Mechanical energy expenditures and movement efficiency in full body reaching movements.
Sha, Daohang; France, Christopher R; Thomas, James S
2010-02-01
The effect of target location, speed, and handedness on the average total mechanical energy and movement efficiency is studied in 15 healthy subjects (7 males and 8 females with age 22.9 +/- 1.79 years old) performing full body reaching movements. The average total mechanical energy is measured as the time average of integration of joint power, potential energy, and kinetic energy respectively. Movement efficiency is calculated as the ratio of total kinetic energy to the total joint power and potential energy. Results show that speed and target location have significant effects on total mechanical energy and movement efficiency, but reaching hand only effects kinetic energy. From our findings we conclude that (1) efficiency in whole body reaching is dependent on whether the height of the body center of mass is raised or lowered during the task; (2) efficiency is increased as movement speed is increased, in part because of greater changes in potential energy; and (3) the CNS does not appear to use movement efficiency as a primary planning variable in full body reaching. It may be dependent on a combination of other factors or constraints.
Spatial econometric analysis of factors influencing regional energy efficiency in China.
Song, Malin; Chen, Yu; An, Qingxian
2018-05-01
Increased environmental pollution and energy consumption caused by the country's rapid development has raised considerable public concern, and has become the focus of the government and public. This study employs the super-efficiency slack-based model-data envelopment analysis (SBM-DEA) to measure the total factor energy efficiency of 30 provinces in China. The estimation model for the spatial interaction intensity of regional total factor energy efficiency is based on Wilson's maximum entropy model. The model is used to analyze the factors that affect the potential value of total factor energy efficiency using spatial dynamic panel data for 30 provinces during 2000-2014. The study found that there are differences and spatial correlations of energy efficiency among provinces and regions in China. The energy efficiency in the eastern, central, and western regions fluctuated significantly, and was mainly because of significant energy efficiency impacts on influences of industrial structure, energy intensity, and technological progress. This research is of great significance to China's energy efficiency and regional coordinated development.
NASA Astrophysics Data System (ADS)
Xu, Qiang; Ding, Shuai; An, Jingwen
2017-12-01
This paper studies the energy efficiency of Beijing-Tianjin-Hebei region and to finds out the trend of energy efficiency in order to improve the economic development quality of Beijing-Tianjin-Hebei region. Based on Malmquist index and window analysis model, this paper estimates the total factor energy efficiency in Beijing-Tianjin-Hebei region empirically by using panel data in this region from 1991 to 2014, and provides the corresponding political recommendations. The empirical result shows that, the total factor energy efficiency in Beijing-Tianjin-Hebei region increased from 1991 to 2014, mainly relies on advances in energy technology or innovation, and obvious regional differences in energy efficiency to exist. Throughout the window period of 24 years, the regional differences of energy efficiency in Beijing-Tianjin-Hebei region shrank. There has been significant convergent trend in energy efficiency after 2000, mainly depends on the diffusion and spillover of energy technologies.
Downs, Colleen T; Mqokeli, Babalwa; Singh, Preshnee
2012-03-01
Fruit- and nectar-feeding bats have high energy demands because of the cost of flight, and sugar is a good fuel because it is easily digested and absorbed. This study investigated the digestive efficiency of different sugars at different concentrations in Wahlberg's epauletted fruit bat (Epomophorus wahlbergi). We predicted that the sugar type and concentration would affect the total amount of solution consumed, while the total energy gained and the apparent assimilation efficiency would be high, irrespective of sugar type or concentration. Equicaloric solutions of two sugar types, glucose and sucrose, at low (10%), medium (15%) and high (25%) concentrations were offered in separate trials to bats. Total amount of solution consumed, total energy gained from each solution, and apparent assimilation efficiency, were measured. Bats had higher total volumetric intake of glucose and sucrose at the low concentrations than at the higher concentrations. However, bats maintained similar total energy intake on the respective glucose and sucrose concentrations. Bats were found to have high assimilation efficiencies on both glucose and sucrose irrespective of concentration. As bats used both sugars efficiently to maximize and maintain energy gain, it is expected that they feed opportunistically on fruit in the wild depending on temporal and spatial availability to obtain their energy requirements. Furthermore, fruit with high sucrose or glucose content will be consumed. Copyright © 2011 Elsevier Inc. All rights reserved.
White Nail Radio Transmitter: Billion Dollar Savings through Energy Efficiency
2011-05-10
increase efficiency and reduce overall energy consumption ashore by 50 percent CNO, Navy Energy Vision, P 10 White Nail Vision Your Cell Phone Cell...Estimated Total Number of transmitters 3,000,000 Estimated total power saved Watt 1,250,000,000 Cell Phone Transmitter Efficiency 1.25 Gigawatts saved...Greenhouse Gas Power 4 1 Energy Navy Use 7.3 Billion kWh White Nail Cell Phone Savings 11 Billion kWh One and a half times!!! Saves the output of four of
NASA Technical Reports Server (NTRS)
Bayliss, B. P.
1974-01-01
Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.
NASA Astrophysics Data System (ADS)
Zhang, Shuying; Li, Deshan; Li, Shuangqiang; Jiang, Hanyu; Shen, Yuqing
2017-06-01
With China’s entrance into the new economy, the improvement of energy efficiency has become an important indicator to measure the quality of ecological civilization construction and economic development. According to the panel data of Chinese regions in 1996-2014, the nearest distance to the efficient frontier of Undesirable-MinDS Xeon model and DEA window model have been used to calculate the total factor energy efficiency of China’s regions. Study found that: Under environmental constraints, China’s total factor energy efficiency has increased after the first drop in the overall 1996-2014, and then increases again. And the difference between the regions is very large, showing a characteristic of “the east is the highest, the west is lower, and lowest is in the central” finally, this paper puts forward relevant policy suggestions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, C.; Martin, E. Fadrhonc; Thompson, P.
Estimates of the total opportunity for investment in cost-effective energy efficiency in the United States are typically in the range of several hundred billion dollars (Choi Granade, et al., 2009 and Fulton & Brandenburg, 2012).1,2 To access this potential, many state policymakers and utility regulators have established aggressive energy efficiency savings targets. Current levels of taxpayer and utility bill-payer funding for energy efficiency is only a small fraction of the total investment needed to meet these targets (SEE Action Financing Solutions Working Group, 2013). Given this challenge, some energy efficiency program administrators are working to access private capital sources withmore » the aim of amplifying the funds available for investment. In this context, efficient access to secondary market capital has been advanced as one important enabler of the energy efficiency industry “at scale.”3 The question of what role secondary markets can play in bringing energy efficiency to scale is largely untested despite extensive attention from media, technical publications, advocates, and others. Only a handful of transactions of energy efficiency loan products have been executed to date, and it is too soon to draw robust conclusions from these deals. At the same time, energy efficiency program administrators and policymakers face very real decisions regarding whether and how to access secondary markets as part of their energy efficiency deployment strategy.« less
J.Y. Zhu; Xuejun Pan; Ronald S. Jr. Zalesny
2010-01-01
This mini review discusses several key technical issues associated with cellulosic ethanol production from woody biomass: energy consumption for woody biomass pretreatment, pretreatment energy efficiency, woody biomass pretreatment technologies, and quantification of woody biomass recalcitrance. Both total sugar yield and pretreatment energy efficiency, defined as the...
Tao, Feng; Li, Ling; Xia, X. H.
2012-01-01
The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption and emission of pollutants. This paper also empirically examines the determinants of efficiency and productivity change. The major findings are as follows. Firstly, the main sources of environmental inefficiency of China's industry are the inefficiency of gross industrial output value, the excessive energy consumption, and pollutant emissions. Secondly, the highest growth rate of environmental total factor productivity among the three industrial categories is manufacturing, followed by mining, and production and supply of electricity, gas, and water. Thirdly, foreign direct investment, capital-labor ratio, ownership structure, energy consumption structure, and environmental regulation have varying degrees of effects on the environmental efficiency and environmental total factor productivity. PMID:23365517
Tao, Feng; Li, Ling; Xia, X H
2012-01-01
The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption and emission of pollutants. This paper also empirically examines the determinants of efficiency and productivity change. The major findings are as follows. Firstly, the main sources of environmental inefficiency of China's industry are the inefficiency of gross industrial output value, the excessive energy consumption, and pollutant emissions. Secondly, the highest growth rate of environmental total factor productivity among the three industrial categories is manufacturing, followed by mining, and production and supply of electricity, gas, and water. Thirdly, foreign direct investment, capital-labor ratio, ownership structure, energy consumption structure, and environmental regulation have varying degrees of effects on the environmental efficiency and environmental total factor productivity.
Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials
Yu, Yuguo; Hill, Adam P.; McCormick, David A.
2012-01-01
The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855
7 CFR 4280.124 - Guaranteed loan funding.
Code of Federal Regulations, 2012 CFR
2012-01-01
... General Renewable Energy System and Energy Efficiency Improvement Guaranteed Loans § 4280.124 Guaranteed... section, as long as the items are an integral and necessary part of the renewable energy system or energy... Agency will pro-rate the energy efficiency improvement's total eligible project costs based on the...
7 CFR 4280.124 - Guaranteed loan funding.
Code of Federal Regulations, 2013 CFR
2013-01-01
... General Renewable Energy System and Energy Efficiency Improvement Guaranteed Loans § 4280.124 Guaranteed... section, as long as the items are an integral and necessary part of the renewable energy system or energy... Agency will pro-rate the energy efficiency improvement's total eligible project costs based on the...
7 CFR 4280.124 - Guaranteed loan funding.
Code of Federal Regulations, 2014 CFR
2014-01-01
... General Renewable Energy System and Energy Efficiency Improvement Guaranteed Loans § 4280.124 Guaranteed... section, as long as the items are an integral and necessary part of the renewable energy system or energy... Agency will pro-rate the energy efficiency improvement's total eligible project costs based on the...
Wei, Ji Feng; Hu, Xiao Yang; Sun, Li Qun; Zhang, Kai; Chang, Yan
2015-03-20
The calibration method using a high-power halogen tungsten lamp as a calibration source has many advantages such as strong equivalence and high power, so it is very fit for the calibration of high-energy laser energy meters. However, high-power halogen tungsten lamps after power-off still reserve much residual energy and continually radiate energy, which is difficult to be measured. Two measuring systems were found to solve the problems. One system is composed of an integrating sphere and two optical spectrometers, which can accurately characterize the radiative spectra and power-time variation of the halogen tungsten lamp. This measuring system was then calibrated using a normal halogen tungsten lamp made of the same material as the high-power halogen tungsten lamp. In this way, the radiation efficiency of the halogen tungsten lamp after power-off can be quantitatively measured. In the other measuring system, a wide-spectrum power meter was installed far away from the halogen tungsten lamp; thus, the lamp can be regarded as a point light source. The radiation efficiency of residual energy from the halogen tungsten lamp was computed on the basis of geometrical relations. The results show that the halogen tungsten lamp's radiation efficiency was improved with power-on time but did not change under constant power-on time/energy. All the tested halogen tungsten lamps reached 89.3% of radiation efficiency at 50 s after power-on. After power-off, the residual energy in the halogen tungsten lamp gradually dropped to less than 10% of the initial radiation power, and the radiation efficiency changed with time. The final total radiation energy was decided by the halogen tungsten lamp's radiation efficiency, the radiation efficiency of residual energy, and the total power consumption. The measuring uncertainty of total radiation energy was 2.4% (here, the confidence factor is two).
Raman amplification in the coherent wave-breaking regime.
Farmer, J P; Pukhov, A
2015-12-01
In regimes far beyond the wave-breaking threshold of Raman amplification, we show that significant amplification can occur after the onset of wave breaking, before phase mixing destroys the coherent coupling between pump, probe, and plasma wave. Amplification in this regime is therefore a transient effect, with the higher-efficiency "coherent wave-breaking" (CWB) regime accessed by using a short, intense probe. Parameter scans illustrate the marked difference in behavior between below wave breaking, in which the energy-transfer efficiency is high but total energy transfer is low, wave breaking, in which efficiency is low, and CWB, in which moderate efficiencies allow the highest total energy transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xu; Shen, Bo; Price, Lynn
China’s industrial sector dominates the country’s total energy consumption and energy efficiency in the industry sector is crucial to help China reach its energy and CO 2 emissions reduction goals. There are many energy efficiency policies in China, but the motivation and willingness of enterprises to improve energy efficiency has weakened. This report first identifies barriers that enterprises face to be self-motivated to implement energy efficiency measures. Then, this report reviews international policies and programs to improve energy efficiency and evaluates how these policies helped to address the identified barriers. Lastly, this report draws conclusions and provides recommendations to Chinamore » in developing policies and programs to motivate enterprises to improve energy efficiency.« less
[Copper recovery from artificial bioleaching lixivium of waste printed circuit boards].
Cheng, Dan; Zhu, Neng-Wu; Wu, Ping-Xiao; Zou, Ding-Hui; Xing, Yi-Jia
2014-04-01
The key step to realize metal recovery from bioleaching solutions is the recovery of copper from bioleaching lixivium of waste printed circuit boards in high-grade form. The influences of cathode material, current density, initial pH and initial copper ion concentration on the efficiency and energy consumption of copper recovery from artificial bioleaching lixivium under condition of constant current were investigated using an electro-deposition approach. The results showed that the larger specific surface area of the cathode material (carbon felt) led to the higher copper recovery efficiency (the recovery efficiencies of the anode and the cathode chambers were 96.56% and 99.25%, respectively) and the smaller the total and unit mass product energy consumption (the total and unit mass product energy consumptions were 0.022 kW x h and 15.71 kW x h x kg(-1), respectively). The copper recovery efficiency and energy consumption increased with the increase of current density. When the current density was 155.56 mA x cm(-2), the highest copper recovery efficiencies in the anode and cathode chambers reached 98.51% and 99.37%, respectively. Accordingly, the highest total and unit mass product energy consumptions were 0.037 kW x h and 24.34 kW x h x kg(-1), respectively. The copper recovery efficiency was also significantly affected by the initial copper ion concentration. The increase of the initial copper ion concentration would lead to faster decrease of copper ion concentration, higher total energy consumption, and lower unit mass product consumption. However, the initial pH had no significant effect on the copper recovery efficiency. Under the optimal conditions (carbon felt for cathode materials, current density of 111.11 mA x cm(-2), initial pH of 2.0, and initial copper ion concentration of 10 g x L(-1)), the copper recovery efficiencies of the anode and cathode chambers were 96.75% and 99.35%, and the total and unit mass product energy consumptions were 0.021 kW x h and 14.61 kW x h x kg(-1), respectively. The deposited copper on the cathode material was fascicularly distributed and no oxygen was detected.
NASA Astrophysics Data System (ADS)
Jaaz, Ahed Hameed; Sopian, Kamaruzzaman; Gaaz, Tayser Sumer
2018-06-01
The importance of utilizing the solar energy as a very suitable source among multi-source approaches to replace the conventional energy is on the rise in the last four decades. The invention of the photovoltaic module (PV) could be the corner stone in this process. However, the limited amount of energy obtained from PV was and still the main challenge of full utilization of the solar energy. In this paper, the use of the compound parabolic concentrator (CPC) along with the thermal photovoltaic module (PVT) where the cooling process of the CPC is conducted using a novel technique of water jet impingement has applied experimentally and physically tested. The test includes the effect of water jet impingement on the total power, electrical efficiency, thermal efficiency, and total efficiency on CPC-PVT system. The cooling process at the maximum irradiation by water jet impingement resulted in improving the electrical efficiency by 7%, total output power by 31% and the thermal efficiency by 81%. These results outperform the recent highest results recorded by the most recent work.
Solar updraft power generator with radial and curved vanes
NASA Astrophysics Data System (ADS)
Hafizh, Hadyan; Hamsan, Raziff; Zamri, Aidil Azlan Ahmad; Keprawi, Mohamad Fairuz Mohamad; Shirato, Hiromichi
2018-02-01
Solar radiation is the largest source of energy available on earth and the solar updraft power generator (SUPG) is a renewable energy facility capable of harnessing its abundant power. Unlike the conventional wind turbines that harness natural wind in the atmosphere and often encounter with the intermittent issue or even complete cut-off from airflow, the SUPG creates artificial wind as a result of solar-induced convective flows. However, the SUPG has an inherent low total efficiency due to the conversion of thermal energy into pressure energy. Acknowledging the low efficiency and considering its potential as a renewable energy facility, the current work aims to increase the total efficiency by installing a series of guide walls inside the collector. Two types of guide walls were used i.e. radial and curved vanes. The result with curved vanes showed that the updraft velocity is higher compare to those without vanes. About 18% and 64% improvement of updraft velocity and mechanical power were attained respectively. Furthermore, it was observed that the role of radial vanes configuration was more to produce a smooth updraft velocity profile rather than increasing the total efficiency.
Thermodynamic analyses of a biomass-coal co-gasification power generation system.
Yan, Linbo; Yue, Guangxi; He, Boshu
2016-04-01
A novel chemical looping power generation system is presented based on the biomass-coal co-gasification with steam. The effects of different key operation parameters including biomass mass fraction (Rb), steam to carbon mole ratio (Rsc), gasification temperature (Tg) and iron to fuel mole ratio (Rif) on the system performances like energy efficiency (ηe), total energy efficiency (ηte), exergy efficiency (ηex), total exergy efficiency (ηtex) and carbon capture rate (ηcc) are analyzed. A benchmark condition is set, under which ηte, ηtex and ηcc are found to be 39.9%, 37.6% and 96.0%, respectively. Furthermore, detailed energy Sankey diagram and exergy Grassmann diagram are drawn for the entire system operating under the benchmark condition. The energy and exergy efficiencies of the units composing the system are also predicted. Copyright © 2016 Elsevier Ltd. All rights reserved.
Second law analysis of a conventional steam power plant
NASA Technical Reports Server (NTRS)
Liu, Geng; Turner, Robert H.; Cengel, Yunus A.
1993-01-01
A numerical investigation of exergy destroyed by operation of a conventional steam power plant is computed via an exergy cascade. An order of magnitude analysis shows that exergy destruction is dominated by combustion and heat transfer across temperature differences inside the boiler, and conversion of energy entering the turbine/generator sets from thermal to electrical. Combustion and heat transfer inside the boiler accounts for 53.83 percent of the total exergy destruction. Converting thermal energy into electrical energy is responsible for 41.34 percent of the total exergy destruction. Heat transfer across the condenser accounts for 2.89 percent of the total exergy destruction. Fluid flow with friction is responsible for 0.50 percent of the total exergy destruction. The boiler feed pump turbine accounts for 0.25 percent of the total exergy destruction. Fluid flow mixing is responsible for 0.23 percent of the total exergy destruction. Other equipment including gland steam condenser, drain cooler, deaerator and heat exchangers are, in the aggregate, responsible for less than one percent of the total exergy destruction. An energy analysis is also given for comparison of exergy cascade to energy cascade. Efficiencies based on both the first law and second law of thermodynamics are calculated for a number of components and for the plant. The results show that high first law efficiency does not mean high second law efficiency. Therefore, the second law analysis has been proven to be a more powerful tool in pinpointing real losses. The procedure used to determine total exergy destruction and second law efficiency can be used in a conceptual design and parametric study to evaluate the performance of other steam power plants and other thermal systems.
Building Technologies Office FY 2017 Budget At-A-Glance
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-03-01
Buildings and homes use more than 73% of the electrical energy consumed in the United States. They also consume 40% of the nation’s total energy, with an annual energy bill of $430 billion. These energy bills can be cost effectively reduced by 20%–50% or more through various energy-efficient technologies and techniques. The Building Technologies Office (BTO) will continue to develop and demonstrate advanced building efficiency technologies and practices to make buildings in the United States more efficient, affordable, and comfortable.
Efficiency of the Inertia Friction Welding Process and Its Dependence on Process Parameters
NASA Astrophysics Data System (ADS)
Senkov, O. N.; Mahaffey, D. W.; Tung, D. J.; Zhang, W.; Semiatin, S. L.
