Methods and apparatus for cooling electronics
Hall, Shawn Anthony; Kopcsay, Gerard Vincent
2014-12-02
Methods and apparatus are provided for choosing an energy-efficient coolant temperature for electronics by considering the temperature dependence of the electronics' power dissipation. This dependence is explicitly considered in selecting the coolant temperature T.sub.0 that is sent to the equipment. To minimize power consumption P.sub.Total for the entire system, where P.sub.Total=P.sub.0+P.sub.Cool is the sum of the electronic equipment's power consumption P.sub.0 plus the cooling equipment's power consumption P.sub.Cool, P.sub.Total is obtained experimentally, by measuring P.sub.0 and P.sub.Cool, as a function of three parameters: coolant temperature T.sub.0; weather-related temperature T.sub.3 that affects the performance of free-cooling equipment; and computational state C of the electronic equipment, which affects the temperature dependence of its power consumption. This experiment provides, for each possible combination of T.sub.3 and C, the value T.sub.0* of T.sub.0 that minimizes P.sub.Total. During operation, for any combination of T.sub.3 and C that occurs, the corresponding optimal coolant temperature T.sub.0* is selected, and the cooling equipment is commanded to produce it.
Zeng, Lixia; Zhou, Xianming; Cheng, Rui; Wang, Xing; Ren, Jieru; Lei, Yu; Ma, Lidong; Zhao, Yongtao; Zhang, Xiaoan; Xu, Zhongfeng
2017-07-25
Secondary electron emission yield from the surface of SiC ceramics induced by Xe 17+ ions has been measured as a function of target temperature and incident energy. In the temperature range of 463-659 K, the total yield gradually decreases with increasing target temperature. The decrease is about 57% for 3.2 MeV Xe 17+ impact, and about 62% for 4.0 MeV Xe 17+ impact, which is much larger than the decrease observed previously for ion impact at low charged states. The yield dependence on the temperature is discussed in terms of work function, because both kinetic electron emission and potential electron emission are influenced by work function. In addition, our experimental data show that the total electron yield gradually increases with the kinetic energy of projectile, when the target is at a constant temperature higher than room temperature. This result can be explained by electronic stopping power which plays an important role in kinetic electron emission.
Transient Nonlinear Optical Properties of Thin Film Titanium Nitride
2017-03-23
representative of a semiconductor, and their total effect. The effect of carrier heating is shown in light purple. The effect of number of electrons in the...small amount of the excited electrons are heated to a very high temperature. [7] One model for how these hot electrons dissipate energy is called the...two temperature model”. The two temperatures are the temperature of the electron and the temperature of the lattice (or phonon). When heated by an
Measurements of hot-electron temperature in laser-irradiated plasmas
Solodov, A. A.; Yaakobi, B.; Edgell, D. H.; ...
2016-10-26
In a recently published work 1–3 we reported on measuring the total energy of hot electrons produced by the interaction of a nanosecond laser with planar CH-coated molybdenum targets, using the Mo K α emission. The temperature of the hot electrons in that work was determined by the high-energy bremsstrahlung [hard x-ray (HXR)] spectrum measured by a three-channel fluorescence-photomultiplier detector (HXRD). In the present work, we replaced the HXRD with a nine-channel image-plate (IP)–based detector (HXIP). For the same conditions (irradiance of the order of 10 14 W/cm 2; 2-ns pulses) the measured temperatures are consistently lower than those measuredmore » by the HXRD (by a factor ~1.5 to 1.7). In addition, we supplemented this measurement with three experiments that measure the hot-electron temperature using K α line-intensity ratios from high-Z target layers, independent of the HXR emission. These experiments yielded temperatures that were consistent with those measured by the HXIP. We showed that the thermal x-ray radiation must be included in the derivation of total energy in hot electrons (E hot), and that this makes E hot only weakly dependent on hot-electron temperature. For a given x-ray emission in inertial confinement fusion compression experiments, this result would lead to a higher total energy in hot electrons, but the preheat of the compressed fuel may be lower because of the reduced hot-electron range.« less
Measurements of hot-electron temperature in laser-irradiated plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solodov, A. A.; Yaakobi, B.; Edgell, D. H.
In a recently published work 1–3 we reported on measuring the total energy of hot electrons produced by the interaction of a nanosecond laser with planar CH-coated molybdenum targets, using the Mo K α emission. The temperature of the hot electrons in that work was determined by the high-energy bremsstrahlung [hard x-ray (HXR)] spectrum measured by a three-channel fluorescence-photomultiplier detector (HXRD). In the present work, we replaced the HXRD with a nine-channel image-plate (IP)–based detector (HXIP). For the same conditions (irradiance of the order of 10 14 W/cm 2; 2-ns pulses) the measured temperatures are consistently lower than those measuredmore » by the HXRD (by a factor ~1.5 to 1.7). In addition, we supplemented this measurement with three experiments that measure the hot-electron temperature using K α line-intensity ratios from high-Z target layers, independent of the HXR emission. These experiments yielded temperatures that were consistent with those measured by the HXIP. We showed that the thermal x-ray radiation must be included in the derivation of total energy in hot electrons (E hot), and that this makes E hot only weakly dependent on hot-electron temperature. For a given x-ray emission in inertial confinement fusion compression experiments, this result would lead to a higher total energy in hot electrons, but the preheat of the compressed fuel may be lower because of the reduced hot-electron range.« less
Literature search for ceramic vacuum tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, W.
1977-01-12
The NTIS and Engineering Index files were searched for citations relating to Ceramic and/or Metal Electron Tubes and High Temperature Electronics. A total of 24 citations were found relating directly to ceramic tubes and 24 to high temperature electronics. A search for electron tubes in general was examined for high temperature applications and 39 were obtained. Computer printouts of the abstracts are included in appendices. (MHR)
NASA Astrophysics Data System (ADS)
Reginald, Nelson L.; Davila, Joseph M.; St. Cyr, Orville C.; Rabin, Douglas M.
2017-06-01
We conducted an experiment in conjunction with the total solar eclipse of 1 August 2008 in China to determine the thermal electron temperature in the low solar corona close to the solar limb. The instrument, Imaging Spectrograph of Coronal Electrons (ISCORE), consisted of an 8 inch f/10 Schmidt Cassegrain telescope with a thermoelectrically cooled CCD camera at the focal plane. Results are electron temperatures of 1 MK at 1.08 R⊙ and 1.13 R⊙ from the Sun center in the polar and equatorial regions, respectively. This experiment confirms the results of an earlier experiment conducted in conjunction with the total eclipse of 29 March 2006 in Libya, and results are that at a given coronal height the electron temperature in the polar region is larger than at the equatorial region. In this paper we show the importance of using the correct photospheric spectrum pertinent to the solar activity phase at the time of the experiment, which is a required parameter for modeling the underlying theoretical concept for temperature interpretation of the measured intensity ratios using color filters.
The Electronic Thermal Conductivity of Graphene.
Kim, Tae Yun; Park, Cheol-Hwan; Marzari, Nicola
2016-04-13
Graphene, as a semimetal with the largest known thermal conductivity, is an ideal system to study the interplay between electronic and lattice contributions to thermal transport. While the total electrical and thermal conductivity have been extensively investigated, a detailed first-principles study of its electronic thermal conductivity is still missing. Here, we first characterize the electron-phonon intrinsic contribution to the electronic thermal resistivity of graphene as a function of doping using electronic and phonon dispersions and electron-phonon couplings calculated from first-principles at the level of density-functional theory and many-body perturbation theory (GW). Then, we include extrinsic electron-impurity scattering using low-temperature experimental estimates. Under these conditions, we find that the in-plane electronic thermal conductivity κe of doped graphene is ∼300 W/mK at room temperature, independently of doping. This result is much larger than expected and comparable to the total thermal conductivity of typical metals, contributing ∼10% to the total thermal conductivity of bulk graphene. Notably, in samples whose physical or domain sizes are of the order of few micrometers or smaller, the relative contribution coming from the electronic thermal conductivity is more important than in the bulk limit, because lattice thermal conductivity is much more sensitive to sample or grain size at these scales. Last, when electron-impurity scattering effects are included we find that the electronic thermal conductivity is reduced by 30 to 70%. We also find that the Wiedemann-Franz law is broadly satisfied at low and high temperatures but with the largest deviations of 20-50% around room temperature.
NASA Astrophysics Data System (ADS)
Huang, S.; Sahraoui, F.; Yuan, Z.; He, J.; Zhao, J.; Du, J.; Le Contel, O.; Wang, X.; Deng, X.; Fu, H.; Zhou, M.; Shi, Q.; Breuillard, H.; Pang, Y.; Yu, X.; Wang, D.
2017-12-01
Magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region of the magnetic hole and a peak in the outer region of the magnetic hole. There is an enhancement in the perpendicular electron fluxes at 90° pitch angles inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations. We perform a statistically study using high time solution data from the MMS mission. The magnetic holes with short duration (i.e., < 0.5 s) have their cross section smaller than the ion gyro-radius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature, significantly increase (resp. decrease) the electron perpendicular (resp. parallel) temperature, and an electron vortex inside the holes. Electron fluxes at 90° pitch angles with selective energies increase in the KSMHs, are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2D and 3D particle-in-cell simulations, indicating that the observed the magnetic holes seem to be best explained as electron vortex magnetic holes. It is furthermore shown that the magnetic holes are likely to heat and accelerate the electrons. We also investigate the coupling between whistler waves and electron vortex magnetic holes. These whistler waves can be locally generated inside electron vortex magnetic holes by electron temperature anisotropic instability.
Free-bound electron exchange contribution to l-split atomic structure in dense plasmas
NASA Astrophysics Data System (ADS)
Bennadji, K.; Rosmej, F.; Lisitsa, V. S.
2013-11-01
An analytical expression for the exchange energy between the bound electron in hydrogen-like ions and the free electrons of plasma is proposed. Two limiting cases are identified: 1) the low temperature limit where the energy depends linearly on density and on the ion charge as 1/Z2 but does not depend on the temperature itself, 2) the high temperature limit where the energy depends on temperature as 1/T but does not depend on the ion charge. These two regimes are separated by a characteristic temperature (T∗ = 4Z2Ry) which is a universal parameter depending only on the charge Z of the ions. We presented numerical results for aluminum: the exchange energy contributes about 15% to the total plasma energy and can reach an order of 10-4 of the total transition energy. Comparison to the Local-density Approximation (Kohn-Sham) exchange energy shows a good agreement.
A Two-Temperature Model of the Intracluster Medium
NASA Astrophysics Data System (ADS)
Takizawa, Motokazu
1998-12-01
We investigate evolution of the intracluster medium (ICM), considering the relaxation process between the ions and electrons. According to the standard scenario of structure formation, the ICM is heated by the shock in the accretion flow to the gravitational potential well of the dark halo. The shock primarily heats the ions because the kinetic energy of an ion entering the shock is larger than that of an electron by the ratio of masses. Then the electrons and ions exchange the energy through Coulomb collisions and reach equilibrium. From simple order estimation we find that the region where the electron temperature is considerably lower than the ion temperature spreads out on a megaparsec scale. We then calculate the ion and electron temperature profiles by combining the adiabatic model of a two-temperature plasma by Fox & Loeb with spherically symmetric N-body and hydrodynamic simulations based on three different cosmological models. It is found that the electron temperature is about half the mean temperature at radii ~1 Mpc. This could lead to about a 50% underestimation in the total mass contained within ~1 Mpc when the electron temperature profiles are used. The polytropic indices of the electron temperature profiles are ~=1.5, whereas those of mean temperature are ~=1.3 for r >= 1 Mpc. This result is consistent both with the X-ray observations on electron temperature profiles and with some theoretical and numerical predictions about mean temperature profiles.
NASA Technical Reports Server (NTRS)
Davila, Joseph M.; Geginald, Nelson L.; Gashut, Hadi; Guhathakurta, Madhulika; Hassler, Donald M.
2008-01-01
An experiment to measure the electron temperature and flow speed in the solar corona by observing the visible K-coronal spectrum was conducted during the total solar eclipse on 29 March 2006 in Libya. New corona1 models accounting for the effect of electron temperature and flow on the resulting K-corona spectrum were used to interpret the observations. Results show electron temperatures of 1.10 +/- 0.05, 0.98 +/- 0.12, and 0.70 +/- 0.08 MK, at l.l{\\it R)$-{\\odot)$ in the solar north, east and west, respectively, and 0.93 +/- 0.12 MK, at 1.2 R(sub sun) in the solar east. The corresponding outflow speeds obtained from the spectral fit are 103 +/- 92, 0 + 10, 0 + 10, and 0 + 10 km/s. Since the observations are taken only at 1.1 and 1.2 R(sub sun) these velocities , consistent with zero outflow, are in agreement with expectations and provide additional confirmation that the spectral fitting method is working.
High-temperature fusion of a multielectron leviton
NASA Astrophysics Data System (ADS)
Moskalets, Michael
2018-04-01
The state of electrons injected onto the surface of the Fermi sea depends on temperature. The state is pure at zero temperature and is mixed at finite temperature. In the case of a single-electron injection, such a transformation can be detected as a decrease in shot noise with increasing temperature. In the case of a multielectron injection, the situation is subtler. The mixedness helps the development of quantum-mechanical exchange correlations between injected electrons, even if such correlations are absent at zero temperature. These correlations enhance the shot noise, which in part counteracts the reduction of noise with temperature. Moreover, at sufficiently high temperatures, the correlation contribution to noise predominates over the contribution of individual particles. As a result, in the system of N electrons, the apparent charge (which is revealed via the shot noise) is changed from e at zero temperature to N e at high temperatures. It looks like the exchange correlations glue electrons into one particle of total charge and energy. This point of view is supported by both charge noise and heat noise. Interestingly, in the macroscopic limit, N →∞ , the correlation contribution completely suppresses the effect of temperature on noise.
2014-03-27
temperature, to its electrical conductivity, while considering its dopant concentration ( or ) [2]. (1-2) As previously stated, temperature effects...electrons [2]. Equations (1-3) and (1-4) are used to calculate electron (or hole) mobility in Si based on total dopant concentration (N) at a given...nickel, or cobalt . The metal catalyst breaks down the carbon feedstock to produce CNTs. As shown in Figure 53 below, 83 gaseous carbon feedstock
NASA Technical Reports Server (NTRS)
Reginald, Nelson L.; Davila, Joseph M.; SaintCyr, O.; Rabin, Douglas M.; Guhathakurta, Madhulika; Hassler, Donald M.; Gashut, Hadi
2011-01-01
An experiment was conducted in conjunction with the total solar eclipse on 29 March 2006 in Libya to measure both the electron temperature and its flow speed simultaneously at multiple locations in the low solar corona by measuring the visible K-coronal spectrum. Coronal model spectra incorporating the effects of electron temperature and its flow speed were matched with the measured K-coronal spectra to interpret the observations. Results show electron temperatures of (1.10 +/- 0.05) MK, (0.70 +/- 0.08) MK, and (0.98 +/- 0.12) MK, at 1.1 Solar Radius from Sun center in the solar north, east and west, respectively, and (0.93 +/- 0.12) MK, at 1.2 Solar Radius from Sun center in the solar west. The corresponding outflow speeds obtained from the spectral fit are (103 +/- 92) km/s, (0 + 10) km/s, (0+10) km/s, and (0+10) km/s. Since the observations were taken only at 1.1 Solar Radius and 1.2 Solar Radius from Sun center, these speeds, consistent with zero outflow, are in agreement with expectations and provide additional confirmation that the spectral fitting method is working. The electron temperature at 1.1 Solar Radius from Sun center is larger at the north (polar region) than the east and west (equatorial region).
Temperature Dependence of Dissociative Electron Attachment to Halogenated Hydrocarbons
NASA Astrophysics Data System (ADS)
Wang, Yicheng; Christophorou, Loucas G.
1996-10-01
Most of the gas mixtures currently in use for plasma processing of semiconductors involve halogenated hydrocarbons such as the strongly electronegative gases CCl4 and CFCl_3, the weakly electronegative gas CF_2Cl2 and the very weakly electronegative gases CHF3 and CF_4. Many dissociation processes are known to occur for these molecules. One of these dissociation reactions which is particularly effective for the strongly electronegative hydrocarbons is dissociative electron attachment. Even for weakly electron attaching gases, molecular dissociation via dissociative electron attachment at low energies can be an efficient dissociation process if the gas temperature is higher than ambient. Dissociative electron attachment is known to increase with increasing temperature above room temperature for many such compounds. In this paper, we report our measurements on the increases of the total electron attachment rate constant for CF_2Cl2 with increasing gas temperature from room temperature to about 600 K. -Research sponsored in part by the U.S. Air Force Wright Laboratory under contract F33615-96-C-2600 with the University of Tennessee. Also, Department of Physics, The University of Tennessee, Knoxville, TN.
NASA Astrophysics Data System (ADS)
Ma, Y.; Dong, C.; van der Holst, B.; Nagy, A. F.; Bougher, S. W.; Toth, G.; Cravens, T.; Yelle, R. V.; Jakosky, B. M.
2017-12-01
The multi-fluid (MF) magnetohydrodynamic (MHD) model of Mars is further improved by solving an additional electron pressure equation. Through the electron pressure equation, the electron temperature is calculated based on the effects from various electrons related heating and cooling processes (e.g. photo-electron heating, electron-neutral collision and electron-ion collision), and thus the improved model is able to calculate the electron temperature and the electron pressure force self-consistently. Electron thermal conductivity is also considered in the calculation. Model results of a normal case with electron pressure equation included (MFPe) are compared in detail to an identical case using the regular MF model to identify the effect of the improved physics. We found that when the electron pressure equation is included, the general interaction patterns are similar to that of the case with no electron pressure equation. The model with electron pressure equation predicts that electron temperature is much larger than the ion temperature in the ionosphere, consistent with both Viking and MAVEN observations. The inclusion of electron pressure equation significantly increases the total escape fluxes predicted by the model, indicating the importance of the ambipolar electric field(electron pressure gradient) in driving the ion loss from Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirmovich, E.G.; Shapiro, B.S.
1975-01-01
Simultaneous satellite measurements of electron density N/sub s/ and temperature (T/sub e/)/sub s/ at a height h/sub s/ above an observatory and ground-based observations are used to compute the total vertical electron density profiles N(h) and estimate the temperature of the ionospheric plasma. Four close time intervals after sunset were selected for analysis.
NASA Technical Reports Server (NTRS)
Caton, R.; Selim, R.; Buoncristiani, A. M.
1992-01-01
The electronic link connecting cryogenically cooled radiation detectors to data acquisition and signal processing electronics at higher temperatures contributes significantly to the total heat load on spacecraft cooling systems that use combined mechanical and cryogenic liquid cooling. Using high transition temperature superconductors for this link has been proposed to increase the lifetime of space missions. Herein, several YBCO (YBa2Cu3O7) superconductor-substrate combinations were examined and total heat loads were compared to manganin wire technology in current use. Using numerical solutions to the heat-flow equations, it is shown that replacing manganin technology with YBCO thick film technology can extend a 7-year mission by up to 1 year.
NASA Astrophysics Data System (ADS)
Wang, Chen-Lu; Zhang, Yan; Huang, Jian-Wei; Liu, Guo-Dong; Liang, Ai-Ji; Zhang, Yu-Xiao; Shen, Bing; Liu, Jing; Hu, Cheng; Ding, Ying; Liu, De-Fa; Hu, Yong; He, Shao-Long; Zhao, Lin; Yu, Li; Hu, Jin; Wei, Jiang; Mao, Zhi-Qiang; Shi, You-Guo; Jia, Xiao-Wen; Zhang, Feng-Feng; Zhang, Shen-Jin; Yang, Feng; Wang, Zhi-Min; Peng, Qin-Jun; Xu, Zu-Yan; Chen, Chuang-Tian; Zhou, Xing-Jiang
2017-08-01
WTe2 has attracted a great deal of attention because it exhibits extremely large and nonsaturating magnetoresistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-based angle-resolved photoemission spectroscopy with high energy and momentum resolutions, we reveal the complete electronic structure of WTe2. This makes it possible to determine accurately the electron and hole concentrations and their temperature dependence. We find that, with increasing the temperature, the overall electron concentration increases while the total hole concentration decreases. It indicates that the electron-hole compensation, if it exists, can only occur in a narrow temperature range, and in most of the temperature range there is an electron-hole imbalance. Our results are not consistent with the perfect electron-hole compensation picture that is commonly considered to be the cause of the unusual magnetoresistance in WTe2. We identified a flat band near the Brillouin zone center that is close to the Fermi level and exhibits a pronounced temperature dependence. Such a flat band can play an important role in dictating the transport properties of WTe2. Our results provide new insight on understanding the origin of the unusual magnetoresistance in WTe2.
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Tew, Roy C.; Schwarze, Gene E.
1998-01-01
The effect of silicon carbide (SiC) electronics operating temperatures on Power Management and Distribution (PMAD), or Power Conditioning (PC), subsystem radiator size and mass requirements was evaluated for three power output levels (100 kW(e) , 1 MW(e), and 10 MW(e)) for near term technology ( i.e. 1500 K turbine inlet temperature) Closed Cycle Gas Turbine (CCGT) power systems with a High Temperature Gas Reactor (HTGR) heat source. The study was conducted for assumed PC radiator temperatures ranging from 370 to 845 K and for three scenarios of electrical energy to heat conversion levels which needed to be rejected to space by means of the PC radiator. In addition, during part of the study the radiation hardness of the PC electronics was varied at a fixed separation distance to estimate its effect on the mass of the instrument rated reactor shadow shield. With both the PC radiator and the conical shadow shield representing major components of the overall power system the influence of the above on total power system mass was also determined. As expected, results show that the greatest actual mass savings achieved by the use of SiC electronics occur with high capacity power systems. Moreover, raising the PC radiator temperature above 600 K yields only small additional system mass savings. The effect of increased radiation hardness on total system mass is to reduce system mass by virtue of lowering the shield mass.
Theoretical insights on the electron doping and Curie temperature in La-doped Sr2CrWO6.
Wang, Jing; Meng, Jian; Wu, Zhijian
2011-11-30
The structure and electronic and magnetic properties of La(x)Sr(2-x)CrWO(6) (x = 0.0, 0.5, 1.0, 1.5, 2.0) were investigated by using the density functional theory. With the increase of La doping, the extra electrons are injected into W 5d orbitals, which makes the spin moments of W increase. In addition, the calculated Curie temperature and total magnetic moments decrease with the increase of the electron doping, in agreement with the experimental observation. This also means that the decrease of Curie temperature with the electron doping is intrinsic. Half metallic properties are obtained for x = 0.0, 0.5, 1.5, and 2.0, whereas for x = 1.0, the compound is semiconducting. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lyo, S. K.; Huang, Danhong
2006-05-01
Electron-electron scattering conserves total momentum and does not dissipate momentum directly in a low-density system where the umklapp process is forbidden. However, it can still affect the conductance through the energy relaxation of the electrons. We show here that this effect can be studied with arbitrary accuracy in a multisublevel one-dimensional (1D) single quantum wire system in the presence of roughness and phonon scattering using a formally exact solution of the Boltzmann transport equation. The intrasubband electron-electron scattering is found to yield no net effect on the transport of electrons in 1D with only one sublevel occupied. For a system with a multilevel occupation, however, we find a significant effect of intersublevel electron-electron scattering on the temperature and density dependence of the resistance at low temperatures.
NASA Astrophysics Data System (ADS)
Kolekar, Sadhu; Patole, S. P.; Patil, Sumati; Yoo, J. B.; Dharmadhikari, C. V.
2017-10-01
We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well-defined cathode surface is given by Millikan and Lauritsen [1] for the combination of temperature and electric field effect. The same expression has been used to explain the electron emission characteristics from vertical CNT emitters. Furthermore, this has been applied to explain the electron emission for different temperatures ranging from room temperature to 1500 K. The real-time field electron emission images at room temperature and 1500 K are recorded by using Charge Coupled Device (CCD) in order to understand the effect of temperature on distribution of electron emission spots and ring like structures in Field Emission Microscope (FEM) image. The FEM images could be used to calculate the total number of emitters per cm2 for electron emission. The calculated number of emitters per cm2 from FEM image is typically, 4.5 × 107 and the actual number emitters per cm2 present as per Atomic Force Microscopy (AFM) data is 1.2 × 1012. The measured Current-Voltage (I-V) characteristics exhibit non linear Folwer-Nordheim (F-N) type behavior. The fluctuations in the emission current were recorded at different temperatures and Fast Fourier transformed into temperature dependent power spectral density. The latter was found to obey power law relation S(f) = A(Iδ/fξ), where δ and ξ are temperature dependent current and frequency exponents respectively.
Annealing effects on electron-beam evaporated Al 2O 3 films
NASA Astrophysics Data System (ADS)
Shuzhen, Shang; Lei, Chen; Haihong, Hou; Kui, Yi; Zhengxiu, Fan; Jianda, Shao
2005-04-01
The effects of post-deposited annealing on structure and optical properties of electron-beam evaporated Al 2O 3 single layers were investigated. The films were annealed in air for 1.5 h at different temperatures from 250 to 400 °C. The optical constants and cut-off wavelength were deduced. Microstructure of the samples was characterized by X-ray diffraction (XRD). Profile and surface roughness measurement instrument was used to determine the rms surface roughness. It was found that the cut-off wavelength shifted to short wavelength as the annealing temperature increased and the total optical loss decreased. The film structure remained amorphous even after annealing at 400 °C temperature and the samples annealed at higher temperature had the higher rms surface roughness. The decreasing total optical loss with annealing temperature was attributed to the reduction of absorption owing to oxidation of the film by annealing. Guidance to reduce the optical loss of excimer laser mirrors was given.
Huang, Wei; Hu, Hong; Zhang, Shi-Bao
2016-01-01
Alpine evergreen broadleaf tree species must regularly cope with low night temperatures in winter. However, the effects of low night temperatures on photosynthesis in alpine evergreen broadleaf tree species are unclear. We measured the diurnal photosynthetic parameters before and after cold snap for leaves of Quercus guyavifolia growing in its native habitat at 3290 m. On 11 and 12 December 2013 (before cold snap), stomatal and mesophyll conductances (gs and gm), CO2 assimilation rate (An), and total electron flow through PSII (JPSII) at daytime were maintained at high levels. The major action of alternative electron flow was to provide extra ATP for primary metabolisms. On 20 December 2013 (after cold snap), the diurnal values of gs, gm, An, and JPSII at daytime largely decreased, mainly due to the large decrease in night air temperature. Meanwhile, the ratio of photorespiration and alternative electron flow to JPSII largely increased on 20 December. Furthermore, the high levels of alternative electron flow were accompanied with low rates of extra ATP production. A quantitative limitation analysis reveals that the gm limitation increased on 20 December with decreased night air temperature. Therefore, the night air temperature was an important determinant of stomatal/mesophyll conductance and photosynthesis. When photosynthesis is inhibited following freezing night temperatures, photorespiration and alternative electron flow are important electron sinks, which support the role of photorespiration and alternative electron flow in photoportection for alpine plants under low temperatures. PMID:27812359
VizieR Online Data Catalog: Radiative recombination electron energy loss data (Mao+, 2017)
NASA Astrophysics Data System (ADS)
Mao, J.; Kaastra, J.; Badnell, N. R.
2016-11-01
The weighted electron energy loss factors (dimensionless) are defined by weighting the electron energy loss rate coefficients (per ion) with respect to the total radiative recombination rates. Both the unparameterized and parameterized weighted electron energy-loss factors for H-like to Ne-like ions from H (z=1) up to and including Zn (z=30), in a wide temperature range, are available here. For the unparameterized data set, the temperatures are set to the conventional ADAS temperature grid, i.e. c2*(10,20,50,100,200,...,2*106,5*106,107)K, where c is the ionic charge of the recombined ion. For the fitting parameters, the temperature should be in units of eV. We refer to the recombined ion when we speak of the radiative recombination of a certain ion, for example, for a bare oxygen ion capturing a free electron via radiative recombination to form H-like oxygen (O VIII, s=1, z=8). The fitting accuracies are better than 4%. (2 data files).
NASA Astrophysics Data System (ADS)
Ovchinnikov, S. G.; Orlov, Yu. S.; Nekrasov, I. A.; Pchelkina, Z. V.
2011-01-01
The electronic structure of LaCoO3 at finite temperatures is calculated using the LDA+GTB method taking into account strong electron correlations and possible spin crossover upon an increase in temperature. Gap states revealed in the energy spectrum of LaCoO3 reduce the dielectric gap width upon heating; this allowed us to describe the insulator-metal transition observed in this compound at T = 500-600 K. The temperature dependence of the magnetic susceptibility with a peak at T ≈ 100 K is explained by the Curie contribution from thermally excited energy levels of the Co3+ ion. At high temperatures, the Pauli contribution from a band electron is added and the total magnetization of LaCoO3 is considered as the sum M tot = M loc + M band. The second term describes the band contribution appearing as a result of the insulator-metal transition and facilitating the emergence of a high-temperature anomaly in the magnetic susceptibility of LaCoO3.
Electronic waste disassembly with industrial waste heat.
Chen, Mengjun; Wang, Jianbo; Chen, Haiyian; Ogunseitan, Oladele A; Zhang, Mingxin; Zang, Hongbin; Hu, Jiukun
2013-01-01
Waste printed circuit boards (WPCBs) are resource-rich but hazardous, demanding innovative strategies for post-consumer collection, recycling, and mining for economically precious constituents. A novel technology for disassembling electronic components from WPCBs is proposed, using hot air to melt solders and to separate the components and base boards. An automatic heated-air disassembling equipment was designed to operate at a heating source temperature at a maximum of 260 °C and an inlet pressure of 0.5 MPa. A total of 13 individual WPCBs were subjected to disassembling tests at different preheat temperatures in increments of 20 °C between 80 and 160 °C, heating source temperatures ranging from 220 to 300 °C in increments of 20 °C, and incubation periods of 1, 2, 4, 6, or 8 min. For each experimental treatment, the disassembly efficiency was calculated as the ratio of electronic components released from the board to the total number of its original components. The optimal preheat temperature, heating source temperature, and incubation period to disassemble intact components were 120 °C, 260 °C, and 2 min, respectively. The disassembly rate of small surface mount components (side length ≤ 3 mm) was 40-50% lower than that of other surface mount components and pin through hole components. On the basis of these results, a reproducible and sustainable industrial ecological protocol using steam produced by industrial exhaust heat coupled to electronic-waste recycling is proposed, providing an efficient, promising, and green method for both electronic component recovery and industrial exhaust heat reutilization.
Investigation of high temperature fracture of T-111 and ASTAR-811C
NASA Technical Reports Server (NTRS)
Gold, R. E.
1971-01-01
The high temperature deformation and fracture behavior of T-111 and ASTAR-811C were studied over the temperature range 982 to 2205 C (1800 to 4000 F). As-cast and wrought-recrystallized material as well as GTA welds in sheet and plate were evaluated using conventional tensile and creep tests. Post test examinations were performed using optical metallography, scanning electron microscopy and transmission electron microscopy. A high temperature region of reduced ductility, in terms of tensile elongation, was identified for both alloys. The reduction in tensile elongation became more severe with increase in grain size, being near catastrophic for the as-cast specimens. Optical and electron metallography indicated that even for failures at very low total strain, considerable deformation of a very localized nature had occurred prior to fracture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, P.; Yu, G. Q.; Wei, H. X.
Electron-beam evaporated MgO-based magnetic tunnel junctions have been fabricated with the CoFeB free layer deposited at Ar pressure from 1 to 4 mTorr, and their tunneling process has been studied as a function of temperature and bias voltage. By changing the growth pressure, the junction dynamic conductance dI/dV, inelastic electron tunneling spectrum d²I/dV², and tunneling magnetoresistance vary with temperature. Moreover, the low-energy magnon cutoff energy E {sub C} derived from the conductance versus temperature curve agrees with interface magnon energy obtained directly from the inelastic electron tunneling spectrum, which demonstrates that interface magnons are involved in the electron tunneling process,more » opening an additional conductance channel and thus enhancing the total conductance.« less
Laboratory plasma with cold electron temperature of the lower ionosphere
NASA Astrophysics Data System (ADS)
Dickson, Shannon; Robertson, Scott
2009-10-01
For the first time, plasma with cold electron temperatures less than 300K has been created continuously in the laboratory. The plasma is created in a cylindrical double-walled vacuum chamber in which the inner chamber (18cm in diameter and 30cm long) is wrapped in copper tubing through which vapor from liquid nitrogen flows, providing a cooling mechanism for the neutral gas. The inner chamber has two negatively-biased filaments for plasma generation and a platinum wire Langmuir probe for diagnostic measurements. Neutral gas pressures of 1.6mTorr and a total filament emission current of 2mA are used to obtain plasma densities near 4 x 10^8 cm-3. When carbon monoxide is used as the working gas, decreasing the neutral gas temperature also decreases the cold electron temperatures, yielding cold electrons with 21meV (240K) when the neutral CO is at 150K. The same experiment conducted with H2, He, or Ar results in a doubling of the cold electron temperatures, yielding 80meV (930K) when the neutral gas is at 150K. The lower electron temperature with CO is attributed to the asymmetric CO molecule having a nonzero electric dipole moment which increases the cross section for electron energy exchange. Nitric oxide, a dominant constituent of the ionosphere, has a similar dipole moment and collision cross section as carbon monoxide and is likely to be equally effective at cooling electrons.
NASA Astrophysics Data System (ADS)
Espinho, S.; Hofmann, S.; Palomares, J. M.; Nijdam, S.
2017-10-01
The aim of this work is to study the properties of Ar-O2 microwave driven surfatron plasmas as a function of the Ar/O2 ratio in the gas mixture. The key parameters are the plasma electron density and electron temperature, which are estimated with Thomson scattering (TS) for O2 contents up to 50% of the total gas flow. A sharp drop in the electron density from {10}20 {{{m}}}-3 to approximately {10}18 {{{m}}}-3 is estimated as the O2 content in the gas mixture is increased up to 15%. For percentages of O2 lower than 10%, the electron temperature is estimated to be about 2-3 times higher than in the case of a pure argon discharge in the same conditions ({T}{{e}}≈ 1 eV) and gradually decreases as the O2 percentage is raised to 50%. However, for O2 percentages above 30%, the scattering spectra become Raman dominated, resulting in large uncertainties in the estimated electron densities and temperatures. The influence of photo-detached electrons from negative ions caused by the typical TS laser fluences is also likely to contribute to the uncertainty in the measured electron densities for high O2 percentages. Moreover, the detection limit of the system is reached for percentages of O2 higher than 25%. Additionally, both the electron density and temperature of microwave discharges with large Ar/O2 ratios are more sensitive to gas pressure variations.
Influence of oxygen-vacancy complex /A center/ on piezoresistance of n-type silicon.
NASA Technical Reports Server (NTRS)
Littlejohn, M. A.; Loggins, C. D., Jr.
1972-01-01
Changes in both magnitude and temperature dependence of the piezoresistance of electron-irradiated n-type silicon, induced by the latter's oxygen-vacancy complex (A center), are shown to be due to the fact that the presence of the A center causes the total conduction-band electron concentration to change with an applied stress. This change in electron concentration leads to an additional piezoresistance contribution that is expected to be important in certain many-valley semiconductors. This offers the possibility of tailoring the thermal variations of semiconductor mechanical sensors to more desirable values over limited temperature ranges.
Emission measures derived from far ultraviolet spectra of T Tauri stars
NASA Astrophysics Data System (ADS)
Cram, L. E.; Giampapa, M. S.; Imhoff, C. L.
1980-06-01
Spectroscopic diagnostics based on UV emission line observations have been developed to study the solar chromosphere, transition region, and corona. The atmospheric properties that can be inferred from observations of total line intensities include the temperature, by identifying the ionic species present; the temperature distribution of the emission measure, from the absolute intensities; and the electron density of the source, from line intensity ratios sensitive to the electron density. In the present paper, the temperature distribution of the emission measure is estimated from observations of far UV emission line fluxes of the T Tauri stars, RW Aurigae and RU Lupi, made on the IUE. A crude estimate of the electron density of one star is obtained, using density-sensitive line ratios.
NASA Astrophysics Data System (ADS)
Taori, A.; Dashora, N.; Raghunath, K.; Russell, J. M., III; Mlynczak, Martin G.
2011-07-01
We report first simultaneous airglow, lidar, and total electron content measurements in the mesosphere-thermosphere-ionosphere system behavior from Gadanki (13.5°N, 79.2°E). The observed variability in mesospheric temperatures and 630 nm thermospheric emission intensity shows large variations from one night to another with clear upward propagating waves at mesospheric altitudes. The deduced mesospheric temperatures compare well with Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER)-derived temperatures, while the variability agrees well with lidar temperatures (on the night of simultaneous observations). The 630.0 nm thermospheric emission intensity and GPS-total electron content data exhibit occurrence of plasma depletions on the nights of 22-23 October and 22-23 May 2009, while no depletions are noted on the nearby nights of 23-24 October and 21-22 May 2009. These first simultaneous data reveal strong gravity-wave growth at upper mesospheric altitudes on the nights when plasma depletions were noted.
NASA Astrophysics Data System (ADS)
Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.
2018-06-01
The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.
Radial Variations in the Io Plasma Torus during the Cassini Era
NASA Technical Reports Server (NTRS)
Delamere, P. A.; Bagenal, F.; Steffl, A.
2005-01-01
A radial scan through the midnight sector of the Io plasma torus was made by the Cassini Ultraviolet Imaging Spectrograph on 14 January 2001, shortly after closest approach to Jupiter. From these data, Steffl et al. (2004a) derived electron temperature, plasma composition (ion mixing ratios), and electron column density as a function of radius from L = 6 to 0 as well as the total luminosity. We have advanced our homogeneous model of torus physical chemistry (Delamere and Bagenal, 2003) to include latitudinal and radial variations in a manner similar to the two-dimensional model by Schreier et al. (1998). The model variables include: (1) neutral source rate, (2) radial transport coefficient, (3) the hot electron fraction, (4) hot electron temperature, and (5) the neutral O/S ratio. The radial variation of parameters 1-4 are described by simple power laws, making a total of nine parameters. We have explored the sensitivity of the model results to variations in these parameters and compared the best fit with previous Voyager era models (schreier et al., 1998), galileo data (Crary et al., 1998), and Cassini observations (steffl et al., 2004a). We find that radial variations during the Cassini era are consistent with a neutral source rate of 700-1200 kg/s, an integrated transport time from L = 6 to 9 of 100-200 days, and that the core electron temperature is largely determined by a spatially and temporally varying superthermal electron population.
NASA Astrophysics Data System (ADS)
Xie, Z. Q.; Antaya, T. A.
1990-01-01
We have obtained excellent agreement between BEAM-3D calculations and beam profile and emittance measurements of the total extracted beam from the room temperature electron cyclotron resonance (RTECR), when a low degree of beam neutralization is assumed in the calculations, as will be presented in this paper. The beam envelope has approximately a quadratic dependence on drift distance, and space-charge effects dominate the early beam formation and beamline optics matching process.
NASA Astrophysics Data System (ADS)
Xie, Z. Q.; Antaya, T. A.
1990-02-01
We have obtained excellent agreement between BEAM-3D calculations and beam profile and emittance measurements of the total extracted beam from the room temperature electron cyclotron resonance (RTECR), when a low degree of beam neutralization is assumed in the calculations, as will be presented in this paper. The beam envelope has approximately a quadratic dependence on drift distance, and space-charge effects dominate the early beam formation and beamline optics matching process.
Ground-state energies of simple metals
NASA Technical Reports Server (NTRS)
Hammerberg, J.; Ashcroft, N. W.
1974-01-01
A structural expansion for the static ground-state energy of a simple metal is derived. Two methods are presented, one an approach based on single-particle band structure which treats the electron gas as a nonlinear dielectric, the other a more general many-particle analysis using finite-temperature perturbation theory. The two methods are compared, and it is shown in detail how band-structure effects, Fermi-surface distortions, and chemical-potential shifts affect the total energy. These are of special interest in corrections to the total energy beyond third order in the electron-ion interaction and hence to systems where differences in energies for various crystal structures are exceptionally small. Preliminary calculations using these methods for the zero-temperature thermodynamic functions of atomic hydrogen are reported.
Structural expansions for the ground state energy of a simple metal
NASA Technical Reports Server (NTRS)
Hammerberg, J.; Ashcroft, N. W.
1973-01-01
A structural expansion for the static ground state energy of a simple metal is derived. An approach based on single particle band structure which treats the electron gas as a non-linear dielectric is presented, along with a more general many particle analysis using finite temperature perturbation theory. The two methods are compared, and it is shown in detail how band-structure effects, Fermi surface distortions, and chemical potential shifts affect the total energy. These are of special interest in corrections to the total energy beyond third order in the electron ion interaction, and hence to systems where differences in energies for various crystal structures are exceptionally small. Preliminary calculations using these methods for the zero temperature thermodynamic functions of atomic hydrogen are reported.
Molybdenum electron impact width parameter measurement by laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Sternberg, E. M. A.; Rodrigues, N. A. S.; Amorim, J.
2016-01-01
In this work, we suggest a method for electron impact width parameter calculation based on Stark broadening of emission lines of a laser-ablated plasma plume. First, electron density and temperature must be evaluated by means of the Saha-Boltzmann plot method for neutral and ionized species of the plasma. The method was applied for laser-ablated molybdenum plasma plume. For molybdenum plasma electron temperature, which varies around 10,000 K, and electron density, which reaches values around 1018 cm-3, and considering that total measured line broadening was due experimental and Stark broadening mainly, electron impact width parameter of molybdenum emission lines was determined as (0.01 ± 0.02) nm. Intending to validate the presented method, it was analyzed the laser-ablated aluminum plasma plume and the obtained results were in agreement with the predicted on the literature.
Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P.; Ko, Seung Hwan
2012-01-01
Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition– and photolithography-based conventional metal patterning processes. The “digital” nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays. PMID:22900011
Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P; Ko, Seung Hwan
2012-01-01
Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays.
NASA Technical Reports Server (NTRS)
Maier, E. J.; Narasinga Rao, B. C.
1972-01-01
Results of measurements made with a retarding potential analyzer on a Nike-Tomahawk rocket during the totality of the solar eclipse, showing definite evidence for the existence of photoelectrons from the conjugate hemisphere. Photoelectrons are observed in the altitude range from 120 to 260 km. The observed flux in the energy range from 2 to 30 eV is relatively constant above about 200 km, but decreased below that altitude. The flux of 5-eV energy electrons above 200 km altitude is about 10 to the 7th power electrons/cm/sec/eV. Higher-energy electrons were also observed, and it is possible that the energy content of these observed fluxes of conjugate-point photoelectrons is sufficient to maintain the observed electron densities and temperatures during the total eclipse.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2017-05-01
The influence of nonisothermal and quantum shielding on the electron-ion collision process is investigated in strongly coupled two-temperature plasmas. The eikonal method is employed to obtain the eikonal scattering phase shift and eikonal cross section as functions of the impact parameter, collision energy, electron temperature, ion temperature, Debye length, and de Broglie wavelength. The results show that the quantum effect suppresses the eikonal scattering phase shift for the electron-ion collision in two-temperature dense plasmas. It is also found that the differential eikonal cross section decreases for small impact parameters. However, it increases for large impact parameters with increasing de Broglie wavelength. It is also found that the maximum position of the differential eikonal cross section is receded from the collision center with an increase in the nonisothermal character of the plasma. In addition, it is found that the total eikonal cross sections in isothermal plasmas are always greater than those in two-temperature plasmas. The variations of the eikonal cross section due to the two-temperature and quantum shielding effects are also discussed.
Boughariou, A; Damamme, G; Kallel, A
2015-04-01
This paper focuses on the effect of sample annealing temperature and crystallographic orientation on the secondary electron yield of MgO during charging by a defocused electron beam irradiation. The experimental results show that there are two regimes during the charging process that are better identified by plotting the logarithm of the secondary electron emission yield, lnσ, as function of the total trapped charge in the material QT. The impact of the annealing temperature and crystallographic orientation on the evolution of lnσ is presented here. The slope of the asymptotic regime of the curve lnσ as function of QT, expressed in cm(2) per trapped charge, is probably linked to the elementary cross section of electron-hole recombination, σhole, which controls the trapping evolution in the reach of the stationary flow regime. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Thermoluminescent response of LiF:Mg, Ti to low energy electrons
NASA Astrophysics Data System (ADS)
Mercado-Uribe, H.; Brandan, M. E.
2000-10-01
The dose response curve of LiF:Mg, Ti (TLD-100) exposed to 20 keV electrons from a scanning electron microscope has been measured. The total TL signal shows linear-supralinear behavior. The preliminary results indicate the onset of supralinearity at doses close to 70 Gy. The supralinear response is due to the increasingly important contribution of the high temperature peaks.
Automated data acquisition and processing for a Hohlraum reflectometer
NASA Technical Reports Server (NTRS)
Difilippo, Frank; Mirtich, Michael J.
1988-01-01
A computer and data acquisition board were used to automate a Perkin-Elmer Model 13 spectrophotometer with a Hohlraum reflectivity attachment. Additional electronic circuitry was necessary for amplification, filtering, and debouncing. The computer was programmed to calculate spectral emittance from 1.7 to 14.7 micrometers and also total emittance versus temperature. Automation of the Hohlraum reflectometer reduced the time required to determine total emittance versus temperature from about three hours to about 40 minutes.
MAVEN observations of dayside peak electron densities in the ionosphere of Mars
NASA Astrophysics Data System (ADS)
Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Andersson, Laila; Girazian, Zachary; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Connerney, John E. P.; Espley, Jared R.; Eparvier, Frank G.; Jakosky, Bruce M.
2017-01-01
The peak electron density in the dayside Martian ionosphere is a valuable diagnostic of the state of the ionosphere. Its dependence on factors like the solar zenith angle, ionizing solar irradiance, neutral scale height, and electron temperature has been well studied. The Mars Atmosphere and Volatile EvolutioN spacecraft's September 2015 "deep dip" orbits, in which the orbital periapsis was lowered to 125 km, provided the first opportunity since Viking to sample in situ a complete dayside electron density profile including the main peak. Here we present peak electron density measurements from 37 deep dip orbits and describe conditions at the altitude of the main peak, including the electron temperature and composition of the ionosphere and neutral atmosphere. We find that the dependence of the peak electron density and the altitude of the main peak on solar zenith angle are well described by analytical photochemical theory. Additionally, we find that the electron temperatures at the main peak display a dependence on solar zenith angle that is consistent with the observed variability in the peak electron density. Several peak density measurements were made in regions of large crustal magnetic field, but there is no clear evidence that the crustal magnetic field strength influences the peak electron density, peak altitude, or electron temperature. Finally, we find that the fractional abundance of O2+ and CO2+ at the peak altitude is variable but that the two species together consistently represent 95% of the total ion density.
Direct Determination of Activities for Microorganisms of Chesapeake Bay Populations
Tabor, Paul S.; Neihof, Rex A.
1984-01-01
We used three methods in determination of the metabolically active individual microorganisms for Chesapeake Bay surface and near-bottom populations over a period of a year. Synthetically active bacteria were recognized as enlarged cells in samples amended with nalidixic acid and yeast extract and incubated for 6 h. Microorganisms with active electron transport systems were identified by the reduction of a tetrazolium salt electron acceptor. Microorganisms active in uptake of amino acids, thymidine, and acetate were determined by microautoradiography. In conjunction with enumeration of active organisms, a total direct count was made for each sample preparation by epifluorescence microscopy. For the majority of samples, numbers of amino acid uptake-active organisms were greater than numbers of organisms determined to be active by other direct measurements. Within a sample, the numbers of uptake-active organisms (amino acids or thymidine) and electron transport system-active organisms were significantly different for 68% of the samples. Numbers of synthetically active bacteria were generally less than numbers determined by the other direct activity measurements. The distribution of total counts in the 11 samplings showed a seasonal pattern, with significant dependence on in situ water temperature, increasing from March to September and then decreasing through February. Synthetically active bacteria and amino acid uptake-active organisms showed a significant dependence on in situ temperature, independent of the function of temperature on total counts. Numbers of active organisms determined by at least one of the methods used exceeded 25% of the total population of all samplings, and from June through September, >85% of the total population was found to be active by at least one direct activity measurement. Thus, active rather than dormant organisms compose a major portion of the microbial population in this region of Chesapeake Bay. PMID:16346659
Direct determination of activities for microorganisms of chesapeake bay populations.
Tabor, P S; Neihof, R A
1984-11-01
We used three methods in determination of the metabolically active individual microorganisms for Chesapeake Bay surface and near-bottom populations over a period of a year. Synthetically active bacteria were recognized as enlarged cells in samples amended with nalidixic acid and yeast extract and incubated for 6 h. Microorganisms with active electron transport systems were identified by the reduction of a tetrazolium salt electron acceptor. Microorganisms active in uptake of amino acids, thymidine, and acetate were determined by microautoradiography. In conjunction with enumeration of active organisms, a total direct count was made for each sample preparation by epifluorescence microscopy. For the majority of samples, numbers of amino acid uptake-active organisms were greater than numbers of organisms determined to be active by other direct measurements. Within a sample, the numbers of uptake-active organisms (amino acids or thymidine) and electron transport system-active organisms were significantly different for 68% of the samples. Numbers of synthetically active bacteria were generally less than numbers determined by the other direct activity measurements. The distribution of total counts in the 11 samplings showed a seasonal pattern, with significant dependence on in situ water temperature, increasing from March to September and then decreasing through February. Synthetically active bacteria and amino acid uptake-active organisms showed a significant dependence on in situ temperature, independent of the function of temperature on total counts. Numbers of active organisms determined by at least one of the methods used exceeded 25% of the total population of all samplings, and from June through September, >85% of the total population was found to be active by at least one direct activity measurement. Thus, active rather than dormant organisms compose a major portion of the microbial population in this region of Chesapeake Bay.
Measuring the Electron Temperature in the Corona
NASA Technical Reports Server (NTRS)
Davila, Joseph; SaintCyr, Orville C.; Reginald, Nelson
2008-01-01
We report on an experiment to demonstrate the feasibility of a new method to obtain the electron temperature and flow speed in the solar corona by observing the visible Kcoronal spectrum during the total solar eclipse on 29 March 2006 in Libya. Results show that this new method is indeed feasible, giving electron temperatures and speeds of 1.10 $\\pm$ 0.05 MK, 103.0 $\\pm$ 92.0 $kmsA{-l}$; 0.98 $\\pm$ 0.12 MK, 0.0 + 10.0 $kmsA{-1)s; 0.70 $\\pm$ 0.08 MK, 0.0 + 10.0 $kmsA{-l)$ at l.l{\\it R)$ {\\odot}$ in the solar north, east and west, respectively, and 0.93 $\\pm$ 0.12 MK, 0.0 + 10.0 $kmsA{-l}$ at 1.2{\\it R}$ {\\odot}$ in the solar east. This new technique could be easily used from a space-based platform in a coronagraph to produce two dimensional maps of the electron temperature and bulk flow speed at the base of the solar wind useful for the study of heliospheric structure and space weather.
Single Crystal Diamond Needle as Point Electron Source.
Kleshch, Victor I; Purcell, Stephen T; Obraztsov, Alexander N
2016-10-12
Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2-0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics.
Single Crystal Diamond Needle as Point Electron Source
NASA Astrophysics Data System (ADS)
Kleshch, Victor I.; Purcell, Stephen T.; Obraztsov, Alexander N.
2016-10-01
Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2-0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics.
Electron-impact vibrational relaxation in high-temperature nitrogen
NASA Technical Reports Server (NTRS)
Lee, Jong-Hun
1992-01-01
Vibrational relaxation process of N2 molecules by electron-impact is examined for the future planetary entry environments. Multiple-quantum transitions from excited states to higher/lower states are considered for the electronic ground state of the nitrogen molecule N2 (X 1Sigma-g(+)). Vibrational excitation and deexcitation rate coefficients obtained by computational quantum chemistry are incorporated into the 'diffusion model' to evaluate the time variations of vibrational number densities of each energy state and total vibrational energy. Results show a non-Boltzmann distribution of number densities at the earlier stage of relaxation, which in turn suppresses the equilibrium process but affects little the time variation of total vibrational energy. An approximate rate equation and a corresponding relaxation time from the excited states, compatible with the system of flow conservation equations, are derived. The relaxation time from the excited states indicates the weak dependency of the initial vibrational temperature. The empirical curve-fit formula for the improved e-V relaxation time is obtained.
SAMI3_ICON: Model of the Ionosphere/Plasmasphere System
NASA Astrophysics Data System (ADS)
Huba, J. D.; Maute, A.; Crowley, G.
2017-10-01
The NRL ionosphere/plasmasphere model SAMI3 has been modified to support the NASA ICON mission. Specifically, SAMI3_ICON has been modified to import the thermospheric composition, temperature, and winds from TIEGCM-ICON and the high-latitude potential from AMIE data. The codes will be run on a daily basis during the ICON mission to provide ionosphere and thermosphere properties to the science community. SAMI3_ICON will provide ionospheric and plasmaspheric parameters such as the electron and ion densities, temperatures, and velocities, as well as the total electron content (TEC), peak ionospheric electron density (NmF2) and height of the F layer at NmF2 (hmF2).
Self-Recovery Experiments in Extreme Environments Using a Field Programmable Transistor Array
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Keymeulen, Didier; Arslan, Tughrul; Duong, Vu; Zebulum, Ricardo; Ferguson, Ian; Guo, Xin
2004-01-01
Temperature and radiation tolerant electronics, as well as long life survivability are key capabilities required for future NASA missions. Current approaches to electronics for extreme environments focus on component level robustness and hardening. However, current technology can only ensure very limited lifetime in extreme environments. This paper describes novel experiments that allow adaptive in-situ circuit redesign/reconfiguration during operation in extreme temperature and radiation environments. This technology would complement material/device advancements and increase the mission capability to survive harsh environments. The approach is demonstrated on a mixed-signal programmable chip (FPTA-2), which recovers functionality for temperatures until 28 C and with total radiation dose up to 250kRad.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Avillez, Miguel A.; Breitschwerdt, Dieter, E-mail: mavillez@galaxy.lca.uevora.pt
Tracking the thermal evolution of plasmas, characterized by an n -distribution, using numerical simulations, requires the determination of the emission spectra and of the radiative losses due to free–free emission from the corresponding temperature-averaged and total Gaunt factors. Detailed calculations of the latter are presented and associated with n -distributed electrons with the parameter n ranging from 1 (corresponding to the Maxwell–Boltzmann distribution) to 100. The temperature-averaged and total Gaunt factors with decreasing n tend toward those obtained with the Maxwell–Boltzmann distribution. Radiative losses due to free–free emission in a plasma evolving under collisional ionization equilibrium conditions and composed bymore » H, He, C, N, O, Ne, Mg, Si, S, and Fe ions, are presented. These losses decrease with a decrease in the parameter n , reaching a minimum when n = 1, and thus converge with the loss of thermal plasma. Tables of the thermal-averaged and total Gaunt factors calculated for n -distributions, and a wide range of electron and photon energies, are presented.« less
The effect of impurities and incident angle on the secondary electron emission of Ni(110)
NASA Astrophysics Data System (ADS)
Lazar, Hadar; Patino, Marlene; Raitses, Yevgeny; Koel, Bruce E.; Gentile, Charles; Feibush, Eliot
2015-11-01
The investigation of secondary electron emission (SEE) of conducting materials used for magnetic fusion devices and plasma thrusters is important for determining device lifetime and performance. Methods to quantify the secondary electron emission from conducting materials and to characterize the effects that impurities and incident angles have on secondary electron emission were developed using 4-grid low energy electron diffraction (LEED) optics. The total secondary electron yield from a Ni(110) surface was continuously measured from the sample current as surface contamination increased from reactions with background gases in the ultrahigh vacuum chamber. Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) were used to examine the composition and impurity levels on the Ni(110) surface. The total secondary electron yield was also measured at different incident angles. Thank you to the Princeton Plasma Physics Laboratory and the Department of Energy for the opportunity to work on this project through the Science Undergraduate Laboratory Internships.
The effects of impurities and incidence angle on the secondary electron emission of Ni(110)
NASA Astrophysics Data System (ADS)
Lazar, Hadar; Patino, Marlene; Raitses, Yevgeny; Koel, Bruce; Gentile, Charles; Feibush, Eliot
The investigation of secondary electron emission (SEE) of conducting materials used for magnetic fusion devices and plasma thrusters is important for determining device lifetime and performance. Methods to quantify the secondary electron emission from conducting materials and to characterize the effects that impurities and incidence angles have on secondary electron emission were developed using 4-grid low energy electron diffraction (LEED) optics. The total secondary electron yield from a Ni(110) surface was continuously measured from the sample current as surface contamination increased from reactions with background gases in the ultrahigh vacuum chamber. Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) were used to examine the composition and impurity levels on the Ni(110) surface. The total secondary electron yield was also measured at different incidence angles. Thank you to the Princeton Plasma Physics Laboratory (PPPL) and the Department of Energy (DOE) for the opportunity to work on this project through the Science Undergraduate Laboratory Internships (SULI).
Ideal laser-beam propagation through high-temperature ignition Hohlraum plasmas.
Froula, D H; Divol, L; Meezan, N B; Dixit, S; Moody, J D; Neumayer, P; Pollock, B B; Ross, J S; Glenzer, S H
2007-02-23
We demonstrate that a blue (3omega, 351 nm) laser beam with an intensity of 2 x 10(15) W cm(-2) propagates nearly within the original beam cone through a millimeter scale, T(e)=3.5 keV high density (n(e)=5 x 10(20) cm(-3)) plasma. The beam produced less than 1% total backscatter at these high temperatures and densities; the resulting transmission is greater than 90%. Scaling of the electron temperature in the plasma shows that the plasma becomes transparent for uniform electron temperatures above 3 keV. These results are consistent with linear theory thresholds for both filamentation and backscatter instabilities inferred from detailed hydrodynamic simulations. This provides a strong justification for current inertial confinement fusion designs to remain below these thresholds.
Low Temperature Testing of a Radiation Hardened CMOS 8-Bit Flash Analog-to-Digital (A/D) Converter
NASA Technical Reports Server (NTRS)
Gerber, Scott S.; Hammond, Ahmad; Elbuluk, Malik E.; Patterson, Richard L.; Overton, Eric; Ghaffarian, Reza; Ramesham, Rajeshuni; Agarwal, Shri G.
2001-01-01
Power processing electronic systems, data acquiring probes, and signal conditioning circuits are required to operate reliably under harsh environments in many of NASA:s missions. The environment of the space mission as well as the operational requirements of some of the electronic systems, such as infrared-based satellite or telescopic observation stations where cryogenics are involved, dictate the utilization of electronics that can operate efficiently and reliably at low temperatures. In this work, radiation-hard CMOS 8-bit flash A/D converters were characterized in terms of voltage conversion and offset in the temperature range of +25 to -190 C. Static and dynamic supply currents, ladder resistance, and gain and offset errors were also obtained in the temperature range of +125 to -190 C. The effect of thermal cycling on these properties for a total of ten cycles between +80 and - 150 C was also determined. The experimental procedure along with the data obtained are reported and discussed in this paper.
Simplified Numerical Description of SPT Operations
NASA Technical Reports Server (NTRS)
Manzella, David H.
1995-01-01
A simplified numerical model of the plasma discharge within the SPT-100 stationary plasma thruster was developed to aid in understanding thruster operation. A one dimensional description was used. Non-axial velocities were neglected except for the azimuthal electron velocity. A nominal operating condition of 4.5 mg/s of xenon anode flow was considered with 4.5 Amperes of discharge current, and a peak radial magnetic field strength of 130 Gauss. For these conditions, the calculated results indicated ionization fractions of 0.99 near the thruster exit with a potential drop across the discharge of approximately 250 Volts. Peak calculated electron temperatures were found to be sensitive to the choice of total ionization cross section for ionization of atomic xenon by electron bombardment and ranged from 51 eV to 60 eV. The calculated ionization fraction, potential drop, and electron number density agree favorably with previous experiments. Calculated electron temperatures are higher than previously measured.
NASA Astrophysics Data System (ADS)
Issautier, Karine; Ongala-Edoumou, Samuel; Moncuquet, Michel
2016-04-01
The quasi-thermal noise (QTN) method consists in measuring the electrostatic fluctuations produced by the thermal motion of the ambient particles. This noise is detected with a sensitive wave receiver and measured at the terminal of a passive electric antenna, which is immersed in a stable plasma. The analysis of the so-called QTN provides in situ measurements, mainly the total electron density, with a good accuracy, and thermal temperature in a large number of space media. We create a preliminary electron database to analyse the anti-correlation between electron density and temperature deduced from WIND perigees in the Earth's plasmasphere. We analyse the radio power spectra measured by the Thermal Noise Receiver (TNR), using the 100-m long dipole antenna, onboard WIND spacecraft. We develop a systematic routine to determine the electron density, core and halo temperature and the magnitude of the magnetic field based on QTN in Bernstein modes. Indeed, the spectra are weakly banded between gyroharmonics below the upper hybrid frequency, from which we derive the local electron density. From the gyrofrequency determination, we obtain an independent measure of the magnetic field magnitude, which is in close agreement with the onboard magnetometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, S. Y.; Yuan, Z. G.; Wang, D. D.
We report on the observations of an electron vortex magnetic hole corresponding to a new type of coherent structure in the turbulent magnetosheath plasma using the Magnetospheric Multiscale mission data. The magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region and a peak in the outer region of the magnetic hole. The estimated size of the magnetic hole is about 0.23 ρ {sub i} (∼30 ρ {submore » e}) in the quasi-circular cross-section perpendicular to its axis, where ρ {sub i} and ρ {sub e} are respectively the proton and electron gyroradius. There are no clear enhancements seen in high-energy electron fluxes. However, there is an enhancement in the perpendicular electron fluxes at 90° pitch angle inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components V {sub em} and V {sub en} suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the cross-section in the M – N plane. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations.« less
Measurement of threshold temperature effects in dissociative electron attachment to HI and DI
NASA Technical Reports Server (NTRS)
Chutjian, A.; Alajajian, S. H.; Man, K.-F.
1990-01-01
From accurate spectroscopic constants it is found that the thermal dissociative-attachment process (DA) in DI should be exothermic only for rotational levels J greater than 8 in v = O. Here, measurement of an enhancement of DA with rotational temperature T in the range 298-468 K is reported. The effect is easily accounted for by the increase in total fractional population of excited J levels in DI relative to HI. The effect affords a rotational analog to the use of vibrationally excited molecules (e.g., HCl) in a plasma to control electron conduction.
Distributed Control Architecture for Gas Turbine Engine. Chapter 4
NASA Technical Reports Server (NTRS)
Culley, Dennis; Garg, Sanjay
2009-01-01
The transformation of engine control systems from centralized to distributed architecture is both necessary and enabling for future aeropropulsion applications. The continued growth of adaptive control applications and the trend to smaller, light weight cores is a counter influence on the weight and volume of control system hardware. A distributed engine control system using high temperature electronics and open systems communications will reverse the growing trend of control system weight ratio to total engine weight and also be a major factor in decreasing overall cost of ownership for aeropropulsion systems. The implementation of distributed engine control is not without significant challenges. There are the needs for high temperature electronics, development of simple, robust communications, and power supply for the on-board electronics.
Single Crystal Diamond Needle as Point Electron Source
Kleshch, Victor I.; Purcell, Stephen T.; Obraztsov, Alexander N.
2016-01-01
Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2–0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics. PMID:27731379
X-ray diffraction measurement of cosolvent accessible volume in rhombohedral insulin crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soares, Alexei S.; Caspar, Donald L. D.
We report x-ray crystallographic measurement of the number of solvent electrons in the unit cell of a protein crystal equilibrated with aqueous solutions of different densities provides information about preferential hydration in the crystalline state. Room temperature and cryo-cooled rhombohedral insulin crystals were equilibrated with 1.2 M trehalose to study the effect of lowered water activity. The native and trehalose soaked crystals were isomorphous and had similar structures. Including all the low resolution data, the amplitudes of the structure factors were put on an absolute scale (in units of electrons per asymmetric unit) by constraining the integrated number of electronsmore » inside the envelope of the calculated protein density map to equal the number deduced from the atomic model. This procedure defines the value of F(0 0 0), the amplitude at the origin of the Fourier transform, which is equal to the total number of electrons in the asymmetric unit (i.e. protein plus solvent). Comparison of the F(0 0 0) values for three isomorphous pairs of room temperature insulin crystals, three with trehalose and three without trehalose, indicates that 75 ± 12 electrons per asymmetric unit were added to the crystal solvent when soaked in 1.2 M trehalose. If all the water in the crystal were available as solvent for the trehalose, 304 electrons would have been added. Thus, the co-solvent accessible volume is one quarter of the total water in the crystal. Finally, determination of the total number of electrons in a protein crystal is an essential first step for mapping the average density distribution of the disordered solvent.« less
X-ray diffraction measurement of cosolvent accessible volume in rhombohedral insulin crystals
Soares, Alexei S.; Caspar, Donald L. D.
