Sample records for total dna content

  1. Flow cytometric measurement of total DNA and incorporated halodeoxyuridine

    DOEpatents

    Dolbeare, Frank A.; Gray, Joe W.

    1986-01-01

    A method for the simultaneous flow cytometric measurement of the total DNA content and the level of DNA synthesis in normal and malignant cells is disclosed. The sensitivity of the method allows a study of cell cycle traverse rates for large scale cell populations as well as single cell measurements. A DNA stain such as propidium iodide is used as the probe for the measurement of total DNA content and a monoclonal antibody reactive with a DNA precursor such as bromodeoxyuridine (BrdU) is used as a probe for the measurement of BrdU uptake by the cells as a measure of DNA synthesis.

  2. Flow cytometric measurement of total DNA and incorporated halodeoxyuridine

    DOEpatents

    Dolbeare, Frank A.; Gray, Joe W.

    1988-01-01

    A method for the simultaneous flow cytometric measurement of the total DNA content and the level of DNA synthesis in normal and malignant cells is disclosed. The sensitivity of the method allows a study of cell cycle traverse rates for large scale cell populations as well as single cell measurements. A DNA stain such as propidium iodide or Hoechst 33258 is used as the probe for the measurement of total DNA content and a monoclonal antibody reactive with a DNA precursor such as halodeoxy-uridine (HdU), more specifically bromodeoxyuridine (BrdU) is used as a probe for the measurement of HdU or BrdU uptake by the cells as a measure of DNA synthesis.

  3. Protective effect of extract of Crataegus pinnatifida pollen on DNA damage response to oxidative stress.

    PubMed

    Cheng, Ni; Wang, Yuan; Gao, Hui; Yuan, Jialing; Feng, Fan; Cao, Wei; Zheng, Jianbin

    2013-09-01

    The protective effect of extract of Crataegus pinnatifida (Rosaceae) pollen (ECPP) on the DNA damage response to oxidative stress was investigated and assessed with an alkaline single-cell gel electrophoresis (SCGE) assay and pBR322 plasmid DNA breaks in site-specific and non-site-specific systems. Total phenolic content, total flavonoid content, individual phenolic compounds, antioxidant activities (1,1-diphenyl-2-picrylhydrazyl (DPPH), radical scavenging activity, FRAP, and chelating activity) were also determined. The results showed that ECPP possessed a strong ability to protect DNA from being damaged by hydroxyl radicals in both the site-specific system and the non-site-specific system. It also exhibited a cytoprotection effect in mouse lymphocytes against H₂O₂-induced DNA damage. These protective effects may be related to its high total phenolic content (17.65±0.97 mg GAE/g), total flavonoid content (8.04±0.97 mg rutin/g), strong free radical scavenging activity and considerable ferrous ion chelating ability (14.48±0.21 mg Na₂EDTA/g). Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Altered mitochondrial genome content signals worse pathology and prognosis in prostate cancer.

    PubMed

    Kalsbeek, Anton M F; Chan, Eva K F; Grogan, Judith; Petersen, Desiree C; Jaratlerdsiri, Weerachai; Gupta, Ruta; Lyons, Ruth J; Haynes, Anne-Maree; Horvath, Lisa G; Kench, James G; Stricker, Phillip D; Hayes, Vanessa M

    2018-01-01

    Mitochondrial genome (mtDNA) content is depleted in many cancers. In prostate cancer, there is intra-glandular as well as inter-patient mtDNA copy number variation. In this study, we determine if mtDNA content can be used as a predictor for prostate cancer staging and outcomes. Fresh prostate cancer biopsies from 115 patients were obtained at time of surgery. All cores underwent pathological review, followed by isolation of cancer and normal tissue. DNA was extracted and qPCR performed to quantify the total amount of mtDNA as a ratio to genomic DNA. Differences in mtDNA content were compared for prostate cancer pathology features and disease outcomes. We showed a significantly reduced mtDNA content in prostate cancer compared with normal adjacent prostate tissue (mean difference 1.73-fold, P-value <0.001). Prostate cancer with increased mtDNA content showed unfavorable pathologic characteristics including, higher disease stage (PT2 vs PT3 P-value = 0.018), extracapsular extension (P-value = 0.02) and a trend toward an increased Gleason score (P-value = 0.064). No significant association was observed between changes in mtDNA content and biochemical recurrence (median follow up of 107 months). Contrary to other cancer types, prostate cancer tissue shows no universally depleted mtDNA content. Rather, the change in mtDNA content is highly variable, mirroring known prostate cancer genome heterogeneity. Patients with high mtDNA content have an unfavorable pathology, while a high mtDNA content in normal adjacent prostate tissue is associated with worse prognosis. © 2017 Wiley Periodicals, Inc.

  5. An Estimate of the Total DNA in the Biosphere

    PubMed Central

    Landenmark, Hanna K. E.; Forgan, Duncan H.; Cockell, Charles S.

    2015-01-01

    Modern whole-organism genome analysis, in combination with biomass estimates, allows us to estimate a lower bound on the total information content in the biosphere: 5.3 × 1031 (±3.6 × 1031) megabases (Mb) of DNA. Given conservative estimates regarding DNA transcription rates, this information content suggests biosphere processing speeds exceeding yottaNOPS values (1024 Nucleotide Operations Per Second). Although prokaryotes evolved at least 3 billion years before plants and animals, we find that the information content of prokaryotes is similar to plants and animals at the present day. This information-based approach offers a new way to quantify anthropogenic and natural processes in the biosphere and its information diversity over time. PMID:26066900

  6. An Estimate of the Total DNA in the Biosphere.

    PubMed

    Landenmark, Hanna K E; Forgan, Duncan H; Cockell, Charles S

    2015-06-01

    Modern whole-organism genome analysis, in combination with biomass estimates, allows us to estimate a lower bound on the total information content in the biosphere: 5.3 × 1031 (±3.6 × 1031) megabases (Mb) of DNA. Given conservative estimates regarding DNA transcription rates, this information content suggests biosphere processing speeds exceeding yottaNOPS values (1024 Nucleotide Operations Per Second). Although prokaryotes evolved at least 3 billion years before plants and animals, we find that the information content of prokaryotes is similar to plants and animals at the present day. This information-based approach offers a new way to quantify anthropogenic and natural processes in the biosphere and its information diversity over time.

  7. Flow cytometric measurement of total DNA and incorporated halodeoxyuridine

    DOEpatents

    Dolbeare, F.A.; Gray, J.W.

    1983-10-18

    A method for the simultaneous flow cylometric measurement of total cellular DNA content and of the uptake of DNA precursors as a measure of DNA synthesis during various phases of the cell cycle in normal and malignant cells in vitro and in vivo is described. The method comprises reacting cells with labelled halodeoxyuridine (HdU), partially denaturing cellular DNA, adding to the reaction medium monoclonal antibodies (mabs) reactive with HdU, reacting the bound mabs with a second labelled antibody, incubating the mixture with a DNA stain, and measuring simultaneously the intensity of the DNA stain as a measure of the total cellular DNA and the HdU incorporated as a measure of DNA synthesis. (ACR)

  8. Development and Translation of a Tissue- Engineered Disc in a Preclinical Rodent Model

    DTIC Science & Technology

    2011-10-01

    samples were stored frozen, lyophilized, papain digested and assayed for collagen, GAG, and DNA content. Likewise, media in both shaken and static...construct dynamic and equilibrium properties. Total dsDNA, sulfated glycosaminoglycan (s-GAG), and collagen content was determined after papain

  9. Development and Translation of a Tissue-Engineered Disc in a Preclinical Rodent Model

    DTIC Science & Technology

    2011-10-01

    lyophilized, papain digested and assayed for collagen, GAG, and DNA content. Likewise, media in both shaken and static cultures were periodically reserved...equilibrium properties. Total dsDNA, sulfated glycosaminoglycan (s-GAG), and collagen content was determined after papain digestion. Paraffin embedded

  10. Respiration-to-DNA ratio reflects physiological state of microorganisms in root-free and rhizosphere soil

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, E.; Blagodatsky, S.; Kuzyakov, Y.

    2009-04-01

    The double-stranded DNA (dsDNA) content in soil can serve as a measure of microbial biomass under near steady-state conditions and quantitatively reflect the exponential microbial growth initiated by substrate addition. The yield of respired CO2 per microbial biomass unit (expressed as DNA content) could be a valuable physiological indicator reflecting state of soil microbial community. Therefore, investigations combining both analyses of DNA content and respiration of soil microorganisms under steady-state and during periods of rapid growth are needed. We studied the relationship between CO2 evolution and microbial dsDNA content in native and glucose-amended samples of root-free and rhizosphere soil under Beta vulgaris (Cambisol, loamy sand from the field experiment of the Institute of Agroecology FAL, Braunschweig, Germany). Quantity of dsDNA was determined by direct DNA isolation from soil with mechanic and enzymatic disruption of microbial cell walls with following spectrofluorimetric detection with PicoGreen (Blagodatskaya et al., 2003). Microbial biomass and the kinetic parameters of microbial growth were estimated by dynamics of the CO2 emission from soil amended with glucose and nutrients (Blagodatsky et al., 2000). The CO2 production rate was measured hourly at 22оС using an automated infrared-gas analyzer system. The overall increase in microbial biomass, DNA content, maximal specific growth rate and therefore, in the fraction of microorganisms with r-strategy were observed in rhizosphere as compared to bulk soil. The rhizosphere effect for microbial respiration, biomass and specific growth rate was more pronounced for plots with half-rate of N fertilizer compared to full N addition. The DNA content was significantly lower in bulk compared to rhizosphere soil both before and during microbial growth initiated by glucose amendment. Addition of glucose to the soil strongly increased the amount of CO2 respired per DNA unit. Without substrate addition the VCO2-to-total DNA ratios were lower than 0.1 µg CO2-C µg-1 total DNA h-1 whereas during exponential microbial growth these values increased consistently and exceeded 1 µg CO2-C µg-1 DNA h-1. Thus, the VCO2-to-total DNA ratio strongly changes along with the physiological state of soil microorganisms and can be used as valuable physiological parameter. In growing microorganisms the quantity of CO2 evolved per unit of newly formed DNA was identical in rhizosphere and root free soil and averaged for 13.5 ± 1.1 µg CO2-C µg-1 newly formed DNA. The CO2 yield per unit of newly formed DNA allows the estimation of microbial growth efficiency and validation of specific growth rates obtained during kinetic analysis of respiration curves. The study was supported by European Commission (Marie Curie IIF program, project MICROSOM) and by Alexander von Humboldt Foundation. References: Blagodatskaya EV, Blagodatskii SA, Anderson TH. 2003. Quantitative Isolation of Microbial DNA from Different Types of Soils of Natural and Agricultural Ecosystems. Microbiology 72(6):744-749. Blagodatsky SA, Heinemeyer O, Richter J. 2000. Estimating the active and total soil microbial biomass by kinetic respiration analysis. Biology and Fertility of Soils 32(1):73-81.

  11. Influence of heavy metal stress on antioxidant status and DNA damage in Urtica dioica.

    PubMed

    Gjorgieva, Darinka; Kadifkova Panovska, Tatjana; Ruskovska, Tatjana; Bačeva, Katerina; Stafilov, Trajče

    2013-01-01

    Heavy metals have the potential to interact and induce several stress responses in the plants; thus, effects of heavy metal stress on DNA damages and total antioxidants level in Urtica dioica leaves and stems were investigated. The samples are sampled from areas with different metal exposition. Metal content was analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), for total antioxidants level assessment the Ferric-Reducing Antioxidant Power (FRAP) assay was used, and genomic DNA isolation from frozen plant samples was performed to obtain DNA fingerprints of investigated plant. It was found that heavy metal contents in stems generally changed synchronously with those in leaves of the plant, and extraneous metals led to imbalance of mineral nutrient elements. DNA damages were investigated by Random Amplified Polymorphic DNA (RAPD) technique, and the results demonstrated that the samples exposed to metals yielded a large number of new fragments (total 12) in comparison with the control sample. This study showed that DNA stability is highly affected by metal pollution which was identified by RAPD markers. Results suggested that heavy metal stress influences antioxidant status and also induces DNA damages in U. dioica which may help to understand the mechanisms of metals genotoxicity.

  12. [Increased content of nucleotide sequences in transcriptionally active DNA and poly(A)+-mRNA of the rat liver and a rise in its translation activity as affected by inducers].

    PubMed

    Dashkevich, V S; Vishnivetskiĭ, S N; Skobel'tsina, L M; Luk'ianchikova, N L; Kaledin, V I

    1986-12-01

    Cortisol and 3'-methyl-4-dimethyl-amino-azobenzene induce an increase in the content of repeated sequences (RS) in transcriptionally active (TA) DNA, while the content of respective RS in potentially active DNA fractions enriched with regulatory regions of the genome decreases. RS content in induced poly A+-mRNA also rises, as determined by the nature of hybridization of respective c DNA with total DNA. The translation of induced poly A+-mRNA rises essentially, with the qualitative distinctions in in vitro synthesized protein product spectrum being absent. Inducible RS with unstable chromatine conformation are thought to provide a universal system of rapid response of the genetic apparatus to extreme situations, serving as transcription intensifiers in TA DNA and as translation intensifiers in induced poly A+-mRNA.

  13. Effect of seven days of spaceflight on hindlimb muscle protein, RNA and DNA in adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1985-01-01

    Effects of seven days of spaceflight on skeletal muscle (soleus, gastrocnemius, EDL) content of protein, RNA and DNA were determined in adult rats. Whereas total protein contents were reduced in parallel with muscle weights, myofibrillar protein appeared to be more affected. There were no significant changes in absolute DNA contents, but a significant (P less than 0.05) increase in DNA concentration (microgram/milligram) in soleus muscles from flight rats. Absolute RNA contents were significantly (P less than 0.025) decreased in the soleus and gastrocnemius muscles of flight rats, with RNA concentrations reduced 15-30 percent. These results agree with previous ground-based observations on the suspended rat with unloaded hindlimbs and support continued use of this model.

  14. Influence of Heavy Metal Stress on Antioxidant Status and DNA Damage in Urtica dioica

    PubMed Central

    Kadifkova Panovska, Tatjana; Bačeva, Katerina; Stafilov, Trajče

    2013-01-01

    Heavy metals have the potential to interact and induce several stress responses in the plants; thus, effects of heavy metal stress on DNA damages and total antioxidants level in Urtica dioica leaves and stems were investigated. The samples are sampled from areas with different metal exposition. Metal content was analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), for total antioxidants level assessment the Ferric-Reducing Antioxidant Power (FRAP) assay was used, and genomic DNA isolation from frozen plant samples was performed to obtain DNA fingerprints of investigated plant. It was found that heavy metal contents in stems generally changed synchronously with those in leaves of the plant, and extraneous metals led to imbalance of mineral nutrient elements. DNA damages were investigated by Random Amplified Polymorphic DNA (RAPD) technique, and the results demonstrated that the samples exposed to metals yielded a large number of new fragments (total 12) in comparison with the control sample. This study showed that DNA stability is highly affected by metal pollution which was identified by RAPD markers. Results suggested that heavy metal stress influences antioxidant status and also induces DNA damages in U. dioica which may help to understand the mechanisms of metals genotoxicity. PMID:23862140

  15. Protection of cadmium chloride induced DNA damage by Lamiaceae plants

    PubMed Central

    Thirugnanasampandan, Ramaraj; Jayakumar, Rajarajeswaran

    2011-01-01

    Objective To analyze the total phenolic content, DNA protecting and radical scavenging activity of ethanolic leaf extracts of three Lamiaceae plants, i.e. Anisomelos malabarica (A. malabarica), Leucas aspera (L. aspera) and Ocimum basilicum (O. basilicum). Methods The total polyphenols and flavonoids were analyzed in the ethanolic leaf extracts of the lamiaceae plants. To determine the DNA protecting activity, various concentrations of the plant extracts were prepared and treated on cultured HepG2 human lung cancer cells. The pretreated cells were exposed to H2O2 to induce DNA damage through oxidative stress. Comet assay was done and the tail length of individual comets was measured. Nitric oxide and superoxide anion scavenging activities of lamiaceae plants were analyzed. Results Among the three plant extracts, the highest amount of total phenolic content was found in O. basilicum (189.33 mg/g), whereas A. malabarica showed high levels of flavonoids (10.66 mg/g). O. basilicum also showed high levels of DNA protecting (85%) and radical scavenging activity. Conclusions The results of this study shows that bioactive phenols present in lamiaceae plants may prevent carcinogenesis through scavenging free radicals and inhibiting DNA damage. PMID:23569799

  16. Bioactive components, antioxidant and DNA damage inhibitory activities of honeys from arid regions.

    PubMed

    Habib, Hosam M; Al Meqbali, Fatima T; Kamal, Hina; Souka, Usama D; Ibrahim, Wissam H

    2014-06-15

    Honey serves as a good source of natural antioxidants, which are effective in reducing the risk of occurrence of several diseases. This study was undertaken to address the limited knowledge regarding the polyphenolic content, antioxidant and DNA damage inhibitory activities of honeys produced in arid regions and compare them with well-recognized honeys from non-arid regions. Different types of honey were assessed for their contents of total phenolics, total flavonoids, and certain types of phenolic compounds. The antioxidant capacity of honey was evaluated by ferric-reducing/antioxidant power assay (FRAP), free radical-scavenging activity (DPPH), nitric oxide (NO) radical-scavenging assay, total antioxidant activity, and DNA damage. Results clearly showed significant differences among honeys with all the evaluated parameters. Results also showed that one or more types of honey from arid regions contained higher levels of phenolic compounds, free radical-scavenging activities, or DNA damage inhibitory activities compared with the evaluated honeys from non-arid regions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Evaluation of the immunomodulatory and DNA protective activities of the shoots of Cynodon dactylon.

    PubMed

    Mangathayaru, K; Umadevi, M; Reddy, C Umamaheswara

    2009-05-04

    Fresh juice of Cyanodon dactylon known as 'durva' grass is employed in India as a rejuvenator and for wound healing. To validate the traditional use of the herb through evaluation of DNA protective activity in vitro and immunomodulatory activity in vivo. Fresh juice of the grass was prepared as indicated for use in traditional medicine and standardized for solid content. Its total phenol content was estimated by Folin-Ciocalteau method. Freshly prepared juice was investigated for its effect on doxorubicin-induced DNA damage in vitro. Its immunomodulatory activity was tested on balb/c mice by the humoral antibody response which was determined by haemagglutination antibody titer and spleen cell assay. Fresh juice of Cyanodon dactylon of 1.46% (w/w) solid content had a phenolic content of 47+/-0.33 mg/kg GAE. At doses equivalent to 50, 100 and 200mg total solids/kg body weight the juice protected human DNA against doxorubicin-induced DNA damage as demonstrated in DNA spectral studies, where the ratio of absorbance of DNA at 260 and 280 nm in samples pretreated with the juice was 1.66, 1.53 and 1.63 respectively, while it was 1.37 for DNA treated with doxorubicin only. This indicates nucleic acid purity in the Cynodon dactylon treated samples. Oral administration of the juice at 250 and 500 mg/kg in balb/c mice increased humoral antibody response upon antigen challenge, as evidenced by a dose-dependent, statistically significant increase in antibody titer in the haemagglutination antibody assay and plaque forming cell assay. The present report demonstrated the DNA protective activity and immunomodulatory property of the fresh juice of Cynodon dactylon validating the traditional use of the herb as a 'rasayana' in ayurvedic system of medicine.

  18. NASA/American Cancer Society High-Resolution Flow Cytometry Project-I

    NASA Technical Reports Server (NTRS)

    Thomas, R. A.; Krishan, A.; Robinson, D. M.; Sams, C.; Costa, F.

    2001-01-01

    BACKGROUND: The NASA/American Cancer Society (ACS) flow cytometer can simultaneously analyze the electronic nuclear volume (ENV) and DNA content of cells. This study describes the schematics, resolution, reproducibility, and sensitivity of biological standards analyzed on this unit. METHODS: Calibrated beads and biological standards (lymphocytes, trout erythrocytes [TRBC], calf thymocytes, and tumor cells) were analyzed for ENV versus DNA content. Parallel data (forward scatter versus DNA) from a conventional flow cytometer were obtained. RESULTS: ENV linearity studies yielded an R value of 0.999. TRBC had a coefficient of variation (CV) of 1.18 +/- 0.13. DNA indexes as low as 1.02 were detectable. DNA content of lymphocytes from 42 females was 1.9% greater than that for 60 males, with a noninstrumental variability in total DNA content of 0.5%. The ENV/DNA ratio was constant in 15 normal human tissue samples, but differed in the four animal species tested. The ENV/DNA ratio for a hypodiploid breast carcinoma was 2.3 times greater than that for normal breast tissue. CONCLUSIONS: The high-resolution ENV versus DNA analyses are highly reliable, sensitive, and can be used for the detection of near-diploid tumor cells that are difficult to identify with conventional cytometers. ENV/DNA ratio may be a useful parameter for detection of aneuploid populations.

  19. Protective effects of buckwheat honey on DNA damage induced by hydroxyl radicals.

    PubMed

    Zhou, Juan; Li, Peng; Cheng, Ni; Gao, Hui; Wang, Bini; Wei, Yahui; Cao, Wei

    2012-08-01

    To understand the antioxidant properties of buckwheat honeys, we investigated their antioxidant effects on hydroxyl radical-induced DNA breaks in the non-site-specific and site-specific systems, the physicochemical properties, antioxidant activities (1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical scavenging activity, chelating, and reducing power assays), total phenolic content and individual phenolic acids were also determined. Total phenolic content of buckwheat honeys ranged from 774 to 1694 mg PA/kg, and p-hydroxybenzoic and p-coumaric acids proved to be the main components in buckwheat honeys. All the buckwheat honey samples possess stronger capability to protect DNA in the non-site-specific systems than in the site-specific systems from being damaged by hydroxyl radicals. In the non-site-specific and site-specific system, buckwheat honeys samples prevented ()OH-induced DNA breaks by 21-78% and 5-31% over control value, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Genomics dataset of unidentified disclosed isolates.

    PubMed

    Rekadwad, Bhagwan N

    2016-09-01

    Analysis of DNA sequences is necessary for higher hierarchical classification of the organisms. It gives clues about the characteristics of organisms and their taxonomic position. This dataset is chosen to find complexities in the unidentified DNA in the disclosed patents. A total of 17 unidentified DNA sequences were thoroughly analyzed. The quick response codes were generated. AT/GC content of the DNA sequences analysis was carried out. The QR is helpful for quick identification of isolates. AT/GC content is helpful for studying their stability at different temperatures. Additionally, a dataset on cleavage code and enzyme code studied under the restriction digestion study, which helpful for performing studies using short DNA sequences was reported. The dataset disclosed here is the new revelatory data for exploration of unique DNA sequences for evaluation, identification, comparison and analysis.

  1. Content and persistence of extracellular DNA in native soils

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Anderson, Traute-Heidi; Kuzyakov, Yakov

    2014-05-01

    The long-term persistence of soil extracellular DNA is questionable because of high potential activity of nucleases produced by soil microorganisms. By the other hand, the relative persistence of DNA-like biopolymers could be due to their adsorption on clay minerals and humus substances in soil. High-specific and ultra sensitive reagent PicoGreenTM (Molecular Probes) permits the quantitative assessment of microbial dsDNA in diluted soil extracts giving a good tool for tracing the DNA fate in soil. Our goal was to determine intracellular and extracellular DNA content in cambisol (loamy sand) and in chernozem (silty loam) soils and to investigate the possible adsorption and degradation of extracellular DNA in soil. Optimized procedure of mechanical and enzymatic destruction of cell walls was used for direct extraction of microbial DNA with Tris-EDTA buffer (Blagodatskaya et al., 2003). Extracellular dsDNA was determined in distilled water and in Tris-EDTA extracts without enzymatic or mechanical treatments. DNA content was determined after addition of PicoGreen to diluted soil extracts. Degradation of extracellular DNA was traced during 24 h incubation of 2 µg lambda-phage DNA in soil. Possible DNA adsorption to soil matrix was determined by recovery of lambda -phage DNA added to autoclaved soil. Extracellular dsDNA was absent in water extracts of both soils. The content of extracellular dsDNA extracted by Tris-EDTA buffer was 0.46 µg/g in chernozem and 1.59 µg/g in cambisol amounting 0.43 and 2.8% of total dsDNA content in these soils, respectively. 100% and 64.8% of added extracellular lambda -phage dsDNA was found in cambisol and chernozem soils, respectively, in 5 h after application. 39% and 73.5% of added DNA disappeared in cambisol and in chernozem, respectively, during 24 h incubation. Degradation rate of extracellular DNA depended on microbial biomass content, which was 2.5 times higher in chernozem as compared to cambisol. Maximum adsorption of DNA by soils was observed in cambisol and reached 2.7% of added amount. We speculate that probability of gene transfer could be rather high in soils, taking into account possible increase of extracellular DNA content after transient environmental events (i.e. drying - rewetting and freezing - thawing).

  2. Estimation of the Relative Abundance of Different Bacteroides and Prevotella Ribotypes in Gut Samples by Restriction Enzyme Profiling of PCR-Amplified 16S rRNA Gene Sequences

    PubMed Central

    Wood, Jacqueline; Scott, Karen P.; Avguštin, Gorazd; Newbold, C. James; Flint, Harry J.

    1998-01-01

    We describe an approach for determining the genetic composition of Bacteroides and Prevotella populations in gut contents based on selective amplification of 16S rRNA gene sequences (rDNA) followed by cleavage of the amplified material with restriction enzymes. The relative contributions of different ribotypes to total Bacteroides and Prevotella 16S rDNA are estimated after end labelling of one of the PCR primers, and the contribution of Bacteroides and Prevotella sequences to total eubacterial 16S rDNA is estimated by measuring the binding of oligonucleotide probes to amplified DNA. Bacteroides and Prevotella 16S rDNA accounted for between 12 and 62% of total eubacterial 16S rDNA in samples of ruminal contents from six sheep and a cow. Ribotypes 4, 5, 6, and 7, which include most cultivated rumen Prevotella strains, together accounted for between 20 and 86% of the total amplified Bacteroides and Prevotella rDNA in these samples. The most abundant Bacteroides or Prevotella ribotype in four animals, however, was ribotype 8, for which there is only one known cultured isolate, while ribotypes 1 and 2, which include many colonic Bacteroides spp., were the most abundant in two animals. This indicates that some abundant Bacteroides and Prevotella groups in the rumen are underrepresented among cultured rumen Prevotella isolates. The approach described here provides a rapid, convenient, and widely applicable method for comparing the genotypic composition of bacterial populations in gut samples. PMID:9758785

  3. Modeling Thermal Inactivation of Bacillus Spores

    DTIC Science & Technology

    2009-03-01

    Ungers, G. “The Negative Control Mecha- nism for E . Coli DNA Replication,” Proceedings of the National Academy of Sci- ences of the USA, 63: 1410-1417...damage by: d [DNA] dt = − k1 [DNA]− k2 [H2O] [DNA] where [DNA] =information content of DNA k1 =rate coefficient associated with [DNA] breakdown during...ax im um a va ila bl e w at er p er u ni t v ol um e Core Cortex Absorbed water Bound water Total water Figure 3.2: Initial Distribution of

  4. Antioxidant and DNA damage protective properties of anthocyanin-rich extracts from Hibiscus and Ocimum: a comparative study.

    PubMed

    Sarkar, Biswatrish; Kumar, Dhananjay; Sasmal, Dinakar; Mukhopadhyay, Kunal

    2014-01-01

    Anthocyanin extracts (AEs) from Ocimum tenuiflorum (leaf), Hibiscus rosa-sinensis (petal) and Hibiscus sabdariffa (calyx) were investigated and compared for in vitro antioxidant activity and DNA damage protective property. Total phenolic content (TPC) and total anthocyanin content (TAC) of the AEs were determined and the major anthocyanins were characterised. In vitro antioxidant activities were assessed by ferric-reducing antioxidant power (FRAP) assay, 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical-scavenging activity, 2-deoxy-D-ribose degradation assay and lipid peroxidation assay. The protective property of the AEs was also examined against oxidative DNA damage by H2O2 and UV using pUC19 plasmid. All the AEs particularly those from O. tenuiflorum demonstrated efficient antioxidant activity and protected DNA from damage. Strong correlation between antioxidant capacity and TPC and TAC was observed. Significant correlation between antioxidant capacity and TPC and TAC ascertained that phenolics and anthocyanins were the major contributors of antioxidant activity.

  5. Nucleoprotein Changes in Plant Tumor Growth

    PubMed Central

    Rasch, Ellen; Swift, Hewson; Klein, Richard M.

    1959-01-01

    Tumor cell transformation and growth were studied in a plant neoplasm, crown gall of bean, induced by Agrobacterium rubi. Ribose nucleic acid (RNA), deoxyribose nucleic acid (DNA), histone, and total protein were estimated by microphotometry of nuclei, nucleoli, and cytoplasm in stained tissue sections. Transformation of normal cells to tumor cells was accompanied by marked increases in ribonucleoprotein content of affected tissues, reaching a maximum 2 to 3 days after inoculation with virulent bacteria. Increased DNA levels were in part associated with increased mitotic frequency, but also with progressive accumulation of nuclei in the higher DNA classes, formed by repeated DNA doubling without intervening reduction by mitosis. Some normal nuclei of the higher DNA classes (with 2, 4, or 8 times the DNA content of diploid nuclei) were reduced to diploid levels by successive cell divisions without intervening DNA synthesis. The normal relation between DNA synthesis and mitosis was thus disrupted in tumor tissue. Nevertheless, clearly defined DNA classes, as found in homologous normal tissues, were maintained in the tumor at all times. PMID:13673042

  6. Determination of genotoxic effects of boron and zinc on Zea mays using protein and random amplification of polymorphic DNA analyses.

    PubMed

    Erturk, Filiz Aygun; Nardemir, Gokce; Hilal, A Y; Arslan, Esra; Agar, Guleray

    2015-11-01

    In this research, we aimed to determine genotoxic effects of boron (B) and zinc (Zn) on Zea mays by using total soluble protein content and random amplification of polymorphic DNA (RAPD) analyses. For the RAPD analysis, 16 RAPD primers were found to produce unique polymorphic band profiles on treated maize seedlings. With increased Zn and B concentrations, increased polymorphism rate was observed, while genomic template stability and total soluble protein content decreased. The treatment with Zn was more effective than that of B groups on the levels of total proteins. The obtained results from this study revealed that the total soluble protein levels and RAPD profiles were performed as endpoints of genotoxicity and these analyses can offer useful biomarker assays for the evaluation of genotoxic effects on Zn and B polluted plants. © The Author(s) 2013.

  7. Decreased mitochondrial DNA content in subcutaneous fat from HIV-infected women taking antiretroviral therapy as measured at delivery.

    PubMed

    Nasi, Milena; Pinti, Marcello; Chiesa, Elisabetta; Fiore, Simona; Manzini, Serena; Del Giovane, Cinzia; D'Amico, Roberto; Palai, Nicoletta; Campatelli, Carlo; Sabbatini, Francesca; Roccio, Marianna; Tibaldi, Cecilia; Masuelli, Giulia; Mussini, Cristina; Ferrazzi, Enrico; d'Arminio Monforte, Antonella; Cossarizza, Andrea

    2011-01-01

    Increasing numbers of pregnant HIV-positive women are receiving combination antiretroviral regimens for preventing mother-to-child virus transmission or for treating the infection itself. Several studies have demonstrated that nucleoside reverse transcriptase inhibitors (NRTIs) induce mitochondrial toxicity by several mechanisms, including depletion of mitochondrial DNA (mtDNA). By the quantification of mtDNA levels, we studied mitochondrial toxicity in HIV-positive women at delivery and the possible correlations with antiretroviral regimens, viroimmunological and metabolic parameters. We analysed 68 HIV-positive women enrolled in the Italian Prospective Cohort Study on Efficacy and Toxicity of Antiretroviral in Pregnancy (TARGET Study); all were taking ≥1 NRTI. We quantified mtDNA copies per cell in subcutaneous fat samples collected during delivery. At the 3rd, 6th and 9th month of pregnancy, we collected data concerning CD4(+) T-cell count, plasma HIV RNA, total and high-density lipoprotein (HDL) cholesterol, fasting plasma glucose and triglycerides. As a control, we analysed mtDNA levels in abdominal subcutaneous fat samples from 23 HIV-seronegative women at delivery. mtDNA content was significantly lower in HIV-infected women when compared with HIV-negative controls. mtDNA content varied independently from viroimmunological, lipid and glucose parameters at the different months, with the exceptions of triglycerides at the 9th month and of HDL at the 6th month of pregnancy. In subcutaneous tissue from women taking NRTI-based antiretroviral regimens, we observed a significant decrease of mtDNA content, compared with uninfected women not on antiviral treatment. Moreover, a significant correlation was noted between mtDNA content and HDL cholesterol and triglycerides.

  8. Species-specific effects of polyploidisation and plant traits of Centaurea maculosa and Senecio inaequidens on rhizosphere microorganisms.

    PubMed

    Thébault, Aurélie; Frey, Beat; Mitchell, Edward A D; Buttler, Alexandre

    2010-08-01

    Invasive plant species represent a threat to terrestrial ecosystems, but their effects on the soil biota and the mechanisms involved are not yet well understood. Many invasive species have undergone polyploidisation, leading to the coexistence of various cytotypes in the native range, whereas, in most cases, only one cytotype is present in the introduced range. Since genetic variation within a species can modify soil rhizosphere communities, we studied the effects of different cytotypes and ranges (native diploid, native tetraploid and introduced tetraploid) of Centaurea maculosa and Senecio inaequidens on microbial biomass carbon, rhizosphere total DNA content and bacterial communities of a standard soil in relation to plant functional traits. There was no overall significant difference in microbial biomass between cytotypes. The variation of rhizosphere total DNA content and bacterial community structure according to cytotype was species specific. The rhizosphere DNA content of S. inaequidens decreased with polyploidisation in the native range but did not vary for C. maculosa. In contrast, the bacterial community structure of C. maculosa was affected by polyploidisation and its diversity increased, whereas there was no significant change for S. inaequidens. Traits of S. inaequidens were correlated to the rhizosphere biota. Bacterial diversity and total DNA content were positively correlated with resource allocation to belowground growth and late flowering, whereas microbial biomass carbon was negatively correlated to investment in reproduction. There were no correlations between traits of the cytotypes of C. maculosa and corresponding rhizosphere soil biota. This study shows that polyploidisation may affect rhizosphere bacterial community composition, but that effects vary among plant species. Such changes may contribute to the success of invasive polyploid genotypes in the introduced range.

  9. Relationship between blastocoel cell-free DNA and day-5 blastocyst morphology.

    PubMed

    Rule, Kiersten; Chosed, Renee J; Arthur Chang, T; David Wininger, J; Roudebush, William E

    2018-06-04

    Cell-free DNA (cfDNA) which is present in the blastocoel cavity of embryos is believed to result from physiological apoptosis during development. This study assessed cfDNA content and caspase-3 protease activity in day-5 IVF blastocysts to determine if there was a correlation with embryo morphology. Day-5 IVF blastocysts were scored according to the Gardner and Schoolcraft system (modified to generate a numerical value) and cfDNA was collected following laser-induced blastocoel collapsing prior to cryopreservation in 25 μL of media. cfDNA was quantified via fluorospectrometry and apoptotic activity was assessed via a caspase-3 protease assay using a fluorescent peptide substrate. Data were compared by linear regression. A total of 32 embryos were evaluated. There was a significant (p < 0.01) and positive correlation (cfDNA = 104.753 + (11.281 × score); R 2  = 0.200) between embryo score and cfDNA content. A significant (p < 0.05) and positive correlation (cfDNA = 115.9 + (0.05 × caspase-3); R 2 = 0.128) was observed between caspase-3 activity and cfDNA levels. There was no significant relationship between caspase-3 activity and embryo morphology score. This study provides further evidence that cfDNA is present in blastocoel fluid, can be quantified, and positively correlates with embryonic morphology. There is also evidence that at least a portion of the cfDNA present is from intracellular contents of embryonic cells that underwent apoptosis. Additional studies are warranted to determine other physiological sources of the cfDNA in blastocyst fluid and to determine the relationship with cfDNA content, embryo morphology, and chromosomal ploidy status plus implantation potential.

  10. Genomics dataset on unclassified published organism (patent US 7547531).

    PubMed

    Khan Shawan, Mohammad Mahfuz Ali; Hasan, Md Ashraful; Hossain, Md Mozammel; Hasan, Md Mahmudul; Parvin, Afroza; Akter, Salina; Uddin, Kazi Rasel; Banik, Subrata; Morshed, Mahbubul; Rahman, Md Nazibur; Rahman, S M Badier

    2016-12-01

    Nucleotide (DNA) sequence analysis provides important clues regarding the characteristics and taxonomic position of an organism. With the intention that, DNA sequence analysis is very crucial to learn about hierarchical classification of that particular organism. This dataset (patent US 7547531) is chosen to simplify all the complex raw data buried in undisclosed DNA sequences which help to open doors for new collaborations. In this data, a total of 48 unidentified DNA sequences from patent US 7547531 were selected and their complete sequences were retrieved from NCBI BioSample database. Quick response (QR) code of those DNA sequences was constructed by DNA BarID tool. QR code is useful for the identification and comparison of isolates with other organisms. AT/GC content of the DNA sequences was determined using ENDMEMO GC Content Calculator, which indicates their stability at different temperature. The highest GC content was observed in GP445188 (62.5%) which was followed by GP445198 (61.8%) and GP445189 (59.44%), while lowest was in GP445178 (24.39%). In addition, New England BioLabs (NEB) database was used to identify cleavage code indicating the 5, 3 and blunt end and enzyme code indicating the methylation site of the DNA sequences was also shown. These data will be helpful for the construction of the organisms' hierarchical classification, determination of their phylogenetic and taxonomic position and revelation of their molecular characteristics.

  11. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation.

    PubMed

    Stigliani, S; Anserini, P; Venturini, P L; Scaruffi, P

    2013-10-01

    Is the amount of cell-free DNA released by human embryos into culture medium correlated with embryo morphological features? The mitochondrial DNA (mtDNA) content of culture medium is significantly associated with the fragmentation rate on Days 2 and 3 of embryo development, whether the oocyte came from women ≤ 35 or >35 years old. Cellular fragmentation is often utilized as one of the morphological parameters for embryo quality assessment. The amount of cellular fragments is considered to be an important morphological parameter for embryo implantation potential. It has been hypothesized that fragments are apoptotic bodies or anuclear cytoplasmatic pieces of blastomeres, although no definitive conclusion has been drawn about their pathogenesis. Human fertilized oocytes were individually cultured from Day 1 to Days 2 and 3. A total of 800 samples (166 spent media from Day 2 and 634 from Day 3) were enrolled into the present study. Double-stranded DNA (dsDNA) was quantified in 800 spent embryo culture media by Pico Green dye fluorescence assay. After DNA purification, genomic DNA (gDNA) and mtDNA were profiled by specific quantitative PCR. Statistical analyses defined correlations among DNA contents, embryo morphology and maternal age. Different independent tests confirmed the presence of DNA into embryo culture medium and, for the first time, we demonstrate that both gDNA and mtDNA are detectable in the secretome. The amount of DNA is larger in embryos with bad quality cleavage compared with high-grade embryos, suggesting that the DNA profile of culture medium is an objective marker for embryo quality assessment. In particular, DNA profiles are significantly associated with fragmentation feature (total dsDNA: P = 0.0010; mtDNA; P = 0.0247) and advanced maternal age. It is necessary to establish whether DNA profiling of spent embryo culture medium is a robust onsite test that can improve the prediction of blastulation, implantation and/or pregnancy rate. The approach we are proposing may provide a novel, non-invasive, objective tool for embryo quality grading. The correlation between a high mtDNA concentration and the fragmentation rate of embryos is suggestive that fragments are mainly anuclear cytoplasmatic debris arising during cleavage. Therefore, blastomere shaping as an early event during in vitro development may play a homeostatic role and be related to embryo competence. This project was funded by Merck Serono (Grant for Fertility Innovation 2011). The sponsor had no role in study design, data collection, data analysis, data interpretation and writing of the paper. Authors declare no conflicts of interest. ClinicalTrials.gov Identifier: NCT01397136.

  12. Regulation of organic nucleic acids and serum biochemistry parameters by dietary chromium picolinate supplementation in swine model.

    PubMed

    Jiajun, Yang; Aiyun, Han; Shanshan, Zheng; Minhong, Zhang

    2011-04-01

    The relationships between chromium and metabolism are sophisticated. Organic nucleic acids and serum biochemistry parameters are affected by dietary chromium levels. The objective of this work was to study the effect of chromium picolinate (CrPic) supplementation on total DNA and RNA contents, the ratio of RNA/DNA in muscle and in pancreatic tissue, the level of insulin receptor (IR) mRNA and some serum biochemistry parameters in a porcine model. Young animals (48) were assigned randomly into three groups of 16 piglets, fed with three different dietary levels of Cr (common basal feedstuff alone or supplemented with CrPic at a dose of 1.61 μg/g or 3.22 μg/g, which corresponds to 0.2 μg/g and 0.4 μg/g Cr). After 80 days, the animals were sacrificed and skeletal muscle and pancreatic tissues were analyzed to detect differences caused by different levels of dietary Cr. The total content of RNA in muscle was increased significantly (P<0.05) in the CrPic supplemented groups. There was no significant difference between groups in the concentrations of total RNA in the pancreas or DNA in the muscle and pancreatic tissues. The RNA/DNA ratio in pancreas showed no significant change but the ratio was increased significantly (P<0.05) in muscle. There was a slight increase of the mRNA level of IR but there was no significant difference between groups. The content of serum cholesterol and insulin were reduced significantly (P<0.05) in the CrPic-supplemented groups and the content of high-density lipoprotein cholesterol (HDLC) was increased significantly (P<0.05) as the CrPic dose increased. There was a slight (non-significant) reduction of the concentrations of serum triglyceride and low-density lipoprotein cholesterol (LDLC) in the CrPic supplementation groups. Supplementary CrPic caused no significant change of muscular mRNA level of IR in healthy animals. An increased content of RNA in muscle, improved cholesterol metabolism and improved insulin sensitivity were found in these CrPic-treated groups in the porcine model. Copyright © 2011 Elsevier GmbH. All rights reserved.

  13. Molecular and clinical characterization of the myopathic form of mitochondrial DNA depletion syndrome caused by mutations in the thymidine kinase (TK2) gene.

    PubMed

    Chanprasert, Sirisak; Wang, Jing; Weng, Shao-Wen; Enns, Gregory M; Boué, Daniel R; Wong, Brenda L; Mendell, Jerry R; Perry, Deborah A; Sahenk, Zarife; Craigen, William J; Alcala, Francisco J Climent; Pascual, Juan M; Melancon, Serge; Zhang, Victor Wei; Scaglia, Fernando; Wong, Lee-Jun C

    2013-01-01

    Mitochondrial DNA (mtDNA) depletion syndromes (MDSs) are a clinically and molecularly heterogeneous group of mitochondrial cytopathies characterized by severe mtDNA copy number reduction in affected tissues. Clinically, MDSs are mainly categorized as myopathic, encephalomyopathic, hepatocerebral, or multi-systemic forms. To date, the myopathic form of MDS is mainly caused by mutations in the TK2 gene, which encodes thymidine kinase 2, the first and rate limiting step enzyme in the phosphorylation of pyrimidine nucleosides. We analyzed 9 unrelated families with 11 affected subjects exhibiting the myopathic form of MDS, by sequencing the TK2 gene. Twelve mutations including 4 novel mutations were detected in 9 families. Skeletal muscle specimens were available from 7 out of 11 subjects. Respiratory chain enzymatic activities in skeletal muscle were measured in 6 subjects, and enzymatic activities were reduced in 3 subjects. Quantitative analysis of mtDNA content in skeletal muscle was performed in 5 subjects, and marked mtDNA content reduction was observed in each. In addition, we outline the molecular and clinical characteristics of this syndrome in a total of 52 patients including those previously reported, and a total of 36 TK2 mutations are summarized. Clinically, hypotonia and proximal muscle weakness are the major phenotypes present in all subjects. In summary, our study expands the molecular and clinical spectrum associated with TK2 deficiency. © 2013.

  14. Traceability of Plant Diet Contents in Raw Cow Milk Samples

    PubMed Central

    Ponzoni, Elena; Mastromauro, Francesco; Gianì, Silvia; Breviario, Diego

    2009-01-01

    The use of molecular marker in the dairy sector is gaining large acceptance as a reliable diagnostic approach for food authenticity and traceability. Using a PCR approach, the rbcL marker, a chloroplast-based gene, was selected to amplify plant DNA fragments in raw cow milk samples collected from stock farms or bought on the Italian market. rbcL-specific DNA fragments could be found in total milk, as well as in the skimmed and the cream fractions. When the PCR amplified fragments were sent to sequence, the nucleotide composition of the chromatogram reflected the multiple contents of the polyphytic diet. PMID:22253982

  15. The deoxyribonucleic acid of Micrococcus radiodurans

    PubMed Central

    Schein, Arnold H.

    1966-01-01

    The DNA of Micrococcus radiodurans was prepared by three methods. Although the recovery of DNA varied considerably, the percentage molar base ratios of the DNA from the three preparations were essentially the same: guanine, 33±2; adenine, 18±1; cytosine, 33±2; thymine, 17±1. Base compositions calculated from Tm values and from density in caesium chloride gradients also yielded guanine+cytosine contents of 66 and 68% of total bases respectively. No unusual bases were observed. The S20,w values were characteristic of high-molecular-weight DNA. Electron microscopy showed the purified DNA in long strands; occasionally these were coiled. Images(a)(b)(c)(d)(e)Fig. 1. PMID:16742439

  16. Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats

    NASA Technical Reports Server (NTRS)

    Adams, G. R.; McCue, S. A.

    1998-01-01

    Insulin-like growth factor I (IGF-I) peptide levels have been shown to increase in overloaded skeletal muscles (G. R. Adams and F. Haddad. J. Appl. Physiol. 81: 2509-2516, 1996). In that study, the increase in IGF-I was found to precede measurable increases in muscle protein and was correlated with an increase in muscle DNA content. The present study was undertaken to test the hypothesis that direct IGF-I infusion would result in an increase in muscle DNA as well as in various measurements of muscle size. Either 0.9% saline or nonsystemic doses of IGF-I were infused directly into a non-weight-bearing muscle of rats, the tibialis anterior (TA), via a fenestrated catheter attached to a subcutaneous miniosmotic pump. Saline infusion had no effect on the mass, protein content, or DNA content of TA muscles. Local IGF-I infusion had no effect on body or heart weight. The absolute weight of the infused TA muscles was approximately 9% greater (P < 0.05) than that of the contralateral TA muscles. IGF-I infusion resulted in significant increases in the total protein and DNA content of TA muscles (P < 0.05). As a result of these coordinated changes, the DNA-to-protein ratio of the hypertrophied TA was similar to that of the contralateral muscles. These results suggest that IGF-I may be acting to directly stimulate processes such as protein synthesis and satellite cell proliferation, which result in skeletal muscle hypertrophy.

  17. Pea amyloplast DNA is qualitatively similar to pea chloroplast DNA

    NASA Technical Reports Server (NTRS)

    Gaynor, J. J.

    1984-01-01

    Amyloplast DNA (apDNA), when subjected to digestion with restriction endonucleases, yields patterns nearly identical to that of DNA from mature pea chloroplasts (ctDNA). Southern transfers of apDNA and ctDNA, probed with the large subunit (LS) gene of ribulose-1,5-bisphosphate carboxylase (Rubisco), shows hybridization to the expected restriction fragments for both apDNA and ctDNA. However, Northern transfers of total RNA from chloroplasts and amyloplasts, probed again with the LS gene of Rubisco, shows that no detectable LS meggage is found in amyloplasts although LS expression in mature chloroplasts is high. Likewise, two dimensional polyacrylamide gel electrophoresis of etiolated gravisensitive pea tissue shows that both large and small subunits of Rubisco are conspicuously absent; however, in greening tissue these two constitute the major soluble proteins. These findings suggest that although the informational content of these two organelle types is equivalent, gene expression is quite different and is presumably under nuclear control.

  18. Flavonoids in Helichrysum pamphylicum inhibit mammalian type I DNA topoisomerase.

    PubMed

    Topcu, Zeki; Ozturk, Bintug; Kucukoglu, Ozlem; Kilinc, Emrah

    2008-01-01

    DNA topoisomerases are important targets for cancer chemotherapy. We investigated the effects of a methanolic extract of Helichrysum pamphylicum on mammalian DNA topoisomerase I via in vitro plasmid supercoil relaxation assays. The extracts manifested a considerable inhibition of the enzyme's activity in a dose-dependent manner. We also performed a HPLC analysis to identify the flavonoid content of the H. pamphylicum extract and tested the identified flavonoids; luteolin, luteolin-4-glucoside, naringenin, helichrysinA and isoquercitrin, on DNA topoisomerase I activity. The measurement of the total antioxidant capacity of the flavonoid standards suggested that the topoisomerase inhibition might be correlated with the antioxidant capacity of the plant.

  19. Sub-lethal effects of cadmium and copper on RNA/DNA ratio and energy reserves in the green-lipped mussel Perna viridis.

    PubMed

    Yeung, Jamius W Y; Zhou, Guang-Jie; Leung, Kenneth M Y

    2016-10-01

    This study aims to test if RNA/DNA ratio and various energy reserve parameters (i.e., glycogen, lipid, protein content and total energy reserves) are sensitive biomarkers for indicating stresses induced by metal contaminants in the green-lipped mussel Perna viridis, a common organism for biomonitoring in Southeast Asia. This study was, therefore, designed to examine the effects of cadmium (Cd) and copper (Cu) on these potential biomarkers in two major energy storage tissues, adductor muscle (AM) and hepatopancreas (HP), of P. viridis after sub-lethal exposure to either metal for 10 days. The results showed that neither Cd nor Cu treatments affected the RNA/DNA ratio, glycogen and protein contents in AM and HP. As the most sensitive biomarker in P. viridis, the total lipid content in both AM and HP was significantly decreased in the treatment of 5μg Cu/L and 0.01-0.1μgCd/L, respectively. However, soft-tissue body burdens of Cu or Cd did not significantly correlate with each of the four biomarkers regardless of the tissue type. In addition, AM generally stored more glycogen than HP, whereas HP stored more lipids than AM. We proposed that multiple biomarkers may be employed as an integrated diagnostic tool for monitoring the health condition of the mussels. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Independent effects of leaf growth and light on the development of the plastid and its DNA content in Zea species.

    PubMed

    Zheng, Qi; Oldenburg, Delene J; Bendich, Arnold J

    2011-05-01

    In maize (Zea mays L.), chloroplast development progresses from the basal meristem to the mature leaf tip, and light is required for maturation to photosynthetic competence. During chloroplast greening, it was found that chloroplast DNA (cpDNA) is extensively degraded, falling to undetectable levels in many individual chloroplasts for three maize cultivars, as well as Zea mexicana (the ancestor of cultivated maize) and the perennial species Zea diploperennis. In dark-grown maize seedlings, the proplastid-to-etioplast transition is characterized by plastid enlargement, cpDNA replication, and the retention of high levels of cpDNA. When dark-grown seedlings are transferred to white light, the DNA content per plastid increases slightly during the first 4 h of illumination and then declines rapidly to a minimum at 24 h during the etioplast-to-chloroplast transition. Plastid autofluorescence (from chlorophyll) continues to increase as cpDNA declines, whereas plastid size remains constant. It is concluded that the increase in cpDNA that accompanies plastid enlargement is a consequence of cell and leaf growth, rather than illumination, whereas light stimulates photosynthetic capacity and cpDNA instability. When cpDNA from total tissue was monitored by blot hybridization and real-time quantitative PCR, no decline following transfer from dark to light was observed. The lack of agreement between DNA per plastid and cpDNA per cell may be attributed to nupts (nuclear sequences of plastid origin).

  1. The mitochondrial genome of Malus domestica and the import-driven hypothesis of mitochondrial genome expansion in seed plants.

    PubMed

    Goremykin, Vadim V; Lockhart, Peter J; Viola, Roberto; Velasco, Riccardo

    2012-08-01

    Mitochondrial genomes of spermatophytes are the largest of all organellar genomes. Their large size has been attributed to various factors; however, the relative contribution of these factors to mitochondrial DNA (mtDNA) expansion remains undetermined. We estimated their relative contribution in Malus domestica (apple). The mitochondrial genome of apple has a size of 396 947 bp and a one to nine ratio of coding to non-coding DNA, close to the corresponding average values for angiosperms. We determined that 71.5% of the apple mtDNA sequence was highly similar to sequences of its nuclear DNA. Using nuclear gene exons, nuclear transposable elements and chloroplast DNA as markers of promiscuous DNA content in mtDNA, we estimated that approximately 20% of the apple mtDNA consisted of DNA sequences imported from other cell compartments, mostly from the nucleus. Similar marker-based estimates of promiscuous DNA content in the mitochondrial genomes of other species ranged between 21.2 and 25.3% of the total mtDNA length for grape, between 23.1 and 38.6% for rice, and between 47.1 and 78.4% for maize. All these estimates are conservative, because they underestimate the import of non-functional DNA. We propose that the import of promiscuous DNA is a core mechanism for mtDNA size expansion in seed plants. In apple, maize and grape this mechanism contributed far more to genome expansion than did homologous recombination. In rice the estimated contribution of both mechanisms was found to be similar. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  2. DNA oxidative damage and life expectancy in houseflies.

    PubMed Central

    Agarwal, S; Sohal, R S

    1994-01-01

    The objective of this study was to explore the relationship between oxidative molecular damage and the aging process by determining whether such damage is associated with the rate of aging, using the adult housefly as the experimental organism. Because the somatic tissues in the housefly consist of long-lived postmitotic cells, it provides an excellent model system for studying cumulative age-related cellular alterations. Rate of aging in the housefly was manipulated by varying the rate of metabolism (physical activity). The concentration of 8-hydroxydeoxyguanosine (80HdG) was used as an indicator of DNA oxidation. Exposure of live flies to x-rays and hyperoxia elevated the level of 8OHdG. The level of 8OHdG in mitochondrial as well as total DNA increased with the age of flies. Mitochondrial DNA was 3 times more susceptible to age-related oxidative damage than nuclear DNA. A decrease in the level of physical activity of the flies was found to prolong the life-span and corresponding reduce the level of 8OHdG in both mitochondrial and total DNA. Under all conditions examined, mitochondrial DNA exhibited a higher level of oxidative damage than total DNA. The 8OHdG levels were found to be inversely associated with the life expectancy of houseflies. The pattern of age-associated accrural of 8OHdG was virtually identical to that of protein carbonyl content. Altoghether, results of this study support the hypothesis that oxidative molecular damage is a causal factor in senescence. PMID:7991627

  3. The Protective Effect of Whole Honey and Phenolic Extract on Oxidative DNA Damage in Mice Lymphocytes Using Comet Assay.

    PubMed

    Cheng, Ni; Wang, Yuan; Cao, Wei

    2017-12-01

    In this study, the antioxidant activity and the protective effect against hydrogen peroxide-induced DNA damage were assessed for five honeys of different botanical origin. Seven phenolic acids were detected in the honey samples. Ferulic acid was the most abundant phenolic acid detected in longan honey, jujube honey and buckwheat honey. Ellagic acid, p-hydroxybenzoic acid and protocatechuic acid were the main phenolic acids detected in vitex honey. Of all honey samples tested, the highest total phenolic content and antioxidant activity were found in buckwheat honey, whereas the lowest total phenolic content and antioxidant activity were found in locust honey. Treatment with hydrogen peroxide induced a 62% increase in tail DNA in mice lymphocytes, and all studied honeys significantly inhibited this effect (P < 0.05). The buckwheat honey with higher antioxidant capability also exhibited super protective effect than others. Phenolic extracts of honey displayed greater protective effects than whole honey in comet assay. The hydrogen peroxide-generated increase in 8-hydroxy-2-deoxyguanosine (8-OHdG) was effectively inhibited by the honeys studied (P < 0.05). Moreover, a dose-effect relationship between honey concentration and its protective effect was clearly observed in this study. It can be deduced that phenolic acids of honey can penetrate into lymphocytes and protect DNA from oxidative damage by scavenging hydrogen peroxide and/or chelating ferrous ions.

  4. 'Junk' DNA and long-term phenotypic evolution in Silene section Elisanthe (Caryophyllaceae).

    PubMed Central

    Meagher, Thomas R; Costich, Denise E

    2004-01-01

    Nuclear DNA content variation over orders of magnitude across species has been attributed to 'junk' repetitive DNA with limited adaptive significance. By contrast, our previous work on Silene latifolia showed that DNA content is negatively correlated with flower size, a character of clear adaptive relevance. The present paper explores this relationship in a broader phylogenetic context to investigate the long-term evolutionary impacts of DNA content variation. The relationship between nuclear DNA content and phenotype variation was determined for four closely related species of Silene section Elisanthe (Caryophyllaceae). In addition to a consistent sexual dimorphism in DNA content across all of the species, we found DNA content variation among populations within, as well as among, species. We also found a general trend towards a negative correlation between DNA content and flower and leaf size over all four species, within males and females as well as overall. These results indicate that repetitive DNA may play a role in long-term phenotypic evolution. PMID:15801614

  5. Reduced mitochondrial DNA content associates with poor prognosis of prostate cancer in African American men.

    PubMed

    Koochekpour, Shahriar; Marlowe, Timothy; Singh, Keshav K; Attwood, Kristopher; Chandra, Dhyan

    2013-01-01

    Reduction or depletion of mitochondrial DNA (mtDNA) has been associated with cancer progression. Although imbalanced mtDNA content is known to occur in prostate cancer, differences in mtDNA content between African American (AA) and Caucasian American (CA) men are not defined. We provide the first evidence that tumors in AA men possess reduced level of mtDNA compared to CA men. The median tumor mtDNA content was reduced in AA men. mtDNA content was also reduced in normal prostate tissues of AA men compared to CA men, suggesting a possible predisposition to cancer in AA men. mtDNA content was also reduced in benign prostatic hyperplasia (BPH) tissue from AA men. Tumor and BPH tissues from patients ≥ 60 years of age possess reduced mtDNA content compared to patients <60 years of age. In addition, mtDNA content was higher in normal tissues from patients with malignant T3 stage disease compared to patients with T2 stage disease. mtDNA levels in matched normal prostate tissues were nearly doubled in Gleason grade of >7 compared to ≤ 7, whereas reduced mtDNA content was observed in tumors of Gleason grade >7 compared to ≤ 7. Together, our data suggest that AA men possess lower mtDNA levels in normal and tumor tissues compared to CA men, which could contribute to higher risk and more aggressive prostate cancer in AA men.

  6. Isolation of the Entomopathogenic Fungal Strain Cod-MK1201 from a Cicada Nymph and Assessment of Its Antibacterial Activities.

    PubMed

    Sangdee, Kusavadee; Nakbanpote, Woranan; Sangdee, Aphidech

    2015-01-01

    The entomopathogenic fungus Cod-MK1201 was isolated from a dead cicada nymph. Three regions of ribosomal nuclear DNA, the internal transcribed spacers of nuclear ribosomal DNA repeats (ITS), the partial small subunit of rDNA (nrSSU) , and the partial large subunit of rDNA (nrLSU), and two protein-coding regions, the elongation factor 1α (EF-1α), and the largest subunit of the RNA polymerase II (rpb1) gene, were sequenced and used for fungal identification. The phylogenetic analysis of the ITS and the combined data set of the five genes indicated that the fungal isolate Cod-MK1201 is a new strain of Cordyceps sp. that is closely related to Cordyceps nipponica and C. kanzashiana. Crude extracts of mycelium-cultured Cod-MK1201 were obtained using distilled water and 50% (v/v) ethanol, and the antibacterial activity of each was determined. Both extracts had activity against Gram-positive and Gram-negative bacteria, but the ethanol extract was the more potent of the two. The antibacterial activity of the protein fractions of these extracts was also determined. The protein fraction from the ethanol extract was more antibacterial than the protein fraction from the aqueous extract. Three antibacterial constituents including adenosine, the total phenolic content (TPC), and the total flavonoid content (TFC) was also determined. The results showed that the adenosine content, the TPC, and the TFC of the ethanol extract were more active than those of the aqueous extract. Moreover, synergism was detected between these antibacterial constituents. In conclusion, the entomopathogenic fungal isolate Cod-MK1201 represents a natural source of antibacterial agents.

  7. Manuka honey protects middle-aged rats from oxidative damage

    PubMed Central

    Jubri, Zakiah; Rahim, Noor Baitee Abdul; Aan, Goon Jo

    2013-01-01

    OBJECTIVE: This study aimed to determine the effect of manuka honey on the oxidative status of middle-aged rats. METHOD: Twenty-four male Sprague-Dawley rats were divided into young (2 months) and middle-aged (9 months) groups. They were further divided into two groups each, which were either fed with plain water (control) or supplemented with 2.5 g/kg body weight of manuka honey for 30 days. The DNA damage level was determined via the comet assay, the plasma malondialdehyde level was determined using high performance liquid chromatography, and the antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, glutathione peroxidase and catalase) were determined spectrophotometrically in the erythrocytes and liver. The antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl and ferric reducing/antioxidant power assays, and the total phenolic content of the manuka was analyzed using UV spectrophotometry and the Folin-Ciocalteu method, respectively. RESULTS: Supplementation with manuka honey reduced the level of DNA damage, the malondialdehyde level and the glutathione peroxidase activity in the liver of both the young and middle-aged groups. However, the glutathione peroxidase activity was increased in the erythrocytes of middle-aged rats given manuka honey supplementation. The catalase activity was reduced in the liver and erythrocytes of both young and middle-aged rats given supplementation. Manuka honey was found to have antioxidant activity and to have a high total phenolic content. These findings showed a strong correlation between the total phenolic content and antioxidant activity. CONCLUSIONS: Manuka honey reduces oxidative damage in young and middle-aged rats; this effect could be mediated through the modulation of its antioxidant enzyme activities and its high total phenolic content. Manuka honey can be used as an alternative supplement at an early age to improve the oxidative status. PMID:24270958

  8. Manuka honey protects middle-aged rats from oxidative damage.

    PubMed

    Jubri, Zakiah; Rahim, Noor Baitee Abdul; Aan, Goon Jo

    2013-11-01

    This study aimed to determine the effect of manuka honey on the oxidative status of middle-aged rats. Twenty-four male Sprague-Dawley rats were divided into young (2 months) and middle-aged (9 months) groups. They were further divided into two groups each, which were either fed with plain water (control) or supplemented with 2.5 g/kg body weight of manuka honey for 30 days. The DNA damage level was determined via the comet assay, the plasma malondialdehyde level was determined using high performance liquid chromatography, and the antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, glutathione peroxidase and catalase) were determined spectrophotometrically in the erythrocytes and liver. The antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl and ferric reducing/antioxidant power assays, and the total phenolic content of the manuka was analyzed using UV spectrophotometry and the Folin-Ciocalteu method, respectively. Supplementation with manuka honey reduced the level of DNA damage, the malondialdehyde level and the glutathione peroxidase activity in the liver of both the young and middle-aged groups. However, the glutathione peroxidase activity was increased in the erythrocytes of middle-aged rats given manuka honey supplementation. The catalase activity was reduced in the liver and erythrocytes of both young and middle-aged rats given supplementation. Manuka honey was found to have antioxidant activity and to have a high total phenolic content. These findings showed a strong correlation between the total phenolic content and antioxidant activity. Manuka honey reduces oxidative damage in young and middle-aged rats; this effect could be mediated through the modulation of its antioxidant enzyme activities and its high total phenolic content. Manuka honey can be used as an alternative supplement at an early age to improve the oxidative status.

  9. The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy

    NASA Technical Reports Server (NTRS)

    Adams, G. R.; Haddad, F.

    1996-01-01

    Insulin-like growth factor-1 (IGF-1) is known to have anabolic effects on skeletal muscle cells. This study examined the time course of muscle hypertrophy and associated IGF-1 peptide and mRNA expression. Data were collected at 3, 7, 14, and 28 days after surgical removal of synergistic muscles of both normal and hypophysectomized (HX) animals. Overloading increased the plantaris (Plant) mass, myofiber size, and protein-to-body weight ratio in both groups (normal and HX; P < 0.05). Muscle IGF-1 peptide levels peaked at 3 (normal) and 7 (HX) days of overloading with maximum 4.1-fold (normal) and 6.2-fold (HX) increases. Increases in muscle IGF-1 preceded the hypertrophic response. Total DNA content of the overloaded Plant increased in both groups. There was a strong positive relationship between IGF-1 peptide and DNA content in the overloaded Plant from both groups. These results indicate that 1) the muscles from rats with both normal and severely depressed systemic levels of IGF-1 respond to functional overload with an increase in local IGF-1 expression and 2) this elevated IGF-1 may be contributing to the hypertrophy response, possibly via the mobilization of satellite cells to provide increases in muscle DNA.

  10. Quantitation by flow microfluorometry of total cellular DNA in Acanthamoeba

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulson, P.B.; Tyndall, R.

    1978-01-01

    The DNA content of five speciea of Acanthamoeba was determined by flow microfluorometry. Acanthamoeba castellanii (AC-30), acanthamoeba polyphaga (APG and P-23), acanthamoeba rhysodes, acanthamoeba culbertsoni (A-1), and acanthamoeba royreba were grown in a casitone based medium 24 to 48 hr. The trophozoites were harvested, fixed in 70% ethanol (acidified), pretreated with RNase, stained with propidium diiodide, and evaluated for DNA-bound fluorescence. All species tested had DNA values between 2.0 to 5.0 pg/cell. These results placed DNA/cell values of Acanthamoeba slightly lower than DNA/cell values of other eucaryotic cells and much lower than Amoeba proteus values. These results indicate that FMFmore » may be a useful adjunct in distinguishing Acanthamoeba cells from either eucaryotic cells or some other amoeba. However, differences in DNA/cell between species of Acanthamoeba are small and would not be useful in identification of species.« less

  11. Effect of treated-sewage contamination upon bacterial energy charge, adenine nucleotides, and DNA content in a sandy aquifer on cape cod

    USGS Publications Warehouse

    Metge, D.W.; Brooks, M.H.; Smith, R.L.; Harvey, R.W.

    1993-01-01

    Changes in adenylate energy charge (EC(A)) and in total adenine nucleotides (A(T)) and DNA content (both normalized to the abundance of free- living, groundwater bacteria) in response to carbon loading were determined for a laboratory-grown culture and for a contaminated aquifer. The latter study involved a 3-km-long transect through a contaminant plume resulting from continued on-land discharge of secondary sewage to a shallow, sandy aquifer on Cape Cod, Mass. With the exception of the most contaminated groundwater immediately downgradient from the contaminant source, DNA and adenylate levels correlated strongly with bacterial abundance and decreased exponentially with increasing distance downgradient. EC(A)s (0.53 to 0.60) and the ratios of ATP to DNA (0.001 to 0.003) were consistently low, suggesting that the unattached bacteria in this groundwater study are metabolically stressed, despite any eutrophication that might have occurred. Elevated EC(A)s (up to 0.74) were observed in glucose-amended groundwater, confirming that the metabolic state of this microbial community could be altered. In general, per-bacterium DNA and ATP contents were approximately twofold higher in the plume than in surrounding groundwater, although EC(A) and per-bacterium levels of A(T) differed little in the plume and the surrounding uncontaminated groundwater. However, per-bacterium levels of DNA and A(T) varied six- and threefold, respectively, during a 6-h period of decreasing growth rate for an unidentified pseudomonad isolated from contaminated groundwater and grown in batch culture. These data suggest that the DNA content of groundwater bacteria may be more sensitive than their A(T) to the degree of carbon loading, which may have significant ramifications in the use of nucleic acids and adenine nucleotides for estimating the metabolic status of bacterial communities within more highly contaminated aquifers.

  12. Construction of a primary DNA fingerprint database for cotton cultivars.

    PubMed

    Zhang, Y C; Kuang, M; Yang, W H; Xu, H X; Zhou, D Y; Wang, Y Q; Feng, X A; Su, C; Wang, F

    2013-06-13

    Forty core primers were used to construct a DNA fingerprint database of 132 cotton species based on multiplex fluorescence detection technology. A high first successful ratio of 99.04% was demonstrated with tetraplex polymerase chain reaction. Forty primer pairs amplified a total of 262 genotypes among 132 species, with an average of 6.55 per primer and values of polymorphism information content varying from 0.340 to 0.882. Conflicting DNA homozygous ratios were found in various species. The highest DNA homozygous ratio was found in landrace standard cultivars, which had an 81.46% DNA homozygous ratio. The lowest occurred in a group of 2010 leading cultivars with a homozygous ratio of 63.04%. Genetic diversity of the 132 species was briefly analyzed using unweighted pair-group method with arithmetic means.

  13. DNA Damage Protecting Activity and Free Radical Scavenging Activity of Anthocyanins from Red Sorghum (Sorghum bicolor) Bran

    PubMed Central

    Devi, P. Suganya; Kumar, M. Saravana; Das, S. Mohan

    2012-01-01

    There is increasing interest in natural food colorants like carotenoids and anthocyanins with functional properties. Red sorghum bran is known as a rich source for anthocyanins. The anthocyanin contents extracted from red sorghum bran were evaluated by biochemical analysis. Among the three solvent system used, the acidified methanol extract showed a highest anthocyanin content (4.7 mg/g of sorghum bran) followed by methanol (1.95 mg/g) and acetone (1 mg/g). Similarly, the highest total flavonoids (143 mg/g) and total phenolic contents (0.93 mg/g) were obtained in acidified methanol extracts than methanol and acetone extracts. To study the health benefits of anthocyanin from red sorghum bran, the total antioxidant activity was evaluated by biochemical and molecular methods. The highest antioxidant activity was observed in acidified methanol extracts of anthocyanin in dose-dependent manner. The antioxidant activity of the red sorghum bran was directly related to the total anthocyanin found in red sorghum bran. PMID:22400119

  14. Cytological study of DNA content and nuclear morphometric analysis for aid in the diagnosis of high-grade dysplasia within oral leukoplakia.

    PubMed

    Yang, Xi; Xiao, Xuan; Wu, Wenyan; Shen, Xuemin; Zhou, Zengtong; Liu, Wei; Shi, Linjun

    2017-09-01

    To quantitatively examine the DNA content and nuclear morphometric status of oral leukoplakia (OL) and investigate its association with the degree of dysplasia in a cytologic study. Oral cytobrush biopsy was carried out to obtain exfoliative epithelial cells from lesions before scalpel biopsy at the same location in a blinded series of 70 patients with OL. Analysis of nuclear morphometry and DNA content status using image cytometry was performed with oral smears stained with the Feulgen-thionin method. Nuclear morphometric analysis revealed significant differences in DNA content amount, DNA index, nuclear area, nuclear radius, nuclear intensity, sphericity, entropy, and fractal dimension (all P < .01) between low-grade and high-grade dysplasia. DNA content analysis identified 34 patients with OL (48.6%) with DNA content abnormality. Nonhomogeneous lesion (P = .018) and high-grade dysplasia (P = .008) were significantly associated with abnormal DNA content. Importantly, the positive correlation between the degree of oral dysplasia and DNA content status was significant (P = .004, correlation coefficient = 0.342). Cytology analysis of DNA content and nuclear morphometric status using image cytometry may support their use as a screening and monitoring tool for OL progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Designing easy DNA extraction: Teaching creativity through laboratory practice.

    PubMed

    Susantini, Endang; Lisdiana, Lisa; Isnawati; Tanzih Al Haq, Aushia; Trimulyono, Guntur

    2017-05-01

    Subject material concerning Deoxyribose Nucleic Acid (DNA) structure in the format of creativity-driven laboratory practice offers meaningful learning experience to the students. Therefore, a laboratory practice in which utilizes simple procedures and easy-safe-affordable household materials should be promoted to students to develop their creativity. This study aimed to examine whether designing and conducting DNA extraction with household materials could foster students' creative thinking. We also described how this laboratory practice affected students' knowledge and views. A total of 47 students participated in this study. These students were grouped and asked to utilize available household materials and modify procedures using hands-on worksheet. Result showed that this approach encouraged creative thinking as well as improved subject-related knowledge. Students also demonstrated positive views about content knowledge, social skills, and creative thinking skills. This study implies that extracting DNA with household materials is able to develop content knowledge, social skills, and creative thinking of the students. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):216-225, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  16. High leukocyte mitochondrial DNA content contributes to poor prognosis in glioma patients through its immunosuppressive effect

    PubMed Central

    Chen, Y; Zhang, J; Huang, X; Zhang, J; Zhou, X; Hu, J; Li, G; He, S; Xing, J

    2015-01-01

    Background: Epidemiological studies have indicated significant associations of leukocyte mitochondrial DNA (mtDNA) copy number with risk of several malignancies, including glioma. However, whether mtDNA content can predict the clinical outcome of glioma patients has not been investigated. Methods: The mtDNA content of peripheral blood leukocytes from 336 glioma patients was examined using a real-time PCR-based method. Kaplan–Meier curves and Cox proportional hazards regression model were used to examine the association of mtDNA content with overall survival (OS) and progression-free survival (PFS) of patients. To explore the potential mechanism, the immune phenotypes of peripheral blood mononuclear cells (PBMCs) and plasma concentrations of several cytokines from another 20 glioma patients were detected by flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively. Results: Patients with high mtDNA content showed both poorer OS and PFS than those with low mtDNA content. Multivariate Cox regression analysis demonstrated that mtDNA content was an independent prognostic factor for both OS and PFS. Stratified analyses showed that high mtDNA content was significantly associated with poor prognosis of patients with younger age, high-grade glioma or adjuvant radiochemotherapy. Immunological analysis indicated that patients with high mtDNA content had significantly lower frequency of natural killer cells in PBMCs and higher plasma concentrations of interleukin-2 and tumour necrosis factor-α, suggesting an immunosuppression-related mechanism involved in mtDNA-mediated prognosis. Conclusions: Our study for the first time demonstrated that leukocyte mtDNA content could serve as an independent prognostic marker and an indicator of immune functions in glioma patients. PMID:26022928

  17. Mitochondrial DNA content in breast cancer: Impact on in vitro and in vivo phenotype and patient prognosis

    PubMed Central

    Weerts, Marjolein J.A.; Sieuwerts, Anieta M.; Smid, Marcel; Look, Maxime P.; Foekens, John A.; Sleijfer, Stefan; Martens, John W.M.

    2016-01-01

    Reduced mitochondrial DNA (mtDNA) content in breast cancer cell lines has been associated with transition towards a mesenchymal phenotype, but its clinical consequences concerning breast cancer dissemination remain unidentified. Here, we aimed to clarify the link between mtDNA content and a mesenchymal phenotype and its relation to prognosis of breast cancer patients. We analyzed mtDNA content in 42 breast cancer cell lines and 207 primary breast tumor specimens using a combination of quantitative PCR and array-based copy number analysis. By associating mtDNA content with expression levels of genes involved in epithelial-to-mesenchymal transition (EMT) and with the intrinsic breast cancer subtypes, we could not identify a relation between low mtDNA content and mesenchymal properties in the breast cancer cell lines or in the primary breast tumors. In addition, we explored the relation between mtDNA content and prognosis in our cohort of primary breast tumor specimens that originated from patients with lymph node-negative disease who did not receive any (neo)adjuvant systemic therapy. When patients were divided based on the tumor quartile levels of mtDNA content, those in the lowest quarter (≤ 350 mtDNA molecules per cell) showed a poorer 10-year distant metastasis-free survival than patients with > 350 mtDNA molecules per cell (HR 0.50 [95% CI 0.29–0.87], P = 0.015). The poor prognosis was independent of established clinicopathological markers (HR 0.54 [95% CI 0.30–0.97], P = 0.038). We conclude that, despite a lack of evidence between mtDNA content and EMT, low mtDNA content might provide meaningful prognostic value for distant metastasis in breast cancer. PMID:27081694

  18. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis.

    PubMed

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. http://www.cemb.edu.pk/sw.html RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language.

  19. Nuclear DNA contents of Echinchloa crus-galli and its Gaussian relationships with environments

    NASA Astrophysics Data System (ADS)

    Li, Dan-Dan; Lu, Yong-Liang; Guo, Shui-Liang; Yin, Li-Ping; Zhou, Ping; Lou, Yu-Xia

    2017-02-01

    Previous studies on plant nuclear DNA content variation and its relationships with environmental gradients produced conflicting results. We speculated that the relationships between nuclear DNA content of a widely-distributed species and its environmental gradients might be non-linear if it was sampled in a large geographical gradient. Echinochloa crus-galli (L.) P. Beauv. is a worldwide species, but without documents on its intraspecific variation of nuclear DNA content. Our objectives are: 1) to detect intraspecific variation scope of E. crus-galli in its nuclear DNA content, and 2) to testify whether nuclear DNA content of the species changes with environmental gradients following Gaussian models if its populations were sampled in a large geographical gradient. We collected seeds of 36 Chinese populations of E. crus-galli across a wide geographical gradient, and sowed them in a homogeneous field to get their offspring to determine their nuclear DNA content. We analyzed the relationships of nuclear DNA content of these populations with latitude, longitude, and nineteen bioclimatic variables by using Gaussian and linear models. (1) Nuclear DNA content varied from 2.113 to 2.410 pg among 36 Chinese populations of E. crus-galli, with a mean value of 2.256 pg. (2) Gaussian correlations of nuclear DNA content (y) with geographical gradients were detected, with latitude (x) following y = 2.2923*e -(x - 24.9360)2/2*63.79452 (r = 0.546, P < 0.001), and with longitude (x) following y = 2.2933*e -(x - 116.1801)2/2*44.74502 (r = 0.672, P < 0.001). (3) Among the nineteen bioclimatic variables, except temperature isothermality, precipitations of the wettest month, the wettest quarter and the warmest quarter, the others could be better fit with nuclear DNA content by using Gaussian models than by linear models. There exists intra-specific variation among 36 Chinese populations of E. crus-galli, Gaussian models could be applied to fit the correlations of its Nuclear DNA content with geographical and most bioclimatic gradients.

  20. Ruminal protozoal contribution to the duodenal flow of fatty acids following feeding of steers on forages differing in chloroplast content.

    PubMed

    Huws, S A; Lee, M R F; Kingston-Smith, A H; Kim, E J; Scott, M B; Tweed, J K S; Scollan, N D

    2012-12-28

    Ruminant products are criticised for their SFA content relative to PUFA, although n-6:n-3 PUFA is desirable for human health ( < 4). Rumen protozoa are rich in unsaturated fatty acids due to engulfment of PUFA-rich chloroplasts. Increasing the chloroplast content of rumen protozoa offers a potentially novel approach to enhance PUFA flow to the duodenum and subsequent incorporation into meat and milk. We evaluated protozoal contribution to duodenal n-3 PUFA flow due to intracellular chloroplast content. A total of six Holstein × Friesian steers were fed, in a two-period changeover design, either straw:concentrate (S:C, 60:40; DM basis; S:C, low chloroplast) or fresh perennial ryegrass (PRG; high chloroplast). Following 12 d adaptation to diet, ruminal protozoal and whole duodenal samples were obtained. N and fatty acid content of whole duodenum and rumen protozoal samples were assessed and protozoal 18S rDNA quantitative PCR performed, enabling calculation of protozoal N flow. The ratio of individual fatty acids:N in rumen protozoal samples was calculated to obtain protozoal fatty acid flows. Based on total fatty acid flow, contribution (%) of protozoa to individual fatty acid flows was calculated. Protozoal fatty acid data and microscopical observations revealed that protozoa were enriched with 18 : 3n-3 following PRG feeding, compared with the S:C diet, due to increased intracellular chloroplast content. However, duodenal protozoal 18S rDNA concentration post PRG feeding was low, indicating rumen retention of the protozoa. Nutrition influences the 18 : 3n-3 content of protozoa; the challenge is to increase protozoal flow to the small intestine, while maintaining sustainable rumen densities.

  1. Comparison of three DNA extraction methods for the detection and quantification of GMO in Ecuadorian manufactured food.

    PubMed

    Pacheco Coello, Ricardo; Pestana Justo, Jorge; Factos Mendoza, Andrés; Santos Ordoñez, Efrén

    2017-12-20

    In Ecuador, food products need to be labeled if exceeded 0.9% of transgenic content in whole products. For the detection of genetically modified organisms (GMOs), three DNA extraction methods were tested in 35 food products commercialized in Ecuador. Samples with positive amplification of endogenous genes were screened for the presence of the Cauliflower mosaic virus 35S-promoter (P35S) and the nopaline synthase-terminator (Tnos). TaqMan™ probes were used for determination of transgenic content of the GTS 40-3-2 and MON810 events through quantitative PCR (qPCR). Twenty-six processed food samples were positive for the P35S alone and eight samples for the Tnos and P35S. Absolute qPCR results indicated that eleven samples were positive for GTS 40-3-2 specific event and two for MON810 specific event. A total of nine samples for events GTS 40-3-2 and MON810 exceeded the umbral allowed of transgenic content in the whole food product with the specific events. Different food products may require different DNA extraction protocols for GMO detection through PCR. Among the three methods tested, the DNeasy mericon food kit DNA extraction method obtained higher proportion of amplified endogenous genes through PCR. Finally, event-specific GMOs were detected in food products in Ecuador.

  2. Single and repeated moderate consumption of native or dealcoholized red wine show different effects on antioxidant parameters in blood and DNA strand breaks in peripheral leukocytes in healthy volunteers: a randomized controlled trial [ISRCTN68505294

    PubMed Central

    Arendt, Bianca M; Ellinger, Sabine; Kekic, Klaudia; Geus, Leonie; Fimmers, Rolf; Spengler, Ulrich; Müller, Wolfgang-Ulrich; Goerlich, Roland

    2005-01-01

    Background Red wine (RW) is rich in antioxidant polyphenols that might protect from oxidative stress related diseases, such as cardiovascular disease and cancer. Antioxidant effects after single ingestion of RW or dealcoholized RW (DRW) have been observed in several studies, but results after regular consumption are contradictory. Thus, we examined if single or repeated consumption of moderate amounts of RW or DRW exert antioxidant activity in vivo. Methods Total phenolic content and concentration of other antioxidants in plasma/serum, total antioxidant capacity (TEAC) in plasma as well as DNA strand breaks in peripheral leukocytes were measured in healthy non-smokers A) before, 90 and 360 min after ingestion of one glass of RW, DRW or water; B) before and after consumption of one glass of RW or DRW daily for 6 weeks. DNA strand breaks (SB) were determined by single cell gel electrophoresis (Comet Assay) in untreated cells and after induction of oxidative stress ex vivo with H2O2 (300 μM, 20 min). Results Both RW and DRW transiently increased total phenolic content in plasma after single consumption, but only RW lead to a sustained increase if consumed regularly. Plasma antioxidant capacity was not affected by single or regular consumption of RW or DRW. Effects of RW and DRW on DNA SB were conflicting. DNA strand breaks in untreated cells increased after a single dose of RW and DRW, whereas H2O2 induced SB were reduced after DRW. In contrast, regular RW consumption reduced SB in untreated cells but did not affect H2O2 induced SB. Conclusion The results suggest that consumption of both RW and DRW leads to an accumulation of phenolic compounds in plasma without increasing plasma antioxidant capacity. Red wine and DRW seem to affect the occurrence of DNA strand breaks, but this cannot be referred to antioxidant effects. PMID:16287499

  3. Analysis of Cellular DNA Content by Flow Cytometry.

    PubMed

    Darzynkiewicz, Zbigniew; Huang, Xuan; Zhao, Hong

    2017-10-02

    Cellular DNA content can be measured by flow cytometry with the aim of : (1) revealing cell distribution within the major phases of the cell cycle, (2) estimating frequency of apoptotic cells with fractional DNA content, and/or (3) disclosing DNA ploidy of the measured cell population. In this unit, simple and universally applicable methods for staining fixed cells are presented, as are methods that utilize detergents and/or proteolytic treatment to permeabilize cells and make DNA accessible to fluorochrome. Additionally, supravital cell staining with Hoechst 33342, which is primarily used for sorting live cells based on DNA-content differences for their subsequent culturing, is described. Also presented are methods for staining cell nuclei isolated from paraffin-embedded tissues. Available algorithms are listed for deconvolution of DNA-content-frequency histograms to estimate percentage of cells in major phases of the cell cycle and frequency of apoptotic cells with fractional DNA content. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  4. Analysis of Cellular DNA Content by Flow Cytometry.

    PubMed

    Darzynkiewicz, Zbigniew; Huang, Xuan; Zhao, Hong

    2017-11-01

    Cellular DNA content can be measured by flow cytometry with the aim of : (1) revealing cell distribution within the major phases of the cell cycle, (2) estimating frequency of apoptotic cells with fractional DNA content, and/or (3) disclosing DNA ploidy of the measured cell population. In this unit, simple and universally applicable methods for staining fixed cells are presented, as are methods that utilize detergents and/or proteolytic treatment to permeabilize cells and make DNA accessible to fluorochrome. Additionally, supravital cell staining with Hoechst 33342, which is primarily used for sorting live cells based on DNA-content differences for their subsequent culturing, is described. Also presented are methods for staining cell nuclei isolated from paraffin-embedded tissues. Available algorithms are listed for deconvolution of DNA-content-frequency histograms to estimate percentage of cells in major phases of the cell cycle and frequency of apoptotic cells with fractional DNA content. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  5. The toxicity, in vitro, of silicon carbide whiskers.

    PubMed

    Vaughan, G L; Jordan, J; Karr, S

    1991-10-01

    To mouse cells in culture, SiC whiskers (SiCW) and asbestos are similarly cytotoxic, disrupting cell membranes and killing cells. Both shorten cell generation time, increase the rate of DNA synthesis, increase total cell DNA content, and cause a loss in growth control often associated with malignant cellular transformation. Within the narrow size range of materials examined, the amount of damage appeared to be more a function of the number of whiskers present than of their size. Silicon carbide whiskers, if mishandled, may pose a serious health hazard to humans.

  6. Campomanesia adamantium (Cambess.) O. Berg seed desiccation: influence on vigor and nucleic acids.

    PubMed

    Dresch, Daiane M; Masetto, Tathiana E; Scalon, Silvana P Q

    2015-01-01

    The aim of this study was to evaluate the sensitivity of Campomanesia adamantium seeds to desiccation by drying in activated silica gel (fast) and under laboratory conditions (slow). To assess the sensitivity of the seeds to desiccation, we used drying with silica gel and drying under laboratory conditions (25 °C), in order to obtain seeds with moisture content of 45, 35, 30, 25, 20, 15, 10 and 5%. The physiological potential of the seeds after desiccation was evaluated by measuring primary root protrusion, percentage of normal seedlings, germination seed index, seedling length, total seedling dry mass, electrical conductivity and DNA and RNA integrities. The C. adamantium seeds were sensitive to desiccation and to a reduction in moisture content to 21.1% or less by desiccation using silica gel, and to 17.2% or less by desiccation under laboratory conditions; impairment of the physiological potential of the seeds was observed at these low moisture content levels. The integrity of the seed genomic DNA was not affected after drying seeds in the two methods. However, drying in silica gel to 4.5% moisture content and drying under laboratory conditions to 5.4% moisture content resulted in the loss of seed RNA integrity.

  7. Quantitative cytochemistry of nuclear and cytoplasmic proteins using the Naphthol Yellow S and dinitrofluorobenzene staining methods.

    PubMed

    Tas, J; James, J

    1981-09-01

    The 'total protein staining' of biological specimens with the electrostatically binding Naphthol Yellow S or the covalently binding dinitrofluorobenzene must be interpreted as methods which yield data on the specific amino acid pool of the proteins concerned. Both dyes bind to certain free amino-acid side-chains, giving different dye--protein ratios for various proteins. In the presence of DNA, dinitrofluorobenzene stains all proteins present in cell nuclei, whereas Naphthol Yellow S only stains the majority of the non-histone proteins. When protein staining methods are combined with the Feulgen--Pararosanile (SO2) procedure for DNA, decreased Feulgen--DNA contents were measured in dinitrofluorobenzene-stained isolated nuclei and lymphocytes.

  8. Prenatal ambient air pollution exposure, infant growth and placental mitochondrial DNA content in the INMA birth cohort.

    PubMed

    Clemente, Diana B P; Casas, Maribel; Janssen, Bram G; Lertxundi, Aitana; Santa-Marina, Loreto; Iñiguez, Carmen; Llop, Sabrina; Sunyer, Jordi; Guxens, Mònica; Nawrot, Tim S; Vrijheid, Martine

    2017-08-01

    The association between prenatal air pollution exposure and postnatal growth has hardly been explored. Mitochondrial DNA (mtDNA), as a marker of oxidative stress, and growth at birth can play an intermediate role in this association. In a subset of the Spanish birth cohort INMA we assessed first whether prenatal nitrogen dioxide (NO 2 ) exposure is associated with infant growth. Secondly, we evaluated whether growth at birth (length and weight) could play a mediating role in this association. Finally, the mediation role of placental mitochondrial DNA content in this association was assessed. In 336 INMA children, relative placental mtDNA content was measured. Land-use regression models were used to estimate prenatal NO 2 exposure. Infant growth (height and weight) was assessed at birth, at 6 months of age, and at 1 year of age. We used multiple linear regression models and performed mediation analyses. The proportion of mediation was calculated as the ratio of indirect effect to total effect. Prenatal NO 2 exposure was inversely associated with all infant growth parameters. A 10µg/m³ increment in prenatal NO 2 exposure during trimester 1 of pregnancy was significantly inversely associated with height at 6 months of age (-6.6%; 95%CI: -11.4, -1.9) and weight at 1 year of age (-4.2%; 95%CI: -8.3, -0.1). These associations were mediated by birth length (31.7%; 95%CI: 34.5, 14.3) and weight (53.7%; 95%CI: 65.3, -0.3), respectively. Furthermore, 5.5% (95%CI: 10.0, -0.2) of the association between trimester 1 NO 2 exposure and length at 6 months of age could be mediated by placental mtDNA content. Our results suggest that impaired fetal growth caused by prenatal air pollution exposure can lead to impaired infant growth during the first year of life. Furthermore, molecular adaptations in placental mtDNA are associated with postnatal consequences of air pollution induced alterations in growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Placental mitochondrial DNA and CYP1A1 gene methylation as molecular signatures for tobacco smoke exposure in pregnant women and the relevance for birth weight.

