the bioavailability of Cu and the Cu uptake by plants. EG could therefore be a good candidate for growth on Cu-contaminated soils, especially those improved by phosphate.
Ball, James W.; Nordstrom, D. Kirk; McCleskey, R. Blaine; Schoonen, Martin A.A.; Xu, Yong
2001-01-01
Fifty-eight water analyses are reported for samples collected from 19 hot springs and their overflow drainages and one ambient-temperature acid stream in Yellowstone National Park (YNP) during 1996-98. These water samples were collected and analyzed as part of research investigations on microbially mediated sulfur oxidation in stream waters and sulfur redox speciation in hot springs in YNP and chemical changes in overflow drainages that affect major ions, redox species, and trace elements. The research on sulfur redox speciation in hot springs is a collaboration with the State University of New York at Stony Brook, Northern Arizona University, and the U.S. Geological Survey (USGS). One ambient-temperature acidic stream system, Alluvium Creek and its tributaries in Brimstone Basin, was studied in detail. Analyses were performed adjacent to the sampling site, in an on-site mobile laboratory truck, or later in a USGS laboratory, depending on stability and preservability of the constituent. Water temperature, specific conductance, pH, Eh, dissolved oxygen (D.O.), and dissolved H2S were determined on-site at the time of sampling. Alkalinity and F were determined within a few days of sample collection by titration and by ion-selective electrode, respectively. Concentrations of S2O3 and SxO6 were determined as soon as possible (minutes to hours later) by ion chromatography (IC). Concentrations of Cl, SO4, and Br were determined by IC within a few days of sample collection. Concentrations of Fe(II) and Fe(total) were determined by ultraviolet/visible spectrophotometry within a few days of sample collection. Densities were determined later in the USGS laboratory. Concentrations of Li, Na, and K were determined by flame atomic absorption (Li) and emission (Na, K) spectrometry. Concentrations of Al, As(total), B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), Mg, Mn, Ni, Pb, Si, Sr, V, and Zn were determined by inductively-coupled plasma optical emission spectrometry. Trace concentrations of Cd, Se, As(total), Ni, and Pb were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Trace concentrations of As(total) and As(III) were determined by hydride generation using a flow-injection analysis system.
Distribution of dissolved zinc in the western and central subarctic North Pacific
NASA Astrophysics Data System (ADS)
Kim, T.; Obata, H.; Gamo, T.
2016-02-01
Zinc (Zn) is an essential micronutrient for bacteria and phytoplankton in the ocean as it plays an important role in numerous enzyme systems involved in various metabolic processes. However, large-scale distributions of total dissolved Zn in the subarctic North Pacific have not been investigated yet. In this study, we investigated the distributions of total dissolved Zn to understand biogeochemical cycling of Zn in the western and central subarctic North Pacific as a Japanese GEOTRACES project. Seawater samples were collected during the R/V Hakuho-maru KH-12-4 GEOTRACES GP 02 cruise (from August to October 2012), by using acid-cleaned Teflon-coated X-type Niskin samplers. Total dissolved Zn in seawater was determined using cathodic stripping voltammetry (CSV) after UV-digestion. In this study, total dissolved Zn concentrations in the western and central subarctic North Pacific commonly showed Zn increase from surface to approximately 400-500 m, just above the oxygen minimum layer. However, in the western subarctic North Pacific, relatively higher Zn concentrations have also been observed at intermediate depths (800-1200 m), in comparison with those observed in deep waters. The relationship between Zn and Si in the western subarctic North Pacific showed that Zn is slightly enriched at intermediate depths. These results may indicate that there are additional sources of Zn to intermediate water of the western subarctic North Pacific.
Zhao, Fang-Jie; Rooney, Corinne P; Zhang, Hao; McGrath, Steve P
2006-03-01
The toxicity effect concentrations (10% effective concentration [EC10] and 50% effective concentration [EC50]) of total added Cu derived from barley root elongation and tomato growth assays varied widely among 18 European soils. We investigated whether this variation could be explained by the solubility or speciation of Cu in soil solutions or the diffusive gradients in thin-films (DGT) measurement. Solubility and Cu speciation varied greatly among the soils tested. However, the EC10 and EC50 of soil solution Cu or free Cu2+ activity varied even more widely than those based on the total added Cu, indicating that solubility or soil solution speciation alone could not explain intersoil variation in Cu toxicity. Estimated EC10 and EC50 of free Cu2+ activity correlated closely and negatively with soil pH, indicating a protective effect of H+, which is consistent with the biotic ligand model concept. The DGT measurement was found to narrow the intersoil variation in EC50 considerably and to be a better predictor of plant Cu concentrations than either soil solution Cu or free Cu2+ activity. We conclude that plant bioavailability of Cu in soil depends on Cu speciation, interactions with protective ions (particularly H+), and the resupply from the solid phase, and we conclude that the DGT measurement provides a useful indicator of Cu bioavailability in soil.