2017-08-31
We report x-ray crystallographic measurement of the number of solvent electrons in the unit cell of a protein crystal equilibrated with aqueous solutions of different densities provides information about preferential hydration in the crystalline state. Room temperature and cryo-cooled rhombohedral insulin crystals were equilibrated with 1.2 M trehalose to study the effect of lowered water activity. The native and trehalose soaked crystals were isomorphous and had similar structures. Including all the low resolution data, the amplitudes of the structure factors were put on an absolute scale (in units of electrons per asymmetric unit) by constraining the integrated number of electronsmore » inside the envelope of the calculated protein density map to equal the number deduced from the atomic model. This procedure defines the value of F(0 0 0), the amplitude at the origin of the Fourier transform, which is equal to the total number of electrons in the asymmetric unit (i.e. protein plus solvent). Comparison of the F(0 0 0) values for three isomorphous pairs of room temperature insulin crystals, three with trehalose and three without trehalose, indicates that 75 ± 12 electrons per asymmetric unit were added to the crystal solvent when soaked in 1.2 M trehalose. If all the water in the crystal were available as solvent for the trehalose, 304 electrons would have been added. Thus, the co-solvent accessible volume is one quarter of the total water in the crystal. Finally, determination of the total number of electrons in a protein crystal is an essential first step for mapping the average density distribution of the disordered solvent.« less
NASA Astrophysics Data System (ADS)
Jost, Benjamin; Klein, Marcus; Eifler, Dietmar
This paper focuses on the ductile cast iron EN-GJS-600 which is often used for components of combustion engines. Under service conditions, those components are mechanically loaded at different temperatures. Therefore, this investigation targets at the fatigue behavior of EN-GJS-600 at ambient and elevated temperatures. Light and scanning electron microscopic investigations were done to characterize the sphericity of the graphite as well as the ferrite, pearlite and graphite fraction. At elevated temperatures, the consideration of dynamic strain ageing effects is of major importance. In total strain increase, temperature increase and constant total strain amplitude tests, the plastic strain amplitude, the stress amplitude, the change in temperature and the change in electrical resistance were measured. The measured values depend on plastic deformation processes in the bulk of the specimens and at the interfaces between matrix and graphite. The fatigue behavior of EN-GJS-600 is dominated by cyclic hardening processes. The physically based fatigue life calculation "PHYBALSIT" (SIT = strain increase test) was developed for total strain controlled fatigue tests. Only one temperature increase test is necessary to determine the temperature interval of pronounced dynamic strain ageing effects.
Progress in high-temperature oven development for 28 GHz electron cyclotron resonance ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohnishi, J., E-mail: ohnishi@riken.jp; Higurashi, Y.; Nakagawa, T.
2016-02-15
We have been developing a high-temperature oven using UO{sub 2} in the 28 GHz superconducting electron cyclotron resonance ion source at RIKEN since 2013. A total of eleven on-line tests were performed. The longest operation time in a single test was 411 h, and the consumption rate of UO{sub 2} was approximately 2.4 mg/h. In these tests, we experienced several problems: the ejection hole of a crucible was blocked with UO{sub 2} and a crucible was damaged because of the reduction of tungsten strength at high temperature. In order to solve these problems, improvements to the crucible shape were mademore » by simulations using ANSYS.« less
The vibrational dependence of dissociative recombination: Rate constants for N{sub 2}{sup +}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guberman, Steven L., E-mail: slg@sci.org
Dissociative recombination rate constants are reported with electron temperature dependent uncertainties for the lowest 5 vibrational levels of the N{sub 2}{sup +} ground state. The rate constants are determined from ab initio calculations of potential curves, electronic widths, quantum defects, and cross sections. At 100 K electron temperature, the rate constants overlap with the exception of the third vibrational level. At and above 300 K, the rate constants for excited vibrational levels are significantly smaller than that for the ground level. It is shown that any experimentally determined total rate constant at 300 K electron temperature that is smaller thanmore » 2.0 × 10{sup −7} cm{sup 3}/s is likely to be for ions that have a substantially excited vibrational population. Using the vibrational level specific rate constants, the total rate constant is in very good agreement with that for an excited vibrational distribution found in a storage ring experiment. It is also shown that a prior analysis of a laser induced fluorescence experiment is quantitatively flawed due to the need to account for reactions with unknown rate constants. Two prior calculations of the dissociative recombination rate constant are shown to be inconsistent with the cross sections upon which they are based. The rate constants calculated here contribute to the resolution of a 30 year old disagreement between modeled and observed N{sub 2}{sup +} ionospheric densities.« less
NASA Astrophysics Data System (ADS)
Reginald, Nelson Leslie; Gopalswamy, Natchimuthuk; Guhathakurta, Madhulika; Yashiro, Seiji
2016-05-01
Experiments that require polarized brightness measurements, traditionally have done so by taking three successive images through a polarizer that is rotated through three well-defined angles. With the advent of the polarization camera, the polarized brightness can be measured from a single image. This also eliminates the need for a polarizer and the associated rotator mechanisms and can contribute towards less weight, size, less power requirements, and importantly higher temporal resolution. We intend to demonstrate the capabilities of the polarization camera by conducting a field experiment in conjunction with the total solar eclipse of 21 August 2017 using the Imaging Spectrograph of Coronal Electrons (ISCORE) instrument (Reginald et. al., solar physics, 2009, 260, 347-361). In this instrumental concept four K-coronal images of the corona through four filters centered at 385.0, 398.7, 410.0, 423.3 nm with a bandpass of 4 nm are expected to allow us to determine the coronal electron temperature and electron speed all around the corona. In order to determine the K-coronal brightness through each filter, we would have to take three images by rotating a polarizer through three angles for each of the filters, and it is not feasible owing to the short durations of total solar eclipses. Therefore, in the past we have assumed the total brightness (F + K) measured by each of the four filters to represent K-coronal brightness, which is true in low solar corona. However, with the advent of the polarization camera we can now measure the Stokes Polarization Parameters on a pixel by pixel basis for every image taken by the polarization camera. This allows us to independently quantify the total brightness (K+F) and polarized brightness (K). Also in addition to the four filter images that allow us to measure the electron temperature and electron speed, taking an additional image without a filter will give us enough information to determine the electron density. This instrumental concept was first tried in conjunction with the total solar eclipse of 9 March 2016 in Maba, Indonesia, but was unfortunately clouded out.
Temperature-dependent band structure of SrTiO3 interfaces
NASA Astrophysics Data System (ADS)
Raslan, Amany; Lafleur, Patrick; Atkinson, W. A.
2017-02-01
We build a theoretical model for the electronic properties of the two-dimensional (2D) electron gas that forms at the interface between insulating SrTiO3 and a number of polar cap layers, including LaTiO3, LaAlO3, and GdTiO3. The model treats conduction electrons within a tight-binding approximation and the dielectric polarization via a Landau-Devonshire free energy that incorporates strontium titanate's strongly nonlinear, nonlocal, and temperature-dependent dielectric response. The self-consistent band structure comprises a mix of quantum 2D states that are tightly bound to the interface and quasi-three-dimensional (3D) states that extend hundreds of unit cells into the SrTiO3 substrate. We find that there is a substantial shift of electrons away from the interface into the 3D tails as temperature is lowered from 300 K to 10 K. This shift is least important at high electron densities (˜1014cm-2 ) but becomes substantial at low densities; for example, the total electron density within 4 nm of the interface changes by a factor of two for 2D electron densities ˜1013cm-2 . We speculate that the quasi-3D tails form the low-density high-mobility component of the interfacial electron gas that is widely inferred from magnetoresistance measurements.
Isegawa, Miho; Gao, Jiali; Truhlar, Donald G
2011-08-28
Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi-Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi-Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. © 2011 American Institute of Physics
Isegawa, Miho; Gao, Jiali; Truhlar, Donald G.
2011-01-01
Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi–Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi–Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. PMID:21895159
NASA Technical Reports Server (NTRS)
Mcronald, A. D.
1975-01-01
Mean density and temperature fluctuations were measured across the turbulent, cooled-wall boundary layer in a continuous hypersonic (Mach 9.4) wind tunnel in air, using the nitrogen fluorescence excited by a 50 kV electron beam. Data were taken at three values of the tunnel stagnation pressure, the corresponding free stream densities being equivalent to 1.2, 4.0, and 7.4 torr at room temperature, and the boundary layer thicknesses about 4.0, 4.5, and 6.0 inches. The mean temperature and density profiles were similar to those previously determined in the same facility by conventional probes (static and pitot pressure, total temperature). A static pressure variation of about 50% across the boundary layer was found, the shape of the variation changing somewhat for the three stagnation pressure levels. The quadrupole model for rotational temperature spectra gave closer agreement with the free stream isentropic level (approximately 44 K) than the dipole model.
Lefrant, J-Y; Muller, L; de La Coussaye, J Emmanuel; Benbabaali, M; Lebris, C; Zeitoun, N; Mari, C; Saïssi, G; Ripart, J; Eledjam, J-J
2003-03-01
Comparisons of urinary bladder, oesophageal, rectal, axillary, and inguinal temperatures versus pulmonary artery temperature. Prospective cohort study. Intensive Care Unit of a University-Hospital. Forty-two intensive care patients requiring a pulmonary artery catheter (PAC). Patients requiring PAC and without oesophageal, urinary bladder, and/or rectal disease or recent surgery were included in the study. Temperature was simultaneously monitored with PAC, urinary, oesophageal, and rectal electronic thermometers and with axillary and inguinal gallium-in-glass thermometers. Comparisons used a Bland and Altman method. The pulmonary arterial temperature ranged from 33.7 degrees C to 40.2 degrees C. Urinary bladder temperature was assessed in the last 22 patients. A total of 529 temperature measurement comparisons were carried out (252 comparisons of esophageal, rectal, inguinal, axillary, and pulmonary artery temperature measurements in the first 20 patients, and 277 comparisons with overall methods in the last patients). Nine to 18 temperature measurement comparisons were carried out per patient (median = 13). The mean differences between pulmonary artery temperatures and those of the different methods studied were: oesophageal (0.11+/-0.30 degrees C), rectal (-0.07+/-0.40 degrees C), axillary (0.27+/-0.45 degrees C), inguinal (0.17+/-0.48 degrees C), urinary bladder (-0.21+/-0.20 degrees C). In critically ill patients, urinary bladder and oesophageal electronic thermometers are more reliable than the electronic rectal thermometer which is better than inguinal and axillary gallium-in-glass thermometers to measure core temperature.
Thermo-Electron Ballistic Coolers or Heaters
NASA Technical Reports Server (NTRS)
Choi, Sang H.
2003-01-01
Electronic heat-transfer devices of a proposed type would exploit some of the quantum-wire-like, pseudo-superconducting properties of single-wall carbon nanotubes or, optionally, room-temperature-superconducting polymers (RTSPs). The devices are denoted thermo-electron ballistic (TEB) coolers or heaters because one of the properties that they exploit is the totally or nearly ballistic (dissipation or scattering free) transport of electrons. This property is observed in RTSPs and carbon nanotubes that are free of material and geometric defects, except under conditions in which oscillatory electron motions become coupled with vibrations of the nanotubes. Another relevant property is the high number density of electrons passing through carbon nanotubes -- sufficient to sustain electron current densities as large as 100 MA/square cm. The combination of ballistic motion and large current density should make it possible for TEB devices to operate at low applied potentials while pumping heat at rates several orders of magnitude greater than those of thermoelectric devices. It may also enable them to operate with efficiency close to the Carnot limit. In addition, the proposed TEB devices are expected to operate over a wider temperature range
Quantitative method for measuring heat flux emitted from a cryogenic object
Duncan, Robert V.
1993-01-01
The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infra-red sensing devices.
Quantitative method for measuring heat flux emitted from a cryogenic object
Duncan, R.V.
1993-03-16
The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices.
The effect of band Jahn-Teller distortion on the magnetoresistivity of manganites: a model study.
Rout, G C; Panda, Saswati; Behera, S N
2011-10-05
We present a model study of magnetoresistance through the interplay of magnetisation, structural distortion and external magnetic field for the manganite systems. The manganite system is described by the Hamiltonian which consists of the s-d type double exchange interaction, Heisenberg spin-spin interaction among the core electrons, and the static and dynamic band Jahn-Teller (JT) interaction in the e(g) band. The relaxation time of the e(g) electron is found from the imaginary part of the Green's function using the total Hamiltonian consisting of the interactions due to the electron and phonon. The calculated resistivity exhibits a peak in the pure JT distorted insulating phase separating the low temperature metallic ferromagnetic phase and the high temperature paramagnetic phase. The resistivity is suppressed with the increase of the external magnetic field. The e(g) electron band splitting and its effect on magnetoresistivity is reported here. © 2011 IOP Publishing Ltd
Chang, Jia-Dong; Mantri, Nitin; Sun, Bin; Jiang, Li; Chen, Ping; Jiang, Bo; Jiang, Zhengdong; Zhang, Jialei; Shen, Jiahao; Lu, Hongfei; Liang, Zongsuo
2016-06-01
Recently, an important topic of research has been how climate change is seriously threatening the sustainability of agricultural production. However, there is surprisingly little experimental data regarding how elevated temperature and CO2 will affect the growth of medicinal plants and production of bioactive compounds. Here, we comprehensively analyzed the effects of elevated CO2 and temperature on the photosynthetic process, biomass, total sugars, antioxidant compounds, antioxidant capacity, and bioactive compounds of Gynostemma pentaphyllum. Two different CO2 concentrations [360 and 720μmolmol(-1)] were imposed on plants grown at two different temperature regimes of 23/18 and 28/23°C (day/night) for 60days. Results show that elevated CO2 and temperature significantly increase the biomass, particularly in proportion to inflorescence total dry weight. The chlorophyll content in leaves increased under the elevated temperature and CO2. Further, electron transport rate (ETR), photochemical quenching (qP), actual photochemical quantum yield (Yield), instantaneous photosynthetic rate (Photo), transpiration rate (Trmmol) and stomatal conductance (Cond) also increased to different degrees under elevated CO2 and temperature. Moreover, elevated CO2 increased the level of total sugars and gypenoside A, but decreased the total antioxidant capacity and main antioxidant compounds in different organs of G. pentaphyllum. Accumulation of total phenolics and flavonoids also decreased in leaves, stems, and inflorescences under elevated CO2 and temperature. Overall, our data indicate that the predicted increase in atmospheric temperature and CO2 could improve the biomass of G. pentaphyllum, but they would reduce its health-promoting properties. Copyright © 2016 Elsevier GmbH. All rights reserved.
Pioneer Venus Orbiter planar retarding potential analyzer plasma experiment
NASA Technical Reports Server (NTRS)
Knudsen, W. C.; Bakke, J.; Spenner, K.; Novak, V.
1980-01-01
The retarding potential analyzer (RPA) on the Pioneer Venus Orbiter Mission measures most of the thermal plasma parameters within and near the Venusian ionosphere. Parameters include total ion concentration, concentrations of the more abundant ions, ion temperatures, ion drift velocity, electron temperature, and low-energy (0-50 eV) electron distribution function. Several functions not previously used in RPA's were developed and incorporated into this instrument to accomplish these measurements on a spinning spacecraft with a small bit rate. The more significant functions include automatic electrometer ranging with background current compensation; digital, quadratic retarding potential step generation for the ion and low-energy electron scans; a current sampling interval of 2 ms throughout all scans; digital logic inflection point detection and data selection; and automatic ram direction detection.
2015-09-30
cell temperature is shown in Fig. 4. Here we begin with the premise when both In and Ga are incident on the wafer, the Sb consumption rate should be a...monitor the Sb consumption rate while slowly raising the cell temperature . It is evident from the data that the correct rate of total Sb consumption ...rise the substrate temperature during DE phase of DETA technique owing to the heat reflectance effect , while the power supplied to a substrate heater
Self-Consistent Superthermal Electron Effects on Plasmaspheric Refilling
NASA Technical Reports Server (NTRS)
Liemohn, M. W.; Khazanov, G. V.; Moore, T. E.; Guiter, S. M.
1997-01-01
The effects of self-consistently including superthermal electrons in the definition of the ambipolar electric field are investigated for the case of plasmaspheric refilling after a geomagnetic storm. By using the total electron population in the hydrodynamic equations, a method for incorporating superthermal electron parameters in the electric field and electron temperature calculation is developed. Also, the ambipolar electric field is included in the kinetic equation for the superthermal electrons through a change of variables using the total energy and the first adiabatic invariant. Calculations based on these changes are performed by coupling time-dependent models of the thermal plasma and superthermal electrons. Results from this treatment of the electric field and the self-consistent development of the solution are discussed in detail. Specifically, there is a decreased thermal electron density in the plasmasphere during the first few minutes of refilling, a slightly accelerated proton shock front, and a decreased superthermal electron flux due to the deceleration by the electric field. The timescales of plasmaspheric refilling are discussed and determined to be somewhat shorter than previously calculated for the thermal plasma and superthermal electron population due to the effects of the field-aligned potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Bin, E-mail: hnsqxubin@163.com; Gao, Changzheng; Zhang, Jing
2016-05-15
A lot of physical properties of Th{sub 2}S{sub 3}-type Ti{sub 2}O{sub 3} have investigated experimentally, hence, we calculated electronic structure and thermoelectric transport properties by the first-principles calculation under pressure. The increase of the band gaps is very fast from 30 GPa to 35 GPa, which is mainly because of the rapid change of the lattice constants. The total density of states becomes smaller with increasing pressure, which shows that Seebeck coefficient gradually decreases. Two main peaks of Seebeck coefficients always decrease and shift to the high doping area with increasing temperature under pressure. The electrical conductivities always decrease withmore » increasing temperature under pressure. The electrical conductivity can be improved by increasing pressure. Electronic thermal conductivity increases with increasing pressure. It is noted that the thermoelectric properties is reduced with increasing temperature.« less
Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls
NASA Astrophysics Data System (ADS)
Kuznetsov, E. A.; Poniaev, S. A.
2015-12-01
Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux.
Surface Acoustic Wave Study of Exciton Condensation in Bilayer Quantum Hall Systems
NASA Astrophysics Data System (ADS)
Pollanen, J.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.
In bilayer two-dimensional electron systems (2DES) in GaAs a strongly correlated many-electron state forms at low temperature and high magnetic field when the total electron density nT becomes equal to the degeneracy of a single spin split Landau level. This state corresponds to a total filling factor νT = 1 and can be described in terms of pseudospin ferromagnetism, or equivalently, Bose condensation of bilayer excitons. We have simultaneously measured magneto-transport and the propagation of pulsed surface acoustic waves (SAWs) at a frequency of 747 MHz to explore the phase transition between two independent layers at νT = 1 / 2 + 1 / 2 and the correlated state at νT = 1 in a high quality double quantum well device. We tune through this transition by varying the total electron density in our device with front and backside electrostatic gates. We acknowledge funding provided by the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center (NFS Grant PHY-1125565) with support of the Gordon and Betty Moore Foundation (GBMF-12500028).
Excitation and Ionization Cross Sections for Electron-Beam Energy Deposition in High Temperature Air
1987-07-09
are given and compared to existing experimental results or other theoretical approaches. This information can readily be used as input for a deposition...of the doubly-differential, singly- differential and total ionization cross sections which subsequently served to guide theoretical calculations on...coworkers have been leaders in developing a theoretical base for studying electron production and energy deposition in atmospheric gases such as He, N2
NASA Astrophysics Data System (ADS)
Ashtekar, Koustubh; Diehl, Gregory; Hamer, John
2012-10-01
The hafnium cathode is widely used in DC plasma arc cutting (PAC) under an oxygen gas environment to cut iron and iron alloys. The hafnium erosion is always a concern which is controlled by the surface temperature. In this study, the effect of cathode cooling efficiency and oxygen gas pressure on the hafnium surface temperature are quantified. The two layer cathode sheath model is applied on the refractive hafnium surface while oxygen species (O2, O, O+, O++, e-) are considered within the thermal dis-equilibrium regime. The system of non-linear equations comprising of current density balance, heat flux balance at both the cathode surface and the sheath-ionization layer is coupled with the plasma gas composition solver. Using cooling heat flux, gas pressure and current density as inputs; the cathode wall temperature, electron temperature, and sheath voltage drop are calculated. Additionally, contribution of emitted electron current (Je) and ions current (Ji) to the total current flux are estimated. Higher gas pressure usually reduces Ji and increases Je that reduces the surface temperature by thermionic cooling.
NASA Technical Reports Server (NTRS)
Salyer, I. O.
1980-01-01
The electron irradiation conditions required to prepare thermally from stable high density polyethylene (HDPE) were defined. The conditions were defined by evaluating the heat of fusion and the melting temperature of several HDPE specimens. The performance tests conducted on the specimens, including the thermal cycling tests in the thermal energy storage unit are described. The electron beam irradiation tests performed on the specimens, in which the total radiation dose received by the pellets, the electron beam current, the accelerating potential, and the atmospheres were varied, are discussed.
Properties of the solar wind electrons between 1 and 3.3 AU from Ulysses thermal noise measurements
NASA Technical Reports Server (NTRS)
Maksimovic, M.; Hoang, S.; Bougeret, J. L.
1995-01-01
In order to describe the distribution function f(v) of the solar wind electrons, the simplest model which is commonly used consists of the sum of two Maxwellians representing two distinct populations: a core (density n(sub c), temperature T(sub c)) and a halo (density n(sub h), temperature T(sub h)). It is possible, with the latter assumptions on the electron f(v), to determine the quasi-thermal noise (QTN) induced on an antenna by the motion of the ambient electrons in the solar wind. Using this distribution and the spectroscopy of thermal noise measurements from the radio receiver on Ulysses in the ecliptic plane, we deduce the total electron density N(sub e), the core temperature T(sub c), and the core and halo kinetic pressures N(sub c)T(sub c) and N(sub h)T(sub h). From these electron parameters, we can define a 'global' electron temperature as T(sub e) = (N(sub c)T(sub c) + N(sub h)T(sub h))/N(sub e). Here we present different radial gradients of T(sub e), between 1 and 3.3 AU, as a function of three classes of N(sub e) at 1 AU: low, intermediate, and high densities. In general all these gradients are found to be positive with different polytrope power law indexes between N(sub e) and T(sub e), which are in general lower than unity. We also show different behaviors of the ratio N(sub h)T(sub h)/N(sub c)T(sub c) for each density class considered. Some possible interpretations for these observations are discussed.
Ultracompliant Heterogeneous Copper-Tin Nanowire Arrays Making a Supersolder.
Gong, Wei; Li, Pengfei; Zhang, Yunheng; Feng, Xuhui; Major, Joshua; DeVoto, Douglas; Paret, Paul; King, Charles; Narumanchi, Sreekant; Shen, Sheng
2018-06-13
Due to the substantial increase in power density, thermal interface resistance that can constitute more than 50% of the total thermal resistance has generally become a bottleneck for thermal management in electronics. However, conventional thermal interface materials (TIMs) such as solder, epoxy, gel, and grease cannot fulfill the requirements of electronics for high-power and long-term operation. Here, we demonstrate a high-performance TIM consisting of a heterogeneous copper-tin nanowire array, which we term "supersolder" to emulate the role of conventional solders in bonding various surfaces. The supersolder is ultracompliant with a shear modulus 2-3 orders of magnitude lower than traditional solders and can reduce the thermal resistance by two times as compared with the state-of-the-art TIMs. This supersolder also exhibits excellent long-term reliability with >1200 thermal cycles over a wide temperature range. By resolving this critical thermal bottleneck, the supersolder enables electronic systems, ranging from microelectronics and portable electronics to massive data centers, to operate at lower temperatures with higher power density and reliability.
Heat Exchange Between Electrons and Phonons in Nanosystems at Sub-Kelvin Temperatures
NASA Astrophysics Data System (ADS)
Anghel, Dragoş-Victor; Cojocaru, Sergiu
2018-02-01
Ultra-sensitive nanoscopic detectors for electromagnetic radiation consist of thin metallic films deposited on dielectric membranes. The metallic films, of thickness d of the order of 10 nm, form the thermal sensing element (TSE), which absorbs the incident radiation and measures its power flux or the energies of individual photons. To achieve the sensitivity required for astronomical observations, the TSE works at temperatures of the order of 0.1 K. The dielectric membranes are used as support and for thermal insulation of the TSE and are of thickness L - d of the order of 100 nm (L being the total thickness of the system). In such conditions, the phonon gas in the detector assumes a quasi-two-dimensional distribution, whereas quantization of the electrons wavenumbers in the direction perpendicular to the film surfaces leads to the formation of quasi two-dimensional electronic sub-bands. The heat exchange between electrons and phonons has an important contribution to the performance of the device and is dominated by the interaction between the electrons and the antisymmetric acoustic phonons.
NASA Astrophysics Data System (ADS)
Mercado-Uribe, H.; Brandan, M. E.
2004-07-01
We have measured the LiF:Mg,Ti (TLD-100) fluence response and supralinearity function to 20 keV electrons in the fluence interval between 5 × 10 9 and 4 × 10 12 cm -2. TLD-100 shows linear response up to 2 × 10 10 cm -2, followed by supralinearity and saturation after 10 12 cm -2. Peak 5 is slightly supralinear, f( n) max=1.1±0.1, while high temperature peaks reach up to f( n) max≈8. Peak 5 saturates at n≈1×10 11 cm -2, fluence smaller than any of the saturating fluences of the high temperature peaks. We have also measured the glow curve shape of TLD-100 irradiated with 40 keV electrons, beta particles from a 90Sr/ 90Y source and 1.3 and 6.0 MeV electrons from accelerators. Results are interesting and unexpected in that, for a given macroscopic dose, electrons show a smaller relative contribution of high-temperature peaks with respect to peak 5 than heavy ions or X- and γ-rays. The 20 and 40 keV electron irradiations were performed with a scanning electron microscope using radiochromic dye film to measure fluence. Since film calibrations were performed using 60Co γ-rays which expose the totality of the film volume, the use of this method with low energy electrons required to develop a formalism that takes into account the sensitive thickness of the film in relation to the range of the incident particles.
The negative ions emission in nitrogen
NASA Technical Reports Server (NTRS)
Soon, W. H.; Kunc, J. A.
1991-01-01
The contribution of negative atomic ions to continuum radiation in nitrogen plasma is discussed. It is shown that both unstable N(-)(3P) and metastable N(-)(1D) ions have a significant effect on the total production of the continuum radiation at electron temperatures below 12,000 K.
NASA Technical Reports Server (NTRS)
Saltsman, J. F.; Halford, G. R.
1984-01-01
A hydrodynamic air bearing with a compliment surface is used in the gas generator of an upgraded automotive gas turbine engine. In the prototype design, the compliant surface is a thin foil spot welded at one end to the bearing cartridge. During operation, the foil failed along the line of spot welds which acted as a series of stress concentrators. Because of its higher degree of geometric uniformity, electron beam welding of the foil was selected as an alternative to spot welding. Room temperature bending fatigue tests were conducted to determine the fatigue resistance of the electron beam welded foils. Equations were determined relating cycles to crack initiation and cycles to failure to nominal total strain range. A scaling procedure is presented for estimating the reduction in cyclic life when the foil is at its normal operating temperature of 260 C (500 F).
Retarding potential analyzer for the Pioneer-Venus Orbiter Mission
NASA Technical Reports Server (NTRS)
Knudsen, W. C.; Bakke, J.; Spenner, K.; Novak, V.
1979-01-01
The retarding potential analyzer on the Pioneer-Venus Orbiter Mission has been designed to measure most of the thermal plasma parameters within and near the Venusian ionosphere. Parameters include total ion concentration, concentrations of the more abundant ions, ion temperatures, ion drift velocity, electron temperature, and low-energy (0-50 eV) electron distribution function. To accomplish these measurements on a spinning vehicle with a small telemetry bit rate, several functions, including decision functions not previously used in RPA's, have been developed and incorporated into this instrument. The more significant functions include automatic electrometer ranging with background current compensation; digital, quadratic retarding potential step generation for the ion and low-energy electron scans; a current sampling interval of 2 ms throughout all scans; digital logic inflection point detection and data selection; and automatic ram direction detection. Extensive numerical simulation and plasma chamber tests have been conducted to verify adequacy of the design for the Pioneer Mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhongyu; Shao, Lin, E-mail: lshao@tamu.edu; Chen, Di
Strong electronic stopping power of swift ions in a semiconducting or insulating substrate can lead to localized electron stripping. The subsequent repulsive interactions among charged target atoms can cause Coulomb explosion. Using molecular dynamics simulation, we simulate Coulomb explosion in silicon by introducing an ionization pulse lasting for different periods, and at different substrate temperatures. We find that the longer the pulse period, the larger the melting radius. The observation can be explained by a critical energy density model assuming that melting required thermal energy density is a constant value and the total thermal energy gained from Coulomb explosion ismore » linearly proportional to the ionization period. Our studies also show that melting radius is larger at higher substrate temperatures. The temperature effect is explained due to a longer structural relaxation above the melting temperature at original ionization boundary due to lower heat dissipation rates. Furthermore, simulations show the formation of shock waves, created due to the compression from the melting core.« less
Robustness in spin polarization and thermoelectricity in newly tailored Mn2-based Heusler alloys
NASA Astrophysics Data System (ADS)
Yousuf, S.; Gupta, D. C.
2018-02-01
Investigation of electronic structure, magnetism, hybridization and thermoelectricity of Mn2-based Heusler alloys within the framework of DFT simulation technique have been carried out. Through the optimized ground state parameters viz., lattice constant, total energy and bulk's modulus, electronic properties, magnetic properties and thermoelectric response of new tailored materials is reported. Mechanically stable with ductile nature and 100% spin polarization could favor their use in future spintronic materials. Thermoelectric properties are investigated through the variation of carrier concentration and temperature. Power factor analysis show a way for the selection of the optimal carrier concentration responsible for increasing their thermoelectric response with temperature. The power factor of 857.51 (966.16) × 109µW K-2 m-1 s-1 at an optimal concentration of 1018 cm-3 and temperature of 800 K for Mn2YSn (Mn2ZnSn) respectively is obtained. The Seebeck coefficient portray them as p-type materials and show a linear increase with temperature and vice versa for the carrier concentrations.
Robustness in spin polarization and thermoelectricity in newly tailored Mn2-based Heusler alloys
NASA Astrophysics Data System (ADS)
Yousuf, S.; Gupta, D. C.
2018-07-01
Investigation of electronic structure, magnetism, hybridization and thermoelectricity of Mn2-based Heusler alloys within the framework of DFT simulation technique have been carried out. Through the optimized ground state parameters viz., lattice constant, total energy and bulk's modulus, electronic properties, magnetic properties and thermoelectric response of new tailored materials is reported. Mechanically stable with ductile nature and 100% spin polarization could favor their use in future spintronic materials. Thermoelectric properties are investigated through the variation of carrier concentration and temperature. Power factor analysis show a way for the selection of the optimal carrier concentration responsible for increasing their thermoelectric response with temperature. The power factor of 857.51 (966.16) × 109µW K-2 m-1 s-1 at an optimal concentration of 1018 cm-3 and temperature of 800 K for Mn2YSn (Mn2ZnSn) respectively is obtained. The Seebeck coefficient portray them as p-type materials and show a linear increase with temperature and vice versa for the carrier concentrations.
NASA Technical Reports Server (NTRS)
Hoang, S.; Meyer-Vernet, N.; Bougeret, J.-L.; Harvey, C. C.; Lacombe, C.; Mangeney, A.; Moncuquet, M.; Perche, C.; Steinberg, J.-L.; Macdowall, R. J.
1992-01-01
The radio receiver of the Unified Radio and Plasma experiment aboard the Ulysses spacecraft records spectra of the quasi-thermal plasma noise. The interpretation of these spectra allows the determination of the total electron density Ne and of the cold (core) electron temperature Tc in the solar wind. A single power law does not fit the variations of Ne which result from the contribution from different solar wind structures. The distribution of the values of Tc suggests that, on the average, the solar wind is nearly isothermal.
Electron mobility limited by optical phonons in wurtzite InGaN/GaN core-shell nanowires
NASA Astrophysics Data System (ADS)
Liu, W. H.; Qu, Y.; Ban, S. L.
2017-09-01
Based on the force-balance and energy-balance equations, the optical phonon-limited electron mobility in InxGa1-xN/GaN core-shell nanowires (CSNWs) is discussed. It is found that the electrons tend to distribute in the core of the CSNWs due to the strong quantum confinement. Thus, the scattering from first kind of the quasi-confined optical (CO) phonons is more important than that from the interface (IF) and propagating (PR) optical phonons. Ternary mixed crystal and size effects on the electron mobility are also investigated. The results show that the PR phonons exist while the IF phonons disappear when the indium composition x < 0.047, and vice versa. Accordingly, the total electron mobility μ first increases and then decreases with indium composition x, and reaches a peak value of approximately 3700 cm2/(V.s) when x = 0.047. The results also show that the mobility μ increases as increasing the core radius of CSNWs due to the weakened interaction between the electrons and CO phonons. The total electron mobility limited by the optical phonons exhibits an obvious enhancement as decreasing temperature or increasing line electron density. Our theoretical results are expected to be helpful to develop electronic devices based on CSNWs.
NASA Astrophysics Data System (ADS)
Greculeasa, Simona; Miu, Lucica; Badica, Petre; Nie, Jiacai; Tolea, Mugurel; Kuncser, Victor
2015-01-01
The Mössbauer spectra of a FeSe0.3Te0.7 single crystal grown by the Bridgman method were analysed across the superconducting transition by considering the interplay between the structure and electron configuration of the transition metal. The magnetically determined superconducting critical temperature is TC ˜ 14 K. The 57Fe Mössbauer spectra collected in the temperature range from 5 to 200 K mainly have an asymmetric doublet pattern, which was conveniently fitted by the full Hamiltonian method. No effective magnetic moment ascribed to the superconducting phase was observed down to 5 K. The unusual behaviour observed below ˜17 K for the chemical isomer shift and quadrupole splitting may be associated with an electron reconfiguration process intimately related to an unusual lattice distortion accompanying the superconducting transition. The decreasing trend of the total absorption spectral area and second-order Doppler shift during cooling the sample below the critical temperature, point to enhanced phonon activation in the superconducting state.
Critical temperature of metallic hydrogen sulfide at 225-GPa pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A., E-mail: EAMazur@mephi.ru
2017-01-15
The Eliashberg theory generalized for electron—phonon systems with a nonconstant density of electron states and with allowance made for the frequency behavior of the electron mass and chemical potential renormalizations is used to study T{sub c} in the SH{sub 3} phase of hydrogen sulfide under pressure. The phonon contribution to the anomalous electron Green’s function is considered. The pairing within the total width of the electron band and not only in a narrow layer near the Fermi surface is taken into account. The frequency and temperature dependences of the complex mass renormalization ReZ(ω), the density of states N(ε) renormalized bymore » the electron—phonon interactions, and the electron—phonon spectral function obtained computationally are used to calculate the anomalous electron Green’s function. A generalized Eliashberg equation with a variable density of electron states has been solved. The frequency dependence of the real and imaginary parts of the order parameter in the SH{sub 3} phase has been obtained. The value of T{sub c} ≈ 177 K in the SH{sub 3} phase of hydrogen sulfide at pressure P = 225 GPa has been determined by solving the system of Eliashberg equations.« less
First results from the Thomson scattering diagnostic on proto-MPEX.
Biewer, T M; Meitner, S; Rapp, J; Ray, H; Shaw, G
2016-11-01
A Thomson scattering (TS) diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. TS is a technique used on many devices to measure the electron temperature (T e ) and electron density (n e ) of the plasma. A challenging aspect of the technique is to discriminate the small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from argon plasmas in Proto-MPEX, indicating T e ∼ 2 eV and n e ∼ 1 × 10 19 m -3 . The configuration of the Proto-MPEX TS diagnostic will be described and plans for improvement will be given.
First results from the Thomson scattering diagnostic on Proto-MPEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biewer, Theodore M; Meitner, Steven J; Rapp, Juergen
2016-01-01
A Thomson scattering diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. Thomson scattering is a technique used on many devices to measure the electron temperature (Te) and electron density (ne) of the plasma. A challenging aspect of the technique is to discriminate themore » small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from Argon plasmas in Proto-MPEX, indicating Te ~ 2 eV and ne ~ 1x1019 m-3. The configuration of the Proto-MPEX Thomson scattering diagnostic will be described and plans for improvement will be given.« less
Measurements of hot electrons in the Extrap T1 reversed-field pinch
NASA Astrophysics Data System (ADS)
Welander, A.; Bergsåker, H.
1998-02-01
The presence of an anisotropic energetic electron population in the edge region is a characteristic feature of reversed-field pinch (RFP) plasmas. In the Extrap T1 RFP, the anisotropic, parallel heat flux in the edge region measured by calorimetry was typically several hundred 0741-3335/40/2/011/img1. To gain more insight into the origin of the hot electron component and to achieve time resolution of the hot electron flow during the discharge, a target probe with a soft x-ray monitor was designed, calibrated and implemented. The x-ray emission from the target was measured with a surface barrier detector covered with a set of different x-ray filters to achieve energy resolution. A calibration in the range 0.5-2 keV electron energy was performed on the same target and detector assembly using a 0741-3335/40/2/011/img2 cathode electron gun. The calibration data are interpolated and extrapolated numerically. A directional asymmetry of more than a factor of 100 for the higher energy electrons is observed. The hot electrons are estimated to constitute 10% of the total electron density at the edge and their energy distribution is approximated by a half-Maxwellian with a temperature slightly higher than the central electron temperature. Scalings with plasma current, as well as correlations with local 0741-3335/40/2/011/img3 measurements and radial dependences, are presented.
Operation of SOI P-Channel Field Effect Transistors, CHT-PMOS30, under Extreme Temperatures
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad
2009-01-01
Electronic systems are required to operate under extreme temperatures in NASA planetary exploration and deep space missions. Electronics on-board spacecraft must also tolerate thermal cycling between extreme temperatures. Thermal management means are usually included in today s spacecraft systems to provide adequate temperature for proper operation of the electronics. These measures, which may include heating elements, heat pipes, radiators, etc., however add to the complexity in the design of the system, increases its cost and weight, and affects its performance and reliability. Electronic parts and circuits capable of withstanding and operating under extreme temperatures would reflect in improvement in system s efficiency, reducing cost, and improving overall reliability. Semiconductor chips based on silicon-on-insulator (SOI) technology are designed mainly for high temperature applications and find extensive use in terrestrial well-logging fields. Their inherent design offers advantages over silicon devices in terms of reduced leakage currents, less power consumption, faster switching speeds, and good radiation tolerance. Little is known, however, about their performance at cryogenic temperatures and under wide thermal swings. Experimental investigation on the operation of SOI, N-channel field effect transistors under wide temperature range was reported earlier [1]. This work examines the performance of P-channel devices of these SOI transistors. The electronic part investigated in this work comprised of a Cissoid s CHT-PMOS30, high temperature P-channel MOSFET (metal-oxide semiconductor field-effect transistor) device [2]. This high voltage, medium-power transistor is designed for geothermal well logging applications, aerospace and avionics, and automotive industry, and is specified for operation in the temperature range of -55 C to +225 C. Table I shows some specifications of this transistor [2]. The CHT-PMOS30 device was characterized at various temperatures over the range of -190 C to +225 C in terms of its voltage/current characteristic curves. The test temperatures included +22, -50, -100, -150, -175, -190, +50, +100, +150, +175, +200, and +225 C. Limited thermal cycling testing was also performed on the device. These tests consisted of subjecting the transistor to a total of twelve thermal cycles between -190 C and +225 C. A temperature rate of change of 10 C/min and a soak time at the test temperature of 10 minutes were used throughout this work. Post-cycling measurements were also performed at selected temperatures. In addition, re-start capability at extreme temperatures, i.e. power switched on while the device was soaking for a period of 20 minutes at the test temperatures of -190 C and +225 C, was investigated.
Evaluation of electron mobility in InSb quantum wells by means of percentage-impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishima, T. D.; Edirisooriya, M.; Santos, M. B.
2014-05-15
In order to quantitatively analyze the contribution of each scattering factor toward the total carrier mobility, we use a new convenient figure-of-merit, named a percentage impact. The mobility limit due to a scattering factor, which is widely used to summarize a scattering analysis, has its own advantage. However, a mobility limit is not quite appropriate for the above purpose. A comprehensive understanding of the difference in contribution among many scattering factors toward the total carrier mobility can be obtained by evaluating percentage impacts of scattering factors, which can be straightforwardly calculated from their mobility limits and the total mobility. Ourmore » percentage impact analysis shows that threading dislocation is one of the dominant scattering factors for the electron transport in InSb quantum wells at room temperature.« less
Silicon nitride films deposited with an electron beam created plasma
NASA Technical Reports Server (NTRS)
Bishop, D. C.; Emery, K. A.; Rocca, J. J.; Thompson, L. R.; Zamani, H.; Collins, G. J.
1984-01-01
The electron beam assisted chemical vapor deposition (EBCVD) of silicon nitride films using NH3, N2, and SiH4 as the reactant gases is reported. The films have been deposited on aluminum, SiO2, and polysilicon film substrates as well as on crystalline silicon substrates. The range of experimental conditions under which silicon nitrides have been deposited includes substrate temperatures from 50 to 400 C, electron beam currents of 2-40 mA, electron beam energies of 1-5 keV, total ambient pressures of 0.1-0.4 Torr, and NH3/SiH4 mass flow ratios of 1-80. The physical, electrical, and chemical properties of the EBCVD films are discussed.
Empirical Constraints on Proton and Electron Heating in the Fast Solar Wind
NASA Technical Reports Server (NTRS)
Cranmer, Steven R.; Matthaeus, William H.; Breech, Benjamin A.; Kasper, Justin C.
2009-01-01
This paper presents analyses of measured proton and electron temperatures in the high-speed solar wind that are used to calculate the separate rates of heat deposition for protons and electrons. It was found that the protons receive about 60% of the total plasma heating in the inner heliosphere, and that this fraction increases to approximately 80% by the orbit of Jupiter. The empirically derived partitioning of heat between protons and electrons is in rough agreement with theoretical predictions from a model of linear Vlasov wave damping. For a modeled power spectrum consisting only of Alfvenic fluctuations, the best agreement was found for a distribution of wavenumber vectors that evolves toward isotropy as distance increases.
NASA Astrophysics Data System (ADS)
Choi, Hyunwoo; Kim, Tae Geun; Shin, Changhwan
2017-06-01
A topological insulator (TI) is a new kind of material that exhibits unique electronic properties owing to its topological surface state (TSS). Previous studies focused on the transport properties of the TSS, since it can be used as the active channel layer in metal-oxide-semiconductor field-effect transistors (MOSFETs). However, a TI with a negative quantum capacitance (QC) effect can be used in the gate stack of MOSFETs, thereby facilitating the creation of ultra-low power electronics. Therefore, it is important to study the physics behind the QC in TIs in the absence of any external magnetic field, at room temperature. We fabricated a simple capacitor structure using a TI (TI-capacitor: Au-TI-SiO2-Si), which shows clear evidence of QC at room temperature. In the capacitance-voltage (C-V) measurement, the total capacitance of the TI-capacitor increases in the accumulation regime, since QC is the dominant capacitive component in the series capacitor model (i.e., CT-1 = CQ-1 + CSiO2-1). Based on the QC model of the two-dimensional electron systems, we quantitatively calculated the QC, and observed that the simulated C-V curve theoretically supports the conclusion that the QC of the TI-capacitor is originated from electron-electron interaction in the two-dimensional surface state of the TI.
NASA Technical Reports Server (NTRS)
Reginald, Nelson L.; Davilla, Joseph M.; St. Cyr, O. C.; Rastaetter, Lutz
2014-01-01
We examine the uncertainties in two plasma parameters from their true values in a simulated asymmetric corona. We use the Corona Heliosphere (CORHEL) and Magnetohydrodynamics Around the Sphere (MAS) models in the Community Coordinated Modeling Center (CCMC) to investigate the differences between an assumed symmetric corona and a more realistic, asymmetric one. We were able to predict the electron temperatures and electron bulk flow speeds to within +/-0.5 MK and +/-100 km s(exp-1), respectively, over coronal heights up to 5.0 R from Sun center.We believe that this technique could be incorporated in next-generation white-light coronagraphs to determine these electron plasma parameters in the low solar corona. We have conducted experiments in the past during total solar eclipses to measure the thermal electron temperature and the electron bulk flow speed in the radial direction in the low solar corona. These measurements were made at different altitudes and latitudes in the low solar corona by measuring the shape of the K-coronal spectra between 350 nm and 450 nm and two brightness ratios through filters centered at 385.0 nm/410.0 nm and 398.7 nm/423.3 nm with a bandwidth of is approximately equal to 4 nm. Based on symmetric coronal models used for these measurements, the two measured plasma parameters were expected to represent those values at the points where the lines of sight intersected the plane of the solar limb.
NASA Astrophysics Data System (ADS)
Patel, U. R.; Joshipura, K. N.
2015-05-01
Electron collision processes are very important in both man-made and natural plasmas, for determining the energy balances and transport properties of electrons. Electron -molecule scattering leading to ionization represents one of the most fundamental processes in collision physics. In the gas phase, the total efficiency of the process is described by the absolute total electron impact ionization cross section. Carbon based materials are some of the widely used materials for a divertor plate and magnetically confined fusion devices. In the ``ITER,'' it is very important for steady state operation to have an estimate of the lifetime of carbon plasma facing components. Apart from fusion plasma relevance, the present theoretical study is very important in modeling and controlling other electron assisted processes in many areas. Hydrocarbons play an important role for plasma diagnostics as impurities in the Tokamak fusion divertor, as seed gases for the production of radicals and ions in low temperature plasma processing. Fluorine substituted hydrocarbons (perfluorocarbons) are important as reactants in plasma assisted fabrication processes. In the present work, we have calculated total ionization cross sections Qion for C3/C4 Hydrocarbon isomers by electron impact, and comparisons are made mutually to observe isomer effect. Comparisons are also made by substituting H atom by F atom and revealing fluorination effect. The present calculations are quite significant owing to the lack of experimental data, with just an isolated previous theoretical work in some cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vriens, L.; Smeets, A.H.M.
1980-09-01
For electron-induced ionization, excitation, and de-excitation, mainly from excited atomic states, a detailed analysis is presented of the dependence of the cross sections and rate coefficients on electron energy and temperature, and on atomic parameters. A wide energy range is covered, including sudden as well as adiabatic collisions. By combining the available experimental and theoretical information, a set of simple analytical formulas is constructed for the cross sections and rate coefficients of the processes mentioned, for the total depopulation, and for three-body recombination. The formulas account for large deviations from classical and semiclassical scaling, as found for excitation. They agreemore » with experimental data and with the theories in their respective ranges of validity, but have a wider range of validity than the separate theories. The simple analytical form further facilitates the application in plasma modeling.« less
Mn Impurity in Bulk GaAs Crystals
NASA Astrophysics Data System (ADS)
Pawłowski, M.; Piersa, M.; Wołoś, A.; Palczewska, M.; Strzelecka, G.; Hruban, A.; Gosk, J.; Kamińska, M.; Twardowski, A.
2006-11-01
Magnetic and electron transport properties of GaAs:Mn crystals grown by Czochralski method were studied. Electron spin resonance showed the presence of Mn acceptor A in two charge states: singly ionized A- in the form of Mn2+(d5), and neutral A0 in the form of Mn2+(d5) plus a bound hole (h). It was possible to determine the relative concentration of both types of centers from intensity of the corresponding electron spin resonance lines. Magnetization measured as a function of magnetic field (up to 6 T) in the temperature range of 2-300 K revealed overall paramagnetic behavior of the samples. Effective spin was found to be about 1.5 value, which was consistent with the presence of two types of Mn configurations. In most of the studied samples the dominance of Mn2+(d5)+h configuration was established and it increased after annealing of native donors. The total value of Mn content was obtained from fitting of magnetization curves with the use of parameters obtained from electron spin resonance. In electron transport, two mechanisms of conductivity were observed: valence band transport dominated above 70 K, and hopping conductivity within Mn impurity band at lower temperatures. From the analysis of the hopping conductivity and using the obtained values of the total Mn content, the effective radius of Mn acceptor in GaAs was estimated as a = 11 ± 3 Å.
Sureda, R; Casas, I; Giménez, J; de Pablo, J; Quiñones, J; Zhang, J; Ewing, R C
2011-03-15
The stability of soddyite under electron irradiation has been studied over the temperature range of 25-300 °C. At room temperature, soddyite undergoes a crystalline-to-amorphous transformation (amorphization) at a total dose of 6.38 × 10(8) Gy. The electron beam irradiation results suggest that the soddyite structure is susceptible to radiation-induced nanocrystallization of UO(2). The temperature dependence of amorphization dose increases linearly up to 300 °C. A thermogravimetric and calorimetric analysis (TGA-DSC) combined with X-ray diffraction (XRD) indicates that soddyite retains its water groups up to 400 °C, followed by the collapse of the structure. Based on thermal analysis of uranophane, the removal of some water groups at relatively low temperatures provokes the collapse of the uranophane structure. This structural change appears to be the reason for the increase of amorphization dose at 140 °C. According to the results obtained, radiation field of a nuclear waste repository, rather than temperature effects, may cause changes in the crystallinity of soddyite and affect its stability during long-term storage.
NASA Astrophysics Data System (ADS)
Biermann, Horst; Glage, Alexander; Droste, Matthias
2016-01-01
Metastable austenitic steels can exhibit a fatigue-induced martensitic phase transformation during cyclic loading. It is generally agreed that a certain strain amplitude and a threshold of the cumulated plastic strain must be exceeded to trigger martensitic phase transformation under cyclic loading. With respect to monotonic loading, the martensitic phase transformation takes place up to a critical temperature—the so-called M d temperature. The goal of the present investigation is to determine an M d,c temperature which would be the highest temperature at which a fatigue-induced martensitic phase transformation can take place. For this purpose, fatigue tests controlled by the total strain were performed at different temperatures. The material investigated was a high-alloy metastable austenitic steel X3CrMnNi16.7.7 (16.3Cr-7.2Mn-6.6Ni-0.03C-0.09N-1.0Si) produced using the hot pressing technique. The temperatures were set in the range of 283 K (10 °C) ≤ T ≤ 473 K (200 °C). Depending on the temperature and strain amplitude, the onset of the martensitic phase transformation shifted to different values of the cumulated plastic strain, or was inhibited completely. Moreover, it is known that metastable austenitic CrMnNi steels with higher nickel contents can exhibit the deformation-induced twinning effect. Thus, at higher temperatures and strain amplitudes, a transition from the deformation-induced martensitic transformation to deformation-induced twinning takes place. The fatigue-induced martensitic phase transformation was monitored during cyclic loading using a ferrite sensor. The microstructure after the fatigue tests was examined using the back-scattered electrons, the electron channeling contrast imaging and the electron backscatter diffraction techniques to study the temperature-dependent dislocation structures and phase transformations.
Digital Interface Modules for Active-Readout X-Ray Spectrometer.
1985-03-01
strategy. Emitting a significant fraction of its total energy as complex series of high temperature characteristic x-ray lines, the PRS source is used for...0.001’ for the Reticon RL1024S detector). This is done by calculating the increment in photon energy dE that maps into a sensor width dg. The required...peak signal to r.m.s. noise). For most work the effects of temperature on the SSPA and other electronics will be more significant to the repeatability
Scaravilli, V; Tinchero, G; Citerio, G
2011-09-01
An electronic literature search through August 2010 was performed to obtain articles describing fever incidence, impact, and treatment in patients with subarachnoid hemorrhage. A total of 24 original research studies evaluating fever in SAH were identified, with studies evaluating fever and outcome, temperature control strategies, and shivering. Fever during acute hospitalization for subarachnoid hemorrhage was consistently linked with worsened outcome and increased mortality. Antipyretic medications, surface cooling, and intravascular cooling may all reduce temperatures in patients with subarachnoid hemorrhage; however, benefits from cooling may be offset by negative consequences from shivering.
Poloidal asymmetries in edge transport barriersa)
NASA Astrophysics Data System (ADS)
Churchill, R. M.; Theiler, C.; Lipschultz, B.; Hutchinson, I. H.; Reinke, M. L.; Whyte, D.; Hughes, J. W.; Catto, P.; Landreman, M.; Ernst, D.; Chang, C. S.; Hager, R.; Hubbard, A.; Ennever, P.; Walk, J. R.
2015-05-01
Measurements of impurities in Alcator C-Mod indicate that in the pedestal region, significant poloidal asymmetries can exist in the impurity density, ion temperature, and main ion density. In light of the observation that ion temperature and electrostatic potential are not constant on a flux surface [Theiler et al., Nucl. Fusion 54, 083017 (2014)], a technique based on total pressure conservation to align profiles measured at separate poloidal locations is presented and applied. Gyrokinetic neoclassical simulations with XGCa support the observed large poloidal variations in ion temperature and density, and that the total pressure is approximately constant on a flux surface. With the updated alignment technique, the observed in-out asymmetry in impurity density is reduced from previous publishing [Churchill et al., Nucl. Fusion 53, 122002 (2013)], but remains substantial ( n z , H / n z , L ˜ 6 ). Candidate asymmetry drivers are explored, showing that neither non-uniform impurity sources nor localized fluctuation-driven transport are able to explain satisfactorily the impurity density asymmetry. Since impurity density asymmetries are only present in plasmas with strong electron density gradients, and radial transport timescales become comparable to parallel transport timescales in the pedestal region, it is suggested that global transport effects relating to the strong electron density gradients in the pedestal are the main driver for the pedestal in-out impurity density asymmetry.
Raspberry Pi Eclipse Experiments
NASA Astrophysics Data System (ADS)
Chizek Frouard, Malynda
2018-01-01
The 21 August 2017 solar eclipse was an excellent opportunity for electronics and science enthusiasts to collect data during a fascinating phenomenon. With my recent personal interest in Raspberry Pis, I thought measuring how much the temperature and illuminance changes during a total solar eclipse would be fun and informational.Previous observations of total solar eclipses have remarked on the temperature drop during totality. Illuminance (ambient light) varies over 7 orders of magnitude from day to night and is highly dependent on relative positions of Sun, Earth, and Moon. I wondered whether totality was really as dark as night.Using a Raspberry Pi Zero W, a Pimoroni Enviro pHAT, and a portable USB charger, I collected environmental temperature; CPU temperature (because the environmental temperature sensor sat very near the CPU on the Raspberry Pi); barometric pressure; ambient light; R, G, and B colors; and x, y, and z acceleration (for marking times when I moved the sensor) data at a ~15 second cadence starting at about 5 am until 1:30 pm from my eclipse observation site in Glendo, WY. Totality occurred from 11:45 to 11:47 am, lasting about 2 minutes and 30 seconds.The Raspberry Pi recorded a >20 degree F drop in temperature during the eclipse, and the illuminance during totality was equivalent to twilight measurements earlier in the day. A limitation in the ambient light sensor prevented accurate measurements of broad daylight and most of the partial phase of the eclipse, but an alternate ambient light sensor combined with the Raspberry Pi setup would make this a cost-efficient set-up for illuminance studies.I will present data from the ambient light sensor, temperature sensor, and color sensor, noting caveats from my experiments, lessons learned for next time, and suggestions for anyone who wants to perform similar experiments for themselves or with a classroom.
The control of hot-electron preheat in shock-ignition implosions
NASA Astrophysics Data System (ADS)
Trela, J.; Theobald, W.; Anderson, K. S.; Batani, D.; Betti, R.; Casner, A.; Delettrez, J. A.; Frenje, J. A.; Glebov, V. Yu.; Ribeyre, X.; Solodov, A. A.; Stoeckl, M.; Stoeckl, C.
2018-05-01
In the shock-ignition scheme for inertial confinement fusion, hot electrons resulting from laser-plasma instabilities can play a major role during the late stage of the implosion. This article presents the results of an experiment performed on OMEGA in the so-called "40 + 20 configuration." Using a recent calibration of the time-resolved hard x-ray diagnostic, the hot electrons' temperature and total energy were measured. One-dimensional radiation-hydrodynamic simulations have been performed that include hot electrons and are in agreement with the measured neutron-rate-averaged areal density. For an early spike launch, both experiment and simulations show the detrimental effect of hot electrons on areal density and neutron yield. For a later spike launch, this effect is minimized because of a higher compression of the target.
Electronic and crystal structure of NiTi martensite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanati, M.; Albers, R.C.; Pinski, F.J.
1998-11-01
All of the first-principles electronic-structure calculations for the martensitic structure of NiTi have used the experimental atomic parameters reported by Michal and Sinclair [Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. {bold B37}, 1803 (1981)]. We have used first-principles, full-potential, linear muffin-tin orbital calculations to examine the total energy of all the experimental martensitic structures reported in the literature. We find that another crystal structure, that of Kudoh {ital et al.} [Acta Metall. Mater. {bold 33}, 2049 (1985)], has the lowest total energy at zero temperature. Ground-state and formation energies were calculated for all of the experimental structures. Total andmore » local densities of states were calculated and compared with each other for the structures of both Kudoh {ital et al.} and Michal and Sinclair thinsp {copyright} {ital 1998} {ital The American Physical Society}« less
Ultracompliant Heterogeneous Copper-Tin Nanowire Arrays Making a Supersolder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narumanchi, Sreekant V; Feng, Xuhui; Major, Joshua
Due to the substantial increase in power density, thermal interface resistance that can constitute more than 50% of the total thermal resistance has generally become a bottleneck for thermal management in electronics. However, conventional thermal interface materials (TIMs) such as solder, epoxy, gel, and grease cannot fulfill the requirements of electronics for high-power and long-term operation. Here, we demonstrate a high-performance TIM consisting of a heterogeneous copper-tin nanowire array, which we term 'supersolder' to emulate the role of conventional solders in bonding various surfaces. The supersolder is ultracompliant with a shear modulus 2-3 orders of magnitude lower than traditional soldersmore » and can reduce the thermal resistance by two times as compared with the state-of-the-art TIMs. This supersolder also exhibits excellent long-term reliability with >1200 thermal cycles over a wide temperature range. By resolving this critical thermal bottleneck, the supersolder enables electronic systems, ranging from microelectronics and portable electronics to massive data centers, to operate at lower temperatures with higher power density and reliability.« less
NASA Astrophysics Data System (ADS)
Ring, Kevin
In the search for a material that can exceed the performance of YSZ as an ionic oxide conductor at intermediate temperatures (300°C to 600°C) a group of Aurivillius phase ceramics dubbed the BIMEVOX (Bi 2V1-xMexO5.5-delta) family has garnered much attention over the past 20 years. Novel results regarding the influence of microstructure on electrical properties were obtained by non-conventional methods of fabrication and characterization. Approaches included: uniaxial, load assisted sintering, molten salt synthesis, templated grain growth, and the use of ion blocking electrodes to measure the partial electronic conductivity. Molten salt synthesis methods successfully produced high aspect ratio platelets of both BiCuVOx (Bi2V0.9Cu0.1O 5.5-delta) and BiCuTiVOx (Bi2V0.9Cu0.05 Ti0.05O5.5-delta), at a variety of temperatures and times. Uniaxial load assisted sintering (or "hot-forging") when combined with templated grain growth produced high density (rho>95% theoretical) samples of moderate texture (F(00l) up to 29%). Impedance spectroscopy measurements indicated that increased texture and grain size reduce the thermal stability of BiCuVOx below the critical gamma-phase transition temperature. Measurements of total conductivity were made with changing oxygen partial pressure down to 10-4 atm of oxygen between temperatures of 400°C and 550°C. Under those conditions, total conductivity was invariant, confirming published results of operation within the ionic compensated regime. Partial electronic conductivity and electronic transference numbers were estimated by asymmetric DC polarization measurements down to 10-6 atm of oxygen between 500°C and 550°C. The results indicate that the partial pressure of oxygen in normal air is already below the intrinsic minimum of conductivity at 500°C and that electronic conductivity may become significant (te>0.01) no lower than 10-6 atm of oxygen. The culmination of research since its first publication poses uncertainty regarding the longevity of BIMEVOX compounds in long term and intermediate temperature electrochemical devices. The work performed on samples of BiCuVOx corroborates many of the conclusions found in the literature and does not support the use of these formulations as a continuous use electrolyte at temperatures greater than 500°C. Results also indicate that operation at temperatures below 500°C might be possible if the phase stability issues are addressed by tailoring the microstructure or use of dual substitutions, such as BiCuTiVOx.
NASA Technical Reports Server (NTRS)
Chang, C. H.
1999-01-01
The relationship between Joule heating, diffusion fluxes, and friction forces has been studied for both total and electron thermal energy equations, using general expressions for multicomponent diffusion in two-temperature plasmas with the velocity dependent Lorentz force acting on charged species in a magnetic field. It is shown that the derivation of Joule heating terms requires both diffusion fluxes and friction between species which represents the resistance experienced by the species moving at different relative velocities. It is also shown that the familiar Joule heating term in the electron thermal energy equation includes artificial effects produced by switching the convective velocity from the species velocity to the mass-weighted velocity, and thus should not be ignored even when there is no net energy dissipation.
First results from the Thomson scattering diagnostic on proto-MPEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biewer, T. M., E-mail: biewertm@ornl.gov; Meitner, S.; Rapp, J.
2016-11-15
A Thomson scattering (TS) diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. TS is a technique used on many devices to measure the electron temperature (T{sub e}) and electron density (n{sub e}) of the plasma. A challenging aspect of the technique is tomore » discriminate the small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from argon plasmas in Proto-MPEX, indicating T{sub e} ∼ 2 eV and n{sub e} ∼ 1 × 10{sup 19} m{sup −3}. The configuration of the Proto-MPEX TS diagnostic will be described and plans for improvement will be given.« less
Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2.
Wang, Haining; Zhang, Changjian; Rana, Farhan
2015-01-14
In this Letter, we present nondegenerate ultrafast optical pump-probe studies of the carrier recombination dynamics in MoS2 monolayers. By tuning the probe to wavelengths much longer than the exciton line, we make the probe transmission sensitive to the total population of photoexcited electrons and holes. Our measurement reveals two distinct time scales over which the photoexcited electrons and holes recombine; a fast time scale that lasts ∼ 2 ps and a slow time scale that lasts longer than ∼ 100 ps. The temperature and the pump fluence dependence of the observed carrier dynamics are consistent with defect-assisted recombination as being the dominant mechanism for electron-hole recombination in which the electrons and holes are captured by defects via Auger processes. Strong Coulomb interactions in two-dimensional atomic materials, together with strong electron and hole correlations in two-dimensional metal dichalcogenides, make Auger processes particularly effective for carrier capture by defects. We present a model for carrier recombination dynamics that quantitatively explains all features of our data for different temperatures and pump fluences. The theoretical estimates for the rate constants for Auger carrier capture are in good agreement with the experimentally determined values. Our results underscore the important role played by Auger processes in two-dimensional atomic materials.
500 C Electronic Packaging and Dielectric Materials for High Temperature Applications
NASA Technical Reports Server (NTRS)
Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.
2016-01-01
High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.
Proteins as "dopable" bio-electronic materials
NASA Astrophysics Data System (ADS)
Cahen, David
2013-02-01
Proteins are surprisingly good solid-state electronic conductors. This holds also for proteins without any known biological electron transfer function. How do they do it? To answer this question we measure solid-state electron transport (ETp) across proteins that are "dry" (only tightly bound water, to retain the conformation, still present). We compare results for the electron transfer (ET) protein, Azurin (Az), the proton-pumping membrane protein Bacteriorhodopsin (bR), and for Human and Bovine Serum Albumin (HSA and BSA). Clear differences between these proteins are seen, which preserve their structure in the solid state measurement configuration. Importantly for future bioelectronics, the results are sensitive to protein modification, e.g., removing or disconnecting the retinal in bR and removing or replacing the Cu redox centre in Az. These cofactors can thus be viewed as natural dopants for proteins. Insight in the ETp mechanism comes from temperature-dependent studies. Az shows 40-360K temperature-independent ETp across its 3.5 nm long axis, until its denaturation temperature, indicative of tunneling. Cu removal, replacement (by Zn) or deuteration changes this to thermally activated ETp. This suggests hopping and involvement of the amide backbone in the ETp. The latter, which rhymes with indications from ETp experiments on oligopeptide and simulations of ET in proteins, opens the way for modeling what otherwise is an awfully complex system. Below 200K all proteins and their variants show temperature-independent ETp. We can furthermore make a totally electrically inactive protein, HSA, into an efficient ETp medium by doping it with natural poly-ene. Putting our data in perspective by comparing them to all known protein ETp data in the literature, we conclude that, in general, proteins are well described as dopable molecular wires.
NASA Astrophysics Data System (ADS)
Wang, Yi X.; Wu, Q.; Chen, Xiang R.; Geng, Hua Y.
2016-09-01
The pressure-induced transition of vanadium from BCC to rhombohedral structures is unique and intriguing among transition metals. In this work, the stability of these phases is revisited by using density functional theory. At finite temperatures, a novel transition of rhombohedral phases back to BCC phase induced by thermal electrons is discovered. This reentrant transition is found not driven by phonons, instead it is the electronic entropy that stabilizes the latter phase, which is totally out of expectation. Parallel to this transition, we find a peculiar and strong increase of the shear modulus C44 with increasing temperature. It is counter-intuitive in the sense that it suggests an unusual harding mechanism of vanadium by temperature. With these stability analyses, the high-pressure and finite-temperature phase diagram of vanadium is proposed. Furthermore, the dependence of the stability of RH phases on the Fermi energy and chemical environment is investigated. The results demonstrate that the position of the Fermi level has a significant impact on the phase stability, and follows the band-filling argument. Besides the Fermi surface nesting, we find that the localization/delocalization of the d orbitals also contributes to the instability of rhombohedral distortions in vanadium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rueda-Fonseca, P.; Orrù, M.; CNRS, Institut NEEL, F-38000 Grenoble
With ZnTe as an example, we use two different methods to unravel the characteristics of the growth of nanowires (NWs) by gold-catalyzed molecular beam epitaxy at low temperature. In the first approach, CdTe insertions have been used as markers, and the nanowires have been characterized by scanning transmission electron microscopy, including geometrical phase analysis and energy dispersive electron spectrometry; the second approach uses scanning electron microscopy and the statistics of the relationship between the length of the tapered nanowires and their base diameter. Axial and radial growth are quantified using a diffusion-limited model adapted to the growth conditions; analytical expressionsmore » describe well the relationship between the NW length and the total molecular flux (taking into account the orientation of the effusion cells), and the catalyst-nanowire contact area. A long incubation time is observed. This analysis allows us to assess the evolution of the diffusion lengths on the substrate and along the nanowire sidewalls, as a function of temperature and deviation from stoichiometric flux.« less
Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak.