    PubMed

    Janssen, Bram G; Gyselaers, Wilfried; Byun, Hyang-Min; Roels, Harry A; Cuypers, Ann; Baccarelli, Andrea A; Nawrot, Tim S

    2017-01-04

    Maternal smoking during pregnancy results in an increased risk of low birth weight through perturbations in the utero-placental exchange. Epigenetics and mitochondrial function in fetal tissues might be molecular signatures responsive to in utero tobacco smoke exposure. In the framework of the ENVIRONAGE birth cohort, we investigated the effect of self-reported tobacco smoke exposure during pregnancy on birth weight and the relation with placental tissue markers such as, (1) relative mitochondrial DNA (mtDNA) content as determined by real-time quantitative PCR, (2) DNA methylation of specific loci of mtDNA (D-loop and MT-RNR1), and (3) DNA methylation of the biotransformation gene CYP1A1 (the last two determined by bisulfite-pyrosequencing). The total pregnant mother sample included 255 non-smokers, 65 former-smokers who had quit smoking before pregnancy, and 62 smokers who continued smoking during pregnancy. Smokers delivered newborns with a birth weight on average 208 g lower [95% confidence interval (CI) -318 to -99, p = 0.0002] than mothers who did not smoke during pregnancy. In the smoker group, the relative mtDNA content was lower (-21.6%, 95% CI -35.4 to -4.9%, p = 0.01) than in the non-smoker group; whereas, absolute mtDNA methylation levels of MT-RNR1 were higher (+0.62%, 95% CI 0.21 to 1.02%, p = 0.003). Lower CpG-specific methylation of CYP1A1 in placental tissue (-4.57%, 95% CI -7.15 to -1.98%, p < 0.0001) were observed in smokers compared with non-smokers. Nevertheless, no mediation of CYP1A1 methylation nor any other investigated molecular signature was observed for the association between tobacco smoke exposure and birth weight. mtDNA content, methylation of specific loci of mtDNA, and CYP1A1 methylation in placental tissue may serve as molecular signatures for the association between gestational tobacco smoke exposure and low birth weight.

  10. Cut-and-Paste Transposons in Fungi with Diverse Lifestyles

    PubMed Central

    Steczkiewicz, Kamil; Ginalski, Krzysztof

    2017-01-01

    Abstract Transposable elements (TEs) shape genomes via recombination and transposition, lead to chromosomal rearrangements, create new gene neighborhoods, and alter gene expression. They play key roles in adaptation either to symbiosis in Amanita genus or to pathogenicity in Pyrenophora tritici-repentis. Despite growing evidence of their importance, the abundance and distribution of mobile elements replicating in a “cut-and-paste” fashion is barely described so far. In order to improve our knowledge on this old and ubiquitous class of transposable elements, 1,730 fungal genomes were scanned using both de novo and homology-based approaches. DNA TEs have been identified across the whole data set and display uneven distribution from both DNA TE classification and fungal taxonomy perspectives. DNA TE content correlates with genome size, which confirms that many transposon families proliferate simultaneously. In contrast, it is independent from intron density, average gene distance and GC content. TE count is associated with species’ lifestyle and tends to be elevated in plant symbionts and decreased in animal parasites. Lastly, we found that fungi with both RIP and RNAi systems have more total DNA TE sequences but less elements retaining a functional transposase, what reflects stringent control over transposition. PMID:29228286

  11. Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species

    PubMed Central

    Baack, Eric J.; Whitney, Kenneth D.; Rieseberg, Loren H.

    2008-01-01

    Summary Hybridization and polyploidy can induce rapid genomic changes, including the gain or loss of DNA, but the magnitude and timing of such changes are not well understood. The homoploid hybrid system in Helianthus (three hybrid-derived species and their two parents) provides an opportunity to examine the link between hybridization and genome size changes in a replicated fashion. Flow cytometry was used to estimate the nuclear DNA content in multiple populations of three homoploid hybrid Helianthus species (Helianthus anomalus, Helianthus deserticola, and Helianthus paradoxus), the parental species (Helianthus annuus and Helianthus petiolaris), synthetic hybrids, and natural hybrid-zone populations. Results confirm that hybrid-derived species have 50% more nuclear DNA than the parental species. Despite multiple origins, hybrid species were largely consistent in their DNA content across populations, although H. deserticola showed significant interpopulation differences. First- and sixth-generation synthetic hybrids and hybrid-zone plants did not show an increase from parental DNA content. First-generation hybrids differed in DNA content according to the maternal parent. In summary, hybridization by itself does not lead to increased nuclear DNA content in Helianthus, and the evolutionary forces responsible for the repeated increases in DNA content seen in the hybrid-derived species remain mysterious. PMID:15998412

  12. An association analysis between mitochondrial DNA content, G10398A polymorphism, HPV infection, and the prognosis of cervical cancer in the Chinese Han population.

    PubMed

    Feng, Dali; Xu, Hui; Li, Xin; Wei, Yuehua; Jiang, Huangang; Xu, Hong; Luo, Aihua; Zhou, Fuxiang

    2016-04-01

    The aim was to analyze quantitative (mitochondrial DNA (mtDNA) content) and qualitative (G10398A polymorphism) mtDNA alterations as well as human papillomavirus (HPV) infection in cervical cancer prognosis. One hundred and twenty-two cases of formalin-fixed paraffin-embedded cervical carcinoma specimens were collected from the Yichang Tumor Hospital and Zhongnan Hospital of Wuhan University in the recent 10 years together with medical records. A quantitative real-time PCR (RT-PCR) was used to determine the copy number of the mitochondrial DNA and HPV expression levels. G10398A polymorphism was determined by PCR-RFLP assay. The overall survival of patients with higher mtDNA content was significantly reduced compared with lower mtDNA content patients (P = 0.029). But there was no difference of prognosis between the mtDNA 10398 A allele and G allele. However, the Kaplan-Meier survival curve illustrated a significantly reduced overall survival in the patients with 10398A plus high mtDNA copy number compared with the other groups (P < 0.05). Although no association between HPV expression level and cervical cancer prognosis was observed, 10398A got increased mtDNA content compared with 10398G (P < 0.05) and 10398G displayed an increased HPV-positive rate compared with 10398A. Furthermore, HPV-18 and mtDNA content were positively related in the younger subgroup (≤45 years) (correlation coefficient = 0.456, P = 0.022). This study indicated that mtDNA content and HPV infection status are associated with cervical cancer prognosis. High mitochondrial DNA content plus 10398 A may be a marker of poor prognosis in cervical cancer. And mtDNA variation may potentially influence the predisposition to HPV infection and cervical carcinogenesis.

  13. Effect of Allium flavum L. and Allium melanantherum Panč. Extracts on Oxidative DNA Damage and Antioxidative Enzymes Superoxide Dismutase and Catalase.

    PubMed

    Mitić-Ćulafić, Dragana; Nikolić, Biljana; Simin, Nataša; Jasnić, Nebojša; Četojević-Simin, Dragana; Krstić, Maja; Knežević-Vukčević, Jelena

    2016-03-01

    Allium flavum L. and Allium melanantherum Panč. are wild growing plants used in traditional diet in Balkan region. While chemical composition and some biological activities of A. flavum have been reported, A. melanantherum, as an endemic in the Balkan Peninsula, has never been comprehensively examined. After chemical characterization of A. melanantherum, we examined the protective effect of methanol extracts of both species against t-butyl hydro-peroxide (t-BOOH)-induced DNA damage and mutagenesis. The bacterial reverse mutation assay was performed on Escherichia coli WP2 oxyR strain. DNA damage was monitored in human fetal lung fibroblasts (MRC-5) with alkaline comet assay. Obtained results indicated that extracts reduced t-BOOH-induced DNA damage up to 70 and 72% for A. flavum and A. melanantherum extract, respectively, and showed no effect on t-BOOH-induced mutagenesis. Since the results indicated modulatory effect on cell-mediated antioxidative defense, the effect of extracts on total protein content, and superoxide dismutase (SOD) and catalase (CAT) amounts and activities were monitored. Both extracts increased total protein content, while the increase of enzyme amount and activity was obtained only with A. melanantherum extract and restricted to CAT. The activity of CuZnSOD family was not affected, while SOD1 and SOD2 amounts were significantly decreased, indicating potential involvement of extracellular CuZnSOD. Obtained results strongly support the traditional use of A. flavum and A. melanantherum in nutrition and recommend them for further study.

  14. Variation in nuclear DNA content in Malus species and cultivated apples.

    PubMed

    Tatum, Tatiana C; Stepanovic, Svetlana; Biradar, D P; Rayburn, A Lane; Korban, Schuyler S

    2005-10-01

    The nuclear DNA content for a group of 40 Malus species and hybrids has been estimated using flow cytometry. Estimates of nuclear DNA content for this germplasm collection range from 1.45 pg for Malus fusca (diploid) to 2.57 pg for Malus ioensis (triploid). Among diploids, the nuclear (2C) DNA ranges from 1.45 pg for M. fusca to 1.68 pg for Malus transitoria. Among triploids, the nuclear (3C) DNA content ranges from 2.37 pg / 3C for Malus sikkimensis to 2.57 pg / 3C for M. ioensis. Given the complexity of the apple genome and its suggested allopolyploid origin, the results obtained in this study confirm earlier reports that polyploids can easily withstand the loss of a certain amount of DNA, and that there is a slight tendency towards diminished haploid nuclear DNA content with increased polyploidy.

  15. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis

    PubMed Central

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. Availability http://www.cemb.edu.pk/sw.html Abbreviations RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language. PMID:23055611

  16. Updating the maize karyotype by chromosome DNA sizing.

    PubMed

    Silva, Jéssica Coutinho; Carvalho, Carlos Roberto; Clarindo, Wellington Ronildo

    2018-01-01

    The karyotype is a basic concept regarding the genome, fundamentally described by the number and morphological features of all chromosomes. Chromosome class, centromeric index, intra- and interchromosomal asymmetry index, and constriction localization are important in clinical, systematic and evolutionary approaches. In spite of the advances in karyotype characterization made over the last years, new data about the chromosomes can be generated from quantitative methods, such as image cytometry. Therefore, using Zea mays L., this study aimed to update the species' karyotype by supplementing information on chromosome DNA sizing. After adjustment of the procedures, chromosome morphometry and class as well as knob localization enabled describing the Z. mays karyotype. In addition, applying image cytometry, DNA sizing was unprecedentedly measured for the arms and satellite of all chromosomes. This way, unambiguous identification of the chromosome pairs, and hence the assembly of 51 karyograms, were only possible after the DNA sizing of each chromosome, their arms and satellite portions. These accurate, quantitative and reproducible data also enabled determining the distribution and variation of DNA content in each chromosome. From this, a correlation between DNA amount and total chromosome length evidenced that the mean DNA content of chromosome 9 was higher than that of chromosome 8. The chromosomal DNA sizing updated the Z. mays karyotype, providing insights into its dynamic genome with regards to the organization of the ten chromosomes and their respective portions. Considering the results and the relevance of cytogenetics in the current scenario of comparative sequencing and genomics, chromosomal DNA sizing should be incorporated as an additional parameter for karyotype definition. Based on this study, it can be affirmed that cytogenetic approaches go beyond the simple morphological description of chromosomes.

  17. Updating the maize karyotype by chromosome DNA sizing

    PubMed Central

    2018-01-01

    The karyotype is a basic concept regarding the genome, fundamentally described by the number and morphological features of all chromosomes. Chromosome class, centromeric index, intra- and interchromosomal asymmetry index, and constriction localization are important in clinical, systematic and evolutionary approaches. In spite of the advances in karyotype characterization made over the last years, new data about the chromosomes can be generated from quantitative methods, such as image cytometry. Therefore, using Zea mays L., this study aimed to update the species’ karyotype by supplementing information on chromosome DNA sizing. After adjustment of the procedures, chromosome morphometry and class as well as knob localization enabled describing the Z. mays karyotype. In addition, applying image cytometry, DNA sizing was unprecedentedly measured for the arms and satellite of all chromosomes. This way, unambiguous identification of the chromosome pairs, and hence the assembly of 51 karyograms, were only possible after the DNA sizing of each chromosome, their arms and satellite portions. These accurate, quantitative and reproducible data also enabled determining the distribution and variation of DNA content in each chromosome. From this, a correlation between DNA amount and total chromosome length evidenced that the mean DNA content of chromosome 9 was higher than that of chromosome 8. The chromosomal DNA sizing updated the Z. mays karyotype, providing insights into its dynamic genome with regards to the organization of the ten chromosomes and their respective portions. Considering the results and the relevance of cytogenetics in the current scenario of comparative sequencing and genomics, chromosomal DNA sizing should be incorporated as an additional parameter for karyotype definition. Based on this study, it can be affirmed that cytogenetic approaches go beyond the simple morphological description of chromosomes. PMID:29293613

  18. Antioxidant and antigenotoxic activities in Acacia salicina extracts and its protective role against DNA strand scission induced by hydroxyl radical.

    PubMed

    Chatti, Ines Bouhlel; Boubaker, Jihed; Skandrani, Ines; Bhouri, Wissem; Ghedira, Kamel; Chekir Ghedira, Leila

    2011-08-01

    The antioxidant potency of Acacia salicina extracts was investigated. Total antioxidant capacity was determined using an ABTS(+) assay. Superoxide radical scavenging was measured using riboflavin-light-nitro blue tetrazolium (NBT) assay. In addition, the content of phenols, total flavonoids and sterols were measured in the tested extracts. The petroleum ether exhibited a potent scavenging activity toward ABTS radical cations. Whereas, chloroform extract showed the highest activity against superoxides radicals and was also able to protect pKS plasmid DNA against hydroxyl radicals induced DNA damages. The antimutagenicity of these extracts was assayed using the Ames assay against Salmonella typhimurium TA98 and S. typhimurium TA 1535 tester strains at different concentrations. These extracts decreased significantly the mutagenecity induced by sodium azide (SA) and 4-nitro-o-phenylenediamine (NOP). The antioxidant and antimutagenecity activities exhibited by A. salicina depended on the chemical composition of the tested extracts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP.

    PubMed

    Kim, C S; Lee, C H; Shin, J S; Chung, Y S; Hyung, N I

    1997-03-01

    Because DNA degradation is mediated by secondary plant products such as phenolic terpenoids, the isolation of high quality DNA from plants containing a high content of polyphenolics has been a difficult problem. We demonstrate an easy extraction process by modifying several existing ones. Using this process we have found it possible to isolate DNAs from four fruit trees, grape (Vitis spp.), apple (Malus spp.), pear (Pyrus spp.) and persimmon (Diospyros spp.) and four species of conifer, Pinus densiflora, Pinus koraiensis,Taxus cuspidata and Juniperus chinensis within a few hours. Compared with the existing method, we have isolated high quality intact DNAs (260/280 = 1.8-2.0) routinely yielding 250-500 ng/microl (total 7.5-15 microg DNA from four to five tissue discs).

  20. A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP.

    PubMed Central

    Kim, C S; Lee, C H; Shin, J S; Chung, Y S; Hyung, N I

    1997-01-01

    Because DNA degradation is mediated by secondary plant products such as phenolic terpenoids, the isolation of high quality DNA from plants containing a high content of polyphenolics has been a difficult problem. We demonstrate an easy extraction process by modifying several existing ones. Using this process we have found it possible to isolate DNAs from four fruit trees, grape (Vitis spp.), apple (Malus spp.), pear (Pyrus spp.) and persimmon (Diospyros spp.) and four species of conifer, Pinus densiflora, Pinus koraiensis,Taxus cuspidata and Juniperus chinensis within a few hours. Compared with the existing method, we have isolated high quality intact DNAs (260/280 = 1.8-2.0) routinely yielding 250-500 ng/microl (total 7.5-15 microg DNA from four to five tissue discs). PMID:9023124

  1. Developmental Differences in Embryos of High and Low Protein Wheat Seeds during Germination 1

    PubMed Central

    Ching, Te May; Rynd, Lori

    1978-01-01

    Developmental patterns of embryos from high and low protein wheat (Triticum aestivum) grain produced under varied fertilizer conditions were compared. High protein grain produced seedlings 25% heavier with 25% more total RNA, 30% more DNA, 40% more amino acids, 60% more ribosomes, and 80% more soluble protein content than that of low protein seed. Consistently higher glutamine synthetase and α-amylase and lower acid phosphatase activities were observed in high protein seeds, though the isozyme pattern of α-amylase was not different in the two kinds of seeds. The high total ribosomes and particularly, polysome content observed in high protein seeds may be responsible for the rapid growth and high yield of these seeds. PMID:16660627

  2. Nasopharyngeal carcinoma heterogeneity of DNA content identified on cytologic preparations.

    PubMed

    Maohuai, C; Chang, A R; Lo, D

    2001-06-01

    To evaluate tumor heterogeneity of DNA content in nasopharyngeal carcinoma (NPC) performed on cytologic specimens. Image cytometric analysis of DNA ploidy status of 40 NPCs was performed on nasopharyngeal brushing smears stained with the Feulgen method after hematoxylin eosin staining. If the DNA distribution pattern from the same tumor exhibited diploid, aneuploid or/and tetraploid peaks or some combination of these patterns, the presence of tumor heterogeneity of DNA content was identified. Thirty-four cases (85%) had a nondiploid DNA pattern among the 40 NPCs. Twenty-eight cases exhibited tumor heterogeneity of DNA content (70%). Of the 28 tumors, 13 (46%) had a combination of diploid and tetraploid patterns, 10 (37%) had a combination of diploid and aneuploid patterns, 3 cases (11%) had a combination of tetraploid and aneuploid patterns, and 2 cases had two aneuploid stem lines. The relationship between DNA ploidy pattern and tumor histologic and cytologic morphology was also examined. There is a high incidence of DNA content heterogeneity in NPC. The relevance of tumor heterogeneity to the biologic behavior of NPC awaits further study. DNA quantification with image cytometry on destained cytologic preparations is feasible and reliable.

  3. DNA content alterations in Tetrahymena pyriformis macronucleus after exposure to food preservatives sodium nitrate and sodium benzoate.

    PubMed

    Loutsidou, Ariadni C; Hatzi, Vasiliki I; Chasapis, C T; Terzoudi, Georgia I; Spiliopoulou, Chara A; Stefanidou, Maria E

    2012-12-01

    The toxicity, in terms of changes in the DNA content, of two food preservatives, sodium nitrate and sodium benzoate was studied on the protozoan Tetrahymena pyriformis using DNA image analysis technology. For this purpose, selected doses of both food additives were administered for 2 h to protozoa cultures and DNA image analysis of T. pyriformis nuclei was performed. The analysis was based on the measurement of the Mean Optical Density which represents the cellular DNA content. The results have shown that after exposure of the protozoan cultures to doses equivalent to ADI, a statistically significant increase in the macronuclear DNA content compared to the unexposed control samples was observed. The observed increase in the macronuclear DNA content is indicative of the stimulation of the mitotic process and the observed increase in MOD, accompanied by a stimulation of the protozoan proliferation activity is in consistence with this assumption. Since alterations at the DNA level such as DNA content and uncontrolled mitogenic stimulation have been linked with chemical carcinogenesis, the results of the present study add information on the toxicogenomic profile of the selected chemicals and may potentially lead to reconsideration of the excessive use of nitrates aiming to protect public health.

  4. Genetic stock assessment of spawning arctic cisco (Coregonus autumnalis) populations by flow cytometric determination of DNA content.

    PubMed

    Lockwood, S F; Bickham, J W

    1991-01-01

    Intraspecific variation in cellular DNA content was measured in five Coregonus autumnalis spawning populations from the Mackenzie River drainage, Canada, using flow cytometry. The rivers assayed were the Peel, Arctic Red, Mountain, Carcajou, and Liard rivers. DNA content was determined from whole blood preparations of fish from all rivers except the Carcajou, for which kidney tissue was used. DNA content measurements of kidney and blood preparations of the same fish from the Mountain River revealed statistically indistinguishable results. Mosaicism was found in blood preparations from the Peel, Arctic Red, Mountain, and Liard rivers, but was not observed in kidney tissue preparations from the Mountain or Carcajou rivers. The Liard River sample had significantly elevated mean DNA content relative to the other four samples; all other samples were statistically indistinguishable. Significant differences in mean DNA content among spawning stocks of a single species reinforces the need for adequate sample sizes of both individuals and populations when reporting "C" values for a particular species.

  5. High-level dietary cadmium exposure is associated with global DNA hypermethylation in the gastropod hepatopancreas

    PubMed Central

    Popescu, Cristina; Draghici, George A.; Andrica, Florina-Maria; Privistirescu, Ionela A.; Gergen, Iosif I.; Stöger, Reinhard

    2017-01-01

    5-methylcytosine (5mC) is a key epigenetic mark which influences gene expression and phenotype. In vertebrates, this epigenetic mark is sensitive to Cd exposure, but there is no information linking such an event with changes in global 5mC levels in terrestrial gastropods despite their importance as excellentecotoxicological bioindicators of metal contamination. Therefore, we first evaluated total 5mC content in DNA of the hepatopancreas of adult Cantareus aspersus with the aim to determine whether this epigenetic mark is responsive to Cd exposure. The experiment was conducted under laboratory conditions and involved a continuous exposure, multiple dose- and time-point (14, 28, and 56 days) study design. Hepatopancreas cadmium levels were measured using Flame Atomic Absorption Spectrometry and the percentage of 5-mC in samples using an ELISA-based colorimetric assay. Snail death rates were also assessed. Our results, for the first time, reveal the presence of 5mC in C. aspersus and provide evidence for Cd-induced changes in global 5mC levels in DNA of gastropods and mollusks. Although less sensitive than tissue accumulation, DNA methylation levels responded in a dose- and time-dependent manner to dietary cadmium, with exposure dose having a much stronger effect than exposure duration. An obvious trend of increasing 5mC levels was observed starting at 28 days of exposure to the second highest dose and this trend persisted at the two highest treatments for close to one month, when the experiment was terminated after 56 days. Moreover, a strong association was identified between Cd concentrations in the hepatopancreas and DNA methylation levels in this organ. These data indicate an overall trend towards DNA hypermethylation with elevated Cd exposure. No consistent lethal effect was observed, irrespective of time point and Cd-dosage. Overall, our findings suggest that the total 5mC content in DNA of the hepatopancreas of land snails is responsive to sublethal Cd exposure and give new insights into invertebrate environmental epigenetics. PMID:28877233

  6. Fat Content and Nitrite-Curing Influence the Formation of Oxidation Products and NOC-Specific DNA Adducts during In Vitro Digestion of Meat

    PubMed Central

    Van Hecke, Thomas; Vossen, Els; Vanden Bussche, Julie; Raes, Katleen; Vanhaecke, Lynn; De Smet, Stefaan

    2014-01-01

    The effects of fat content and nitrite-curing of pork were investigated on the formation of cytotoxic and genotoxic lipid oxidation products (malondialdehyde, 4-hydroxy-2-nonenal, volatile simple aldehydes), protein oxidation products (protein carbonyl compounds) and NOC-specific DNA adducts (O6-carboxy-methylguanine) during in vitro digestion. The formation of these products during digestion is suggested to be responsible for the association between red meat and processed meat consumption and colorectal cancer risk. Digestion of uncured pork to which fat was added (total fat content 5 or 20%), resulted in significantly higher lipid and protein oxidation in the mimicked duodenal and colonic fluids, compared to digestion of pork without added fat (1% fat). A higher fat content also significantly favored the formation of O6-carboxy-methylguanine in the colon. Nitrite-curing of meat resulted in significantly lower lipid and protein oxidation before and after digestion, while an inconsistent effect on the formation of O6-carboxy-methylguanine was observed. The presented results demonstrate that haem-Fe is not solely responsible for oxidation and nitrosation reactions throughout an in vitro digestion approach but its effect is promoted by a higher fat content in meat. PMID:24978825

  7. Alterations of DNA content in human endometrial stromal cells transfected with a temperature-sensitive SV40: tetraploidization and physiological consequences.

    PubMed

    Rinehart, C A; Mayben, J P; Butler, T D; Haskill, J S; Kaufman, D G

    1992-01-01

    The normal genomic stability of human cells is reversed during neoplastic transformation. The SV40 large T antigen alters the DNA content in human endometrial stromal cells in a manner that relates to neoplastic progression. Human endometrial stromal cells were transfected with a plasmid containing the A209 temperature-sensitive mutant of SV40 (tsSV40), which is also defective in the viral origin of replication. Ninety-seven clonal transfectants from seven different primary cell strains were isolated. Initial analysis revealed that 20% of the clonal populations (19/97) had an apparent diploid DNA content, 35% (34/97) had an apparent tetraploid DNA content, and the remainder were mixed populations of diploid and tetraploid cells. No aneuploid populations were observed. Diploid tsSV40 transformed cells always give rise to a population of cells with a tetraploid DNA content when continuously cultured at the permissive temperature. The doubling of DNA content can be vastly accelerated by the sudden reintroduction of large T antigen activity following a shift from non-permissive to permissive temperature. Tetraploid tsSV40 transfected cells have a lower capacity for anchorage-independent growth and earlier entry into 'crisis' than diploid cells. These results indicate that during the pre-crisis, extended lifespan phase of growth, the SV40 large T antigen causes a doubling of DNA content. This apparent doubling of DNA content does not confer growth advantage during the extended lifespan that precedes 'crisis'.

  8. Raman study of CaDNA films as a function of water content and excess CaCl2 concentration: Stability of the B conformation.

    NASA Astrophysics Data System (ADS)

    Schwenker, Megan; Marlowe, Robert; Lee, Scott; Rupprecht, Allan

    2006-03-01

    Highly oriented, wet-spun films of CaDNA expand in the direction perpendicular to the helical axis as the hydration of the film is increased. CaDNA films with a high CaCl2 content show an unexpected shrinkage at a relative humidity of about 93%. We have performed Raman experiments on CaDNA films as a function of both water content and excess CaCl2 concentration in order to determine if this unexpected shrinkage might be related to a conformational transition of the DNA molecules. We find that the DNA molecules remain in the B conformation for all salt contents down to a relative humidity of 59%.

  9. On the molecular mechanism of GC content variation among eubacterial genomes.

    PubMed

    Wu, Hao; Zhang, Zhang; Hu, Songnian; Yu, Jun

    2012-01-10

    As a key parameter of genome sequence variation, the GC content of bacterial genomes has been investigated for over half a century, and many hypotheses have been put forward to explain this GC content variation and its relationship to other fundamental processes. Previously, we classified eubacteria into dnaE-based groups (the dimeric combination of DNA polymerase III alpha subunits), according to a hypothesis where GC content variation is essentially governed by genome replication and DNA repair mechanisms. Further investigation led to the discovery that two major mutator genes, polC and dnaE2, may be responsible for genomic GC content variation. Consequently, an in-depth analysis was conducted to evaluate various potential intrinsic and extrinsic factors in association with GC content variation among eubacterial genomes. Mutator genes, especially those with dominant effects on the mutation spectra, are biased towards either GC or AT richness, and they alter genomic GC content in the two opposite directions. Increased bacterial genome size (or gene number) appears to rely on increased genomic GC content; however, it is unclear whether the changes are directly related to certain environmental pressures. Certain environmental and bacteriological features are related to GC content variation, but their trends are more obvious when analyzed under the dnaE-based grouping scheme. Most terrestrial, plant-associated, and nitrogen-fixing bacteria are members of the dnaE1|dnaE2 group, whereas most pathogenic or symbiotic bacteria in insects, and those dwelling in aquatic environments, are largely members of the dnaE1|polV group. Our studies provide several lines of evidence indicating that DNA polymerase III α subunit and its isoforms participating in either replication (such as polC) or SOS mutagenesis/translesion synthesis (such as dnaE2), play dominant roles in determining GC variability. Other environmental or bacteriological factors, such as genome size, temperature, oxygen requirement, and habitat, either play subsidiary roles or rely indirectly on different mutator genes to fine-tune the GC content. These results provide a comprehensive insight into mechanisms of GC content variation and the robustness of eubacterial genomes in adapting their ever-changing environments over billions of years.

  10. Effects of arsenic exposure on DNA methylation in cord blood samples from newborn babies and in a human lymphoblast cell line

    PubMed Central

    2012-01-01

    Background Accumulating evidence indicates that in utero exposure to arsenic is associated with congenital defects and long-term disease consequences including cancers. Recent studies suggest that arsenic carcinogenesis results from epigenetic changes, particularly in DNA methylation. This study aimed to investigate DNA methylation changes as a result of arsenic exposure in utero and in vitro. Methods For the exposure in utero study, a total of seventy-one newborns (fifty-five arsenic-exposed and sixteen unexposed newborns) were recruited. Arsenic concentrations in the drinking water were measured, and exposure in newborns was assessed by measurement of arsenic concentrations in cord blood, nails and hair by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In the in vitro study, human lymphoblasts were treated with arsenite at 0-100 μM for two, four and eight hours (short-term) and at 0, 0.5 and 1.0 μM for eight-weeks period (long-term). DNA methylation was analyzed in cord blood lymphocytes and lymphoblasts treated with arsenite in vitro. Global DNA methylation was determined as LINE-1 methylation using combined bisulfite restriction analysis (COBRA) and total 5-methyldeoxycytidine (5MedC) content which was determined by HPLC-MS/MS. Methylation of p53 was determined at the promoter region using methylation-specific restriction endonuclease digestion with MspI and HpaII. Results Results showed that arsenic-exposed newborns had significantly higher levels of arsenic in cord blood, fingernails, toenails and hair than those of the unexposed subjects and a slight increase in promoter methylation of p53 in cord blood lymphocytes which significantly correlated with arsenic accumulation in nails (p < 0.05) was observed, while LINE-1 methylation was unchanged. Short-term in vitro arsenite treatment in lymphoblastoid cells clearly demonstrated a significant global hypomethylation, determined as reduction in LINE-1 methylation and total 5-MedC content, and p53 hypermethylation (p < 0.05). However, a slight LINE-1 hypomethylation and transient p53 promoter hypermethylation were observed following long-term in vitro treatment. Conclusions This study provides an important finding that in utero arsenic exposure affects DNA methylation, particularly at the p53 promoter region, which may be linked to the mechanism of arsenic carcinogenesis and the observed increased incidence of cancer later in life. PMID:22551203

  11. ITS1: a DNA barcode better than ITS2 in eukaryotes?

    PubMed

    Wang, Xin-Cun; Liu, Chang; Huang, Liang; Bengtsson-Palme, Johan; Chen, Haimei; Zhang, Jian-Hui; Cai, Dayong; Li, Jian-Qin

    2015-05-01

    A DNA barcode is a short piece of DNA sequence used for species determination and discovery. The internal transcribed spacer (ITS/ITS2) region has been proposed as the standard DNA barcode for fungi and seed plants and has been widely used in DNA barcoding analyses for other biological groups, for example algae, protists and animals. The ITS region consists of both ITS1 and ITS2 regions. Here, a large-scale meta-analysis was carried out to compare ITS1 and ITS2 from three aspects: PCR amplification, DNA sequencing and species discrimination, in terms of the presence of DNA barcoding gaps, species discrimination efficiency, sequence length distribution, GC content distribution and primer universality. In total, 85 345 sequence pairs in 10 major groups of eukaryotes, including ascomycetes, basidiomycetes, liverworts, mosses, ferns, gymnosperms, monocotyledons, eudicotyledons, insects and fishes, covering 611 families, 3694 genera, and 19 060 species, were analysed. Using similarity-based methods, we calculated species discrimination efficiencies for ITS1 and ITS2 in all major groups, families and genera. Using Fisher's exact test, we found that ITS1 has significantly higher efficiencies than ITS2 in 17 of the 47 families and 20 of the 49 genera, which are sample-rich. By in silico PCR amplification evaluation, primer universality of the extensively applied ITS1 primers was found superior to that of ITS2 primers. Additionally, shorter length of amplification product and lower GC content was discovered to be two other advantages of ITS1 for sequencing. In summary, ITS1 represents a better DNA barcode than ITS2 for eukaryotic species. © 2014 John Wiley & Sons Ltd.

  12. A Modified Gibson Assembly Method for Cloning Large DNA Fragments with High GC Contents.

    PubMed

    Li, Lei; Jiang, Weihong; Lu, Yinhua

    2018-01-01

    Gibson one-step, isothermal assembly method (Gibson assembly) can be used to efficiently assemble large DNA molecules by in vitro recombination involving a 5'-exonuclease, a DNA polymerase and a DNA ligase. In the past few years, this robust DNA assembly method has been widely applied to seamlessly construct genes, genetic pathways and even entire genomes. Here, we expand this method to clone large DNA fragments with high GC contents, such as antibiotic biosynthetic gene clusters from Streptomyces . Due to the low isothermal condition (50 °C) in the Gibson reaction system, the complementary overlaps with high GC contents are proposed to easily form mismatched linker pairings, which leads to low assembly efficiencies mainly due to vector self-ligation. So, we modified this classic method by the following two steps. First, a pair of universal terminal single-stranded DNA overhangs with high AT contents are added to the ends of the BAC vector. Second, two restriction enzyme sites are introduced into the respective sides of the designed overlaps to achieve the hierarchical assembly of large DNA molecules. The optimized Gibson assembly method facilitates fast acquisition of large DNA fragments with high GC contents from Streptomyces.

  13. Methods for sequencing GC-rich and CCT repeat DNA templates

    DOEpatents

    Robinson, Donna L.

    2007-02-20

    The present invention is directed to a PCR-based method of cycle sequencing DNA and other polynucleotide sequences having high CG content and regions of high GC content, and includes for example DNA strands with a high Cytosine and/or Guanosine content and repeated motifs such as CCT repeats.

  14. Mercury induced oxidative stress, DNA damage, and activation of antioxidative system and Hsp70 induction in duckweed (Lemna minor).

    PubMed

    Zhang, Tingting; Lu, Qianqian; Su, Chunlei; Yang, Yaru; Hu, Dan; Xu, Qinsong

    2017-09-01

    Mercury uptake and its effects on physiology, biochemistry and genomic stability were investigated in Lemna minor after 2 and 6d of exposure to 0-30μM Hg. The accumulation of Hg increased in a concentration- and duration-dependent manner, and was positively correlated with the leaf damage. Oxidative stress after Hg exposure was evidenced in L. minor by a significant decrease in photosynthetic pigments, an increase in malondialdehyde and lipoxygenase activities (total enzyme activity and isoenzymes activity). Fronds of L. minor exposed to Hg showed an induction of peroxidase, catalase, and ascorbate peroxidase activities (total enzyme activity and some isoenzymes activities). Exposure of L. minor to Hg reduced the activity (total enzyme activity and some isoenzymes activities) of glutathione reductase, and superoxide dismutase. Exposure to Hg produced a transient increase in the content of glutathione and ascorbic acid. The content of dehydroascorbate and oxidized glutathione in L. minor were high during the entire exposure period. Exposure of L. minor to Hg also caused the accumulation of proline and soluble sugars. The amplification of new bands and the absence of normal DNA amplicons in treated plants in the random amplified polymorphic DNA (RAPD) profile indicated that genomic template stability (GTS) was affected by Hg treatment. The accumulation of Hsp70 indicated the occurrence of a heat shock response at all Hg concentrations. These results suggest that L. minor plants were able to cope with Hg toxicity through the activation of various mechanisms involving enzymatic and non-enzymatic antioxidants, up-regulation of proline, and induction of Hsp70. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Development and Characterization of Somatic Hybrids of Ulva reticulata Forsskål (×) Monostroma oxyspermum (Kutz.)Doty

    PubMed Central

    Gupta, Vishal; Kumari, Puja; Reddy, CRK

    2015-01-01

    Ulvophycean species with diverse trait characteristics provide an opportunity to create novel allelic recombinant variants. The present study reports the development of seaweed variants with improved agronomic traits through protoplast fusion between Monostroma oxyspermum (Kutz.) Doty and Ulva reticulata Forsskål. A total of 12 putative hybrids were screened based on the variations in morphology and total DNA content over the fusion partners. DNA-fingerprinting by inter simple sequence repeat (ISSR) and amplified fragment length polymorphism (AFLP) analysis confirmed genomic introgression in the hybrids. The DNA fingerprint revealed sharing of parental alleles in regenerated hybrids and a few alleles that were unique to hybrids. The epigenetic variations in hybrids estimated in terms of DNA methylation polymorphism also revealed sharing of methylation loci with both the fusion partners. The functional trait analysis for growth showed a hybrid with heterotic trait (DGR% = 36.7 ± 1.55%) over the fusion partners U. reticulata (33.2 ± 2.6%) and M. oxyspermum (17.8 ± 1.77%), while others were superior to the mid-parental value (25.2 ± 2.2%) (p < 0.05). The fatty acid (FA) analysis of hybrids showed notable variations over fusion partners. Most hybrids showed increased polyunsaturated FAs (PUFAs) compared to saturated FAs (SFAs) and mainly includes the nutritionally important linoleic acid, α-linolenic acid, oleic acid, stearidonic acid, and docosahexaenoic acid. The other differences observed include superior cellulose content and antioxidative potential in hybrids over fusion partners. The hybrid varieties with superior traits developed in this study unequivocally demonstrate the significance of protoplast fusion technique in developing improved varients of macroalgae. PMID:25688248

  16. Spaceflight effects on adult rat muscle protein, nucleic acids, and amino acids

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1986-01-01

    Exposure to conditions of weightlessness has been associated with decrements in muscle mass and strength. The present studies were undertaken to determine muscle responses at the cellular level. Male Sprague-Dawley rats (360-410 g) were exposed to 7 days of weightlessness during the Spacelab-3 shuttle flight (May 1985). Animals were killed 12 h postflight, and soleus (S), gastrocnemius (G), and extensor digitorum longus (EDL) muscles were excised. Muscle protein, RNA, and DNA were extracted and quantified. Differential muscle atrophy was accompanied by a significant (P less than 0.05) reduction in total protein only in S muscles. There were no significant changes in protein concentration (mg/g) in the muscles examined. In S muscles from flight animals, sarcoplasmic protein accounted for a significantly greater proportion of total protein that in ground controls (37.5 vs. 32.5%). Tissue concentrations (nmol/g) of asparagine-aspartate, glutamine-glutamate, glycine, histidine, and lysine were significantly reduced (from 17 to 63%) in S muscles from flight animals, but only glutamine-glutamate levels were decreased in the G and EDL. Muscle DNA content (microgram) was unchanged in the tissues examined, but S muscle DNA concentration (micrograms/mg) increased 27%. RNA content (micrograms) was significantly (P less than 0.025) reduced in S (-28%) and G(-22%) muscles following spaceflight. These results identify specific alterations in rat skeletal muscle during short term (7-day) exposure to weightlessness and compare favorably with observations previously obtained from ground-based suspension simulations.

  17. Studies on proinsulin and proglucagon biosynthesis and conversion at the subcellular level: I. Fractionation procedure and characterization of the subcellular fractions

    PubMed Central

    Noe, BD; Baste, CA; Bauer, GE

    1977-01-01

    Anglerfish islets were homogenized in 0.25 M sucrose and separated into seven separate subcellular fractions by differential and discontinuous density gradient centrifugation. The objective was to isolate microsomes and secretory granules in a highly purified state. The fractions were characterized by electron microscopy and chemical analyses. Each fraction was assayed for its content of protein, RNA, DNA, immunoreactive insulin (IRI), and immunoreactive glucagon (IRG). Ultrastructural examination showed that two of the seven subcellular fractions contain primarily mitochondria, and that two others consist almost exclusively of secretory granules. A fifth fraction contains rough and smooth microsomal vesicles. The remaining two fractions are the cell supernate and the nuclei and cell debris. The content of DNA and RNA in all fractions is consistent with the observed ultrastructure. More than 82 percent of the total cellular IRI and 89(percent) of the total cellular IRG are found in the fractions of secretory granules. The combined fractions of secretory granules and microsomes consistently yield >93 percent of the total IRG. These results indicate that the fractionation procedure employed yields fractions of microsomes and secretory granules that contain nearly all the immunoassayable insulin and glucagons found in whole islet tissue. These fractions are thus considered suitable for study of proinsulin and proglucagon biosynthesis and their metabolic conversion at the subcellular level. PMID:328517

  18. Magnesium and Calcium in Isolated Cell Nuclei

    PubMed Central

    Naora, H.; Naora, H.; Mirsky, A. E.; Allfrey, V. G.

    1961-01-01

    The calcium and magnesium contents of thymus nuclei have been determined and the nuclear sites of attachment of these two elements have been studied. The nuclei used for these purposes were isolated in non-aqueous media and in sucrose solutions. Non-aqueous nuclei contain 0.024 per cent calcium and 0.115 per cent magnesium. Calcium and magnesium are held at different sites. The greater part of the magnesium is bound to DNA, probably to its phosphate groups. Evidence is presented that the magnesium atoms combined with the phosphate groups of DNA are also attached to mononucleotides. There is reason to believe that those DNA-phosphate groups to which magnesium is bound, less than 1/10th of the total, are metabolically active, while those to which histones are attached seem to be inactive. PMID:13727745

  19. DNA content of hepatocyte and erythrocyte nuclei of the spined loach (Cobitis taenia L.) and its polyploid forms.

    PubMed

    Juchno, Dorota; Lackowska, Bozena; Boron, Alicja; Kilarski, Wincenty

    2010-09-01

    We analyzed the DNA content of hepatocyte and erythrocyte nuclei of the spined loach Cobitis taenia (diploid) and its allopolyploid forms. Twenty triploid females and one tetraploid were used. At least 20,000 hepatocyte and erythrocyte nuclei were acquired and analyzed by flow cytometry. C. taenia erythrocyte nuclei contain 3.15 +/- 0.21 pg of DNA and the hepatocyte nuclei 4.45 +/- 0.46 pg of DNA. Triploid Cobitis have 5.08 +/- 0.41 pg of DNA in erythrocyte nuclei and 6.11 +/- 0.40 pg of DNA in hepatocyte nuclei, whereas the tetraploid erythrocyte and hepatocyte nuclei contained 6.60 and 7.40 pg of DNA, respectively. In general, the DNA contents correlate positively with the ploidy level of the fish investigated. The DNA content variation in the hepatocyte and erythrocyte nuclei may be due to differences in extent of chromatin condensation, which is more pronounced in the erythrocyte than hepatocyte nuclei, or to the several orders of ploidy that occur in the parenchymal liver cells.

  20. Genotoxic effects of heavy metal cadmium on growth, biochemical, cyto-physiological parameters and detection of DNA polymorphism by RAPD in Capsicum annuum L. – An important spice crop of India

    PubMed Central

    Aslam, Rumana; Ansari, M.Y.K.; Choudhary, Sana; Bhat, Towseef Mohsin; Jahan, Nusrat

    2014-01-01

    The present study was designed to investigate the effects of cadmium (Cd) on biochemical, physiological and cytological parameters of Capsicum annuum L. treated with five different concentrations (20, 40, 60, 80 and 100 ppm) of the metal. Shoot–root length, pigment and protein content showed a continuous decrease with increasing Cd concentrations and the maximal decline was observed at the higher concentration. Proline content was found to be increased upto 60 ppm while at higher concentrations it gradually decreased. MDA content and chromosomal aberrations increased as the concentration increased. Additionally Random amplified polymorphic DNA (RAPD) technique was used for the detection of genotoxicity induced by Cd. A total of 184 bands (62 polymorphic and 122 monomorphic) were generated in 5 different concentrations with 10 primers where primer OPA-02 generated the highest percentage of polymorphism (52.63%). Dendrogram showed that control, R1 and R2 showed similar cluster and R4 and R5 grouped with R3 into one cluster, which showed that plants from higher doses showed much difference than the plants selected at mild doses which resemble control at the DNA level. This investigation showed that RAPD marker is a useful tool for evaluation of genetic diversity and relationship among different metal concentrations. PMID:25313282

  1. On the molecular mechanism of GC content variation among eubacterial genomes

    PubMed Central

    2012-01-01

    Background As a key parameter of genome sequence variation, the GC content of bacterial genomes has been investigated for over half a century, and many hypotheses have been put forward to explain this GC content variation and its relationship to other fundamental processes. Previously, we classified eubacteria into dnaE-based groups (the dimeric combination of DNA polymerase III alpha subunits), according to a hypothesis where GC content variation is essentially governed by genome replication and DNA repair mechanisms. Further investigation led to the discovery that two major mutator genes, polC and dnaE2, may be responsible for genomic GC content variation. Consequently, an in-depth analysis was conducted to evaluate various potential intrinsic and extrinsic factors in association with GC content variation among eubacterial genomes. Results Mutator genes, especially those with dominant effects on the mutation spectra, are biased towards either GC or AT richness, and they alter genomic GC content in the two opposite directions. Increased bacterial genome size (or gene number) appears to rely on increased genomic GC content; however, it is unclear whether the changes are directly related to certain environmental pressures. Certain environmental and bacteriological features are related to GC content variation, but their trends are more obvious when analyzed under the dnaE-based grouping scheme. Most terrestrial, plant-associated, and nitrogen-fixing bacteria are members of the dnaE1|dnaE2 group, whereas most pathogenic or symbiotic bacteria in insects, and those dwelling in aquatic environments, are largely members of the dnaE1|polV group. Conclusion Our studies provide several lines of evidence indicating that DNA polymerase III α subunit and its isoforms participating in either replication (such as polC) or SOS mutagenesis/translesion synthesis (such as dnaE2), play dominant roles in determining GC variability. Other environmental or bacteriological factors, such as genome size, temperature, oxygen requirement, and habitat, either play subsidiary roles or rely indirectly on different mutator genes to fine-tune the GC content. These results provide a comprehensive insight into mechanisms of GC content variation and the robustness of eubacterial genomes in adapting their ever-changing environments over billions of years. Reviewers This paper was reviewed by Nicolas Galtier, Adam Eyre-Walker, and Eugene Koonin. PMID:22230424

  2. DNA Extraction Protocols for Whole-Genome Sequencing in Marine Organisms.

    PubMed

    Panova, Marina; Aronsson, Henrik; Cameron, R Andrew; Dahl, Peter; Godhe, Anna; Lind, Ulrika; Ortega-Martinez, Olga; Pereyra, Ricardo; Tesson, Sylvie V M; Wrange, Anna-Lisa; Blomberg, Anders; Johannesson, Kerstin

    2016-01-01

    The marine environment harbors a large proportion of the total biodiversity on this planet, including the majority of the earths' different phyla and classes. Studying the genomes of marine organisms can bring interesting insights into genome evolution. Today, almost all marine organismal groups are understudied with respect to their genomes. One potential reason is that extraction of high-quality DNA in sufficient amounts is challenging for many marine species. This is due to high polysaccharide content, polyphenols and other secondary metabolites that will inhibit downstream DNA library preparations. Consequently, protocols developed for vertebrates and plants do not always perform well for invertebrates and algae. In addition, many marine species have large population sizes and, as a consequence, highly variable genomes. Thus, to facilitate the sequence read assembly process during genome sequencing, it is desirable to obtain enough DNA from a single individual, which is a challenge in many species of invertebrates and algae. Here, we present DNA extraction protocols for seven marine species (four invertebrates, two algae, and a marine yeast), optimized to provide sufficient DNA quality and yield for de novo genome sequencing projects.

  3. Stability and morphological and molecular-genetic identification of algae in buried soils

    NASA Astrophysics Data System (ADS)

    Temraleeva, A. D.; Moskalenko, S. V.; El'tsov, M. V.; Vagapov, I. M.; Ovchinnikov, A. Yu.; Gugalinskaya, L. A.; Alifanov, V. M.; Pinskii, D. L.

    2017-08-01

    Living cultural strains of the green algae `Chlorella' mirabilis and Muriella terrestris have been isolated from buried soils, and their identification has been confirmed by morphological and molecular-genetic analysis. It has been shown that the retention of their viability could be related to their small size and the presence of sporopollenin in cell walls. The effect of methods for the reactivation of dormant microbial forms on the growth of algae in paleosols has been estimated. The total DNA content has been determined in buried and recent background soils, and relationship between DNA and the presence and age of burial has been established.

  4. PHAGE FORMATION IN STAPHYLOCOCCUS MUSCAE CULTURES

    PubMed Central

    Price, Winston H.

    1949-01-01

    1. The total nucleic acid synthesized by normal and by infected S. muscae suspensions is approximately the same. This is true for either lag phase cells or log phase cells. 2. The amount of nucleic acid synthesized per cell in normal cultures increases during the lag period and remains fairly constant during log growth. 3. The amount of nucleic acid synthesized per cell by infected cells increases during the whole course of the infection. 4. Infected cells synthesize less RNA and more DNA than normal cells. The ratio of RNA/DNA is larger in lag phase cells than in log phase cells. 5. Normal cells release neither ribonucleic acid nor desoxyribonucleic acid into the medium. 6. Infected cells release both ribonucleic acid and desoxyribonucleic acid into the medium. The time and extent of release depend upon the physiological state of the cells. 7. Infected lag phase cells may or may not show an increased RNA content. They release RNA, but not DNA, into the medium well before observable cellular lysis and before any virus is liberated. At virus liberation, the cell RNA content falls to a value below that initially present, while DNA, which increased during infection falls to approximately the original value. 8. Infected log cells show a continuous loss of cell RNA and a loss of DNA a short time after infection. At the time of virus liberation the cell RNA value is well below that initially present and the cells begin to lyse. PMID:18139006

  5. Proteomic and comparative genomic analysis of two Brassica napus lines differing in oil content.

    PubMed

    Gan, Lu; Zhang, Chun-yu; Wang, Xiao-dong; Wang, Hao; Long, Yan; Yin, Yong-tai; Li, Dian-rong; Tian, Jian-Hua; Li, Zai-yun; Lin, Zhi-wei; Yu, Long-Jiang; Li, Mao-Teng

    2013-11-01

    Ultrastructural observations, combined with proteomic and comparative genomic analyses, were applied to interpret the differences in protein composition and oil-body characteristics of mature seed of two Brassica napus lines with high and low oil contents of 55.19% and 36.49%, respectively. The results showed that oil bodies were arranged much closer in the high than in the low oil content line, and differences in cell size and thickness of cell walls were also observed. There were 119 and 32 differentially expressed proteins (DEPs) of total and oil-body proteins identified. The 119 DEPs of total protein were mainly involved in the oil-related, dehydration-related, storage and defense/disease, and some of these may be related to oil formation. The DEPs involved with dehydration-related were both detected in total and oil-body proteins for high and low oil lines and may be correlated with the number and size of oil bodies in the different lines. Some genes that corresponded to DEPs were confirmed by quantitative trait loci (QTL) mapping analysis for oil content. The results revealed that some candidate genes deduced from DEPs were located in the confidence intervals of QTL for oil content. Finally, the function of one gene that coded storage protein was verified by using a collection of Arabidopsis lines that can conditionally express the full length cDNA from developing seeds of B. napus.

  6. Myonuclear transcription is responsive to mechanical load and DNA content but uncoupled from cell size during hypertrophy

    PubMed Central

    Kirby, Tyler J.; Patel, Rooshil M.; McClintock, Timothy S.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.; McCarthy, John J.

    2016-01-01

    Myofibers increase size and DNA content in response to a hypertrophic stimulus, thus providing a physiological model with which to study how these factors affect global transcription. Using 5-ethynyl uridine (EU) to metabolically label nascent RNA, we measured a sevenfold increase in myofiber transcription during early hypertrophy before a change in cell size and DNA content. The typical increase in myofiber DNA content observed at the later stage of hypertrophy was associated with a significant decrease in the percentage of EU-positive myonuclei; however, when DNA content was held constant by preventing myonuclear accretion via satellite cell depletion, both the number of transcriptionally active myonuclei and the amount of RNA generated by each myonucleus increased. During late hypertrophy, transcription did not scale with cell size, as smaller myofibers (<1000 μm2) demonstrated the highest transcriptional activity. Finally, transcription was primarily responsible for changes in the expression of genes known to regulate myofiber size. These findings show that resident myonuclei possess a significant reserve capacity to up-regulate transcription during hypertrophy and that myofiber transcription is responsive to DNA content but uncoupled from cell size during hypertrophy. PMID:26764089

  7. An overview of technical considerations when using quantitative real-time PCR analysis of gene expression in human exercise research

    PubMed Central

    Yan, Xu; Bishop, David J.

    2018-01-01

    Gene expression analysis by quantitative PCR in skeletal muscle is routine in exercise studies. The reproducibility and reliability of the data fundamentally depend on how the experiments are performed and interpreted. Despite the popularity of the assay, there is a considerable variation in experimental protocols and data analyses from different laboratories, and there is a lack of consistency of proper quality control steps throughout the assay. In this study, we present a number of experiments on various steps of quantitative PCR workflow, and demonstrate how to perform a quantitative PCR experiment with human skeletal muscle samples in an exercise study. We also tested some common mistakes in performing qPCR. Interestingly, we found that mishandling of muscle for a short time span (10 mins) before RNA extraction did not affect RNA quality, and isolated total RNA was preserved for up to one week at room temperature. Demonstrated by our data, use of unstable reference genes lead to substantial differences in the final results. Alternatively, cDNA content can be used for data normalisation; however, complete removal of RNA from cDNA samples is essential for obtaining accurate cDNA content. PMID:29746477

  8. Antioxidant and Antimycotic Activities of Two Native Lavandula Species from Portugal

    PubMed Central

    Baptista, Rafael; Madureira, Ana Margarida; Jorge, Rita; Adão, Rita; Duarte, Aida; Duarte, Noélia; Lopes, Maria Manuel; Teixeira, Generosa

    2015-01-01

    The antioxidant and antimycotic activities of the essential oils and extracts of two native Portuguese Lavandula species, L. stoechas subsp. luisieri and L. pedunculata, were evaluated by in vitro assays. The total phenolics and flavonoids content were also determined. The antioxidant potential was assessed through DPPH radical scavenging, inhibition of lipid peroxidation (ILP), and DNA protection assays. All samples displayed a high DPPH scavenging activity, some of them showing concentration dependence. The majority of the samples were also able to inhibit lipid peroxidation. A strong correlation was observed between the results of DPPH and ILP assays and the flavonoids content of the samples. In the DNA protection assay, all the extracts were able to preserve DNA integrity. The antimycotic activity was performed against twelve fungi belonging to Basidiomycota and Ascomycota Divisions. L. stoechas subsp. luisieri exhibited the broadest activity spectra. L. pedunculata extracts were active against five fungi. Cryptococcus neoformans was the most sensitive, being inhibited by all the extracts. Our results led to the conclusion that L. stoechas subsp. luisieri and L. pedunculata can be useful as new sources of natural antioxidants and antimycotic agents, providing a possible valorization of the existing biodiversity and resources of Portuguese flora. PMID:25922611

  9. Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone.

    PubMed

    Pinhasi, Ron; Fernandes, Daniel; Sirak, Kendra; Novak, Mario; Connell, Sarah; Alpaslan-Roodenberg, Songül; Gerritsen, Fokke; Moiseyev, Vyacheslav; Gromov, Andrey; Raczky, Pál; Anders, Alexandra; Pietrusewsky, Michael; Rollefson, Gary; Jovanovic, Marija; Trinhhoang, Hiep; Bar-Oz, Guy; Oxenham, Marc; Matsumura, Hirofumi; Hofreiter, Michael

    2015-01-01

    The invention and development of next or second generation sequencing methods has resulted in a dramatic transformation of ancient DNA research and allowed shotgun sequencing of entire genomes from fossil specimens. However, although there are exceptions, most fossil specimens contain only low (~ 1% or less) percentages of endogenous DNA. The only skeletal element for which a systematically higher endogenous DNA content compared to other skeletal elements has been shown is the petrous part of the temporal bone. In this study we investigate whether (a) different parts of the petrous bone of archaeological human specimens give different percentages of endogenous DNA yields, (b) there are significant differences in average DNA read lengths, damage patterns and total DNA concentration, and (c) it is possible to obtain endogenous ancient DNA from petrous bones from hot environments. We carried out intra-petrous comparisons for ten petrous bones from specimens from Holocene archaeological contexts across Eurasia dated between 10,000-1,800 calibrated years before present (cal. BP). We obtained shotgun DNA sequences from three distinct areas within the petrous: a spongy part of trabecular bone (part A), the dense part of cortical bone encircling the osseous inner ear, or otic capsule (part B), and the dense part within the otic capsule (part C). Our results confirm that dense bone parts of the petrous bone can provide high endogenous aDNA yields and indicate that endogenous DNA fractions for part C can exceed those obtained for part B by up to 65-fold and those from part A by up to 177-fold, while total endogenous DNA concentrations are up to 126-fold and 109-fold higher for these comparisons. Our results also show that while endogenous yields from part C were lower than 1% for samples from hot (both arid and humid) parts, the DNA damage patterns indicate that at least some of the reads originate from ancient DNA molecules, potentially enabling ancient DNA analyses of samples from hot regions that are otherwise not amenable to ancient DNA analyses.

  10. Nuclear DNA Content Estimates in Multicellular Green, Red and Brown Algae: Phylogenetic Considerations

    PubMed Central

    KAPRAUN, DONALD F.

    2005-01-01

    • Background and Aims Multicellular eukaryotic algae are phylogenetically disparate. Nuclear DNA content estimates have been published for fewer than 1 % of the described species of Chlorophyta, Phaeophyta and Rhodophyta. The present investigation aims to summarize the state of our knowledge and to add substantially to our database of C-values for theses algae. • Methods The DNA-localizing fluorochrome DAPI (4′, 6-diamidino-2-phenylindole) and RBC (chicken erythrocyte) standard were used to estimate 2C values with static microspectrophotometry. • Key Results 2C DNA contents for 85 species of Chlorophyta range from 0·2–6·1 pg, excluding the highly polyploidy Charales and Desmidiales with DNA contents of up to 39·2 and 20·7 pg, respectively. 2C DNA contents for 111 species of Rhodophyta range from 0·1–2·8 pg, and for 44 species of Phaeophyta range from 0·2–1·8 pg. • Conclusions New availability of consensus higher-level molecular phylogenies provides a framework for viewing C-value data in a phylogenetic context. Both DNA content ranges and mean values are greater in taxa considered to be basal. It is proposed that the basal, ancestral genome in each algal group was quite small. Both mechanistic and ecological processes are discussed that could have produced the observed C-value ranges. PMID:15596456

  11. Moisture content impacts the stability of DNA adsorbed onto gold microparticles.

    PubMed

    Smyth, Tyson J; Betker, Jamie; Wang, Wei; Anchordoquy, Thomas J

    2011-11-01

    Particle-mediated epidermal delivery (PMED) of small quantities of DNA (0.5-4.0 μg) has been reported to both induce an immune response and protect against disease in human subjects. In order for the PMED of DNA to be a viable technique for vaccination, the adsorbed DNA must be stable during shipping and storage. Here, we report that the storage stability of plasmid DNA adsorbed to 2-μm gold particles is strongly dependent on sample water content. Gold/DNA samples stored at 60°C and 6% relative humidity (RH) maintained supercoil content after 4-month storage, whereas storage at higher RHs facilitated degradation. Storage with desiccants had stabilizing effects on DNA similar to storage at 6% RH. However, storage with "indicating" Drierite and phosphorus pentoxide resulted in enhanced rates of DNA degradation. Copyright © 2011 Wiley-Liss, Inc.

  12. Differential transcript profiling through cDNA-AFLP showed complexity of rutin biosynthesis and accumulation in seeds of a nutraceutical food crop (Fagopyrum spp.)

    PubMed Central

    2012-01-01

    Background Buckwheat, consisting of two cultivated species Fagopyrum tataricum and F. esculentum, is the richest source of flavonoid rutin. Vegetative tissues of both the Fagopyrum species contain almost similar amount of rutin; however, rutin content in seed of F. tataricum are ~50 folds of that in seed of F. esculentum. In order to understand the molecular basis of high rutin content in F. tataricum, differential transcript profiling through cDNA-AFLP has been utilized to decipher what genetic factors in addition to flavonoid structural genes contribute to high rutin content of F. tataricum compared to F. esculentum. Results Differential transcript profiling through cDNA-AFLP in seed maturing stages (inflorescence to seed maturation) with 32 primer combinations generated total of 509 transcript fragments (TDFs). 167 TDFs were then eluted, cloned and sequenced from F. tataricum and F. esculentum. Categorization of TDFs on the basis of their presence/absence (qualitative variation) or differences in the amount of expression (quantitative variation) between both the Fagopyrum species showed that majority of variants are quantitative (64%). The TDFs represented genes controlling different biological processes such as basic and secondary metabolism (33%), regulation (18%), signal transduction (14%), transportation (13%), cellular organization (10%), and photosynthesis & energy (4%). Most of the TDFs except belonging to cellular metabolism showed relatively higher transcript abundance in F. tataricum over F. esculentum. Quantitative RT-PCR analysis of nine TDFs representing genes involved in regulation, metabolism, signaling and transport of secondary metabolites showed that all the tested nine TDFs (Ubiquitin protein ligase, ABC transporter, sugar transporter) except MYB 118 showed significantly higher expression in early seed formation stage (S7) of F. tataricum compared to F. esculentum. qRT-PCR results were found to be consistent with the cDNA-AFLP results. Conclusions The present study concludes that in addition to structural genes, other classes of genes such as regulators, modifiers and transporters are also important in biosynthesis and accumulation of flavonoid content in plants. cDNA-AFLP technology was successfully utilized to capture genes that are contributing to differences in rutin content in seed maturing stages of Fagopyrum species. Increased transcript abundance of TDFs during transition from flowers to seed maturation suggests their involvement not only in the higher rutin content of F. tataricum over F. esculentum but also in nutritional superiority of the former. PMID:22686486

  13. Moderate DNA damage promotes metabolic flux into PPP via PKM2 Y-105 phosphorylation: a feature that favours cancer cells.

    PubMed

    Kumar, Bhupender; Bamezai, Rameshwar N K

    2015-08-01

    Pyruvate kinase M2, an important metabolic enzyme, promotes aerobic glycolysis (Warburg effect) to facilitate cancer cell proliferation. Unravelling the status of this important glycolytic pathway enzyme under sub-lethal doses of etoposide, a commonly used anti-proliferative genotoxic drug to induce mild/moderate DNA damage in HeLa cells as a model system and discern its effect on: PKM2 expression, phosphorylation, dimer: tetramer ratio, activity and associated effects, was pertinent. Protein expression and phosphorylation of PKM2 from HeLa cells was estimated using Western blotting. Same protein lysate was also used to estimate total pyruvate kinase activity and the total dimer: tetramer content evaluated using glycerol gradient ultra-centrifugation. Intracellular PEP was estimated manually using standard curve; while NADPH was assessed by NADPH estimation kit. Unpaired t test and two-way-ANOVA was used for statistical analysis. A relative decrease in PKM2 expression and a subsequent dose and time dependent increase in Y105-phosphorylation were observed. A concomitant increase in PKM2 dimer content and Y105-phosphorylation responsible for reduced PKM2 activity promoted PEP accumulation and NADPH production, representing increased metabolic flux into PPP, a feature that favours cancer cells. It was apparent that the sub-lethal doses of etoposide induced inadequate damage to DNA in cancer cells in culture promoted pro-survival conditions due to Y105-phosphorylation of PKM2, its stable dimerization and inactivation, a unique association not known earlier, indicating what might happen in tumour revivals or recurrences.

  14. Protective effects of total saponins from stem and leaf of Panax ginseng against cyclophosphamide-induced genotoxicity and apoptosis in mouse bone marrow cells and peripheral lymphocyte cells.

    PubMed

    Zhang, Qiu Hua; Wu, Chun Fu; Duan, Lian; Yang, Jing Yu

    2008-01-01

    Cyclophosphamide (CP), commonly used anti-cancer, induces oxidative stress and is cytotoxic to normal cells. It is very important to choice the protective agent combined CP to reduce the side effects in cancer treatment. Ginsenosides are biological active constituents of Panax ginseng C.A. Meyer that acts as the tonic agent for the cancer patients to reduce the side effects in the clinic application. Because CP is a pro-oxidant agent and induces oxidative stress by the generation of free radicals to decrease the activities of anti-oxidant enzymes, the protective effects of the total saponins from stem and leaf of P. ginseng C.A. Meyer (TSPG) act as an anti-oxidant agent against the decreased anti-oxidant enzymes, the genotoxicity and apoptosis induced by CP was carried out. The alkaline single cell gel electrophoresis was employed to detect DNA damage; flow cytometry assay and AO/EB staining assay were employed to measure cell apoptosis; the enzymatic anti-oxidants (T-SOD, CAT and GPx) and non-enzymatic anti-oxidant (GSH) were measured by the various colorimetric methods. CP induced the significant DNA damage in mouse peripheral lymphocytes in time- and dose-dependent manners, inhibited the activities of T-SOD, GPx and CAT, and decreased the contents of GSH in mouse blood, triggered bone marrow cell apoptosis at 6 and 12h. TSPG significantly reduced CP-induced DNA damages in bone marrow cells and peripheral lymphocyte cells, antagonized CP-induced reduction of T-SOD, GPx, CAT activities and the GSH contents, decreased the bone marrow cell apoptosis induced by CP. TSPG, significantly reduced the genotoxicity of CP in bone marrow cells and peripheral lymphocyte cells, and decreased the apoptotic cell number induced by CP in bone marrow cells. The effects of TSPG on T-SOD, GPx, CAT activities and GSH contents might partially contribute to its protective effects on CP-induced cell toxicities.

  15. Prenatal Ambient Air Pollution, Placental Mitochondrial DNA Content, and Birth Weight in the INMA (Spain) and ENVIRONAGE (Belgium) Birth Cohorts.

    PubMed

    Clemente, Diana B P; Casas, Maribel; Vilahur, Nadia; Begiristain, Haizea; Bustamante, Mariona; Carsin, Anne-Elie; Fernández, Mariana F; Fierens, Frans; Gyselaers, Wilfried; Iñiguez, Carmen; Janssen, Bram G; Lefebvre, Wouter; Llop, Sabrina; Olea, Nicolás; Pedersen, Marie; Pieters, Nicky; Santa Marina, Loreto; Souto, Ana; Tardón, Adonina; Vanpoucke, Charlotte; Vrijheid, Martine; Sunyer, Jordi; Nawrot, Tim S

    2016-05-01

    Mitochondria are sensitive to environmental toxicants due to their lack of repair capacity. Changes in mitochondrial DNA (mtDNA) content may represent a biologically relevant intermediate outcome in mechanisms linking air pollution and fetal growth restriction. We investigated whether placental mtDNA content is a possible mediator of the association between prenatal nitrogen dioxide (NO2) exposure and birth weight. We used data from two independent European cohorts: INMA (n = 376; Spain) and ENVIRONAGE (n = 550; Belgium). Relative placental mtDNA content was determined as the ratio of two mitochondrial genes (MT-ND1 and MTF3212/R3319) to two control genes (RPLP0 and ACTB). Effect estimates for individual cohorts and the pooled data set were calculated using multiple linear regression and mixed models. We also performed a mediation analysis. Pooled estimates indicated that a 10-μg/m3 increment in average NO2 exposure during pregnancy was associated with a 4.9% decrease in placental mtDNA content (95% CI: -9.3, -0.3%) and a 48-g decrease (95% CI: -87, -9 g) in birth weight. However, the association with birth weight was significant for INMA (-66 g; 95% CI: -111, -23 g) but not for ENVIRONAGE (-20 g; 95% CI: -101, 62 g). Placental mtDNA content was associated with significantly higher mean birth weight (pooled analysis, interquartile range increase: 140 g; 95% CI: 43, 237 g). Mediation analysis estimates, which were derived for the INMA cohort only, suggested that 10% (95% CI: 6.6, 13.0 g) of the association between prenatal NO2 and birth weight was mediated by changes in placental mtDNA content. Our results suggest that mtDNA content can be one of the potential mediators of the association between prenatal air pollution exposure and birth weight. Clemente DB, Casas M, Vilahur N, Begiristain H, Bustamante M, Carsin AE, Fernández MF, Fierens F, Gyselaers W, Iñiguez C, Janssen BG, Lefebvre W, Llop S, Olea N, Pedersen M, Pieters N, Santa Marina L, Souto A, Tardón A, Vanpoucke C, Vrijheid M, Sunyer J, Nawrot TS. 2016. Prenatal ambient air pollution, placental mitochondrial DNA content, and birth weight in the INMA (Spain) and ENVIRONAGE (Belgium) birth cohorts. Environ Health Perspect 124:659-665; http://dx.doi.org/10.1289/ehp.1408981.

  16. Decreased Integrity, Content, and Increased Transcript Level of Mitochondrial DNA Are Associated with Keratoconus

    PubMed Central

    Hao, Xiao-Dan; Chen, Zhao-Li; Qu, Ming-Li; Zhao, Xiao-Wen; Li, Su-Xia; Chen, Peng

    2016-01-01

    Oxidative stress may play an important role in the pathogenesis of keratoconus (KC). Mitochondrial DNA (mtDNA) is involved in mitochondrial function, and the mtDNA content, integrity, and transcript level may affect the generation of reactive oxygen species (ROS) and be involved in the pathogenesis of KC. We designed a case-control study to research the relationship between KC and mtDNA integrity, content and transcription. One-hundred ninety-eight KC corneas and 106 normal corneas from Chinese patients were studied. Quantitative real-time PCR was used to measure the relative mtDNA content, transcript levels of mtDNA and related genes. Long-extension PCR was used to detect mtDNA damage. ROS, mitochondrial membrane potential and ATP were measured by respective assay kit, and Mito-Tracker Green was used to label the mitochondria. The relative mtDNA content of KC corneas was significantly lower than that of normal corneas (P = 9.19×10−24), possibly due to decreased expression of the mitochondrial transcription factor A (TFAM) gene (P = 3.26×10−3). In contrast, the transcript levels of mtDNA genes were significantly increased in KC corneas compared with normal corneas (NADH dehydrogenase subunit 1 [ND1]: P = 1.79×10−3; cytochrome c oxidase subunit 1 [COX1]: P = 1.54×10−3; NADH dehydrogenase subunit 1, [ND6]: P = 4.62×10−3). The latter may be the result of increased expression levels of mtDNA transcription-related genes mitochondrial RNA polymerase (POLRMT) (P = 2.55×10−4) and transcription factor B2 mitochondrial (TFB2M) (P = 7.88×10−5). KC corneas also had increased mtDNA damage (P = 3.63×10−10), higher ROS levels, and lower mitochondrial membrane potential and ATP levels compared with normal corneas. Decreased integrity, content and increased transcript level of mtDNA are associated with KC. These changes may affect the generation of ROS and play a role in the pathogenesis of KC. PMID:27783701

  17. Randomly amplified polymorphic-DNA analysis for detecting genotoxic effects of Boron on maize (Zea mays L.).

    PubMed

    Sakcali, M Serdal; Kekec, Guzin; Uzonur, Irem; Alpsoy, Lokman; Tombuloglu, Huseyin

    2015-08-01

    This study was carried out to investigate the genotoxic effect of boron (B) on maize using randomly amplified polymorphic DNA (RAPD) method. Experimental design was conducted under 0, 5, 10, 25, 50, 100, 125, and 150 ppm B exposures, and physiological changes have revealed a sharp decrease in root growth rates from 28% to 85%, starting from 25 ppm to 150 ppm, respectively. RAPD-polymerase chain reaction (PCR) analysis shows that DNA alterations are clearly observed from beginning to 100 ppm. B-induced inhibition in root growth had a positive correlation with DNA alterations. Total soluble protein, root and stem lengths, and B content analysis in root and leaves encourage these results as a consequence. These preliminary findings reveal that B causes chromosomal aberration and genotoxic effects on maize. Meanwhile, usage of RAPD-PCR technique is a suitable biomarker to detect genotoxic effect of B on maize and other crops for the future. © The Author(s) 2013.

  18. Buckwheat Honey Attenuates Carbon Tetrachloride-Induced Liver and DNA Damage in Mice

    PubMed Central

    Cheng, Ni; Wu, Liming; Zheng, Jianbin; Cao, Wei

    2015-01-01

    Buckwheat honey, which is widely consumed in China, has a characteristic dark color. The objective of this study was to investigate the protective effects of buckwheat honey on liver and DNA damage induced by carbon tetrachloride in mice. The results revealed that buckwheat honey had high total phenolic content, and rutin, hesperetin, and p-coumaric acid were the main phenolic compounds present. Buckwheat honey possesses super DPPH radical scavenging activity and strong ferric reducing antioxidant power. Administration of buckwheat honey for 10 weeks significantly inhibited serum lipoprotein oxidation and increased serum oxygen radical absorbance capacity. Moreover, buckwheat honey significantly inhibited aspartate aminotransferase and alanine aminotransferase activities, which are enhanced by carbon tetrachloride. Hepatic malondialdehyde decreased and hepatic antioxidant enzymes (superoxide dismutase and glutathione peroxidase) increased in the presence of buckwheat honey. In a comet assay, lymphocyte DNA damage induced by carbon tetrachloride was significantly inhibited by buckwheat honey. Therefore, buckwheat honey has a hepatoprotective effect and inhibits DNA damage, activities that are primarily attributable to its high antioxidant capacity. PMID:26508989

  19. Buckwheat Honey Attenuates Carbon Tetrachloride-Induced Liver and DNA Damage in Mice.

    PubMed

    Cheng, Ni; Wu, Liming; Zheng, Jianbin; Cao, Wei

    2015-01-01

    Buckwheat honey, which is widely consumed in China, has a characteristic dark color. The objective of this study was to investigate the protective effects of buckwheat honey on liver and DNA damage induced by carbon tetrachloride in mice. The results revealed that buckwheat honey had high total phenolic content, and rutin, hesperetin, and p-coumaric acid were the main phenolic compounds present. Buckwheat honey possesses super DPPH radical scavenging activity and strong ferric reducing antioxidant power. Administration of buckwheat honey for 10 weeks significantly inhibited serum lipoprotein oxidation and increased serum oxygen radical absorbance capacity. Moreover, buckwheat honey significantly inhibited aspartate aminotransferase and alanine aminotransferase activities, which are enhanced by carbon tetrachloride. Hepatic malondialdehyde decreased and hepatic antioxidant enzymes (superoxide dismutase and glutathione peroxidase) increased in the presence of buckwheat honey. In a comet assay, lymphocyte DNA damage induced by carbon tetrachloride was significantly inhibited by buckwheat honey. Therefore, buckwheat honey has a hepatoprotective effect and inhibits DNA damage, activities that are primarily attributable to its high antioxidant capacity.

  20. DNA extraction techniques compared for accurate detection of genetically modified organisms (GMOs) in maize food and feed products.

    PubMed

    Turkec, Aydin; Kazan, Hande; Karacanli, Burçin; Lucas, Stuart J

    2015-08-01

    In this paper, DNA extraction methods have been evaluated to detect the presence of genetically modified organisms (GMOs) in maize food and feed products commercialised in Turkey. All the extraction methods tested performed well for the majority of maize foods and feed products analysed. However, the highest DNA content was achieved by the Wizard, Genespin or the CTAB method, all of which produced optimal DNA yield and purity for different maize food and feed products. The samples were then screened for the presence of GM elements, along with certified reference materials. Of the food and feed samples, 8 % tested positive for the presence of one GM element (NOS terminator), of which half (4 % of the total) also contained a second element (the Cauliflower Mosaic Virus 35S promoter). The results obtained herein clearly demonstrate the presence of GM maize in the Turkish market, and that the Foodproof GMO Screening Kit provides reliable screening of maize food and feed products.

  1. Higher 5-hydroxymethylcytosine identifies immortal DNA strand chromosomes in asymmetrically self-renewing distributed stem cells.

    PubMed

    Huh, Yang Hoon; Cohen, Justin; Sherley, James L

    2013-10-15

    Immortal strands are the targeted chromosomal DNA strands of nonrandom sister chromatid segregation, a mitotic chromosome segregation pattern unique to asymmetrically self-renewing distributed stem cells (DSCs). By nonrandom segregation, immortal DNA strands become the oldest DNA strands in asymmetrically self-renewing DSCs. Nonrandom segregation of immortal DNA strands may limit DSC mutagenesis, preserve DSC fate, and contribute to DSC aging. The mechanisms responsible for specification and maintenance of immortal DNA strands are unknown. To discover clues to these mechanisms, we investigated the 5-methylcytosine and 5-hydroxymethylcytosine (5hmC) content on chromosomes in mouse hair follicle DSCs during nonrandom segregation. Although 5-methylcytosine content did not differ significantly, the relative content of 5hmC was significantly higher in chromosomes containing immortal DNA strands than in opposed mitotic chromosomes containing younger mortal DNA strands. The difference in relative 5hmC content was caused by the loss of 5hmC from mortal chromosomes. These findings implicate higher 5hmC as a specific molecular determinant of immortal DNA strand chromosomes. Because 5hmC is an intermediate during DNA demethylation, we propose a ten-eleven translocase enzyme mechanism for both the specification and maintenance of nonrandomly segregated immortal DNA strands. The proposed mechanism reveals a means by which DSCs "know" the generational age of immortal DNA strands. The mechanism is supported by molecular expression data and accounts for the selection of newly replicated DNA strands when nonrandom segregation is initiated. These mechanistic insights also provide a possible basis for another characteristic property of immortal DNA strands, their guanine ribonucleotide dependency.

  2. Heavy-ion induced genetic changes and evolution processes

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.; Durante, M.; Mei, M.

    1994-01-01

    On Moon and Mars, there will be more galactic cosmic rays and higher radiation doses than on Earth. Our experimental studies showed that heavy ion radiation can effectively cause mutation and chromosome aberrations and that high Linear Energy Transfer (LET) heavy-ion induced mutants can be irreversible. Chromosome translocations and deletions are common in cells irradiated by heavy particles, and ionizing radiations are effective in causing hyperploidy. The importance of the genetic changes in the evolution of life is an interesting question. Through evolution, there is an increase of DNA content in cells from lower forms of life to higher organisms. The DNA content, however, reached a plateau in vertebrates. By increasing DNA content, there can be an increase of information in the cell. For a given DNA content, the quality of information can be changed by rearranging the DNA. Because radiation can cause hyperploidy, an increase of DNA content in cells, and can induce DNA rearrangement, it is likely that the evolution of life on Mars will be effected by its radiation environment. A simple analysis shows that the radiation level on Mars may cause a mutation frequency comparable to that of the spontaneous mutation rate on Earth. To the extent that mutation plays a role in adaptation, radiation alone on Mars may thus provide sufficient mutation for the evolution of life.

  3. [A study on the relationship between postmortem interval and the changes of DNA content in the kidney cellule of rat].

    PubMed

    Liu, L; Peng, D B; Liu, Y; Deng, W N; Liu, Y L; Li, J J

    2001-05-01

    To study changes of DNA content in the kidney cellule of rats and relationship with the postmortem interval. This experiment chose seven parameter of cell nuclear, including the area and integral optical density, determined the changes of DNA content in the kidney cellule of 15 rats at different intervals between 0 and 48 h postmortem with auto-TV-image system. The degradation rate of DNA in nuclear has a certainty relationship to early PMI(in 48 h) of rat, and get binomial regress equation. Determining the quantity of DNA in nuclear should be an objective and exact way to estimate the PMI.

  4. Simple and Reliable Method to Quantify the Hepatitis B Viral Load and Replicative Capacity in Liver Tissue and Blood Leukocytes

    PubMed Central

    Minosse, Claudia; Coen, Sabrina; Visco Comandini, Ubaldo; Lionetti, Raffaella; Montalbano, Marzia; Cerilli, Stefano; Vincenti, Donatella; Baiocchini, Andrea; Capobianchi, Maria R.; Menzo, Stefano

    2016-01-01

    Background A functional cure of chronic hepatitis B (CHB) is feasible, but a clear view of the intrahepatic viral dynamics in each patient is needed. Intrahepatic covalently closed circular DNA (cccDNA) is the stable form of the viral genome in infected cells, and represents the ideal marker of parenchymal colonization. Its relationships with easily accessible peripheral parameters need to be elucidated in order to avoid invasive procedures in patients. Objectives The goal of this study was to design, set up, and validate a reliable and straightforward method for the quantification of the cccDNA and total DNA of the hepatitis B virus (HBV) in a variety of clinical samples. Patients and Methods Clinical samples from a cohort of CHB patients, including liver biopsies in some, were collected for the analysis of intracellular HBV molecular markers using novel molecular assays. Results A plasmid construct, including sequences from the HBV genome and from the human gene hTERT, was generated as an isomolar multi-standard for HBV quantitation and normalization to the cellular contents. The specificity of the real-time assay for the cccDNA was assessed using Dane particles isolated on a density gradient. A comparison of liver tissue from 6 untreated and 6 treated patients showed that the treatment deeply reduced the replicative capacity (total DNA/cccDNA), but had limited impact on the parenchymal colonization. The peripheral blood mononuclear cells (PBMCs) and granulocytes from the treated and untreated patients were also analyzed. Conclusions A straightforward method for the quantification of intracellular HBV molecular parameters in clinical samples was developed and validated. The widespread use of such versatile assays could better define the prognosis of CHB, and allow a more rational approach to time-limited tailored treatment strategies. PMID:27882060

  5. The Effect of a Grape Seed Extract on Radiation-Induced DNA Damage in Human Lymphocytes

    NASA Astrophysics Data System (ADS)

    Dicu, Tiberius; Postescu, Ion D.; Foriş, Vasile; Brie, Ioana; Fischer-Fodor, Eva; Cernea, Valentin; Moldovan, Mircea; Cosma, Constantin

    2009-05-01

    Plant-derived antioxidants due to their phenolic compounds content are reported as potential candidates for reducing the levels of oxidative stress in living organisms. Grape seed extracts are very potent antioxidants and exhibit numerous interesting pharmacologic activities. Hydroethanolic (50/50, v/v) standardized extract was obtained from red grape seed (Vitis vinifera, variety Burgund Mare—BM). The total polyphenols content was evaluated by Folin-Ciocalteu procedure and expressed as μEq Gallic Acid/ml. The aim of this study was to evaluate the potential antioxidant effects of different concentrations of BM extract against 60Co γ-rays induced DNA damage in human lymphocytes. Samples of human lymphocytes were incubated with BM extract (12.5, 25.0 and 37.5 μEq GA/ml, respectively) administered at 30 minutes before in vitro irradiation with γ-rays (2 Gy). The DNA damage and repair in lymphocytes were evaluated using alkaline comet assay. Using the lesion score, the radiation-induced DNA damage was found to be significantly different (p<0.05) from control, both in the absence and presence of BM extract (except the lymphocytes treated with 37.5 μEq GA/ml BM extract). DNA repair analyzed by incubating the irradiated cells at 37° C and 5% CO2 atmosphere for 2 h, indicated a significant difference (p<0.05) in the lymphocytes group treated with 25.0 μEq GA/ml BM extract, immediately and two hours after irradiation. These results suggest radioprotective effects after treatment with BM extract in human lymphocytes.

  6. The circular dichroism properties of phi W-14 DNA containing alpha-putrescinylthymine.

    PubMed

    Spetter, S; Chen, C; Warren, R A; Hanlon, S

    1985-03-08

    The circular dichroism properties of phi W-14 DNA containing alpha-putrescinylthymine and its acetylated derivative have been examined in a number of aqueous solvents. Native phi W-14 DNA exhibits a B-type CD spectrum whose characteristics do not entirely conform to what would be expected for its GC content (51%). The conformationally sensitive positive band above 260 nm has a rotational strength greater than that normally found in prokaryotic DNAs of comparable GC content, such as Escherichia coli DNA. The rotational strength of this band in the spectrum of the heat-denatured form of phi W-14 DNA, however, is similar to that of heat denatured E. coli DNA. Abolition of the positive charge on the putrescine residues of native phi W-14 DNA by reaction with CH2O or by acetylation reduces the rotational strength to a level appropriate for its GC content. Increases in the electrolyte content of the solvent have the same effect, although the rotational strength of this band in phi W-14 DNA does not become comparable to that of E. coli DNA until 6-7 M LiCl. Titration to pH 10.6 in solvents of modest electrolyte content, however, fails to appreciably affect the CD spectral properties of either native phi W-14 DNA or the derivative in which half of the secondary and all of the primary amino groups have been acetylated. On the basis of these results we have concluded that the enhanced rotational strength of the positive band above 260 nm in the CD spectrum of phi W-14 DNA is due to a conformational difference caused by an ion-pair interaction of the positively charged primary amino groups of putrescine with the phosphate backbone. The CD spectral properties, however, reveal that these differences, averaged over the entire basepair population, appear to be relatively small. The average conformation, at least in dilute aqueous solutions, seems to be an unexceptional B variant with conformational properties which would be more appropriate for a DNA of higher CG content.

  7. Telomere content measurement in human hematopoietic cells: Comparative analysis of qPCR and Flow-FISH techniques.

    PubMed

    Wand, Taylor; Fang, Mike; Chen, Christina; Hardy, Nathan; McCoy, J Philip; Dumitriu, Bogdan; Young, Neal S; Biancotto, Angélique

    2016-10-01

    Abnormal telomere lengths have been linked to cancer and other hematologic disorders. Determination of mean telomere content (MTC) is traditionally performed by Southern blotting and densitometry, giving a mean telomere restriction fragment (TRF) value for the total cell population studied. Here, we compared a quantitative Polymerase Chain Reaction approach (qPCR) and a flow cytometric approach, fluorescence in situ hybridization (Flow-FISH), to evaluate telomere content distribution in total patient peripheral blood mononuclear cells or specific cell populations. Flow-FISH is based on in situ hybridization using a fluorescein-labeled peptide nucleic acid (PNA) (CCCTAA) 3 probe and DNA staining with propidium iodide. We showed that both qPCR and Flow-FISH provide a robust measurement, with Flow-FISH measuring a relative content longer than qPCR at a single cell approach and that TRF2 fluorescence intensity did not correlate with MTC. Both methods showed comparable telomere content reduction with age, and the rate of relative telomere loss was similar. Published 2016 Wiley Periodicals Inc. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. This article is a US government work and, as such, is in the public domain in the United States of America.

  8. Diversity of halophilic archaea from six hypersaline environments in Turkey.

    PubMed

    Ozcan, Birgul; Ozcengiz, Gulay; Coleri, Arzu; Cokmus, Cumhur

    2007-06-01

    The diversity of archaeal strains from six hypersaline environments in Turkey was analyzed by comparing their phenotypic characteristics and 16S rDNA sequences. Thirty-three isolates were characterized in terms of their phenotypic properties including morphological and biochemical characteristics, susceptibility to different antibiotics, and total lipid and plasmid contents, and finally compared by 16S rDNA gene sequences. The results showed that all isolates belong to the family Halobacteriaceae. Phylogenetic analyses using approximately 1,388 bp comparisions of 16S rDNA sequences demonstrated that all isolates clustered closely to species belonging to 9 genera, namely Halorubrum (8 isolates), Natrinema (5 isolates), Haloarcula (4 isolates), Natronococcus (4 isolates), Natrialba (4 isolates), Haloferax (3 isolates), Haloterrigena (3 isolates), Halalkalicoccus (1 isolate), and Halomicrobium (1 isolate). The results revealed a high diversity among the isolated halophilic strains and indicated that some of these strains constitute new taxa of extremely halophilic archaea.

  9. Blood Cell Mitochondrial DNA Content and Premature Ovarian Aging

    PubMed Central

    Cacciatore, Chiara; Busnelli, Marta; Rossetti, Raffaella; Bonetti, Silvia; Paffoni, Alessio; Mari, Daniela; Ragni, Guido; Persani, Luca; Arosio, M.; Beck-Peccoz, P.; Biondi, M.; Bione, S.; Bruni, V.; Brigante, C.; Cannavo`, S.; Cavallo, L.; Cisternino, M.; Colombo, I.; Corbetta, S.; Crosignani, P.G.; D'Avanzo, M.G.; Dalpra, L.; Danesino, C.; Di Battista, E.; Di Prospero, F.; Donti, E.; Einaudi, S.; Falorni, A.; Foresta, C.; Fusi, F.; Garofalo, N.; Giotti, I.; Lanzi, R.; Larizza, D.; Locatelli, N.; Loli, P.; Madaschi, S.; Maghnie, M.; Maiore, S.; Mantero, F.; Marozzi, A.; Marzotti, S.; Migone, N.; Nappi, R.; Palli, D.; Patricelli, M.G.; Pisani, C.; Prontera, P.; Petraglia, F.; Radetti, G.; Renieri, A.; Ricca, I.; Ripamonti, A.; Rossetti, R.; Russo, G.; Russo, S.; Tonacchera, M.; Toniolo, D.; Torricelli, F.; Vegetti, W.; Villa, N.; Vineis, P.; Wasniewsk, M.; Zuffardi, O.

    2012-01-01

    Primary ovarian insufficiency (POI) is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA) content in a group of women undergoing ovarian hyperstimulation (OH), and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF) and 42 poor responders (PR) to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001) in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG) gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction. PMID:22879975

  10. Blood cell mitochondrial DNA content and premature ovarian aging.

    PubMed

    Bonomi, Marco; Somigliana, Edgardo; Cacciatore, Chiara; Busnelli, Marta; Rossetti, Raffaella; Bonetti, Silvia; Paffoni, Alessio; Mari, Daniela; Ragni, Guido; Persani, Luca

    2012-01-01

    Primary ovarian insufficiency (POI) is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA) content in a group of women undergoing ovarian hyperstimulation (OH), and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF) and 42 poor responders (PR) to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001) in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG) gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction.

  11. Higher 5-hydroxymethylcytosine identifies immortal DNA strand chromosomes in asymmetrically self-renewing distributed stem cells

    PubMed Central

    Huh, Yang Hoon; Cohen, Justin; Sherley, James L.

    2013-01-01

    Immortal strands are the targeted chromosomal DNA strands of nonrandom sister chromatid segregation, a mitotic chromosome segregation pattern unique to asymmetrically self-renewing distributed stem cells (DSCs). By nonrandom segregation, immortal DNA strands become the oldest DNA strands in asymmetrically self-renewing DSCs. Nonrandom segregation of immortal DNA strands may limit DSC mutagenesis, preserve DSC fate, and contribute to DSC aging. The mechanisms responsible for specification and maintenance of immortal DNA strands are unknown. To discover clues to these mechanisms, we investigated the 5-methylcytosine and 5-hydroxymethylcytosine (5hmC) content on chromosomes in mouse hair follicle DSCs during nonrandom segregation. Although 5-methylcytosine content did not differ significantly, the relative content of 5hmC was significantly higher in chromosomes containing immortal DNA strands than in opposed mitotic chromosomes containing younger mortal DNA strands. The difference in relative 5hmC content was caused by the loss of 5hmC from mortal chromosomes. These findings implicate higher 5hmC as a specific molecular determinant of immortal DNA strand chromosomes. Because 5hmC is an intermediate during DNA demethylation, we propose a ten-eleven translocase enzyme mechanism for both the specification and maintenance of nonrandomly segregated immortal DNA strands. The proposed mechanism reveals a means by which DSCs “know” the generational age of immortal DNA strands. The mechanism is supported by molecular expression data and accounts for the selection of newly replicated DNA strands when nonrandom segregation is initiated. These mechanistic insights also provide a possible basis for another characteristic property of immortal DNA strands, their guanine ribonucleotide dependency. PMID:24082118

  12. DNA content analysis allows discrimination between Trypanosoma cruzi and Trypanosoma rangeli.

    PubMed

    Naves, Lucila Langoni; da Silva, Marcos Vinícius; Fajardo, Emanuella Francisco; da Silva, Raíssa Bernardes; De Vito, Fernanda Bernadelli; Rodrigues, Virmondes; Lages-Silva, Eliane; Ramírez, Luis Eduardo; Pedrosa, André Luiz

    2017-01-01

    Trypanosoma cruzi, a human protozoan parasite, is the causative agent of Chagas disease. Currently the species is divided into six taxonomic groups. The genome of the CL Brener clone has been estimated to be 106.4-110.7 Mb, and DNA content analyses revealed that it is a diploid hybrid clone. Trypanosoma rangeli is a hemoflagellate that has the same reservoirs and vectors as T. cruzi; however, it is non-pathogenic to vertebrate hosts. The haploid genome of T. rangeli was previously estimated to be 24 Mb. The parasitic strains of T. rangeli are divided into KP1(+) and KP1(-). Thus, the objective of this study was to investigate the DNA content in different strains of T. cruzi and T. rangeli by flow cytometry. All T. cruzi and T. rangeli strains yielded cell cycle profiles with clearly identifiable G1-0 (2n) and G2-M (4n) peaks. T. cruzi and T. rangeli genome sizes were estimated using the clone CL Brener and the Leishmania major CC1 as reference cell lines because their genome sequences have been previously determined. The DNA content of T. cruzi strains ranged from 87,41 to 108,16 Mb, and the DNA content of T. rangeli strains ranged from 63,25 Mb to 68,66 Mb. No differences in DNA content were observed between KP1(+) and KP1(-) T. rangeli strains. Cultures containing mixtures of the epimastigote forms of T. cruzi and T. rangeli strains resulted in cell cycle profiles with distinct G1 peaks for strains of each species. These results demonstrate that DNA content analysis by flow cytometry is a reliable technique for discrimination between T. cruzi and T. rangeli isolated from different hosts.