2017-07-01
It has been widely assumed, but never proven, that the efficiency of the inertia friction welding (IFW) process is independent of process parameters and is relatively high, i.e., 70 to 95 pct. In the present work, the effect of IFW parameters on process efficiency was established. For this purpose, a series of IFW trials was conducted for the solid-state joining of two dissimilar nickel-base superalloys (LSHR and Mar-M247) using various combinations of initial kinetic energy ( i.e., the total weld energy, E o), initial flywheel angular velocity ( ω o), flywheel moment of inertia ( I), and axial compression force ( P). The kinetics of the conversion of the welding energy to heating of the faying sample surfaces ( i.e., the sample energy) vs parasitic losses to the welding machine itself were determined by measuring the friction torque on the sample surfaces ( M S) and in the machine bearings ( M M). It was found that the rotating parts of the welding machine can consume a significant fraction of the total energy. Specifically, the parasitic losses ranged from 28 to 80 pct of the total weld energy. The losses increased (and the corresponding IFW process efficiency decreased) as P increased (at constant I and E o), I decreased (at constant P and E o), and E o (or ω o) increased (at constant P and I). The results of this work thus provide guidelines for selecting process parameters which minimize energy losses and increase process efficiency during IFW.
Carbon-free hydrogen production from low rank coal
NASA Astrophysics Data System (ADS)
Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao
2018-02-01
Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.
Potential reduction of energy consumption in public university library
NASA Astrophysics Data System (ADS)
Noranai, Z.; Azman, ADF
2017-09-01
Efficient electrical energy usage has been recognized as one of the important factor to reduce cost of electrical energy consumption. Various parties have been emphasized about the importance of using electrical energy efficiently. Inefficient usage of electrical energy usage lead to biggest factor increasing of administration cost in Universiti Tun Hussein Onn Malaysia. With this in view, a project the investigate potential reduction electrical energy consumption in Universiti Tun Hussein Onn Malaysia was carried out. In this project, a case study involving electrical energy consumption of Perpustakaan Tunku Tun Aminah was conducted. The scopes of this project are to identify energy consumption in selected building and to find the factors that contributing to wastage of electrical energy. The MS1525:2001, Malaysian Standard - Code of practice on energy efficiency and use of renewable energy for non-residential buildings was used as reference. From the result, 4 saving measure had been proposed which is change type of the lamp, install sensor, decrease the number of lamp and improve shading coefficient on glass. This saving measure is suggested to improve the efficiency of electrical energy consumption. Improve of human behaviour toward saving energy measure can reduce 10% from the total of saving cost while on building technical measure can reduce 90% from total saving cost.
NASA Technical Reports Server (NTRS)
1982-01-01
The development of a commercially viable and cost-effective phospheric acid fuel cell powered on-site integrated energy system (OS/IES) is described. The fuel cell offers energy efficients in the range of 35-40% of the higher heating value of available fuels in the form of electrical energy. In addition, by utilizing the thermal energy generated for heating, ventilating and air-conditioning (HVAC), a fuel cell OS/IES could provide total energy efficiencies in the neighborhood of 80%. Also, the Engelhard fuel cell OS/IES offers the important incentive of replacing imported oil with domestically produced methanol, including coal-derived methanol.
Electricity savings potentials in the residential sector of Bahrain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari, H.; Morsy, M.G.; Al-Baharna, N.S.
1996-08-01
Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to themore » peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.« less
Nagel, Jennifer M; Wang, Xianzhong; Lewis, James D; Fung, Howard A; Tissue, David T; Griffin, Kevin L
2005-05-01
Energy-use efficiency and energy assimilation, investment and allocation patterns are likely to influence plant growth responses to increasing atmospheric CO2 concentration ([CO2]). Here, we describe the influence of elevated [CO2] on energetic properties as a mechanism of growth responses in Xanthium strumarium. Individuals of X. strumarium were grown at ambient or elevated [CO2] and harvested. Total biomass and energetic construction costs (CC) of leaves, stems, roots and fruits and percentage of total biomass and energy allocated to these components were determined. Photosynthetic energy-use efficiency (PEUE) was calculated as the ratio of total energy gained via photosynthetic activity (Atotal) to leaf CC. Elevated [CO2] increased leaf Atotal, but decreased CC per unit mass of leaves and roots. Consequently, X. strumarium individuals produced more leaf and root biomass at elevated [CO2] without increasing total energy investment in these structures (CCtotal). Whole-plant biomass was associated positively with PEUE. Whole-plant construction required 16.1% less energy than modeled whole-plant energy investment had CC not responded to increased [CO2]. As a physiological mechanism affecting growth, altered energetic properties could positively influence productivity of X. strumarium, and potentially other species, at elevated [CO2].
Methods for assessing the energy-saving efficiency of industrial symbiosis in industrial parks.
Li, Wenfeng; Cui, Zhaojie; Han, Feng
2015-01-01
The available energy resources are being depleted worldwide. Industrial symbiosis (IS) provides a promising approach for increasing the efficiency of energy utilization, with numerous studies reporting the superiority of this technology. However, studies quantifying the energy-saving efficiency of IS remain insufficient. This paper proposes an index system for the quantitative evaluation of the energy-saving efficiency of IS. Both energy-saving and financial indexes were selected, the former include the IS energy-saving index, the contribution rate of energy saved through IS, fractional energy savings, and cut rate of energy consumption per total output value; and the latter include the IS investment payback period, IS input-output ratio, net present value (NPV), and internal rate of return (IRR) of IS. The proposed methods were applied to a case study on the XF Industrial Park (XF IP), in the city of Liaocheng in Shandong Province of China. Three energy-saving channels using IS were found in the XF IP: (a) utilizing the energy of high-temperature materials among industrial processes, (b) recovering waste heat and steam between different processes, and (c) saving energy by sharing infrastructures. The results showed that the energy efficiency index of IS was 0.326, accounting for 34.6% of the comprehensive energy-saving index in 2011, and the fractional energy-savings were 12.42%. The index of energy consumption per total industrial output value varied from 90.9 tce/MRMB to 51.6 tce/MRMB. Thus, the cut rate of energy consumption per total industrial output value was 43.42%. The average values of the IS input-output ratio was 406.2 RMB/tce, 57.2% lower than the price of standard coal. Static investment payback period in the XF IP was 8.5 months, indicating that the XF IP began to earn profit 8.5 months after the construction of all IS modes. The NVP and IRR of each IS mode in the XF IP were greater than zero, with average values equal to 1,789.96 MRMB and 140.96%, respectively. The computation result for each indicator revealed that IS could lead to the use of energy with high efficiency and lighten the financial burden of enterprises in the XF IP. And the proposed index system may help IPs and EIPs to make strategic decisions when designing IS modes.
ERIC Educational Resources Information Center
Callahan, Michael P.; Parker, Danny S.; Dutton, Wanda L.; McIlvaine, Janet E. R.
Florida has recently completed a survey of energy use and related physical and operational characteristics of the state's public schools. This report presents results from 1,298 surveys received (680 providing matching utility data) revealing that total energy costs for the Florida school system totaled $205 million in 1995. Other data show that…
Hurley, A M; López-Villalobos, N; McParland, S; Kennedy, E; Lewis, E; O'Donovan, M; Burke, J L; Berry, D P
2016-01-01
International interest in feed efficiency, and in particular energy intake and residual energy intake (REI), is intensifying due to a greater global demand for animal-derived protein and energy sources. Feed efficiency is a trait of economic importance, and yet is overlooked in national dairy cow breeding goals. This is due primarily to a lack of accurate data on commercial animals, but also a lack of clarity on the most appropriate definition of the feed intake and utilization complex. The objective of the present study was to derive alternative definitions of energetic efficiency in grazing lactating dairy cows and to quantify the inter-relationships among these alternative definitions. Net energy intake (NEI) from pasture and concentrate intake was estimated up to 8 times per lactation for 2,693 lactations from 1,412 Holstein-Friesian cows. Energy values of feed were based on the French Net Energy system where 1 UFL is the net energy requirements for lactation equivalent of 1kg of air-dry barley. A total of 8,183 individual feed intake measurements were available. Energy balance was defined as the difference between NEI and energy expenditure. Efficiency traits were either ratio-based or residual-based; the latter were derived from least squares regression models. Residual energy intake was defined as NEI minus predicted energy to fulfill the requirements for the various energy sinks. The energy sinks (e.g., NEL, metabolic live weight) and additional contributors to energy kinetics (e.g., live weight loss) combined, explained 59% of the variation in NEI, implying that REI represented 41% of the variance in total NEI. The most efficient 10% of test-day records, as defined by REI (n=709), on average were associated with a 7.59 UFL/d less NEI (average NEI of the entire population was 16.23 UFL/d) than the least efficient 10% of test-day records based on REI (n=709). Additionally, the most efficient 10% of test-day records, as defined by REI, were associated with superior energy conversion efficiency (ECE, i.e., NEL divided by NEI; ECE=0.55) compared with the least efficient 10% of test-day records (ECE=0.33). Moreover, REI was positively correlated with energy balance, implying that more negative REI animals (i.e., deemed more efficient) are expected to be, on average, in greater negative energy balance. Many of the correlations among the 14 defined efficiency traits differed from unity, implying that each trait is measuring a different aspect of efficiency. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Kronenberg, Peter; Traxer, Olivier
2014-08-01
To assess the fragmentation (ablation) efficiency of laser lithotripsy along a wide range of pulse energies, frequencies, power settings and different laser fibres, in particular to compare high- with low-frequency lithotripsy using a dynamic and innovative testing procedure free from any human interaction bias. An automated laser fragmentation testing system was developed. The unmoving laser fibres fired at the surface of an artificial stone while the stone was moved past at a constant velocity, thus creating a fissure. The lithotripter settings were 0.2-1.2 J pulse energies, 5-40 Hz frequencies, 4-20 W power levels, and 200 and 550 μm core laser fibres. Fissure width, depth, and volume were analysed and comparisons between laser settings, fibres and ablation rates were made. Low frequency-high pulse energy (LoFr-HiPE) settings were (up to six times) more ablative than high frequency-low pulse energy (HiFr-LoPE) at the same power levels (P < 0.001), as they produced deeper (P < 0.01) and wider (P < 0.001) fissures. There were linear correlations between pulse energy and fragmentation volume, fissure width, and fissure depth (all P < 0.001). Total power did not correlate with fragmentation measurements. Laser fibre diameter did not affect fragmentation volume (P = 0.81), except at very low pulse energies (0.2 J), where the large fibre was less efficient (P = 0.015). At the same total power level, LoFr-HiPE lithotripsy was most efficient. Pulse energy was the key variable that drove fragmentation efficiency. Attention must be paid to prevent the formation of time-consuming bulky debris and adapt the lithotripter settings to one's needs. As fibre diameter did not affect fragmentation efficiency, small fibres are preferable due to better scope irrigation and manoeuvrability. © 2013 The Authors. BJU International © 2013 BJU International.
Updated estimation of energy efficiencies of U.S. petroleum refineries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palou-Rivera, I.; Wang, M. Q.
2010-12-08
Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels suchmore » as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.« less
Energy budget for yearling lake trout, Salvelinus namaycush
Rottiers, Donald V.
1993-01-01
Components of the energy budget of yearling lake trout (Salvelinus namaycush) were derived from data gathered in laboratory growth and metabolism studies; values for energy lost as waste were estimated with previously published equations. Because the total caloric value of food consumed by experimental lake trout was significantly different during the two years in which the studies were done, separate annual energy budgets were formulated. The gross conversion efficiency in yearling lake trout fed ad libitum rations of alewives at 10A?C was 26.6% to 41%. The distribution of energy with temperature was similar for each component of the energy budget. Highest conversion efficiencies were observed in fish fed less than ad libitum rations; fish fed an amount of food equivalent to about 4% of their body weight at 10A?C had a conversion efficiency of 33% to 45.1%. Physiologically useful energy was 76.1-80.1% of the total energy consumed. Estimated growth for age-I and -II lake fish was near that observed for laboratory fish held at lake temperatures and fed reduced rations.
2010 Northwest Federal Market Assessment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scanlon, Tim; Sandusky, William F.
The primary intent of this market assessment is to provide insights on the effectiveness of current energy efficiency and renewable energy program offerings available to Federal sites in the region. The level of detail, quality and currency of the data used in this market assessment varies significantly by Federal agency and energy efficiency service provider. Limited access to some Federal sites, limited availability of key points of contact, time/resource constraints, and other considerations limited the total number of Federal agencies and energy efficiency service providers participating in the survey.
USE Efficiency: an innovative educational programme for energy efficiency in buildings
NASA Astrophysics Data System (ADS)
Papadopoulos, Theofilos A.; Christoforidis, Georgios C.; Papagiannis, Grigoris K.
2017-10-01
Power engineers are expected to play a pivotal role in transforming buildings into smart and energy-efficient structures, which is necessary since buildings are responsible for a considerable amount of the total energy consumption. To fulfil this role, a holistic approach in education is required, tackling subjects traditionally related to other engineering disciplines. In this context, USE Efficiency is an inter-institutional and interdisciplinary educational programme implemented in nine European Universities targeting energy efficiency in buildings. The educational programme effectively links professors, students, engineers and industry experts, creating a unique learning environment. The scope of the paper is to present the methodology and the general framework followed in the USE Efficiency programme. The proposed methodology can be adopted for the design and implementation of educational programmes on energy efficiency and sustainable development in higher education. End-of-course survey results showed positive feedback from the participating students, indicating the success of the programme.
Decentralized energy studies: Compendium of international studies and research
NASA Astrophysics Data System (ADS)
Wallace, C.
1980-03-01
With efficient use of energy, renewable energy sources can supply the majority, if not the totality, of energy supplies in developed nations at real energy prices that double or triple by 2025 (1975 prices). This appears true even in harsh climates with oil dependent industrial economies. Large increases in end-use energy efficiency are cost effective at present prices. Some reports show that cost effective end-use efficiency improvements can reduce energy consumption (per capita, per unit of amenity, or per unit of output) to as much as 90 percent. This was demonstrated by highly disaggregated analyses of end-uses. Such analyses consistently show larger potential for efficiency improvements than can be detected from conventional analyses of more aggregated data. As energy use demands decline due to end use efficiency improvements, energy supply problems subsequently decrease. Lifestyle changes, influenced by social factors, and rising energy prices can substantially reduce demands for energy. Such changes are already discernible in end-use energy studies. When energy efficient capital stock is in place, many end-users of energy will be able to provide a substantial portion of their own energy needs from renewable energy sources that are directly available to them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-02-22
The Florida Solar Energy Center (FSEC), in collaboration with Florida Power & Light (FPL), is pursuing a phased residential energy-efficiency retrofit program in Florida. Researchers are looking to establish the impacts of technologies of two retrofit packages -- shallow and deep -- on annual energy and peak energy reductions. Sixty homes have been instrumented to record total house power and detailed energy end-use data on all appliances as well as household interior temperature and relative humidity conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Parker, K. Sutherland, D. Chasar, J. Montemurno, B. Amos, J. Kono
2017-02-01
The Florida Solar Energy Center (FSEC), in collaboration with Florida Power & Light (FPL), is pursuing a phased residential energy-efficiency retrofit program in Florida. Researchers are looking to establish the impacts of technologies of two retrofit packages -- shallow and deep -- on annual energy and peak energy reductions. Sixty homes have been instrumented to record total house power and detailed energy end-use data on all appliances as well as household interior temperature and relative humidity conditions.
Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan
2017-07-12
An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.
Kongphitee, Kanokwan; Sommart, Kritapon; Phonbumrung, Thamrongsak; Gunha, Thidarat; Suzuki, Tomoyuki
2018-03-13
This study was conducted to assess the effects of replacing rice straw with different proportions of cassava pulp on growth performance, feed intake, digestibility, rumen microbial population, energy partitioning and efficiency of metabolizable energy utilization in beef cattle. Eighteen yearling Thai native beef cattle (Bos indicus) with an average initial body weight of 98.3 ± 12.8 kg were allocated to one of three dietary treatments and fed ad libitum for 149 days in a randomized complete block design. Three dietary treatments using different proportions of cassava pulp (100, 300 and 500 g/kg dry matter basis) instead of rice straw as a base in a fermented total mixed ration were applied. Animals were placed in a metabolic pen equipped with a ventilated head box respiration system to determine total digestibility and energy balance. The average daily weight gain, digestible intake and apparent digestibility of dry matter, organic matter and non-fiber carbohydrate, total protozoa, energy intake, energy retention and energy efficiency increased linearly (p < 0.05) with an increasing proportion of cassava pulp in the diet, whereas the three main types of fibrolytic bacteria and energy excretion in the urine (p < 0.05) decreased. The metabolizable energy requirement for the maintenance of yearling Thai native cattle, determined by a linear regression analysis, was 399 kJ/kg BW0.75, with an efficiency of metabolizable energy utilization for growth of 0.86. Our results demonstrated that increasing the proportion of cassava pulp up to 500 g/kg of dry matter as a base in a fermented total mixed ration is an effective strategy for improving productivity in zebu cattle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimring, Mark
2011-03-18
Launched in 2006, over 8,700 residential energy upgrades have been completed through Austin Energy's Home Performance with Energy Star (HPwES) program. The program's lending partner, Velocity Credit Union (VCU) has originated almost 1,800 loans, totaling approximately $12.5 million. Residential energy efficiency loans are typically small, and expensive to originate and service relative to larger financing products. National lenders have been hesitant to deliver attractive loan products to this small, but growing, residential market. In response, energy efficiency programs have found ways to partner with local and regional banks, credit unions, community development finance institutions (CDFIs) and co-ops to deliver energymore » efficiency financing to homeowners. VCU's experience with the Austin Energy HPwES program highlights the potential benefits of energy efficiency programs to a lending partner.« less
Momentum and Heat Flux Measurements in the Exhaust of VASIMR Using Helium Propellant
NASA Technical Reports Server (NTRS)
Chavers, D. Gregory
2002-01-01
Electromagnetic thrusters typically use electric and magnetic fields to accelerate and exhaust plasma through interactions with the charged particles in the plasma. The energy required to create the plasma, i.e. ionization energy, is potential energy between the electron and ion. This potential energy is typically lost since it is not recovered as the plasma is exhausted and is known as frozen flow loss. If the frozen flow energy is a small fraction of the total plasma energy, this frozen flow loss may be negligible. However, if the frozen flow energy is a major fraction of the total plasma energy, this loss can severely reduce the energy efficiency of the thruster. Recovery and utilization of this frozen flow energy can improve the energy efficiency of a thruster during low specific impulse operating regimes when the ionization energy is a large fraction of the total plasma energy. This paper quantifies the recovery of the frozen flow energy, i.e. recombination energy, via the process of surface recombination for helium. To accomplish this task the momentum flux and heat flux of the plasma flow were measured and compared to calculated values from electrostatic probe data. This information was used to deduce the contribution of recombination energy to the total heat flux on a flat plate as well as to characterize the plasma conditions. Helium propellant was investigated initially due to its high ionization potential and hence available recombination energy.