Pan, X M; Yang, Z J; Ma, X D; Zhu, Y L; Luhmann, N C; Domier, C W; Ruan, B W; Zhuang, G
2016-11-01
A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.
Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, X. M.; Yang, Z. J., E-mail: yangzj@hust.edu.cn; Ma, X. D.
2016-11-15
A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advancedmore » optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.« less
Seismo-ionospheric anomalies in DEMETER observationsduring the Wenchuan M7.9 earthquake
NASA Astrophysics Data System (ADS)
Huang, C. C.; Liu, J. Y. G.
2014-12-01
This paper examines pre-earthquake ionospheric anomalies (PEIAs) observed by the French satellite DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) during the 12 May 2008 M7.9 Wenchuan earthquake. Both daytime and nighttime electron density (Ne), electron temperature (Te), ion density (Ni) and ion temperature (Ti) are investigated. A statistical analysis of the box-and-whisker method is utilized to see if the four DEMETER datasets 1-6 days before and after the earthquake are significantly different. The analysis is employed to investigate the epicenter and three reference areas along the same magnetic latitude and to discriminate the earthquake-related anomalies from global effects. Results show that the nighttime Ne and Ni over the epicenter significantly decrease 1-6 days before the earthquake. The ionospheric total electron content (TEC) of global ionosphere map (GIM) over the epicenter is further inspected to find the sensitive local time for detecting the PEIAs of the M7.9 Wenchuan earthquake.
Characterization of a Two-Stage Pulse Tube Cooler for Space Applications
NASA Astrophysics Data System (ADS)
Orsini, R.; Nguyen, T.; Colbert, R.; Raab, J.
2010-04-01
A two-stage long-life, low mass and efficient pulse tube cooler for space applications has been developed and acceptance tested for flight applications. This paper presents the data collected on four flight coolers during acceptance testing. Flight acceptance test of these cryocoolers includes thermal performance mapping over a range of reject temperatures, launch vibration testing and thermal cycling testing. Designed conservatively for a 10-year life, the coolers are required to provide simultaneous cooling powers at 95 K and 180 K while rejecting to 300 K with less than 187 W input power to the electronics. The total mass of each cooler and electronics system is 8.7 kg. The radiation-hardened and software driven control electronics provides cooler control functions which are fully re-configurable in orbit. These functions include precision temperature control to better than 100 mK p-p. This 2 stage cooler has heritage to the 12 Northrop Grumman Aerospace Systems (NGAS) coolers currently on orbit with 2 operating for more than 11.5 years.
NASA Astrophysics Data System (ADS)
Yu, C. Y.; Liu, J. Y. G.
2014-12-01
In this study, we examine the pre-earthquake ionospheric anomalies (PEIAs) by the electron density (Ne) and ion temperature (Ti) observed by FORMOSAT-1 (ROCSAT-1) satellite during magnitude greater than 7.0 worldwide earthquakes during 1999-2004. Meanwhile, PEIAs is also currently investigated to have a better understanding of the spatial distribution of the ROCSAT-1 SIPs. Total electron density (TEC) of the global ionosphere map (GIM) confirm that the anomalous feature appear near the epicenters before the earthquakes.
NASA Technical Reports Server (NTRS)
Green, Nelson W.; Dawson, Stephen F.
2015-01-01
NASA is currently considering a mission to investigate the moons of Jupiter. When designing a spacecraft for this type of mission, there are a number of engineering challenges, especially if the mission chooses to utilize solar arrays to provide the spacecraft power. In order for solar arrays to be feasible for the mission, their total mass needed to fit within the total budget for the mission, which strongly suggested the use of carbon composite facesheets on an aluminum core for the panel structure. While these composite structures are a good functional substitution for the metallic materials they replace, they present unique challenges when interacting with the harsh Jovian space environment. As a composite material, they are composed of more than one material and can show different base properties depending in differing conditions. Looking at the electrical properties, in an Earth-based environment the carbon component of the composite dominates the response of the material to external stimulus. Under these conditions, the structures strongly resembles a conductor. In the Jovian environment, with temperatures reaching 50K and under the bombardment from energetic electrons, the non-conducting pre-preg binding materials may come to the forefront and change the perceived response. Before selecting solar arrays as the baseline power source for a mission to Jupiter, the response of the carbon composites to energetic electrons while held at cryogenic temperatures needed to be determined. A series of tests were devised to exam the response of a sample solar array panel composed of an M55J carbon weave layup with an RS-3 pre-preg binder. Test coupons were fabricated and exposed to electrons ranging from 10 keV to 100 keV, at 1 nA/cm2, while being held at cryogenic temperatures. While under electron bombardment, electrical discharges were observed and recorded with the majority of discharges occurring with electron energies of 25 keV. A decrease in temperature to liquid nitrogen temperatures showed a marked increase in the magnitude of these discharges. The results indicate that dielectric discharges are primarily produced due to the presence of large regions of the non-conductive pre-preg on the surface of the carbon sheets. The frequency and magnitude of discharges decreased when layers of the pre-preg material were removed from the composite surface. These tests indicate that solar array panels may be used in the Jovian environment, but that electrostatic discharges can be expected on the carbon composite solar arrays.
NASA Astrophysics Data System (ADS)
Yavari, H.; Mokhtari, M.; Bayervand, A.
2015-03-01
Based on Kubo's linear response formalism, temperature dependence of the spin-Hall conductivity of a two-dimensional impure (magnetic and nonmagnetic impurities) Rashba electron gas in the presence of electron-electron and electron-phonon interactions is analyzed theoretically. We will show that the temperature dependence of the spin-Hall conductivity is determined by the relaxation rates due to these interactions. At low temperature, the elastic lifetimes ( and are determined by magnetic and nonmagnetic impurity concentrations which are independent of the temperature, while the inelastic lifetimes ( and related to the electron-electron and electron-phonon interactions, decrease when the temperature increases. We will also show that since the spin-Hall conductivity is sensitive to temperature, we can distinguish the intrinsic and extrinsic contributions.
NASA Astrophysics Data System (ADS)
Rosenberg, M. J.; Solodov, A. A.; Seka, W.; Myatt, J. F.; Regan, S. P.; Hohenberger, M.; Epstein, R.; Collins, T. J. B.; Turnbull, D. P.; Ralph, J. E.; Barrios, M. A.; Moody, J. D.
2015-11-01
Results from the first experiments at the National Ignition Facility (NIF) to probe two-plasmon -decay (TPD) hot-electron production at scale lengths relevant to polar-direct-drive (PDD) ignition are reported. The irradiation on one side of a planar CH foil generated a plasma at the quarter-critical surface with a predicted density gradient scale length of Ln ~ 600 μm , a measured electron temperature of Te ~ 3 . 5 to 4.0 keV, an overlapped laser intensity of I ~ 6 ×1014 W/cm2, and a predicted TPD threshold parameter of η ~ 4 . The hard x-ray spectrum and the Kα emission from a buried Mo layer were measured to infer the hot-electron temperature and the fraction of total laser energy converted to TPD hot electrons. Optical emission at ω/2 correlated with the time-dependent hard x-ray signal confirms that TPD is responsible for the hot-electron generation. The effect of laser beam angle of incidence on TPD hot-electron generation was assessed, and the data show that the beam angle of incidence did not have a strong effect. These results will be used to benchmark simulations of TPD hot-electron production at conditions relevant to PDD ignition-scale implosions. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Space Radiation Effects on Graphite-Epoxy Composite Materials
NASA Technical Reports Server (NTRS)
Milkovich, S. M.; Herakovich, C. T.; Sykes, G. F., Jr.
1984-01-01
Radiation effects on engineering properties, dimensional stability, and chemistry on state of the art composite systems were characterized. T300/934 graphite-epoxy composite was subjected to 1.0 MeV electron radiation for a total dose of 1.0 x 10(10) rads at a rate of 5.0 x 10(7) rads/hour. This simulates a worst case exposure equivalent to 30 years in space. Mechanical testing was performed on he 4-ply unidirectional laminates over the temperature range of -250 F (116K) to +250 F (394K). A complete set of in-plane tensile elastic and strength properties were obtained (E sub 1, E sub 2, nu sub 12, G sub 12, X sub T, Y sub T, and S). In addition electron microscopy was used to study and analyze the fracture surfaces of all specimens tested. Results indicate that little difference in properties is noted at room temperature, but significant differences are observed at both low and elevated temperatures.
NASA Astrophysics Data System (ADS)
Hu, Bo
2015-08-01
Based on semiclassical Boltzamnn transport theory in random phase approximation, we develop a theoretical model to investigate low-temperature carrier transport properties in relatively high doped bilayer graphene. In the presence of both electron-hole puddles and band gap induced by charged impurities, we calculate low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene. Our calculated conductivity results are in excellent agreement with published experimental data in all compensated gate voltage regime of study by using potential fluctuation parameter as only one free fitting parameter, indicating that both electron-hole puddles and band gap induced by charged impurities play an important role in carrier transport. More importantly, we also find that the conductivity not only depends strongly on the total charged impurity density, but also on the top layer charged impurity density, which is different from that obtained by neglecting the opening of band gap, especially for bilayer graphene with high top layer charged impurity density.
Mechanical behavior, electronic and phonon properties of ZrB12 under pressure
NASA Astrophysics Data System (ADS)
Li, Xiao-Hong; Yong, Yong-Liang; Cui, Hong-Ling; Zhang, Rui-Zhou
2018-06-01
The mechanical, phonon and electronic properties of ZrB12 under pressure are investigated by first-principles calculations. The research shows that ZrB12 is mechanically and dynamically stable up to 100 GPa. The elastic constants, bulk modulus B, shear modulus G, hardness Hv, B/G ratio, Debye temperature under different pressures are systematically investigated. The calculation of electronic properties shows that ZrB12 has metallic character. The Zr-d states dominate the DOS at the Fermi level, and the total DOS and PDOS change slightly with the increasing pressure. DOS (Ef) first decreases, then increases with the increasing pressure. At 50 GPa, ZrB12 has less electron carriers. The analysis of electron localization function shows that the strong B-B and Zr-B covalent bonds may be responsible for the high hardness and stability.
NASA Technical Reports Server (NTRS)
Reginald, Nelson L.
2000-01-01
In Cram's theory for the formation of the K-coronal spectrum he observed the existence of temperature sensitive anti-nodes, which were separated by temperature insensitive nodes, at certain wave-lengths in the K-coronal spectrum. Cram also showed these properties were remarkably independent of altitude above the solar limb. In this thesis Cram's theory has been extended to incorporate the role of the solar wind in the formation of the K-corona, and we have identified both temperature and wind sensitive intensity ratios. The instrument, MACS, for Multi Aperture Coronal Spectrometer, a fiber optic based spectrograph, was designed for global and simultaneous measurements of the thermal electron temperature and the solar wind velocity in the solar corona. The first ever experiment of this nature was conducted in conjunction with the total solar eclipse of 11 August 1999 in Elazig, Turkey. Here twenty fiber optic tips were positioned in the focal plane of the telescope to observe simultaneously at many different latitudes and two different radial distances in the solar corona. The other ends were vertically stacked and placed at the primary focus of the spectrograph. By isolating the K-coronal spectrum from each fiber the temperature and the wind sensitive intensity ratios were calculated.
Thermal diffusivity of Bi 2Sr 2CaCu 2O 8 single crystals
NASA Astrophysics Data System (ADS)
Wu, X. D.; Fanton, J. G.; Kino, G. S.; Ryu, S.; Mitzi, D. B.; Kapitulnik, A.
1993-12-01
We have made direct measurements of the temperature dependence of the thermal diffusivity along all three axes of a single- crystal Bi 2Ca 2SrCu 2O 8 superconductor. We find that the thermal diffusivity is enhanced dramatically along the Cu-O planes below Tc. From our results, we estimate a 40% electronic contribution to the diffusivity along the Cu-O planes. At room temperature the total anisotropy in thermal diffusivity is 7:1, while the lattice contribution has only a 4.2:1 anisotropy.
Economic feasibility of irradiation-composting plant of sewage sludge
NASA Astrophysics Data System (ADS)
Hashimoto, S.; Nishimura, K.; Machi, S.
Design and cost analysis were made for a sewage sludge treatment plant (capacity 25 - 200 ton sludge/day) with an electron accelerator. Dewatered sludge is spreaded on a rolling drum through a flat nozzle and disinfected by electron irradiation with a dose of 5 kGy. Composting of the irradiated sludge is also made at the optimum temperature for 3 days. The accelerating voltage of electron and capacity of the accelerator are 1.5 MV and 15 kW, respectively. Total volume of the fermentor is about one third of that of conventional composting process because the irradiation makes the time of composting shorter. The cost of sludge treatment is almost the same as that of conventional method.
NASA Astrophysics Data System (ADS)
Yong, WANG; Cong, LI; Jielin, SHI; Xingwei, WU; Hongbin, DING
2017-11-01
As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering (LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5 × 1019 m-3 to 7.1 × 1020 m-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison, an optical emission spectroscopy (OES) system was established as well. The results showed that the electron excitation temperature (configuration temperature) measured by OES is significantly higher than the electron temperature (kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium (LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.
Dielectric relaxation and electronic structure of double perovskite Sr{sub 2}FeSbO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Alo; Sinha, T. P.; Shannigrahi, Santiranjan
2008-09-15
The dielectric property and the electronic structure of a double perovskite, Sr{sub 2}FeSbO{sub 6} (SFS) synthesized by solid state reaction technique are investigated. The x-ray diffraction of the sample taken at room temperature shows cubic phase. The scanning electron micrograph of the sample also confirms the formation of the single phase of the material. We have measured the capacitance and conductance of SFS in a frequency range from 50 Hz to 1 MHz and in a temperature range from 163 to 463 K. A relaxation is observed in the entire temperature range as a gradual decrease in {epsilon}{sup '}({omega}) andmore » as a broad peak in {epsilon}{sup ''}({omega}). The frequency dependent electrical data are analyzed in the framework of conductivity and electric modulus formalisms. The frequencies corresponding to the maxima of the imaginary electric modulus at various temperatures are found to obey an Arrhenius law with an activation energy of 0.74 eV. The Cole-Cole model is used to study the dielectric relaxation of SFS. The scaling behavior of imaginary part of electric modulus suggests that the relaxation describes the same mechanism at various temperatures. The frequency dependent conductivity spectra follow the universal power law. The electronic structure of the SFS is studied by x-ray photoemission spectroscopy (XPS). Its valence band consists mainly of the oxygen 2p-states hybridized with the Fe 3d-states. The XPS spectra are investigated by the first principles full potential linearized augmented plane wave method. The angular momentum projected total and partial density of states obtained from first principles calculation are used to analyze the XPS results of the sample. The calculated electronic structures of SFS are qualitatively similar to those of the XPS spectra in terms of spectral features, energy positions, and relative intensities. The electronic structure calculation reveals that the electrical properties of SFS are dominated by the interaction between transition-metal and oxygen ions.« less
Oxygen interaction with disordered and nanostructured Ag(001) surfaces
NASA Astrophysics Data System (ADS)
Vattuone, L.; Burghaus, U.; Savio, L.; Rocca, M.; Costantini, G.; Buatier de Mongeot, F.; Boragno, C.; Rusponi, S.; Valbusa, U.
2001-08-01
We investigated O2 adsorption on Ag(001) in the presence of defects induced by Ne+ sputtering at different crystal temperatures, corresponding to different surface morphologies recently identified by scanning tunneling microscopy. The gas-phase molecules were dosed with a supersonic molecular beam. The total sticking coefficient and the total uptake were measured with the retarded reflector method, while the adsorption products were characterized by high resolution electron energy loss spectroscopy. We find that, for the sputtered surfaces, both sticking probability and total O2 uptake decrease. Molecular adsorption takes place also for heavily damaged surfaces but, contrary to the flat surface case, dissociation occurs already at a crystal temperature, T, of 105 K. The internal vibrational frequency of the O2 admolecules indicates that two out of the three O2- moieties present on the flat Ag(001) surface are destabilized by the presence of defects. The dissociation probability depends on surface morphology and drops for sputtering temperatures larger than 350 K, i.e., when surface mobility prevails healing the defects. The latter, previously identified with kink sites, are saturated at large O2 doses. The vibrational frequency of the oxygen adatoms, produced by low temperature dissociation, indicates the formation of at least two different adatom moieties, which we tentatively assign to oxygen atoms at kinks and vacancies.
NASA Astrophysics Data System (ADS)
Fang, Ranran; Wei, Hua; Li, Zhihua; Zhang, Duanming
2012-01-01
The electron temperature dependences of the electron-phonon coupling factor and electron heat capacity based on the electron density of states are investigated for precious metal Au under femtosecond laser irradiation. The thermal excitation of d band electrons is found to result in large deviations from the commonly used approximations of linear temperature dependence of the electron heat capacity, and the constant electron-phonon coupling factor. Results of the simulations performed with the two-temperature model demonstrate that the electron-phonon relaxation time becomes short for high fluence laser for Au. The satisfactory agreement between our numerical results and experimental data of threshold fluence indicates that the electron temperature dependence of the thermophysical parameters accounting for the thermal excitation of d band electrons should not be neglected under the condition that electron temperature is higher than 10 4 K.
EHW Approach to Temperature Compensation of Electronics
NASA Technical Reports Server (NTRS)
Stoica, Adrian
2004-01-01
Efforts are under way to apply the concept of evolvable hardware (EHW) to compensate for variations, with temperature, in the operational characteristics of electronic circuits. To maintain the required functionality of a given circuit at a temperature above or below the nominal operating temperature for which the circuit was originally designed, a new circuit would be evolved; moreover, to obtain the required functionality over a very wide temperature range, there would be evolved a number of circuits, each of which would satisfy the performance requirements over a small part of the total temperature range. The basic concepts and some specific implementations of EHW were described in a number of previous NASA Tech Briefs articles, namely, "Reconfigurable Arrays of Transistors for Evolvable Hardware" (NPO-20078), Vol. 25, No. 2 (February 2001), page 36; Evolutionary Automated Synthesis of Electronic Circuits (NPO- 20535), Vol. 26, No. 7 (July 2002), page 37; "Designing Reconfigurable Antennas Through Hardware Evolution" (NPO-20666), Vol. 26, No. 7 (July 2002), page 38; "Morphing in Evolutionary Synthesis of Electronic Circuits" (NPO-20837), Vol. 26, No. 8 (August 2002), page 31; "Mixtrinsic Evolutionary Synthesis of Electronic Circuits" (NPO-20773) Vol. 26, No. 8 (August 2002), page 32; and "Synthesis of Fuzzy-Logic Circuits in Evolvable Hardware" (NPO-21095) Vol. 26, No. 11 (November 2002), page 38. To recapitulate from the cited prior articles: EHW is characterized as evolutionary in a quasi-genetic sense. The essence of EHW is to construct and test a sequence of populations of circuits that function as incrementally better solutions of a given design problem through the selective, repetitive connection and/or disconnection of capacitors, transistors, amplifiers, inverters, and/or other circuit building blocks. The connection and disconnection can be effected by use of field-programmable transistor arrays (FPTAs). The evolution is guided by a search-andoptimization algorithm (in particular, a genetic algorithm) that operates in the space of possible circuits to find a circuit that exhibits an acceptably close approximation of the desired functionality. The evolved circuits can be tested by mathematical modeling (that is, computational simulation) only, tested in real hardware, or tested in combinations of computational simulation and real hardware.
NASA Astrophysics Data System (ADS)
Eryigit, Resul; Gurel, Tanju; Erturk, Esra; Lukoyanov, A. V.; Akcay, Guven; Anisimov, V. I.
2014-03-01
We present density functional theory calculations on iron-based pnictides RFeAsO (R = Pr, Nd, Sm, Gd). The calculations have been carried out using plane-waves and projector augmented wave (PAW) pseudopotential approach. Structural, magnetic and electronic properties are studied within generalized gradient approximation (GGA) and also within GGA+U in order to investigate the influence of electron correlation effects. Low-temperature Cmma structure is fully optimized by GGA considering both non-magnetic and magnetic cells. We have found that spin-polarized structure improves the agreement with experiments on equilibrium lattice parameters, particularly c lattice parameter and Fe-As bond-lengths. Electronic band structure, total density of states, and spin-dependent orbital-resolved density of states are also analyzed in the frameworks of GGA and GGA+U and discussed. For all materials, by including on-site Coulomb correction, rare earth 4f states move away from the Fermi level and the Fermi level features of the systems are found to be mostly defined by the 3d electron-electron correlations in Fe. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK Project No. TBAG-111T796) and the Russian Foundation for Basic Research (Project No. 12-02-91371-CT_a).
Intramolecular and Lattice Dynamics in V6-nIVVnV O7(OCH3)12 Crystal
NASA Astrophysics Data System (ADS)
Yablokov, Yu. V.; Augustyniak-Jabłokow, M. A.; Borshch, S.; Daniel, C.; Hartl, H.
2006-08-01
Multi-nuclear mixed-valence clusters V4IVV2VO7(OCH3)12 were studied by X-band EPR in the temperature range 4.2-300 K. An isotropic exchange interactions between four VIV ions with individual spin Si=1/2 determine the energy levels structure of the compound with the total spin states S=0, 1, and 2, which are doubled and split due to the extra electron transfer. The spin-Hamiltonian approach was used for the analysis of the temperature dependences of the EPR spectra parameters and the cluster dynamics. Two types of the electron transfer are assumed: the single jump transfer leading to the splitting of the total spin states by intervals comparable in magnitude with the exchange parameter J≈100-150cm-1 and the double jump one resulting in dynamics. The dependence of the transition ratesνtr on the energy of the total spin states was observed. In particular, in the range 300-220 K the νtr ≈0.7×1010 cm-1 and below 180 K the νtr≈1×1010 cm-1 was estimated. The g-factors of the spin states were shown to depend on the values of the intermediate spins. A phase transition in the T-range 210-180 K leading to the change in the initial VIV ions localization was discovered.
Feng, Ai-Ling; Wang, Ying-Zi; Zhang, Sheng-Hai; Sun, Xiu-Yu; Duan, Fei-Peng; Li, Cai-Xia
2013-08-01
The research aimed at investigating the physicochemical properties, stability and skin penetration in vitro of total alkaloids of Sophora flavescens nanoemulsion. Prepare total alkaloids of S. flavescens nanoemulsion and detect the determination of matrine and oxymatrine in the nanoemulsion using HPLC method. Transmission electron microscopy and laser particle size analyzer were utilized to detect the shape and size of the nanoemulsion respectively. And also the stability of nanoemulsion was studied under the conditions of low temperature (4 degrees C), normal temperature (25 degrees C) and high temperature (60 degrees C). Franz diffusion cell was used to research the transdermal absorption of nanoemulsion in vitro. The results found that the nanoemulsion we prepared presented appearance of rounded, uniform; its average diameter was (15.55 +/- 2.24) nm, and particle size distribution value was 0. 161; the appearance, diameter and percentage determination of total alkaloids of S. flavescens had no variations after 15 d under 4, 25, 60 degrees C respectively. The steady-state permeation rate was 4.564 1 microg x cm(-2) x h(-1), 24 h cumulative amount of penetration was 110.7 microg x cm(-2), which was 1.86 fold of 24 h cumulative amount of aqueous solution (59.41 microg x cm(-2)). All the results demonstrated total alkaloids of S. flavescens nanoemulsion had good permeability, and could provide a new preparation for its clinical application.
NASA Astrophysics Data System (ADS)
Ramsbottom, C. A.; Bell, K. L.; Keenan, F. P.
1997-01-01
The multichannel R-matrix method is used to compute electron impact excitation collision strengths in Ar iv for all fine-structure transitions among the ^4S^o, ^2D^o and ^2P^o levels in the 3s^23p^3 ground configuration. Included in the expansion of the total wavefunction are the lowest 13 LS target eigenstates of Ar iv formed from the 3s^23p^3, 3s3p^4 and 3s^23p^23d configurations. The effective collision strengths, obtained by averaging the electron collision strengths over a Maxwellian distribution of electron velocities, are presented for all 10 fine-structure transitions over a wide range of electron temperatures of astrophysical interest (T_e=2000-100 000K). Comparisons are made with an earlier 7-state close-coupling calculation by Zeippen, Butler & Le Bourlot, and significant differences are found to occur for many of the forbidden transitions considered, in particular those involving the ^4S^o ground state, where discrepancies of up to a factor of 3 are found in the low-temperature region.
NASA Astrophysics Data System (ADS)
Abid, O. Miloud; Menouer, S.; Yakoubi, A.; Khachai, H.; Omran, S. Bin; Murtaza, G.; Prakash, Deo; Khenata, R.; Verma, K. D.
2016-05-01
The structural, electronic, elastic, thermoelectric and thermodynamic properties of NbMSb (M = Fe, Ru, Os) half heusler compounds are reported. The full-potential linearized augmented plane wave (FP-LAPW) plus local orbital (lo) method, based on the density functional theory (DFT) was employed for the present study. The equilibrium lattice parameter results are in good compliance with the available experimental measurements. The electronic band structure and Boltzmann transport calculations indicated a narrow indirect energy band gap for the compound having electronic structure favorable for thermoelectric performance as well as with substantial thermopowers at temperature ranges from 300 K to 800 K. Furthermore, good potential for thermoelectric performance (thermopower S ≥ 500 μeV) was found at higher temperature. In addition, the analysis of the charge density, partial and total densities of states (DOS) of three compounds demonstrate their semiconducting, ionic and covalent characters. Conversely, the calculated values of the Poisson's ratio and the B/G ratio indicate their ductile makeup. The thermal properties of the compounds were calculated by quasi-harmonic Debye model as implemented in the GIBBS code.
Microscopic analysis of homogeneous electron gas by considering dipole-dipole interaction
NASA Astrophysics Data System (ADS)
Bordbar, G. H.; Pouresmaeeli, F.
2017-12-01
Implying perturbation theory, the impact of the dipole-dipole interaction (DDI) on the thermodynamic properties of a homogeneous electron gas at zero temperature is investigated. Through the second quantization formalism, the analytic expressions for the ground state energy and the DDI energy are obtained. In this paper, the DDI energy has similarities with the previous works done by others. We show that its general behavior depends on density and the total angular momentum. Especially, it is found that the DDI energy has a highly state-dependent behavior. With the growth of density, the magnitude of DDI energy, which is found to be the summation of all energy contributions of the states with even and odd total angular momenta, grows linearly. It is also found that for the states with even and odd total angular momenta, the DDI energy contributions are corresponding to the positive and negative values, respectively. In particular, an increase of total angular momentum leads to decline in the magnitude of energy contribution. Therefore, the dipole-dipole interaction reveals distinct characteristics in comparison with central-like interactions.
Investigation of Stability of Precise Geodetic Instruments Used in Deformation Monitoring
NASA Astrophysics Data System (ADS)
Woźniak, Marek; Odziemczyk, Waldemar
2017-12-01
Monitoring systems using automated electronic total stations are an important element of safety control of many engineering objects. In order to ensure the appropriate credibility of acquired data, it is necessary that instruments (total stations in most of the cases) used for measurements meet requirements of measurement accuracy, as well as the stability of instrument axis system geometry. With regards to the above, it is expedient to conduct quality control of data acquired using electronic total stations in the context of performed measurement procedures. This paper presents results of research conducted at the Faculty of Geodesy and Cartography at Warsaw University of Technology investigating the stability of "basic" error values (collimation, zero location for V circle, inclination), for two types of automatic total stations: TDA 5005 and TCRP 1201+. Research provided also information concerning the influence of temperature changes upon the stability of investigated instrument's optical parameters. Results are presented in graphical analytic technique. Final conclusions propose methods, which allow avoiding negative results of measuring tool-set geometry changes during conducting precise deformation monitoring measurements.
NASA Astrophysics Data System (ADS)
Martinović, M.
2017-12-01
Quasi-thermal noise (QTN) spectroscopy is an accurate technique for in situ measurements of electron density and temperature in space plasmas. The QTN spectrum has a characteristic noise peak just above the plasma frequency produced by electron quasi-thermal fluctuations, which allows a very accurate measurement of the electron density. The size and shape of the peak are determined by suprathermal electrons. Since this nonthermal electron population is well described by a generalized Lorentzian - Kappa velocity distribution, it is possible to determinate the distribution properties in the solar wind from a measured spectrum. In this work, we discuss some basic properties of the QTN spectrum dependence of the Kappa distribution parameters - total electron density, temperature and the Kappa index, giving an overview on how instrument characteristics and environment conditions affect quality of the measurements. Further on, we aim to apply the method to Wind Thermal Noise Receiver (TNR) measurements. However, the spectra observed by this instrument usually contain contributions from nonthermal phenomena, like ion acoustic waves below, or galactic noise above the plasma frequency. This is why, besides comparison of the theory with observations, work with Wind data requires development of a sophisticated algorithm that distinguish parts of the spectra that are dominated by the QTN, and therefore can be used in our study. Postulates of this algorithm, as well as major results of its implementation, are also presented.
Silicon solar cells by ion implantation and pulsed energy processing
NASA Technical Reports Server (NTRS)
Kirkpatrick, A. R.; Minnucci, J. A.; Shaughnessy, T. S.; Greenwald, A. C.
1976-01-01
A new method for fabrication of silicon solar cells is being developed around ion implantation in conjunction with pulsed electron beam techniques to replace conventional furnace processing. Solar cells can be fabricated totally in a vacuum environment at room temperature. Cells with 10% AM0 efficiency have been demonstrated. High efficiency cells and effective automated processing capabilities are anticipated.
Electronic origins of the magnetic phase transitions in zinc-blende Mn chalcogenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, S.; Zunger, A.
1993-09-01
Precise first-principles spin-polarized total-energy and band-structure calculations have been performed for the zinc-blende Mn chalcogenides with the use of the local-spin-density (LSD) approach. We find that the LSD is capable of identifying the correct magnetic-ground-state structure, but it overestimates the ordering temperature [ital T][sub [ital N
NASA Technical Reports Server (NTRS)
Reginald, Nelson L.; Fisher, Richard R. (Technical Monitor)
2000-01-01
The determination of the radial and latitudinal temperature and wind profiles of the solar corona is of great importance in understanding the coronal heating mechanism and the dynamics of coronal expansion. Cram presented the theory for the formation of the K-coronal spectrum and identified two important observations. He observed the existence of temperature sensitive anti-nodes at certain wavelengths in the theoretical K-coronal spectra. The anti-nodes are separated by temperature-insensitive nodes. Remarkably, Cram showed that the wavelengths of the nodes and anti-nodes are almost independent of altitude above the solar limb. Because of these features, Cram suggested that the intensity ratios at two anti-nodes could be used as a diagnostic of the electron temperature in the K-corona. Based on this temperature diagnostic technique prescribed by Cram a slit-based spectroscopic study was performed by Ichimoto et al. on the solar corona in conjunction with the total solar eclipse of 3 Nov 1994 in Putre, Chile to determine the temperature profile of the solar corona. In this thesis Cram's theory has been extended to incorporate the role of the solar wind in the formation of the K-corona, and we have identified both temperature and wind sensitive intensity ratios. The instrument, MACS, for Multi Aperture Coronal Spectrometer, a fiber optic based spectrograph, was designed for global and simultaneous measurement of the thermal electron temperature and the solar wind velocity in the solar corona. The first ever experiment of this nature was conducted in conjunction with the total solar eclipse of 11 Aug 1999 in Elazig, Turkey. In this instrument one end of each of twenty fiber optic tips were positioned in the focal plane of the telescope in such a way that we could observe conditions simultaneously at many different latitudes and two different radial distances in the solar corona. The other ends of the fibers were vertically aligned and placed at the primary focus of the collimating lens of the spectrograph to obtain simultaneous and global spectra on the solar corona. By isolating the K-coronal spectrum from the spectrum recorded by each fiber the temperature and the wind sensitive intensity ratios were calculated to obtain simultaneous and global measurements of the thermal electron temperature and the solar wind velocity. We were successful in obtaining reliable estimates of the coronal temperature at many positions in the corona. This is the first time that simultaneous measurements of coronal temperatures have been obtained at so many points. However due to instrumental scattering encountered during observations, reliable estimates of the wind velocity turned out to be impossible to obtain. Although remedial measures were taken prior to observation, this task proved to be difficult owing to the inability to replicate the conditions expected during an eclipse in the laboratory. The full extent of the instrumental scattering was apparent only when we analyzed the observational sequence. Nevertheless the experience obtained from this very first attempt to simultaneously and globally measure both the wind velocity and the temperature on the solar corona have provided valuable information to conduct any future observations successfully.
Theoretical investigations of molecular wires: Electronic spectra and electron transport
NASA Astrophysics Data System (ADS)
Palma, Julio Leopoldo
The results of theoretical and computational research are presented for two promising molecular wires, the Nanostar dendrimer, and a series of substituted azobenzene derivatives connected to aluminum electrodes. The electronic absorption spectra of the Nanostar (a phenylene-ethynylene dendrimer attached to an ethynylperylene chromophore) were calculated using a sequential Molecular Dynamics/Quantum Mechanics (MD/QM) method to perform an analysis of the temperature dependence of the electronic absorption process. We modeled the Nanostar as a series of connected units, and performed MD simulations for each chromophore at 10 K and 300 K to study how the temperature affected the structures and, consequently, the spectra. The absorption spectra of the Nanostar were computed using an ensemble of 8000 structures for each chromophore. Quantum Mechanical (QM) ZINDO/S calculations were performed for each conformation in the ensemble, including 16 excited states, for a total of 128,000 excitation energies. The spectral intensity was then scaled linearly with the number of conjugated units. Our calculations for both the individual chromophores and the Nanostar, are in good agreement with experiments. We explain in detail the effects of temperature and the consequences for the absorption process. The second part of this thesis presents a study of the effects of chemical substituents on the electron transport properties of the azobenzene molecule, which has been proposed recently as a component of a light-driven molecular switch. This molecule has two stable conformations (cis and trans) in its electronic ground state, with considerable differences in their conductance. The electron transport properties were calculated using first-principles methods combining non-equilibrium Green's function (NEGF) techniques with density functional theory (DFT). For the azobenzene studies, we included electron-donating groups and electron-withdrawing groups in meta- and ortho-positions with respect to the azo group. The results showed that the molecular structure is crucial in optimizing the electron transport properties of chemical structures, and that the transport properties in electronic devices at the molecular level can be manipulated, enhanced or suppressed by a careful consideration of the effects of chemical modification.
New digital capacitive measurement system for blade clearances
NASA Astrophysics Data System (ADS)
Moenich, Marcel; Bailleul, Gilles
This paper presents a totally new concept for tip blade clearance evaluation in turbine engines. This system is able to detect exact 'measurands' even under high temperature and severe conditions like ionization. The system is based on a heavy duty probe head, a miniaturized thick-film hybrid electronic circuit and a signal processing unit for real time computing. The high frequency individual measurement values are digitally filtered and linearized in real time. The electronic is built in hybrid technology and therefore can be kept extremely small and robust, so that the system can be used on actual flights.
First-order intervalley scattering in low-dimensional systems
NASA Astrophysics Data System (ADS)
Monsef, Florian; Dollfus, Philippe; Galdin, Sylvie; Bournel, Arnaud
2002-06-01
The intervalley phonon scattering rate in one- and two-dimensional electron gases is calculated for the case in which the transition matrix element is of first order in the phonon wave vector. This type of interaction is important in silicon at low temperature. The interaction between electrons and bulk phonons is considered in the standard golden rule approach by including the contribution of the components of phonon wave vector in the confinement direction(s). This process makes possible the transition between different subbands, and the resulting total scattering rate differs significantly from the rate commonly used in Si quantum wells.
MAVEN observations of electron temperatures in the dayside ionosphere at Mars
NASA Astrophysics Data System (ADS)
Sakai, S.; Cravens, T.; Andersson, L.; Fowler, C. M.; Thiemann, E.; Eparvier, F. G.; Bougher, S. W.; Rahmati, A.; Reedy, N. L.; Mitchell, D. L.; Mazelle, C. X.; Mahaffy, P. R.; Jakosky, B. M.
2016-12-01
The Mars Atmosphere and Volatile EvolutioN (MAVEN) have observed the ionospheric electron temperature at Mars since November 2014. The only in-situ measurements of plasma temperatures were provided by the two Viking landers in 1976 before the MAVEN mission. The ionospheric electron temperatures are particularly important for determining the neutral escape rate from the atmosphere of Mars. We have investigated the electron temperatures on the dayside ionosphere using the Langmuir Probe and Waves instrument onboard MAVEN. The temperatures are studied in two regions of (1) the crustal magnetic field and (2) the solar wind/induced (or draped) magnetic field. We also focused on how temperatures vary with solar zenith angle (SZA) and the solar extreme ultraviolet (EUV) irradiances. The electron temperatures did not vary much due to the SZA variation, but increased when the solar EUV irradiances are high. This means the ionospheric temperatures are sensitive to the solar activity. Furthermore, we investigated the correlation of electron temperatures against magnetic field configurations under the same EUV irradiances. The electron temperatures in the crustal region were lower than those in the draped region. One possible explanation is that the energy input from high altitude, which is related to the tail and solar wind electrons, might control the temperatures in the draped region. Vertical heat conductance in the draped region could also affect the electron temperatures (with a greater effect in the draped region), so that electrons cooled at low altitude tend to transport to high altitude. However, the electron heating is more local in the draped region, and the electrons would be heated efficiently. Therefore, the electron temperatures in the draped region were higher than those in the crustal region. It is implied that the rate of atmospheric escape, which is attributed to photochemical escape, depends on the topology of the magnetic fields.
Optical evidence of quantum rotor orbital excitations in orthorhombic manganites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovaleva, N. N., E-mail: nkovaleva@sci.lebedev.ru; Kugel, K. I.; Potůček, Z.
2016-05-15
In magnetic compounds with Jahn–Teller (JT) ions (such as Mn{sup 3+} or Cu{sup 2+}), the ordering of the electron or hole orbitals is associated with cooperative lattice distortions. There the role of JT effect, although widely recognized, is still elusive in the ground state properties. Here we discovered that, in these materials, there exist excitations whose energy spectrum is described in terms of the total angular momentum eigenstates and is quantized as in quantum rotors found in JT centers. We observed features originating from these excitations in the optical spectra of a model compound LaMnO{sub 3} using ellipsometry technique. Theymore » appear clearly as narrow sidebands accompanying the electron transition between the JT split orbitals at neighboring Mn{sup 3+} ions, displaying anomalous temperature behavior around the Néel temperature T{sub N} ≈ 140 K. We present these results together with new experimental data on photoluminescence found in LaMnO{sub 3}, which lend additional support to the ellipsometry implying the electronic-vibrational origin of the quantum rotor orbital excitations. We note that the discovered orbital excitations of quantum rotors may play an important role in many unusual properties observed in these materials upon doping, such as high-temperature superconductivity and colossal magnetoresistance.« less
Wang, Yi X.; Wu, Q.; Chen, Xiang R.; Geng, Hua Y.
2016-01-01
The pressure-induced transition of vanadium from BCC to rhombohedral structures is unique and intriguing among transition metals. In this work, the stability of these phases is revisited by using density functional theory. At finite temperatures, a novel transition of rhombohedral phases back to BCC phase induced by thermal electrons is discovered. This reentrant transition is found not driven by phonons, instead it is the electronic entropy that stabilizes the latter phase, which is totally out of expectation. Parallel to this transition, we find a peculiar and strong increase of the shear modulus C44 with increasing temperature. It is counter-intuitive in the sense that it suggests an unusual harding mechanism of vanadium by temperature. With these stability analyses, the high-pressure and finite-temperature phase diagram of vanadium is proposed. Furthermore, the dependence of the stability of RH phases on the Fermi energy and chemical environment is investigated. The results demonstrate that the position of the Fermi level has a significant impact on the phase stability, and follows the band-filling argument. Besides the Fermi surface nesting, we find that the localization/delocalization of the d orbitals also contributes to the instability of rhombohedral distortions in vanadium. PMID:27581551
Temperature and pH effect on reduction of graphene oxides in aqueous solution
NASA Astrophysics Data System (ADS)
Tai, Guoan; Zeng, Tian; Li, Hongxiang; Liu, Jinsong; Kong, Jizhou; Lv, Fuyong
2014-09-01
Reduced graphene oxides (RGOs) have usually been obtained by hydrazine reduction, but hydrazine-related compounds are corrosive, highly flammable and very hazardous, and the obtained RGOs heavily aggregated. Here we investigated extensively the effect of temperature and pH value on the structure of RGOs in hydrothermal environments without any reducing agents. The attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra showed that reduction rate of GOs remarkably increased with the temperature from 100 to 180 °C and with pH value from 3 to 10. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) exhibited the structural transition of the RGOs. Energy-dispersive x-ray analysis (EDX) showed the reduction degree of the RGO samples quantitatively. The results demonstrate that the GOs can be reduced controllably by a hydrothermal reduction process at pH value of 10 at 140 °C, and the large-scale RGOs are cut into small nanosheets with size from several to a few tens of nanometers with increasing temperature and duration. This study provides a feasible approach to controllably reduce GO with different nanostructures such as porous structures and quantum dots for applications in optoelectronics and biomedicals.
NASA Astrophysics Data System (ADS)
Epstein, R.; Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; Regan, S. P.; Seka, W.; Hohenberger, M.; Barrios, M. A.; Moody, J. D.
2015-11-01
The Mn/Co isoelectronic emission-line ratio from a microdot source in planar CH foil targets was measured to infer the electron temperature (Te) in the ablating plasma during two-plasmon-decay experiments at the National Ignition Facility (NIF). We examine the systematic uncertainty in the Te estimate based on the temperature and density sensitivities of the line ratio in conjunction with plausible density constraints, and its contribution to the total Te estimate uncertainty. The potential advantages of alternative microdot elements (e.g., Ti/Cr and Sc/V) are considered. The microdot mass was selected to provide ample line strength while minimizing the effect of self-absorption on the line emission, which is of particular concern, given the narrow linewidths of mid- Z emitters at subcritical electron densities. Atomic line-formation theory and detailed atomic-radiative simulations show that the straight forward interpretation of the isoelectronic ratio solely in terms of its temperature independence remains valid with lines of moderate optical thickness (up to ~ 10) at line center. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Stellar model chromospheres. XIII - M dwarf stars
NASA Technical Reports Server (NTRS)
Giampapa, M. S.; Worden, S. P.; Linsky, J. L.
1982-01-01
Single-component, homogeneous model chromospheres that are consistent with high-resolution profiles of the Ca II K line calibrated in surface flux units for three dMe and 2 dM stars observed at quiescent times are constructed. The models reveal several systematic trends. Large values of the ratio of T(min) to T(eff) are derived, indicating a large amount of nonradiative heating present in the upper photospheres of M dwarf stars. It is also found that the lower chromospheric temperature gradient is similar for all the M dwarf stars. Since for the models here the chromospheric K line emission strength is most sensitive to the total amount of chromospheric material present within the approximate temperature range T(min)-6000 K, increasing the emission strength is not simply due to increasing chromospheric temperature gradients. It is also found that both the electron density and electron temperature at one thermalization length in the K line below the top of the chromospheres are greater in the dMe stars than in the dM stars. The M dwarf models here have microturbulent velocities between 1 and 2 km/sec, which are much smaller than for solar chromosphere models.
Improvement of Electropolishing of 1100 Al Alloy for Solar Thermal Applications
NASA Astrophysics Data System (ADS)
Aguilar-Sierra, Sara María; Echeverría E, Félix
2018-03-01
Aluminum sheets-based mirrors are finding applicability in high-temperature solar concentrating technologies because they are cost-effective, lightweight and have high mechanical properties. Nonetheless, the reflectance percentages obtained by electropolishing are not close to the reflectance values of the currently used evaporated films. Therefore, controlling key factors affecting electropolishing processes became essential in order to achieve highly reflective aluminum surfaces. This study investigated the effect of both the electropolishing process and previous heat treatment on the total reflectance of the AA 1100 aluminum alloy. An acid electrolyte and a modified Brytal process were evaluated. Total reflectance was measured by means of UV-Vis spectrophotometry. Reflectance values higher than 80% at 600 nm were achieved for both electrolytes. Optical microscopy and scanning electron microscopy images showed uneven dissolution for the acid electropolished samples causing a reflectance drop in the 200-450 nm region. The influence of heat treatment, previously to electropolishing, was tested at two different temperatures and various holding times. It was found that reflectance increases around 15% for the heat-treated and electropolished samples versus the non-heat-treated ones. A heat treatment at low temperature combined with a short holding time was enough to improve the sample total reflectance.
The control of hot-electron preheat in shock-ignition implosions
Trela, J.; Theobald, W.; Anderson, K. S.; ...
2018-05-22
In the shock-ignition scheme for inertial confinement fusion, hot electrons resulting from laser–plasma instabilities can play a major role during the late stage of the implosion. This article presents the results of an experiment performed on OMEGA in the so-called “40 + 20 configuration.” Using a recent calibration of the time-resolved hard x-ray diagnostic, the hot electrons’ temperature and total energy were measured. One-dimensional radiation–hydrodynamic simulations have been performed that include hot electrons and are in agreement with the measured neutron-rate–averaged areal density. For an early spike launch, both experiment and simulations show the detrimental effect of hot electrons onmore » areal density and neutron yield. Lastly, for a later spike launch, this effect is minimized because of a higher compression of the target.« less
The control of hot-electron preheat in shock-ignition implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trela, J.; Theobald, W.; Anderson, K. S.
In the shock-ignition scheme for inertial confinement fusion, hot electrons resulting from laser–plasma instabilities can play a major role during the late stage of the implosion. This article presents the results of an experiment performed on OMEGA in the so-called “40 + 20 configuration.” Using a recent calibration of the time-resolved hard x-ray diagnostic, the hot electrons’ temperature and total energy were measured. One-dimensional radiation–hydrodynamic simulations have been performed that include hot electrons and are in agreement with the measured neutron-rate–averaged areal density. For an early spike launch, both experiment and simulations show the detrimental effect of hot electrons onmore » areal density and neutron yield. For a later spike launch, this effect is minimized because of a higher compression of the target.« less
Spectrum-per-Pixel Cathodoluminescence Imaging of CdTe Thin-Film Bevels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moseley, John; Al-Jassim, Mowafak M.; Burst, James
2016-11-21
We conduct T=6 K cathodoluminescence (CL) spectrum imaging with a nano-scale electron beam on beveled surfaces of CdTe thin-films at different critical stages of standard CdTe device fabrication. The through-thickness total CL intensity profiles are consistent with a reduction in grain boundary recombination due to the CdCl2 treatment. Color-coded maps of the low-temperature luminescence transition energies reveal that CdTe thin films have remarkably non-uniform opto-electronic properties, which depend strongly on sample processing history. The grain-to-grain S content in the interdiffused CdTe/CdS region is estimated from a sample size of thirty-five grains, and the S content in adjacent grains varies significantlymore » in CdCl2-treated samples. A low-temperature luminescence model is developed to interpret spectral behavior at grain boundaries and grain interiors.« less
NASA Astrophysics Data System (ADS)
Wang, Hung-Ta; Kang, B. S.; Ren, F.; Fitch, R. C.; Gillespie, J. K.; Moser, N.; Jessen, G.; Jenkins, T.; Dettmer, R.; Via, D.; Crespo, A.; Gila, B. P.; Abernathy, C. R.; Pearton, S. J.
2005-10-01
Pt-gated AlGaN /GaN high electron mobility transistors can be used as room-temperature hydrogen gas sensors at hydrogen concentrations as low as 100ppm. A comparison of the changes in drain and gate current-voltage (I-V) characteristics with the introduction of 500ppm H2 into the measurement ambient shows that monitoring the change in drain-source current provides a wider gate voltage operation range for maximum detection sensitivity and higher total current change than measuring the change in gate current. However, over a narrow gate voltage range, the relative sensitivity of detection by monitoring the gate current changes is up to an order of magnitude larger than that of drain-source current changes. In both cases, the changes are fully reversible in <2-3min at 25°C upon removal of the hydrogen from the ambient.
Transport and NMR characteristics of the skutterudite-related compound Ca3Rh4Sn13
NASA Astrophysics Data System (ADS)
Tseng, C. W.; Kuo, C. N.; Li, B. S.; Wang, L. M.; Gippius, A. A.; Kuo, Y. K.; Lue, C. S.
2018-02-01
We report the electronic properties of the Yb3Rh4Sn13-type single crystalline Ca3Rh4Sn13 by means of the electrical resistivity, Hall coefficient, Seebeck coefficient, thermal conductivity, as well as 119Sn nuclear magnetic resonance (NMR) measurements. The negative sign of the Hall coefficient and Seebeck coefficient at low temperatures suggests that the n-type carriers dominate the electrical transport in Ca3Rh4Sn13, in contrast to the observations in Sr3Rh4Sn13 which has a p-type conduction. Such a finding indicates a significant difference in the electronic features between these two stannides. Furthermore, we analyzed the temperature-dependent 119Sn NMR spin-lattice relaxation rate for Ca3Rh4Sn13, (Sr0.7Ca0.3)3Rh4Sn13, and Sr3Rh4Sn13 to examine the change of the electronic Fermi-level density of states (DOS) in (Sr1-xCax)3Rh4Sn13. It indicates that the Sn 5s partial Fermi-level DOS enhances with increasing the Ca content, being consistent with the trend of the superconducting temperature. Since the total Fermi-level DOS usually obeys the same trend of the partial Fermi-level DOS, the NMR analysis provides microscopic evidence for the correlation between the electronic DOS and superconductivity of the (Sr1-xCax)3Rh4Sn13 system.
Ionospheric Measurements Using Environmental Sampling Techniques
NASA Technical Reports Server (NTRS)
Bourdeau, R. E.; Jackson, J. E.; Kane, J. A.; Serbu, G. P.
1960-01-01
Two rockets were flown to peak altitudes of 220 km in September 1959 to test various methods planned for future measurements of ionization parameters in the ionosphere, exosphere, and interplanetary plasma. The experiments used techniques which sample the ambient environment in the immediate vicinity of the research vehicle. Direct methods were chosen since indirect propagation techniques do not provide the temperatures of charged particles, are insensitive to ion densities, and cannot measure local electron densities under all conditions. Very encouraging results have been obtained from a preliminary analysis of data provided by one of the two flights. A new rf probe technique was successfully used to determine the electron density profile. This was indicated by its agreement with the results of a companion cw propagation experiment, particularly when the probe data were corrected for the effects of the ion sheath which surrounds the vehicle. The characteristics of this sheath were determined directly in flight by an electric field meter which provided the sheath field, and by a Langmuir probe which measured the total potential across the sheath. The electron temperatures deduced from the Langmuir probe data are greater than the neutral gas temperatures previously measured for the same location and season, but these measurements possibly were taken under different atmospheric conditions. Ion densities were calculated from the ion trap data for several altitudes ranging from 130 to 210 km and were found to be within 20 percent of the measured electron densities.
Stationary radiation hydrodynamics of accreting magnetic white dwarfs.
NASA Astrophysics Data System (ADS)
Woelk, U.; Beuermann, K.
1996-02-01
Using an artificial viscosity, we solved the one-dimensional time-independent two-fluid hydrodynamic equations simultaneously to the fully frequency and angle dependent radiation transport in an accretion flow directed towards the surface of a magnetic white dwarf. We consider energy transfer from ions to electrons by Coulomb encounters and cooling by bremsstrahlung and by cyclotron radiation in fields between B=5 and 70MG. Electron and ion temperatures relax in the post-shock regime and the cooling flow settles onto the white dwarf surface. For high mass flow rates ˙(m) (in g/cm^2^/s), cooling takes place mainly by bremsstrahlung and the solutions approach the non-magnetic case. For low ˙(m) and high B, cooling is dominated by cyclotron radiation which causes the thickness of the cooling region to collapse by 1-2 orders of magnitude compared to the non-magnetic case. The electron temperature behind the shock drops from a few 10^8^ to a few 10^7^K and the ratio of cyclotron vs. total radiative flux approaches unity. For high ˙(m) and low B values, bremsstrahlung dominates, but cyclotron losses can never be neglected. We find a smooth transition from particle-heated to shock-heated atmospheres in the maximum electron temperature and also in the thickness of the heated layer. With these results, the stationary radiation-hydrodynamics of accreting magnetic white dwarfs with cyclotron and bremsstrahlung cooling has been solved for the whole range of observed mass flow rates and field strengths.
Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background.
Hill, J Colin; Battaglia, Nick; Chluba, Jens; Ferraro, Simone; Schaan, Emmanuel; Spergel, David N
2015-12-31
The cosmic microwave background (CMB) energy spectrum is a near-perfect blackbody. The standard model of cosmology predicts small spectral distortions to this form, but no such distortion of the sky-averaged CMB spectrum has yet been measured. We calculate the largest expected distortion, which arises from the inverse Compton scattering of CMB photons off hot, free electrons, known as the thermal Sunyaev-Zel'dovich (TSZ) effect. We show that the predicted signal is roughly one order of magnitude below the current bound from the COBE-FIRAS experiment, but it can be detected at enormous significance (≳1000σ) by the proposed Primordial Inflation Explorer (PIXIE). Although cosmic variance reduces the effective signal-to-noise ratio to 230σ, this measurement will still yield a subpercent constraint on the total thermal energy of electrons in the observable Universe. Furthermore, we show that PIXIE can detect subtle relativistic effects in the sky-averaged TSZ signal at 30σ, which directly probe moments of the optical depth-weighted intracluster medium electron temperature distribution. These effects break the degeneracy between the electron density and the temperature in the mean TSZ signal, allowing a direct inference of the mean baryon density at low redshift. Future spectral distortion probes will thus determine the global thermodynamic properties of ionized gas in the Universe with unprecedented precision. These measurements will impose a fundamental "integral constraint" on models of galaxy formation and the injection of feedback energy over cosmic time.
Radiative recombination data for tungsten ions: II. W{sup 47+}–W{sup 71+}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trzhaskovskaya, M.B., E-mail: Trzhask@MT5605.spb.edu; Nikulin, V.K.
2014-07-15
New radiative recombination and photoionization cross sections, radiative recombination rate coefficients, and radiated power loss rate coefficients are presented for 23 tungsten impurity ions in plasmas. We consider ions from W{sup 47+} to W{sup 71+} that are of importance to fusion studies for ITER and for experiments using electron beam ion traps. The calculations are fully relativistic and all significant multipoles of the radiative field are taken into account. The Dirac–Fock method is used to compute the electron wavefunctions. Radiative recombination rates and radiated power loss rates are found using the relativistic Maxwell–Jüttner distribution of the continuum electron velocity. Themore » total radiative recombination cross sections are given in the electron energy range from 1 eV to ∼80keV. Partial cross sections for ground and excited states are approximated by an analytical expression involving five fit parameters. Radiative recombination rates and radiated power loss rates are calculated in the temperature range from 10{sup 4}K to 10{sup 9}K. The total radiative recombination rates are approximated by another analytical expression with four fit parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, He; Yuan, Ping; Cen, Jian-Yong
2014-03-15
A cloud-to-ground lightning with six return strokes has been recorded with a slit-less spectrograph in Qinghai province. According to the spectra of return strokes without continuous current, the electron density, the channel temperature, and the gas pressure have been calculated. Then, the correlativity of these parameters has been analyzed. The results indicate that the total intensity of spectra is positive correlated to the intensity of spectral line, they both decrease with time rapidly; furthermore, the channel temperature and the gas pressure decrease with time slowly in the similar trends.
Anode power in quasisteady magnetoplasmadynamic accelerators
NASA Technical Reports Server (NTRS)
Saber, A. J.; Jahn, R. G.
1978-01-01
Anode heat flux in a quasi-steady MPD accelerator has been measured directly and locally by thermocouples attached to the inside surface of a shell anode. These measurements show that over a range of arc current from 5.5 to 44 kA, and argon mass flow from 1 to 48 g/s, the fraction of the total arc power deposited in the anode decreases from 50% at 200 kW to 10% at 20 MW. A theoretical model of the anode heat transfer asserts that energy exchange between electrons and heavy particles in the plasma near the anode occurs over distances greater than the anode sheath thickness, and hence the usual anode fall voltage, electron temperature, and work function contributions to the anode heat flux are supplemented by a contribution from the interelectrode potential. Calculations of anode heat flux using the measured current density, plasma potential, and electron temperature in the plasma adjacent to the anode agree with the direct measurements and indicate that the decrease in anode power fraction at higher arc powers can be attributed to the smaller mean free paths in the interelectrode plasma.
NASA Astrophysics Data System (ADS)
Xu, M.; Yang, J. Y.; Liu, L. H.
2016-07-01
The macroscopic physical properties of solids are fundamentally determined by the interactions among microscopic electrons, phonons and photons. In this work, the thermal conductivity and infrared-visible-ultraviolet dielectric functions of alkali chlorides and their temperature dependence are fully investigated at the atomic level, seeking to unveil the microscopic quantum interactions beneath the macroscopic properties. The microscopic phonon-phonon interaction dominates the thermal conductivity which can be investigated by the anharmonic lattice dynamics in combination with Peierls-Boltzmann transport equation. The photon-phonon and electron-photon interaction intrinsically induce the infrared and visible-ultraviolet dielectric functions, respectively, and such microscopic processes can be simulated by first-principles molecular dynamics without empirical parameters. The temperature influence on dielectric functions can be effectively included by choosing the thermally equilibrated configurations as the basic input to calculate the total dipole moment and electronic band structure. The overall agreement between first-principles simulations and literature experiments enables us to interpret the macroscopic thermal conductivity and dielectric functions of solids in a comprehensive way.
Defects and Transport in Lithium Niobium Trioxide
NASA Astrophysics Data System (ADS)
Mehta, Apurva
1990-01-01
This dissertation presents work done on characterizing the defects and transport properties of congruent LiNbO _3. The focus of the study is the high temperature (800^circC to 1000^circC) equilibrium defect structure. The majority defects are described in terms of the 'LiNbO_3-ilmenite' defect model previously presented (26). Here the emphasis is placed on quantifying the defect concentrations. Congruent LiNbO_3 is highly nonstoichiometric. The large concentration of ionic defects present are mobile and contribute to electrical conduction. The ionic conduction was separated from the total conduction using defect chemistry and the transference number thus obtained was checked against the transference number obtained in a galvanic cell measurement. LiNbO_3 is an insulator (band gap = 4 eV). Hence one assumes that almost all of the conduction electrons are created by reduction. The degree of oxygen nonstoichiometry, a measure of the extent of chemical reduction, and the electron concentrations, were quantified as a function of oxygen partial pressure and the temperature by coulometric titration. The nonstoichiometry thus obtained was compared with nonstoichiometry obtained by TGA measurements. By fixing the phase composition of the sample in a buffered system, a set of constant composition measurements could be undertaken. These constant composition measurements were used to obtain the enthalpy of formation of conduction electrons, 1.95 eV, and the hopping energy for their motion at elevated temperatures, 0.55 eV, independently. The sum of the two energies was obtained by measuring the temperature dependence of the electronic conduction. The sum of the energies was found to be in excellent agreement with the energy obtained from equilibrium conduction. In conclusion, a quantitative and self-consistent picture of defects and their migration in LiNbO _3 was obtained.
Role of electron-phonon coupling in finite-temperature dielectric functions of Au, Ag, and Cu
NASA Astrophysics Data System (ADS)
Xu, Meng; Yang, Jia-Yue; Zhang, Shangyu; Liu, Linhua
2017-09-01
Realistic representation of finite temperature dielectric functions of noble metals is crucial in describing the optical properties of advancing applications in plasmonics and optical metamaterials. However, the atomistic origins of the temperature dependence of noble metals' dielectric functions still lack full explanation. In this paper, we implement electronic structure calculations as well as ellipsometry experiments to study the finite temperature dielectric functions of noble metals Au, Ag, and Cu. Theoretically, the intraband dielectric function is described by the Drude model, of which the important quantity electron lifetime is obtained by considering the electron-phonon, electron-electron, and electron-surface scattering mechanism. The electron-phonon coupling is key to determining the temperature dependence of electron lifetime and intraband dielectric function. For the interband dielectric function, it arises from the electronic interband transition. Due to the limitation of incorporating electron-phonon coupling into the interband transition scheme, the temperature dependence of the interband dielectric function is mainly determined by the thermal expansion effect. Experimentally, variable angle spectroscopic ellipsometry measures the dielectric functions of Au and Ag over the temperature range of 300-700 K and spectral range of 2-20 µm. Those experimental measurements are consistent with theoretical results and thus verify the theoretical models for the finite temperature dielectric function.
Venus Surface Power and Cooling System Design
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Mellott, Kenneth D.
2004-01-01
A radioisotope power and cooling system is designed to provide electrical power for the a probe operating on the surface of Venus. Most foreseeable electronics devices and sensors simply cannot operate at the 450 C ambient surface temperature of Venus. Because the mission duration is substantially long and the use of thermal mass to maintain an operable temperature range is likely impractical, some type of active refrigeration may be required to keep certain components at a temperature below ambient. The fundamental cooling requirements are comprised of the cold sink temperature, the hot sink temperature, and the amount of heat to be removed. In this instance, it is anticipated that electronics would have a nominal operating temperature of 300 C. Due to the highly thermal convective nature of the high-density atmosphere, the hot sink temperature was assumed to be 50 C, which provided a 500 C temperature of the cooler's heat rejecter to the ambient atmosphere. The majority of the heat load on the cooler is from the high temperature ambient surface environment on Venus. Assuming 5 cm radial thickness of ceramic blanket insulation, the ambient heat load was estimated at approximately 77 watts. With an estimated quantity of 10 watts of heat generation from electronics and sensors, and to accommodate some level of uncertainty, the total heat load requirement was rounded up to an even 100 watts. For the radioisotope Stirling power converter configuration designed, the Sage model predicts a thermodynamic power output capacity of 478.1 watts, which slightly exceeds the required 469.1 watts. The hot sink temperature is 1200 C, and the cold sink temperature is 500 C. The required heat input is 1740 watts. This gives a thermodynamic efficiency of 27.48 %. The maximum theoretically obtainable efficiency is 47.52 %. It is estimated that the mechanical efficiency of the power converter design is on the order of 85 %, based on experimental measurements taken from 500 watt power class, laboratory-tested Stirling engines at GRC. The overall efficiency is calculated to be 23.36 %. The mass of the power converter is estimated at approximately 21.6 kg.
Thermal properties of Pr2/3Sr1/3MnO3 manganites:PdO composites
NASA Astrophysics Data System (ADS)
Rao, Ashok; Manjunatha, S. O.; Bhatt, Ramesh Chandra; Awana, V. P. S.; Lin, C. F.; Kuo, Y. K.; Poornesh, P.
2017-10-01
In the present communication the results on thermal conductivity, Seebeck coefficient and specific heat of Pr2/3Sr1/3MnO3:PdO composites are reported. All the samples exhibit a pronounced anomaly in thermal conductivity (κ) at their respective Curie temperatures, TC of the samples. It is also observed that the overall magnitude of κ decreases with increasing Pd content. The observed reduction of the total k(T) is discussed with various thermal scattering mechanisms. The temperature-dependent Seebeck coefficient data S(T) in the high temperature region is analyzed within the framework of Mott's polaron hopping model. The analysis of low-temperature S(T) data reveals that the electron-magnon scattering contribution dominates the thermoelectric transport at low temperatures. The magnetic contribution for the CP and change in entropy (ΔS) during the magnetic phase transition is also evaluated.
Packaging Technology for SiC High Temperature Electronics
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Meredith, Roger D.; Nakley, Leah M.; Beheim, Glenn M.; Hunter, Gary W.
2017-01-01
High-temperature environment operable sensors and electronics are required for long-term exploration of Venus and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500 C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors in relevant environments. This talk will discuss a ceramic packaging system developed for high temperature electronics, and related testing results of SiC integrated circuits at 500 C facilitated by this high temperature packaging system, including the most recent progress.
Ab initio calculation of electronic structure and magnetic properties of R2Fe14BNx (R = Pr,Nd)
NASA Astrophysics Data System (ADS)
Tian, Guang; Zha, Liang; Yang, Wenyun; Qiao, Guanyi; Wang, Changsheng; Yang, Yingchang; Yang, Jinbo
2018-05-01
The site preference of N atom for R2Fe14BNx (R= Pr, Nd) and the interstitial nitrogen effect on the magnetic properties have been studied by the first-principles method. It was found that the nitrogen is more likely to occupy the 4e site for Pr2Fe14BNx compound, while 4f site for Nd2Fe14BNx. When N atoms entering some specific crystal sites (such as 2a and 4f), the total magnetic moments of these compounds are not reduced, but slightly increased. Although the doping of N may reduce the total magnetic moments of some R2Fe14B compounds in the cases of optimal occupancy, the volumetric effect caused by N doping can still change the electron density distributions of Fe near the Fermi level, improving the magnetic ordering temperature of such compounds.