  13. Effects of the short-chain triglyceride triacetin on intestinal mucosa and metabolic substrates in rats.

    PubMed

    Lynch, J W; Miles, J M; Bailey, J W

    1994-01-01

    Diets containing either triacetin (the water-soluble triglyceride of acetate) or long-chain triglycerides (LCTs) were fed to rats to determine the effects on intestinal mucosa cells and plasma substrates. Male Sprague-Dawley rats were fed one of three diets, a control diet containing 5% of energy as LCTs or one of two experimental diets that contained 30% of energy as lipid. The lipid component of the two experimental diets was either 100% LCTs or 95% triacetin/5% LCTs. Plasma lactate, glucose, and total ketone body concentrations were not significantly different among dietary treatment groups. Compared with animals fed LCTs and control diet, plasma pyruvate and free fatty acid concentrations were decreased in animals fed triacetin. In contrast, plasma triglyceride concentrations were elevated in animals fed triacetin compared with other groups. Intestinal biochemical measures included total DNA, RNA, protein, and the protein:DNA ratio. Histologic indices measured were villus height in the jejunum and crypt depth in the colon. No significant difference in mucosal protein concentration was observed in the jejunum and colon. Jejunal RNA was significantly decreased in animals fed triacetin compared with other diets. Triacetin feeding significantly increased the DNA content in the jejunum and colon (thereby lowering the protein:DNA ratio), indicating smaller, more numerous cells. Jejunal villus height and colonic crypt depth were not significantly different among dietary treatment groups. Provision of a balanced diet containing 28.5% of the total calories as triacetin had no adverse effects on metabolic substrates and resulted in smaller and more numerous mucosal cells in the jejunum and colon.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. DNA Content Differences Between Male and Female Chicken (Gallus gallus domesticus) Nuclei and Z and W Chromosomes Resolved by Image Cytometry

    PubMed Central

    Mendonça, Maria Andréia Corrêa; Carvalho, Carlos Roberto; Clarindo, Wellington Ronildo

    2010-01-01

    Chicken red blood cells (CRBCs) are widely used as standards for DNA content determination. Cytogenetic data have shown that the Z sex chromosome is approximately twice as large as the W, so that the DNA content differs to some extent between male (ZZ) and female (ZW) chickens. Despite this fact, male and female CRBCs have been indiscriminately used in absolute genome size determination. Our work was conducted to verify whether the DNA content differences between male and female Gallus gallus domesticus “Leghorn” nuclei and ZZ/ZW chromosomes can be resolved by image cytometry (ICM). Air-dried smears stained by Feulgen reaction were used for nuclei analysis. Chicken metaphase spreads upon Feulgen staining were analyzed for obtaining quantitative information on the Z and W chromosomes. Before each capture session, we conducted quality control of the ICM instrumentation. Our results from nuclear measurements showed that the 2C value is 0.09 pg higher in males than in females. In chromosomes, we found that the Z chromosome shows 200% more DNA content than does the W chromosome. ICM demonstrated resolution power to discriminate low DNA content differences in genomes. We suggest prudence in the general use of CRBC 2C values as standards in comparative cytometric analysis. (J Histochem Cytochem 58:229–235, 2010) PMID:19875846

  15. Prenatal Ambient Air Pollution, Placental Mitochondrial DNA Content, and Birth Weight in the INMA (Spain) and ENVIRONAGE (Belgium) Birth Cohorts

    PubMed Central

    Clemente, Diana B.P.; Casas, Maribel; Vilahur, Nadia; Begiristain, Haizea; Bustamante, Mariona; Carsin, Anne-Elie; Fernández, Mariana F.; Fierens, Frans; Gyselaers, Wilfried; Iñiguez, Carmen; Janssen, Bram G.; Lefebvre, Wouter; Llop, Sabrina; Olea, Nicolás; Pedersen, Marie; Pieters, Nicky; Santa Marina, Loreto; Souto, Ana; Tardón, Adonina; Vanpoucke, Charlotte; Vrijheid, Martine; Sunyer, Jordi; Nawrot, Tim S.

    2015-01-01

    Background: Mitochondria are sensitive to environmental toxicants due to their lack of repair capacity. Changes in mitochondrial DNA (mtDNA) content may represent a biologically relevant intermediate outcome in mechanisms linking air pollution and fetal growth restriction. Objective: We investigated whether placental mtDNA content is a possible mediator of the association between prenatal nitrogen dioxide (NO2) exposure and birth weight. Methods: We used data from two independent European cohorts: INMA (n = 376; Spain) and ENVIRONAGE (n = 550; Belgium). Relative placental mtDNA content was determined as the ratio of two mitochondrial genes (MT-ND1 and MTF3212/R3319) to two control genes (RPLP0 and ACTB). Effect estimates for individual cohorts and the pooled data set were calculated using multiple linear regression and mixed models. We also performed a mediation analysis. Results: Pooled estimates indicated that a 10-μg/m3 increment in average NO2 exposure during pregnancy was associated with a 4.9% decrease in placental mtDNA content (95% CI: –9.3, –0.3%) and a 48-g decrease (95% CI: –87, –9 g) in birth weight. However, the association with birth weight was significant for INMA (–66 g; 95% CI: –111, –23 g) but not for ENVIRONAGE (–20 g; 95% CI: –101, 62 g). Placental mtDNA content was associated with significantly higher mean birth weight (pooled analysis, interquartile range increase: 140 g; 95% CI: 43, 237 g). Mediation analysis estimates, which were derived for the INMA cohort only, suggested that 10% (95% CI: 6.6, 13.0 g) of the association between prenatal NO2 and birth weight was mediated by changes in placental mtDNA content. Conclusion: Our results suggest that mtDNA content can be one of the potential mediators of the association between prenatal air pollution exposure and birth weight. Citation: Clemente DB, Casas M, Vilahur N, Begiristain H, Bustamante M, Carsin AE, Fernández MF, Fierens F, Gyselaers W, Iñiguez C, Janssen BG, Lefebvre W, Llop S, Olea N, Pedersen M, Pieters N, Santa Marina L, Souto A, Tardón A, Vanpoucke C, Vrijheid M, Sunyer J, Nawrot TS. 2016. Prenatal ambient air pollution, placental mitochondrial DNA content, and birth weight in the INMA (Spain) and ENVIRONAGE (Belgium) birth cohorts. Environ Health Perspect 124:659–665; http://dx.doi.org/10.1289/ehp.1408981 PMID:26317635

  16. TRX-LOGOS - a graphical tool to demonstrate DNA information content dependent upon backbone dynamics in addition to base sequence.

    PubMed

    Fortin, Connor H; Schulze, Katharina V; Babbitt, Gregory A

    2015-01-01

    It is now widely-accepted that DNA sequences defining DNA-protein interactions functionally depend upon local biophysical features of DNA backbone that are important in defining sites of binding interaction in the genome (e.g. DNA shape, charge and intrinsic dynamics). However, these physical features of DNA polymer are not directly apparent when analyzing and viewing Shannon information content calculated at single nucleobases in a traditional sequence logo plot. Thus, sequence logos plots are severely limited in that they convey no explicit information regarding the structural dynamics of DNA backbone, a feature often critical to binding specificity. We present TRX-LOGOS, an R software package and Perl wrapper code that interfaces the JASPAR database for computational regulatory genomics. TRX-LOGOS extends the traditional sequence logo plot to include Shannon information content calculated with regard to the dinucleotide-based BI-BII conformation shifts in phosphate linkages on the DNA backbone, thereby adding a visual measure of intrinsic DNA flexibility that can be critical for many DNA-protein interactions. TRX-LOGOS is available as an R graphics module offered at both SourceForge and as a download supplement at this journal. To demonstrate the general utility of TRX logo plots, we first calculated the information content for 416 Saccharomyces cerevisiae transcription factor binding sites functionally confirmed in the Yeastract database and matched to previously published yeast genomic alignments. We discovered that flanking regions contain significantly elevated information content at phosphate linkages than can be observed at nucleobases. We also examined broader transcription factor classifications defined by the JASPAR database, and discovered that many general signatures of transcription factor binding are locally more information rich at the level of DNA backbone dynamics than nucleobase sequence. We used TRX-logos in combination with MEGA 6.0 software for molecular evolutionary genetics analysis to visually compare the human Forkhead box/FOX protein evolution to its binding site evolution. We also compared the DNA binding signatures of human TP53 tumor suppressor determined by two different laboratory methods (SELEX and ChIP-seq). Further analysis of the entire yeast genome, center aligned at the start codon, also revealed a distinct sequence-independent 3 bp periodic pattern in information content, present only in coding region, and perhaps indicative of the non-random organization of the genetic code. TRX-LOGOS is useful in any situation in which important information content in DNA can be better visualized at the positions of phosphate linkages (i.e. dinucleotides) where the dynamic properties of the DNA backbone functions to facilitate DNA-protein interaction.

  17. Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea.

    PubMed

    Arahal, D R; Márquez, M C; Volcani, B E; Schleifer, K H; Ventosa, A

    1999-04-01

    A group of 91 moderately halophilic, Gram-positive, rod-shaped strains were isolated from enrichments prepared from Dead Sea water samples collected 57 years ago. These strains were examined for 117 morphological, physiological, biochemical, nutritional and antibiotic susceptibility characteristics. All strains formed endospores and were motile, strictly aerobic and positive for catalase and oxidase. They grew in media containing 5-25% (w/v) total salts, showing optimal growth at 10% (w/v). Eighteen strains were chosen as representative isolates and were studied in more detail. All these strains had mesodiaminopimelic acid in the cell wall and a DNA G + C content of 39.0-42.8 mol%; they constitute a group with levels of DNA-DNA similarity of 70-100%. The sequences of the 16S rRNA genes of three representative strains (strains 123T, 557 and 832) were almost identical (99.9%), and placed the strains in the low G + C content Gram-positive bacteria. On the basis of their features, these isolates should be regarded as members of a new species of the genus Bacillus, for which the name Bacillus marismortui sp. nov. is proposed. The type strain is strain 123T (= DSM 12325T = ATCC 700626T = CIP 105609T = CECT 5066T).

  18. Evaluation of Cassia tora Linn. against Oxidative Stress-induced DNA and Cell Membrane Damage

    PubMed Central

    Kumar, R Sunil; Narasingappa, Ramesh Balenahalli; Joshi, Chandrashekar G; Girish, Talakatta K; Prasada Rao, Ummiti JS; Danagoudar, Ananda

    2017-01-01

    Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy. PMID:28584491

  19. The hOGG1 Ser326Cys polymorphism and male subfertility in Taiwanese patients with varicocele.

    PubMed

    Chen, S S-S; Chiu, L-P

    2018-03-26

    To investigate the association between the human 8-oxoguanine DNA glycosylase 1 (hOGG1) gene Ser326Cys polymorphism and male subfertility in Taiwanese patients with varicocele, we made a prospective study. Ninety young male patients with varicocele (group 1), 50 young male patients with subclinical varicocele (group 2) and 30 normal young male patients without varicocele (group 3) were recruited in this study. The hOGG1 null homozygous genotype (Cys/Cys) and the occurrence of a 4,977-bp deletion in mitochondrial DNA and mitochondrial copy number in spermatozoa were determined by polymerase chain reaction. The 8-hydroxy-2'-deoxyguanosine (8-OHdG) content of DNA in the spermatozoa was measured using high-performance liquid chromatography, and total antioxidant capacity (TAC) of seminal plasma was detected electrochemically. The rates of male subfertility were 31.1% (28/90) in group 1 and 22% (11/50) in group 2. Of 39 subfertile men, 74.4% (29/39) had the hOGG1 Cys/Cys genotype. Patients in groups 1 and 2 with hOGG1 Cys/Cys genotype had significantly higher 8-OHdG content in sperm DNA, lower mitochondrial copy number in spermatozoa and lower TAC in seminal plasma than those with Ser/Ser or Ser/Cys genotype. Clinicians should pay more attention to patients with varicocele with the hOGG1 Cys/Cys genotype. © 2018 Blackwell Verlag GmbH.

  20. Detection of sequence variation in parasite ribosomal DNA by electrophoresis in agarose gels supplemented with a DNA-intercalating agent.

    PubMed

    Zhu, X Q; Chilton, N B; Gasser, R B

    1998-05-01

    This study evaluated the use of a commercially available DNA intercalating agent (Resolver Gold) in agarose gels for the direct detection of sequence variation in ribosomal DNA (rDNA). This agent binds preferentially to AT sequence motifs in DNA. Regions of nuclear rDNA, known to provide genetic markers for the identification of species of parasitic ascarid nematodes (order Ascaridida), were amplified by polymerase chain reaction (PCR) and subjected to electrophoresis in standard agarose gels versus gels supplemented with Resolver Gold. Individual taxa examined could not be distinguished reliably based on the size of their amplicons in standard agarose gels, whereas they could be readily delineated based on mobility using Resolver Gold-supplemented gels. The latter was achieved because of differences (approximately 0.1-8.2%) in the AT content of the fragments among different taxa, which were associated with significant interspecific differences (approximately 11-39%) in the rDNA sequences employed. There was a tendency for fragments with higher AT content to migrate slower in supplemented agarose gels compared with those of lower AT content. The results indicate the usefulness of this electrophoretic approach to rapidly screen for sequence variability within or among PCR-amplified rDNA fragments of similar sizes but differing AT contents. Although evaluated on rDNA of parasites, the approach has potential to be applied to a range of genes of different groups of infectious organisms.

  1. Rapid DNA analysis for automated processing and interpretation of low DNA content samples.

    PubMed

    Turingan, Rosemary S; Vasantgadkar, Sameer; Palombo, Luke; Hogan, Catherine; Jiang, Hua; Tan, Eugene; Selden, Richard F

    2016-01-01

    Short tandem repeat (STR) analysis of casework samples with low DNA content include those resulting from the transfer of epithelial cells from the skin to an object (e.g., cells on a water bottle, or brim of a cap), blood spatter stains, and small bone and tissue fragments. Low DNA content (LDC) samples are important in a wide range of settings, including disaster response teams to assist in victim identification and family reunification, military operations to identify friend or foe, criminal forensics to identify suspects and exonerate the innocent, and medical examiner and coroner offices to identify missing persons. Processing LDC samples requires experienced laboratory personnel, isolated workstations, and sophisticated equipment, requires transport time, and involves complex procedures. We present a rapid DNA analysis system designed specifically to generate STR profiles from LDC samples in field-forward settings by non-technical operators. By performing STR in the field, close to the site of collection, rapid DNA analysis has the potential to increase throughput and to provide actionable information in real time. A Low DNA Content BioChipSet (LDC BCS) was developed and manufactured by injection molding. It was designed to function in the fully integrated Accelerated Nuclear DNA Equipment (ANDE) instrument previously designed for analysis of buccal swab and other high DNA content samples (Investigative Genet. 4(1):1-15, 2013). The LDC BCS performs efficient DNA purification followed by microfluidic ultrafiltration of the purified DNA, maximizing the quantity of DNA available for subsequent amplification and electrophoretic separation and detection of amplified fragments. The system demonstrates accuracy, precision, resolution, signal strength, and peak height ratios appropriate for casework analysis. The LDC rapid DNA analysis system is effective for the generation of STR profiles from a wide range of sample types. The technology broadens the range of sample types that can be processed and minimizes the time between sample collection, sample processing and analysis, and generation of actionable intelligence. The fully integrated Expert System is capable of interpreting a wide range or sample types and input DNA quantities, allowing samples to be processed and interpreted without a technical operator.

  2. Soil Bacterial Community Shift Correlated with Change from Forest to Pasture Vegetation in a Tropical Soil

    PubMed Central

    Nüsslein, Klaus; Tiedje, James M.

    1999-01-01

    The change in vegetative cover of a Hawaiian soil from forest to pasture led to significant changes in the composition of the soil bacterial community. DNAs were extracted from both soil habitats and compared for the abundance of guanine-plus-cytosine (G+C) content, by analysis of abundance of phylotypes of small-subunit ribosomal DNA (SSU rDNA) amplified from fractions with 63 and 35% G+C contents, and by phylogenetic analysis of the dominant rDNA clones in the 63% G+C content fraction. All three methods showed differences between the forest and pasture habitats, providing evidence that vegetation had a strong influence on microbial community composition at three levels of taxon resolution. The forest soil DNA had a peak in G+C content of 61%, while the DNA of the pasture soil had a peak in G+C content of 67%. None of the dominant phylotypes found in the forest soil were detected in the pasture soil. For the 63% G+C fraction SSU rDNA sequence analysis of the three most dominant members revealed that their phyla changed from Fibrobacter and Syntrophomonas assemblages in the forest soil to Burkholderia and Rhizobium–Agrobacterium assemblages in the pasture soil. PMID:10427058

  3. Nuclear DNA content variation in life history phases of the Bonnemasoniaceae (Rhodophyta).

    PubMed

    Salvador Soler, Noemi; Gómez Garreta, Amelia; Ribera Siguan, Ma Antonia; Kapraun, Donald F

    2014-01-01

    Nuclear DNA content in gametophytes and sporophytes or the prostrate phases of the following species of Bonnemaisoniaceae (Asparagopsis armata, Asparagopsis taxiformis, Bonnemaisonia asparagoides, Bonnemaisonia clavata and Bonnemaisonia hamifera) were estimated by image analysis and static microspectrophotometry using the DNA-localizing fluorochrome DAPI (4', 6-diamidino-2-phenylindole, dilactate) and the chicken erythrocytes standard. These estimates expand on the Kew database of DNA nuclear content. DNA content values for 1C nuclei in the gametophytes (spermatia and vegetative cells) range from 0.5 pg to 0.8 pg, and for 2C nuclei in the sporophytes or the prostrate phases range from 1.15-1.7 pg. Although only the 2C and 4C values were observed in the sporophyte or the prostrate phase, in the vegetative cells of the gametophyte the values oscillated from 1C to 4C, showing the possible start of endopolyploidy. The results confirm the alternation of nuclear phases in these Bonnemaisoniaceae species, in those that have tetrasporogenesis, as well as those that have somatic meiosis. The availability of a consensus phylogenetic tree for Bonnemaisoniaceae has opened the way to determine evolutionary trends in DNA contents. Both the estimated genome sizes and the published chromosome numbers for Bonnemaisoniaceae suggest a narrow range of values consistent with the conservation of an ancestral genome.

  4. Associations of mitochondrial haplogroups and mitochondrial DNA copy numbers with end-stage renal disease in a Han population.

    PubMed

    Zhang, Yuheng; Zhao, Ying; Wen, Shuzhen; Yan, Rengna; Yang, Qinglan; Chen, Huimei

    2017-09-01

    Mitochondrial DNA (mtDNA) is closely related to mitochondrion function, and variations have been suggested to be involved in pathogenesis of complex diseases. The present study sought to elucidate mitochondrial haplogroups and mtDNA copy number in end-stage renal disease (ESRD) in a Han population. First, the mitochondrial haplogroups of 37 ESRD patients were clustered into several haplogroups, and haplogroup A & D were taken as the candidate risk haplogroups for ESRD. Second, the frequencies of A and D were assessed in 344 ESRD patients and 438 healthy controls, respectively. Haplogroup D was found to be risk maker for ESRD in young subjects (<30 years) with an OR of 2.274. Finally, intracellular and cell-free mtDNA copy numbers were evaluated with quantitative-PCR. The ESRD patients exhibited greater cell-free mtDNA contents than the healthy controls but less intracellular mtDNA. Haplogroup D exhibited a further increase in cell-free mtDNA content and a decrease in intracellular mtDNA content among the ESRDs patients. Our findings suggest that mtNDA haplogroup D may contributes to pathogenesis of early-onset ESRD through alterations of mtDNA copy numbers.

  5. [Diversity and tissue distribution of fungal endophytes in Alpinia officinarum: an important south-China medicinal plant].

    PubMed

    Zhou, Ren-Chao; Huang, Juan; Li, Ze-En; Li, Shu-Bin

    2014-08-01

    In the present study, terminal-restriction fragment length polymorphism (T-RFLP) technique was applied to assess the diversity and tissue distribution of the fungal endophyte communities of Alpinia officinarum collected from Longtang town in Xuwen county, Guangdong province, China, at which the pharmacological effect of the medicine plant is traditional considered to be the significantly higher than that in any other growth areas in China. A total of 28 distinct Terminal-Restriction Fragment (T-RFs) were detected with HhaI Mono-digestion targeted amplified fungal nuclear ribosomal internal transcribed spacer region sequences (rDNA ITS) from the root, rhizome, stem, and leaf internal tissues of A. officinarum plant, indicating that at least 28 distinct fungal species were able to colonize the internal tissue of the host plant. The rDNA ITS-T-RFLP profiles obtained from different tissues of the host plant were obvious distinct. And the numbers of total T-RFs, and the dominant T-RFs detected from various tissues were significantly different. Based on the obtained T-RFLP profiles, Shannon's diversity index and the Shannon's evenness index were calculated, which were significantly different among tissues (P < 0.05). Furthermore, two types of active chemicals, total volatile oils by water vapor distillation method and galangin by methanol extraction-HPLC method, were examined in the each tissue of the tested plant. Both of tested components were detected in all of the four tissues of the medicine plant with varying contents. And the highest was in rhizome tissue. Correlation analysis revealed there were significant negative correlations between both of the tested active components contents and calculated Shannon's diversity index, as well as the Shannon's evenness index of the fungal endophyte communities of the host plant (P = 0, Pearson correlation coefficient ≤ -0.962), and significant positive correlations between both of the tested active components contents and 325 bp dominant T-RF linkage to Pestalotiopsis (P = 0, Pearson correlation coefficient ≥ 0.975). In conclusion, A. officinarum is colonized by diverse fungal endophytes communities. The diversity of the fungal endophytes was found in the A. officinarum varied with differences of the tissue types of the host plants and was closely correlated with the accumulation of main active components, total volatile oils and galangin contents in the host plant tissue.

  6. Incorporation of excess wild-type and mutant tRNA(3Lys) into human immunodeficiency virus type 1.

    PubMed Central

    Huang, Y; Mak, J; Cao, Q; Li, Z; Wainberg, M A; Kleiman, L

    1994-01-01

    Human immunodeficiency virus (HIV) particles produced in COS-7 cells transfected with HIV type 1 (HIV-1) proviral DNA contain 8 molecules of tRNA(3Lys) per 2 molecules of genomic RNA and 12 molecules of tRNA1,2Lys per 2 molecules of genomic RNA. When COS-7 cells are transfected with a plasmid containing both HIV-1 proviral DNA and a human tRNA3Lys gene, there is a large increase in the amount of cytoplasmic tRNA3Lys per microgram of total cellular RNA, and the tRNA3Lys content in the virus increases from 8 to 17 molecules per 2 molecules of genomic RNA. However, the total number of tRNALys molecules per 2 molecules of genomic RNA remains constant at 20; i.e., the viral tRNA1,2Lys content decreases from 12 to 3 molecules per 2 molecules of genomic RNA. All detectable tRNA3Lys is aminoacylated in the cytoplasm of infected cells and deacylated in the virus. When COS-7 cells are transfected with a plasmid containing both HIV-1 proviral DNA and a mutant amber suppressor tRNA3Lys gene (in which the anticodon is changed from TTT to CTA), there is also a large increase in the relative concentration of cytoplasmic tRNA3Lys, and the tRNA3Lys content in the virus increases from 8 to 15 molecules per 2 molecules of genomic RNA, with a decrease in viral tRNA1,2Lys from 12 to 5 molecules per 2 molecules of genomic RNA. Thus, the total number of molecules of tRNALys in the virion remains at 20. The alteration of the anticodon has little effect on the viral packaging of this mutant tRNA in spite of the fact that it no longer contains the modified base mcm 5s2U at position 34, and its ability to be aminoacylated is significantly impaired compared with that of wild-type tRNA3Lys. Viral particles which have incorporated either excess wild-type tRNA3Lys or mutant suppressor tRNA3Lys show no differences in viral infectivity compared with wild-type HIV-1. Images PMID:7966556

  7. In Vitro Antioxidant and Antiproliferative Activities of Novel Orange Peel Extract and It's Fractions on Leukemia HL-60 Cells.

    PubMed

    Diab, Kawthar A E; Shafik, Reham Ezzat; Yasuda, Shin

    2015-01-01

    In the present work, novel orange peel was extracted with 100%EtOH (ethanol) and fractionated into four fractions namely F1, F2, F3, F4 which were eluted from paper chromatographs using 100%EtOH, 80%EtOH, 50%EtOH and pure water respectively. The crude extract and its four fractions were evaluated for their total polyphenol content (TPC), total flavonoid content (TFC) and radical scavenging activity using DPPH (1,1-diphenyl-2-picrylhydrazyl) assay. Their cytotoxic activity using WST assay and DNA damage by agarose gel electrophoresis were also evaluated in a human leukemia HL-60 cell line. The findings revealed that F4 had the highest TPC followed by crude extract, F2, F3 and F1. However, the crude extract had the highest TFC followed by F4, F3, F2, and F1. Depending on the values of EC50 and trolox equivalent antioxidant capacity, F4 possessed the strongest antioxidant activity while F1 and F2 displayed weak antioxidant activity. Further, incubation HL-60 cells with extract/fractions for 24h caused an inhibition of cell viability in a concentration- dependent manner. F3 and F4 exhibited a high antiproliferative activity with a narrow range of IC50 values (45.9 - 48.9 μg/ml). Crude extract exhibited the weakest antiproliferative activity with an IC50 value of 314.89 μg/ml. Analysis of DNA fragmentation displayed DNA degradation in the form of a smear-type pattern upon agarose gel after incubation of HL-60 cells with F3 and F4 for 6 h. Overall, F3 and F4 appear to be good sources of phytochemicals with antioxidant and potential anticancer activities.

  8. Pharmacodynamics of cisplatin in human head and neck cancer: correlation between platinum content, DNA adduct levels and drug sensitivity in vitro and in vivo

    PubMed Central

    Welters, M J P; Fichtinger-Schepman, A M J; Baan, R A; Jacobs-Bergmans, A J; Kegel, A; van der Vijgh, W J F; Braakhuis, B J M

    1999-01-01

    Total platinum contents and cisplatin–DNA adduct levels were determined in vivo in xenografted tumour tissues in mice and in vitro in cultured tumour cells of head and neck squamous cell carcinoma (HNSCC), and correlated with sensitivity to cisplatin. In vivo, a panel of five HNSCC tumour lines growing as xenografts in nude mice was used. In vitro, the panel consisted of five HNSCC cell lines, of which four had an in vivo equivalent. Sensitivity to cisplatin varied three- to sevenfold among cell lines and tumours respectively. However, the ranking of the sensitivities of the tumour lines (in vivo), also after reinjection of the cultured tumour cells, did not coincide with that of the corresponding cell lines, which showed that cell culture systems are not representative for the in vivo situation. Both in vitro and in vivo, however, significant correlations were found between total platinum levels, measured by atomic absorption spectrophotometry (AAS), and tumour response to cisplatin therapy at all time points tested. The levels of the two major cisplatin–DNA adduct types were determined by a recently developed and improved32P post-labelling assay at various time points after cisplatin treatment. Evidence is presented that the platinum–AG adduct, in which platinum is bound to guanine and an adjacent adenine, may be the cytotoxic lesion because a significant correlation was found between the platinum–AG levels and the sensitivities in our panel of HNSCC, in vitro as well as in vivo. This correlation with the platinum–AG levels was established at 1 h (in vitro) and 3 h (in vivo) after the start of the cisplatin treatment, which emphasizes the importance of early sampling. © 1999 Cancer Research Campaign PMID:10408697

  9. Identifying sensitive windows for prenatal particulate air pollution exposure and mitochondrial DNA content in cord blood.

    PubMed

    Rosa, Maria José; Just, Allan C; Guerra, Marco Sánchez; Kloog, Itai; Hsu, Hsiao-Hsien Leon; Brennan, Kasey J; García, Adriana Mercado; Coull, Brent; Wright, Rosalind J; Téllez Rojo, Martha María; Baccarelli, Andrea A; Wright, Robert O

    2017-01-01

    Changes in mitochondrial DNA (mtDNA) can serve as a marker of cumulative oxidative stress (OS) due to the mitochondria's unique genome and relative lack of repair systems. In utero particulate matter ≤2.5μm (PM 2.5 ) exposure can enhance oxidative stress. Our objective was to identify sensitive windows to predict mtDNA damage experienced in the prenatal period due to PM 2.5 exposure using mtDNA content measured in cord blood. Women affiliated with the Mexican social security system were recruited during pregnancy in the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) study. Mothers with cord blood collected at delivery and complete covariate data were included (n=456). Mothers' prenatal daily exposure to PM 2.5 was estimated using a satellite-based spatio-temporally resolved prediction model and place of residence during pregnancy. DNA was extracted from umbilical cord leukocytes. Quantitative real-time polymerase chain reaction (qPCR) was used to determine mtDNA content. A distributive lag regression model (DLM) incorporating weekly averages of daily PM 2.5 predictions was constructed to plot the association between exposure and OS over the length of pregnancy. In models that included child's sex, mother's age at delivery, prenatal environmental tobacco smoke exposure, birth year, maternal education, and assay batch, we found significant associations between higher PM 2.5 exposure during late pregnancy (35-40weeks) and lower mtDNA content in cord blood. Increased PM 2.5 during a specific prenatal window in the third trimester was associated with decreased mtDNA content suggesting heightened sensitivity to PM-induced OS during this life stage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Profiling the genome-wide DNA methylation pattern of porcine ovaries using reduced representation bisulfite sequencing.

    PubMed

    Yuan, Xiao-Long; Gao, Ning; Xing, Yan; Zhang, Hai-Bin; Zhang, Ai-Ling; Liu, Jing; He, Jin-Long; Xu, Yuan; Lin, Wen-Mian; Chen, Zan-Mou; Zhang, Hao; Zhang, Zhe; Li, Jia-Qi

    2016-02-25

    Substantial evidence has shown that DNA methylation regulates the initiation of ovarian and sexual maturation. Here, we investigated the genome-wide profile of DNA methylation in porcine ovaries at single-base resolution using reduced representation bisulfite sequencing. The biological variation was minimal among the three ovarian replicates. We found hypermethylation frequently occurred in regions with low gene abundance, while hypomethylation in regions with high gene abundance. The DNA methylation around transcriptional start sites was negatively correlated with their own CpG content. Additionally, the methylation level in the bodies of genes was higher than that in their 5' and 3' flanking regions. The DNA methylation pattern of the low CpG content promoter genes differed obviously from that of the high CpG content promoter genes. The DNA methylation level of the porcine ovary was higher than that of the porcine intestine. Analyses of the genome-wide DNA methylation in porcine ovaries would advance the knowledge and understanding of the porcine ovarian methylome.

  11. Cypermethrin and lambda-cyhalothrin induced in vivo alterations in nucleic acids and protein contents in a freshwater catfish, Clarias batrachus (Linnaeus; Family-Clariidae).

    PubMed

    Kumar, Amit; Sharma, Bechan; Pandey, Ravi S

    2009-08-01

    The fresh water fish, Clarias batrachus, were exposed to sub-acute concentrations of cypermethrin and lambda-cyhalothrin for 96 h to assess their impact on the levels of nucleic acids and protein in different organs of fish. DNA content was found almost unchanged with a single exception of liver, which showed significant increment in the levels of DNA in response to the separate treatments of both compounds. Both RNA and protein contents declined in brain, liver, and muscle while sharp increase was observed in gills. However, in kidney, RNA contents depicted significant enhancement only at higher concentrations, with initial decline at lower concentrations. The trends of alterations in RNA/DNA and protein/DNA ratios were quite similar to the corresponding results explained above for RNA and protein. The results clearly indicated that both of these pyrethroids exerted their effects at transcriptional and translational levels while DNA synthesis was found to be unaffected by these compounds with an exception of liver.

  12. EFFECTS OF X IRRADIATION ON THE LEVEL OF NUCLEIC ACIDS AND PROTEINS OF THE UTERUS AND VAGINA OF PREPUBERTAL MICE SUBMITTED TO INDUCED HYPERPLASIA (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ledoux, L.; Charles, P.

    1961-12-01

    In 20-day-old mice injected subcutaneously with a single 10 ug. dose of estradiol benzoate the deoxyribonucleic acid (DNA) content rose 100% in uterus and 50% in vagina 72 hr later. Ribonucleic acid (RNA) content rose 250 and 100%, respectively, and protein content rose in parallel with DNA. Similarly treated mice were exposed to x rays (150 to 850 r) 24 hr before, simultaneously with, or 24 to 48 hr after injection of estradiol. Irradiation with 750 r before or with the injection inhibited the rise of DNA and RNA 50 to 80% but did not affect the increase in proteins.more » Irradiation of uninjected control mice diminished DNA and RNA. Irradiation 24 to 38 hr after the injection immediately suppressed the increases of DNA and RNA in uterus and vagina and of protein in uterus. Protein content of vagina was not influenced. (H.H.D.)« less

  13. [Determination of DNA content in individual Yersinia pestis cells by using flow cytofluorimetry method: comparative analysis of inhomogeneity in cultures of strains with various biological properties].

    PubMed

    Kravtsov, A L; Liapin, M N; Shmel'kova, T P; Golovko, E M; Maliukova, T A; Kostiukova, T A; Ezhov, I N

    2011-01-01

    Comparative analysis of Yersinia pestis strains with various biological properties by DNA content in individual cells. Virulent strain 231, avirulent strain KM 260 (12) [231], that is its isogenic (no-plasmid) derivative, and vaccine strain EV NIIEG were used. 48-hour agar cultures of the studied strains reproduced at 28 degrees C and their subcultures obtained by cultivation of the initial cultures by aeration on liquid nutrient medium from 37 degrees C were prepared. DNA of the fixed bacteria was dyed by a mixture of ethidium bromide and mitramycin, and then the bacteria were studied by using flow cytofluorimeter for the determination of rates of cells with relatively low or high DNA content in the studied bacterial populations. The degree of inhomogeneity of a bacterial population was evaluated by DNA histogram variation coefficient value. In 6 hours of growth at 37 degrees C in optically non-dense bacterial cultures a high degree of DNA content per cell inhomogeneity was established that is related to the activation of DNA replication process in bacteria. In 48 hours of growth this inhomogeneity completely disappeared in the virulent strain cultures and remained in the avirulent strain cultures of the plague pathogen. Based on the studied parameters the vaccine strain held an intermediate position. Further studies of the plague culture DNA content per cell inhomogeneity may become a base for the operative strain differentiation based on pathogenicity level (hazard) for humans, and therefore the requirements for the management of safe working conditions with this microorganism.

  14. Monitoring the presence of genetically modified food on the market of the Republic of Croatia.

    PubMed

    Cattunar, Albert; Capak, Krunoslav; Novak, Jelena Zafran; Mićović, Vladimir; Doko-Jelinić, Jagoda; Malatestinić, Dulija

    2011-12-01

    From the beginning of the human race people have been applying different methods to change the genetic material of either plants or animals in order to increase their yield as well as to improve the quality and quantity of food. Genetically modified organism (GMO) means an organism in which the genetic material has been altered in a way that does not occur naturally by mating and/or natural recombination. Analysing the presence of GMO in food is done by detecting the presence of either specific DNA sequences inserted in the genome of transgenic organism, or detecting proteins as a result of the expression of the inserted DNA. In this work food testing for the presence of genetically modified organisms was conducted during the period from 2004 to 2007 in the GMO laboratory of the Croatian National Institute of Public Health. According to the regulations, among the samples in which the presence of GMO was detected, all those which had more than 0.9% of GMO content were either rejected from the border or removed from the market, because such GM food has to be appropriately labelled. Among the food samples which were analysed in 2004: 127 (2.37%) of a total of 1226 samples contained more than 0.9% of GMOs; in 2005 there was only one in 512 (0.20%) samples in total; in 2006 there were 4 out of 404 samples (0.99%), and in 2007: 7 of a total of 655 samples (1.07%) had GMO content above the allowed threshold of 0.9%.

  15. BODYGUARD is required for the biosynthesis of cutin in Arabidopsis.

    PubMed

    Jakobson, Liina; Lindgren, Leif Ove; Verdier, Gaëtan; Laanemets, Kristiina; Brosché, Mikael; Beisson, Fred; Kollist, Hannes

    2016-07-01

    The cuticle plays a critical role in plant survival during extreme drought conditions. There are, however, surprisingly, many gaps in our understanding of cuticle biosynthesis. An Arabidopsis thaliana T-DNA mutant library was screened for mutants with enhanced transpiration using a simple condensation spot method. Five mutants, named cool breath (cb), were isolated. The cb5 mutant was found to be allelic to bodyguard (bdg), which is affected in an α/β-hydrolase fold protein important for cuticle structure. The analysis of cuticle components in cb5 (renamed as bdg-6) and another T-DNA mutant allele (bdg-7) revealed no impairment in wax synthesis, but a strong decrease in total cutin monomer load in young leaves and flowers. Root suberin content was also reduced. Overexpression of BDG increased total leaf cutin monomer content nearly four times by affecting preferentially C18 polyunsaturated ω-OH fatty acids and dicarboxylic acids. Whole-plant gas exchange analysis showed that bdg-6 had higher cuticular conductance and rate of transpiration; however, plant lines overexpressing BDG resembled the wild-type with regard to these characteristics. This study identifies BDG as an important component of the cutin biosynthesis machinery in Arabidopsis. We also show that, using BDG, cutin can be greatly modified without altering the cuticular water barrier properties and transpiration. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  16. Neuroprotective effect of the methanolic extract of Hibiscus asper leaves in 6-hydroxydopamine-lesioned rat model of Parkinson's disease.

    PubMed

    Hritcu, Lucian; Foyet, Harquin Simplice; Stefan, Marius; Mihasan, Marius; Asongalem, Acha Emmanuel; Kamtchouing, Pierre

    2011-09-01

    While the Hibiscus asper Hook.f. (Malvaceae) is a traditional herb largely used in tropical region of the Africa as vegetable, potent sedative, tonic and restorative, anti-inflammatory and antidepressive drug, there is very little scientific data concerning the efficacy of this. The antioxidant and antiapoptotic activities of the methanolic extract of Hibiscus asper leaves (50 and 100 mg/kg) were assessed using superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) specific activities, total glutathione (GSH) content, malondialdehyde (MDA) level (lipid peroxidation) and DNA fragmentation assays in male Wistar rats subjected to unilateral 6-hydroxydopamine (6-OHDA)-lesion. In 6-OHDA-lesioned rats, methanolic extract of Hibiscus asper leaves showed potent antioxidant and antiapoptotic activities. Chronic administration of the methanolic extract (50 and 100 mg/kg, i.p., daily, for 7 days) significantly increased antioxidant enzyme activities (SOD, GPX and CAT), total GSH content and reduced lipid peroxidation (MDA level) in rat temporal lobe homogenates, suggesting antioxidant activity. Also, DNA cleavage patterns were absent in the 6-OHDA-lesioned rats treated with methanolic extract of Hibiscus asper leaves, suggesting antiapoptotic activity. Taken together, our results suggest that the methanolic extract of Hibiscus asper leaves possesses neuroprotective activity against 6-OHDA-induced toxicity through antioxidant and antiapoptotic activities in Parkinson's disease model. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Myonuclear transcription is responsive to mechanical load and DNA content but uncoupled from cell size during hypertrophy.

    PubMed

    Kirby, Tyler J; Patel, Rooshil M; McClintock, Timothy S; Dupont-Versteegden, Esther E; Peterson, Charlotte A; McCarthy, John J

    2016-03-01

    Myofibers increase size and DNA content in response to a hypertrophic stimulus, thus providing a physiological model with which to study how these factors affect global transcription. Using 5-ethynyl uridine (EU) to metabolically label nascent RNA, we measured a sevenfold increase in myofiber transcription during early hypertrophy before a change in cell size and DNA content. The typical increase in myofiber DNA content observed at the later stage of hypertrophy was associated with a significant decrease in the percentage of EU-positive myonuclei; however, when DNA content was held constant by preventing myonuclear accretion via satellite cell depletion, both the number of transcriptionally active myonuclei and the amount of RNA generated by each myonucleus increased. During late hypertrophy, transcription did not scale with cell size, as smaller myofibers (<1000 μm(2)) demonstrated the highest transcriptional activity. Finally, transcription was primarily responsible for changes in the expression of genes known to regulate myofiber size. These findings show that resident myonuclei possess a significant reserve capacity to up-regulate transcription during hypertrophy and that myofiber transcription is responsive to DNA content but uncoupled from cell size during hypertrophy. © 2016 Kirby et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Detection of early changes in lung cell cytology by flow-systems analysis techniques. Progress report, January 1-June 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinkamp, J.A.; Wilson, J.S.; Svitra, Z.V.

    1979-08-01

    This report summarizes results of ongoing experiments designed to develop automated flow-analysis assay methods for discerning damage to exfoliated respiratory tract cells in model test animals exposed by inhalation to physical and chemical agents associated with the production of synthetic fuels from oil shale and coal, the specific goal being the determination of atypical changes in exposed alveolar macrophages and epithelial cells. Animals were exposed to oil shale particles (raw and spent), silica, and polystyrene latex spheres via intratracheal instillation. Respiratory tract cells were obtained by lavaging the lungs with normal saline, stained with mithramycin for DNA content, and analyzedmore » using flow cytometric analysis methods. In addition to measuring DNA content, differential and total cell counts were made on all samples analyzed. DNA content frequency distribution histograms and cytology showed definite atypical changes resulting from exposure to shale and silica particulates when compared to the controls. To continue development of fluorescence staining methods for measuring intracellular enzymes in alveolar macrophages, studies were initiated for determining ..beta..-glucuronidase using naphthol AS-BI-..beta..-d-glucuronic acid as a fluorogenic substrate. As this new technology becomes adapted to analyzing pulmonary macrophages and epithelial cells, the measurement of physical and biochemical properties as a function of exposure to particulate and gaseous toxic agents related to the production of synthetic fuels will be increased. This analytical approach is designed to assist in the establishment of future guideline for estimating the risks to exposed humans.« less

  19. Analytical cytology applied to detection of prognostically important cytogenetic aberrations: Current status and future directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, J.W.; Pinkel, D.; Trask, B.

    1987-07-24

    This paper discusses the application of analytical cytology to the detection of clinically important chromosome abnormalities in human tumors. Flow cytometric measurements of DNA distributions have revealed that many human tumors have abnormal (usually elevated) DNA contents and that the occurrence of DNA abnormality may be diagnostically or prognostically important. However, DNA indices (ratio of tumor DNA content to normal DNA content) provide little information about the specific chromosome(s) involved in the DNA content abnormality. Fluorescence in situ hybridization with chromosome specific probes is suggested as a technique to facilitate detection of specific chromosome aneuploidy in interphase and metaphase humanmore » tumor cells. Fluorescence hybridization to nuclei on slides allows enumeration of brightly fluorescent nuclear domains as an estimate of the number of copies of the chromosome type for which the hybridization probe is specific. Fluorescence hybridization can also be made to nuclei in suspension. The fluorescence intensity can then be measured flow cytometrically as an indication of the number of chromosomes in each nucleus carrying the DNA sequence homologous to the probe. In addition, quantitative image analysis may be used to explore the position of chromosomes in interphase nuclei and to look for changes in the order that may eventually permit detection of clinicaly important conditions. 55 refs., 8 figs., 1 tab.« less

  20. The transcultural diabetes nutrition algorithm: a canadian perspective.

    PubMed

    Gougeon, Réjeanne; Sievenpiper, John L; Jenkins, David; Yale, Jean-François; Bell, Rhonda; Després, Jean-Pierre; Ransom, Thomas P P; Camelon, Kathryn; Dupre, John; Kendall, Cyril; Hegazi, Refaat A; Marchetti, Albert; Hamdy, Osama; Mechanick, Jeffrey I

    2014-01-01

    The Transcultural Diabetes Nutrition Algorithm (tDNA) is a clinical tool designed to facilitate implementation of therapeutic lifestyle recommendations for people with or at risk for type 2 diabetes. Cultural adaptation of evidence-based clinical practice guidelines (CPG) recommendations is essential to address varied patient populations within and among diverse regions worldwide. The Canadian version of tDNA supports and targets behavioural changes to improve nutritional quality and to promote regular daily physical activity consistent with Canadian Diabetes Association CPG, as well as channelling the concomitant management of obesity, hypertension, dyslipidemia, and dysglycaemia in primary care. Assessing glycaemic index (GI) (the ranking of foods by effects on postprandial blood glucose levels) and glycaemic load (GL) (the product of mean GI and the total carbohydrate content of a meal) will be a central part of the Canadian tDNA and complement nutrition therapy by facilitating glycaemic control using specific food selections. This component can also enhance other metabolic interventions, such as reducing the need for antihyperglycaemic medication and improving the effectiveness of weight loss programs. This tDNA strategy will be adapted to the cultural specificities of the Canadian population and incorporated into the tDNA validation methodology.

  1. Clinical mitochondrial genetics

    PubMed Central

    Chinnery, P.; Howell, N.; Andrews, R.; Turnbull, D.

    1999-01-01

    The last decade has been an age of enlightenment as far as mitochondrial pathology is concerned. Well established nuclear genetic diseases, such as Friedreich's ataxia,12 Wilson disease,3 and autosomal recessive hereditary spastic paraplegia,4 have been shown to have a mitochondrial basis, and we are just starting to unravel the complex nuclear genetic disorders which directly cause mitochondrial dysfunction (table 1). However, in addition to the 3 billion base pair nuclear genome, each human cell typically contains thousands of copies of a small, 16.5 kb circular molecule of double stranded DNA (fig 1). Mitochondrial DNA (mtDNA) accounts for only 1% of the total cellular nucleic acid content. It encodes for 13 polypeptides which are essential for aerobic metabolism and defects of the mitochondrial genome are an important cause of human disease.9293 Since the characterisation of the first pathogenic mtDNA defects in 1988,513 over 50 point mutations and well over 100 rearrangements of the mitochondrial genome have been associated with human disease9495 (http://www.gen.emory.edu/mitomap.html). These disorders form the focus of this article.


Keywords: mitochondrial DNA; mitochondrial disease; heteroplasmy; genetic counselling PMID:10874629

  2. The Transcultural Diabetes Nutrition Algorithm: A Canadian Perspective

    PubMed Central

    Sievenpiper, John L.; Jenkins, David; Yale, Jean-François; Bell, Rhonda; Després, Jean-Pierre; Ransom, Thomas P. P.; Dupre, John; Kendall, Cyril; Hegazi, Refaat A.; Marchetti, Albert; Hamdy, Osama; Mechanick, Jeffrey I.

    2014-01-01

    The Transcultural Diabetes Nutrition Algorithm (tDNA) is a clinical tool designed to facilitate implementation of therapeutic lifestyle recommendations for people with or at risk for type 2 diabetes. Cultural adaptation of evidence-based clinical practice guidelines (CPG) recommendations is essential to address varied patient populations within and among diverse regions worldwide. The Canadian version of tDNA supports and targets behavioural changes to improve nutritional quality and to promote regular daily physical activity consistent with Canadian Diabetes Association CPG, as well as channelling the concomitant management of obesity, hypertension, dyslipidemia, and dysglycaemia in primary care. Assessing glycaemic index (GI) (the ranking of foods by effects on postprandial blood glucose levels) and glycaemic load (GL) (the product of mean GI and the total carbohydrate content of a meal) will be a central part of the Canadian tDNA and complement nutrition therapy by facilitating glycaemic control using specific food selections. This component can also enhance other metabolic interventions, such as reducing the need for antihyperglycaemic medication and improving the effectiveness of weight loss programs. This tDNA strategy will be adapted to the cultural specificities of the Canadian population and incorporated into the tDNA validation methodology. PMID:24550982

  3. [The value of low-molecular-weight DNA of blood plasma in the diagnostic of the patological processes of different genesis].

    PubMed

    Vasil'eva, I N; Zinkin, V N

    2013-01-01

    The low-molecular-weight DNA appears in blood plasma of irradiated rats, and its content correlates directly with the irradiation dose. Cloning has shown, that enrichment of low-molecular-weight DNA with G+C content and features of its nucleotide sequences point to its ability to form rather stable nucleosomes. DNA obtained after irradiation of rats with principally different doses 8 and 100 Gy differed not only quantitatively, but also by content of the dinucleotides CpG and CpT; this suggests their origin from different sites of genome. For the first time it has been shown that exposure to low-frequency noise results in an increase of the contents of blood plasma low-molecular-weight DNA. In stroke patients blood concentrations of this DNA increased 3 days after the beginning of the acute period, and dynamics of its excretion differs in ischemic and hemorrhagic forms; in the case of ischemia low-molecular-weight DNA appears in cerebrospinal fluid. The chronic obstructive pulmonary disease in the state of remission is characterized by the decline of the level of low-molecular-weight DNA in the blood plasma unlike in the case of the chronic nonobstructive bronchitis. The clear dependence between formation and special features of the low-molecular-weight DNA fraction in blood plasma makes it possible to consider the low-molecular fraction as an universal index of apoptosis, which allows to distinguish basically different conditions of the body.

  4. Global Changes in DNA Methylation in Seeds and Seedlings of Pyrus communis after Seed Desiccation and Storage

    PubMed Central

    Michalak, Marcin; Barciszewska, Mirosława Z.; Barciszewski, Jan; Plitta, Beata P.; Chmielarz, Paweł

    2013-01-01

    The effects of storage and deep desiccation on structural changes of DNA in orthodox seeds are poorly characterized. In this study we analyzed the 5-methylcytosine (m5C) global content of DNA isolated from seeds of common pear (Pyrus communis L.) that had been subjected to extreme desiccation, and the seedlings derived from these seeds. Germination and seedling emergence tests were applied to determine seed viability after their desiccation. In parallel, analysis of the global content of m5C in dried seeds and DNA of seedlings obtained from such seeds was performed with a 2D TLC method. Desiccation of fresh seeds to 5.3% moisture content (mc) resulted in a slight reduction of DNA methylation, whereas severe desiccation down to 2–3% mc increased DNA methylation. Strong desiccation of seeds resulted in the subsequent generation of seedlings of shorter height. A 1-year period of seed storage induced a significant increase in the level of DNA methylation in seeds. It is possible that alterations in the m5C content of DNA in strongly desiccated pear seeds reflect a reaction of desiccation-tolerant (orthodox) seeds to severe desiccation. Epigenetic changes were observed not only in severely desiccated seeds but also in 3-month old seedlings obtained from these seeds. With regard to seed storage practices, epigenetic assessment could be used by gene banks for early detection of structural changes in the DNA of stored seeds. PMID:23940629

  5. Deoxyribonucleic acid base compositions of dermatophytes.

    PubMed

    Davison, F D; Mackenzie, D W; Owen, R J

    1980-06-01

    DNA was extracted and purified from 55 dermatophyte isolates representing 34 species of Trichophyton, Microsporum and Epidermophyton. The base compositions of the chromosomal DNA were determined by CsCl density gradient centrifugation and were found to be in the narrow range of 48.7 to 50.3 mol % G + C. A satellite DNA component assumed to be of mitochondrial origin was present in most strains, with a G + C content ranging from 14.7 to 30.8 mol % G + C. Heterogeneity in microscopic and colonial characteristics was not reflected in differences in the mean G + C content of the chromosomal DNAs. Strains varied in the G + C contents of satelite DNA, but these did not correlate with traditional species concepts.

  6. DNA methylation detection based on difference of base content

    NASA Astrophysics Data System (ADS)

    Sato, Shinobu; Ohtsuka, Keiichi; Honda, Satoshi; Sato, Yusuke; Takenaka, Shigeori

    2016-04-01

    Methylation frequently occurs in cytosines of CpG sites to regulate gene expression. The identification of aberrant methylation of certain genes is important for cancer marker analysis. The aim of this study was to determine the methylation frequency in DNA samples of unknown length and/or concentration. Unmethylated cytosine is known to be converted to thymine following bisulfite treatment and subsequent PCR. For this reason, the AT content in DNA increases with an increasing number of methylation sites. In this study, the fluorescein-carrying bis-acridinyl peptide (FKA) molecule was used for the detection of methylation frequency. FKA contains fluorescein and two acridine moieties, which together allow for the determination of the AT content of double-stranded DNA fragments. Methylated and unmethylated human genomes were subjected to bisulfide treatment and subsequent PCR using primers specific for the CFTR, CDH4, DBC1, and NPY genes. The AT content in the resulting PCR products was estimated by FKA, and AT content estimations were found to be in good agreement with those determined by DNA sequencing. This newly developed method may be useful for determining methylation frequencies of many PCR products by measuring the fluorescence in samples excited at two different wavelengths.

  7. Determination of the genotoxic effects of Convolvulus arvensis extracts on corn (Zea mays L.) seeds.

    PubMed

    Sunar, Serap; Yildirim, Nalan; Aksakal, Ozkan; Agar, Guleray

    2013-06-01

    In this research, the methanolic extracts of Convolvulus arvensis were tested for genotoxic and inhibitor activity on the total soluble protein content and the genomic template stability against corn Zea mays L. seed. The methanol extracts of leaf, stem and root of C. arvensis were diluted to 50, 75 and 100 μl concentrations and applied to corn seed. The total soluble protein and genomic template stability results were compared with the control. The results showed that especially 100 μl extracts of diluted leaf, stem and root had a strong inhibitory activity on the genomic template stability. The changes occurred in random amplification of polymorphic DNA (RAPD) profiles of C. arvensis extract treatment included variation in band intensity, loss of bands and appearance of new bands compared with control. Also, the results obtained from this study revealed that the increase in the concentrations of C. arvensis extract increased the total soluble protein content in maize. The results suggested that RAPD analysis and total protein analysis could be applied as a suitable biomarker assay for the detection of genotoxic effects of plant allelochemicals.

  8. Comparative Analysis of Repetitive DNA between the Main Vectors of Chagas Disease: Triatoma infestans and Rhodnius prolixus.

    PubMed

    Pita, Sebastián; Mora, Pablo; Vela, Jesús; Palomeque, Teresa; Sánchez, Antonio; Panzera, Francisco; Lorite, Pedro

    2018-04-24

    Chagas disease or American trypanosomiasis affects six to seven million people worldwide, mostly in Latin America. This disease is transmitted by hematophagous insects known as "kissing bugs" (Hemiptera, Triatominae), with Triatoma infestans and Rhodnius prolixus being the two most important vector species. Despite the fact that both species present the same diploid chromosome number (2 n = 22), they have remarkable differences in their total DNA content, chromosome structure and genome organization. Variations in the DNA genome size are expected to be due to differences in the amount of repetitive DNA sequences. The T. infestans genome-wide analysis revealed the existence of 42 satellite DNA families. BLAST searches of these sequences against the R. prolixus genome assembly revealed that only four of these satellite DNA families are shared between both species, suggesting a great differentiation between the Triatoma and Rhodnius genomes. Fluorescence in situ hybridization (FISH) location of these repetitive DNAs in both species showed that they are dispersed on the euchromatic regions of all autosomes and the X chromosome. Regarding the Y chromosome, these common satellite DNAs are absent in T. infestans but they are present in the R. prolixus Y chromosome. These results support a different origin and/or evolution in the Y chromosome of both species.

  9. The fruit extract of Berberis crataegina DC: exerts potent antioxidant activity and protects DNA integrity.

    PubMed

    Charehsaz, Mohammad; Sipahi, Hande; Celep, Engin; Üstündağ, Aylin; Cemiloğlu Ülker, Özge; Duydu, Yalçın; Aydın, Ahmet; Yesilada, Erdem

    2015-04-17

    Dried fruits of Berberis crataegina (Berberidaceae) have been frequently consumed as food garniture in Turkish cuisine, while its fruit paste has been used to increase stamina and in particular to prevent from cardiovascular dysfunctions in Northeastern Black Sea region of Turkey. This study investigated this folkloric information in order to explain the claimed healing effects as well as to evaluate possible risks. Total phenolic, flavonoid and proanthocyanidin contents and antioxidant capacity of the methanolic fruit extract were evaluated through several in vitro assays. The cytotoxic and genotoxic effects of B. crataegina fruit extract were also assessed in both cervical cancer cell line (HeLa) and human peripheral blood lymphocytes. The extract showed protective effects against ferric-induced oxidative stress and had a relatively good antioxidant activity. It also ameliorated the H2O2 mediated DNA damage in lymphocytes, suggesting the protective effect against oxidative DNA damage. The methanolic extract of B. crataegina fruits may be a potential antioxidant nutrient and also may exert a protective role against lipid peroxidation as well as oxidative DNA damage.

  10. Understanding the degradation of ascorbic acid and glutathione in relation to the levels of oxidative stress biomarkers in broccoli (Brassica oleracea L. italica cv. Bellstar) during storage and mechanical processing.

    PubMed

    Raseetha, Siva; Leong, Sze Ying; Burritt, David John; Oey, Indrawati

    2013-06-01

    The purpose of this research was to understand the degradation of ascorbic acid and glutathione content in broccoli florets (Brassica oleracea L. italica cv. Bellstar) during prolonged storage and subsequent mechanical processing. The initial content of total ascorbic acid and glutathione in broccoli florets averaged at 5.18 ± 0.23 and 0.70 ± 0.03 μmol/g fresh weight, respectively. Results showed that the content of ascorbic acid and glutathione in broccoli degraded during storage at 23°C, for at least 4.5-fold after 6 days of storage. On each day of storage, broccoli florets were mechanically processed, but the content of total ascorbic acid and glutathione was not significantly affected. When the mechanically processed broccoli florets were further incubated for up to 6h, the amount of ascorbic acid was greatly reduced as compared to glutathione. To obtain an in-depth understanding on the degradation of ascorbic acid and glutathione, the activity of enzymes involved in plant antioxidative system via ascorbate-glutathione cycle, as a response towards oxidative stress that took place during storage was determined in this study. The content of total ascorbic acid and glutathione in broccoli florets before and after mechanical processing were found to decrease concurrently with the activity of ascorbic acid peroxidase and glutathione reductase over the experimental storage duration. Meanwhile, the effect of oxidative stress on the content of ascorbic acid and glutathione was apparent during the 6h of incubation after mechanical processing. This phenomenon was demonstrated by the level of oxidative stress biomarkers examined, in which the formation of lipid peroxides, protein carbonyls and DNA oxidised products was positively associated with the degradation of total ascorbic acid and glutathione. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development

    PubMed Central

    Alagna, Fiammetta; D'Agostino, Nunzio; Torchia, Laura; Servili, Maurizio; Rao, Rosa; Pietrella, Marco; Giuliano, Giovanni; Chiusano, Maria Luisa; Baldoni, Luciana; Perrotta, Gaetano

    2009-01-01

    Background Despite its primary economic importance, genomic information on olive tree is still lacking. 454 pyrosequencing was used to enrich the very few sequence data currently available for the Olea europaea species and to identify genes involved in expression of fruit quality traits. Results Fruits of Coratina, a widely cultivated variety characterized by a very high phenolic content, and Tendellone, an oleuropein-lacking natural variant, were used as starting material for monitoring the transcriptome. Four different cDNA libraries were sequenced, respectively at the beginning and at the end of drupe development. A total of 261,485 reads were obtained, for an output of about 58 Mb. Raw sequence data were processed using a four step pipeline procedure and data were stored in a relational database with a web interface. Conclusion Massively parallel sequencing of different fruit cDNA collections has provided large scale information about the structure and putative function of gene transcripts accumulated during fruit development. Comparative transcript profiling allowed the identification of differentially expressed genes with potential relevance in regulating the fruit metabolism and phenolic content during ripening. PMID:19709400

  12. Identification and characterisation of DfCHS, a chalcone synthase gene regulated by temperature and ultraviolet in Dryopteris fragrans.

    PubMed

    Sun, L L; Li, Y; Li, S S; Wu, X J; Hu, B Z; Chang, Y

    2014-12-30

    Chalcone synthase (CHS) is an enzyme that catalyzes the first committed step in flavonoid biosynthesis, and its transcription level is regulated by light conditions. By using homology cloning and rapid amplification of cDNA ends, we cloned a chalcone synthase gene (DfCHS) from Dryopteris fragrans (L.) Schott. The full-length cDNA of DfCHS is 1,737 bp, with an open reading frame (ORF) of 1,122 bp (deposited in GenBank under Accession Number KF530802) encoding a predicted protein of 373 amino acids. The calculated molecular mass of DfCHS is 41.3 kDa. We studied the expression of DfCHS and total flavonoid contents in tissue culture seedlings cultured under the low temperature at 4ºC, high temperature at 35ºC and UV conditions, respectively. The results show that the expression of DfCHS are not the same, but all present rising trends, then flavonoid contents were increased. Overall, our results imply that the expression of DfCHS gene provide a certain theory basis in the status of evolution among ferns.

  13. [The development of pollen grains and formation of pollen tubes in higher plants : I. Quantitative measurements of the DNA-content of generative and vegetative nuclei in the pollen grain and pollen tube of Petunia hybrida mutants].

    PubMed

    Hesemann, C U

    1971-01-01

    The DNA-content of generative and vegetative nuclei in mature pollen grains of four Petunia hybrida mutants was determined by cytophotometry. In addition the DNA-content of generative and vegetative nuclei in the pollen tube of two of these four mutants (virescens-2 n and ustulata-2 n) was cytophotometrically measured.The DNA-values found in the generative nuclei indicate that the DNA-replication continues in the mature pollen grain and comes to an end only after the migration of the nuclei into the pollen tube. These data are in disagreement with the results of DNA-measurements described for a limited number of other species which all show completion of DNA-synthesis during the maturation stage of the pollen grains.The vegetative nuclei of the four Petunia mutants studied show significant differences in the onset of the degenerative phase. Extreme variation is manifested in the ustulata-2 n mutant in which the degeneration of nuclei may reach the final stage in the maturing pollen grain. However in this mutant vegetative nuclei with an unaltered DNA-content may also be demonstrated in the pollen tube. Some of the vegetative nuclei in the pollen tube of ustulata-2 n exhibit an increased amount of DNA which could be the result of differential DNA-replication in the vegetative nuclei. The decrease of the DNA-content in a certain fraction of the vegetative nuclei in the maturing pollen grain does not agree with observations made in other species by several authors who report DNA constancy until the pollen grain is fully mature.The data obtained from the analysis of the four Petunia hybrida mutants point to an important role of the vegetative nucleus in the development of the pollen tube. The Petunia hybrida mutants may be regarded as especially favourable material for investigations concerning the function of the vegetative cell in the development of the pollen grain and pollen tube.

  14. Nuclear DNA Content Variation in Life History Phases of the Bonnemasoniaceae (Rhodophyta)

    PubMed Central

    Salvador Soler, Noemi; Gómez Garreta, Amelia; Ribera Siguan, Mª Antonia; Kapraun, Donald F.

    2014-01-01

    Nuclear DNA content in gametophytes and sporophytes or the prostrate phases of the following species of Bonnemaisoniaceae (Asparagopsis armata, Asparagopsis taxiformis, Bonnemaisonia asparagoides, Bonnemaisonia clavata and Bonnemaisonia hamifera) were estimated by image analysis and static microspectrophotometry using the DNA-localizing fluorochrome DAPI (4′, 6-diamidino-2-phenylindole, dilactate) and the chicken erythrocytes standard. These estimates expand on the Kew database of DNA nuclear content. DNA content values for 1C nuclei in the gametophytes (spermatia and vegetative cells) range from 0.5 pg to 0.8 pg, and for 2C nuclei in the sporophytes or the prostrate phases range from 1.15–1.7 pg. Although only the 2C and 4C values were observed in the sporophyte or the prostrate phase, in the vegetative cells of the gametophyte the values oscillated from 1C to 4C, showing the possible start of endopolyploidy. The results confirm the alternation of nuclear phases in these Bonnemaisoniaceae species, in those that have tetrasporogenesis, as well as those that have somatic meiosis. The availability of a consensus phylogenetic tree for Bonnemaisoniaceae has opened the way to determine evolutionary trends in DNA contents. Both the estimated genome sizes and the published chromosome numbers for Bonnemaisoniaceae suggest a narrow range of values consistent with the conservation of an ancestral genome. PMID:24465835

  15. The detection of (total and ccc) HBV DNA in liver transplant recipients with hepatitis B vaccine against HBV reinfection.

    PubMed

    Duan, Bin-Wei; Lu, Shi-Chun; Lai, Wei; Liu, Xue-En; Liu, Yuan

    2015-01-01

    To investigate the levels of hepatitis B virus total DNA (HBV DNA) and covalently closed circular (ccc) DNA in liver transplant recipients who received hepatitis B vaccination, including responders and non-responders, following liver transplantation due to hepatitis B-related diseases and to investigate the efficacy of hepatitis B immune reconstitution against HBV reinfection. Twenty responders and 34 non-responders were enrolled in the present study. The levels of HBV total DNA and ccc DNA in peripheral blood mononuclear cells (PBMCs) and the liver and plasma were detected by real-time polymerase chain reaction (PCR). Fifty-three blood samples and 38 liver allograft tissues were acquired. For the responders, the mean serum titer for anti-HBs (antibodies against hepatitis B surface antigen) was 289 (46.64-1000) IU/ml. Also for the responders, HBV total DNA was detected in PBMCs for one recipient and in the liver for another recipient, but ccc DNA was not detected in either of those 2 recipients. For the non-responders, HBV total DNA was detected in PBMCS for 2 recipients, neither of whom had ccc DNA. Also for the non-responders, HBV total DNA was detected in the livers of 3 recipients, 2 of whom also had ccc DNA. All responders had discontinued hepatitis B immunoglobulin (HBIG), and 13 responders had discontinued antiviral agents. One responder experienced HBV recurrence during the follow-up period. For the majority of liver transplant recipients, no HBV total DNA or ccc DNA was detected in the blood or liver. The lack of HBV total DNA and ccc DNA both in PBMCs and the liver in liver transplant recipients who received hepatitis B vaccination to prevent HBV reinfection should be a prerequisite for the withdrawal of HBIG and/or antiviral agents.

  16. Combined therapy with danazol, pegilated interferon, and ribavirin improves thrombocytopenia and liver injury in rats with fibrosis.

    PubMed

    Alvarez, Guillermo Cabrera; Madrid-Marina, Vicente; Jimenez-Mendez, Ricardo; Buitimea, Angel Leon; Román, Margarita Bahena; Cortez-Gomez, Rudyard; Esparza, Jorge Reyes; Rodríguez-Fragoso, Lourdes

    2007-01-01

    The aim of this study was to investigate the effects of combinations of pegilated-interferon (PEG-IFN), ribavirin, and danazol on thrombocytopenia and liver injury in rats with fibrosis. Male adult Wistar rats were treated with either mineral oil, danazol (0.83 mg/kg per day), PEG-interferon alpha-2a (PEG-IFN, 0.3 microg/ week) + ribavirin (12 mg/kg per day), PEG-IFN + ribavirin + danazol, CCl(4) (4 g/kg for eight weeks), CCl(4) + PEG-IFN + ribavirin, or CCl(4) + PEG-IFN + ribavirin+ danazol. The following assays were conducted: hematology, clinical chemistry, liver function, liver fibrosis, lymphocyte cytokine mRNA expression, and bone-marrow DNA content. Platelet counts were low in sham-treated animals and animals treated with PEG- IFN + ribavirin (30% and 25% respectively; P < 0.05). PEG-IFN + ribavirin + danazol reduced platelet counts of fibrotic animals by only 9% (P < 0.05). PEG- IFN + ribavirin reduced hepatic collagen content by 50%, whereas danazol + PEG-IFN + ribavirin reduced hepatic collagen content by 60% (P < 0.05). PEG-IFN + ribavirin reduced the total bilirubin concentration by 27%, alanine amino transferase (ALT) activity by 75% and gamma-glutamyl transpeptidase (gamma-GTP) activity by 74% (P < 0.05). In contrast, danazol + PEG-IFN + ribavirin reduced total bilirubin levels by 61%, alkaline phosphatase activity by 45%, ALT activity by 76%, and gamma-GTP activity by 74% (P < 0.05). The only treatment that increased interleukin 10 (IL-10) mRNA in fibrotic rats was PEG-IFN + ribavirin. However, danazol + PEG-IFN + ribavirin reduced the expression of IL-6, IL-10, tumor necrosis factor alpha and transforming growth factor ss. Bone-marrow DNA content was not altered by any treatment. In conclusion, PEG-IFN + ribavirin + danazol could be a new therapeutic option for patients with liver injury, fibrosis, and thrombocytopenia.

  17. [A DNA study of rat liver oligonucleosomes enriched by transcriptionally active genes during induction due to the administration of an amino acid mixture].

    PubMed

    Vardevanian, P O; Davtian, A M; Tiratsuian, S G; Vardevanian, A O

    1990-01-01

    A highly active fraction of rat liver oligonucleosome DNA has been isolated and studied by means of thermal denaturation after induction by amino acid mixture or hydrocortisone. A considerable redistribution of DNA content has been shown in sucrose gradient fractions during these forms of induction. The changes are revealed in melting temperature, differential melting profile of DNA, isolated from actively transcribed chromatine fractions. Analysis of melting profiles shows changes of GC content of oligonucleosome DNA, suggesting that there are differences in activation during two studied forms of induction.

  18. 5-Methyldeoxycytidine in the Physarum minichromosome containing the ribosomal RNA genes.

    PubMed Central

    Cooney, C A; Matthews, H R; Bradbury, E M

    1984-01-01

    5-Methyldeoxycytidine (5MC) was analyzed by high pressure liquid chromatography (HPLC) and by restriction enzyme digestion in rDNA isolated from Physarum polycephalum. rDNA from Physarum M3C strain microplasmodia has a significant 5MC content (about half that of the whole genomic DNA). This rDNA contains many C5MCGG sites because it is clearly digested further by Msp I than by Hpa II. However, most 5MC is in other sites. In particular, alternating CG sequences appear to be highly methylated. HPLC of deoxyribonucleosides shows tha most of the transcribed regions contain little or no 5MC. Restriction digestion indicates that there is little or no 5MC in any of the transcribed regions including the transcription origin and adjacent sequences. Over 90% of the total 5MC is in or near the central nontranscribed spacer and most methylated restriction sites are in inverted repeats of this spacer. rDNA is very heterogeneous with respect to 5MC. The 5MC pattern doesn't appear to change with inactivation of the rRNA genes during reversible differentiation from microplasmodia (growing) to microsclerotia (dormant), showing that inactivation is due to changes in other chromatin variables. The 5MC pattern is different between Physarum strains. The possible involvement of this 5MC in rDNA chromatin structure and in cruciform and Z-DNA formation is discussed. Images PMID:6322108

  19. Chemical composition, antioxidant and antigenotoxic activities of different fractions of Gentiana asclepiadea L. roots extract

    PubMed Central

    Mihailovic, Vladimir; Matic, Sanja; Mišic, Danijela; Solujic, Slavica; Stanic, Snežana; Katanic, Jelena; Mladenovic, Milan; Stankovic, Nevena

    2013-01-01

    The aim of this study was to evaluate the antioxidant and antigenotoxic activities of chloroform, ethyl acetate and n-butanol fractions obtained from Gentiana asclepiadea L. roots methanolic extract. The main secondary metabolites sweroside, swertiamarin and gentiopicrine were quantified in G. asclepiadea root extracts using HPLC-DAD analysis. Amount of total phenols, flavonoids, flavonols and gallotannins was also determined. The antigenotoxic potential of extracts from roots of G. asclepiadea was assessed using the standard in vivo procedure for the detection of sex linked recessive lethal mutations in Drosophila melanogaster males treated with ethyl methanesulfonate (EMS). The results showed that the most abundant secoiridoid in G. asclepiadea roots was gentiopicrine and its content in the n-butanol fraction (442.89 mg/g) was the highest. Among all extracts, ethyl acetate fraction showed the highest antioxidant activity, as well as total phenolics (146.64 GAE/g), flavonoids (44.62 RUE/g), flavonols (22.71 RUE/g) and gallotannins (0.99 mg GAE/g) content. All the fractions showed antioxidant activity using in vitro model systems and the results have been correlated with total phenolics, flavonoids, flavonols and gallotannins content. In addition to antioxidant activity, G. asclepiadea root extract fractions possess an antigenotoxic effect against DNA damage induced by alkylation with EMS. The antioxidant activity exhibited by G. asclepiadea depended on the phenolic compounds content of the tested extracts, while there was no significant difference in the antigenotoxic potential between fractions. PMID:26622219

  20. Anthocyanin profiling of wild maqui berries (Aristotelia chilensis [Mol.] Stuntz) from different geographical regions in Chile.

    PubMed

    Fredes, Carolina; Yousef, Gad G; Robert, Paz; Grace, Mary H; Lila, Mary Ann; Gómez, Miguel; Gebauer, Marlene; Montenegro, Gloria

    2014-10-01

    Maqui (Aristotelia chilensis) is a Chilean species which produces small berries that are collected from the wild. Anthocyanins, because of their health benefits, are the major focus of interest in maqui fruit. For this study, we examined anthocyanin and phenolic content of maqui fruits from individuals that belonged to four geographical areas in Chile, and used DNA marker analysis to examine the genetic variability of maqui populations that had distinctly different fruit anthocyanin content. Twelve primers generated a total of 145 polymorphic inter simple sequence repeat-polymerase chain reaction (ISSR-PCR) bands. ISSR-PCR showed different banding patterns for the individuals evaluated, confirming that maqui populations belonged to different genotypes. Maqui fruit from four different geographical regions during two consecutive growing seasons showed high total anthocyanin (6.6-15.0 g cy-3-glu kg⁻¹ fresh weight (FW)) and phenolic (10.7-20.5 g GAE kg⁻¹ FW) contents and different anthocyanin profiles. Three maqui genotypes exhibited significantly higher anthocyanin content than the others, as measured by pH differential method and high-performance liquid chromatography-mass spectrometry. Significant genetic diversity was noted within each ecological population. ISSR-PCR analysis provided a fingerprinting approach applicable for differentiation of maqui genotypes. © 2014 Society of Chemical Industry.

  1. Accumulation of Pharmaceuticals, Enterococcus, and Resistance Genes in Soils Irrigated with Wastewater for Zero to 100 Years in Central Mexico

    PubMed Central

    Siebe, Christina; Willaschek, Elisha; Sakinc, Tuerkan; Huebner, Johannes; Amelung, Wulf; Grohmann, Elisabeth; Siemens, Jan

    2012-01-01

    Irrigation with wastewater releases pharmaceuticals, pathogenic bacteria, and resistance genes, but little is known about the accumulation of these contaminants in the environment when wastewater is applied for decades. We sampled a chronosequence of soils that were variously irrigated with wastewater from zero up to 100 years in the Mezquital Valley, Mexico, and investigated the accumulation of ciprofloxacin, enrofloxacin, sulfamethoxazole, trimethoprim, clarithromycin, carbamazepine, bezafibrate, naproxen, diclofenac, as well as the occurrence of Enterococcus spp., and sul and qnr resistance genes. Total concentrations of ciprofloxacin, sulfamethoxazole, and carbamazepine increased with irrigation duration reaching 95% of their upper limit of 1.4 µg/kg (ciprofloxacin), 4.3 µg/kg (sulfamethoxazole), and 5.4 µg/kg (carbamazepine) in soils irrigated for 19–28 years. Accumulation was soil-type-specific, with largest accumulation rates in Leptosols and no time-trend in Vertisols. Acidic pharmaceuticals (diclofenac, naproxen, bezafibrate) were not retained and thus did not accumulate in soils. We did not detect qnrA genes, but qnrS and qnrB genes were found in two of the irrigated soils. Relative concentrations of sul1 genes in irrigated soils were two orders of magnitude larger (3.15×10−3±0.22×10−3 copies/16S rDNA) than in non-irrigated soils (4.35×10−5±1.00×10−5 copies/16S rDNA), while those of sul2 exceeded the ones in non-irrigated soils still by a factor of 22 (6.61×10–4±0.59×10−4 versus 2.99×10−5±0.26×10−5 copies/16S rDNA). Absolute numbers of sul genes continued to increase with prolonging irrigation together with Enterococcus spp. 23S rDNA and total 16S rDNA contents. Increasing total concentrations of antibiotics in soil are not accompanied by increasing relative abundances of resistance genes. Nevertheless, wastewater irrigation enlarges the absolute concentration of resistance genes in soils due to a long-term increase in total microbial biomass. PMID:23049795

  2. Accumulation of pharmaceuticals, Enterococcus, and resistance genes in soils irrigated with wastewater for zero to 100 years in central Mexico.

    PubMed

    Dalkmann, Philipp; Broszat, Melanie; Siebe, Christina; Willaschek, Elisha; Sakinc, Tuerkan; Huebner, Johannes; Amelung, Wulf; Grohmann, Elisabeth; Siemens, Jan

    2012-01-01

    Irrigation with wastewater releases pharmaceuticals, pathogenic bacteria, and resistance genes, but little is known about the accumulation of these contaminants in the environment when wastewater is applied for decades. We sampled a chronosequence of soils that were variously irrigated with wastewater from zero up to 100 years in the Mezquital Valley, Mexico, and investigated the accumulation of ciprofloxacin, enrofloxacin, sulfamethoxazole, trimethoprim, clarithromycin, carbamazepine, bezafibrate, naproxen, diclofenac, as well as the occurrence of Enterococcus spp., and sul and qnr resistance genes. Total concentrations of ciprofloxacin, sulfamethoxazole, and carbamazepine increased with irrigation duration reaching 95% of their upper limit of 1.4 µg/kg (ciprofloxacin), 4.3 µg/kg (sulfamethoxazole), and 5.4 µg/kg (carbamazepine) in soils irrigated for 19-28 years. Accumulation was soil-type-specific, with largest accumulation rates in Leptosols and no time-trend in Vertisols. Acidic pharmaceuticals (diclofenac, naproxen, bezafibrate) were not retained and thus did not accumulate in soils. We did not detect qnrA genes, but qnrS and qnrB genes were found in two of the irrigated soils. Relative concentrations of sul1 genes in irrigated soils were two orders of magnitude larger (3.15 × 10(-3) ± 0.22 × 10(-3) copies/16S rDNA) than in non-irrigated soils (4.35 × 10(-5)± 1.00 × 10(-5) copies/16S rDNA), while those of sul2 exceeded the ones in non-irrigated soils still by a factor of 22 (6.61 × 10(-4) ± 0.59 × 10(-4) versus 2.99 × 10(-5) ± 0.26 × 10(-5) copies/16S rDNA). Absolute numbers of sul genes continued to increase with prolonging irrigation together with Enterococcus spp. 23S rDNA and total 16S rDNA contents. Increasing total concentrations of antibiotics in soil are not accompanied by increasing relative abundances of resistance genes. Nevertheless, wastewater irrigation enlarges the absolute concentration of resistance genes in soils due to a long-term increase in total microbial biomass.

  3. Deciphering the Epigenetic Code: An Overview of DNA Methylation Analysis Methods

    PubMed Central

    Umer, Muhammad

    2013-01-01

    Abstract Significance: Methylation of cytosine in DNA is linked with gene regulation, and this has profound implications in development, normal biology, and disease conditions in many eukaryotic organisms. A wide range of methods and approaches exist for its identification, quantification, and mapping within the genome. While the earliest approaches were nonspecific and were at best useful for quantification of total methylated cytosines in the chunk of DNA, this field has seen considerable progress and development over the past decades. Recent Advances: Methods for DNA methylation analysis differ in their coverage and sensitivity, and the method of choice depends on the intended application and desired level of information. Potential results include global methyl cytosine content, degree of methylation at specific loci, or genome-wide methylation maps. Introduction of more advanced approaches to DNA methylation analysis, such as microarray platforms and massively parallel sequencing, has brought us closer to unveiling the whole methylome. Critical Issues: Sensitive quantification of DNA methylation from degraded and minute quantities of DNA and high-throughput DNA methylation mapping of single cells still remain a challenge. Future Directions: Developments in DNA sequencing technologies as well as the methods for identification and mapping of 5-hydroxymethylcytosine are expected to augment our current understanding of epigenomics. Here we present an overview of methodologies available for DNA methylation analysis with special focus on recent developments in genome-wide and high-throughput methods. While the application focus relates to cancer research, the methods are equally relevant to broader issues of epigenetics and redox science in this special forum. Antioxid. Redox Signal. 18, 1972–1986. PMID:23121567

  4. Biochemical quantification of DNA in human articular and septal cartilage using PicoGreen and Hoechst 33258.

    PubMed

    McGowan, K B; Kurtis, M S; Lottman, L M; Watson, D; Sah, R L

    2002-07-01

    To compare two fluorometric assays, utilizing (1) the bisbenzimidazole Hoechst 33258 and (2) PicoGreen, for determining DNA content in human cartilage. Human articular and nasal septal cartilage explants were digested using proteinase K. Portions of sample digest were analysed for intrinsic and dye-enhanced fluorescence with either Hoechst 33258 or PicoGreen. Intrinsic tissue fluorescence in both articular and septal cartilage increased with age and was prominent at wavelengths used for Hoechst 33258 but relatively low at wavelengths used for PicoGreen. The relative contribution of intrinsic fluorescence to total dye-enhanced fluorescence of human cartilage was markedly greater for Hoechst 33258 (19-57%) than for PicoGreen (2-7%). Thus, in many situations, DNA in human cartilage can be assayed using PicoGreen without the need to correct for intrinsic cartilage fluorescence. The enhancement of fluorescence by each dye was found to be specific for DNA, as shown by fluorescence spectra, >90% sensitivity to DNase, and resistance to RNase. In addition, little or no interference was caused by non-DNA tissue components, since DNA caused an equal enhancement in the absence or presence of proteinase K digested human cartilage, once intrinsic cartilage fluorescence was subtracted. PicoGreen was more sensitive for assaying DNA (0.9ng DNA/ml) than Hoechst 33258 (6ng DNA/ml) and can also be used in a microplate reader. PicoGreen can be used in a rapid and sensitive assay to quantify DNA in small samples of human cartilage. Copyright 2002 Published by Elsevier Science Ltd on behalf of OsteoArthritis Research Society International.

  5. Levels of duplicate gene expression in armoured catfishes.

    PubMed

    Dunham, R A; Philipp, D P; Whitt, G S

    1980-01-01

    Species of armoured catfishes differ significantly in their cellular DNA content and chromosome number. Starch gel electrophoresis of isozymes was used to determine whether each of 16 enzyme loci was expressed in a single or duplicate state. The percent of enzyme loci exhibiting duplicate locus expression in Corydoras aeneus, Corydoras julii, Corydoras melanistius, and Corydoras myersi was 37.5 percent, 18.75 percent, 12.5 percent, and 6.25 percent, respectively. The percentage of loci expressed in duplicate is higher in the species with higher haploid DNA contents, which are 4.4 pg, 3.0 pg, and 2.3 pg, respectively. These differences in DNA contents are also associated with differences in chromosome number. These data are consistent with the hypothesis that increases in DNA contents and enzyme loci occur both by tetraploidization and by regional gene duplication and that these increases are then followed by a partial loss of DNA and a reduction in the number of the duplicate isozyme loci expressed. Such analyses provide insight into the mechanisms of genome amplification and reduction as well as insights into the fats of duplicate genes.

  6. Simultaneous quantitative determination of 5-aza-2′-deoxycytidine genomic incorporation and DNA demethylation by liquid chromatography tandem mass spectrometry as exposure-response measures of nucleoside analog DNA methyltransferase inhibitors

    PubMed Central

    Anders, Nicole M.; Liu, Jianyong; Wanjiku, Teresia; Giovinazzo, Hugh; Zhou, Jianya; Vaghasia, Ajay; Nelson, William G.; Yegnasubramanian, Srinivasan; Rudek, Michelle A.

    2016-01-01

    The epigenetic and anti-cancer activities of the nucleoside analog DNA methyltransferase (DNMT) inhibitors decitabine (5-aza-2′-deoxycytidine, DAC), azacitidine, and guadecitabine are thought to require cellular uptake, metabolism to 5-aza-2′-deoxycytidine triphosphate, and incorporation into DNA. This genomic incorporation can then lead to trapping and degradation of DNMT enzymes, and ultimately, passive loss of DNA methylation. To facilitate measurement of critical exposure-response relationships of nucleoside analog DNMT inhibitors, a sensitive and reliable method was developed to simultaneously quantitate 5-aza-2′-deoxycytidine genomic incorporation and genomic 5-methylcytosine content using LC-MS/MS. Genomic DNA was extracted and digested into single nucleosides. Chromatographic separation was achieved with a Thermo Hyperpcarb porous graphite column (100 mm × 2.1 mm, 5μm) and isocratic elution with a 10 mM ammonium acetate:acetonitrile with 0.1% formic acid (70:30, v/v) mobile phase over a 5 minute total analytical run time. An AB Sciex 5500 triple quadrupole mass spectrometer operated in positive electrospray ionization mode was used for the detection of 5-aza-2′-deoxycytidine, 2′-deoxycytidine, and 5-methyl-2′-deoxycytidine. The assay range was 2 – 400 ng/mL for 5-aza-2′-deoxycytidine, 50 – 10,000 ng/mL for 2′-deoxycytidine, and was 5 – 1,000 ng/mL for 5-methyl-2′-deoxycytidine. The assay proved to be accurate (93.0–102.2%) and precise (CV ≤ 6.3%) across all analytes. All analytes exhibited long-term frozen digest matrix stability at −70°C for at least 117 days. The method was applied for the measurement of genomic 5-aza-2′-deoxycytidine and 5-methyl-2′-deoxycytidine content following exposure of in vitro cell culture and in vivo animal models to decitabine. PMID:27082761

  7. Variation of Geochemical Signatures and Correlation of Biomarkers in Icelandic Mars Analogue Environments

    NASA Astrophysics Data System (ADS)

    Gentry, D.; Amador, E. S.; Cable, M. L.; Cantrell, T.; Chaudry, N.; Cullen, T.; Duca, Z. A.; Jacobsen, M. B.; McCaig, H. C.; Murukesan, G.; Rennie, V.; Schwieterman, E. W.; Stevens, A. H.; Tan, G.; Yin, C.; Stockton, A.; Cullen, D.; Geppert, W.

    2015-12-01

    Exploration missions to Mars rely on rovers to perform deep analyses over small sampling areas; however, landing site selection is done using large-scale but low-resolution remote sensing data. Using Earth analogue environments to estimate the small-scale spatial and temporal distributions of key geochemical signatures and (for habitability studies) biomarkers helps ensure that the chosen sampling strategies meet mission science goals. We conducted two rounds of analogue expeditions to recent Icelandic lava fields. In July 2013, we tested correlation between three common biomarker assays: cell quantification via fluorescence microscopy, ATP quantification via bioluminescence, and quantitative PCR with universal primer sets. Sample sites were nested at four spatial scales (1 m, 10 m, 100 m, and > 1 km) and homogeneous at 'remote imaging' resolution (overall temperature, apparent moisture content, and regolith grain size). All spatial scales were highly diverse in ATP, bacterial 16S, and archaeal 16S DNA content; nearly half of sites were statistically different in ATP content at α = 0.05. Cell counts showed significant variation at the 10 m and 100 m scale; at the > 1 km scale, the mean counts were not distinguishable, but the median counts were, indicating differences in underlying distribution. Fungal 18S DNA content similarly varied at 1 m, 10 m, and 100 m scales only. Cell counts were not correlated with ATP or DNA content at any scale. ATP concentration and DNA content for all three primer sets were positively correlated. Bacterial DNA content was positively correlated with archaeal and fungal DNA content, though archaeal correlation was weak. Fungal and archaeal correlation was borderline. In July 2015, we repeated the sampling strategy, with the addition of a smaller-scale sampling grid of 10 cm and a third > 1 km location. This expedition also measured reflectance of the tephra cover and preserved mineral samples for future Raman spectroscopy in order to better distinguish between effects of geochemical variation and intrinsic biomarker variation.

  8. The Marine Fungi Rhodotorula sp. (Strain CNYC4007) as a Potential Feed Source for Fish Larvae Nutrition

    PubMed Central

    Barra, M.; Llanos-Rivera, A.; Cruzat, F.; Pino-Maureira, N.; González-Saldía, R. R.