Distribution and composition of dissolved amino acids in seawater at the Yap Trench
NASA Astrophysics Data System (ADS)
Yan, Y.; Xie, L.; Sun, C.; Yang, G.; Ding, H.
2017-12-01
The distributions and compositions of total hydrolyzed amino acids ( THAA) , dissolved combined amino acids ( DCAA) and dissolved free amino acids ( DFAA) were investigated after analyzing seawater samples collected from different depths by CTD and from the sediment-seawater interface by the Jiaolong submersible, at 4 stations located in the Yap Trench in June, 2016. The results showed that the average concentration of THAA was (2.44±0.85) μmol /L, while the average concentrations of DCAA and DFAA were (1.97±0.82) μmol /L and (0.47±0.34)μmol /L, respectively.The concentrations of THAA and DCAA displayed a decreasing trend from surface layer to deep layer. In the vertical distribution, the concentrations of THAA varied differently in superficial layer (above 1000 meters). THAA, DFAA and DCAA had a similar concentrations below 1000 meter depth. In the study area, major constituents of dissolved amino acids were methionine, threonine , histidine, glutamic acid , valine and glycine. At the Yap Trench, neutral dissolved amino acids were dominant in total dissolved amino acids. The trend of vertical distributions of various types of THAA, DFAA, and DCAA were similar with the total THAA, DFAA, and DCAA. In sediment-seawater interface, the seawater in the northwest of the trench has high concentrations of THAA and DCAA, while the concentrations of DFAA were similar in the seawater at the sediment-seawater interface.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-06
... Ponchatoula Creek and Dissolved Ponchatoula River. oxygen. 041201 Bayou Labranche-- Dissolved Headwaters to Lake oxygen. Pontchartrain (Scenic) (Estuarine). 041805 Lake Borgne Canal (Violet Dissolved Canal)--MS River siphon oxygen. at Violet to Bayou Dupre (Scenic) (Estuarine). The EPA requests the public provide...
Drought effects on water quality in the South Platte River Basin, Colorado
Sprague, Lori A.
2005-01-01
Twenty-three stream sites representing a range of forested, agricultural, and urban land uses were sampled in the South Platte River Basin of Colorado from July through September 2002 to characterize water quality during drought conditions. With a few exceptions, dissolved ammonia, Kjeldahl nitrogen, total phosphorus, and dissolved orthophosphate concentrations were similar to seasonal historical levels in all land use areas during the drought. At some agricultural sites, decreased dilution of irrigation return flow may have contributed to higher concentrations of some nutrient species, increased primary productivity, and higher dissolved oxygen concentrations. At some urban sites, decreased dilution of base flow and wastewater treatment plant effluent may have contributed to higher dissolved nitrite-plus-nitrate concentrations, increased primary productivity, and higher dissolved oxygen concentrations. Total pesticide concentrations in urban and agricultural areas were not consistently higher or lower during the drought. At most forested sites, decreased dilution of ground water-derived calcium bicarbonate type base flow likely led to elevated pH and specific-conductance values. Water temperatures at many of the forested sites also were higher, contributing to lower dissolved oxygen concentrations during the drought.
Hu, Wenchao; Wu, Chunde
2016-01-01
The feasibility of using enhanced coagulation, which combined polyaluminum chloride (PAC) with diatomite for improving coagulation performance and reducing the residual aluminum (Al), was discussed. The effects of PAC and diatomite dosage on the coagulation performance and residual Al were mainly investigated. Results demonstrated that the removal efficiencies of turbidity, dissolved organic carbon (DOC), and UV254 were significantly improved by the enhanced coagulation, compared with PAC coagulation alone. Meaningfully, the five forms of residual Al (total Al (TAl), total dissolved Al (TDAl), dissolved organic Al (DOAl), dissolved monomeric Al (DMAl), and dissolved organic monomeric Al (DOMAl)) all had different degrees of reduction in the presence of diatomite and achieved the lowest concentrations (0.185, 0.06, 0.053, 0.014, and 0 mg L(-1), respectively) at a PAC dose of 15 mg L(-1) and diatomite dose of 40 mg L(-1). In addition, when PAC was used as coagulant, the majority of residual Al existed in dissolved form (about 31.14-70.16%), and the content of DOMAl was small in the DMAl.