Xue, B; Yan, T; Ferris, C F; Mayne, C S
2011-03-01
Eight Holstein and 8 Jersey-Holstein crossbred dairy cows (all primiparous) were used in a repeated 2 (genotype) × 2 (concentrate level) factorial design study involving a total of 4 periods (each of 6-wk duration), designed to examine the effect of cross-breeding on the efficiency of milk production and energy use. The 4 periods began at 5, 11, 27, and 33 wk of lactation, respectively. Animals were offered a completely mixed diet containing grass silage and concentrates, with the level of concentrate in the diet either 30 or 70% of dry matter (DM). During the final 10 d of each period, ration digestibility and energy use was measured, the latter in indirect open-circuit respiration calorimeters. No significant interaction existed between cow genotype and dietary concentrate level for feed intake, milk production, or any of the energy use parameters measured. Across the 2 genotypes, total DM intake, milk yield, and milk protein and lactose concentrations increased with increasing dietary concentrate level. Thus, cows offered the high-concentrate diet had a higher gross energy (GE) intake, and a higher energy output in feces, urine, milk as heat, and a higher metabolizable energy (ME) intake as a proportion of GE intake and as a proportion of digestible energy intake. Across the 2 levels of concentrates, the Jersey-Holstein cows had a significantly higher total DM intake and body condition score, and produced milk with higher fat, protein, and energy concentrations, compared with those of the Holstein cows. In addition, the Jersey-Holstein cows had a significantly higher GE intake and energy output in urine, methane, and milk. However, crossbreeding had no significant effect on energy digestibility or metabolizability, energy partitioning between milk and body tissue, or the efficiency of ME use for lactation. Relating ME intake to milk energy output and heat production indicated that crossbreeding did not influence ME requirement for maintenance or energy efficiencies. The energy metabolism data were also used to compare energy efficiencies between "early" (data pooled for the first 2 periods) and "late" (data pooled for the second 2 periods) stages of lactation. Stage of lactation had no effect on energy digestibility or metabolizability, whereas increasing stage of lactation increased the rate of energy partitioning into body tissue and reduced the rate of energy partitioning into milk, irrespective of cow genotype. In conclusion, crossbreeding of Holstein dams with Jersey sires had no adverse effects on the overall production efficiency of Holstein dairy cows in terms of milk production, efficiency of ME use for lactation, and energy partitioning between milk and body tissue. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The Shifting Landscape of Ratepayer-Funded Energy Efficiency in the U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbose, Galen L; Goldman, Charles; Schlegel, Jeff
Over the last two decades, utility ratepayer funding for energy efficiency programs - and the associated energy savings - has seen both booms and busts. Currently, about 35 states implement ratepayer-funded energy efficiency programs, with a total U.S. budget of $3.1 billion in 2008, approximately 80% of which is concentrated in just ten states (CEE 2008).2 However, a proliferation of new state-level policies enacted over the past several years suggests that the next decade may see a dramatic and sustained increase in overall funding levels, and a fundamental re-drawing of the energy efficiency map. These new state energy efficiency policiesmore » reflect a variety of concerns, including the increasing cost and siting challenges of building new generation and transmission, fuel cost and supply risks, and the potential cost of future carbon regulations. Within the past three years, for example, eleven states have adopted energy efficiency portfolio (or resource) standards (EEPS or EERS) that establish specific long-term savings targets that utilities are obligated to meet, and at least three other states are currently considering the same. A growing number of states have recently established laws requiring utilities to acquire all available cost-effective energy efficiency. Regulators in several Western states have also recently revised integrated resource planning (IRP) and demand-side management (DSM) planning rules to require more robust analysis of the resource potential and benefits of energy efficiency, which has resulted in increased savings targets for their energy efficiency portfolios (Hopper et al. 2008). Finally, regulators and utilities in many states are beginning to look more closely at regulatory incentive mechanisms to better align utility financial interests with improvements in customer energy efficiency. We examined energy efficiency policies on the books or in the pipeline in all 50 states, along with recent IRPs and DSM plans, and developed low, medium and high projections of future energy efficiency spending and savings. Depending on how aggressively and effectively states implement these policies, we estimate that spending on ratepayer-funded energy efficiency could increase from $3.1 billion in 2008 to more than $12 billion (nominal dollars) per year by 2020 in our high case, a growth rate in spending of about 12% per year. Annual electricity savings nationally could triple from an estimated 0.3% of retail electricity sales in 2008 to 0.9% of retail electricity sales in 2020. In the low and medium scenarios, ratepayer funding for electric and gas energy efficiency in the U.S. would increase to $5.4 and $7.5 billion, respectively, by 2020. What are the implications of such a scale-up of ratepayer-funded energy efficiency activity for national energy policy, such as a national EEPS or future carbon regulations? Can a ramp-up of this scale be achieved, and what practical constraints might slow these efforts? This paper addresses these questions by first providing an overview of recent trends in state policies pertaining to ratepayer-funded energy efficiency programs in the U.S. The paper then presents our set of projections of future spending and savings from such programs, highlighting key themes. Projected energy savings are compared to what might be required under a future national EEPS (or broader clean energy standard that includes energy efficiency), in order to gauge the potential incremental impact of such policies. In addition, the carbon emission reductions associated with our projection of energy savings from ratepayer-funded programs is compared to the total emission reductions that might be required under the American Clean Energy and Security Act of 2009 (aka, the Waxman-Markey bill), which was passed by the U.S. House of Representatives in June 2009 and would establish a cap on total greenhouse gas emission for many sectors of the U.S. economy. Last, the paper discusses some of the major obstacles and challenges that states and program administrators may face over the coming decade, as they seek to dramatically ramp-up ratepayer-funded energy efficiency program activity, as projected.« less
Feature-based Approach in Product Design with Energy Efficiency Consideration
NASA Astrophysics Data System (ADS)
Li, D. D.; Zhang, Y. J.
2017-10-01
In this paper, a method to measure the energy efficiency and ecological footprint metrics of features is proposed for product design. First the energy consumption models of various manufacturing features, like cutting feature, welding feature, etc. are studied. Then, the total energy consumption of a product is modeled and estimated according to its features. Finally, feature chains that combined by several sequence features based on the producing operation orders are defined and analyzed to calculate global optimal solution. The corresponding assessment model is also proposed to estimate their energy efficiency and ecological footprint. Finally, an example is given to validate the proposed approach in the improvement of sustainability.
Summary of Opportunities to Conserve Transportation Energy
DOT National Transportation Integrated Search
1975-08-01
This report surveys the near term opportunities for energy conservation in passenger and freight transportation. The present (1972) transportation energy flows and modal efficiencies are characterized. A total of 35 possible conservation measures are...
Global renewable energy-based electricity generation and smart grid system for energy security.
Islam, M A; Hasanuzzaman, M; Rahim, N A; Nahar, A; Hosenuzzaman, M
2014-01-01
Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.
Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security
Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.
2014-01-01
Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201
Constraints on drivers for visible light communications emitters based on energy efficiency.
Del Campo-Jimenez, Guillermo; Perez-Jimenez, Rafael; Lopez-Hernandez, Francisco Jose
2016-05-02
In this work we analyze the energy efficiency constraints on drivers for Visible light communication (VLC) emitters. This is the main reason why LED is becoming the main source of illumination. We study the effect of the waveform shape and the modulation techniques on the overall energy efficiency of an LED lamp. For a similar level of illumination, we calculate the emitter energy efficiency ratio η (PLED/PTOTAL) for different signals. We compare switched and sinusoidal signals and analyze the effect of both OOK and OFDM modulation techniques depending on the power supply adjustment, level of illumination and signal amplitude distortion. Switched and OOK signals present higher energy efficiency behaviors (0.86≤η≤0.95) than sinusoidal and OFDM signals (0.53≤η≤0.79).
NASA Astrophysics Data System (ADS)
Benedetti, Florian; Loison, Claire
2018-07-01
In a recent study published in this journal, de Jong et al. investigated the efficiency improvement reached thanks to new parameter sets for molecular dynamics simulations using the coarse-grained Martini force-field and its implementation in the Gromacs simulation package (de Jong et al., 2016). The advantages of the new sets are the computational efficiency and the conservation of the equilibrium properties of the Martini model. This article reports additional tests on the total energy conservation for zwitterionic lipid bilayer membranes. The results show that the conclusion by de Jong et al. on the total energy conservation of the new parameter sets, based on short simulations and homogeneous systems, is not generalizable to long lipid bilayer simulations. The energy conservation of the three parameter sets compared in their article (common, new and new-RF) differ if one analyzes sufficiently long trajectories or if one measures the total energy drifts. In practice, when total energy conservation is important for a Martini lipid bilayer simulation, we would consider either keeping the common set, or carefully testing the new-RF set for energy leaks or sources before production use.
The Nasal Geometry of the Reindeer Gives Energy-Efficient Respiration
NASA Astrophysics Data System (ADS)
Magnanelli, Elisa; Wilhelmsen, Øivind; Acquarone, Mario; Folkow, Lars P.; Kjelstrup, Signe
2017-01-01
Reindeer in the arctic region live under very harsh conditions and may face temperatures below 233 K. Therefore, efficient conservation of body heat and water is important for their survival. Alongside their insulating fur, the reindeer nasal mechanism for heat and mass exchange during respiration plays a fundamental role. We present a dynamic model to describe the heat and mass transport that takes place inside the reindeer nose, where we account for the complicated geometrical structure of the subsystems that are part of the nose. The model correctly captures the trend in experimental data for the temperature, heat and water recovery in the reindeer nose during respiration. As a reference case, we model a nose with a simple cylindrical-like geometry, where the total volume and contact area are the same as those determined in the reindeer nose. A comparison of the reindeer nose with the reference case shows that the nose geometry has a large influence on the velocity, temperature and water content of the air inside the nose. For all investigated cases, we find that the total entropy production during a breathing cycle is lower for the reindeer nose than for the reference case. The same trend is observed for the total energy consumption. The reduction in the total entropy production caused by the complicated geometry is higher (up to -20 %) at more extreme ambient conditions, when energy efficiency is presumably more important for the maintenance of energy balance in the animal. In the literature, a hypothesis has been proposed, which states that the most energy-efficient design of a system is characterized by equipartition of the entropy production. In agreement with this hypothesis, we find that the local entropy production during a breathing cycle is significantly more uniform for the reindeer nose than for the reference case. This suggests that natural selection has favored designs that give uniform entropy production when energy efficiency is an issue. Animals living in the harsh arctic climate, such as the reindeer, can therefore serve as inspiration for a novel industrial design with increased efficiency.
Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brand, L.; Yee, S.; Baker, J.
2015-02-01
In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. In this project, the U.S. Department of Energy Building America team Partnership for Advanced Residential Retrofit examined the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces over the lifemore » of the product, as measured by steady-state efficiency and annual efficiency. The team identified 12 furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines, Iowa, metropolitan area and worked with a local heating, ventilation, and air conditioning contractor to retrieve furnaces and test them at the Gas Technology Institute laboratory for steady-state efficiency and annual efficiency. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace as installed in the house.« less
Planning energy-efficient bipedal locomotion on patterned terrain
NASA Astrophysics Data System (ADS)
Zamani, Ali; Bhounsule, Pranav A.; Taha, Ahmad
2016-05-01
Energy-efficient bipedal walking is essential in realizing practical bipedal systems. However, current energy-efficient bipedal robots (e.g., passive-dynamics-inspired robots) are limited to walking at a single speed and step length. The objective of this work is to address this gap by developing a method of synthesizing energy-efficient bipedal locomotion on patterned terrain consisting of stepping stones using energy-efficient primitives. A model of Cornell Ranger (a passive-dynamics inspired robot) is utilized to illustrate our technique. First, an energy-optimal trajectory control problem for a single step is formulated and solved. The solution minimizes the Total Cost Of Transport (TCOT is defined as the energy used per unit weight per unit distance travelled) subject to various constraints such as actuator limits, foot scuffing, joint kinematic limits, ground reaction forces. The outcome of the optimization scheme is a table of TCOT values as a function of step length and step velocity. Next, we parameterize the terrain to identify the location of the stepping stones. Finally, the TCOT table is used in conjunction with the parameterized terrain to plan an energy-efficient stepping strategy.
Energy in the environment and the second law of thermodynamics
NASA Technical Reports Server (NTRS)
Mueller, R. F.
1972-01-01
The relationship between the consumption of energy by technological cultures and the second law of thermodynamics is discussed. The analysis is based on a description of the operation of a mechanical device which consumes energy. It is concluded that the flow of energy in manifold spontaneous conditions, which play a vital role in the operation of any technological process, remove most of the energy flow path from the control of the operator. It is stated that the increased efficiency of a process can benefit the environment only as much as this efficiency enables the total energy input to be reduced for a given level of production and increasing efficiency cannot meet the problems of an increased rate of energy utilization.
NASA Astrophysics Data System (ADS)
Dubey, M.; Chandra, H.; Kumar, Anil
2016-02-01
A thermal modelling for the performance evaluation of gas turbine cogeneration system with reheat is presented in this paper. The Joule-Brayton cogeneration reheat cycle is based on the total useful energy rate (TUER) has been optimised and the efficiency at the maximum TUER is determined. The variation of maximum dimensionless TUER and efficiency at maximum TUER with respect to cycle temperature ratio have also been analysed. From the results, it has been found that the dimensionless maximum TUER and the corresponding thermal efficiency decrease with the increase in power to heat ratio. The result also shows that the inclusion of reheat significantly improves the overall performance of the cycle. From the thermodynamic performance point of view, this methodology may be quite useful in the selection and comparison of combined energy production systems.
NASA Astrophysics Data System (ADS)
Baksht, E. Kh; Panchenko, Aleksei N.; Tarasenko, Viktor F.
2000-06-01
An efficient electric-discharge XeCl laser is developed, which is pumped by a self-sustained discharge with a prepulse formed by a generator with an inductive energy storage device and a semiconductor current interrupter on a basis of semiconductor opening switch (SOS) diodes. An output energy up to 800 mJ, a pulse length up to 450 ns, and a total laser efficiency of 2.2% were attained by using spark UV preionisation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W; Khawaja, M. Sami; Rushton, Josh
Evaluating an energy efficiency program requires assessing the total energy and demand saved through all of the energy efficiency measures provided by the program. For large programs, the direct assessment of savings for each participant would be cost-prohibitive. Even if a program is small enough that a full census could be managed, such an undertaking would almost always be an inefficient use of evaluation resources. The bulk of this chapter describes methods for minimizing and quantifying sampling error. Measurement error and regression error are discussed in various contexts in other chapters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Sha; Tan, Qing; Evans, Meredydd
India is expected to add 40 billion m2 of new buildings till 2050. Buildings are responsible for one third of India’s total energy consumption today and building energy use is expected to continue growing driven by rapid income and population growth. The implementation of the Energy Conservation Building Code (ECBC) is one of the measures to improve building energy efficiency. Using the Global Change Assessment Model, this study assesses growth in the buildings sector and impacts of building energy policies in Gujarat, which would help the state adopt ECBC and expand building energy efficiency programs. Without building energy policies, buildingmore » energy use in Gujarat would grow by 15 times in commercial buildings and 4 times in urban residential buildings between 2010 and 2050. ECBC improves energy efficiency in commercial buildings and could reduce building electricity use in Gujarat by 20% in 2050, compared to the no policy scenario. Having energy codes for both commercial and residential buildings could result in additional 10% savings in electricity use. To achieve these intended savings, it is critical to build capacity and institution for robust code implementation.« less
76 FR 33768 - Proposed Information Collection Activity; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-09
... inability to pay energy bills; (3) increase the efficiency of energy usage by low-income families, helping... hours Total burden respondents respondent per response hours REACH Model Plan 51 1 72 3,672 Estimated Total Annual Burden Hours: 3,672. In compliance with the requirements of Section 3506(c)(2)(A) of the...
Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daw, J.; Hallett, K.; DeWolfe, J.
2012-01-01
Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energymore » use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.« less
NASA Technical Reports Server (NTRS)
Maag, W. L.; Bollenbacher, G.
1974-01-01
Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, I.; Van Geet, O.
This report summarizes the results from the data center energy efficiency and renewable energy site assessment conducted for the Oregon Army National Guard in Salem, Oregon. A team led by NREL conducted the assessment of the Anderson Readiness Center data centers March 18-20, 2014 as part of ongoing efforts to reduce energy use and incorporate renewable energy technologies where feasible. Although the data centers in this facility account for less than 5% of the total square footage, they are estimated to be responsible for 70% of the annual electricity consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vyas, A. D.; Patel, D. M.; Bertram, K. M.
2013-02-01
Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result ofmore » the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vyas, A. D.; Patel, D. M.; Bertram, K. M.
2013-03-01
Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result ofmore » the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less
Walking efficiency before and after total hip replacement.
Brown, M; Hislop, H J; Waters, R L; Porell, D
1980-10-01
The energy cost of walking and gait characteristics of patients with hip disease were studied to determine changes in walking efficiency following total hip replacement. Twenty-nine patients, 24 with unilateral hip disease and 5 with bilateral hip disease, were tested preoperatively and at various times postoperatively. Oxygen uptake was measured by a modified Douglas bag procedure. The temporal and distance characteristics of gait were measured with contact closing heel switches. Results showed postoperative increases in velocity, cadence, and stride length in patients with unilateral disease and with bilateral disease with bilateral replacement. After surgery, energy cost tended toward more normal levels, but the subjects were not within normal limits for oxygen uptake per minute, oxygen uptake per distance walked, or percent of predicted maximum aerobic capacity. Comparison of energy expenditure data with temporal and distance factors of gait indicated that all subjects became more physiologically efficient after hip replacement.
Optimized design of total energy systems: The RETE project
NASA Astrophysics Data System (ADS)
Alia, P.; Dallavalle, F.; Denard, C.; Sanson, F.; Veneziani, S.; Spagni, G.
1980-05-01
The RETE (Reggio Emilia Total Energy) project is discussed. The total energy system (TES) was developed to achieve the maximum quality matching on the thermal energy side between plant and user and perform an open scheme on the electrical energy side by connection with the Italian electrical network. The most significant qualitative considerations at the basis of the plant economic energy optimization and the selection of the operating criterion most fitting the user consumption characteristics and the external system constraints are reported. The design methodology described results in a TES that: in energy terms achieves a total efficiency evaluated on a yearly basis to be equal to about 78 percent and a fuel saving of about 28 percent and in economic terms allows a recovery of the investment required as to conventional solutions, in about seven years.
Energy monitoring based on human activity in the workplace
NASA Astrophysics Data System (ADS)
Mustafa, N. H.; Husain, M. N.; Abd Aziz, M. Z. A.; Othman, M. A.; Malek, F.
2014-04-01
Human behavior is the most important factor in order to manage energy usage. Nowadays, smart house technology offers a better quality of life by introducing automated appliance control and assistive services. However, human behaviors will contribute to the efficiency of the system. This paper will focus on monitoring efficiency based on duration time in office hours around 8am until 5pm which depend on human behavior atb the workplace. Then, the correlation coefficient method is used to show the relation between energy consumption and energy saving based on the total hours of time energy spent. In future, the percentages of energy monitoring system usage will be increase to manage energy in efficient ways based on human behaviours. This scenario will lead to the positive impact in order to achieve the energy saving in the building and support the green environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, J.
2015-03-01
Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the mostmore » promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.« less
Kneifel, Joshua; O'Rear, Eric; Webb, David; O'Fallon, Cheyney
2018-02-01
To conduct a more complete analysis of low-energy and net-zero energy buildings that considers both the operating and embodied energy/emissions, members of the building community look to life-cycle assessment (LCA) methods. This paper examines differences in the relative impacts of cost-optimal energy efficiency measure combinations depicting residential buildings up to and beyond net-zero energy consumption on operating and embodied flows using data from the Building Industry Reporting and Design for Sustainability (BIRDS) Low-Energy Residential Database. Results indicate that net-zero performance leads to a large increase in embodied flows (over 40%) that offsets some of the reductions in operational flows, but overall life-cycle flows are still reduced by over 60% relative to the state energy code. Overall, building designs beyond net-zero performance can partially offset embodied flows with negative operational flows by replacing traditional electricity generation with solar production, but would require an additional 8.34 kW (18.54 kW in total) of due south facing solar PV to reach net-zero total life-cycle flows. Such a system would meet over 239% of operational consumption of the most energy efficient design considered in this study and over 116% of a state code-compliant building design in its initial year of operation.
2017-01-01
The residential sector comprises equipment consuming various fuels and providing different end-use services. When replacing equipment, consumers may choose to purchase equipment that meets minimum federal equipment efficiency standards, or they may opt for higher-efficiency equipment, such as equipment that meets or exceeds ENERGY STAR® specifications. Consumers may also choose to purchase or retrofit different types of equipment, which may require additional costs (e.g., for ducts, exhaust vents, natural gas lines, or electrical connections) to install. The stock mix of equipment types, efficiency levels, and fuels consumed directly affects total residential sector energy consumption.
NASA Astrophysics Data System (ADS)
Matsuo, Tomoaki; Ohkawara, Kazunori; Seino, Satoshi; Shimojo, Nobutake; Yamada, Shin; Ohshima, Hiroshi; Tanaka, Kiyoji; Mukai, Chiaki
2013-02-01
Maximal oxygen consumption decreases during spaceflight, and astronauts also experience controversial weight loss. Future space missions require a more efficient exercise program to maintain work efficiency and to control increased energy expenditure (EE). We have been developing two types of original exercise training protocols which are better suited to astronauts’ daily routine exercise during long-term spaceflight: sprint interval training (SIT) and high-intensity interval aerobic training (HIAT). In this study, we compared the total EE, including excess post-exercise energy expenditure (EPEE), induced by our interval cycling protocols with the total EE of a traditional, continuous aerobic training (CAT). In the results, while the EPEEs after the SIT and HIAT were greater than after the CAT, the total EE for an entire exercise/rest session with the CAT was the greatest of our three exercise protocols. The SIT and HIAT would be potential protocols to control energy expenditure for long space missions.