    2017-01-01

    Fish oil is used in the production of feed for cultured fish owing to its high polyunsaturated fatty acid content (PUFA). The over-exploitation of fisheries and events like “El Niño” are reducing the fish oil supply. Some marine microorganisms are considered potentially as alternative fatty acid sources. This study assesses a strain of Rhodotorula sp. (strain CNYC4007; 27% docosahexaenoic acid (DHA) of total fatty acids), as feed for fish larvae. The total length and ribonucleic acid (RNA)/deoxyribonucleic acid (DNA) ratio of Danio rerio larvae was determined at first feeding at six and 12 days old (post-yolk absorption larvae). Larvae fed with microencapsulated Rhodotorula sp. CNYC4007 had a significantly higher RNA/DNA ratio than control group (C1). At six days post-yolk absorption group, the RNA/DNA ratio of larvae fed with Rhodotorula sp. bioencapsulated in Brachionus sp. was significantly higher than control group fed with a commercial diet high in DHA (C2-DHA). Finally, at 12 days post-yolk absorption, the RNA/DNA ratio was significantly higher in larvae fed with Rhodotorula sp. CNYC4007 and C2-DHA (both bioencapsulated in Artemia sp. nauplii) than in control group (C1). These results suggest that Rhodotorula sp. CNYC4007 can be an alternative source of DHA for feeding fish at larval stage, providing a sustainable source of fatty acids. PMID:29194350

  9. Characterization of Thermophilic Halotolerant Aeribacillus pallidus TD1 from Tao Dam Hot Spring, Thailand

    PubMed Central

    Yasawong, Montri; Areekit, Supatra; Pakpitchareon, Arda; Santiwatanakul, Somchai; Chansiri, Kosum

    2011-01-01

    The bacterial strain TD1 was isolated from Tao Dam hot spring in Thailand. Strain TD1 was Gram positive, rod-shaped, aerobic, motile, and endospore forming. The cell was 2.0–40 μm in length and about 0.4 μm in diameter. The optimum growth occurred at 55–60 °C and at pH 7–8. Strain TD1 was able to grow on medium containing up to 10% NaCl. The DNA G+C content was 38.9 mol%. The cellular fatty acid content was mainly C16:0, which comprised 25.04% of the total amount of cellular fatty acid. 16S rDNA showed 99% identity to Aeribacillus pallidus DSM 3670T. Bayesian tree analysis strongly supported the idea that strain TD1 is affiliated with genus Aeribacillus, as Aeribacillus pallidus strain TD1. Although the 16S rDNA of A. pallidus strain TD1 is similar to that of A. pallidus DSM 3670T, some physiological properties and the cellular fatty acid profiles differ significantly. A. pallidus strain TD1 can produce extracellular pectate lyase, which has not been reported elsewhere for other bacterial strains in the genus Aeribacillus. A. pallidus strain TD1 may be a good candidate as a pectate lyase producer, which may have useful industrial applications. PMID:21954359

  10. DNA preservation in silk.

    PubMed

    Liu, Yawen; Zheng, Zhaozhu; Gong, He; Liu, Meng; Guo, Shaozhe; Li, Gang; Wang, Xiaoqin; Kaplan, David L

    2017-06-27

    The structure of DNA is susceptible to alterations at high temperature and on changing pH, irradiation and exposure to DNase. Options to protect and preserve DNA during storage are important for applications in genetic diagnosis, identity authentication, drug development and bioresearch. In the present study, the stability of total DNA purified from human dermal fibroblast cells, as well as that of plasmid DNA, was studied in silk protein materials. The DNA/silk mixtures were stabilized on filter paper (silk/DNA + filter) or filter paper pre-coated with silk and treated with methanol (silk/DNA + PT-filter) as a route to practical utility. After air-drying and water extraction, 50-70% of the DNA and silk could be retrieved and showed a single band on electrophoretic gels. 6% silk/DNA + PT-filter samples provided improved stability in comparison with 3% silk/DNA + filter samples and DNA + filter samples for DNA preservation, with ∼40% of the band intensity remaining at 37 °C after 40 days and ∼10% after exposure to UV light for 10 hours. Quantitative analysis using the PicoGreen assay confirmed the results. The use of Tris/borate/EDTA (TBE) buffer enhanced the preservation and/or extraction of the DNA. The DNA extracted after storage maintained integrity and function based on serving as a functional template for PCR amplification of the gene for zinc finger protein 750 (ZNF750) and for transgene expression of red fluorescence protein (dsRed) in HEK293 cells. The high molecular weight and high content of a crystalline beta-sheet structure formed on the coated surfaces likely accounted for the preservation effects observed for the silk/DNA + PT-filter samples. Although similar preservation effects were also obtained for lyophilized silk/DNA samples, the rapid and simple processing available with the silk-DNA-filter membrane system makes it appealing for future applications.

  11. Mitochondrial DNA content and 4977 bp deletion in unfertilized oocytes.

    PubMed

    Chan, C C W; Liu, V W S; Lau, E Y L; Yeung, W S B; Ng, E H Y; Ho, P C

    2005-12-01

    Previous studies analysing the incidences of mitochondrial DNA (mtDNA) deletions and mtDNA content in unfertilized oocytes in relation to donors' age have been controversial. The objective of the study was to compare these two parameters in unfertilized oocytes and relate them to the donors' age. Fifty-two women donated 155 unfertilized metaphase II (MII) oocytes. The incidence of 4977 bp deletion was 34.6%, and the mtDNA copy number was 598 350 +/- 265 862. Women >or=35 years of age had a significantly higher incidence of 4977 bp deletion, lower mtDNA copy number, higher FSH level and poorer ovarian response when compared with younger women. The mtDNA copy number was negatively correlated with the donor's age. The higher incidence of mtDNA deletion and lower mtDNA copy number in older women suggested that these two parameters may reflect ovarian ageing.

  12. [DNA content in the organs of animals in space flight on the Kosmos-690 satellite].

    PubMed

    Guseĭnov, F T; Komolova, G S; Egorov, I A; Tigranian, R A; Serova, L V

    1978-01-01

    The DNA content in the liver, spleen and bone marrow of white rats exposed to a prolonged gamma-irradiation at a dose of 220 and 800 rad on the 10th day of the 20.5-day space flight and the ground-based synchronous experiment was measured. Space flight factors produced a modifying effect on the postradiation changes in the DNA content. This modifying influence was detected in all organs tested, although in a different degree, and involved an enhancement of the radiation effect which was associated with retardation of postradiation regenerative processes.

  13. Analysis of mutations in oral poliovirus vaccine by hybridization with generic oligonucleotide microchips.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proudnikov, D.; Kirillov, E.; Chumakov, K.

    2000-01-01

    This paper describes use of a new technology of hybridization with a micro-array of immobilized oligonucleotides for detection and quantification of neurovirulent mutants in Oral Poliovirus Vaccine (OPV). We used a micro-array consisting of three-dimensional gel-elements containing all possible hexamers (total of 4096 probes). Hybridization of fluorescently labelled viral cDNA samples with such microchips resulted in a pattern of spots that was registered and quantified by a computer-linked CCD camera, so that the sequence of the original cDNA could be deduced. The method could reliably identify single point mutations, since each of them affected fluorescence intensity of 12 micro-array elements.more » Micro-array hybridization of DNA mixtures with varying contents of point mutants demonstrated that the method can detect as little as 10% of revertants in a population of vaccine virus. This new technology should be useful for quality control of live viral vaccines, as well as for other applications requiring identification and quantification of point mutations.« less

  14. Effects of Different Modes of Hypobaric Hypoxia on the Content of Epigenetic Factors in the Rat in Neurons of Rat Neocortex.

    PubMed

    Samoilov, M O; Churilova, A V; Glushchenko, T S; Rybnikova, E A

    2017-04-01

    We studied the effects of different modes of hypobaric hypoxia on the content of epigenetic factors acH3K24, meH3K9, and meDNA modulating conformational characteristics of chromatin and gene expression in neurons of associative complex of rat parietal neocortex. Severe destructive hypoxia dramatically reduced the level of acH3K24 in 3 h after the end of exposure and increased meH3K9 and meDNA content. By contrast, 3-fold (but not single) adaptive exposure to moderate hypobaric hypoxia that produced a neuroprotective effect enhanced neuronal acH3K24 expression and decreased both meH3K9 and meDNA levels. Elevated acH3K24 content facilitates, while increased content of meH3K9 hampers binding of transcription factors to the target genes. At the same time, increased expression of meDNA suppresses transcription. The role of modification of epigenetic mechanisms in the regulation of proadaptive genes under the effects of hypoxic exposure according to various protocols is discussed.

  15. Parameters of oxidative stress, DNA damage and DNA repair in type 1 and type 2 diabetes mellitus.

    PubMed

    Pácal, Lukáš; Varvařovská, Jana; Rušavý, Zdeněk; Lacigová, Silva; Stětina, Rudolf; Racek, Jaroslav; Pomahačová, Renata; Tanhäuserová, Veronika; Kaňková, Kateřina

    2011-10-01

    (i) to determine the extent of oxidative stress and DNA damage and repair using a panel of selected markers in patients with type 1 and type 2 diabetes mellitus (T1DM, T2DM), (ii) to find their possible relationships with diabetes compensation and duration, and finally (iii) to test for the effect of functional polymorphisms in the 8-oxoguanin DNA glycosylase (rs1052133), catalase (rs1001179) and superoxide dismutase (rs4880) genes on respective intermediate phenotypes. A total of 207 subjects (23 children and 44 adults with T1DM, 52 adult patients with T2DM and 88 healthy adult control subjects) were enrolled in the study. The following markers of redox state were determined in participants: erythrocyte superoxide dismutase (Ery-SOD), whole blood glutathione peroxidase (WB-GPx), erythrocyte glutathione (Ery-GSH), plasma total antioxidant capacity (P-tAOC) and plasma malondialdehyde (P-MDA). Furthermore, the extent of DNA damage and repair was ascertained using the following parameters: DNA single strand breaks (DNAssb), DNA repair capacity (DNArc) and DNA repair index (DNRI). Comparison of T1DM vs. T2DM patients revealed significantly higher Ery-GSH content (P < 0.0001) and significantly lower Ery-SOD activity (P = 0.0006) and P-tAOC level (P < 0.0001) in T1DM subjects. T2DM diabetics exhibited a significant increase in DNAssb (P < 0.0001) and significant decrease in both DNArc (P < 0.0001) and DNRI (P <  .0001) compared with T1DM patients. Patient's age (irrespective of DM type) significantly correlated with DNAssb (r = 0.48, P < 0.0001), DNArc (r = -0.67, P < 0.0001) and DNRI (r = -0.7, P < 0.0001). Allele frequencies of all studied polymorphisms did not exhibit any significant association with the investigated parameters. We demonstrated significant age- and DM type-related changes of oxidative DNA modification and capacity for its repair in subjects with T1DM and T2DM.

  16. Mitochondrial DNA and STR analyses for human DNA from maggots crop contents: a forensic entomology case from central-southern China.

    PubMed

    Li, X; Cai, J F; Guo, Y D; Xiong, F; Zhang, L; Feng, H; Meng, F M; Fu, Y; Li, J B; Chen, Y Q

    2011-08-01

    Insect larvae and adult insects found on human corpses can provide important forensic evidence however it is useful to be able to prove evidence of association. Without this, it could be claimed that the insect evidence was a contaminant or had been planted on the body. This paper describes how mitochondrial DNA (mtDNA) and STR analysis of the crop contents of larvae of the blowfly Aldrichina grahami collected from separated body parts was used to provide evidence of association.

  17. Evaluation of the wound-healing activity of Hibiscus rosa sinensis L (Malvaceae) in Wistar albino rats.

    PubMed

    Bhaskar, Anusha; Nithya, V

    2012-01-01

    To investigate the wound-healing potency of the ethanolic extract of the flowers of Hibiscus rosa sinensis. The wound-healing activity of H. rosa sinensis (5 and 10% w/w) on Wistar albino rats was studied using three different models viz., excision, incision and dead space wound. The parameters studied were breaking strength in incision model, granulation tissue dry weight, breaking strength and collagen content in dead space wound model, percentage of wound contraction and period of epithelization in excision wound model. The granulation tissue formed on days 4, 8, 12, and 16 (post-wound) was used to estimate total collagen, hexosamine, protein, DNA and uronic acid. Data were analyzed by Analysis of Variance (ANOVA) test. P<0.05 was considered statistically significant. The extract increased cellular proliferation and collagen synthesis at the wound site, as evidenced by increase in DNA, total protein and total collagen content of granulation tissues. The extract-treated wounds were found to heal much faster as indicated by improved rates of epithelialization and wound contraction. The extract of H. rosa sinensis significantly (P<0.001) increased the wound-breaking strength in the incision wound model compared to controls. The extract-treated wounds were found to epithelialize faster, and the rate of wound contraction was significantly (P<0.001) increased as compared to control wounds. Wet and dry granulation tissue weights in a dead space wound model increased significantly (P<0.001). There was a significant increase in wound closure rate, tensile strength, dry granuloma weight, wet granuloma weight and decrease in epithelization period in H. rosa sinensis-treated group as compared to control and standard drug-treated groups. The ethanolic extract of H. rosa sinensis had greater wound-healing activity than the nitrofurazone ointment.

  18. Vegetables’ juice influences polyol pathway by multiple mechanisms in favour of reducing development of oxidative stress and resultant diabetic complications

    PubMed Central

    Tiwari, Ashok K.; Kumar, D. Anand; Sweeya, Pisupati S.; Chauhan, H. Anusha; Lavanya, V.; Sireesha, K.; Pavithra, K.; Zehra, Amtul

    2014-01-01

    Objective: Hyperglycemia induced generation of free radicals and consequent development of oxidative stress by polyol pathway is one of the crucial mechanisms stirring up development of diabetic complications. We evaluated influence of ten vegetables’ juice on polyol pathway along with their antioxidant and antioxidative stress potentials. Materials and Methods: Aldose reductase activity was determined utilising goat lens and human erythrocytes. In goat lens, utilization of nicotinamine adenine dinucleotide phosphate (NADPH) and aldose reductase inhibition was assayed. In human erythrocytes, sorbitol formation was measured as an index of aldose reductase activity under normoglycemic and hyperglycemic conditions. Ability of juices in inhibiting oxidative damage to deoxyribose sugar and calf thymus DNA and inhibitory activity against hydrogen peroxide induced hemolysis of erythrocytes was also analysed. Phytochemical contents like total polyphenol, total flavonoid and total protein were measured to find their influence on biological activities. Results: Vegetables’ juice displayed varying degrees of inhibitory potentials in mitigating NADPH dependent catalytic activity of aldose reductase in goat lens, accumulation of sorbitol in human erythrocytes under different glucose concentrations; Fenton-reaction induced oxidative damage to deoxyribose sugar, and calf thymus DNA. Substantial variations in vegetables phytochemicals content were also noticed in this study. Conclusions: Vegetables’ juice possesses potent activities in influencing polyol pathway by various mechanisms in favour of reducing development of oxidative stress independent of their inherent antioxidative properties. Juice of ivy gourd followed by green cucumber and ridge gourd were among the most potent for they displayed strong activities on various parameters analysed in this study. These vegetables’ juice may become part of mechanism-based complementary antioxidant therapy to prevent development of diabetic complications. PMID:24991118

  19. Laboratory Protocol for Genetic Gut Content Analyses of Aquatic Macroinvertebrates Using Group-specific rDNA Primers.

    PubMed

    Koester, Meike; Gergs, René

    2017-10-05

    Analyzing food webs is essential for a better understanding of ecosystems. For example, food web interactions can undergo severe changes caused by the invasion of non-indigenous species. However, an exact identification of field predator-prey interactions is difficult in many cases. These analyses are often based on a visual evaluation of gut content or the analysis of stable isotope ratios (δ 15 N and δ 13 C). Such methods require comprehensive knowledge about, respectively, morphologic diversity or isotopic signature from individual prey organisms, leading to obstacles in the exact identification of prey organisms. Visual gut content analyses especially underestimate soft bodied prey organisms, because maceration, ingestion and digestion of prey organisms make identification of specific species difficult. Hence, polymerase chain reaction (PCR) based strategies, for example the use of group-specific primer sets, provide a powerful tool for the investigation of food web interactions. Here, we describe detailed protocols to investigate the gut contents of macroinvertebrate consumers from the field using group-specific primer sets for nuclear ribosomal deoxyribonucleic acid (rDNA). DNA can be extracted either from whole specimens (in the case of small taxa) or out of gut contents of specimens collected in the field. Presence and functional efficiency of the DNA templates need to be confirmed directly from the tested individual using universal primer sets targeting the respective subunit of DNA. We also demonstrate that consumed prey can be determined further down to species level via PCR with unmodified group-specific primers combined with subsequent single strand conformation polymorphism (SSCP) analyses using polyacrylamide gels. Furthermore, we show that the use of different fluorescent dyes as labels enables parallel screening for DNA fragments of different prey groups from multiple gut content samples via automated fragment analysis.

  20. Fluorescence Microscopy of Nanochannel-Confined DNA.

    PubMed

    Westerlund, Fredrik; Persson, Fredrik; Fritzsche, Joachim; Beech, Jason P; Tegenfeldt, Jonas O

    2018-01-01

    Stretching of DNA in nanoscale confinement allows for several important studies. The genetic contents of the DNA can be visualized on the single DNA molecule level and both the polymer physics of confined DNA and also DNA/protein and other DNA/DNA-binding molecule interactions can be explored. This chapter describes the basic steps to fabricate the nanostructures, perform the experiments and analyze the data.

  1. LINE1 CpG-DNA Hypomethylation in Granulosa Cells and Blood Leukocytes Is Associated With PCOS and Related Traits.

    PubMed

    Sagvekar, Pooja; Mangoli, Vijay; Desai, Sadhana; Patil, Anushree; Mukherjee, Srabani

    2017-04-01

    Altered global DNA methylation is indicative of epigenomic instability concerning chronic diseases. Investigating its incidence and association with polycystic ovary syndrome (PCOS) is essential to understand the etiopathogenesis of this disorder. We assessed global DNA methylation differences in peripheral blood leukocytes (PBLs) and cumulus granulosa cells (CGCs) of controls and women with PCOS; and their association with PCOS and its traits. This study included a total of 102 controls and women with PCOS. Forty-one women undergoing controlled ovarian hyperstimulation (COH) and 61 women not undergoing COH were recruited from in vitro fertilization (IVF) and infertility clinics. DNA methylation was measured by ELISA for 5'-methyl-cytosine content and bisulfite sequencing of 5'-untranslated region (5'-UTR) of long interspersed nucleotide element-1 (LINE1/L1). Total 5'-methyl-cytosine and L1 methylation levels in PBLs and CGCs were similar between controls and women with PCOS. Methylation assessed at CpG sites of L1 5'-UTR revealed a single CpG-site (CpG-4) to be consistently hypomethylated in PBLs of both PCOS groups and CGCs of stimulated PCOS group. In unstimulated women, hypomethylation at CpG-4 was strongly associated with PCOS susceptibility, whereas in stimulated group it showed strong associations with PCOS and its hormonal traits. Furthermore, CGCs demonstrated consistent global and CpG-DNA hypomethylation relative to PBLs, irrespective of normal or disease states. Our study revealed strong association of single hypomethylated CpG-site with PCOS. Identification and characterization of more such methyl-CpG signatures in repetitive elements in larger study populations would provide valuable epigenetic insights into PCOS. Copyright © 2017 by the Endocrine Society

  2. Meticulous plasma isolation is essential to avoid false low-level viraemia in Roche Cobas HIV-1 viral load assays.

    PubMed

    Mortier, Virginie; Vancoillie, Leen; Dauwe, Kenny; Staelens, Delfien; Demecheleer, Els; Schauvliege, Marlies; Dinakis, Sylvie; Van Maerken, Tom; Dessilly, Géraldine; Ruelle, Jean; Verhofstede, Chris

    2017-10-24

    Pre-analytical sample processing is often overlooked as a potential cause of inaccurate assay results. Here we demonstrate how plasma, extracted from standard EDTA-containing blood collection tubes, may contain traces of blood cells consequently resulting in a false low-level HIV-1 viral load when using Roche Cobas HIV-1 assays. The presence of human DNA in Roche Cobas 4800 RNA extracts and in RNA extracts from the Abbott HIV-1 RealTime assay was assessed by quantifying the human albumin gene by means of quantitative PCR. RNA was extracted from plasma samples before and after an additional centrifugation and tested for viral load and DNA contamination. The relation between total DNA content and viral load was defined. Elevated concentrations of genomic DNA were detected in 28 out of 100 Cobas 4800 extracts and were significantly more frequent in samples processed outside of the AIDS Reference Laboratory. An association between genomic DNA presence and spurious low-level viraemia results was demonstrated. Supplementary centrifugation of plasma before RNA extraction eliminated the contamination and the false viraemia. Plasma isolated from standard EDTA-containing blood collection tubes may contain traces of HIV DNA leading to false viral load results above the clinical cutoff. Supplementary centrifugation of plasma before viral load analysis may eliminate the occurrence of this spurious low-level viraemia.

  3. Ultrasensitive determination of DNA oxidation products by gas chromatography-tandem mass spectrometry and the role of antioxidants in the prevention of oxidative damage.

    PubMed

    Dawbaa, Sam; Aybastıer, Önder; Demir, Cevdet

    2017-04-15

    Oxidative stress is considered as one of the significant causes of DNA damage which in turn contributes to cell death through a series of intermediate processes such as cancer formation, mutation, and aging. Natural sources such as plant and fruit products have provided us with interesting substances of antioxidant activity that could be recruited in protecting the genetic materials of the cells. This study is an effort to discover some of those antioxidants effects in their standard and natural forms by performing an ultrasensitive determination of the products of DNA oxidation using GC-MS/MS. Experiments were used to determine the direct antioxidant activity of the substances contained in the tendrils of Vitis vinifera (var. alphonse) by extracting them and achieving Folin-Ciocalteau and CHROMAC analyses to determine the total phenolic content (TPC) and the antioxidant capacity of the extract, respectively; results revealed a phenolic content of 11.39±0.30mg Gallic Acid Equivalent (GAE)/g of the plant's fresh weight (FW) by Folin-Ciocalteau and 8.17±0.49mg Trolox Equivalent (TE)/g FW by CHROMAC assays. The qualitative analysis of the plant extract by HPLC-DAD technique revealed that two flavonoid glycosides namely rutin and isoquercitrin in addition to chlorogenic acid were contained in the extract. The determination of the DNA oxidation products was performed after putting DNA, rutin and isoquercitrin standard samples with different concentration, and the extract's sample under oxidative stress. Eighteen DNA oxidation products were traced using GC-MS/MS with ultra-sensitivity and the experiments proved a significant decrease in the concentration of the DNA oxidation products when the extract was used as a protectant against the oxidative stress. It is believed by conclusion that the extract of V. vinifera's (var. alphonse) tendrils has a good antioxidant activity; hence it is recommended to be used as a part of the daily healthy food list if possible. Copyright © 2017. Published by Elsevier B.V.

  4. Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il; Guillemin, Claire; Neeman-azulay, Meytal

    Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSDmore » or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper supplementation. • Global DNA hypomethylation was resolved both by Tempol and by copper supplementation. • Placental oxidative stress parameters coincides previous findings in the fetal liver.« less

  5. Effects of low dose pre-irradiation on hepatic damage and genetic material damage caused by cyclophosphamide.

    PubMed

    Yu, H-S; Song, A-Q; Liu, N; Wang, H

    2014-01-01

    Cyclophosphamide (CTX) can attack tumour cells, but can also damage the other cells and microstructures of an organism at different levels, such as haematopoietic cells, liver cells, peripheral lymphocyte DNA, and genetic materials. Low dose radiation (LDR) can induce general adaptation reaction. In this study, we explore the effects of low dose radiation on hepatic damage and genetic material damage caused by CTX. Mice were implanted subcutaneously with S180 cells in the left groin (control group excluded). On days 8 and 11, mice of the LDR and LDR+CTX groups were given 75 mGy of whole-body γ-irradiation; whereas mice of the CTX and LDR+CTX groups were injected intraperitoneally with 3.0 mg of CTX. All mice were sacrificed on day 13. DNA damage of the peripheral lymphocytes, alanine aminotransferase (ALT) activity, total protein (TP), albumin (ALB) of the plasma, malonyl-dialdheyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity of the hepatic homogenate, and micronucleus frequency (MNF) of polychromatoerythrocytes in the bone marrow were analysed. The control group had the lowest MDA content and the highest SOD and GSH-PX activity, whereas the CTX group had the highest MDA content and the lowest SOD and GSH-PX activity. Compared with the CTX group, the MDA content decreased significantly (p < 0.01) and the SOD and GSH-PX activity increased significantly (p < 0.05) in the LDR+CTX group. TP and ALB in control group were higher than that of the other groups. Compared with the sham-irradiated group, TP and ALB in the LDR group elevated significantly (p < 0.05). The control group had the lightest DNA damage, whereas the CTX group had the severest. DNA damage in LDR+CTX group was much lighter compared with that of the CTX group (p < 0.05). MNF in the CTX group increased significantly compared with the control and the sham-irradiated groups (p < 0.01). Compared with the CTX group, MNF in LDR+CTX group had a tendency of decline, but without statistical significance (p > 0.05). Pre-chemotherapeutic LDR can induce the activities of anti-oxidative enzymes and promote the elimination of free radicles to alleviate the damaging effects of oxidative stress to hepatic tissue caused by high-dose CTX. At the same time, LDR has no obvious effect on the ALT activity of plasma, but may have protective effect on the protein synthesis function of the liver. High-dose CTX chemotherapy can cause DNA damage of peripheral lymphocytes; however, LDR before chemotherapy may have certain protective effect on DNA damage. Moreover, CTX has potent mutagenic effect; however, LDR may have no protective effect against the genetic toxicity of CTX chemotherapy.

  6. Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis.

    PubMed

    Li, Zhi; Sun, Hanxiao; Mo, Xuemei; Li, Xiuying; Xu, Bo; Tian, Peng

    2013-06-01

    The oleaginous yeast Rhodotorula glutinis has been known to be a potential feedstock for lipid production. In the present study, we investigated the enhancement of expression of malic enzyme (ME; NADP(+) dependent; EC 1.1.1.40) from Mucor circinelloides as a strategy to improve lipid content inside the yeast cells. The 26S rDNA and 5.8S rDNA gene fragments isolated from Rhodotorula glutinis were used for homologous integration of ME gene into R. glutinis chromosome under the control of the constitutively highly expressed gene phosphoglycerate kinase 1 to achieve stable expression. We demonstrated that by increasing the expression of the foreign ME gene in R. glutinis, we successfully improved the lipid content by more than twofold. At the end of lipid accumulation phrase (96 h) in the transformants, activity of ME was increased by twofold and lipid content of the yeast cells was increased from 18.74 % of the biomass to 39.35 %. Simultaneously, there were no significant differences in fatty acid profiles between the wild-type strain and the recombinant strain. Over 94 % of total fatty acids were C16:0, C18:0, C16:1, C18:1, and C18:2. Our results indicated that heterologous expression of NADP(+)-dependent ME involved in fatty acid biosynthesis indeed increased the lipid accumulation in the oleaginous yeast R. glutinis.

  7. Evaluation of Acute toxicity of Lambda Cyhalothrin in Mus musculus L.

    PubMed

    Tomar, Monika; Kumar, Ajay; Kataria, Sudhir Kumar

    2015-08-01

    Lambda Cyhalothrin (LCT) is a type II synthetic pyrethroid widely used in agriculture, home pest control and protection of food stuff. Here, we evaluated its toxicity on biochemical parameters (Total protein, Acetyl cholinesterase, RNA and DNA) and liver histological alteration in mice after 24 h of oral administration @ 25, 50 and 75% of LD50 i.e.; 26.49 mg/kg/body wt. Distilled water (DW) and Cyclophosphamide (CP @ 40 mg/kg/body wt.) were used as negative and positive control; respectively. LCT treated mice showed significant decrease in total protein (P < 0.01), acetyl cholinesterase (P < 0.001) and DNA (P < 0.001) in a dose dependent manner. On the contrary, RNA content showed significant increase (P < 0.01) at 50% of LD50 of LCT. Histological observations of the mice liver showed vascular congestion and hepatocyte degeneration with 6.63 mg/kg/body wt. of LCT; and accumulation of RBCs with sinusoid degeneration and wide necrotic area with pyknosis with 13.25 and 19.88 mg/kg/body wt., respectively. The results demonstrated LCT induced biochemical changes and hepatotoxicity in female mice.

  8. Chronic alcoholism-mediated metabolic disorders in albino rat testes.

    PubMed

    Shayakhmetova, Ganna M; Bondarenko, Larysa B; Matvienko, Anatoliy V; Kovalenko, Valentina M

    2014-09-01

    There is good evidence for impairment of spermatogenesis and reductions in sperm counts and testosterone levels in chronic alcoholics. The mechanisms for these effects have not yet been studied in detail. The consequences of chronic alcohol consumption on the structure and/or metabolism of testis cell macromolecules require to be intensively investigated. The present work reports the effects of chronic alcoholism on contents of free amino acids, levels of cytochrome P450 3A2 (CYP3A2) mRNA expression and DNA fragmentation, as well as on contents of different cholesterol fractions and protein thiol groups in rat testes. Wistar albino male rats were divided into two groups: I - control (intact animals), II - chronic alcoholism (15% ethanol self-administration during 150 days). Following 150 days of alcohol consumption, testicular free amino acid content was found to be significantly changed as compared with control. The most profound changes were registered for contents of lysine (-53%) and methionine (+133%). The intensity of DNA fragmentation in alcohol-treated rat testes was considerably increased, on the contrary CYP3A2 mRNA expression in testis cells was inhibited, testicular contents of total and etherified cholesterol increased by 25% and 45% respectively, and protein SH-groups decreased by 13%. Multidirectional changes of the activities of testicular dehydrogenases were detected. We thus obtained complex assessment of chronic alcoholism effects in male gonads, affecting especially amino acid, protein, ATP and NADPH metabolism. Our results demonstrated profound changes in testes on the level of proteome and genome. We suggest that the revealed metabolic disorders can have negative implication on cellular regulation of spermatogenesis under long-term ethanol exposure.

  9. Karyotype diversity and 2C DNA content in species of the Caesalpinia group.

    PubMed

    Rodrigues, Polliana Silva; Souza, Margarete Magalhães; Melo, Cláusio Antônio Ferreira; Pereira, Telma Nair Santana; Corrêa, Ronan Xavier

    2018-04-11

    The Leguminosae family is the third-largest family of angiosperms, and Caesalpinioideae is its second-largest subfamily. A great number of species (approximately 205) are found in the Caesalpinia group within this subfamily; together with these species' phenotypic plasticity and the similarities in their morphological descriptors, make this a complex group for taxonomic and phylogenetic studies. The objective of the present work was to evaluate the karyotypic diversity and the 2C DNA content variation in 10 species of the Caesalpinia group, representing six genera: Paubrasilia, Caesalpinia, Cenostigma, Poincianella, Erythrostemon and Libidibia. The GC-rich heterochromatin and 45S rDNA sites (which are used as chromosome markers) were located to evaluate the karyotype diversity in the clade. The variation in the 2C DNA content was determined through flow cytometry. The fluorochrome banding indicated that the chromomycin A 3 + /4',6-diamidino-2-phenylindole - blocks were exclusively in the terminal regions of the chromosomes, coinciding with 45S rDNA sites in all analyzed species. Physical mapping of the species (through fluorescence in situ hybridization) revealed variation in the size of the hybridization signals and in the number and distribution of the 45S rDNA sites. All hybridization sites were in the terminal regions of the chromosomes. In addition, all species had a hybridization site in the fourth chromosome pair. The 2C DNA content ranged from 1.54 pg in Erythrostemon calycina to 2.82 pg in the Paubrasilia echinata large-leaf variant. The Pa. echinata small-leaf variant was isolated from the other leaf variants through Scoot-Knott clustering. The chromosome diversity and the variation in the 2C DNA content reinforce that the actual taxonomy and clustering of the analyzed taxa requires more genera that were previously proposed. This fact indicates that taxonomy, phylogeny and cytoevolutionary inference related to the complex Caesalpinia group have to be done through integrative evaluation.

  10. Inhibition of mTOR Prevents ROS Production Initiated by Ethidium Bromide-Induced Mitochondrial DNA Depletion

    PubMed Central

    Nacarelli, Timothy; Azar, Ashley; Sell, Christian

    2014-01-01

    The regulation of mitochondrial mass and DNA content involves a complex interaction between mitochondrial DNA replication machinery, functional components of the electron transport chain, selective clearance of mitochondria, and nuclear gene expression. In order to gain insight into cellular responses to mitochondrial stress, we treated human diploid fibroblasts with ethidium bromide at concentrations that induced loss of mitochondrial DNA over a period of 7 days. The decrease in mitochondrial DNA was accompanied by a reduction in steady state levels of the mitochondrial DNA binding protein, TFAM, a reduction in several electron transport chain protein levels, increased mitochondrial and total cellular ROS, and activation of p38 MAPK. However, there was an increase in mitochondrial mass and voltage dependent anion channel levels. In addition, mechanistic target of rapamycin (mTOR) activity, as judged by p70S6K targets, was decreased while steady state levels of p62/SQSTM1 and Parkin were increased. Treatment of cells with rapamycin created a situation in which cells were better able to adapt to the mitochondrial dysfunction, resulting in decreased ROS and increased cell viability but did not prevent the reduction in mitochondrial DNA. These effects may be due to a more efficient flux through the electron transport chain, increased autophagy, or enhanced AKT signaling, coupled with a reduced growth rate. Together, the results suggest that mTOR activity is affected by mitochondrial stress, which may be part of the retrograde signal system required for normal mitochondrial homeostasis. PMID:25104948

  11. Results of total DNA measurement in koi tissue by Koi Herpes Virus real-time PCR.

    PubMed

    Eide, Kathleen; Miller-Morgan, Tim; Heidel, Jerry; Bildfell, Rob; Jin, Ling

    2011-03-01

    Koi Herpes Virus (KHV) has been classified recently as a member of the Alloherpesviridae within the Herpesvirales order (Waltzek et al., 2005). Although one of the unique features of Herpesviridae, the sister family of Herpesvirales, is latent infection, it has not been demonstrated consistently that KHV of Alloherpesviridae can cause latent infection and be reactivated from latency. To investigate if KHV genomic DNA is present in koi exposed to KHV infection, 10 healthy fish were investigated from a koi population with a history of a KHV outbreak. No gross lesions or microscopic changes were observed at necropsy or by histological examination. No infectious virus was isolated from either the blood plasma or tissues. However, KHV DNA was detected in the white blood cells of nine of the ten fish by real-time PCR and PCR-Southern blot. KHV DNA was also detected in the brain, eye, spleen, gills hematopoietic kidney, trunk kidney, and intestine of nine of the ten fish by PCR-Southern blot. Interestingly, KHV DNA was also detected in the intestinal contents from seven of ten koi. Portions of major capsid gene DNA, amplified from two of the ten koi WBCs, were found to be identical to KHV-U. This study demonstrated that KHV genomic DNA can be detected in normal koi exposed previously to KHV and suggests that KHV becomes latent in fish. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Sequence-Dependent Persistence Length of Long DNA

    NASA Astrophysics Data System (ADS)

    Chuang, Hui-Min; Reifenberger, Jeffrey G.; Cao, Han; Dorfman, Kevin D.

    2017-12-01

    Using a high-throughput genome-mapping approach, we obtained circa 50 million measurements of the extension of internal human DNA segments in a 41 nm ×41 nm nanochannel. The underlying DNA sequences, obtained by mapping to the reference human genome, are 2.5-393 kilobase pairs long and contain percent GC contents between 32.5% and 60%. Using Odijk's theory for a channel-confined wormlike chain, these data reveal that the DNA persistence length increases by almost 20% as the percent GC content increases. The increased persistence length is rationalized by a model, containing no adjustable parameters, that treats the DNA as a statistical terpolymer with a sequence-dependent intrinsic persistence length and a sequence-independent electrostatic persistence length.

  13. Effects of addition of Aspergillus oryzae culture and 2-hydroxyl-4-(methylthio) butanoic acid on milk performance and rumen fermentation of dairy cows.

    PubMed

    Sun, Hua; Wu, Yueming; Wang, Yanming; Wang, Chong; Liu, Jianxin

    2017-04-01

    To investigate effects of Aspergillus oryzae culture (AOC) and 2-hydroxy-4-(methylthio) butanoic acid (HMB) on milk performance and rumen fermentation of dairy cows. Sixty-four multiparous Chinese Holstein cows were randomly allocated into four experimental diets: (i) Control diet; (ii) AOC diet: 5 g AOC/day per head; (iii) HMB diet: 25 g HMB/day; and (iv) AH diet: 5 g AOC plus 25 g HMB/day. Added HMB tended to increase the yield of milk protein (P = 0.06) and 3.5% fat-corrected milk (P = 0.08) and milk fat content (P = 0.09). Milk fat yield (P = 0.03) and the contents of milk protein (P = 0.05) were increased by adding HMB. The cows fed on AOC diet had a tendency for higher body weight (BW) gain (P = 0.08). Addition of AOC, HMB and AH increased content of microbial protein (MCP) and total volatile fatty acids (VFA) (P < 0.01) in rumen fluid. Populations of rumen fungi, Fibrobacter succinogenes and Ruminococcus flavefaciens relative to total bacterial 16S rDNA (P ≤ 0.03) and activity of carboxymethylcellulase (CMCase) (P < 0.01) were increased with added AOC or HMB. It is inferred that added AOC or HMB can increase the contents of MCP and total VFA potentially by stimulating rumen microbe populations and CMCase activity. © 2016 Japanese Society of Animal Science.

  14. Mitochondrial deoxyribonucleoside triphosphate pools in thymidine kinase 2 deficiency.

    PubMed

    Saada, Ann; Ben-Shalom, Efrat; Zyslin, Rivka; Miller, Chaya; Mandel, Hanna; Elpeleg, Orly

    2003-10-24

    Deficiency of mitochondrial thymidine kinase (TK2) is associated with mitochondrial DNA (mtDNA) depletion and manifests by severe skeletal myopathy in infancy. In order to elucidate the pathophysiology of this condition, mitochondrial deoxyribonucleoside triphosphate (dNTP) pools were determined in patients' fibroblasts. Despite normal mtDNA content and cytochrome c oxidase (COX) activity, mitochondrial dNTP pools were imbalanced. Specifically, deoxythymidine triphosphate (dTTP) content was markedly decreased, resulting in reduced dTTP:deoxycytidine triphosphate ratio. These findings underline the importance of balanced mitochondrial dNTP pools for mtDNA synthesis and may serve as the basis for future therapeutic interventions.

  15. DNA quantification of basidiomycetous fungi during storage of logging residues

    PubMed Central

    Alfredsen, Gry; Filbakk, Tore; Fossdal, Carl Gunnar

    2015-01-01

    The demand for bioenergy caused an increased use of logging residues, branches and treetops that were previously left on the ground after harvesting. Residues are stored outdoors in piles and it is unclear to what extent fungi transform this material. Our objective was to quantify the amount of wood degrading fungi during storage using quantitative real-time PCR (qPCR) to detect basidiomycetous DNA in logging residues, a novel approach in this field. We found that the qPCR method was accurate in quantifying the fungal DNA during storage. As the moisture content of the piled logging residues decreased during the storage period, the fungal DNA content also decreased. Scots pine residues contained more fungal DNA than residues from Norway spruce. Loose piles had generally more fungal DNA than bundled ones. PMID:25870777

  16. Fungal DNA in hotel rooms in Europe and Asia--associations with latitude, precipitation, building data, room characteristics and hotel ranking.

    PubMed

    Norbäck, Dan; Cai, Gui-Hong

    2011-10-01

    There is little information on the indoor environment in hotels. Analysis of fungal DNA by quantitative PCR (qPCR) is a new method which can detect general and specific sequences. Dust was collected through swab sampling of door frames in 69 hotel rooms in 20 countries in Europe and Asia (2007-2009). Five sequences were detected by qPCR: total fungal DNA, Aspergillus and Penicillium DNA (Asp/Pen DNA), Aspergillus versicolor (A. versicolor DNA), Stachybotrys chartarum (S. chartarum DNA) and Streptomyces spp. (Streptomyces DNA). Associations were analysed by multiple linear regression. Total fungal DNA (GM = 1.08 × 10(8) cell equivalents m(-2); GSD = 6.36) and Asp/Pen DNA (GM = 1.79 × 10(7) cell equivalents m(-2); GSD = 10.12) were detected in all rooms. A. versicolor DNA, S. chartarum DNA and Streptomyces DNA were detected in 84%, 28% and 47% of the samples. In total, 20% of the rooms had observed dampness/mould, and 30% had odour. Low latitude (range 1.5-64.2 degrees) was a predictor of Asp/Pen DNA. Seaside location, lack of mechanical ventilation, and dampness or mould were other predictors of total fungal DNA and Asp/Pen DNA. Hotel ranking (Trip Advisor) or self-rated quality of the interior of the hotel room was a predictor of total fungal DNA, A. versicolor DNA and Streptomyces DNA. Odour was a predictor of S. chartarum DNA. In conclusion, fungal DNA in swab samples from hotel rooms was related to latitude, seaside location, ventilation, visible dampness and indoor mould growth. Hotels in tropical areas may have 10-100 times higher levels of common moulds such as Aspergillus and Penicillium species, as compared to a temperate climate zone.

  17. Ribosomal DNA analysis of tsetse and non-tsetse transmitted Ethiopian Trypanosoma vivax strains in view of improved molecular diagnosis.

    PubMed

    Fikru, Regassa; Matetovici, Irina; Rogé, Stijn; Merga, Bekana; Goddeeris, Bruno Maria; Büscher, Philippe; Van Reet, Nick

    2016-04-15

    Animal trypanosomosis caused by Trypanosoma vivax (T. vivax) is a devastating disease causing serious economic losses. Most molecular diagnostics for T. vivax infection target the ribosomal DNA locus (rDNA) but are challenged by the heterogeneity among T. vivax strains. In this study, we investigated the rDNA heterogeneity of Ethiopian T. vivax strains in relation to their presence in tsetse-infested and tsetse-free areas and its effect on molecular diagnosis. We sequenced the rDNA loci of six Ethiopian (three from tsetse-infested and three from tsetse-free areas) and one Nigerian T. vivax strain. We analysed the obtained sequences in silico for primer-mismatches of some commonly used diagnostic PCR assays and for GC content. With these data, we selected some rDNA diagnostic PCR assays for evaluation of their diagnostic accuracy. Furthermore we constructed two phylogenetic networks based on sequences within the smaller subunit (SSU) of 18S and within the 5.8S and internal transcribed spacer 2 (ITS2) to assess the relatedness of Ethiopian T. vivax strains to strains from other African countries and from South America. In silico analysis of the rDNA sequence showed important mismatches of some published diagnostic PCR primers and high GC content of T. vivax rDNA. The evaluation of selected diagnostic PCR assays with specimens from cattle under natural T. vivax challenge showed that this high GC content interferes with the diagnostic accuracy of PCR, especially in cases of mixed infections with T. congolense. Adding betain to the PCR reaction mixture can enhance the amplification of T. vivax rDNA but decreases the sensitivity for T. congolense and Trypanozoon. The networks illustrated that Ethiopian T. vivax strains are considerably heterogeneous and two strains (one from tsetse-infested and one from tsetse-free area) are more related to the West African and South American strains than to the East African strains. The rDNA locus sequence of six Ethiopian T. vivax strains showed important differences and higher GC content compared to other animal trypanosomes but could not be related to their origin from tsetse-infested or tsetse-free area. The high GC content of T. vivax DNA renders accurate diagnosis of all pathogenic animal trypanosomes with one single PCR problematic. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Screening by imaging: scaling up single-DNA-molecule analysis with a novel parabolic VA-TIRF reflector and noise-reduction techniques.

    PubMed

    van 't Hoff, Marcel; Reuter, Marcel; Dryden, David T F; Oheim, Martin

    2009-09-21

    Bacteriophage lambda-DNA molecules are frequently used as a scaffold to characterize the action of single proteins unwinding, translocating, digesting or repairing DNA. However, scaling up such single-DNA-molecule experiments under identical conditions to attain statistically relevant sample sizes remains challenging. Additionally the movies obtained are frequently noisy and difficult to analyse with any precision. We address these two problems here using, firstly, a novel variable-angle total internal reflection fluorescence (VA-TIRF) reflector composed of a minimal set of optical reflective elements, and secondly, using single value decomposition (SVD) to improve the signal-to-noise ratio prior to analysing time-lapse image stacks. As an example, we visualize under identical optical conditions hundreds of surface-tethered single lambda-DNA molecules, stained with the intercalating dye YOYO-1 iodide, and stretched out in a microcapillary flow. Another novelty of our approach is that we arrange on a mechanically driven stage several capillaries containing saline, calibration buffer and lambda-DNA, respectively, thus extending the approach to high-content, high-throughput screening of single molecules. Our length measurements of individual DNA molecules from noise-reduced kymograph images using SVD display a 6-fold enhanced precision compared to raw-data analysis, reaching approximately 1 kbp resolution. Combining these two methods, our approach provides a straightforward yet powerful way of collecting statistically relevant amounts of data in a semi-automated manner. We believe that our conceptually simple technique should be of interest for a broader range of single-molecule studies, well beyond the specific example of lambda-DNA shown here.

  19. Molecular microbial and chemical investigation of the bioremediation of two-phase olive mill waste using laboratory-scale bioreactors.

    PubMed

    Morillo, J A; Aguilera, M; Antízar-Ladislao, B; Fuentes, S; Ramos-Cormenzana, A; Russell, N J; Monteoliva-Sánchez, M

    2008-05-01

    Two-phase olive mill waste (TPOMW) is a semisolid effluent that is rich in contaminating polyphenols and is produced in large amounts by the industry of olive oil production. Laboratory-scale bioreactors were used to investigate the biodegradation of TPOMW by its indigenous microbiota. The effect of nutrient addition (inorganic N and P) and aeration of the bioreactors was studied. Microbial changes were investigated by PCR-temperature time gradient electrophoresis (TTGE) and following the dynamics of polar lipid fatty acids (PLFA). The greatest decrease in the polyphenolic and organic matter contents of bioreactors was concomitant with an increase in the PLFA fungal/bacterial ratio. Amplicon sequences of nuclear ribosomal internal transcribed spacer region (ITS) and 16S rDNA allowed identification of fungal and bacterial types, respectively, by comparative DNA sequence analyses. Predominant fungi identified included members of the genera Penicillium, Candida, Geotrichum, Pichia, Cladosporium, and Aschochyta. A total of 14 bacterial genera were detected, with a dominance of organisms that have previously been associated with plant material. Overall, this work highlights that indigenous microbiota within the bioreactors through stimulation of the fungal fraction, is able to degrade the polyphenolic content without the inoculation of specific microorganisms.

  20. Nuclear morphology for the detection of alterations in bronchial cells from lung cancer: an attempt to improve sensitivity and specificity.

    PubMed

    Fafin-Lefevre, Mélanie; Morlais, Fabrice; Guittet, Lydia; Clin, Bénédicte; Launoy, Guy; Galateau-Sallé, Françoise; Plancoulaine, Benoît; Herlin, Paulette; Letourneux, Marc

    2011-08-01

    To identify which morphologic or densitometric parameters are modified in cell nuclei from bronchopulmonary cancer based on 18 parameters involving shape, intensity, chromatin, texture, and DNA content and develop a bronchopulmonary cancer screening method relying on analysis of sputum sample cell nuclei. A total of 25 sputum samples from controls and 22 bronchial aspiration samples from patients presenting with bronchopulmonary cancer who were professionally exposed to cancer were used. After Feulgen staining, 18 morphologic and DNA content parameters were measured on cell nuclei, via image cytom- etry. A method was developed for analyzing distribution quantiles, compared with simply interpreting mean values, to characterize morphologic modifications in cell nuclei. Distribution analysis of parameters enabled us to distinguish 13 of 18 parameters that demonstrated significant differences between controls and cancer cases. These parameters, used alone, enabled us to distinguish two population types, with both sensitivity and specificity > 70%. Three parameters offered 100% sensitivity and specificity. When mean values offered high sensitivity and specificity, comparable or higher sensitivity and specificity values were observed for at least one of the corresponding quantiles. Analysis of modification in morphologic parameters via distribution analysis proved promising for screening bronchopulmonary cancer from sputum.

  1. Influence of human lactoferrin expression on iron homeostasis, flavonoids, and antioxidants in transgenic tobacco.

    PubMed

    Kumar, Vinay; Gill, Tejpal; Grover, Sunita; Ahuja, Paramvir Singh; Yadav, Sudesh Kumar

    2013-02-01

    This study was aimed at to check the influence of human lactoferrin (hLF) expression on iron homeostasis, flavonoids, and antioxidants in transgenic tobacco. Transgenic tobacco expressing hLF cDNA under the control of a CaMV 35S promoter was produced. The iron content as well as chlorophyll content of transgenic tobacco was lower compared to mock and untransformed wild plants. Interestingly, hLF transgenic tobacco showed higher level of transcript expression for genes related to iron content regulation like iron transporter and metal transporter. While expression of genes related to iron storage such as ferritin 1 and ferritin 2 was downregulated. The transcript expression of genes encoding antioxidant enzymes such as glutathione reductase, glutathione-S-transferase, ascorbate peroxidase, and catalase was downregulated in hLF transgenic tobacco compared to controls. Further, the transcript expression of two important genes encoding dihydroflavonol reductase (DFR) and phenylalanine ammonia lyase regulatory enzymes of flavonoid biosynthesis pathway was analyzed. The expression of DFR was found to be downregulated, while PAL expression was upregulated in hLF transgenic tobacco compared to mock and untransformed wild plant. Total phenolics, flavonoids, and proanthocyanidins contents were found to be higher in hLF transgenic tobacco than the mock and untransformed wild plant. Results suggest that hLF expression in transgenic tobacco leads to iron deficiency, downregulation of antioxidant enzymes, and increase in total flavonoids.

  2. Mechanisms of graviperception and response in pea seedlings

    NASA Technical Reports Server (NTRS)

    Galston, A. W.

    1984-01-01

    A new method for the mass isolation and purification of multigranular amyloplasts from the bundle sheath parenchyma of etiolated pa epicotyls was presented. These bodies, which displace within 2+3 minutes of exposure to 1 x g, are probably the gravity receptors (statoliths) in this plant. These amyloplasts were characterized as having a doublemembrane with a surface-localized ATPase, a high calcium content, and their own genomic DNA. These amyloplasts are investigated as to (a) the reasons for their especially high density, probable related to their starch content, (b) the possible identity of their DNA with the DNA of chloroplasts and unigranular amyloplasts, and (c) possible importance of their high calcium content.

  3. Impaired Mitochondrial Biogenesis Precedes Heart Failure in Right Ventricular Hypertrophy in Congenital Heart Disease

    PubMed Central

    Karamanlidis, Georgios; Bautista-Hernandez, Victor; Fynn-Thompson, Francis; Nido, Pedro del; Tian, Rong

    2011-01-01

    Background The outcome of the surgical repair in congenital heart disease (CHD) correlates with the degree of myocardial damage. In this study we determined whether mitochondrial DNA depletion is a sensitive marker of right ventricular (RV) damage and whether impaired mitochondrial DNA (mtDNA) replication contributes to the transition from compensated hypertrophy to failure. Methods and Results RV samples obtained from 31 patients undergoing cardiac surgery were compared to 5 RV samples from non-failing hearts (control). Patients were divided into compensated hypertrophy and failure groups based on preoperative echocardiography, catheterization and/or MRI data. Mitochondrial enzyme activities (citrate synthase and succinate dehydrogenase) were maintained during hypertrophy and decreased by ~40% (p<0.05 vs. control) at the stage of failure. In contrast, mtDNA content was progressively decreased in the hypertrophied RV through failure (by 28±8% and 67±11% respectively, p<0.05 for both), whereas mtDNA encoded gene expression was sustained by increased transcriptional activity during compensated hypertrophy but not in failure. MtDNA depletion was attributed to reduced mtDNA replication in both hypertrophied and failing RV and it was independent of PGC-1 down-regulation but was accompanied by reduced expression of proteins constituting the mtDNA replication fork. Decreased mtDNA content in compensated hypertrophy was also associated with pathological changes of mitochondria ultrastructure. Conclusions Impaired mtDNA replication causes early and progressive depletion of mtDNA in the RV of the CHD patients during the transition from hypertrophy to failure. Decreased mtDNA content is likely a sensitive marker of mitochondrial injury in this patient population. PMID:21840936

  4. EMBRYONIC DEVELOPMENT AND A QUANTITATIVE MODEL OF PROGRAMMED DNA ELIMINATION IN MESOCYCLOPS EDAX (S. A. FORBES, 1891) (COPEPODA: CYCLOPOIDA)

    PubMed Central

    Clower, Michelle K.; Holub, Ashton S.; Smith, Rebecca T.; Wyngaard, Grace A.

    2016-01-01

    The highly programmed fragmentation of chromosomes and elimination of large amounts of nuclear DNA from the presomatic cell lineages (i.e., chromatin diminution), occurs in the embryos of the freshwater zooplankton Mesocyclops edax (S. A. Forbes, 1891) (Crustacea: Copepoda). The somatic genome is reorganized and reduced to a size five times smaller even though the germline genome remains intact. We present the first comprehensive, quantitative model of DNA content throughout embryogenesis in a copepod that possesses embryonic DNA elimination. We used densitometric image analysis to measure the DNA content of polar bodies, germline and somatic nuclei, and excised DNA “droplets.” We report: 1) variable DNA contents of polar bodies, some of which do not contain the amount corresponding to the haploid germline genome size; 2) presence of pronuclei in newly laid embryo sacs; 3) gonomeric chromosomes in the second to fourth cleavage divisions and in the primordial germ cell and primordial endoderm cell during the fifth cleavage division; 4) timing of early embryonic cell stages, elimination of DNA, and divisions of the primordial germ cell and primordial endoderm cell at 22°C; and 5) persistence of a portion of the excised DNA “droplets” throughout embryogenesis. DNA elimination is a trait that spans multiple embryonic stages and a knowledge of the timing and variability of the associated cytological events with DNA elimination will promote the study of the molecular mechanisms involved in this trait. We propose the “genome yolk hypothesis” as a functional explanation for the persistence of the eliminated DNA that might serve as a resource during postdiminution cleavage divisions. PMID:27857452

  5. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors.

    PubMed

    Adalsteinsson, Viktor A; Ha, Gavin; Freeman, Samuel S; Choudhury, Atish D; Stover, Daniel G; Parsons, Heather A; Gydush, Gregory; Reed, Sarah C; Rotem, Denisse; Rhoades, Justin; Loginov, Denis; Livitz, Dimitri; Rosebrock, Daniel; Leshchiner, Ignaty; Kim, Jaegil; Stewart, Chip; Rosenberg, Mara; Francis, Joshua M; Zhang, Cheng-Zhong; Cohen, Ofir; Oh, Coyin; Ding, Huiming; Polak, Paz; Lloyd, Max; Mahmud, Sairah; Helvie, Karla; Merrill, Margaret S; Santiago, Rebecca A; O'Connor, Edward P; Jeong, Seong H; Leeson, Rachel; Barry, Rachel M; Kramkowski, Joseph F; Zhang, Zhenwei; Polacek, Laura; Lohr, Jens G; Schleicher, Molly; Lipscomb, Emily; Saltzman, Andrea; Oliver, Nelly M; Marini, Lori; Waks, Adrienne G; Harshman, Lauren C; Tolaney, Sara M; Van Allen, Eliezer M; Winer, Eric P; Lin, Nancy U; Nakabayashi, Mari; Taplin, Mary-Ellen; Johannessen, Cory M; Garraway, Levi A; Golub, Todd R; Boehm, Jesse S; Wagle, Nikhil; Getz, Gad; Love, J Christopher; Meyerson, Matthew

    2017-11-06

    Whole-exome sequencing of cell-free DNA (cfDNA) could enable comprehensive profiling of tumors from blood but the genome-wide concordance between cfDNA and tumor biopsies is uncertain. Here we report ichorCNA, software that quantifies tumor content in cfDNA from 0.1× coverage whole-genome sequencing data without prior knowledge of tumor mutations. We apply ichorCNA to 1439 blood samples from 520 patients with metastatic prostate or breast cancers. In the earliest tested sample for each patient, 34% of patients have ≥10% tumor-derived cfDNA, sufficient for standard coverage whole-exome sequencing. Using whole-exome sequencing, we validate the concordance of clonal somatic mutations (88%), copy number alterations (80%), mutational signatures, and neoantigens between cfDNA and matched tumor biopsies from 41 patients with ≥10% cfDNA tumor content. In summary, we provide methods to identify patients eligible for comprehensive cfDNA profiling, revealing its applicability to many patients, and demonstrate high concordance of cfDNA and metastatic tumor whole-exome sequencing.

  6. Vesicle Fusion Observed by Content Transfer across a Tethered Lipid Bilayer

    PubMed Central

    Rawle, Robert J.; van Lengerich, Bettina; Chung, Minsub; Bendix, Poul Martin; Boxer, Steven G.

    2011-01-01

    Synaptic transmission is achieved by exocytosis of small, synaptic vesicles containing neurotransmitters across the plasma membrane. Here, we use a DNA-tethered freestanding bilayer as a target architecture that allows observation of content transfer of individual vesicles across the tethered planar bilayer. Tethering and fusion are mediated by hybridization of complementary DNA-lipid conjugates inserted into the two membranes, and content transfer is monitored by the dequenching of an aqueous content dye. By analyzing the diffusion profile of the aqueous dye after vesicle fusion, we are able to distinguish content transfer across the tethered bilayer patch from vesicle leakage above the patch. PMID:22004762

  7. Dietary omega-3 polyunsaturated fatty acids induce plasminogen activator activity and DNA damage in rabbit spermatozoa.

    PubMed

    Kokoli, A N; Lavrentiadou, S N; Zervos, I A; Tsantarliotou, M P; Georgiadis, M P; Nikolaidis, E A; Botsoglou, N; Boscos, C M; Taitzoglou, I A

    2017-12-01

    The aim of this study was to determine the effect(s) of dietary omega-3 polyunsaturated fatty acids (ω-3 PUFA) on rabbit semen. Adult rabbit bucks were assigned to two groups that were given two diets, a standard diet (control) and a diet supplemented with ω-3 PUFA. Sperm samples were collected from all bucks with the use of an artificial vagina in 20-day intervals, for a total period of 120 days. The enrichment of membranes in ω-3 PUFA was manifested by the elevation of the 22:5 ω-3 (docosapentaenoic acid [DPA]) levels within 40 days. This increase in DPA content did not affect semen characteristics (i.e., concentration, motility and viability). However, it was associated with the induction of lipid peroxidation in spermatozoa, as determined on the basis of the malondialdehyde content. Lipid peroxidation was associated with DNA fragmentation in ω-3 PUFA-enriched spermatozoa and a concomitant increase in plasminogen activator (PA) activity. The effects of ω-3 PUFA on sperm cells were evident within 40 days of ω-3 PUFA dietary intake and exhibited peack values on day 120. Our findings suggest that an ω-3 PUFA-rich diet may not affect semen characteristics; however, it may have a negative impact on the oxidative status and DNA integrity of the spermatozoa, which was associated with an induction of PAs activity. © 2017 Blackwell Verlag GmbH.

  8. Infrared spectra in monitoring biochemical parameters of human blood

    NASA Astrophysics Data System (ADS)

    Prabhakar, S.; Jain, N.; Singh, R. A.

    2012-05-01

    Infrared spectroscopy is gaining recognition as a promising method. The infrared spectra of selected regions (2000-400cm-1) of blood tissue samples are reported. Present study related to the role of spectral peak fitting in the study of human blood and quantitative interpretations of infrared spectra based on chemometrics. The spectral variations are interpreted in terms of the biochemical and pathological processes involved. The mean RNA/DNA ratio of fitted intensities and analytical area as calculated from the transmittance peaks at 1121cm-1/1020cm-1 is found to be 0.911A.U and 2.00A.U. respectively. The ratio of 1659cm-1/1544cm-1 (amide-I/amide-II) bands is found to shed light on the change in the DNA content. The ratio of amide-I/amide-II is almost unity (≈1.054) for blood spectra. The deviation from unity is an indication of DNA absorption from the RBC cells. The total phosphate content has found to be 25.09A.U. The level for glycogen/phosphate ratio (areas under peaks 1030cm-1/1082cm-1) is found to be 0.286A.U. The ratio of unsaturated and saturated carbonyl compounds (C=O) in blood samples is in form of esters and the analytical areas under the spectral peaks at 1740cm-1 and 1731cm-1 for unsaturated esters and saturated esters respectively found to be 0.618A.U.

  9. Application of the flow cytometry for determination of the amount of DNA in Yersinia pestis cells under the influence of serotonin (5-hydroxytryptamine)

    NASA Astrophysics Data System (ADS)

    Korsukov, Vladimir N.; Shchukovskaya, Tatyana N.; Kravtsov, Alexander L.; Popov, Youri A.

    2002-07-01

    Using flow cytometry a low DNA content in inoculated Yersinia pestis EV cells have been shown at the beginning of culture in Hottinger broth pH 7.2. The dependence serotonin action of its concentration on DNA content have been demonstrated. Serotonin accelerated Yersinia pestis culture growth during cultivation in Hottinger broth pH 7.2 both at 28 degrees C and 37 degrees C at concentration of 10-5 M.

  10. Systematic random sampling of the comet assay.

    PubMed

    McArt, Darragh G; Wasson, Gillian R; McKerr, George; Saetzler, Kurt; Reed, Matt; Howard, C Vyvyan

    2009-07-01

    The comet assay is a technique used to quantify DNA damage and repair at a cellular level. In the assay, cells are embedded in agarose and the cellular content is stripped away leaving only the DNA trapped in an agarose cavity which can then be electrophoresed. The damaged DNA can enter the agarose and migrate while the undamaged DNA cannot and is retained. DNA damage is measured as the proportion of the migratory 'tail' DNA compared to the total DNA in the cell. The fundamental basis of these arbitrary values is obtained in the comet acquisition phase using fluorescence microscopy with a stoichiometric stain in tandem with image analysis software. Current methods deployed in such an acquisition are expected to be both objectively and randomly obtained. In this paper we examine the 'randomness' of the acquisition phase and suggest an alternative method that offers both objective and unbiased comet selection. In order to achieve this, we have adopted a survey sampling approach widely used in stereology, which offers a method of systematic random sampling (SRS). This is desirable as it offers an impartial and reproducible method of comet analysis that can be used both manually or automated. By making use of an unbiased sampling frame and using microscope verniers, we are able to increase the precision of estimates of DNA damage. Results obtained from a multiple-user pooled variation experiment showed that the SRS technique attained a lower variability than that of the traditional approach. The analysis of a single user with repetition experiment showed greater individual variances while not being detrimental to overall averages. This would suggest that the SRS method offers a better reflection of DNA damage for a given slide and also offers better user reproducibility.

  11. Small intestinal growth measures are correlated with feed efficiency in market weight cattle, despite minimal effects of maternal nutrition during early to midgestation.

    PubMed

    Meyer, A M; Hess, B W; Paisley, S I; Du, M; Caton, J S

    2014-09-01

    We hypothesized that gestational nutrition would affect calf feed efficiency and small intestinal biology, which would be correlated with feed efficiency. Multiparous beef cows (n = 36) were individually fed 1 of 3 diets from d 45 to 185 of gestation: native grass hay and supplement to meet NRC recommendations (control [CON]), 70% of CON NEm (nutrient restricted [NR]), or a NR diet with a RUP supplement (NR+RUP) to provide similar essential AA as CON. After d 185 of gestation, cows were managed as a single group, and calf individual feed intake was measured with the GrowSafe System during finishing. At slaughter, the small intestine was dissected and sampled. Data were analyzed with calf sex as a block. There was no effect (P ≥ 0.33) of maternal treatment on residual feed intake, G:F, DMI, ADG, or final BW. Small intestinal mass did not differ (P ≥ 0.38) among treatments, although calf small intestinal length tended (P = 0.07) to be greater for NR than NR+RUP. There were no differences (P ≥ 0.20) in calf small intestinal density or jejunal cellularity, proliferation, or vascularity among treatments. Jejunal soluble guanylate cyclase mRNA was greater (P < 0.03) for NR+RUP than CON and NR. Residual feed intake was positively correlated (P ≤ 0.09) with small intestinal mass and relative mass and jejunal RNA content but was negatively correlated (P ≤ 0.09) with jejunal mucosal density and DNA concentration. Gain:feed was positively correlated (P ≤ 0.09) with jejunal mucosal density, DNA, protein, and total cells and was negatively correlated (P ≤ 0.05) with small intestinal relative mass, jejunal RNA, and RNA:DNA. Dry matter intake was positively correlated (P ≤ 0.09) with small intestinal mass, relative mass, length, and density as well as jejunal DNA and protein content, total cells, total vascularity, and kinase insert domain receptor and endothelial nitric oxide synthase 3 mRNA and was negatively correlated (P = 0.02) with relative small intestinal length. In this study, calf performance and efficiency during finishing as well as most measures of small intestinal growth were not affected by maternal nutrient restriction during early and midgestation. Results indicate that offspring small intestinal gene expression may be affected by gestational nutrition even when apparent tissue growth is unchanged. Furthermore, small intestinal size and growth may explain some variation in efficiency of nutrient utilization in feedlot cattle.

  12. Nuclear DNA Content Variation and Species Relationships in the Genus Lupinus (Fabaceae)

    PubMed Central

    NAGANOWSKA, BARBARA; WOLKO, BOGDAN; ŚLIWIŃSKA, ELWIRA; KACZMAREK, ZYGMUNT

    2003-01-01

    The 2C nuclear DNA content has been estimated by flow cytometry in 18 species and botanical forms of the genus Lupinus (family Fabaceae), using propidium iodide as a fluorescent dye. They represented distinct infrageneric taxonomic groups and differed in somatic chromosome numbers. Estimated 2C DNA values ranged from 0·97 pg in L. princei to 2·44 pg in L. luteus, which gives a more than 2·5-fold variation. Statistical analysis of the data obtained resulted in a grouping that supports the generally accepted taxonomic classification of the Old World lupins. The rough-seeded L. princei turned out to be an interesting exception, getting closer to smooth-seeded species. Results of DNA content analyses are discussed with regards to the phylogenetic relationships among the Old World lupins and some aspects of the evolution of the genus. PMID:12853281

  13. Quantifying quality in DNA self-assembly

    PubMed Central

    Wagenbauer, Klaus F.; Wachauf, Christian H.; Dietz, Hendrik

    2014-01-01

    Molecular self-assembly with DNA is an attractive route for building nanoscale devices. The development of sophisticated and precise objects with this technique requires detailed experimental feedback on the structure and composition of assembled objects. Here we report a sensitive assay for the quality of assembly. The method relies on measuring the content of unpaired DNA bases in self-assembled DNA objects using a fluorescent de-Bruijn probe for three-base ‘codons’, which enables a comparison with the designed content of unpaired DNA. We use the assay to measure the quality of assembly of several multilayer DNA origami objects and illustrate the use of the assay for the rational refinement of assembly protocols. Our data suggests that large and complex objects like multilayer DNA origami can be made with high strand integration quality up to 99%. Beyond DNA nanotechnology, we speculate that the ability to discriminate unpaired from paired nucleic acids in the same macromolecule may also be useful for analysing cellular nucleic acids. PMID:24751596

  14. Presence of intrahepatic (total and ccc) HBV DNA is not predictive of HBV recurrence after liver transplantation.

    PubMed

    Hussain, Munira; Soldevila-Pico, Consuelo; Emre, Sukru; Luketic, Velimir; Lok, Anna S F

    2007-08-01

    Previous studies reported that hepatitis B virus (HBV) deoxyribonucleic acid (DNA) can be detected in livers of patients who received transplants for hepatitis B despite the absence of serological markers of HBV recurrence. Quantification of HBV DNA was not performed and presence of covalently closed circular (ccc) DNA was not analyzed in most studies. We aimed to quantify total and ccc HBV DNA in explant liver and post-orthotopic liver transplantation (OLT) biopsies and to correlate the values with HBV recurrence post-OLT. Frozen liver tissue from 34 patients (9 with explant liver only, 9 with explant liver and post-OLT liver biopsies, and 16 with post-OLT biopsies only) in the National Institutes of Health HBV-OLT study was examined using real-time polymerase chain reaction (PCR). Among the 18 patients with explant liver, 7 were hepatitis B e antigen (HBeAg)-positive, 8 had detectable serum HBV DNA, and 10 received antiviral therapy prior to OLT. Total and ccc HBV DNA was detected in explant livers of 17 and 16 patients, respectively. Of the 10 patients who received antiviral therapy pre-OLT, serum HBV DNA was undetectable in 8 at transplantation but 7 had detectable total and ccc HBV DNA in their explant liver. Of the 25 patients with post-OLT biopsies, total HBV DNA was detected in 83% and ccc DNA in 17% of 47 biopsies, although only 2 patients had HBV recurrence. In conclusion, total and ccc HBV DNA could be detected in explant livers of most patients despite antiviral therapy pre-OLT. Total but not ccc HBV DNA could be detected in post-OLT liver biopsies of most patients despite undetectable serum HBV DNA and hepatitis B surface antigen (HBsAg). Our findings suggest that occult HBV reinfection occurs in most HBV patients after OLT and continued administration of appropriate prophylactic therapy is important in preventing overt HBV recurrence. Copyright (c) 2007 AASLD.

  15. Cell-free total and fetal DNA in first trimester maternal serum and subsequent development of preeclampsia

    PubMed Central

    Silver, Robert; Clifton, Rebecca G.; Myatt, Leslie; Hauth, John C.; Leveno, Kenneth J.; Reddy, Uma M.; Peaceman, Alan M.; Ramin, Susan M.; Samuels, Philip; Saade, George; Sorokin, Yoram

    2017-01-01

    Objective To assess the relationship between first trimester cell-free total and fetal DNA in maternal plasma and the subsequent development of preeclampsia. Study Design Nested case-control study of patients enrolled in the Combined Antioxidant and Preeclampsia Prediction Studies (CAPPS) prediction study of 175 women who did and 175 women who did not develop preeclampsia. The predictive values of cell-free total and fetal DNA and the subsequent development of preeclampsia were measured using ROC curves. Results Cell-free total DNA was higher in African American (median; 25 – 75%; 6.15; 0.14 – 28.73; p = 0.02) and Hispanic (4.95; 0.20 – 26.82; p = 0.037) compared to white women (2.33; 0.03 – 13.10). Levels of cell-free total DNA was also associated with maternal BMI (p = 0.02). Cell-free total DNA levels were similar between women who later developed preeclampsia (3.52; 0.11 – 25.3) and controls (3.74; 0.12 – 21.14, p=0.96). Conclusions There is no significant difference in levels of cell-free total DNA in the first trimester in women who subsequently develop preeclampsia. Levels of cell-free total DNA in the first trimester are increased in African American and Hispanic compared to white women, and levels increase with increasing BMI. PMID:27398706

  16. An optical microscopy study of the swelling of wet-spun films of CsDNA as a function of hydration and CsCl concentration

    NASA Astrophysics Data System (ADS)

    Schwenker, Megan; Marlowe, Robert; Lee, Scott; Rupprecht, Allan

    2005-03-01

    Highly oriented, wet-spun films of DNA expand in the direction perpendicular to the helical axis as the hydration of the film is increased. CsDNA films with a high CsCl content show an unexpected shrinkage at a relative humidity of 92%. Our most recent experiments have been to measure the perpendicular dimension of CsDNA as a function of both hydration and concentration of CsCl. Our preliminary results show that no shrinkage is observed at low contents of CsCl, showing that the CsCl plays an integral role in the shrinkage phenomenon.

  17. Genomic Mapping of Human DNA provides Evidence of Difference in Stretch between AT and GC rich regions

    NASA Astrophysics Data System (ADS)

    Reifenberger, Jeffrey; Dorfman, Kevin; Cao, Han

    Human DNA is a not a polymer consisting of a uniform distribution of all 4 nucleic acids, but rather contains regions of high AT and high GC content. When confined, these regions could have different stretch due to the extra hydrogen bond present in the GC basepair. To measure this potential difference, human genomic DNA was nicked with NtBspQI, labeled with a cy3 like fluorophore at the nick site, stained with YOYO, loaded into a device containing an array of nanochannels, and imaged. Over 473,000 individual molecules of DNA, corresponding to roughly 30x coverage of a human genome, were collected and aligned to the human reference. Based on the known AT/GC content between aligned pairs of labels, the stretch was measured for regions of similar size but different AT/GC content. We found that regions of high GC content were consistently more stretched than regions of high AT content between pairs of labels varying in size between 2.5 kbp and 500 kbp. We measured that for every 1% increase in GC content there was roughly a 0.06% increase in stretch. While this effect is small, it is important to take into account differences in stretch between AT and GC rich regions to improve the sensitivity of detection of structural variations from genomic variations. NIH Grant: R01-HG006851.

  18. Optimizing Cationic and Neutral Lipids for Efficient Gene Delivery at High Serum Content

    PubMed Central

    Majzoub, Ramsey N.; Hwu, Yeu-kuang; Liang, Keng S.; Leal, Cecília; Safinya, Cyrus R.

    2014-01-01

    Background Cationic liposome (CL)-DNA complexes are promising gene delivery vectors with potential applications in gene therapy. A key challenge in creating CL-DNA complexes for applications is that their transfection efficiency (TE) is adversely affected by serum. In particular, little is known about the effects of high serum contents on TE even though this may provide design guidelines for applications in vivo. Methods We prepared CL-DNA complexes in which we varied the neutral lipid (DOPC, glycerol-monooleate (GMO), cholesterol), the headgroup charge and chemical structure of the cationic lipid, and the ratio of neutral to cationic lipid; we then measured the TE of these complexes as a function of serum content and assessed their cytotoxicity. We tested selected formulations in two human cancer cell lines (M21/melanoma and PC-3/prostate cancer). Results In the absence of serum, all CL-DNA complexes of custom-synthesized multivalent lipids show high TE. Certain combinations of multivalent lipids and neutral lipids, such as MVL5(5+)/GMO-DNA complexes or complexes based on the dendritic-headgroup lipid TMVLG3(8+) exhibited high TE both in the absence and presence of serum. Although their TE still dropped to a small extent in the presence of serum, it reached or surpassed that of benchmark commercial transfection reagents, in particular at high serum content. Conclusions Two-component vectors (one multivalent cationic lipid and one neutral lipid) can rival or surpass benchmark reagents at low and high serum contents (up to 50%, v/v). We suggest guidelines for optimizing the serum resistance of CL-DNA complexes based on a given cationic lipid. PMID:24753287

  19. Low-dose carbon ion irradiation effects on DNA damage and oxidative stress in the mouse testis

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Long, Jing; Zhang, Luwei; Zhang, Hong; Liu, Bin; Zhao, Weiping; Wu, Zhehua

    2011-01-01

    To investigate the effects of low-dose carbon ion irradiation on reproductive system of mice, the testes of outbred Kunming strain mice were whole-body irradiated with 0, 0.05, 0.1, 0.5 and 1 Gy, respectively. We measured DNA double-strand breaks (DNA DSBs) and oxidative stress parameters including malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, and testis weight and sperm count at 12 h, 21 d and 35 d after irradiation in mouse testis. At 12 h postirradiation, a significant increase in DNA DSB level but no pronounced alterations in MDA content or SOD activity were observed in 0.5 and 1 Gy groups compared with the control group. At 21 d postirradiation, there was a significant reduction in sperm count and distinct enhancements of DSB level and MDA content in 0.5 and 1 Gy groups in comparison with control. At 35 d postirradiation, the levels of DNA DSBs and MDA, and SOD activity returned to the baseline except for the MDA content in 1 Gy (P < 0.05), while extreme falls of sperm count were still observed in 0.5 (P < 0.01) and 1 Gy (P < 0.01) groups. For the 0.05 or 0.1 Gy group, no differences were found in DNA DSB level and MDA content between control and at 12 h, 21 d and 35 d after irradiation, indicating that lower doses of carbon ion irradiation have no significant influence on spermatogenesis processes. In this study, male germ cells irradiated with over 0.5 Gy of carbon ions are difficult to repair completely marked by the sperm count. Furthermore, these data suggest that the deleterious effects may be chronic or delayed in reproductive system after whole-body exposure to acute high-dose carbon ions.

  20. The modulation of the biological activities of mitochondrial histone Abf2p by yeast PKA and its possible role in the regulation of mitochondrial DNA content during glucose repression.

    PubMed

    Cho, J H; Lee, Y K; Chae, C B

    2001-12-30

    The mitochondrial histone, Abf2p, of Saccharomyces cerevisiae is essential for the maintenance of mitochondrial DNA (mtDNA) and appears to play an important role in the recombination and copy number determination of mtDNA. Abf2p, encoded by a nuclear gene, is a member of HMG1 DNA-binding protein family and has two HMG1-Box domains, HMG1-Box A and B. To investigate the role of Abf2p in the control of mtDNA copy number, we asked if the in vivo functions of Abf2p are regulated by the possible modification such as phosphorylation. We found that the N-terminal extended segment (KRPT(21)S(22)) of HMG1-Box A is rapidly and specifically phosphorylated by cAMP-dependent protein kinase (PKA) in vitro. The phosphorylation in this region inhibits the binding of Abf2p to all kinds of DNA including four-way junction DNA and the supercoiling activity of Abf2p itself. The abf2 mutant cells with an abf2(T21A/S22A) allele defective in the phosphorylation site have a severe defect in the regulation of mtDNA content during glucose repression in vivo. These observations suggest that the phosphorylation via PKA, that is activated during glucose repression, may regulate the in vivo functions of Abf2p for the control of mtDNA content during shift from gluconeogenic to fermentative growth.

  1. Presequence-Independent Mitochondrial Import of DNA Ligase Facilitates Establishment of Cell Lines with Reduced mtDNA Copy Number

    PubMed Central

    Spadafora, Domenico; Kozhukhar, Natalia; Alexeyev, Mikhail F.

    2016-01-01

    Due to the essential role played by mitochondrial DNA (mtDNA) in cellular physiology and bioenergetics, methods for establishing cell lines with altered mtDNA content are of considerable interest. Here, we report evidence for the existence in mammalian cells of a novel, low- efficiency, presequence-independent pathway for mitochondrial protein import, which facilitates mitochondrial uptake of such proteins as Chlorella virus ligase (ChVlig) and Escherichia coli LigA. Mouse cells engineered to depend on this pathway for mitochondrial import of the LigA protein for mtDNA maintenance had severely (up to >90%) reduced mtDNA content. These observations were used to establish a method for the generation of mouse cell lines with reduced mtDNA copy number by, first, transducing them with a retrovirus encoding LigA, and then inactivating in these transductants endogenous Lig3 with CRISPR-Cas9. Interestingly, mtDNA depletion to an average level of one copy per cell proceeds faster in cells engineered to maintain mtDNA at low copy number. This makes a low-mtDNA copy number phenotype resulting from dependence on mitochondrial import of DNA ligase through presequence-independent pathway potentially useful for rapidly shifting mtDNA heteroplasmy through partial mtDNA depletion. PMID:27031233

  2. [The effect of heat stress on the cytoskeleton and cell cycle of human umbilical vein endothelial cell in vitro].

    PubMed

    Pan, Zhiguo; Shao, Yu; Geng, Yan; Chen, Jinghe; Su, Lei

    2015-08-01

    To study the effect of heat stress on the cytoskeleton and cell cycle of human umbilical vein endothelial cell ( HUVEC ) in vitro. HUVEC was cultured in vitro in 5%CO(2) medium at 37 centigrade ( control group ) or 43 centigrade ( heat stress group ) for 1 hour. Coomassie brilliant blue R-250 staining was used to determine the effect of heat stress on the cytoskeleton. The cells in heat stress group were subsequently cultured at 37 centigradein 5%CO(2) medium after heat stress for 1 hour, and cell cycle of HUVEC was determined at 0, 6, 12, 18 and 24 hours with flow cytometry. Under light microscopy normal cytoskeleton was observed in control group, but thicker and shorter cytoskeleton was found after a rise of temperature, and stress fibers were found in heat stress group. The DNA content of HUVEC at all time points in G0/G1 stage was 38.07%-55.19% after heat stress. The DNA content in control group was 48.57%, and it was 54.06%, 55.19%, 48.23%, 38.07%, and 41.03% at 0, 6, 12, 18, 24 hours in G0/G1 stage in heat stress group. DNA content in S phase was 35.33%-48.18%. The DNA content in control group was 44.62%, and it was 35.33%, 39.50%, 42.50%, 48.18%, and 47.99% at 0, 6, 12, 18, 24 hours in S stage in heat stress group. DNA content in G2/M phase was 5.31%-13.75%. The DNA content in control group was 6.81, and it was 10.61%, 5.31%, 9.27%,13.75%, and 10.98% at 0, 6, 12, 18, 24 hours in G2/M stage in heat stress group. It was demonstrated that compared with control group, the DNA content in G0/G1 stage was significantly increased when the HUVEC were separated from heat stress within 6 hours, and it recovered at a similar level as control group at 12 hours. Heat stress can change the cytoskeleton of HUVEC, and cause stagnation at G0/G1 stage in cell cycle.

  3. Theory and Application of DNA Histogram Analysis.

    ERIC Educational Resources Information Center

    Bagwell, Charles Bruce

    The underlying principles and assumptions associated with DNA histograms are discussed along with the characteristics of fluorescent probes. Information theory was described and used to calculate the information content of a DNA histogram. Two major types of DNA histogram analyses are proposed: parametric and nonparametric analysis. Three levels…

  4. Statistical epistasis between candidate gene alleles for complex tuber traits in an association mapping population of tetraploid potato

    PubMed Central

    Li, Li; Paulo, Maria-João; van Eeuwijk, Fred

    2010-01-01

    Association mapping using DNA-based markers is a novel tool in plant genetics for the analysis of complex traits. Potato tuber yield, starch content, starch yield and chip color are complex traits of agronomic relevance, for which carbohydrate metabolism plays an important role. At the functional level, the genes and biochemical pathways involved in carbohydrate metabolism are among the best studied in plants. Quantitative traits such as tuber starch and sugar content are therefore models for association genetics in potato based on candidate genes. In an association mapping experiment conducted with a population of 243 tetraploid potato varieties and breeding clones, we previously identified associations between individual candidate gene alleles and tuber starch content, starch yield and chip quality. In the present paper, we tested 190 DNA markers at 36 loci scored in the same association mapping population for pairwise statistical epistatic interactions. Fifty marker pairs were associated mainly with tuber starch content and/or starch yield, at a cut-off value of q ≤ 0.20 for the experiment-wide false discovery rate (FDR). Thirteen marker pairs had an FDR of q ≤ 0.10. Alleles at loci encoding ribulose-bisphosphate carboxylase/oxygenase activase (Rca), sucrose phosphate synthase (Sps) and vacuolar invertase (Pain1) were most frequently involved in statistical epistatic interactions. The largest effect on tuber starch content and starch yield was observed for the paired alleles Pain1-8c and Rca-1a, explaining 9 and 10% of the total variance, respectively. The combination of these two alleles increased the means of tuber starch content and starch yield. Biological models to explain the observed statistical epistatic interactions are discussed. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1389-3) contains supplementary material, which is available to authorized users. PMID:20603706

  5. Sperm DNA fragmentation in the total and vital fractions before and after density gradient centrifugation: Significance in male fertility diagnosis.

    PubMed

    Punjabi, U; Van Mulders, H; Goovaerts, I; Peeters, K; Clasen, K; Janssens, P; Zemtsova, O; De Neubourg, D

    2018-05-21

    Sperm DNA fragmentation measured by different techniques make comparisons impossible due to lack of standardization. Induction of DNA damage after sperm preparation in the entire fraction has been observed on independent occasions but findings are not consistent. Men presenting at a University hospital setup for infertility treatment. DNA damage via TUNEL assay was validated on fresh semen samples, as conventional semen parameters, to reduce variability of results. Sperm motility in neat semen inversely correlated with sperm DNA fragmentation in the total fraction, but, total count, leukocytes and immature germ cells significantly affected the vital fraction. Sperm DNA fragmentation was observed both in normal and subnormal semen samples, but was significantly different in the total fraction of astheno-, asthenoterato- and oligoteratozoospermic men. After density gradient centrifugation, sperm DNA fragmentation increased significantly in the total but decreased in the vital fraction. Advancing male age significantly influenced damage in the total but not in the vital population. These findings provide opportunities to investigate the significance of the total and the vital fractions both in natural conception and after different assisted reproductive technologies. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  6. Diet Quality Associated with Total Sodium Intake among US Adults Aged ≥18 Years-National Health and Nutrition Examination Survey, 2009-2012.

    PubMed

    Mercado, Carla I; Cogswell, Mary E; Perrine, Cria G; Gillespie, Cathleen

    2017-10-25

    Diet quality or macronutrient composition of total daily sodium intake (dNa) <2300 mg/day in the United States (US) is unknown. Using data from 2011-2014 NHANES (National Health and Nutrition Examination Survey), we examined 24-h dietary recalls ( n = 10,142) from adults aged ≥18 years and investigated how diet composition and quality are associated with dNa. Diet quality was assessed using components of macronutrients and Healthy Eating Index 2010 (HEI-2010). Associations were tested using linear regression analysis adjusted for total energy (kcal), age, gender, and race/ethnicity. One-day dNa in the lower quartiles were more likely reported among women, older adults (≥65 years old), and lower quartiles of total energy (kcal) ( p -values ≤ 0.001). With increasing dNa, there was an increase in the mean protein, fiber, and total fat densities, while total carbohydrates densities decreased. As dNa increased, meat protein, refined grains, dairy, and total vegetables, greens and beans densities increased; while total fruit and whole fruit densities decreased. Modified HEI-2010 total score (total score without sodium component) increased as dNa increased (adjusted coefficient: 0.11, 95% confidence interval = 0.07, 0.15). Although diet quality, based on modified HEI-2010 total score, increased on days with greater dNa, there is much room for improvement with mean diet quality of about half of the optimal level.

  7. Increased methylation of repetitive elements and DNA repair genes is associated with higher DNA oxidation in children in an urbanized, industrial environment.

    PubMed

    Alvarado-Cruz, Isabel; Sánchez-Guerra, Marco; Hernández-Cadena, Leticia; De Vizcaya-Ruiz, Andrea; Mugica, Violeta; Pelallo-Martínez, Nadia Azenet; Solís-Heredia, María de Jesús; Byun, Hyang-Min; Baccarelli, Andrea; Quintanilla-Vega, Betzabet

    2017-01-01

    DNA methylation in DNA repair genes participates in the DNA damage regulation. Particulate matter (PM), which has metals and polycyclic aromatic hydrocarbons (PAHs) adsorbed, among others has been linked to adverse health outcomes and may modify DNA methylation. To evaluate PM exposure impact on repetitive elements and gene-specific DNA methylation and DNA damage, we conducted a cross-sectional study in 150 schoolchildren (7-10 years old) from an urbanized, industrial area of the metropolitan area of Mexico City (MAMC), which frequently exhibits PM concentrations above safety standards. Methylation (5mC) of long interspersed nuclear element-1 (LINE1) and DNA repair gene (OGG1, APEX, and PARP1) was assessed by pyrosequencing in peripheral mononuclear cells, DNA damage by comet assay and DNA oxidation by 8-OHdG content. PAH and metal contents in PM 10 (≤10μm aerodynamic diameter) were determined by HPLC-MS and ICP-AES, respectively. Multiple regression analysis between DNA methylation, DNA damage, and PM 10 exposure showed that PM 10 was significantly associated with oxidative DNA damage; a 1% increase in 5mC at all CpG sites in PARP1 promoter was associated with a 35% increase in 8-OHdG, while a 1% increase at 1, 2, and 3 CpG sites resulted in 38, 9, and 56% increments, respectively. An increase of 10pg/m 3 in benzo[b]fluoranthene content of PM 10 was associated with a 6% increase in LINE1 methylation. Acenaphthene, indene [1,2,3-cd] pyrene, and pyrene concentrations correlated with higher dinucleotide methylation in OGG1, APEX and PARP1 genes, respectively. Vanadium concentration correlated with increased methylation at selected APEX and PARP1 CpG sites. DNA repair gene methylation was significantly correlated with DNA damage and with specific PM 10 -associated PAHs and Vanadium. Data suggest that exposure to PM and its components are associated with differences in DNA methylation of repair genes in children, which may contribute to DNA damage. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Christopher B., E-mail: Christopher.jackson@insel.ch; Gallati, Sabina, E-mail: sabina.gallati@insel.ch; Schaller, Andre, E-mail: andre.schaller@insel.ch

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Serial qPCR accurately determines fragmentation state of any given DNA sample. Black-Right-Pointing-Pointer Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. Black-Right-Pointing-Pointer Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. Black-Right-Pointing-Pointer Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serialmore » qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA ({lambda}{sub nDNA}) and mtDNA ({lambda}{sub mtDNA}) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two genomes is demonstrated and which evaluates systematically the impact of DNA degradation on quantification of mtDNA copy number.« less

  9. Isolation and genetic mapping of a Coffea canephora phenylalanine ammonia-lyase gene (CcPAL1) and its involvement in the accumulation of caffeoyl quinic acids.

    PubMed

    Mahesh, Venkataramaiah; Rakotomalala, Jean Jacques; Le Gal, Lénaïg; Vigne, Hélène; de Kochko, Alexandre; Hamon, Serge; Noirot, Michel; Campa, Claudine

    2006-09-01

    Biosynthesis of caffeoylquinic acids occurs via the phenylpropanoid pathway in which the phenylalanine ammonia-lyase (PAL) acts as a key-control enzyme. A full-length cDNA (pF6), corresponding to a PAL gene (CcPAL1), was isolated by screening a Coffea canephora fruit cDNA library and its corresponding genomic sequence was characterized. Amplification of total DNA from seven Coffea species revealed differences in intronic length. This interspecific polymorphism was used to locate the gene on a genetic map established for a backcross progeny between Coffea pseudozanguebariae and C. dewevrei. The CcPAL1 gene was found on the same linkage group, but genetically independent, as a caffeoyl-coenzyme A-O-methyltransferase gene, another gene intervening in the phenylpropanoid pathway. In the same backcross, a lower caffeoylquinic acid content was observed in seeds harvested from plants harbouring the C. pseudozanguebariae CcPAL1 allele. Involvement of the CcPAL1 allelic form in the differential accumulation of caffeoylquinic acids in coffee green beans is then discussed.

  10. Mitochondrial genomes of the green macroalga Ulva pertusa (Ulvophyceae, Chlorophyta): novel insights into the evolution of mitogenomes in the Ulvophyceae.

    PubMed

    Liu, Feng; Melton, James T; Bi, Yuping

    2017-10-01

    To further understand the trends in the evolution of mitochondrial genomes (mitogenomes or mtDNAs) in the Ulvophyceae, the mitogenomes of two separate thalli of Ulva pertusa were sequenced. Two U. pertusa mitogenomes (Up1 and Up2) were 69,333 bp and 64,602 bp in length. These mitogenomes shared two ribosomal RNAs (rRNAs), 28 transfer RNAs (tRNAs), 29 protein-coding genes, and 12 open reading frames. The 4.7 kb difference in size was attributed to variation in intron content and tandem repeat regions. A total of six introns were present in the smaller U. pertusa mtDNA (Up2), while the larger mtDNA (Up1) had eight. The larger mtDNA had two additional group II introns in two genes (cox1 and cox2) and tandem duplication mutations in noncoding regions. Our results showed the first case of intraspecific variation in chlorophytan mitogenomes and provided further genomic data for the undersampled Ulvophyceae. © 2017 Phycological Society of America.

  11. Evaluation of PAH bioaccumulation and DNA damage in mussels (Mytilus galloprovincialis) exposed to spilled Prestige crude oil.

    PubMed

    Pérez-Cadahía, Beatriz; Laffon, Blanca; Pásaro, Eduardo; Méndez, Josefina

    2004-08-01

    We analyzed the hydrocarbon composition of the Prestige oil as it reached the shores, its solubility in sea water, its bioaccumulation, and the genotoxic damage associated to oil exposure, using Mytilus galloprovincialis as sentinel organism. Mussels were exposed to two oil volumetric ratios (1:500 and 2:500) for 12 days. Great concentrations of total polycyclic aromatic hydrocarbons (TPAH) have been obtained, being in general higher in the samples from the dose of 1:500, both in sea water (55.14 vs. 41.96 microg/l) and mussel tissue (16,993.80 vs. 17,033.00 microg/kg), probably due to the great tendency of these compounds to link to particles in water. Comet assay results reflected an increase in the DNA damage associated to oil exposure, higher in the mussels exposed to the higher aqueous TPAH content. In the view of our results, the importance of the evaluation of biodisponibility, bioaccumulation and DNA damage in the assessment of the effects of xenobiotic pollutants to marine environments could be highlighted.