Beyond the Quantum Hall Effect: New Phases of 2D Electrons at High Magnetic Field
NASA Astrophysics Data System (ADS)
Eisenstein, James
2007-03-01
In this talk I will discuss recent experiments on high mobility single and double layer 2D electron systems in which collective phases lying outside the usual quantum Hall effect paradigm have been detected and studied. For example, in single layer 2D systems near half-filling of highly excited Landau levels new states characterized by a massive anisotropy in the electrical resistivity of the sample are observed at very low temperature. The anisotropy has been widely interpreted as the signature of a new class of correlated electron phases which incorporate a stripe-like charge density modulation. Orientational ordering of small striped domains at low temperatures accounts for the resistive anisotropy and is reminiscent of the isotropic-to-nematic phase transition in classical liquid crystals. Double layer 2D electron systems possess collective phases not present in single layer systems. In particular, when the total number of electrons in the bilayer equals the degeneracy of a single Landau level, an unusual phase appears at small layer separation. This phase possesses a novel broken symmetry, spontaneous interlayer phase coherence, which has a number of dramatic experimental signatures. The interlayer tunneling conductance develops a strong and very sharp resonance around zero bias resembling the dc Josephson effect. At the same time, both the longitudinal and Hall resistances of the sample vanish at low temperatures when currents are driven in opposite directions through the two layers. These, and other observations are broadly consistent with theories in which the broken symmetry phase can equivalently be described as a pseudospin ferromagnet or an (imperfect) excitonic superfluid. This work reflects a collaboration with M.P. Lilly, K.B. Cooper, I.B. Spielman, M. Kellogg, L.A. Tracy, L.N. Pfeiffer, and K.W. West.
NASA Astrophysics Data System (ADS)
Song, Ting; Sun, Xiao-Wei; Tian, Jun-Hong; Wei, Xiao-Ping; Wan, Gui-Xin; Ma, Qin
2017-04-01
In the frame of density functional theory, first-principles calculations based on generalized gradient approximation and quasi-harmonic Debye approximation model in which the phononic effects are taken into account have been carried out to investigate the structural, electronic, magnetic, and thermodynamic properties of full-Heusler alloy Mn2RuGe in CuHg2Ti-type structure in the pressure range of 0-50 GPa. Present calculations predict that Mn2RuGe is a ferrimagnet with an optimized lattice parameter of 5.854 Å. The calculated total magnetic moment of 2.01 μB per formula unit is very close to integer value and agree well with the Slater-Pauling rule, where the partial spin moments of Mn (A) and Mn (B) which mainly contribute to the total magnetic moment are 2.66 μB and -0.90 μB, respectively. In the study of the energy band structures and density of states, Mn2RuGe exhibits half-metallicity with an indirect gap of 0.235 eV in the spin-down channels, and the shifting of bands towards higher energies in spin-down channel under high pressure. Meanwhile, the high-pressure thermodynamic properties of Mn2RuGe, such as the pressure-volume-temperature relationship, bulk modulus, thermal expansivity, heat capacity, Debye temperature, and Grüneisen parameter are evaluated systematically in the temperature range of 0-900 K. This set of data is considered as the useful information to understand the high-pressure and high-temperature properties for the Mn2RuZ-type Heusler alloy family.
Bell, Toby D M; Stefan, Alina; Lemaur, Vincent; Bernhardt, Stefan; Müllen, Klaus; Cornil, Jérôme; Beljonne, David; Hofkens, Johan; Van der Auweraer, Mark; De Schryver, Frans C
2007-04-01
Two donor-bridge-acceptor compounds containing triphenylamine (TPA) donors and perylenemonoimide (PMI) acceptors have been studied by spectroscopic techniques and quantum chemical computation. Both systems have been observed to emit prompt and delayed fluorescence under certain conditions indicating that forward and reverse electron transfer (ET) processes can occur between the locally excited and the charge separated states. The experimental and computational results show that the TPA and PMI chromophores are better coupled by almost 50% in the meta isomers which undergo ET more readily than the para isomers. Quantum chemical calculations indicate that this unexpected situation is the result of a phenyl group on the side of the bridge being advantageously positioned in the meta isomers. This leads to more extensive delocalisation of the TPA HOMO into the bridge enhancing the total through bond electronic coupling between the TPA and PMI chromophores. The calculations also indicate a strong angle dependence of the total coupling in both isomers. The experimental results are discussed in the context of the high temperature limit of Marcus's theory of non-adiabatic ET.
Qiu, Shanshan; Wang, Jun; Gao, Liping
2014-07-09
An electronic nose (E-nose) and an electronic tongue (E-tongue) have been used to characterize five types of strawberry juices based on processing approaches (i.e., microwave pasteurization, steam blanching, high temperature short time pasteurization, frozen-thawed, and freshly squeezed). Juice quality parameters (vitamin C, pH, total soluble solid, total acid, and sugar/acid ratio) were detected by traditional measuring methods. Multivariate statistical methods (linear discriminant analysis (LDA) and partial least squares regression (PLSR)) and neural networks (Random Forest (RF) and Support Vector Machines) were employed to qualitative classification and quantitative regression. E-tongue system reached higher accuracy rates than E-nose did, and the simultaneous utilization did have an advantage in LDA classification and PLSR regression. According to cross-validation, RF has shown outstanding and indisputable performances in the qualitative and quantitative analysis. This work indicates that the simultaneous utilization of E-nose and E-tongue can discriminate processed fruit juices and predict quality parameters successfully for the beverage industry.
Energy-filtered cold electron transport at room temperature.
Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin
2014-09-10
Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Ikjin; Chung, ChinWook; Youn Moon, Se
2013-08-15
In plasma diagnostics with a single Langmuir probe, the electron temperature T{sub e} is usually obtained from the slope of the logarithm of the electron current or from the electron energy probability functions of current (I)-voltage (V) curve. Recently, Chen [F. F. Chen, Phys. Plasmas 8, 3029 (2001)] suggested a derivative analysis method to obtain T{sub e} by the ratio between the probe current and the derivative of the probe current at a plasma potential where the ion current becomes zero. Based on this method, electron temperatures and electron densities were measured and compared with those from the electron energymore » distribution function (EEDF) measurement in Maxwellian and bi-Maxwellian electron distribution conditions. In a bi-Maxwellian electron distribution, we found the electron temperature T{sub e} obtained from the method is always lower than the effective temperatures T{sub eff} derived from EEDFs. The theoretical analysis for this is presented.« less
The operation of 0.35 μm partially depleted SOI CMOS technology in extreme environments
NASA Astrophysics Data System (ADS)
Li, Ying; Niu, Guofu; Cressler, John D.; Patel, Jagdish; Liu, S. T.; Reed, Robert A.; Mojarradi, Mohammad M.; Blalock, Benjamin J.
2003-06-01
We evaluate the usefulness of partially depleted SOI CMOS devices fabricated in a 0.35 μm technology on UNIBOND material for electronics applications requiring robust operation under extreme environment conditions consisting of low and/or high temperature, and under substantial radiation exposure. The threshold voltage, effective mobility, and the impact ionization parameters were determined across temperature for both the nFETs and the pFETs. The radiation response was characterized using threshold voltage shifts of both the front-gate and back-gate transistors. These results suggest that this 0.35 μm partially depleted SOI CMOS technology is suitable for operation across a wide range of extreme environment conditions consisting of: cryogenic temperatures down to 86 K, elevated temperatures up to 573 K, and under radiation exposure to 1.3 Mrad(Si) total dose.
Seasonal mapping of NICU temperature.
Thomas, Karen A; Magbalot, Almita; Shinabarger, Kelley; Mokhnach, Larisa; Anderson, Marilyn; Diercks, Kristi; Millar, April; Thorngate, Lauren; Walker, Wendy; Dilback, Nancy; Berkan, Maureen
2010-04-01
To create a thermal map of ambient air, radiant, and evaporative temperatures and humidity throughout the NICU nursery by season across a calendar year. Each cubicle of the 32-bed NICU, distributed across 5 rooms, in a level III nursery was measured. Temperatures were recorded at a consistent time on one day during January, April, July, and October. An electronic monitor (QUESTemp degrees 34; Quest Technologies, Oconomowoc, Wisconsin) was used to measure dry bulb, wet bulb, and globe thermometer temperatures. Analysis of variance revealed statistically significant (P < .000) differences in season, room, and season by room interaction. Room ambient air temperatures differed by less than 2 degrees F across season. Radiant temperature paralleled air temperature. Humidity, the predominant difference across season, produced evaporative temperatures considerably lower than room air temperature, and the gradient between mean nursery dry bulb temperature and wet bulb temperature was 9.3 degrees F in summer and 16.8 degrees F in winter. The thermal map revealed seasonal thermal differences, particularly in humidity level and evaporative temperature. Room temperature alone does not reflect the total thermal environment. Recommendations include periodic assessment of nurseries along with air, evaporative, and radiant temperatures as well as humidity to fully appreciate the impact of the thermal environment on infants.
Seasonal mapping of NICU temperature.
Thomas, Karen A; Magbalot, Almita; Shinabarger, Kelley; Mokhnach, Larisa; Anderson, Marilyn; Diercks, Kristi; Millar, April; Thorngate, Lauren; Walker, Wendy; Dilback, Nancy; Berkan, Maureen
2010-10-01
To create a thermal map of ambient air, radiant, and evaporative temperatures and humidity throughout the NICU nursery by season across a calendar year. Each cubicle of the 32-bed NICU, distributed across 5 rooms, in a level III nursery was measured. Temperatures were recorded at a consistent time on one day during January, April, July, and October. : An electronic monitor (QUESTemp ° 34; Quest Technologies, Oconomowoc, Wisconsin) was used to measure dry bulb, wet bulb, and globe thermometer temperatures. Analysis of variance revealed statistically significant (P ≤ .000) differences in season, room, and season by room interaction. Room ambient air temperatures differed by less than 2 ° F across season. Radiant temperature paralleled air temperature. Humidity, the predominant difference across season, produced evaporative temperatures considerably lower than room air temperature, and the gradient between mean nursery dry bulb temperature and wet bulb temperature was 9.3 ° F in summer and 16.8 ° F in winter. The thermal map revealed seasonal thermal differences, particularly in humidity level and evaporative temperature. Room temperature alone does not reflect the total thermal environment. Recommendations include periodic assessment of nurseries along with air, evaporative, and radiant temperatures as well as humidity to fully appreciate the impact of the thermal environment on infants.
Electron Beam Welder Used to Braze Sapphire to Platinum
NASA Technical Reports Server (NTRS)
Forsgren, Roger C.; Vannuyen, Thomas
1998-01-01
A new use for electron beam brazing was recently developed by NASA Lewis Research Center's Manufacturing Engineering Division. This work was done to fabricate a fiberoptic probe (developed by Sentec Corporation) that could measure high temperatures less than 600 deg C of vibrating machinery, such as in jet engine combustion research. Under normal circumstances, a sapphire fiber would be attached to platinum by a ceramic epoxy. However, no epoxies can adhere ceramic fibers to platinum under such high temperatures and vibration. Also, since sapphire and platinum have different thermal properties, the epoxy bond is subjected to creep over time. Therefore, a new method had to be developed that would permanently and reliably attach a sapphire fiber to platinum. Brazing a sapphire fiber to a platinum shell. The fiber-optic probe assembly consists of a 0.015-in.-diameter sapphire fiber attached to a 0.25-in.-long, 0.059-in.-diameter platinum shell. Because of the small size of this assembly, electron beam brazing was chosen instead of conventional vacuum brazing. The advantage of the electron beam is that it can generate a localized heat source in a vacuum. Gold reactive braze was used to join the sapphire fiber and the platinum. Consequently, the sapphire fiber was not affected by the total heat needed to braze the components together.
Modified Ni-Cu catalysts for ethanol steam reforming
NASA Astrophysics Data System (ADS)
Dan, M.; Mihet, M.; Almasan, V.; Borodi, G.; Katona, G.; Muresan, L.; Lazar, M. D.
2013-11-01
Three Ni-Cu catalysts, having different Cu content, supported on γ-alumina were synthesized by wet co-impregnation method, characterized and tested in the ethanol steam reforming (ESR) reaction. The catalysts were characterized for determination of: total surface area and porosity (N2 adsorption - desorption using BET and Dollimer Heal methods), Ni surface area (hydrogen chemisorption), crystallinity and Ni crystallites size (X-Ray Diffraction), type of catalytic active centers (Hydrogen Temperature Programmed Reduction). Total surface area and Ni crystallites size are not significantly influenced by the addition of Cu, while Ni surface area is drastically diminished by increasing of Cu concentration. Steam reforming experiments were performed at atmospheric pressure, temperature range 150-350°C, and ethanol - water molar ration of 1 at 30, using Ar as carrier gas. Ethanol conversion and hydrogen production increase by the addition of Cu. At 350°C there is a direct connection between hydrogen production and Cu concentration. Catalysts deactivation in 24h time on stream was studied by Transmission Electron Microscopy (TEM) and temperature-programmed reduction (TPR) on used catalysts. Coke deposition was observed at all studied temperatures; at 150°C amorphous carbon was evidenced, while at 350°C crystalline, filamentous carbon is formed.
Phase change in CoTi2 induced by MeV electron irradiation
NASA Astrophysics Data System (ADS)
Zensho, Akihiro; Sato, Kazuhisa; Yasuda, Hidehiro; Mori, Hirotaro
2018-07-01
The phase change induced by MeV electron irradiation in the intermetallic compound E93-CoTi2 was investigated using high-voltage electron microscopy. Under MeV electron irradiation, CoTi2 was first transformed into an amorphous phase and, with continued irradiation, crystallite formation in the amorphous phase (i.e. formation of crystallites of a solid-solution phase within the amorphous phase) was induced. The critical temperature for amorphisation was around 250 K. The total dose (dpa) required for crystallite formation (i.e. that required for partial crystallisation) was high (i.e. 27-80 dpa) and, even after prolonged irradiation, the amorphous phase was retained in the irradiated sample. Such partial crystallisation behaviour of amorphous Co33Ti67 was clearly different from the crystallisation behaviour (i.e. amorphous-to-solid solution, polymorphous transformation) of amorphous Cr67Ti33 reported in the literature. A possible cause of the difference is discussed.
Temperature dependence of partial conductivities of the BaZr0.7Ce0.2Y0.1O3-δ proton conductor
NASA Astrophysics Data System (ADS)
Heras-Juaristi, Gemma; Pérez-Coll, Domingo; Mather, Glenn C.
2017-10-01
Partial conductivities are presented for BaZr0.7Ce0.2Y0.1O3-δ, an important proton conductor for protonic-ceramic fuel cells and membrane reactors. Atmospheric dependencies of impedance performed in humidified and dry O2, air, N2 and H2(10%)/N2(90%) in the temperature range 300-900 °C, supported by the modified emf method, confirm significant electron-hole and protonic contributions to transport. For very reducing and wet atmospheres, the conductivity is predominantly ionic, with a higher participation of protons with decreasing temperature and increasing water-vapour partial pressure (pH2O). From moderately reducing conditions of wet N2 to wet O2, however, the conductivity is considerably influenced by electron holes as revealed by a significant dependence of total conductivity on oxygen partial pressure (pO2). With higher pH2O, proton transport increases, with a concomitant decrease of holes and oxygen vacancies. However, the effect of pH2O is also influenced by temperature, with a greater protonic contribution at both lower temperature and pO2. Values of proton transport number tH ≈ 0.63 and electronic transport number th ≈ 0.37 are obtained at 600 °C for pH2O = 0.022 atm and pO2 = 0.2 atm, whereas tH ≈ 0.95 and th ≈ 0.05 for pO2 = 10-5 atm. A hydration enthalpy of -109 kJ mol-1 is obtained in the range 600-900 °C.
Scattering of positrons and electrons by alkali atoms
NASA Technical Reports Server (NTRS)
Stein, T. S.; Kauppila, W. E.; Kwan, C. K.; Lukaszew, R. A.; Parikh, S. P.; Wan, Y. J.; Zhou, S.; Dababneh, M. S.
1990-01-01
Absolute total scattering cross sections (Q sub T's) were measured for positrons and electrons colliding with sodium, potassium, and rubidium in the 1 to 102 eV range, using the same apparatus and experimental approach (a beam transmission technique) for both projectiles. The present results for positron-sodium and -rubidium collisions represent the first Q sub T measurements reported for these collision systems. Features which distinguish the present comparisons between positron- and electron-alkali atom Q sub T's from those for other atoms and molecules (room-temperature gases) which have been used as targets for positrons and electrons are the proximity of the corresponding positron- and electron-alkali atom Q sub T's over the entire energy range of overlap, with an indication of a merging or near-merging of the corresponding positron and electron Q sub T's near (and above) the relatively low energy of about 40 eV, and a general tendency for the positron-alkali atom Q sub T's to be higher than the corresponding electron values as the projectile energy is decreased below about 40 eV.
NASA Astrophysics Data System (ADS)
Ramudu, M.; Satish Kumar, A.; Seshubai, V.; Rajasekharan, T.
2015-02-01
The martensitic transformation TM of the alloys of Ni-Mn-Ga and Ni-Mn-Al show a general trend of increase with electron per atom ratio (e/a) calculated from the total number of electrons outside the rare gas shell of the atoms. However prediction of TM fails among iron substituted Ni-Mn-Ga alloys and those with In doped for Ga, due to the absence of a useful trend. A scheme of computing modified electron concentration is presented considering only the non-bonding electrons per atom Ne/a of the compounds, based on Pauling's ideas on the electronic structure of metallic elements. Systematic variation of TM with Ne/a is reproduced for a large number of alloys of Ni-Mn-Ga and the anomaly observed for Fe containing alloys with e/a disappears. The non-bonding electron concentration is thus demonstrated to be effective in predicting TM of shape memory alloys of Ni-Mn-Ga-X system including the isoelectronic compounds of Ni-Mn-Ga-In.
NASA Astrophysics Data System (ADS)
Lemos, N.; Albert, F.; Shaw, J. L.; Papp, D.; Polanek, R.; King, P.; Milder, A. L.; Marsh, K. A.; Pak, A.; Pollock, B. B.; Hegelich, B. M.; Moody, J. D.; Park, J.; Tommasini, R.; Williams, G. J.; Chen, Hui; Joshi, C.
2018-05-01
An x-ray source generated by an electron beam produced using a Self-Modulated Laser Wakefield Accelerator (SM-LWFA) is explored for use in high energy density science facilities. By colliding the electron beam, with a maximum energy of 380 MeV, total charge of >10 nC and a divergence of 64 × 100 mrad, from a SM-LWFA driven by a 1 ps 120 J laser, into a high-Z foil, an x/gamma-ray source was generated. A broadband bremsstrahlung energy spectrum with temperatures ranging from 0.8 to 2 MeV was measured with an almost 2 orders of magnitude flux increase when compared with other schemes using LWFA. GEANT4 simulations were done to calculate the source size and divergence.
VizieR Online Data Catalog: FeI photoionization cross sections and ECS (Bautista+, 2017)
NASA Astrophysics Data System (ADS)
Bautista, M. A.; Lind, K.; Bergemann, M.
2017-09-01
Two electronic files are provided with this publication. These are: xsection.txt. This table lists the total photoionization cross sections for all states of FeI found in the calculation. table5.dat. This table contains the Maxwellian averaged effective collision strengths for FeI. The effective collision strengths are listed for five temperatures between 3000 and 20,000K (3 data files).
Application of FLEET Velocimetry in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel
NASA Technical Reports Server (NTRS)
Burns, Ross A.; Danehy, Paul M.; Halls, Benjamin R.; Jiang, Naibo
2015-01-01
Femtosecond laser electronic excitation and tagging (FLEET) velocimetry is demonstrated in a large-scale transonic cryogenic wind tunnel. Test conditions include total pressures, total temperatures, and Mach numbers ranging from 15 to 58 psia, 200 to 295 K, and 0.2 to 0.75, respectively. Freestream velocity measurements exhibit accuracies within 1 percent and precisions better than 1 m/s. The measured velocities adhere closely to isentropic flow theory over the domain of temperatures and pressures that were tested. Additional velocity measurements are made within the tunnel boundary layer; virtual trajectories traced out by the FLEET signal are indicative of the characteristic turbulent behavior in this region of the flow, where the unsteadiness increases demonstrably as the wall is approached. Mean velocities taken within the boundary layer are in agreement with theoretical velocity profiles, though the fluctuating velocities exhibit a greater deviation from theoretical predictions.
US Navy superconductivity program
NASA Technical Reports Server (NTRS)
Gubser, Donald U.
1991-01-01
Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.
Berkhout, Daniel J. C.; Benninga, Marc A.; van Stein, Ruby M.; Brinkman, Paul; Niemarkt, Hendrik J.; de Boer, Nanne K. H.; de Meij, Tim G. J.
2016-01-01
Prior to implementation of volatile organic compound (VOC) analysis in clinical practice, substantial challenges, including methodological, biological and analytical difficulties are faced. The aim of this study was to evaluate the influence of several sampling conditions and environmental factors on fecal VOC profiles, analyzed by an electronic nose (eNose). Effects of fecal sample mass, water content, duration of storage at room temperature, fecal sample temperature, number of freeze–thaw cycles and effect of sampling method (rectal swabs vs. fecal samples) on VOC profiles were assessed by analysis of totally 725 fecal samples by means of an eNose (Cyranose320®). Furthermore, fecal VOC profiles of totally 1285 fecal samples from 71 infants born at three different hospitals were compared to assess the influence of center of origin on VOC outcome. We observed that all analyzed variables significantly influenced fecal VOC composition. It was feasible to capture a VOC profile using rectal swabs, although this differed significantly from fecal VOC profiles of similar subjects. In addition, 1285 fecal VOC-profiles could significantly be discriminated based on center of birth. In conclusion, standardization of methodology is necessary before fecal VOC analysis can live up to its potential as diagnostic tool in clinical practice. PMID:27886068
GaAs Quantum Dot Thermometry Using Direct Transport and Charge Sensing
NASA Astrophysics Data System (ADS)
Maradan, D.; Casparis, L.; Liu, T.-M.; Biesinger, D. E. F.; Scheller, C. P.; Zumbühl, D. M.; Zimmerman, J. D.; Gossard, A. C.
2014-06-01
We present measurements of the electron temperature using gate-defined quantum dots formed in a GaAs 2D electron gas in both direct transport and charge sensing mode. Decent agreement with the refrigerator temperature was observed over a broad range of temperatures down to 10 mK. Upon cooling nuclear demagnetization stages integrated into the sample wires below 1 mK, the device electron temperature saturates, remaining close to 10 mK. The extreme sensitivity of the thermometer to its environment as well as electronic noise complicates temperature measurements but could potentially provide further insight into the device characteristics. We discuss thermal coupling mechanisms, address possible reasons for the temperature saturation and delineate the prospects of further reducing the device electron temperature.
Ultrafast electronic relaxation in superheated bismuth
NASA Astrophysics Data System (ADS)
Gamaly, E. G.; Rode, A. V.
2013-01-01
Interaction of moving electrons with vibrating ions in the lattice forms the basis for many physical properties from electrical resistivity and electronic heat capacity to superconductivity. In ultrafast laser interaction with matter the electrons are heated much faster than the electron-ion energy equilibration, leading to a two-temperature state with electron temperature far above that of the lattice. The rate of temperature equilibration is governed by the strength of electron-phonon energy coupling, which is conventionally described by a coupling constant, neglecting the dependence on the electron and lattice temperature. The application of this constant to the observations of fast relaxation rate led to a controversial notion of ‘ultra-fast non-thermal melting’ under extreme electronic excitation. Here we provide theoretical grounds for a strong dependence of the electron-phonon relaxation time on the lattice temperature. We show, by taking proper account of temperature dependence, that the heating and restructuring of the lattice occurs much faster than were predicted on the assumption of a constant, temperature independent energy coupling. We applied the temperature-dependent momentum and energy transfer time to experiments on fs-laser excited bismuth to demonstrate that all the observed ultra-fast transformations of the transient state of bismuth are purely thermal in nature. The developed theory, when applied to ultrafast experiments on bismuth, provides interpretation of the whole variety of transient phase relaxation without the non-thermal melting conjecture.
Murphy, A B
2004-01-01
A number of assessments of electron temperatures in atmospheric-pressure arc plasmas using Thomson scattering of laser light have recently been published. However, in this method, the electron temperature is perturbed due to strong heating of the electrons by the incident laser beam. This heating was taken into account by measuring the electron temperature as a function of the laser pulse energy, and linearly extrapolating the results to zero pulse energy to obtain an unperturbed electron temperature. In the present paper, calculations show that the laser heating process has a highly nonlinear dependence on laser power, and that the usual linear extrapolation leads to an overestimate of the electron temperature, typically by 5000 K. The nonlinearity occurs due to the strong dependence on electron temperature of the absorption of laser energy and of the collisional and radiative cooling of the heated electrons. There are further problems in deriving accurate electron temperatures from laser scattering due to necessary averages that have to be made over the duration of the laser pulse and over the finite volume from which laser light is scattered. These problems are particularly acute in measurements in which the laser beam is defocused in order to minimize laser heating; this can lead to the derivation of electron temperatures that are significantly greater than those existing anywhere in the scattering volume. It was concluded from the earlier Thomson scattering measurements that there were significant deviations from equilibrium between the electron and heavy-particle temperatures at the center of arc plasmas of industrial interest. The present calculations indicate that such deviations are only of the order of 1000 K in 20 000 K, so that the usual approximation that arc plasmas are approximately in local thermodynamic equilibrium still applies.
Non-equilibrium thermionic electron emission for metals at high temperatures
NASA Astrophysics Data System (ADS)
Domenech-Garret, J. L.; Tierno, S. P.; Conde, L.
2015-08-01
Stationary thermionic electron emission currents from heated metals are compared against an analytical expression derived using a non-equilibrium quantum kappa energy distribution for the electrons. The latter depends on the temperature decreasing parameter κ ( T ) , which decreases with increasing temperature and can be estimated from raw experimental data and characterizes the departure of the electron energy spectrum from equilibrium Fermi-Dirac statistics. The calculations accurately predict the measured thermionic emission currents for both high and moderate temperature ranges. The Richardson-Dushman law governs electron emission for large values of kappa or equivalently, moderate metal temperatures. The high energy tail in the electron energy distribution function that develops at higher temperatures or lower kappa values increases the emission currents well over the predictions of the classical expression. This also permits the quantitative estimation of the departure of the metal electrons from the equilibrium Fermi-Dirac statistics.
Correlations between wave activity and electron temperature in the Martian upper ionosphere
NASA Astrophysics Data System (ADS)
Fowler, Chris; Andersson, Laila; Ergun, Robert; Andrews, David
2017-04-01
Prior to the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, only two electron temperature profiles of the Martian ionosphere existed, made by the Viking landers in the late 70s. Since MAVENs arrival at Mars in late 2014, electron temperature (and density) profiles have been measured every orbit, once every 4.5 hours. Recent analysis of this new dataset has shown that the Martian ionospheric electron temperature is significantly warmer than expected by factors of 2-3 above the exobase and within the upper ionosphere. We present correlations between electron temperature and electric field wave power (also measured by MAVEN), and discuss the possibility that such waves (which are likely produced by the Mars-solar wind interaction) may drive electron heating and contribute to the observed high temperatures.
Electron-temperature dependence of dissociative recombination of electrons with N2/+/.N2 dimer ions
NASA Technical Reports Server (NTRS)
Whitaker, M.; Biondi, M. A.; Johnsen, R.
1981-01-01
The variation with electron temperature of the dissociative recombination of electrons with N2(+).N2 dimer ions is investigated in light of the importance of such ions in the lower ionosphere and in laser plasmas. Dissociative recombination coefficients were determined by means of a microwave afterglow mass spectrometer technique for electron temperatures from 300-5600 K and an ion and neutral temperature of 300 K. The recombination coefficient is found to be proportional to the -0.41 power of the electron temperature in this range, similar to that observed for the CO(+).CO dimer ion and consistent with the expected energy dependence for a fast dissociative process.
Time-dependent local and average structural evolution of δ-phase 239Pu-Ga alloys
Smith, Alice I.; Page, Katharine L.; Siewenie, Joan E.; ...
2016-08-05
Here, plutonium metal is a very unusual element, exhibiting six allotropes at ambient pressure, between room temperature and its melting point, a complicated phase diagram, and a complex electronic structure. Many phases of plutonium metal are unstable with changes in temperature, pressure, chemical additions, or time. This strongly affects structure and properties, and becomes of high importance, particularly when considering effects on structural integrity over long periods of time [1]. This paper presents a time-dependent neutron total scattering study of the local and average structure of naturally aging δ-phase 239Pu-Ga alloys, together with preliminary results on neutron tomography characterization.
Energy-filtered cold electron transport at room temperature
Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin
2014-01-01
Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature. PMID:25204839
Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850 C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A
Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850 C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weakermore » regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.« less
Ionization of NO at high temperature
NASA Technical Reports Server (NTRS)
Hansen, C. Frederick
1991-01-01
Space vehicles flying through the atmosphere at high speed are known to excite a complex set of chemical reactions in the atmospheric gases, ranging from simple vibrational excitation to dissociation, atom exchange, electronic excitation, ionization, and charge exchange. Simple arguments are developed for the temperature dependence of the reactions leading to ionization of NO, including the effect of vibrational electronic thermal nonequilibrium. NO ionization is the most important source of electrons at intermediate temperatures and at higher temperatures provides the trigger electrons that ionize atoms. Based on these arguments, recommendations are made for formulae which fit observed experimental results, and which include a dependence on both a heavy particle temperature and different vibration electron temperatures. In addition, these expressions will presumably provide the most reliable extrapolation of experimental results to much higher temperatures.
Spin resonance and spin fluctuations in a quantum wire
NASA Astrophysics Data System (ADS)
Pokrovsky, V. L.
2017-02-01
This is a review of theoretical works on spin resonance in a quantum wire associated with the spin-orbit interaction. We demonstrate that the spin-orbit induced internal "magnetic field" leads to a narrow spin-flip resonance at low temperatures in the absence of an applied magnetic field. An applied dc magnetic field perpendicular to and small compared with the spin-orbit field enhances the resonance absorption by several orders of magnitude. The component of applied field parallel to the spin-orbit field separates the resonance frequencies of right and left movers and enables a linearly polarized ac electric field to produce a dynamic magnetization as well as electric and spin currents. We start with a simple model of noninteracting electrons and then consider the interaction that is not weak in 1d electron system. We show that electron spin resonance in the spin-orbit field persists in the Luttinger liquid. The interaction produces an additional singularity (cusp) in the spin-flip channel associated with the plasma oscillation. As it was shown earlier by Starykh and his coworkers, the interacting 1d electron system in the external field with sufficiently large parallel component becomes unstable with respect to the appearance of a spin-density wave. This instability suppresses the spin resonance. The observation of the electron spin resonance in a thin wires requires low temperature and high intensity of electromagnetic field in the terahertz diapason. The experiment satisfying these two requirements is possible but rather difficult. An alternative approach that does not require strong ac field is to study two-time correlations of the total spin of the wire with an optical method developed by Crooker and coworkers. We developed theory of such correlations. We prove that the correlation of the total spin component parallel to the internal magnetic field is dominant in systems with the developed spin-density waves but it vanishes in Luttinger liquid. Thus, the measurement of spin correlations is a diagnostic tool to distinguish between the two states of electronic liquid in the quantum wire.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiao; Yu, Peng-Cheng; Liu, Yu
2015-10-15
In our experiment, the transition points between the two operational modes of capacitive coupling (E mode) and inductive coupling (H mode) were investigated at a wide range of mercury vapor pressures in an inductively coupled plasma, varying with the input radio-frequency powers and the total filling pressures (10 Pa–30 Pa). The electron temperatures were calculated versus with the mercury vapor pressures for different values of the total filling pressures. The transition power points and electron density also were measured in this study. It is shown that the transition powers, whether the E to H mode transition or the H to E modemore » transition, are lower than that of the argon discharge, and these powers almost increase with the mercury vapor pressure rising. However, the transition electron density follows an inverse relationship with the mercury vapor pressures compared with the transition powers. In addition, at the lower pressures and higher mercury vapor pressures, an inverse hysteresis was observed clearly, which did not appear in the argon gas plasma. We suggest that all these results are attributed to the electron-neutral collision frequency changed with the additional mercury vapor pressures.« less
Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Rui-Rui
2015-02-14
This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focused on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials.more » This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator under time-reversal symmetry-broken conditions.« less
[Study on the distribution of plasma parameters in electrodeless lamp using emission spectrometry].
Wang, Chang-Quan; Zhang, Gui-Xin; Wang, Xin-Xin; Shao, Ming-Song; Dong, Jin-Yang; Wang, Zan-Ji
2011-09-01
Electrodeless lamp in pear shape was ignited using inductively coupled discharge setup and Ar-Hg mixtures as working gas. The changes in electronic temperature and density with axial and radial positions at 5 s of igniting were studied by means of emission spectrometry. The changes in electronic temperature were obtained according to the Ar line intensity ratio of 425.9 nm/ 750.4 nm. And the variations in electronic density were analyzed using 750.4 nm line intensity. It was found that plasma electronic temperature and density is various at different axial or radial positions. The electronic temperatures first increase, then decrease, and then increase quickly, and finally decline. While the electronic density firstly increase quickly, the decrease, and then rise slowly and finally decline again with axial distance increasing. With radial distance increasing, electronic temperature increases to a stable area, then continues to rise, while electronic density decreases.
600 C Logic Gates Using Silicon Carbide JFET's
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Beheim, Glenn M.; Salupo, Carl S.a
2000-01-01
Complex electronics and sensors are increasingly being relied on to enhance the capabilities and efficiency of modernjet aircraft. Some of these electronics and sensors monitor and control vital engine components and aerosurfaces that operate at high temperatures above 300 C. However, since today's silicon-based electronics technology cannot function at such high temperatures, these electronics must reside in environmentally controlled areas. This necessitates either the use of long wire runs between sheltered electronics and hot-area sensors and controls, or the fuel cooling of electronics and sensors located in high-temperature areas. Both of these low-temperature-electronics approaches suffer from serious drawbacks in terms of increased weight, decreased fuel efficiency, and reduction of aircraft reliability. A family of high-temperature electronics and sensors that could function in hot areas would enable substantial aircraft performance gains. Especially since, in the future, some turbine-engine electronics may need to function at temperatures as high as 600 C. This paper reports the fabrication and demonstration of the first semiconductor digital logic gates ever to function at 600 C. Key obstacles blocking the realization of useful 600 C turbine engine integrated sensor and control electronics are outlined.
NASA Astrophysics Data System (ADS)
Farr, Erik P.; Zho, Chen-Chen; Challa, Jagannadha R.; Schwartz, Benjamin J.
2017-08-01
The structure of the hydrated electron, particularly whether it exists primarily within a cavity or encompasses interior water molecules, has been the subject of much recent debate. In Paper I [C.-C. Zho et al., J. Chem. Phys. 147, 074503 (2017)], we found that mixed quantum/classical simulations with cavity and non-cavity pseudopotentials gave different predictions for the temperature dependence of the rate of the photoexcited hydrated electron's relaxation back to the ground state. In this paper, we measure the ultrafast transient absorption spectroscopy of the photoexcited hydrated electron as a function of temperature to confront the predictions of our simulations. The ultrafast spectroscopy clearly shows faster relaxation dynamics at higher temperatures. In particular, the transient absorption data show a clear excess bleach beyond that of the equilibrium hydrated electron's ground-state absorption that can only be explained by stimulated emission. This stimulated emission component, which is consistent with the experimentally known fluorescence spectrum of the hydrated electron, decreases in both amplitude and lifetime as the temperature is increased. We use a kinetic model to globally fit the temperature-dependent transient absorption data at multiple temperatures ranging from 0 to 45 °C. We find the room-temperature lifetime of the excited-state hydrated electron to be 137 ±40 fs, in close agreement with recent time-resolved photoelectron spectroscopy (TRPES) experiments and in strong support of the "non-adiabatic" picture of the hydrated electron's excited-state relaxation. Moreover, we find that the excited-state lifetime is strongly temperature dependent, changing by slightly more than a factor of two over the 45 °C temperature range explored. This temperature dependence of the lifetime, along with a faster rate of ground-state cooling with increasing bulk temperature, should be directly observable by future TRPES experiments. Our data also suggest that the red side of the hydrated electron's fluorescence spectrum should significantly decrease with increasing temperature. Overall, our results are not consistent with the nearly complete lack of temperature dependence predicted by traditional cavity models of the hydrated electron but instead agree qualitatively and nearly quantitatively with the temperature-dependent structural changes predicted by the non-cavity hydrated electron model.
NASA Technical Reports Server (NTRS)
Nanjundaswamy, K. S.; Standlee, D.; Kelly, C. O.; Whiteley, R. V., Jr.
1997-01-01
A new method of synthesis for the solid solution cathode materials LiNi(x)Co(1-x)O2 (0 less than x less than 1) involving enhanced reactions at temperatures less than or equal to 700 deg. C, between metal oxy-hydroxide precursors MOOH (M = Ni, Co) and Li-salts (Li2CO3, LiOH, and LiNO3) has been investigated. The effects of synthesis conditions and sources of Li, on phase purity, microstructure, and theoretical electrochemical capacity (total M(3+) content) are characterized by powder X-ray diffraction analysis, scanning electron microscopy, chemical analysis and room temperature magnetic susceptibility. An attempt has been made to correlate the electrochemical properties with the synthesis conditions and microstructure.
Effects of cure temperature, electron radiation, and thermal cycling on P75/930 composites
NASA Technical Reports Server (NTRS)
Funk, Joan G.
1990-01-01
Graphite/epoxy composites are candidates for future space structures due to high stiffness and dimensional stability requirements of these structures. Typical graphite/epoxy composites are brittle and have high residual stresses which often result in microcracking during the thermal cycling typical of the space environment. Composite materials used in geosynchronous orbit applications will also be exposed to high levels of radiation. The purpose of the present study was to determine the effects of cure temperature and radiation exposure on the shear strength and thermal cycling-induced microcrack density of a high modulus, 275 F cure epoxy, P75/930. The results from the P75/930 are compared to previously reported data on P75/934 and T300/934 where 934 is a standard 350 F cure epoxy. The results of this study reveal that P75/930 is significantly degraded by total doses of electron radiation greater than 10(exp 8) rads and by thermally cycling between -250 F and 150 F. The P75/930 did not have improved microcrack resistance over the P75/934, and the 930 resin system appears to be more sensitive to electron radiation-induced degradation than the 934 resin system.
Electronic and magnetic properties of double perovskite Sr2CoUO6: Heisenberg model
NASA Astrophysics Data System (ADS)
Nid-bahami, A.; Ahmed, S. Sidi; Ait-Tamerd, M.; Zaari, H.; El Kenz, A.; Benyoussef, A.
2018-01-01
This work will be focused on the electronic and magnetic properties of Sr2CoUO6 (SCUO) using ab-initio calculations and Monte Carlo Simulation (MCS). Firstly, we calculate the exchange coupling and the crystal field, then, the electronic and magnetic properties will be studied, using the full-potential linearized augmented plane wave (FP-LAPW) method, as implemented in the Wien2k code. This method employing the generalized gradient approximation (GGA) for exchange-correlation term. The half-metallic ferromagnetic nature implies a potential application of this new compound in spintronics devices. Also, we have presented the results of the band structures and densities of states for the two up and down spin polarizations. The exchange coupling and the crystal field calculated are J = 0 . 567 meV and δ = 0 . 559meV, and total spin magnetic moments is 2.96 μB closed to experimental values 3 μB. Secondly, we have presented the results for the magnetization and the susceptibility as a function of temperature. Finally, we obtain the critical temperature T = 9 . 20 K by MCS in good agreement with the experimental value.
NASA Astrophysics Data System (ADS)
Joshi, R. H.; Thakore, B. Y.; Bhatt, N. K.; Vyas, P. R.; Jani, A. R.
2018-02-01
A density functional theory along with electronic contribution is used to compute quasiharmonic total energy for silver, whereas explicit phonon anharmonic contribution is added through perturbative term in temperature. Within the Mie-Grüneisen approach, we propose a consistent computational scheme for calculating various thermophysical properties of a substance, in which the required Grüneisen parameter γth is calculated from the knowledge of binding energy. The present study demonstrates that no separate relation for volume dependence for γth is needed, and complete thermodynamics under simultaneous high-temperature and high-pressure condition can be derived in a consistent manner. We have calculated static and dynamic equation of states and some important thermodynamic properties along the shock Hugoniot. A careful examination of temperature dependence of Grüneisen parameter reveals the importance of temperature-effect on various thermal properties.
SiGe Based Low Temperature Electronics for Lunar Surface Applications
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad M.; Kolawa, Elizabeth; Blalock, Benjamin; Cressler, John
2012-01-01
The temperature at the permanently shadowed regions of the moon's surface is approximately -240 C. Other areas of the lunar surface experience temperatures that vary between 120 C and -180 C during the day and night respectively. To protect against the large temperature variations of the moon surface, traditional electronics used in lunar robotics systems are placed inside a thermally controlled housing which is bulky, consumes power and adds complexity to the integration and test. SiGe Based electronics have the capability to operate over wide temperature range like that of the lunar surface. Deploying low temperature SiGe electronics in a lander platform can minimize the need for the central thermal protection system and enable the development of a new generation of landers and mobility platforms with highly efficient distributed architecture. For the past five years a team consisting of NASA, university and industry researchers has been examining the low temperature and wide temperature characteristic of SiGe based transistors for developing electronics for wide temperature needs of NASA environments such as the Moon, Titan, Mars and Europa. This presentation reports on the status of the development of wide temperature SiGe based electronics for the landers and lunar surface mobility systems.
First measurements of electron temperature in the D region with a symmetric double probe
NASA Technical Reports Server (NTRS)
Szuszczewicz, E. P.
1973-01-01
Measurement of the altitude profile of electron temperature in the ionospheric D region with the aid of a symmetric double probe flown on a Nike-Cajun payload launched on Oct. 13, 1971. The procedure for determining the electron temperature from the parameters of the double probe's current-voltage characteristic under conditions of nonnegligible ion-atom collision frequencies is described. It is shown that in its first lower ionospheric application the technique of the symmetric double probe has yielded the lowest values of electron temperature yet measured and has provided the very first direct measurement of electron temperature in the D region.
Correlation induced electron-hole asymmetry in quasi- two-dimensional iridates.
Pärschke, Ekaterina M; Wohlfeld, Krzysztof; Foyevtsova, Kateryna; van den Brink, Jeroen
2017-09-25
The resemblance of crystallographic and magnetic structures of the quasi-two-dimensional iridates Ba 2 IrO 4 and Sr 2 IrO 4 to La 2 CuO 4 points at an analogy to cuprate high-Tc superconductors, even if spin-orbit coupling is very strong in iridates. Here we examine this analogy for the motion of a charge (hole or electron) added to the antiferromagnetic ground state. We show that correlation effects render the hole and electron case in iridates very different. An added electron forms a spin polaron, similar to the cuprates, but the situation of a removed electron is far more complex. Many-body 5d 4 configurations form which can be singlet and triplet states of total angular momentum that strongly affect the hole motion. This not only has ramifications for the interpretation of (inverse-)photoemission experiments but also demonstrates that correlation physics renders electron- and hole-doped iridates fundamentally different.Some iridate compounds such as Sr 2 IrO 4 have electronic and atomic structures similar to quasi-2D copper oxides, raising the prospect of high temperature superconductivity. Here, the authors show that there is significant electron-hole asymmetry in iridates, contrary to expectations from the cuprates.
Alonso, M P; Figueiredo, A C A; Borges, F O; Elizondo, J I; Galvão, R M O; Severo, J H F; Usuriaga, O C; Berni, L A; Machida, M
2010-10-01
We present the first simultaneous measurements of the Thomson scattering and electron cyclotron emission radiometer diagnostics performed at TCABR tokamak with Alfvén wave heating. The Thomson scattering diagnostic is an upgraded version of the one previously installed at the ISTTOK tokamak, while the electron cyclotron emission radiometer employs a heterodyne sweeping radiometer. For purely Ohmic discharges, the electron temperature measurements from both diagnostics are in good agreement. Additional Alfvén wave heating does not affect the capability of the Thomson scattering diagnostic to measure the instantaneous electron temperature, whereas measurements from the electron cyclotron emission radiometer become underestimates of the actual temperature values.
NASA Astrophysics Data System (ADS)
Tricot, S.; Semmar, N.; Lebbah, L.; Boulmer-Leborgne, C.
2010-02-01
This paper details the electro-thermal study of the sublimation phase on a zinc oxide surface. This thermodynamic process occurs when a ZnO target is bombarded by a pulsed electron beam source composed of polyenergetic electrons. The source delivers short pulses of 180 ns of electrons with energies up to 16 keV. The beam total current reaches 800 A and is focused onto a spot area 2 mm in diameter. The Monte Carlo CASINO program is used to study the first stage of the interaction and to define the heat source space distribution inside the ZnO target. Simulation of the second stage of interaction is developed in a COMSOL multiphysics project. The simulated thermal field induced by space and time heat conduction is presented. Typically for a pulsed electron beam 2 mm in diameter of electrons having energies up to 16 keV, the surface temperature reaches a maximum of 7000 K. The calculations are supported by SEM pictures of the target irradiated by various beam energies and numbers of pulses.
NASA Astrophysics Data System (ADS)
Arjunan, V.; Saravanan, I.; Marchewka, Mariusz K.; Mohan, S.
Experimental FTIR and FT-Raman spectroscopic analysis of 2-chloro-4-methyl-3-nitropyridine (2C4M3NP) and 2-chloro-6-methylpyridine (2C6MP) have been performed. A detailed quantum chemical calculations have been carried out using B3LYP and B3PW91 methods with 6-311++G** and cc-pVTZ basis sets. Conformation analysis was carried for 2C4M3NP and 2C6MP. The temperature dependence of thermodynamic properties has been analysed. The atomic charges, electronic exchange interaction and charge delocalisation of the molecule have been performed by natural bond orbital (NBO) analysis. Molecular electrostatic surface potential (MESP), total electron density distribution and frontier molecular orbitals (FMOs) are constructed at B3LYP/6-311++G** level to understand the electronic properties. The charge density distribution and site of chemical reactivity of the molecules have been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). The electronic properties, HOMO and LUMO energies were measured by time-dependent TD-DFT approach.
Direct Electricity from Heat: A Solution to Assist Aircraft Power Demands
NASA Technical Reports Server (NTRS)
Goldsby, Jon C.
2010-01-01
A thermionic device produces an electrical current with the application of a thermal gradient whereby the temperature at one electrode provides enough thermal energy to eject electrons. The system is totally predicated on the thermal gradient and the work function of the electrode collector relative to the emitter electrode. Combined with a standard thermoelectric device high efficiencies may result, capable of providing electrical energy from the waste heat of gas turbine engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emritte, Mohammad Shehzad; Colafrancesco, Sergio; Marchegiani, Paolo, E-mail: Sergio.Colafrancesco@wits.ac.za, E-mail: emrittes@yahoo.com, E-mail: Paolo.Marchegiani@wits.ac.za
2016-07-01
Inverse Compton (IC) scattering of the anisotropic CMB fluctuations off cosmic electron plasmas generates a polarization of the associated Sunyaev-Zel'dovich (SZ) effect. The polarized SZ effect has important applications in cosmology and in astrophysics of galaxy clusters. However, this signal has been studied so far mostly in the non-relativistic regime which is valid only in the very low electron temperature limit for a thermal electron population and, as such, has limited astrophysical applications. Partial attempts to extend this calculation to the IC scattering of a thermal electron plasma in the relativistic regime have been done but these cannot be appliedmore » to a more general or mildly relativistic electron distribution. In this paper we derive a general form of the SZ effect polarization that is valid in the full relativistic approach for both thermal and non-thermal electron plasmas, as well as for a generic combination of various electron population which can be co-spatially distributed in the environments of galaxy clusters or radiogalaxy lobes. We derive the spectral shape of the Stokes parameters induced by the IC scattering of every CMB multipole for both thermal and non-thermal electron populations, focussing in particular on the CMB quadrupole and octupole that provide the largest detectable signals in cosmic structures (like galaxy clusters). We found that the CMB quadrupole induced Stoke parameter Q is always positive with a maximum amplitude at a frequency ≈ 216 GHz which increases non-linearly with increasing cluster temperature. On the contrary, the CMB octupole induced Q spectrum shows a cross-over frequency which depends on the cluster electron temperature in a linear way, while it shows a non-linear dependence on the minimum momentum p {sub 1} of a non-thermal power-law spectrum as well as a linear dependence on the power-law spectral index of the non-thermal electron population. We discuss some of the possibilities to disentangle the quadrupole-induced Q spectrum from the octupole-induced one which will allow to measure these important cosmological quantities through the SZ effect polarization at different cluster locations in the universe. We finally apply our model to the Bullet cluster and derive the visibility windows of the total, quandrupole-induced and octupole-induced Stoke parameter Q in the frequency ranges accessible to SKA, ALMA, MILLIMETRON and CORE++ experiments.« less
The microscopic Z-pinch process of current-carrying rarefied deuterium plasma shell
NASA Astrophysics Data System (ADS)
Ning, Cheng; Feng, Zhixing; Xue, Chuang; Li, Baiwen
2015-02-01
For insight into the microscopic mechanism of Z-pinch dynamic processes, a code of two-dimensional particle-in-cell (PIC) simulation has been developed in cylindrical coordinates. In principle, the Z-pinch of current-carrying rarefied deuterium plasma shell has been simulated by means of this code. Many results related to the microscopic processes of the Z-pinch are obtained. They include the spatio-temporal distributions of electromagnetic field, current density, forces experienced by the ions and electrons, positions and energy distributions of particles, and trailing mass and current. In radial direction, the electric and magnetic forces exerted on the electrons are comparable in magnitude, while the forces exerted on the ions are mainly the electric forces. So in the Z-pinch process, the electrons are first accelerated in Z direction and get higher velocities; then, they are driven inwards to the axis at the same time by the radial magnetic forces (i.e., Lorentz forces) of them. That causes the separations between the electrons and ions because the ion mass is much larger than the electron's, and in turn a strong electrostatic field is produced. The produced electrostatic field attracts the ions to move towards the electrons. When the electrons are driven along the radial direction to arrive at the axis, they shortly move inversely due to the static repellency among them and their tiny mass, while the ions continue to move inertially inwards, and later get into stagnation, and finally scatter outwards. Near the stagnation, the energies of the deuterium ions mostly range from 0.3 to 6 keV, while the electron energies are mostly from 5 to 35 keV. The radial components, which can contribute to the pinched plasma temperature, of the most probable energies of electron and ion at the stagnation are comparable to the Bennett equilibrium temperature (about 1 keV), and also to the highest temperatures of electron and ion obtained in one dimensional radiation magnetohydrodynamic simulation of the plasma shell Z-pinch. The trailing mass is about 20% of the total mass of the shell, and the maximum trailing current is about 7% of the driven current under our trailing definition. Our PIC simulation also demonstrates that the plasma shell first experiences a snow-plow like implosion process, which is relatively stable.
Packaging Technologies for 500C SiC Electronics and Sensors
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu
2013-01-01
Various SiC electronics and sensors are currently under development for applications in 500C high temperature environments such as hot sections of aerospace engines and the surface of Venus. In order to conduct long-term test and eventually commercialize these SiC devices, compatible packaging technologies for the SiC electronics and sensors are required. This presentation reviews packaging technologies developed for 500C SiC electronics and sensors to address both component and subsystem level packaging needs for high temperature environments. The packaging system for high temperature SiC electronics includes ceramic chip-level packages, ceramic printed circuit boards (PCBs), and edge-connectors. High temperature durable die-attach and precious metal wire-bonding are used in the chip-level packaging process. A high temperature sensor package is specifically designed to address high temperature micro-fabricated capacitive pressure sensors for high differential pressure environments. This presentation describes development of these electronics and sensor packaging technologies, including some testing results of SiC electronics and capacitive pressure sensors using these packaging technologies.
Growth of diamond by RF plasma-assisted chemical vapor deposition
NASA Technical Reports Server (NTRS)
Meyer, Duane E.; Ianno, Natale J.; Woollam, John A.; Swartzlander, A. B.; Nelson, A. J.
1988-01-01
A system has been designed and constructed to produce diamond particles by inductively coupled radio-frequency, plasma-assisted chemical vapor deposition. This is a low-pressure, low-temperature process used in an attempt to deposit diamond on substrates of glass, quartz, silicon, nickel, and boron nitride. Several deposition parameters have been varied including substrate temperature, gas concentration, gas pressure, total gas flow rate, RF input power, and deposition time. Analytical methods employed to determine composition and structure of the deposits include scanning electron microscopy, absorption spectroscopy, scanning Auger microprobe spectroscopy, and Raman spectroscopy. Analysis indicates that particles having a thin graphite surface, as well as diamond particles with no surface coatings, have been deposited. Deposits on quartz have exhibited optical bandgaps as high as 4.5 eV. Scanning electron microscopy analysis shows that particles are deposited on a pedestal which Auger spectroscopy indicates to be graphite. This is a phenomenon that has not been previously reported in the literature.
NASA Astrophysics Data System (ADS)
McInerney, Joseph M.; Marsh, Daniel R.; Liu, Han-Li; Solomon, Stanley C.; Conley, Andrew J.; Drob, Douglas P.
2018-05-01
We performed simulations of the atmosphere-ionosphere response to the solar eclipse of 21 August 2017 using the Whole Atmosphere Community Climate Model-eXtended (WACCM-X v. 2.0) with a fully interactive ionosphere and thermosphere. Eclipse simulations show temperature changes in the path of totality up to -3 K near the surface, -1 K at the stratopause, ±4 K in the mesosphere, and -40 K in the thermosphere. In the F region ionosphere, electron density is depleted by about 55%. Both the temperature and electron density exhibit global effects in the hours following the eclipse. There are also significant effects on stratosphere-mesosphere chemistry, including an increase in ozone by nearly a factor of 2 at 65 km. Dynamical impacts of the eclipse in the lower atmosphere appear to propagate to the upper atmosphere. This study provides insight into coupled eclipse effects through the entire atmosphere from the surface through the ionosphere.
NASA Astrophysics Data System (ADS)
Boobalan, T.; Pavithradevi, S.; Suriyanarayanan, N.; Manivel Raja, M.; Ranjith Kumar, E.
2017-04-01
Nanocrystalline spinel ferrite of composition Cu0.2Ni0.2Mg0.2Ca0.4Fe2O4 is synthesized by wet hydroxyl co-precipitation method in ethylene glycol as chelating agent and sodium hydroxide as precipitator at pH 8. Ethylene glycol is utilized as the medium which serves as the dissolvable and in addition a complexing specialist. The synthesized particles are annealed at various temperatures. Thermogravimetric investigation affirms that at 280 °C ethylene glycol is dissipated totally and stable phase arrangement happens over 680 °C. FTIR spectra of as synthesized and annealed at 1050 °C recorded between 400 cm-1 and 4000 cm-1. Structural characterizations of all the samples are carried out by X-ray diffraction (XRD) technique. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) affirm that the particles are spherical and cubic shape with the crystallite size of 12 nm to 32 nm. Magnetic measurements are performed utilizing vibrating sample magnetometer at room temperature.
Structural γ-ε phase transition in Fe-Mn alloys from a CPA + DMFT approach.
Belozerov, A S; Poteryaev, A I; Skornyakov, S L; Anisimov, V I
2015-11-25
We present a computational scheme for total energy calculations of disordered alloys with strong electronic correlations. It employs the coherent potential approximation combined with the dynamical mean-field theory and allows one to study the structural transformations. The material-specific Hamiltonians in the Wannier function basis are obtained by density functional theory. The proposed computational scheme is applied to study the γ-ε structural transition in paramagnetic Fe-Mn alloys for Mn content from 10 to 20 at.%. The electronic correlations are found to play a crucial role in this transition. The calculated transition temperature decreases with increasing Mn content and is in good agreement with experiment. We demonstrate that in contrast to the α-γ transition in pure iron, the γ-ε transition in Fe-Mn alloys is driven by a combination of kinetic and Coulomb energies. The latter is found to be responsible for the decrease of the γ-ε transition temperature with Mn content.
A liquid-He cryostat for structural and thermal disorder studies by X-ray absorption.
Bouamrane, F; Ribbens, M; Fonda, E; Adjouri, C; Traverse, A
2003-07-01
A new device operating from 4.2 to 300 K is now installed on the hard X-ray station of the DCI ring in LURE in order to measure absorption coefficients. This liquid-He bath device has three optical windows. One allows the incident beam to impinge on the sample, one located at 180 degrees with respect to the sample allows transmitted beams to be detected, and another located at 90 degrees is used to detect emitted photons. Total electron yield detection mode is also possible thanks to a specific sample holder equipped with an electrode that collects the charges created by the emitted electrons in the He gas brought from the He bath around the sample. The performance of the cryostat is described by measurements of the absorption coefficients versus the temperature for Cu and Co foils. For comparison, the absorption coefficient is also measured for Cu clusters. As expected from dimension effects, the Debye temperature obtained for the clusters is lower than that of bulk Cu.
Electrical Properties of Bismuth/Lithium-Cosubstituted Strontium Titanate Ceramics
NASA Astrophysics Data System (ADS)
Alkathy, Mahmoud. S.; James Raju, K. C.
2018-03-01
Sr(1-x)(Bi,Li) x TiO3 compound was prepared via a solid-state reaction route with microwave heating of the starting materials. X-ray diffraction analysis revealed pure perovskite phase without formation of any secondary phases. The electrical conductivity was studied as a function of temperature and frequency. The experimental results indicate that the alternating-current (AC) conductivity increased with frequency, following the Jonscher power law. To interpret the possible mechanism for electrical conduction, the correlated barrier hopping model was applied. The effect of temperature and the Bi/Li concentration on the electrical resistivity was studied. The results showed that the electrical resistivity decreased with increasing temperature, which could be due to increased thermal energy of electrons. Also, the electrical resistivity decreased with increase in the amount of Bi and Li, which could be due to increased concentration of structural defects, which could increase the number of either electrons or holes available for conduction. A single semicircular arc corresponding to a single relaxation process was observed for all the investigated ceramics, suggesting a grain contribution to the total resistance in these materials. Arrhenius plots were used to obtain the activation energy for the samples.
New RADIOM algorithm using inverse EOS
NASA Astrophysics Data System (ADS)
Busquet, Michel; Sokolov, Igor; Klapisch, Marcel
2012-10-01
The RADIOM model, [1-2], allows one to implement non-LTE atomic physics with a very low extra CPU cost. Although originally heuristic, RADIOM has been physically justified [3] and some accounting for auto-ionization has been included [2]. RADIOM defines an ionization temperature Tz derived from electronic density and actual electronic temperature Te. LTE databases are then queried for properties at Tz and NLTE values are derived from them. Some hydro-codes (like FAST at NRL, Ramis' MULTI, or the CRASH code at U.Mich) use inverse EOS starting from the total internal energy Etot and returning the temperature. In the NLTE case, inverse EOS requires to solve implicit relations between Te, Tz,
Electrical Properties of Bismuth/Lithium-Cosubstituted Strontium Titanate Ceramics
NASA Astrophysics Data System (ADS)
Alkathy, Mahmoud. S.; James Raju, K. C.
2018-07-01
Sr(1- x)(Bi,Li) x TiO3 compound was prepared via a solid-state reaction route with microwave heating of the starting materials. X-ray diffraction analysis revealed pure perovskite phase without formation of any secondary phases. The electrical conductivity was studied as a function of temperature and frequency. The experimental results indicate that the alternating-current (AC) conductivity increased with frequency, following the Jonscher power law. To interpret the possible mechanism for electrical conduction, the correlated barrier hopping model was applied. The effect of temperature and the Bi/Li concentration on the electrical resistivity was studied. The results showed that the electrical resistivity decreased with increasing temperature, which could be due to increased thermal energy of electrons. Also, the electrical resistivity decreased with increase in the amount of Bi and Li, which could be due to increased concentration of structural defects, which could increase the number of either electrons or holes available for conduction. A single semicircular arc corresponding to a single relaxation process was observed for all the investigated ceramics, suggesting a grain contribution to the total resistance in these materials. Arrhenius plots were used to obtain the activation energy for the samples.
NASA Astrophysics Data System (ADS)
Marušáková, Daniela; Bublíková, Petra; Berka, Jan; Vávrovcová, Zuzana; Burda, Jaroslav
2017-09-01
To understand the degradation process of metal materials which are used in power engineering, appropriate evaluation procedure is necessary to ensure. In that order, the degradation of alloy 800H during the first period of test operation in High Temperature Helium Loop (HTHL) was tested. Experiment was carried out in atmosphere of pure technical helium with purity 4.6 containing only residual concentration of moisture up to 300 vppm. Parameters during the operation test were not constant, process was interrupted several times. The maximum temperature on specimens during this period was 750 °C, average temperature was 460 °C, gas pressure ranged from 3 to 6 MPa and gas flow from 3 to 9 gs-1. Total duration of the test was 264 h. After the exposure the degradation of specimens was investigated by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Using the technique of Focused Ion Beam (FIB) integrated within SEM the transparent samples with quality surface parameters were obtained for TEM analysis. FIB technique in combination with High Resolution TEM ensured the guaranteed methodology of exposed sample preparation and precise description of changes in this kind of material.
Density effects on the electronic contribution to hydrogen Lyman alpha Stark profiles
NASA Astrophysics Data System (ADS)
Motapon, O.
1998-01-01
The quantum unified theory of Stark broadening (Tran Minh et al. 1975, Feautrier et al. 1976) is used to study the density effects on the electronic contribution to the hydrogen Lyman alpha lineshape. The contribution of the first angular momenta to the total profile is obtained by an extrapolation method, and the results agree with other approaches. The comparison made with Vidal et al. (1973) shows a good agreement; and the electronic profile is found to be linear in density for | Delta lambda right | greater than 8 Angstroms for densities below 10(17) cm(-3) , while the density dependence becomes more complex for | Delta lambda right | less than 8 Angstroms. The wing profiles are calculated at various temperatures scaling from 2500 to 40000K and a polynomial fit of these profiles is given.
Self-interaction-corrected local-spin-density calculations for rare earth materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svane, A.; Temmerman, W.M.; Szotek, Z.
2000-04-20
The ab initio self-interaction-corrected (SIC) local-spin-density (LSD) approximation is discussed with emphasis on the ability to describe localized f-electron states in rare earth solids. Two methods for minimizing the SIC-LSD total energy functional are discussed, one using a unified Hamiltonian for all electron states, thus having the advantages of Bloch's theorem, the other one employing an iterative scheme in real space. Results for cerium and cerium compounds as well as other rare earths are presented. For the cerium compounds the onset of f-electron delocalization can be accurately described, including the intricate isostructural phase transitions in elemental cerium and CeP. Inmore » Pr and Sm the equilibrium lattice constant and zero temperature equation of state is greatly improved in comparison with the LSD results.« less
Ab initio simulations of the dynamic ion structure factor of warm dense lithium
Witte, B. B. L.; Shihab, M.; Glenzer, S. H.; ...
2017-04-06
Here, we present molecular dynamics simulations based on finite-temperature density functional theory that determine self-consistently the dynamic ion structure factor and the electronic form factor in lithium. Our comprehensive data set allows for the calculation of the dispersion relation for collective excitations, the calculation of the sound velocity, and the determination of the ion feature from the total electronic form factor and the ion structure factor. The results are compared with available experimental x-ray and neutron scattering data. Good agreement is found for both the liquid metal and warm dense matter domain. Finally, we study the impact of possible targetmore » inhomogeneities on x-ray scattering spectra.« less
Ab initio simulations of the dynamic ion structure factor of warm dense lithium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, B. B. L.; Shihab, M.; Glenzer, S. H.
Here, we present molecular dynamics simulations based on finite-temperature density functional theory that determine self-consistently the dynamic ion structure factor and the electronic form factor in lithium. Our comprehensive data set allows for the calculation of the dispersion relation for collective excitations, the calculation of the sound velocity, and the determination of the ion feature from the total electronic form factor and the ion structure factor. The results are compared with available experimental x-ray and neutron scattering data. Good agreement is found for both the liquid metal and warm dense matter domain. Finally, we study the impact of possible targetmore » inhomogeneities on x-ray scattering spectra.« less
Liao, Wei; Hua, Xue-Ming; Zhang, Wang; Li, Fang
2014-05-01
In the present paper, the authors calculated the plasma's peak electron temperatures under different heat source separation distance in laser- pulse GMAW hybrid welding based on Boltzmann spectrometry. Plasma's peak electron densities under the corresponding conditions were also calculated by using the Stark width of the plasma spectrum. Combined with high-speed photography, the effect of heat source separation distance on electron temperature and electron density was studied. The results show that with the increase in heat source separation distance, the electron temperatures and electron densities of laser plasma did not changed significantly. However, the electron temperatures of are plasma decreased, and the electron densities of are plasma first increased and then decreased.