Pinto-Ibieta, F; Serrano, A; Jeison, D; Borja, R; Fermoso, F G
2016-07-01
Due to the low trace metals concentration in the Olive Mill Solid Waste (OMSW), a proposed strategy to improve its biomethanization is the supplementation of key metals to enhance the microorganism activity. Among essential trace metals, cobalt has been reported to have a crucial role in anaerobic degradation. This study evaluates the effect of cobalt supplementation to OMSW, focusing on the connection between fractionation of cobalt in the system and the biological response. The highest biological responses was found in a range from 0.018 to 0.035mg/L of dissolved cobalt (0.24-0.65mg total cobalt/L), reaching improvements up to 23% and 30% in the methane production rate and the methane yield coefficient, respectively. It was found that the dissolved cobalt fraction is more accurately related with the biological response than the total cobalt. The total cobalt is distorted by the contribution of dissolved and non-dissolved inert fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sekaran, G; Karthikeyan, S; Boopathy, R; Maharaja, P; Gupta, V K; Anandan, C
2014-01-01
The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N2 adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy, (29)Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H2O2 (4 mmol/L), FeSO4[Symbol: see text]7H2O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90%, respectively.
Metal Sulfide Cluster Complexes and their Biogeochemical Importance in the Environment
NASA Astrophysics Data System (ADS)
Luther, George W.; Rickard, David T.
2005-10-01
Aqueous clusters of FeS, ZnS and CuS constitute a major fraction of the dissolved metal load in anoxic oceanic, sedimentary, freshwater and deep ocean vent environments. Their ubiquity explains how metals are transported in anoxic environmental systems. Thermodynamic and kinetic considerations show that they have high stability in oxic aqueous environments, and are also a significant fraction of the total metal load in oxic river waters. Molecular modeling indicates that the clusters are very similar to the basic structural elements of the first condensed phase forming from aqueous solutions in the Fe-S, Zn-S and Cu-S systems. The structure of the first condensed phase is determined by the structure of the cluster in solution. This provides an alternative explanation of Ostwald's Rule, where the most soluble, metastable phases form before the stable phases. For example, in the case of FeS, we showed that the first condensed phase is nanoparticulate, metastable mackinawite with a particle size of 2 nm consisting of about 150 FeS subunits, representing the end of a continuum between aqueous FeS clusters and condensed material. These metal sulfide clusters and nanoparticles are significant in biogeochemistry. Metal sulfide clusters reduce sulfide and metal toxicity and help drive ecology. FeS cluster formation drives vent ecology and AgS cluster formation detoxifies Ag in Daphnia magna neonates. We also note a new reaction between FeS and DNA and discuss the potential role of FeS clusters in denaturing DNA.
Ortiz, Roderick F.