  12. Relationships among genetic makeup, active ingredient content, and place of origin of the medicinal plant Gastrodia tuber.

    PubMed

    Tao, Jun; Luo, Zhi-yong; Msangi, Chikira Ismail; Shu, Xiao-shun; Wen, Li; Liu, Shui-ping; Zhou, Chang-quan; Liu, Rui-xin; Hu, Wei-xin

    2009-02-01

    Gastrodia tuber and its component gastrodin have many pharmacological effects. The chemical fingerprints and gastrodin contents of eight Gastrodia populations were determined, and the genomic DNA polymorphism of the populations was investigated. Genetic distance coefficients among the populations were calculated using the DNA polymorphism data. A dendrogram of the genetic similarities between the populations was constructed using the genetic distance coefficients. The results indicated that the genomic DNA of Gastrodia tubers was highly polymorphic; the eight populations clustered into three major groups, and the gastrodin content varied greatly among these groups. There were obvious correlations among genetic makeup, gastrodin content, and place of origin. The ecological environments in Guizhou and Shanxi may be conducive to evolution and to gastrodin biosynthesis, and more suitable for cultivation of Gastrodia tubers. These findings may provide a scientific basis for overall genetic resource management and for the selection of locations for cultivating Gastrodia tubers.

  13. High-density ddRAD linkage and yield-related QTL mapping delimits a chromosomal region responsible for oil content in rapeseed (Brassica napus L.).

    PubMed

    Chen, Jun; Wang, Bo; Zhang, Yueli; Yue, Xiaopeng; Li, Zhaohong; Liu, Kede

    2017-06-01

    Rapeseed ( Brassica napus L.) is one of the most important oil crops almost all over the world. Seed-related traits, including oil content (OC), silique length (SL), seeds per silique (SS), and seed weight (SW), are primary targets for oil yield improvement. To dissect the genetic basis of these traits, 192 recombinant inbred lines (RILs) were derived from two parents with distinct oil content and silique length. High-density linkage map with a total length of 1610.4 cM were constructed using 1,329 double-digestion restriction site associated DNA (ddRAD) markers, 107 insertion/deletions (INDELs), and 90 well-distributed simple sequence repeats (SSRs) markers. A total of 37 consensus quantitative trait loci (QTLs) were detected for the four traits, with individual QTL explained 3.1-12.8% of the phenotypic variations. Interestingly, one OC consensus QTL ( cqOCA10b ) on chromosome A10 was consistently detected in all three environments, and explained 9.8% to 12.8% of the OC variation. The locus was further delimited into an approximately 614 kb genomic region, in which the flanking markers could be further evaluated for marker-assisted selection in rapeseed OC improvement and the candidate genes targeted for map-based cloning and genetic manipulation.

  14. Evaluation of Genetic Variations in Maize Seedlings Exposed to Electric Field Based on Protein and DNA Markers

    PubMed Central

    AL-Huqail, Asma A.; Abdelhaliem, Ekram

    2015-01-01

    The current study analyzed proteins and nuclear DNA of electric fields (ELF) exposed and nonexposed maize seedlings for different exposure periods using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), isozymes, random amplified polymorphic DNA (RAPD), and comet assay, respectively. SDS-PAGE analysis revealed total of 46 polypeptides bands with different molecular weights ranging from 186.20 to 36.00 KDa. It generated distinctive polymorphism value of 84.62%. Leucine-aminopeptidase, peroxidase, and catalase isozymes showed the highest values of polymorphism (100%) based on zymograms number, relative front (R f), and optical intensity while esterase isozyme generated polymorphism value of 83.33%. Amino acids were analyzed using high-performance liquid chromatography, which revealed the presence of 17 amino acids of variable contents ranging from 22.65% to 28.09%. RAPD revealed that 78 amplified DNA products had highly polymorphism value (95.08%) based on band numbers, with variable sizes ranging from 120 to 992 base pairs and band intensity. Comet assay recorded the highest extent of nuclear DNA damage as percentage of tailed DNA (2.38%) and tail moment unit (5.36) at ELF exposure of maize nuclei for 5 days. The current study concluded that the longer ELF exposing periods had genotoxic stress on macromolecules of maize cells and biomarkers used should be augmented for reliable estimates of genotoxicity after exposure of economic plants to ELF stressors. PMID:26180815

  15. Characterization of culturable anaerobic bacteria from the forestomach of an eastern grey kangaroo, Macropus giganteus.

    PubMed

    Ouwerkerk, D; Klieve, A V; Forster, R J; Templeton, J M; Maguire, A J

    2005-01-01

    To determine the culturable biodiversity of anaerobic bacteria isolated from the forestomach contents of an eastern grey kangaroo, Macropus giganteus, using phenotypic characterization and 16S rDNA sequence analysis. Bacteria from forestomach contents of an eastern grey kangaroo were isolated using anaerobic media containing milled curly Mitchell grass (Astrebla lappacea). DNA was extracted and the 16S rDNA sequenced for phylogenetic analysis. Forty bacterial isolates were obtained and placed in 17 groups based on phenotypic characteristics and restriction enzyme digestion of 16S rDNA PCR products. DNA sequencing revealed that the 17 groups comprised five known species (Clostridium butyricum, Streptococcus bovis, Clostridium sporogenes, Clostridium paraputrificum and Enterococcus avium) and 12 groups apparently representing new species, all within the phylum Firmicutes. Foregut contents from Australian macropod marsupials contain a microbial ecosystem with a novel bacterial biodiversity comprising a high percentage of previously unrecognized species. This study adds to knowledge of Australia's unique biodiversity, which may provide a future bioresource of genetic information and bacterial species of benefit to agriculture.

  16. Ploidy levels among species in the 'Oxalis tuberosa alliance' as inferred by flow cytometry.

    PubMed

    Emshwiller, Eve

    2002-06-01

    The 'Oxalis tuberosa alliance' is a group of Andean Oxalis species allied to the Andean tuber crop O. tuberosa Molina (Oxalidaceae), commonly known as 'oca'. As part of a larger project studying the origins of polyploidy and domestication of cultivated oca, flow cytometry was used to survey DNA ploidy levels among Bolivian and Peruvian accessions of alliance members. In addition, this study provided a first assessment of C-values in the alliance by estimating nuclear DNA contents of these accessions using chicken erythrocytes as internal standard. Ten Bolivian accessions of cultivated O. tuberosa were confirmed to be octoploid, with a mean nuclear DNA content of approx. 3.6 pg/2C. Two Peruvian wild Oxalis species, O. phaeotricha and O. picchensis, were inferred to be tetraploid (both with approx. 1.67 pg/2C), the latter being one of the putative progenitors of O. tuberosa identified by chloroplast-expressed glutamine synthetase data in prior work. The remaining accessions (from 78 populations provisionally identified as 35 species) were DNA diploid, with nuclear DNA contents varying from 0.79 to 1.34 pg/2C.

  17. Qualitative and quantitative assessment of DNA quality of frozen beef based on DNA yield, gel electrophoresis and PCR amplification and their correlations to beef quality.

    PubMed

    Zhao, Jing; Zhang, Ting; Liu, Yongfeng; Wang, Xingyu; Zhang, Lan; Ku, Ting; Quek, Siew Young

    2018-09-15

    Freezing is a practical method for meat preservation but the quality of frozen meat can deteriorate with storage time. This research investigated the effect of frozen storage time (up to 66 months) on changes in DNA yield, purity and integrity in beef, and further analyzed the correlation between beef quality (moisture content, protein content, TVB-N value and pH value) and DNA quality in an attempt to establish a reliable, high-throughput method for meat quality control. Results showed that frozen storage time influenced the yield and integrity of DNA significantly (p < 0.05). The DNA yield decreased as frozen storage time increased due to DNA degradation. The half-life (t 1/2  = ln2/0.015) was calculated as 46 months. The DNA quality degraded dramatically with the increased storage time based on gel electrophoresis results. Polymerase chain reaction (PCR) products from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) were observed in all frozen beef samples. Using real-time PCR for quantitative assessment of DNA and meat quality revealed that correlations could be established successfully with mathematical models to evaluate frozen beef quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Supercritical carbon dioxide extract of Physalis peruviana induced cell cycle arrest and apoptosis in human lung cancer H661 cells.

    PubMed

    Wu, Shu-Jing; Chang, Shun-Pang; Lin, Doung-Liang; Wang, Shyh-Shyan; Hou, Fwu-Feuu; Ng, Lean-Teik

    2009-06-01

    Physalis peruviana L. (PP) is a popular folk medicine used for treating cancer, leukemia, hepatitis, rheumatism and other diseases. In this study, our objectives were to examine the total flavonoid and phenol content of different PP extracts (aqueous: HWEPP; ethanolic: EEPP; supercritical carbon dioxide: SCEPP-0, SCEPP-4 and SCEPP-5) and their antiproliferative effects in human lung cancer H661 cells. Among all the extracts tested, results showed that SCEPP-5 possessed the highest total flavonoid (226.19 +/- 4.15 mg/g) and phenol (100.82 +/- 6.25 mg/g) contents. SCEPP-5 also demonstrated the most potent inhibitory effect on H661 cell proliferation. Using DNA ladder and flow cytometry analysis, SCEPP-5 effectively induced H661 cell apoptosis as demonstrated by the accumulation of Sub-G1 peak and fragmentation of DNA. SCEPP-5 not only induced cell cycle arrest at S phase, it also up-regulated the expression of pro-apoptotic protein (Bax) and down-regulated the inhibitor of apoptosis protein (IAP). Furthermore, the apoptotic induction in H661 cells was found to associate with an elevated p53 protein expression, cytochrome c release, caspase-3 activation and PARP cleavage. Taken together, these results conclude that SCEPP-5 induced cell cycle arrest at S phase, and its apoptotic induction could be mediated through the p53-dependent pathway and modification of Bax and XIAP proteins expression. The results have also provided important pharmacological backgrounds for the potential use of PP supercritical fluid extract as products for cancer prevention.

  19. Working with DNA & Bacteria in Precollege Science Classrooms.

    ERIC Educational Resources Information Center

    Horn, Toby Mogollon; Frame, Kathy, Ed.

    This document describes ways to work with DNA and host organisms in precollege classrooms. The guidelines are intended to assist the teacher who already has training in working with microbes, DNA, and associated chemicals. The contents of the guidelines include: (1) Permitted DNA molecules, vectors, and recommended host organisms for constructing…

  20. Stability of nuclear DNA content among divergent and isolated populations of Fraser fir

    Treesearch

    L.D. Auckland; J.S. Johnston; H.J. Price; F.E. Bridgwater

    2001-01-01

    Fraser fir (Abies fraseri (Pursh) Poir.) is an endemic species consisting of six major disjunct populations in the Appalachian Mountains, U.S.A. Nuclear DNA content was measured with laser flow cytometry to determine if genome size differences could be detected among the disjunct populations of Fraser fir and its close relatives, balsam fir

  1. DNA-Based Diet Analysis for Any Predator

    PubMed Central

    Dunshea, Glenn

    2009-01-01

    Background Prey DNA from diet samples can be used as a dietary marker; yet current methods for prey detection require a priori diet knowledge and/or are designed ad hoc, limiting their scope. I present a general approach to detect diverse prey in the feces or gut contents of predators. Methodology/Principal Findings In the example outlined, I take advantage of the restriction site for the endonuclease Pac I which is present in 16S mtDNA of most Odontoceti mammals, but absent from most other relevant non-mammalian chordates and invertebrates. Thus in DNA extracted from feces of these mammalian predators Pac I will cleave and exclude predator DNA from a small region targeted by novel universal primers, while most prey DNA remain intact allowing prey selective PCR. The method was optimized using scat samples from captive bottlenose dolphins (Tursiops truncatus) fed a diet of 6–10 prey species from three phlya. Up to five prey from two phyla were detected in a single scat and all but one minor prey item (2% of the overall diet) were detected across all samples. The same method was applied to scat samples from free-ranging bottlenose dolphins; up to seven prey taxa were detected in a single scat and 13 prey taxa from eight teleost families were identified in total. Conclusions/Significance Data and further examples are provided to facilitate rapid transfer of this approach to any predator. This methodology should prove useful to zoologists using DNA-based diet techniques in a wide variety of study systems. PMID:19390570

  2. Sensitive detection of porcine DNA in processed animal proteins using a TaqMan real-time PCR assay.

    PubMed

    Pegels, N; González, I; Fernández, S; García, T; Martín, R

    2012-01-01

    A TaqMan real-time PCR method was developed for specific detection of porcine-prohibited material in industrial feeds. The assay combines the use of a porcine-specific primer pair, which amplifies a 79 bp fragment of the mitochondrial (mt) 12 S rRNA gene, and a locked nucleic acid (LNA) TaqMan probe complementary to a target sequence lying between the porcine-specific primers. The nuclear 18 S rRNA gene system, yielding a 77 bp amplicon, was employed as a positive amplification control to monitor the total content of amplifiable DNA in the samples. The specificity of the porcine primers-probe system was verified against different animal and plant species, including mammals, birds and fish. The applicability of the real-time PCR protocol to detect the presence of porcine mt DNA in feeds was determined through the analysis of 190 industrial feeds (19 known reference and 171 blind samples) subjected to stringent processing treatments. The performance of the method allows qualitative and highly sensitive detection of short fragments from porcine DNA in all the industrial feeds declared to contain porcine material. Although the method has quantitative potential, the real quantitative capability of the assay is limited by the existing variability in terms of composition and processing conditions of the feeds, which affect the amount and quality of amplifiable DNA.

  3. Vesicle fusion observed by content transfer across a tethered lipid bilayer.

    PubMed

    Rawle, Robert J; van Lengerich, Bettina; Chung, Minsub; Bendix, Poul Martin; Boxer, Steven G

    2011-10-19

    Synaptic transmission is achieved by exocytosis of small, synaptic vesicles containing neurotransmitters across the plasma membrane. Here, we use a DNA-tethered freestanding bilayer as a target architecture that allows observation of content transfer of individual vesicles across the tethered planar bilayer. Tethering and fusion are mediated by hybridization of complementary DNA-lipid conjugates inserted into the two membranes, and content transfer is monitored by the dequenching of an aqueous content dye. By analyzing the diffusion profile of the aqueous dye after vesicle fusion, we are able to distinguish content transfer across the tethered bilayer patch from vesicle leakage above the patch. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. The effect of fibre source on the numbers of some fibre-degrading bacteria of Arabian camel's (Camelus dromedarius) foregut origin.

    PubMed

    Samsudin, Anjas Asmara; Wright, André-Denis; Al Jassim, Rafat

    2014-10-01

    The total bacterial community of Fibrobacter succinogenes and Ruminococcus flavefaciens in fibre-enriched culture of the foregut contents of 12 adult feral camels (Camelus dromedaries) fed on native vegetation in Australia was investigated using quantitative PCR. Foregut contents were collected postmortem, pooled and filtered before divided into two fractions. One fraction was used for extraction of DNA, while the other fraction was inoculated straight away into BM 10 contained filter paper (FP), cotton thread (CT) or neutral detergent fibre (NDF) as the sole carbohydrate sources in Hungate tubes. The tubes were incubated anaerobically at 39 °C for 1 week. After a near complete degradation of the FP and CT and extensive turbidity in the NDF, media subculturing was carried out into fresh media tubes. This was repeated twice before genomic DNA was extracted and used for quantification of bacteria. Using an absolute quantification method, the numbers of cells in 1 ml of each sample ranged from 4.07 × 10(6) to 2.73 × 10(9) for total bacteria, 1.34 × 10(3) to 2.17 × 10(5) for F. succinogenes and 5.78 × 10(1) to 3.53 × 10(4) for R. flavefaciens. The mean cell number of F. succinogenes was highest in the FP enrichment medium at approximately 107-fold, whereas for the R. flavefaciens targeted primer, the NDF enrichment media had the highest mean cell number at approximately 4-fold when compared to the rumen content. The data presented here provide evidence of fibre type preference by the two main fibre-degrading bacteria and would help us understand the interaction between fibre type and fibre-degrading microorganisms, which has ramification on camel nutrition at different seasons and environments.

  5. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes.

    PubMed

    Simon, Luke; Castillo, Judit; Oliva, Rafael; Lewis, Sheena E M

    2011-12-01

    The exchange of histones with protamines in sperm DNA results in sperm chromatin compaction and protection. Variations in sperm protamine expression are associated with male infertility. The aim of this study was to investigate relationships between DNA fragmentation, sperm protamines and assisted reproduction treatment. Semen and spermatozoa prepared by density-gradient centrifugation (DGC) from 73 men undergoing IVF and 24 men undergoing intracytoplasmic sperm injection (ICSI) were included in the study. Nuclear DNA fragmentation was assessed using the alkaline Comet assay and protamines were separated by acid-urea polyacrylamide gels. Sperm DNA fragmentation and protamine content (P1-DNA, P2-DNA, P1+P2-DNA) decreased in spermatozoa after DGC. Abnormally high and low P1/P2 ratios were associated with increased sperm DNA fragmentation. Couples with idiopathic infertility had abnormally high P1/P2 ratios. Fertilization rates and embryo quality decreased as sperm DNA fragmentation or protamines increased. Sperm DNA fragmentation was lower in couples achieving pregnancies after IVF, but not after ICSI. There was no correlation between protamine content (P1-DNA, P2-DNA, P1+P2-DNA) or P1/P2 ratios and IVF or ICSI pregnancies. Increased sperm DNA fragmentation was associated with abnormal protamination and resulted in lower fertilization rates, poorer embryo quality and reduced pregnancy rates. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  6. Olive plants (Olea europaea L.) as a bioindicator for pollution.

    PubMed

    Eliwa, Amal Mohamed; Kamel, Ehab Abdel-Razik

    2013-06-15

    In the present work, olive plant (Olea europaea L.) was used as a biological indicator for pollution in which, molecular and physiological parameters were studied. Olive plants were collected from polluted and non-polluted areas in Jeddah - Saudi Arabia, traffic area as an air polluted area, sewage treatment station as water polluted area, industrial area as solid waste polluted, costal area as marine polluted area and an area without a direct source of pollution far away from the city center, which was used as control. These changes conducted with nucleic acid content, minerals content, pigments and some growth parameters. Results showed significant reductions in DNA and RNA contents under all polluted sites. Mineral contents were varied widely depending on the different pollutants and locations of olive plant. Generally, micro-elements varied (increase/decrease) significantly within collected samples and the source of pollution. All growth parameters were decreased significantly within the studied samples of all pollutant areas except the relative water content was increased. The content of chlorophyll a has decreased highly significantly in all polluted leaves. While the content of chlorophyll b has increased significantly in all polluted leaves especially in air polluted leaves. The total content of carotenoid pigments has decreased highly significantly in all polluted leaves. It was concluded that olive plant can be used as a biological indicator to the environmental pollutants.

  7. MtDNA depleted PC3 cells exhibit Warburg effect and cancer stem cell features

    PubMed Central

    Li, Xiaoran; Zhong, Yali; Lu, Jie; Axcrona, Karol; Eide, Lars; Syljuåsen, Randi G.; Peng, Qian; Wang, Junbai; Zhang, Hongquan; Goscinski, Mariusz Adam; Kvalheim, Gunnar; Nesland, Jahn M.; Suo, Zhenhe

    2016-01-01

    Reducing mtDNA content was considered as a critical step in the metabolism restructuring for cell stemness restoration and further neoplastic development. However, the connections between mtDNA depletion and metabolism reprograming-based cancer cell stemness in prostate cancers are still lack of studies. Here, we demonstrated that human CRPC cell line PC3 tolerated high concentration of the mtDNA replication inhibitor ethidium bromide (EtBr) and the mtDNA depletion triggered a universal metabolic remodeling process. Failure in completing that process caused lethal consequences. The mtDNA depleted (MtDP) PC3 cells could be steadily maintained in the special medium in slow cycling status. The MtDP PC3 cells contained immature mitochondria and exhibited Warburg effect. Furthermore, the MtDP PC3 cells were resistant to therapeutic treatments and contained greater cancer stem cell-like subpopulations: CD44+, ABCG2+, side-population and ALDHbright. In conclusion, these results highlight the association of mtDNA content, mitochondrial function and cancer cell stemness features. PMID:27248169

  8. The correlation between antimutagenic activity and total phenolic content of extracts of 31 plant species with high antioxidant activity.

    PubMed

    Makhafola, Tshepiso Jan; Elgorashi, Esameldin Elzein; McGaw, Lyndy Joy; Verschaeve, Luc; Eloff, Jacobus Nicolaas

    2016-11-29

    Antimutagenic activity of plant extracts is important in the discovery of new, effective cancer preventing agents. There is increasing evidence that cancer and other mutation-related diseases can be prevented by intake of DNA protective agents. The identification of antimutagenic agents present in plants presents an effective strategy to inhibit pathogenic processes resulting from exposure to mutagenic and/or carcinogenic substances present in the environment. There are no reports on the antimutagenic activities of the plant species investigated in this study. Many mutations related to oxidative stress and DNA damage by reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been identified in numerous human syndromes. Oxidative DNA damage plays a significant role in mutagenesis, cancer, aging and other human pathologies. Since oxidative DNA damage plays a role in the pathogenesis of several chronic degenerative diseases, the decrease of the oxidative stress could be the best possible strategy for prevention of these diseases. Antioxidant compounds can play a preventative role against mutation-related diseases, and thus have potential antimutagenic effects. The number of antioxidant compounds present in methanol leaf extracts of 120 plant species was determined using a combination of Thin Layer Chromatography (TLC) and spraying with 2, 2-diphenyl-1-picrylhydrazyl (DPPH). The 31 most promising extracts were selected for further assays. The quantitative antioxidant activity was determined using DPPH free radical scavenging spectrophotometric assay. Total phenolic contents were determined using the Folin-Ciocalteu colorimetric assay. The mutagenicity of 31 selected extracts was determined in the Ames test using Salmonella typhimurium strains TA98 and TA100. The antimutagenicity of the plant extracts against 4-nitroquinoline 1-oxide (4-NQO) was also determined using the Ames test. Of the 120 plant extracts assayed qualitatively, 117 had some antioxidant activity. The selected 31 extracts contained well defined antioxidant compounds. These species had good DPPH free radical antioxidant activity with EC 50 values ranging from 1.20 to 19.06 μg/ml. Some of the plant extracts had higher antioxidant activity than L-ascorbic acid (vitamin C). The total phenolic contents ranged from 5.17 to 18.65 mg GAE (gallic acid equivalent)/g plant extract). The total phenolic content of the plant extracts correlated well with the respective antioxidant activity of the plant extracts. No plant extract with good antioxidant activity had mutagenic activity. Several extracts had antimutagenic activity. The percentage inhibition of 4-NQO ranged from 0.8 to 77% in Salmonella typhimurium TA98 and from 0.8 to 99% in strain TA100. There was a direct correlation between the presence of antioxidant activity and antimutagenic activity of the plant extracts. Although no plant extract had mutagenic activity on its own, some of the plant extracts enhanced the mutagenicity of 4-NQO, a phenomenon referred to as comutagenicity. Some of the plant extracts investigated in this study had potential antimutagenic activities. The antimutagenic activities may be associated with the presence of antioxidant polyphenols in the extracts. From the results plant extracts were identified that were not mutagenic, not cytotoxic and that may be antimutagenic in the Ames test. For most plant extracts, at the highest concentration used (5 mg/ml), the level of antimutagenicity was below the recommended 45% to conclude whether plants have good antimutagenic activity. However, in most screening studies for antimutagenesis, a 20% decrease in the number of revertants must be obtained in order to score the extract as active. Psoralea pinnata L. had the highest percentage antimutagenicity recorded in this study (76.67 and 99.83% in S. typhimurium TA98 and TA100 respectively) at assayed concentration of 5 mg/ml. The results indicate that investigating antioxidant activity and the number of antioxidant compounds in plant extracts could be a viable option in searching for antimutagenic compounds in plants.

  9. Alterations in nitrogen metabolites after putrescine treatment in alfalfa under drought stress.

    PubMed

    Zeid, I M; Shedeed, Z A

    2007-05-01

    Alfalfa (Medicago sativa, Siwa 1) seeds were subjected to drought stress during germination by using polyethylene glycol (PEG 4000) for studying the changes in some enzyme activities involved in nitrogen metabolism and the content of nitrogenous compounds during the first four days of growth after putrescine (Put) treatment. Decreasing the external water potential reduced activities of glutamate-pyruvate transferase (GPT), glutamate-oxaloacetate transferase (GOT) and RNase. Some free amino acids such as proline and glycine increased, while alanine and aspartic acid decreased. Nucleic acids content also decreased. Polyamines e.g., spermidine (Spd) and spermine (Spm) increased at the water potential -0.4 MPa. Put treatment increased activities of GOT, GPT and RNase. Furthermore, Put treatment increased nucleic acids content and the endogenous polyamines under drought stress. Drought stress was imposed during seedling stage by decreasing soil moisture content. GOT, GPT and RNase activities increased in leaves of alfalfa seedlings under drought stress. Soluble nitrogenous compounds accumulated under drought stress, while nucleic acids content decreased. Except glutamic acid, all free amino acids detected increased under drought stress. Put treatment decreased activities of GOT, GPT and RNase, as well as reduced the accumulation of the total soluble nitrogenous compounds, but increased DNA, RNA and protein contents.

  10. Changes of ploidy during the Azotobacter vinelandii growth cycle.

    PubMed Central

    Maldonado, R; Jiménez, J; Casadesús, J

    1994-01-01

    The size of the Azotobacter vinelandii chromosome is approximately 4,700 kb, as calculated by pulsed-field electrophoretic separation of fragments digested with the rarely cutting endonucleases SpeI and SwaI. Surveys of DNA content per cell by flow cytometry indicated the existence of ploidy changes during the A. vinelandii growth cycle in rich medium. Early-exponential-phase cells have a ploidy level similar to that of Escherichia coli or Salmonella typhimurium (probably ca. four chromosomes per cell), but a continuous increase of DNA content per cell is observed during growth. Late-exponential-phase cells may contain > 40 chromosomes per cell, while cells in the early stationary stage may contain > 80 chromosomes per cell. In late-stationary-phase cultures, the DNA content per cell is even higher, probably over 100 chromosome equivalents per cell. A dramatic change is observed in old stationary-phase cultures, when the population of highly polyploid bacteria segregates cells with low ploidy. The DNA content of the latter cells resembles that of cysts, suggesting that the process may reflect the onset of cyst differentiation. Cells with low ploidy are also formed when old stationary-phase cultures are diluted into fresh medium. Addition of rifampin to exponential-phase cultures causes a rapid increase in DNA content, indicating that A. vinelandii initiates multiple rounds of chromosome replication per cell division. Growth in minimal medium does not result in the spectacular changes of ploidy observed during rapid growth; this observation suggests that the polyploidy of A. vinelandii may not exist outside the laboratory. Images PMID:8021173

  11. Microbiological parameters of aggregates in typical chernozems of long-term field experiments

    NASA Astrophysics Data System (ADS)

    Zhelezova, A. D.; Tkhakakhova, A. K.; Yaroslavtseva, N. V.; Garbuz, S. A.; Lazarev, V. I.; Kogut, B. M.; Kutovaya, O. V.; Kholodov, V. A.

    2017-06-01

    The changes in microbiological parameters of aggregates (1-2 mm) in typical chernozems under different land uses as dependent on the intensity and character of anthropogenic loads were studied with the help of the real-time polymerase chain reaction (PCR). The samples from the following long-term field experiments were examined: permanent black fallow, continuous cultivation of potato, 17-year-old unmanaged fallow after permanent black fallow, and annually mown reserved steppe. The soil samples were treated in two ways. In the first case, the samples were air-dried, sieved through the screens to separate aggregate fraction of 1-2 mm, and microbiological parameters were determined in this fraction. In the second case, the samples were frozen immediately after the sampling, and the aggregates of 1-2 mm were manually separated from the samples before the PCR analysis. It was shown that air-dry aggregates of chernozems could be used for the quantitative analysis of DNA of microbial community in comparative studies. According to the quantitative estimate of the content of DNA fragments from different phylogenetic groups, the bacterial community was most sensitive to the type of the soil use, and its restoration after the removal of extreme anthropogenic loads proceeded faster than that of other microorganisms. The content of archaeal DNA in the chernozem under the 17-year-old unmanaged fallow did not differ significantly from its content in the annually plowed chernozems. The changes in the content of micromycetal DNA related to anthropogenic load decrease were intermediate between changes in the contents of archaeal and bacterial DNA.

  12. Investigation of antioxidant ability of grape seeds extract to prevent oxidatively induced DNA damage by gas chromatography-tandem mass spectrometry.

    PubMed

    Aybastıer, Önder; Dawbaa, Sam; Demir, Cevdet

    2018-01-01

    Phenolic compounds have been studied elaborately for their efficacy to improve health and to protect against a wide variety of diseases. Herein this study, different analysis methods were implemented to evaluate the antioxidant properties of catechin and cyanidin using their standard substances and as they found in the grape seeds extracts. Total phenol contents were 107.39±8.94mg GAE/g dw of grape seeds for grape seed extract (GSE) and 218.32±10.66mg GAE/g dw of grape seeds for acid-hydrolyzed grape seed extract (AcGSE). The extracts were analyzed by HPLC-DAD system and the results showed the presence of catechin, gallic acid, chlorogenic acid and ellagic acid in the processed methanolic extract and cyanidin, gallic acid and ellagic acid in the processed acidified methanolic extract. The protective abilities of catechin and cyanidin were tested against the oxidation of DNA. The results showed that cyanidin has better protection of DNA against oxidation than catechin. GSE and AcGSE were revealed to inhibit the oxidatively induced DNA damage. GSE decreased about 57% of damage caused by the Fenton control sample. This study could show new aspects of the antioxidant profiles of cyanidin and catechin. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Persistent IGF-I overexpression in skeletal muscle transiently enhances DNA accretion and growth.

    PubMed

    Fiorotto, Marta L; Schwartz, Robert J; Delaughter, M Craig

    2003-01-01

    Adult transgenic mice with muscle-specific overexpression of insulin-like growth factor (IGF)-I have enlarged skeletal muscles. In this study, we; 1) characterized the development of muscle hypertrophy with respect to fiber type, age, and sex; 2) determined the primary anabolic process responsible for development of hypertrophy; and 3) identified secondary effects of muscle hypertrophy on body composition. Transgene expression increased with age and was present only in fibers expressing type IIB fast myosin heavy chain. Muscle masses were greater by 5 wk of age, and by 10 wk of age the differences were maximal despite continued transgene expression. Total DNA and RNA contents of the gastrocnemius muscle were greater for transgenic mice than for nontransgenic littermates. The differences were maximal by 5 wk of age and preceded the increase in protein mass. The accelerated protein deposition ceased when the protein/DNA ratio attained the same value as in nontransgenic controls. Despite localization of IGF-I expression to muscle without changes in plasma IGF-I concentrations, genotype also modified the normal age and sex effects on fat deposition and organ growth. Thus, enhanced DNA accretion by IGF-I was primarily responsible for stimulating muscle growth. In turn, secondary effects on body composition were incurred that likely reflect the impact of muscle mass on whole body metabolism.

  14. Event-specific qualitative and quantitative PCR detection of the GMO carnation (Dianthus caryophyllus) variety Moonlite based upon the 5'-transgene integration sequence.

    PubMed

    Li, P; Jia, J W; Jiang, L X; Zhu, H; Bai, L; Wang, J B; Tang, X M; Pan, A H

    2012-04-27

    To ensure the implementation of genetically modified organism (GMO)-labeling regulations, an event-specific detection method was developed based on the junction sequence of an exogenous integrant in the transgenic carnation variety Moonlite. The 5'-transgene integration sequence was isolated by thermal asymmetric interlaced PCR. Based upon the 5'-transgene integration sequence, the event-specific primers and TaqMan probe were designed to amplify the fragments, which spanned the exogenous DNA and carnation genomic DNA. Qualitative and quantitative PCR assays were developed employing the designed primers and probe. The detection limit of the qualitative PCR assay was 0.05% for Moonlite in 100 ng total carnation genomic DNA, corresponding to about 79 copies of the carnation haploid genome; the limit of detection and quantification of the quantitative PCR assay were estimated to be 38 and 190 copies of haploid carnation genomic DNA, respectively. Carnation samples with different contents of genetically modified components were quantified and the bias between the observed and true values of three samples were lower than the acceptance criterion (<25%) of the GMO detection method. These results indicated that these event-specific methods would be useful for the identification and quantification of the GMO carnation Moonlite.

  15. Intra-familial comparison of supragingival dental plaque microflora using the checkerboard DNA-DNA hybridisation technique.

    PubMed

    Mannaa, Alaa; Carlén, Anette; Dahlén, Gunnar; Lingström, Peter

    2012-12-01

    The aims of the present study were to correlate the quantified supragingival plaque bacteria between mothers and their children and identify possible microbial associations. A total of 86 mothers and their 4- to 6-year-old and 12- to 16-year-old children participated. Pooled supragingival plaque samples were obtained from interproximal sites between teeth 16/15, 25/26, 35/36 and 46/45 in mothers and older children and teeth 55/54, 64/65, 74/75 and 85/84 in younger children. All the samples were individually analysed for their content of 18 bacterial strains using checkerboard DNA-DNA hybridisation (whole genomic probes). Microbial associations were sought using cluster analysis (dendrogram) for all three age groups together, while community ordination techniques were used for each of the three groups separately. Three complexes were formed from the dendrogram in addition to associations between these complexes and remaining bacterial strains. Principal component analysis results were similar in all three groups. The correlation analyses of bacterial counts between mothers and their children showed a significant association for most of the bacterial strains (p<0.05 or 0.01). Supragingival plaque microbiota are correlated between mothers and their children. In addition, similar supragingival plaque microbial associations are present in family members.. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Development and in-house validation of the event-specific qualitative and quantitative PCR detection methods for genetically modified cotton MON15985.

    PubMed

    Jiang, Lingxi; Yang, Litao; Rao, Jun; Guo, Jinchao; Wang, Shu; Liu, Jia; Lee, Seonghun; Zhang, Dabing

    2010-02-01

    To implement genetically modified organism (GMO) labeling regulations, an event-specific analysis method based on the junction sequence between exogenous integration and host genomic DNA has become the preferential approach for GMO identification and quantification. In this study, specific primers and TaqMan probes based on the revealed 5'-end junction sequence of GM cotton MON15985 were designed, and qualitative and quantitative polymerase chain reaction (PCR) assays were established employing the designed primers and probes. In the qualitative PCR assay, the limit of detection (LOD) was 0.5 g kg(-1) in 100 ng total cotton genomic DNA, corresponding to about 17 copies of haploid cotton genomic DNA, and the LOD and limit of quantification (LOQ) for quantitative PCR assay were 10 and 17 copies of haploid cotton genomic DNA, respectively. Furthermore, the developed quantitative PCR assays were validated in-house by five different researchers. Also, five practical samples with known GM contents were quantified using the developed PCR assay in in-house validation, and the bias between the true and quantification values ranged from 2.06% to 12.59%. This study shows that the developed qualitative and quantitative PCR methods are applicable for the identification and quantification of GM cotton MON15985 and its derivates.

  17. [DNA barcoding and its utility in commonly-used medicinal snakes].

    PubMed

    Huang, Yong; Zhang, Yue-yun; Zhao, Cheng-jian; Xu, Yong-li; Gu, Ying-le; Huang, Wen-qi; Lin, Kui; Li, Li

    2015-03-01

    Identification accuracy of traditional Chinese medicine is crucial for the traditional Chinese medicine research, production and application. DNA barcoding based on the mitochondrial gene coding for cytochrome c oxidase subunit I (COI), are more and more used for identification of traditional Chinese medicine. Using universal barcoding primers to sequence, we discussed the feasibility of DNA barcoding method for identification commonly-used medicinal snakes (a total of 109 samples belonging to 19 species 15 genera 6 families). The phylogenetic trees using Neighbor-joining were constructed. The results indicated that the mean content of G + C(46.5%) was lower than that of A + T (53.5%). As calculated by Kimera-2-parameter model, the mean intraspecies genetic distance of Trimeresurus albolabris, Ptyas dhumnades and Lycodon rufozonatus was greater than 2%. Further phylogenetic relationship results suggested that identification of one sample of T. albolabris was erroneous. The identification of some samples of P. dhumnades was also not correct, namely originally P. korros was identified as P. dhumnades. Factors influence on intraspecific genetic distance difference of L. rufozonatus need to be studied further. Therefore, DNA barcoding for identification of medicinal snakes is feasible, and greatly complements the morphological classification method. It is necessary to further study in identification of traditional Chinese medicine.

  18. DNA precursor pool: a significant target for N-methyl-N-nitrosourea in C3H/10T1/2 clone 8 cells.

    PubMed Central

    Topal, M D; Baker, M S

    1982-01-01

    Synchronized C3H/10T1/2 clone 8 cells were treated in vitro with a nontoxic dose of N-methyl-N-nitrosourea during their S phase. Chromatographic isolation of the deoxyribonucleotide DNA precursor pool and measurement of the precursor content per cell showed that a nucleic acid residue in the precursor pool is 190-13,000 times more susceptible to methylation than a residue in the DNA duplex, depending on the site of methylation. This conclusion comes from measurements indicating that, for example, the N-1 position of adenine in dATP is 6.3 times more methylated than the same position in the DNA, even though the adenine content of the pool is only a fraction (0.0005) of the adenine content of the DNA helix. The comparative susceptibility between pool and DNA was found to vary with the site of methylation in the order the N-1 position of adenine greater than phosphate greater than the N-3 position of adenine greater than the O6 position of guanine greater than the N-7 position of guanine. The significance of these results for chemical mutagenesis and carcinogenesis is discussed. PMID:6954535

  19. The complete chloroplast genome of Capsicum annuum var. glabriusculum using Illumina sequencing.

    PubMed

    Raveendar, Sebastin; Na, Young-Wang; Lee, Jung-Ro; Shim, Donghwan; Ma, Kyung-Ho; Lee, Sok-Young; Chung, Jong-Wook

    2015-07-20

    Chloroplast (cp) genome sequences provide a valuable source for DNA barcoding. Molecular phylogenetic studies have concentrated on DNA sequencing of conserved gene loci. However, this approach is time consuming and more difficult to implement when gene organization differs among species. Here we report the complete re-sequencing of the cp genome of Capsicum pepper (Capsicum annuum var. glabriusculum) using the Illumina platform. The total length of the cp genome is 156,817 bp with a 37.7% overall GC content. A pair of inverted repeats (IRs) of 50,284 bp were separated by a small single copy (SSC; 18,948 bp) and a large single copy (LSC; 87,446 bp). The number of cp genes in C. annuum var. glabriusculum is the same as that in other Capsicum species. Variations in the lengths of LSC; SSC and IR regions were the main contributors to the size variation in the cp genome of this species. A total of 125 simple sequence repeat (SSR) and 48 insertions or deletions variants were found by sequence alignment of Capsicum cp genome. These findings provide a foundation for further investigation of cp genome evolution in Capsicum and other higher plants.

  20. Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia.

    PubMed

    Aslan, Mehmet; Horoz, Mehmet; Kocyigit, Abdurrahim; Ozgonül, Saadet; Celik, Hakim; Celik, Metin; Erel, Ozcan

    2006-10-10

    Oxidant stress has been shown to play an important role in the pathogenesis of iron deficiency anemia. The aim of this study was to investigate the association between lymphocyte DNA damage, total antioxidant capacity and the degree of anemia in patients with iron deficiency anemia. Twenty-two female with iron deficiency anemia and 22 healthy females were enrolled in the study. Peripheral DNA damage was assessed using alkaline comet assay and plasma total antioxidant capacity was determined using an automated measurement method. Lymphocyte DNA damage of patients with iron deficiency anemia was significantly higher than controls (p<0.05), while total antioxidant capacity was significantly lower (p<0.001). While there was a positive correlation between total antioxidant capacity and hemoglobin levels (r=0.706, p<0.001), both total antioxidant capacity and hemoglobin levels were negatively correlated with DNA damage (r=-0.330, p<0.05 and r=-0.323, p<0.05, respectively). In conclusion, both oxidative stress and DNA damage are increased in IDA patients. Increased oxidative stress seems as an important factor that inducing DNA damage in those IDA patients. The relationships of oxidative stress and DNA damage with the severity of anemia suggest that both oxidative stress and DNA damage may, in part, have a role in the pathogenesis of IDA.

  1. Ecological and evolutionary significance of genomic GC content diversity in monocots

    PubMed Central

    Šmarda, Petr; Bureš, Petr; Horová, Lucie; Leitch, Ilia J.; Mucina, Ladislav; Pacini, Ettore; Tichý, Lubomír; Grulich, Vít; Rotreklová, Olga

    2014-01-01

    Genomic DNA base composition (GC content) is predicted to significantly affect genome functioning and species ecology. Although several hypotheses have been put forward to address the biological impact of GC content variation in microbial and vertebrate organisms, the biological significance of GC content diversity in plants remains unclear because of a lack of sufficiently robust genomic data. Using flow cytometry, we report genomic GC contents for 239 species representing 70 of 78 monocot families and compare them with genomic characters, a suite of life history traits and climatic niche data using phylogeny-based statistics. GC content of monocots varied between 33.6% and 48.9%, with several groups exceeding the GC content known for any other vascular plant group, highlighting their unusual genome architecture and organization. GC content showed a quadratic relationship with genome size, with the decreases in GC content in larger genomes possibly being a consequence of the higher biochemical costs of GC base synthesis. Dramatic decreases in GC content were observed in species with holocentric chromosomes, whereas increased GC content was documented in species able to grow in seasonally cold and/or dry climates, possibly indicating an advantage of GC-rich DNA during cell freezing and desiccation. We also show that genomic adaptations associated with changing GC content might have played a significant role in the evolution of the Earth’s contemporary biota, such as the rise of grass-dominated biomes during the mid-Tertiary. One of the major selective advantages of GC-rich DNA is hypothesized to be facilitating more complex gene regulation. PMID:25225383

  2. Experimental intrauterine growth retardation.

    PubMed

    van Marthens, E; Harel, S; Zamenshof, S

    1975-01-01

    The effects of experimental intrauterine growth retardation on subsequent fetal development, especially with respect to brain development, were studied in a new animal model. The rabbit was chosen since it has a perinatal pattern of brain development similar to that of the human. Experimental ischemia was induced during the last trimester by ligation of spiral arterioles and the differential effects on fetal development at term (30th gestational day) are reported. Specific brain regions were examined for wet weight, total cell number (DNA) and total protein content. Highly significant decreases in all these parameters were found in both the cortex and cerebellum following experimental intrauterine growth retardation; these two organs were differentially affected. The prospects and advantages of using this animal model for the study of the postnatal "catch-up growth" are discussed.

  3. Ethidium bromide as a marker of mtDNA replication in living cells

    NASA Astrophysics Data System (ADS)

    Villa, Anna Maria; Fusi, Paola; Pastori, Valentina; Amicarelli, Giulia; Pozzi, Chiara; Adlerstein, Daniel; Doglia, Silvia Maria

    2012-04-01

    Mitochondrial DNA (mtDNA) in tumor cells was found to play an important role in maintaining the malignant phenotype. Using laser scanning confocal fluorescence microscopy (LSCFM) in a recent work, we reported a variable fluorescence intensity of ethidium bromide (EB) in mitochondria nucleoids of living carcinoma cells. Since when EB is bound to nucleic acids its fluorescence is intensified; a higher EB fluorescence intensity could reflect a higher DNA accessibility to EB, suggesting a higher mtDNA replication activity. To prove this hypothesis, in the present work we studied, by LSCFM, the EB fluorescence in mitochondria nucleoids of living neuroblastoma cells, a model system in which differentiation affects the level of mtDNA replication. A drastic decrease of fluorescence was observed after differentiation. To correlate EB fluorescence intensity to the mtDNA replication state, we evaluated the mtDNA nascent strands content by ligation-mediated real-time PCR, and we found a halved amount of replicating mtDNA molecules in differentiating cells. A similar result was obtained by BrdU incorporation. These results indicate that the low EB fluorescence of nucleoids in differentiated cells is correlated to a low content of replicating mtDNA, suggesting that EB may be used as a marker of mtDNA replication in living cells.

  4. Wavelet-based associative memory

    NASA Astrophysics Data System (ADS)

    Jones, Katharine J.

    2004-04-01

    Faces provide important characteristics of a person"s identification. In security checks, face recognition still remains the method in continuous use despite other approaches (i.e. fingerprints, voice recognition, pupil contraction, DNA scanners). With an associative memory, the output data is recalled directly using the input data. This can be achieved with a Nonlinear Holographic Associative Memory (NHAM). This approach can also distinguish between strongly correlated images and images that are partially or totally enclosed by others. Adaptive wavelet lifting has been used for Content-Based Image Retrieval. In this paper, adaptive wavelet lifting will be applied to face recognition to achieve an associative memory.

  5. Similarity analysis between chromosomes of Homo sapiens and monkeys with correlation coefficient, rank correlation coefficient and cosine similarity measures

    PubMed Central

    Someswara Rao, Chinta; Viswanadha Raju, S.

    2016-01-01

    In this paper, we consider correlation coefficient, rank correlation coefficient and cosine similarity measures for evaluating similarity between Homo sapiens and monkeys. We used DNA chromosomes of genome wide genes to determine the correlation between the chromosomal content and evolutionary relationship. The similarity among the H. sapiens and monkeys is measured for a total of 210 chromosomes related to 10 species. The similarity measures of these different species show the relationship between the H. sapiens and monkey. This similarity will be helpful at theft identification, maternity identification, disease identification, etc. PMID:26981409

  6. Similarity analysis between chromosomes of Homo sapiens and monkeys with correlation coefficient, rank correlation coefficient and cosine similarity measures.

    PubMed

    Someswara Rao, Chinta; Viswanadha Raju, S

    2016-03-01

    In this paper, we consider correlation coefficient, rank correlation coefficient and cosine similarity measures for evaluating similarity between Homo sapiens and monkeys. We used DNA chromosomes of genome wide genes to determine the correlation between the chromosomal content and evolutionary relationship. The similarity among the H. sapiens and monkeys is measured for a total of 210 chromosomes related to 10 species. The similarity measures of these different species show the relationship between the H. sapiens and monkey. This similarity will be helpful at theft identification, maternity identification, disease identification, etc.

  7. Determining Glutathione Levels in Plants.

    PubMed

    Sahoo, Smita; Awasthi, Jay Prakash; Sunkar, Ramanjulu; Panda, Sanjib Kumar

    2017-01-01

    Upon exposure to abiotic stresses, plants tend to accumulate excessive amounts of reactive oxygen species (ROS) that inturn react with cellular lipids, proteins, and DNA. Therefore, decreasing ROS accumulation is indispensible to survive under stress, which is accomplished by inducing enzymatic and nonenzymatic antioxidant defense pathways. Glutathione, particularly reduced glutathione (GSH), represents a principal anitioxidant that could decrease ROS through scavenging them directly or indirectly through ascorbate-glutathione cycle or GSH peroxidases. Glutathione content can be determined using HPLC or spectrophotometric assays. In this chapter, we provided detailed assays to determine total, reduced, and oxidized gluathione using spectrophotometric method.

  8. A-DNA and B-DNA: Comparing Their Historical X-Ray Fiber Diffraction Images

    ERIC Educational Resources Information Center

    Lucas, Amand A.

    2008-01-01

    A-DNA and B-DNA are two secondary molecular conformations (among other allomorphs) that double-stranded DNA drawn into a fiber can assume, depending on the relative water content and other chemical parameters of the fiber. They were the first two forms to be observed by X-ray fiber diffraction in the early 1950s, respectively by Wilkins and…

  9. Structural integrity and developmental potential of spermatozoa following microwave-assisted drying in the domestic cat model.

    PubMed

    Patrick, Jennifer L; Elliott, Gloria D; Comizzoli, Pierre

    2017-11-01

    Characterizing the resilience of mammalian cells to non-physiological conditions is necessary to develop preservation and long-term storage strategies at low or ambient temperatures. Using the domestic cat model, the objective of the study was to characterize structural integrity (morphology and DNA damage) as well as functional properties (sperm aster formation and embryo formation after sperm injection) of spermatozoa after microwave-assisted drying to a moisture content compatible with storage in a glassy state at supra-zero temperatures. In Experiment 1, cat epididymal spermatozoa were porated with hemolysin and dried (using a commercial microwave oven set to 20% power) in the presence of trehalose for up to 50 min in a low humidity environment (11%) before measuring moisture content and sample temperature. In Experiment 2, morphology and DNA integrity were evaluated in sperm dried for up to 30 min (using the same method as above) versus fresh spermatozoa. In Experiment 3, the functionality of sperm dried for 30 min versus fresh sperm cells was evaluated after injection into oocytes based on sperm aster formation (5 h post-injection) and embryo development in vitro over 7 days. Moisture contents compatible with dry state storage were reached after 30 min of microwave-assisted drying. After rehydration, sperm morphology was not affected and the percentages of cells with damaged DNA (∼6.5%) was similar to the fresh controls. Sperm aster diameters appeared to be generally smaller for dried-rehydrated cells compared to the fresh controls. This observation was consistent with a lower proportion of blastocyst formation after injection with dried spermatozoa (6.5%) compared to fresh spermatozoa (15%). However, the blastocyst quality based on the total blastomere number was not affected by the sperm treatment. This is the first and encouraging report in any species so far demonstrating that spermatozoa can be dried using microwaves without causing irreversible damage to the cellular structure and function. Published by Elsevier Inc.

  10. Complete Mitochondrial Genome of the Medicinal Mushroom Ganoderma lucidum

    PubMed Central

    Chen, Haimei; Chen, Xiangdong; Lan, Jin; Liu, Chang

    2013-01-01

    Ganoderma lucidum is one of the well-known medicinal basidiomycetes worldwide. The mitochondrion, referred to as the second genome, is an organelle found in most eukaryotic cells and participates in critical cellular functions. Elucidating the structure and function of this genome is important to understand completely the genetic contents of G. lucidum. In this study, we assembled the mitochondrial genome of G. lucidum and analyzed the differential expressions of its encoded genes across three developmental stages. The mitochondrial genome is a typical circular DNA molecule of 60,630 bp with a GC content of 26.67%. Genome annotation identified genes that encode 15 conserved proteins, 27 tRNAs, small and large rRNAs, four homing endonucleases, and two hypothetical proteins. Except for genes encoding trnW and two hypothetical proteins, all genes were located on the positive strand. For the repeat structure analysis, eight forward, two inverted, and three tandem repeats were detected. A pair of fragments with a total length around 5.5 kb was found in both the nuclear and mitochondrial genomes, which suggests the possible transfer of DNA sequences between two genomes. RNA-Seq data for samples derived from three stages, namely, mycelia, primordia, and fruiting bodies, were mapped to the mitochondrial genome and qualified. The protein-coding genes were expressed higher in mycelia or primordial stages compared with those in the fruiting bodies. The rRNA abundances were significantly higher in all three stages. Two regions were transcribed but did not contain any identified protein or tRNA genes. Furthermore, three RNA-editing sites were detected. Genome synteny analysis showed that significant genome rearrangements occurred in the mitochondrial genomes. This study provides valuable information on the gene contents of the mitochondrial genome and their differential expressions at various developmental stages of G. lucidum. The results contribute to the understanding of the functions and evolution of fungal mitochondrial DNA. PMID:23991034

  11. DCJ-indel and DCJ-substitution distances with distinct operation costs

    PubMed Central

    2013-01-01

    Background Classical approaches to compute the genomic distance are usually limited to genomes with the same content and take into consideration only rearrangements that change the organization of the genome (i.e. positions and orientation of pieces of DNA, number and type of chromosomes, etc.), such as inversions, translocations, fusions and fissions. These operations are generically represented by the double-cut and join (DCJ) operation. The distance between two genomes, in terms of number of DCJ operations, can be computed in linear time. In order to handle genomes with distinct contents, also insertions and deletions of fragments of DNA – named indels – must be allowed. More powerful than an indel is a substitution of a fragment of DNA by another fragment of DNA. Indels and substitutions are called content-modifying operations. It has been shown that both the DCJ-indel and the DCJ-substitution distances can also be computed in linear time, assuming that the same cost is assigned to any DCJ or content-modifying operation. Results In the present study we extend the DCJ-indel and the DCJ-substitution models, considering that the content-modifying cost is distinct from and upper bounded by the DCJ cost, and show that the distance in both models can still be computed in linear time. Although the triangular inequality can be disrupted in both models, we also show how to efficiently fix this problem a posteriori. PMID:23879938

  12. A graphene oxide based biosensor for microcystins detection by fluorescence resonance energy transfer.

    PubMed

    Shi, Yan; Wu, Jiazhen; Sun, Yujing; Zhang, Yue; Wen, Zhiwei; Dai, Haichao; Wang, Hongda; Li, Zhuang

    2012-01-01

    Water safety is one of the most pervasive problems afflicting people throughout the world. Microcystin, a hepatotoxin produced by cyanobacteria, poses a growing and serious threat of water safety. According to World Health Organization (WHO), the limit of content of microcystin-LR (MC-LR) in drinking water is as low as 1 μg/L; it is thus necessary to explore a sensitive method for the trace detection of microcystins (MCs). Based on the observation of gold nanoparticles (Au NPs) induced graphene oxide (GO) fluorescence quenching, a reliable biosensor was developed here for microcystins detection. MCs could be attached on Au NPs through the interaction with single strand-DNA (ss-DNA) modified on Au NPs, which formed Au-DNA-MCs complexes. These MCs in the complexes could be immunologically recognized by the antibodies adsorbed on GO sheets, as a result, Au NPs were close enough to quench the photoluminescence of GO by the fluorescence resonance energy transfer (FRET). The fluorescence intensity decreased with the increase of MCs as more Au NPs linked onto GO surface. The limit of detection was 0.5 and 0.3 μg/L for microcystin-LR and microcystin-RR (MC-RR), respectively, which satisfies the strictest standard of WHO. Well defined results were also obtained in natural lake water and the specificity experiment. The antibody used here could recognize Adda group, the conservative part of MCs, which allowed the biosensor to detect both single toxin and the total content of MCs existing in the water sample. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  13. Nicotine inhibits collagen synthesis and alkaline phosphatase activity, but stimulates DNA synthesis in osteoblast-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramp, W.K.; Lenz, L.G.; Galvin, R.J.

    1991-05-01

    Use of smokeless tobacco is associated with various oral lesions including periodontal damage and alveolar bone loss. This study was performed to test the effects of nicotine on bone-forming cells at concentrations that occur in the saliva of smokeless tobacco users. Confluent cultures of osteoblast-like cells isolated from chick embryo calvariae were incubated for 2 days with nicotine added to the culture medium (25-600 micrograms/ml). Nicotine inhibited alkaline phosphatase in the cell layer and released to the medium, whereas glycolysis (as indexed by lactate production) was unaffected or slightly elevated. The effects on medium and cell layer alkaline phosphatase weremore » concentration dependent with maximal inhibition occurring at 600 micrograms nicotine/ml. Nicotine essentially did not affect the noncollagenous protein content of the cell layer, but did inhibit collagen synthesis (hydroxylation of ({sup 3}H)proline and collagenase-digestible protein) at 100, 300, and 600 micrograms/ml. Release of ({sup 3}H)hydroxyproline to the medium was also decreased in a dose-dependent manner, as was the collagenase-digestible protein for both the medium and cell layer. In contrast, DNA synthesis (incorporation of ({sup 3}H)thymidine) was more than doubled by the alkaloid, whereas total DNA content was slightly inhibited at 600 micrograms/ml, suggesting stimulated cell turnover. Morphologic changes occurred in nicotine-treated cells including rounding up, detachment, and the occurrence of numerous large vacuoles. These results suggest that steps to reduce the salivary concentration of nicotine in smokeless tobacco users might diminish damaging effects of this product on alveolar bone.« less

  14. Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample.

    PubMed

    Luo, Chengwei; Tsementzi, Despina; Kyrpides, Nikos; Read, Timothy; Konstantinidis, Konstantinos T

    2012-01-01

    Next-generation sequencing (NGS) is commonly used in metagenomic studies of complex microbial communities but whether or not different NGS platforms recover the same diversity from a sample and their assembled sequences are of comparable quality remain unclear. We compared the two most frequently used platforms, the Roche 454 FLX Titanium and the Illumina Genome Analyzer (GA) II, on the same DNA sample obtained from a complex freshwater planktonic community. Despite the substantial differences in read length and sequencing protocols, the platforms provided a comparable view of the community sampled. For instance, derived assemblies overlapped in ~90% of their total sequences and in situ abundances of genes and genotypes (estimated based on sequence coverage) correlated highly between the two platforms (R(2)>0.9). Evaluation of base-call error, frameshift frequency, and contig length suggested that Illumina offered equivalent, if not better, assemblies than Roche 454. The results from metagenomic samples were further validated against DNA samples of eighteen isolate genomes, which showed a range of genome sizes and G+C% content. We also provide quantitative estimates of the errors in gene and contig sequences assembled from datasets characterized by different levels of complexity and G+C% content. For instance, we noted that homopolymer-associated, single-base errors affected ~1% of the protein sequences recovered in Illumina contigs of 10× coverage and 50% G+C; this frequency increased to ~3% when non-homopolymer errors were also considered. Collectively, our results should serve as a useful practical guide for choosing proper sampling strategies and data possessing protocols for future metagenomic studies.

  15. Improvement of Fish Sauce Quality by Strain CMC5-3-1: A Novel Species of Staphylococcus sp.

    PubMed

    Udomsil, Natteewan; Rodtong, Sureelak; Tanasupawat, Somboon; Yongsawatdigul, Jirawat

    2015-09-01

    Staphylococcus sp. CMC5-3-1 and CMS5-7-5 isolated from fermented fish sauce at 3 to 7 mo, respectively, showed different characteristics on protein hydrolysis and volatile formation. These Gram-positive cocci were able to grow in up to 15% NaCl with the optimum at 0.5% to 5% NaCl in tryptic soy broth. Based on ribosomal 16S rRNA gene sequences, Staphylococcus sp. CMC5-3-1 and CMS5-7-5 showed 99.0% similarity to that of Staphylococcus piscifermentans JCM 6057(T) , but DNA-DNA relatedness was <30%, indicating that they were likely to be new species. DNA relatedness between these 2 strains was only 65%, suggesting that they also belonged to different species. The α-amino group content of 6-month-old fish sauce inoculated with Staphylococcus sp. CMC5-3-1 was 740.5 mM, which was higher than that inoculated by the strain CMS5-7-5 (662.14 mM, P < 0.05). Histamine was not produced during fermentations with both strains. Fish sauce inoculated with Staphylococcus sp. CMC5-3-1 showed the highest content of total glutamic acid (P < 0.05). The major volatile compound detected in fish sauce inoculated with Staphylococcus sp. CMC5-3-1 was 2-methypropanal, contributing to the desirable dark chocolate note. Staphylococcus sp. CMC5-3-1 could be applied as a starter culture to improve the umami and aroma of fish sauce. © 2015 Institute of Food Technologists®

  16. Arabidopsis cpSRP54 regulates carotenoid accumulation in Arabidopsis and Brassica napus

    PubMed Central

    Gruber, Margaret Y.; Hannoufa, Abdelali

    2012-01-01

    An Arabidopsis thaliana mutant, cbd (carotenoid biosynthesis deficient), was recovered from a mutant population based on its yellow cotyledons, yellow-first true leaves, and stunted growth. Seven-day-old seedlings and mature seeds of this mutant had lower chlorophyll and total carotenoids than the wild type (WT). Genetic and molecular characterization revealed that cbd was a recessive mutant caused by a T-DNA insertion in the gene cpSRP54 encoding the 54kDa subunit of the chloroplast signal recognition particle. Transcript levels of most of the main carotenoid biosynthetic genes in cbd were unchanged relative to WT, but expression increased in carotenoid and abscisic acid catabolic genes. The chloroplasts of cbd also had developmental defects that contributed to decreased carotenoid and chlorophyll contents. Transcription of AtGLK1 (Golden 2-like 1), AtGLK2, and GUN4 appeared to be disrupted in the cbd mutant suggesting that the plastid-to-nucleus retrograde signal may be affected, regulating the changes in chloroplast functional and developmental states and carotenoid content flux. Transformation of A. thaliana and Brassica napus with a gDNA encoding the Arabidopsis cpSRP54 showed the utility of this gene in enhancing levels of seed carotenoids without affecting growth or seed yield. PMID:22791829

  17. Drylands soil bacterial community is affected by land use change and different irrigation practices in the Mezquital Valley, Mexico.

    PubMed

    Lüneberg, Kathia; Schneider, Dominik; Siebe, Christina; Daniel, Rolf

    2018-01-23

    Dryland agriculture nourishes one third of global population, although crop irrigation is often mandatory. As freshwater sources are scarce, treated and untreated wastewater is increasingly used for irrigation. Here, we investigated how the transformation of semiarid shrubland into rainfed farming or irrigated agriculture with freshwater, dam-stored or untreated wastewater affects the total (DNA-based) and active (RNA-based) soil bacterial community composition, diversity, and functionality. To do this we collected soil samples during the dry and rainy seasons and isolated DNA and RNA. Soil moisture, sodium content and pH were the strongest drivers of the bacterial community composition. We found lineage-specific adaptations to drought and sodium content in specific land use systems. Predicted functionality profiles revealed gene abundances involved in nitrogen, carbon and phosphorous cycles differed among land use systems and season. Freshwater irrigated bacterial community is taxonomically and functionally susceptible to seasonal environmental changes, while wastewater irrigated ones are taxonomically susceptible but functionally resistant to them. Additionally, we identified potentially harmful human and phytopathogens. The analyses of 16 S rRNA genes, its transcripts and deduced functional profiles provided extensive understanding of the short-term and long-term responses of bacterial communities associated to land use, seasonality, and water quality used for irrigation in drylands.

  18. Biochemical changes to fibroblast cells subjected to ionizing radiation.

    PubMed

    Jones, Pamala; Benghuzzi, Hamed; Tucci, Michelle; Richards, Latoya; Harrison, George; Patel, Ramesh

    2008-01-01

    High energy X-rays are capable of interacting with biological membranes to cause both functional and structural modifications. The goal of the present study was to investigate the effects human fibroblast cells exposed multiple times to 10 Gy over time. Following exposures of 2, 3, or 4 times to 10 Gy/10min the cells were evaluated for cell number changes, membrane damage, and intracellular glutathione content after 24, 48 and 72 hours. Twenty-four hours following exposure the cell numbers were reduced and increased levels of cellular membrane damage was evident. This trend was observed for the duration of the study. Interestingly, there was not an exposure dependent increase in cell damage or cell loss with time. Intracellular antioxidant systems were activated as indicated by anincrease in total cellular glutathione content. Additional studies are needed to determine if the cellular reduction is caused by a direct effect of the X-rays targeting the DNA or an indirect effect of the X-ray targeting the cellular membrane, which then generates radicals that target cell cycle checkpoints or DNA damage. In conclusion, fibroblast cells can be used to determine early and late events of cellular function following exposure to harmful levels of radiation exposure and results of exposure can be seen within twenty four hours.

  19. A real-time PCR approach to detect predation on anchovy and sardine early life stages

    NASA Astrophysics Data System (ADS)

    Cuende, Elsa; Mendibil, Iñaki; Bachiller, Eneko; Álvarez, Paula; Cotano, Unai; Rodriguez-Ezpeleta, Naiara

    2017-12-01

    Recruitment of sardine (Sardina pilchardus Walbaum, 1792) and anchovy (Engraulis encrasicolus Linnaeus, 1758) is thought to be regulated by predation of their eggs and larvae. Predators of sardine and anchovy can be identified by visual taxonomic identification of stomach contents, but this method is time consuming, tedious and may underestimate predation, especially in small predators such as fish larvae. Alternatively, genetic tools may offer a more cost-effective and accurate alternative. Here, we have developed a multiplex real-time polymerase chain reaction (RT-PCR) assay based on TaqMan probes to simultaneously detect sardine and anchovy remains in gut contents of potential predators. The assay combines previously described and newly generated species-specific primers and probes for anchovy and sardine detection respectively, and allows the detection of 0,001 ng of target DNA (which corresponds to about one hundredth of the total DNA present in a single egg). We applied the method to candidate anchovy and sardine egg predators in the Bay of Biscay, Atlantic Mackerel (Scomber scombrus) larvae. Egg predation observed was limited primarily to those stations where sardine and/or anchovy eggs were present. Our developed assay offers a suitable tool to understand the effects of predation on the survival of anchovy and sardine early life stages.

  20. Cytosine methylation of sperm DNA in horse semen after cryopreservation.

    PubMed

    Aurich, Christine; Schreiner, Bettina; Ille, Natascha; Alvarenga, Marco; Scarlet, Dragos

    2016-09-15

    Semen processing may contribute to epigenetic changes in spermatozoa. We have therefore addressed changes in sperm DNA cytosine methylation induced by cryopreservation of stallion semen. The relative amount of 5-methylcytosine relative to the genomic cytosine content of sperm DNA was analyzed by ELISA. In experiment 1, raw semen (n = 6 stallions, one ejaculate each) was shock-frozen. Postthaw semen motility and membrane integrity were completely absent, whereas DNA methylation was similar in raw (0.4 ± 0.2%) and shock-frozen (0.3 ± 0.1%) semen (not significant). In experiment 2, three ejaculates per stallion (n = 6) were included. Semen quality and DNA methylation was assessed before addition of the freezing extender and after freezing-thawing with either Ghent (G) or BotuCrio (BC) extender. Semen motility, morphology, and membrane integrity were significantly reduced by cryopreservation but not influenced by the extender (e.g., total motility: G 69.5 ± 2.0, BC 68.4 ± 2.2%; P < 0.001 vs. centrifugation). Cryopreservation significantly (P < 0.01) increased the level of DNA methylation (before freezing 0.6 ± 0.1%, postthaw G 6.4 ± 3.7, BC 4.4 ± 1.5%; P < 0.01), but no differences between the freezing extenders were seen. The level of DNA methylation was not correlated to semen motility, morphology, or membrane integrity. The results demonstrate that semen processing for cryopreservation increases the DNA methylation level in stallion semen. We conclude that assessment of sperm DNA methylation allows for evaluation of an additional parameter characterizing semen quality. The lower fertility rates of mares after insemination with frozen-thawed semen may at least in part be explained by cytosine methylation of sperm-DNA induced by the cryopreservation procedure. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Evaluation of the wound-healing activity of Hibiscus rosa sinensis L (Malvaceae) in Wistar albino rats

    PubMed Central

    Bhaskar, Anusha; Nithya, V.

    2012-01-01

    Objective: To investigate the wound-healing potency of the ethanolic extract of the flowers of Hibiscus rosa sinensis. Materials and Methods: The wound-healing activity of H. rosa sinensis (5 and 10% w/w) on Wistar albino rats was studied using three different models viz., excision, incision and dead space wound. The parameters studied were breaking strength in incision model, granulation tissue dry weight, breaking strength and collagen content in dead space wound model, percentage of wound contraction and period of epithelization in excision wound model. The granulation tissue formed on days 4, 8, 12, and 16 (post-wound) was used to estimate total collagen, hexosamine, protein, DNA and uronic acid. Data were analyzed by Analysis of Variance (ANOVA) test. P<0.05 was considered statistically significant. Results: The extract increased cellular proliferation and collagen synthesis at the wound site, as evidenced by increase in DNA, total protein and total collagen content of granulation tissues. The extract-treated wounds were found to heal much faster as indicated by improved rates of epithelialization and wound contraction. The extract of H. rosa sinensis significantly (P<0.001) increased the wound-breaking strength in the incision wound model compared to controls. The extract-treated wounds were found to epithelialize faster, and the rate of wound contraction was significantly (P<0.001) increased as compared to control wounds. Wet and dry granulation tissue weights in a dead space wound model increased significantly (P<0.001). There was a significant increase in wound closure rate, tensile strength, dry granuloma weight, wet granuloma weight and decrease in epithelization period in H. rosa sinensis-treated group as compared to control and standard drug-treated groups. Conclusion: The ethanolic extract of H. rosa sinensis had greater wound-healing activity than the nitrofurazone ointment. PMID:23248396

  2. Ploidy Levels among Species in the ‘Oxalis tuberosa Alliance’ as Inferred by Flow Cytometry

    PubMed Central

    EMSHWILLER, EVE

    2002-01-01

    The ‘Oxalis tuberosa alliance’ is a group of Andean Oxalis species allied to the Andean tuber crop O. tuberosa Molina (Oxalidaceae), commonly known as ‘oca’. As part of a larger project studying the origins of polyploidy and domestication of cultivated oca, flow cytometry was used to survey DNA ploidy levels among Bolivian and Peruvian accessions of alliance members. In addition, this study provided a first assessment of C‐values in the alliance by estimating nuclear DNA contents of these accessions using chicken erythrocytes as internal standard. Ten Bolivian accessions of cultivated O. tuberosa were confirmed to be octoploid, with a mean nuclear DNA content of approx. 3·6 pg/2C. Two Peruvian wild Oxalis species, O. phaeotricha and O. picchensis, were inferred to be tetraploid (both with approx. 1·67 pg/2C), the latter being one of the putative progenitors of O. tuberosa identified by chloroplast‐expressed glutamine synthetase data in prior work. The remaining accessions (from 78 populations provisionally identified as 35 species) were DNA diploid, with nuclear DNA contents varying from 0·79 to 1·34 pg/2C. PMID:12102530

  3. Melatonin-induced increase of lipid droplets accumulation and in vitro maturation in porcine oocytes is mediated by mitochondrial quiescence.

    PubMed

    He, Bin; Yin, Chao; Gong, Yabin; Liu, Jie; Guo, Huiduo; Zhao, Ruqian

    2018-01-01

    Melatonin, the major pineal secretory product, has a significant impact on the female reproductive system. Recently, the beneficial effects of melatonin on mammalian oocyte maturation and embryonic development have drawn increased attention. However, the exact underlying mechanisms remain to be fully elucidated. This study demonstrates that supplementing melatonin to in vitro maturation (IVM) medium enhances IVM rate, lipid droplets (LDs) accumulation as well as triglyceride content in porcine oocytes. Decrease of mitochondrial membrane potential, mitochondrial respiratory chain complex IV activity as well as mitochondrial reactive oxygen species (mROS) content indicated that melatonin induced a decrease of mitochondrial activity. The copy number of mitochondrial DNA (mtDNA) which encodes essential subunits of oxidative phosphorylation (OXPHOS), was not affected by melatonin. However, the expression of mtDNA-encoded genes was significantly down-regulated after melatonin treatment. The DNA methyltransferase DNMT1, which regulates methylation and expression of mtDNA, was increased and translocated into the mitochondria in melatonin-treated oocytes. The inhibitory effect of melatonin on the expression of mtDNA was significantly prevented by simultaneous addition of DNMT1 inhibitor, which suggests that melatonin regulates the transcription of mtDNA through up-regulation of DNMT1 and mtDNA methylation. Increase of triglyceride contents after inhibition of OXPHOS indicated that mitochondrial quiescence is crucial for LDs accumulation in oocytes. Taken together, our results suggest that melatonin-induced reduction in mROS production and increase in IVM, and LDs accumulation in porcine oocytes is mediated by mitochondrial quiescence. © 2017 Wiley Periodicals, Inc.

  4. The relationship between mitochondrial DNA copy number and stallion sperm function.

    PubMed

    Darr, Christa R; Moraes, Luis E; Connon, Richard E; Love, Charles C; Teague, Sheila; Varner, Dickson D; Meyers, Stuart A

    2017-05-01

    Mitochondrial DNA (mtDNA) copy number has been utilized as a measure of sperm quality in several species including mice, dogs, and humans, and has been suggested as a potential biomarker of fertility in stallion sperm. The results of the present study extend this recent discovery using sperm samples from American Quarter Horse stallions of varying age. By determining copy number of three mitochondrial genes, cytochrome b (CYTB), NADH dehydrogenase 1 (ND1) and NADH dehydrogenase 4 (ND4), instead of a single gene, we demonstrate an improved understanding of mtDNA fate in stallion sperm mitochondria following spermatogenesis. Sperm samples from 37 stallions ranging from 3 to 24 years old were collected at four breeding ranches in north and central Texas during the 2015 breeding season. Samples were analyzed for sperm motion characteristics, nuclear DNA denaturability and mtDNA copy number. Mitochondrial DNA content in individual sperm was determined by real-time qPCR and normalized with a single copy nuclear gene, Beta actin. Exploratory correlation analysis revealed that total motility was negatively correlated with CYTB copy number and sperm chromatin structure. Stallion age did not have a significant effect on copy number for any of the genes. Copy number differences existed between the three genes with CYTB having the greatest number of copies (20.6 ± 1.2 copies, range: 6.0 to 41.1) followed by ND4 (15.5 ± 0.8 copies, range: 6.7 to 27.8) and finally ND1 (12.0 ± 1.0 copies, range: 0.4 to 26.6) (P < 0.05). Varying copy number across mitochondrial genes is likely to be a result of mtDNA fragmentation and degradation since downregulation of sperm mtDNA occurs during spermatogenesis and may be important for normal sperm function. Beta regression analysis suggested that for every unit increase in mtDNA copy number of CYTB, there was a 4% decrease in the odds of sperm movement (P = 0.001). Influential analysis suggested that results are robust and not highly influenced by data from individual stallions despite the low number of stallions sampled with low sperm motility. Further genome sequencing is necessary to investigate if mutations or deletions are the underlying causes of inconsistent copy numbers across mitochondrial genes. In conclusion, we show, for the first time, that increased mtDNA copy number is associated with decreased total sperm motility in stallions. We therefore suggest that mtDNA copy number may be an indicator of defective spermatogenesis in stallions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Role of platinum DNA damage-induced transcriptional inhibition in chemotherapy-induced neuronal atrophy and peripheral neurotoxicity.

    PubMed

    Yan, Fang; Liu, Johnson J; Ip, Virginia; Jamieson, Stephen M F; McKeage, Mark J

    2015-12-01

    Platinum-based anticancer drugs cause peripheral neurotoxicity by damaging sensory neurons within the dorsal root ganglia (DRG), but the mechanisms are incompletely understood. The roles of platinum DNA binding, transcription inhibition and altered cell size were investigated in primary cultures of rat DRG cells. Click chemistry quantitative fluorescence imaging of RNA-incorporated 5-ethynyluridine showed high, but wide ranging, global levels of transcription in individual neurons that correlated with their cell body size. Treatment with platinum drugs reduced neuronal transcription and cell body size to an extent that corresponded to the amount of preceding platinum DNA binding, but without any loss of neuronal cells. The effects of platinum drugs on neuronal transcription and cell body size were inhibited by blocking platinum DNA binding with sodium thiosulfate, and mimicked by treatment with a model transcriptional inhibitor, actinomycin D. In vivo oxaliplatin treatment depleted the total RNA content of DRG tissue concurrently with altering DRG neuronal size. These findings point to a mechanism of chemotherapy-induced peripheral neurotoxicity, whereby platinum DNA damage induces global transcriptional arrest leading in turn to neuronal atrophy. DRG neurons may be particularly vulnerable to this mechanism of toxicity because of their requirements for high basal levels of global transcriptional activity. Findings point to a new stepwise mechanism of chemotherapy-induced peripheral neurotoxicity, whereby platinum DNA damage induces global transcriptional arrest leading in turn to neuronal atrophy. Dorsal root ganglion neurons may be particularly vulnerable to this neurotoxicity because of their high global transcriptional outputs, demonstrated in this study by click chemistry quantitative fluorescence imaging. © 2015 International Society for Neurochemistry.

  6. Autoantibodies associated with RNA are more enriched than anti-dsDNA antibodies in circulating immune complexes in SLE.

    PubMed

    Ahlin, E; Mathsson, L; Eloranta, M-L; Jonsdottir, T; Gunnarsson, I; Rönnblom, L; Rönnelid, J

    2012-05-01

    To what extent different autoantibodies accumulate in systemic lupus erythematosus (SLE) immune complexes (ICs), and whether such accumulation is associated with disease activity has been investigated. ICs were isolated from SLE sera by both polyethylene glycol (PEG) precipitation and C1q-binding. Autoantibody specificities were determined using a lineblot assay quantified by densitometry. To compare the relative levels of autoantibodies, levels were normalized to the total levels of IgG measured by ELISA in sera and parallel ICs. Samples were investigated both in a cross-sectional design as well as in a paired design with samples obtained during both active and inactive SLE. All investigated autoantibody specificities except anti-dsDNA were enriched in circulating ICs as compared with parallel sera. The group of antibodies against RNA-associated antigens (anti-RNP/Sm, anti-Sm, anti-SSA/Ro60, anti-SSA/Ro52, anti-SSB/La) all exhibited higher median enrichment than the DNA-associated (anti-dsDNA, anti-histones, anti-nucleosomes) or cytoplasmic (anti-ribosomal P) antigens. In particular autoantibodies against RNP/Sm and SSA/Ro52 had the highest degree of enrichment in SLE PEG precipitates. These findings were corroborated by analysis of autoantibody content in C1q-bound ICs. There was no difference in degree of IC accumulation of the investigated autoantibodies during active and inactive SLE. Our findings demonstrate a difference in enrichment between autoantibodies against RNA- and DNA-associated autoantigens in isolated SLE IC, suggesting that the RNA-associated autoantibodies are more prone to form circulating ICs in SLE, in contrast to antibodies against DNA-associated autoantigens such as dsDNA. These finding have implications in understanding mechanisms of differential autoantibody accumulation in target organs in SLE.

  7. Local chromatin structure of heterochromatin regulates repeated DNA stability, nucleolus structure, and genome integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Jamy C.

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) thatmore » binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in euchromatin. Remarkably, human euchromatin and fly heterochromatin share similar features; such as repeated DNA content, intron lengths and open reading frame sizes. Human cells likely stabilize their DNA content via mechanisms and factors similar to those in Drosophila heterochromatin. Furthermore, my thesis work raises implications for H3K9me and chromatin functions in complex-DNA genome stability, repeated DNA homogenization by molecular drive, and in genome reorganization through evolution.« less

  8. Systematic evaluation of bias in microbial community profiles induced by whole genome amplification.

    PubMed

    Direito, Susana O L; Zaura, Egija; Little, Miranda; Ehrenfreund, Pascale; Röling, Wilfred F M

    2014-03-01

    Whole genome amplification methods facilitate the detection and characterization of microbial communities in low biomass environments. We examined the extent to which the actual community structure is reliably revealed and factors contributing to bias. One widely used [multiple displacement amplification (MDA)] and one new primer-free method [primase-based whole genome amplification (pWGA)] were compared using a polymerase chain reaction (PCR)-based method as control. Pyrosequencing of an environmental sample and principal component analysis revealed that MDA impacted community profiles more strongly than pWGA and indicated that this related to species GC content, although an influence of DNA integrity could not be excluded. Subsequently, biases by species GC content, DNA integrity and fragment size were separately analysed using defined mixtures of DNA from various species. We found significantly less amplification of species with the highest GC content for MDA-based templates and, to a lesser extent, for pWGA. DNA fragmentation also interfered severely: species with more fragmented DNA were less amplified with MDA and pWGA. pWGA was unable to amplify low molecular weight DNA (< 1.5 kb), whereas MDA was inefficient. We conclude that pWGA is the most promising method for characterization of microbial communities in low-biomass environments and for currently planned astrobiological missions to Mars. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Chromosomal damage and EROD induction in tree swallows (Tachycineta bicolor) along the Upper Mississippi River, Minnesota, USA

    USGS Publications Warehouse

    Emilie Bigorgne,; Custer, Thomas W.; Dummer, Paul; Erickson, Richard A.; Karouna-Renier, Natalie K.; Schultz, Sandra; Custer, Christine M.; Thogmartin, Wayne E.; Cole W. Matson,

    2015-01-01

    The health of tree swallows, Tachycineta bicolor, on the Upper Mississippi River (UMR) was assessed in 2010 and 2011 using biomarkers at six sites downriver of Minneapolis/St. Paul, MN metropolitan area, a tributary into the UMR, and a nearby lake. Chromosomal damage was evaluated in nestling blood by measuring the coefficient of variation of DNA content (DNA CV) using flow cytometry. Cytochrome P450 1A activity in nestling liver was measured using the ethoxyresorufin-O-dealkylase (EROD) assay, and oxidative stress was estimated in nestling livers via determination of thiobarbituric acid reacting substances (TBARS), reduced glutathione (GSH), oxidized glutathione (GSSG), the ratio GSSG/GSH, total sulfhydryl, and protein bound sulfhydryl (PBSH). A multilevel regression model (DNA CV) and simple regressions (EROD and oxidative stress) were used to evaluate biomarker responses for each location. Chromosomal damage was significantly elevated at two sites on the UMR (Pigs Eye and Pool 2) relative to the Green Mountain Lake reference site, while the induction of EROD activity was only observed at Pigs Eye. No measures of oxidative stress differed among sites. Multivariate analysis confirmed an increased DNA CV at Pigs Eye and Pool 2, and elevated EROD activity at Pigs Eye. These results suggest that the health of tree swallows has been altered at the DNA level at Pigs Eye and Pool 2 sites, and at the physiological level at Pigs Eye site only.

  10. Internal validation of the DNAscan/ANDE™ Rapid DNA Analysis™ platform and its associated PowerPlex® 16 high content DNA biochip cassette for use as an expert system with reference buccal swabs.

    PubMed

    Moreno, Lilliana I; Brown, Alice L; Callaghan, Thomas F

    2017-07-01

    Rapid DNA platforms are fully integrated systems capable of producing and analyzing short tandem repeat (STR) profiles from reference sample buccal swabs in less than two hours. The technology requires minimal user interaction and experience making it possible for high quality profiles to be generated outside an accredited laboratory. The automated production of point of collection reference STR profiles could eliminate the time delay for shipment and analysis of arrestee samples at centralized laboratories. Furthermore, point of collection analysis would allow searching against profiles from unsolved crimes during the normal booking process once the infrastructure to immediately search the Combined DNA Index System (CODIS) database from the booking station is established. The DNAscan/ANDE™ Rapid DNA Analysis™ System developed by Network Biosystems was evaluated for robustness and reliability in the production of high quality reference STR profiles for database enrollment and searching applications. A total of 193 reference samples were assessed for concordance of the CODIS 13 loci. Studies to evaluate contamination, reproducibility, precision, stutter, peak height ratio, noise and sensitivity were also performed. The system proved to be robust, consistent and dependable. Results indicated an overall success rate of 75% for the 13 CODIS core loci and more importantly no incorrect calls were identified. The DNAscan/ANDE™ could be confidently used without human interaction in both laboratory and non-laboratory settings to generate reference profiles. Published by Elsevier B.V.

  11. Base compositions of genes encoding alpha-actin and lactate dehydrogenase-A from differently adapted vertebrates show no temperature-adaptive variation in G + C content.

    PubMed

    Ream, Rachael A; Johns, Glenn C; Somero, George N

    2003-01-01

    There is a long-standing debate in molecular evolution concerning the putative importance of GC content in adapting the thermal stabilities of DNA and RNA. Most studies of this relationship have examined broad-scale compositional patterns, for example, total GC percentages in genomes and occurrence of GC-rich isochores. Few studies have systematically examined the GC contents of individual orthologous genes from differently thermally adapted species. When this has been done, the emphasis has been on comparing large numbers of genes in only a few species. We have approached the GC-adaptation temperature hypothesis in a different manner by examining patterns of base composition of genes encoding lactate dehydrogenase-A (ldh-a) and alpha-actin (alpha-actin) from 51 species of vertebrates whose adaptation temperatures ranged from -1.86 degrees C (Antarctic fishes) to approximately 45 degrees C (desert reptile). No significant positive correlation was found between any index of GC content (GC content of the entire sequence, GC content of the third codon position [GC(3)], and GC content at fourfold degenerate sites [GC(4)]) and any index of adaptation temperature (maximal, mean, or minimal body temperature). For alpha-actin, slopes of regression lines for all comparisons did not differ significantly from zero. For ldh-a, negative correlations between adaptation temperature and total GC content, GC(3), and GC(4) were observed but were shown to be due entirely to phylogenetic influences (as revealed by independent contrast analyses). This comparison of GC content across a wide range of ectothermic ("cold-blooded") and endothermic ("warm-blooded") vertebrates revealed that frogs of the genus Xenopus, which have commonly been used as a representative cold-blooded species, in fact are outliers among ectotherms for the alpha-actin analyses, raising concern about the appropriateness of choosing these amphibians as representative of ectothermic vertebrates in general. Our study indicates that, whereas GC contents of isochores may show variation among different classes of vertebrates, there is no consistent relationship between adaptation temperature and the percentage of thermal stability-enhancing G + C base pairs in protein-coding genes.

  12. DNA Microarray Technology

    MedlinePlus

    Skip to main content DNA Microarray Technology Enter Search Term(s): Español Research Funding An Overview Bioinformatics Current Grants Education and Training Funding Extramural Research News Features Funding Divisions Funding ...

  13. Effect of DNA extraction and sample preservation method on rumen bacterial population.

    PubMed

    Fliegerova, Katerina; Tapio, Ilma; Bonin, Aurelie; Mrazek, Jakub; Callegari, Maria Luisa; Bani, Paolo; Bayat, Alireza; Vilkki, Johanna; Kopečný, Jan; Shingfield, Kevin J; Boyer, Frederic; Coissac, Eric; Taberlet, Pierre; Wallace, R John

    2014-10-01

    The comparison of the bacterial profile of intracellular (iDNA) and extracellular DNA (eDNA) isolated from cow rumen content stored under different conditions was conducted. The influence of rumen fluid treatment (cheesecloth squeezed, centrifuged, filtered), storage temperature (RT, -80 °C) and cryoprotectants (PBS-glycerol, ethanol) on quality and quantity parameters of extracted DNA was evaluated by bacterial DGGE analysis, real-time PCR quantification and metabarcoding approach using high-throughput sequencing. Samples clustered according to the type of extracted DNA due to considerable differences between iDNA and eDNA bacterial profiles, while storage temperature and cryoprotectants additives had little effect on sample clustering. The numbers of Firmicutes and Bacteroidetes were lower (P < 0.01) in eDNA samples. The qPCR indicated significantly higher amount of Firmicutes in iDNA sample frozen with glycerol (P < 0.01). Deep sequencing analysis of iDNA samples revealed the prevalence of Bacteroidetes and similarity of samples frozen with and without cryoprotectants, which differed from sample stored with ethanol at room temperature. Centrifugation and consequent filtration of rumen fluid subjected to the eDNA isolation procedure considerably changed the ratio of molecular operational taxonomic units (MOTUs) of Bacteroidetes and Firmicutes. Intracellular DNA extraction using bead-beating method from cheesecloth sieved rumen content mixed with PBS-glycerol and stored at -80 °C was found as the optimal method to study ruminal bacterial profile. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Flow cytometry reliability analysis and variations in sugarcane DNA content.

    PubMed

    Oliveira, A C L; Pasqual, M; Bruzi, A T; Pio, L A S; Mendonça, P M S; Soares, J D R

    2015-06-29

    The aim of this study was to evaluate the reliability of flow cytometry analysis and the use of this technique to differentiate species and varieties of sugarcane (Saccharum spp) according to their relative DNA content. We analyzed 16 varieties and three species belonging to this genus. To determine a reliable protocol, we evaluated three extraction buffers (LB01, Marie, and Tris·MgCl2), the presence and absence of RNase, six doses of propidium iodide (10, 15, 20, 25, and 30 μg), four periods of exposure to propidium iodide (0, 5, 10, and 20 min), and seven external reference standards (peas, beans, corn, radish, rye, soybean, and tomato) with reference to the coefficient of variation and the DNA content. For statistical analyses, we used the programs Sisvar(®) and Xlstat(®). We recommend using the Marie extraction buffer and at least 15 μg propidium iodide. The samples should not be analyzed immediately after the addition of propidium iodide. The use of RNase is optional, and tomato should be used as an external reference standard. The results show that sugarcane has a variable genome size (8.42 to 12.12 pg/2C) and the individuals analyzed could be separated into four groups according to their DNA content with relative equality in the genome sizes of the commercial varieties.

  15. Mitochondrial DNA maintenance is regulated in human hepatoma cells by glycogen synthase kinase 3β and p53 in response to tumor necrosis factor α.

    PubMed

    Vadrot, Nathalie; Ghanem, Sarita; Braut, Françoise; Gavrilescu, Laura; Pilard, Nathalie; Mansouri, Abdellah; Moreau, Richard; Reyl-Desmars, Florence

    2012-01-01

    During chronic liver inflammation, up-regulated Tumor Necrosis Factor alpha (TNF-α) targets hepatocytes and induces abnormal reactive oxygen species (ROS) production responsible for mitochondrial DNA (mtDNA) alterations. The serine/threonine Glycogen Synthase Kinase 3 beta (GSK3β) plays a pivotal role during inflammation but its involvement in the maintenance of mtDNA remains unknown. The aim of this study was to investigate its involvement in TNF-α induced mtDNA depletion and its interrelationship with p53 a protein known to maintain mtDNA copy numbers. Using quantitative polymerase chain reaction (qPCR) we found that at 30 min in human hepatoma HepG2 cells TNF-α induced 0.55±0.10 mtDNA lesions per 10 Kb and a 52.4±2.8% decrease in mtDNA content dependent on TNF-R1 receptor and ROS production. Both lesions and depletion returned to baseline from 1 to 6 h after TNF-α exposure. Luminol-amplified chemiluminescence (LAC) was used to measure the rapid (10 min) and transient TNF-α induced increase in ROS production (168±15%). A transient 8-oxo-dG level of 1.4±0.3 ng/mg DNA and repair of abasic sites were also measured by ELISA assays. Translocation of p53 to mitochondria was observed by Western Blot and co-immunoprecipitations showed that TNF-α induced p53 binding to GSK3β and mitochondrial transcription factor A (TFAM). In addition, mitochondrial D-loop immunoprecipitation (mtDIP) revealed that TNF-α induced p53 binding to the regulatory D-loop region of mtDNA. The knockdown of p53 by siRNAs, inhibition by the phosphoSer(15)p53 antibody or transfection of human mutant active GSK3βS9A pcDNA3 plasmid inhibited recovery of mtDNA content while blockade of GSK3β activity by SB216763 inhibitor or knockdown by siRNAs suppressed mtDNA depletion. This study is the first to report the involvement of GSK3β in TNF-α induced mtDNA depletion. We suggest that p53 binding to GSK3β, TFAM and D-loop could induce recovery of mtDNA content through mtDNA repair.