Electronic properties with and without electron-phonon coupling
NASA Astrophysics Data System (ADS)
Allen, Philip
To decent approximation, electronic properties P of solids have a temperature dependence of the type ΔP(T) = Σ (dP/dωi) [ni(T) +1/2], where ωi is the frequency of the ith vibrational normal mode, and ni is the Bose-Einstein equilibrium occupation of the mode. The coupling constant (dP/dωi) comes from electron-phonon interactions. At T =0, the ``1/2'' gives the zero-point electron-phonon renormalization of the property P, and at T>ΘD, the total shift ΔP becomes linear in T, extrapolating toward ΔP =0 at T =0. This form of T-dependence arises from the adiabatic or Born-Oppenheimer approximation, where electrons essentially ``don't notice'' the time-dependence of thermal lattice fluctuations. In other words, the leading order theory for P is ΔP(T) = Σ (d2P/duiduj)
The Relationship between Ionospheric Slab Thickness and the Peak Density Height, hmF2
NASA Astrophysics Data System (ADS)
Meehan, J.; Sojka, J. J.
2017-12-01
The electron density profile is one of the most critical elements in the ionospheric modeling-related applications today. Ionosphere parameters, hmF2, the height of the peak density layer, and slab thickness, the ratio of the total electron content, TEC, to the peak density value, NmF2, are generally obtained from any global sounding observation network and are easily incorporated into models, theoretical or empirical, as numerical representations. Slab thickness is a convenient one-parameter summary of the electron density profile and can relate a variety of elements of interest that effect the overall electron profile shape, such as the neutral and ionospheric temperatures and gradients, the ionospheric composition, and dynamics. Using ISR data from the 2002 Millstone Hill ISR data campaign, we found, for the first time, slab thickness to be correlated to hmF2. For this, we introduce a new ionospheric index, k, which ultimately relates electron density parameters and can be a very useful tool for describing the topside ionosphere shape. Our study is an initial one location, one season, 30-day study, and future work is needed to verify the robustness of our claim. Generally, the ionospheric profile shape, requires knowledge of several ionospheric parameters: electron, ion and neutral temperatures, ion composition, electric fields, and neutral winds, and is dependent upon seasons, local time, location, and the level of solar and geomagnetic activity; however, with this new index, only readily-available, ionospheric density information is needed. Such information, as used in this study, is obtained from a bottomside electron density profile provided by an ionosonde, and TEC data provided by a local, collocated GPS receiver.
NASA Astrophysics Data System (ADS)
Dietrich, Scott
Heterostructures made of semiconductor materials may be one of most versatile environments for the study of the physics of electron transport in two dimensions. These systems are highly customizable and demonstrate a wide range of interesting physical phenomena. In response to both microwave radiation and DC excitations, strongly nonlinear transport that gives rise to non-equilibrium electron states has been reported and investigated. We have studied GaAs quantum wells with a high density of high mobility two-dimensional electrons placed in a quantizing magnetic field. This study presents the observation of several nonlinear transport mechanisms produced by the quantum nature of these materials. The quantum scattering rate, 1tau/q, is an important parameter in these systems, defining the width of the quantized energy levels. Traditional methods of extracting 1tau/q involve studying the amplitude of Shubnikov-de Haas oscillations. We analyze the quantum positive magnetoresistance due to the cyclotron motion of electrons in a magnetic field. This method gives 1tau/q and has the additional benefit of providing access to the strength of electron-electron interactions, which is not possible by conventional techniques. The temperature dependence of the quantum scattering rate is found to be proportional to the square of the temperature and is in very good agreement with theory that considers electron-electron interactions in 2D systems. In quantum wells with a small scattering rate - which corresponds to well-defined Landau levels - quantum oscillations of nonlinear resistance that are independent of magnetic field strength have been observed. These oscillations are periodic in applied bias current and are connected to quantum oscillations of resistance at zero bias: either Shubnikov-de Haas oscillations for single subband systems or magnetointersubband oscillations for two subband systems. The bias-induced oscillations can be explained by a spatial variation of electron density across the sample. The theoretical model predicts the period of these oscillations to depend on the total electron density, which has been confirmed by controlling the density through a voltage top-gate on the sample. The peculiar nonlinear mechanism of quantal heating has garned much attention recently. This bulk phenomenon is a quantum manifestation of Joule heating where an applied bias current causes selective flattening in the electron distribution function but conserves overall broadening. This produces a highly non-equilibrium distribution of electrons that drastically effects the transport properties of the system. Recent studies have proposed contributions from edge states and/or skipping orbitals. We have shown that these contributions are minimal by studying the transition to the zero differential conductance state and comparing results between Hall and Corbino geometries. This demonstrated quantal heating as the dominant nonlinear mechanism in these systems. To study the dynamics of quantal heating, we applied microwave radiation simultaneously from two sources at frequencies ƒ1 and ƒ2 and measured the response of the system at the difference frequency, ƒ=|ƒ 1-ƒ2|. This provides direct access to the rate of inelastic scattering processes, 1tau/in, that tend to bring the electron distribution back to thermal equilibrium. While conventional measurements of the temperature dependence indicate that 1tau/in is proportional to temperature, recent DC investigations and our new dynamic measurements show either T2 or T3 dependence in different magnetic fields. Our microwave experiment is the first direct access to the inelastic relaxation rate and confirms the non-linear temperature dependence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franco-Pérez, Marco, E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx; Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1; Gázquez, José L., E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx
We extend the definition of the electronic chemical potential (μ{sub e}) and chemical hardness (η{sub e}) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μ{sub e}.more » Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (−I), positive (−A), and zero values of the fractional charge (−(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness.« less
Evaluation of COTS Electronic Parts for Extreme Temperature Use in NASA Missions
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik
2008-01-01
Electronic systems capable of extreme temperature operation are required for many future NASA space exploration missions where it is desirable to have smaller, lighter, and less expensive spacecraft and probes. Presently, spacecraft on-board electronics are maintained at about room temperature by use of thermal control systems. An Extreme Temperature Electronics Program at the NASA Glenn Research Center focuses on development of electronics suitable for space exploration missions. The effects of exposure to extreme temperatures and thermal cycling are being investigated for commercial-off-the-shelf components as well as for components specially developed for harsh environments. An overview of this program along with selected data is presented.
Determination of electron temperature in a penning discharge by the helium line ratio method
NASA Technical Reports Server (NTRS)
Richardson, R. W.
1975-01-01
The helium line ratio technique was used to determine electron temperatures in a toroidal steady-state Penning discharge operating in helium. Due to the low background pressure, less than .0001 torr, and the low electron density, the corona model is expected to provide a good description of the excitation processes in this discharge. In addition, by varying the Penning discharge anode voltage and background pressure, it is possible to vary the electron temperature as measured by the line ratio technique over a wide range (10 to 100+ eV). These discharge characteristics allow a detailed comparison of electron temperatures measured from different possible line ratios over a wide range of temperatures and under reproducible steady-state conditions. Good agreement is found between temperatures determined from different neutral line ratios, but use of the helium ion line results in a temperature systematically 10 eV high compared to that from the neutral lines.
Measurement of He neutral temperature in detached plasmas using laser absorption spectroscopy
NASA Astrophysics Data System (ADS)
Aramaki, M.; Tsujihara, T.; Kajita, S.; Tanaka, H.; Ohno, N.
2018-01-01
The reduction of the heat load onto plasma-facing components by plasma detachment is an inevitable scheme in future nuclear fusion reactors. Since the control of the plasma and neutral temperatures is a key issue to the detached plasma generation, we have developed a laser absorption spectroscopy system for the metastable helium temperature measurements and used together with a previously developed laser Thomson scattering system for the electron temperature and density measurements. The thermal relaxation process between the neutral and the electron in the detached plasma generated in the linear plasma device, NAGDIS-II was studied. It is shown that the electron temperature gets close to the neutral temperature by increasing the electron density. On the other hand, the pressure dependence of electron and neutral temperatures shows the cooling effect by the neutrals. The possibility of the plasma fluctuation measurement using the fluctuation in the absorption signal is also shown.
NASA Astrophysics Data System (ADS)
Zhao, Shu-Xia
2018-03-01
In this work, the behavior of electron temperature against the power in argon inductively coupled plasma is investigated by a fluid model. The model properly reproduces the non-monotonic variation of temperature with power observed in experiments. By means of a novel electron mean energy equation proposed for the first time in this article, this electron temperature behavior is interpreted. In the overall considered power range, the skin effect of radio frequency electric field results in localized deposited power density, responsible for an increase of electron temperature with power by means of one parameter defined as power density divided by electron density. At low powers, the rate fraction of multistep and Penning ionizations of metastables that consume electron energy two times significantly increases with power, which dominates over the skin effect and consequently leads to the decrease of temperature with power. In the middle power regime, a transition region of temperature is given by the competition between the ionizing effect of metastables and the skin effect of electric field. The power location where the temperature alters its trend moves to the low power end as increasing the pressure due to the lack of metastables. The non-monotonic curve of temperature is asymmetric at the short chamber due to the weak role of skin effect in increasing the temperature and tends symmetric when axially prolonging the chamber. Still, the validity of the fluid model in this prediction is estimated and the role of neutral gas heating is guessed. This finding is helpful for people understanding the different trends of temperature with power in the literature.
Ion and electron temperatures in the topside ionosphere
NASA Technical Reports Server (NTRS)
Munninghoff, D. E.
1979-01-01
Experimental and theoretical ion and electron temperatures in the topside ionosphere were investigated. Experimental results came from an analysis of incoherent scatter data taken at Arecibo, Puerto Rico. Consideration of the energy balance equations gave the theoretical ion and electron temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikheev, Evgeny; Himmetoglu, Burak; Kajdos, Adam P.
We analyze and compare the temperature dependence of the electron mobility of two- and three-dimensional electron liquids in SrTiO{sub 3}. The contributions of electron-electron scattering must be taken into account to accurately describe the mobility in both cases. For uniformly doped, three-dimensional electron liquids, the room temperature mobility crosses over from longitudinal optical (LO) phonon-scattering-limited to electron-electron-scattering-limited as a function of carrier density. In high-density, two-dimensional electron liquids, LO phonon scattering is completely screened and the mobility is dominated by electron-electron scattering up to room temperature. The possible origins of the observed behavior and the consequences for approaches to improvemore » the mobility are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, W.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Huang, D. W.
An x-ray imaging crystal spectrometer has been developed on joint Texas experimental tokamak for the measurement of electron and ion temperatures from the K{sub α} spectra of helium-like argon and its satellite lines. A two-dimensional multi-wire proportional counter has been applied to detect the spectra. The electron and ion temperatures have been obtained from the Voigt fitting with the spectra of helium-like argon ions. The profiles of electron and ion temperatures show the dependence on electron density in ohmic plasmas.
NASA Astrophysics Data System (ADS)
Kagan, M. Yu.; Val'kov, V. V.
2011-07-01
We search for marginal Fermi-liquid behavior [1] in the two-band Hubbard model with one narrow band. We consider the limit of low electron densities in the bands and strong intraband and interband Hubbard interactions. We analyze the influence of electron polaron effect [2] and other mechanisms of mass enhancement (related to momentum dependence of the self-energies) on the effective mass and scattering times of light and heavy components in the clean case (electron-electron scattering and no impurities). We find the tendency towards phase separation (towards negative partial compressibility of heavy particles) in the 3D case for a large mismatch between the densities of heavy and light bands in the strong-coupling limit. We also observe that for low temperatures and equal densities, the homogeneous state resistivity R( T) ˜ T 2 behaves in a Fermi-liquid fashion in both 3D and 2D cases. For temperatures higher than the effective bandwidth for heavy electrons T > W {*/ h }, the coherent behavior of the heavy component is totally destroyed. The heavy particles move diffusively in the surrounding of light particles. At the same time, the light particles scatter on the heavy ones as if on immobile (static) impurities. In this regime, the heavy component is marginal, while the light one is not. The resistivity saturates for T > W {*/ h } in the 3D case. In 2D, the resistivity has a maximum and a localization tail due to weak-localization corrections of the Altshuler-Aronov type [3]. Such behavior of resistivity could be relevant for some uranium-based heavy-fermion compounds like UNi2Al3 in 3D and for some other mixed-valence compounds possibly including layered manganites in 2D. We also briefly consider the superconductive (SC) instability in the model. The leading instability is towards the p-wave pairing and is governed by the enhanced Kohn-Luttinger [4] mechanism of SC at low electron density. The critical temperature corresponds to the pairing of heavy electrons via polarization of the light ones in 2D.
2015-12-17
temperature . New device architecture that utilizes cold-electron transport for ultra-low energy consumption electronics has been designed in a configuration...the oxygen has also been found important for the SiC>2 sputter deposition. The sputter was carried out at room temperature . Our optimized process...have been pursued for two electronic devices, 1) room- temperature single-electron transistors, and 2) ultralow energy consumption transistors. For
NASA Astrophysics Data System (ADS)
Bansal, Sona; Aggarwal, Munish; Gill, Tarsem Singh
2018-04-01
Effects of electron temperature on the propagation of electron acoustic solitary waves in plasma with stationary ions, cold and superthermal hot electrons is investigated in non-planar geometry employing reductive perturbation method. Modified Korteweg-de Vries equation is derived in the small amplitude approximation limit. The analytical and numerical calculations of the KdV equation reveal that the phase velocity of the electron acoustic waves increases as one goes from planar to non planar geometry. It is shown that the electron temperature ratio changes the width and amplitude of the solitary waves and when electron temperature is not taken into account,our results completely agree with the results of Javidan & Pakzad (2012). It is found that at small values of τ , solitary wave structures behave differently in cylindrical ( {m} = 1), spherical ( {m} = 2) and planar geometry ( {m} = 0) but looks similar at large values of τ . These results may be useful to understand the solitary wave characteristics in laboratory and space environments where the plasma have multiple temperature electrons.
NASA Astrophysics Data System (ADS)
Ogitsu, T.; Fernandez-Paãella, A.; Correa, A.; Engelhorn, K.; Barbrel, B.; Prendergast, D. G.; Pemmaraju, D.; Beckwith, M.; Kraus, D.; Hamel, S.; Cho, B. I.; Jin, L.; Wong, J.; Heinman, P.; Collins, G. W.; Falcone, R.; Ping, Y.
2016-10-01
We present a study of the electron-phonon coupling of warm dense iron upon femtosecond laser excitation by time-resolved x-ray absorption near edge spectroscopy (XANES). The dynamics of iron in electron-ion non-equilibrium conditions was studied using ab-initio density-functional-theory (DFT) simulations combined with the Two Temperature Model (TTM) where spatial inhomogeneity of electron (and ion) temperature(s) due to short ballistic electron transport length in iron was explicitly taken into consideration. Detailed comparison between our simulation results and experiments indicates that the ion temperature dependence on specific heat and on electron-phonon coupling also plays a relevant role in modeling the relaxation dynamics of electrons and ions. These results are the first experimental evidence of the suppression of the electron-phonon coupling factor of a transition metal at electron temperatures ranging 5000- 10000 K. This work was performed under DOE contract DE-AC52-07NA27344 with support from OFES Early Career program and LLNL LDRD program.
NASA Astrophysics Data System (ADS)
Jirák, Z.; Hejtmánek, J.; Knížek, K.; Veverka, M.
2008-07-01
Two perovskite cobaltites, LaCoO3 and DyCoO3 , which are border compounds with respect to the Ln size, were investigated by the electric resistivity and thermopower measurements up to 800-1000 K. Special attention was given to effects of extra holes or electrons, introduced by light doping of Co sites by Mg2+ or Ti4+ ions. The experiments on the La-based compounds were complemented by magnetic measurements. The study shows that both kinds of charge carriers induce magnetic states on surrounding Co3+ sites and form thus thermally stable polarons of large total spin. Their itinerancy is characterized by low-temperature resistivity, which is of Arrhenius type ρ˜exp(EA/kT) for the hole (Co4+) -doped samples, while an unusual dependence ρ˜1/Tν (n=8-10) is observed for the electron (Co2+) -doped samples. At higher temperatures, additional hole carriers are massively populated in the Co3+ background, leading to a resistivity drop. This transition become evident at ˜300K and 450 K and culminates at TI-M=540 and 780 K for the La- and Dy-based samples, respectively. The electronic behaviors of the cobaltites in dependence on temperature are explained considering local excitations from the diamagnetic low-spin (LS) Co3+ to close-lying paramagnetic high-spin (HS) Co3+ states and subsequent formation of a metallic phase of the IS Co3+ character through a charge transfer mechanism between LS/HS pairs. The magnetic polarons associated with doped carriers are interpreted as droplets of such intermediate (IS) phase.
NASA Astrophysics Data System (ADS)
Kohjiro, Satoshi; Hirayama, Fuminori
2018-07-01
A novel approach, frequency-domain cascading microwave multiplexers (MW-Mux), has been proposed and its basic operation has been demonstrated to increase the number of pixels multiplexed in a readout line U of MW-Mux for superconducting detector arrays. This method is an alternative to the challenging development of wideband, large power, and spurious-free room-temperature (300 K) electronics. The readout system for U pixels consists of four main parts: (1) multiplexer chips connected in series those contain U superconducting resonators in total. (2) A cryogenic high-electron-mobility transistor amplifier (HEMT). (3) A 300 K microwave frequency comb generator based on N(≡U/M) parallel units of digital-to-analog converters (DAC). (4) N parallel units of 300 K analog-to-digital converters (ADC). Here, M is the number of tones each DAC produces and each ADC handles. The output signal of U detectors multiplexed at the cryogenic stage is transmitted through a cable to the room temperature and divided into N processors where each handles M pixels. Due to the reduction factor of 1/N, U is not anymore dominated by the 300 K electronics but can be increased up to the potential value determined by either the bandwidth or the spurious-free power of the HEMT. Based on experimental results on the prototype system with N = 2 and M = 3, neither excess inter-pixel crosstalk nor excess noise has been observed in comparison with conventional MW-Mux. This indicates that the frequency-domain cascading MW-Mux provides the full (100%) usage of the HEMT band by assigning N 300 K bands on the frequency axis without inter-band gaps.
Investigation on Active Thermal Control Method with Pool Boiling Heat Transfer at Low Pressure
NASA Astrophysics Data System (ADS)
Sun, Chuang; Guo, Dong; Wang, Zhengyu; Sun, Fengxian
2018-06-01
In order to maintain a desirable temperature level of electronic equipment at low pressure, the thermal control performance with pool boiling heat transfer of water was examined based on experimental measurement. The total setup was designed and performed to accomplish the experiment with the pressure range from 4.5 kPa to 20 kPa and the heat flux between 6 kW/m2 and 20 kW/m2. The chosen material of the heat surface was aluminium alloy and the test cavity had the capability of varying the direction for the heat surface from vertical to horizontal directions. Through this study, the steady and transient temperature of the heat surface at different pressures and directions were obtained. Although the temperature non-uniformity of the heat surface from the centre to the edge could reach 10°C for the aluminium alloy due to the varying pressures, the whole temperature results successfully satisfied with the thermal control requirements for electronic equipment, and the temperature control effect of the vertically oriented direction was better than that of the horizontally oriented direction. Moreover, the behaviour of bubbles generating and detaching from the heat surface was recorded by a high-resolution camera, so as to understand the pool boiling heat transfer mechanism at low-load heat flux. These pictures showed that the bubbles departure diameter becomes larger, and departure frequency was slower at low pressure, in contrast to 1.0 atm.
NASA Astrophysics Data System (ADS)
Hou, Haili; Xu, Guoyue; Tan, Shujuan; Zhu, Yongmei
2017-09-01
CuFe2O4 particles were successfully engineered by a facile sol-gel method. The synthesized products were characterized physically by X-ray diffraction (XRD), scanning electron microscopy (SEM). Besides, the effects of the sintering temperature and the molar ration of citric acid/the total metal cations (CA/MC) on their infrared radiant properties were investigated at the wavelength of 3-5 μm. The highest infrared emission value ca. 0.911 was obtained when the test temperature was conducted at 800 °C, indicating its potential application in infrared heating, infrared coating and drying fields.
NASA Astrophysics Data System (ADS)
Qu, Jiaxing; Hu, Jun
2018-05-01
The search for single-molecule magnets with large magnetic anisotropy energy (MAE) is essential for the development of molecular spintronics devices for use at room temperature. Through systematic first-principles calculations, we found that an Os–Os or Ir–Ir dimer embedded in the (5,5‧-Br2-salophen) molecule gives rise to a large MAE of 41.6 or 51.4 meV, respectively, which is large enough to hold the spin orientation at room temperature. Analysis of the electronic structures reveals that the top Os and Ir atoms play the most important part in the total spin moments and large MAEs of the molecules.
Burg, G William; Prasad, Nitin; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; MacDonald, Allan H; Register, Leonard F; Tutuc, Emanuel
2018-04-27
We report the experimental observation of strongly enhanced tunneling between graphene bilayers through a WSe_{2} barrier when the graphene bilayers are populated with carriers of opposite polarity and equal density. The enhanced tunneling increases sharply in strength with decreasing temperature, and the tunneling current exhibits a vertical onset as a function of interlayer voltage at a temperature of 1.5 K. The strongly enhanced tunneling at overall neutrality departs markedly from single-particle model calculations that otherwise match the measured tunneling current-voltage characteristics well, and suggests the emergence of a many-body state with condensed interbilayer excitons when electrons and holes of equal densities populate the two layers.
NASA Astrophysics Data System (ADS)
Burg, G. William; Prasad, Nitin; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; MacDonald, Allan H.; Register, Leonard F.; Tutuc, Emanuel
2018-04-01
We report the experimental observation of strongly enhanced tunneling between graphene bilayers through a WSe2 barrier when the graphene bilayers are populated with carriers of opposite polarity and equal density. The enhanced tunneling increases sharply in strength with decreasing temperature, and the tunneling current exhibits a vertical onset as a function of interlayer voltage at a temperature of 1.5 K. The strongly enhanced tunneling at overall neutrality departs markedly from single-particle model calculations that otherwise match the measured tunneling current-voltage characteristics well, and suggests the emergence of a many-body state with condensed interbilayer excitons when electrons and holes of equal densities populate the two layers.
Dislocation density evolution in the process of high-temperature treatment and creep of EK-181 steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vershinina, Tatyana, E-mail: vershinina@bsu.edu.ru
2017-03-15
X-ray diffraction has been used to study the dislocation structure in ferrite-martensite high-chromium steel EK-181 in the states after heat treatment and high-temperature creep. The influence of heat treatment and stress on evolution of lath martensite structure was investigated by and electron back-scattered diffraction. The effect of nitrogen content on the total dislocation density, fraction of edge and screw dislocation segments are analyzed. - Highlights: •Fraction of edge dislocation in quenched state depends on nitrogen concentration. •Nitrogen affects the character of dislocation structure evolution during annealing. •Edge dislocations fraction influences on dislocation density after aging and creep.
NASA Technical Reports Server (NTRS)
Orme, John S.
1995-01-01
The performance seeking control algorithm optimizes total propulsion system performance. This adaptive, model-based optimization algorithm has been successfully flight demonstrated on two engines with differing levels of degradation. Models of the engine, nozzle, and inlet produce reliable, accurate estimates of engine performance. But, because of an observability problem, component levels of degradation cannot be accurately determined. Depending on engine-specific operating characteristics PSC achieves various levels performance improvement. For example, engines with more deterioration typically operate at higher turbine temperatures than less deteriorated engines. Thus when the PSC maximum thrust mode is applied, for example, there will be less temperature margin available to be traded for increasing thrust.
Red tea leaves infusion as a reducing and stabilizing agent in silver nanoparticles synthesis
NASA Astrophysics Data System (ADS)
Pluta, K.; Tryba, A. M.; Malina, D.; Sobczak-Kupiec, A.
2017-12-01
Due to the unique properties of silver nanoparticles there is growing interest in their applications. Current trends in nanotechnology are focused on developing a new technique to synthesize nanoparticles using biological methods associated with the use of plant extracts, fungi, bacteria or essential oils. These methods are a promising alternative to conventional approaches which can minimize the use of hazardous substances. The silver nanoparticles synthesis using red tea infusion as a reducing and stabilizing agent and their characteristics have been described. Total antioxidant capacity using DPPH radical and total content of phenolic compounds by Folin-Ciocalteau method were measured in tea infusion. Synthesis of silver nanoparticles was carried out using chemical reduction at various temperatures. Furthermore, the effect of tea infusion volume added to reaction mixture on nanoparticles’ properties was investigated. Finally, nanosilver suspensions were characterized by UV-vis spectrophotometer, dynamic light scattering (DLS) scanning electron microscope (SEM) and transmission electron microscope (TEM). Moreover, phytotoxicity of silver nanoparticles was determined using Phytotestkit microbiotest.
Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture.
Yuan, Jianmin
2002-10-01
An average-atom model is proposed to treat the electronic structures of hot and dense plasmas of mixture. It is assumed that the electron density consists of two parts. The first one is a uniform distribution with a constant value, which is equal to the electron density at the boundaries between the atoms. The second one is the total electron density minus the first constant distribution. The volume of each kind of atom is proportional to the sum of the charges of the second electron part and of the nucleus within each atomic sphere. By this way, one can make sure that electrical neutrality is satisfied within each atomic sphere. Because the integration of the electron charge within each atom needs the size of that atom in advance, the calculation is carried out in a usual self-consistent way. The occupation numbers of electron on the orbitals of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms. The wave functions and the orbital energies are calculated with the Dirac-Slater equations. As examples, the electronic structures of the mixture of Au and Cd, water (H2O), and CO2 at a few temperatures and densities are presented.
Development of a Temperature Sensor for Jet Engine and Space Missions Environments
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad; Culley, Dennis E.; Elbuluk, Malik
2008-01-01
Electronic systems in aerospace and in space exploration missions are expected to encounter extreme temperatures and wide thermal swings. To address the needs for extreme temperature electronics, research efforts exist at the NASA Glenn Research Center (GRC) to develop and evaluate electronics for extreme temperature operations, and to establish their reliability under extreme temperature operation and thermal cycling; conditions that are typical of both the aerospace and space environments. These efforts are supported by the NASA Fundamental Aeronautics/Subsonic Fixed Wing Program and by the NASA Electronic Parts and Packaging (NEPP) Program. This work reports on the results obtained on the development of a temperature sensor geared for use in harsh environments.
Simulated Beam Extraction Performance Characterization of a 50-cm Ion Thruster Discharge
NASA Technical Reports Server (NTRS)
Foster, John E.; Hubble, Aimee; Nowak-Gucker, Sarah; Davis, Chris; Peterson, Peter; Viges, Eric; Chen, Dave
2013-01-01
A 50 cm ion thruster is being developed to operate at >65 percent total efficiency at 11 kW, 2700 s Isp and over 25 kW, 4500 s Isp at a total efficiency of >75 percent. The engine is being developed to address the need for a multimode system that can provide a range of thrust-to- power to service national and commercial near-earth onboard propulsion needs such as station-keeping and orbit transfer. Operating characteristics of the 50 cm ion thruster were measured under simulated beam extraction. The discharge current distribution at the various magnet rings was measured over a range of operating conditions. The relationship between the anode current distribution and the resulting plasma uniformity and ion flux measured at the thruster exit plane is discussed. The thermal envelope will also be investigated through the monitoring of magnet temperatures over the range of discharge powers investigated. Discharge losses as a function of propellant utilization was also characterized at multiple simulated beam currents. Bulk plasma conditions such as electron temperature and electron density near engine centerline was measured over a range of operating conditions using an internal Langmuir probe. Sensitivity of discharge performance to chamber length is also discussed. This data acquired from this discharge study will be used in the refinement of a throttle table in anticipation for eventual beam extraction testing.
Electron drift velocity and mobility in graphene
NASA Astrophysics Data System (ADS)
Dong, Hai-Ming; Duan, Yi-Feng; Huang, Fei; Liu, Jin-Long
2018-04-01
We present a theoretical study of the electric transport properties of graphene-substrate systems. The drift velocity, mobility, and temperature of the electrons are self-consistently determined using the Boltzmann equilibrium equations. It is revealed that the electronic transport exhibits a distinctly nonlinear behavior. A very high mobility is achieved with the increase of the electric fields increase. The electron velocity is not completely saturated with the increase of the electric field. The temperature of the hot electrons depends quasi-linearly on the electric field. In addition, we show that the electron velocity, mobility, and electron temperature are sensitive to the electron density. These findings could be employed for the application of graphene for high-field nano-electronic devices.
Electron Heating in Low-Mach-number Perpendicular Shocks. I. Heating Mechanism
NASA Astrophysics Data System (ADS)
Guo, Xinyi; Sironi, Lorenzo; Narayan, Ramesh
2017-12-01
Recent X-ray observations of merger shocks in galaxy clusters have shown that the postshock plasma has two temperatures, with the protons hotter than the electrons. By means of two-dimensional particle-in-cell simulations, we study the physics of electron irreversible heating in low-Mach-number perpendicular shocks, for a representative case with sonic Mach number of 3 and plasma beta of 16. We find that two basic ingredients are needed for electron entropy production: (1) an electron temperature anisotropy, induced by field amplification coupled to adiabatic invariance; and (2) a mechanism to break the electron adiabatic invariance itself. In shocks, field amplification occurs at two major sites: at the shock ramp, where density compression leads to an increase of the frozen-in field; and farther downstream, where the shock-driven proton temperature anisotropy generates strong proton cyclotron and mirror modes. The electron temperature anisotropy induced by field amplification exceeds the threshold of the electron whistler instability. The growth of whistler waves breaks the electron adiabatic invariance and allows for efficient entropy production. For our reference run, the postshock electron temperature exceeds the adiabatic expectation by ≃ 15 % , resulting in an electron-to-proton temperature ratio of ≃ 0.45. We find that the electron heating efficiency displays only a weak dependence on mass ratio (less than ≃ 30 % drop, as we increase the mass ratio from {m}i/{m}e=49 up to {m}i/{m}e=1600). We develop an analytical model of electron irreversible heating and show that it is in excellent agreement with our simulation results.
NASA Astrophysics Data System (ADS)
Cai, Hua; Li, Fangjun; Xu, Yanglei; Bo, Tiezhu; Zhou, Dongzhan; Lian, Jiao; Li, Qing; Cao, Zhenbo; Xu, Tao; Wang, Caili; Liu, Hui; Li, Guoen; Jia, Jinsheng
2017-10-01
Micro-channel plate (MCP) is a two dimensional arrays of microscopic channel charge particle multiplier. Silicate composition and hydrogen reduction are keys to determine surface morphology of micro-channel wall in MCP. In this paper, lead silicate glass micro-channel plates in two different cesium contents (0at%, 0.5at%) and two different hydrogen reduction temperatures (400°C,450°C) were present. The nano-scale morphology, elements content and chemical states of microporous wall surface treated under different alkaline compositions and reduction conditions was investigated by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), respectively. Meanwhile, the electrical characterizations of MCP, including the bulk resistance, electron gain and the density of dark current, were measured in a Vacuum Photoelectron Imaging Test Facility (VPIT).The results indicated that the granular phase occurred on the surface of microporous wall and diffuses in bulk glass is an aggregate of Pb atom derived from the reduction of Pb2+. In micro-channel plate, the electron gain and bulk resistance were mainly correlated to particle size and distribution, the density of dark current (DDC) went up with the increasing root-mean-square roughness (RMS) on the microporous wall surface. Adding cesiums improved the size of Pb atomic aggregation, lowered the relative concentration of [Pb] reduced from Pb2+ and decreased the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a less dark current. Increasing hydrogen reduction temperature also improved the size of Pb atomic aggregation, but enhanced the relative concentration of [Pb] and enlarged the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a larger dark current. The reasons for the difference of electrical characteristics were discussed.
NASA Technical Reports Server (NTRS)
Ouzounov, D.; Pulinets, S.; Hattori, K.; Liu, J.-Y.; Yang. T. Y.; Parrot, M.; Kafatos, M.; Taylor, P.
2012-01-01
We carried out multi-sensors observations in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several physical and environmental parameters, which we found, associated with the earthquake processes: thermal infrared radiation, temperature and concentration of electrons in the ionosphere, radon/ion activities, and air temperature/humidity in the atmosphere. We used satellite and ground observations and interpreted them with the Lithosphere-Atmosphere- Ionosphere Coupling (LAIC) model, one of possible paradigms we study and support. We made two independent continues hind-cast investigations in Taiwan and Japan for total of 102 earthquakes (M>6) occurring from 2004-2011. We analyzed: (1) ionospheric electromagnetic radiation, plasma and energetic electron measurements from DEMETER (2) emitted long-wavelength radiation (OLR) from NOAA/AVHRR and NASA/EOS; (3) radon/ion variations (in situ data); and 4) GPS Total Electron Content (TEC) measurements collected from space and ground based observations. This joint analysis of ground and satellite data has shown that one to six (or more) days prior to the largest earthquakes there were anomalies in all of the analyzed physical observations. For the latest March 11 , 2011 Tohoku earthquake, our analysis shows again the same relationship between several independent observations characterizing the lithosphere /atmosphere coupling. On March 7th we found a rapid increase of emitted infrared radiation observed from satellite data and subsequently an anomaly developed near the epicenter. The GPS/TEC data indicated an increase and variation in electron density reaching a maximum value on March 8. Beginning from this day we confirmed an abnormal TEC variation over the epicenter in the lower ionosphere. These findings revealed the existence of atmospheric and ionospheric phenomena occurring prior to the 2011 Tohoku earthquake, which indicated new evidence of a distinct coupling between the lithosphere and atmosphere/ionosphere.
NASA Technical Reports Server (NTRS)
Dekany, Justin; Christensen, Justin; Dennison, J. R.; Jensen, Amberly Evans; Wilson, Gregory; Schneider, Todd; Bowers, Charles W.; Meloy, Robert
2015-01-01
Many contemporary spacecraft materials exhibit cathodoluminescence when exposed to electron flux from the space plasma environment. A quantitative, physics-based model has been developed to predict the intensity of the total glow as a function of incident electron current density and energy, temperature, and intrinsic material properties. We present a comparative study of the absolute spectral radiance for more than 20 types of dielectric and composite materials based on this model which spans more than three orders of magnitude. Variations in intensity are contrasted for different electron environments, different sizes of samples and sample sets, different testing and analysis methods, and data acquired at different test facilities. Together, these results allow us to estimate the accuracy and precision to which laboratory studies may be able to determine the response of spacecraft materials in the actual space environment. It also provides guidance as to the distribution of emissions that may be expected for sets of similar flight hardware under similar environmental conditions.
Electron cooling and finite potential drop in a magnetized plasma expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Sanchez, M.; Navarro-Cavallé, J.; Ahedo, E.
2015-05-15
The steady, collisionless, slender flow of a magnetized plasma into a surrounding vacuum is considered. The ion component is modeled as mono-energetic, while electrons are assumed Maxwellian upstream. The magnetic field has a convergent-divergent geometry, and attention is restricted to its paraxial region, so that 2D and drift effects are ignored. By using the conservation of energy and magnetic moment of particles and the quasi-neutrality condition, the ambipolar electric field and the distribution functions of both species are calculated self-consistently, paying attention to the existence of effective potential barriers associated to magnetic mirroring. The solution is used to find themore » total potential drop for a set of upstream conditions, plus the axial evolution of various moments of interest (density, temperatures, and heat fluxes). The results illuminate the behavior of magnetic nozzles, plasma jets, and other configurations of interest, showing, in particular, in the divergent plasma the collisionless cooling of electrons, and the generation of collisionless electron heat fluxes.« less
NASA Astrophysics Data System (ADS)
Ram Kumar, J.; Ananthakumar, S.; Moorthy Babu, S.
2017-01-01
A facile route to synthesize copper indium diselenide (CuInSe2) nanoparticles in aqueous medium was developed using mercaptoacetic acid (MAA) as capping agent. Two different mole ratios (5 and 10) of MAA were used to synthesize CuInSe2 nanoparticles at room temperature, as well as hydrothermal (high temperature) method. Powder x-ray diffraction analysis reveals that the nanoparticles exhibit chalcopyrite phase and the crystallinity increases with increasing the capping ratio. Raman analysis shows a strong band at 233 cm-1 due to the combination of B2 (E) modes. Broad absorption spectra were observed for the synthesized CuInSe2 nanoparticles. The effective surface capping by MAA on the nanoparticles surface was confirmed through attenuated total reflection-Fourier transform infrared spectral analysis. The thermal stability of the synthesized samples was analyzed through thermogravimetric analysis-differential scanning calorimetry. The change in morphology of the synthesized samples was analyzed through scanning electron microscope and it shows that the samples prepared at room temperature are spherical in shape, whereas hydrothermally synthesized samples were found to have nanorod- and nanoflake-like structures. Transmission electron microscope analysis further indicates larger grains for the hydrothermally prepared samples with 10 mol ratio of MAA. Comparative analyses were made for synthesizing CuInSe2 nanoparticles by two different methods to explore the role of ligand and influence of temperature.
Effects of gas temperature on NO(x) removal by dielectric barrier discharge.
Wang, Tao; Sun, Bao-Min; Xiao, Hai-Ping
2013-01-01
The purpose of this investigation is to discuss the effect of gas temperature on NO(x) removal by dielectric barrier discharge. The Boltzmann equation was used to analyse the electron distribution function in the reactor, and experiments were conducted to find out the effects of different temperatures. The calculation results show that, with a rise in the temperature, E/N increases, increasing the ionization rate. When the ratio of electric field strength to total gas density (E/N) rises from 50 to 150 Td, the ionization rate and electron mean energy increase by 2.0 x 10(5) and 2.3, respectively. The experiments show that in the NO/N2 system, when the temperature increases to 1 30 degrees C and the applied voltage is 11.1 kV, the discharge power is 44.7 W, which is higher than the discharge power of 35.4 W found at 25 degrees C; in the NO/O2/N2 system, an increase in the temperature increases the decomposition of active O3 species, producing a negative effect on NO oxidation; in the NO/O2/N2/C2H4 system, when the temperature increases, the quantity of active species HO2 increases and the NO removal reaction rate increases, reflecting an obvious improvement in the NO removal; and in the NO/O2/N2/C2H4/H2O system, at 25 degrees C, 90 degrees C, and 130 degrees C, when the energy density is 239.7 J L(-1), the NO removal efficiencies are 52.8%, 66.4%, and 71.0%, respectively.
Cold and warm electrons at comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Eriksson, A. I.; Engelhardt, I. A. D.; André, M.; Boström, R.; Edberg, N. J. T.; Johansson, F. L.; Odelstad, E.; Vigren, E.; Wahlund, J.-E.; Henri, P.; Lebreton, J.-P.; Miloch, W. J.; Paulsson, J. J. P.; Simon Wedlund, C.; Yang, L.; Karlsson, T.; Jarvinen, R.; Broiles, T.; Mandt, K.; Carr, C. M.; Galand, M.; Nilsson, H.; Norberg, C.
2017-09-01
Context. Strong electron cooling on the neutral gas in cometary comae has been predicted for a long time, but actual measurements of low electron temperature are scarce. Aims: Our aim is to demonstrate the existence of cold electrons in the inner coma of comet 67P/Churyumov-Gerasimenko and show filamentation of this plasma. Methods: In situ measurements of plasma density, electron temperature and spacecraft potential were carried out by the Rosetta Langmuir probe instrument, LAP. We also performed analytical modelling of the expanding two-temperature electron gas. Results: LAP data acquired within a few hundred km from the nucleus are dominated by a warm component with electron temperature typically 5-10 eV at all heliocentric distances covered (1.25 to 3.83 AU). A cold component, with temperature no higher than about 0.1 eV, appears in the data as short (few to few tens of seconds) pulses of high probe current, indicating local enhancement of plasma density as well as a decrease in electron temperature. These pulses first appeared around 3 AU and were seen for longer periods close to perihelion. The general pattern of pulse appearance follows that of neutral gas and plasma density. We have not identified any periods with only cold electrons present. The electron flux to Rosetta was always dominated by higher energies, driving the spacecraft potential to order - 10 V. Conclusions: The warm (5-10 eV) electron population observed throughout the mission is interpreted as electrons retaining the energy they obtained when released in the ionisation process. The sometimes observed cold populations with electron temperatures below 0.1 eV verify collisional cooling in the coma. The cold electrons were only observed together with the warm population. The general appearance of the cold population appears to be consistent with a Haser-like model, implicitly supporting also the coupling of ions to the neutral gas. The expanding cold plasma is unstable, forming filaments that we observe as pulses.
Electric force on plasma ions and the momentum of the ion-neutrals flow
NASA Astrophysics Data System (ADS)
Makrinich, G.; Fruchtman, A.; Zoler, D.; Boxman, R. L.
2018-05-01
The electric force on ions in plasma and the momentum flux carried by the mixed ion-neutral flow were measured and found to be equal. The experiment was performed in a direct-current gas discharge of cylindrical geometry with applied radial electric field and axial magnetic field. The unmagnetized plasma ions, neutralized by magnetized electrons, were accelerated radially outward transferring part of the gained momentum to neutrals. Measurements were taken for various argon gas flow rates between 13 and 100 Standard Cubic Centimeter per Minute, for a discharge current of 1.9 A and a magnetic field intensity of 136 G. The plasma density, electron temperature, and plasma potential were measured at various locations along the flow. These measurements were used to determine the local electric force on the ions. The total electric force on the plasma ions was then determined by integrating radially the local electric force. In parallel, the momentum flux of the mixed ion-neutral flow was determined by measuring the force exerted by the flow on a balance force meter (BFM). The maximal plasma density was between 6 × 1010 cm-3 and 5 × 1011 cm-3, the maximal electron temperature was between 8 eV and 25 eV, and the deduced maximal electric field was between 2200 V/m and 5800 V/m. The force exerted by the mixed ion-neutral flow on the BFM agreed with the total electric force on the plasma ions. This agreement showed that it is the electric force on the plasma ions that is the source of the momentum acquired by the mixed ion-neutral flow.
Electron Energetics in the Martian Dayside Ionosphere: Model Comparisons with MAVEN Data
NASA Technical Reports Server (NTRS)
Sakai, Shotaro; Andersson, Laila; Cravens, Thomas E.; Mitchell, David L.; Mazelle, Christian; Rahmati, Ali; Fowler, Christopher M.; Bougher, Stephen W.; Thiemann, Edward M. B.; Epavier, Francis G.;
2016-01-01
This paper presents a study of the energetics of the dayside ionosphere of Mars using models and data from several instruments on board the Mars Atmosphere and Volatile EvolutioN spacecraft. In particular, calculated photoelectron fluxes are compared with suprathermal electron fluxes measured by the Solar Wind Electron Analyzer, and calculated electron temperatures are compared with temperatures measured by the Langmuir Probe and Waves experiment. The major heat source for the thermal electrons is Coulomb heating from the suprathermal electron population, and cooling due to collisional rotational and vibrational CO2 dominates the energy loss. The models used in this study were largely able to reproduce the observed high topside ionosphere electron temperatures (e.g., 3000 K at 300 km altitude) without using a topside heat flux when magnetic field topologies consistent with the measured magnetic field were adopted. Magnetic topology affects both suprathermal electron transport and thermal electron heat conduction. The effects of using two different solar irradiance models were also investigated. In particular, photoelectron fluxes and electron temperatures found using the Heliospheric Environment Solar Spectrum Radiation irradiance were higher than those with the Flare Irradiance Spectrum Model-Mars. The electron temperature is shown to affect the O2(+) dissociative recombination rate coefficient, which in turn affects photochemical escape of oxygen from Mars.
Martian Electron Temperatures in the Sub Solar Region.
NASA Astrophysics Data System (ADS)
Fowler, C. M.; Peterson, W. K.; Andersson, L.; Thiemann, E.; Mayyasi, M.; Yelle, R. V.; Benna, M.; Espley, J. R.
2017-12-01
Observations from Viking, and MAVEN have shown that the observed ionospheric electron temperatures are systematically higher than those predicted by many models. Because electron temperature is a balance between heating, cooling, and heat transport, we systematically compare the magnitude of electron heating from photoelectrons, electron cooling and heat transport, as a function of altitude within 30 degrees of the sub solar point. MAVEN observations of electron temperature and density, EUV irradiance, neutral and ion composition are used to evaluate terms in the heat equation following the framework of Matta et al. (Icarus, 2014, doi:10.1016/j.icarus.2013.09.006). Our analysis is restricted to inbound orbits where the magnetic field is within 30 degrees of horizontal. MAVEN sampled the sub solar region in May 2015 and again in May 2017, in near northern spring equinoctial conditions. Solar activity was higher and the spacecraft sampled altitudes down to 120 km in 2015, compared to 160 km in 2017. We find that between 160 and 200 km the Maven electron temperatures are in thermal equilibrium, in the sub solar region, on field lines inclined less than 30 degrees to the horizontal. Above 200km the data suggest that heating from other sources, such as wave heating are significant. Below 160 km some of the discrepancy comes from measurement limitations. This is because the MAVEN instrument cannot resolve the lowest electron temperatures, and because some cooling rates scale as the difference between the electron and neutral temperatures.
NASA Astrophysics Data System (ADS)
Sharath Chandra, L. S.; Mondal, R.; Thamizhavel, A.; Dhar, S. K.; Roy, S. B.
2017-09-01
The temperature dependence of resistivity ρ(T) of a polycrystalline sample and a single crystal sample (current along the [0001] direction) of α - Titanium (Ti) at low temperatures is revisited to understand the electrical charge transport phenomena in this hexagonal closed pack metal. We show that the ρ(T) in single crystal Ti can be explained by considering the scattering of electrons due to electron-phonon, electron-electron, inter-band s-d and electron-impurity interactions, whereas the ρ(T) of polycrystalline Ti could not be explained by these interactions alone. We observed that the effects of the anisotropy of the hexagonal structure on the electronic band structure and the phonon dispersion need to be taken into account to explain ρ(T) of polycrystalline Ti. Two Debye temperatures corresponding to two different directions for the electron-phonon interactions and inter-band s-d scattering are needed to account the observed ρ(T) in polycrystalline Ti.
NASA Astrophysics Data System (ADS)
White, A. E.
2009-11-01
Multi-field fluctuation measurements provide opportunities for rigorous comparison between experiment and nonlinear gyrokinetic turbulence simulations. A unique set of diagnostics on DIII-D allows for simultaneous study of local, long-wavelength (0 < kθρs< 0.5) electron temperature and density fluctuations in the core plasma (0.4 < ρ< 0.8). Previous experiments in L-mode indicate that normalized electron temperature fluctuation levels (40 < f < 400,kHz) increase with radius from ˜0.4% at ρ= 0.5 to ˜2% at ρ=0.8, similar to simultaneously measured density fluctuations. Electron cyclotron heating (ECH) is used to increase Te, which increases electron temperature fluctuation levels and electron heat transport in the experiments. In contrast, long wavelength density fluctuation levels change very little. The different responses are consistent with increased TEM drive relative to ITG-mode drive. A new capability at DIII-D is the measurement of phase angle between electron temperature and density fluctuations using coupled correlation electron cyclotron emission radiometer and reflectometer diagnostics. Linear and nonlinear GYRO runs have been used to design validation experiments that focus on measurements of the phase angle. GYRO shows that if Te and ∇Te increase 50% in a beam-heated L-mode plasma (ρ=0.5), then the phase angle between electron temperature and density fluctuations decreases 30%-50% and electron temperature fluctuation levels increase a factor of two more than density fluctuations. Comparisons between these predictions and experimental results will be presented.
Electronic properties of high-temperature superconductors
NASA Astrophysics Data System (ADS)
Richert, Brent Armand
1989-08-01
A semiempirical tight-binding model was developed for the electronic energy bands, the local and total densities of states, and the atomic valences in the high temperature superconductors La(1.85)Sr(0.15)CuO4, YBaCu307, Bi2Sr2CuO6, Bi2CaSr2Cu2O8, Tl2Ba2CuO6, Tl2CaBa2Cu2O8, Tl2Ca2Ba2Cu3O10, TlCa3Ba2Cu4O11, BaPb(0.75)Bi(0.25)O3, and Ba(0.6)K(0.4)BiO3. Calculations of the changes in electronic properties associated with atomic substitutions in YBa2Cu3O7, Bi2CaSr2Cu2O8, and Tl2CaBa2Cu2O8 give results in agreement with expected chemical trends and consistent with observed changes in the superconducting properties. For example, substitution of Lead for Bismuth in BiMCaSr2Cu2O8 increases the concentration of hole carriers within the CuO2 planes. Similarly, doping with Mercury or Pb in TlMCaBa2Cu2O8 also affects the carrier concentration, with Hg creating holes and Pb destroying them. Oxygen vacancies in both La(1.85)Sr(0.15)CuO(4-y) and YBa2Cu3O(7-y) act as electron donors. This is consistent with the observations that oxygen vacancies degrade the superconductivity and metallic conductivity in these materials. Lanthanum vacancies in La2-xCuO4 donate holes, giving the same electronic effect as doping with divalent metal atoms or excess oxygen initially stoichiometric La2CuO4. A specific excitonic mechanism for high temperature superconductivity is proposed which requires insulating metal oxide layers adjacent to the superconducting planes.
Electron temperature critical gradient and transport stiffness in DIII-D
Smith, Sterling P.; Petty, Clinton C.; White, Anne E.; ...
2015-07-06
The electron energy flux has been probed as a function of electron temperature gradient on the DIII-D tokamak, in a continuing effort to validate turbulent transport models. In the scan of gradient, a critical electron temperature gradient has been found in the electron heat fluxes and stiffness at various radii in L-mode plasmas. The TGLF reduced turbulent transport model [G.M. Staebler et al, Phys. Plasmas 14, 055909 (2007)] and full gyrokinetic GYRO model [J. Candy and R.E. Waltz, J. Comput. Phys. 186, 545 (2003)] recover the general trend of increasing electron energy flux with increasing electron temperature gradient scale length,more » but they do not predict the absolute level of transport at all radii and gradients. Comparing the experimental observations of incremental (heat pulse) diffusivity and stiffness to the models’ reveals that TGLF reproduces the trends in increasing diffusivity and stiffness with increasing electron temperature gradient scale length with a critical gradient behavior. Furthermore, the critical gradient of TGLF is found to have a dependence on q 95, contrary to the independence of the experimental critical gradient from q 95.« less
Measuring electron temperature in the extended corona
NASA Technical Reports Server (NTRS)
Hassler, Donald M.; Gardner, L. D.; Kohl, John L.
1992-01-01
A technique for measuring electron temperature in the extended corona from the line profile of the electron scattered component of coronal H I Ly alpha produced by Thomson scattering of chromospheric Ly alpha emission is discussed. Because of the high thermal velocity of electrons at coronal temperatures (approximately 6800 km/s at T(sub e) = 1,500,000 K) the effect of nonthermal velocities and solar wind flows on the electron velocity distribution are negligible. However, the low electron mass which is responsible for the high thermal velocity also results in a very wide profile (approximately equal to 50 A). This wide profile, together with an intensity that is three orders of magnitude weaker than the resonantly scattered component of Ly alpha makes the direct measurement of T(sub e) a challenging observational problem. An evaluation of this technique based on simulated measurements is presented and the subsequent instrumental requirements necessary to make a meaningful determination of the electron temperature are discussed. Estimates of uncertainties in the measured electron temperature are related to critical instrument parameters such as grating stray light suppression.
Yang, Jia-Yue; Hu, Ming
2017-08-17
The power conversion efficiency of hybrid halide perovskite solar cells is profoundly influenced by the operating temperature. Here we investigate the temperature influence on the electronic band structure and optical absorption of cubic CH 3 NH 3 PbI 3 from first-principles by accounting for both the electron-phonon interaction and thermal expansion. Within the framework of density functional perturbation theory, the electron-phonon coupling induces slightly enlarged band gap and strongly broadened electronic relaxation time as temperature increases. The large broadening effect is mainly due to the presence of cation organic atoms. Consequently, the temperature-dependent absorption peak exhibits blue-shift position, decreased amplitude, and broadened width. This work uncovers the atomistic origin of temperature influence on the optical absorption of cubic CH 3 NH 3 PbI 3 and can provide guidance to design high-performance hybrid halide perovskite solar cells at different operating temperatures.
Electron dynamics and potential jump across slow mode shocks
NASA Technical Reports Server (NTRS)
Schwartz, Steven J.; Douglas, Fraser T.; Thomsen, Michelle F.; Feldman, William C.
1987-01-01
In the de Hoffmann-Teller reference frame, the cross-shock electric field is simply the thermoelectric field responsible for preserving charge neutrality. As such, it gives information regarding the heating and dissipation occurring within the shock. The total cross-shock potential can be determined by integrating a weighted electron pressure gradient through the shock, but this requires knowledge of the density and temperature profiles. Here, a recently proposed alternative approach relying on particle dynamics is exploited to provide an independent estimate of this potential. Both determinations are applied to slow mode shocks which form the plasma sheet boundary in the deep geomagnetic tail as observed by ISEE 3. The two methods correlate well. There is no indication of the expected transition from resistive to viscous shocks, although the highest Mach number shocks show the highest potentials. The implications of these results for the electron dissipation mechanisms and turbulence at the shock are discussed.
Alpha heating and isotopic mass effects in JET plasmas with sawteeth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budny, R. V.; Team, JET
2016-02-09
The alpha heating experiment in the Joint European Torus (JET) 1997 DTE1 campaign is re-examined. Several effects correlated with tritium content and thermal hydrogenic isotopic mass < A> weaken the conclusion that alpha heating was clearly observed. These effects delayed the occurrence of significant sawtooth crashes allowing the electron and ion temperatures T e and T i to achieve higher values. Under otherwise equal circumstances T e and T i were typically higher for discharges with higher < A >, and significant scaling of T i, T e, and total stored energy with < A > were observed. The highermore » T i led to increased ion–electron heating rates with magnitudes comparable to those computed for alpha electron heating. Rates of other heating/loss processes also had comparable magnitudes. Simulations of T e assuming the observed scaling of T i are qualitatively consistent with the measured profiles, without invoking alpha heating« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lü, X.; Schrottke, L.; Grahn, H. T.
We present scattering rates for electrons at longitudinal optical phonons within a model completely formulated in the Fourier domain. The total intersubband scattering rates are obtained by averaging over the intrasubband electron distributions. The rates consist of the Fourier components of the electron wave functions and a contribution depending only on the intersubband energies and the intrasubband carrier distributions. The energy-dependent part can be reproduced by a rational function, which allows for the separation of the scattering rates into a dipole-like contribution, an overlap-like contribution, and a contribution which can be neglected for low and intermediate carrier densities of themore » initial subband. For a balance between accuracy and computation time, the number of Fourier components can be adjusted. This approach facilitates an efficient design of complex heterostructures with realistic, temperature- and carrier density-dependent rates.« less
NASA Astrophysics Data System (ADS)
Khandy, Shakeel Ahmad; Gupta, Dinesh C.
2017-12-01
Ferromagnetic Heusler compounds have vast and imminent applications for novel devices, smart materials thanks to density functional theory (DFT) based simulations, which have scored out a new approach to study these materials. We forecast the structural stability of Co2TaZ alloys on the basis of total energy calculations and mechanical stability criteria. The elastic constants, robust spin-polarized ferromagnetism and electron densities in these half-metallic alloys are also discussed. The observed structural aspects calculated to predict the stability and equilibrium lattice parameters agree well with the experimental results. The elastic parameters like elastic constants, bulk, Young’s and shear moduli, poison’s and Pugh ratios, melting temperatures, etc have been put together to establish their mechanical properties. The elaborated electronic band structures along with indirect band gaps and spin polarization favour the application of these materials in spintronics and memory device technology.
NASA Astrophysics Data System (ADS)
Yang, Ruike; Zhu, Chuanshuai; Wei, Qun; Du, Zheng
2016-11-01
The lattice parameters, cell volume, elastic constants, bulk modulus, shear modulus, Young's modulus and Poisson's ratio are calculated at zero pressure, and their values are in excellent agreement with the available data, for TiN, Ti2N and Ti3N2. By using the elastic stability criteria, it is shown that the three structures are all stable. The brittle/ductile behaviors are assessed in the pressures from 0 GPa to 50 GPa. Our calculations present that the performances for TiN, Ti2N and Ti3N2 become from brittle to ductile with pressure rise. The Debye temperature rises as pressure increase. With increasing N content, the enhancement of covalent interactions and decline of metallicity lead to the increase of the micro-hardness. Their constant volume heat capacities increase rapidly in the lower temperature, at a given pressure. At higher temperature, the heat capacities are close to the Dulong-Petit limit, and the heat capacities of TiN and Ti2N are larger than that of c-BN. The thermal expansion coefficients of titanium nitrides are slightly larger than that of c-BN. The band structure and the total Density of States (DOS) are calculated at 0 GPa and 50 GPa. The results show that TiN and Ti2N present metallic character. Ti3N2 present semiconducting character. The band structures have some discrepancies between 0 GPa and 50 GPa. The extent of energy dispersion increases slightly at 50 GPa, which means that the itinerant character of electrons becomes stronger at 50 GPa. The main bonding peaks of TiN, Ti2N and Ti3N2 locate in the range from -10 to 10 eV, which originate from the contribution of valance electron numbers of Ti s, Ti p, Ti d, N s and N p orbits. We can also find that the pressure makes that the total DOS decrease at the Fermi level for Ti2N. The bonding behavior of N-Ti compounds is a combination of covalent and ionic nature. As N content increases, valence band broadens, valence electron concentration increases, and covalent interactions become stronger. This is reflected in shortening of Ti-N bonds.
Validation of multi-temperature nozzle flow code NOZNT
NASA Technical Reports Server (NTRS)
Park, Chul; Lee, Seung-Ho
1993-01-01
A computer code NOZNT (Nozzle in n-Temperatures), which calculates one-dimensional flows of partially dissociated and ionized air in an expanding nozzle, is tested against five existing sets of experimental data. The code accounts for: a) the differences among various temperatures, i.e., translational-rotational temperature, vibrational temperatures of individual molecular species, and electron-electronic temperature, b) radiative cooling, and c) the effects of impurities. The experimental data considered are: 1) the sodium line reversal and 2) the electron temperature and density data, both obtained in a shock tunnel, and 3) the spectroscopic emission data, 4) electron beam data on vibrational temperature, and 5) mass-spectrometric species concentration data, all obtained in arc-jet wind tunnels. It is shown that the impurities are most likely responsible for the observed phenomena in shock tunnels. For the arc-jet flows, impurities are inconsequential and the NOZNT code is validated by numerically reproducing the experimental data.
APPARATUS FOR MINIMIZING ENERGY LOSSES FROM MAGNETICALLY CONFINED VOLUMES OF HOT PLASMA
Post, R.F.
1961-10-01
An apparatus is described for controlling electron temperature in plasma confined in a Pyrotron magnetic containment field. Basically the device comprises means for directing low temperature electrons to the plasma in controlled quantities to maintain a predetermined optimum equilibrium electron temperature whereat minimum losses of plasma ions due to ambipolar effects and energy damping of the ions due to dynamical friction with the electrons occur. (AEC)
Passive Safety Features Evaluation of KIPT Neutron Source Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Zhaopeng; Gohar, Yousry
2016-06-01
Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have cooperated on the development, design, and construction of a neutron source facility. The facility was constructed at Kharkov, Ukraine and its commissioning process is underway. It will be used to conduct basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The facility has an electron accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100 MeV electrons. Tungsten or natural uranium is the target material for generating neutrons driving the subcritical assembly. The subcritical assemblymore » is composed of WWR-M2 - Russian fuel assemblies with U-235 enrichment of 19.7 wt%, surrounded by beryllium reflector assembles and graphite blocks. The subcritical assembly is seated in a water tank, which is a part of the primary cooling loop. During normal operation, the water coolant operates at room temperature and the total facility power is ~300 KW. The passive safety features of the facility are discussed in in this study. Monte Carlo computer code MCNPX was utilized in the analyses with ENDF/B-VII.0 nuclear data libraries. Negative reactivity temperature feedback was consistently observed, which is important for the facility safety performance. Due to the design of WWR-M2 fuel assemblies, slight water temperature increase and the corresponding water density decrease produce large reactivity drop, which offset the reactivity gain by mistakenly loading an additional fuel assembly. The increase of fuel temperature also causes sufficiently large reactivity decrease. This enhances the facility safety performance because fuel temperature increase provides prompt negative reactivity feedback. The reactivity variation due to an empty fuel position filled by water during the fuel loading process is examined. Also, the loading mistakes of removing beryllium reflector assemblies and replacing them with dummy assemblies were analyzed. In all these circumstances, the reactivity change results do not cause any safety concerns.« less
A strained silicon cold electron bolometer using Schottky contacts
NASA Astrophysics Data System (ADS)
Brien, T. L. R.; Ade, P. A. R.; Barry, P. S.; Dunscombe, C.; Leadley, D. R.; Morozov, D. V.; Myronov, M.; Parker, E. H. C.; Prest, M. J.; Prunnila, M.; Sudiwala, R. V.; Whall, T. E.; Mauskopf, P. D.
2014-07-01
We describe optical characterisation of a strained silicon cold electron bolometer (CEB), operating on a 350 mK stage, designed for absorption of millimetre-wave radiation. The silicon cold electron bolometer utilises Schottky contacts between a superconductor and an n++ doped silicon island to detect changes in the temperature of the charge carriers in the silicon, due to variations in absorbed radiation. By using strained silicon as the absorber, we decrease the electron-phonon coupling in the device and increase the responsivity to incoming power. The strained silicon absorber is coupled to a planar aluminium twin-slot antenna designed to couple to 160 GHz and that serves as the superconducting contacts. From the measured optical responsivity and spectral response, we calculate a maximum optical efficiency of 50% for radiation coupled into the device by the planar antenna and an overall noise equivalent power, referred to absorbed optical power, of 1.1×10-16 W Hz-1/2 when the detector is observing a 300 K source through a 4 K throughput limiting aperture. Even though this optical system is not optimized, we measure a system noise equivalent temperature difference of 6 mK Hz-1/2. We measure the noise of the device using a cross-correlation of time stream data, measured simultaneously with two junction field-effect transistor amplifiers, with a base correlated noise level of 300 pV Hz-1/2 and find that the total noise is consistent with a combination of photon noise, current shot noise, and electron-phonon thermal noise.
Study of Gamow-Teller strength and associated weak-rates on odd-A nuclei in stellar matter
NASA Astrophysics Data System (ADS)
Majid, Muhammad; Nabi, Jameel-Un; Riaz, Muhammad
In a recent study by Cole et al. [A. L. Cole et al., Phys. Rev. C 86 (2012) 015809], it was concluded that quasi-particle random phase approximation (QRPA) calculations show larger deviations and overestimate the total experimental Gamow-Teller (GT) strength. It was also concluded that QRPA calculated electron capture rates exhibit larger deviation than those derived from the measured GT strength distributions. The main purpose of this study is to probe the findings of the Cole et al. paper. This study gives useful information on the performance of QRPA-based nuclear models. As per simulation results, the capturing of electrons that occur on medium heavy isotopes have a significant role in decreasing the ratio of electron-to-baryon content of the stellar interior during the late stages of core evolution. We report the calculation of allowed charge-changing transitions strength for odd-A fp-shell nuclei (45Sc and 55Mn) by employing the deformed pn-QRPA approach. The computed GT transition strength is compared with previous theoretical calculations and measured data. For stellar applications, the corresponding electron capture rates are computed and compared with rates using previously calculated and measured GT values. Our finding shows that our calculated results are in decent accordance with measured data. At higher stellar temperature, our calculated electron capture rates are larger than those calculated by independent particle model (IPM) and shell model. It was further concluded that at low temperature and high density regions, the positron emission weak-rates from 45Sc and 55Mn may be neglected in simulation codes.
Electron-stimulated reactions in nanoscale water films adsorbed on α-Al 2O 3 (0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrik, Nikolay G.; Kimmel, Gregory A.
The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D2O) films adsorbed on -Al2O3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products ( D2, O2 and D¬2O) and the total sputtering yield increased with increasing D2O coverage up to ~15 water monolayers (i.e. ~15 1015 cm-2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D2O and H2O) demonstrated that the highest water decomposition yields occurred at the interfaces of the nanoscalemore » water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO2(110) interfaces. We propose that the relatively low activity of Al2O3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the molecular hydrogen.100 eV electrons are stopped in the H 2O portion of the isotopically-layered nanoscale film on α-Al 2O 3(0001) but D 2is produced at the D 2O/alumina interface by mobile electronic excitations and/or hydronium ions.« less
Understanding the transport properties of YNiBi half- Heusler alloy: An Ab-initio study
NASA Astrophysics Data System (ADS)
Sharma, Sonu; Kumar, Pradeep
2017-05-01
In the present work, we have studied the electronic and transport properties of YNiBi half-Heusler alloy by combining the first principles methods with the Boltzmann transport theory. The electronic band structure and total density of states plot suggest the presence of semiconducting ground state in the compound. The value of indirect band gap is found to be ˜0.21 eV. The origin of the band gap is associated primarily with the interaction between the Ni 3d and the Y 4d states. The room temperature value of Seebeck coefficient is ˜230 µVK-1. A moderate power factor of about 12×1014 μ Wcm-1 K-2 s-1 is obtained at 980 k.
Electron-stimulated reactions in nanoscale water films adsorbed on (alpha)-Al2O3(0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrik, Nikolay G.; Kimmel, Gregory A.
2018-05-11
The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D2O) films adsorbed on -Al2O3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products ( D2, O2 and D¬2O) and the total sputtering yield increased with increasing D2O coverage up to ~15 water monolayers (i.e. ~15 1015 cm-2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D2O and H2O) demonstrated that the highest water decomposition yields occurred at the interfaces of the nanoscalemore » water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO2(110) interfaces. We propose that the relatively low activity of Al2O3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the molecular hydrogen.« less
Electron-stimulated reactions in nanoscale water films adsorbed on α-Al 2 O 3 (0001)
Petrik, Nikolay G.; Kimmel, Greg A.