2013-01-01
The purpose of the Arkansas Valley Conduit (AVC) is to deliver water for municipal and industrial use within the boundaries of the Southeastern Colorado Water Conservancy District. Water supplied through the AVC would serve two needs: (1) to supplement or replace existing poor-quality water to communities downstream from Pueblo Reservoir; and (2) to meet a portion of the AVC participants’ projected water demands through 2070. The Bureau of Reclamation (Reclamation) initiated an Environmental Impact Statement (EIS) to address the potential environmental consequences associated with constructing and operating the proposed AVC, entering into a conveyance contract for the Pueblo Dam north-south outlet works interconnect (Interconnect), and entering into a long-term excess capacity master contract (Master Contract). Operational changes, as a result of implementation of proposed EIS alternatives, could change the hydrodynamics and water-quality conditions in Pueblo Reservoir. An interagency agreement was initiated between Reclamation and the U.S. Geological Survey to accurately simulate hydrodynamics and water quality in Pueblo Reservoir for projected demands associated with four of the seven proposed EIS alternatives. The four alternatives submitted to the USGS for scenario simulation included various combinations (action or no action) of the proposed Arkansas Valley Conduit, Master Contract, and Interconnect options. The four alternatives were the No Action, Comanche South, Joint Use Pipeline North, and Master Contract Only. Additionally, scenario simulations were done that represented existing conditions (Existing Conditions scenario) in Pueblo Reservoir. Water-surface elevations, water temperature, dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, total iron, and algal biomass (measured as chlorophyll-a) were simulated. Each of the scenarios was simulated for three contiguous water years representing a wet, average, and dry annual hydrologic cycle. Each selected simulation scenario also was evaluated for differences in direct/indirect effects and cumulative effects on a particular scenario. Analysis of the results for the direct/indirect- and cumulative-effects analyses indicated that, in general, the results were similar for most of the scenarios and comparisons in this report focused on results from the direct/indirect-effects analyses. Scenario simulations that represented existing conditions in Pueblo Reservoir were compared to the No Action scenario to assess changes in water quality from current demands (2006) to projected demands in 2070. Overall, comparisons of the results between the Existing Conditions and the No Action scenarios for water-surface elevations, water temperature, and dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, and total iron concentrations indicated that the annual median values generally were similar for all three simulated years. Additionally, algal groups and chlorophyll-a concentrations (algal biomass) were similar for the Existing Conditions and the No Action scenarios at site 7B in the epilimnion for the simulated period (Water Year 2000 through 2002). The No Action scenario also was compared individually to the Comanche South, Joint Use Pipeline North, and Master Contract Only scenarios. These comparisons were made to describe changes in the annual median, 85th percentile, or 15th percentile concentration between the No Action scenario and each of the other three simulation scenarios. Simulated water-surface elevations, water temperature, dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, total iron, algal groups, and chlorophyll-a concentrations in Pueblo Reservoir generally were similar between the No Action scenario and each of the other three simulation scenarios.
Ockerman, Darwin J.; Roussel, Meghan C.
2009-01-01
The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers and the San Antonio River Authority, configured, calibrated, and tested a Hydrological Simulation Program ? FORTRAN watershed model for the approximately 238-square-mile Leon Creek watershed in Bexar County, Texas, and used the model to simulate streamflow and water quality (focusing on loads and yields of selected constituents). Streamflow in the model was calibrated and tested with available data from five U.S. Geological Survey streamflow-gaging stations for 1997-2004. Simulated streamflow volumes closely matched measured streamflow volumes at all streamflow-gaging stations. Total simulated streamflow volumes were within 10 percent of measured values. Streamflow volumes are greatly influenced by large storms. Two months that included major floods accounted for about 50 percent of all the streamflow measured at the most downstream gaging station during 1997-2004. Water-quality properties and constituents (water temperature, dissolved oxygen, suspended sediment, dissolved ammonia nitrogen, dissolved nitrate nitrogen, and dissolved and total lead and zinc) in the model were calibrated using available data from 13 sites in and near the Leon Creek watershed for varying periods of record during 1992-2005. Average simulated daily mean water temperature and dissolved oxygen at the most downstream gaging station during 1997-2000 were within 1 percent of average measured daily mean water temperature and dissolved oxygen. Simulated suspended-sediment load at the most downstream gaging station during 2001-04 (excluding July 2002 because of major storms) was 77,700 tons compared with 74,600 tons estimated from a streamflow-load regression relation (coefficient of determination = .869). Simulated concentrations of dissolved ammonia nitrogen and dissolved nitrate nitrogen closely matched measured concentrations after calibration. At the most downstream gaging station, average simulated monthly mean concentrations of dissolved ammonia and nitrate concentrations during 1997-2004 were 0.03 and 0.37 milligram per liter, respectively. For the most downstream station, the measured and simulated concentrations of dissolved and total lead and zinc for stormflows during 1993-97 after calibration do not match particularly closely. For base-flow conditions during 1997-2004 at the most downstream station, the simulated/measured match is better. For example, median simulated concentration of total lead (for 2,041 days) was 0.96 microgram per liter, and median measured concentration (for nine samples) of total lead was 1.0 microgram per liter. To demonstrate an application of the Leon Creek watershed model, streamflow constituent loads and yields for suspended sediment, dissolved nitrate nitrogen, and total lead were simulated at the mouth of Leon Creek (outlet of the watershed) for 1997-2004. The average suspended-sediment load was 51,800 tons per year. The average suspended-sediment yield was 0.34 ton per acre per year. The average load of dissolved nitrate at the outlet of the watershed was 802 tons per year. The corresponding yield was 10.5 pounds per acre per year. The average load of lead at the outlet was 3,900 pounds per year. The average lead yield was 0.026 pound per acre per year. The degree to which available rainfall data represent actual rainfall is potentially the most serious source of measurement error associated with the Leon Creek model. Major storms contribute most of the streamflow loads for certain constituents. For example, the three largest stormflows contributed about 64 percent of the entire suspended-sediment load at the most downstream station during 1997-2004.