7 CFR 4280.118 - Insurance requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Renewable Energy System and Energy Efficiency Improvement Grants § 4280.118 Insurance requirements... is required except for projects with total eligible project costs of $200,000 or less. ...
7 CFR 4280.118 - Insurance requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Renewable Energy System and Energy Efficiency Improvement Grants § 4280.118 Insurance requirements... is required except for projects with total eligible project costs of $200,000 or less. ...
7 CFR 4280.118 - Insurance requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Renewable Energy System and Energy Efficiency Improvement Grants § 4280.118 Insurance requirements... is required except for projects with total eligible project costs of $200,000 or less. ...
Solar-powered unmanned aerial vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinhardt, K.C.; Lamp, T.R.; Geis, J.W.
1996-12-31
An analysis was performed to determine the impact of various power system components and mission requirements on the size of solar-powered high altitude long endurance (HALE)-type aircraft. The HALE unmanned aerial vehicle (UAV) has good potential for use in many military and civil applications. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. The impact of relevant component performance on UAV size and capability were considered; including PV module efficiency and mass, power electronics efficiency, and fuel cell specific energy. Mission parameters such as time ofmore » year, flight altitude, flight latitude, and payload mass and power were also varied to determine impact on UAV size. The aircraft analysis method used determines the required aircraft wing aspect ratio, wing area, and total mass based on maximum endurance or minimum required power calculations. The results indicate that the capacity of the energy storage system employed, fuel cells in this analysis, greatly impacts aircraft size, whereas the impact of PV module efficiency and mass is much less important. It was concluded that an energy storage specific energy (total system) of 250--500 Whr/kg is required to enable most useful missions, and that PV cells with efficiencies greater than {approximately} 12% are suitable for use.« less
Multi-Year Program Plan FY'09-FY'15 Solid-State Lighting Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-03-01
President Obama's energy and environment agenda calls for deployment of 'the Cheapest, Cleanest, Fastest Energy Source - Energy Efficiency.' The Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) plays a critical role in advancing the President's agenda by helping the United States advance toward an energy-efficient future. Lighting in the United States is projected to consume nearly 10 quads of primary energy by 2012.3 A nation-wide move toward solid-state lighting (SSL) for general illumination could save a total of 32.5 quads of primary energy between 2012 and 2027. No other lighting technology offers the DOE andmore » our nation so much potential to save energy and enhance the quality of our built environment. The DOE has set forth the following mission statement for the SSL R&D Portfolio: Guided by a Government-industry partnership, the mission is to create a new, U.S.-led market for high-efficiency, general illumination products through the advancement of semiconductor technologies, to save energy, reduce costs and enhance the quality of the lighted environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozinovich, L.V.; Poyer, D.A.; Anderson, J.L.
1993-12-01
A sensitivity study was made of the potential market penetration of residential energy efficiency as energy service ratio (ESR) improvements occurred in minority households, by age of house. The study followed a Minority Energy Assessment Model analysis of the National Energy Strategy projections of household energy consumption and prices, with majority, black, and Hispanic subgroup divisions. Electricity and total energy consumption and expenditure patterns were evaluated when the households` ESR improvement followed a logistic negative growth (i.e., market penetration) path. Earlier occurrence of ESR improvements meant greater discounted savings over the 22-year period.
Impact of Meloidogyne incognita on Physiological Efficiency of Vitis vinifera.
Melakeberhan, H; Ferris, H
1989-01-01
Four-week-old French Colombard plants rooted from green cuttings were inoculated with 0, 1,000, 2,000, 4,000, or 8,000 Meloidogyne incognita second-stage juveniles and maintained at 25 C night and 30 C day. Leaf area and dry weight and the rates of photosynthesis, stomatal conductance, and internal leaf CO concentration were measured at intervals up to 59 days after inoculation. Nematode stress dosage, measured as the product of cumulative number of juveniles and females and their total energy (calories) demand, was up to 3.4 kcal and accounted for up to 15% of the energy assimilated by the plants. There was a decline in the rate of leaf area expansion and leaf, stem, shoot, root (excluding nematode weight), and total plant dry weight with increasing nematode stress. Root weight including nematodes was not affected. Total respiration, plant photosynthesis, energy assimilated into plant tissue and respiration, and gross production efficiency decreased significantly with nematode stress. Photosynthetic rate, transpiration rate, stomatal conductance, and internal CO concentration were not affected. This study demonstrates that the energy demand for growth and reproduction of M. incognita accounts for a significant portion of the total energy entering the plant system. As a result, less energy is partitioned into leaf area expansion which, in turn, affects the energy entering the system and results in decreased productivity of nematode-infected grape vines.
Pishgar-Komleh, Seyyed Hassan; Akram, Asadollah; Keyhani, Alireza; van Zelm, Rosalie
2017-07-01
In order to achieve sustainable development in agriculture, it is necessary to quantify and compare the energy, economic, and environmental aspects of products. This paper studied the energy, economic, and greenhouse gas (GHG) emission patterns in broiler chicken farms in the Alborz province of Iran. We studied the effect of the broiler farm size as different production systems on the energy, economic, and environmental indices. Energy use efficiency (EUE) and benefit-cost ratio (BCR) were 0.16 and 1.11, respectively. Diesel fuel and feed contributed the most in total energy inputs, while feed and chicks were the most important inputs in economic analysis. GHG emission calculations showed that production of 1000 birds produces 19.13 t CO 2-eq and feed had the highest share in total GHG emission. Total GHG emissions based on different functional units were 8.5 t CO 2-eq per t of carcass and 6.83 kg CO 2-eq per kg live weight. Results of farm size effect on EUE revealed that large farms had better energy management. For BCR, there was no significant difference between farms. Lower total GHG emissions were reported for large farms, caused by better management of inputs and fewer bird losses. Large farms with more investment had more efficient equipment, resulting in a decrease of the input consumption. In view of our study, it is recommended to support the small-scale broiler industry by providing subsidies to promote the use of high-efficiency equipment. To decrease the amount of energy usage and GHG emissions, replacing heaters (which use diesel fuel) with natural gas heaters can be considered. In addition to the above recommendations, the use of energy saving light bulbs may reduce broiler farm electricity consumption.
Super Turbocharging the Direct Injection Diesel engine
NASA Astrophysics Data System (ADS)
Boretti, Albert
2018-03-01
The steady operation of a turbocharged diesel direct injection (TDI) engine featuring a variable speed ratio mechanism linking the turbocharger shaft to the crankshaft is modelled in the present study. Key parameters of the variable speed ratio mechanism are range of speed ratios, efficiency and inertia, in addition to the ability to control relative speed and flow of power. The device receives energy from, or delivers energy to, the crankshaft or the turbocharger. In addition to the pistons of the internal combustion engine (ICE), also the turbocharger thus contributes to the total mechanical power output of the engine. The energy supply from the crankshaft is mostly needed during sharp accelerations to avoid turbo-lag, and to boost torque at low speeds. At low speeds, the maximum torque is drastically improved, radically expanding the load range. Additionally, moving closer to the points of operation of a balanced turbocharger, it is also possible to improve both the efficiency η, defined as the ratio of the piston crankshaft power to the fuel flow power, and the total efficiency η*, defined as the ratio of piston crankshaft power augmented of the power from the turbocharger shaft to the fuel flow power, even if of a minimal extent. The energy supply to the crankshaft is possible mostly at high speeds and high loads, where otherwise the turbine could have been waste gated, and during decelerations. The use of the energy at the turbine otherwise waste gated translates in improvements of the total fuel conversion efficiency η* more than the efficiency η. Much smaller improvements are obtained for the maximum torque, yet again moving closer to the points of operation of a balanced turbocharger. Adopting a much larger turbocharger (target displacement x speed 30% larger than a conventional turbocharger), better torque outputs and fuel conversion efficiencies η* and η are possible at every speed vs. the engine with a smaller, balanced turbocharger. This result motivates further studies of the mechanism that may considerably benefit traditional powertrains based on diesel engines.
Market leadership by example: Government sector energy efficiency in developing countries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Wie McGrory, Laura; Harris, Jeffrey; Breceda, Miguel
2002-05-20
Government facilities and services are often the largest energy users and major purchasers of energy-using equipment within a country. In developing as well as industrial countries, government ''leadership by example'' can be a powerful force to shift the market toward energy efficiency, complementing other elements of a national energy efficiency strategy. Benefits from more efficient energy management in government facilities and operations include lower government energy bills, reduced greenhouse gas emissions, less demand on electric utility systems, and in many cases reduced dependence on imported oil. Even more significantly, the government sector's buying power and example to others can generatemore » broader demand for energy-efficient products and services, creating entry markets for domestic suppliers and stimulating competition in providing high-efficiency products and services. Despite these benefits, with the exception of a few countries government sector actions have often lagged behind other energy efficiency policies. This is especially true in developing countries and transition economies - even though energy used by public agencies in these countries may represent at least as large a share of total energy use as the public sector in industrial economies. This paper summarizes work in progress to inventory current programs and policies for government sector energy efficiency in developing countries, and describes successful case studies from Mexico's implementation of energy management in the public sector. We show how these policies in Mexico, begun at the federal level, have more recently been extended to state and local agencies, and consider the applicability of this model to other developing countries.« less
Intermittent Moderate Energy Restriction Improves Weight Loss Efficiency in Diet-Induced Obese Mice
Seimon, Radhika V.; Shi, Yan-Chuan; Slack, Katy; Lee, Kailun; Fernando, Hamish A.; Nguyen, Amy D.; Zhang, Lei; Lin, Shu; Enriquez, Ronaldo F.; Lau, Jackie
2016-01-01
Background Intermittent severe energy restriction is popular for weight management. To investigate whether intermittent moderate energy restriction may improve this approach by enhancing weight loss efficiency, we conducted a study in mice, where energy intake can be controlled. Methods Male C57/Bl6 mice that had been rendered obese by an ad libitum diet high in fat and sugar for 22 weeks were then fed one of two energy-restricted normal chow diets for a 12-week weight loss phase. The continuous diet (CD) provided 82% of the energy intake of age-matched ad libitum chow-fed controls. The intermittent diet (ID) provided cycles of 82% of control intake for 5–6 consecutive days, and ad libitum intake for 1–3 days. Weight loss efficiency during this phase was calculated as (total weight change) ÷ [(total energy intake of mice on CD or ID)–(total average energy intake of controls)]. Subsets of mice then underwent a 3-week weight regain phase involving ad libitum re-feeding. Results Mice on the ID showed transient hyperphagia relative to controls during each 1–3-day ad libitum feeding period, and overall ate significantly more than CD mice (91.1±1.0 versus 82.2±0.5% of control intake respectively, n = 10, P<0.05). There were no significant differences between CD and ID groups at the end of the weight loss or weight regain phases with respect to body weight, fat mass, circulating glucose or insulin concentrations, or the insulin resistance index. Weight loss efficiency was significantly greater with ID than with CD (0.042±0.007 versus 0.018±0.001 g/kJ, n = 10, P<0.01). Mice on the CD exhibited significantly greater hypothalamic mRNA expression of proopiomelanocortin (POMC) relative to ID and control mice, with no differences in neuropeptide Y or agouti-related peptide mRNA expression between energy-restricted groups. Conclusion Intermittent moderate energy restriction may offer an advantage over continuous moderate energy restriction, because it induces significantly greater weight loss relative to energy deficit in mice. PMID:26784324
Intermittent Moderate Energy Restriction Improves Weight Loss Efficiency in Diet-Induced Obese Mice.
Seimon, Radhika V; Shi, Yan-Chuan; Slack, Katy; Lee, Kailun; Fernando, Hamish A; Nguyen, Amy D; Zhang, Lei; Lin, Shu; Enriquez, Ronaldo F; Lau, Jackie; Herzog, Herbert; Sainsbury, Amanda
2016-01-01
Intermittent severe energy restriction is popular for weight management. To investigate whether intermittent moderate energy restriction may improve this approach by enhancing weight loss efficiency, we conducted a study in mice, where energy intake can be controlled. Male C57/Bl6 mice that had been rendered obese by an ad libitum diet high in fat and sugar for 22 weeks were then fed one of two energy-restricted normal chow diets for a 12-week weight loss phase. The continuous diet (CD) provided 82% of the energy intake of age-matched ad libitum chow-fed controls. The intermittent diet (ID) provided cycles of 82% of control intake for 5-6 consecutive days, and ad libitum intake for 1-3 days. Weight loss efficiency during this phase was calculated as (total weight change) ÷ [(total energy intake of mice on CD or ID)-(total average energy intake of controls)]. Subsets of mice then underwent a 3-week weight regain phase involving ad libitum re-feeding. Mice on the ID showed transient hyperphagia relative to controls during each 1-3-day ad libitum feeding period, and overall ate significantly more than CD mice (91.1±1.0 versus 82.2±0.5% of control intake respectively, n = 10, P<0.05). There were no significant differences between CD and ID groups at the end of the weight loss or weight regain phases with respect to body weight, fat mass, circulating glucose or insulin concentrations, or the insulin resistance index. Weight loss efficiency was significantly greater with ID than with CD (0.042±0.007 versus 0.018±0.001 g/kJ, n = 10, P<0.01). Mice on the CD exhibited significantly greater hypothalamic mRNA expression of proopiomelanocortin (POMC) relative to ID and control mice, with no differences in neuropeptide Y or agouti-related peptide mRNA expression between energy-restricted groups. Intermittent moderate energy restriction may offer an advantage over continuous moderate energy restriction, because it induces significantly greater weight loss relative to energy deficit in mice.
The Energy Efficiency Potential of Cloud-Based Software: A U.S. Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masanet, Eric; Shehabi, Arman; Liang, Jiaqi
The energy use of data centers is a topic that has received much attention, given that data centers currently account for 1-2% of global electricity use. However, cloud computing holds great potential to reduce data center energy demand moving forward, due to both large reductions in total servers through consolidation and large increases in facility efficiencies compared to traditional local data centers. However, analyzing the net energy implications of shifts to the cloud can be very difficult, because data center services can affect many different components of society’s economic and energy systems.
Determinants of energy efficiency across countries
NASA Astrophysics Data System (ADS)
Yao, Guolin
With economic development, environmental concerns become more important. Economies cannot be developed without energy consumption, which is the major source of greenhouse gas emissions. Higher energy efficiency is one means of reducing emissions, but what determines energy efficiency? In this research we attempt to find answers to this question by using cross-sectional country data; that is, we examine a wide range of possible determinants of energy efficiency at the country level in an attempt to find the most important causal factors. All countries are divided into three income groups: high-income countries, middle-income countries, and low-income countries. Energy intensity is used as a measurement of energy efficiency. All independent variables belong to two categories: quantitative and qualitative. Quantitative variables are measures of the economic conditions, development indicators and energy usage situations. Qualitative variables mainly measure political, societal and economic strengths of a country. The three income groups have different economic and energy attributes. Each group has different sets of variables to explain energy efficiency. Energy prices and winter temperature are both important in high-income and middle-income countries. No qualitative variables appear in the model of high-income countries. Basic economic factors, such as institutions, political stability, urbanization level, population density, are important in low-income countries. Besides similar variables, such as macroeconomic stability and index of rule of law, the hydroelectricity share in total electric generation is also a driver of energy efficiency in middle-income countries. These variables have different policy implications for each group of countries.
NASA Astrophysics Data System (ADS)
Shi, Wenwu; Pinto, Brian
2017-12-01
Melting and holding molten metals within crucibles accounts for a large portion of total energy demand in the resource-intensive nonferrous foundry industry. Multivariate mathematical modeling aided by detailed material characterization and advancements in crucible technologies can make a significant impact in the areas of cost-efficiency and carbon footprint reduction. Key thermal properties such as conductivity and specific heat capacity were studied to understand their influence on crucible furnace energy consumption during melting and holding processes. The effects of conductivity on thermal stresses and longevity of crucibles were also evaluated. With this information, accurate theoretical models using finite element analysis were developed to study total energy consumption and melting time. By applying these findings to recent crucible developments, considerable improvements in field performance were reported and documented as case studies in applications such as aluminum melting and holding.
Towards greener environment: Energy efficient pathways for the transportation sector in Malaysia
NASA Astrophysics Data System (ADS)
Indati, M. S.; Ghate, A. T.; Leong, Y. P.
2013-06-01
Transportation sector is the second most energy consuming sector after industrial sector, accounting for 40% of total energy consumption in Malaysia. The transportation sector is one of the most energy intensive sectors in the country and relies primarily on petroleum products, which in total account for nearly 98% of the total consumption in the sector. Since it is heavily reliant on petroleum based fuels, the sector contributes significantly to the greenhouse gas (GHG) emissions. The need to reduce the greenhouse gas emission is paramount as Malaysia at Conference of the Parties (COP15) pledged to reduce its carbon intensity by 40% by 2020 from 2005 level subject to availability of technology and finance. Transport sector will be among the first sectors that need to be addressed to achieve this goal, as two-thirds of the emissions come from fuel combustion in transport sector. This paper will analyse the factors influencing the transport sector's growth and energy consumption trends and discuss the key issues and challenges for greener environment and sustainable transportation in Malaysia. The paper will also discuss the policy and strategic options aimed towards energy efficient pathways in Malaysia.
Method for Evaluating Energy Use of Dishwashers, Clothes Washers, and Clothes Dryers: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastment, M.; Hendron, R.
Building America teams are researching opportunities to improve energy efficiency for some of the more challenging end-uses, such as lighting (both fixed and occupant-provided), appliances (clothes washer, dishwasher, clothes dryer, refrigerator, and range), and miscellaneous electric loads, which are all heavily dependent on occupant behavior and product choices. These end-uses have grown to be a much more significant fraction of total household energy use (as much as 50% for very efficient homes) as energy efficient homes have become more commonplace through programs such as ENERGY STAR and Building America. As modern appliances become more sophisticated the residential energy analyst ismore » faced with a daunting task in trying to calculate the energy savings of high efficiency appliances. Unfortunately, most whole-building simulation tools do not allow the input of detailed appliance specifications. Using DOE test procedures the method outlined in this paper presents a reasonable way to generate inputs for whole-building energy-simulation tools. The information necessary to generate these inputs is available on Energy-Guide labels, the ENERGY-STAR website, California Energy Commission's Appliance website and manufacturer's literature. Building America has developed a standard method for analyzing the effect of high efficiency appliances on whole-building energy consumption when compared to the Building America's Research Benchmark building.« less
NASA Astrophysics Data System (ADS)
Prokhorov, Sergey
2017-10-01
Building industry in a present day going through the hard times. Machine and mechanism exploitation cost, on a field of construction and installation works, takes a substantial part in total building construction expenses. There is a necessity to elaborate high efficient method, which allows not only to increase production, but also to reduce direct costs during machine fleet exploitation, and to increase its energy efficiency. In order to achieve the goal we plan to use modern methods of work production, hi-tech and energy saving machine tools and technologies, and use of optimal mechanization sets. As the optimization criteria there are exploitation prime cost and set efficiency. During actual task-solving process we made a conclusion, which shows that mechanization works, energy audit with production juxtaposition, prime prices and costs for energy resources allow to make complex machine fleet supply, improve ecological level and increase construction and installation work quality.
The integration of daylighting with artificial lighting to enhance building energy performance
NASA Astrophysics Data System (ADS)
Al-Ashwal, Najib Taher; Hassan, Ahmad Sanusi
2017-10-01
In sustainable building designs, daylight is considered as an alternative source of light to artificial lighting. Daylight is an energy-free and efficient-cost lighting source. Natural light is the best source for light due to its good quality, which matches the visual response of the human eyes. Daylight positively affects people by providing a sense of liveliness and brightness in the living space. The positive impact of daylight on the building occupants' visual comfort, health and performance is well recognized. However, daylight is not widely utilized to supplement artificial lighting, because there is a lack of information and tools to evaluate daylighting and potentials for energy savings. The efficient utilization of natural lighting will not only affect the interior environment and the occupants' health and performance but also has a direct impact on the building energy performance. Therefore, this paper reviews and discusses the effects of daylighting on the building energy performance mainly in schools and office buildings. This includes lighting energy performance, total energy consumption, cooling load. The methods, which are used to estimate the possible reduction in total energy consumption, are also reviewed in this research paper. Previous studies revealed that a clear reduction can be obtained in the energy consumed by electric lighting, as well as in the total energy end-use when a suitable lighting control system is applied to utilize the available natural light.