2018-04-11
The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D 2O) films adsorbed on an α-Al 2O 3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products (D 2, O 2 and D 2O) and the total sputtering yield increased with increasing D 2O coverage up to ~15 water monolayers (i.e. ~15 x 10 15 cm -2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D 2O and H 2O) demonstrated thatmore » the highest water decomposition yields occurred at the interfaces of the nanoscale water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO 2(110) interfaces. Here, we propose that the relatively low activity of Al 2O 3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the formation of molecular hydrogen.« less
Electronic and thermodynamic properties of layered Hf2Sfrom first-principles calculations
NASA Astrophysics Data System (ADS)
Nandadasa, Chandani; Yoon, Mina; Kim, Seong-Gon; Erwin, Steve; Kim, Sungho; Kim, Sung Wng; Lee, Kimoon
Theoretically we explored two stable phases of inorganic fullerene-like structure of the layered dihafnium sulfide (Hf2 S) . We investigated structural and electronic properties of the two phases of Hf2 S by using first-principles calculations. Our calculation identifies experimentally observed anti-NbS2 structure of Hf2 S . Our electronic calculation results indicate that the density of states of anti- NbS2 structure of Hf2 S at fermi level is less than that of the other phase of Hf2 S . To study the relative stability of different phases at finite temperature Helmholtz free energies of two phases are obtained using density functional theory and density functional perturbation theory. The free energy of the anti-NbS2 structure of Hf2 S always lies below the free energy of the other phase by confirming the most stable structure of Hf2 S . The phonon dispersion, phonon density of states including partial density of states and total density of states are obtained within density functional perturbation theory. Our calculated zero-pressure phonon dispersion curves confirm that the thermodynamic stability of Hf2 S structures. For further investigation of thermodynamic properties, the temperature dependency of thermal expansion, heat capacities at constant pressure and volume are evaluated within the quasiharmonic approximations (QHA).
Electron-stimulated reactions in nanoscale water films adsorbed on α-Al 2 O 3 (0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrik, Nikolay G.; Kimmel, Greg A.
The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D 2O) films adsorbed on an α-Al 2O 3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products (D 2, O 2 and D 2O) and the total sputtering yield increased with increasing D 2O coverage up to ~15 water monolayers (i.e. ~15 x 10 15 cm -2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D 2O and H 2O) demonstrated thatmore » the highest water decomposition yields occurred at the interfaces of the nanoscale water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO 2(110) interfaces. Here, we propose that the relatively low activity of Al 2O 3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the formation of molecular hydrogen.« less
NASA Astrophysics Data System (ADS)
Tanaka, Takahiro; Kato, Masahiro; Saito, Norio; Owada, Shigeki; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya
2018-06-01
This paper reports measurement of the absolute intensity of free-electron laser (FEL) and calibration of online intensity monitors for a brand-new FEL beamline BL1 at SPring-8 Angstrom Compact free-electron LAser (SACLA) in Japan. To measure the absolute intensity of FEL, we used a room-temperature calorimeter originally developed for FELs in the hard X-ray range. By using the calorimeter, we calibrated online intensity monitors of BL1, gas monitors (GMs), based on the photoionization of argon gas, in the photon energy range from 25 eV to 150 eV. A good correlation between signals obtained from the calorimeter and GMs was observed in the pulse energy range from 1 μJ to 100 μJ, where the upper limit is nearly equal to the maximum pulse energy at BL1. Moreover, the calibration result of the GMs, measured in terms of the spectral responsivity, demonstrates a characteristic photon-energy dependence owing to the occurrence of the Cooper minimum in the total ionization cross-section of argon gas. These results validate the feasibility of employing the room-temperature calorimeter in the measurement of absolute intensity of FELs over the specified photon energy range.
Thermal and electron transport studies on the valence fluctuating compound YbNiAl4
NASA Astrophysics Data System (ADS)
Falkowski, M.; Kowalczyk, A.
2018-05-01
We report the thermoelectric power S and thermal conductivity κ measurements on the valence fluctuating compound YbNiAl4, furthermore taking into account the impact of the applied magnetic field. We discuss our new results with revisiting the magnetic [χ(T)], transport [ρ(T)], and thermodynamic [Cp(T)] properties in order to better understand the phenomenon of thermal and electron transport in this compound. The field dependence of the magnetoresistivity data is also given. The temperature dependence of thermoelectric power S(T) was found to exhibit a similar behaviour as expected for Yb-based compounds with divalent or nearly divalent Yb ions. In addition, the values of total thermal conductivity as a function of temperature κ(T) of YbNiAl4 are fairly low compared to those of pure metals which may be linked to the fact that the conduction band is perturbed by strong hybridization. A deeper analysis of the specific heat revealed the low-T anomaly of the ratio Cp(T)/T3, most likely associated with the localized low-frequency oscillators in this alloy. In addition, the Kadowaki-Woods ratio and the Wilson ratio are discussed with respect to the electronic correlations in YbNiAl4.
Rocket measurements of electron temperature in the E region
NASA Technical Reports Server (NTRS)
Zimmerman, R. K., Jr.; Smith, L. G.
1980-01-01
The rocket borne equipment, experimental method, and data reduction techniques used in the measurement of electron temperature in the E region are fully described. Electron temperature profiles from one daytime equatorial flight and two nighttime midlatitude flights are discussed. The last of these three flights, Nike Apache 14.533, showed elevated E region temperatures which are interpreted as the heating effect of a stable auroral red arc.
Room Temperature Deposition Processes Mediated By Ultrafast Photo-Excited Hot Electrons
2014-01-30
mechanical through resonant energy transfer. The average electron temperature (Tel) during τ2 evolves as energy is lost through optical and acoustic ...through ballistic collisions and acoustic phonons. The large difference in heat capacities between electrons and the substrate leads to negligible...temperature pyrometer indicated only a ~30oC temperature gradient between the thermocouple location and the topside of the sample which faced the
Tan, Wenbing; Xi, Beidou; Wang, Guoan; Jiang, Jie; He, Xiaosong; Mao, Xuhui; Gao, Rutai; Huang, Caihong; Zhang, Hui; Li, Dan; Jia, Yufu; Yuan, Ying; Zhao, Xinyu
2017-03-21
The electron transfer capacities (ETCs) of soil humic substances (HSs) are linked to the type and abundance of redox-active functional moieties in their structure. Natural temperature can affect the chemical structure of natural organic matter by regulating their oxidative transformation and degradation in soil. However, it is unclear if there is a direct correlation between ETC of soil HS and mean annual temperature. In this study, we assess the response of the electron-accepting and -donating capacities (EAC and EDC) of soil HSs to temperature by analyzing HSs extracted from soil set along glacial-interglacial cycles through loess-palaeosol sequences and along natural temperature gradients through latitude and altitude transects. We show that the EAC and EDC of soil HSs increase and decrease, respectively, with increasing temperature. Increased temperature facilitates the prevalence of oxidative degradation and transformation of HS in soils, thus potentially promoting the preferentially oxidative degradation of phenol moieties of HS or the oxidative transformation of electron-donating phenol moieties to electron-accepting quinone moieties in the HS structure. Consequently, the EAC and EDC of HSs in soil increase and decrease, respectively. The results of this study could help to understand biogeochemical processes, wherein the redox functionality of soil organic matter is involved in the context of increasing temperature.
Experimentally Determined Plasma Parameters in a 30 cm Ion Engine
NASA Technical Reports Server (NTRS)
Sengupta, Anita; Goebel, Dan; Fitzgerald, Dennis; Owens, Al; Tynan, George; Dorner, Russ
2004-01-01
Single planar Langmuir probes and fiber optic probes are used to concurrently measure the plasma properties and neutral density variation in a 30cm diameter ion engine discharge chamber, from the immediate vicinity of the keeper to the near grid plasma region. The fiber optic probe consists of a collimated optical fiber recessed into a double bore ceramic tube fitted with a stainless steel light-limiting window. The optical fiber probe is used to measure the emission intensity of excited neutral xenon for a small volume of plasma, at various radial and axial locations. The single Langmuir probes, are used to generate current-voltage characteristics at a total of 140 spatial locations inside the discharge chamber. Assuming a maxwellian distribution for the electron population, the Langmuir probe traces provide spatially resolved measurements of plasma potential, electron temperature, and plasma density. Data reduction for the NSTAR TH8 and TH15 throttle points indicates an electron temperature range of 1 to 7.9 eV and an electron density range of 4e10 to le13 cm(sup -3), throughout the discharge chamber, consistent with the results in the literature. Plasma potential estimates, computed from the first derivative of the probe characteristic, indicate potential from 0.5V to 11V above the discharge voltage along the thruster centerline. These values are believed to be excessively high due to the sampling of the primary electron population along the thruster centerline. Relative neutral density profiles are also obtained with a fiber optic probe sampling photon flux from the 823.1 nm excited to ground state transition. Plasma parameter measurements and neutral density profiles will be presented as a function of probe location and engine discharge conditions. A discussion of the measured electron energy distribution function will also be presented, with regards to variation from pure maxwellian. It has been found that there is a distinct primary population found along the thruster centerline, which causes estimates of electron temperature, electron density, and plasma potential, to err on the high side, due this energetic population. Computation of the energy distribution fimction of the plasma clearly indicates the presence of primaries, whose presence become less obvious with radial distance from the main discharge plume.
High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu
2002-01-01
It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.
Xiao, Li; Isner, Austin; Waldrop, Krysta; Saad, Anthony; Takigawa, Doreen; Bhattacharyya, Dibakar
2014-01-01
Temperature and pH responsive polymers (poly(N-isopropylacrylamide) (PNIPAAm), and polyacrylic acid, PAA) were synthesized in one common macrofiltration PVDF membrane platform by pore-filling method. The microstructure and morphology of the PNIPAAm-PVDF, and PNIPAAm-FPAA-PVDF membranes were studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The membrane pore size was controlled by the swelling and shrinking of the PNIPAAm at the temperature around lower critical solution temperature (LCST). The composite membrane demonstrated a rapid and reversible swelling and deswelling change within a small temperature range. The controllable flux makes it possible to utilize this temperature responsive membrane as a valve to regulate filtration properties by temperature change. Dextran solution (Mw=2,000,000g/mol, 26 nm diameter) was used to evaluate the separation performance of the temperature responsive membranes. The ranges of dextran rejection are from 4% to 95% depending on the temperature, monomer amount and pressure. The full-scale membrane was also developed to confirm the feasibility of our bench-scale experimental results. The full-scale membrane also exhibited both temperature and pH responsivity. This system was also used for controlled nanoparticles synthesis and for dechlorination reaction. PMID:24944434
Statistical analysis of suprathermal electron drivers at 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Broiles, Thomas W.; Burch, J. L.; Chae, K.; Clark, G.; Cravens, T. E.; Eriksson, A.; Fuselier, S. A.; Frahm, R. A.; Gasc, S.; Goldstein, R.; Henri, P.; Koenders, C.; Livadiotis, G.; Mandt, K. E.; Mokashi, P.; Nemeth, Z.; Odelstad, E.; Rubin, M.; Samara, M.
2016-11-01
We use observations from the Ion and Electron Sensor (IES) on board the Rosetta spacecraft to study the relationship between the cometary suprathermal electrons and the drivers that affect their density and temperature. We fit the IES electron observations with the summation of two kappa distributions, which we characterize as a dense and warm population (˜10 cm-3 and ˜16 eV) and a rarefied and hot population (˜0.01 cm-3 and ˜43 eV). The parameters of our fitting technique determine the populations' density, temperature, and invariant kappa index. We focus our analysis on the warm population to determine its origin by comparing the density and temperature with the neutral density and magnetic field strength. We find that the warm electron population is actually two separate sub-populations: electron distributions with temperatures above 8.6 eV and electron distributions with temperatures below 8.6 eV. The two sub-populations have different relationships between their density and temperature. Moreover, the two sub-populations are affected by different drivers. The hotter sub-population temperature is strongly correlated with neutral density, while the cooler sub-population is unaffected by neutral density and is only weakly correlated with magnetic field strength. We suggest that the population with temperatures above 8.6 eV is being heated by lower hybrid waves driven by counterstreaming solar wind protons and newly formed, cometary ions created in localized, dense neutral streams. To the best of our knowledge, this represents the first observations of cometary electrons heated through wave-particle interactions.
NASA Technical Reports Server (NTRS)
Singh, J.; Jerman, G.; Bhat, B.; Poorman, R.
1993-01-01
Microstructure of wrought, laser, and electron-beam glazed NARloy-Z(Cu-3 wt.% Ag-0.5 wt.% Zr) was investigated for thermal stability at elevated temperatures (539 to 760 C (1,100 to 1,400 F)) up to 94 h. Optical and scanning electron microscopy and electron probe microanalysis were employed for studying microstructural evolution and kinetics of precipitation. Grain boundary precipitation and precipitate free zones (PFZ's) were observed in the wrought alloy after exposing to temperatures above 605 C (1,120 F). The fine-grained microstructure observed in the laser and electron-beam glazed NARloy-Z was much more stable at elevated temperatures. Microstructural changes correlated well with hardness measurements.
Electron-Temperature Dependence of the Recombination of NH4(+)((NH3)(sub n) Ions with Electrons
NASA Technical Reports Server (NTRS)
Skrzypkowski, M. P.; Johnson, R.
1997-01-01
The two-body recombination of NH4(+)(NH3)(sub 2,3) cluster-ions with electrons has been studied in an afterglow experiment in which the electron temperature T, was elevated by radio-frequency heating from 300 K up to 900 K. The recombination coefficients for the n = 2 and n = 3 cluster ions were found to be equal, alpha(sub 2, sup(2)) = alpha(sub 3, sup(2)) = (4.8 +/- 0.5) x 10(exp - 6)cu cm/s, and to vary with electron temperature as T(sub c, sup -0.65) rather than to be nearly temperature-independent as had been inferred from measurements in microwave-heated plasmas.
1989-05-01
Typical ranges are from 50 to 70 OF. If a chiller is dedicated to serving water-cooled electronic equipment, the chilled water temperature setpoint can...can be satisfied with 50 OF chilled water. The COP of the dedicated chiller is improved by raising the chilled water setpoint , and the total life-cycle...USACERL TECHNICAL REPORT E-89/10 May 1989 Studies in Optimizing HVAC Hardware for C31 Facilities US Army Corps of Engineers Construction Engineering
Lancaster, Kelly; Odom, Susan A; Jones, Simon C; Thayumanavan, S; Marder, Seth R; Brédas, Jean-Luc; Coropceanu, Veaceslav; Barlow, Stephen
2009-02-11
The electron spin resonance spectra of the radical cations of 4,4'-bis[di(4-methoxyphenyl)amino]tolane, E-4,4'-bis[di(4-methoxyphenyl)amino]stilbene, and E,E-1,4-bis{4-[di(4-methoxyphenyl)amino]styryl}benzene in dichloromethane exhibit five lines over a wide temperature range due to equivalent coupling to two 14N nuclei, indicating either delocalization between both nitrogen atoms or rapid intramolecular electron transfer on the electron spin resonance time scale. In contrast, those of the radical cations of 1,4-bis{4-[di(4-methoxyphenyl)amino]phenylethynyl}benzene and E,E-1,4-bis{4-[di(4-n-butoxyphenyl)amino]styryl}-2,5-dicyanobenzene exhibit line shapes that vary strongly with temperature, displaying five lines at room temperature and only three lines at ca. 190 K, indicative of slow electron transfer on the electron spin resonance time scale at low temperatures. The rates of intramolecular electron transfer in the latter compounds were obtained by simulation of the electron spin resonance spectra and display an Arrhenius temperature dependence. The activation barriers obtained from Arrhenius plots are significantly less than anticipated from Hush analyses of the intervalence bands when the diabatic electron-transfer distance, R, is equated to the N[symbol: see text]N distance. Comparison of optical and electron spin resonance data suggests that R is in fact only ca. 40% of the N[symbol: see text]N distance, while the Arrhenius prefactor indicates that the electron transfer falls in the adiabatic regime.
Electron temperature differences and double layers
NASA Technical Reports Server (NTRS)
Chan, C.; Hershkowitz, N.; Lonngren, K. E.
1983-01-01
Electron temperature differences across plasma double layers are studied experimentally. It is shown that the temperature differences across a double layer can be varied and are not a result of thermalization of the bump-on-tail distribution. The implications of these results for electron thermal energy transport in laser-pellet and tandem-mirror experiments are also discussed.
Evaluation of Advanced COTS Passive Devices for Extreme Temperature Operation
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad; Dones, Keishla R.
2009-01-01
Electronic sensors and circuits are often exposed to extreme temperatures in many of NASA deep space and planetary surface exploration missions. Electronics capable of operation in harsh environments would be beneficial as they simplify overall system design, relax thermal management constraints, and meet operational requirements. For example, cryogenic operation of electronic parts will improve reliability, increase energy density, and extend the operational lifetimes of space-based electronic systems. Similarly, electronic parts that are able to withstand and operate efficiently in high temperature environments will negate the need for thermal control elements and their associated structures, thereby reducing system size and weight, enhancing its reliability, improving its efficiency, and reducing cost. Passive devices play a critical role in the design of almost all electronic circuitry. To address the needs of systems for extreme temperature operation, some of the advanced and most recently introduced commercial-off-the-shelf (COTS) passive devices, which included resistors and capacitors, were examined for operation under a wide temperature regime. The types of resistors investigated included high temperature precision film, general purpose metal oxide, and wirewound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christon, S.P., Williams, D.J.; Mitchell, D.G.; Huang, C.Y.
1991-01-01
The authors have determined the spectral characteristics of central plasma sheet ions and electrons observed during 71 hours when geomagnetic activity was at moderate to high levels (AE {ge} 100nT). Particle data from the low-energy proton and electron differential energy analyzer and the medium energy particle instrument on ISEE 1 are combined to obtain differential energy spectra (measured in units of particles/cm{sup 2} s sr keV) in the kinetic energy range {approximately}30 eV/e to {approximately}1 MeV at geocentric radial distances >12R{sub e}. Nearly isotropic central plasma sheet total ion and electron populations were chosen for analysis and were measured tomore » be continuous particle distributions from the lowest to highest energies. During these high AE periods the >24 keV particle fluxes and the temperature of the entire particle distribution kT are significantly higher than during low AE periods (AE < 100 nT). The temperatures kT{sub i} and kT{sub e} are highly correlated during both quiet and disturbed periods. The active period spectral shape appears softer for ions and somewhat harder for electrons than during quiet periods. They find that the observed active period spectrum typically is complex and cannot be represented in general by a single functional form, as during quiet periods when it can be represented by the kappa distribution function. In a limited energy range near the knee of the ion spectra, the spectral shape can often be fit with a Maxwellian form, thus rolling over faster than the typical quiet time spectrum. Electron spectra also display this spectral characteristic, although at a lower occurence frequency than for ions. The electron spectra are predominantly kappalike at energies near and above the knee. The authors conclude that both ions and electrons participate in at least two separate accerlation mechanisms as geomagnetic activity evolves from low AE to high AE values.« less
Decomposition of carbon dioxide by recombining hydrogen plasma with ultralow electron temperature
NASA Astrophysics Data System (ADS)
Yamazaki, Masahiro; Nishiyama, Shusuke; Sasaki, Koichi
2018-06-01
We examined the rate coefficient for the decomposition of CO2 in low-pressure recombining hydrogen plasmas with electron temperatures between 0.15 and 0.45 eV, where the electron-impact dissociation was negligible. By using this ultralow-temperature plasma, we clearly observed decomposition processes via vibrational excited states. The rate coefficient of the overall reaction, CO2 + e → products, was 1.5 × 10‑17 m3/s in the ultralow-temperature plasma, which was 10 times larger than the decomposition rate coefficient of 2 × 10‑18 m3/s in an ionizing plasma with an electron temperature of 4 eV.
Ion and electron temperatures in the SUMMA mirror device by emission spectroscopy
NASA Technical Reports Server (NTRS)
Patch, R. W.; Voss, D. E.; Reinmann, J. J.; Snyder, A.
1974-01-01
Ion and electron temperatures, and ion drift were measured in a superconducting magnetic mirror apparatus by observing the Doppler-broadened charge-exchange component of the 667.8 and 587.6 nanometer He lines in He plasma, and the H sub alpha and H sub beta lines in H2 plasma. The second moment of the line profiles was used as the parameter for determining ion temperature. Corrections for magnetic splitting, fine structure, monochromator slit function, and variation in charge-exchange cross section with energy are included. Electron temperatures were measured by the line ratio method for the corona model, and correlations of ion and electron temperatures with plasma parameters are presented.
Nanoelectronic primary thermometry below 4 mK
Bradley, D. I.; George, R. E.; Gunnarsson, D.; Haley, R. P.; Heikkinen, H.; Pashkin, Yu. A.; Penttilä, J.; Prance, J. R.; Prunnila, M.; Roschier, L.; Sarsby, M.
2016-01-01
Cooling nanoelectronic structures to millikelvin temperatures presents extreme challenges in maintaining thermal contact between the electrons in the device and an external cold bath. It is typically found that when nanoscale devices are cooled to ∼10 mK the electrons are significantly overheated. Here we report the cooling of electrons in nanoelectronic Coulomb blockade thermometers below 4 mK. The low operating temperature is attributed to an optimized design that incorporates cooling fins with a high electron–phonon coupling and on-chip electronic filters, combined with low-noise electronic measurements. By immersing a Coulomb blockade thermometer in the 3He/4He refrigerant of a dilution refrigerator, we measure a lowest electron temperature of 3.7 mK and a trend to a saturated electron temperature approaching 3 mK. This work demonstrates how nanoelectronic samples can be cooled further into the low-millikelvin range. PMID:26816217
Anomalous inverse bremsstrahlung heating of laser-driven plasmas
NASA Astrophysics Data System (ADS)
Kundu, Mrityunjay
2016-05-01
Absorption of laser light in plasma via electron-ion collision (inverse bremsstrahlung) is known to decrease with the laser intensity as I 0 -3/2 or with the electron temperature as T e -3/2 where Coulomb logarithm ln Λ = 0.5ln(1 + k 2 min/k 2 max) in the expression of electron-ion collision frequency v ei is assumed to be independent of ponderomotive velocity v 0 = E0/ω which is unjustified. Here k -1 min = v th/max(ω, ω p), and k -1 max = Z/v 2 th are maximum and minimum cut-off distances of the colliding electron from the ion, v th = √T e is its thermal velocity, ω, ω p are laser and plasma frequency. Earlier with a total velocity v = (v 2 0 + v 2 th)1/2 dependent ln Λ(v) it was reported that v ei and corresponding fractional laser absorption (α) initially increases with increasing intensity, reaches a maximum value, and then fall according to the conventional I 0 -3/2 scaling. This anomalous increase in v ei and α may be objected due to an artifact introduced in ln Λ(v) through k-1 min ∝ v. Here we show similar anomalous increase of v ei and α versus I 0 (in the low temperature and under-dense density regime) with quantum and classical kinetic models of v ei without using ln Λ, but a proper choice of the total velocity dependent inverse cut-off length kmax -1 ∝ v 2 (in classical case) or kmax ∝ v (in quantum case). For a given I 0 < 5 × 1014Wcm-2, v ei versus T e also exhibits so far unnoticed identical anomalous increase as v ei versus Io, even if the conventional k max ∝ v2 th, or k max ∝ v th is chosen. However, for higher T e > 15 eV, anomalous growth of vei and a disappear. The total velocity dependent k max in kinetic models, as proposed here, may explain anomalous increase of a with I 0 measured in some earlier laser-plasma experiments. This work may be important to understand collisional absorption in the under-dense pre-plasma region due to low intensity pre-pulses and amplified spontaneous emission (ASE) pedestal in the context of laser induced inertial confinement fusion.
Ren, Yao; Chen, Yu; Hu, Bohan; Wu, Hui; Lai, Furao; Li, Xiaofeng
2015-12-01
An efficient microwave-assisted extraction (MAE) technique was applied to isolate total steroid saponins from Dioscorea zingiberensis C.H. Wright (DZW). The optimal extracting conditions were established as 75% ethanol as solvent, ratio of solid/liquid 1:20 (g/ml), temperature 75 °C, irradiation power 600 W and three extraction cycles of 6 min each. Scanning electron microscopy (SEM) images of DZW processed by four different extractions provided visual evidence of the disruption effect on DZW. Diosgenin was quantified by HPLC and examined further by LC-ESI/MS after acid hydrolysis. Total steroid saponins were calculated using diosgenin from total steroid saponins. The MAE procedure was optimized, validated and compared with other conventional extraction processes. This report provides a convenient technology for the extraction and quantification of total saponins of DZW combining MAE with HPLC and LC-ESI/MS for the first time. Copyright © 2015 Elsevier Inc. All rights reserved.
Calculating the electron temperature in the lightning channel by continuous spectrum
NASA Astrophysics Data System (ADS)
Xiangcheng, DONG; Jianhong, CHEN; Xiufang, WEI; Ping, YUAN
2017-12-01
Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.
NASA Astrophysics Data System (ADS)
Kostenko, O. F.; Andreev, N. E.; Rosmej, O. N.
2018-03-01
A two-temperature hot electron energy distribution has been revealed by modeling of bremsstrahlung emission, measured by the radiation attenuation and half-shade methods, and Kα emission from a massive silver cylinder irradiated by a subpicosecond s-polarized laser pulse with a peak intensity of about 2 × 1019 W/cm2. To deduce parameters of the hot electron spectrum, we have developed semi-analytical models of generation and measurements of the x-rays. The models are based on analytical expressions and tabulated data on electron stopping power as well as cross-sections of generation and absorption of the x-rays. The Kα emission from thin silver foils deposited on low-Z substrates, both conducting and nonconducting, has been used to verify the developed models and obtained hot electron spectrum. The obtained temperatures of the colder and hotter electron components are in agreement with the values predicted by kinetic simulations of the cone-guided approach to fast ignition [Chrisman et al., Phys. Plasmas 15, 056309 (2008)]. The temperature of the low-energy component of the accelerated electron spectrum is well below the ponderomotive scaling and Beg's law. We have obtained relatively low conversion efficiency of laser energy into the energy of hot electrons propagating through the solid target of about 2%. It is demonstrated that the assumption about a single-temperature hot electron energy distribution with the slope temperature described by the ponderomotive scaling relationship, without detailed analysis of the hot electron spectrum, can lead to strong overestimation of the laser-to-electron energy-conversion efficiency, in particular, the conversion efficiency of laser energy into the high-temperature component of the hot electron distribution.
Electron-lattice coupling after high-energy deposition in aluminum
NASA Astrophysics Data System (ADS)
Gorbunov, S. A.; Medvedev, N. A.; Terekhin, P. N.; Volkov, A. E.
2015-07-01
This paper presents an analysis of the parameters of highly-excited electron subsystem of aluminum, appearing e.g. after swift heavy ion impact or laser pulse irradiation. For elevated electron temperatures, the electron heat capacity and the screening parameter are evaluated. The electron-phonon approximation of electron-lattice coupling is compared with its precise formulation based on the dynamic structure factor (DSF) formalism. The DSF formalism takes into account collective response of a lattice to excitation including all possible limit cases of this response. In particular, it automatically provides realization of electron-phonon coupling as the low-temperature limit, while switching to the plasma-limit for high electron temperatures. Aluminum is chosen as a good model system for illustration of the presented methodology.
Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements
NASA Technical Reports Server (NTRS)
Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen
2006-01-01
A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.
Size-selective breaking of the core-shell structure of gallium nanoparticles.
Catalán Gómez, Sergio; Redondo-Cubero, Andres; Palomares Simon, Francisco Javier; Vazquez Burgos, Luis; Nogales, Emilio; Nucciarelli, Flavio; Mendez, Bianchi; Gordillo, Nuria; Pau, Jose Luis
2018-06-11
Core-shell gallium nanoparticles (Ga NPs) have recently been proposed as an ultraviolet plasmonic material for different applications but only at room temperature. Here, the thermal stability as a function of the size of the NPs is reported over a wide range of temperatures. We analyse the chemical and structural properties of the oxide shell by x-ray photoelectron spectroscopy and atomic force microscopy. We demonstrate the inverse dependence of the shell breaking temperature with the size of the NPs. Spectroscopic ellipsometry is used for tracking the rupture and its mechanism is systematically investigated by scanning electron microscopy, grazing incidence x-ray diffraction and cathodoluminescence. Taking advantage of the thermal stability of the NPs, we perform complete oxidations that lead to homogenous gallium oxide NPs. Thus, this study set the physical limits of Ga NPs to last at high temperatures, and opens up the possibility to achieve totally oxidized NPs while keeping their sphericity. © 2018 IOP Publishing Ltd.
Low-temperature magnetic properties of GdCoIn5
NASA Astrophysics Data System (ADS)
Betancourth, D.; Facio, J. I.; Pedrazzini, P.; Jesus, C. B. R.; Pagliuso, P. G.; Vildosola, V.; Cornaglia, Pablo S.; García, D. J.; Correa, V. F.
2015-01-01
A comprehensive experimental and theoretical study of the low temperature properties of GdCoIn5 was performed. Specific heat, thermal expansion, magnetization and electrical resistivity were measured in good quality single crystals down to 4He temperatures. All the experiments show a second-order-like phase transition at 30 K probably associated with the onset of antiferromagnetic order. The magnetic susceptibility shows a pronounced anisotropy below TN with an easy magnetic axis perpendicular to the crystallographic ĉ-axis. Total energy GGA+U calculations indicate a ground state with magnetic moments localized at the Gd ions and allowed a determination of the Gd-Gd magnetic interactions. Band structure calculations of the electron and phonon contributions to the specific heat together with Quantum Monte Carlo calculations of the magnetic contributions show a very good agreement with the experimental data. Comparison between experiment and calculations suggests a significant anharmonic contribution to the specific heat at high temperature (T ≳ 100 K).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagor, Anna; Pawlowski, Antoni; Pietraszko, Adam
2009-03-15
Single crystals of proustite Ag{sub 3}AsS{sub 3} have been characterised by impedance spectroscopy and single-crystal X-ray diffraction in the temperature ranges of 295-543 and 295-695 K, respectively. An analysis of the one-particle potential of silver atoms shows that in the whole measuring temperature range defects in the silver substructure play a major role in the conduction mechanism. Furthermore, the silver transfer is equally probable within silver chains and spirals, as well as between chains and spirals. The trigonal R3c room temperature phase does not change until the decomposition of the crystal. The electric anomaly of the first-order character which appearsmore » near 502 K is related to an increase in the electronic component of the total conductivity resulting from Ag{sub 2}S deposition at the sample surface. - Joint probability density function map of silver atoms at T=695 K.« less
Reliability and Qualification of Hardware to Enhance the Mission Assurance of JPL/NASA Projects
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni
2010-01-01
Packaging Qualification and Verification (PQV) and life testing of advanced electronic packaging, mechanical assemblies (motors/actuators), and interconnect technologies (flip-chip), platinum temperature thermometer attachment processes, and various other types of hardware for Mars Exploration Rover (MER)/Mars Science Laboratory (MSL), and JUNO flight projects was performed to enhance the mission assurance. The qualification of hardware under extreme cold to hot temperatures was performed with reference to various project requirements. The flight like packages, assemblies, test coupons, and subassemblies were selected for the study to survive three times the total number of expected temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware including all relevant manufacturing, ground operations, and mission phases. Qualification/life testing was performed by subjecting flight-like qualification hardware to the environmental temperature extremes and assessing any structural failures, mechanical failures or degradation in electrical performance due to either overstress or thermal cycle fatigue. Experimental flight qualification test results will be described in this presentation.
Analysis of hydrogen plasma in MPCVD reactor
NASA Astrophysics Data System (ADS)
Shivkumar, Gayathri
The aim of this work is to build a numerical model that can predict the plasma properties of hydrogen plasmas inside a Seki Technotron Corp. AX5200S MPCVD system so that it may be used to understand and optimize the conditions for the growth of carbon nanostructures. A 2D model of the system is used in the finite element high frequency Maxwell solver and heat trasfer solver in COMSOL Multiphysics, where the solvers are coupled with user defined functions to analyze the plasma. A simplified chemistry model is formulated in order to determine the electron temperature in the plasma. This is used in the UDFs which calculate the electron number density as well as electron temperature. A Boltzmann equation solver for electrons in weakly ionized gases under uniform electric fields, called BOLSIG+, is used to obtain certain input parameters required for these UDFs. The system is modeled for several reactor geometries at pressures of 10 Torr and 30 Torr and powers ranging from 300 W to 700 W. The variation of plasma characteristics with changes in input conditions is studied and the electric field, electron number density, electron temperature and gas temperature are seen to increase with increasing power. Electric field, electron number density and electron temperature decrease and gas temperature increases with increasing pressure. The modeling results are compared with experimental measurements and a good agreement is found after calibrating the parameter gamma in Funer's model to match experimental electron number densities. The gas temperature is seen to have a weak dependence on power and a strong dependence on gas pressure. On an average, the gas temperature at a point 5 mm above the center of the puck increases from about 1000 K at a pressure of 10 Torr to about 1500 K at 30 Torr. The inclusion of the pillar produces an increase in the maximum electron number density of approximately 50%; it is higher under some conditions. It increases the maximum electron temperature by about 70% and at 500 W and 30 Torr, the maximum gas temperature is seen to increase by 50%. The effect of susceptor position is studied and it is seen that the only condition favorable to growth would be to raise it by less than 25 mm from the initial reference position or to maintain it at the same level.
Cryogenic Quenching Process for Electronic Part Screening
NASA Technical Reports Server (NTRS)
Sheldon, Douglas J.; Cressler, John
2011-01-01
The use of electronic parts at cryogenic temperatures (less than 100 C) for extreme environments is not well controlled or developed from a product quality and reliability point of view. This is in contrast to the very rigorous and well-documented procedures to qualify electronic parts for mission use in the 55 to 125 C temperature range. A similarly rigorous methodology for screening and evaluating electronic parts needs to be developed so that mission planners can expect the same level of high reliability performance for parts operated at cryogenic temperatures. A formal methodology for screening and qualifying electronic parts at cryogenic temperatures has been proposed. The methodology focuses on the base physics of failure of the devices at cryogenic temperatures. All electronic part reliability is based on the bathtub curve, high amounts of initial failures (infant mortals), a long period of normal use (random failures), and then an increasing number of failures (end of life). Unique to this is the development of custom screening procedures to eliminate early failures at cold temperatures. The ability to screen out defects will specifically impact reliability at cold temperatures. Cryogenic reliability is limited by electron trap creation in the oxide and defect sites at conductor interfaces. Non-uniform conduction processes due to process marginalities will be magnified at cryogenic temperatures. Carrier mobilities change by orders of magnitude at cryogenic temperatures, significantly enhancing the effects of electric field. Marginal contacts, impurities in oxides, and defects in conductor/conductor interfaces can all be magnified at low temperatures. The novelty is the use of an ultra-low temperature, short-duration quenching process for defect screening. The quenching process is designed to identify those defects that will precisely (and negatively) affect long-term, cryogenic part operation. This quenching process occurs at a temperature that is at least 25 C colder than the coldest expected operating temperature. This quenching process is the opposite of the standard burn-in procedure. Normal burn-in raises the temperature (and voltage) to activate quickly any possible manufacturing defects remaining in the device that were not already rejected at a functional test step. The proposed inverse burn-in or quenching process is custom-tailored to the electronic device being used. The doping profiles, materials, minimum dimensions, interfaces, and thermal expansion coefficients are all taken into account in determining the ramp rate, dwell time, and temperature.
Solar Eclipse-Induced Changes in the Ionosphere over the Continental US
NASA Astrophysics Data System (ADS)
Erickson, P. J.; Zhang, S.; Goncharenko, L. P.; Coster, A. J.; Hysell, D. L.; Sulzer, M. P.; Vierinen, J.
2017-12-01
For the first time in 26 years, a total solar eclipse occurred over the continental United States on 21 August 2017, between 16:00-20:00 UT. We report on American solar eclipse observations of the upper atmosphere, conducted by a team led by MIT Haystack Observatory. Efforts measured ionospheric and thermospheric eclipse perturbations. Although eclipse effects have been studied for more than 50 years, recent major sensitivity and resolution advances using radio-based techniques are providing new information on the eclipse ionosphere-thermosphere-mesosphere (ITM) system response. Our study was focused on quantifying eclipse effects on (1) traveling ionospheric disturbances (TIDs) and atmospheric gravity waves (AGWs); (2) spatial ionospheric variations associated with the eclipse; and (3) altitudinal and temporal ionospheric profile variations. We present selected early findings on ITM eclipse response including a dense global network of 6000 GNSS total electron content (TEC) receivers (100 million measurements per day; 1x1 degree spatial grid) and the Millstone Hill and Arecibo incoherent scatter radars. TEC depletions of up to 60% in magnitude were associated with the eclipse umbra and penumbra and consistently trailed the eclipse totality center. TEC enhancements associated with prominent orographic features were observed in the western US due to complex interactions as the lower atmosphere cooled in response to decreasing EUV energy inputs. Strong TIDs in the form of bow waves, stern waves, and a stern wake were observed in TEC data. Altitude-resolved plasma parameter profiles from Millstone Hill saw a nearly 50% decrease in F region electron density in vertical profiles, accompanied by a corresponding 200-250 K decrease in electron temperature. Wide field Millstone Hill radar scans showed similar decreases in electron density to the southwest, maximizing along the line of closest approach to totality. Data is available to the research community through the MIT Haystack Madrigal system. Alongside a summary of observations, we will also present preliminary quantitative comparisons with several ongoing modeling efforts.
NASA Astrophysics Data System (ADS)
Paloma, Cynthia S.
The plasma electron temperature (Te) plays a critical role in a tokamak nu- clear fusion reactor since temperatures on the order of 108K are required to achieve fusion conditions. Many plasma properties in a tokamak nuclear fusion reactor are modeled by partial differential equations (PDE's) because they depend not only on time but also on space. In particular, the dynamics of the electron temperature is governed by a PDE referred to as the Electron Heat Transport Equation (EHTE). In this work, a numerical method is developed to solve the EHTE based on a custom finite-difference technique. The solution of the EHTE is compared to temperature profiles obtained by using TRANSP, a sophisticated plasma transport code, for specific discharges from the DIII-D tokamak, located at the DIII-D National Fusion Facility in San Diego, CA. The thermal conductivity (also called thermal diffusivity) of the electrons (Xe) is a plasma parameter that plays a critical role in the EHTE since it indicates how the electron temperature diffusion varies across the minor effective radius of the tokamak. TRANSP approximates Xe through a curve-fitting technique to match experimentally measured electron temperature profiles. While complex physics-based model have been proposed for Xe, there is a lack of a simple mathematical model for the thermal diffusivity that could be used for control design. In this work, a model for Xe is proposed based on a scaling law involving key plasma variables such as the electron temperature (Te), the electron density (ne), and the safety factor (q). An optimization algorithm is developed based on the Sequential Quadratic Programming (SQP) technique to optimize the scaling factors appearing in the proposed model so that the predicted electron temperature and magnetic flux profiles match predefined target profiles in the best possible way. A simulation study summarizing the outcomes of the optimization procedure is presented to illustrate the potential of the proposed modeling method.
Ultrasound Assisted Extraction of Phenolic Compounds from Peaches and Pumpkins
Altemimi, Ammar; Watson, Dennis G.; Choudhary, Ruplal; Dasari, Mallika R.; Lightfoot, David A.
2016-01-01
The ultrasound-assisted extraction (UAE) method was used to optimize the extraction of phenolic compounds from pumpkins and peaches. The response surface methodology (RSM) was used to study the effects of three independent variables each with three treatments. They included extraction temperatures (30, 40 and 50°C), ultrasonic power levels (30, 50 and 70%) and extraction times (10, 20 and 30 min). The optimal conditions for extractions of total phenolics from pumpkins were inferred to be a temperature of 41.45°C, a power of 44.60% and a time of 25.67 min. However, an extraction temperature of 40.99°C, power of 56.01% and time of 25.71 min was optimal for recovery of free radical scavenging activity (measured by 1, 1-diphenyl-2-picrylhydrazyl (DPPH) reduction). The optimal conditions for peach extracts were an extraction temperature of 41.53°C, power of 43.99% and time of 27.86 min for total phenolics. However, an extraction temperature of 41.60°C, power of 44.88% and time of 27.49 min was optimal for free radical scavenging activity (judged by from DPPH reduction). Further, the UAE processes were significantly better than solvent extractions without ultrasound. By electron microscopy it was concluded that ultrasonic processing caused damage in cells for all treated samples (pumpkin, peach). However, the FTIR spectra did not show any significant changes in chemical structures caused by either ultrasonic processing or solvent extraction. PMID:26885655
Decay of the electron number density in the nitrogen afterglow using a hairpin resonator probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siefert, Nicholas S.; Ganguly, Biswa N.; Sands, Brian L.
A hairpin resonator was used to measure the electron number density in the afterglow of a nitrogen glow discharge (p=0.25-0.75 Torr). Electron number densities were measured using a time-dependent approach similar to the approach used by Spencer et al. [J. Phys. D 20, 923 (1987)]. The decay time of the electron number density was used to determine the electron temperature in the afterglow, assuming a loss of electrons via ambipolar diffusion to the walls. The electron temperature in the near afterglow remained between 0.4 and 0.6 eV, depending on pressure. This confirms the work by Guerra et al. [IEEE Trans.more » Plasma. Sci. 31, 542 (2003)], who demonstrated experimentally and numerically that the electron temperature stays significantly above room temperature via superelastic collisions with highly vibrationally excited ground state molecules and metastables, such as A {sup 3}{sigma}{sub u}{sup +}.« less
Huili, Wang; Xiaokai, Zhao; Meili, Lin; Dahlgren, Randy A.; Wei, Chen; Jaiopeng, Zhou; Chengyang, Xu; Chunlei, Jin; Yi, Xu; Xuedong, Wang; Li, Ding; Qiyu, Bao
2013-01-01
Arthrospira (Spirulina) platensis (ASP) is a representative filamentous, non-N2-fixing cyanobacterium that has great potential to enhance the food supply and possesses several valuable physiological features. ASP tolerates high and low temperatures along with highly alkaline and salty environments, and can strongly resist oxidation and irradiation. Based on genomic sequencing of ASP, we compared the protein expression profiles of this organism under different temperature conditions (15°C, 35°Cand 45°C) using 2-DE and peptide mass fingerprinting techniques. A total of 122 proteins having a significant differential expression response to temperature were retrieved. Of the positively expressed proteins, the homologies of 116 ASP proteins were found in Arthrospira (81 proteins in Arthrospira platensis str. Paraca and 35 in Arthrospira maxima CS-328). The other 6 proteins have high homology with other microorganisms. We classified the 122 differentially expressed positive proteins into 14 functions using the COG database, and characterized their respective KEGG metabolism pathways. The results demonstrated that these differentially expressed proteins are mainly involved in post-translational modification (protein turnover, chaperones), energy metabolism (photosynthesis, respiratory electron transport), translation (ribosomal structure and biogenesis) and carbohydrate transport and metabolism. Others proteins were related to amino acid transport and metabolism, cell envelope biogenesis, coenzyme metabolism and signal transduction mechanisms. Results implied that these proteins can perform predictable roles in rendering ASP resistance against low and high temperatures. Subsequently, we determined the transcription level of 38 genes in vivo in response to temperature and identified them by qRT-PCR. We found that the 26 differentially expressed proteins, representing 68.4% of the total target genes, maintained consistency between transcription and translation levels. The remaining 12 genes showed inconsistent protein expression with transcription level and accounted for 31.6% of the total target genes. PMID:24349519
Whistler waves with electron temperature anisotropy and non-Maxwellian distribution functions
NASA Astrophysics Data System (ADS)
Malik, M. Usman; Masood, W.; Qureshi, M. N. S.; Mirza, Arshad M.
2018-05-01
The previous works on whistler waves with electron temperature anisotropy narrated the dependence on plasma parameters, however, they did not explore the reasons behind the observed differences. A comparative analysis of the whistler waves with different electron distributions has not been made to date. This paper attempts to address both these issues in detail by making a detailed comparison of the dispersion relations and growth rates of whistler waves with electron temperature anisotropy for Maxwellian, Cairns, kappa and generalized (r, q) distributions by varying the key plasma parameters for the problem under consideration. It has been found that the growth rate of whistler instability is maximum for flat-topped distribution whereas it is minimum for the Maxwellian distribution. This work not only summarizes and complements the previous work done on the whistler waves with electron temperature anisotropy but also provides a general framework to understand the linear propagation of whistler waves with electron temperature anisotropy that is applicable in all regions of space plasmas where the satellite missions have indicated their presence.
High temperature electrons exhausted from rf plasma sources along a magnetic nozzle
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Akahoshi, Hikaru; Charles, Christine; Boswell, Rod W.; Ando, Akira
2017-08-01
Two dimensional profiles of electron temperature are measured inside and downstream of a radiofrequency plasma thruster source having a magnetic nozzle and being immersed in vacuum. The temperature is estimated from the slope of the fully swept I-V characteristics of a Langmuir probe acquired at each spatial position and with the assumption of a Maxwellian distribution. The results show that the peripheral high temperature electrons in the magnetic nozzle originate from the upstream antenna location and are transported along the "connecting" magnetic field lines. Two-dimensional measurements of electron energy probability functions are also carried out in a second simplified laboratory device consisting of the source contiguously connected to the diffusion chamber: again the high temperature electrons are detected along the magnetic field lines intersecting the wall at the antenna location, even when the antenna location is shifted along the main axis. These results demonstrate that the peripheral energetic electrons in the magnetic nozzle mirror those created in the source tube.
Lattice dynamics and elasticity for ε-plutonium [First-principles lattice dynamics for ε-plutonium
Söderlind, Per
2017-04-25
Here, lattice dynamics and elasticity for the high-temperature ε phase (body-centered cubic; bcc) of plutonium is predicted utilizing first-principles electronic structure coupled with a self-consistent phonon method that takes phonon-phonon interaction and strong anharmonicity into account. These predictions establish the first sensible lattice-dynamics and elasticity data on ε-Pu. The atomic forces required for the phonon scheme are highly accurate and derived from the total energies obtained from relativistic and parameter-free density-functional theory. The results appear reasonable but no data exist to compare with except those from dynamical mean-field theory that suggest ε-plutonium is mechanically unstable. Fundamental knowledge and understanding ofmore » the high-temperature bcc phase, that is generally present in all actinide metals before melting, is critically important for a proper interpretation of the phase diagram as well as practical modeling of high-temperature properties.« less
First-principles calculations on thermodynamic properties of BaTiO3 rhombohedral phase.
Bandura, Andrei V; Evarestov, Robert A
2012-07-05
The calculations based on the linear combination of atomic orbitals have been performed for the low-temperature phase of BaTiO(3) crystal. Structural and electronic properties, as well as phonon frequencies were obtained using hybrid PBE0 exchange-correlation functional. The calculated frequencies and total energies at different volumes have been used to determine the equation of state and thermal contribution to the Helmholtz free energy within the quasiharmonic approximation. For the first time, the bulk modulus, volume thermal expansion coefficient, heat capacity, and Grüneisen parameters in BaTiO(3) rhombohedral phase have been estimated at zero pressure and temperatures form 0 to 200 K, based on the results of first-principles calculations. Empirical equation has been proposed to reproduce the temperature dependence of the calculated quantities. The agreement between the theoretical and experimental thermodynamic properties was found to be satisfactory. Copyright © 2012 Wiley Periodicals, Inc.
The production of O(1D) from dissociative recombination of O2(+)
NASA Technical Reports Server (NTRS)
Guberman, Steven L.
1988-01-01
The results of large scale ab initio calculations of the rates for production of O(1D) by dissociative combination of O2(+) are presented for electron temperatures in the range 100 to 3000 K. A 1-delta-u state is the dominant dissociative route from v = 0 and a 3-sigma-u(-) state is the most important route from v = 1 and v = 2. The calculated total rate for O(1D) production from v = 0 is 2.21(+0.21, -0.24) x 10(-7) x (T sub e/300) exp -.46 near room temperature. The v = 1 and v = 2 rates are about 17 percent and 47 percent smaller respectively, than the v = 0 rate at 300 K.
The production of O(1D) from dissociative recombination of O2(+)
NASA Technical Reports Server (NTRS)
Guberman, Steven L.
1987-01-01
The results of large scale ab initio calculations of the rates for production of O(1D) by dissociative combination of O2(+) are presented for electron temperatures in the range 100 to 3000 K. A 1-delta-u state is the dominant dissociative route from v = 0 and a 3-sigma-u(-) state is the most important route from v = 1 and v = 2. The calculated total rate for O(1D) production from v = 0 is 2.21(+0.21,-0.24) x 10(-7) x (T sub e/300) exp -.46 near room temperature. The v = 1 and v = 2 rates are about 17% and 47% smaller respectively, than the v = 0 rate at 300 K.
Liu, Baoshun
2016-04-28
In photocatalysis, it is known that light intensity, organic concentration, and temperature affect the photocatalytic activity by changing the microscopic kinetics of holes and electrons. However, how the microscopic kinetics of holes and electrons relates to the photocatalytic activity was not well known. In the present research, we developed a Monte-Carlo random walking model that involved all of the charge kinetics, including the photo-generation, the recombination, the transport, and the interfacial transfer of holes and electrons, to simulate the overall photocatalytic reaction, which we called a "computer experiment" of photocatalysis. By using this model, we simulated the effect of light intensity, temperature, and organic surface coverage on the photocatalytic activity and the density of the free electrons that accumulate in the simulated system. It was seen that the increase of light intensity increases the electron density and its mobility, which increases the probability for a hole/electron to find an electron/hole for recombination, and consequently led to an apparent kinetics that the quantum yield (QY) decreases with the increase of light intensity. It was also seen that the increase of organic surface coverage could increase the rate of hole interfacial transfer and result in the decrease of the probability for an electron to recombine with a hole. Moreover, the increase of organic coverage on the nano-material surface can also increase the accumulation of electrons, which enhances the mobility for electrons to undergo interfacial transfer, and finally leads to the increase of photocatalytic activity. The simulation showed that the temperature had a more complicated effect, as it can simultaneously change the activation of electrons, the interfacial transfer of holes, and the interfacial transfer of electrons. It was shown that the interfacial transfer of holes might play a main role at low temperature, with the temperature-dependence of QY conforming to the Arrhenius model. The activation of electrons from the traps to the conduction band might become important at high temperature, which accelerates the electron movement for recombination and leads to a temperature dependence of QY that deviates from the Arrhenius model.
NASA Astrophysics Data System (ADS)
Erum, Nazia; Iqbal, Muhammad Azhar
2017-11-01
The structural, electronic, elastic, optical and thermodynamic properties of cubic fluoroperovskite SrLiF3 at ambient and high-pressure are investigated by using first-principles total energy calculations within the framework of Generalized Gradient Approximation (GGA), combined with Quasi-harmonic Debye model in which the phonon effects are considered. The pressure effects are determined in the range of 0-50 GPa, in which cubic stability of SrLiF3 fluoroperovskite remains valid. The computed lattice parameters agree well with experimental and previous theoretical results. Decrease in lattice constant and bonds length is observed with the increase in pressure from 0 to 50 GPa. The effect of increase in pressure on electronic band structure calculations with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential reveals a predominant characteristic associated with widening of bandgap. The influence of pressure on elastic constants and their related mechanical parameters have been discussed in detail. All the calculated optical properties such as the complex dielectric function Ԑ(ω), optical conductivity σ(ω), energy loss function L(ω), absorption coefficient α(w), refractive index n (ω), reflectivity R (ω), and effective number of electrons neff, via sum rules shift towards the higher energies under the application of pressure. Moreover, important thermodynamic properties heat capacities (Cp and Cv), volume expansion coefficient (α), and Debye temperature (θD) are predicted successfully in the wide temperature and pressure ranges.
Local structural aspects of metal-metal transition in IrTe2 from x-ray PDF
NASA Astrophysics Data System (ADS)
Yu, Runze; Abeykoon, Milinda; Zhou, Haidong; Yin, Weiguo; Bozin, Emil S.
Evolution of local atomic structure across the metal-metal transition in IrTe2 is explored by pair distribution function (PDF) analysis of x-ray total scattering data over 80 K
First-principles study of the structural, electronic and thermal properties of CaLiF3
NASA Astrophysics Data System (ADS)
Chouit, N.; Amara Korba, S.; Slimani, M.; Meradji, H.; Ghemid, S.; Khenata, R.
2013-09-01
Density functional theory calculations have been performed to study the structural, electronic and optical properties of CaLiF3 cubic fluoroperovskite. Our calculations were carried out by means of the full-potential linearized augmented plane-wave method. The exchange-correlation potential is treated by the local density approximation and the generalized gradient approximation (GGA) (Perdew, Burke and Ernzerhof). Moreover, the alternative form of GGA proposed by Engel and Vosko is also used for band structure calculations. The calculated total energy versus volume allows us to obtain structural properties such as the lattice constant (a0), bulk modulus (B0) and pressure derivative of the bulk modulus (B'0 ). Band structure, density of states and band gap pressure coefficients are also given. Our calculations show that CaLiF3 has an indirect band gap (R-Γ). Following the quasi-harmonic Debye model, in which the phononic effects are considered, the temperature and pressure effects on the lattice constant, bulk modulus, thermal expansion coefficient, Debye temperature and heat capacities are calculated.
NASA Astrophysics Data System (ADS)
Masrour, R.; Jabar, A.; Hlil, E. K.
2018-05-01
Self-consistent ab initio calculations, based on Density Functional Theory (DFT) approach and using Full potential Linear Augmented Plane Wave (FLAPW) method, are performed to investigate the electronic and magnetic properties of the Fe4N compound. Polarized spin and spin-orbit coupling are included in calculations within the framework of the ferromagnetic state between Fe(I) and Fe(II) in Fe4N compound. We have used the obtained data from abinitio calculations as an input in Monte Carlo simulation to calculate the magnetic properties of this compounds such as the ground state phase diagrams, total and partial magnetization of Fe(I) and Fe(II) as well as the transition temperatures are computed. The variation of magnetization with the crystal field are also studied. The magnetic hysteresis cycle of the same Fe4N compound are determined for different values of temperatures and crystal field values. The two-step hysteresis loop are evidenced, which is typical for Fe4N structure. The ferromagnetic and superparamagnetic phase is observed as well.
Masand, Ruchi; Paulo, Esther; Wu, Dongmei; Wang, Yangmeng; Swaney, Danielle L; Jimenez-Morales, David; Krogan, Nevan J; Wang, Biao
2018-03-06
Brown adipose tissue (BAT) thermogenesis is critical for thermoregulation and contributes to total energy expenditure. However, whether BAT has non-thermogenic functions is largely unknown. Here, we describe that BAT-specific liver kinase b1 knockout (Lkb1 BKO ) mice exhibited impaired BAT mitochondrial respiration and thermogenesis but reduced adiposity and liver triglyceride accumulation under high-fat-diet feeding at room temperature. Importantly, these metabolic benefits were also present in Lkb1 BKO mice at thermoneutrality, where BAT thermogenesis was not required. Mechanistically, decreased mRNA levels of mtDNA-encoded electron transport chain (ETC) subunits and ETC proteome imbalance led to defective BAT mitochondrial respiration in Lkb1 BKO mice. Furthermore, reducing mtDNA gene expression directly in BAT by removing mitochondrial transcription factor A (Tfam) in BAT also showed ETC proteome imbalance and the trade-off between BAT thermogenesis and systemic metabolism at room temperature and thermoneutrality. Collectively, our data demonstrate that ETC proteome imbalance in BAT regulates systemic metabolism independently of thermogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.
X-ray Thomson scattering measurements of temperature and density from multi-shocked CH capsules
Fletcher, L. B.; Glenzer, S. H.; Kritcher, A.; ...
2013-05-24
Proof-of-principle measurements of the electron densities, temperatures, and ionization states of spherically compressed multi-shocked CH (polystyrene) capsules have been achieved using spectrally resolved x-ray Thomson scattering. A total energy of 13.5 kJ incident on target is used to compress a 70 μm thick CH shell above solid-mass density using three coalescing shocks. Separately, a laser-produced zinc He-α x-ray source at 9 keV delayed 200 ps-800 ps after maximum compression is used to probe the plasma in the non-collective scattering regime. The data show that x-ray Thomson scattering enables a complete description of the time-dependent hydrodynamic evolution of shock-compressed CH capsules,more » with a maximum measured density of ρ > 6 g cm –3. Additionally, the results demonstrate that accurate measurements of x-ray scattering from bound-free transitions in the CH plasma demonstrate strong evidence that continuum lowering is the primary ionization mechanism of carbon L-shell electrons.« less
Wide-Temperature Electronics for Thermal Control of Nanosats
NASA Technical Reports Server (NTRS)
Dickman, John Ellis; Gerber, Scott
2000-01-01
This document represents a presentation which examines the wide and low-temperature electronics required for NanoSatellites. In the past, larger spacecraft used Radioisotope Heating Units (RHU's). The advantage of the use of these electronics is that they could eliminate or reduce the requirement for RHU's, reduce system weight and simplify spacecraft design by eliminating containment/support structures for RHU's. The Glenn Research Center's Wide/Low Temperature Power Electronics Program supports the development of power systems capable of reliable, efficient operation over wide and low temperature ranges. Included charts review the successes and failures of various electronic devices, the IRF541 HEXFET, The NE76118n-Channel GaAS MESFET, the Lithium Carbon Monofluoride Primary Battery, and a COTS DC-DC converter. The preliminary result of wide/low temperature testing of CTS and custom parts and power circuit indicate that through careful selection of components and technologies it is possible to design and build power circuits which operate from room temperature to near 100K.
The Statistical Properties of Solar Wind Temperature Parameters Near 1 au
NASA Astrophysics Data System (ADS)
Wilson, Lynn B., III; Stevens, Michael L.; Kasper, Justin C.; Klein, Kristopher G.; Maruca, Bennett A.; Bale, Stuart D.; Bowen, Trevor A.; Pulupa, Marc P.; Salem, Chadi S.
2018-06-01
We present a long-duration (∼10 yr) statistical analysis of the temperatures, plasma betas, and temperature ratios for the electron, proton, and alpha-particle populations observed by the Wind spacecraft near 1 au. The mean(median) scalar temperatures are T e,tot = 12.2(11.9) eV, T p,tot = 12.7(8.6) eV, and T α,tot = 23.9(10.8) eV. The mean(median) total plasma betas are β e,tot = 2.31(1.09), β p,tot = 1.79(1.05), and β α,tot = 0.17(0.05). The mean(median) temperature ratios are (T e /T p )tot = 1.64(1.27), (T e /T α )tot = 1.24(0.82), and (T α /T p )tot = 2.50(1.94). We also examined these parameters during time intervals that exclude interplanetary (IP) shocks, times within the magnetic obstacles (MOs) of interplanetary coronal mass ejections (ICMEs), and times that exclude MOs. The only times that show significant alterations to any of the parameters examined are those during MOs. In fact, the only parameter that does not show a significant change during MOs is the electron temperature. Although each parameter shows a broad range of values, the vast majority are near the median. We also compute particle–particle collision rates and compare to effective wave–particle collision rates. We find that, for reasonable assumptions of wave amplitude and occurrence rates, the effect of wave–particle interactions on the plasma is equal to or greater than the effect of Coulomb collisions. Thus, wave–particle interactions should not be neglected when modeling the solar wind.
Wiens, Lilian; Banh, Sheena; Sotiri, Emianka; Jastroch, Martin; Block, Barbara A.; Brand, Martin D.; Treberg, Jason R.
2017-01-01
Recently we demonstrated that the capacity of isolated muscle mitochondria to produce reactive oxygen species, measured as H2O2 efflux, is temperature-sensitive in isolated muscle mitochondria of ectothermic fish and the rat, a representative endothermic mammal. However, at physiological temperatures (15° and 37°C for the fish and rat, respectively), the fraction of total mitochondrial electron flux that generated H2O2, the fractional electron leak (FEL), was far lower in the rat than in fish. Those results suggested that the elevated body temperatures associated with endothermy may lead to a compensatory decrease in mitochondrial ROS production relative to respiratory capacity. To test this hypothesis we compare slow twitch (red) muscle mitochondria from the endothermic Pacific bluefin tuna (Thunnus orientalis) with mitochondria from three ectothermic fishes [rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio), and the lake sturgeon (Acipenser fulvescens)] and the rat. At a common assay temperature (25°C) rates of mitochondrial respiration and H2O2 efflux were similar in tuna and the other fishes. The thermal sensitivity of fish mitochondria was similar irrespective of ectothermy or endothermy. Comparing tuna to the rat at a common temperature, respiration rates were similar, or lower depending on mitochondrial substrates. FEL was not different across fish species at a common assay temperature (25°C) but was markedly higher in fishes than in rat. Overall, endothermy and warming of Pacific Bluefin tuna red muscle may increase the potential for ROS production by muscle mitochondria but the evolution of endothermy in this species is not necessarily associated with a compensatory reduction of ROS production relative to the respiratory capacity of mitochondria. PMID:28966595
NASA Astrophysics Data System (ADS)
Hou, Dong; Usher, Tedi-Marie; Zhou, Hanhan; Raengthon, Natthaphon; Triamnak, Narit; Cann, David P.; Forrester, Jennifer S.; Jones, Jacob L.
2017-08-01
The existence of local tetragonal distortions is evidenced in the BaTiO3-xBi(Zn1/2Ti1/2)O3 (BT-xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2-3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transforms to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Dong; Usher, Tedi -Marie; Zhou, Hanhan
The existence of local tetragonal distortions is evidenced in the BaTiO 3–xBi(Zn 1/2Ti 1/2)O 3 (BT–xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2–3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transformsmore » to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.« less
Hou, Dong; Usher, Tedi -Marie; Zhou, Hanhan; ...
2017-08-11
The existence of local tetragonal distortions is evidenced in the BaTiO 3–xBi(Zn 1/2Ti 1/2)O 3 (BT–xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2–3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transformsmore » to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.« less
Thermally Driven Electronic Topological Transition in FeTi
NASA Astrophysics Data System (ADS)
Yang, F. C.; Muñoz, J. A.; Hellman, O.; Mauger, L.; Lucas, M. S.; Tracy, S. J.; Stone, M. B.; Abernathy, D. L.; Xiao, Yuming; Fultz, B.
2016-08-01
Ab initio molecular dynamics, supported by inelastic neutron scattering and nuclear resonant inelastic x-ray scattering, showed an anomalous thermal softening of the M5- phonon mode in B 2 -ordered FeTi that could not be explained by phonon-phonon interactions or electron-phonon interactions calculated at low temperatures. A computational investigation showed that the Fermi surface undergoes a novel thermally driven electronic topological transition, in which new features of the Fermi surface arise at elevated temperatures. The thermally induced electronic topological transition causes an increased electronic screening for the atom displacements in the M5- phonon mode and an adiabatic electron-phonon interaction with an unusual temperature dependence.
NASA Astrophysics Data System (ADS)
Hasan, E.; Dimitrova, M.; Havlicek, J.; Mitošinková, K.; Stöckel, J.; Varju, J.; Popov, Tsv K.; Komm, M.; Dejarnac, R.; Hacek, P.; Panek, R.; the COMPASS Team
2018-02-01
This paper presents the results from swept probe measurements in the divertor region of the COMPASS tokamak in D-shaped, L-mode discharges, with toroidal magnetic field BT = 1.15 T, plasma current Ip = 180 kA and line-average electron densities varying from 2 to 8×1019 m-3. Using neutral beam injection heating, the electron energy distribution function is studied before and during the application of the beam. The current-voltage characteristics data are processed using the first-derivative probe technique. This technique allows one to evaluate the plasma potential and the real electron energy distribution function (respectively, the electron temperatures and densities). At the low average electron density of 2×1019 m-3, the electron energy distribution function is bi-Maxwellian with a low-energy electron population with temperatures 4-6 eV and a high-energy electron group 12-25 eV. As the line-average electron density is increased, the electron temperatures decrease. At line-average electron densities above 7×1019 m-3, the electron energy distribution function is found to be Maxwellian with a temperature of 6-8.5 eV. The effect of the neutral beam injection heating power in the divertor region is also studied.
On the Crossover from Classical to Fermi Liquid Behavior in Dense Plasmas
NASA Astrophysics Data System (ADS)
Daligault, Jerome
2017-10-01
We explore the crossover from classical plasma to quantum Fermi liquid behavior of electrons in dense plasmas. To this end, we analyze the evolution with density and temperature of the momentum lifetime of a test electron introduced in a dense electron gas. This allows us 1) to determine the boundaries of the crossover region in the temperature-density plane and to shed light on the evolution of scattering properties across it, 2) to quantify the role of the fermionic nature of electrons on electronic collisions across the crossover region, and 3) to explain how the concept of Coulomb logarithm emerges at high enough temperature but disappears at low enough temperature. Work supported by LDRD Grant No. 20170490ER.
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen; Panda, Jayanta
2006-01-01
A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 10 kHz. A high power CW laser beam is focused at a point in a heated air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature, velocity, and density of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. Power spectral density calculations of temperature, velocity, and density fluctuations, as well as mean and fluctuating quantities are demonstrated for various radial locations in the jet flow at a fixed axial distance from the jet exit plane. Results are compared with constant current anemometry and pitot probe measurements at the same locations.
Electrodynamic properties of the semimetallic Dirac material SrMnB i2 : Two-carrier-model analysis
NASA Astrophysics Data System (ADS)
Park, H. J.; Park, Byung Cheol; Lee, Min-Cheol; Jeong, D. W.; Park, Joonbum; Kim, Jun Sung; Ji, Hyo Seok; Shim, J. H.; Kim, K. W.; Moon, S. J.; Kim, Hyeong-Do; Cho, Deok-Yong; Noh, T. W.