Plankton copper requirements and uptake in the subarctic Northeast Pacific Ocean
NASA Astrophysics Data System (ADS)
Semeniuk, David M.; Cullen, Jay T.; Johnson, W. Keith; Gagnon, Katie; Ruth, Thomas J.; Maldonado, Maria T.
2009-07-01
We undertook the first measurements of metabolic Cu requirements (net Cu:C assimilation ratios) and steady-state Cu uptake rates (ρCu ss) of natural plankton assemblages in the northeast subarctic Pacific using the short-lived radioisotope 67Cu. Size-fractionated net Cu:C assimilation ratios varied ˜3 fold (1.35-4.21 μmol Cu mol C -1) among the stations along Line P, from high Fe coastal waters to the Fe-limited open ocean. The variability in Cu:C was comparable to biogenic Fe:C ratios in this region. As previously observed for Fe uptake, the bacterial size class accounted for half of the total particulate ρCu ss. Interestingly, carbon biomass-normalized rates of Fe uptake from the siderophore desferrioxamine B (DFB) (ρFe DFB; a physiological proxy for Fe-limitation) by the >20 μm size class were positively correlated with the intracellular net Cu:C assimilation ratios in this size class, suggesting that intracellular Cu requirements for large phytoplankton respond to increased Fe-limitation. At Fe-limited Ocean Station Papa (OSP), we performed short-term Cu uptake (ρCu L) assays to determine the relative bioavailability of Cu bound to natural and synthetic ligands. Like the volumetric ρCu ss measured along Line P, the bacterial size class was responsible for at least 50% of the total ρCu L. Uptake rates of Cu from the various organic complexes suggest that Cu uptake was controlled by the oxidation state of the metal and by the metal:ligand concentration ratio, rather than the concentration of inorganic species of Cu in solution. Collectively, these data suggest that Cu likely plays an important role in the physiology of natural plankton communities beyond the toxicological effects studied previously.
Li, Ru-Dong; Wang, Qian; Yin, Bin-Cheng; Ye, Bang-Ce
2016-03-15
Developing direct and convenient methods for microRNAs (miRNAs) analysis is of great significance in understanding biological functions of miRNAs, and early diagnosis of cancers. We have developed a rapid, enzyme-free method for miRNA detection based on nanoparticle-assisted signal amplification coupling fluorescent metal nanoclusters as signal output. The proposed method involves two processes: target miRNA-mediated nanoparticle capture, which consists of magnetic microparticle (MMP) probe and CuO nanoparticle (NP) probe, and nanoparticle-mediated amplification for signal generation, which consists of fluorescent DNA-Cu/Ag nanocluster (NC) and 3-mercaptopropionic acid (MPA). In the presence of target miRNA, MMP probe and NP probe sandwich-capture the target miRNA via their respective complementary sequence. The resultant sandwich complex (MMP probe-miRNA-CuO NP probe) is separated using a magnetic field and further dissolved by acidolysis to turn CuO NP into a great amount of copper (II) ions (Cu(2+)). Cu(2+) could disrupt the interactions between thiol moiety of MPA and the fluorescent Cu/Ag NCs by preferentially reacting with MPA to form a disulfide compound as intermediate. By this way, the fluorescence emission of the DNA-Cu/Ag NCs in the presence of MPA increases upon the increasing concentration of Cu(2+), which is directly proportional to the amount of target miRNA. The proposed method allows quantitative detection of a liver-specific miR-221-5p in the range of 5 pM to 1000 pM with a detection limit of ~0.73 pM, and shows a good ability to discriminate single-base difference. Moreover, the detection assay can be applied to detect miRNA in cancerous cell lysates in excellent agreement with that from a commercial miRNA detection kit. Copyright © 2015 Elsevier B.V. All rights reserved.