Mäntysaari, P; Liinamo, A-E; Mäntysaari, E A
2012-06-01
Existing variation in energy efficiency and its relationship with milk yield and milk composition, body weight and body condition, feed intake, and energy status was studied in primiparous Nordic Red dairy cattle with data including 3,752 weekly records from 145 cows. Energy efficiency was defined as energy conversion efficiency (ECE) and as residual energy intake (REI) estimated based on Finnish feeding standards (REI₁) or from the current data (REI₂). The results indicated true phenotypic variation in energy efficiency of the cows. The proportion of total variance due to the animal was 0.35 for REI₁, 0.30 for REI₂, and 0.50 for ECE. The high efficiency based on ECE was associated with increased mobilization of body reserves (r = -0.50) and decreased dry matter intake (r = -0.51). With REI as an energy efficiency measure, the increased efficiency was associated with a large decrease in feed intake (REI₁: r = 0.60; REI2: r = 0.74) without any effect on body weight change (REI₁: r = 0.13; REI2: r = 0.00). Increased efficiency based on ECE and REI₁ was associated with increased milk yield (ECE: r = 0.58; REI₁: r = -0.41). A clear effect of stage of lactation on REI was found, which could be caused by true differences in utilization of metabolizable energy during lactation. However, it might also be related, in part, to the lack of knowledge of the composition of body weight change in the beginning of lactation. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Li, Wei-Xin; Tang, Chuan-Dong; Wu, Zhi-Lin; Wang, Wei-Min; Zhang, Yu-Feng; Zhao, Yi; Cravotto, Giancarlo
2015-04-01
This paper presents the purification of eutrophic water using a combination of hydrodynamic cavitation (HC) and ozonation (O3) at a continuous flow of 0.8 m(3) h(-1) on a pilot scale. The maximum removal rate of chlorophyll a using O3 alone and the HC/O3 combination was 62.3 and 78.8%, respectively, under optimal conditions, where the ozone utilization efficiency was 64.5 and 94.8% and total energy consumption was 8.89 and 8.25 kWh m(-3), respectively. Thus, the removal rate of chlorophyll a and the ozone utilization efficiency were improved by 26.5% and 46.9%, respectively, by using the combined technique. Meanwhile, total energy consumption was reduced by 7.2%. Turbidity linearly decreased with chlorophyll a removal rate, but no linear relationship exists between the removal of COD or UV254 and chlorophyll a. As expected, the suction-cavitation-assisted O3 exhibited higher energy efficiency than the extrusion-cavitation-assisted O3 and O3 alone methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Ray; Schubert, Eugene
Project funding energy audits of 44 Tribally owned buildings operated by the Oneida Tribe of Indians of WI. Buildings were selected for their size, age, or known energy concerns and total over 1 million square feet. Audits include feasibility studies, lists of energy improvement opportunities, and a strategic energy plan to address cost effective ways to save energy via energy efficiency upgrades over the short and long term.
Energy efficiency, renewable energy and sustainable development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ervin, C.A.
1994-12-31
The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importancemore » of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.« less
Energy Efficient Cluster Based Scheduling Scheme for Wireless Sensor Networks
Srie Vidhya Janani, E.; Ganesh Kumar, P.
2015-01-01
The energy utilization of sensor nodes in large scale wireless sensor network points out the crucial need for scalable and energy efficient clustering protocols. Since sensor nodes usually operate on batteries, the maximum utility of network is greatly dependent on ideal usage of energy leftover in these sensor nodes. In this paper, we propose an Energy Efficient Cluster Based Scheduling Scheme for wireless sensor networks that balances the sensor network lifetime and energy efficiency. In the first phase of our proposed scheme, cluster topology is discovered and cluster head is chosen based on remaining energy level. The cluster head monitors the network energy threshold value to identify the energy drain rate of all its cluster members. In the second phase, scheduling algorithm is presented to allocate time slots to cluster member data packets. Here congestion occurrence is totally avoided. In the third phase, energy consumption model is proposed to maintain maximum residual energy level across the network. Moreover, we also propose a new packet format which is given to all cluster member nodes. The simulation results prove that the proposed scheme greatly contributes to maximum network lifetime, high energy, reduced overhead, and maximum delivery ratio. PMID:26495417
NASA Astrophysics Data System (ADS)
Li, Hongzhi; Min, Donghong; Liu, Yusong; Yang, Wei
2007-09-01
To overcome the possible pseudoergodicity problem, molecular dynamic simulation can be accelerated via the realization of an energy space random walk. To achieve this, a biased free energy function (BFEF) needs to be priori obtained. Although the quality of BFEF is essential for sampling efficiency, its generation is usually tedious and nontrivial. In this work, we present an energy space metadynamics algorithm to efficiently and robustly obtain BFEFs. Moreover, in order to deal with the associated diffusion sampling problem caused by the random walk in the total energy space, the idea in the original umbrella sampling method is generalized to be the random walk in the essential energy space, which only includes the energy terms determining the conformation of a region of interest. This essential energy space generalization allows the realization of efficient localized enhanced sampling and also offers the possibility of further sampling efficiency improvement when high frequency energy terms irrelevant to the target events are free of activation. The energy space metadynamics method and its generalization in the essential energy space for the molecular dynamics acceleration are demonstrated in the simulation of a pentanelike system, the blocked alanine dipeptide model, and the leucine model.
Measurements of electron detection efficiencies in solid state detectors.
NASA Technical Reports Server (NTRS)
Lupton, J. E.; Stone, E. C.
1972-01-01
Detailed laboratory measurement of the electron response of solid state detectors as a function of incident electron energy, detector depletion depth, and energy-loss discriminator threshold. These response functions were determined by exposing totally depleted silicon surface barrier detectors with depletion depths between 50 and 1000 microns to the beam from a magnetic beta-ray spectrometer. The data were extended to 5000 microns depletion depth using the results of previously published Monte Carlo electron calculations. When the electron counting efficiency of a given detector is plotted as a function of energy-loss threshold for various incident energies, the efficiency curves are bounded by a smooth envelope which represents the upper limit to the detection efficiency. These upper limit curves, which scale in a simple way, make it possible to easily estimate the electron sensitivity of solid-state detector systems.
Johnson, Jeremiah; Chertow, Marian
2009-04-01
Pacala and Socolow developed a framework to stabilize global greenhouse gas levels for the next fifty years using wedges of constant size representing an increasing use of existing technologies and approaches for energy efficiency, carbon free generation, renewables, and carbon storage. The research presented here applies their approach to Hawaii Island, with modifications to support local scale analysis and employing a "bottom-up" methodology that allows for wedges of various sizes. A discretely bounded spatial unit offers a testing ground for a holistic approach to improving the energy sector with the identification of local options and limitations to the implementation of a comprehensive energy strategy. Nearly 80% of total primary energy demand across all sectors for Hawaii Island is currently met using petroleum-based fuels.The Sustainable Energy Plan scenario included here presents an internally consistent set of recommendations bounded by local constraints in areas such as transportation efficiency, centralized renewable generation (e.g., geothermal, wind), reduction in transmission losses, and improved building efficiency. This scenario shows thatthe demand for primary energy in 2030 could be reduced by 23% through efficiency measures while 46% could be met by renewable generation, resulting in only 31% of the projected demand being met by fossil fuels. In 2030, the annual releases of greenhouse gases would be 3.2 Mt CO2-eq/year under the Baseline scenario, while the Sustainable Energy Plan would reduce this to 1.2 Mt CO2-eq/year--an annual emissions rate 40% below 2006 levels and 10% below 1990 levels. The total for greenhouse gas emissions during the 24-year study period (2007 to 2030) is 59.9 Mt CO2-eq under the Baseline scenario and 32.5 Mt CO2-eq under the Sustainable Energy Plan scenario. Numerous combinations of efficiency and renewable energy options can be employed in a manner that stabilizes the greenhouse gas emissions of Hawaii Island.
Potential efficiencies of open- and closed-cycle CO, supersonic, electric-discharge lasers
NASA Technical Reports Server (NTRS)
Monson, D. J.
1976-01-01
Computed open- and closed-cycle system efficiencies (laser power output divided by electrical power input) are presented for a CW carbon monoxide, supersonic, electric-discharge laser. Closed-system results include the compressor power required to overcome stagnation pressure losses due to supersonic heat addition and a supersonic diffuser. The paper shows the effect on the system efficiencies of varying several important parameters. These parameters include: gas mixture, gas temperature, gas total temperature, gas density, total discharge energy loading, discharge efficiency, saturated gain coefficient, optical cavity size and location with respect to the discharge, and supersonic diffuser efficiency. Maximum open-cycle efficiency of 80-90% is predicted; the best closed-cycle result is 60-70%.
NASA Astrophysics Data System (ADS)
Szwedzka, K.; Gruszka, J.; Szafer, P.
2016-08-01
Improving energy efficiency is one of the strategic objectives of the European Union for rational energy economy. To make efforts to improve energy efficiency have been obliged both small and large end-users. This article aims to show the possibilities of improving energy efficiency by introducing technical and technological process changes of pine lumber drying. The object of the research is process of drying lumber implemented in a production company, which is a key supplier of large furniture manufacturer. Pine lumber drying chamber consume about 45% of total electricity in sawmill. According to various sources, drying of 1m3 of lumber uses about 3060kWh and is dependent of inter alia: the drying process itself, the factors affecting the processing time and the desired output moisture content of the timber. The article proposals for changes in the process of drying lumber pine have been positively validated in the company, and as a result their energy consumption per 1 m3 of product declined by 18%.
Hinrichsen, D
1995-01-01
This article concerns the Organization of the Petroleum Exporting Countries (OPEC) crisis and its impact on energy efficiency measures in the US. In 1985, when the OPEC collapsed, the US government had avoided the need to construct 350 gigawatts of new electric capacity. The most successful efficiency improvements, especially in household appliances and equipment, lighting and tightened energy efficiency standards in new buildings, resulted from the OPEC event. The real innovation of that time was the change in profit rules for utilities. This revolution and the way some US utilities view energy have not caught on elsewhere. Despite the initiative toward improving energy efficiency in homes, offices and industries, the change has been slow. Partly to blame are the big development banks, which pointed out that short-term conservation and efficiency measures could save at least 15% of the total energy demand without the need for major investment. The benefits of energy conservation was shown during the oil shock when per capita energy consumption fell by 5% in the member states of the Organization of Economic Cooperation and Development, while the per capita gross domestic product grew by a third. There has been a decrease in energy expenditure worldwide, and the scope for further energy savings is enormous, but governments need to recognize and seize the opportunity.
NASA Astrophysics Data System (ADS)
Badawi, Mohamed S.; Jovanovic, Slobodan I.; Thabet, Abouzeid A.; El-Khatib, Ahmed M.; Dlabac, Aleksandar D.; Salem, Bohaysa A.; Gouda, Mona M.; Mihaljevic, Nikola N.; Almugren, Kholud S.; Abbas, Mahmoud I.
2017-03-01
The 4π NaI(Tl) γ-ray detectors are consisted of the well cavity with cylindrical cross section, and the enclosing geometry of measurements with large detection angle. This leads to exceptionally high efficiency level and a significant coincidence summing effect, much more than a single cylindrical or coaxial detector especially in very low activity measurements. In the present work, the detection effective solid angle in addition to both full-energy peak and total efficiencies of well-type detectors, were mainly calculated by the new numerical simulation method (NSM) and ANGLE4 software. To obtain the coincidence summing correction factors through the previously mentioned methods, the simulation of the coincident emission of photons was modeled mathematically, based on the analytical equations and complex integrations over the radioactive volumetric sources including the self-attenuation factor. The measured full-energy peak efficiencies and correction factors were done by using 152Eu, where an exact adjustment is required for the detector efficiency curve, because neglecting the coincidence summing effect can make the results inconsistent with the whole. These phenomena, in general due to the efficiency calibration process and the coincidence summing corrections, appear jointly. The full-energy peak and the total efficiencies from the two methods typically agree with discrepancy 10%. The discrepancy between the simulation, ANGLE4 and measured full-energy peak after corrections for the coincidence summing effect was on the average, while not exceeding 14%. Therefore, this technique can be easily applied in establishing the efficiency calibration curves of well-type detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, Joseph M.; Boyd, Paul A.; Dahowski, Robert T.
The purpose of this assessment was to undertake an assessment and analysis of cost-effective options for energy-efficiency improvements and the deployment of a micro-grid to increase the energy resilience at the U.S. Virgin Islands Industrial Development Park (IDP) and adjacent facilities in St. Croix, Virgin Islands. The Economic Development Authority sought assistance from the U.S. Department of Energy to undertake this assessment undertaken by Pacific Northwest National Laboratory. The assessment included 18 buildings plus the perimeter security lighting at the Virgin Islands Bureau of Correctional Facility, four buildings plus exterior lighting at the IDP, and five buildings (one of whichmore » is to be constructed) at the Virgin Islands Police Department for a total of 27 buildings with a total of nearly 323,000 square feet.« less
Evaluating the quality of feed fats and oils and their effects on pig growth performance
USDA-ARS?s Scientific Manuscript database
Optimizing energy utilization efficiency of swine diets is essential because energy represents the greatest proportion of total diet cost. Various feed fats and oils, as well as other feed ingredients containing moderate amounts of lipid, provide significant amounts of energy to swine diets. However...
Design of a portable artificial heart drive system based on efficiency analysis.
Kitamura, T
1986-11-01
This paper discusses a computer simulation of a pneumatic portable piston-type artificial heart drive system with a linear d-c-motor. The purpose of the design is to obtain an artificial heart drive system with high efficiency and small dimensions to enhance portability. The design employs two factors contributing the total efficiency of the drive system. First, the dimensions of the pneumatic actuator were optimized under a cost function of the total efficiency. Second, the motor performance was studied in terms of efficiency. More than 50 percent of the input energy of the actuator with practical loads is consumed in the armature circuit in all linear d-c-motors with brushes. An optimal design is: the piston cross-sectional area of 10.5 cm2 cylinder longitudinal length of 10 cm. The total efficiency could be up to 25 percent by improving the gasket to reduce the frictional force.
Power allocation strategies to minimize energy consumption in wireless body area networks.
Kailas, Aravind
2011-01-01
The wide scale deployment of wireless body area networks (WBANs) hinges on designing energy efficient communication protocols to support the reliable communication as well as to prolong the network lifetime. Cooperative communications, a relatively new idea in wireless communications, offers the benefits of multi-antenna systems, thereby improving the link reliability and boosting energy efficiency. In this short paper, the advantages of resorting to cooperative communications for WBANs in terms of minimized energy consumption are investigated. Adopting an energy model that encompasses energy consumptions in the transmitter and receiver circuits, and transmitting energy per bit, it is seen that cooperative transmission can improve energy efficiency of the wireless network. In particular, the problem of optimal power allocation is studied with the constraint of targeted outage probability. Two strategies of power allocation are considered: power allocation with and without posture state information. Using analysis and simulation-based results, two key points are demonstrated: (i) allocating power to the on-body sensors making use of the posture information can reduce the total energy consumption of the WBAN; and (ii) when the channel condition is good, it is better to recruit less relays for cooperation to enhance energy efficiency.
Park, Beomguk; Cho, Eunju; Son, Younggyu; Khim, Jeehyeong
2014-11-01
Sonophotolytic degradation of THMs mixture with different electrical energy ratio was carried out for efficient design of process. The total consumed electrical energy was fixed around 50W, and five different energy conditions were applied. The maximum degradation rate showed in conditions of US:UV=1:3 and US:UV=0:4. This is because the photolytic degradation of bromate compounds is dominant degradation mechanism for THMs removal. However, the fastest degradation of total organic carbon was observed in a condition of US:UV=1:3. Because hydrogen peroxide generated by sonication was effectively dissociated to hydroxyl radicals by ultraviolet, the concentration of hydroxyl radical was maintained high. This mechanism provided additional degradation of organics. This result was supported by comparison between the concentration of hydrogen peroxide sole and combined process. Consequently, the optimal energy ratio was US:UV=1:3 for degradation of THMs in sonophotolytic process. Copyright © 2014 Elsevier Ltd. All rights reserved.
An energy-efficient data gathering protocol in large wireless sensor network
NASA Astrophysics Data System (ADS)
Wang, Yamin; Zhang, Ruihua; Tao, Shizhong
2006-11-01
Wireless sensor network consisting of a large number of small sensors with low-power transceiver can be an effective tool for gathering data in a variety of environment. The collected data must be transmitted to the base station for further processing. Since a network consists of sensors with limited battery energy, the method for data gathering and routing must be energy efficient in order to prolong the lifetime of the network. In this paper, we presented an energy-efficient data gathering protocol in wireless sensor network. The new protocol used data fusion technology clusters nodes into groups and builds a chain among the cluster heads according to a hybrid of the residual energy and distance to the base station. Results in stochastic geometry are used to derive the optimum parameter of our algorithm that minimizes the total energy spent in the network. Simulation results show performance superiority of the new protocol.
Pérez de Nanclares, M; Marcussen, C; Tauson, A-H; Hansen, J Ø; Kjos, N P; Mydland, L T; Bach Knudsen, K E; Øverland, M
2018-05-28
The heavy reliance on imported soybean meal (SBM) as a protein source makes it necessary for the European pig industry to search for alternatives and to develop pigs that perform efficiently when fed such ingredients. Digestion and metabolism are major physiological processes contributing to variation in feed efficiency. Therefore, an experiment was conducted to assess the effects of replacing SBM with increasing levels of rapeseed meal (RSM) in diets for young pigs on apparent total tract digestibility (ATTD) of energy and nutrients, nitrogen (N) balance, energy metabolism and carbohydrate, protein and fat oxidation. Four diets were fed to 32 pigs (22.7±4.1 kg initial BW) for three weeks. The diets consisted of a control cereal grain-SBM basal diet and three test diets where SBM and wheat were partially replaced with 10%, 20%, and 30% of expeller RSM. Increasing level of RSM in the diets linearly reduced ATTD of organic matter, CP, total carbohydrates, dietary fiber and energy. Utilization of digested nitrogen (DN) for N retention and total N excretion were not affected by RSM inclusion, however, RSM inclusion induced a shift in N excretion from urine to feces. Despite a linear increase in liver to metabolic BW ratio, heat production and utilization of metabolizable energy (ME) for retention were not affected by increasing RSM inclusion. In conclusion, replacing SBM with up to 30% of expeller RSM in nutritionally balanced diets for young pigs reduced the ATTD of most nutrients and energy, but did not affect N and energy retention in the body or efficiency of utilization of DN or ME for retention.
Comparing Run-Out Efficiency of Fluidized Ejecta on Mars with Terrestrial and Martian Mass Movements
NASA Technical Reports Server (NTRS)
Barnouin-Jha, O. S.; Baloga, S.
2003-01-01
We broadly characterize the rheology of fluidized ejecta on Mars as it flows during its final stages of emplacement by using the concept of run-out efficiency. Run-out efficiency for ejecta can be obtained through an energy balance between the kinetic energy of the excavated ejecta, and the total work lost during its deposition. Such an efficiency is directly comparable to run-out efficiency (i.e., L/H analyzes where L is the run-out distance and H is onset height) of terrestrial and extraterrestrial mass movements. Determination of the L/H ratio is commonly used in terrestrial geology to broadly determine the type and rheology of mass movements
Wallhead, Ian; Jiménez, Teresa Molina; Ortiz, Jose Vicente García; Toledo, Ignacio Gonzalez; Toledo, Cristóbal Gonzalez
2012-11-05
A novel of Fresnel-type lens for use as a solar collector has been designed which utilizes double total internal reflection (D-TIR) to optimize collection efficiency for high numerical aperture lenses (in the region of 0.3 to 0.6 NA). Results show that, depending on the numerical aperture and the size of the receiver, a collection efficiency theoretical improvement on the order of 20% can be expected with this new design compared with that of a conventional Fresnel lens.
Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient.