  16. Complex Enzyme-Assisted Extraction Releases Antioxidative Phenolic Compositions from Guava Leaves.

    PubMed

    Wang, Lu; Wu, Yanan; Liu, Yan; Wu, Zhenqiang

    2017-09-30

    Phenolics in food and fruit tree leaves exist in free, soluble-conjugate, and insoluble-bound forms. In this study, in order to enhance the bioavailability of insoluble-bound phenolics from guava leaves (GL), the ability of enzyme-assisted extraction in improving the release of insoluble-bound phenolics was investigated. Compared to untreated GL, single xylanase-assisted extraction did not change the composition and yield of soluble phenolics, whereas single cellulase or β -glucosidase-assisted extraction significantly enhanced the soluble phenolics content of PGL. However, complex enzyme-assisted extraction (CEAE) greatly improved the soluble phenolics content, flavonoids content, ABTS, DPPH, and FRAP by 103.2%, 81.6%, 104.4%, 126.5%, and 90.3%, respectively. Interestingly, after CEAE, a major proportion of phenolics existed in the soluble form, and rarely in the insoluble-bound form. Especially, the contents of quercetin and kaempferol with higher bio-activity were enhanced by 3.5- and 2.2-fold, respectively. More importantly, total soluble phenolics extracts of GL following CEAE exhibited the highest antioxidant activity and protective effect against supercoiled DNA damage. This enzyme-assisted extraction technology can be useful for extracting biochemical components from plant matrix, and has good potential for use in the food and pharmaceutical industries.

  17. A leukocyte activation test identifies food items which induce release of DNA by innate immune peripheral blood leucocytes.

    PubMed

    Garcia-Martinez, Irma; Weiss, Theresa R; Yousaf, Muhammad N; Ali, Ather; Mehal, Wajahat Z

    2018-01-01

    Leukocyte activation (LA) testing identifies food items that induce a patient specific cellular response in the immune system, and has recently been shown in a randomized double blinded prospective study to reduce symptoms in patients with irritable bowel syndrome (IBS). We hypothesized that test reactivity to particular food items, and the systemic immune response initiated by these food items, is due to the release of cellular DNA from blood immune cells. We tested this by quantifying total DNA concentration in the cellular supernatant of immune cells exposed to positive and negative foods from 20 healthy volunteers. To establish if the DNA release by positive samples is a specific phenomenon, we quantified myeloperoxidase (MPO) in cellular supernatants. We further assessed if a particular immune cell population (neutrophils, eosinophils, and basophils) was activated by the positive food items by flow cytometry analysis. To identify the signaling pathways that are required for DNA release we tested if specific inhibitors of key signaling pathways could block DNA release. Foods with a positive LA test result gave a higher supernatant DNA content when compared to foods with a negative result. This was specific as MPO levels were not increased by foods with a positive LA test. Protein kinase C (PKC) inhibitors resulted in inhibition of positive food stimulated DNA release. Positive foods resulted in CD63 levels greater than negative foods in eosinophils in 76.5% of tests. LA test identifies food items that result in release of DNA and activation of peripheral blood innate immune cells in a PKC dependent manner, suggesting that this LA test identifies food items that result in release of inflammatory markers and activation of innate immune cells. This may be the basis for the improvement in symptoms in IBS patients who followed an LA test guided diet.

  18. Cadmium-induced cyto- and genotoxicity are organ-dependent in lettuce.

    PubMed

    Monteiro, Cristina; Santos, Conceição; Pinho, Sónia; Oliveira, Helena; Pedrosa, Tiago; Dias, Maria Celeste

    2012-07-16

    Cadmium is a priority pollutant. Its mechanisms and effects within different plant organs remain unclear. Here, cyto-genotoxicity biomarkers were evaluated in roots and leaves after Cd exposure (0, 1, 10, and 50 μM) of the model crop Lactuca sativa L. (cv. "Reine de Mai"). Overall, superoxide dismutase (SOD) and catalase (CAT) activities were stimulated in leaves, where Cd accumulation was lower in comparison to that in roots. In roots, SOD and peroxidase (POX, APX) activities were stimulated. Moreover, in both organs glutathione reductase (GR) was not affected by Cd. Overall, the H(2)O(2) content increased in both organs, while the total antioxidant capacity decreased in leaves and increased in roots with Cd concentrations. In both organs, lipid and protein oxidation rose with consequent increase of membrane permeability. Simultaneously, the comet assay showed that tail moment, tail length, and % tail DNA were maximum for 1 μM. For 10 μM, shorter tails were found suggesting induced Cd-DNA adducts that lead to DNA-DNA/DNA-protein cross-links, and/or formation of longer DNA fragments, and/or impairment of DNA repair mechanisms, while at 50 μM, nucleoids sensitivity to the technique was evident. This result was consistent with the maximum micronuclei frequency found for the 10 μM Cd dose in roots, suggesting that the surviving cells in this organ had an increase of mitotic catastrophe and that DNA repair systems for blocking cell cycle were dysfunctional. In lower Cd concentrations, root cells might have developed strategies to repair damaged DNA by blocking the cell cycle at specific checkpoints, thus avoiding mitotic catastrophe. Roots at 1 μM showed a cell cycle blockage trend at the G(2) checkpoint, while those at higher concentrations presented S phase delay. We finally discuss a general model of Cd-organ interaction covering these cyto- and genotoxic effects and the potential use of this cultivar in phytoremediation strategies.

  19. Upper-body resistance exercise augments vastus lateralis androgen receptor-DNA binding and canonical Wnt/β-catenin signaling compared to lower-body resistance exercise in resistance-trained men without an acute increase in serum testosterone.

    PubMed

    Spillane, Mike; Schwarz, Neil; Willoughby, Darryn S

    2015-06-01

    The purpose of the study was to determine the effect of single bouts of lower-body (LB) and upper- and lower-body (ULB) resistance exercise on serum testosterone concentrations and the effects on muscle testosterone, dihydrotestosterone (DHT), androgen receptor (AR) protein content, and AR-DNA binding. A secondary purpose was to determine the effects on serum wingless-type MMTV integration site (Wnt4) levels and skeletal muscle β-catenin content. In a randomized cross-over design, exercise bouts consisted of a LB and ULB protocol, and each bout was separated by 1 week. Blood and muscle samples were obtained before exercise and 3 and 24h post-exercise; blood samples were also obtained at 0.5, 1, and 2 h post-exercise. Statistical analyses were performed by separate two-way factorial analyses of variance (ANOVA) with repeated measures. No significant differences from baseline were observed in serum total and free testosterone and skeletal muscle testosterone and DHT with either protocol (p>0.05). AR protein was significantly increased at 3 h post-exercise and decreased at 24 h post-exercise for ULB, whereas AR-DNA binding was significantly increased at 3 and 24h post-exercise (p<0.05). In response to ULB, serum Wnt4 was significantly increased at 0.5, 1, and 2 h post-exercise (p<0.05) and β-catenin was significantly increased at 3 and 24 h post-exercise (p<0.05). It was concluded that, despite a lack of increase in serum testosterone and muscle androgen concentrations from either mode of resistance exercise, ULB resistance exercise increased Wnt4/β-catenin signaling and AR-DNA binding. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Pristanic acid provokes lipid, protein, and DNA oxidative damage and reduces the antioxidant defenses in cerebellum of young rats.

    PubMed

    Busanello, Estela Natacha Brandt; Lobato, Vannessa Gonçalves Araujo; Zanatta, Ângela; Borges, Clarissa Günther; Tonin, Anelise Miotti; Viegas, Carolina Maso; Manfredini, Vanusa; Ribeiro, César Augusto João; Vargas, Carmen Regla; de Souza, Diogo Onofre Gomes; Wajner, Moacir

    2014-12-01

    Zellweger syndrome (ZS) and some peroxisomal diseases are severe inherited disorders mainly characterized by neurological symptoms and cerebellum abnormalities, whose pathogenesis is poorly understood. Biochemically, these diseases are mainly characterized by accumulation of pristanic acid (Prist) and other fatty acids in the brain and other tissues. In this work, we evaluated the in vitro influence of Prist on redox homeostasis by measuring lipid, protein, and DNA damage, as well as the antioxidant defenses and the activities of aconitase and α-ketoglutarate dehydrogenase in cerebellum of 30-day-old rats. The effect of Prist on DNA damage was also evaluated in blood of these animals. Some parameters were also evaluated in cerebellum from neonatal rats and in cerebellum neuronal cultures. Prist significantly increased malondialdehyde (MDA) levels and carbonyl formation and reduced sulfhydryl content and glutathione (GSH) concentrations in cerebellum of young rats. It also caused DNA strand damage in cerebellum and induced a high micronuclei frequency in blood. On the other hand, this fatty acid significantly reduced α-ketoglutarate dehydrogenase and aconitase activities in rat cerebellum. We also verified that Prist-induced increase of MDA levels was totally prevented by melatonin and attenuated by α-tocopherol but not by the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester, indicating the involvement of reactive oxygen species in this effect. Cerebellum from neonate rats also showed marked alterations of redox homeostasis, including an increase of MDA levels and a decrease of sulfhydryl content and GSH concentrations elicited by Prist. Finally, Prist provoked an increase of dichlorofluorescein (DCFH) oxidation in cerebellum-cultivated neurons. Our present data indicate that Prist compromises redox homeostasis in rat cerebellum and blood and inhibits critical enzymes of the citric acid cycle that are susceptible to free radical attack. The present findings may contribute to clarify the pathogenesis of the cerebellar alterations observed in patients affected by ZS and some peroxisomal disorders in which Prist is accumulated.

  1. Antioxidant and cyto/DNA protective properties of apple pomace enriched bakery products.

    PubMed

    Sudha, M L; Dharmesh, Shylaja M; Pynam, Hasitha; Bhimangouder, Shivaleela V; Eipson, Sushma W; Somasundaram, Rajarathnam; Nanjarajurs, Shashirekha M

    2016-04-01

    Apple pomace (AP), the residue that remains after the extraction of juice from apple accounts for ~25 % of total apple weight. Current study is aimed at identification of phytochemicals and utilization of Dehydrated apple pomace (DAP) in the preparation of bakery products with potential health benefits. DAP was prepared by drying the pomace obtained by crushing peeled apple fruits. DAP was incorporated into bakery products such as bun, muffin and cookies for value addition. Bioactivity such as free radical scavenging, cyto/DNA protectivity was evaluated in these products. DAP contained 17 g/100 g starch, 49.86 g/100 g fructose and 37 g/100 g dietary fibre. The phenolics and flavonoids content was 1.5 mg/g and 3.92 mg/g, respectively. Increase in DAP resulted in decreased volume and enhanced firmness of buns and muffins. DAP at 15 % in buns, 30 % in muffins and 20 % in cookies were found to be acceptable. DAP blended products exhibited better free radical scavenging as well as cyto/DNA protective properties suggesting the retention of bioactivity after baking. Addition of DAP potentially enhanced the bioactivity of the products evaluated.

  2. DNA (DEOXYRIBONUCLEIC ACID) SYNTHESIS FOLLOWING MICROINJECTION OF HETEROLOGOUS SPERM AND SOMATIC CELL NUCLEI INTO HAMSTER OOCYTES

    EPA Science Inventory

    The authors have investigated the ability of the hamster oocyte to initiate DNA synthesis in nuclei differing in basic protein content. DNA synthesis was studied by autoradiography in oocytes that had been incubated in 3H-thymidine after being parthenogenetically activated by sha...

  3. Vitamin C attenuates biochemical and genotoxic damage in common carp (Cyprinus carpio) upon joint exposure to combined toxic doses of fipronil and buprofezin insecticides.

    PubMed

    Ghazanfar, Madiha; Shahid, Sana; Qureshi, Irfan Zia

    2018-03-01

    In the present study, potential protective role of Vitamin C (l-ascorbic acid) was investigated in aquaria acclimated common carp (Cyprinus carpio) following exposure for 96 h to combined toxic doses of fipronil (FP) and buprofezin (BPFN) insecticides in combination (FP: 200 μg/L; 4.57 × 10 -7  mol/L and BPFN: 50 mg/L; 1.64 × 10 -4  mol/L). At end of 96 h exposure, fish were supplemented with low (25 mg/L) and high (50 mg/L) doses of Vitamin C, added once daily to aquaria water for continuous three weeks. Appropriate control groups were run in parallel. Fish behavior was monitored throughout for signs of toxicity. At completion of experiments, liver, kidney, brain and gills were excised for toxicity assessment and possible remediation by the Vitamin C through biochemical determination of reactive oxygen species (ROS), thiobarbituric acid reactive substances or TBARS, reduced glutathione (GSH) and total protein content, levels of catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD), and the Comet assay. Hepatosomatic index (HSI), condition factor (CF), survival rate (SR), and combination index (CI) were also determined. Data were compared statistically at p < 0.05. Results showed significant behavioral and biochemical alterations, and DNA damage in the fish group exposed to FP and BPFN in combination. In fish groups supplemented with Vitamin C following FP and BPFN treatment, significant alleviation in tissue damage and toxic effects was represented by substantial decreases in ROS and TBARS production (p < 0.001), along with a concomitant significant increase in the survival rate, GSH and total protein content, HSI, CF, and activities of SOD, CAT and POD enzymes (p < 0.001). Mean tail length of comet and percent tail DNA decreased significantly (p < 0.001), which indicated amelioration of DNA damage. The study concludes that Vitamin C is an effective remedial treatment against FP and BPFN-induced damage in exposed fish. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Effects of Particulate Matter on Genomic DNA Methylation Content and iNOS Promoter Methylation

    PubMed Central

    Tarantini, Letizia; Bonzini, Matteo; Apostoli, Pietro; Pegoraro, Valeria; Bollati, Valentina; Marinelli, Barbara; Cantone, Laura; Rizzo, Giovanna; Hou, Lifang; Schwartz, Joel; Bertazzi, Pier Alberto; Baccarelli, Andrea

    2009-01-01

    Background Altered patterns of gene expression mediate the effects of particulate matter (PM) on human health, but mechanisms through which PM modifies gene expression are largely undetermined. Objectives We aimed at identifying short- and long-term effects of PM exposure on DNA methylation, a major genomic mechanism of gene expression control, in workers in an electric furnace steel plant with well-characterized exposure to PM with aerodynamic diameters < 10 μm (PM10). Methods We measured global genomic DNA methylation content estimated in Alu and long interspersed nuclear element-1 (LINE-1) repeated elements, and promoter DNA methylation of iNOS (inducible nitric oxide synthase), a gene suppressed by DNA methylation and induced by PM exposure in blood leukocytes. Quantitative DNA methylation analysis was performed through bisulfite PCR pyrosequencing on blood DNA obtained from 63 workers on the first day of a work week (baseline, after 2 days off work) and after 3 days of work (postexposure). Individual PM10 exposure was between 73.4 and 1,220 μg/m3. Results Global methylation content estimated in Alu and LINE-1 repeated elements did not show changes in postexposure measures compared with baseline. PM10 exposure levels were negatively associated with methylation in both Alu [β = −0.19 %5-methylcytosine (%5mC); p = 0.04] and LINE-1 [β = −0.34 %5mC; p = 0.04], likely reflecting long-term PM10 effects. iNOS promoter DNA methylation was significantly lower in postexposure blood samples compared with baseline (difference = −0.61 %5mC; p = 0.02). Conclusions We observed changes in global and gene specific methylation that should be further characterized in future investigations on the effects of PM. PMID:19270791

  5. High Avidity dsDNA Autoantibodies in Brazilian Women with Systemic Lupus Erythematosus: Correlation with Active Disease and Renal Dysfunction

    PubMed Central

    Oliveira, Rodrigo C.; Oliveira, Isabela S.; Santiago, Mittermayer B.; Sousa Atta, Maria L. B.; Atta, Ajax M.

    2015-01-01

    We investigated in Brazilian women with SLE the prevalence and levels of high avidity (HA) dsDNA antibodies and tested their correlation with lupus activity and biomarkers of renal disease. We also compared these correlations to those observed with total dsDNA antibodies and antibodies against nucleosome (ANuA). Autoantibodies were detected by ELISA, while C3 and C4 levels were determined by nephelometry. Urine protein/creatinine ratio was determined, and lupus activity was measured by SLEDAI-2K. The prevalence of total and HA dsDNA antibodies was similar to but lower than that verified for ANuA. The levels of the three types of antibodies were correlated, but the correlation was more significant between HA dsDNA antibodies and ANuA. High avidity dsDNA antibodies correlated positively with ESR and SLEDAI and inversely with C3 and C4. Similar correlations were observed for ANuA levels, whereas total dsDNA antibodies only correlated with SLEDAI and C3. The levels of HA dsDNA antibodies were higher in patients with proteinuria, but their levels of total dsDNA antibodies and ANuA were unaltered. High avidity dsDNA antibodies can be found in high prevalence in Brazilian women with SLE and are important biomarkers of active disease and kidney dysfunction. PMID:26583157

  6. High Avidity dsDNA Autoantibodies in Brazilian Women with Systemic Lupus Erythematosus: Correlation with Active Disease and Renal Dysfunction.

    PubMed

    Oliveira, Rodrigo C; Oliveira, Isabela S; Santiago, Mittermayer B; Sousa Atta, Maria L B; Atta, Ajax M

    2015-01-01

    We investigated in Brazilian women with SLE the prevalence and levels of high avidity (HA) dsDNA antibodies and tested their correlation with lupus activity and biomarkers of renal disease. We also compared these correlations to those observed with total dsDNA antibodies and antibodies against nucleosome (ANuA). Autoantibodies were detected by ELISA, while C3 and C4 levels were determined by nephelometry. Urine protein/creatinine ratio was determined, and lupus activity was measured by SLEDAI-2K. The prevalence of total and HA dsDNA antibodies was similar to but lower than that verified for ANuA. The levels of the three types of antibodies were correlated, but the correlation was more significant between HA dsDNA antibodies and ANuA. High avidity dsDNA antibodies correlated positively with ESR and SLEDAI and inversely with C3 and C4. Similar correlations were observed for ANuA levels, whereas total dsDNA antibodies only correlated with SLEDAI and C3. The levels of HA dsDNA antibodies were higher in patients with proteinuria, but their levels of total dsDNA antibodies and ANuA were unaltered. High avidity dsDNA antibodies can be found in high prevalence in Brazilian women with SLE and are important biomarkers of active disease and kidney dysfunction.

  7. Satellite DNA and cytogenetic evolution: molecular aspects and implications for man. [Kangaroo rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatch, F.T.; Mazrimas, J.

    1977-02-28

    Simple, highly reiterated DNA sequences, often observed in density gradients as satellite DNAs, exist in condensed heterochromatin. This material is predominantly located at chromosomal centromeres, occasionally at telomeres, or intercalated within arms; in a few species it occupies entire chromosome arms. Satellite DNAs are a highly variable component of the genome of most higher eukaryotes, but their functions have remained speculative. The genus of kangaroo rats (Dipodomys) exhibits remarkable interspecies variations in content of three satellite DNAs, consisting of simple sequences 3 to 10 base pairs long, and in species karyotypes. A broad range of diploid-DNA content is correlated withmore » satellite-DNA content. The latter is correlated positively with predominance of biarmed over uniarmed chromosomes (high fundamental number FN) and inversely with two anatomical indices (leg-bone-length ratios) of specialization for the jumping gait. Karyotypic variation is achieved via chromosomal rearrangements, e.g., Robertsonian fusion, C-band heteromorphism, and pericentric inversion. Environmental adaptation is achieved, in part, by reassortment of gene-linkage groups and regulatory controls as a result of the chromosomal rearrangements. The foregoing relationships led to the postulation that highly reiterated DNA sequences play a supragenic, global role in environmental adaptation and the evolution of new species.« less

  8. DNA and proteins of the nuclear matrix are the main targets of benzo[a]pyrene's action in rat hepatocytes.

    PubMed

    Widłak, P; Rzeszowska-Wolny, J

    1993-01-01

    The binding of [14C]benzo[a]pyrene (B[a]P) to DNA and proteins in total nuclei and subnuclear fractions of cultured rat hepatocytes was compared. The main targets of B[a]P were non-histone high molecular weight proteins of the nuclear matrix and DNA sequences attached to this structure. Following 24 h exposure to B[a]P the amounts of adducts in the nuclear matrix DNA and proteins were twice as high as in total nuclei. After withdrawal of the carcinogen containing medium the level of B[a]P-induced adducts gradually decreased but always remained the highest in the nuclear matrix proteins. Removal of adducts from the nuclear matrix DNA was more efficient than from the other DNA fractions, and 72 h after exposure to the carcinogen the level of DNA adducts in this fraction was similar to that in total nuclei.

  9. Cellular content and biosynthesis of polyamines during rooster spermatogenesis.

    PubMed Central

    Oliva, R; Vidal, S; Mezquita, C

    1982-01-01

    The natural polyamines spermine and spermidine, and the diamine putrescine, were extracted from rooster testis cells separated by sedimentation at unit gravity, and from vas-deferens spermatozoa. The ratios spermine/DNA and spermidine/DNA were kept relatively constant throughout spermatogenesis, whereas the ratio putrescine/DNA rose in elongated spermatids. The cellular content of spermine, spermidine and putrescine decreased markedly in mature spermatozoa. Two rate-limiting enzymes in the biosynthetic pathway of polyamines, ornithine decarboxylase and S-adenosyl-L-methionine decarboxylase, showed their highest activities at the end of spermiogenesis and were not detectable in vas-deferens spermatozoa. A marked reduction in cell volume during spermiogenesis without a parallel decrease in the cellular content of polyamines suggests the possibility that the marked changes in chromatin composition and structure occurring in rooster late spermatids could take place in an ambience of high polyamine concentration. Images PLATE 1 PMID:7159401

  10. AFLP Approach Reveals Variability in Phragmites australis: Implications for Its Die-Back and Evidence for Genotoxic Effects

    PubMed Central

    Coppi, Andrea; Lastrucci, Lorenzo; Cappelletti, David; Cerri, Martina; Ferranti, Francesco; Ferri, Valentina; Foggi, Bruno; Gigante, Daniela; Venanzoni, Roberto; Viciani, Daniele; Selvaggi, Roberta; Reale, Lara

    2018-01-01

    Phragmites australis is a subcosmopolitan species typical of wetlands being studied in Europe for its disappearance from natural stands, a phenomenon called reed die-back syndrome (RDBS). Although it is conjectured that low genetic variability contributes to RDBS, this aspect remains neglected to this day. Using a molecular fingerprinting approach and a sequence analysis of the trnT-trnL/rbcL-psaI regions of cpDNA, this study aimed to compare the genetic structure of stable vs. RDBS-affected P. australis stands from five wetlands of central Italy. Beforehand, in order to characterize the health condition of reed populations, the occurrence of the main macromorphological descriptors for RDBS was considered on 40 reed stands. Soil samples were also collected to examine the total content of heavy metals. The current study analyzed cpDNA in 19 samples and AFLP profiles in 381 samples to investigate the genetic structure of Phragmites populations. Based on the multinomial-Dirichlet model, an analysis of candidate loci under selective pressure was also performed. The relationships among AFLP data, RDBS descriptors and chemicals were evaluated with the use of Linear Mixed Models. The analysis of the cpDNA shows the occurrence of the haplotypes M (the most widespread), and K here recorded for the first time in Italy. Three new haplotypes were also described. The DNA fingerprinting analysis has produced a total of 322 loci (98% polymorphic) and shows the medium-to-high amount of genetic diversity. The significant genetic differentiation among wetlands (Fst = 0.337) suggests either low gene flow or small effective population size. Moreover, the low amount of outlier loci (only 5; l.5% of the total), seems to indicate the scarce occurrence of selective pressure upon the reed’s genome. Genetic diversity increased in relationship to the decrease in diameter and of flowering buds of the reed, two of the trends associated with the die-back. The current study rejects the hypothesis that genetic diversity massively contributed to RDBS. Moreover, significant relationships between genetic diversity and the total concentration of some heavy metals (Cr, Cu, and Zn) were highlighted, indicating possible genotoxic effects on P. australis. The current study represents a fact-finding background useful for the conservation of common reed. PMID:29632544

  11. Fluorometric determination of the DNA concentration in municipal drinking water.

    PubMed Central

    McCoy, W F; Olson, B H

    1985-01-01

    DNA concentrations in municipal drinking water samples were measured by fluorometry, using Hoechst 33258 fluorochrome. The concentration, extraction, and detection methods used were adapted from existing techniques. The method is reproducible, fast, accurate, and simple. The amounts of DNA per cell for five different bacterial isolates obtained from drinking water samples were determined by measuring DNA concentration and total cell concentration (acridine orange epifluorescence direct cell counting) in stationary pure cultures. The relationship between DNA concentration and epifluorescence total direct cell concentration in 11 different drinking water samples was linear and positive; the amounts of DNA per cell in these samples did not differ significantly from the amounts in pure culture isolates. We found significant linear correlations between DNA concentration and colony-forming unit concentration, as well as between epifluorescence direct cell counts and colony-forming unit concentration. DNA concentration measurements of municipal drinking water samples appear to monitor changes in bacteriological quality at least as well as total heterotrophic plate counting and epifluorescence direct cell counting. PMID:3890737

  12. Effect of serotonin on the expression of antigens and DNA levels in Yersinia pestis cells with different plasmid content

    NASA Astrophysics Data System (ADS)

    Klueva, Svetlana N.; Korsukov, Vladimir N.; Schukovskaya, Tatyana N.; Kravtsov, Alexander L.

    2004-08-01

    Using flow cytometry (FCM) the influence of exogenous serotonin on culture growth, DNA content and fluorescence intensity of cells binding FITC-labelled plague polyclonal immunoglobulins was studied in Yersinia pestis EV (pFra+, pCad+, pPst+), Yersinia pestis KM218 (pFra-, pCad-, pPst-), Yersinia pestis KM 216 (pFra-, pCad-, pPst+). The results have been obtained by FCM showed serotonin accelerated Yersinia pestis EV (pFra+, pCad+, pPst+), Yersinia pestis KM218 (pFra-, pCad-, pPst-) culture growth during cultivation in Hottinger broth pH 7.2 at 28°C at concentration of 10-5 M. The presence of 10-5 M serotonin in nutrient broth could modulate DNA content in 37°C growing population of plague microbe independently of their plasmid content. Serotonin have been an impact on the distribution pattern of the cells according to their phenotypical characteristics, which was reflected in the levels of population heterogeneity in the intensity of specific immunofluorescence determined by FMC.

  13. Information-theoretic signatures of biodiversity in the barcoding gene.

    PubMed

    Barbosa, Valmir C

    2018-08-14

    Analyzing the information content of DNA, though holding the promise to help quantify how the processes of evolution have led to information gain throughout the ages, has remained an elusive goal. Paradoxically, one of the main reasons for this has been precisely the great diversity of life on the planet: if on the one hand this diversity is a rich source of data for information-content analysis, on the other hand there is so much variation as to make the task unmanageable. During the past decade or so, however, succinct fragments of the COI mitochondrial gene, which is present in all animal phyla and in a few others, have been shown to be useful for species identification through DNA barcoding. A few million such fragments are now publicly available through the BOLD systems initiative, thus providing an unprecedented opportunity for relatively comprehensive information-theoretic analyses of DNA to be attempted. Here we show how a generalized form of total correlation can yield distinctive information-theoretic descriptors of the phyla represented in those fragments. In order to illustrate the potential of this analysis to provide new insight into the evolution of species, we performed principal component analysis on standardized versions of the said descriptors for 23 phyla. Surprisingly, we found that, though based solely on the species represented in the data, the first principal component correlates strongly with the natural logarithm of the number of all known living species for those phyla. The new descriptors thus constitute clear information-theoretic signatures of the processes whereby evolution has given rise to current biodiversity, which suggests their potential usefulness in further related studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Extracellular DNA in single- and multiple-species unsaturated biofilms.

    PubMed

    Steinberger, R E; Holden, P A

    2005-09-01

    The extracellular polymeric substances (EPS) of bacterial biofilms form a hydrated barrier between cells and their external environment. Better characterization of EPS could be useful in understanding biofilm physiology. The EPS are chemically complex, changing with both bacterial strain and culture conditions. Previously, we reported that Pseudomonas aeruginosa unsaturated biofilm EPS contains large amounts of extracellular DNA (eDNA) (R. E. Steinberger, A. R. Allen, H. G. Hansma, and P. A. Holden, Microb. Ecol. 43:416-423, 2002). Here, we investigated the compositional similarity of eDNA to cellular DNA, the relative quantity of eDNA, and the terminal restriction fragment length polymorphism (TRFLP) community profile of eDNA in multiple-species biofilms. By randomly amplified polymorphic DNA analysis, cellular DNA and eDNA appear identical for P. aeruginosa biofilms. Significantly more eDNA was produced in P. aeruginosa and Pseudomonas putida biofilms than in Rhodococcus erythropolis or Variovorax paradoxus biofilms. While the amount of eDNA in dual-species biofilms was of the same order of magnitude as that of of single-species biofilms, the amounts were not predictable from single-strain measurements. By the Shannon diversity index and principle components analysis of TRFLP profiles generated from 16S rRNA genes, eDNA of four-species biofilms differed significantly from either cellular or total DNA of the same biofilm. However, total DNA- and cellular DNA-based TRFLP analyses of this biofilm community yielded identical results. We conclude that extracellular DNA production in unsaturated biofilms is species dependent and that the phylogenetic information contained in this DNA pool is quantifiable and distinct from either total or cellular DNA.

  15. Isolation of Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans from rumen of Creole goats fed native forage diet.

    PubMed

    Grilli, D J; Cerón, M E; Paez, S; Egea, V; Schnittger, L; Cravero, S; Escudero, M Sosa; Allegretti, L; Arenas, G N

    2013-09-01

    We isolated and identified functional groups of bacteria in the rumen of Creole goats involved in ruminal fermentation of native forage shrubs. The functional bacterial groups were evaluated by comparing the total viable, total anaerobic, cellulolytic, hemicellulolytic, and amylolytic bacterial counts in the samples taken from fistulated goats fed native forage diet (Atriplex lampa and Prosopis flexuosa). Alfalfa hay and corn were used as control diet. The roll tubes method increased the possibility of isolating and 16S rDNA gene sequencing allowed definitive identification of bacterial species involved in the ruminal fermentation. The starch and fiber contents of the diets influenced the number of total anaerobic bacteria and fibrolytic and amylolytic functional groups. Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans were the main species isolated and identified. The identification of bacterial strains involved in the rumen fermentation helps to explain the ability of these animals to digest fiber plant cell wall contained in native forage species.

  16. DNA as information.

    PubMed

    Wills, Peter R

    2016-03-13

    This article reviews contributions to this theme issue covering the topic 'DNA as information' in relation to the structure of DNA, the measure of its information content, the role and meaning of information in biology and the origin of genetic coding as a transition from uninformed to meaningful computational processes in physical systems. © 2016 The Author(s).

  17. The complete mitochondrial genome of Pomacea canaliculata (Gastropoda: Ampullariidae).

    PubMed

    Zhou, Xuming; Chen, Yu; Zhu, Shanliang; Xu, Haigen; Liu, Yan; Chen, Lian

    2016-01-01

    The mitochondrial genome of Pomacea canaliculata (Gastropoda: Ampullariidae) is the first complete mtDNA sequence reported in the genus Pomacea. The total length of mtDNA is 15,707 bp, which containing 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a 359 bp non-coding region. The A + T content of the overall base composition of H-strand is 71.7% (T: 41%, C: 12.7%, A: 30.7%, G: 15.6%). ATP6, ATP8, CO1, CO2, ND1-3, ND5, ND6, ND4L and Cyt b genes begin with ATG as start codon, CO3 and ND4 begin with ATA. ATP8, CO2-3, ND4L, ND2-6 and Cyt b genes are terminated with TAA as stop codon, ATP6, ND1, and CO1 end with TAG. A long non-coding region is found and a 23 bp repeat unit repeat 11 times in this region.

  18. Studies on guanidinated N-3-aminopropyl methacrylamide-N-2-hydroxypropyl methacrylamide co-polymers as gene delivery carrier.

    PubMed

    Qin, Zhu; Liu, Wei; Guo, Liang; Li, Xinsong

    2012-01-01

    Guanidinated N-3-aminopropyl methacrylamide (APMA)-N-2-hydroxypropyl methacrylamide (HPMA) co-polymers were prepared and evaluated to develop novel non-viral gene transfection carriers. The co-polymers were synthesized via radical co-polymerization of APMA and HPMA followed by total guanidination of amino groups, which employed guanidinated APMA (GPMA) for increasing cell-penetrating and HPMA as the positive shielding content. The molecular weight of guanidinated APMA-HPMA co-polymers (GPMA-HPMA) was determined by static light scattering. Furthermore, cytotoxicity and transfection experiments of GPMA-HPMA/pDNA complexes were conducted. A significant decrease of their parent cytotoxicity and an efficient transfection at relative low charge ratios were observed. The cellular distribution of most GPMA-HPMA/pDNA complexes was partially localized in the nucleus, as indicated by confocal laser scanning microscopy. The guanidination strategy employed may lead to non-viral gene delivery carriers that combine satisfactory transfection efficiency and cytotoxicity, which contribute to their cell-penetrating ability.

  19. Molecular Characterization and Antioxidant Potential of Three Wild Culinary-Medicinal Mushrooms from Tripura, Northeast India.

    PubMed

    Das, Aparajita Roy; Borthakur, Madhusmita; Saha, Ajay Krishna; Joshi, Santa Ram; Das, Panna

    2017-01-01

    The aim of this study was to characterize 3 wild culinary-medicinal mushrooms using molecular tools and to analyze their antioxidant activity. Antioxidant properties were studied by evaluating free radical scavenging, reducing power, and chelating effect. The mushrooms were identified as Lentinus squarrosulus, L. tuber-regium, and Macrocybe gigantean by amplifying internal transcribed spacer regions of ribosomal DNA. The results demonstrated that the methanolic extract of M. gigantean has the highest free radical scavenging effect and chelating effect, whereas the methanolic extract of L. squarrosulus has the highest reducing power. The highest total phenol content and the most ascorbic acid were found in the M. gigantean extracts. Among the 3 mushroom extracts, M. gigantean displayed the most potent antioxidant activity. Molecular characterization using the nuclear ribosomal internal transcribed spacer region as a universal DNA marker was an effective tool in the identification and phylogenetic analysis of the studied mushrooms. The study also indicated that these wild macrofungi are rich sources of natural antioxidants.

  20. Overexpressed thioredoxin compensates Fanconi anemia related chromosomal instability.

    PubMed

    Kontou, Maria; Adelfalk, Caroline; Ramirez, Maria Helena; Ruppitsch, Werner; Hirsch-Kauffmann, Monica; Schweiger, Manfred

    2002-04-04

    The cause of the molecular defect of Fanconi anemia (FA) remains unknown. Cells from patients with FA exert an elevated spontaneous chromosomal instability which is further triggered by mitomycin C. The induced lability is reduced by overexpression of thioredoxin which is not the case for spontaneous instability. However, both are eliminated by overexpression of thioredoxin cDNA with an added nuclear localization signal. This implies that thioredoxin is lacking in the nuclei of FA cells. The total thioredoxin content in all FA cells tested is reduced. The resultant lack of nuclear thioredoxin can be the explanation for the major symptomatology in FA. Since thioredoxin is known to be the reactive cofactor of ribonucleotid reductase its shortcoming reduces the supply of deoxyribonucleotides thus hindering the DNA and replication repair with resultant chromosomal breaks. Furthermore, depression of tyrosine hydroxylase, the key enzyme of melanine synthesis, could be the basis for the pathognomotic 'café au lait' spots of FA. The observation of thioredoxin reduction in FA cells permits insight into the molecular phathophysiology of FA.

  1. Tunable mechanical properties of green solid films based on deoxyribonucleic acids

    NASA Astrophysics Data System (ADS)

    Matsuno, Hisao; Morimitsu, Yuma; Ohta, Noboru; Sekiguchi, Hiroshi; Takahara, Atsushi; Tanaka, Keiji

    Promoting green innovation to establish a worldwide low-carbon society is an urgent priority. We here show that solid films made from deoxyribonucleic acid (DNA) can be used as a structural material. The great advantage of DNA films over the ones made from synthetic polymers is that the mechanical properties are controllable, from glassy to rubbery, via semicrystalline by simply regulating the water content in the film. Why such unique mechanical properties can be manifested by the DNA films is determined from structural analyses using Fourier-transform infrared spectroscopy and wide-angle X-ray diffraction measurements. With increasing water content, the conformation of DNA was changed from A-form in an amorphous state to B-form in a partially packed one. DNA in the B-form became densely packed as the film was stretched. Also, DNAs were intermolecularly cross-linked using 2,5-hexanedione based on reductive amination induced by 2-picoline borane in aqueous phase. Cross-linking points were directly observed by atomic force microscopy. The tensile properties of cross-linked films were much better than those of non-cross-linked DNA films.

  2. Biochemical effect of chocolate colouring and flavouring like substances on thyroid function and protein biosynthesis.

    PubMed

    el-Saadany, S S

    1991-01-01

    Synthetic chocolate colourant, flavourant and the mixture of both were administered to healthy adult male albino rats to evaluate their effect on the nucleic acids metabolism, i.e. deoxyribonucleic and ribonucleic acids (DNA and RNA), total serum protein, thyroid hormones (T4 and T3) and nuclease enzymes, i.e. cytoplasmic- and mitochondrial deoxyribonuclease and ribonuclease (DNase and RNase) in brain, liver, and kidneys. Also, the activity of the fundamental enzymes of the oxidative pentose phosphate pathway, i.e. cytoplasmic and mitochondrial glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase (G-6-PD and 6-PGD), as well as total lipids and cholesterol contents in the same organs were studied. Ingestion of the studied food additives significantly increased serum protein, RNA and T4 hormone, while, DNA and T3 hormone were insignificantly elevated. In connection with this, the hydrolytic enzymes of nucleic acids (DNase and RNase activities) were stimulated by all studied food additives and in all mentioned organs. The activity of G-6-PD and 6-PGD in both cytoplasmic and mitochondrial fractions of all studied organs were increased. The highest increase was noticed in rats fed on diets supplemented with the mixture of both colourant and flavourant followed by colourant then flavourant, respectively.

  3. Hippophae leaf extract concentration regulates antioxidant and prooxidant effects on DNA.

    PubMed

    Saini, Manu; Tiwari, Sandhya; Prasad, Jagdish; Singh, Surender; Kumar, M S Yogendra; Bala, Madhu

    2010-03-01

    Extracts from Hippophae leaves constitute some commonly consumed beverages such as tea and wine. We had developed an extract of Hippophae leaves (SBL-1), which was rich in quercetin, had antimutagenic effects, radioprotective effects, and countered radiation-induced gene conversion in Saccharomyces cerevisiae. This study was designed to investigate the action of SBL-1 on guanine cytosine (GC)-rich nascent and mouse genomic DNA in vitro. The human and mouse liver DNA have about 43% GC content. Our results showed that at small concentration SBL-1 protected nascent as well as genomic DNA, while at large concentration SBL-1 damaged both types of DNA. The concentration of SBL-1 that protected DNA also demonstrated higher free radical scavenging activity. The reducing power of SBL-1 was greater than its free radical scavenging activity. The greater reducing power may have reduced the trace metals present in the SBL-1, leading to generation of hydroxyl radicals via Fenton reaction. The increased proportion of unscavenged hydroxyl radicals with increase in SBL-1 concentration may have been responsible for DNA damage or prooxidant effect of SBL-1 in vitro. This study suggests that the dietary supplements prepared from Hippophae should have low metal content.

  4. Biomarkers used in studying air pollution exposure during pregnancy and perinatal outcomes: a review.

    PubMed

    Desai, Gauri; Chu, Li; Guo, Yanjun; Myneni, Ajay A; Mu, Lina

    2017-09-01

    This review focuses on studies among pregnant women that used biomarkers to assess air pollution exposure, or to understand the mechanisms by which it affects perinatal outcomes. We searched PubMed and Google scholar databases to find articles. We found 29 articles, mostly consisting of cohort studies. Interpolation models were most frequently used to assess exposure. The most consistent positive association was between polycyclic aromatic hydrocarbon (PAH) exposure during entire pregnancy and cord blood PAH DNA adducts. Exposure to particulate matter (PM) and nitrogen dioxide (NO 2 ) showed consistent inverse associations with mitochondrial DNA (mtDNA) content, particularly in the third trimester of pregnancy. No single pollutant showed strong associations with all the biomarkers included in this review. C-reactive proteins (CRPs) and oxidative stress markers increased, whereas telomere length decreased with increasing air pollution exposure. Placental global DNA methylation and mtDNA methylation showed contrasting results with air pollution exposure, the mechanism behind which is unclear. Most studies except those on PAH DNA adducts and mtDNA content provided insufficient evidence for characterizing a critical exposure window. Further research using biomarkers is warranted to understand the relationship between air pollution and perinatal outcomes.

  5. DNA recovery from soils of diverse composition.

    PubMed

    Zhou, J; Bruns, M A; Tiedje, J M

    1996-02-01

    A simple, rapid method for bacterial lysis and direct extraction of DNA from soils with minimal shearing was developed to address the risk of chimera formation from small template DNA during subsequent PCR. The method was based on lysis with a high-salt extraction buffer (1.5 M NaCl) and extended heating (2 to 3 h) of the soil suspension in the presence of sodium dodecyl sulfate (SDS), hexadecyltrimethylammonium bromide, and proteinase K. The extraction method required 6 h and was tested on eight soils differing in organic carbon, clay content, and pH, including ones from which DNA extraction is difficult. The DNA fragment size in crude extracts from all soils was > 23 kb. Preliminary trials indicated that DNA recovery from two soils seeded with gram-negative bacteria was 92 to 99%. When the method was tested on all eight unseeded soils, microscopic examination of indigenous bacteria in soil pellets before and after extraction showed variable cell lysis efficiency (26 to 92%). Crude DNA yields from the eight soils ranged from 2.5 to 26.9 micrograms of DNA g-1, and these were positively correlated with the organic carbon content in the soil (r = 0.73). DNA yields from gram-positive bacteria from pure cultures were two to six times higher when the high-salt-SDS-heat method was combined with mortar-and-pestle grinding and freeze-thawing, and most DNA recovered was of high molecular weight. Four methods for purifying crude DNA were also evaluated for percent recovery, fragment size, speed, enzyme restriction, PCR amplification, and DNA-DNA hybridization. In general, all methods produced DNA pure enough for PCR amplification. Since soil type and microbial community characteristics will influence DNA recovery, this study provides guidance for choosing appropriate extraction and purification methods on the basis of experimental goals.

  6. Spectroscopic quantification of 5-hydroxymethylcytosine in genomic DNA using boric acid-functionalized nano-microsphere fluorescent probes.

    PubMed

    Chen, Hua-Yan; Wei, Jing-Ru; Pan, Jiong-Xiu; Zhang, Wei; Dang, Fu-Quan; Zhang, Zhi-Qi; Zhang, Jing

    2017-05-15

    5-hydroxymethylcytosine (5hmC) is the sixth base of DNA. It is involved in active DNA demethylation and can be a marker of diseases such as cancer. In this study, we developed a simple and sensitive 2-(4-boronophenyl)quinoline-4-carboxylic acid modified poly (glycidyl methacrylate (PBAQA-PGMA) fluorescent probe to detect the 5hmC content of genomic DNA based on T4 β-glucosyltransferase-catalyzed glucosylation of 5hmC. The fluorescence-enhanced intensity recorded from the DNA sample was proportional to its 5-hydroxymethylcytosine content and could be quantified by fluorescence spectrophotometry. The developed probe showed good detection sensitivity and selectivity and a good linear relationship between the fluorescence intensity and the concentration of 5 hmC within a 0-100nM range. Compared with other fluorescence detection methods, this method not only could determine trace amounts of 5 hmC from genomic DNA but also could eliminate the interference of fluorescent dyes and the need for purification. It also could avoid multiple labeling. Because the PBAQA-PGMA probe could enrich the content of glycosyl-5-hydroxymethyl-2-deoxycytidine from a complex ground substance, it will broaden the linear detection range and improve sensitivity. The limit of detection was calculated to be 0.167nM after enrichment. Furthermore, the method was successfully used to detect 5-hydroxymethylcytosine from mouse tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Changes in carbon stability and microbial activity in size fractions of micro-aggregates in a rice soil chronosequence under long term rice cultivation

    NASA Astrophysics Data System (ADS)

    Pan, Genxing; Liu, Yalong; Wang, Ping; Li, Lianqinfg; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Bian, Rongjun; Ding, Yuanjun; Ma, Chong

    2016-04-01

    Recent studies have shown soil carbon sequestration through physical protection of relative labile carbon intra micro-aggregates with formation of large sized macro-aggregates under good management of soil and agricultural systems. While carbon stabilization had been increasingly concerned as ecosystem properties, the mechanisms underspin bioactivity of soil carbon with increased carbon stability has been still poorly understood. In this study, topsoil samples were collected from rice soils derived from salt marsh under different length of rice cultivation up to 700 years from eastern China. Particle size fractions (PSF) of soil aggregates were separated using a low energy dispersion protocol. Carbon fractions in the PSFs were analyzed either with FTIR spectroscopy. Soil microbial community of bacterial, fungal and archaeal were analyzed with molecular fingerprinting using specific gene primers. Soil respiration and carbon gain from amended maize as well as enzyme activities were measured using lab incubation protocols. While the PSFs were dominated by the fine sand (200-20μm) and silt fraction (20-2μm), the mass proportion both of sand (2000-200μm) and clay (<2μm) fraction increased with prolonged rice cultivation, giving rise to an increasing trend of mean weight diameter of soil aggregates (also referred to aggregate stability). Soil organic carbon was found most enriched in coarse sand fraction (40-60g/kg), followed by the clay fraction (20-24.5g/kg), but depleted in the silt fraction (~10g/kg). Phenolic and aromatic carbon as recalcitrant pool were high (33-40% of total SOC) in both coarse sand and clay fractions than in both fine sand and silt fractions (20-29% of total SOC). However, the ratio of LOC/total SOC showed a weak decreasing trend with decreasing size of the aggregate fractions. Total gene content in the size fractions followed a similar trend to that of SOC. Bacterial and archaeal gene abundance was concentrated in both sand and clay fractions but that of fungi in sand fraction, and sharply decreased with the decreasing size of aggregate fraction. Gene abundance of archaeal followed a similar trend to that of bacterial but showing an increasing trend with prolonged rice cultivation in both sand and clay fractions. Change in community diversity with sizes of aggregate fractions was found of fungi and weakly of bacterial but not of archaeal. Soil respiration ratio (Respired CO2-C to SOC) was highest in silt fraction, followed by the fine sand fraction but lowest in sand and clay fractions in the rice soils cultivated over 100 years. Again, scaled by total gen concentration, respiration was higher in silt fraction than in other fractions for these rice soils. For the size fractions other than clay fraction, soil gene concentration, Archaeal gen abundance, normalized enzyme activity and carbon sequestration was seen increased but SOC- and gene- scaled soil respiration decreased, more or less with prolonged rice cultivation. As shown with regression analysis, SOC content was positively linearly correlated to recalcitrant carbon proportion but negatively linearly correlated to labile carbon, in both sand and clay fractions. However, soil respiration was found positively logarithmically correlated to total DNA contents and bacterial gen abundance in both sand and clay fractions. Total DNA content was found positively correlated to SOC and labile carbon content, recalcitrant carbon proportion and normalized enzyme activity but negatively to soil respiration, in sand fraction only. Our findings suggested that carbon accumulation and stabilization was prevalent in both sand and clay fraction, only the coarse sand fraction was found responsible for bioactivity dynamics in the rice soils. Thus, soil carbon sequestration was primarily by formation of the macro-aggregates, which again mediated carbon stability and bioactivity in the rice soils under long term rice cultivation.

  8. Isolation of Microarray-Grade Total RNA, MicroRNA, and DNA from a Single PAXgene Blood RNA Tube

    PubMed Central

    Kruhøffer, Mogens; Dyrskjøt, Lars; Voss, Thorsten; Lindberg, Raija L.P.; Wyrich, Ralf; Thykjaer, Thomas; Orntoft, Torben F.

    2007-01-01

    We have developed a procedure for isolation of microRNA and genomic DNA in addition to total RNA from whole blood stabilized in PAXgene Blood RNA tubes. The procedure is based on automatic extraction on a BioRobot MDx and includes isolation of DNA from a fraction of the stabilized blood and recovery of small RNA species that are otherwise lost. The procedure presented here is suitable for large-scale experiments and is amenable to further automation. Procured total RNA and DNA was tested using Affymetrix Expression and single-nucleotide polymorphism GeneChips, respectively, and isolated microRNA was tested using spotted locked nucleic acid-based microarrays. We conclude that the yield and quality of total RNA, microRNA, and DNA from a single PAXgene blood RNA tube is sufficient for downstream microarray analysis. PMID:17690207

  9. DNA synthesis in the pituitary gland of the rat: effect of sulpiride and clomiphene.

    PubMed

    Burdman, J A; Szijan, I; Jahn, G A; Machiavelli, G; Kalbermann, L E

    1979-09-15

    Sulpiride administration to rats releases prolactin and increases DNA replication in the anterior pituitary gland. Clomiphene prevents the stimulation of DNA synthesis produced by sulpiride, but does not affect prolactin release from the gland. These findings suggest that the intracellular prolactin content of the anterior pituitary gland plays a role in the regulation of DNA synthesis through a mechanism mediated by oestrogens.

  10. Detection of urea-induced internal denaturation of dsDNA using solid-state nanopores.

    PubMed

    Singer, Alon; Kuhn, Heiko; Frank-Kamenetskii, Maxim; Meller, Amit

    2010-11-17

    The ability to detect and measure dsDNA thermal fluctuations is of immense importance in understanding the underlying mechanisms responsible for transcription and replication regulation. We describe here the ability of solid-state nanopores to detect sub-nanometer changes in DNA structure as a result of chemically enhanced thermal fluctuations. In this study, we investigate the subtle changes in the mean effective diameter of a dsDNA molecule with 3-5 nm solid-state nanopores as a function of urea concentration and the DNA's AT content. Our studies reveal an increase in the mean effective diameter of a DNA molecule of approximately 0.6 nm at 8.7 M urea. In agreement with the mechanism of DNA local denaturation, we observe a sigmoid dependence of these effects on urea concentration. We find that the translocation times in urea are markedly slower than would be expected if the dynamics were governed primarily by viscous effects. Furthermore, we find that the sensitivity of the nanopore is sufficient to statistically differentiate between DNA molecules of nearly identical lengths differing only in sequence and AT content when placed in 3.5 M urea. Our results demonstrate that nanopores can detect subtle structural changes and are thus a valuable tool for detecting differences in biomolecules' environment.

  11. Animal Studies in the Mode of Action of Agents, That Are Antitransformers in Cell Cultures.

    DTIC Science & Technology

    1987-10-28

    The oel- let was hydrolysed at 90 C in 6% PCA for 30 min. The DNA content (ootical density at 260 nm and 290 nm) and the radioactivitv ( liquid ...required: DNA damage, excision of the damage and DNA-strand polimerization and ligation. The misrepair or incomplete repair of DNA damage may be an ini...with non ionic deter- gents in the ?resence of high salt concentration. The secondary and tertiary structure (supercoils) of DNA remains intact under

  12. A moderate increase in dietary zinc reduces DNA strand breaks in leukocytes and alters plasma proteins without changing plasma zinc concentrations123

    PubMed Central

    Zyba, Sarah J; Killilea, David W; Holland, Tai C; Kim, Elijah; Moy, Adrian; Sutherland, Barbara; Shigenaga, Mark K

    2017-01-01

    Background: Food fortification has been recommended to improve a population’s micronutrient status. Biofortification techniques modestly elevate the zinc content of cereals, but few studies have reported a positive impact on functional indicators of zinc status. Objective: We determined the impact of a modest increase in dietary zinc that was similar to that provided by biofortification programs on whole-body and cellular indicators of zinc status. Design: Eighteen men participated in a 6-wk controlled consumption study of a low-zinc, rice-based diet. The diet contained 6 mg Zn/d for 2 wk and was followed by 10 mg Zn/d for 4 wk. To reduce zinc absorption, phytate was added to the diet during the initial period. Indicators of zinc homeostasis, including total absorbed zinc (TAZ), the exchangeable zinc pool (EZP), plasma and cellular zinc concentrations, zinc transporter gene expression, and other metabolic indicators (i.e., DNA damage, inflammation, and oxidative stress), were measured before and after each dietary-zinc period. Results: TAZ increased with increased dietary zinc, but plasma zinc concentrations and EZP size were unchanged. Erythrocyte and leukocyte zinc concentrations and zinc transporter expressions were not altered. However, leukocyte DNA strand breaks decreased with increased dietary zinc, and the level of proteins involved in DNA repair and antioxidant and immune functions were restored after the dietary-zinc increase. Conclusions: A moderate 4-mg/d increase in dietary zinc, similar to that which would be expected from zinc-biofortified crops, improves zinc absorption but does not alter plasma zinc. The repair of DNA strand breaks improves, as do serum protein concentrations that are associated with the DNA repair process. This trial was registered at clinicaltrials.gov as NCT02861352. PMID:28003206

  13. Flow cytometry, morphometry and histopathology as biomarkers of benzo[a]pyrene exposure in brown bullheads (ameiurus nebulosus)

    USGS Publications Warehouse

    Grady, Andrew W.; McLaughlin, Ronald M.; Caldwell, Charles W.; Schmitt, Christopher J.; Stalling, David L.

    1992-01-01

    Brown bullheads were given a single intraperitoneal dose of 0, 5, 25 or 125 mg kg−1 benzo[a]pyrene (BaP), a carcinogenic polycyclic aromatic hydrocarbon, and evaluated over 18 months. Flow cytometric analyses of hepatocyte DNA content indicated an increase in DNA synthesis in BaP-exposed fish prior to day 14 post-exposure. Thereafter, all flow cytometric variables returned to initial levels. Histopathological evaluation of livers from fish sampled at 18 months revealed significant differences among treatments in the amount of hepatic macrophage ceroid pigmentation and basophilic staining intensity. No neoplasms or changes in blood cell DNA content were detected. Significant morphometric variations existed among fish, but differences between sexes overshadowed differences attributable to dose. Flow cytometry yielded no evidence of long-term DNA alterations from a single exposure to BaP; however, the differences detected by DNA analysis shortly after the toxic event suggest that flow cytometric cell cycle analysis may be useful for documenting continuing exposures.

  14. A biological inspired fuzzy adaptive window median filter (FAWMF) for enhancing DNA signal processing.

    PubMed

    Ahmad, Muneer; Jung, Low Tan; Bhuiyan, Al-Amin

    2017-10-01

    Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals. This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise. Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary to fixed window length conventional filters. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cytotoxicity, genotoxicity, and metal release in patients with fixed orthodontic appliances: a longitudinal in-vivo study.

    PubMed

    Hafez, Hend Salah; Selim, Essam Mohamed Nassef; Kamel Eid, Faten Hussein; Tawfik, Wael Attia; Al-Ashkar, Emad A; Mostafa, Yehya Ahmed

    2011-09-01

    Treatment with fixed orthodontic appliances in the corrosive environment of the oral cavity warrants in-vivo investigations of biocompatibility. Eighteen control and 28 treated subjects were evaluated longitudinally. Four combinations of brackets and archwires were tested. Buccal mucosa cell samples were collected before treatment, and 3 and 6 months after appliance placement. The cells were processed for cytotoxicity, genotoxicity, and nickel and chromium contents. In the treatment group, buccal mucosa cell viability values were 8.1% at pretreatment, and 6.4% and 4.5% at 3 and 6 months, respectively. The composite score, a calculated DNA damage value, decreased from 125.6 to 98.8 at 6 months. Nickel cellular content increased from 0.52 to 0.68 and 0.78 ng per milliliter, and chromium increased from 0.31 to 0.41 and 0.78 ng per milliliter at 3 and 6 months, respectively. Compared with the control group, the treated subjects showed significant differences for DNA damage and chromium content at 3 months only. Fixed orthodontic appliances decreased cellular viability, induced DNA damage, and increased the nickel and chromium contents of the buccal mucosa cells. Compared to the control group, these changes were not evident at 6 months, possibly indicating tolerance for or repair of the cells and the DNA. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  16. Antioxidant and Cytoprotective Effects of Lotus (Nelumbo nucifera) Leaves Phenolic Fraction

    PubMed Central

    Lee, Da-Bin; Kim, Do-Hyung; Je, Jae-Young

    2015-01-01

    Phenolic rich ethyl acetate fraction (EAF) from lotus leaves was prepared and its bioactive components, antioxidant and cytoprotective effects were investigated. EAF showed high total phenolic content and flavonoid content and contained rutin (11,331.3±4.5 mg/100 g EAF), catechin (10,853.8±5.8 mg/100 g EAF), sinapic acid (1,961.3±5.6 mg/100 g EAF), chlorogenic acid (631.9±2.3 mg/100 g EAF), syringic acid (512.3±2.5 mg/100 g EAF), and quercetin (415.0±2.1 mg/100 g EAF). EAF exerted the IC50 of 4.46 μg/mL and 5.35 μg/mL toward DPPH and ABTS cation radicals, respectively, and showed strong reducing power, which was better than that of ascorbic acid, a positive control. Additionally, EAF protected hydroxyl radical-induced DNA damage indicated by the conversion of supercoiled pBR322 plasmid DNA to the open circular form and inhibited lipid peroxidation of polyunsaturated fatty acid in a linoleic acid emulsion. In cultured hepatocytes, EAF exerted a cytoprotective effect against oxidative stress by inhibiting intracellular reactive oxygen species formation and membrane lipid peroxidation. In addition, depletion of glutathione under oxidative stress was remarkably restored by treatment with EAF. The results suggest that EAF have great potential to be used against oxidative stress-induced health conditions. PMID:25866746

  17. A tailing genome walking method suitable for genomes with high local GC content.

    PubMed

    Liu, Taian; Fang, Yongxiang; Yao, Wenjuan; Guan, Qisai; Bai, Gang; Jing, Zhizhong

    2013-10-15

    The tailing genome walking strategies are simple and efficient. However, they sometimes can be restricted due to the low stringency of homo-oligomeric primers. Here we modified their conventional tailing step by adding polythymidine and polyguanine to the target single-stranded DNA (ssDNA). The tailed ssDNA was then amplified exponentially with a specific primer in the known region and a primer comprising 5' polycytosine and 3' polyadenosine. The successful application of this novel method for identifying integration sites mediated by φC31 integrase in goat genome indicates that the method is more suitable for genomes with high complexity and local GC content. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Pretreatment of Gymnema sylvestre revealed the protection against acetic acid-induced ulcerative colitis in rats

    PubMed Central

    2014-01-01

    Background Overproduction of free radicals and decreased antioxidant capacity are well-known risk factors for inflammatory bowel diseases. Gymnema sylvestre (GS) leaves extract is distinguished for its anti-diabetic, antioxidant and anti-inflammatory properties. Present study is designed to evaluate the preventative activities of GS against acetic acid (AA)-induced ulcerative colitis in Wistar rats. Methods Experimentally ulcerative colitis (UC) was induced by AA in animals pretreated with three different doses of GS leaves extract (50, 100, 200 mg/kg/day) and a single dose of mesalazine (MES, 300 mg/kg/day) for seven days. Twenty four hours later, animals were sacrificed and the colonic tissues were collected. Colonic mucus content was determined using Alcian blue dye binding technique. Levels of thiobarbituric acid reactive substances (TBARS), total glutathione sulfhydryl group (T-GSH) and non-protein sulfhydryl group (NPSH) as well as the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were estimated in colon tissues. Colonic nucleic acids (DNA and RNA) and total protein (TP) concentrations were also determined. Levels of pro-inflammatory cytokines including interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) as well as prostaglandin E2 (PGE2) and nitric oxide (NO) were estimated in colonic tissues. The histopathological changes of the colonic tissues were also observed. Results In AA administered group TBARS levels were increased, while colonic mucus content, T-GSH and NP-SH, SOD and CAT were reduced in colon. Pretreatment with GS inhibited TBARS elevation as well as mucus content, T-GSH and NP-SH reduction. Enzymatic activities of SOD and CAT were brought back to their normal levels in GS pretreated group. A significant reduction in DNA, RNA and TP levels was seen following AA administration and this inhibition was significantly eliminated by GS treatment. GS pretreatment also inhibited AA-induced elevation of pro-inflammatory cytokines, PGE2 and NO levels in colon. The apparent UC protection was further confirmed by the histopathological screening. Conclusion The GS leaves extract showed significant amelioration of experimentally induced colitis, which may be attributed to its anti-inflammatory and antioxidant property. PMID:24507431

  19. Pretreatment of Gymnema sylvestre revealed the protection against acetic acid-induced ulcerative colitis in rats.

    PubMed

    Aleisa, Abdulaziz M; Al-Rejaie, Salim S; Abuohashish, Hatem M; Ola, Mohammed S; Parmar, Mihir Y; Ahmed, Mohammed M

    2014-02-10

    Overproduction of free radicals and decreased antioxidant capacity are well-known risk factors for inflammatory bowel diseases. Gymnema sylvestre (GS) leaves extract is distinguished for its anti-diabetic, antioxidant and anti-inflammatory properties. Present study is designed to evaluate the preventative activities of GS against acetic acid (AA)-induced ulcerative colitis in Wistar rats. Experimentally ulcerative colitis (UC) was induced by AA in animals pretreated with three different doses of GS leaves extract (50, 100, 200 mg/kg/day) and a single dose of mesalazine (MES, 300 mg/kg/day) for seven days. Twenty four hours later, animals were sacrificed and the colonic tissues were collected. Colonic mucus content was determined using Alcian blue dye binding technique. Levels of thiobarbituric acid reactive substances (TBARS), total glutathione sulfhydryl group (T-GSH) and non-protein sulfhydryl group (NPSH) as well as the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were estimated in colon tissues. Colonic nucleic acids (DNA and RNA) and total protein (TP) concentrations were also determined. Levels of pro-inflammatory cytokines including interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) as well as prostaglandin E2 (PGE2) and nitric oxide (NO) were estimated in colonic tissues. The histopathological changes of the colonic tissues were also observed. In AA administered group TBARS levels were increased, while colonic mucus content, T-GSH and NP-SH, SOD and CAT were reduced in colon. Pretreatment with GS inhibited TBARS elevation as well as mucus content, T-GSH and NP-SH reduction. Enzymatic activities of SOD and CAT were brought back to their normal levels in GS pretreated group. A significant reduction in DNA, RNA and TP levels was seen following AA administration and this inhibition was significantly eliminated by GS treatment. GS pretreatment also inhibited AA-induced elevation of pro-inflammatory cytokines, PGE2 and NO levels in colon. The apparent UC protection was further confirmed by the histopathological screening. The GS leaves extract showed significant amelioration of experimentally induced colitis, which may be attributed to its anti-inflammatory and antioxidant property.

  20. Identification and characterization of an efficient acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1) gene from the microalga Chlorella ellipsoidea.

    PubMed

    Guo, Xuejie; Fan, Chengming; Chen, Yuhong; Wang, Jingqiao; Yin, Weibo; Wang, Richard R C; Hu, Zanmin

    2017-02-21

    Oil in the form of triacylglycerols (TAGs) is quantitatively the most important storage form of energy for eukaryotic cells. Diacylglycerol acyltransferase (DGAT) is considered the rate-limiting enzyme for TAG accumulation. Chlorella, a unicellular eukaryotic green alga, has attracted much attention as a potential feedstock for renewable energy production. However, the function of DGAT1 in Chlorella has not been reported. A full-length cDNA encoding a putative diacylglycerol acyltransferase 1 (DGAT1, EC 2.3.1.20) was obtained from Chlorella ellipsoidea. The 2,142 bp open reading frame of this cDNA, designated CeDGAT1, encodes a protein of 713 amino acids showing no more than 40% identity with DGAT1s of higher plants. Transcript analysis showed that the expression level of CeDGAT1 markedly increased under nitrogen starvation, which led to significant triacylglycerol (TAG) accumulation. CeDGAT1 activity was confirmed in the yeast quadruple mutant strain H1246 by restoring its ability to produce TAG. Upon expression of CeDGAT1, the total fatty acid content in wild-type yeast (INVSc1) increased by 142%, significantly higher than that transformed with DGAT1s from higher plants, including even the oil crop soybean. The over-expression of CeDGAT1 under the NOS promoter in wild-type Arabidopsis thaliana and Brassica napus var. Westar significantly increased the oil content by 8-37% and 12-18% and the average 1,000-seed weight by 9-15% and 6-29%, respectively, but did not alter the fatty acid composition of the seed oil. The net increase in the 1,000-seed total lipid content was up to 25-50% in both transgenic Arabidopsis and B. napus. We identified a gene encoding DGAT1 in C. ellipsoidea and confirmed that it plays an important role in TAG accumulation. This is the first functional analysis of DGAT1 in Chlorella. This information is important for understanding lipid synthesis and accumulation in Chlorella and for genetic engineering to enhance oil production in microalgae and oil plants.

  1. Necessity of purification during bacterial DNA extraction with environmental soils

    PubMed Central

    Choi, Jung-Hyun

    2017-01-01

    Complexity and heterogeneity of soil samples have often implied the inclusion of purification steps in conventional DNA extraction for polymerase chain reaction (PCR) assays. Unfortunately the purification steps are also time and labor intensive. Therefore the necessity of DNA purification was re-visited and investigated for a variety of environmental soil samples that contained various amounts of PCR inhibitors. Bead beating and centrifugation was used as the baseline (without purification) method for DNA extraction. Its performance was compared with that of conventional DNA extraction kit (with purification). The necessity criteria for DNA purification were established with environmental soil samples. Using lysis conditions at 3000 rpm for 3 minutes with 0.1 mm glass beads, centrifugation time of 10 minutes and 1:10 dilution ratio, the baseline method outperformed conventional DNA extraction on cell seeded sand samples. Further investigation with PCR inhibitors (i.e., humic acids, clay, and magnesium [Mg]) showed that sand samples containing less than 10 μg/g humic acids and 70% clay may not require purifications. Interestingly, the inhibition pattern of Mg ion was different from other inhibitors due to the complexation interaction of Mg ion with DNA fragments. It was concluded that DNA extraction method without purification is suitable for soil samples that have less than 10 μg/g of humic acids, less than 70% clay content and less than 0.01% Mg ion content. PMID:28793754

  2. i-rDNA: alignment-free algorithm for rapid in silico detection of ribosomal gene fragments from metagenomic sequence data sets.

    PubMed

    Mohammed, Monzoorul Haque; Ghosh, Tarini Shankar; Chadaram, Sudha; Mande, Sharmila S

    2011-11-30

    Obtaining accurate estimates of microbial diversity using rDNA profiling is the first step in most metagenomics projects. Consequently, most metagenomic projects spend considerable amounts of time, money and manpower for experimentally cloning, amplifying and sequencing the rDNA content in a metagenomic sample. In the second step, the entire genomic content of the metagenome is extracted, sequenced and analyzed. Since DNA sequences obtained in this second step also contain rDNA fragments, rapid in silico identification of these rDNA fragments would drastically reduce the cost, time and effort of current metagenomic projects by entirely bypassing the experimental steps of primer based rDNA amplification, cloning and sequencing. In this study, we present an algorithm called i-rDNA that can facilitate the rapid detection of 16S rDNA fragments from amongst millions of sequences in metagenomic data sets with high detection sensitivity. Performance evaluation with data sets/database variants simulating typical metagenomic scenarios indicates the significantly high detection sensitivity of i-rDNA. Moreover, i-rDNA can process a million sequences in less than an hour on a simple desktop with modest hardware specifications. In addition to the speed of execution, high sensitivity and low false positive rate, the utility of the algorithmic approach discussed in this paper is immense given that it would help in bypassing the entire experimental step of primer-based rDNA amplification, cloning and sequencing. Application of this algorithmic approach would thus drastically reduce the cost, time and human efforts invested in all metagenomic projects. A web-server for the i-rDNA algorithm is available at http://metagenomics.atc.tcs.com/i-rDNA/

  3. [Sexual differences in a state systems of DNA structure maintenance and generation of reactive oxygen species in somatic cells of mice 101/H reparation-defective strain and manifestation of these differences after exposure to ionizing radiation].

    PubMed

    Mazurik, V K; Mikhaĭlov, V F; Ushenkova, L N; Raeva, N F

    2004-01-01

    To analyse a role of the factor of a genetic fundamentals of cells in formation of radiation-induced genome instability (RIGI) we investigated a condition of DNA pattern, content of superoxide anion-radical O2*- and a sum of reactive oxigen species (ROS) (O2*-, OH*, H2O2), and also catalase activity in bone marrow cells of male and female mice of 101/H strain in the norm and at once after chronic (10 day) exposure to 200 mGy gamma-radiation. Thus we based on conception about a significance of mechanisms of DNA repair and production of reactive oxygen species (ROS) in development of radiation-induced genome instability (RIGI), and also on the data on sex bound differences in efficiency of DNA repair in reply to impact of the genotoxic agents for male and female mice of 101/H strain. Sex connected differences in redox system of bone marrow cells were established. In males lower catalase activity was found in the norm, with considerable increase of the activity and the content of ROS after chronic irradiation with a low dose (200 mGy); at the same time a direct correlation between the ROS content and catalase activity occurred. In female, which have higher DNA repair potential, higher level of catalase activity was found in the norm, with reduction after irradiation and lower, than in male, level of O2*- content; no changes in the general ROS content, or direct correlation between the content of a superoxide anion-radical (O2*-) and the sum of ROS were observed. The detected differences between male and female the studied parameters in the norm and after irradiation indicate a connection of the studied characteristics and their changes with a sex, confirm the literature data about a significance of the factor of a genetic fundamentals of bioobject in formation of radiation-induced genome instability.

  4. Influence of Phytase Transgenic Corn on the Intestinal Microflora and the Fate of Transgenic DNA and Protein in Digesta and Tissues of Broilers

    PubMed Central

    Li, Sufen; Li, Ang; Zhang, Liyang; Liu, Zhenhua; Luo, Xugang

    2015-01-01

    An experiment was conducted to investigate the effect of phytase transgenic corn (PTC) on intestinal microflora, and the fate of transgenic DNA and protein in the digesta and tissues of broilers. A total of 160 1-day-old Arbor Acres commercial male broilers were randomly assigned to 20 cages (8 chicks per cage) with 10 cages (replicates) for each treatment. Birds were fed with a diet containing either PTC (54.0% during 1–21 days and 61.0% during 22–42 days) or non-transgenic isogenic control corn (CC) for a duration of 42 days. There were no significant differences (P>0.05) between birds fed with the PTC diets and those fed with the CC diets in the quantities of aerobic bacteria, anaerobic bacteria, colibacillus and lactobacilli, or microbial diversities in the contents of ileum and cecum. Transgenic phyA2 DNA was not detected, but phyA2 protein was detected in the digesta of duodenum and jejunum of broilers fed with the PTC diets. Both transgenic phyA2 DNA and protein fragments were not found in the digesta of the ileum and rectum, heart, liver, kidney, and breast or thigh muscles of broilers fed with the PTC diets. It was concluded that PTC had no adverse effect on the quantity and diversity of gut microorganisms; Transgenic phyA2 DNA or protein was rapidly degraded in the intestinal tract and was not transferred to the tissues of broilers. PMID:26599444

  5. Quizalofop-p-ethyl-induced phytotoxicity and genotoxicity in Lemna minor and Lemna gibba.

    PubMed

    Doganlar, Zeynep B

    2012-01-01

    In this study, the effects of the herbicide, quizalofop-p-ethyl, on pigment contents (total chlorophyll, chlorophyll a/b, carotenoid), antioxidant enzyme [superoxide dismutase (SOD) and guaiacol peroxidase (POD)] activities, lipid peroxidation product (malondialdehyde: MDA) and DNA profiles were investigated in Lemna gibba and Lemna minor. Laboratory-acclimatized plants were treated with quizalofop-p-ethyl at 31.375, 62.75, 125 and 250 mg L(-1) for 24 and 96 h. It was determined that quizalofop-p-ethyl affected both the physiological status and the DNA profiles of L. gibba and L. minor. The photosynthetic pigments of L. gibba were more sensitive to the herbicide than were those of L. minor at both treatment times. SOD and POD activities were elevated in both plants at 24 h. However at 96 h, SOD activity decreased in L. minor and had irregular changes in L. gibba.. Significant increases in the amounts of MDA were observed in L. gibba, whereas the levels of this compound decreased in L. minor at 24 and 96 h. Polymorphism in DNA profiles was determined using the Random Amplified Polymorphic DNA (RAPD) technique. Four primers were used for scoring (appearance and disappearance of DNA polymorphic bands), and equally weighted maximum parsimony analyses were performed. Fewer differences were observed at 24 h, and more new bands were observed at 96 h in L. gibba. The RAPD profiles of L. minor produced by all of the primers were slightly less affected by the herbicide treatment than were those of L. gibba.

  6. p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content.

    PubMed

    Park, Joon-Young; Wang, Ping-Yuan; Matsumoto, Takumi; Sung, Ho Joong; Ma, Wenzhe; Choi, Jeong W; Anderson, Stasia A; Leary, Scot C; Balaban, Robert S; Kang, Ju-Gyeong; Hwang, Paul M

    2009-09-25

    Exercise capacity is a physiological characteristic associated with protection from both cardiovascular and all-cause mortality. p53 regulates mitochondrial function and its deletion markedly diminishes exercise capacity, but the underlying genetic mechanism orchestrating this is unclear. Understanding the biology of how p53 improves exercise capacity may provide useful insights for improving both cardiovascular as well as general health. The purpose of this study was to understand the genetic mechanism by which p53 regulates aerobic exercise capacity. Using a variety of physiological, metabolic, and molecular techniques, we further characterized maximum exercise capacity and the effects of training, measured various nonmitochondrial and mitochondrial determinants of exercise capacity, and examined putative regulators of mitochondrial biogenesis. As p53 did not affect baseline cardiac function or inotropic reserve, we focused on the involvement of skeletal muscle and now report a wider role for p53 in modulating skeletal muscle mitochondrial function. p53 interacts with Mitochondrial Transcription Factor A (TFAM), a nuclear-encoded gene important for mitochondrial DNA (mtDNA) transcription and maintenance, and regulates mtDNA content. The increased mtDNA in p53(+/+) compared to p53(-/-) mice was more marked in aerobic versus glycolytic skeletal muscle groups with no significant changes in cardiac tissue. These in vivo observations were further supported by in vitro studies showing overexpression of p53 in mouse myoblasts increases both TFAM and mtDNA levels whereas depletion of TFAM by shRNA decreases mtDNA content. Our current findings indicate that p53 promotes aerobic metabolism and exercise capacity by using different mitochondrial genes and mechanisms in a tissue-specific manner.

  7. Intrauterine growth restriction increases circulating mitochondrial DNA and Toll-like receptor 9 expression in adult offspring: could aerobic training counteract these adaptations?

    PubMed

    Oliveira, V; Silva Junior, S D; de Carvalho, M H C; Akamine, E H; Michelini, L C; Franco, M C

    2017-04-01

    It has been demonstrated that intrauterine growth restriction (IUGR) can program increase cardiometabolic risk. There are also evidences of the correlation between IUGR with low-grade inflammation and, thus can contribute to development of several cardiometabolic comorbidities. Therefore, we investigated the influence of IUGR on circulating mitochondrial DNA (mtDNA)/Toll-like receptor 9 (TLR9) and TNF-α expression in adult offspring. Considering that the aerobic training has anti-inflammatory actions, we also investigated whether aerobic training would improve these inflammatory factors. Pregnant Wistar rats received ad libitum or 50% of ad libitum diet throughout gestation. At 8 weeks of age, male offspring from both groups were randomly assigned to control, trained control, restricted and trained restricted. Aerobic training protocol was performed on a treadmill and after that, we evaluated circulating mtDNA, cardiac protein expression of TLR9, plasma and cardiac TNF-α levels, and left ventricle (LV) mass. We found that IUGR promoted an increase in the circulating mtDNA, TLR9 expression and plasma TNF-α levels. Further, our results revealed that aerobic training can restore mtDNA/TLR9 content and plasma levels of TNF-α among restricted rats. The cardiac TNF-α content and LV mass were not influenced either by IUGR or aerobic training. In conclusion, IUGR can program mtDNA/TLR9 content, which may lead to high levels of TNF-α. However, aerobic training was able to normalize these alterations. These findings evidenced that the association of IUGR and aerobic training seems to exert an important interaction effect regarding pro-inflammatory condition and, aerobic training may be used as a strategy to reduce deleterious adaptations in IUGR offspring.

  8. Storage effects on genomic DNA in rolled and mature coca leaves.

    PubMed

    Johnson, Emanuel L; Kim, Soo-Hyung; Emche, Stephen D

    2003-08-01

    Rolled and mature leaf tissue was harvested from Erythroxylum coca var. coca Lam. (coca) to determine a method for storage that would maintain DNA with high quality and content up to 50 days. Harvesting coca leaf tissue under Andean field conditions often requires storage from 3 to 10 days before extraction where tissue integrity is lost. All samples of rolled and mature coca leaf tissue were harvested and separately stored fresh in RNAlater for 50 days at 4 degrees, -20 degrees, and 23 degrees C, while similar samples were air-dried for 72 h at 23 degrees C or oven-dried for 72 h at 40 degrees C after storage, before extraction. Triplicate samples of each tissue type were extracted for DNA at 10-day intervals and showed that DNA integrity and content were preserved in leaf tissue stored at 4 degrees and -20 degrees C for 50 days. Rolled and mature leaf tissue stored at 4 degrees, -20 degrees, and 23 degrees C showed insignificant degradation of DNA after 10 days, and by day 50, only leaf tissue stored at 4 degrees and -20 degrees C had not significantly degraded. All air- and oven-dried leaf tissue extracts showed degradation upon drying (day 0) and continuous degradation up to day 50, despite storage conditions. Amplified fragment length polymorphism analysis of DNA from rolled and mature leaf tissue of coca stored at 4 degrees and -20 degrees C for 0, 10, and 50 days showed that DNA integrity and content were preserved. We recommend that freshly harvested rolled or mature coca leaf tissue be stored at 4 degrees, -20 degrees, and 23 degrees C for 10 days after harvest, and if a longer storage is required, then store at 4 degrees or -20 degrees C.

  9. Effect of modified wuzi yanzong granule on patients with mild cognitive impairment from oxidative damage aspect.

    PubMed

    Wang, Xue-mei; Fu, Hong; Liu, Geng-xin; Zhu, Wei; Li, Li; Yang, Jin-xia

    2007-12-01

    To observe the effects of modified Wuzi Yanzong Granule (WYG) on memory function and the activity of serum superoxide dismutase (SOD), malondialdehyde (MDA) levels, leukocyte mitochondrial DNA (mtDNA) deletion rate and beta-amyloid protein(1-28) (A beta(1-28)) in patients with mild cognitive impairment (MCI). Thirty-six patients with MCI were selected based on the internationally recognized Petersen's criteria, and equally and randomly assigned to two groups. The treated group was treated with WYG and the control group was treated with placebo for 3 months. In addition, 20 healthy subjects were included in the study as the normal control group. Changes of memory function, SOD activity, MDA content, leukocyte mtDNA deletion rate and A beta(1-28) content were observed before and after treatment. Compared with the normal control group, the memory quotient and SOD activity in patients with MCI decreased significantly (P < 0.01), while MDA, A beta(1-28) levels and the leukocyte mtDNA deletion rate increased significantly (P < 0.01). After treatment, levels of memory quotient and serum SOD activity increased while the serum MDA level, leukocyte mtDNA deletion rate and A beta(1-28) level decreased in the treated group compared with those before treatment (P<0.01, P<0.05). Meanwhile, leukocyte mtDNA deletion rate and A beta(1-28) content in the treated group were all lower than those in the control group (P<0.05). WYG could improve memory function in patients with MCI and the therapeutic mechanism is possibly related to the increased activity of anti-oxidase, the improved free radical metabolism and the alleviation of leukocyte mtDNA oxidation damage. WYG shows clinical significance in delaying the progression of MCI.

  10. An interferometric imaging biosensor using weighted spectrum analysis to confirm DNA monolayer films with attogram sensitivity.

    PubMed

    Fu, Rongxin; Li, Qi; Wang, Ruliang; Xue, Ning; Lin, Xue; Su, Ya; Jiang, Kai; Jin, Xiangyu; Lin, Rongzan; Gan, Wupeng; Lu, Ying; Huang, Guoliang

    2018-05-01

    Interferometric imaging biosensors are powerful and convenient tools for confirming the existence of DNA monolayer films on silicon microarray platforms. However, their accuracy and sensitivity need further improvement because DNA molecules contribute to an inconspicuous interferometric signal both in thickness and size. Such weaknesses result in poor performance of these biosensors for low DNA content analyses and point mutation tests. In this paper, an interferometric imaging biosensor with weighted spectrum analysis is presented to confirm DNA monolayer films. The interferometric signal of DNA molecules can be extracted and then quantitative detection results for DNA microarrays can be reconstructed. With the proposed strategy, the relative error of thickness detection was reduced from 88.94% to merely 4.15%. The mass sensitivity per unit area of the proposed biosensor reached 20 attograms (ag). Therefore, the sample consumption per unit area of the target DNA content was only 62.5 zeptomoles (zm), with the volume of 0.25 picolitres (pL). Compared with the fluorescence resonance energy transfer (FRET), the measurement veracity of the interferometric imaging biosensor with weighted spectrum analysis is free to the changes in spotting concentration and DNA length. The detection range was more than 1µm. Moreover, single nucleotide mismatch could be pointed out combined with specific DNA ligation. A mutation experiment for lung cancer detection proved the high selectivity and accurate analysis capability of the presented biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Low abundance of mitochondrial DNA changes mitochondrial status and renders cells resistant to serum starvation and sodium nitroprusside insult.

    PubMed

    Lee, Sung Ryul; Heo, Hye Jin; Jeong, Seung Hun; Kim, Hyoung Kyu; Song, In Sung; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Han, Jin

    2015-07-01

    Mutation or depletion of mitochondrial DNA (mtDNA) can cause severe mitochondrial malfunction, originating from the mitochondrion itself, or from the crosstalk between nuclei and mitochondria. However, the changes that would occur if the amount of mtDNA is diminished are less known. Thus, we generated rat myoblast H9c2 cells containing lower amounts of mtDNA via ethidium bromide and uridine supplementation. After confirming the depletion of mtDNA by quantitative PCR and gel electrophoresis analysis, we investigated the changes in mitochondrial physical parameters by using flow cytometry. We also evaluated the resistance of these cells to serum starvation and sodium nitroprusside. H9c2 cells with diminished mtDNA contents showed decreased mitochondrial membrane potential, mass, free calcium, and zinc ion contents as compared to naïve H9c2 cells. Furthermore, cytosolic and mitochondrial reactive oxygen species levels were significantly higher in mtDNA-lowered H9c2 cells than in the naïve cells. Although the oxygen consumption rate and cell proliferation were decreased, mtDNA-lowered H9c2 cells were more resistant to serum deprivation and nitroprusside insults than the naïve H9c2 cells. Taken together, we conclude that the low abundance of mtDNA cause changes in cellular status, such as changes in reactive oxygen species, calcium, and zinc ion levels inducing resistance to stress. © 2015 International Federation for Cell Biology.

  12. Effect of raltegravir on the total and unintegrated proviral HIV DNA during raltegravir-based HAART.

    PubMed

    Nicastri, Emanuele; Tommasi, Chiara; Abbate, Isabella; Bonora, Stefano; Tempestilli, Massimo; Bellagamba, Rita; Viscione, Magdalena; Rozera, Gabriella; Gallo, Anna L; Ivanovic, Jelena; Amendola, Alessandra; Pucillo, Leopoldo; Di Perri, Giovanni; Capobianchi, Maria R; Narciso, Pasquale

    2011-01-01

    Raltegravir is the first approved antiretroviral able to prevent HIV genome integration into the host chromosomes. The aim of the study is to test if raltegravir plasma concentrations can be associated with proviral DNA decline during raltegravir-based salvage therapy. A total of 33 multidrug-resistant HIV-infected patients were enrolled in a longitudinal open-label pilot study and completed a 24-week follow-up. The CD4(+) T-cell count, plasma viral load, proviral HIV DNA and two-long-terminal repeat (2-LTR) circular forms were assessed at baseline, day 14, 30, 60, 90 and 180. The raltegravir trough concentration (C (trough)) was measured by HPLC-ultraviolet and patients were divided into two groups according to the median raltegravir C (trough). The mean±SD values of baseline HIV RNA, CD4(+) T-cell count and HIV DNA were 4.4±0.82 log copies/ml, 256±177 cells/mm(3) , and 2,668±4,721 copies/10(6) peripheral blood mononuclear cells, respectively. Despite a transient increase of total DNA at week 2, a marked proviral DNA decay (P=0.01) with an increase of the 2-LTR unintegrated/total DNA ratio (P=0.06) over time was observed. At univariate analysis, no correlation between raltegravir C(trough) and classical virological parameters was observed. Nevertheless, the decay of proviral HIV DNA was more pronounced in patients displaying C(trough)<158 ng/ml with respect to those with C(trough)>158 ng/ml (P=0.046). Successful raltegravir-based therapy produces a significant decline in proviral DNA and is associated with an increase of the unintegrated/total DNA ratio. Further studies are necessary to define the possible role of pharmacokinetic raltegravir monitoring and the biological meaning of unintegrated proviral DNA. © 2011 International Medical Press

  13. Cell-production rates estimated by the use of vincristine sulphate and flow cytometry. I. An in vitro study using murine tumour cell lines.

    PubMed

    Barfod, I H; Barfod, N M

    1980-01-01

    A method for the evaluation of cell-production rates is described which combines flow cytometry (FCM) and the stathmokinetic method. By means of FCM it is possible to estimate the distribution of cells with G1, S and (G2 + M) DNA content in a population. As this method gives the relative (G2 + M) DNA content of cells within the cell cycle, it may be possible to evaluate cell-production rates by this technique. In the present study it was found that administration of a metaphase-arresting (stathmokinetic) agent, vincristine sulphate (VS), to asynchronous cell populations of three different murine tumour cell lines in vitro increased the peak representing cells with (G2 + M) DNA content as the number of mitotic (M) cells increased during the period of treatment. The accumulation of mitotic cells was determined by cell counts on smears under the microscope and compared with increase in the (G2 + M) DNA peak measured by FCM as a function of time after the administration of VS. Good agreement was obtained between the cell-production rates as estimated by FCM and by mitotic counts in all three cell lines investigated.

  14. Multiparameter Flow Cytometry For Clinical Applications

    NASA Astrophysics Data System (ADS)

    Stewart, Carleton C.

    1989-06-01

    Flow Cytometry facilities are well established and provide immunophenotyping and DNA content measurement services. The application of immunophenotyping has been primarily in monitoring therapy and in providing further information to aid in the definitive diagnosis of immunological and neoplastic disease such as: immunodeficiency disease, auto immune disease, organ transplantation, and leukemia and lymphoma. DNA content measurements have been particularly important in determining the fraction of cycling cells and presence of aneuploid cells in neoplasia. This information has been useful in the management of patients with solid tumors.

  15. Photodynamic Action on Native and Denatured Transforming Deoxyribonucleic Acid from Haemophilus influenzae

    PubMed Central

    León, Manuel Ponce-De; Cabrera-Juárez, Emiliano

    1970-01-01

    The photodynamic inactivation of native or denatured transforming deoxyribonucleic acid (DNA) from Haemophilus influenzae is described. The inactivation at the same pH was higher for denatured than native DNA. At acidic pH, the inactivation both for native and denatured DNA was faster than at alkaline pH. The guanine content of photoinactivated native DNA at neutral pH was less than untreated DNA. The inactivation of biological activity was more extensive than the alteration of guanine. The absorption spectrum of photoinactivated native or denatured DNA was only slightly different than the control DNA at the different experimental conditions. PMID:5309576

  16. Identification of phenolic antioxidants and bioactives of pomegranate seeds following juice extraction using HPLC-DAD-ESI-MSn.

    PubMed

    Ambigaipalan, Priyatharini; de Camargo, Adriano Costa; Shahidi, Fereidoon

    2017-04-15

    Phenolics from free and hydrolyzed fractions of pomegranate juice (PJ) and seeds (PS) were evaluated. In general, total phenolic contents and scavenging of ABTS + , DPPH and hydroxyl radicals, as well as metal chelation of the soluble fraction from PS, were higher than those for PJ. Insoluble-bound phenolics from PS accounted for up to 27% of total scavenging capacity (free+esterified+insoluble-bound). Phenolic acids (13), monomeric flavonoids (8), hydrolysable tannins (12), proanthocyanidin (1) and anthocyanins (12) were tentatively characterized using HPLC-DAD-ESI-MS n . Several compounds were identified for the first time in PJ or PS. The inhibition of DNA damage (induced by hydroxyl and peroxyl radicals), copper-induced LDL-cholesterol peroxidation, as well as alpha-glucosidase and lipase activities were demonstrated, therefore supporting the potential exploitation of PJ and PS as sources of bioactive compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Cytoskeleton structure and total methylation of mouse cardiac and lung tissue during space flight.

    PubMed

    Ogneva, Irina V; Loktev, Sergey S; Sychev, Vladimir N

    2018-01-01

    The purpose of this work was to evaluate the protein and mRNA expression levels of multiple cytoskeletal proteins in the cardiac and lung tissue of mice that were euthanized onboard the United States Orbital Segment of the International Space Station 37 days after the start of the SpaceX-4 mission (September 2014, USA). The results showed no changes in the cytoskeletal protein content in the cardiac and lung tissue of the mice, but there were significant changes in the mRNA expression levels of the associated genes, which may be due to an increase in total genome methylation. The mRNA expression levels of DNA methylases, the cytosine demethylases Tet1 and Tet3, histone acetylase and histone deacetylase did not change, and the mRNA expression level of cytosine demethylase Tet2 was significantly decreased.

  18. Cytoskeleton structure and total methylation of mouse cardiac and lung tissue during space flight

    PubMed Central

    Loktev, Sergey S.; Sychev, Vladimir N.

    2018-01-01

    The purpose of this work was to evaluate the protein and mRNA expression levels of multiple cytoskeletal proteins in the cardiac and lung tissue of mice that were euthanized onboard the United States Orbital Segment of the International Space Station 37 days after the start of the SpaceX-4 mission (September 2014, USA). The results showed no changes in the cytoskeletal protein content in the cardiac and lung tissue of the mice, but there were significant changes in the mRNA expression levels of the associated genes, which may be due to an increase in total genome methylation. The mRNA expression levels of DNA methylases, the cytosine demethylases Tet1 and Tet3, histone acetylase and histone deacetylase did not change, and the mRNA expression level of cytosine demethylase Tet2 was significantly decreased. PMID:29768411

  19. Quantification of meat proportions by measuring DNA contents in raw and boiled sausages using matrix-adapted calibrators and multiplex real-time PCR.

    PubMed

    Köppel, René; Eugster, Albert; Ruf, Jürg; Rentsch, Jürg

    2012-01-01

    The quantification of meat proportions in raw and boiled sausage according to the recipe was evaluated using three different calibrators. To measure the DNA contents from beef, pork, sheep (mutton), and horse, a tetraplex real-time PCR method was applied. Nineteen laboratories analyzed four meat products each made of different proportions of beef, pork, sheep, and horse meat. Three kinds of calibrators were used: raw and boiled sausages of known proportions ranging from 1 to 55% of meat, and a dilution series of DNA from muscle tissue. In general, results generated using calibration sausages were more accurate than those resulting from the use of DNA from muscle tissue, and exhibited smaller measurement uncertainties. Although differences between uses of raw and boiled calibration sausages were small, the most precise and accurate results were obtained by calibration with fine-textured boiled reference sausages.