Belval, D.L.; Campbell, J.P.; Woodside, M.D.
1994-01-01
This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Virginia Department of Environmental Quality-- Division of Intergovernmental Coordination to monitor and estimate loads of selected nutrients and suspended solids discharged to Chesapeake Bay from two major tributaries in Virginia. From July 1988 through June 1990, monitoring consisted of collecting depth-integrated, cross-sectional samples from the James and Rappahannock Rivers during storm- flow conditions and at scheduled intervals. Water- quality constituents that were monitored included total suspended solids (residue, total at 105 degrees Celsius), dissolved nitrite plus nitrate, dissolved ammonia, total Kjeldahl nitrogen (ammonia plus organic), total nitrogen, total phosphorus, dissolved orthopohosphorus, total organic carbon, and dissolved silica. Daily mean load estimates of each constituent were computed by month, using a seven-parameter log-linear-regression model that uses variables of time, discharge, and seasonality. Water-quality data and constituent- load estimates are included in the report in tabular and graphic form. The data and load estimates provided in this report will be used to calibrate the computer modeling efforts of the Chesapeake Bay region, evaluate the water quality of the Bay and the major effects on the water quality, and assess the results of best-management practices in Virginia.
Kolbas, Aliaksandr; Kolbas, Natallia; Marchand, Lilian; Herzig, Rolf; Mench, Michel
2018-04-02
The potential use of a metal-tolerant sunflower mutant line for biomonitoring Cu phytoavailability, Cu-induced soil phytotoxicity, and Cu phytoextraction was assessed on a Cu-contaminated soil series (13-1020 mg Cu kg -1 ) obtained by fading a sandy topsoil from a wood preservation site with a similar uncontaminated soil. Morphological and functional plant responses as well as shoot, leaf, and root ionomes were measured after a 1-month pot experiment. Hypocotyl length, shoot and root dry weight (DW) yields, and leaf area gradually decreased as soil Cu exposure rose. Their dose-response curves (DRC) plotted against indicators of Cu exposure were generally well fitted by sigmoidal curves. The half-maximal effective concentration (EC 50 ) of morphological parameters ranged between 203 and 333 mg Cu kg -1 soil, corresponding to 290-430 μg Cu L -1 in the soil pore water, and 20 ± 5 mg Cu kg -1 DW in the shoots. The EC 10 for shoot Cu concentration (13-15 mg Cu kg -1 DW) coincided to 166 mg Cu kg -1 soil. Total chlorophyll content and total antioxidant capacity (TAC) were early biomarkers (EC 10 : 23 and 51 mg Cu kg -1 soil). Their DRC displayed a biphasic response. Photosynthetic pigment contents, e.g., carotenoids, correlated with TAC. Ionome was changed in Cu-stressed roots, shoots, and leaves. Shoot Cu removal peaked roughly at 280 μg Cu L -1 in the soil pore water.
Investigating aquifer contamination and groundwater quality in eastern Terai region of Nepal.
Mahato, Sanjay; Mahato, Asmita; Karna, Pankaj Kumar; Balmiki, Nisha
2018-05-21
This study aims at assessing the groundwater quality of the three districts of Eastern Terai region of Nepal viz. Morang, Jhapa, Sunsari using physicochemical characteristics and statistical approach so that possible contamination of water reservoir can be understood. pH, temperature, conductivity, turbidity, color, total dissolved solids, fluorides, ammonia, nitrates, chloride, total hardness, calcium hardness, calcium, magnesium, total alkalinity, iron, manganese, arsenic have to be analyzed to know the present status of groundwater quality. Results revealed that the value of analyzed parameters were within the acceptable limits for drinking water recommended by World Health Organization except for pH, turbidity, ammonia and iron. As per Nepal Drinking Water Quality Standards, fluoride and manganese too were not complying with the permissible limit. Electrical conductivity, total dissolved solids, chloride, total hardness, calcium hardness, manganese, and total alkalinity show good positive correlation with major water quality parameters. Calcium, magnesium, total hardness, calcium hardness and total alkalinity greatly influences total dissolved solids and electrical conductivity. ANOVA, Tukey, and clustering highlight the significance of three districts. Groundwater can be considered safe, but there is always a chance of contamination through chemical wastes in the heavily industrialized area of Morang and Sunsari Industrial corridor.