Gutfleisch, Oliver; Willard, Matthew A; Brück, Ekkes; Chen, Christina H; Sankar, S G; Liu, J Ping
2011-02-15
A new energy paradigm, consisting of greater reliance on renewable energy sources and increased concern for energy efficiency in the total energy lifecycle, has accelerated research into energy-related technologies. Due to their ubiquity, magnetic materials play an important role in improving the efficiency and performance of devices in electric power generation, conditioning, conversion, transportation, and other energy-use sectors of the economy. This review focuses on the state-of-the-art hard and soft magnets and magnetocaloric materials, with an emphasis on their optimization for energy applications. Specifically, the impact of hard magnets on electric motor and transportation technologies, of soft magnetic materials on electricity generation and conversion technologies, and of magnetocaloric materials for refrigeration technologies, are discussed. The synthesis, characterization, and property evaluation of the materials, with an emphasis on structure-property relationships, are discussed in the context of their respective markets, as well as their potential impact on energy efficiency. Finally, considering future bottlenecks in raw materials, options for the recycling of rare-earth intermetallics for hard magnets will be discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Changes in the Cost of Energy in One State's School Districts. Issues & Answers. REL 2010-No. 088
ERIC Educational Resources Information Center
Cymrot, Donald J.; Martinez, Miguel; Jones, Joseph F.
2010-01-01
To support the work of Tennessee's Energy Efficient Schools Initiative (EESI) Council, this report describes data on energy expenditures in school districts for 2002/03-2007/08. Energy expenditures rose from about 2.6 percent to about 3.0 percent of total expenditures over the period, with some differences in the mix of energy types and…
How Virtual Technology Can Impact Total Ownership Costs on a USN Vessel
2012-03-01
Clients (After Lam, 2010) Alternative Solutions Labor $M Hardware $M Software $M Transport $M Power & Cooling $M Virtualization $M...and will hold contractors accountable to ensure energy efficiency targets of new equipment are as advertised . 2. Total Cost of Ownership...automatically placed into Standby by the VMware software and reduced energy consumption by 230 watts. Even though there were 12 virtual desktops online and in
Energy conversion approaches and materials for high-efficiency photovoltaics.
Green, Martin A; Bremner, Stephen P
2016-12-20
The past five years have seen significant cost reductions in photovoltaics and a correspondingly strong increase in uptake, with photovoltaics now positioned to provide one of the lowest-cost options for future electricity generation. What is becoming clear as the industry develops is that area-related costs, such as costs of encapsulation and field-installation, are increasingly important components of the total costs of photovoltaic electricity generation, with this trend expected to continue. Improved energy-conversion efficiency directly reduces such costs, with increased manufacturing volume likely to drive down the additional costs associated with implementing higher efficiencies. This suggests the industry will evolve beyond the standard single-junction solar cells that currently dominate commercial production, where energy-conversion efficiencies are fundamentally constrained by Shockley-Queisser limits to practical values below 30%. This Review assesses the overall prospects for a range of approaches that can potentially exceed these limits, based on ultimate efficiency prospects, material requirements and developmental outlook.
Amthor, Jeffrey S
2010-12-01
The relationship between solar radiation capture and potential plant growth is of theoretical and practical importance. The key processes constraining the transduction of solar radiation into phyto-energy (i.e. free energy in phytomass) were reviewed to estimate potential solar-energy-use efficiency. Specifically, the out-put:input stoichiometries of photosynthesis and photorespiration in C(3) and C(4) systems, mobilization and translocation of photosynthate, and biosynthesis of major plant biochemical constituents were evaluated. The maintenance requirement, an area of important uncertainty, was also considered. For a hypothetical C(3) grain crop with a full canopy at 30°C and 350 ppm atmospheric [CO(2) ], theoretically potential efficiencies (based on extant plant metabolic reactions and pathways) were estimated at c. 0.041 J J(-1) incident total solar radiation, and c. 0.092 J J(-1) absorbed photosynthetically active radiation (PAR). At 20°C, the calculated potential efficiencies increased to 0.053 and 0.118 J J(-1) (incident total radiation and absorbed PAR, respectively). Estimates for a hypothetical C(4) cereal were c. 0.051 and c. 0.114 J J(-1), respectively. These values, which cannot be considered as precise, are less than some previous estimates, and the reasons for the differences are considered. Field-based data indicate that exceptional crops may attain a significant fraction of potential efficiency. © The Author (2010). Journal compilation © New Phytologist Trust (2010).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirayama, S; Fujibuchi, T
Purpose: Secondary-neutrons having harmful influences to a human body are generated by photonuclear reaction on high-energy photon therapy. Their characteristics are not known in detail since the calculation to evaluate them takes very long time. PHITS(Particle and Heavy Ion Transport code System) Monte Carlo code since versions 2.80 has the new parameter “pnimul” raising the probability of occurring photonuclear reaction forcibly to make the efficiency of calculation. We investigated the optimum value of “pnimul” on high-energy photon therapy. Methods: The geometry of accelerator head based on the specification of a Varian Clinac 21EX was used for PHITS ver. 2.80. Themore » phantom (30 cm * 30 cm * 30 cm) filled the composition defined by ICRU(International Commission on Radiation Units) was placed at source-surface distance 100 cm. We calculated the neutron energy spectra in the surface of ICRU phantom with “pnimal” setting 1, 10, 100, 1000, 10000 and compared the total calculation time and the behavior of photon using PDD(Percentage Depth Dose) and OCR(Off-Center Ratio). Next, the cutoff energy of photon, electron and positron were investigated for the calculation efficiency with 4, 5, 6 and 7 MeV. Results: The calculation total time until the errors of neutron fluence become within 1% decreased as increasing “pnimul”. PDD and OCR showed no differences by the parameter. The calculation time setting the cutoff energy like 4, 5, 6 and 7 MeV decreased as increasing the cutoff energy. However, the errors of photon become within 1% did not decrease by the cutoff energy. Conclusion: The optimum values of “pnimul” and the cutoff energy were investigated on high-energy photon therapy. It is suggest that using the optimum “pnimul” makes the calculation efficiency. The study of the cutoff energy need more investigation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadzow, Janet; Messier, Dave
Gwichyaa Zhee Gwich’in Tribal Government (GZGTG) applied for funding in 2014 under the U.S. Department of Energy Office of Indian Energy Deployment of Clean Energy on Tribal Lands funding opportunity. They were awarded 50% of the project costs for the construction of an 18kW, grid-tied solar PV array on the fort Yukon Tribal Hall, the construction of a 3kW solar PV array on the tribally owned greenhouse, the replacement of inefficient florescent lighting fixtures in the tribal hall to higher efficiency LED lights and the addition of blow in cellulose insulation to the attic of the tribal hall to assistmore » with heat retention. Total DOE Funding for the project was $124,735. Total GZGTG funding for the project was $133,321 for a total project cost of $258,056. The Project was completed with 100% local labor on the tribal hall solar PV installation, the LED lighting retrofit and the insulation on the tribal hall. Based on the results at the tribal hall/office, the tribe also used their own tribal funding to retrofit the lighting in the community hall from florescent to LED lights. The resulting project was completed by the end of Sept 2016 and results have shown a decrease in fuel used at the tribal hall/office of 35% and a decrease in electric costs at the tribal hall of 68%. The total energy costs before the project were approximately $28,000 a year and the energy equivalent of 385 MMBTU/yr. After the project the total energy costs decreased to $11,200/yr. and an energy equivalent of only 242 MMBTU. This represents an overall decrease in energy use of 38%. All in all the tribe and the community regard this project as a huge success!« less
Complex analysis of energy efficiency in operated high-rise residential building: Case study
NASA Astrophysics Data System (ADS)
Korniyenko, Sergey
2018-03-01
Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects). Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.
NASA Astrophysics Data System (ADS)
1982-03-01
Performance data are given for the month of February, 1982 for a photovoltaic power supply at a Massachusetts high school. Data given include: monthly and daily electrical energy yield; monthly and daily insolation; monthly and daily array efficiency; energy production as a function of power level, voltage, cell temperature, and hour of day; insolation as a function of hour of the day; input, output and efficiency for each of two power conditioning units and for the total power conditioning system; energy supplied to the load by the photovoltaic system and by the grid; photovoltaic system efficiency; dollar value of the energy supplied by the photovoltaic system; capacity factor; daily photovoltaic energy to load; daily system availability and hours of daylight; heating and cooling degree days; hourly cell temperature, ambient temperature, wind speed, and insolation; average monthly wind speed; wind direction distribution; and daily data acquisition mode and recording interval plot.
NASA Astrophysics Data System (ADS)
1982-02-01
Performance data for the month of January, 1982 for a grid connected photovoltaic power supply in Massachusetts are presented. Data include: monthly and daily electrical energy produced; monthly and daily solar energy incident on the array; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature and time of day; power conditioner input, output and efficiency for each of two individual units and for the total power conditioning system; photovoltaic system efficiency; capacity factor; PV system to load and grid to load energies and corresponding dollar values; daily energy supplies to the load by the PV system; daily PV system availability; monthly and hourly insolation; monthly and hourly temperature average; monthly and hourly wind speed; wind direction distribution; average heating and cooling degree days; number of freeze/thaw cycles; and the data acquisition mode and recording interval plot.
Sauer, I M; Frank, J; Spiegelberg, A; Bücherl, E S
2000-01-01
A new electromechanical energy converting system has been developed to yield an efficient and durable orthotopic total artificial heart (TAH). The energy converter we developed transforms the unidirectional rotational motion of the motor into a longitudinal forward-reverse movement of an internal geared oval, linked directly to pusher plates on both sides. To ensure a permanent positive connection between the drive gear and the internally geared wheel, a ball bearing runs inside an oval shaped guide track. Motor, gear unit, and conical pusher plates are seated between alternately ejecting and filling ventricles. The unidirectional motion of the brushless DC motor affords easier motor control, reduces energy demand, and ensures longer life of the motor when compared with a bidirectional motion system. In vitro testing has been performed on a mock circulation loop. The overall system efficiency of the TAH Ovalis was 27-39% (mean, 36%) for the pump output range of 2-7 L/min. The maximum output of 7 L/min can be obtained with a pump rate of 130 min(-1) and an afterload pressure of 140 mm Hg. For an average sized human with a mean cardiac output of 6 L/min at a mean aortic pressure of 120 mm Hg, 5 watts of input power would be required. The size of the prototype is 560 cm3, the weight is 950 g. Our first in vitro studies demonstrated the excellent efficiency and pump performance of this new electromechanical energy converter. The results prove the feasibility of this new concept's use as an energy converter for a total artificial heart.
Energy efficiency evaluation of hospital building office
NASA Astrophysics Data System (ADS)
Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.
2017-01-01
One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.
Conversion of laser energy to gas kinetic energy
NASA Technical Reports Server (NTRS)
Caledonia, G. E.
1976-01-01
Techniques for the gas phase absorption of laser radiation for ultimate conversion to gas kinetic energy are discussed. Particular emphasis is placed on absorption by the vibration rotation bands of diatomic molecules at high pressures. This high pressure absorption appears to offer efficient conversion of laser energy to gas translational energy. Bleaching and chemical effects are minimized and the variation of the total absorption coefficient with temperature is minimal.
TEA HF laser with a high specific radiation energy
NASA Astrophysics Data System (ADS)
Puchikin, A. V.; Andreev, M. V.; Losev, V. F.; Panchenko, Yu. N.
2017-01-01
Results of experimental studies of the chemical HF laser with a non-chain reaction are presented. The possibility of the total laser efficiency of 5 % is shown when a traditional C-to-C pumping circuit with the charging voltage of 20-24 kV is used. It is experimentally shown that the specific radiation output energy of 21 J/l is reached at the specific pump energy of 350 J/l in SF6/H2 = 14/1 mixture at the total pressure of 0.27 bar.
Building Energy Codes: Policy Overview and Good Practices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Sadie
2016-02-19
Globally, 32% of total final energy consumption is attributed to the building sector. To reduce energy consumption, energy codes set minimum energy efficiency standards for the building sector. With effective implementation, building energy codes can support energy cost savings and complementary benefits associated with electricity reliability, air quality improvement, greenhouse gas emission reduction, increased comfort, and economic and social development. This policy brief seeks to support building code policymakers and implementers in designing effective building code programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Charles
University Park, Maryland (“UP”) is a small town of 2,540 residents, 919 homes, 2 churches, 1 school, 1 town hall, and 1 breakthrough community energy efficiency initiative: the Small Town Energy Program (“STEP”). STEP was developed with a mission to “create a model community energy transformation program that serves as a roadmap for other small towns across the U.S.” STEP first launched in January 2011 in UP and expanded in July 2012 to the neighboring communities of Hyattsville, Riverdale Park, and College Heights Estates, MD. STEP, which concluded in July 2013, was generously supported by a grant from the U.S.more » Department of Energy (DOE). The STEP model was designed for replication in other resource-constrained small towns similar to University Park - a sector largely neglected to date in federal and state energy efficiency programs. STEP provided a full suite of activities for replication, including: energy audits and retrofits for residential buildings, financial incentives, a community-based social marketing backbone and local community delivery partners. STEP also included the highly innovative use of an “Energy Coach” who worked one-on-one with clients throughout the program. Please see www.smalltownenergy.org for more information. In less than three years, STEP achieved the following results in University Park: • 30% of community households participated voluntarily in STEP; • 25% of homes received a Home Performance with ENERGY STAR assessment; • 16% of households made energy efficiency improvements to their home; • 64% of households proceeded with an upgrade after their assessment; • 9 Full Time Equivalent jobs were created or retained, and 39 contractors worked on STEP over the course of the project. Estimated Energy Savings - Program Totals kWh Electricity 204,407 Therms Natural Gas 24,800 Gallons of Oil 2,581 Total Estimated MMBTU Saved (Source Energy) 5,474 Total Estimated Annual Energy Cost Savings $61,343 STEP clients who had a home energy upgrade invested on average $4,500, resulting in a 13% reduction in annual energy use and utility bill savings of $325. Rebates and incentives covered 40%-50% of retrofit cost, resulting in an average simple payback of about 7 years. STEP has created a handbook in which are assembled all the key elements that went into the design and delivery of STEP. The target audiences for the handbook include interested citizens, elected officials and municipal staff who want to establish and run their own efficiency program within a small community or neighborhood, using elements, materials and lessons from STEP.« less
Energy balance in olive oil farms: comparison of organic and conventional farming systems.
NASA Astrophysics Data System (ADS)
Moreno, Marta M.; Meco, Ramón; Moreno, Carmen
2013-04-01
The viability of an agricultural production system not only depends on the crop yields, but especially on the efficient use of available resources. However, the current agricultural systems depend heavily on non-renewable energy consumption in the form of fertilizers, fossil fuels, pesticides and machinery. In developed countries, the economic profitability of different productive systems is dependent on the granting of subsidies of diverse origin that affect both production factors (or inputs) and the final product (or output). Leaving such external aids, energy balance analysis reveals the real and most efficient form of management for each agroclimatic region, and is also directly related to the economic activity and the environmental state. In this work we compare the energy balance resulting from organic and conventional olive oil farms under the semi-arid conditions of Central Spain. The results indicate that the mean energy supplied to the organic farms was sensitively lower (about 30%) in comparison with the conventional management, and these differences were more pronounced for the biggest farms (> 15 ha). Mean energy outputs were about 20% lower in the organic system, although organic small farms (< 15 ha) resulted more productive than the conventional small ones. However, these lower outputs were compensated by the major market value obtained from the organic products. Chemical fertilizers and pesticides reached about 60% of the total energy inputs in conventional farming; in the organic farms, however, this ratio scarcely reached 25%. Human labor item only represented a very small amount of the total energy input in both cases (less than 1%). As conclusions, both management systems were efficient from an energy point of view. The value of the organic production should be focused on the environmental benefits it provides, which are not usually considered in the conventional management on not valuing the damage it produces to the environment. Organic farming would improve the energy efficiency in these environmental conditions, offering a sustainable production with minimal inputs.
NASA Technical Reports Server (NTRS)
Mikic, Gregor Veble; Stoll, Alex; Bevirt, JoeBen; Grah, Rok; Moore, Mark D.
2016-01-01
Theoretical and numerical aspects of aerodynamic efficiency of propulsion systems are studied. Focus is on types of propulsion that closely couples to the aerodynamics of the complete vehicle. We discuss the effects of local flow fields, which are affected both by conservative flow acceleration as well as total pressure losses, on the efficiency of boundary layer immersed propulsion devices. We introduce the concept of a boundary layer retardation turbine that helps reduce skin friction over the fuselage. We numerically investigate efficiency gains offered by boundary layer and wake interacting devices. We discuss the results in terms of a total energy consumption framework and show that efficiency gains offered depend on all the elements of the propulsion system.
Generation of 1.3 μm and 1.5 μm high-energy Raman radiations in α-BaTeMo2O9 crystals
NASA Astrophysics Data System (ADS)
Liu, Shande; Zhang, Junjie; Gao, Zeliang; Wei, Lei; Zhang, Shaojun; He, Jingliang; Tao, Xutang
2014-02-01
The generations of high energy 2nd- and 3rd-order stimulated Raman scattering lasers based on the α-BaTeMo2O9 crystal were demonstrated for the first time. The Raman gain coefficient has been compared with that of the YVO4 crystal. A maximum total Stokes radiation energy of 27.3 mJ was obtained, containing 20.1 mJ 2nd-order Stokes energy at 1318 nm, together with 7.2 mJ 3rd-order Stokes energy at 1497 nm, giving an overall conversion efficiency of 35.9% and a slope efficiency of 54.5%. With an optical coating design, a total 3rd- and 4th-order Stokes energy of 16.5 mJ was generated. The maximum energy for 4th-order Stokes radiation at 1731 nm was 2 mJ. The pulse durations for the 2nd-, 3rd-, and 4th-order Stokes shift were 10 ns, 8.6 ns, and 5.2 ns, respectively. Our experimental results show that the α-BTM crystal is a promising Raman crystal for the generations of eye-safe radiations.
The physics of solid-state neutron detector materials and geometries.