2017-10-01
The electrodynamics of free carriers in the semimetallic Dirac material SrMnB i2 was investigated using optical spectroscopy and first-principles calculations. Using a two-carrier-model analysis, the total free-carrier response was successfully decomposed into individual contributions from Dirac fermions and non-Dirac free carriers. Possible roles of chiral pseudospin, spin-orbit interaction (SOI), antiferromagnetism, and electron-phonon (e -p h ) coupling in the Dirac fermion transport were also addressed. The Dirac fermions possess a low scattering rate of ˜10 meV at low temperature and thereby experience coherent transport. However, at high temperatures, we observed that the Dirac fermion transport becomes significantly incoherent, possibly due to strong e -p h interactions. The SOI-induced gap and antiferromagnetism play minor roles in the electrodynamics of the free carriers in SrMnB i2 . We also observed a seemingly optical-gap-like feature near 120 meV, which emerges at low temperatures but becomes filled in with increasing temperature. This gap-filling phenomenon is ascribed to phonon-assisted indirect transitions promoted at high temperatures.
Three-dimensionality of the bulk electronic structure in WTe 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yun; Jo, Na Hyun; Mou, Daixiang
Inmore » this paper, we use temperature- and field-dependent resistivity measurements (Shubnikov–de Haas quantum oscillations) and ultrahigh-resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the three-dimensionality (3D) of the bulk electronic structure in WTe 2 , a type II Weyl semimetal. The bulk Fermi surface (FS) consists of two pairs of electron pockets and two pairs of hole pockets along the Χ–Γ–Χ direction as detected by using an incident photon energy of 6.7 eV, which is consistent with the previously reported data. However, if using an incident photon energy of 6.36 eV, another pair of tiny electron pockets is detected on both sides of the Γ point, which is in agreement with the small quantum oscillation frequency peak observed in the magnetoresistance. Therefore, the bulk, 3D FS consists of three pairs of electron pockets and two pairs of hole pockets in total. With the ability of fine tuning the incident photon energy, we demonstrate the strong three-dimensionality of the bulk electronic structure in WTe 2 . Finally, the combination of resistivity and ARPES measurements reveals the complete, and consistent, picture of the bulk electronic structure of this material.« less
Three-dimensionality of the bulk electronic structure in WTe 2
Wu, Yun; Jo, Na Hyun; Mou, Daixiang; ...
2017-05-18
Inmore » this paper, we use temperature- and field-dependent resistivity measurements (Shubnikov–de Haas quantum oscillations) and ultrahigh-resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the three-dimensionality (3D) of the bulk electronic structure in WTe 2 , a type II Weyl semimetal. The bulk Fermi surface (FS) consists of two pairs of electron pockets and two pairs of hole pockets along the Χ–Γ–Χ direction as detected by using an incident photon energy of 6.7 eV, which is consistent with the previously reported data. However, if using an incident photon energy of 6.36 eV, another pair of tiny electron pockets is detected on both sides of the Γ point, which is in agreement with the small quantum oscillation frequency peak observed in the magnetoresistance. Therefore, the bulk, 3D FS consists of three pairs of electron pockets and two pairs of hole pockets in total. With the ability of fine tuning the incident photon energy, we demonstrate the strong three-dimensionality of the bulk electronic structure in WTe 2 . Finally, the combination of resistivity and ARPES measurements reveals the complete, and consistent, picture of the bulk electronic structure of this material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jodin, L.; Tobola, J.; Pecheur, P.
2004-11-01
The structural and electron transport properties of the pure and Co-, Ti-, and Zr-substituted FeVSb half-Heusler phases have been investigated using x-ray diffraction, Moessbauer spectroscopy, and Electron Probe Microscopy Analysis as well as resistivity, thermopower, and Hall effect measurements in the 80-900 K temperature range. In a parallel study, the electronic structures of FeVSb and the aforementioned alloys were calculated using the Korringa-Kohn-Rostoker method with the coherent potential approximation (KKR-CPA) in the LDA framework. The electronic densities of states and dispersion curves were obtained. The crystal structure stability and site preference analysis were addressed using total energy computations. Most ofmore » these experimental results correspond to electronic structure computations only if they take into account extra crystal defects such as antisite defects or vacancies present to various extents in the samples. Indeed a remarkable variation of KKR-CPA density of states occurring both in FeVSb and FeV{sub 1-x}Zr{sub x}Sb including defects may explain why FeVSb is not fully semiconducting as well as why there is a change of the thermopower sign in the FeV{sub 1-x}Zr{sub x}Sb versus x content.« less
[The Spectral Analysis of Laser-Induced Plasma in Laser Welding with Various Protecting Conditions].
Du, Xiao; Yang, Li-jun; Liu, Tong; Jiao, Jiao; Wang, Hui-chao
2016-01-01
The shielding gas plays an important role in the laser welding process and the variation of the protecting conditions has an obvious effect on the welding quality. This paper studied the influence of the change of protecting conditions on the parameters of laser-induced plasma such as electron temperature and electron density during the laser welding process by designing some experiments of reducing the shielding gas flow rate step by step and simulating the adverse conditions possibly occurring in the actual Nd : YAG laser welding process. The laser-induced plasma was detected by a fiber spectrometer to get the spectral data. So the electron temperature of laser-induced plasma was calculated by using the method of relative spectral intensity and the electron density by the Stark Broadening. The results indicated that the variation of protecting conditions had an important effect on the electron temperature and the electron density in the laser welding. When the protecting conditions were changed, the average electron temperature and the average electron density of the laser-induced plasma would change, so did their fluctuation range. When the weld was in a good protecting condition, the electron temperature, the electron density and their fluctuation were all low. Otherwise, the values would be high. These characteristics would have contribution to monitoring the process of laser welding.
Packaging Technology Developed for High-Temperature Silicon Carbide Microsystems
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.
2001-01-01
High-temperature electronics and sensors are necessary for harsh-environment space and aeronautical applications, such as sensors and electronics for space missions to the inner solar system, sensors for in situ combustion and emission monitoring, and electronics for combustion control for aeronautical and automotive engines. However, these devices cannot be used until they can be packaged in appropriate forms for specific applications. Suitable packaging technology for operation temperatures up to 500 C and beyond is not commercially available. Thus, the development of a systematic high-temperature packaging technology for SiC-based microsystems is essential for both in situ testing and commercializing high-temperature SiC sensors and electronics. In response to these needs, researchers at Glenn innovatively designed, fabricated, and assembled a new prototype electronic package for high-temperature electronic microsystems using ceramic substrates (aluminum nitride and aluminum oxide) and gold (Au) thick-film metallization. Packaging components include a ceramic packaging frame, thick-film metallization-based interconnection system, and a low electrical resistance SiC die-attachment scheme. Both the materials and fabrication process of the basic packaging components have been tested with an in-house-fabricated SiC semiconductor test chip in an oxidizing environment at temperatures from room temperature to 500 C for more than 1000 hr. These test results set lifetime records for both high-temperature electronic packaging and high-temperature electronic device testing. As required, the thick-film-based interconnection system demonstrated low (2.5 times of the room-temperature resistance of the Au conductor) and stable (decreased 3 percent in 1500 hr of continuous testing) electrical resistance at 500 C in an oxidizing environment. Also as required, the electrical isolation impedance between printed wires that were not electrically joined by a wire bond remained high (greater than 0.4 GW) at 500 C in air. The attached SiC diode demonstrated low (less than 3.8 W/mm2) and relatively consistent dynamic resistance from room temperature to 500 C. These results indicate that the prototype package and the compatible die-attach scheme meet the initial design standards for high-temperature, low-power, and long-term operation. This technology will be further developed and evaluated, especially with more mechanical tests of each packaging element for operation at higher temperatures and longer lifetimes.
Extreme temperature packaging: challenges and opportunities
NASA Astrophysics Data System (ADS)
Johnson, R. Wayne
2016-05-01
Consumer electronics account for the majority of electronics manufactured today. Given the temperature limits of humans, consumer electronics are typically rated for operation from -40°C to +85°C. Military applications extend the range to -65°C to +125°C while underhood automotive electronics may see +150°C. With the proliferation of the Internet of Things (IoT), the goal of instrumenting (sensing, computation, transmission) to improve safety and performance in high temperature environments such as geothermal wells, nuclear reactors, combustion chambers, industrial processes, etc. requires sensors, electronics and packaging compatible with these environments. Advances in wide bandgap semiconductors (SiC and GaN) allow the fabrication of high temperature compatible sensors and electronics. Integration and packaging of these devices is required for implementation into actual applications. The basic elements of packaging are die attach, electrical interconnection and the package or housing. Consumer electronics typically use conductive adhesives or low melting point solders for die attach, wire bonds or low melting solder for electrical interconnection and epoxy for the package. These materials melt or decompose in high temperature environments. This paper examines materials and processes for high temperature packaging including liquid transient phase and sintered nanoparticle die attach, high melting point wires for wire bonding and metal and ceramic packages. The limitations of currently available solutions will also be discussed.
NASA Astrophysics Data System (ADS)
Rezania, Hamed; Azizi, Farshad
2018-02-01
We study the effects of a transverse magnetic field and electron doping on the thermoelectric properties of monolayer graphene in the context of Hubbard model at the antiferromagnetic sector. In particular, the temperature dependence of thermal conductivity and Seebeck coefficient has been investigated. Mean field approximation has been employed in order to obtain the electronic spectrum of the system in the presence of local electron-electron interaction. Our results show the peak in thermal conductivity moves to higher temperatures with increase of both chemical potential and Hubbard parameter. Moreover the increase of magnetic field leads to shift of peak in temperature dependence of thermal conductivity to higher temperatures. Finally the behavior of Seebeck coefficient in terms of temperature has been studied and the effects of magnetic field and Hubbard parameter on this coefficient have been investigated in details.
NASA Astrophysics Data System (ADS)
Li, Mo; Wu, Jian; Wang, Liang-Ping; Wu, Gang; Han, Juan-Juan; Guo, Ning; Qiu, Meng-Tong
2012-12-01
Two curved crystal spectrometers are set up on the “QiangGuang-1" generator to measure the z-pinch plasma spectra emitted from planar aluminum wire array loads. Kodak Biomax-MS film and an IRD AXUVHS5# array are employed to record time-integrated and time-resolved free-bound radiation, respectively. The photon energy recorded by each detector is ascertained by using the L-shell lines of molybdenum plasma. Based on the exponential relation between the continuum power and photon energies, the aluminum plasma electron temperatures are measured. For the time-integrated diagnosis, several “bright spots" indicate electron temperatures between (450 eV ~ 520 eV) ± 35%. And for the time-resolved ones, the result shows that the electron temperature reaches about 800 eV ± 30% at peak power. The system satisfies the demand of z-pinch plasma electron temperature diagnosis on a ~ 1 MA facility.
Murray, Clinton K; Hoffmaster, Roselle M; Schmit, David R; Hospenthal, Duane R; Ward, John A; Cancio, Leopoldo C; Wolf, Steven E
2007-07-01
To investigate whether specific values of or changes in temperature, white blood cell count, or neutrophil percentage were predictive of bloodstream infection in burn patients. Retrospective review of electronic records. Intensive care center at the US Army Institute of Surgical Research Burn Center. Burn patients with blood cultures obtained from 2001 to 2004. Temperature recorded at the time blood cultures were obtained; highest temperature in each 6-hour interval during the 24 hours prior to this; white blood cell count and neutrophil percentage at the time of obtaining the blood culture and during the 24 hours preceding the blood culture; demographic data; and total body surface area burned. A total of 1063 blood cultures were obtained from 223 patients. Seventy-three people had 140 blood cultures from which microorganisms were recovered. Organisms that were recovered from blood cultures included 80 that were gram negative, 54 that were gram positive, 3 that were mixed gram positive/gram negative, and 3 yeasts. Although white blood cell count and neutrophil percentage at the time of the culture were statistically different between patients with and patients without bloodstream infection, receiver operating characteristic curve analysis revealed these values to be poor discriminators (receiver operating characteristic curve area = 0.624). Temperature or alterations in temperature in the preceding 24-hour period did not predict presence, absence, or type of bloodstream infection. Temperature, white blood cell count, neutrophil percentage, or changes in these values were not clinically reliable in predicting bloodstream infection. Further work is needed to identify alternative clinical parameters, which should prompt blood culture evaluations in this population.
Thermal Stability of Nanocrystalline Copper for Potential Use in Printed Wiring Board Applications
NASA Astrophysics Data System (ADS)
Woo, Patrick Kai Fai
Copper is a widely used conductor in the manufacture of printed wiring boards (PWB). The trends in miniaturization of electronic devices create increasing challenges to all electronic industries. In particular PWB manufacturers face great challenges because the increasing demands in greater performance and device miniaturization pose enormous difficulties in manufacturing and product reliability. Nanocrystalline and ultra-fine grain copper can potentially offer increased reliability and functionality of the PWB due to the increases in strength and achievable wiring density by reduction in grain size. The first part of this thesis is concerned with the synthesis and characterization of nanocrystalline and ultra-fine grain-sized copper for potential applications in the PWB industry. Nanocrystalline copper with different amounts of sulfur impurities (25-230ppm) and grain sizes (31-49nm) were produced and their hardness, electrical resistivity and etchability were determined. To study the thermal stability of nanocrystalline copper, differential scanning calorimetry and isothermal heat treatments combined with electron microscopy techniques for microstructural analysis were used. Differential scanning calorimetry was chosen to continuously monitor the grain growth process in the temperature range from 40?C to 400?C. During isothermal annealing experiments samples were annealed at 23?C, 100?C and 300?C to study various potential thermal issues for these materials in PWB applications such as the long-term room temperature thermal stability as well as for temperature excursions above the operation temperature and peak temperature exposure during the PWB manufacturing process. From all annealing experiments the various grain growth events and the overall stability of these materials were analyzed in terms of driving and dragging forces. Experimental evidence is presented which shows that the overall thermal stability, grain boundary character and texture evolution of copper is greatly related to changes in driving and dragging forces, which in turn, are strongly depended on parameters such as annealing temperature and time, total sulfur impurity content and the distribution of the impurities within the material. It was shown that a simple increase in the sulfur impurity level does not necessarily improve the thermal stability of nanocrystalline copper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Xiao-Ping, E-mail: weixp2008@gmail.com; Chu, Yan-Dong; Sun, Xiao-Wei
2015-02-15
Highlights: • The analysis of phase stability trend is studied for Ti{sub 2}CoX(X = Al, Ga, In). • Ti{sub 2}CoGa is more suitable as shape memory alloy. • Total magnetic moments disappear with a increase of c/a ratio for all systems. • Density of states at the Fermi level are also shown. - Abstract: Using the full-potential local orbital minimum-basis method, we have performed a systematic investigations on the electronic, structural, and magnetic properties related to shape memory applications for Ti{sub 2}CoX (X=Al, Ga, In) alloys. Our results confirm that these alloys are half-metallic ferromagnets with total magnetic moment ofmore » 2μ{sub B} per formula unit in austenite phase, and undergo a martensitic transformation at low temperatures. The relative stabilities of the martensitic phases differ considerably between Ti{sub 2}CoX (X=Al, Ga, In). Details of the electronic structures suggest that the differences in hybridizations between the magnetic components are responsible for trends of phase. Quantitative estimates for the energetics and the magnetizations indicate that Ti{sub 2}CoGa is a promising candidate for shape memory applications.« less
MAVEN in situ measurements of photochemical escape of oxygen from Mars
NASA Astrophysics Data System (ADS)
Lillis, Robert; Deighan, Justin; Fox, Jane; Bougher, Stephen; Lee, Yuni; Cravens, Thomas; Rahmati, Ali; Mahaffy, Paul; Benna, Mehdi; Groller, Hannes; Jakosky, Bruce
2016-04-01
One of the primary goals of the MAVEN mission is to characterize rates of atmospheric escape from Mars at the present epoch and relate those escape rates to solar drivers. One of the known escape processes is photochemical escape, where a) an exothermic chemical reaction in the atmosphere results in an upward-traveling neutral particle whose velocity exceeds planetary escape velocity and b) the particle is not prevented from escaping through subsequent collisions. At Mars, photochemical escape of oxygen is expected to be a significant channel for atmospheric escape, particularly in the early solar system when extreme ultraviolet (EUV) fluxes were much higher. Thus characterizing this escape process and its variability with solar drivers is central to understanding the role escape to space has played in Mars' climate evolution. We use near-periapsis (<400 km altitude) data from three MAVEN instruments: the Langmuir Probe and Waves (LPW) instrument measures electron density and temperature, the Suprathermal And Thermal Ion Composition (STATIC) experiment measures ion temperature and the Neutral Gas and Ion Mass Spectrometer (NGIMS) measures neutral and ion densities. For each profile of in situ measurements, we make several calculations, each as a function of altitude. The first uses electron and temperatures and simulates the dissociative recombination of both O2+ and CO2+ to calculate the probability distribution for the initial energies of the resulting hot oxygen atoms. The second is a Monte Carlo hot atom transport model that takes that distribution of initial O energies and the measured neutral density profiles and calculates the probability that a hot atom born at that altitude will escape. The third takes the measured electron and ion densities and electron temperatures and calculates the production rate of hot O atoms. We then multiply together the profiles of hot atom production and escape probability to get profiles of the production rate of escaping atoms. We integrate with respect to altitude to give us the escape flux of hot oxygen atoms for that periapsis pass. We have sufficient coverage in solar zenith angle (SZA) to estimate total escape rates for two intervals with the obvious assumption that escape rates are the same at all points with the same SZA. We estimate total escape rates of 3.5-5.8 x 1025 s-1 for Ls = 289° to 319° and 1.6-2.6 x 1025 s-1 for Ls = 326° to 348°. The latter is the most directly comparable to previous model-based estimates and is roughly in line with several of them. Total photochemical loss over Mars history is not very useful to calculate from such escape fluxes derived over a limited area and under limited conditions. A thicker atmosphere and much higher solar EUV in the past may change the dynamics of escape dramatically. In the future, we intend to use 3-D Monte Carlo models of global atmospheric escape, in concert with our in situ and remote measurements, to fully characterize photochemical escape under current conditions and carefully extrapolate back in time using further simulations with new boundary conditions.
NASA Astrophysics Data System (ADS)
Sekiguchi, Yuichiro; Kiuchi, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Taniguchi, Keisuke
2016-06-01
We perform neutrino radiation-hydrodynamics simulations for the merger of asymmetric binary neutron stars in numerical relativity. Neutron stars are modeled by soft and moderately stiff finite-temperature equations of state (EOS). We find that the properties of the dynamical ejecta such as the total mass, neutron richness profile, and specific entropy profile depend on the mass ratio of the binary systems for a given EOS in a unique manner. For a soft EOS (SFHo), the total ejecta mass depends weakly on the mass ratio, but the average of electron number per baryon (Ye ) and specific entropy (s ) of the ejecta decreases significantly with the increase of the degree of mass asymmetry. For a stiff EOS (DD2), with the increase of the mass asymmetry degree, the total ejecta mass significantly increases while the average of Ye and s moderately decreases. We find again that only for the SFHo, the total ejecta mass exceeds 0.01 M⊙ irrespective of the mass ratio chosen in this paper. The ejecta have a variety of electron number per baryon with an average approximately between Ye˜0.2 and ˜0.3 irrespective of the EOS employed, which is well suited for the production of the rapid neutron capture process heavy elements (second and third peaks), although its averaged value decreases with the increase of the degree of mass asymmetry.
Low-Temperature Spacecraft: Challenges/Opportunities
NASA Technical Reports Server (NTRS)
Dickman, J. E.; Patterson, R. L.; Overton, E.; Hammoud, A. N.; Gerber, S. S.
2001-01-01
Imagine sending a spacecraft into deep space that operates at the ambient temperature of its environment rather than hundreds of degrees Kelvin warmer. The average temperature of a spacecraft warmed only by the sun drops from 279 K near the Earth's orbit to 90 K near the orbit of Saturn, and to 44 K near Pluto's orbit. At present, deep space probes struggle to maintain an operating temperature near 300 K for the onboard electronics. To warm the electronics without consuming vast amounts of electrical energy, radioisotope heater units (RHUs) are used in vast numbers. Unfortunately, since RHU are always 'on', an active thermal management system is required to reject the excess heat. A spacecraft designed to operate at cryogenic temperatures and shielded from the sun by a large communication dish or solar cell array could be less complex, lighter, and cheaper than current deep space probes. Before a complete low-temperature spacecraft becomes a reality, there are several challenges to be met. Reliable cryogenic power electronics is one of the major challenges. The Low-Temperature Power Electronics Research Group at NASA Glenn Research Center (GRC) has demonstrated the ability of some commercial off the shelf power electronic components to operate at temperatures approaching that of liquid nitrogen (77 K). Below 77 K, there exists an opportunity for the development of reliable semiconductor power switching technologies other than bulk silicon CMOS. This paper will report on the results of NASA GRC's Low-Temperature Power Electronics Program and discuss the challenges to (opportunities for) the creation of a low-temperature spacecraft.
Electronics Demonstrated for Low- Temperature Operation
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammond, Ahmad; Gerber, Scott S.
2000-01-01
The operation of electronic systems at cryogenic temperatures is anticipated for many NASA spacecraft, such as planetary explorers and deep space probes. For example, an unheated interplanetary probe launched to explore the rings of Saturn would experience an average temperature near Saturn of about 183 C. Electronics capable of low-temperature operation in the harsh deep space environment also would help improve circuit performance, increase system efficiency, and reduce payload development and launch costs. An ongoing research and development program on low-temperature electronics at the NASA Glenn Research Center at Lewis Field is focusing on the design of efficient power systems that can survive and exploit the advantages of low-temperature environments. The targeted systems, which are mission driven, include converters, inverters, controls, digital circuits, and special-purpose circuits. Initial development efforts successfully demonstrated the low-temperature operation and cold-restart of several direct-current/direct-current (dc/dc) converters based on different types of circuit design, some with superconducting inductors. The table lists some of these dc/dc converters with their properties, and the photograph shows a high-voltage, high-power dc/dc converter designed for an ion propulsion system for low-temperature operation. The development efforts of advanced electronic systems and the supporting technologies for low-temperature operation are being carried out in-house and through collaboration with other Government agencies, industry, and academia. The Low Temperature Electronics Program supports missions and development programs at NASA s Jet Propulsion Laboratory and Goddard Space Flight Center. The developed technologies will be transferred to commercial end users for applications such as satellite infrared sensors and medical diagnostic equipment.
Electron temperatures within magnetic clouds between 2 and 4 AU: Voyager 2 observations
NASA Astrophysics Data System (ADS)
Sittler, E. C.; Burlaga, L. F.
1998-08-01
We have performed an analysis of Voyager 2 plasma electron observations within magnetic clouds between 2 and 4 AU identified by Burlaga and Behannon [1982]. The analysis has been confined to three of the magnetic clouds identified by Burlaga and Behannon that had high-quality data. The general properties of the plasma electrons within a magnetic cloud are that (1) the moment electron temperature anticorrelates with the electron density within the cloud, (2) the ratio Te/Tp tends to be >1, and (3) on average, Te/Tp~7.0. All three results are consistent with previous electron observations within magnetic clouds. Detailed analyses of the core and halo populations within the magnetic clouds show no evidence of either an anticorrelation between the core temperature TC and the electron density Ne or an anticorrelation between the halo temperature TH and the electron density. Within the magnetic clouds the halo component can contribute more than 50% of the electron pressure. The anticorrelation of Te relative to Ne can be traced to the density of the halo component relative to the density of the core component. The core electrons dominate the electron density. When the density goes up, the halo electrons contribute less to the electron pressure, so we get a lower Te. When the electron density goes down, the halo electrons contribute more to the electron pressure, and Te goes up. We find a relation between the electron pressure and density of the form Pe=αNeγ with γ~0.5.
Suppression of electron temperature gradient turbulence via negative magnetic shear in NSTX.
Yuh, H Y; Kaye, S M; Levinton, F M; Mazzucato, E; Mikkelsen, D R; Smith, D R; Bell, R E; Hosea, J C; LeBlanc, B P; Peterson, J L; Park, H K; Lee, W
2011-02-04
Negative magnetic shear is found to suppress electron turbulence and improve electron thermal transport for plasmas in the National Spherical Torus Experiment (NSTX). Sufficiently negative magnetic shear results in a transition out of a stiff profile regime. Density fluctuation measurements from high-k microwave scattering are verified to be the electron temperature gradient (ETG) mode by matching measured rest frequency and linear growth rate to gyrokinetic calculations. Fluctuation suppression under negligible E×B shear conditions confirm that negative magnetic shear alone is sufficient for ETG suppression. Measured electron temperature gradients can significantly exceed ETG critical gradients with ETG mode activity reduced to intermittent bursts, while electron thermal diffusivity improves to below 0.1 electron gyro-Bohms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, P. D., E-mail: grigorev@itp.ac.ru; Dyugaev, A. M.; Lebedeva, E. V.
2008-02-15
The temperature dependence of electron mobility is examined. We calculate the contribution to the electron scattering rate from the surface level atoms (SLAs), proposed in [10]. This contribution is substantial at low temperatures T < 0.5, when the He vapor concentration is exponentially small. We also study the effect of depopulation of the lowest energy subband, which leads to an increase in the electron mobility at high temperature. The results explain certain long-standing discrepancies between the existing theory and experiment on electron mobility on the surface of liquid helium.
Proton cooling in ultracold low-density electron gas
NASA Astrophysics Data System (ADS)
Bobrov, A. A.; Bronin, S. Y.; Manykin, E. A.; Zelener, B. B.; Zelener, B. V.; Khikhlukha, D. R.
2015-11-01
A sole proton energy loss processes in an electron gas and the dependence of these processes on temperature and magnetic field are studied using molecular dynamics techniques in present work. It appears that for electron temperatures less than 100 K many body collisions affect the proton energy loss and these collisions must be taken into account. The influence of a strong magnetic field on the relaxation processes is also considered in this work. Calculations were performed for electron densities 10 cm-3, magnetic field 1-3 Tesla, electron temperatures 10-50 K, initial proton energies 100-10000 K.
Thermal and Nonthermal Electron-ion Bremsstrahlung Spectrum from High-Temperature Plasmas
NASA Technical Reports Server (NTRS)
Jung, Young-Dae
1994-01-01
Electron-ion bremsstrahlung radiation from high-temperature plasmas is investigated. The first- and second-order Coulomb corrections in the nonrelativistic bremsstrahlung radiation power are obtained by the Elwert-Sommerfeld factor. In this paper, two cases of the electron distributions, the thermal and nonthermal power-law distributions, are considered. The inclusion of Coulomb corrections is necessary in deducing correctly the electron distribution function from radiation data. These results provide the correct information of electron distributions in high-temperature plasmas, such as in inertial confinement fusion plasmas and in the astrophysical hot thermal and nonthermal x-ray sources.
Limitations in cooling electrons using normal-metal-superconductor tunnel junctions.
Pekola, J P; Heikkilä, T T; Savin, A M; Flyktman, J T; Giazotto, F; Hekking, F W J
2004-02-06
We demonstrate both theoretically and experimentally two limiting factors in cooling electrons using biased tunnel junctions to extract heat from a normal metal into a superconductor. First, when the injection rate of electrons exceeds the internal relaxation rate in the metal to be cooled, the electrons do not obey the Fermi-Dirac distribution, and the concept of temperature cannot be applied as such. Second, at low bath temperatures, states within the gap induce anomalous heating and yield a theoretical limit of the achievable minimum temperature.
Electronic part of the optical correlation function at finite temperature: the S-matrix expansion
NASA Astrophysics Data System (ADS)
Tavares, M.; Marques, G. E.; Tejedor, C.
1998-12-01
We present an extension to finite temperature of the Mahan-Nozières-De Dominicis framework to obtain the electronic part of the current-current correlation function. Its Fourier transform gives the absorption and emission spectra of doped low-dimensional semiconductors. We show the meaning of the new finite-temperature contributions characterizing the electronic part.
NASA Astrophysics Data System (ADS)
Tanabe, Hiroshi; Inomoto, Michiaki; Ono, Yasushi; Yamada, Takuma; Imazawa, Ryota; Cheng, Chio-Zong
2016-07-01
We present results of recent studies of high power heating of magnetic reconnection, the fundamental process of several astrophysical events such as solar flare, in the Mega Amp Spherical Tokamak (MAST) - the world largest merging experiment. In addition to the previously reported significant reconnection heating up to ˜1keV [1], detailed local profiles of electron and ion temperature have been measured using a ultra-fine 300 channel Ruby- and a 130 channel YAG-Thomson scattering and a new 32 channel ion Doppler tomography diagnostics [2]. 2D profile measurement of electron temperature revealed highly localized heating structure at the X point with the characteristic scale length of 0.02-0.05m
NASA Astrophysics Data System (ADS)
Amouye Foumani, A.; Niknam, A. R.
2018-01-01
The response of copper films to irradiation with laser pulses of fluences in the range of 100-6000 J/m2 is simulated by using a modified combination of a two-temperature model (TTM) and molecular dynamics (MD). In this model, the dependency of the pulse penetration depth and the reflectivity of the target on electron temperature are taken into account. Also, the temperature-dependent electron-phonon coupling factor, electron thermal conductivity, and electron heat capacity are used in the simulations. Based on this model, the dependence of the integral reflectivity on pulse fluence, the changes in the film thickness, and the evolution of density and electron and lattice temperatures are obtained. Moreover, snapshots that show the melting and disintegration processes are presented. The disintegration starts at a fluence of 4200 J/m2, which corresponds with an absorbed fluence of 616 J/m2. The calculated values of integral reflectivity are in good agreement with the experimental data. The inclusion of such temperature-dependent absorption models in the TTM-MD method would facilitate the comparison of experimental data with simulation results.
Measurement of electron-ion relaxation in warm dense copper
Cho, B. I.; Ogitsu, T.; Engelhorn, K.; ...
2016-01-06
Experimental investigation of electron-ion coupling and electron heat capacity of copper in warm and dense states are presented. From time-resolved x-ray absorption spectroscopy, the temporal evolution of electron temperature is obtained for non-equilibrium warm dense copper heated by an intense femtosecond laser pulse. Electron heat capacity and electron-ion coupling are inferred from the initial electron temperature and its decrease over 10 ps. As a result, data are compared with various theoretical models.
On-chip magnetic cooling of a nanoelectronic device.
Bradley, D I; Guénault, A M; Gunnarsson, D; Haley, R P; Holt, S; Jones, A T; Pashkin, Yu A; Penttilä, J; Prance, J R; Prunnila, M; Roschier, L
2017-04-04
We demonstrate significant cooling of electrons in a nanostructure below 10 mK by demagnetisation of thin-film copper on a silicon chip. Our approach overcomes the typical bottleneck of weak electron-phonon scattering by coupling the electrons directly to a bath of refrigerated nuclei, rather than cooling via phonons in the host lattice. Consequently, weak electron-phonon scattering becomes an advant- age. It allows the electrons to be cooled for an experimentally useful period of time to temperatures colder than the dilution refrigerator platform, the incoming electrical connections, and the host lattice. There are efforts worldwide to reach sub-millikelvin electron temperatures in nanostructures to study coherent electronic phenomena and improve the operation of nanoelectronic devices. On-chip magnetic cooling is a promising approach to meet this challenge. The method can be used to reach low, local electron temperatures in other nanostructures, obviating the need to adapt traditional, large demagnetisation stages. We demonstrate the technique by applying it to a nanoelectronic primary thermometer that measures its internal electron temperature. Using an optimised demagnetisation process, we demonstrate cooling of the on-chip electrons from 9 mK to below 5 mK for over 1000 seconds.
On-chip magnetic cooling of a nanoelectronic device
NASA Astrophysics Data System (ADS)
Bradley, D. I.; Guénault, A. M.; Gunnarsson, D.; Haley, R. P.; Holt, S.; Jones, A. T.; Pashkin, Yu. A.; Penttilä, J.; Prance, J. R.; Prunnila, M.; Roschier, L.
2017-04-01
We demonstrate significant cooling of electrons in a nanostructure below 10 mK by demagnetisation of thin-film copper on a silicon chip. Our approach overcomes the typical bottleneck of weak electron-phonon scattering by coupling the electrons directly to a bath of refrigerated nuclei, rather than cooling via phonons in the host lattice. Consequently, weak electron-phonon scattering becomes an advant- age. It allows the electrons to be cooled for an experimentally useful period of time to temperatures colder than the dilution refrigerator platform, the incoming electrical connections, and the host lattice. There are efforts worldwide to reach sub-millikelvin electron temperatures in nanostructures to study coherent electronic phenomena and improve the operation of nanoelectronic devices. On-chip magnetic cooling is a promising approach to meet this challenge. The method can be used to reach low, local electron temperatures in other nanostructures, obviating the need to adapt traditional, large demagnetisation stages. We demonstrate the technique by applying it to a nanoelectronic primary thermometer that measures its internal electron temperature. Using an optimised demagnetisation process, we demonstrate cooling of the on-chip electrons from 9 mK to below 5 mK for over 1000 seconds.
The LANL P14 temperature control electronics for the waveshaping filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nahman, N.S.
1993-12-17
The Pulse Waveform Standard is designed to be operated in a laboratory environment in which the temperature is controlled and maintained at 22 C. The temperature controller of the Pulse Waveform Standard must be set to operate at 30 C. This report gives information for calibrating and maintaining the temperature control electronics. Temperature controller circuit diagrams and temperature controller circuit board layouts are included.
NASA Astrophysics Data System (ADS)
Harbour, L.; Förster, G. D.; Dharma-wardana, M. W. C.; Lewis, Laurent J.
2018-04-01
The ion-ion dynamical structure factor and the equation of state of warm dense aluminum in a two-temperature quasiequilibrium state, with the electron temperature higher than the ion temperature, are investigated using molecular-dynamics simulations based on ion-ion pair potentials constructed from a neutral pseudoatom model. Such pair potentials based on density functional theory are parameter-free and depend directly on the electron temperature and indirectly on the ion temperature, enabling efficient computation of two-temperature properties. Comparison with ab initio simulations and with other average-atom calculations for equilibrium aluminum shows good agreement, justifying a study of quasiequilibrium situations. Analyzing the van Hove function, we find that ion-ion correlations vanish in a time significantly smaller than the electron-ion relaxation time so that dynamical properties have a physical meaning for the quasiequilibrium state. A significant increase in the speed of sound is predicted from the modification of the dispersion relation of the ion acoustic mode as the electron temperature is increased. The two-temperature equation of state including the free energy, internal energy, and pressure is also presented.
NASA Technical Reports Server (NTRS)
Garrett, J. W.; Glassford, A. P. M.; Steakley, J. M.
1994-01-01
The American Society for Testing and Materials has published a new standard test method for characterizing time and temperature-dependence of material outgassing kinetics and the deposition kinetics of outgassed species on surfaces at various temperatures. This new ASTM standard, E 1559(1), uses the quartz crystal microbalance (QCM) collection measurement approach. The test method was originally developed under a program sponsored by the United States Air Force Materials Laboratory (AFML) to create a standard test method for obtaining outgassing and deposition kinetics data for spacecraft materials. Standardization by ASTM recognizes that the method has applications beyond aerospace. In particular, the method will provide data of use to the electronics, semiconductor, and high vacuum industries. In ASTM E 1559 the material sample is held in vacuum in a temperature-controlled effusion cell, while its outgassing flux impinges on several QCM's which view the orifice of the effusion cell. Sample isothermal total mass loss (TML) is measured as a function of time from the mass collected on one of the QCM's which is cooled by liquid nitrogen, and the view factor from this QCM to the cell. The amount of outgassed volatile condensable material (VCM) on surfaces at higher temperatures is measured as a function of time during the isothermal outgassing test by controlling the temperatures of the remaining QCM's to selected values. The VCM on surfaces at temperatures in between those of the collector QCM's is determined at the end of the isothermal test by heating the QCM's at a controlled rate and measuring the mass loss from the end of the QCM's as a function of time and temperature. This reevaporation of the deposit collected on the QCM's is referred to as QCM thermogravimetric analysis. Isothermal outgassing and deposition rates can be determined by differentiating the isothermal TML and VCM data, respectively, while the evaporation rates of the species can be obtained as a function of temperature by differentiating the QCM thermogravimetric analysis data.
[Temperature measurement of DC argon plasma jet].
Yan, Jian-Hua; Pan, Xin-Chao; Ma, Zeng-Yi; Tu, Xin; Cen, Ke-Fa
2008-01-01
The electron temperature of DC arc plasma jet is an important parameter, which determines the characteristics of plasma jet. The measurement of emission spectrum was performed to obtain the spectral intensities of some Ar lines and the method of diagrammatic view of Boltzmann was adopted to calculate the electron temperature. The results indicated that the electron temperature dropped at different speed along with the axes of the plasma jet and rose rapidly when the current was increased, and it also rose when the flowrate of argon was increased.
NASA Astrophysics Data System (ADS)
Zho, Chen-Chen; Farr, Erik P.; Glover, William J.; Schwartz, Benjamin J.
2017-08-01
We use one-electron non-adiabatic mixed quantum/classical simulations to explore the temperature dependence of both the ground-state structure and the excited-state relaxation dynamics of the hydrated electron. We compare the results for both the traditional cavity picture and a more recent non-cavity model of the hydrated electron and make definite predictions for distinguishing between the different possible structural models in future experiments. We find that the traditional cavity model shows no temperature-dependent change in structure at constant density, leading to a predicted resonance Raman spectrum that is essentially temperature-independent. In contrast, the non-cavity model predicts a blue-shift in the hydrated electron's resonance Raman O-H stretch with increasing temperature. The lack of a temperature-dependent ground-state structural change of the cavity model also leads to a prediction of little change with temperature of both the excited-state lifetime and hot ground-state cooling time of the hydrated electron following photoexcitation. This is in sharp contrast to the predictions of the non-cavity model, where both the excited-state lifetime and hot ground-state cooling time are expected to decrease significantly with increasing temperature. These simulation-based predictions should be directly testable by the results of future time-resolved photoelectron spectroscopy experiments. Finally, the temperature-dependent differences in predicted excited-state lifetime and hot ground-state cooling time of the two models also lead to different predicted pump-probe transient absorption spectroscopy of the hydrated electron as a function of temperature. We perform such experiments and describe them in Paper II [E. P. Farr et al., J. Chem. Phys. 147, 074504 (2017)], and find changes in the excited-state lifetime and hot ground-state cooling time with temperature that match well with the predictions of the non-cavity model. In particular, the experiments reveal stimulated emission from the excited state with an amplitude and lifetime that decreases with increasing temperature, a result in contrast to the lack of stimulated emission predicted by the cavity model but in good agreement with the non-cavity model. Overall, until ab initio calculations describing the non-adiabatic excited-state dynamics of an excess electron with hundreds of water molecules at a variety of temperatures become computationally feasible, the simulations presented here provide a definitive route for connecting the predictions of cavity and non-cavity models of the hydrated electron with future experiments.
NASA Technical Reports Server (NTRS)
Dunn, M. G.
1972-01-01
The rate coefficients for the reactions C(+) + e(-) + e(-) yields C + e(-) and CO(+) + e(-) yields C + O were measured over the electron temperature range of approximately 1500 deg K to 7000 deg K. The measurements were performed in CO that had expanded from equilibrium reservoir conditions of 7060 deg K at 17.3 atm pressure and from 6260 deg K at 10.0 atm pressure. Two RAM flight probes were used to measure electron density and electron temperature in the expanding flow of a shock tunnel. Experiments were performed in the inviscid flow with both probes and in the nozzle-wall boundary layer with the constant bias-voltage probe. The distributions of electron density and electron temperature were independently measured using voltage-swept thin-wire probes. Thin-wire Langmuir probes were also used to measure the electron-density and electron-temperature distributions in the boundary layer of a sharp flat plate located on the nozzle centerline. Admittance measurements were performed with the RAM C and RAM C-C S-band antennas in the presence of an ionized boundary layer.
Thermally Driven Electronic Topological Transition in FeTi
Yang, F. C.; Muñoz, J. A.; Hellman, O.; ...
2016-08-08
In this paper, ab initio molecular dynamics, supported by inelastic neutron scattering and nuclear resonant inelastic x-ray scattering, showed an anomalous thermal softening of the M 5 - phonon mode in B2-ordered FeTi that could not be explained by phonon-phonon interactions or electron-phonon interactions calculated at low temperatures. A computational investigation showed that the Fermi surface undergoes a novel thermally driven electronic topological transition, in which new features of the Fermi surface arise at elevated temperatures. Finally, the thermally induced electronic topological transition causes an increased electronic screening for the atom displacements in the M 5 - phonon mode andmore » an adiabatic electron-phonon interaction with an unusual temperature dependence.« less
Ab initio determination of effective electron-phonon coupling factor in copper
NASA Astrophysics Data System (ADS)
Ji, Pengfei; Zhang, Yuwen
2016-04-01
The electron temperature Te dependent electron density of states g (ε), Fermi-Dirac distribution f (ε), and electron-phonon spectral function α2 F (Ω) are computed as prerequisites before achieving effective electron-phonon coupling factor Ge-ph. The obtained Ge-ph is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing Ge-ph from ab initio calculation shows a faster decrease of Te and increase of Tl than those using Ge-ph from phenomenological treatment. The approach of calculating Ge-ph and its implementation into MD-TTM simulation is applicable to other metals.
Epitaxial heterojunctions of oxide semiconductors and metals on high temperature superconductors
NASA Technical Reports Server (NTRS)
Vasquez, Richard P. (Inventor); Hunt, Brian D. (Inventor); Foote, Marc C. (Inventor)
1994-01-01
Epitaxial heterojunctions formed between high temperature superconductors and metallic or semiconducting oxide barrier layers are provided. Metallic perovskites such as LaTiO3, CaVO3, and SrVO3 are grown on electron-type high temperature superconductors such as Nd(1.85)Ce(0.15)CuO(4-x). Alternatively, transition metal bronzes of the form A(x)MO(3) are epitaxially grown on electron-type high temperature superconductors. Also, semiconducting oxides of perovskite-related crystal structures such as WO3 are grown on either hole-type or electron-type high temperature superconductors.
NASA Astrophysics Data System (ADS)
Akahoshi, Hikaru; Takahashi, Kazunori; Ando, Akira
2018-03-01
High temperature electrons generated near a radial wall of a cylindrical source tube in a radiofrequency (rf) inductively-coupled plasma is filtered by an axisymmetric radial magnetic field formed near the source exit by locating annular permanent magnets, where the axial magnetic field strength in the radially central region is fairly uniform inside the source tube and is close to zero near the source exit. The source is operated at 3 mTorr in argon and the rf antenna is powered by a 13.56 MHz and 400 W rf generator. Measurement of electron energy probability functions shows the presence of the peripheral high temperature electrons inside the source, while the temperature of the peripheral electrons downstream of the source is observed to be reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jana, R. N.; Meikap, A. K.
The results of a comprehensive study of weak electron localization (WEL) and electron-electron interaction (EEI) effects in disordered V{sub 75}X{sub 25} (X = Pd, Al) alloys has been reported. The resistivity in absence of magnetic field shows a minimum at temperature T = T{sub m} and follows T{sup 1/2} law within the temperature range 5 K ≤ T ≤ T{sub m}, which suggests predominant EEI effect. Magnetoresistivity is positive due to strong spin-orbit interaction. The dephasing scattering time is dominated by the electron-phonon scattering. The electron-phonon scattering rate shows quadratic temperature dependence behavior, which is explained by the theory ofmore » incomplete dragging at the random scattering potential by phonons. The zero temperature scattering time strongly depends on the disorder and its magnitude decreases with increasing disorder.« less
NASA Astrophysics Data System (ADS)
McKenna, P.; MacLellan, D. A.; Butler, N. M. H.; Dance, R. J.; Gray, R. J.; Robinson, A. P. L.; Neely, D.; Desjarlais, M. P.
2015-06-01
The role of low-temperature electrical resistivity in defining the transport properties of mega-Ampere currents of fast (MeV) electrons in solids is investigated using 3D hybrid particle-in-cell (PIC) simulations. By considering resistivity profiles intermediate to the ordered (lattice) and disordered forms of two example materials, lithium and silicon, it is shown that both the magnitude of the resistivity and the shape of the resistivity-temperature profile at low temperatures strongly affect the self-generated resistive magnetic fields and the onset of resistive instabilities, and thus the overall fast electron beam transport pattern. The scaling of these effects to the giga-Ampere electron currents required for the fast ignition scheme for inertial fusion is also explored.
Brace, L H; Theis, R F; Krehbiel, J P; Nagy, A F; Donahue, T M; McElroy, M B; Pedersen, A
1979-02-23
Altitude profiles of electron temperature and density in the ionosphere of Venus have been obtained by the Pioneer Venus orbiter electron temperatutre probe. Elevated temperatutres observed at times of low solar wind flux exhibit height profiles that are consistent with a model in which less than 5 percent of the solar wind energy is deposited at the ionopause and is conducted downward through an unmagnetized ionosphere to the region below 200 kilomneters where electron cooling to the neutral atmosphere proceeds rapidly. When solar wind fluxes are higher, the electron temperatures and densities are highly structured and the ionopause moves to lower altitudes. The ionopause height in the late afternoon sector observed thus far varies so widely from day to (day that any height variation with solar zenith angle is not apparent in the observations. In the neighborhood of the ionopause, measuremnents of plasma temperatures and densities and magnetic field strength indicate that an induced magnetic barrier plays an important role in the pressure transfer between the solar wind and the ionosphere. The bow, shock is marked by a distinct increase in electron current collected by the instrument, a featutre that provides a convenient identification of the bow shock location.
Localized to itinerant transition of f electrons in ordered Ce films on W(110)
NASA Astrophysics Data System (ADS)
Chen, Q. Y.; Feng, W.; Xie, D. H.; Lai, X. C.; Zhu, X. G.; Huang, L.
2018-04-01
A key issue to understand the driving force and underlying physics in the isostructural γ -α transition in Cerium is the character of the 4 f states, whether it is localized or itinerant. Here the surface topography and electronic structure of the well-ordered Ce metal films on a W(110) substrate were investigated by using scanning tunneling microscopy, angle-resolved photoemission spectroscopy and density functional theory, and single-site dynamical mean-field theory calculations. Three nearly flat f bands can be observed, and a weakly dispersive quasiparticle band near the Fermi level has been directly observed at low temperature, indicating the hybridization between f electrons and conduction electrons in the low-temperature α phase. The hybridization strength becomes weaker upon increasing temperature, and the f electrons become almost fully localized at 300 K in the high-temperature γ phase. The observed localized-to-itinerant transition of the f electrons with decreasing temperature gives direct experimental proof for the changes of the 4 f character in the isostructural γ -α phase transition. Our results suggest that the character of the f electrons plays a crucial role during the γ -α phase transition.
Landau quantization effects on hole-acoustic instability in semiconductor plasmas
NASA Astrophysics Data System (ADS)
Sumera, P.; Rasheed, A.; Jamil, M.; Siddique, M.; Areeb, F.
2017-12-01
The growth rate of the hole acoustic waves (HAWs) exciting in magnetized semiconductor quantum plasma pumped by the electron beam has been investigated. The instability of the waves contains quantum effects including the exchange and correlation potential, Bohm potential, Fermi-degenerate pressure, and the magnetic quantization of semiconductor plasma species. The effects of various plasma parameters, which include relative concentration of plasma particles, beam electron temperature, beam speed, plasma temperature (temperature of electrons/holes), and Landau electron orbital magnetic quantization parameter η, on the growth rate of HAWs, have been discussed. The numerical study of our model of acoustic waves has been applied, as an example, to the GaAs semiconductor exposed to electron beam in the magnetic field environment. An increment in either the concentration of the semiconductor electrons or the speed of beam electrons, in the presence of magnetic quantization of fermion orbital motion, enhances remarkably the growth rate of the HAWs. Although the growth rate of the waves reduces with a rise in the thermal temperature of plasma species, at a particular temperature, we receive a higher instability due to the contribution of magnetic quantization of fermions to it.
Correction analysis for a supersonic water cooled total temperature probe tested to 1370 K
NASA Technical Reports Server (NTRS)
Lagen, Nicholas T.; Seiner, John M.
1991-01-01
The authors address the thermal analysis of a water cooled supersonic total temperature probe tested in a Mach 2 flow, up to 1366 K total temperature. The goal of this experiment was the determination of high-temperature supersonic jet mean flow temperatures. An 8.99 cm exit diameter water cooled nozzle was used in the tests. It was designed for exit Mach 2 at 1366 K exit total temperature. Data along the jet centerline were obtained for total temperatures of 755 K, 1089 K, and 1366 K. The data from the total temperature probe were affected by the water coolant. The probe was tested through a range of temperatures between 755 K and 1366 K with and without the cooling system turned on. The results were used to develop a relationship between the indicated thermocouple bead temperature and the freestream total temperature. The analysis and calculated temperatures are presented.
Effect of Processing Route on Strain Controlled Low Cycle Fatigue Behavior of Polycrystalline NiAl
NASA Technical Reports Server (NTRS)
Rao, K. Bhanu Sankara; Lerch, B. A.; Noebe, R. D.
1995-01-01
The present investigation examines the effects of manufacturing process on the total axial strain controlled low cycle fatigue behavior of polycrystalline NiAl at 1000 K, a temperature above the monotonic Brittle-to-Ductile Transition Temperature (BDTT). The nickel aluminide samples were produced by three different processing routes: hot isostatic pressing of pre- alloyed powders, extrusion of prealloyed powders, and extrusion of vacuum induction melted ingots. The LCF behavior of the cast plus extruded material was also determined at room temperature (below the BD77) for comparison to the high temperature data. The cyclic stress response, cyclic stress-strain behavior, and strain-life relationships were influenced by the alloy preparation technique and the testing temperature. Detailed characterization of the LCF tested samples was conducted by optical and electron microscopy to determine the variations in fracture and deformation modes and to determine any microstructural changes that occurred during LCF testing. The dependence of LCF properties on processing route was rationalized on the basis of starting microstructure, brittle-to-ductile transition temperature, deformation induced changes in the basic microstructure, deformation substructure, and synergistic interaction between the damage modes.
Spin relaxation in n-type GaAs quantum wells from a fully microscopic approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, J.; Wu, M. W.; Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026
2007-01-15
We perform a full microscopic investigation on the spin relaxation in n-type (001) GaAs quantum wells with an Al{sub 0.4}Ga{sub 0.6}As barrier due to the D'yakonov-Perel' mechanism from nearly 20 K to room temperature by constructing and numerically solving the kinetic spin Bloch equations. We consider all the relevant scattering such as the electron-acoustic-phonon, the electron-longitudinal-optical-phonon, the electron-nonmagnetic-impurity, and the electron-electron Coulomb scattering to the spin relaxation. The spin relaxation times calculated from our theory with a fitting spin splitting parameter are in good agreement with the experimental data by Ohno et al. [Physica E (Amsterdam) 6, 817 (2000)] overmore » the whole temperature regime (from 20 to 300 K). The value of the fitted spin splitting parameter agrees with many experiments and theoretical calculations. We further show the temperature dependence of the spin relaxation time under various conditions such as electron density, impurity density, and well width. We predict a peak solely due to the Coulomb scattering in the spin relaxation time at low temperature (<50 K) in samples with low electron density (e.g., density less than 1x10{sup 11} cm{sup -2}) but high mobility. This peak disappears in samples with high electron density (e.g., 2x10{sup 11} cm{sup -2}) and/or low mobility. The hot-electron spin kinetics at low temperature is also addressed with many features quite different from the high-temperature case predicted.« less
Disorder dependence electron phonon scattering rate of V82Pd18 - xFex alloys at low temperature
NASA Astrophysics Data System (ADS)
Jana, R. N.; Meikap, A. K.
2018-04-01
We have systematically investigated the disorder dependence electron phonon scattering rate in three dimensional disordered V82Pd18 - xFex alloys. A minimum in temperature dependence resistivity curve has been observed at low temperature T =Tm. In the temperature range 5 K ≤ T ≤Tm the resistivity correction follows ρo 5 / 2T 1 / 2 law. The dephasing scattering time has been calculated from analysis of magnetoresistivity by weak localization theory. The electron dephasing time is dominated by electron-phonon scattering and follows anomalous temperature (T) and disorder (ρ0) dependence behaviour like τe-ph-1 ∝T2 /ρ0, where ρ0 is the impurity resistivity. The magnitude of the saturated dephasing scattering time (τ0) at zero temperature decreases with increasing disorder of the samples. Such anomalous behaviour of dephasing scattering rate is still unresolved.
Plasma parameters in a multidipole plasma system
NASA Astrophysics Data System (ADS)
Ruscanu, D.; Anita, V.; Popa, G.
Plasma potential and electron number densities and electron temperatures under bi-Maxwellian approximation for electron distribution function of the multidipole argon plasma source system were measured for a gas pressure ranging between 10-4 and 10-3 mbar and an anode-cathode voltage ranging between 40 and 120 V but a constant discharge current intensity. The first group, as ultimate or cold electrons and main electron plasma population, results by trapping of the slow electrons produced by ionisation process due to primary-neutral collisions. The trapping process is produced by potential well due to positive plasma potential with respect to the anode so that electron temperature of the ultimate electrons does not depend on both the gas pressure and discharge voltage. The second group, as secondary or hot electrons, results as degrading process of the primaries and their number density increases while their temperature decreases with the increase of both the gas pressure and discharge voltage.
Optical spectrophotometry of Wolf-Rayet galaxies
NASA Technical Reports Server (NTRS)
Vacca, William D.; Conti, Peter S.
1992-01-01
We have obtained long-slit optical spectra of 10 Wolf-Rayet galaxies and four other starburst galaxies. Using the nebular emission lines we have determined the electron temperatures, electron densities, extinctions, oxygen abundances, mass of ionized hydrogen, and numbers of ionizing photons due to hot stars in these galaxies. The various forbidden line ratios clearly indicate a stellar origin for the emission-line spectrum. From the flux of the broad He II 4686 A emission feature we have estimated the number of Wolf-Rayet stars present. We have accounted for the contribution of these stars to the total ionizing flux and have calculated the ratio of the number of these stars to the number of O stars. Wolf-Rayet galaxies are among the youngest examples of the starburst phenomenon, which we observed at a propitious moment.
VizieR Online Data Catalog: Supernova matter EOS (Buyukcizmeci+, 2014)
NASA Astrophysics Data System (ADS)
Buyukcizmeci, N.; Botvina, A. S.; Mishustin, I. N.
2017-03-01
The Statistical Model for Supernova Matter (SMSM) was developed in Botvina & Mishustin (2004, PhLB, 584, 233 ; 2010, NuPhA, 843, 98) as a direct generalization of the Statistical Multifragmentation Model (SMM; Bondorf et al. 1995, PhR, 257, 133). We treat supernova matter as a mixture of nuclear species, electrons, and photons in statistical equilibrium. The SMSM EOS tables cover the following ranges of control parameters: 1. Temperature: T = 0.2-25 MeV; for 35 T values. 2. Electron fraction Ye: 0.02-0.56; linear mesh of Ye = 0.02, giving 28 Ye values. It is equal to the total proton fraction Xp, due to charge neutrality. 3. Baryon number density fraction {rho}/{rho}0 = (10-8-0.32), giving 31 {rho}/{rho}0 values. (2 data files).
Long-Term Reliability of High Speed SiGe/Si Heterojunction Bipolar Transistors
NASA Technical Reports Server (NTRS)
Ponchak, George E. (Technical Monitor); Bhattacharya, Pallab
2003-01-01
Accelerated lifetime tests were performed on double-mesa structure Si/Si0.7Ge0.3/Si npn heterojunction bipolar transistors, grown by molecular beam epitaxy, in the temperature range of 175C-275C. Both single- and multiple finger transistors were tested. The single-finger transistors (with 5x20 micron sq m emitter area) have DC current gains approximately 40-50 and f(sub T) and f(sub MAX) of up to 22 GHz and 25 GHz, respectively. The multiple finger transistors (1.4 micron finger width, 9 emitter fingers with total emitter area of 403 micron sq m) have similar DC current gain but f(sub T) of 50 GHz. It is found that a gradual degradation in these devices is caused by the recombination enhanced impurity diffusion (REID) of boron atoms from the p-type base region and the associated formation of parasitic energy barriers to electron transport from the emitter to collector layers. This REID has been quantitatively modeled and explained, to the first order of approximation, and the agreement with the measured data is good. The mean time to failure (MTTF) of the devices at room temperature is estimated from the extrapolation of the Arrhenius plots of device lifetime versus reciprocal temperature. The results of the reliability tests offer valuable feedback for SiGe heterostructure design in order to improve the long-term reliability of the devices and circuits made with them. Hot electron induced degradation of the base-emitter junction was also observed during the accelerated lifetime testing. In order to improve the HBT reliability endangered by the hot electrons, deuterium sintered techniques have been proposed. The preliminary results from this study show that a deuterium-sintered HBT is, indeed, more resistant to hot-electron induced base-emitter junction degradation. SiGe/Si based amplifier circuits were also subjected to lifetime testing and we extrapolate MTTF is approximately 1.1_10(exp 6) hours at 125iC junction temperature from the circuit lifetime data.
NASA Astrophysics Data System (ADS)
Granerød, Cecilie S.; Galeckas, Augustinas; Johansen, Klaus Magnus; Vines, Lasse; Prytz, Øystein
2018-04-01
The optical band gap of ZnO has been measured as a function of temperature using Electron Energy-Loss Spectroscopy (EELS) in a (Scanning) Transmission Electron Microscope ((S)TEM) from approximately 100 K up towards 1000 K. The band gap narrowing shows a close to linear dependency for temperatures above 250 K and is accurately described by Varshni, Bose-Einstein, Pässler and Manoogian-Woolley models. Additionally, the measured band gap is compared with both optical absorption measurements and photoluminescence data. STEM-EELS is here shown to be a viable technique to measure optical band gaps at elevated temperatures, with an available temperature range up to 1500 K and the benefit of superior spatial resolution.
HALT to qualify electronic packages: a proof of concept
NASA Astrophysics Data System (ADS)
Ramesham, Rajeshuni
2014-03-01
A proof of concept of the Highly Accelerated Life Testing (HALT) technique was explored to assess and optimize electronic packaging designs for long duration deep space missions in a wide temperature range (-150°C to +125°C). HALT is a custom hybrid package suite of testing techniques using environments such as extreme temperatures and dynamic shock step processing from 0g up to 50g of acceleration. HALT testing used in this study implemented repetitive shock on the test vehicle components at various temperatures to precipitate workmanship and/or manufacturing defects to show the weak links of the designs. The purpose is to reduce the product development cycle time for improvements to the packaging design qualification. A test article was built using advanced electronic package designs and surface mount technology processes, which are considered useful for a variety of JPL and NASA projects, i.e. (surface mount packages such as ball grid arrays (BGA), plastic ball grid arrays (PBGA), very thin chip array ball grid array (CVBGA), quad flat-pack (QFP), micro-lead-frame (MLF) packages, several passive components, etc.). These packages were daisy-chained and independently monitored during the HALT test. The HALT technique was then implemented to predict reliability and assess survivability of these advanced packaging techniques for long duration deep space missions in much shorter test durations. Test articles were built using advanced electronic package designs that are considered useful in various NASA projects. All the advanced electronic packages were daisychained independently to monitor the continuity of the individual electronic packages. Continuity of the daisy chain packages was monitored during the HALT testing using a data logging system. We were able to test the boards up to 40g to 50g shock levels at temperatures ranging from +125°C to -150°C. The HALT system can deliver 50g shock levels at room temperature. Several tests were performed by subjecting the test boards to various g levels ranging from 5g to 50g, test durations of 10 minutes to 60 minutes, hot temperatures of up to +125°C and cold temperatures down to -150°C. During the HALT test, electrical continuity measurements of the PBGA package showed an open-circuit, whereas the BGA, MLF, and QFPs showed signs of small variations of electrical continuity measurements. The electrical continuity anomaly of the PBGA occurred in the test board within 12 hours of commencing the accelerated test. Similar test boards were assembled, thermal cycled independently from -150°C to +125°C and monitored for electrical continuity through each package design. The PBGA package on the test board showed an anomalous electrical continuity behavior after 959 thermal cycles. Each thermal cycle took around 2.33 hours, so that a total test time to failure of the PBGA was 2,237 hours (or ~3.1 months) due to thermal cycling alone. The accelerated technique (thermal cycling + shock) required only 12 hours to cause a failure in the PBGA electronic package. Compared to the thermal cycle only test, this was an acceleration of ~186 times (more than 2 orders of magnitude). This acceleration process can save significant time and resources for predicting the life of a package component in a given environment, assuming the failure mechanisms are similar in both the tests. Further studies are in progress to make systematic evaluations of the HALT technique on various other advanced electronic packaging components on the test board. With this information one will be able to estimate the number of mission thermal cycles to failure with a much shorter test program. Further studies are in progress to make systematic study of various components, constant temperature range for both the tests. Therefore, one can estimate the number of hours to fail in a given thermal and shock levels for a given test board physical properties.
An experimental investigation of cathode erosion in high current magnetoplasmadynamic arc discharges
NASA Astrophysics Data System (ADS)
Codron, Douglas A.
Since the early to mid 1960's, laboratory studies have demonstrated the unique ability of magnetoplasmadynamic (MPD) thrusters to deliver an exceptionally high level of specific impulse and thrust at large power processing densities. These intrinsic advantages are why MPD thrusters have been identified as a prime candidate for future long duration space missions, including piloted Mars, Mars cargo, lunar cargo, and other missions beyond low Earth orbit (LEO). The large total impulse requirements inherent of the long duration space missions demand the thruster to operate for a significant fraction of the mission burn time while requiring the cathodes to operate at 50 to 10,000 kW for 2,000 to 10,000 hours. The high current levels lead to high operational temperatures and a corresponding steady depletion of the cathode material by evaporation. This mechanism has been identified as the life-limiting component of MPD thrusters. In this research, utilizing subscale geometries, time dependent cathode axial temperature profiles under varying current levels (20 to 60 A) and argon gas mass flow rates (450 to 640 sccm) for both pure and thoriated solid tungsten cathodes were measured by means of both optical pyrometry and charged-coupled (CCD) camera imaging. Thoriated tungsten cathode axial temperature profiles were compared against those of pure tungsten to demonstrate the large temperature reducing effect lowered work function imparts by encouraging increased thermionic electron emission from the cathode surface. Also, Langmuir probing was employed to measure the electron temperature, electron density, and plasma potential near the "active zone" (the surface area of the cathode responsible for approximately 70% of the emitted current) in order to characterize the plasma environment and verify future model predictions. The time changing surface microstructure and elemental composition of the thoriated tungsten cathodes were analyzed using a scanning electron microscope (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDS). Such studies have provided a qualitative understanding of the typical pathways in which thorium diffuses and how it is normally redistributed along the cathode surface. Lastly, the erosion rates of both pure and thoriated tungsten cathodes were measured after various run times by use of an analytical scale. These measurements have revealed the ability of thoriated tungsten cathodes to run as long as that of pure tungsten but with significantly less material erosion.
Profiles of Ionospheric Storm-enhanced Density during the 17 March 2015 Great Storm
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, W.; Burns, A. G.; Yue, X.; Zhang, S.; Zhang, Y.
2015-12-01
Ionospheric F2 region peak densities (NmF2) are expected to show a positive phase correlation with total electron content (TEC), and electron density is expected to have an anti-correlation with electron temperature near the ionospheric F2 peak. However, we show that, during the 17 March 2015 great storm, TEC and F2 region electron density peak height (hmF2) over Millstone Hill increased, but the F2 region electron density peak (NmF2) decreased significantly during the storm-enhanced density (SED) phase of the storm compared with the quiet-time ionosphere. This SED occurred where there was a negative ionospheric storm near the F2 peak and below it. The weak ionosphere below the F2 peak resulted in much reduced downward heat conduction for the electrons, trapping the heat in the topside. This, in turn, increased the topside scale height, so that, even though electron densities at the F2 peak were depleted, TEC increased in the SED. The depletion in NmF2 was probably caused by an increase in the density of the molecular neutrals, resulting in enhanced recombination. In addition, the storm-time topside ionospheric electron density profile was much closer to diffusive equilibrium than non-storm time profile because of less daytime plasma flow from the ionosphere to the plasmasphere.
NASA Astrophysics Data System (ADS)
Saloum, S.; Naddaf, M.; Alkhaled, B.
2008-02-01
N2-x% Ar plasma gas mixture, generated in a hollow cathode RF discharge system, has been characterized by both optical emission spectroscopy (OES) and double Langmuir probe, as a function of experimental parameters: total pressure (5-33 Pa), and different fractions of argon (7 <= x <= 80), at a constant applied RF power of 300 W. N2 dissociation degree has been investigated qualitatively by both the actinometry method and the ratio I_N/I_{N_2} of the atomic nitrogen line emission intensity at 672.3 nm to the vibrational band (0-0) of the N2 second positive system at 337.1 nm. Both methods showed that the increase in argon fraction enhances the dissociation of N2, with a maximum at x = 50 for the pressure of 5 Pa, although the two methods give two opposite trends as a function of total pressure. Spectroscopic measurements showed that the vibrational temperature of the N2 second positive system increases with both argon fraction and total pressure increase, it lies between 4900 and 12 300 K. Langmuir probe measurements showed that, in the remote zone, the electron temperature falls in the range 1.57-1.75 eV, the N_{2}^{+} density varies between 5 × 109 and 1.4 × 1010 cm-3 and that both the plasma ionization degree and electron temperature increase towards the source. In addition, the process of plasma-polyamide (PA) surface interaction, in the remote plasma zone, has been studied through OES analysis during plasma treatment of PA to monitor the possible emissions due to the polymer etching. An increase in atomic nitrogen line (672.3 nm) intensity is obtained, atomic carbon line (833.52 nm) and the band emission (0-0) from the CN (B 2Σ+-X 2Σ+) violet system were observed. The PA surface modification has been confirmed through the improvement of its hydrophilic character as the water contact angle measured after the plasma treatment significantly decreased.