Kasamatsu, Masaaki; Igawa, Takao; Suzuki, Shinichi; Suzuki, Yasuhiro
2018-01-01
Since fragments of concrete can be evidence of crime, a determination of whether or not they come from the same origin is required. The authors focused on nitric acid-soluble components in the fragments of concrete. As a result of qualitative analysis with ICP-MS, it was confirmed that elements such as Cu, Zn, Rb, Sr, Zr, Ba, La, Ce, Nd, and Pb were contained in the fragments. After the nitric acid-soluble components in the fragments of concrete were separated by dissolving them in nitric acid, the concentrations of these elements in the dissolved solution were quantitatively determined by ICP-MS. The concentration ratios of nine elements compared to La were used as indicators. By comparing these indicators, it was possible to discriminate between the fragments of concrete.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Y.M.; DiSante, C.J.; Lion, L.W.
Toxic trace metals have been implicated as a potential cause of recent flamingo kills at Lake Nakuru, Kenya. Chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) have accumulated in the lake sediments as a result of unregulated discharges and because this alkaline lake has no natural outlet. Lesser flamingos (Phoeniconaias minor) at Lake Nakuru feed predominantly on the cyanobacterium Spirulina platensis, and because of their filter-feeding mechanism, they are susceptible to exposure to particle-bound metals. Trace metal adsorption isotherms to lake sediments and S. platensis were obtained under simulated lake conditions, and a mathematical model was developed to predictmore » metal exposure via filter feeding based on predicted trace metal phase distribution. Metal adsorption to suspended solids followed the trend Pb {much_gt} Zn > Cr > Cu, and isotherms were linear up to 60 {micro}g/L. Adsorption to S. platensis cells followed the trend Pb {much_gt} Zn > Cu > Cr and fit Langmuir isotherms for Cr, Cu and Zn and a linear isotherm for Pb. Predicted phase distributions indicated that Cr and Pb in Lake Nakuru are predominantly associated with suspended solids, whereas Cu and Zn are distributed more evenly between the dissolved phase and particulate phases of both S. platensis and suspended solids. Based on established flamingo feeding rates and particle size selection, predicted Cr and Pb exposure occurs predominantly through ingestion of suspended solids, whereas Cu and Zn exposure occurs through ingestion of both suspended solids and S. platensis. For the lake conditions at the time of sampling, predicted ingestion rates based on measured metal concentrations in lake suspended solids were 0.71, 6.2, 0.81, and 13 mg/kg-d for Cr, Cu, Pb, and Zn, respectively.« less
NASA Astrophysics Data System (ADS)
Schuback, N.; Hippmann, A.; Maldonado, M. T.; Allen, A. E.; McCrow, J.; Foster, L. J.; Green, B. R.; Alami, M.
2016-02-01
Iron plays a significant role in controlling marine primary productivity. Despite that extremely low dissolved iron (Fe) concentrations are found in Fe-limited regions, some phytoplankton are able to survive and thrive. Two strains of the model oceanic diatom Thalassiosira oceanica, TO 1003 and TO 1005, have both been used in previous studies to characterize adaptations to iron limitation. These studies have shown that T. oceanica has lowered its Fe requirements and increased its Fe acquisition efficiency compared to coastal counterparts. Both strategies may impose a higher cellular copper (Cu) demand. However, the underlying biochemical adaptations in these oceanic diatoms remain unknown. Recently, the genome, as well as the first proteomic and transcriptomic analyses of T. oceanica 1005 grown under different Fe levels, were published. To further our understanding of the interplay between Fe- and Cu- physiology in open ocean diatoms, we examined an array of physiological responses to varying degrees of Fe-, Cu- and Fe/Cu co-limitation in both strains. We also determined the differential expression of proteins using stable isotope labeling and LC-MS/MS proteomic analysis. The two strains, TO 1003 and TO 1005, need markedly different metal concentrations in the media. TO1003 requires 30% less Cu to sustain its optimal growth and less than 1/10th of the minimum Cu that is needed by TO 1005 to survive. In contrast, TO 1005 is able to grow with less Fe available in the media. The physiological and proteomic responses of these two strains when acclimated to low Fe and/or Cu concentrations will be presented. The evolutionary implications will be discussed.