Caruso, A N
2010-11-10
Detection of neutrons, at high total efficiency, with greater resolution in kinetic energy, time and/or real-space position, is fundamental to the advance of subfields within nuclear medicine, high-energy physics, non-proliferation of special nuclear materials, astrophysics, structural biology and chemistry, magnetism and nuclear energy. Clever indirect-conversion geometries, interaction/transport calculations and modern processing methods for silicon and gallium arsenide allow for the realization of moderate- to high-efficiency neutron detectors as a result of low defect concentrations, tuned reaction product ranges, enhanced effective omnidirectional cross sections and reduced electron-hole pair recombination from more physically abrupt and electronically engineered interfaces. Conversely, semiconductors with high neutron cross sections and unique transduction mechanisms capable of achieving very high total efficiency are gaining greater recognition despite the relative immaturity of their growth, lithographic processing and electronic structure understanding. This review focuses on advances and challenges in charged-particle-based device geometries, materials and associated mechanisms for direct and indirect transduction of thermal to fast neutrons within the context of application. Calorimetry- and radioluminescence-based intermediate processes in the solid state are not included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, Colin A.; Boardman, Richard; McKellar, Michael
The industrial sector was the third-largest source of direct U.S. greenhouse gas (GHG) emissions in 2014 behind electricity generation and transportation and accounted for roughly 20% of total emissions (EPA 2016). The Energy Information Administration (EIA) projects that total U.S. energy consumption will grow to about 108 exajoules (1 EJ = 10 18 J) or 102 quads (1 quad = 10 15 British thermal units) in 2025, with nearly all of the growth coming from the industrial sector (DOE 2015b). Energy consumption in the industrial sector is forecast to increase to 39.5 EJ (37.4 quads)—a 22% increase, exceeding 36% ofmore » total energy consumption in the United States. Therefore, it is imperative that industrial GHG emissions be considered in any strategy intent on achieving deep decarbonization of the energy sector as a whole. It is important to note that unlike the transportation sector and electrical grid, energy use by industry often involves direct conversion of primary energy sources to thermal and electrical energy at the point of consumption. About 52% of U.S. industrial direct GHG emissions are the result of fuel combustion (EPA 2016) to produce hot gases and steam for process heating, process reactions, and process evaporation, concentration, and drying. The heterogeneity and variations in scale of U.S. industry and the complexity of modern industrial firms’ global supply chains are among the sector’s unique challenges to minimizing its GHG emissions. A combination of varied strategies—such as energy efficiency, material efficiency, and switching to low-carbon fuels—can help reduce absolute industrial GHG emissions. This report provides a complement to process-efficiency improvement to consider how clean energy delivery and use by industry could reduce GHG emissions. Specifically, it considers the possibility of replacing fossil-fuel combustion in industry with nuclear (specifically small modular reactors [SMRs]), solar thermal (referred to herein as solar industrial process heat [SIPH]), and geothermal energy sources. The possibility of applying electrical heating and greater use of hydrogen is also considered, although these opportunities are not discussed in as much detail.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letschert, Virginie E.; McNeil, Michael A.; Leiva Ibanez, Francisco Humberto
2011-06-01
Minimum Efficiency Performance Standards (MEPS) have been chosen as part of Chile's national energy efficiency action plan. As a first MEPS, the Ministry of Energy has decided to focus on a regulation for lighting that would ban the sale of inefficient bulbs, effectively phasing out the use of incandescent lamps. Following major economies such as the US (EISA, 2007) , the EU (Ecodesign, 2009) and Australia (AS/NZS, 2008) who planned a phase out based on minimum efficacy requirements, the Ministry of Energy has undertaken the impact analysis of a MEPS on the residential lighting sector. Fundacion Chile (FC) and Lawrencemore » Berkeley National Laboratory (LBNL) collaborated with the Ministry of Energy and the National Energy Efficiency Program (Programa Pais de Eficiencia Energetica, or PPEE) in order to produce a techno-economic analysis of this future policy measure. LBNL has developed for CLASP (CLASP, 2007) a spreadsheet tool called the Policy Analysis Modeling System (PAMS) that allows for evaluation of costs and benefits at the consumer level but also a wide range of impacts at the national level, such as energy savings, net present value of savings, greenhouse gas (CO2) emission reductions and avoided capacity generation due to a specific policy. Because historically Chile has followed European schemes in energy efficiency programs (test procedures, labelling program definitions), we take the Ecodesign commission regulation No 244/2009 as a starting point when defining our phase out program, which means a tiered phase out based on minimum efficacy per lumen category. The following data were collected in order to perform the techno-economic analysis: (1) Retail prices, efficiency and wattage category in the current market, (2) Usage data (hours of lamp use per day), and (3) Stock data, penetration of efficient lamps in the market. Using these data, PAMS calculates the costs and benefits of efficiency standards from two distinct but related perspectives: (1) The Life-Cycle Cost (LCC) calculation examines costs and benefits from the perspective of the individual household; and (2) The National Perspective projects the total national costs and benefits including both financial benefits, and energy savings and environmental benefits. The national perspective calculations are called the National Energy Savings (NES) and the Net Present Value (NPV) calculations. PAMS also calculate total emission mitigation and avoided generation capacity. This paper describes the data and methodology used in PAMS and presents the results of the proposed phase out of incandescent bulbs in Chile.« less
Efficiency of fat deposition from non-starch polysaccharides, starch and unsaturated fat in pigs.
Halas, Veronika; Babinszky, László; Dijkstra, Jan; Verstegen, Martin W A; Gerrits, Walter J J
2010-01-01
The aim was to evaluate under protein-limiting conditions the effect of different supplemental energy sources: fermentable NSP (fNSP), digestible starch (dStarch) and digestible unsaturated fat (dUFA), on marginal efficiency of fat deposition and distribution. A further aim was to determine whether the extra fat deposition from different energy sources, and its distribution in the body, depends on feeding level. A total of fifty-eight individually housed pigs (48 (SD 4) kg) were used in a 3 x 2 factorial design study, with three energy sources (0.2 MJ digestible energy (DE)/kg(0.75) per d of fNSP, dStarch and dUFA added to a control diet) at two feeding levels. Ten pigs were slaughtered at 48 (SD 4) kg body weight and treatment pigs at 106 (SD 3) kg body weight. Bodies were dissected and the chemical composition of each body fraction was determined. The effect of energy sources on fat and protein deposition was expressed relative to the control treatments within both energy intake levels based on a total of thirty-two observations in six treatments, and these marginal differences were subsequently treated as dependent variables. Results showed that preferential deposition of the supplemental energy intake in various fat depots did not depend on the energy source, and the extra fat deposition was similar at each feeding level. The marginal energetic transformation (energy retention; ER) of fNSP, dStarch and dUFA for fat retention (ERfat:DE) was 44, 52 and 49 % (P>0.05), respectively. Feeding level affected fat distribution, but source of energy did not change the relative partitioning of fat deposition. The present results do not support values of energetic efficiencies currently used in net energy-based systems.
Whole-House Design and Commissioning in the Project Home Again Hot-Humid New Construction Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerrigan, Philip
2012-09-01
Building Science Corporation has been working with Project Home Again since 2008 and has consulted on the design of around 100 affordable, energy efficient new construction homes for victims of hurricanes Katrina and Rita. This report details the effort on the final two phases of the project: Phases V and VI, which resulted in a total of 25 homes constructed in 2011. The goal of this project was to develop and implement an energy efficiency package that will achieve at least 20% whole house source energy savings improvement over the B10 Benchmark.
Whole-House Design and Commissioning in the Project Home Again Hot-Humid New Construction Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerrigan, P.
2012-09-01
BSC has been working with Project Home Again since 2008 and has consulted on the design of around 100 affordable, energy efficient new construction homes for victims of hurricanes Katrina and Rita. This report details the effort on the final two phases of the project: Phases V and VI which resulted in a total of 25 homes constructed in 2011. The goal of this project was to develop and implement an energy efficiency package that will achieve at least 20% whole house source energy savings improvement over the B10 Benchmark.
Building Energy Efficiency in Rural China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Meredydd; Yu, Sha; Song, Bo
2014-04-01
Rural buildings in China now account for more than half of China’s total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China’s success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese governmentmore » recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation.« less
Energy monitoring system based on human activity in the workplace
NASA Astrophysics Data System (ADS)
Mustafa, Nur Hanim; Husain, Mohd Nor; Aziz, Mohamad Zoinol Abidin Abdul; Othman, Mohd Azlishah; Malek, Fareq
2015-05-01
Human behaviors always related to day routine activities in a smart house directly give the significant factor to manage energy usage in human life. An Addition that, the factor will contribute to the best efficiency of the system. This paper will focus on the monitoring efficiency based on duration time in office hours around 8am until 5pm which depend on human behavior at working place. Besides that, the correlation coefficient method is used to show the relation between energy consumption and energy saving based on the total hours of time energy spent. In future, the percentages of energy monitoring system usage will be increase to manage energy saving based on human behaviors. This scenario will help to see the human activity in the workplace in order to get the energy saving and support world green environment.
Missouri Agricultural Energy Saving Team-A Revolutionary Opportunity (MAESTRO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
McIntosh, Jane; Schumacher, Leon
The Missouri Agricultural Energy Saving Team-A Revolutionary Opportunity (MAESTRO) program brought together a team of representatives from government, academia, and private industry to enhance the availability of energy efficiency services for small livestock producers in the State of Missouri. The Missouri Department of Agriculture (MDA) managed the project via a subcontract with the University of Missouri (MU), College of Agriculture Food and Natural Resources, MU Extension, the MU College of Human Environmental Sciences, the MU College of Engineering, and the Missouri Agricultural and Small Business Development Authority (MASBDA). MU teamed with EnSave, Inc, a nationally-recognized expert in agricultural energy efficiencymore » to assist with marketing, outreach, provision of farm energy audits and customer service. MU also teamed with independent home contractors to facilitate energy audits of the farm buildings and homes of these livestock producers. The goals of the project were to: (1) improve the environment by reducing fossil fuel emissions and reducing the total energy used on small animal farms; (2) stimulate the economy of local and regional communities by creating or retaining jobs; and (3) improve the profitability of Missouri livestock producers by reducing their energy expenditures. Historically, Missouri scientists/engineers conducted programs on energy use in agriculture, such as in equipment, grain handling and tillage practices. The MAESTRO program was the first to focus strictly on energy efficiency associated with livestock production systems in Missouri and to investigate the applicability and potential of addressing energy efficiency in animal production from a building efficiency perspective. A. Project Objectives The goal of the MAESTRO program was to strengthen the financial viability and environmental soundness of Missouri's small animal farms by helping them implement energy efficient technologies for the production facility, farm buildings, and the homes on these farms. The expected measurable outcomes of the project were to improve the environment and stimulate the economy by: • Reducing annual fossil fuel emissions by 1,942 metric tons of carbon dioxide equivalent, reducing the total annual energy use on at least 323 small animal farms and 100 farm homes by at least 8,000 kWh and 2,343 therms per farm. • Stimulating the economy by creating or retaining at least 69 jobs, and saving small animal farmers an average of $2,071 per farm in annual energy expenditures. B. Project Scope The MAESTRO team chose the target population of small farms because while all agriculture is traditionally underserved in energy efficiency programs, small farms were particularly underserved because they lack the financial resources and access to energy efficiency technologies that larger farms deploy. The MAESTRO team reasoned that energy conservation, financial and educational programs developed while serving the agricultural community could serve as a national model for other states and their agricultural sectors. The target population was approximately 2,365 small animal farm operations in Missouri, specifically those farms that were not by definition a confined animal feeding operation (CAFO). The program was designed to create jobs by training Missouri contractors and Missouri University Extension staff how to conduct farm audits. The local economy would be stimulated by an increase in construction activity and an increasing demand for energy efficient farm equipment. Additionally, the energy savings were deemed critical in keeping Missouri farms in business. This project leveraged funds using a combination of funds from the Missouri Department of Natural Resources’ Missouri Energy Center and its Soil and Water Conservation Program, from the state's Linked Deposits, MASBDA's agricultural loan guarantee programs, and through the in-kind contribution of faculty and staff time to the project from these agencies and MU. Several hundred Missouri livestock producers were contacted during the MAESTRO project. Of the livestock producers, 254 invited the team to conduct a farm energy assessment which complied with ASABE 612. A total of 147 livestock farm upgrades were implemented, representing 57.5 percent of the farms for which a farm energy assessment was completed. This represented a statewide average annual savings of 1,088,324 kWh and 75,516 therms. The team also reviewed the condition of the livestock producer’s home(s). A total of 106 home energy assessments were completed and 48 individual homes implemented their recommended upgrades, representing 45 percent of the farm homes for which an energy assessment was completed. This represented a statewide average annual savings of 323,029 kWh, and 769.4 therms. More of these farmers likely would have updated their homes but the funding to incentivize them fell short. In spite of the shortfall in incentive funds, some farmers still updated their homes as they saw the value in making these changes to their home.« less
Beke, Tamás; Czajlik, András; Csizmadia, Imre G; Perczel, András
2006-02-02
Nanofibers, nanofilms and nanotubes constructed of one to four strands of oligo-alpha- and oligo-beta-peptides were obtained by using carefully selected building units. Lego-type approaches based on thermoneutral isodesmic reactions can be used to reconstruct the total energies of both linear and tubular periodic nanostructures with acceptable accuracy. Total energies of several different nanostructures were accurately determined with errors typically falling in the subchemical range. Thus, attention will be focused on the description of suitable isodesmic reactions that have enabled the determination of the total energy of polypeptides and therefore offer a very fast, efficient and accurate method to obtain energetic information on large and even very large nanosystems.
Minimizing energy dissipation of matrix multiplication kernel on Virtex-II
NASA Astrophysics Data System (ADS)
Choi, Seonil; Prasanna, Viktor K.; Jang, Ju-wook
2002-07-01
In this paper, we develop energy-efficient designs for matrix multiplication on FPGAs. To analyze the energy dissipation, we develop a high-level model using domain-specific modeling techniques. In this model, we identify architecture parameters that significantly affect the total energy (system-wide energy) dissipation. Then, we explore design trade-offs by varying these parameters to minimize the system-wide energy. For matrix multiplication, we consider a uniprocessor architecture and a linear array architecture to develop energy-efficient designs. For the uniprocessor architecture, the cache size is a parameter that affects the I/O complexity and the system-wide energy. For the linear array architecture, the amount of storage per processing element is a parameter affecting the system-wide energy. By using maximum amount of storage per processing element and minimum number of multipliers, we obtain a design that minimizes the system-wide energy. We develop several energy-efficient designs for matrix multiplication. For example, for 6×6 matrix multiplication, energy savings of upto 52% for the uniprocessor architecture and 36% for the linear arrary architecture is achieved over an optimized library for Virtex-II FPGA from Xilinx.
A Distance-based Energy Aware Routing algorithm for wireless sensor networks.
Wang, Jin; Kim, Jeong-Uk; Shu, Lei; Niu, Yu; Lee, Sungyoung
2010-01-01
Energy efficiency and balancing is one of the primary challenges for wireless sensor networks (WSNs) since the tiny sensor nodes cannot be easily recharged once they are deployed. Up to now, many energy efficient routing algorithms or protocols have been proposed with techniques like clustering, data aggregation and location tracking etc. However, many of them aim to minimize parameters like total energy consumption, latency etc., which cause hotspot nodes and partitioned network due to the overuse of certain nodes. In this paper, a Distance-based Energy Aware Routing (DEAR) algorithm is proposed to ensure energy efficiency and energy balancing based on theoretical analysis of different energy and traffic models. During the routing process, we consider individual distance as the primary parameter in order to adjust and equalize the energy consumption among involved sensors. The residual energy is also considered as a secondary factor. In this way, all the intermediate nodes will consume their energy at similar rate, which maximizes network lifetime. Simulation results show that the DEAR algorithm can reduce and balance the energy consumption for all sensor nodes so network lifetime is greatly prolonged compared to other routing algorithms.
Yu, Lianchun; Shen, Zhou; Wang, Chen; Yu, Yuguo
2018-01-01
Selective pressure may drive neural systems to process as much information as possible with the lowest energy cost. Recent experiment evidence revealed that the ratio between synaptic excitation and inhibition (E/I) in local cortex is generally maintained at a certain value which may influence the efficiency of energy consumption and information transmission of neural networks. To understand this issue deeply, we constructed a typical recurrent Hodgkin-Huxley network model and studied the general principles that governs the relationship among the E/I synaptic current ratio, the energy cost and total amount of information transmission. We observed in such a network that there exists an optimal E/I synaptic current ratio in the network by which the information transmission achieves the maximum with relatively low energy cost. The coding energy efficiency which is defined as the mutual information divided by the energy cost, achieved the maximum with the balanced synaptic current. Although background noise degrades information transmission and imposes an additional energy cost, we find an optimal noise intensity that yields the largest information transmission and energy efficiency at this optimal E/I synaptic transmission ratio. The maximization of energy efficiency also requires a certain part of energy cost associated with spontaneous spiking and synaptic activities. We further proved this finding with analytical solution based on the response function of bistable neurons, and demonstrated that optimal net synaptic currents are capable of maximizing both the mutual information and energy efficiency. These results revealed that the development of E/I synaptic current balance could lead a cortical network to operate at a highly efficient information transmission rate at a relatively low energy cost. The generality of neuronal models and the recurrent network configuration used here suggest that the existence of an optimal E/I cell ratio for highly efficient energy costs and information maximization is a potential principle for cortical circuit networks. Summary We conducted numerical simulations and mathematical analysis to examine the energy efficiency of neural information transmission in a recurrent network as a function of the ratio of excitatory and inhibitory synaptic connections. We obtained a general solution showing that there exists an optimal E/I synaptic ratio in a recurrent network at which the information transmission as well as the energy efficiency of this network achieves a global maximum. These results reflect general mechanisms for sensory coding processes, which may give insight into the energy efficiency of neural communication and coding. PMID:29773979
Yu, Lianchun; Shen, Zhou; Wang, Chen; Yu, Yuguo
2018-01-01
Selective pressure may drive neural systems to process as much information as possible with the lowest energy cost. Recent experiment evidence revealed that the ratio between synaptic excitation and inhibition (E/I) in local cortex is generally maintained at a certain value which may influence the efficiency of energy consumption and information transmission of neural networks. To understand this issue deeply, we constructed a typical recurrent Hodgkin-Huxley network model and studied the general principles that governs the relationship among the E/I synaptic current ratio, the energy cost and total amount of information transmission. We observed in such a network that there exists an optimal E/I synaptic current ratio in the network by which the information transmission achieves the maximum with relatively low energy cost. The coding energy efficiency which is defined as the mutual information divided by the energy cost, achieved the maximum with the balanced synaptic current. Although background noise degrades information transmission and imposes an additional energy cost, we find an optimal noise intensity that yields the largest information transmission and energy efficiency at this optimal E/I synaptic transmission ratio. The maximization of energy efficiency also requires a certain part of energy cost associated with spontaneous spiking and synaptic activities. We further proved this finding with analytical solution based on the response function of bistable neurons, and demonstrated that optimal net synaptic currents are capable of maximizing both the mutual information and energy efficiency. These results revealed that the development of E/I synaptic current balance could lead a cortical network to operate at a highly efficient information transmission rate at a relatively low energy cost. The generality of neuronal models and the recurrent network configuration used here suggest that the existence of an optimal E/I cell ratio for highly efficient energy costs and information maximization is a potential principle for cortical circuit networks. We conducted numerical simulations and mathematical analysis to examine the energy efficiency of neural information transmission in a recurrent network as a function of the ratio of excitatory and inhibitory synaptic connections. We obtained a general solution showing that there exists an optimal E/I synaptic ratio in a recurrent network at which the information transmission as well as the energy efficiency of this network achieves a global maximum. These results reflect general mechanisms for sensory coding processes, which may give insight into the energy efficiency of neural communication and coding.
NASA Astrophysics Data System (ADS)
Chen, Ying; Lowengrub, John; Shen, Jie; Wang, Cheng; Wise, Steven
2018-07-01
We develop efficient energy stable numerical methods for solving isotropic and strongly anisotropic Cahn-Hilliard systems with the Willmore regularization. The scheme, which involves adaptive mesh refinement and a nonlinear multigrid finite difference method, is constructed based on a convex splitting approach. We prove that, for the isotropic Cahn-Hilliard system with the Willmore regularization, the total free energy of the system is non-increasing for any time step and mesh sizes. A straightforward modification of the scheme is then used to solve the regularized strongly anisotropic Cahn-Hilliard system, and it is numerically verified that the discrete energy of the anisotropic system is also non-increasing, and can be efficiently solved by using the modified stable method. We present numerical results in both two and three dimensions that are in good agreement with those in earlier work on the topics. Numerical simulations are presented to demonstrate the accuracy and efficiency of the proposed methods.
Energy Efficiency Evaluation and Benchmarking of AFRL’s Condor High Performance Computer
2011-08-01
AUG 2011 2. REPORT TYPE CONFERENCE PAPER (Post Print) 3. DATES COVERED (From - To) JAN 2011 – JUN 2011 4 . TITLE AND SUBTITLE ENERGY EFFICIENCY...1716 Sony PlayStation 3s (PS3s), adding up to a total of 69,940 cores and a theoretical peak performance of 500 TFLOPS. There are 84 subcluster head...Thus, a critical component to achieving maximum performance is to find the optimum division of processing load between the CPU and GPU. 4 The
Energy Consumption and Greenhouse Gas Emission of Korean Offshore Fisheries
NASA Astrophysics Data System (ADS)
Lee, Jihoon; Kim, Taeho; Ellingsen, Harald; Hognes, Erik Skontorp; Hwang, Bokyu
2018-06-01
This paper presents the energy and greenhouse gas (GHG) emission assessments of Korean offshore fisheries. The consumption of energy by fisheries is a significant concern because of its attendant environmental effect, as well as the cost of the fuel consumed in fishing industry. With the global attention of reducing GHG emission and increasing energy efficiency of fuel, the seafood industry needs to further understand its energy use and reduce its GHG emission. In the present study, the amount of energy consumed and the GHG emission of Korean offshore fisheries in a period from 2009 to 2013 were examined. Offshore fisheries accounted for 24% of Korean production in 2013 and 60% of fuel consumption related GHG emission. Whereas the total GHG emission intensity of this sector improved slightly between 2009 and 2012; as such emission decreased by approximately 1.9%, which increased again in 2013. The average amount of total GHG emission in this five years period was 1.78 × 106 tons of carbon dioxide equivalent/year (t CO2 eq. y-1). Active fishing gear was found to consume 20% more fuel than passive gear. However, the production from passive gear was 28%, lower than 72% from active gear. The reason for this is that less abundant stationary resources are harvested using passive gear. Furthermore, the consumption of fuel was significantly influenced by the fishing method. Implementation and development of new fishing technologies and methods are important for improving energy efficiency and reducing the climate impact on fisheries. To realize these purposes, the fishery management system needs to be established by centralizing on energy efficiency and climate effect.