NASA Astrophysics Data System (ADS)
O'Donoghue, James; Melin, Henrik; Stallard, Tom S.; Provan, G.; Moore, Luke; Badman, Sarah V.; Cowley, Stan W. H.; Baines, Kevin H.; Miller, Steve; Blake, James S. D.
2016-01-01
On 19-21 April 2013, the ground-based 10-m W.M. Keck II telescope was used to simultaneously measure H3+ emissions from four regions of Saturn's auroral ionosphere: (1) the northern noon region of the main auroral oval; (2) the northern midnight main oval; (3) the northern polar cap and (4) the southern noon main oval. The H3+ emission from these regions was captured in the form of high resolution spectral images as the planet rotated. The results herein contain twenty-three H3+ temperatures, column densities and total emissions located in the aforementioned regions - ninety-two data points in total, spread over timescales of both hours and days. Thermospheric temperatures in the spring-time northern main oval are found to be cooler than their autumn-time southern counterparts by tens of K, consistent with the hypothesis that the total thermospheric heating rate is inversely proportional to magnetic field strength. The main oval H3+ density and emission is lower at northern midnight than it is at noon, in agreement with a nearby peak in the electron influx in the post-dawn sector and a minimum flux at midnight. Finally, when arranging the northern main oval H3+ parameters as a function of the oscillation period seen in Saturn's magnetic field - the planetary period oscillation (PPO) phase - we see a large peak in H3+ density and emission at ∼115° northern phase, with a full-width at half-maximum (FWHM) of ∼44°. This seems to indicate that the influx of electrons associated with the PPO phase at 90° is responsible at least in part for the behavior of all H3+ parameters. A combination of the H3+ production and loss timescales and the ±10° uncertainty in the location of a given PPO phase are likely, at least in part, to be responsible for the observed peaks in H3+ density and emission occurring at a later time than the peak precipitation expected at 90° PPO phase.
Long, Y Z; Yin, Z H; Chen, Z J; Jin, A Z; Gu, C Z; Zhang, H T; Chen, X H
2008-05-28
The current-voltage (I-V) characteristics and electrical resistivity of isolated potassium manganese oxide (K(0.27)MnO(2)·0.5H(2)O) nanowires prepared by a simple hydrothermal method were investigated over a wide temperature range from 300 to 4 K. With lowering temperature, a transition from linear to nonlinear I-V curves was observed around 50 K, and a clear zero bias anomaly (i.e., Coulomb gap-like structure) appeared on the differential conductance (dI/dV) curves, possibly due to enhanced electron-electron interaction at low temperatures. The temperature dependence of resistivity, [Formula: see text], follows the Efros-Shklovskii (ES) law, as expected in the presence of a Coulomb gap. Here we note that both the ES law and Coulomb blockade can in principle lead to a reduced zero bias conductance at low temperatures; in this study we cannot exclude the possibility of Coulomb-blockade transport in the measured nanowires, especially in the low-temperature range. It is still an open question how to pin down the origin of the observed reduction to a Coulomb gap (ES law) or Coulomb blockade.
Macroscopic phase separation in high-temperature superconductors
Wen, Hai-Hu
2000-01-01
High-temperature superconductivity is recovered by introducing extra holes to the Cu-O planes, which initially are insulating with antiferromagnetism. In this paper I present data to show the macroscopic electronic phase separation that is caused by either mobile doping or electronic instability in the overdoped region. My results clearly demonstrate that the electronic inhomogeneity is probably a general feature of high-temperature superconductors. PMID:11027323
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todorov, D.; Shivarova, A., E-mail: ashiva@phys.uni-sofia.bg; Paunska, Ts.
2015-03-15
The development of the two-dimensional fluid-plasma model of a low-pressure hydrogen discharge, presented in the study, is regarding description of the plasma maintenance in a discharge vessel with the configuration of the SPIDER source. The SPIDER source, planned for the neutral-beam-injection plasma-heating system of ITER, is with localized high RF power deposition to its eight drivers (cylindrical-coil inductive discharges) and a large-area second chamber, common for all the drivers. The continuity equations for the charged particles (electrons and the three types of positive ions) and for the neutral species (atoms and molecules), their momentum equations, the energy balance equations formore » electrons, atoms and molecules and the Poisson equations are involved in the discharge description. In addition to the local processes in the plasma volume, the surface processes of particle reflection and conversion on the walls as well as for a heat exchange with the walls are included in the model. The analysis of the results stresses on the role of the fluxes (particle and energy fluxes) in the formation of the discharge structure. The conclusion is that the discharge behavior is completely obeyed to non-locality. The latter is displayed by: (i) maximum values of plasma parameters (charged particle densities and temperatures of the neutral species) outside the region of the RF power deposition, (ii) shifted maxima of the electron density and temperature, of the plasma potential and of the electron production, (iii) an electron flux, with a vortex structure, strongly exceeding the total ion flux which gives evidence of a discharge regime of non-ambipolarity and (iv) a spatial distribution of the densities of the neutral species resulting from their fluxes.« less
NASA Astrophysics Data System (ADS)
Solodov, A. A.; Rosenberg, M. J.; Myatt, J. F.; Epstein, R.; Seka, W.; Hohenberger, M.; Short, R. W.; Shaw, J. G.; Regan, S. P.; Froula, D. H.; Radha, P. B.; Bates, J. W.; Schmitt, A. J.; Michel, P.; Moody, J. D.; Ralph, J. E.; Turnbull, D. P.; Barrios, M. A.
2016-10-01
Laser-plasma interaction instabilities, such as two-plasmon decay (TPD) and stimulated Raman scattering (SRS), can be detrimental for direct-drive inertial confinement fusion because of target preheat by generated high-energy electrons. The radiation-hydrodynamics code DRACO has been used to design planar-target experiments that generate plasma and interaction conditions relevant to direct-drive-ignition designs (IL 1015 W / cm 2 , Te > 3 KeV density gradient scale lengths of Ln 600 μm) . The hot-electron temperature of 40to50keV and the fraction of laser energy converted to hot electrons of 0.5to were inferred based on comparing the simulated and experimentally observed x-ray emission when the laser intensity at the quarter-critical surface increased from 6 to 15 ×1014 W / cm 2 . The measured SRS energy was sufficient to explain the observed total energy in hot electrons. Implications for ignition-scale direct-drive experiments and hot-electron preheat mitigation using mid- Z ablators will be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
The effects of temperature and magnetic flux on electron transport through a four-channel DNA model
NASA Astrophysics Data System (ADS)
Lee, Sunhee; Hedin, Eric; Joe, Yong
2010-03-01
The temperature dependence of the conductivity of lambda phage DNA has been measured by Tran et al [1] experimentally, where the conductivity displayed strong (weak) temperature dependence above (below) a threshold temperature. In order to understand the temperature effects of electron transport theoretically, we study a two-dimensional and four-channel DNA model using a tight-binding (TB) Hamiltonian. The thermal effects within a TB model are incorporated into the hopping integral and the relative twist angle from its equilibrium value between base-pairs. Since these thermal structural fluctuations localize the electronic wave functions in DNA, we examine a temperature-dependent localization length, a temperature-driven transmission, and current-voltage characteristics in this system. In addition, we incorporate magnetic field effects into the analysis of the transmission through DNA in order to modulate the quantum interference between the electron paths that comprise the 4-channel structure. [1] P. Tran, B. Alavi, and G. Gruner, PRL 85, 1564 (2000).
Validation of Multitemperature Nozzle Flow Code
NASA Technical Reports Server (NTRS)
Park, Chul; Lee, Seung -Ho.
1994-01-01
A computer code nozzle in n-temperatures (NOZNT), which calculates one-dimensional flows of partially dissociated and ionized air in an expanding nozzle, is tested against three existing sets of experimental data taken in arcjet wind tunnels. The code accounts for the differences among various temperatures, i.e., translational-rotational temperature, vibrational temperatures of individual molecular species, and electron-electronic temperature, and the effects of impurities. The experimental data considered are (1) the spectroscopic emission data; (2) electron beam data on vibrational temperature; and (3) mass-spectrometric species concentration data. It is shown that the impurities are inconsequential for the arcjet flows, and the NOZNT code is validated by numerically reproducing the experimental data.
NASA Astrophysics Data System (ADS)
Chim, Chi Yung
First in Chapter 2, we discuss the collisional relaxation of a strongly magnetized pure ion plasma that is composed of two species with slightly different masses, but both with singly-ionized atoms. In a limit of high cyclotron frequencies O j, the total cyclotron action Ij for the two species are adiabatic invariants. In a few collisions, maximizing entropy yields a modified Gibbs distribution of the form exp[-H/T ∥-alpha1 I 1-alpha2I2]. Here, H is the total Hamiltonian and alphaj's are related to parallel and perpendicular temperatures through T ⊥j=(1/T∥ +alphaj/Oj) -1. On a longer timescale, the two species share action so that alpha 1 and alpha2 relax to a common value alpha. On an even longer timescale, the total action ceases to be a constant of the motion and alpha relaxes to zero. Next, weak transport produces a low density halo of electrons moving radially outward from the pure electron plasma core, and the m = 1 mode begins to damp algebraically when the halo reaches the wall. The damping rate is proportional to the particle flux through the resonant layer at the wall. Chapter 3 explains analytically the new algebraic damping due to both mobility and diffusion transport. Electrons swept around the resonant "cat's eye" orbits form a dipole (m = 1) density distribution, setting up a field that produces ExB-drift of the core back to the axis, that is, damps the mode. Finally, Chapter 4 provides a simple mechanistic interpretation of the resonant wave-particle interaction of Landau. For the simple case of a Vlasov plasma oscillation, the non-resonant electrons are driven resonantly by the bare electric field from the resonant electrons, and this complex driver field is of a phase to reduce the oscillation amplitude. The wave-particle resonant interaction also occurs in 2D ExB-drift waves, such as a diocotron wave. In this case, the bare electric field from the resonant electrons causes ExB-drift motion back in the core plasma, thus damping the wave.
The radiation dosimeter on-board the FY-4 Satellite
NASA Astrophysics Data System (ADS)
Zhang, B.; Sun, Y.; Zhang, S.; Zhang, X.; Sun, Y.; Jing, T.
2017-12-01
The total radiation dose effect can lead to a decrease in the performance of satellite devices or materials. Accurately obtaining the total radiation dose during satellite operation could help to analyze the abnormality of payloads in orbit and optimize the design of radiation shielding. The radiation dosimeter is one of the space environmental monitoring devices on the "FY-4" satellite, which is a new generation of geostationary meteorological satellite. The dosimeter consists of 8 detectors, which are installed in different locations of the satellite, to obtain the total radiation dose with different shielding thickness and different orientations. To measure a total radiation dose up to 2000krad(Si), 100nm ion implantation RADFET was used. To improve the sensitivity of the dosimeter, the bias voltage of RADFET is set to 15V, and a 10V, 15-bit A/D is adopted to digitalize the RADFET's threshold voltage, which is increased as the total radiation dose grows. In addition, the temperature effect of RADFET is corrected from the measured temperature on orbit. The preliminary monitoring results show that the radiation dose is less than 35rad (Si) per day at 0.87 mm shielding thickness of equivalent aluminum in the geostationary orbit, and the dose in Y direction of the satellite is less than those in the X and Z directions. The radiation dose at the thickness of 3.87 mm equivalent aluminum is less than 1rad(Si)/day. It is found that the daily total dose measured by the dosimeter has a strong correlation with the flux of high energy electrons.
Stirling Cooler Designed for Venus Exploration
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Mellott, Kenneth D.
2004-01-01
Venus having an average surface temperature of 460 degrees Celsius (about 860 degrees Fahrenheit) and an atmosphere 150 times denser than the Earth's atmosphere, designing a robot to merely survive on the surface to do planetary exploration is an extremely difficult task. This temperature is hundreds of degrees higher than the maximum operating temperature of currently existing microcontrollers, electronic devices, and circuit boards. To meet the challenge of Venus exploration, researchers at the NASA Glenn Research Center studied methods to keep a pressurized electronics package cooled, so that the operating temperature within the electronics enclosure would be cool enough for electronics to run, to allow a mission to operate on the surface of Venus for extended periods.
Shot noise at high temperatures
NASA Astrophysics Data System (ADS)
Gutman, D. B.; Gefen, Yuval
2003-07-01
We consider the possibility of measuring nonequilibrium properties of the current correlation functions at high temperatures (and small bias). Through the example of the third cumulant of the current (S3) we demonstrate that odd-order correlation functions represent nonequilibrium physics even at small external bias and high temperatures. We calculate S3=y(eV/T)e2I for a quasi-one-dimensional diffusive constriction. We calculate the scaling function y in two regimes: when the scattering processes are purely elastic and when the inelastic electron-electron scattering is strong. In both cases we find that y interpolates between two constants. In the low- (high-) temperature limit y is strongly (weakly) enhanced (suppressed) by the electron-electron scattering.
Control of plasma properties in a short direct-current glow discharge with active boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, S. F.; Demidov, V. I., E-mail: vladimir.demidov@mail.wvu.edu; West Virginia University, Morgantown, West Virginia 26506
2016-02-15
To demonstrate controlling electron/metastable density ratio and electron temperature by applying negative voltages to the active (conducting) discharge wall in a low-pressure plasma with nonlocal electron energy distribution function, modeling has been performed in a short (lacking the positive-column region) direct-current glow discharge with a cold cathode. The applied negative voltage can modify the trapping of the low-energy part of the energetic electrons that are emitted from the cathode sheath and that arise from the atomic and molecular processes in the plasma within the device volume. These electrons are responsible for heating the slow, thermal electrons, while production of slowmore » electrons (ions) and metastable atoms is mostly due to the energetic electrons with higher energies. Increasing electron temperature results in increasing decay rate of slow, thermal electrons (ions), while decay rate of metastable atoms and production rates of slow electrons (ions) and metastable atoms practically are unchanged. The result is in the variation of electron/metastable density ratio and electron temperature with the variation of the wall negative voltage.« less
High temperature electronic excitation and ionization rates in gases
NASA Technical Reports Server (NTRS)
Hansen, Frederick
1991-01-01
The relaxation times for electronic excitation due to electron bombardment of atoms was found to be quite short, so that electron kinetic temperature (T sub e) and the electron excitation temperature (T asterisk) should equilibrate quickly whenever electrons are present. However, once equilibrium has been achieved, further energy to the excited electronic states and to the kinetic energy of free electrons must be fed in by collisions with heavy particles that cause vibrational and electronic state transitions. The rate coefficients for excitation of electronic states produced by heavy particle collision have not been well known. However, a relatively simple semi-classical theory has been developed here which is analytic up to the final integration over a Boltzmann distribution of collision energies; this integral can then be evaluated numerically by quadrature. Once the rate coefficients have been determined, the relaxation of electronic excitation energy can be evaluated and compared with the relaxation rates of vibrational excitation. Then the relative importance of these two factors, electronic excitation and vibrational excitation by heavy particle collision, on the transfer of energy to free electron motion, can be assessed.
Theoretical study of the effect of ionospheric return currents on the electron temperature
NASA Technical Reports Server (NTRS)
Schunk, R. W.; Sojka, J. J.; Bowline, M. D.
1987-01-01
A time-dependent, three-dimensional model of the high-altitude ionosphere is presently used to study the effects of field-aligned ionospheric return currents on auroral electron temperatures for different seasonal and solar cycle conditions, as well as for different upper boundary heat fluxes. The average, large scale, return current densities, which are a few microamps/sq m, are too small to affect auroral electron temperatures. The thermoelectric effect exhibits a pronounced solar cycle and seasonal dependence, and its heat transport corresponds to an upward flow of electron energy which can be either a source or sink of electron energy depending on altitude and geophysical conditions.
Kartoğlu, Umit; Nelaj, Erida; Maire, Denis
2010-05-28
This intervention study was conducted in Albania to establish the superiority of the Fridge-tag (30-day electronic refrigerator temperature logger) against thermometers. Intervention sites used Fridge-tag and a modified temperature control record sheet, while control sites continued with their routine operation with thermometers. All refrigerators in both groups were equipped with downloadable electronic data loggers to record temperatures for reference. Focus group sessions were conducted with involved staff to discuss temperature monitoring, Fridge-tag use and its user-friendliness. Significant discrepancies were observed between thermometer readings and the electronic data loggers in control sites, while all alarms from Fridge-tag were confirmed in the intervention group. Thermometers are not sufficient to monitor temperatures in refrigerators since they miss the great majority of low and high alarms. Fridge-tag has proven to be an effective tool in providing health workers with the information they need to take the necessary actions when there are refrigerator temperature variations. (c) 2010 Elsevier Ltd. All rights reserved.
Effect of electron beam on the properties of electron-acoustic rogue waves
NASA Astrophysics Data System (ADS)
El-Shewy, E. K.; Elwakil, S. A.; El-Hanbaly, A. M.; Kassem, A. I.
2015-04-01
The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, Maxwellian hot electrons, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles and the associated electric field on the carrier wave number, normalized density of hot electron and electron beam, relative cold electron temperature and relative beam temperature are discussed. The results of the present investigation may be applicable in auroral zone plasma.
Nanoscale Engineering in VO2 Nanowires via Direct Electron Writing Process.
Zhang, Zhenhua; Guo, Hua; Ding, Wenqiang; Zhang, Bin; Lu, Yue; Ke, Xiaoxing; Liu, Weiwei; Chen, Furong; Sui, Manling
2017-02-08
Controlling phase transition in functional materials at nanoscale is not only of broad scientific interest but also important for practical applications in the fields of renewable energy, information storage, transducer, sensor, and so forth. As a model functional material, vanadium dioxide (VO 2 ) has its metal-insulator transition (MIT) usually at a sharp temperature around 68 °C. Here, we report a focused electron beam can directly lower down the transition temperature of a nanoarea to room temperature without prepatterning the VO 2 . This novel process is called radiolysis-assisted MIT (R-MIT). The electron beam irradiation fabricates a unique gradual MIT zone to several times of the beam size in which the temperature-dependent phase transition is achieved in an extended temperature range. The gradual transformation zone offers to precisely control the ratio of metal/insulator phases. This direct electron writing technique can open up an opportunity to precisely engineer nanodomains of diversified electronic properties in functional material-based devices.
Charge transfer and ionization in collisions of Si3+ with H from low to high energy
NASA Astrophysics Data System (ADS)
Wang, J. G.; He, B.; Ning, Y.; Liu, C. L.; Yan, J.; Stancil, P. C.; Schultz, D. R.
2006-11-01
Charge transfer processes due to collisions of ground state Si3+(3sS1) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) and classical-trajectory Monte Carlo (CTMC) methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained from Herrero [J. Phys. B 29, 5583 (1996)] which were calculated with a full configuration-interaction method. Total and state-selective single-electron capture cross sections are obtained for collision energies from 0.01eV/u to 1MeV/u . Total and state-selective rate coefficients are also presented for temperatures from 2×103K to 107K . Comparison with existing data reveals that the total CTMC cross sections are in good agreement with the experimental measurements at the higher considered energies and that previous Landau-Zener calculations underestimate the total rate coefficients by a factor of up to two. The CTMC calculations of target ionization are presented for high energies.
NSSEFF Designing New Higher Temperature Superconductors
2017-04-13
electronic structure calculations are integrated with the synthesis of new superconducting materials, with the aim of providing a rigorous test of the...apparent association of high temperature superconductivity with electron delocalization transitions occurring at quantum critical points. We will use...realistic electronic structure calculations to assess which transition metal monopnictides are closest to electron delocalization, and hence optimal for
Superconductivity in electron-doped arsenene
NASA Astrophysics Data System (ADS)
Kong, Xin; Gao, Miao; Yan, Xun-Wang; Lu, Zhong-Yi; Xiang, Tao
2018-04-01
Based on the first-principles density functional theory electronic structure calculation, we investigate the possible phonon-mediated superconductivity in arsenene, a two-dimensional buckled arsenic atomic sheet, under electron doping. We find that the strong superconducting pairing interaction results mainly from the $p_z$-like electrons of arsenic atoms and the $A_1$ phonon mode around the $K$ point, and the superconducting transition temperature can be as high as 30.8 K in the arsenene with 0.2 doped electrons per unit cell and 12\\% applied biaxial tensile strain. This transition temperature is about ten times higher than that in the bulk arsenic under high pressure. It is also the highest transition temperature that is predicted for electron-doped two-dimensional elemental superconductors, including graphene, silicene, phosphorene, and borophene.
Preliminary Study of a Hybrid Helicon-ECR Plasma Source
NASA Astrophysics Data System (ADS)
M. Hala, A.; Oksuz, L.; Ximing, Zhu
2016-08-01
A new type of hybrid discharge is experimentally investigated in this work. A helicon source and an electron cyclotron resonance (ECR) source were combined to produce plasma. As a preliminary study of this type of plasma, the optical emission spectroscopy (OES) method was used to obtain values of electron temperature and density under a series of typical conditions. Generally, it was observed that the electron temperature decreases and the electron density increases as the pressure increased. When increasing the applied power at a certain pressure, the average electron density at certain positions in the discharge does not increase significantly possibly due to the high degree of neutral depletion. Electron temperature increased with power in the hybrid mode. Possible mechanisms of these preliminary observations are discussed.
NASA Technical Reports Server (NTRS)
Kim, J. S.; Rao, M. V. V. S.; Cappelli, M. A.; Sharma, S. P.; Meyyappan, M.; Arnold, Jim (Technical Monitor)
2000-01-01
Absolute fluxes and energy distributions of ions in inductively coupled plasmas of Ar, CHF3/Ar, and CHF3/Ar/O2 have been measured. These plasmas were generated in a Gaseous Electronics Conference (GEC) cell modified for inductive coupling at pressures 10-50 mTorr and 100-300 W of 13.56 MHz radio frequency (RF) power in various feedgas mixtures. In pure Ar plasmas, the Ar(+) flux increases linearly with pressure as well as RF-power. Total ion flux in CHF3 mixtures decreases with increase in pressure and also CHF3 concentration. Relative ion fluxes observed in the present studies are analyzed with the help of available cross sections for electron impact ionization and charge-exchange ion-molecule reactions. Measurements of plasma potential, electron and ion number densities, electron energy distribution function, and mean electron energy have also been made in the center of the plasma with a RF compensated Langmuir probe. Plasma potential values are compared with the mean ion energies determined from the measured ion energy distributions and are consistent. Electron temperature, plasma potential, and mean ion energy vary inversely with pressure, but increase with CHF3 content in the mixture.
NASA Astrophysics Data System (ADS)
Bell, Kenneth; Wilson, Nigel
2001-05-01
Electron temperatures and densities are difficult to determine in many astrophysical plasmas. However, it is well known that diagnostics on forbidden line intensity ratios for ions in the phosphorous isoelectronic sequence are of great importance in astrophysics, particularly for nebulae. A key element in the analysis is highly accurate atomic data. In this work we extend the earlier calculations of Butler, Zeippen and Le Bourlot (Astron. Astrophys. 203 189 (1988)) on electron scattering by K v. We have obtained effective collision strengths for a wide range of electron temperatures using the R-matrix method. Twenty-two LS target eigenstates are included in the expansion of the total wavefunction, consisting of the seven n=3 states with configuration 3s^23p^3 and 3s3p^4, twelve n=3 states with configuration 3s^23p^23d, and three n=4 states with configuration 3s^23p^24s. The fine-structure collision strengths have been obtained by transforming to a jj-coupling scheme using the JAJOM program of Saraph (Comp. Phys. Commun. 15 247 (1978)) and have been determined at a sufficiently fine energy mesh to delineate properly the resonance structure. Results for both collision strengths and for effective collision strengths will be presented at the conference and comparison will be made with the earlier work.
Cockrell, Allison L; Fitzgerald, Lisa A; Cusick, Kathleen D; Barlow, Daniel E; Tsoi, Stanislav D; Soto, Carissa M; Baldwin, Jeffrey W; Dale, Jason R; Morris, Robert E; Little, Brenda J; Biffinger, Justin C
2015-09-01
A thermophile, Thermus scotoductus SA-01, was cultured within a constant-temperature (65°C) microwave (MW) digester to determine if MW-specific effects influenced the growth and physiology of the organism. As a control, T. scotoductus cells were also cultured using convection heating at the same temperature as the MW studies. Cell growth was analyzed by optical density (OD) measurements, and cell morphologies were characterized using electron microscopy imaging (scanning electron microscopy [SEM] and transmission electron microscopy [TEM]), dynamic light scattering (DLS), and atomic force microscopy (AFM). Biophysical properties (i.e., turgor pressure) were also calculated with AFM, and biochemical compositions (i.e., proteins, nucleic acids, fatty acids) were analyzed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Gas chromatography-mass spectrometry (GC-MS) was used to analyze the fatty acid methyl esters extracted from cell membranes. Here we report successful cultivation of a thermophile with only dielectric heating. Under the MW conditions for growth, cell walls remained intact and there were no indications of membrane damage or cell leakage. Results from these studies also demonstrated that T. scotoductus cells grown with MW heating exhibited accelerated growth rates in addition to altered cell morphologies and biochemical compositions compared with oven-grown cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Thermoelectric properties of In and I doped PbTe
NASA Astrophysics Data System (ADS)
Bali, Ashoka; Chetty, Raju; Sharma, Amit; Rogl, Gerda; Heinrich, Patrick; Suwas, Satyam; Misra, Dinesh Kumar; Rogl, Peter; Bauer, Ernst; Mallik, Ramesh Chandra
2016-11-01
A systematic study of structural, microstructural, and thermoelectric properties of bulk PbTe doped with indium (In) alone and co-doped with both indium and iodine (I) has been done. X-ray diffraction results showed all the samples to be of single phase. Scanning electron microscopy (SEM) results revealed the particle sizes to be in the range of micrometers, while high resolution transmission electron microscopy was used to investigate distinct microstructural features such as interfaces, grain boundaries, and strain field domains. Hall measurement at 300 K revealed the carrier concentration ˜1019 cm-3 showing the degenerate nature which was further seen in the electrical resistivity of samples, which increased with rising temperature. Seebeck coefficient indicated that all samples were n-type semiconductors with electrons as the majority carriers throughout the temperature range. A maximum power factor ˜25 μW cm-1 K-2 for all In doped samples and Pb0.998In0.003Te1.000I0.003 was observed at 700 K. Doping leads to a reduction in the total thermal conductivity due to enhanced phonon scattering by mass fluctuations and distinct microstructure features such as interfaces, grain boundaries, and strain field domains. The highest zT of 1.12 at 773 K for In doped samples and a zT of 1.1 at 770 K for In and I co-doped samples were obtained.
Ab-initio study of C15-type Laves phase superconductor LaRu2
NASA Astrophysics Data System (ADS)
Kholil, Md. Ibrahim; Islam, Md. Shahinur; Rahman, Md. Atikur
2017-01-01
Structural, elastic, electronic, optical, thermodynamic, and superconducting properties of the Laves phase superconductor LaRu2 with Tc 1.63 K were investigated using the first-principles calculations for the first time. The corresponding evaluated structural parameters are in good agreement with the available theoretical values. The different elastic properties like as, elastic constants, bulk modulus B, shear modulus G, Young's modulus E, and Poisson ratio ν were calculated using the Voigt-Reuss-Hill approximation. The ductility nature appears in both values of Cauchy pressure and Pugh's ratio. The band structure and Cauchy pressure shows that the material behaves metallic nature. The calculated total density of state is 6.80 (electrons/eV) of LaRu2. The optical properties such as reflectivity, absorption spectrum, refractive index, dielectric function, conductivity, and energy loss spectrum are also calculated. The photoconductivity reveals the metallic nature of LaRu2 and absorption coefficient is good in the infrared region. The evaluated density and Debye temperature are 9.55 gm/cm3 and 110.51 K, respectively. In addition, the study of thermodynamic properties like as minimum thermal conductivity, melting temperature, and Dulong-Petit limit are 0.26 (Wm-1 K-1), 1,471.65 K, and 74.80 (J/mole K), respectively. Finally, the investigated electron-phonon coupling constant is 0.66 of LaRu2 superconductor.
NASA Astrophysics Data System (ADS)
Liu, Jann-Yenq; Chen, Yuh-Ing; Huang, Ching-Chi; Parrot, Michel; Pulinets, Sergey; Ouzounov, Dimitar
2015-04-01
This paper examines seismo-ionospheric precursors (SIPs) in the total electron content (TEC) of the global ionosphere map (GIM) and observations in the French satellite DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) during the 12 May 2008 M8.0 Wenchuan earthquake. The temporal and spatial analyses on the GIM TEC are used to search SIPs of the Wenchuan earthquake. Meanwhile, both daytime and nighttime electron density (Ne), electron temperature (Te), ion density (Ni) and ion temperature (Ti) probed by DEMETER are investigated. A statistical analysis of the box-and-whisker method is utilized to see if the four DEMETER data sets 1-6 days before and after the earthquake are significantly different. The analysis is employed to investigate the epicenter and three reference areas along the same magnetic latitude discriminating the SIPs from global effects. Results show that the nighttime Ne and Ni (daytime Ti) over the epicenter significantly decrease (increase) 1-6 days before the earthquake. The intersections of the global distribution of the significant differences (or anomalous changes) in the nighttime Ne, the nighttime Ni, and the daytime Ti 1-6 days before and after the earthquake specifically appear over the epicenter. The spatial analyses confirm that SIPs of GIM TEC and DEMETER observations appearing 2-6 days before are related to the 2008 M8.0 Wenchuan earthquake.
Electronic Components and Circuits for Extreme Temperature Environments
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott
2003-01-01
Planetary exploration missions and deep space probes require electrical power management and control systems that are capable of efficient and reliable operation in very low temperature environments. Presently, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. Electronics capable of operation at cryogenic temperatures will not only tolerate the hostile environment of deep space but also reduce system size and weight by eliminating or reducing the radioisotope heating units and their associate structures; thereby reducing system development as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results from better behavior and tolerance in the electrical and thermal properties of semiconductor and dielectric materials at low temperatures. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components, circuits, and systems suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices and systems for reliable use down to cryogenic temperatures. Some of the commercial-off-the-shelf as well as developed components that are being characterized include switching devices, resistors, magnetics, and capacitors. Semiconductor devices and integrated circuits including digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being investigated for potential use in low temperature applications. An overview of the NASA Glenn Research Center Low Temperature Electronic Program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained through in-house component and circuit testing will also be discussed. Ongoing research activities that are being performed in collaboration with various organizations will also be presented.
Hotspot electron temperature from x-ray continuum measurements on the NIF
NASA Astrophysics Data System (ADS)
Jarrott, L. C.; Benedetti, L. R.; Chen, H.; Izumi, N.; Khan, S. F.; Ma, T.; Nagel, S. R.; Landen, O. L.; Pak, A.; Patel, P. K.; Schneider, M.; Scott, H. A.
2016-11-01
We report on measurements of the electron temperature in the hotspot of inertially confined, layered, spherical implosions on the National Ignition Facility using a differential filtering diagnostic. Measurements of the DT and DD ion temperatures using neutron time-of-flight detectors are complicated by the contribution of hot spot motion to the peak width, which produce an apparent temperature higher than the thermal temperature. The electron temperature is not sensitive to this non-thermal velocity and is thus a valuable input to interpreting the stagnated hot spot conditions. Here we show that the current differential filtering diagnostic provides insufficient temperature resolution for the hot spot temperatures of interest. We then propose a new differential filter configuration utilizing larger pinhole size to increase spectral fluence, as well as thicker filtration. This new configuration will improve measurement uncertainty by more than a factor of three, allowing for a more accurate hotspot temperature.
Hotspot electron temperature from x-ray continuum measurements on the NIF.
Jarrott, L C; Benedetti, L R; Chen, H; Izumi, N; Khan, S F; Ma, T; Nagel, S R; Landen, O L; Pak, A; Patel, P K; Schneider, M; Scott, H A
2016-11-01
We report on measurements of the electron temperature in the hotspot of inertially confined, layered, spherical implosions on the National Ignition Facility using a differential filtering diagnostic. Measurements of the DT and DD ion temperatures using neutron time-of-flight detectors are complicated by the contribution of hot spot motion to the peak width, which produce an apparent temperature higher than the thermal temperature. The electron temperature is not sensitive to this non-thermal velocity and is thus a valuable input to interpreting the stagnated hot spot conditions. Here we show that the current differential filtering diagnostic provides insufficient temperature resolution for the hot spot temperatures of interest. We then propose a new differential filter configuration utilizing larger pinhole size to increase spectral fluence, as well as thicker filtration. This new configuration will improve measurement uncertainty by more than a factor of three, allowing for a more accurate hotspot temperature.
Technology Requirements and Development for Affordable High-Temperature Distributed Engine Controls
2012-06-04
long lasting, high temperature modules is to use high temperature electronics on ceramic modules. The electronic components are “ brazed ” onto the...Copyright © 2012 by ISA Technology Requirements and Development for Affordable High - Temperature Distributed Engine Controls Alireza Behbahani 1...with regards to high temperature capability. The Government and Industry Distributed Engine Controls Working Group (DECWG) [5] has been established
Applications of a time-dependent polar ionosphere model for radio modification experiments
NASA Astrophysics Data System (ADS)
Fallen, Christopher Thomas
A time-dependent self-consistent ionosphere model (SLIM) has been developed to study the response of the polar ionosphere to radio modification experiments, similar to those conducted at the High-Frequency Active Auroral Research Program (HAARP) facility in Gakona, Alaska. SCIM solves the ion continuity and momentum equations, coupled with average electron and ion gas energy equations; it is validated by reproducing the diurnal variation of the daytime ionosphere critical frequency, as measured with an ionosonde. Powerful high-frequency (HF) electromagnetic waves can drive naturally occurring electrostatic plasma waves, enhancing the ionospheric reflectivity to ultra-high frequency (UHF) radar near the HF-interaction region as well as heating the electron gas. Measurements made during active experiments are compared with model calculations to clarify fundamental altitude-dependent physical processes governing the vertical composition and temperature of the polar ionosphere. The modular UHF ionosphere radar (MUIR), co-located with HAARP, measured HF-enhanced ion-line (HFIL) reflection height and observed that it ascended above its original altitude after the ionosphere had been HF-heated for several minutes. The HFIL ascent is found to follow from HF-induced depletion of plasma surrounding the F-region peak density layer, due to temperature-enhanced transport of atomic oxygen ions along the geomagnetic field line. The lower F-region and topside ionosphere also respond to HF heating. Model results show that electron temperature increases will lead to suppression of molecular ion recombination rates in the lower F region and enhancements of ambipolar diffusion in the topside ionosphere, resulting in a net enhancement of slant total electron content (TEC); these results have been confirmed by experiment. Additional evidence for the model-predicted topside ionosphere density enhancements via ambipolar diffusion is provided by in-situ measurements of ion density and vertical velocity over HAARP made by a Defense Meteorological Satellite Program (DMSP) satellite.
NASA Astrophysics Data System (ADS)
Webb, R. A.
1998-03-01
A variety of experiments are discussed where, at low temperatures, it appears that the non-interacting picture of electrons in a Fermi liquid description of a mesoscopic sample is breaking down. Specifically, experiments on the temperature dependence of the phase-coherence time, energy relaxation rate, spin-flip scattering time, persistent currents in normal metals and transmission through a barrier in the fractional quantum Hall regime all display low-temperature properties which can not be accounted for in the independent electron picture.
Device Would Monitor Body Parameters Continuously
NASA Technical Reports Server (NTRS)
Cook, Joseph S., Jr.
1995-01-01
Proposed miniature electronic circuit continuously measures temperature of human subject. Once mounted on subject's skin with medical adhesive tape, electronic thermometer remains in thermal equilibrium with subject's body; thereafter, no need to wait until thermometer reaches body temperature before taking reading. Design provides for switches used to set alarm alerting medical attendants if subject's temperature exceeds critical level. For use on very young child, electronic thermometer sewed into shirt or other suitable garment; device held in contact with skin, and child could not swallow it. Replacement of sensor and computing algorithm changes temperature monitor to cardiorespiratory monitor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldsiefen, Tim; Cangi, Attila; Eich, F. G.
Here, we derive an intrinsically temperature-dependent approximation to the correlation grand potential for many-electron systems in thermodynamical equilibrium in the context of finite-temperature reduced-density-matrix-functional theory (FT-RDMFT). We demonstrate its accuracy by calculating the magnetic phase diagram of the homogeneous electron gas. We compare it to known limits from highly accurate quantum Monte Carlo calculations as well as to phase diagrams obtained within existing exchange-correlation approximations from density functional theory and zero-temperature RDMFT.
Observation of dx2
NASA Astrophysics Data System (ADS)
Sato, T.; Kamiyama, T.; Takahashi, T.; Kurahashi, K.; Yamada, K.
2001-02-01
High-resolution angle-resolved photoemission spectroscopy of the electron-doped high-temperature superconductor Nd2-xCexCuO4 (x = 0.15, transition temperature Tc = 22 K) has found the quasiparticle signature as well as the anisotropic dx2
Morphology and electronic transport of polycrystalline pentacene thin-film transistors
NASA Astrophysics Data System (ADS)
Knipp, D.; Street, R. A.; Völkel, A. R.
2003-06-01
Temperature-dependent measurements of thin-film transistors were performed to gain insight in the electronic transport of polycrystalline pentacene. Devices were fabricated with plasma-enhanced chemical vapor deposited silicon nitride gate dielectrics. The influence of the dielectric roughness and the deposition temperature of the thermally evaporated pentacene films were studied. Although films on rougher gate dielectrics and films prepared at low deposition temperatures exhibit similar grain size, the electronic properties are different. Increasing the dielectric roughness reduces the free carrier mobility, while low substrate temperature leads to more and deeper hole traps.
Baldsiefen, Tim; Cangi, Attila; Eich, F. G.; ...
2017-12-18
Here, we derive an intrinsically temperature-dependent approximation to the correlation grand potential for many-electron systems in thermodynamical equilibrium in the context of finite-temperature reduced-density-matrix-functional theory (FT-RDMFT). We demonstrate its accuracy by calculating the magnetic phase diagram of the homogeneous electron gas. We compare it to known limits from highly accurate quantum Monte Carlo calculations as well as to phase diagrams obtained within existing exchange-correlation approximations from density functional theory and zero-temperature RDMFT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Bonnie; Hitchcock, Adam; Brash, John
Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. Amore » phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.« less
Equatorial Ionospheric Disturbance Field-Aligned Plasma Drifts Observed by C/NOFS
NASA Astrophysics Data System (ADS)
Zhang, Ruilong; Liu, Libo; Balan, N.; Le, Huijun; Chen, Yiding; Zhao, Biqiang
2018-05-01
Using C/NOFS satellite observations, this paper studies the disturbance field-aligned plasma drifts in the equatorial topside ionosphere during eight geomagnetic storms in 2011-2015. During all six storms occurred in the solstices, the disturbance field-aligned plasma drift is from winter to summer hemisphere especially in the morning-midnight local time sector and the disturbance is stronger in June solstice. The two storms occurred at equinoxes have very little effect on the field-aligned plasma drift. Using the plasma temperature data from DMSP satellites and Global Positioning System-total electron content, it is suggested that the plasma density gradient seems likely to cause the disturbance winter-to-summer plasma drift while the role of plasma temperature gradient is opposite to the observed plasma drift.
On the generation of magnetosheath lion roars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, L.C.; Wu, C.S.; Price, C.P.
1987-03-01
A theoretical model is proposed to discuss the electron dynamics associated with the mirror waves and their effects on the generation of the observed lion roars in the magnetosheath. It is pointed out that the usual double-adiabatic theory of hydromagnetics is not applicable to the electrons in mirror waves. Although the electron magnetic moment is conserved, the energy of each electron in the mirror waves is expected to be constant (because of the high electron speed along the magnetic field). Assuming an initial electron temperature anisotropy, the authors can show that in the low field region the electron temperature andmore » thermal anisotropy are higher than the initial values, whereas in the high field region the electron temperature and anisotropy are lower. This point can lead to a theoretical explanation of the important features of the observed lion roars. The present discussion complements the existing theories in the literature.« less
A comparative study of single-temperature and two-temperature accretion flows around black holes
NASA Astrophysics Data System (ADS)
Dihingia, Indu Kalpa; Das, Santabrata; Mandal, Samir
2018-02-01
We study the properties of sub-Keplerian accretion disk around a stationary black hole, considering bremsstrahlung, synchrotron and Comptonization of synchrotron photons as radiative cooling mechanisms active in the disk. We obtain the solutions of two-temperature global accretion flow (TTAF) and compare it with the results obtained from single-temperature (STAF) model. We observe that flow properties, in particular, the radial profile of electron and ion temperatures differ noticeably in the adopted models for flows with identical boundary conditions fixed at the outer edge of the disk. Since the electron temperature is one of the key factors to regulate the radiative processes, we argue that physically motivated description of electron temperature needs to be considered in studying the astrophysical phenomena around black holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Kyoung-Jae; Jung, Bong-Ki; An, YoungHwa
2014-02-15
In a volume-produced negative hydrogen ion source, control of electron temperature is essential due to its close correlation with the generation of highly vibrationally excited hydrogen molecules in the heating region as well as the generation of negative hydrogen ions by dissociative attachment in the extraction region. In this study, geometric effects of the cylindrical discharge chamber on negative ion generation via electron temperature changes are investigated in two discharge chambers with different lengths of 7.5 cm and 11 cm. Measurements with a radio-frequency-compensated Langmuir probe show that the electron temperature in the heating region is significantly increased by reducingmore » the length of the discharge chamber due to the reduced effective plasma size. A particle balance model which is modified to consider the effects of discharge chamber configuration on the plasma parameters explains the variation of the electron temperature with the chamber geometry and gas pressure quite well. Accordingly, H{sup −} ion density measurement with laser photo-detachment in the short chamber shows a few times increase compared to the longer one at the same heating power depending on gas pressure. However, the increase drops significantly as operating gas pressure decreases, indicating increased electron temperatures in the extraction region degrade dissociative attachment significantly especially in the low pressure regime. It is concluded that the increase of electron temperature by adjusting the discharge chamber geometry is efficient to increase H{sup −} ion production as long as low electron temperatures are maintained in the extraction region in volume-produced negative hydrogen ion sources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attarian Shandiz, M., E-mail: mohammad.attarianshandiz@mail.mcgill.ca; Gauvin, R.
The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy wasmore » modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.« less
Effective temperature of an ultracold electron source based on near-threshold photoionization.
Engelen, W J; Smakman, E P; Bakker, D J; Luiten, O J; Vredenbregt, E J D
2014-01-01
We present a detailed description of measurements of the effective temperature of a pulsed electron source, based on near-threshold photoionization of laser-cooled atoms. The temperature is determined by electron beam waist scans, source size measurements with ion beams, and analysis with an accurate beam line model. Experimental data is presented for the source temperature as a function of the wavelength of the photoionization laser, for both nanosecond and femtosecond ionization pulses. For the nanosecond laser, temperatures as low as 14 ± 3 K were found; for femtosecond photoionization, 30 ± 5 K is possible. With a typical source size of 25 μm, this results in electron bunches with a relative transverse coherence length in the 10⁻⁴ range and an emittance of a few nm rad. © 2013 Elsevier B.V. All rights reserved.
Spectroscopic investigations of microwave generated plasmas
NASA Technical Reports Server (NTRS)
Hawley, Martin C.; Haraburda, Scott S.; Dinkel, Duane W.
1991-01-01
The study deals with the plasma behavior as applied to spacecraft propulsion from the perspective of obtaining better design and modeling capabilities. The general theory of spectroscopy is reviewed, and existing methods for converting emission-line intensities into such quantities as temperatures and densities are outlined. Attention is focused on the single-atomic-line and two-line radiance ratio methods, atomic Boltzmann plot, and species concentration. Electronic temperatures for a helium plasma are determined as a function of pressure and a gas-flow rate using these methods, and the concentrations of ions and electrons are predicted from the Saha-Eggert equations using the sets of temperatures obtained as a function of the gas-flow rate. It is observed that the atomic Boltzmann method produces more reliable results for the electronic temperature, while the results obtained from the single-line method reflect the electron temperatures accurately.
Silicon carbide, an emerging high temperature semiconductor
NASA Technical Reports Server (NTRS)
Matus, Lawrence G.; Powell, J. Anthony
1991-01-01
In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.
NASA Astrophysics Data System (ADS)
Sironi, Lorenzo; Narayan, Ramesh
2015-02-01
In systems accreting well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the plasma in the innermost regions of the disk is believed to be collisionless and have two temperatures, with the ions substantially hotter than the electrons. However, whether a collisionless faster-than-Coulomb energy transfer mechanism exists in two-temperature accretion flows is still an open question. We study the physics of electron heating during the growth of ion velocity-space instabilities by means of multidimensional, fully kinetic, particle-in-cell (PIC) simulations. A background large-scale compression—embedded in a novel form of the PIC equations—continuously amplifies the field. This constantly drives a pressure anisotropy P > P ∥ because of the adiabatic invariance of the particle magnetic moments. We find that, for ion plasma beta values β0i ~ 5-30 appropriate for the midplane of low-luminosity accretion flows (here, β0i is the ratio of ion thermal pressure to magnetic pressure), mirror modes dominate if the electron-to-proton temperature ratio is T 0e /T 0i >~ 0.2, whereas for T 0e /T 0i <~ 0.2 the ion cyclotron instability triggers the growth of strong Alfvén-like waves, which pitch-angle scatter the ions to maintain marginal stability. We develop an analytical model of electron heating during the growth of the ion cyclotron instability, which we validate with PIC simulations. We find that for cold electrons (β0e <~ 2 me /mi , where β0e is the ratio of electron thermal pressure to magnetic pressure), the electron energy gain is controlled by the magnitude of the E-cross-B velocity induced by the ion cyclotron waves. This term is independent of the initial electron temperature, so it provides a solid energy floor even for electrons starting with extremely low temperatures. On the other hand, the electron energy gain for β0e >~ 2 me /mi —governed by the conservation of the particle magnetic moment in the growing fields of the instability—is proportional to the initial electron temperature, and it scales with the magnetic energy of ion cyclotron waves. Our results have implications for two-temperature accretion flows as well as for solar wind and intracluster plasmas.
The nanostructure and microstructure of SiC surface layers deposited by MWCVD and ECRCVD
NASA Astrophysics Data System (ADS)
Dul, K.; Jonas, S.; Handke, B.
2017-12-01
Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) have been used to investigate ex-situ the surface topography of SiC layers deposited on Si(100) by Microwave Chemical Vapour Deposition (MWCVD) -S1,S2 layers and Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) - layers S3,S4, using silane, methane, and hydrogen. The effects of sample temperature and gas flow on the nanostructure and microstructure have been investigated. The nanostructure was described by three-dimensional surface roughness analysis based on digital image processing, which gives a tool to quantify different aspects of surface features. A total of 13 different numerical parameters used to describe the surface topography were used. The scanning electron image (SEM) of the microstructure of layers S1, S2, and S4 was similar, however, layer S3 was completely different; appearing like grains. Nonetheless, it can be seen that no grain boundary structure is present in the AFM images.
Magnetic mirror effect in a cylindrical Hall thruster
NASA Astrophysics Data System (ADS)
Jiang, Yiwei; Tang, Haibin; Ren, Junxue; Li, Min; Cao, Jinbin
2018-01-01
For cylindrical Hall thrusters, the magnetic field geometry is totally different from that in conventional Hall thrusters. In this study, we investigate the magnetic mirror effect in a fully cylindrical Hall thruster by changing the number of iron rings (0-5), which surround the discharge channel wall. The plasma properties inside the discharge channel and plume area are simulated with a self-developed PIC-MCC code. The numerical results show significant influence of magnetic geometry on the electron confinement. With the number of rings increasing above three, the near-wall electron density gap is reduced, indicating the suppression of neutral gas leakage. The electron temperature inside the discharge channel reaches its peak (38.4 eV) when the magnetic mirror is strongest. It is also found that the thruster performance has strong relations with the magnetic mirror as the propellant utilisation efficiency reaches the maximum (1.18) at the biggest magnetic mirror ratio. Also, the optimal magnetic mirror improves the multi-charged ion dynamics, including the ion production and propellant utilisation efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jezierski, Andrzej, E-mail: andrzej.jezierski@ifmpan.poznan.pl; Szytuła, Andrzej
2016-02-15
The electronic structures and thermodynamic properties of LaPtIn and CePtIn are studied by means of ab-initio full-relativistic full-potential local orbital basis (FPLO) method within densities functional (DFT) methodologies. We have also examined the influence of hydrogen on the electronic structure and stability of CePtInH and LaPtInH systems. The positions of the hydrogen atoms have been found from the minimum of the total energy. Our calculations have shown that band structure and topology of the Fermi surfaces changed significantly during the hydrogenation. The thermodynamic properties (bulk modulus, Debye temperatures, constant pressure heat capacity) calculated in quasi-harmonic Debye-Grüneisen model are in amore » good agreement with the experimental data. We have applied different methods of the calculation of the equation of states (EOS) (Murnaghan, Birch-Murnaghan, Poirier–Tarantola, Vinet). The thermodynamic properties are presented for the pressure 0« less
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.
2003-01-01
Electronics designed for low temperature operation will result in more efficient systems than room temperature. This improvement is a result of better electronic, electrical, and thermal properties of materials at low temperatures. In particular, the performance of certain semiconductor devices improves with decreasing temperature down to ultra-low temperature (-273 'C). The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components and systems suitable for applications in deep space missions. Research is being conducted on devices and systems for use down to liquid helium temperatures (-273 'C). Some of the components that are being characterized include semiconductor switching devices, resistors, magnetics, and capacitors. The work performed this summer has focused on the evaluation of silicon-, silicon-germanium- and gallium-Arsenide-based (GaAs) bipolar, MOS and CMOS discrete components and integrated circuits (ICs), from room temperature (23 'C) down to ultra low temperatures (-263 'C).
Thermal energy harvesting and solar energy conversion utilizing carbon-based nanomaterials
NASA Astrophysics Data System (ADS)
McCarthy, Patrick T.
This dissertation provides details of carbon-based nanomaterial fabrication for applications in energy harvesting and generation. As energy demands increase, and concerns about mankind's environmental impact increase, alternative methods of generating energy will be widely researched. Carbon-based nanomaterials may be effective in such applications as their fabrication is often inexpensive and they have highly desirable electrical, mechanical, and thermal properties. Synthesis and characterization of carbon nanotube thermal interfaces on gadolinium foils is described herein. Total thermal interface resistances of carbon nanotube coated gadolinium were measured using a one-dimensional reference calorimeter technique, and the effect of hydrogen embrittlement on the magnetic properties of gadolinium foils is discussed. The samples generated in this study were consistently measured with reduced total thermal interface resistances of 55-70% compared to bare gadolinium. Characterization of gadolinium foils in a cooling device called a magneto thermoelectric generator was also performed. A gadolinium shuttle drives the device as it transitions between ferromagnetic and paramagnetic states. Reduced interface resistances from the carbon nanotube arrays led to increased shuttle frequency and effective heat transfer coefficients. Detailed theoretical derivations for electron emission during thermal and photo-excitation are provided for both three-dimensional and two-dimensional materials. The derived theories were fitted to experimental data from variable temperature photoemission studies of potassium-intercalated graphitic nanopetals. A work function reduction from approximately 4.5 eV to 2 -- 3 eV resulted from potassium intercalation and adsorption. While changes in the electron energy distribution shape and intensity were significant within 310 -- 680 K, potassium-intercalated graphitic petals demonstrate very high thermal stability after heating to nearly 1000 K. Boron nitride modification of the nanopetals was performed in an effort to minimize deintercalation of potassium from the nanopetal lattice and while multiple work functions were present within the electron energy distribution, massive reductions in emission intensity took place above 580 K. Finally, a device for measuring the current density during photoemission was also developed and photoemission induced by a solar simulator at room temperature produced currents on the order of 1 nA/cm 2 resulting in a quantum efficiency of approximately 8.0x10 --8 electrons emitted per photon of illumination.
On the generation of magnetosheath lion roars
NASA Technical Reports Server (NTRS)
Lee, L. C.; Wu, C. S.; Price, C. P.
1987-01-01
A theoretical model is proposed to discuss the electron dynamics associated with the mirror waves and their effects on the generation of the observed lion roars in the magnetosheath. It is pointed out that the usual double-adiabatic theory of hydromagnetics is not applicable to the electrons in mirror waves. Although the electron magnetic moment is conserved, the energy of each electron in the mirror waves is expected to be constant. Assuming an initial electron temperature anisotropy, it can be shown that in the low field region the electron temperature and thermal anisotropy are higher than the initial values, whereas in the high field region the electron temperature and anisotropy are lower. This point can lead to a theoretical explanation of the important features of the observed lion roars. Then present discussion complements the existing theories in the literature.
NASA Astrophysics Data System (ADS)
Estrada, F.; Guzmán, E. J.; Navarro, O.; Avignon, M.
2018-05-01
The half-metallic ferromagnetic compound Sr2FeMoO6 is considered a fundamental material to understand the role of electronic parameters controlling the half-metallic ground state and high Curie temperature in double perovskite. We present an electronic approach using the Green's function technique and the renormalization perturbation expansion method to study the thermodynamical properties of double perovskites. The model is based on a correlated electron picture with localized Fe spins and conduction electrons interacting with the local spins via a double-exchange-type mechanism. Electron correlations within the conduction band are also included in order to study the Curie temperature TC. Our results show an increases of TC by increasing the carrier density in La-doped Sr2FeMoO6 compounds in contrast to the case of uncorrelated itinerant electrons.
van Genderen, E; Clabbers, M T B; Das, P P; Stewart, A; Nederlof, I; Barentsen, K C; Portillo, Q; Pannu, N S; Nicolopoulos, S; Gruene, T; Abrahams, J P
2016-03-01
Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼ 0.013 e(-) Å(-2) s(-1)) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014).
Empirical models of the electron temperature and density in the nightside venus ionosphere.
Brace, L H; Theis, R F; Niemann, H B; Mayr, H G; Hoegy, W R; Nagy, A F
1979-07-06
Empirical models of the electron temperature and electron density of the late afternoon and nightside Venus ionosphere have been derived from Pioneer Venus measurements acquired between 10 December 1978 and 23 March 1979. The models describe the average ionosphere conditions near 18 degrees N latitude between 150 and 700 kilometers altitude for solar zenith angles of 80 degrees to 180 degrees . The average index of solar flux was 200. A major feature of the density model is the factor of 10 decrease beyond 90 degrees followed by a very gradual decrease between 120 degrees and 180 degrees . The density at 150 degrees is about five times greater than observed by Venera 9 and 10 at solar minimum (solar flux approximately 80), a difference that is probably related to the effects of increased solar activity on the processes that maintain the nightside ionosphere. The nightside electron density profile from the model (above 150 kilometers) can be reproduced theoretically either by transport of 0(+) ions from the dayside or by precipitation of low-energy electrons. The ion transport process would require a horizontal flow velocity of about 300 meters per second, a value that is consistent with other Pioneer Venus observations. Although currently available energetic electron data do not yet permit the role of precipitation to be evaluated quantitatively, this process is clearly involved to some extent in the formation of the nightside ionosphere. Perhaps the most surprising feature of the temperature model is that the electron temperature remains high throughout the nightside ionosphere. These high nocturnal temperatures and the existence of a well-defined nightside ionopause suggest that energetic processes occur across the top of the entire nightside ionosphere, maintaining elevated temperatures. A heat flux of 2 x 10(10) electron volts per square centimeter per second, introduced at the ionopause, is consistent with the average electron temperature profile on the nightside at a solar zenith angle of 140 degrees .
Effect of temperature on selenium removal from wastewater by UASB reactors.
Dessì, Paolo; Jain, Rohan; Singh, Satyendra; Seder-Colomina, Marina; van Hullebusch, Eric D; Rene, Eldon R; Ahammad, Shaikh Ziauddin; Carucci, Alessandra; Lens, Piet N L
2016-05-01
The effect of temperature on selenium (Se) removal by upflow anaerobic sludge blanket (UASB) reactors treating selenate and nitrate containing wastewater was investigated by comparing the performance of a thermophilic (55 °C) versus a mesophilic (30 °C) UASB reactor. When only selenate (50 μM) was fed to the UASB reactors (pH 7.3; hydraulic retention time 8 h) with excess electron donor (lactate at 1.38 mM corresponding to an organic loading rate of 0.5 g COD L(-1) d(-1)), the thermophilic UASB reactor achieved a higher total Se removal efficiency (94.4 ± 2.4%) than the mesophilic UASB reactor (82.0 ± 3.8%). When 5000 μM nitrate was further added to the influent, total Se removal was again better under thermophilic (70.1 ± 6.6%) when compared to mesophilic (43.6 ± 8.8%) conditions. The higher total effluent Se concentration in the mesophilic UASB reactor was due to the higher concentrations of biogenic elemental Se nanoparticles (BioSeNPs). The shape of the BioSeNPs observed in both UASB reactors was different: nanospheres and nanorods, respectively, in the mesophilic and thermophilic UASB reactors. Microbial community analysis showed the presence of selenate respirers as well as denitrifying microorganisms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Understanding the magnetoelastic behavior of pure and Co substituted GdNi
NASA Astrophysics Data System (ADS)
Paudyal, Durga; Mudryk, Y.; Pecharsky, V. K.; Gschneidner, K. A., Jr.
Total-energy calculations employing local spin density approximation including Hubbard U (onsite electron correlation) parameter and temperature and magnetic field dependent x-ray diffraction experiments show large anisotropic shifts in lattice parameters and a giant linear magnetostriction without a structural transformation and a negligible volume magnetostriction in GdNi. In agreement with the magnetization and heat-capacity experiments, the total-energy and band splitting results confirm that the anisotropic shape changes in GdNi are associated with the second-order ferromagnetic to paramagnetic transformation. When the band splitting due to the ferromagnetic ordering of the 4 fmoments increases, the concomitant anisotropic changes in the lattice minimize the total free energy of the crystal indicating an unusual interplay between magnetism and crystal structure. The positive formation energy at 0K and the nature of the density of states at the Fermi level confirm an unstable equiatomic Gd compound when Ni is fully substituted by Co. However, the enhanced effective exchange interactions with small Co substitutions increase the Curie temperature without losing the chemical stability. The Ames Laboratory is operated for the US DOE by Iowa State. This work was supported by the DOE, Office of Basic Energy Sciences, Materials Sciences Division under Contract No. DE-AC02-07CH11358.
Electronic structure and intersubband magnetoabsorption spectra of CdSe/CdS core-shell nanowires
NASA Astrophysics Data System (ADS)
Xiong, Wen
2016-10-01
The electronic structures of CdSe/CdS core-shell nanowires are calculated based on the effective-mass theory, and it is found that the hole states in CdSe/CdS core-shell nanowires are strongly mixed, which are very different from the hole states in CdSe or CdS nanowires. In addition, we find the three highest hole states at the Γ point are almost localized in the CdSe core and the energies of the hole states in CdSe/CdS core-shell nanowires can be enhanced greatly when the core radius Rc increases and the total radius R is fixed. The degenerate hole states are split by the magnetic field, and the split energies will increase when |Jh | increases from 1/2 to 7/2, while they are almost not influenced by the change of the core radius Rc. The absorption spectra of CdSe/CdS core-shell nanowires at the Γ point are also studied in the magnetic field when the temperature T is considered, and we find there are only two peaks will arise if the core radius Rc and the temperature T increase. The intensity of each optical absorption can be considerably enhanced by increasing the core radius Rc when the temperature T is fixed, it is due to the increase of their optical transition matrix element. Meanwhile, the intensity of each optical absorption can be decreased when the temperature T increases and the core radius Rc is fixed, and this is because the Fermi-Dirac distribution function of the corresponding hole states will increase as the increase of the temperature T.
NASA Astrophysics Data System (ADS)
Boulechfar, R.; Khenioui, Y.; Drablia, S.; Meradji, H.; Abu-Jafar, M.; Omran, S. Bin; Khenata, R.; Ghemid, S.
2018-05-01
Ab-initio calculations based on density functional theory have been performed to study the structural, electronic, thermodynamic and mechanical properties of intermetallic compounds Pt3Sc and Pt3Y using the full-potential linearized augmented plane wave(FP-LAPW) method. The total energy calculations performed for L12, D022 and D024 structures confirm the experimental phase stability. Using the generalized gradient approximation (GGA), the values of enthalpies formation are -1.23 eV/atom and -1.18 eV/atom for Pt3Sc and Pt3Y, respectively. The densities of states (DOS) spectra show the existence of a pseudo-gap at the Fermi level for both compounds which indicate the strong spd hybridization and directing covalent bonding. Furthermore, the density of states at the Fermi level N(EF), the electronic specific heat coefficient (γele) and the number of bonding electrons per atom are predicted in addition to the elastic constants (C11, C12 and C44). The shear modulus (GH), Young's modulus (E), Poisson's ratio (ν), anisotropy factor (A), ratio of B/GH and Cauchy pressure (C12-C44) are also estimated. These parameters show that the Pt3Sc and Pt3Y are ductile compounds. The thermodynamic properties were calculated using the quasi-harmonic Debye model to account for their lattice vibrations. In addition, the influence of the temperature and pressure was analyzed on the heat capacities (Cp and Cv), thermal expansion coefficient (α), Debye temperature (θD) and Grüneisen parameter (γ).
Modelling of Electron and Proton Beams in a White-light Solar Flare
NASA Astrophysics Data System (ADS)
Milligan, R. O.; Procházka, O.; Reid, A.; Allred, J. C.; Mathioudakis, M.
2017-12-01
Observations of an X1 class WL solar flare on 2014 June 11 showed a surprisingly weak emission in both higher order Balmer and Lyman lines and continua. The flare was observed by RHESSI but low energy cut-off of non-thermal component was indeterminable due to the unusually hard electron spectrum (delta = 3). An estimate of power in non-thermal electron beams together with an area of WL emission observed by HMI yielded to an upper and lower estimate of flux 1E9 and 3E10 erg/cm2/s, respectively. We performed a grid of models using a radiative hydrodynamic code RADYN in order to compare synthetic spectra with observations. For low energy cut-off we chose a range from 20 to 120 keV with a step of 20 keV and delta parameter equal to 3. Electron beam-driven models show that higher low energy cut-off is more likely to produce an absorption Balmer line profile, if the total energy flux remains relatively low. On the other hand a detectable rise of HMI continuum (617 nm) lays a lower limit on the beam flux. Proton beam-driven models with equivalent fluxes indicate a greater penetration depth, while the Balmer lines reveal significantly weaker emission. Atmospheric temperature profiles show that for higher values of low energy cut-off the energy of the beam is deposited lower in chromosphere or even in temperature minimum region. This finding suggests, that suppressed hydrogen emission can indicate a formation of white-light continuum below chromosphere.
A Satellite Borne Cadmium Sulfide Total Corpuscular Energy Detector
NASA Technical Reports Server (NTRS)
Freeman, John W.
1961-01-01
The properties of single crystals of cadmium sulfide as radiation detectors are described. It has been found possible to select crystals such that: (a) The ratio of increase of conductivity under irradiation to the rate of absorption of energy in the crystal is substantially independent of particle energy (over the examined ranges of 500 ev to 80 kev for electrons and 5 kev to 180 kev for protons) and of the magnitude of energy flux (over the range from.005 to 10 ergs/cm(sup 2 -sec); and (b) The above ration is substantially the same for protons, electrons, alpha particles, x-rays, and gamma-rays. For a driving voltage of 100 volts, typical crystal yield currents of 10(sup -7) to 10(sup- 6) amperes for each erg/cm(sup 2-sec) of energy absorbed by the crystal. The threshold of such crystal detectors (resulting from dark currents of the order of 10(sup 10 amp) is typically 10(sup -3) ergs/cm(sup 2- sec). For the selected crystals a response-temperature coefficient of -0.25% per degree centigrade is found for the temperature range -50 deg C to + 50 deg C. A description is given of a complete CdS total corpuscular energy detector for the study of geomagnetically trapped radiation by means of a satellite. The detector described has a dynamic range great than 10(sup 4), a solid angle of 10(exp -3) steradian, and a detection threshold of approximately 1 erg/cm(sup 2-sec-sterad). A similar detector employing a small magnet for the selective exclusion of electrons is also described. Noteworthy practical features of these detectors for satellite and space probe experiments are: (a) Use of bare crystals, without covering foils, in order to detect charged particles having energies as low as hundreds of electron volts. (b) Simplicity of electronic auxiliaries. (c) Compactness, lightweight and nechanical ruggedness. (d) Low electrical power requirements; and (e) Conversion of conduction current to the rate of a twostate relaxation oscillator in order to facilitate telemetric transmission of data. A pair of such detectors was flown as part of the s-46 satellite payload on March 23, 1960, but due to vehicular failure an orbit was not achieved and the operation of the CdS detectors was observed for only, six minutes of flight.