  20. Aphidicolin-induced nuclear elongation in tobacco BY-2 cells.

    PubMed

    Yasuhara, Hiroki; Kitamoto, Kazuki

    2014-05-01

    Plant nuclei are known to differentiate into various shapes within a single plant. However, little is known about the mechanisms of nuclear morphogenesis. We found that nuclei of tobacco BY-2 cells were highly elongated on long-term treatment with 5 mg l⁻¹ aphidicolin, an inhibitor of DNA polymerase α. In aphidicolin-treated cells, the nuclear length was correlated with the cell length. During culture in the presence of aphidicolin, the nuclei were elongated in parallel with cell elongation. Nuclear elongation was inhibited by the inhibition of cell elongation with 2,6-dichlorobenzonitrile, a cellulose synthesis inhibitor. However, cell elongation induced in the auxin-depleted medium in the absence of aphidicolin did not cause nuclear elongation, indicating that cell elongation alone is not sufficient for nuclear elongation. Treatment with either latrunculin B or propyzamide inhibited the aphidicolin-induced nuclear elongation, indicating that both actin filaments and microtubules (MTs) are required for nuclear elongation. Observations using BY-YTHCLR2 cells, in which actin filaments, MTs and nuclei were simultaneously visualized, revealed that the longitudinally arranged MT bundles associated with the nucleus play an important role in nuclear elongation, and that actin filaments affect the formation of these MT bundles. In aphidicolin-treated cells, the nuclear DNA contents of the elongated nuclei exceeded 4C, and the nuclear length was highly correlated with the nuclear DNA content. In cells treated with 50 mg l⁻¹ aphidicolin, cells were elongated and nucleus-associated longitudinal MT bundles were formed, but the nuclear DNA contents did not exceed 4C and the nuclei did not elongate. These results indicate that an increase in the nuclear DNA content above 4C is also required for nuclear elongation.

  1. Relationship between radiation-induced aberrations in individual chromosomes and their DNA content: effects of interaction distance

    NASA Technical Reports Server (NTRS)

    Wu, H.; Durante, M.; Lucas, J. N.

    2001-01-01

    PURPOSE: To study the effect of the interaction distance on the frequency of inter- and intrachromosome exchanges in individual chromosomes with respect to their DNA content. Assumptions: Chromosome exchanges are formed by misrejoining of two DNA double-strand breaks (DSB) induced within an interaction distance, d. It is assumed that chromosomes in G(0)/G(1) phase of the cell cycle occupy a spherical domain in a cell nucleus, with no spatial overlap between individual chromosome domains. RESULTS: Formulae are derived for the probability of formation of inter-, as well as intra-, chromosome exchanges relating to the DNA content of the chromosome for a given interaction distance. For interaction distances <1 microm, the relative frequency of interchromosome exchanges predicted by the present model is similar to that by Cigarran et al. (1998) based on the assumption that the probability of interchromosome exchanges is proportional to the "surface area" of the chromosome territory. The "surface area" assumption is shown to be a limiting case of d-->0 in the present model. The present model also predicts that the probability of intrachromosome exchanges occurring in individual chromosomes is proportional to their DNA content with correction terms. CONCLUSION: When the interaction distance is small, the "surface area" distribution for chromosome participation in interchromosome exchanges has been expected. However, the present model shows that for the interaction distance as large as 1 microm, the predicted probability of interchromosome exchange formation is still close to the surface area distribution. Therefore, this distribution does not necessarily rule out the formation of complex chromosomal aberrations by long-range misrejoining of DSB.

  2. Pulmonary toxicity study in rats with PM 10 and PM 2.5: Differential responses related to scale and composition

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Lei, Tian; Lin, Zhi-Qing; Zhang, Hua-Shan; Yang, Dan-Feng; Xi, Zhu-Ge; Chen, Jian-Hua; Wang, Wei

    2011-02-01

    ObjectionTo study the pollution of atmospheric particles at winter in Beijing and compare the lung toxicity which induced by particle samples from different sampling sites. MethodWe collected samples from two sampling points during the winter for toxicity testing and chemical analysis. Wistar rats were administered with particles by intratracheal instillation. After exposure, biochemically index, esimmunity indexes, histopathology and DNA damage were detected in rat pulmonary cells. ResultThe elements with enrichment factors (EF) larger than 10 were As, Cd, Cu, Zn, S and Pb in the four experiment groups. The priority control of the total concentration of polycyclic aromatic hydrocarbons (PAHs) in PM 10 and PM 2.5 of Near-traffic source was much higher than that of Far-traffic source, it demonstrated that near the traffic source of PAHs pollution was heavier than that of Far-traffic source, as it was close to main roads Beiyuan Road, motor vehicle emissions were much higher. The pathology of lung showed that the degree of inflammation was increased with the particle diameter minished, it was the same as the detection of biochemical parameters such as lactate dehydrogenase (LDH), Total antioxidant status(T-AOC) and total protein (TP) in BALF and inflammation cytokine(interleukin-1, interleukin-6 and tumor necrosis factor-alpha) in lung homogenate. The indexes of DNA damage including the content of DNA and Olive empennage of PM 2.5 were significant higher than that of PM 10 at the same surveillance point ( P < 0.05), near-traffic particles were higher than the far-traffic particles at the same diameter, ( P < 0.05). ConclusionNear-traffic area particles had certain pollution at winter in Beijing. Meanwhile, atmospheric particulate matters on lung toxicity were related to the particles size and distance related sites which were exposed: smaller size, more toxicity; nearer from traffic, more toxicity.

  3. Erwinia amylovora CRISPR Elements Provide New Tools for Evaluating Strain Diversity and for Microbial Source Tracking

    PubMed Central

    McGhee, Gayle C.; Sundin, George W.

    2012-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) comprise a family of short DNA repeat sequences that are separated by non repetitive spacer sequences and, in combination with a suite of Cas proteins, are thought to function as an adaptive immune system against invading DNA. The number of CRISPR arrays in a bacterial chromosome is variable, and the content of each array can differ in both repeat number and in the presence or absence of specific spacers. We utilized a comparative sequence analysis of CRISPR arrays of the plant pathogen Erwinia amylovora to uncover previously unknown genetic diversity in this species. A total of 85 E. amylovora strains varying in geographic isolation (North America, Europe, New Zealand, and the Middle East), host range, plasmid content, and streptomycin sensitivity/resistance were evaluated for CRISPR array number and spacer variability. From these strains, 588 unique spacers were identified in the three CRISPR arrays present in E. amylovora, and these arrays could be categorized into 20, 17, and 2 patterns types, respectively. Analysis of the relatedness of spacer content differentiated most apple and pear strains isolated in the eastern U.S. from western U.S. strains. In addition, we identified North American strains that shared CRISPR genotypes with strains isolated on other continents. E. amylovora strains from Rubus and Indian hawthorn contained mostly unique spacers compared to apple and pear strains, while strains from loquat shared 79% of spacers with apple and pear strains. Approximately 23% of the spacers matched known sequences, with 16% targeting plasmids and 5% targeting bacteriophage. The plasmid pEU30, isolated in E. amylovora strains from the western U.S., was targeted by 55 spacers. Lastly, we used spacer patterns and content to determine that streptomycin-resistant strains of E. amylovora from Michigan were low in diversity and matched corresponding streptomycin-sensitive strains from the background population. PMID:22860008

  4. Erwinia amylovora CRISPR elements provide new tools for evaluating strain diversity and for microbial source tracking.

    PubMed

    McGhee, Gayle C; Sundin, George W

    2012-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) comprise a family of short DNA repeat sequences that are separated by non repetitive spacer sequences and, in combination with a suite of Cas proteins, are thought to function as an adaptive immune system against invading DNA. The number of CRISPR arrays in a bacterial chromosome is variable, and the content of each array can differ in both repeat number and in the presence or absence of specific spacers. We utilized a comparative sequence analysis of CRISPR arrays of the plant pathogen Erwinia amylovora to uncover previously unknown genetic diversity in this species. A total of 85 E. amylovora strains varying in geographic isolation (North America, Europe, New Zealand, and the Middle East), host range, plasmid content, and streptomycin sensitivity/resistance were evaluated for CRISPR array number and spacer variability. From these strains, 588 unique spacers were identified in the three CRISPR arrays present in E. amylovora, and these arrays could be categorized into 20, 17, and 2 patterns types, respectively. Analysis of the relatedness of spacer content differentiated most apple and pear strains isolated in the eastern U.S. from western U.S. strains. In addition, we identified North American strains that shared CRISPR genotypes with strains isolated on other continents. E. amylovora strains from Rubus and Indian hawthorn contained mostly unique spacers compared to apple and pear strains, while strains from loquat shared 79% of spacers with apple and pear strains. Approximately 23% of the spacers matched known sequences, with 16% targeting plasmids and 5% targeting bacteriophage. The plasmid pEU30, isolated in E. amylovora strains from the western U.S., was targeted by 55 spacers. Lastly, we used spacer patterns and content to determine that streptomycin-resistant strains of E. amylovora from Michigan were low in diversity and matched corresponding streptomycin-sensitive strains from the background population.

  5. Phototherapy causes DNA damage in peripheral mononuclear leukocytes in term infants.

    PubMed

    Aycicek, Ali; Kocyigit, Abdurrahim; Erel, Ozcan; Senturk, Hakan

    2008-01-01

    Our aim was to determine whether endogenous mononuclear leukocyte DNA strand is a target of phototherapy. The study included 65 term infants aged between 3-10 days that had been exposed to intensive (n = 23) or conventional (n = 23) phototherapy for at least 48 hours due to neonatal jaundice, and a control group (n = 19). DNA damage was assayed by single-cell alkaline gel electrophoresis (comet assay). Plasma total antioxidant capacity and total oxidant status levels were also measured, and correlation between DNA damage and oxidative stress was investigated. Mean values of DNA damage scores in both the intensive and conventional phototherapy groups were significantly higher than those in the control group (p < 0.001). Mean values and standard deviation were 32 (9), 28 (9), 21 (7) arbitrary unit, respectively. Total oxidant status levels in both the intensive and conventional phototherapy groups were significantly higher than those in the control group (p = 0.005). Mean (standard deviation) values were 18.1 (4.2), 16.9 (4.4), 13.5 (4.2) micromol H2O2 equivalent/L, respectively. Similarly, oxidative stress index levels in both the intensive and conventional phototherapy groups were significantly higher than those in the control group (p = 0.041). Plasma total antioxidant capacity and total bilirubin levels did not differ between the groups (p > 0.05). There were no significant correlations between DNA damage scores and bilirubin, total oxidant status and oxidative stress levels in either phototherapy group (p > 0.05). Both conventional phototherapy and intensive phototherapy cause endogenous mononuclear leukocyte DNA damage in jaundiced term infants.

  6. A Highly Sensitive and Robust Method for Hepatitis B Virus Covalently Closed Circular DNA Detection in Single Cells and Serum.

    PubMed

    Huang, Jing-Tao; Yang, Ying; Hu, Yi-Min; Liu, Xing-Hui; Liao, Mei-Yan; Morgan, Roy; Yuan, Er-Feng; Li, Xia; Liu, Song-Mei

    2018-05-01

    Despite implications of persistence of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) in the development of hepatocellular carcinoma (HCC), little is known about serum cccDNA in HBV-infected diseases. We developed a cccDNA-selective droplet digital PCR (ddPCR) to assess cccDNA content and dynamics across different stages of HCC development. One hundred forty-seven serum samples and 35 formalin-fixed, paraffin-embedded tumor tissues were derived from patients with HCC or HBV hepatitis/cirrhosis. After specific amplification and selective digestion, probe-based ddPCR was used to quantify cccDNA copy numbers in single cells and clinical samples. The cccDNA in single HepG2.2.15 cells ranged from 0 to 10.8 copies/cell. Compared with non-HCC patients, HCC patients showed a higher cccDNA-positive rate (89.9% versus 53.2%; P = 4.22 × 10 -6 ) and increased serum cccDNA contents (P = 0.002 and P = 0.041 for hepatitis and cirrhosis patients, respectively). Serum cccDNA ranged from 84 to 1.07 × 10 5 copies/mL. Quantification of serum cccDNA and HBV-DNA was an effective way to discriminate HCC patients from non-HCC patients, with areas under the curve of receiver operating characteristic of 0.847 (95% CI, 0.759-0.935; sensitivity, 74.5%; specificity, 93.7%). cccDNA-selective ddPCR is sensitive to detect cccDNA in single cells and different clinical samples. Combined analysis of serum cccDNA and HBV-DNA may be a promising strategy for HBV-induced HCC surveillance and antiviral therapy evaluation. Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  7. The study of genomic DNA adsorption and subsequent interactions using total internal reflection ellipsometry.

    PubMed

    Nabok, Alexei; Tsargorodskaya, Anna; Davis, Frank; Higson, Séamus P J

    2007-10-31

    The adsorption of genomic DNA and subsequent interactions between adsorbed and solvated DNA was studied using a novel sensitive optical method of total internal reflection ellipsometry (TIRE), which combines spectroscopic ellipsometry with surface plasmon resonance (SPR). Single strands of DNA of two species of fish (herring and salmon) were electrostatically adsorbed on top of polyethylenimine films deposited upon gold coated glass slides. The ellipsometric spectra were recorded and data fitting utilized to extract optical parameters (thickness and refractive index) of adsorbed DNA layers. The further adsorption of single stranded DNA from an identical source, i.e. herring ss-DNA on herring ss-DNA or salmon ss-DNA on salmon ss-DNA, on the surface was observed to give rise to substantial film thickness increases at the surface of about 20-21 nm. Conversely adsorption of DNA from alternate species, i.e. salmon ss-DNA on herring ss-DNA or herring ss-DNA on salmon ss-DNA, yielded much smaller changes in thickness of 3-5 nm. AFM studies of the surface roughness of adsorbed layers were in line with the TIRE data.

  8. Protection of radiation induced DNA and membrane damages by total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst.

    PubMed

    Smina, T P; Maurya, D K; Devasagayam, T P A; Janardhanan, K K

    2015-05-25

    The total triterpenes isolated from the fruiting bodies of Ganoderma lucidum was examined for its potential to prevent γ-radiation induced membrane damage in rat liver mitochondria and microsomes. The effects of total triterpenes on γ-radiation-induced DNA strand breaks in pBR 322 plasmid DNA in vitro and human peripheral blood lymphocytes ex vivo were evaluated. The protective effect of total triterpenes against γ-radiation-induced micronuclei formations in mice bone marrow cells in vivo were also evaluated. The results indicated the significant effectiveness of Ganoderma triterpenes in protecting the DNA and membrane damages consequent to the hazardous effects of radiation. The findings suggest the potential use of Ganoderma triterpenes in radio therapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Bacterial Community Structure and Physiological State within an Industrial Phenol Bioremediation System

    PubMed Central

    Whiteley, Andrew S.; Bailey, Mark J.

    2000-01-01

    The structure of bacterial populations in specific compartments of an operational industrial phenol remediation system was assessed to examine bacterial community diversity, distribution, and physiological state with respect to the remediation of phenolic polluted wastewater. Rapid community fingerprinting by PCR-based denaturing gradient gel electrophoresis (DGGE) of 16S rDNA indicated highly structured bacterial communities residing in all nine compartments of the treatment plant and not exclusively within the Vitox biological reactor. Whole-cell targeting by fluorescent in situ hybridization with specific oligonucleotides (directed to the α, β and γ subclasses of the class Proteobacteria [α-, β-, and γ-Proteobacteria, respectively], the Cytophaga-Flavobacterium group, and the Pseudomonas group) tended to mirror gross changes in bacterial community composition when compared with DGGE community fingerprinting. At the whole-cell level, the treatment compartments were numerically dominated by cells assigned to the Cytophaga-Flavobacterium group and to the γ-Proteobacteria. The α subclass Proteobacteria were of low relative abundance throughout the treatment system whilst the β subclass of the Proteobacteria exhibited local dominance in several of the processing compartments. Quantitative image analyses of cellular fluorescence was used as an indicator of physiological state within the populations probed with rDNA. For cells hybridized with EUB338, the mean fluorescence per cell decreased with increasing phenolic concentration, indicating the strong influence of the primary pollutant upon cellular rRNA content. The γ subclass of the Proteobacteria had a ribosome content which correlated positively with total phenolics and thiocyanate. While members of the Cytophaga-Flavobacterium group were numerically dominant in the processing system, their abundance and ribosome content data for individual populations did not correlate with any of the measured chemical parameters. The potential importance of the γ-Proteobacteria and the Cytophaga-Flavobacteria during this bioremediation process was highlighted. PMID:10831417

  10. Re-Examining the Role of Hydrogen Peroxide in Bacteriostatic and Bactericidal Activities of Honey

    PubMed Central

    Brudzynski, Katrina; Abubaker, Kamal; St-Martin, Laurent; Castle, Alan

    2011-01-01

    The aim of this study was to critically analyze the effects of hydrogen peroxide on growth and survival of bacterial cells in order to prove or disprove its purported role as a main component responsible for the antibacterial activity of honey. Using the sensitive peroxide/peroxidase assay, broth microdilution assay and DNA degradation assays, the quantitative relationships between the content of H2O2 and honey’s antibacterial activity was established. The results showed that: (A) the average H2O2 content in honey was over 900-fold lower than that observed in disinfectants that kills bacteria on contact. (B) A supplementation of bacterial cultures with H2O2 inhibited E. coli and B. subtilis growth in a concentration-dependent manner, with minimal inhibitory concentrations (MIC90) values of 1.25 mM/107 cfu/ml and 2.5 mM/107 cfu/ml for E. coli and B. subtilis, respectively. In contrast, the MIC90 of honey against E. coli correlated with honey H2O2 content of 2.5 mM, and growth inhibition of B. subtilis by honey did not correlate with honey H2O2 levels at all. (C) A supplementation of bacterial cultures with H2O2 caused a concentration-dependent degradation of bacterial DNA, with the minimum DNA degrading concentration occurring at 2.5 mM H2O2. DNA degradation by honey occurred at lower than ≤2.5 mM concentration of honey H2O2 suggested an enhancing effect of other honey components. (D) Honeys with low H2O2 content were unable to cleave DNA but the addition of H2O2 restored this activity. The DNase-like activity was heat-resistant but catalase-sensitive indicating that H2O2 participated in the oxidative DNA damage. We concluded that the honey H2O2 was involved in oxidative damage causing bacterial growth inhibition and DNA degradation, but these effects were modulated by other honey components. PMID:22046173

  11. Re-examining the role of hydrogen peroxide in bacteriostatic and bactericidal activities of honey.

    PubMed

    Brudzynski, Katrina; Abubaker, Kamal; St-Martin, Laurent; Castle, Alan

    2011-01-01

    The aim of this study was to critically analyze the effects of hydrogen peroxide on growth and survival of bacterial cells in order to prove or disprove its purported role as a main component responsible for the antibacterial activity of honey. Using the sensitive peroxide/peroxidase assay, broth microdilution assay and DNA degradation assays, the quantitative relationships between the content of H(2)O(2) and honey's antibacterial activity was established(.) The results showed that: (A) the average H(2)O(2) content in honey was over 900-fold lower than that observed in disinfectants that kills bacteria on contact. (B) A supplementation of bacterial cultures with H(2)O(2) inhibited E. coli and B. subtilis growth in a concentration-dependent manner, with minimal inhibitory concentrations (MIC(90)) values of 1.25 mM/10(7) cfu/ml and 2.5 mM/10(7) cfu/ml for E. coli and B. subtilis, respectively. In contrast, the MIC(90) of honey against E. coli correlated with honey H(2)O(2) content of 2.5 mM, and growth inhibition of B. subtilis by honey did not correlate with honey H(2)O(2) levels at all. (C) A supplementation of bacterial cultures with H(2)O(2) caused a concentration-dependent degradation of bacterial DNA, with the minimum DNA degrading concentration occurring at 2.5 mM H(2)O(2). DNA degradation by honey occurred at lower than ≤2.5 mM concentration of honey H(2)O(2) suggested an enhancing effect of other honey components. (D) Honeys with low H(2)O(2) content were unable to cleave DNA but the addition of H(2)O(2) restored this activity. The DNase-like activity was heat-resistant but catalase-sensitive indicating that H(2)O(2) participated in the oxidative DNA damage. We concluded that the honey H(2)O(2) was involved in oxidative damage causing bacterial growth inhibition and DNA degradation, but these effects were modulated by other honey components.

  12. Enhancing antioxidant activity, microbial and sensory quality of mango (Mangifera indica L.) juice by γ-irradiation and its in vitro radioprotective potential.

    PubMed

    Naresh, Kondapalli; Varakumar, Sadineni; Variyar, Prasad Shekhar; Sharma, Arun; Reddy, Obulam Vijaya Sarathi

    2015-07-01

    Gamma irradiation is an effective method currently being used for microbial decontamination and insect disinfestations of foods. In the present study, mango (Mangifera indica L.) juice was irradiated at doses of 0, 1.0, 3.0 and 5.0 kGy and microbial load, total polyphenols, flavonoids, ascorbic acid content, antioxidant activities, colour and sensory properties were evaluated immediately after irradiation and also during storage. Microbiological assay of the fresh and stored mango juice showed better quality after γ-irradiation. The total polyphenols and flavonoids were significantly (p < 0.05) increased while the ascorbic acid content decreased with the irradiation doses applied. As a result of γ-irradiation, a significant increment in gallic, syringic and chlorogenic acids and a significant reduction in ferulic and synapic acids were noted when analyzed by HPLC. In vitro antioxidant potentials were measured using DPPH, FRAP and NO scavenging assays; the results showed significant enhancement in the activities after irradiation, that correlated well with the increase in phenolic and flavonoid content. γ-irradiation improved the colour of mango juice without any adverse changes in the sensory qualities. Significant in vitro plasmid DNA protection was observed in the presence of mango juice against radiation induced damage, even at the dose of 5 kGy. This study confirmed the potential of γ-irradiation as a method for microbial decontamination and improving the quality of the mango juice without compromising on the sensory attributes.

  13. The Development of Vocational Vehicle Drive Cycles and Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duran, Adam W.; Phillips, Caleb T.; Konan, Arnaud M.

    Under a collaborative interagency agreement between the U.S. Environmental Protection Agency and the U.S Department of Energy (DOE), the National Renewable Energy Laboratory (NREL) performed a series of in-depth analyses to characterize the on-road driving behavior including distributions of vehicle speed, idle time, accelerations and decelerations, and other driving metrics of medium- and heavy-duty vocational vehicles operating within the United States. As part of this effort, NREL researchers segmented U.S. medium- and heavy-duty vocational vehicle driving characteristics into three distinct operating groups or clusters using real world drive cycle data collected at 1 Hz and stored in NREL's Fleet DNAmore » database. The Fleet DNA database contains millions of miles of historical real-world drive cycle data captured from medium- and heavy vehicles operating across the United States. The data encompass data from existing DOE activities as well as contributions from valued industry stakeholder participants. For this project, data captured from 913 unique vehicles comprising 16,250 days of operation were drawn from the Fleet DNA database and examined. The Fleet DNA data used as a source for this analysis has been collected from a total of 30 unique fleets/data providers operating across 22 unique geographic locations spread across the United States. This includes locations with topology ranging from the foothills of Denver, Colorado, to the flats of Miami, Florida. The range of fleets, geographic locations, and total number of vehicles analyzed ensures results that include the influence of these factors. While no analysis will be perfect without unlimited resources and data, it is the researchers understanding that the Fleet DNA database is the largest and most thorough publicly accessible vocational vehicle usage database currently in operation. This report includes an introduction to the Fleet DNA database and the data contained within, a presentation of the results of the statistical analysis performed by NREL, review of the logistic model developed to predict cluster membership, and a discussion and detailed summary of the development of the vocational drive cycle weights and representative transient drive cycles for testing and simulation. Additional discussion of known limitations and potential future work are also included in the report content.« less

  14. Flow cytofluorometric assay of human whole blood leukocyte DNA degradation in response to Yersinia pestis and Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Kravtsov, Alexander L.; Grebenyukova, Tatyana P.; Bobyleva, Elena V.; Golovko, Elena M.; Malyukova, Tatyana A.; Lyapin, Mikhail N.; Kostyukova, Tatyana A.; Yezhov, Igor N.; Kuznetsov, Oleg S.

    2001-05-01

    Human leukocytes containing less than 2C DNA per cell (damaged or dead cells) were detected and quantified by flow cytometry and DNA-specific staining with ethidium bromide and mithramycin in whole blood infected with Staphylococcus aureus or Yersinia pestis. Addition of live S. aureus to the blood (100 microbe cells per one leukocyte) resulted in rapid degradation of leukocyte DNA within 3 to 6 hours of incubation at 37 degree(s)C. However, only about 50 percent cells were damaged and the leukocytes with the intact genetic apparatus could be found in the blood for a period up to 24 hours. The leukocyte injury was preceded by an increase of DNA per cell content (as compared to the normal one) that was likely to be connected with the active phagocytosis of S. aureus by granulocytes (2C DNA of diploid phagocytes plus the all bacterial DNA absorbed). In response to the same dose of actively growing (at 37 degree(s)C) virulent Y. pestis cells, no increase in DNA content per cell could be observed in the human blood leukocytes. The process of the leukocyte DNA degradation started after a 6-hour incubation, and between 18 to 24 hours of incubation about 90 percent leukocytes (phagocytes and lymphocytes) lost their specific DNA fluorescence. These results demonstrated a high potential of flow cytometry in comparative analysis in vitro of the leukocyte DNA degradation process in human blood in response to bacteria with various pathogenic properties. They agree with the modern idea of an apoptotic mechanism of immunosuppression in plague.

  15. Condition of larval and early juvenile Japanese temperate bass Lateolabrax japonicus related to spatial distribution and feeding in the Chikugo estuarine nursery ground in the Ariake Bay, Japan

    NASA Astrophysics Data System (ADS)

    Islam, Md. Shahidul; Hibino, Manabu; Nakayama, Kouji; Tanaka, Masaru

    2006-02-01

    The present study investigates feeding and condition of larval and juvenile Japanese temperate bass Lateolabrax japonicus in relation to spatial distribution in the Chikugo estuary (Japan). Larvae were collected in a wide area covering the nursery grounds of the species in 2002 and 2003. Food habits of the fish were analysed by examining their gut contents. Fish condition was evaluated by using morphometric (the length-weight relationship and condition factor) and biochemical (the RNA:DNA ratio and other nucleic acid based parameters) indices and growth rates. The nucleic-acid contents in individually frozen larvae and juveniles were quantified by standard fluorometric methods. Two distinct feeding patterns, determined by the distribution of prey copepods, were identified. The first pattern showed dependence on the calanoid copepod Sinocalanus sinensis, which was the single dominant prey in low-saline upper river areas. The second pattern involved a multi-specific dietary habit mainly dominated by Acartia omorii, Oithona davisae, and Paracalanus parvus. As in the gut contents analyses, two different sets of values were observed for RNA, DNA, total protein, growth rates and for all the nucleic acid-based indices: one for the high-saline downstream areas and a second for the low-saline upstream areas, which was significantly higher than the first. The proportion of starving fish was lower upstream than downstream. Values of the allometric coefficient ( b) and the condition factor ( K) obtained from the length-weight relationships increased gradually from the sea to the upper river. Clearly, fish in the upper river had a better condition than those in the lower estuary. RNA:DNA ratios correlated positively with temperature and negatively with salinity. We hypothesise that by migration to the better foraging grounds of the upper estuary (with higher prey biomass, elevated temperature and reduced salinity), the fish reduce early mortality and attain a better condition. We conclude that utilisation of the copepod S. sinensis in the upstream nursery grounds is one of the key early survival strategies in Japanese temperate bass in the Chikugo estuary.

  16. Characterization of soil phosphorus in a fire-affected forest Cambisol by chemical extractions and (31)P-NMR spectroscopy analysis.

    PubMed

    Turrion, María-Belén; Lafuente, Francisco; Aroca, María-José; López, Olga; Mulas, Rafael; Ruipérez, Cesar

    2010-07-15

    This study was conducted to investigate the long-term effects of fire on soil phosphorus (P) and to determine the efficiency of different procedures in extracting soil P forms. Different P forms were determined: labile forms (Olsen-P, Bray-P, and P extracted by anion exchange membranes: AEM-P); moderately labile inorganic and organic P, obtained by NaOH-EDTA extraction after removing the AEM-P fraction; and total organic and inorganic soil P. (31)P-NMR spectroscopy was used to characterize the structure of alkali-soluble P forms (orthophosphate, monoester, pyrophosphate, and DNA). The studied area was a Pinus pinaster forest located at Arenas de San Pedro (southern Avila, Spain). The soils were Dystric Cambisols over granites. Soil samples were collected at 0-2 cm, 2-5 cm, and 10-15 cm depths, two years after a fire in the burned area and in an adjacent unburned forest area. Fire increased the total N, organic C, total P, and organic and inorganic P content in the surface soil layer. In burned soil, the P extracted by the sequential procedure (AEM and NaOH+EDTA) was about 95% of the total P. Bray extraction revealed a fire-induced increase in the sorption surfaces. Analysis by chemical methods overestimated the organic P fraction in the EDTA-NaOH extract in comparison with the determination by ignition procedure. This overestimation was more important in the burned than unburned soil samples, probably due to humification promoted by burning, which increased P sorption by soil particles. The fire-induced changes on the structure of alkali-soluble P were an increase in orthophosphate-P and a decrease in monoester-P and DNA-P. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Flow cytometry enables identification of sporophytic eliciting stress treatments in gametic cells.

    PubMed

    Ribalta, F M; Croser, J S; Ochatt, S J

    2012-01-01

    Flow cytometry was used to quantify the effect of individual and combined stress treatments on elicitation of androgenesis by analyzing the relative nuclear DNA content of in vitro cultured microspores of Pisum sativum L. Differences in relative nuclear DNA content of microspores within anthers after stress treatments were clearly evident from the flow cytometry profiles, and permitted us to predict whether a combination of stresses were elicitors or enhancers of androgenesis. This is the first report to assess the effect of various stress treatments in a plant species based on relative nuclear DNA content and to use this information to categorize them as 'elicitors' or 'enhancers'. Flow cytometry represents a simple, quick and reliable way to analyze and discriminate the effect of various stress treatments on elicitation of androgenesis. These results form a solid basis for further efforts designed to enhance responses and to extend double haploid technology to other legumes. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Luminescent threat: toxicity of light stick attractors used in pelagic fishery

    PubMed Central

    de Oliveira, Tiago Franco; da Silva, Amanda Lucila Medeiros; de Moura, Rafaela Alves; Bagattini, Raquel; de Oliveira, Antonio Anax Falcão; de Medeiros, Marisa Helena Gennari; Di Mascio, Paolo; de Arruda Campos, Ivan Pérsio; Barretto, Fabiano Prado; Bechara, Etelvino José Henriques; de Melo Loureiro, Ana Paula

    2014-01-01

    Light sticks (LS) are sources of chemiluminescence commonly used in pelagic fishery, where hundreds are discarded and reach the shores. Residents from fishing villages report an improper use of LS contents on the skin. Given the scarce information regarding LS toxicity, the effects of LS solutions in cell cultures were evaluated herein. Loss of viability, cell cycle changes and DNA fragmentation were observed in HepG2 cell line and skin fibroblasts. A non-cytotoxic LS concentration increased the occurrence of the mutagenic lesion 1,N6-εdAdo in HepG2 DNA by three-fold. Additionally, in vitro incubations of spent LS contents with DNA generated dGuo-LS adducts, whose structure elucidation revealed the presence of a reactive chlorinated product. In conclusion, the LS contents were found to be highly cyto- and genotoxic. Our data indicate an urgent need for LS waste management guidelines and for adequate information regarding toxic outcomes that may arise from human exposure. PMID:24942522

  19. Resistance of Bacillus subtilis Spore DNA to Lethal Ionizing Radiation Damage Relies Primarily on Spore Core Components and DNA Repair, with Minor Effects of Oxygen Radical Detoxification

    PubMed Central

    Raguse, Marina; Reitz, Günther; Okayasu, Ryuichi; Li, Zuofeng; Klein, Stuart; Setlow, Peter; Nicholson, Wayne L.

    2014-01-01

    The roles of various core components, including α/β/γ-type small acid-soluble spore proteins (SASP), dipicolinic acid (DPA), core water content, and DNA repair by apurinic/apyrimidinic (AP) endonucleases or nonhomologous end joining (NHEJ), in Bacillus subtilis spore resistance to different types of ionizing radiation including X rays, protons, and high-energy charged iron ions have been studied. Spores deficient in DNA repair by NHEJ or AP endonucleases, the oxidative stress response, or protection by major α/β-type SASP, DPA, and decreased core water content were significantly more sensitive to ionizing radiation than wild-type spores, with highest sensitivity to high-energy-charged iron ions. DNA repair via NHEJ and AP endonucleases appears to be the most important mechanism for spore resistance to ionizing radiation, whereas oxygen radical detoxification via the MrgA-mediated oxidative stress response or KatX catalase activity plays only a very minor role. Synergistic radioprotective effects of α/β-type but not γ-type SASP were also identified, indicating that α/β-type SASP's binding to spore DNA is important in preventing DNA damage due to reactive oxygen species generated by ionizing radiation. PMID:24123749

  20. High-Throughput Block Optical DNA Sequence Identification.

    PubMed

    Sagar, Dodderi Manjunatha; Korshoj, Lee Erik; Hanson, Katrina Bethany; Chowdhury, Partha Pratim; Otoupal, Peter Britton; Chatterjee, Anushree; Nagpal, Prashant

    2018-01-01

    Optical techniques for molecular diagnostics or DNA sequencing generally rely on small molecule fluorescent labels, which utilize light with a wavelength of several hundred nanometers for detection. Developing a label-free optical DNA sequencing technique will require nanoscale focusing of light, a high-throughput and multiplexed identification method, and a data compression technique to rapidly identify sequences and analyze genomic heterogeneity for big datasets. Such a method should identify characteristic molecular vibrations using optical spectroscopy, especially in the "fingerprinting region" from ≈400-1400 cm -1 . Here, surface-enhanced Raman spectroscopy is used to demonstrate label-free identification of DNA nucleobases with multiplexed 3D plasmonic nanofocusing. While nanometer-scale mode volumes prevent identification of single nucleobases within a DNA sequence, the block optical technique can identify A, T, G, and C content in DNA k-mers. The content of each nucleotide in a DNA block can be a unique and high-throughput method for identifying sequences, genes, and other biomarkers as an alternative to single-letter sequencing. Additionally, coupling two complementary vibrational spectroscopy techniques (infrared and Raman) can improve block characterization. These results pave the way for developing a novel, high-throughput block optical sequencing method with lossy genomic data compression using k-mer identification from multiplexed optical data acquisition. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Isolation and Characterization of Chloroplast DNA from the Duckweed Spirodela oligorrhiza

    PubMed Central

    van Ee, Jan H.; Veld, Willem A. Man In'T; Planta, Rudi J.

    1980-01-01

    Chloroplast DNA of the duckweed Spirodela oligorrhiza, isolated by CsCl gradient centrifugation, was characterized by its buoyant density, guanine + cytosine content, melting behavior, circularity, and contour length. In all these characteristics, chloroplast DNA of S. oligorrhiza is similar to the chloroplast genomes of other higher plants, except that it has a significantly larger size. Images PMID:16661479

  2. Genome sizes of cranes (Aves: Gruiformes).

    PubMed

    Rasch, Ellen M

    2006-12-01

    The DNA content of blood cell nuclei of 15 species of cranes was determined by Feulgen-DNA cytophotometry. Genome sizes agree with values reported elsewhere for several crane species analyzed by flow cytometry. Males have more DNA per cell than females in several species. A karyotype where 2n = 80 is reported for a male greater sandhill crane. Copyright 2006 Wiley-Liss, Inc.

  3. Effect of caffeine on radiation-induced apoptosis in TK6 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen, W.; Vaughan, A.T.M.

    1995-02-01

    Apoptosis has been measured in cells of the human TK6 lymphoblastoid cell line by recording the release of endonuclease-digested DNA from affected cells using flow cytometry. In asynchronously dividing cells, DNA degradation characteristic of apoptosis was first seen 12 h after irradiation as a defined DNA fluorescent peak of sub-G{sub 1}-phase content, reaching a maximum of 30-50% of the population by 24-72 h. Treating cells with 2 mM caffeine either before or up to 3 h after irradiation eliminated the degradation of DNA entirely. In addition, the percentage of cells in which apoptosis could be detected microscopically decreased from 62.4more » {+-} 0.95% to 16.7 {+-} 1.5% 72 h after caffeine treatment. Delaying caffeine treatment for 12 h after irradiation reduced DNA degradation by approximately 50% compared to cells receiving radiation alone. DNA degradation induced by serum deprivation was unaffected by caffeine treatment. These data support the contention that irradiation of TK6 cells produces a long-lived cellular signal which triggers apoptosis. Apoptosis produced by serum deprivation does not operate through the same pathway. 36 refs., 5 figs.« less

  4. Understanding the anaerobic biodegradability of food waste: Relationship between the typological, biochemical and microbial characteristics.

    PubMed

    Fisgativa, Henry; Tremier, Anne; Le Roux, Sophie; Bureau, Chrystelle; Dabert, Patrick

    2017-03-01

    In this study, an extensive characterisation of food waste (FW) was performed with the aim of studying the relation between FW characteristics and FW treatability through an anaerobic digestion process. In addition to the typological composition (paper, meat, fruits, vegetables contents, etc) and the physicochemical characteristics, this study provides an original characterisation of microbial populations present in FW. These intrinsic populations can actively participate to aerobic and anaerobic degradation with the presence of Proteobacteria and Firmicutes species for the bacteria and of Ascomycota phylum for the fungi. However, the characterisation of FW bacterial and fungi community shows to be a challenge because of the biases generated by the non-microbial DNA coming from plant and by the presence of mushrooms in the food. In terms of relations, it was demonstrated that some FW characteristics as the density, the volatile solids and the fibres content vary as a function of the typological composition. No direct relationship was demonstrated between the typological composition and the anaerobic biodegradability. However, the Pearson's matrix results reveal that the anaerobic biodegradation potential of FW was highly related to the total chemical oxygen demand (tCOD), the total solid content (TS), the high weight organic matter molecules soluble in water (SOL W >1.5 kDa) and the C/N ratio content. These relations may help predicting FW behaviour through anaerobic digestion process. Finally, this study also showed that the storage of FW before collection, that could induce pre-biodegradation, seems to impact several biochemical characteristics and could improve the biodegradability of FW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Developmental validation of the DNAscan™ Rapid DNA Analysis™ instrument and expert system for reference sample processing.

    PubMed

    Della Manna, Angelo; Nye, Jeffrey V; Carney, Christopher; Hammons, Jennifer S; Mann, Michael; Al Shamali, Farida; Vallone, Peter M; Romsos, Erica L; Marne, Beth Ann; Tan, Eugene; Turingan, Rosemary S; Hogan, Catherine; Selden, Richard F; French, Julie L

    2016-11-01

    Since the implementation of forensic DNA typing in labs more than 20 years ago, the analysis procedures and data interpretation have always been conducted in a laboratory by highly trained and qualified scientific personnel. Rapid DNA technology has the potential to expand testing capabilities within forensic laboratories and to allow forensic STR analysis to be performed outside the physical boundaries of the traditional laboratory. The developmental validation of the DNAscan/ANDE Rapid DNA Analysis System was completed using a BioChipSet™ Cassette consumable designed for high DNA content samples, such as single source buccal swabs. A total of eight laboratories participated in the testing which totaled over 2300 swabs, and included nearly 1400 unique individuals. The goal of this extensive study was to obtain, document, analyze, and assess DNAscan and its internal Expert System to reliably genotype reference samples in a manner compliant with the FBI's Quality Assurance Standards (QAS) and the NDIS Operational Procedures. The DNAscan System provided high quality, concordant results for reference buccal swabs, including automated data analysis with an integrated Expert System. Seven external laboratories and NetBio, the developer of the technology, participated in the validation testing demonstrating the reproducibility and reliability of the system and its successful use in a variety of settings by numerous operators. The DNAscan System demonstrated limited cross reactivity with other species, was resilient in the presence of numerous inhibitors, and provided reproducible results for both buccal and purified DNA samples with sensitivity at a level appropriate for buccal swabs. The precision and resolution of the system met industry standards for detection of micro-variants and displayed single base resolution. PCR-based studies provided confidence that the system was robust and that the amplification reaction had been optimized to provide high quality results. The DNAscan integrated Expert System was examined as part of the Developmental Validation and successfully interpreted the over 2000 samples tested with over 99.998% concordant alleles. The system appropriately flagged samples for human review and failed both mixed samples and samples with insufficient genetic information. These results demonstrated the integrated Expert System makes correct allele calls without human intervention. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  6. The transcultural diabetes nutrition algorithm toolkit: survey and content validation in the United States, Mexico, and Taiwan.

    PubMed

    Hamdy, Osama; Marchetti, Albert; Hegazi, Refaat A; Mechanick, Jeffrey I

    2014-06-01

    Evidence demonstrates that medical nutrition therapy (MNT) in prediabetes and type 2 diabetes (T2D) improves glycemic control and reduces diabetes risks and complications. Consequently, MNT is included in current clinical practice guidelines. Guideline recommendations, however, are frequently limited by their complexity, contradictions, personal and cultural rigidity, and compromised portability. The transcultural Diabetes Nutrition Algorithm (tDNA) was developed to overcome these limitations. To facilitate tDNA uptake and usage, an instructional Patient Algorithm Therapy (PATh) toolkit was created. Content validation of tDNA-PATh is needed before widespread implementation. Healthcare providers (n=837) in Mexico (n=261), Taiwan (n=250), and the United States (n=326) were questioned about challenges implementing MNT in clinical practice and the projected utilization and impact of tDNA-PATh. To assess the international portability and applicability of tDNA-PATh, the survey was conducted in countries with distinct ethnic and cultural attributes. Potential respondents were screened for professional and practice demographics related to diabetes. The questionnaire was administered electronically after respondents were exposed to core tDNA-PATh components. Overall, 61% of respondents thought that tDNA-PATh could help overcome MNT implementation challenges, 91% indicated positive impressions, 83% believed they would adopt tDNA-PATh, and 80% thought tDNA-PATh would be fairly easy to implement. tDNA-PATh appears to be an effective culturally sensitive tool to foster MNT in clinical practice. By providing simple culturally specific instructions, tDNA-PATh may help to overcome current impediments to implementing recommended lifestyle modifications. Specific guidance provided by tDNA-PATh, together with included patient education materials, may increase healthcare provider efficiency.

  7. SE33 locus as a reliable genetic marker for forensic DNA analysis systems

    PubMed

    Bhinder, Munir Ahmad; Zahoor, Muhammad Yasir; Sadia, Haleema; Qasim, Muhammad; Perveen, Rukhsana; Anjum, Ghulam Murtaza; Iqbal, Muhammad; Ullah, Najeeb; Shehzad, Wasim; Tariq, Muhammad; Waryah, Ali Muhammad

    2018-06-14

    Background/aim: Genetic variation, an authentic tool of individual discrimination, is being used for forensic investigations worldwide. A missing result for even one out of 13-17 markers leads to an inconclusive report. Additional reliable markers are required to compensate such deficiencies. The SE33 locus has high genetic variability in different populations and is being used in forensic investigation systems in some countries. The purpose of the study was to assess the viability of use of the SE33 locus as a supportive marker for forensic DNA profiling. Materials and methods: Amplification of the SE33 locus was performed using the PowerPlex ES Monoplex System SE33 (Promega). After genotyping 204 Pakistani individuals, different genetic and forensic parameters for the SE33 locus were studied. Results: Genotyping of the SE33 locus revealed a total of 43 alleles including 3 novel alleles. Significant values of different forensic and genetic parameters including power of discrimination, power of exclusion, and polymorphism information content were observed. Conclusions: Addition of the SE33 locus in forensic DNA profiling may help to produce conclusive reports where results are inconclusive due to degraded evidence samples. The SE33 locus can confidently be used for Pakistani and neighboring populations having common ancestors from Iran to Central Asia, the Middle East, India and Turkey.

  8. Taxonomic analysis of extremely halophilic archaea isolated from 56-years-old dead sea brine samples.

    PubMed

    Arahal, D R; Gutiérrez, M C; Volcani, B E; Ventosa, A

    2000-10-01

    A taxonomic study comprising both phenotypic and genotypic characterization, has been carried out on a total of 158 extremely halophilic aerobic archaeal strains. These strains were isolated from enrichments prepared from Dead Sea water samples dating from 1936 that were collected by B. E. Volcani for the demonstration of microbial life in the Dead Sea. The isolates were examined for 126 morphological, physiological, biochemical and nutritional tests. Numerical analysis of the data, by using the S(J) coefficient and UPGMA clustering method, showed that the isolates clustered into six phenons. Twenty-two out of the 158 strains used in this study were characterized previously (ARAHAL et al., 1996) and were placed into five phenotypic groups. The genotypic study included both the determination of the guanineplus-cytosine content of the DNA and DNA-DNA hybridization studies. For this purpose, representative strains from the six phenons were chosen. These groups were found to represent some members of three different genera - Haloarcula (phenons A, B, and C), Haloferax (phenons D and E) and Halobacterium (phenon F) - of the family Halobacteriaceae, some of them never reported to occur in the Dead Sea, such as Haloarcula hispanica, while Haloferax volcanii (phenons D and E) was described in the Dead Sea by studies carried out several decades later than Volcani's work.

  9. Molecular diagnosis of a previously unreported predator-prey association in coffee: Karnyothrips flavipes Jones (Thysanoptera: Phlaeothripidae) predation on the coffee berry borer

    NASA Astrophysics Data System (ADS)

    Jaramillo, Juliana; Chapman, Eric G.; Vega, Fernando E.; Harwood, James D.

    2010-03-01

    The coffee berry borer, Hypothenemus hampei, is the most important pest of coffee throughout the world, causing losses estimated at US 500 million/year. The thrips Karnyothrips flavipes was observed for the first time feeding on immature stages of H. hampei in April 2008 from samples collected in the Kisii area of Western Kenya. Since the trophic interactions between H. hampei and K. flavipes are carried out entirely within the coffee berry, and because thrips feed by liquid ingestion, we used molecular gut-content analysis to confirm the potential role of K. flavipes as a predator of H. hampei in an organic coffee production system. Species-specific COI primers designed for H. hampei were shown to have a high degree of specificity for H. hampei DNA and did not produce any PCR product from DNA templates of the other insects associated with the coffee agroecosystems. In total, 3,327 K. flavipes emerged from 17,792 H. hampei-infested berries collected from the field between April and September 2008. Throughout the season, 8.3% of K. flavipes tested positive for H. hampei DNA, although at times this figure approached 50%. Prey availability was significantly correlated with prey consumption, thus indicating the potential impact on H. hampei populations.

  10. Molecular diagnosis of a previously unreported predator-prey association in coffee: Karnyothrips flavipes Jones (Thysanoptera: Phlaeothripidae) predation on the coffee berry borer.

    PubMed

    Jaramillo, Juliana; Chapman, Eric G; Vega, Fernando E; Harwood, James D

    2010-03-01

    The coffee berry borer, Hypothenemus hampei, is the most important pest of coffee throughout the world, causing losses estimated at US $500 million/year. The thrips Karnyothrips flavipes was observed for the first time feeding on immature stages of H. hampei in April 2008 from samples collected in the Kisii area of Western Kenya. Since the trophic interactions between H. hampei and K. flavipes are carried out entirely within the coffee berry, and because thrips feed by liquid ingestion, we used molecular gut-content analysis to confirm the potential role of K. flavipes as a predator of H. hampei in an organic coffee production system. Species-specific COI primers designed for H. hampei were shown to have a high degree of specificity for H. hampei DNA and did not produce any PCR product from DNA templates of the other insects associated with the coffee agroecosystems. In total, 3,327 K. flavipes emerged from 17,792 H. hampei-infested berries collected from the field between April and September 2008. Throughout the season, 8.3% of K. flavipes tested positive for H. hampei DNA, although at times this figure approached 50%. Prey availability was significantly correlated with prey consumption, thus indicating the potential impact on H. hampei populations.

  11. enoLOGOS: a versatile web tool for energy normalized sequence logos

    PubMed Central

    Workman, Christopher T.; Yin, Yutong; Corcoran, David L.; Ideker, Trey; Stormo, Gary D.; Benos, Panayiotis V.

    2005-01-01

    enoLOGOS is a web-based tool that generates sequence logos from various input sources. Sequence logos have become a popular way to graphically represent DNA and amino acid sequence patterns from a set of aligned sequences. Each position of the alignment is represented by a column of stacked symbols with its total height reflecting the information content in this position. Currently, the available web servers are able to create logo images from a set of aligned sequences, but none of them generates weighted sequence logos directly from energy measurements or other sources. With the advent of high-throughput technologies for estimating the contact energy of different DNA sequences, tools that can create logos directly from binding affinity data are useful to researchers. enoLOGOS generates sequence logos from a variety of input data, including energy measurements, probability matrices, alignment matrices, count matrices and aligned sequences. Furthermore, enoLOGOS can represent the mutual information of different positions of the consensus sequence, a unique feature of this tool. Another web interface for our software, C2H2-enoLOGOS, generates logos for the DNA-binding preferences of the C2H2 zinc-finger transcription factor family members. enoLOGOS and C2H2-enoLOGOS are accessible over the web at . PMID:15980495

  12. Overcoming PCR Inhibition During DNA-Based Gut Content Analysis of Ants.

    PubMed

    Penn, Hannah J; Chapman, Eric G; Harwood, James D

    2016-10-01

    Generalist predators play an important role in many terrestrial systems, especially within agricultural settings, and ants (Hymenoptera: Formicidae) often constitute important linkages of these food webs, as they are abundant and influential in these ecosystems. Molecular gut content analysis provides a means of delineating food web linkages of ants based on the presence of prey DNA within their guts. Although this method can provide insight, its use on ants has been limited, potentially due to inhibition when amplifying gut content DNA. We designed a series of experiments to determine those ant organs responsible for inhibition and identified variation in inhibition among three species (Tetramorium caespitum (L.), Solenopsis invicta Buren, and Camponotus floridanus (Buckley)). No body segment, other than the gaster, caused significant inhibition. Following dissection, we determined that within the gaster, the digestive tract and crop cause significant levels of inhibition. We found significant differences in the frequency of inhibition between the three species tested, with inhibition most evident in T. caespitum The most effective method to prevent inhibition before DNA extraction was to exude crop contents and crop structures onto UV-sterilized tissue. However, if extracted samples exhibit inhibition, addition of bovine serum albumin to PCR reagents will overcome this problem. These methods will circumvent gut content inhibition within selected species of ants, thereby allowing more detailed and reliable studies of ant food webs. As little is known about the prevalence of this inhibition in other species, it is recommended that the protocols in this study are used until otherwise shown to be unnecessary. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Chromosome heteromorphism quantified by high-resolution bivariate flow karyotyping.

    PubMed Central

    Trask, B; van den Engh, G; Mayall, B; Gray, J W

    1989-01-01

    Maternal and paternal homologues of many chromosome types can be differentiated on the basis of their peak position in Hoechst 33258 versus chromomycin A3 bivariate flow karyotypes. We demonstrate here the magnitude of DNA content differences among normal chromosomes of the same type. Significant peak-position differences between homologues were observed for an average of four chromosome types in each of the karyotypes of 98 different individuals. The frequency of individuals with differences in homologue peak positions varied among chromosome types: e.g., chromosome 15, 61%; chromosome 3, 4%. Flow karyotypes of 33 unrelated individuals were compared to determine the range of peak position among normal chromosomes. Chromosomes Y, 21, 22, 15, 16, 13, 14, and 19 were most heteromorphic, and chromosomes 2-8 and X were least heteromorphic. The largest chromosome 21 was 45% larger than the smallest 21 chromosome observed. The base composition of the variable regions differed among chromosome types. DNA contents of chromosome variants determined from flow karyotypes were closely correlated to measurements of DNA content made of gallocyanin chrome alum-stained metaphase chromosomes on slides. Fluorescence in situ hybridization with chromosome-specific repetitive sequences indicated that variability in their copy number is partly responsible for peak-position variability in some chromosomes. Heteromorphic chromosomes are identified for which parental flow karyotype information will be essential if de novo rearrangements resulting in small DNA content changes are to be detected with flow karyotyping. Images Figure 5 PMID:2479266

  14. Bacterial DNA in water and dialysate: detection and significance for patient outcomes.

    PubMed

    Handelman, Garry J; Megdal, Peter A; Handelman, Samuel K

    2009-01-01

    The fluid used for hemodialysis may contain DNA fragments from bacteria, which could be harmful for patient outcomes. DNA fragments from bacteria, containing the nonmethylated CpG motif, can trigger inflammation through the monocyte and lymphocyte Toll-like receptor 9, and these DNA fragments have been observed in dialysate. The fragments may transfer across the dialyzer into the patient's bloodstream during hemodialysis treatment. During hemodiafiltration, the fragments would be introduced directly into the bloodstream. The DNA fragments may arise from biofilm in the pipes of the water system, from growth of bacteria in the water, or as contaminants in the bicarbonate and salt mixture used for preparation of dialysate. Current filtration methods, such as Diasafe filters, are not able to remove these fragments. It would be prudent to seek to reduce or eliminate these contaminants. However, the cost and effort of decreasing bacterial DNA content may ultimately require substantial facility improvements; we therefore need to fund research studies to determine if modifications to reduce bacterial DNA content are clinically warranted. This research will require methods to accurately determine the species of bacteria that contribute the DNA, since this information will allow the source to be established as biofilm, bicarbonate mixtures, or other problems in the dialysis system such as bacterial growth or leakage during water preparation. In this review, the evidence for bacterial DNA fragments will be examined and suggestions for further studies will be described.

  15. Liquid biopsy - Performance of the PAXgene® Blood ccfDNA Tubes for the isolation and characterization of cell-free plasma DNA from tumor patients.

    PubMed

    Schmidt, Bernd; Reinicke, Dana; Reindl, Iris; Bork, Ines; Wollschläger, Bettina; Lambrecht, Nina; Fleischhacker, Michael

    2017-06-01

    In most research laboratories the use of EDTA tubes for the isolation of plasma DNA from tumor patients is standard. Unfortunately these tubes do not allow for an extended storage of samples before processing and prevent EDTA tubes from being shipped at ambient temperature. The aim of our study was to compare the quantity and quality of plasma DNA isolated from EDTA and PAXgene® Blood ccfDNA Tubes in different downstream applications. We enrolled 29 patients in our study. Blood samples were drawn into EDTA and PAXgene® Blood ccfDNA Tubes and were processed on day 0 and day 7 after storage at ambient temperature. The plasma DNA from 10 patients was isolated manually. For the DNA isolation from the plasma of 19 additional patients we used the automated QIAsymphony system. The total amount DNA from all samples was measured with a quantitative real-time PCR assay. In addition the amount of methylated mSHOX2 plasma DNA was determined. While the 7day storage lead to an increased amount of total DNA in almost all EDTA tubes, this effect was only seen in very few PAXgene® Blood ccfDNA Tubes. The stabilization solution which prevents the lysis of blood cells had no effect on the method for quantification of methylated sequences in these samples. The quantity and quality of plasma DNA from both types of blood draw tubes are comparable. DNA from PAXgene® Blood ccfDNA was successfully used for PCR-based quantification of total amount of cell-free DNA and for methylation analysis as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Differential mitochondrial DNA and gene expression in inherited retinal dysplasia in miniature Schnauzer dogs.

    PubMed

    Appleyard, Greg D; Forsyth, George W; Kiehlbauch, Laura M; Sigfrid, Kristen N; Hanik, Heather L J; Quon, Anita; Loewen, Matthew E; Grahn, Bruce H

    2006-05-01

    To investigate the molecular basis of inherited retinal dysplasia in miniature Schnauzers. Retina and retinal pigment epithelial tissues were collected from canine subjects at the age of 3 weeks. Total RNA isolated from these tissues was reverse transcribed to make representative cDNA pools that were compared for differences in gene expression by using a subtractive hybridization technique referred to as representational difference analysis (RDA). Expression differences identified by RDA were confirmed and quantified by real-time reverse-transcription PCR. Mitochondrial morphology from leukocytes and skeletal muscle of normal and affected miniature Schnauzers was examined by transmission electron microscopy. RDA screening of retinal pigment epithelial cDNA identified differences in mRNA transcript coding for two mitochondrial (mt) proteins--cytochrome oxidase subunit 1 and NADH dehydrogenase subunit 6--in affected dogs. Contrary to expectations, these identified sequences did not contain mutations. Based on the implication of mt-DNA-encoded proteins by the RDA experiments we used real-time PCR to compare the relative amounts of mt-DNA template in white blood cells from normal and affected dogs. White blood cells of affected dogs contained less than 30% of the normal amount of two specific mtDNA sequences, compared with the content of the nuclear-encoded glyceraldehyde-3-phosphate dehydrogenase (GA-3-PDH) reference gene. Retina and RPE tissue from affected dogs had reduced mRNA transcript levels for the two mitochondrial genes detected in the RDA experiment. Transcript levels for another mtDNA-encoded gene as well as the nuclear-encoded mitochondrial Tfam transcription factor were reduced in these tissues in affected dogs. Mitochondria from affected dogs were reduced in number and size and were unusually electron dense. Reduced levels of nuclear and mitochondrial transcripts in the retina and RPE of miniature Schnauzers affected with retinal dysplasia suggest that the pathogenesis of the disorder may arise from a lowered energy supply to the retina and RPE.

  17. Cell-Free DNA in Metastatic Colorectal Cancer: A Systematic Review and Meta-Analysis.

    PubMed

    Spindler, Karen-Lise G; Boysen, Anders K; Pallisgård, Niels; Johansen, Julia S; Tabernero, Josep; Sørensen, Morten M; Jensen, Benny V; Hansen, Torben F; Sefrioui, David; Andersen, Rikke F; Brandslund, Ivan; Jakobsen, Anders

    2017-09-01

    Circulating DNA can be detected and quantified in the blood of cancer patients and used for detection of tumor-specific genetic alterations. The clinical utility has been intensively investigated for the past 10 years. The majority of reports focus on analyzing the clinical potential of tumor-specific mutations, whereas the use of total cell-free DNA (cfDNA) quantification is somehow controversial and sparsely described in the literature, but holds important clinical information in itself. The purpose of the present report was to present a systematic review and meta-analysis of the prognostic value of total cfDNA in patients with metastatic colorectal cancer (mCRC) treated with chemotherapy. In addition, we report on the overall performance of cfDNA as source for KRAS mutation detection. A systematic literature search of PubMed and Embase was performed by two independent investigators. Eligibility criteria were (a) total cfDNA analysis, (b) mCRC, and (c) prognostic value during palliative treatment. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were followed, and meta-analysis applied on both aggregate data extraction and individual patients' data. Ten eligible cohorts were identified, including a total of 1,076 patients. Seven studies used quantitative polymerase chain reaction methods, two BEAMing [beads, emulsification, amplification, and magnetics] technology, and one study digital droplet polymerase chain reaction. The baseline levels of cfDNA was similar in the presented studies, and all studies reported a clear prognostic value in favor of patients with lowest levels of baseline cfDNA. A meta-analysis revealed a combined estimate of favorable overall survival hazard ratio (HR) in patients with levels below the median cfDNA (HR = 2.39, 95% confidence interval 2.03-2.82, p  < .0001). The total cfDNA levels are high in patients with mCRC and bear strong prognostic information, which should be tested prospectively by using a predefined cut-off value based on normal values in healthy cohorts. Finally, the potential use of cfDNA for detection of tumor-specific mutations was emphasized in a large individual patients' data meta-analysis. Reliable prognostic markers could help to guide patients and treating physicians regarding the relevance and choice of systemic therapy. Small fragments of circulating cell-free DNA (cfDNA) can be measured in a simple blood sample. This report presents the first meta-analysis of the prognostic value of total cfDNA measurement in patients with metastatic colorectal cancer. Data from 1,076 patients confirmed that patients with the lowest pre-treatment levels of cfDNA had a significantly higher chance of longer survival than those with higher levels. Cell-free DNA analysis can also be used for detection of tumor-specific mutations, and hold potential as a valuable tool in colorectal cancer treatment. © AlphaMed Press 2017.

  18. Is fibromyalgia-related oxidative stress implicated in the decline of physical and mental health status?

    PubMed

    La Rubia, Mercedes; Rus, Alma; Molina, Francisco; Del Moral, M Luisa

    2013-01-01

    Fibromyalgia (FM) is a form of non-articular rheumatism characterised by chronic widespread musculoskeletal aching. Although some works have investigated the possible role of oxidative stress in the pathophysiology of FM, none has analysed a significant number of oxidative markers in the same patients. Consequently, we have performed an exhaustive study of the oxidative/antioxidative status in FM patients and healthy controls, as well as the relationship with FM clinical parameters. In 45 female patients and 25 age-matched controls, we investigated the oxidative (lipid and protein peroxidation, and oxidative DNA damage) and antioxidative status (total antioxidant capacity (TAC), and antioxidant enzyme activities and compounds). Functional capacity and musculoskeletal pain were assessed by Fibromyalgia Impact Questionnaire (FIQ) and Visual Analogue Scale (VAS), respectively. The physical (PCS-12) and mental (MCS-12) health status was evaluated by SF-12. A significant increase in oxidative DNA damage and protein carbonyl content was found in FM patients vs. controls, as well as in antioxidant compounds such as copper and ceruloplasmin. Patients had diminished levels of TAC and zinc. Enzyme activities of superoxide dismutase, glutathione peroxidase, and catalase were lower in FM patients. Significant correlations were observed in patients between oxidative DNA damage and MCS-12, and zinc and PCS-12. These findings reveal an imbalance between oxidants and antioxidants in FM patients. The lower antioxidant enzyme activities may lead to oxidative stress through the oxidation of DNA and proteins, which may affect the health status of FM patients.

  19. Isolation and characterization of full-length putative alcohol dehydrogenase genes from polygonum minus

    NASA Astrophysics Data System (ADS)

    Hamid, Nur Athirah Abd; Ismail, Ismanizan

    2013-11-01

    Polygonum minus, locally named as Kesum is an aromatic herb which is high in secondary metabolite content. Alcohol dehydrogenase is an important enzyme that catalyzes the reversible oxidation of alcohol and aldehyde with the presence of NAD(P)(H) as co-factor. The main focus of this research is to identify the gene of ADH. The total RNA was extracted from leaves of P. minus which was treated with 150 μM Jasmonic acid. Full-length cDNA sequence of ADH was isolated via rapid amplification cDNA end (RACE). Subsequently, in silico analysis was conducted on the full-length cDNA sequence and PCR was done on genomic DNA to determine the exon and intron organization. Two sequences of ADH, designated as PmADH1 and PmADH2 were successfully isolated. Both sequences have ORF of 801 bp which encode 266 aa residues. Nucleotide sequence comparison of PmADH1 and PmADH2 indicated that both sequences are highly similar at the ORF region but divergent in the 3' untranslated regions (UTR). The amino acid is differ at the 107 residue; PmADH1 contains Gly (G) residue while PmADH2 contains Cys (C) residue. The intron-exon organization pattern of both sequences are also same, with 3 introns and 4 exons. Based on in silico analysis, both sequences contain "classical" short chain alcohol dehydrogenases/reductases ((c) SDRs) conserved domain. The results suggest that both sequences are the members of short chain alcohol dehydrogenase family.

  20. A karyotype comparison between two species of bordered plant bugs (Hemiptera, Heteroptera, Largidae) by conventional chromosome staining, C-banding and rDNA-FISH.

    PubMed

    Salanitro, Lucila Belén; Massaccesi, Anabella Cecilia; Urbisaglia, Santiago; Bressa, María José; Chirino, Mónica Gabriela

    2017-01-01

    A cytogenetic characterization, including heterochromatin content, and the analysis of the location of rDNA genes, was performed in Largus fasciatus Blanchard, 1843 and L. rufipennis Laporte, 1832. Mitotic and meiotic analyses revealed the same diploid chromosome number 2n = 12 + X0/XX (male/female). Heterochromatin content, very scarce in both species, revealed C-blocks at both ends of autosomes and X chromosome. The most remarkable cytological feature observed between both species was the different chromosome position of the NORs. This analysis allowed us to use the NORs as a cytological marker because two clusters of rDNA genes are located at one end of one pair of autosomes in L. fasciatus , whereas a single rDNA cluster is located at one terminal region of the X chromosome in L. rufipennis . Taking into account our results and previous data obtained in other heteropteran species, the conventional staining, chromosome bandings, and rDNA-FISH provide important chromosome markers for cytotaxonomy, karyotype evolution, and chromosome structure and organization studies.

  1. Integrated assessment of oxidative stress and DNA damage in earthworms (Eisenia fetida) exposed to azoxystrobin.

    PubMed

    Han, Yingnan; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Xie, Hui; Zhang, Shumin

    2014-09-01

    Azoxystrobin has been widely used in recent years. The present study investigated the oxidative stress and DNA damage effects of azoxystrobin on earthworms (Eisenia fetida). Earthworms were exposed to different azoxystrobin concentrations in an artificial soil (0, 0.1, 1, and 10mg/kg) and sampled on days 7, 14, 21, and 28. Superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), glutathione-S-transferase (GST), reactive oxygen species (ROS), and malondialdehyde (MDA) content were measured by an ultraviolet spectrophotometer to determine the antioxidant responses and lipid peroxidation. Single cell gel electrophoresis (SCGE) was used to detect DNA damage in the coelomocytes. Compared with these in the controls, earthworms exposed to azoxystrobin had excess ROS accumulation and greater SOD, POD, and GST activity while the opposite trend occurred for CAT activity. MDA content increased after 14-day exposure, and DNA damage was enhanced with an increase in the concentration of azoxystrobin. In conclusion, azoxystrobin caused oxidative stress leading to lipid peroxidation and DNA damage in earthworms. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. In Utero Bisphenol A Concentration, Metabolism, and Global DNA Methylation Across Matched Placenta, Kidney, and Liver in the Human Fetus

    PubMed Central

    Nahar, Muna S.; Liao, Chunyang; Kannan, Kurunthachalam; Harris, Craig; Dolinoy, Dana C.

    2014-01-01

    While urine has been an easily accessible and feasible matrix for human biomonitoring, analytical measurements in internal tissues and organs can provide more accurate exposure assessments to understand disease etiology. This is especially important for the endocrine active compound, bisphenol A (BPA), where studies investigating internal doses at sensitive periods of human development are currently lacking. Herein, BPA concentrations, BPA-specific metabolizing enzyme gene expression, and global DNA methylation were characterized across three matched tissues from elective pregnancy terminations of 2nd trimester human fetuses: the placenta, liver, and kidney (N=12 each; N=36 total). Compared to liver (free: 0.54-50.5 ng/g), BPA concentrations were lower in matched placenta (<0.05-25.4 ng/g) and kidney (0.08-11.1 ng/g) specimens. BPA-specific metabolism gene expression of GUSB, UGT2B15, STS, and SULT1A1 differed across each tissue type; however, conjugation and deconjugation expression patterns were similar across the fetus. Average LINE1 and CCGG global methylation were 58.3 and 59.2% in placenta, 79.5 and 66.4% in fetal liver, and 77.9 and 77.0% in fetal kidney, with significant tissue-specific DNA methylation differences in both LINE1 (p-value <0.001) and CCGG content (p-value <0.001). Total BPA concentrations were positively associated with global methylation for the placenta only using the LINE1 assay (p-value: 0.002), suggesting organ-specific biological effects after fetal exposure. Utilizing sensitive human clinical specimens, results are informative for BPA toxicokinetics and toxicodynamics assessment in the developing human fetus. PMID:25434263

  3. Quorum sensing molecules in activated sludge could trigger microalgae lipid synthesis.

    PubMed

    Zhang, Chaofan; Li, Qingcheng; Fu, Liang; Zhou, Dandan; Crittenden, John C

    2018-05-18

    Cultivating microalgae using wastewater is an economical strategy to produce biofuel; however, microbial contamination has to be controlled strictly. Microalgae lipid accumulation can be triggered by environmental pressures, and here, we studied whether microbial contamination is the pressure for microalgae. We hypothesized this pressure was forced via cell-to-cell communication with quorum sensing molecules (QSMs). In this work, we verified the impacts of QSMs produced by activated sludge (wastewater-born microbial consortiums) on both lipid content and biomass production of the microalgae Chlorophyta sp., since in combination, they determined lipid productivity. With QSMs stress, the lipid content of Chlorophyta sp. increased by ∼84%, while biomass production decreased only slightly. Consistently, enzymes on the fatty acid synthesis pathways were generally up-regulated, while they were slightly down-regulated for DNA replication. In summary, the total lipid production improved by 86%. These results revealed the positive effects of microbial contamination on microalgae biofuel production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. In vitro activities of inulin fermentation products to HCT-116 cells enhanced by the cooperation between exogenous strains and adult faecal microbiota.

    PubMed

    Yin, Dan-Ting; Fu, Yu; Zhao, Xin-Huai

    2018-01-10

    Inulin was fermented by adult faecal microbiota and 10 exogenous strains for 24 or 48 h. The contents of acetate, propionate, butyrate and lactate were quantified in the fermented products, and the growth-inhibitory and apoptosis-inducing effects on a human colon cell line (HCT-116 cells) were assessed. Most of these strains increased contents of acetate, propionate and butyrate, and promoted lactate conversion. Correlation analysis suggested that butyrate and lactate in the fermentation products were positively and negatively correlated with the measured inhibition ratios (p < .05). The results were mostly consistent with the verification trial results using standard acid solutions. The fermentation products could cause apoptosis via inducing DNA fragmentation and increasing total apoptotic populations in the treated cells. Moreover, the fermentation products with higher growth-inhibitory activities demonstrated the increased apoptosis-inducing properties. In conclusion, these strains could cooperate with adult faecal microbiota to confer inulin fermentation products with higher anti-colon cancer activity.

  5. Decay of ccc-DNA marks persistence of intrahepatic viral DNA synthesis under tenofovir in HIV-HBV co-infected patients.

    PubMed

    Boyd, Anders; Lacombe, Karine; Lavocat, Fabien; Maylin, Sarah; Miailhes, Patrick; Lascoux-Combe, Caroline; Delaugerre, Constance; Girard, Pierre-Marie; Zoulim, Fabien

    2016-10-01

    In the presence of highly-potent antivirals, persistence of hepatitis B virus (HBV) is most well-characterized by covalently-closed circular DNA (cccDNA) and total intrahepatic DNA (IH-DNA). We sought to determine how antiviral therapy could affect their levels during human immunodeficiency virus (HIV)-HBV co-infection. Sixty co-infected patients from a well-defined cohort with ⩾1 liver biopsy were studied. HBV cccDNA and total IH-DNA were extracted from biopsies and quantified by real-time PCR. Factors associated with intrahepatic viral load were determined using mixed-effect linear regression and half-life viral kinetics during reconstructed follow-up using non-linear exponential decay models. At biopsy, 35 (58.3%) patients were hepatitis B "e" antigen (HBeAg)-positive and 33 (55.0%) had detectable plasma HBV-DNA (median=4.58log10IU/ml, IQR=2.95-7.43). Overall, median cccDNA was -0.95log10copies/cell (IQR=-1.70, -0.17) and total IH-DNA was 0.27log10copies/cell (IQR=-0.39, 2.00). In multivariable analysis, significantly lower levels of cccDNA and total IH-DNA were observed in patients with HBeAg-negative serology, nadir CD4(+) cell counts >250/mm(3), and longer cumulative TDF-duration, but not lamivudine- or adefovir-duration. In post-hoc analysis using reconstructed TDF-duration (median 29.6months, IQR=15.0-36.1, n=31), average half-life of cccDNA was estimated at 9.2months (HBeAg-positive=8.6, HBeAg-negative=26.2) and total IH DNA at 5.8months (HBeAg-positive=1.3, HBeAg-negative=13.6). Intrahepatic viral loads remained detectable for all patients, even with prolonged TDF-exposure. In co-infection, TDF-use is associated with lower levels of HBV replication intermediates and cccDNA. Slow decay of intrahepatic viral loads underscores that TDF is unable to completely block intracellular viral DNA synthesis, which possibly accounts for continuous replenishment of the cccDNA pool. Chronic hepatitis B virus (HBV) is a persistent infection, while the only real way of knowing the extent of this persistence is through measuring levels of virus in the liver. In this study, we examine levels of HBV in the liver among patients with both HBV and human immunodeficiency virus, or HIV, infection. It would appear that the currently available medication, namely "tenofovir", works well to decrease virus levels in the liver, but it remains at low levels despite long periods of treatment. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  6. Quality parameters and RAPD-PCR differentiation of commercial baker's yeast and hybrid strains.

    PubMed

    El-Fiky, Zaki A; Hassan, Gamal M; Emam, Ahmed M

    2012-06-01

    Baker's yeast, Saccharomyces cerevisiae, is a key component in bread baking. Total of 12 commercial baker's yeast and 2 hybrid strains were compared using traditional quality parameters. Total of 5 strains with high leavening power and the 2 hybrid strains were selected and evaluated for their alpha-amylase, maltase, glucoamylase enzymes, and compared using random amplified polymorphic DNA (RAPD). The results revealed that all selected yeast strains have a low level of alpha-amylase and a high level of maltase and glucoamylase enzymes. Meanwhile, the Egyptian yeast strain (EY) had the highest content of alpha-amylase and maltase enzymes followed by the hybrid YH strain. The EY and YH strains have the highest content of glucoamylase enzyme almost with the same level. The RAPD banding patterns showed a wide variation among commercial yeast and hybrid strains. The closely related Egyptian yeast strains (EY and AL) demonstrated close similarity of their genotypes. The 2 hybrid strains were clustered to Turkish and European strains in 1 group. The authors conclude that the identification of strains and hybrids using RAPD technique was useful in determining their genetic relationship. These results can be useful not only for the basic research, but also for the quality control in baking factories. © 2012 Institute of Food Technologists®

  7. DNA adducts and oxidative DNA damage induced by organic extracts from PM2.5 in an acellular assay.

    PubMed

    Topinka, Jan; Rossner, Pavel; Milcova, Alena; Schmuczerova, Jana; Svecova, Vlasta; Sram, Radim J

    2011-05-10

    The genotoxic activities of complex mixtures of organic extracts from the urban air particles collected in various localities of the Czech Republic, which differed in the extent and sources of air pollution, were compared. For this purpose, PM2.5 particles were collected by high volume samplers in the most polluted area of the Czech Republic--Ostrava region (localities Bartovice, Poruba and Karvina) and in the locality exhibiting a low level of air pollution--Trebon--a small town in the non-industrial region of Southern Bohemia. To prepare extractable organic matter (EOM), PM2.5 particles were extracted by dichloromethane and c-PAHs contents in the EOMs were determined. As markers of genotoxic potential, DNA adduct levels and oxidative DNA damage (8-oxo-7,8-dihydro-2'-deoxyguanosine, 8-oxodG, levels) induced by EOMs in an acellular assay of calf thymus DNA coupled with ³²P-postlabeling (DNA adducts) and ELISA (8-oxodG) in the presence and absence of microsomal S9 fraction were employed. Twofold higher DNA adduct levels (17.20 adducts/10⁸ nucleotides/m³ vs. 8.49 adducts/10⁸ nucleotides/m³) were induced by EOM from Ostrava-Bartovice (immediate proximity of heavy industry) compared with that from Ostrava-Poruba (mostly traffic emissions). Oxidative DNA damage induced by EOM from Ostrava-Bartovice was more than fourfold higher than damage induced by EOM from Trebon (8-oxodG/10⁸ dG/m³: 0.131 vs. 0.030 for Ostrava-Bartovice vs. Trebon, respectively). Since PM2.5 particles collected in various localities differ with respect to their c-PAHs content, and c-PAHs significantly contribute to genotoxicity (DNA adduct levels), we suggest that monitoring of PM2.5 levels is not a sufficient basis to assess genotoxicity of respirable aerosols. It seems likely that the industrial emissions prevailing in Ostrava-Bartovice represent a substantially higher genotoxic risk than mostly traffic-related emissions in Ostrava-Poruba. B[a]P and c-PAH contents in EOMs are the most important factors relating to their genotoxic potential. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Quantification of genetically modified soybeans using a combination of a capillary-type real-time PCR system and a plasmid reference standard.

    PubMed

    Toyota, Akie; Akiyama, Hiroshi; Sugimura, Mitsunori; Watanabe, Takahiro; Kikuchi, Hiroyuki; Kanamori, Hisayuki; Hino, Akihiro; Esaka, Muneharu; Maitani, Tamio

    2006-04-01

    Because the labeling of grains and feed- and foodstuffs is mandatory if the genetically modified organism (GMO) content exceeds a certain level of approved genetically modified varieties in many countries, there is a need for a rapid and useful method of GMO quantification in food samples. In this study, a rapid detection system was developed for Roundup Ready Soybean (RRS) quantification using a combination of a capillary-type real-time PCR system, a LightCycler real-time PCR system, and plasmid DNA as the reference standard. In addition, we showed for the first time that the plasmid and genomic DNA should be similar in the established detection system because the PCR efficiencies of using plasmid DNA and using genomic DNA were not significantly different. The conversion factor (Cf) to calculate RRS content (%) was further determined from the average value analyzed in three laboratories. The accuracy and reproducibility of this system for RRS quantification at a level of 5.0% were within a range from 4.46 to 5.07% for RRS content and within a range from 2.0% to 7.0% for the relative standard deviation (RSD) value, respectively. This system rapidly monitored the labeling system and had allowable levels of accuracy and precision.

  9. Distribution of DNA in human Sertoli cell nucleoli.

    PubMed

    Mosgöller, W; Schöfer, C; Derenzini, M; Steiner, M; Maier, U; Wachtler, F

    1993-10-01

    For better understanding of nucleolar architecture, different techniques have been used to localize DNA within the dense fibrillar component (DF) or within the fibrillar centers (FC) by electron microscopy (EM). Since it still remains controversial which components contain DNA, we investigated the distribution of DNA in human Sertoli cells using various approaches. In situ hybridization (ISH) with human total genomic DNA as probe and the use of anti-DNA antibody were followed by immunogold detection. This allowed statistical evaluation of the signal density over individual components. The Feulgen-like osmium-ammine (OA) technique for the selective visualization of DNA was also applied. The anti-DNA antibodies detected DNA in mitochondria, in chromatin, and in the DF of the nucleolus. ISH using human total genomic DNA showed similar labeling patterns. The OA technique revealed DNA filaments in the FC and focal agglomerates of decondensed DNA within the DF. We conclude that (a) EM staining techniques that utilize colloidal gold appear to be less sensitive for DNA detection than the OA method, (b) the DF consists of different domains with different molecular composition, and (c) decondensed DNA is not necessarily confined to one particular nucleolar component.

  10. Daily Overfeeding from Protein and/or Carbohydrate Supplementation for Eight Weeks in Conjunction with Resistance Training Does not Improve Body Composition and Muscle Strength or Increase Markers Indicative of Muscle Protein Synthesis and Myogenesis in Resistance-Trained Males

    PubMed Central

    Spillane, Mike; Willoughby, Darryn S.

    2016-01-01

    This study determined the effects of heavy resistance training and daily overfeeding with carbohydrate and/or protein on blood and skeletal muscle markers of protein synthesis (MPS), myogenesis, body composition, and muscle performance. Twenty one resistance-trained males were randomly assigned to either a protein + carbohydrate [HPC (n = 11)] or a carbohydrate [HC (n = 10)] supplement group in a double-blind fashion. Body composition and muscle performance were assessed, and venous blood samples and muscle biopsies were obtained before and after eight weeks of resistance training and supplementation. Data were analyzed by two-way ANOVA (p ≤ 0.05). Total body mass, body water, and fat mass were significantly increased in both groups in response to resistance training, but not supplementation (p < 0.05); however, lean mass was not significantly increased in either group (p = 0.068). Upper- (p = 0.024) and lower-body (p = 0.001) muscle strength and myosin heavy chain (MHC) 1 (p = 0.039) and MHC 2A (p = 0.027) were also significantly increased with resistance training. Serum IGF-1, GH, and HGF were not significantly affected (p > 0.05). Muscle total DNA, total protein, and c-Met were not significantly affected (p > 0.05). In conjunction with resistance training, the peri-exercise and daily overfeeding of protein and/or carbohydrate did not preferentially improve body composition, muscle performance, and markers indicative of MPS and myogenic activation. Key points In response to 56 days of heavy resistance training and HC or HPC supplementation, similar increases in muscle mass and strength in both groups occurred; however, the increases were not different between supplement groups. The supplementation of HPC had no preferential effect on augmenting serum IGF-1 GH, or HGF. The supplementation of HPC had no preferential effect on augmenting increases in total muscle protein content or the myogenic markers, total DNA and muscle cMet content. In response to 56 days of a daily supplemental dose of 94 g of protein and 196 g of carbohydrate, the HPC group was no more effective than 312 g of carbohydrate in the HC group in increasing muscle strength and mass due to its ability to elevate serum anabolic hormones and growth factors and markers of myogenic activation of satellite cells. PMID:26957922

  11. Correlation of DNA content and nucleomorphometric features with World Health Organization grading of meningiomas.

    PubMed

    Grunewald, J P; Röhl, F W; Kirches, E; Dietzmann, K

    1998-02-01

    Many studies dealing with extracranial cancer showed a strong correlation of DNA ploidy to a poor clinical outcome, recurrence, or malignancy. In brain tumors, analysis of DNA content did not always provided significant diagnostic information. In this study, DNA density and karyometric parameters of 50 meningiomas (26 Grade I, 10 Grade II, 14 Grade III) were quantitatively evaluated by digital cell image analyses of Feulgen-stained nuclei. In particular, the densitometric parameter SEXT, which describes nuclear DNA content, as well as the morphometric values LENG (a computer-assisted measurement of nuclear circumference), AREA (a computer-assisted measurement of nuclear area), FCON (a parameter that describes nuclear roundness), and CONC (a describing nuclear contour), evaluated with the software IMAGE C, were correlated to World Health Organization (WHO) grading using univariate and multivariate methods. AREA and LENG values showed significant differences between tumors of Grades I and III. FCON values were unable to distinguish WHO Grade III from Grade I/II but were useful in clearly separating Grade II from Grade I tumors. CONC values detected differences between WHO Grades II and I/III tumors but not between the latter. SEXT values clearly distinguished Grade III from Grade I/II tumors. The 1c, 2c, 2.5c, and 5c exceeding rates showed no predictive values. Only the 6c exceeding rate showed a significant difference between Grades I and III. These results outline the characteristic features of the atypical (Grade II) meningiomas, which make them a recognizable tumor entity distinct from benign and anaplastic meningiomas. The combination of DNA densitometric and morphometric findings seems to be a powerful addition to the histopathologic classification of meningiomas, as suggested by the WHO.

  12. Extremophilic Acinetobacter strains from high-altitude lakes in Argentinean Puna: remarkable UV-B resistance and efficient DNA damage repair.

    PubMed

    Albarracín, Virginia Helena; Pathak, Gopal P; Douki, Thierry; Cadet, Jean; Borsarelli, Claudio Darío; Gärtner, Wolfgang; Farias, María Eugenia

    2012-06-01

    High-Altitude Andean Lakes (HAAL) of the South American Andes are almost unexplored ecosystems of shallow lakes. The HAAL are recognized by a remarkably high UV exposure, strong changes in temperature and salinity, and a high content of toxic elements, especially arsenic. Being exposed to remarkably extreme conditions, they have been classified as model systems for the study of life on other planets. Particularly, Acinetobacter strains isolated from the HAAL were studied for their survival competence under strong UV-B irradiation. Clinical isolates, Acinetobacter baumannii and Acinetobacter johnsonii, served as reference material. Whereas the reference strains rapidly lost viability under UV-B irradiation, most HAAL-derived strains readily survived this exposure and showed less change in cell number after the treatment. Controls for DNA repair activity, comparing dark repair (DR) or photo repair (PR), gave evidence for the involvement of photolyases in the DNA repair. Comparative measurements by HPLC-mass spectrometry detected the number of photoproducts: bipyrimidine dimers under both PR and DR treatments were more efficiently repaired in the HAAL strains (up to 85 % PR and 38 % DR) than in the controls (31 % PR and zero DR ability). Analysis of cosmid-cloned total genomic DNA from the most effective DNA-photorepair strain (Ver3) yielded a gene (HQ443199) encoding a protein with clear photolyase signatures belonging to class I CPD-photolyases. Despite the relatively low sequence similarity of 41 % between the enzymes from Ver3 and from E. coli (PDB 1DNPA), a model-building approach revealed a high structural homology to the CPD-photolyase of E. coli.

  13. Determination of Trichuris skrjabini by sequencing of the ITS1-5.8S-ITS2 segment of the ribosomal DNA: comparative molecular study of different species of trichurids.

    PubMed

    Cutillas, C; Oliveros, R; de Rojas, M; Guevara, D C

    2004-06-01

    Adults of Trichuris skrjahini have been isolated from the cecum of caprine hosts (Capra hircus), Trichuris ovis and Trichuris globulosa from Ovis aries (sheep) and C. hircus (goats), and Trichuris leporis from Lepus europaeus (rabbits) in Spain. Genomic DNA was isolated and the ITS1-5.8S-ITS2 segment from the ribosomal DNA (rDNA) was amplified and sequenced by polymerase chain reaction (PCR) techniques. The ITS1 of T. skrjabini, T. ovis, T. globulosa, and T. leporis was 495, 757, 757, and 536 nucleotides in length, respectively, and had G + C contents of 59.6, 58.7, 58.7, and 60.8%, respectively. Intraindividual variation was detected in the ITSI sequences of the 4 species. Furthermore, the 5.8S sequences of T. skrjabini, T. ovis, T. globulosa, and T. leporis were compared. A total of 157, 152, 153, and 157 nucleotides in length was observed in the 5.8S sequences of these 4 species, respectively. There were no sequence differences of ITS1 and 5.8S products between T. ovis and T. globulosa. Nevertheless, clear differences were detected between the ITS1 sequences of T. skrjabini, T. ovis, T. leporis, Trichuris muris, and T. arvicolae. The ITS2 fragment from the rDNA of T. skrjabini was sequenced. A comparative study of the ITS2 sequence of T. skrjabini with the previously published ITS2 sequence data of T. ovis, T. leporis, T. muris, and T. arvicolae suggested that the combined use of sequence data from both spacers would be useful in the molecular characterization of trichurid parasites.

  14. Genomic Distribution and Inter-Sample Variation of Non-CpG Methylation across Human Cell Types

    PubMed Central

    Liao, Jing; Zhang, Yingying; Gu, Hongcang; Bock, Christoph; Boyle, Patrick; Epstein, Charles B.; Bernstein, Bradley E.; Lengauer, Thomas; Gnirke, Andreas; Meissner, Alexander

    2011-01-01

    DNA methylation plays an important role in development and disease. The primary sites of DNA methylation in vertebrates are cytosines in the CpG dinucleotide context, which account for roughly three quarters of the total DNA methylation content in human and mouse cells. While the genomic distribution, inter-individual stability, and functional role of CpG methylation are reasonably well understood, little is known about DNA methylation targeting CpA, CpT, and CpC (non-CpG) dinucleotides. Here we report a comprehensive analysis of non-CpG methylation in 76 genome-scale DNA methylation maps across pluripotent and differentiated human cell types. We confirm non-CpG methylation to be predominantly present in pluripotent cell types and observe a decrease upon differentiation and near complete absence in various somatic cell types. Although no function has been assigned to it in pluripotency, our data highlight that non-CpG methylation patterns reappear upon iPS cell reprogramming. Intriguingly, the patterns are highly variable and show little conservation between different pluripotent cell lines. We find a strong correlation of non-CpG methylation and DNMT3 expression levels while showing statistical independence of non-CpG methylation from pluripotency associated gene expression. In line with these findings, we show that knockdown of DNMTA and DNMT3B in hESCs results in a global reduction of non-CpG methylation. Finally, non-CpG methylation appears to be spatially correlated with CpG methylation. In summary these results contribute further to our understanding of cytosine methylation patterns in human cells using a large representative sample set. PMID:22174693

  15. Phylogenetic Diversity of Lactic Acid Bacteria Associated with Paddy Rice Silage as Determined by 16S Ribosomal DNA Analysis

    PubMed Central

    Ennahar, Saïd; Cai, Yimin; Fujita, Yasuhito

    2003-01-01

    A total of 161 low-G+C-content gram-positive bacteria isolated from whole-crop paddy rice silage were classified and subjected to phenotypic and genetic analyses. Based on morphological and biochemical characters, these presumptive lactic acid bacterium (LAB) isolates were divided into 10 groups that included members of the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and Weissella. Analysis of the 16S ribosomal DNA (rDNA) was used to confirm the presence of the predominant groups indicated by phenotypic analysis and to determine the phylogenetic affiliation of representative strains. The virtually complete 16S rRNA gene was PCR amplified and sequenced. The sequences from the various LAB isolates showed high degrees of similarity to those of the GenBank reference strains (between 98.7 and 99.8%). Phylogenetic trees based on the 16S rDNA sequence displayed high consistency, with nodes supported by high bootstrap values. With the exception of one species, the genetic data was in agreement with the phenotypic identification. The prevalent LAB, predominantly homofermentative (66%), consisted of Lactobacillus plantarum (24%), Lactococcus lactis (22%), Leuconostoc pseudomesenteroides (20%), Pediococcus acidilactici (11%), Lactobacillus brevis (11%), Enterococcus faecalis (7%), Weissella kimchii (3%), and Pediococcus pentosaceus (2%). The present study, the first to fully document rice-associated LAB, showed a very diverse community of LAB with a relatively high number of species involved in the fermentation process of paddy rice silage. The comprehensive 16S rDNA-based approach to describing LAB community structure was valuable in revealing the large diversity of bacteria inhabiting paddy rice silage and enabling the future design of appropriate inoculants aimed at improving its fermentation quality. PMID:12514026

  16. Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis.

    PubMed

    Ennahar, Saïd; Cai, Yimin; Fujita, Yasuhito

    2003-01-01

    A total of 161 low-G+C-content gram-positive bacteria isolated from whole-crop paddy rice silage were classified and subjected to phenotypic and genetic analyses. Based on morphological and biochemical characters, these presumptive lactic acid bacterium (LAB) isolates were divided into 10 groups that included members of the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and WEISSELLA: Analysis of the 16S ribosomal DNA (rDNA) was used to confirm the presence of the predominant groups indicated by phenotypic analysis and to determine the phylogenetic affiliation of representative strains. The virtually complete 16S rRNA gene was PCR amplified and sequenced. The sequences from the various LAB isolates showed high degrees of similarity to those of the GenBank reference strains (between 98.7 and 99.8%). Phylogenetic trees based on the 16S rDNA sequence displayed high consistency, with nodes supported by high bootstrap values. With the exception of one species, the genetic data was in agreement with the phenotypic identification. The prevalent LAB, predominantly homofermentative (66%), consisted of Lactobacillus plantarum (24%), Lactococcus lactis (22%), Leuconostoc pseudomesenteroides (20%), Pediococcus acidilactici (11%), Lactobacillus brevis (11%), Enterococcus faecalis (7%), Weissella kimchii (3%), and Pediococcus pentosaceus (2%). The present study, the first to fully document rice-associated LAB, showed a very diverse community of LAB with a relatively high number of species involved in the fermentation process of paddy rice silage. The comprehensive 16S rDNA-based approach to describing LAB community structure was valuable in revealing the large diversity of bacteria inhabiting paddy rice silage and enabling the future design of appropriate inoculants aimed at improving its fermentation quality.