Hu, Sihai; Wu, Yaoguo; Yi, Na; Zhang, Shuai; Zhang, Yuanjing; Xin, Xu
2017-09-01
Dissolved organic matter (DOM), as the most active organic carbon in the soil, has a coherent affinity with heavy metals from inherent and exogenous sources. Although the important roles of DOM in the adsorption of heavy metals in soil have previously been demonstrated, the heterogeneity and variability of the chemical constitution of DOM impede the investigation of its effects on heavy metal adsorption onto soil under natural conditions. Fresh DOM (FDOM) and degraded DOM (DDOM) from sugarcane rind were prepared, and their chemical properties were measured by Fourier-transform infrared spectrometry (FTIR), excitation-emission matrix (EEM) fluorescence spectroscopes, nuclear magnetic resonance (NMR), and molecular weight distribution (MWD). They were also used in batch experiments to evaluate their effects on the adsorption of Cu(II) onto farmland red soil. Based on our results, the chemical structure and composition of DDOM greatly varied; compared with FDOM, the C/O ratio (from 24.0 to 9.6%) and fluorescence index (FI) (from 1.4 to 1.0) decreased, and high molecular weight (>10 kDa) compounds increased from 23.18 to 70.51%, while low molecular weight (<3 kDa) compounds decreased from 56.13 to 12.13%; aromaticity and humification degree were markedly enhanced. The discrepancy of FDOM and DDOM in terms of chemical properties greatly influenced Cu(II) adsorption onto red soil by affecting DOM-Cu(II) complex capacity. The FDOM inhibited the adsorption of Cu(II), while DDOM promoted adsorption, which was significantly influenced by soil pH. Maximum adsorption capacity (Q m ) was 0.92 and 5.76 mg g -1 in the presence of FDOM and DDOM, respectively. The adsorption process with DDOM could be better described by the Langmuir model, while that with FDOM was better described by the Freundlich model. The impacts caused by the dynamic changes of the chemical properties of DOM under natural conditions should therefore be considered in the risk assessment and remediation of soils contaminated with heavy metals.
Acid Mine Drainage and Metal Sulfate Minerals in the Shasta Mining District, California
NASA Astrophysics Data System (ADS)
Livingston, J. D.; Murphy, W. M.; Miller, R. M.; Ayars, E. J.
2005-12-01
Metal sulfate minerals were collected at four surface water drainage sites during September and October of 2004 in the Shasta Mining District, southern Klamath Mountains, Shasta County, California and analyzed by X-ray fluorescence, atomic absorption spectroscopy, and X-ray diffraction to determine elements present, quantities of Fe, Cu, and Zn, and mineralogy. The Shasta Mining District produced major quantities of Cu, Zn, and pyrite (S) with minor amounts of Au, Ag, and Fe from massive sulfide bodies (Kinkel et al., 1956). Three study sites are located on Iron Mountain and one study site is at Bully Hill. Although mining occurred during a period of just over 100 years, it is estimated that acid mine drainage (AMD) will continue from Iron Mountain for over 3,200 years (Nordstrom and Alpers, 1998). AMD at the study sites produces blooms of metal sulfates during California's Mediterranean climate summer. The minerals readily dissolve in the "first flush" of seasonal rain creating runoff water of low pH with high amounts of dissolved metals (Bayless and Olyphant, 1993; Jambor et al., 2000). Data were examined for mineralogical changes in time and space and for zoning of minerals on a scale of centimeters. Sulfate mineral samples are complex with some samples composed of over a dozen different minerals. Site 1 is located on Spring Creek downstream from the Iron Mountain superfund remediation site, so levels of Fe, Cu, and Zn in the sulfates at this site are lower than at the other sites. Two site 1 samples from the same location taken a month apart show Ca, Fe, Cu, Sr, Y, and Sn, and the first sample also has detectable Br. The metal sulfates identified from the first visit are celestine, cesanite, chessexite, hectorfloresite, and ungemachite, and the mineralogy of the second visit is bilinite, epsomite, millosevichite, and anhydrite. The Fe bearing sulfate mineral during the first visit is ungemachite, but bilinite was the Fe bearing mineral at the time of the second visit. Analyses indicate a dynamic evolution of sulfate minerals at individual locations over time, mineralogical and chemical differences among individual locations at a site, and mineralogical zonations in individual samples.