  17. The life-cycle of Emiliania huxleyi: A brief review and a study of relative ploidy levels analysed by flow cytometry

    NASA Astrophysics Data System (ADS)

    Green, J. C.; Course, P. A.; Tarran, G. A.

    1996-10-01

    Emiliania huxleyi exists in several principal forms including the familiar coccolith-bearing C-cell, non-motile naked N-cells, and scale-bearing swarmers (S-cells), but the relationships between these cells are unclear. Flow cytometric analyses have been undertaken on whole cells using fluorochrome staining of the DNA in order to determine the relative DNA content and the relative GC content of the S- and C-cells of selected clones. Results showed that the DNA complement of the S-cells was half that of the C-cells and the two cell types are, therefore, haploid and diploid relative to each other. The S-cells may, therefore, represent a gametic stage, though processes such as sexual fusion and meiosis have not been observed.

  18. Association of homocysteine with global DNA methylation in vegetarian Indian pregnant women and neonatal birth anthropometrics.

    PubMed

    Gadgil, Maithili S; Joshi, Kalpana S; Naik, Sadanand S; Pandit, Anand N; Otiv, Suhas R; Patwardhan, Bhushan K

    2014-11-01

    The present study was designed to evaluate if plasma maternal folate, vitamin B-12 and homocysteine levels had an effect on maternal global DNA methylation and neonatal anthropometrics in Indian pregnant women. A total of 49 participants having completed ≥36 weeks of pregnancy were enrolled in the study. Estimation of folate was by Ion capture assay, vitamin B-12 by microparticle enzyme immunoassay, total homocysteine by fluorescence polarization immunoassay and global DNA methylation using Cayman's DNA methylation enzyme immunoassay (EIA) kit. Folate and vitamin B-12 were inversely correlated to homocysteine in pregnant women consuming vegetarian and non-vegetarian diet. No difference in global DNA methylation was found between the vegetarian and non-vegetarian pregnant women. Folate and vitamin B-12 did not show association with global DNA methylation, however plasma total homocysteine of the vegetarian group showed significant correlation to global DNA methylation (r(2 )= 0.49, p = 0.011). Plasma total homocysteine was inversely related to tricep skinfold (r(2 )= -0.484, p = 0.01) and chest circumference (r(2 )= -0.104, p = 0.04) of neonates in vegetarian group. Moderate vitamin B-12 deficiency in vegetarian pregnant women might be the cause of hyperhomocystinemia, hypermethylation when compared to vitamin B-12 sufficient non-vegetarian group.

  19. N-Acetylcysteine supplementation reduces oxidative stress and DNA damage in children with β-thalassemia.

    PubMed

    Ozdemir, Zeynep Canan; Koc, Ahmet; Aycicek, Ali; Kocyigit, Abdurrahim

    2014-01-01

    There are several reports that increased oxidative stress and DNA damage were found in β-thalassemia major (β-TM) patients. In this study, we aimed to evaluate the effects of N-acetylcysteine (NAC) and vitamin E on total oxidative stress and DNA damage in children with β-TM. Seventy-five children with transfusion-dependent β-thalassemia (β-thal) were randomly chosen to receive 10 mg/kg/day of NAC or 10 IU/kg/day of vitamin E or no supplementation; 28 healthy controls were also included in the study. Serum total oxidant status (TOS) and total antioxidant capacity (TAC) were measured, oxidative stress index (OSI) was calculated, and mononuclear DNA damage was assessed by alkaline comet assay; they were determined before treatment and after 3 months of treatment. Total oxydent status, OSI, and DNA damage levels were significantly higher and TAC levels were significantly lower in the thalassemic children than in the healthy controls (p < 0.001). In both supplemented groups, mean TOS and OSI levels were decreased; TAC and pre transfusion hemoglobin (Hb) levels were significantly increased after 3 months (p ≤ 0.002). In the NAC group, DNA damage score decreased (p = 0.001). N-Acetylcysteine and vitamin E may be effective in reducing serum oxidative stress and increase pre transfusion Hb levels in children with β-thal. N-Acetylcysteine also can reduce DNA damage.

  20. Comparison of methods to evaluate the fungal biomass in heating, ventilation, and air-conditioning (HVAC) dust.

    PubMed

    Biyeyeme Bi Mve, Marie-Jeanne; Cloutier, Yves; Lacombe, Nancy; Lavoie, Jacques; Debia, Maximilien; Marchand, Geneviève

    2016-12-01

    Heating, ventilation, and air-conditioning (HVAC) systems contain dust that can be contaminated with fungal spores (molds), which may have harmful effects on the respiratory health of the occupants of a building. HVAC cleaning is often based on visual inspection of the quantity of dust, without taking the mold content into account. The purpose of this study is to propose a method to estimate fungal contamination of dust in HVAC systems. Comparisons of different analytical methods were carried out on dust deposited in a controlled-atmosphere exposure chamber. Sixty samples were analyzed using four methods: culture, direct microscopic spore count (DMSC), β-N-acetylhexosaminidase (NAHA) dosing and qPCR. For each method, the limit of detection, replicability, and repeatability were assessed. The Pearson correlation coefficients between the methods were also evaluated. Depending on the analytical method, mean spore concentrations per 100 cm 2 of dust ranged from 10,000 to 682,000. Limits of detection varied from 120 to 217,000 spores/100 cm 2 . Replicability and repeatability were between 1 and 15%. Pearson correlation coefficients varied from -0.217 to 0.83. The 18S qPCR showed the best sensitivity and precision, as well as the best correlation with the culture method. PCR targets only molds, and a total count of fungal DNA is obtained. Among the methods, mold DNA amplification by qPCR is the method suggested for estimating the fungal content found in dust of HVAC systems.

  1. Integrated and Total HIV-1 DNA Predict Ex Vivo Viral Outgrowth

    PubMed Central

    Kiselinova, Maja; De Spiegelaere, Ward; Buzon, Maria Jose; Malatinkova, Eva; Lichterfeld, Mathias; Vandekerckhove, Linos

    2016-01-01

    The persistence of a reservoir of latently infected CD4 T cells remains one of the major obstacles to cure HIV. Numerous strategies are being explored to eliminate this reservoir. To translate these efforts into clinical trials, there is a strong need for validated biomarkers that can monitor the reservoir over time in vivo. A comprehensive study was designed to evaluate and compare potential HIV-1 reservoir biomarkers. A cohort of 25 patients, treated with suppressive antiretroviral therapy was sampled at three time points, with median of 2.5 years (IQR: 2.4–2.6) between time point 1 and 2; and median of 31 days (IQR: 28–36) between time point 2 and 3. Patients were median of 6 years (IQR: 3–12) on ART, and plasma viral load (<50 copies/ml) was suppressed for median of 4 years (IQR: 2–8). Total HIV-1 DNA, unspliced (us) and multiply spliced HIV-1 RNA, and 2LTR circles were quantified by digital PCR in peripheral blood, at 3 time points. At the second time point, a viral outgrowth assay (VOA) was performed, and integrated HIV-1 DNA and relative mRNA expression levels of HIV-1 restriction factors were quantified. No significant change was found for long- and short-term dynamics of all HIV-1 markers tested in peripheral blood. Integrated HIV-1 DNA was associated with total HIV-1 DNA (p<0.001, R² = 0.85), us HIV-1 RNA (p = 0.029, R² = 0.40), and VOA (p = 0.041, R2 = 0.44). Replication-competent virus was detected in 80% of patients by the VOA and it correlated with total HIV-1 DNA (p = 0.039, R² = 0.54). The mean quantification difference between Alu-PCR and VOA was 2.88 log10, and 2.23 log10 between total HIV-1 DNA and VOA. The levels of usHIV-1 RNA were inversely correlated with mRNA levels of several HIV-1 restriction factors (TRIM5α, SAMHD1, MX2, SLFN11, pSIP1). Our study reveals important correlations between the viral outgrowth and total and integrated HIV-1 DNA measures, suggesting that the total pool of HIV-1 DNA may predict the size of the replication-competent virus in ART suppressed patients. PMID:26938995

  2. Genome size and metabolic intensity in tetrapods: a tale of two lines

    PubMed Central

    Vinogradov, Alexander E; Anatskaya, Olga V

    2005-01-01

    We show the negative link between genome size and metabolic intensity in tetrapods, using the heart index (relative heart mass) as a unified indicator of metabolic intensity in poikilothermal and homeothermal animals. We found two separate regression lines of heart index on genome size for reptiles–birds and amphibians–mammals (the slope of regression is steeper in reptiles–birds). We also show a negative correlation between GC content and nucleosome formation potential in vertebrate DNA, and, consistent with this relationship, a positive correlation between genome GC content and nuclear size (independent of genome size). It is known that there are two separate regression lines of genome GC content on genome size for reptiles–birds and amphibians–mammals: reptiles–birds have the relatively higher GC content (for their genome sizes) compared to amphibians–mammals. Our results suggest uniting all these data into one concept. The slope of negative regression between GC content and nucleosome formation potential is steeper in exons than in non-coding DNA (where nucleosome formation potential is generally higher), which indicates a special role of non-coding DNA for orderly chromatin organization. The chromatin condensation and nuclear size are supposed to be key parameters that accommodate the effects of both genome size and GC content and connect them with metabolic intensity. Our data suggest that the reptilian–birds clade evolved special relationships among these parameters, whereas mammals preserved the amphibian-like relationships. Surprisingly, mammals, although acquiring a more complex general organization, seem to retain certain genome-related properties that are similar to amphibians. At the same time, the slope of regression between nucleosome formation potential and GC content is steeper in poikilothermal than in homeothermal genomes, which suggests that mammals and birds acquired certain common features of genomic organization. PMID:16519230

  3. Assessment of DNA degradation induced by thermal and UV radiation processing: implications for quantification of genetically modified organisms.

    PubMed

    Ballari, Rajashekhar V; Martin, Asha

    2013-12-01

    DNA quality is an important parameter for the detection and quantification of genetically modified organisms (GMO's) using the polymerase chain reaction (PCR). Food processing leads to degradation of DNA, which may impair GMO detection and quantification. This study evaluated the effect of various processing treatments such as heating, baking, microwaving, autoclaving and ultraviolet (UV) irradiation on the relative transgenic content of MON 810 maize using pRSETMON-02, a dual target plasmid as a model system. Amongst all the processing treatments examined, autoclaving and UV irradiation resulted in the least recovery of the transgenic (CaMV 35S promoter) and taxon-specific (zein) target DNA sequences. Although a profound impact on DNA degradation was seen during the processing, DNA could still be reliably quantified by Real-time PCR. The measured mean DNA copy number ratios of the processed samples were in agreement with the expected values. Our study confirms the premise that the final analytical value assigned to a particular sample is independent of the degree of DNA degradation since the transgenic and the taxon-specific target sequences possessing approximately similar lengths degrade in parallel. The results of our study demonstrate that food processing does not alter the relative quantification of the transgenic content provided the quantitative assays target shorter amplicons and the difference in the amplicon size between the transgenic and taxon-specific genes is minimal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Degradation of latex and of natural rubber by Streptomyces strain La 7.

    PubMed

    Gallert, C

    2000-10-01

    Streptomyces strain La 7 was isolated from the banquete of a city high way in Karlsruhe. According to partial 16S rRNA gene sequencing it was identical with Streptomyces albogriseolus and Streptomyces viridodiastaticus. DNA-DNA-similarity studies revealed 80.3-82.4% similarity between each of two of the three strains. Although phylogenetically closely related, Streptomyces strain La 7 differed from the two reference strains by morphological as well as physiological features and might represent a new species aside of S. albogriseolus and S. viridodiastaticus. The new Streptomyces strain La 7 was grown in a medium containing a latex emulsion or squares of natural rubber gloves as the only carbon source. On agar plates with a latex overlay agar, translucent halo formation around the colonies was observed. The unvulcanized latex was metabolized and the carbon from the isoprene units was apparently used for cell growth. In shake cultures with unlimited oxygen supply, during 60 days of incubation, 140 mg of the 175 mg totally emulgated latex were degraded exponentially. In sterile control flasks about 3% of the initial amount of latex could not be recovered after incubation on a shaker, presumably due to photochemical transformation. During static incubation of sterile medium, the latex formed a sticky layer at the surface of the medium and on the glass walls and recovery of the material was more difficult. Estimation of the protein content of cells from total nitrogen resulted in about 50% of the degraded latex being incorporated into cells, if a standard cell composition was assumed. Direct protein analysis according to Bradford (1976) gave much lower estimates, presumably due to a low content of aromatic amino acids. Stripes of natural rubber were degraded by Streptomyces strain La 7 during 70 days to an extent of about 30%. Scanning electron microscopy demonstrated, that hyphes of Streptomyces strain La 7 colonized and penetrated the latex surface with a concomitant deterioration of the latex material.

  5. Arsenite-induced ROS/RNS generation causes zinc loss and inhibits the activity of poly(ADP-ribose) polymerase-1.

    PubMed

    Wang, Feng; Zhou, Xixi; Liu, Wenlan; Sun, Xi; Chen, Chen; Hudson, Laurie G; Jian Liu, Ke

    2013-08-01

    Arsenic enhances the genotoxicity of other carcinogenic agents such as ultraviolet radiation and benzo[a]pyrene. Recent reports suggest that inhibition of DNA repair is an important aspect of arsenic cocarcinogenesis, and DNA repair proteins such as poly(ADP ribose) polymerase (PARP)-1 are direct molecular targets of arsenic. Although arsenic has been shown to generate reactive oxygen/nitrogen species (ROS/RNS), little is known about the role of arsenic-induced ROS/RNS in the mechanism underlying arsenic inhibition of DNA repair. We report herein that arsenite-generated ROS/RNS inhibits PARP-1 activity in cells. Cellular exposure to arsenite, as well as hydrogen peroxide and NONOate (nitric oxide donor), decreased PARP-1 zinc content, enzymatic activity, and PARP-1 DNA binding. Furthermore, the effects of arsenite on PARP-1 activity, DNA binding, and zinc content were partially reversed by the antioxidant ascorbic acid, catalase, and the NOS inhibitor, aminoguanidine. Most importantly, arsenite incubation with purified PARP-1 protein in vitro did not alter PARP-1 activity or DNA-binding ability, whereas hydrogen peroxide or NONOate retained PARP-1 inhibitory activity. These results strongly suggest that cellular generation of ROS/RNS plays an important role in arsenite inhibition of PARP-1 activity, leading to the loss of PARP-1 DNA-binding ability and enzymatic activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Diatom centromeres suggest a mechanism for nuclear DNA acquisition

    DOE PAGES

    Diner, Rachel E.; Noddings, Chari M.; Lian, Nathan C.; ...

    2017-07-18

    Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum. We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres. Diatom centromere sequences contain low-GC content regions but lack repeats or other conserved sequencemore » features. Native and foreign sequences with similar GC content to P. tricornutum centromeres can maintain episomes and recruit the diatom centromeric histone protein CENH3, suggesting nonnative sequences can also function as diatom centromeres. Thus, simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.« less

  7. Diatom centromeres suggest a mechanism for nuclear DNA acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diner, Rachel E.; Noddings, Chari M.; Lian, Nathan C.

    Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum. We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres. Diatom centromere sequences contain low-GC content regions but lack repeats or other conserved sequencemore » features. Native and foreign sequences with similar GC content to P. tricornutum centromeres can maintain episomes and recruit the diatom centromeric histone protein CENH3, suggesting nonnative sequences can also function as diatom centromeres. Thus, simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.« less

  8. Effect of Inoculation of Acacia senegal mature trees with Mycorrhiza and Rhizobia on soil properties and microbial community structure

    NASA Astrophysics Data System (ADS)

    Assigbetsé, K.; Ciss, I.; Bakhoum, N.; Dieng, L.

    2012-04-01

    Inoculation of legume plants with symbiotic microorganisms is widely used to improve their development and productivity. The objective of this study was to investigate the effect of inoculation of Acacia senegal mature trees with rhizobium (Sinorhizobium) and arbuscular mycorrhizal fungus (G. mosseae, G. fasciculatum, G. intraradices) either singly or in combination, on soil properties, activity and the genetic structure of soil microbial communities. The experiment set up in Southern Senegal consisted of 4 randomized blocks of A. senegal mature trees with 4 treatments including inoculated trees with Rhizobium (R), mycorrhizal fungus (M) and with Rhizobium+mycorhizal fungus (RM) and non-inoculated control (CON). Soil were sampled 2 years after the inoculation. Soil pH, C and N and available P contents were measured. The microbial abundance and activity were measured in terms of microbial biomass C (MBC) and basal soil respiration. The community structure of the total bacterial, diazotrophic and denitrifying communities was assessed by denaturing gradient gel electrophoresis of 16S rDNA, nifH and nirK genes respectively. Inoculations with symbiont under field conditions have increased soil pH. The C and N contents were enhanced in the dual-inoculated treatments (RM). The mycorrhized treatment have displayed the lowest available P contents while RM and R treatments exhibited higher contents rates. The microbial biomass C rates were higher in treatments co-inoculated with AM fungi and Rhizobium than in those inoculated singly with AM fungi or Rhizobium strains. The basal soil respiration were positively correlated to MBC, and the highest rates were found in the co-inoculated treatments. Fingerprints of 16S rDNA gene exhibited similar patterns between inoculated treatments and the control showing that the inoculation of mature trees have not impacted the total bacterial community structure. In contrast, the inoculated treatments have displayed individually different diazotrophic and denitrifying communities fingerprints, indicating that the inoculation with microsymbionts have modified the genetic structure of the two functional communities in soil. Further, the diazotrophic community richness was reduced over the control indicating the impact of the addition of symbionts on the free-living N2-fixing bacterial (nifH) diversity. This study shows that inoculation of A. senegal mature trees with rhizobium and arbuscular mycorrhizal fungus has enhanced soil biofunctioning and modified the genetic structure of microbial community involved in N-cycling. Combined inoculation of AM fungi and Rhizobium have improved these effects on chemical characteristics, microbial community abundance and activity demonstrating synergism between the two microsymbionts.

  9. [Identification of Tibetan medicine "Dida" of Gentianaceae using DNA barcoding].

    PubMed

    Liu, Chuan; Zhang, Yu-Xin; Liu, Yue; Chen, Yi-Long; Fan, Gang; Xiang, Li; Xu, Jiang; Zhang, Yi

    2016-02-01

    The ITS2 barcode was used toidentify Tibetan medicine "Dida", and tosecure its quality and safety in medication. A total of 13 species, 151 experimental samples for the study from the Tibetan Plateau, including Gentianaceae Swertia, Halenia, Gentianopsis, Comastoma, Lomatogonium ITS2 sequences were amplified, and purified PCR products were sequenced. Sequence assembly and consensus sequence generation were performed using the CodonCode Aligner V3.7.1. The Kimura 2-Parameter (K2P) distances were calculated using MEGA 6.0. The neighbor-joining (NJ) phylogenetic trees were constructed. There are 31 haplotypes among 231 bp after alignment of all ITS2 sequence haplotypes, and the average G±C content of 61.40%. The NJ tree strongly supported that every species clustered into their own clade and high identification success rate, except that Swertia bifolia and Swertia wolfangiana could not be distinguished from each other based on the sequence divergences. DNA barcoding could be used as a fast and accurate identification method to distinguish Tibetan medicine "Dida" to ensure its safe use. Copyright© by the Chinese Pharmaceutical Association.

  10. Serological diversity demonstrable by a set of monoclonal antibodies to eight serotypes of the mutans streptococci.

    PubMed

    Ota, F; Ota, M; Mahmud, Z H; Mohammad, A; Yamato, M; Kassu, A; Kato, Y; Tomotake, H; Batoni, G; Campa, M

    2006-01-01

    A set of monoclonal antibodies were prepared by the conventional cell fusion of myeloma cells (SP2/0-Ag14) with spleen cells from BALB/c mice immunised with whole cells of a strain of mutans streptococci. Their specificities were examined against 35 reference strains of mutans streptococci, 34 reference strains of other oral streptococci and 8 reference strains of other microorganisms often inhabiting the oral cavity. Specificity was examined by enzyme immunoassay using whole cells. A total of 52 strains, consisting of 19 strains isolated in Japan, 19 strains isolated in Italy and 14 strains isolated in England, were characterised by conventional physiological and biochemical tests and then serotyped by the use of 8 monoclonal antibodies with different specificities. They were also confirmed by guanine-plus-cytosine contents of their nucleic acid and DNA-DNA hybridisation test. The results indicated that all monoclonal antibodies are useful for identification of 8 serotypes of the mutans streptococci responsible for dental caries. They also suggest the existence of more serological varieties among mutans species.

  11. Identity, ecology and ecophysiology of planktic green algae dominating in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula).

    PubMed

    Nedbalová, Linda; Mihál, Martin; Kvíderová, Jana; Procházková, Lenka; Řezanka, Tomáš; Elster, Josef

    2017-01-01

    The aim of this study was to assess the phylogenetic relationships, ecology and ecophysiological characteristics of the dominant planktic algae in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula). Phylogenetic analyses of 18S rDNA together with analysis of ITS2 rDNA secondary structure and cell morphology revealed that the two strains belong to one species of the genus Monoraphidium (Chlorophyta, Sphaeropleales, Selenastraceae) that should be described as new in future. Immotile green algae are thus apparently capable to become the dominant primary producer in the extreme environment of Antarctic lakes with extensive ice-cover. The strains grew in a wide temperature range, but the growth was inhibited at temperatures above 20 °C, indicating their adaptation to low temperature. Preferences for low irradiances reflected the light conditions in their original habitat. Together with relatively high growth rates (0.4-0.5 day -1 ) and unprecedently high content of polyunsaturated fatty acids (PUFA, more than 70% of total fatty acids), it makes these isolates interesting candidates for biotechnological applications.

  12. A preliminary report on the genetic variation in pointed gourd (Trichosanthes dioica Roxb.) as assessed by random amplified polymorphic DNA.

    PubMed

    Adhikari, S; Biswas, A; Bandyopadhyay, T K; Ghosh, P D

    2014-06-01

    Pointed gourd (Trichosanthes dioica Roxb.) is an economically important cucurbit and is extensively propagated through vegetative means, viz vine and root cuttings. As the accessions are poorly characterized it is important at the beginning of a breeding programme to discriminate among available genotypes to establish the level of genetic diversity. The genetic diversity of 10 pointed gourd races, referred to as accessions was evaluated. DNA profiling was generated using 10 sequence independent RAPD markers. A total of 58 scorable loci were observed out of which 18 (31.03%) loci were considered polymorphic. Genetic diversity parameters [average and effective number of alleles, Shannon's index, percent polymorphism, Nei's gene diversity, polymorphic information content (PIC)] for RAPD along with UPGMA clustering based on Jaccard's coefficient were estimated. The UPGMA dendogram constructed based on RAPD analysis in 10 pointed gourd accessions were found to be grouped in a single cluster and may represent members of one heterotic group. RAPD analysis showed promise as an effective tool in estimating genetic polymorphism in different accessions of pointed gourd.

  13. Skeletal Muscle Mitochondria and Aging: A Review

    PubMed Central

    Peterson, Courtney M.; Johannsen, Darcy L.; Ravussin, Eric

    2012-01-01

    Aging is characterized by a progressive loss of muscle mass and muscle strength. Declines in skeletal muscle mitochondria are thought to play a primary role in this process. Mitochondria are the major producers of reactive oxygen species, which damage DNA, proteins, and lipids if not rapidly quenched. Animal and human studies typically show that skeletal muscle mitochondria are altered with aging, including increased mutations in mitochondrial DNA, decreased activity of some mitochondrial enzymes, altered respiration with reduced maximal capacity at least in sedentary individuals, and reduced total mitochondrial content with increased morphological changes. However, there has been much controversy over measurements of mitochondrial energy production, which may largely be explained by differences in approach and by whether physical activity is controlled for. These changes may in turn alter mitochondrial dynamics, such as fusion and fission rates, and mitochondrially induced apoptosis, which may also lead to net muscle fiber loss and age-related sarcopenia. Fortunately, strategies such as exercise and caloric restriction that reduce oxidative damage also improve mitochondrial function. While these strategies may not completely prevent the primary effects of aging, they may help to attenuate the rate of decline. PMID:22888430

  14. Strategy for Extracting DNA from Clay Soil and Detecting a Specific Target Sequence via Selective Enrichment and Real-Time (Quantitative) PCR Amplification ▿

    PubMed Central

    Yankson, Kweku K.; Steck, Todd R.

    2009-01-01

    We present a simple strategy for isolating and accurately enumerating target DNA from high-clay-content soils: desorption with buffers, an optional magnetic capture hybridization step, and quantitation via real-time PCR. With the developed technique, μg quantities of DNA were extracted from mg samples of pure kaolinite and a field clay soil. PMID:19633108

  15. The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: Insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2002-01-01

    The land plants and their immediate green algal ancestors, the charophytes, form the Streptophyta. There is evidence that both the chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) underwent substantial changes in their architecture (intron insertions, gene losses, scrambling in gene order, and genome expansion in the case of mtDNA) during the evolution of streptophytes; however, because no charophyte organelle DNAs have been sequenced completely thus far, the suite of events that shaped streptophyte organelle genomes remains largely unknown. Here, we have determined the complete cpDNA (131,183 bp) and mtDNA (56,574 bp) sequences of the charophyte Chaetosphaeridium globosum (Coleochaetales). At the levels of gene content (124 genes), intron composition (18 introns), and gene order, Chaetosphaeridium cpDNA is remarkably similar to land-plant cpDNAs, implying that most of the features characteristic of land-plant lineages were gained during the evolution of charophytes. Although the gene content of Chaetosphaeridium mtDNA (67 genes) closely resembles that of the bryophyte Marchantia polymorpha (69 genes), this charophyte mtDNA differs substantially from its land-plant relatives at the levels of size, intron composition (11 introns), and gene order. Our finding that it shares only one intron with its land-plant counterparts supports the idea that the vast majority of mitochondrial introns in land plants appeared after the emergence of these organisms. Our results also suggest that the events accounting for the spacious intergenic spacers found in land-plant mtDNAs took place late during the evolution of charophytes or coincided with the transition from charophytes to land plants. PMID:12161560

  16. Neurotoxicity of cytarabine (Ara-C) in dorsal root ganglion neurons originates from impediment of mtDNA synthesis and compromise of mitochondrial function.

    PubMed

    Zhuo, Ming; Gorgun, Murat F; Englander, Ella W

    2018-06-01

    Peripheral Nervous System (PNS) neurotoxicity caused by cancer drugs hinders attainment of chemotherapy goals. Due to leakiness of the blood nerve barrier, circulating chemotherapeutic drugs reach PNS neurons and adversely affect their function. Chemotherapeutic drugs are designed to target dividing cancer cells and mechanisms underlying their toxicity in postmitotic neurons remain to be fully clarified. The objective of this work was to elucidate progression of events triggered by antimitotic drugs in postmitotic neurons. For proof of mechanism study, we chose cytarabine (ara-C), an antimetabolite used in treatment of hematological cancers. Ara-C is a cytosine analog that terminates DNA synthesis. To investigate how ara-C affects postmitotic neurons, which replicate mitochondrial but not genomic DNA, we adapted a model of Dorsal Root Ganglion (DRG) neurons. We showed that DNA polymerase γ, which is responsible for mtDNA synthesis, is inhibited by ara-C and that sublethal ara-C exposure of DRG neurons leads to reduction in mtDNA content, ROS generation, oxidative mtDNA damage formation, compromised mitochondrial respiration and diminution of NADPH and GSH stores, as well as, activation of the DNA damage response. Hence, it is plausible that in ara-C exposed DRG neurons, ROS amplified by the high mitochondrial content shifts from physiologic to pathologic levels signaling stress to the nucleus. Combined, the findings suggest that ara-C neurotoxicity in DRG neurons originates in mitochondria and that continuous mtDNA synthesis and reliance on oxidative phosphorylation for energy needs sensitize the highly metabolic neurons to injury by mtDNA synthesis terminating cancer drugs. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. The demise of chloroplast DNA in Arabidopsis.

    PubMed

    Rowan, Beth A; Oldenburg, Delene J; Bendich, Arnold J

    2004-09-01

    Although it might be expected that chloroplast DNA (cpDNA) would be stably maintained in mature leaves, we report the surprising observation that cpDNA levels decline during plastid development in Arabidopsis thaliana (Col.) until most of the leaves contain little or no DNA long before the onset of senescence. We measured the cpDNA content in developing cotyledons, rosette leaves, and cauline leaves. The amount of cpDNA per chloroplast decreases as the chloroplasts develop, reaching undetectable levels in mature leaves. In young cauline leaves, most individual molecules of cpDNA are found in complex, branched forms. In expanded cauline leaves, cpDNA is present in smaller branched forms only at the base of the leaf and is virtually absent in the distal part of the leaf. We conclude that photosynthetic activity may persist long after the demise of the cpDNA. Copyright 2004 Springer-Verlag

  18. The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands

    PubMed Central

    de Cambiaire, Jean-Charles; Otis, Christian; Lemieux, Claude; Turmel, Monique

    2006-01-01

    Background The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. While the basal position of the Prasinophyceae is well established, the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae (UTC) remains uncertain. The five complete chloroplast DNA (cpDNA) sequences currently available for representatives of these classes display considerable variability in overall structure, gene content, gene density, intron content and gene order. Among these genomes, that of the chlorophycean green alga Chlamydomonas reinhardtii has retained the least ancestral features. The two single-copy regions, which are separated from one another by the large inverted repeat (IR), have similar sizes, rather than unequal sizes, and differ radically in both gene contents and gene organizations relative to the single-copy regions of prasinophyte and ulvophyte cpDNAs. To gain insights into the various changes that underwent the chloroplast genome during the evolution of chlorophycean green algae, we have sequenced the cpDNA of Scenedesmus obliquus, a member of a distinct chlorophycean lineage. Results The 161,452 bp IR-containing genome of Scenedesmus features single-copy regions of similar sizes, encodes 96 genes, i.e. only two additional genes (infA and rpl12) relative to its Chlamydomonas homologue and contains seven group I and two group II introns. It is clearly more compact than the four UTC algal cpDNAs that have been examined so far, displays the lowest proportion of short repeats among these algae and shows a stronger bias in clustering of genes on the same DNA strand compared to Chlamydomonas cpDNA. Like the latter genome, Scenedesmus cpDNA displays only a few ancestral gene clusters. The two chlorophycean genomes share 11 gene clusters that are not found in previously sequenced trebouxiophyte and ulvophyte cpDNAs as well as a few genes that have an unusual structure; however, their single-copy regions differ considerably in gene content. Conclusion Our results underscore the remarkable plasticity of the chlorophycean chloroplast genome. Owing to this plasticity, only a sketchy portrait could be drawn for the chloroplast genome of the last common ancestor of Scenedesmus and Chlamydomonas. PMID:16638149

  19. Isolation of a species-specific mitochondrial DNA sequence for identification of Tilletia indica, the Karnal bunt of wheat fungus.

    PubMed Central

    Ferreira, M A; Tooley, P W; Hatziloukas, E; Castro, C; Schaad, N W

    1996-01-01

    Mitochondrial DNA (mtDNA) from five isolates of Tilletia indica was isolated and digested with several restriction enzymes. A 2.3-kb EcoRI fragment was chosen, cloned, and shown to hybridize with total DNA restricted with EcoRI from T. indica and not from a morphologically similar smut fungus, Tilletia barclayana. The clone was partially sequenced, and primers were designed and tested under high-stringency conditions in PCR assays. The primer pair Ti1/Ti4 amplified a 2.3-kb fragment from total DNA of 17 T. indica isolates from India, Pakistan, and Mexico. DNA from 25 isolates of other smut fungi (T. barclayana, Tilletia foetida, Tilletia caries, Tilletia fusca, and Tilletia controversa) did not produce any bands, as detected by ethidium bromide-stained agarose gels and Southern hybridizations. The sensitivity of the assay was determined and increased by using a single nested primer in a second round of amplification, so that 1 pg of total mycelial DNA could be detected. The results indicated that the primers which originated from a cloned mtDNA sequence can be used to differentiate T. indica from other Tilletia species and have the potential to identify teliospores contaminating wheat seeds. PMID:8572716

  20. Preliminary biogeochemical assessment of EPICA LGM and Holocene ice samples

    NASA Astrophysics Data System (ADS)

    Bulat, S.; Alekhina, I.; Marie, D.; Wagenbach, D.; Raynaud, D.; Petit, J. R.

    2009-04-01

    We are investigating the biological content (biomass and microbial diversity of Aeolian origin) of EPICA ice core within the frame of EPICA Microbiology consortium*. Two ice core sections were selected from EPICA Dome C and Droning Maud Land, both from LGM and Holocene. Preliminary measurements of DOC (dissolved organic content) and microbial cell concentrations have been performed. Both analyses showed the very low biomass and ultra low DOC content. Trace DNA analyses are in a progress. The ice sections were decontaminated in LGGE cold and clean room facilities benefiting the protocol developed for Vostok ice core studies. The melt water was then shared between two party laboratories for a complementary approach in studying microbial content. Prior to biology the melt water was tested for chemical contaminant ions and organic acids, DOC and dust contents. The biological methods included all the spectra of appropriate molecular techniques (gDNA extraction, PCR, clone libraries and sequencing). As preliminary results, both LGM (well identified by dust fallout) and Holocene ice samples (EDC99 and EDML) proved to be extremely clear (i.e. pristine) in terms of biomass (less then 4 cells per ml) and DOC contents (less then 5 ppbC). There was no obvious difference between LGM and Holocene in cell counts, while LGM showed a bit high organic carbon content. The latter in terms of biology means ultra-oligotrophic conditions (i.e., no possibility for heterotrophic life style). In fact no metabolizing microbial cells or propagating populations are expected at these depths at temperature -38oC and lower (limiting life temperature threshold is -20°C). Nevertheless some life seeds brought in Antarctica with precipitation could be well preserved because the age is rather young (21 kyr and less). Trying to identify these aliens and document their distribution during last climate cycle the meltwater was concentrated about 1000 times down. The genomic DNA was extracted and very weak signals were possible to generate which are now under cloning. The signals were hard to reproduce because of rather low volume of samples. More ice volume is needed to get the biosignal stronger and reproducible. Meantime we are adjusting PCR and in addition testing DNA repair-enzyme cocktail in case of DNA damage. As a preliminary conclusion we would like to highlight the following. Both Holocene and LGM ice samples (EDC99 and EDML) are very clean in terms of Ultra low biomass and Ultra low DOC content. The most basal ice of EDC and EDML ice cores could help in assessing microbial biomass and diversity if present under the glacier at the ice-bedrock boundary. * The present-day consortium includes S. Bulat, I. Alekhina, P. Normand, D. Prieur, J-R. Petit and D. Raynaud (France) and E. Willerslev and J.P. Steffensen (Denmark)

  1. [Loss of total 5-methylcytosine from the genome during cell culture aging coincides with the Hayflick limit].

    PubMed

    Mazin, A L

    1993-01-01

    Analyzing the data about the age-related 5-methylcytosine (5mC) loss from DNA of cell cultures, the following conclusions have been made: 1. The rate of 5mC loss from DNA does not depend on the cell donor age; it remains constant during the logarithmic phase of cell growth, and may vary significantly in different cell lines. 2. The rate is inversely proportional to their Hayflick limit and to the species lifespan of cell donors. 3. In immortal cell lines the 5mC content in DNA is stable or increases with aging. 4. Hayflick limit estimations coincide with or are lower than the number of cell population doublings that corresponds to all 5mC loss from cell genome. A simple and fast method has been proposed for Hayflick limit prognostication by analysis of the rate of DNA hypomethylation. It may be used for early diagnosis of precrisis and immortal cell lines. Evidence has been obtained that age-dependent 5mC loss from DNA is the result of accumulating 5mC-->T+C substitutions that occur during DNA methylation in every cell division. The loss of all genomic 5mC residues during the lifespan may correspond to accumulation of about 3 x 10(6) 5mC-->T transitions or, on average, one mutation per gene. This may be one of the main reasons of the "catastrophe of errors" and cessation of cell proliferation. It is calculated that the rate of 5mC-->T transitions in normal cells may be 2.3 x 10(-5) per site in each cell doubling in human, 6 x 10(-5) in hamster, and 4.6 x 10(-4) in mouse. DNA methylation as a generator of mutations may be a "counter" of cell divisions and thus be one of the molecular mechanisms of the Hayflick phenomenon. The conclusion is made that the DNA methylation system may be considered as a genetically programmed mechanism for accumulating mutations during cell aging.

  2. MreB is important for cell shape but not for chromosome segregation of the filamentous cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Hu, Bin; Yang, Guohua; Zhao, Weixing; Zhang, Yingjiao; Zhao, Jindong

    2007-03-01

    MreB is a bacterial actin that plays important roles in determination of cell shape and chromosome partitioning in Escherichia coli and Caulobacter crescentus. In this study, the mreB from the filamentous cyanobacterium Anabaena sp. PCC 7120 was inactivated. Although the mreB null mutant showed a drastic change in cell shape, its growth rate, cell division and the filament length were unaltered. Thus, MreB in Anabaena maintains cell shape but is not required for chromosome partitioning. The wild type and the mutant had eight and 10 copies of chromosomes per cell respectively. We demonstrated that DNA content in two daughter cells after cell division in both strains was not always identical. The ratios of DNA content in two daughter cells had a Gaussian distribution with a standard deviation much larger than a value expected if the DNA content in two daughter cells were identical, suggesting that chromosome partitioning is a random process. The multiple copies of chromosomes in cyanobacteria are likely required for chromosome random partitioning in cell division.

  3. Research of epidermal cellular vegetal cycle of intravascular low level laser irradiation in treatment of psoriasis

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Bao, Xiaoqing; Zhang, Mei-Jue

    2005-07-01

    Objective: To research epidermal cellular vegetal cycle and the difference of DNA content between pre and post Intravascular Low Level Laser Irradiation treatment of psoriasis. Method: 15 patients suffered from psoriasis were treated by intravascular low level laser irradiation (output power: 4-5mw, 1 hour per day, a course of treatment is 10 days). We checked the different DNA content of epidermal cell between pre and post treatment of psoriasis and 8 natural human. Then the percentage of each phase among the whole cellular cycle was calculated and the statistical analysis was made. Results: The mean value of G1/S phase is obviously down while G2+M phase increased obviously. T test P<0.05.The related statistical analysis showed significant difference between pre and post treatments. Conclusions: The Intravascular Low Level Laser Irradiation (ILLLI) in treatment of psoriasis is effective according to the research of epidermal cellular vegetal cycle and the difference DNA content of Intravascular Low Level Laser Irradiation between pre and post treatment of psoriasis

  4. Comparison of American Fisheries Society (AFS) standard fish sampling techniques and environmental DNA for characterizing fish communities in a large reservoir

    USGS Publications Warehouse

    Perez, Christina R.; Bonar, Scott A.; Amberg, Jon J.; Ladell, Bridget; Rees, Christopher B.; Stewart, William T.; Gill, Curtis J.; Cantrell, Chris; Robinson, Anthony

    2017-01-01

    Recently, methods involving examination of environmental DNA (eDNA) have shown promise for characterizing fish species presence and distribution in waterbodies. We evaluated the use of eDNA for standard fish monitoring surveys in a large reservoir. Specifically, we compared the presence, relative abundance, biomass, and relative percent composition of Largemouth Bass Micropterus salmoides and Gizzard Shad Dorosoma cepedianum measured through eDNA methods and established American Fisheries Society standard sampling methods for Theodore Roosevelt Lake, Arizona. Catches at electrofishing and gillnetting sites were compared with eDNA water samples at sites, within spatial strata, and over the entire reservoir. Gizzard Shad were detected at a higher percentage of sites with eDNA methods than with boat electrofishing in both spring and fall. In contrast, spring and fall gillnetting detected Gizzard Shad at more sites than eDNA. Boat electrofishing and gillnetting detected Largemouth Bass at more sites than eDNA; the exception was fall gillnetting, for which the number of sites of Largemouth Bass detection was equal to that for eDNA. We observed no relationship between relative abundance and biomass of Largemouth Bass and Gizzard Shad measured by established methods and eDNA copies at individual sites or lake sections. Reservoirwide catch composition for Largemouth Bass and Gizzard Shad (numbers and total weight [g] of fish) as determined through a combination of gear types (boat electrofishing plus gillnetting) was similar to the proportion of total eDNA copies from each species in spring and fall field sampling. However, no similarity existed between proportions of fish caught via spring and fall boat electrofishing and the proportion of total eDNA copies from each species. Our study suggests that eDNA field sampling protocols, filtration, DNA extraction, primer design, and DNA sequencing methods need further refinement and testing before incorporation into standard fish sampling surveys.

  5. Institutional Biosafety Committees and the Inadequacies of Risk Regulation.

    ERIC Educational Resources Information Center

    Bereano, Philip L.

    1984-01-01

    Discusses institutional biosafety committees (IBC) which provide quasi-independent reviews of recombinant DNA work done at an institution. Considers the nature of IBC operation, the National Institutes of Health "Guidelines for Recombinant DNA Research," the composition of IBCs, the intellectual content of IBC deliberations, and issues…

  6. Flow cytomeric measurement of DNA and incorporated nucleoside analogs

    DOEpatents

    Dolbeare, Frank A.; Gray, Joe W.

    1989-01-01

    A method is provided for simultaneously measuring total cellular DNA and incorporated nucleoside analog. The method entails altering the cellular DNA of cells grown in the presence of a nucleoside analog so that single stranded and double stranded portions are present. Separate stains are used against the two portions. An immunochemical stain is used against the single stranded portion to provide a measure of incorporated nucleoside analog, and a double strand DNA-specific stain is used against the double stranded portion to simultaneously provide a measure of total cellular DNA. The method permits rapid flow cytometric analysis of cell populations, rapid identification of cycling and noncycling subpopulations, and determination of the efficacy of S phase cytotoxic anticancer agents.

  7. Analysis of bacterial populations in the environment using two-dimensional gel electrophoresis of genomic DNA and complementary DNA.

    PubMed

    Liu, Guo-Hua; Nakamura, Tatsuo; Amemiya, Takashi; Rajendran, Narasimmalu; Itoh, Kiminori

    2011-01-01

    Two-dimensional gel electrophoresis (2-DGE) mapping of genomic DNA and complementary DNA (cDNA) amplicons was attempted to analyze total and active bacterial populations within soil and activated sludge samples. Distinct differences in the number and species of bacterial populations and those that were metabolically active at the time of sampling were visually observed especially for the soil community. Statistical analyses and sequencing based on the 2-DGE data further revealed the relationships between total and active bacterial populations within each community. This high-resolution technique would be useful for obtaining a better understanding of bacterial population structures in the environment.

  8. A novel method for the transport and analysis of genetic material from polyps and zooxanthellae of scleractinian corals.

    PubMed

    Crabbe, M James C

    2003-08-29

    We have developed a new simple method for transport, storage, and analysis of genetic material from the corals Agaricia agaricites, Dendrogyra cylindrica, Eusmilia ancora, Meandrina meandrites, Montastrea annularis, Porites astreoides, Porites furcata, Porites porites, and Siderastrea siderea at room temperature. All species yielded sufficient DNA from a single FTA card (19 microg-43 ng) for subsequent PCR amplification of both coral and zooxanthellar DNA. The D1 and D2 variable region of the large subunit rRNA gene (LSUrDNA) was amplified from the DNA of P. furcata and S. siderea by PCR. Electrophoresis yielded two major DNA bands: an 800-base pair (bp) DNA, which represented the coral ribosomal RNA (rRNA) gene, and a 600-bp DNA, which represented the zooxanthellar srRNA gene. Extraction of DNA from the bands yielded between 290 microg total DNA (S. siderea coral DNA) and 9 microg total DNA (P. furcata zooxanthellar DNA). The ability to transport and store genetic material from scleractinian corals without resort to laboratory facilities in the field allows for the molecular study of a far wider range and variety of coral sites than have been studied to date.

  9. Cholecystokinin-8-induced hypoplasia of the rat pancreas: influence of nitric oxide on cell proliferation and programmed cell death.

    PubMed

    Trulsson, Lena M; Gasslander, Thomas; Svanvik, Joar

    2004-10-01

    The background of cholecystokinin-8 (CCK-8)-induced hypoplasia in the pancreas is not known. In order to increase our understanding we studied the roles of nitric oxide and NF-kappaB in rats. CCK-8 was injected for 4 days, in a mode known to cause hypoplasia, and the nitric oxide formation was either decreased by means of N(omega)-nitro-L-arginine (L-NNA) or increased by S-nitroso-N-acetylpencillamine (SNAP). The activation of NF-kappaB was quantified by ELISA detection, apoptosis with caspase-3 and histone-associated DNA-fragmentation and mitotic activity in the acinar, centroacinar and ductal cells were visualized by the incorporation of [(3)H]-thymidine. Pancreatic histology and weight as well as protein- and DNA contents were also studied. Intermittent CCK injections reduced pancreatic weight, protein and DNA contents and increased apoptosis, acinar cell proliferation and nuclear factor kappaB (NF-kappaB) activation. It also caused vacuolisation of acinar cells. The inhibition of endogenous nitric oxide formation by L-NNA further increased apoptosis and NF-kappaB activation but blocked the increased proliferation and vacuolisation of acinar cells. The DNA content was not further reduced. SNAP given together with CCK-8 increased apoptosis and other pathways of cell death, raised proliferation of acinar cells and strongly reduced the DNA content in the pancreas. Histological examination showed no inflammation in any group. We conclude that during CCK-8-induced pancreatic hypoplasia, endogenously formed nitric oxide suppresses apoptosis but increases cell death along non-apoptotic pathways and stimulates regeneration of acinar cells. Exogenous nitric oxide enhances the acinar cell turnover by increasing both apoptotic and non-apoptotic cell death and cell renewal. In this situation NF-kappaB activation seems not to inhibit apoptosis nor promote cell proliferation.

  10. Pushing the limits for amplifying BrdU-labeled DNA encoding 16S rRNA: DNA polymerase as the determining factor.

    PubMed

    Roux-Michollet, Dad D; Schimel, Joshua P; Holden, Patricia A

    2010-12-01

    Identifying microorganisms that are active under specific conditions in ecosystems is a challenge in microbial ecology. Recently, the bromodeoxyuridine (BrdU) technique was developed to label actively growing cells. BrdU, a thymidine analog, is incorporated into newly synthesized DNA, and the BrdU-labeled DNA is then isolated from total extractable DNA by immunocapture using a BrdU-specific antibody. Analyzing the BrdU-labeled DNA allows for assessing the actively growing community, which can then be compared to the unlabeled DNA that represents the total community. However, applying the BrdU approach to study soils has been problematic due to low DNA amounts and soil contaminants. To address these challenges, we developed a protocol, optimizing specificity and reproducibility, to amplify BrdU-labeled gene fragments encoding 16S rRNA. We found that the determining factor was the DNA polymerase: among the 13 different polymerases we tested, only 3 provided adequate yields with minimal contamination, and only two of those three produced similar amplification patterns of community DNA. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Seasonal dynamics of total flavonoid contents and antioxidant activity of Dryopteris erythrosora.

    PubMed

    Xie, Yinghua; Zheng, Yunxia; Dai, Xiling; Wang, Quanxi; Cao, Jianguo; Xiao, Jianbo

    2015-11-01

    The seasonal dynamics of the total flavonoid contents in various parts of Dryopteris erythrosora, a traditional Chinese medicinal fern, and their antioxidant activity were investigated. The total flavonoids content in various parts of D. erythrosora showed an obvious seasonal dynamic change. The total flavonoid contents in stems (from 4.3% to 12.5%) were much higher than that in leaves with an average content of 2.01%. In spring, the total flavonoid contents in stems were relatively low, but increased rapidly from summer to winter. However, the seasonal dynamics of total flavonoid contents in leaves showed different model. The total flavonoid contents in the stems showed a negative correlation with that in the leaves from January to July. The correlation coefficient of about -0.7 was obtained. The antioxidant activity of the extracts also altered in proportion to the change of total flavonoid contents. In general, the extracts from stems always showed highest antioxidant potentials and it was suggested that the stems can be used as crude medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Arginine-rich cross-linking peptides with different SV40 nuclear localization signal content as vectors for intranuclear DNA delivery.

    PubMed

    Bogacheva, Mariia; Egorova, Anna; Slita, Anna; Maretina, Marianna; Baranov, Vladislav; Kiselev, Anton

    2017-11-01

    The major barriers for intracellular DNA transportation by cationic polymers are their toxicity, poor endosomal escape and inefficient nuclear uptake. Therefore, we designed novel modular peptide-based carriers modified with SV40 nuclear localization signal (NLS). Core peptide consists of arginine, histidine and cysteine residues for DNA condensation, endosomal escape promotion and interpeptide cross-linking, respectively. We investigated three polyplexes with different NLS content (10 mol%, 50 mol% and 90 mol% of SV40 NLS) as vectors for intranuclear DNA delivery. All carriers tested were able to condense DNA, to protect it from DNAase I and were not toxic to the cells. We observed that cell cycle arrest by hydroxyurea did not affect transfection efficacy of NLS-modified carriers which we confirmed using quantitative confocal microscopy analysis. Overall, peptide carrier modified with 90 mol% of SV40 NLS provided efficient transfection and nuclear uptake in non-dividing cells. Thus, incorporation of NLS into arginine-rich cross-linking peptides is an adequate approach to the development of efficient intranuclear gene delivery vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Cellular and molecular aspects of quinoa leaf senescence.

    PubMed

    López-Fernández, María Paula; Burrieza, Hernán Pablo; Rizzo, Axel Joel; Martínez-Tosar, Leandro Julián; Maldonado, Sara

    2015-09-01

    During leaf senescence, degradation of chloroplasts precede to changes in nuclei and other cytoplasmic organelles, RuBisCO stability is progressively lost, grana lose their structure, plastidial DNA becomes distorted and degraded, the number of plastoglobuli increases and abundant senescence-associated vesicles containing electronically dense particles emerge from chloroplasts pouring their content into the central vacuole. This study examines quinoa leaf tissues during development and senescence using a range of well-established markers of programmed cell death (PCD), including: morphological changes in nuclei and chloroplasts, degradation of RuBisCO, changes in chlorophyll content, DNA degradation, variations in ploidy levels, and changes in nuclease profiles. TUNEL reaction and DNA electrophoresis demonstrated that DNA fragmentation in nuclei occurs at early senescence, which correlates with induction of specific nucleases. During senescence, metabolic activity is high and nuclei endoreduplicate, peaking at 4C. At this time, TEM images showed some healthy nuclei with condensed chromatin and nucleoli. We have found that DNA fragmentation, induction of senescence-associated nucleases and endoreduplication take place during leaf senescence. This provides a starting point for further research aiming to identify key genes involved in the senescence of quinoa leaves. Published by Elsevier Ireland Ltd.

  14. Two New Nuclear Isolation Buffers for Plant DNA Flow Cytometry: A Test with 37 Species

    PubMed Central

    Loureiro, João; Rodriguez, Eleazar; Doležel, Jaroslav; Santos, Conceição

    2007-01-01

    Background and Aims After the initial boom in the application of flow cytometry in plant sciences in the late 1980s and early 1990s, which was accompanied by development of many nuclear isolation buffers, only a few efforts were made to develop new buffer formulas. In this work, recent data on the performance of nuclear isolation buffers are utilized in order to develop new buffers, general purpose buffer (GPB) and woody plant buffer (WPB), for plant DNA flow cytometry. Methods GPB and WPB were used to prepare samples for flow cytometric analysis of nuclear DNA content in a set of 37 plant species that included herbaceous and woody taxa with leaf tissues differing in structure and chemical composition. The following parameters of isolated nuclei were assessed: forward and side light scatter, propidium iodide fluorescence, coefficient of variation of DNA peaks, quantity of debris background, and the number of particles released from sample tissue. The nuclear genome size of 30 selected species was also estimated using the buffer that performed better for a given species. Key Results In unproblematic species, the use of both buffers resulted in high quality samples. The analysis of samples obtained with GPB usually resulted in histograms of DNA content with higher or similar resolution than those prepared with the WPB. In more recalcitrant tissues, such as those from woody plants, WPB performed better and GPB failed to provide acceptable results in some cases. Improved resolution of DNA content histograms in comparison with previously published buffers was achieved in most of the species analysed. Conclusions WPB is a reliable buffer which is also suitable for the analysis of problematic tissues/species. Although GPB failed with some plant species, it provided high-quality DNA histograms in species from which nuclear suspensions are easy to prepare. The results indicate that even with a broad range of species, either GPB or WPB is suitable for preparation of high-quality suspensions of intact nuclei suitable for DNA flow cytometry. PMID:17684025

  15. Uncovering Trophic Interactions in Arthropod Predators through DNA Shotgun-Sequencing of Gut Contents

    PubMed Central

    Paula, Débora P.; Linard, Benjamin; Crampton-Platt, Alex; Srivathsan, Amrita; Timmermans, Martijn J. T. N.; Sujii, Edison R.; Pires, Carmen S. S.; Souza, Lucas M.; Andow, David A.; Vogler, Alfried P.

    2016-01-01

    Characterizing trophic networks is fundamental to many questions in ecology, but this typically requires painstaking efforts, especially to identify the diet of small generalist predators. Several attempts have been devoted to develop suitable molecular tools to determine predatory trophic interactions through gut content analysis, and the challenge has been to achieve simultaneously high taxonomic breadth and resolution. General and practical methods are still needed, preferably independent of PCR amplification of barcodes, to recover a broader range of interactions. Here we applied shotgun-sequencing of the DNA from arthropod predator gut contents, extracted from four common coccinellid and dermapteran predators co-occurring in an agroecosystem in Brazil. By matching unassembled reads against six DNA reference databases obtained from public databases and newly assembled mitogenomes, and filtering for high overlap length and identity, we identified prey and other foreign DNA in the predator guts. Good taxonomic breadth and resolution was achieved (93% of prey identified to species or genus), but with low recovery of matching reads. Two to nine trophic interactions were found for these predators, some of which were only inferred by the presence of parasitoids and components of the microbiome known to be associated with aphid prey. Intraguild predation was also found, including among closely related ladybird species. Uncertainty arises from the lack of comprehensive reference databases and reliance on low numbers of matching reads accentuating the risk of false positives. We discuss caveats and some future prospects that could improve the use of direct DNA shotgun-sequencing to characterize arthropod trophic networks. PMID:27622637

  16. S - and N-alkylating agents diminish the fluorescence of fluorescent dye-stained DNA.

    PubMed

    Giesche, Robert; John, Harald; Kehe, Kai; Schmidt, Annette; Popp, Tanja; Balzuweit, Frank; Thiermann, Horst; Gudermann, Thomas; Steinritz, Dirk

    2017-01-25

    Sulfur mustard (SM), a chemical warfare agent, causes DNA alkylation, which is believed to be the main cause of its toxicity. SM DNA adducts are commonly used to verify exposure to this vesicant. However, the required analytical state-of-the-art mass-spectrometry methods are complex, use delicate instruments, are not mobile, and require laboratory infrastructure that is most likely not available in conflict zones. Attempts have thus been made to develop rapid detection methods that can be used in the field. The analysis of SM DNA adducts (HETE-G) by immunodetection is a convenient and suitable method. For a diagnostic assessment, HETE-G levels must be determined in relation to the total DNA in the sample. Total DNA can be easily visualized by the use of fluorescent DNA dyes. This study examines whether SM and related compounds affect total DNA staining, an issue that has not been investigated before. After pure DNA was extracted from human keratinocytes (HaCaT cells), DNA was exposed to different S- and N-alkylating agents. Our experiments revealed a significant, dose-dependent decrease in the fluorescence signal of fluorescent dye-stained DNA after exposure to alkylating agents. After mass spectrometry and additional fluorescence measurements ruled out covalent modifications of ethidium bromide (EthBr) by SM, we assumed that DNA crosslinks caused DNA condensation and thereby impaired access of the fluorescent dyes to the DNA. DNA digestion by restriction enzymes restored fluorescence, a fact that strengthened our hypothesis. However, monofunctional agents, which are unable to crosslink DNA, also decreased the fluorescence signal. In subsequent experiments, we demonstrated that protons produced during DNA alkylation caused a pH decrease that was found responsible for the reduction in fluorescence. The use of an appropriate buffer system eliminated the adverse effect of alkylating agents on DNA staining with fluorescent dyes. An appropriate buffer system is thus crucial for DNA quantification with fluorescent dyes in the presence of alkylating compounds. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. A CORRELATION BETWEEN RADIATION TOLERANCE AND NUCLEAR SURFACE AREA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iversen, S.

    1962-09-22

    Sparrow and Miksche (Science, 134:282) determined the dose (r/day) required to produce severe growth inhibition in 23 species of plants and found a linear relationship between log nuclear volume and log dose. The following equations hold for 6 species: log nuclear volume - 4.42 -0.82 log dose and log nuclear volume = 1.66 + 0.66 log (DNA content). If all the nuclear DNA is distributed in two peripheral zones, the equations also hold: 2(log nuclear surface area) - 1.33(log nuclear volume) - 2.21 + 0.88 log(DNA content) and 5.88-- 1.09 log dose. For the 23 species, the equation was obtained:more » 2(log nuclear surface area) = 5.41 -- 0.97 log dose. All the slopes are close to the expected value of 1.00. (D.L.C.)« less

  18. The full mitochondrial genome sequence of Raillietina tetragona from chicken (Cestoda: Davaineidae).

    PubMed

    Liang, Jian-Ying; Lin, Rui-Qing

    2016-11-01

    In the present study, the complete mitochondrial DNA (mtDNA) sequence of Raillietina tetragona was sequenced and its gene contents and genome organizations was compared with that of other tapeworm. The complete mt genome sequence of R. tetragona is 14,444 bp in length. It contains 12 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and two non-coding region. All genes are transcribed in the same direction and have a nucleotide composition high in A and T. The contents of A + T of the complete mt genome are 71.4% for R. tetragona. The R. tetragona mt genome sequence provides novel mtDNA marker for studying the molecular epidemiology and population genetics of Raillietina and has implications for the molecular diagnosis of chicken cestodosis caused by Raillietina.

  19. Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis

    PubMed Central

    Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies. PMID:25051352

  20. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis.

    PubMed

    Yi, Jing; Dong, Bin; Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.

  1. Essay Contest Reveals Misconceptions of High School Students in Genetics Content

    PubMed Central

    Mills Shaw, Kenna R.; Van Horne, Katie; Zhang, Hubert; Boughman, Joann

    2008-01-01

    National educational organizations have called upon scientists to become involved in K–12 education reform. From sporadic interaction with students to more sustained partnerships with teachers, the engagement of scientists takes many forms. In this case, scientists from the American Society of Human Genetics (ASHG), the Genetics Society of America (GSA), and the National Society of Genetic Counselors (NSGC) have partnered to organize an essay contest for high school students as part of the activities surrounding National DNA Day. We describe a systematic analysis of 500 of 2443 total essays submitted in response to this contest over 2 years. Our analysis reveals the nature of student misconceptions in genetics, the possible sources of these misconceptions, and potential ways to galvanize genetics education. PMID:18245328

  2. The effect of synthetic homopolymer poly I:C on the synthesis of nucleic acids, protein and interferon in spleen cells normally and with radiation

    NASA Technical Reports Server (NTRS)

    Antropova, Y. N.; Konstantinova, I. V.; Fuks, B. B.; Talosh, M. Y.; Veysfeyler, Y. K.

    1974-01-01

    A comparative study is reported of the effect of the synthetic homopolymer poly I:C and Newcastle Disease virus on the synthesis of RNA, DNA, total protein and interferon in the spleen of nonradiated and radiated mice. In radiated animals, poly I:C and NDV had no stimulating effect on the synthesis of RNA; administration of both inducers to radiated mice did not significantly affect the content of lymphoid cellular elements in the spleen. However, while reduction of RNA synthesis, caused by radiation, also increases slightly under the effect of poly I:C and the virus, the synthesis of interferon in spleen cells and in the entire body is activated.

  3. INCREASED 8-HYDROXY GUANINE CONTENT OF CHLOROPLAST DNA FROM OZONE TREATED PLANTS

    EPA Science Inventory

    The mechanism of ozone-mediated plant injury is not know but has been postulated to involve oxygen free radicals. Hydroxyl free radicals react with DNA causing formation of many products, one of which is 8-hydroxyguanine. By using high performance liquid chromatography with elect...

  4. Raman spectroscopy for DNA quantification in cell nucleus.

    PubMed

    Okotrub, K A; Surovtsev, N V; Semeshin, V F; Omelyanchuk, L V

    2015-01-01

    Here we demonstrate the feasibility of a novel approach to quantify DNA in cell nuclei. This approach is based on spectroscopy analysis of Raman light scattering, and avoids the problem of nonstoichiometric binding of dyes to DNA, as it directly measures the signal from DNA. Quantitative analysis of nuclear DNA contribution to Raman spectrum could be reliably performed using intensity of a phosphate mode at 1096 cm(-1) . When compared to the known DNA standards from cells of different animals, our results matched those values at error of 10%. We therefore suggest that this approach will be useful to expand the list of DNA standards, to properly adjust the duration of hydrolysis in Feulgen staining, to assay the applicability of fuchsines for DNA quantification, as well as to measure DNA content in cells with complex hydrolysis patterns, when Feulgen densitometry is inappropriate. © 2014 International Society for Advancement of Cytometry.

  5. Biocrusts role on nitrogen cycle and microbial communities from underlying soils in drylands

    NASA Astrophysics Data System (ADS)

    Anguita-Maeso, Manuel; Miralles*, Isabel; van Wesemael, Bas; Lázaro, Roberto; Ortega, Raúl; Garcia-Salcedo, José Antonio; Soriano**, Miguel

    2017-04-01

    Biocrusts are distributed in arid areas widely covering most of the soil surface and playing an essential role in the functioning of nitrogen cycle. The absence of biocrust coverage might affect the soil nitrogen content and the quantity and diversity of microbial communities in underlying biocrust soils. To analyse this mater, we have collected three underlying soils biocrusts samples dominated by the lichen Diploschistes diacapsis and Squamarina lentigera from Tabernas desert (southeast of Spain) at two extremes of its spatial distribution range: one with a high percentage of biocrust coverage and other with a huge degradation and low percentage of biocrust coverage in order to determine differences on the total nitrogen content and microbial communities from these underlying soils. DNA from these samples was isolated though a commercial kit and it was used as template for metagenomic analysis. We accomplished a sequencing of the amplicons V4-V5 of the 16S rRNA gene with Next-Generation Sequencing (NGS) Illumina MiSeq platform and a relative quantity of bacteria (rRNA 16S) and fungi (ITS1-5.8S) were conducted by quantitative qPCR. Total nitrogen was measured by the Kjeldahl method. Statistical analyses were based on ANOVAs, heatmap and Generalized Linear Models (GLM). The results showed 1.89E+09 bacteria per gram of soil in the high biocrust coverage position while 6.98E+08 microorganisms per gram of soil were found in the less favourable position according to the lower percentage of biocrust coverage. Similarly, 1.19E+12 was the amount of fungi per gram of soil located in the favourable position with higher biocrust coverage and 7.62E+11 was found in the unfavourable position. Furthermore, the soil under high percentage of biocrust coverage showed the greatest total nitrogen content (1.1 g kg-1) whereas the soil sampled under depressed percentage of biocrust coverage displayed the fewest quantity of total nitrogen content (0.9 g kg-1). Metagenomic and statistical analysis exhibited different bacteria communities according to underlying soils with unlike percentage of biocrust coverage. Opitutus and Adhaeribacter predominated in soil under high biocrust coverage percentage whereas Chelatococcus was found as prevalent bacteria community in soils under low biocrust coverage percentage. Our data illustrate that the percentage of biocrust coverage influence the total nitrogen content in underlying biocrust soils and also affects the amount and the variety of bacteria communities in these underlying soils. (*) Financial support by Marie Curie Intra-European Fellowship (FP7-577 PEOPLE-2013-IEF, Proposal n° 623393) and (**) by the Ministerio de Economía y Competitividad (MINECO) cofinanced with FEDER funds (project CGL2015-71709-R) is acknowledged.

  6. [Morpho-functional parameters of nucleoli in polyploid mucous and albumen cells of salivary gland in the snail Succinea lauta].

    PubMed

    Anisimova, A A; Anisimov, A P

    2005-01-01

    Variation of some characteristics of nucleoli of polyploid mucous and albumen cells was examined in salivary glands of the snail Succinea lauta. The number, total area and Ag-protein content of nucleoli, and DNA content in each nucleus were estimated on squashed preparations incubated with AgNO3, decolorized and then Feulgen stained. The ultrastructure of nucleoli was studied by electron microscopy. Differentiated mucous cells had 4c-8c-16c-32c nuclei; albumen cells had 8c-16c-32c-64c-128c nuclei. The ultrastructure of nucleoli of the two cell types was essentially the same. Normally, a large fibrous to granular zone was observed in the nucleoli, without a clear distinction between fibrous and granular components. At the same time, aggregations of granular matter could be discerned at the periphery of nucleoli. No fibrous centers were observed. Occassionally, nucleolonema-like structures occurred. Normally each nucleolus contacted several chromosomes. On squashed preparations, the least size of nucleoli was 2-3 microm, and the largest size amounted to 14 microm in mucous cells, and to 50-80 microm in albumen cells. The number of nucleoli rose from 1-2 in tetraploid nuclei to 2-3 in 32c-nuclei, and to 5-7 in 128c-nuclei. The disparity between the ploidy levels of nuclei and the numbers of nucleoli may be due, presumably, to aggregation of chromosome NORs. The Ag-protein content in the nucleoli, and the total nucleolar area displayed a strong mutual correlation. Both parameters differed significantly by 1.5-2.2 times in mucous and albumen cells of the same ploidy level. Thus, in albumen and mucous cells the total Ag-protein content in octaploid nuclei was 3.3 and 2.2 relative units (r. u.), respectively. In 16c- and 32c-nuclei of albumen cells, it was 7.6 and 15.1 r. u.; and in the same nuclei of mucous cells--3.8 and 6.8 r. u., respectively. On the whole, in albumen cells, in the course of 4 endocycles (4c-128c), the total Ag-protein content increased by 17 times. Therefore, the mean multiplication factor for this parameter was found to be 2.05 per endocycle. In mucous cells, in the course of 3 endocycles (4c-32c), the total Ag-protein content increased by 5.2 times against 8 times expected, with the mean multiplication factor equal to 1.75 per endocycle. Thus, in the course of polyploidization of albumen and mucous cell nuclei, the gene dosage effect was fully pronounced in the former, and only partly in the latter. This differtence is due obviously to peculiarities of differentiation of the two cell types, in particular, to differences in the number of activated ribosomal genes.

  7. Changes in nuclear receptor corepressor RIP140 do not influence mitochondrial content in the cortex.

    PubMed

    Herbst, Eric A F; Bonen, Arend; Holloway, Graham P

    2015-10-01

    Changes in nuclear receptor interacting protein 140 (RIP140) influences mitochondrial content in skeletal muscle; however, the translation of these findings to the brain has not been investigated. The present study examined the impact of overexpressing and ablating RIP140 on mitochondrial content in muscle and the cortex through examining mRNA, mtDNA, and mitochondrial protein content. Our results show that changes in RIP140 expression significantly alters markers of mitochondrial content in skeletal muscle but not the brain.

  8. Complete chloroplast DNA sequence from a Korean endemic genus, Megaleranthis saniculifolia, and its evolutionary implications.

    PubMed

    Kim, Young-Kyu; Park, Chong-wook; Kim, Ki-Joong

    2009-03-31

    The chloroplast DNA sequences of Megaleranthis saniculifolia, an endemic and monotypic endangered plant species, were completed in this study (GenBank FJ597983). The genome is 159,924 bp in length. It harbors a pair of IR regions consisting of 26,608 bp each. The lengths of the LSC and SSC regions are 88,326 bp and 18,382 bp, respectively. The structural organizations, gene and intron contents, gene orders, AT contents, codon usages, and transcription units of the Megaleranthis chloroplast genome are similar to those of typical land plant cp DNAs. However, the detailed features of Megaleranthis chloroplast genomes are substantially different from that of Ranunculus, which belongs to the same family, the Ranunculaceae. First, the Megaleranthis cp DNA was 4,797 bp longer than that of Ranunculus due to an expanded IR region into the SSC region and duplicated sequence elements in several spacer regions of the Megaleranthis cp genome. Second, the chloroplast genomes of Megaleranthis and Ranunculus evidence 5.6% sequence divergence in the coding regions, 8.9% sequence divergence in the intron regions, and 18.7% sequence divergence in the intergenic spacer regions, respectively. In both the coding and noncoding regions, average nucleotide substitution rates differed markedly, depending on the genome position. Our data strongly implicate the positional effects of the evolutionary modes of chloroplast genes. The genes evidencing higher levels of base substitutions also have higher incidences of indel mutations and low Ka/Ks ratios. A total of 54 simple sequence repeat loci were identified from the Megaleranthis cp genome. The existence of rich cp SSR loci in the Megaleranthis cp genome provides a rare opportunity to study the population genetic structures of this endangered species. Our phylogenetic trees based on the two independent markers, the nuclear ITS and chloroplast matK sequences, strongly support the inclusion of the Megaleranthis to the Trollius. Therefore, our molecular trees support Ohwi's original treatment of Megaleranthis saniculiforia to Trollius chosenensis Ohwi.

  9. Monitoring of the impact of Prestige oil spill on Mytilus galloprovincialis from Galician coast.

    PubMed

    Laffon, Blanca; Rábade, Tamara; Pásaro, Eduardo; Méndez, Josefina

    2006-04-01

    In November 2002, the Prestige oil tanker was wrecked in front of Galician coast (NW of Spain), spilling near 63,000 tons of heavy oil until February 2003. Contamination produced was very extensive (70% of Galician beaches were reached by the oil) but heterogeneous, alternating intensely affected zones with neighbour locations where the repercussion was minimal. The objective of this study was to monitor sea environment contamination caused by Prestige oil spill during an 11-month period (August 2003-June 2004, nine samplings) in two locations of Galician coast with different geographical properties (Lira and Ancoradoiro beaches), by means of chemical determination of total polycyclic aromatic hydrocarbons (TPAH) in seawater, and using as exposure biomarker TPAH content in mussel (Mytilus galloprovincialis) tissues, and as effect biomarker DNA damage in mussel gills, evaluated by the comet assay. In addition, recovery ability of the mussels was determined after a 7-day stay in the laboratory. TPAH contents in seawater were very high in the earliest samplings, but then they maintained below 200 ng L(-)(1), similar to reference seawater. However, TPAH levels in mussel tissues were more variable: they increased again from January 2004, probably due to the adverse meteorological conditions that turned over the sea bottom and dispersed the oil accumulated in sediments. In most samplings, these levels decreased during the recovery stage. DNA damage in oil-exposed mussels was significantly higher than in reference mussels, both before and after the recovery phase, but they did not differ to one another. Comet tail length was slightly reduced during the recovery stage, indicative of a certain DNA repair in exposed mussels. This study showed up the importance of monitoring sea contamination events during an extended time, not only in evaluating the presence of the contaminants in the environment but also in determining their bioaccumulation and their effect on the exposed organisms.

  10. Content of phenolic compounds and free polyamines in black chokeberry (Aronia melanocarpa) after application of polyamine biosynthesis regulators.

    PubMed

    Hudec, Jozef; Bakos, Dusan; Mravec, Dusan; Kobida, L'ubomír; Burdová, Maria; Turianica, Ivan; Hlusek, Jaroslav

    2006-05-17

    The total contents of anthocyanins, flavonoids, and phenolics in 60 samples of black chokeberries (Aronia melanocarpa), after treating with catabolites of polyamine biosynthesis (KPAb) and ornithine decarboxylase inhibitor, were analyzed spectrophotometrically, and quercetin and free polyamine contents were analyzed by RP-HPLC with UV detection. The average total contents of the individual substances and phenolic subgroups in control berries were as follows (mg x kg(-1)): anthocyanines, 6408; flavonoids, 664; phenolics, 37,600; quercetin, 349. KPAb decreased total contents of anthocyanines and phenolics only slightly but significantly increased the content of flavonoids. This caused an important change in the abundance of flavonoids in the pigment complex. The absolute content of quercetin was increased, but its ratio to flavonoids content was decreased. Ornithine decarboxylase inhibitor had a markedly different effect as it significantly increased total content of anthocyanins and total phenolics, inhibited the total content of free polyamines, and stimulated the processes of saccharides transformation to phenolic pigments.

  11. Detection of early changes in lung cell cytology by flow-systems analysis techniques. Progress report, January 1--December 31, 1978. [Resulting from exposure to toxic agents associated with production and use of synthetic fuels from oil shale and coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinkamp, J.A.; Wilson, J.S.; Svitra, Z.V.

    1979-02-01

    This report summarizes ongoing experiments to develop cytological and biochemical indicators for measuring damage to respiratory tract cells of experimental animals exposed by inhalation to environmental toxic agents. The specific goal is to apply flow cytometric methods to analyze and detect changes in lung epithelium as a function of exposure to toxic agents associated with the production and utilization of synthetic fuels from oil shale and coal. During the past 6 months, hamsters were exposed to raw and spent oil shale particulates, silica dust, and ozone, and DNA content measurements were performed on lung cell samples. Although initial shale exposuresmore » did not yield the expected results, recent data show atypical changes in DNA content per cell distributions. Ozone exposures also were expanded to include DNA measurements and cytology, ranging up to 72 h postexposure. Progress was achieved in developing a new method for quantitating pulmonary macrophage phagocytosis in rats using micron-sized fluorescent spheres. New methods for determining alkaline phosphatase, DNA content, and protein also were under development. Plans are to continue developing cytological and biochemical markers for measuring atypical cellular changes, including macrophage function, and to emphasize exposing experimental animals to particulates and gaseous agents for studying dose-damage relationships.« less

  12. Evidence for a direct trophic effect of bombesin on the mouse pancreas: in vivo and cell culture studies.

    PubMed

    Lhoste, E F; Aprahamian, M; Balboni, G; Damgé, C

    1989-01-01

    The present work studied the effect of chronic bombesin on the mouse pancreas and analyzed whether or not this effect was direct. Bombesin administered s.c. 3 times daily for 4 days at various concentrations (0.1, 1, 10, 20 micrograms/kg b. wt.) induced pancreatic growth in a dose-dependent manner. This growth was characterized by an increase in pancreatic weight, its protein and RNA contents suggesting cellular hypertrophy. Pancreatic enzyme content was also increased, especially for amylase (14-fold) and at a lesser degree for chymotrypsin and lipase (2.5-fold). The DNA content of the gland increased significantly after a 1 microgram/kg bombesin treatment suggesting hyperplasia. [3H]thymidine incorporation into DNA increased slightly from 24 h after the first bombesin injection and more obviously at 72 and 96 h indicating DNA synthesis. To determine the direct effect of bombesin on pancreatic acinar cell growth cells were cultured as monolayers on collagen gels in media lacking added hormones and containing 2.5% FBS with or without bombesin (1 microM-1 nM) or caerulein (10 nM). [3H]thymidine incorporation into DNA was increased by caerulein (10 nM) and bombesin (100 nM and 1 microM). Therefore, it is concluded that bombesin is a pancreaticotrophic peptide in mice. Moreover, it is suggested that this effect occurs directly on pancreatic cells.

  13. Soil mineral assemblage influences on microbial communities and carbon cycling under fresh organic matter input

    NASA Astrophysics Data System (ADS)

    Finley, B. K.; Schwartz, E.; Koch, B.; Dijkstra, P.; Hungate, B. A.

    2017-12-01

    The interactions between soil mineral assemblages and microbial communities are important drivers of soil organic carbon (SOC) cycling and storage, although the mechanisms driving these interactions remain unclear. There is increasing evidence supporting the importance of associations with poorly crystalline, short-range order (SRO) minerals in protection of SOC from microbial utilization. However, how the microbial processing of SRO-associated SOC may be influenced by fresh organic matter inputs (priming) remains poorly understood. The influence on SRO minerals on soil microbial community dynamics is uncertain as well. Therefore, we conducted a priming incubation by adding either a simulated root exudate mixture or conifer needle litter to three soils from a mixed-conifer ecosystem. The parent material of the soils were andesite, basalt, and granite and decreased in SRO mineral content, respectively. We also conducted a parallel quantitative stable isotope probing incubation by adding 18O-labelled water to the soils to isotopically label microbial DNA in situ. This allowed us to characterize and identify the active bacterial and archaeal community and taxon-specific growth under fresh organic matter input. While the granite soil (lowest SRO content), had the largest total mineralization, the least priming occurred. The andesite and basalt soils (greater SRO content) had lower total respiration, but greater priming. Across all treatments, the granite soil, while having the lowest species richness of the entire community (249 taxa, both active and inactive), had a larger active community (90%) in response to new SOC input. The andesite and basalt soils, while having greater total species richness of the entire community at 333 and 325 taxa, respectively, had fewer active taxa in response to new C compared to the granite soil (30% and 49% taxa, respectively). These findings suggest that the soil mineral assemblage is an important driver on SOC cycling under fresh organic matter inputs, as well as on the activity and diversity of the microbial community. Often, microbial diversity is associated with function. Our results suggest that the soil environment, in this case SRO mineral content, may be more important on SOC cycling and storage than microbial diversity alone.

  14. RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity

    PubMed Central

    Tsunoda, Honami; Suzuki, Yuji; Makino, Amane; Ishida, Hiroyuki

    2012-01-01

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit (RBCS) is encoded by a nuclear RBCS multigene family in many plant species. The contribution of the RBCS multigenes to accumulation of Rubisco holoenzyme and photosynthetic characteristics remains unclear. T-DNA insertion mutants of RBCS1A (rbcs1a-1) and RBCS3B (rbcs3b-1) were isolated among the four Arabidopsis RBCS genes, and a double mutant (rbcs1a3b-1) was generated. RBCS1A mRNA was not detected in rbcs1a-1 and rbcs1a3b-1, while the RBCS3B mRNA level was suppressed to ∼20% of the wild-type level in rbcs3b-1 and rbcs1a3b-1 leaves. As a result, total RBCS mRNA levels declined to 52, 79, and 23% of the wild-type level in rbcs1a-1, rbcs3b-1, and rbcs1a3b-1, respectively. Rubisco contents showed declines similar to total RBCS mRNA levels, and the ratio of Rubisco-nitrogen to total nitrogen was 62, 78, and 40% of the wild-type level in rbcs1a-1, rbcs3b-1, and rbcs1a3b-1, respectively. The effects of RBCS1A and RBCS3B mutations in rbcs1a3b-1 were clearly additive. The rates of CO2 assimilation at ambient CO2 of 40 Pa were reduced with decreased Rubisco contents in the respective mutant leaves. Although the RBCS composition in the Rubisco holoenzyme changed, the CO2 assimilation rates per unit of Rubisco content were the same irrespective of the genotype. These results clearly indicate that RBCS1A and RBCS3B contribute to accumulation of Rubisco in Arabidopsis leaves and that these genes work additively to yield sufficient Rubisco for photosynthetic capacity. It is also suggested that the RBCS composition in the Rubisco holoenzyme does not affect photosynthesis under the present ambient [CO2] conditions. PMID:22223809

  15. RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity.

    PubMed

    Izumi, Masanori; Tsunoda, Honami; Suzuki, Yuji; Makino, Amane; Ishida, Hiroyuki

    2012-03-01

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit (RBCS) is encoded by a nuclear RBCS multigene family in many plant species. The contribution of the RBCS multigenes to accumulation of Rubisco holoenzyme and photosynthetic characteristics remains unclear. T-DNA insertion mutants of RBCS1A (rbcs1a-1) and RBCS3B (rbcs3b-1) were isolated among the four Arabidopsis RBCS genes, and a double mutant (rbcs1a3b-1) was generated. RBCS1A mRNA was not detected in rbcs1a-1 and rbcs1a3b-1, while the RBCS3B mRNA level was suppressed to ∼20% of the wild-type level in rbcs3b-1 and rbcs1a3b-1 leaves. As a result, total RBCS mRNA levels declined to 52, 79, and 23% of the wild-type level in rbcs1a-1, rbcs3b-1, and rbcs1a3b-1, respectively. Rubisco contents showed declines similar to total RBCS mRNA levels, and the ratio of Rubisco-nitrogen to total nitrogen was 62, 78, and 40% of the wild-type level in rbcs1a-1, rbcs3b-1, and rbcs1a3b-1, respectively. The effects of RBCS1A and RBCS3B mutations in rbcs1a3b-1 were clearly additive. The rates of CO(2) assimilation at ambient CO(2) of 40 Pa were reduced with decreased Rubisco contents in the respective mutant leaves. Although the RBCS composition in the Rubisco holoenzyme changed, the CO(2) assimilation rates per unit of Rubisco content were the same irrespective of the genotype. These results clearly indicate that RBCS1A and RBCS3B contribute to accumulation of Rubisco in Arabidopsis leaves and that these genes work additively to yield sufficient Rubisco for photosynthetic capacity. It is also suggested that the RBCS composition in the Rubisco holoenzyme does not affect photosynthesis under the present ambient [CO(2)] conditions.

  16. STUDY ON BIOLOGICAL CHARACTERISTICS OF HETEROTROPHIC MARINE MICROALGA-SCHIZOCHYTRIUM MANGROVEI PQ6 ISOLATED FROM PHU QUOC ISLAND, KIEN GIANG PROVINCE, VIETNAM(1).

    PubMed

    Hong, Dang Diem; Anh, Hoang Thi Lan; Thu, Ngo Thi Hoai

    2011-08-01

    Schizochytrium sp. PQ6, a heterotrophic microalga isolated from Phu Quoc (PQ) Island in the Kien Giang province of Vietnam, contains a high amount of docosahexaenoic acid (DHA, C22:6n-3). In this study, the culture conditions are developed to maximize biomass and DHA production. Nucleotide sequence analysis of partial 18S rRNA gene from genomic DNA showed that PQ6 has a phylogenetic relationship close to Schizochytrium mangrovei Raghu-Kumar. The highest growth rate and DHA accumulation of this strain were obtained in 6.0% glucose, 1.0% yeast extract, 50% artificial seawater (ASW), and pH 7 at 28°C. In addition, carbon and nitrogen sources could be replaced by glycerol, ammonium acetate, sodium nitrate, or fertilizer N-P-K. Total lipid content reached 38.67% of dry cell weight (DCW), in which DHA and eicosapentaenoic acid (EPA, C20:5n-3) contents accounted for 43.58% and 0.75% of the total fatty acid (TFA), respectively. In 5 and 10 L fermenters, the cell density, DCW, total lipid content, and maximum DHA yield were 46.50 × 10(6)  cells · mL(-1) , 23.7 g · L(-1) , 38.56% of DCW, and 8.71 g · L(-1) (in 5 L fermenter), respectively, and 49.71 × 10(6)  cells · mL(-1) , 25.34 g · L(-1) , 46.23% of DCW, and 11.55 g · L(-1) (in 10 L fermenter), respectively. Biomass of PQ6 strain possessed high contents of Na, I, and Fe (167.185, 278.3, and 43.69 mg · kg(-1) DCW, respectively). These results serve as a foundation for the efficient production of PQ6 biomass that can be used as a food supplement for humans and aquaculture in the future. © 2011 Phycological Society of America.

  17. Ecophysiological Plasticity and Bacteriome Shift in the Seagrass Halophila stipulacea along a Depth Gradient in the Northern Red Sea.

    PubMed

    Rotini, Alice; Mejia, Astrid Y; Costa, Rodrigo; Migliore, Luciana; Winters, Gidon

    2016-01-01

    Halophila stipulacea is a small tropical seagrass species. It is the dominant seagrass species in the Gulf of Aqaba (GoA; northern Red Sea), where it grows in both shallow and deep environments (1-50 m depth). Native to the Red Sea, Persian Gulf, and Indian Ocean, this species has invaded the Mediterranean and has recently established itself in the Caribbean Sea. Due to its invasive nature, there is growing interest to understand this species' capacity to adapt to new conditions, which might be attributed to its ability to thrive in a broad range of ecological niches. In this study, a multidisciplinary approach was used to depict variations in morphology, biochemistry (pigment and phenol content) and epiphytic bacterial communities along a depth gradient (4-28 m) in the GoA. Along this gradient, H. stipulacea increased leaf area and pigment contents (Chlorophyll a and b , total Carotenoids), while total phenol contents were mostly uniform. H. stipulacea displayed a well conserved core bacteriome, as assessed by 454-pyrosequencing of 16S rRNA gene reads amplified from metagenomic DNA. The core bacteriome aboveground (leaves) and belowground (roots and rhizomes), was composed of more than 100 Operational Taxonomic Units (OTUs) representing 63 and 52% of the total community in each plant compartment, respectively, with a high incidence of the classes Alphaproteobacteria , Gammaproteobacteria , and Deltaproteobacteria across all depths. Above and belowground communities were different and showed higher within-depth variability at the intermediate depths (9 and 18 m) than at the edges. Plant parts showed a clear influence in shaping the communities while depth showed a greater influence on the belowground communities. Overall, results highlighted a different ecological status of H. stipulacea at the edges of the gradient (4-28 m), where plants showed not only marked differences in morphology and biochemistry, but also the most distinct associated bacterial consortium. We demonstrated the pivotal role of morphology, biochemistry (pigment and phenol content), and epiphytic bacterial communities in helping plants to cope with environmental and ecological variations. The plant/holobiont capability to persist and adapt to environmental changes probably has an important role in its ecological resilience and invasiveness.

  18. HIV dynamics linked to memory CD4+ T cell homeostasis.

    PubMed

    Murray, John M; Zaunders, John; Emery, Sean; Cooper, David A; Hey-Nguyen, William J; Koelsch, Kersten K; Kelleher, Anthony D

    2017-01-01

    The dynamics of latent HIV is linked to infection and clearance of resting memory CD4+ T cells. Infection also resides within activated, non-dividing memory cells and can be impacted by antigen-driven and homeostatic proliferation despite suppressive antiretroviral therapy (ART). We investigated whether plasma viral level (pVL) and HIV DNA dynamics could be explained by HIV's impact on memory CD4+ T cell homeostasis. Median total, 2-LTR and integrated HIV DNA levels per μL of peripheral blood, for 8 primary (PHI) and 8 chronic HIV infected (CHI) individuals enrolled on a raltegravir (RAL) based regimen, exhibited greatest changes over the 1st year of ART. Dynamics slowed over the following 2 years so that total HIV DNA levels were equivalent to reported values for individuals after 10 years of ART. The mathematical model reproduced the multiphasic dynamics of pVL, and levels of total, 2-LTR and integrated HIV DNA in both PHI and CHI over 3 years of ART. Under these simulations, residual viremia originated from reactivated latently infected cells where most of these cells arose from clonal expansion within the resting phenotype. Since virion production from clonally expanded cells will not be affected by antiretroviral drugs, simulations of ART intensification had little impact on pVL. HIV DNA decay over the first year of ART followed the loss of activated memory cells (120 day half-life) while the 5.9 year half-life of total HIV DNA after this point mirrored the slower decay of resting memory cells. Simulations had difficulty reproducing the fast early HIV DNA dynamics, including 2-LTR levels peaking at week 12, and the later slow loss of total and 2-LTR HIV DNA, suggesting some ongoing infection. In summary, our modelling indicates that much of the dynamical behavior of HIV can be explained by its impact on memory CD4+ T cell homeostasis.

  19. Tenacibaculum aestuarii sp. nov., isolated from a tidal flat sediment in Korea.

    PubMed

    Jung, Seo-Youn; Oh, Tae-Kwang; Yoon, Jung-Hoon

    2006-07-01

    A novel Tenacibaculum-like bacterial strain, SMK-4(T), was isolated from a tidal flat sediment in Korea. Strain SMK-4(T) was Gram-negative, pale yellow-pigmented and rod-shaped. It grew optimally at 30-37 degrees C and in the presence of 2-3 % (w/v) NaCl. It contained MK-6 as the predominant menaquinone and iso-C(15 : 0), iso-C(16 : 0) 3-OH and C(16 : 1)omega7c and/or iso-C(15 : 0) 2-OH as the major fatty acids (>10 % of total fatty acids). The DNA G+C content was 33.6 mol%. Phylogenetic trees based on 16S rRNA gene sequences showed that strain SMK-4(T) fell within the evolutionary radiation encompassed by the genus Tenacibaculum. Strain SMK-4(T) exhibited 16S rRNA gene sequence similarity levels of 95.2-98.6 % with respect to the type strains of recognized Tenacibaculum species. DNA-DNA relatedness levels and differential phenotypic properties made it possible to categorize strain SMK-4(T) as a species that is separate from previously described Tenacibaculum species. On the basis of phenotypic properties and phylogenetic and genetic distinctiveness, strain SMK-4(T) (=KCTC 12569(T)=JCM 13491(T)) should be classified as a novel Tenacibaculum species, for which the name Tenacibaculum aestuarii sp. nov. is proposed.

  20. Inducing mutations through γ-irradiation in seeds of Mucuna pruriens for developing high L-DOPA-yielding genotypes.

    PubMed

    Singh, Susheel Kumar; Yadav, Deepti; Lal, Raj Kishori; Gupta, Madan M; Dhawan, Sunita Singh

    2017-04-01

    To develop elite genotypes in Mucuna pruriens (L.) DC with high L-DOPA (L-3, 4 dihydroxyphenylalanine) yields, with non-itching characteristics and better adaptability by applying γ-irradiation. Molecular and chemical analysis was performed for screening based on specific characteristics desired for developing suitable genotypes. Developed, mutant populations were analyzed for L-DOPA % in seeds through TLC (thin layer chromatography), and the results obtained were validated with the HPLC (High performance liquid chromatography). The DNA (Deoxyribonucleic acid) was isolated from the leaf at the initial stage and used for DNA polymorphism. RNA (Ribonucleic acid) was isolated from the leaf during maturity and used for expression analysis. The selected mutant T-I-7 showed 5.7% L-DOPA content compared to 3.18% of parent CIM-Ajar. The total polymorphism obtained was 57% with the molecular marker analysis. The gene expression analysis showed higher fold change expression of the dopadecarboxylase gene (DDC) in control compared to selected mutants (T-I-7, T-II-23, T-IV-9, T-VI-1). DNA polymorphism was used for the screening of mutants for efficient screening at an early stage. TLC was found suitable for the large-scale comparative chemical analysis of L-DOPA. The expression profile of DDC clearly demonstrated the higher yields of L-DOPA in selected mutants developed by γ-irradiation in the seeds of the control.

Top