NASA Astrophysics Data System (ADS)
Ambarita, H.
2018-03-01
The Government of Indonesia (GoI) has a strong commitment to the target of decreasing energy intensity and reducing Greenhouse gas emissions. One of the significant solutions to reach the target is increasing energy efficiency in the lighting system in the residential sector. The objective of this paper is twofold, to estimate the potency of energy saving and emission reduction from lighting in the residential sector. Literature related to the lighting system in Indonesia has been reviewed to provide sufficient data for the estimation of the energy saving and emission reduction. The results show that the in the year 2016, a total of 95.33 TWh of nationally produced electricity is used in the residential sector. This is equal to 44% of total produced electricity. The number of costumers is 64.78 million houses. The average number of lamps and average wattage of lamps used in Indonesia are 8.35 points and 13.8 W, respectively. The number of lighting and percentage of electricity used for lighting in the residential sector in Indonesia are 20.03 TWh (21.02 %) and 497 million lamps, respectively. The projection shows that in the year 2026 the total energy for lighting and number of lamps in the residential sector are 25.05 TWh and 619 million, respectively. By promoting the present technology of high efficient lamps (LED), the potency of energy saving and emission reduction in 2026 are 2.6 TWh and 2.1 million tons CO2eq, respectively.
Public Housing: A Tailored Approach to Energy Retrofits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, Jordan; Conlin, Francis; Podorson, David
2014-06-01
More than 1 million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 public housing authorities (PHAs) across the country indicated that there is a high level of interest in developing low-cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with two PHAs to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement with their own staffs in the normal course of housing operations when unitsmore » are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing and measures that improve equipment efficiency. ARIES documented implementation 10 ten housing units. Total source energy consumption savings was estimated at 6%-10% based on BEopt modeling with a simple payback of 1.7 to 2.2 years. At typical housing unit turnover rates, these measures could impact hundreds of thousands of units per year nationally.« less
Case study:-calender covers in a hospital laundry. Energy Efficiency Office, Department of Energy.
1992-01-01
Whipps Cross Hospital laundry is typical of many laundries, both in the commercial sector and NHS, in that it uses old calenders which are substantially less efficient than more modern machines. Although calendering is a relatively efficient method of moisture removal, the quantity of flatwork processed by this laundry means that the calendering section uses a significant proportion of the total laundry energy consumption. In common with many other laundries, the four calenders were producing a great deal of airborne lint which required expensive cleaning at regular intervals, and made the working environment uncomfortable, reducing the performance and morale of the operators. In an effort to improve this situation, covers were fitted to all the calenders in early 1989. These were claimed to improve energy efficiency by reducing the heat losses from the calender's upper surfaces and to improve the local atmosphere by reducing the quantity of lint and moist air escaping into the laundry. This case study examines the savings (both energy savings and others) achieved by the installation of the covers, and assesses any drawbacks which may have become apparent after extended use.
Weatherization Innovation Pilot Program (WIPP): Technical Assistance Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollander, A.
2014-09-01
The U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Programs Office (WIPO) launched the Weatherization Innovation Pilot Program (WIPP) to accelerate innovations in whole-house weatherization and advance DOE's goal of increasing the energy efficiency and health and safety of low-income residences without the utilization of additional taxpayer funding. Sixteen WIPP grantees were awarded a total of $30 million in Weatherization Assistance Program (WAP) funds in September 2010. These projects focused on: including nontraditional partners in weatherization service delivery; leveraging significant non-federal funding; and improving the effectiveness of low-income weatherization through the use of newmore » materials, technologies, behavior-change models, and processes.« less
10 CFR 436.103 - Program goal setting.
Code of Federal Regulations, 2014 CFR
2014-01-01
... with the broad purpose of achieving reductions in total energy consumption and increased efficiency without serious mission degradation or unmitigated negative environmental impacts. Within the broad...
10 CFR 436.103 - Program goal setting.
Code of Federal Regulations, 2013 CFR
2013-01-01
... with the broad purpose of achieving reductions in total energy consumption and increased efficiency without serious mission degradation or unmitigated negative environmental impacts. Within the broad...
10 CFR 436.103 - Program goal setting.
Code of Federal Regulations, 2012 CFR
2012-01-01
... with the broad purpose of achieving reductions in total energy consumption and increased efficiency without serious mission degradation or unmitigated negative environmental impacts. Within the broad...
10 CFR 436.103 - Program goal setting.
Code of Federal Regulations, 2011 CFR
2011-01-01
... with the broad purpose of achieving reductions in total energy consumption and increased efficiency without serious mission degradation or unmitigated negative environmental impacts. Within the broad...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roshchanka, Volha; Evans, Meredydd
Many energy efficiency professionals have proposed using Energy Performance Contracts (EPCs) as a mechanism to improve public sector energy efficiency in countries with restrictive government budgets. However, in practice, most middle-income countries have used this mechanism only in a limited way. Russia offers an interesting case study because of its huge energy savings opportunities, increasing energy prices, robust political backing for public sector energy efficiency, and evolving legislation that supports EPCs. In 2009, the Russian Federation launched a program to reduce the energy intensity of the country’s large public sector, which accounts for 9 percent of Russia’s total energy consumption.more » To achieve energy efficiency goals, Russia experimented with its public procurement rules, adjusting them to encourage EPCs. We conducted structured interviews with Energy Service Companies (ESCOs) in Russia and supplemented them with online research. Our review shows that, to date, nearly 50 ESCOs signed about 150 contracts in public facilities. Most ESCO contracts in Russia are for 5 years, and they generally are small (under $100,000). ESCOs in Russia face a challenging environment, which leads to smaller projects. ESCOs also are concerned about costly and risky tender procedures, uncertainty regarding repayment from public facilities, the inability to expand projects, and financing. We discuss these challenges and propose potential solutions at policy and company levels. The ESCOs feedback regarding Russia’s experimental model can inform the country’s program for public sector energy efficiency and offer lessons for other countries attempting to develop the EPC mechanism.« less
Solar energy enhancement using down-converting particles: A rigorous approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrams, Ze’ev R.; Niv, Avi; Zhang, Xiang
2011-06-01
The efficiency of a single band-gap solar cell is specified by the Shockley-Queisser limit, which defines the maximal output power as a function of the solar cell’s band-gap. One way to overcome this limit is by using a down-conversion process whereupon a high energy photon is split into two lower energy photons, thereby increasing the current of the cell. Here, we provide a full analysis of the possible efficiency increase when placing a down-converting material on top of a pre-existing solar cell. We show that a total 7% efficiency improvement is possible for a perfectly efficient down-converting material. Our analysismore » covers both lossless and lossy theoretical limits, as well as a thermodynamic evaluation. Finally, we describe the advantages of nanoparticles as a possible choice for a down-converting material.« less
Evaluation of food drying with air dehumidification system: a short review
NASA Astrophysics Data System (ADS)
Djaeni, M.; Utari, F. D.; Sasongko, S. B.; Kumoro, A. C.
2018-01-01
Energy efficient drying for food and agriculture products resulting high quality products has been an important issue. Currently, about 50% of total energy for postharvest treatment was used for drying. This paper presents the evaluation of new approach namely air dehumidification system with zeolite for food drying. Zeolite is a material having affinity to water in which reduced the moisture in air. With low moisture content and relative humidity, the air can improve driving force for drying even at low temperature. Thus, the energy efficiency can be potentially enhanced and the product quality can be well retained. For proving the hypothesis, the paddy and onion have been dried using dehumidified air. As performance indicators, the drying time, product quality, and heat efficiency were evaluated. Results indicated that the drying with zeolite improved the performances significantly. At operating temperature ranging 50 - 60°C, the efficiency of drying system can reach 75% with reasonable product quality.
Zamani, Pouya
2017-08-01
Traditional ratio measures of efficiency, including feed conversion ratio (FCR), gross milk efficiency (GME), gross energy efficiency (GEE) and net energy efficiency (NEE) may have some statistical problems including high correlations with milk yield. Residual energy intake (REI) or residual feed intake (RFI) is another criterion, proposed to overcome the problems attributed to the traditional ratio criteria, but it does not account for production or intake levels. For example, the same REI value could be considerable for low producing and negligible for high producing cows. The aim of this study was to propose a new measure of efficiency to overcome the problems attributed to the previous criteria. A total of 1478 monthly records of 268 lactating Holstein cows were used for this study. In addition to FCR, GME, GEE, NEE and REI, a new criterion called proportional residual energy intake (PREI) was calculated as REI to net energy intake ratio and defined as proportion of net energy intake lost as REI. The PREI had an average of -0·02 and range of -0·36 to 0·27, meaning that the least efficient cow lost 0·27 of her net energy intake as REI, while the most efficient animal saved 0·36 of her net energy intake as less REI. Traditional ratio criteria (FCR, GME, GEE and NEE) had high correlations with milk and fat corrected milk yields (absolute values from 0·469 to 0·816), while the REI and PREI had low correlations (0·000 to 0·069) with milk production. The results showed that the traditional ratio criteria (FCR, GME, GEE and NEE) are highly influenced by production traits, while the REI and PREI are independent of production level. Moreover, the PREI adjusts the REI magnitude for intake level. It seems that the PREI could be considered as a worthwhile measure of efficiency for future studies.
Chen, Yao; Xu, Jing-Ting
2018-05-03
The super-efficiency directional distance function (DDF) with data envelopment analysis (DEA) model (SEDDF-DEA) is more facilitative than to increase traditional method as a rise of energy efficiency in China, which is currently important energy development from Asia-pacific region countries. SEDDF-DEA is promoted as sustained total-factor energy efficiency (TFEE), value added outputs, and Malmquist-Luenberger productivity index (MLPI) to otherwise thorny environmental energy productivity problems with environmental constraint to concrete the means of regression model. This paper assesses the energy efficiency under environmental constraints using panel data covering the years of 2000-2015 in China. Considering the environmental constraints, the results showed that the average TFEE of the whole country followed an upward trend after 2006. The average MLPI score for the whole country increased by 10.57% during 2005-2010, which was mainly due to the progress made in developing and applying environmental technologies. The TFEE of the whole nation was promoted by the accumulation of capital stock, while it was suppressed by excessive production in secondary industries and foreign investment. The primary challenge for the northeast of China is to strengthen industrial transformation and upgrade traditional industries, as well as adjusting the economy and energy structure. The eastern and central regions of the country need to exploit clean- or low-energy industry to improve inefficiencies due to excessive consumption. The western region of China needs to implement renewable energy strategies to promote regional development.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., and maintenance of the renewable energy system or energy efficiency improvement will operate or..., installation, and maintenance. Authoritative evidence that project team service providers have the necessary... and shakedown, warranties, insurance, financing, professional services, and operations and maintenance...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., and maintenance of the renewable energy system or energy efficiency improvement will operate or..., installation, and maintenance. Authoritative evidence that project team service providers have the necessary... and shakedown, warranties, insurance, financing, professional services, and operations and maintenance...
System solution to improve energy efficiency of HVAC systems
NASA Astrophysics Data System (ADS)
Chretien, L.; Becerra, R.; Salts, N. P.; Groll, E. A.
2017-08-01
According to recent surveys, heating and air conditioning systems account for over 45% of the total energy usage in US households. Three main types of HVAC systems are available to homeowners: (1) fixed-speed systems, where the compressor cycles on and off to match the cooling load; (2) multi-speed (typically, two-speed) systems, where the compressor can operate at multiple cooling capacities, leading to reduced cycling; and (3) variable-speed systems, where the compressor speed is adjusted to match the cooling load of the household, thereby providing higher efficiency and comfort levels through better temperature and humidity control. While energy consumption could reduce significantly by adopting variable-speed compressor systems, the market penetration has been limited to less than 10% of the total HVAC units and a vast majority of systems installed in new construction remains single speed. A few reasons may explain this phenomenon such as the complexity of the electronic circuitry required to vary compressor speed as well as the associated system cost. This paper outlines a system solution to boost the Seasonal Energy Efficiency Rating (SEER) of a traditional single-speed unit through using a low power electronic converter that allows the compressor to operate at multiple low capacity settings and is disabled at high compressor speeds.
Fayette County Better Buildings Initiative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capella, Arthur
The Fayette County Better Buildings Initiative represented a comprehensive and collaborative approach to promoting and implementing energy efficiency improvements. The initiative was designed to focus on implementing energy efficiency improvements in residential units, while simultaneously supporting general marketing of the benefits of implementing energy efficiency measures. The ultimate goal of Fayette County’s Better Buildings Initiative was to implement a total of 1,067 residential energy efficiency retrofits with a minimum 15% estimated energy efficiency savings per unit. Program partners included: United States Department of Energy, Allegheny Power, and Private Industry Council of Westmoreland-Fayette, Fayette County Redevelopment Authority, and various local partners.more » The program was open to any Fayette County residents who own their home and meet the prequalifying conditions. The level of assistance offered depended upon household income and commitment to undergo a BPI – Certified Audit and implement energy efficiency measures, which aimed to result in at least a 15% reduction in energy usage. The initiative was designed to focus on implementing energy efficiency improvements in residential units, while simultaneously supporting general marketing of the benefits of implementing energy efficiency measures. Additionally, the program had components that involved recruitment and training for employment of persons in the energy sector (green jobs), as well as marketing and implementation of a commercial or community facilities component. The residential component of Fayette County’s Better Buildings Initiative involved a comprehensive approach, providing assistance to low- moderate- and market-rate homeowners. The initiative will also coordinate activities with local utility providers to further incentivize energy efficiency improvements among qualifying homeowners. The commercial component of Fayette County’s Better Building Initiative involved grants and loans to assist up to $15,000 projects per commercial structure with a mixture of a grant and financing at 0% for up to three – (3) years. The maximum award can be a $5,000 grant and a $10,000 loan. For projects less than $15,000, the award will have a ratio of 1/3 grant and 2/3 loan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seiferlein, Katherine E.
A generation ago the Ford Foundation convened a group of experts to explore and assess the Nation’s energy future, and published their conclusions in A Time To Choose: America’s Energy Future (Cambridge, MA: Ballinger, 1974). The Energy Policy Project developed scenarios of U.S. potential energy use in 1985 and 2000. Now, with 1985 well behind us and 2000 nearly on the record books, it may be of interest to take a look back to see what actually happened and consider what it means for our future. The study group sketched three primary scenarios with differing assumptions about the growth ofmore » energy use. The Historical Growth scenario assumed that U.S. energy consumption would continue to expand by 3.4 percent per year, the average rate from 1950 to 1970. This scenario assumed no intentional efforts to change the pattern of consumption, only efforts to encourage development of our energy supply. The Technical Fix scenario anticipated a “conscious national effort to use energy more efficiently through engineering know-how." The Zero Energy Growth scenario, while not clamping down on the economy or calling for austerity, incorporated the Technical Fix efficiencies plus additional efficiencies. This third path anticipated that economic growth would depend less on energy-intensive industries and more on those that require less energy, i.e., the service sector. In 2000, total energy consumption was projected to be 187 quadrillion British thermal units (Btu) in the Historical Growth case, 124 quadrillion Btu in the Technical Fix case, and 100 quadrillion Btu in the Zero Energy Growth case. The Annual Energy Review 1999 reports a preliminary total consumption for 1999 of 97 quadrillion Btu (see Table 1.1), and the Energy Information Administration’s Short-Term Energy Outlook (April 2000) forecasts total energy consumption of 98 quadrillion Btu in 2000. What energy consumption path did the United States actually travel to get from 1974, when the scenarios were drawn, to the end of the century? What happened to the relationship between growth and energy consumption? How did the fuel mix change over this period? What are the effects of energy usage on our environment? What level of consumption will the United States—and the world—record in the Annual Energy Review 2025? We present this edition of the Annual Energy Review to help investigate these important questions and to stimulate and inform our thinking about what the future holds.« less
Qi, Wenqiang; Chen, Taojing; Wang, Liang; Wu, Minghong; Zhao, Quanyu; Wei, Wei
2017-03-01
In this study, the sequential process of anaerobic fermentation followed by microalgae cultivation was evaluated from both nutrient and energy recovery standpoints. The effects of different fermentation type on the biogas generation, broth metabolites' composition, algal growth and nutrients' utilization, and energy conversion efficiencies for the whole processes were discussed. When the fermentation was designed to produce hydrogen-dominating biogas, the total energy conversion efficiency (TECE) of the sequential process was higher than that of the methane fermentation one. With the production of hydrogen in anaerobic fermentation, more organic carbon metabolites were left in the broth to support better algal growth with more efficient incorporation of ammonia nitrogen. By applying the sequential process, the heat value conversion efficiency (HVCE) for the wastewater could reach 41.2%, if methane was avoided in the fermentation biogas. The removal efficiencies of organic metabolites and NH 4 + -N in the better case were 100% and 98.3%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F; Hutter, Hans-Peter
2015-11-06
Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.
Cai, Yaomin; Guo, Zhixiong
2018-04-20
The Monte Carlo model was developed to simulate the collimated solar irradiation transfer and energy harvest in a hollow louver made of silica glass and filled with water. The full solar spectrum from the air mass 1.5 database was adopted and divided into various discrete bands for spectral calculations. The band-averaged spectral properties for the silica glass and water were obtained. Ray tracing was employed to find the solar energy harvested by the louver. Computational efficiency and accuracy were examined through intensive comparisons of different band partition approaches, various photon numbers, and element divisions. The influence of irradiation direction on the solar energy harvest efficiency was scrutinized. It was found that within a 15° polar angle of incidence, the harvested solar energy in the louver was high, and the total absorption efficiency reached 61.2% under normal incidence for the current louver geometry.
Eco-efficiency evaluation of a smart window prototype.
Syrrakou, E; Papaefthimiou, S; Yianoulis, P
2006-04-15
An eco-efficiency analysis was conducted using indicators suitably defined to evaluate the performance of an electrochromic window acting as an energy saving component in buildings. Combining the indicators for various parameters (control scenario, expected lifetime, climatic type, purchase cost) significant conclusions are drawn for the development and the potential applications of the device compared to other commercial fenestration products. The reduction of the purchase cost (to 200 euros/m2) and the increase of the lifetime (above 15 years) are the two main targets for achieving both cost and environmental efficiency. An electrochromic device, implemented in cooling dominated areas and operated with an optimum control strategy for the maximum expected lifetime (25 years), can reduce the building energy requirements by 52%. Furthermore, the total energy savings provided will be 33 times more than the energy required for its production while the emission of 615 kg CO2 equivalent per electrochromic glazing unit can be avoided.
NASA Astrophysics Data System (ADS)
Poulet, L.; Massa, G. D.; Morrow, R. C.; Bourget, C. M.; Wheeler, R. M.; Mitchell, C. A.
2014-07-01
Bioregenerative life-support systems involving photoautotrophic organisms will be necessary to sustain long-duration crewed missions at distant space destinations. Since sufficient sunlight will not always be available for plant growth at many space destinations, efficient electric-lighting solutions are greatly needed. The present study demonstrated that targeted plant lighting with light-emitting diodes (LEDs) and optimizing spectral parameters for close-canopy overhead LED lighting allowed the model crop leaf lettuce (Lactuca sativa L. cv. 'Waldmann's Green') to be grown using significantly less electrical energy than using traditional electric-lighting sources. Lettuce stands were grown hydroponically in a growth chamber controlling temperature, relative humidity, and CO2 level. Several red:blue ratios were tested for growth rate during the lag phase of lettuce growth. In addition, start of the exponential growth phase was evaluated. Following establishment of a 95% red + 5% blue spectral balance giving the best growth response, the energy efficiency of a targeted lighting system was compared with that of two total coverage (untargeted) LED lighting systems throughout a crop-production cycle, one using the same proportion of red and blue LEDs and the other using white LEDs. At the end of each cropping cycle, whole-plant fresh and dry mass and leaf area were measured and correlated with the amount of electrical energy (kWh) consumed for crop lighting. Lettuce crops grown with targeted red + blue LED lighting used 50% less energy per unit dry biomass accumulated, and the total coverage white LEDs used 32% less energy per unit dry biomass accumulated than did the total coverage red + blue LEDs. An energy-conversion efficiency of less than 1 kWh/g dry biomass is possible using targeted close-canopy LED lighting with spectral optimization. This project was supported by NASA grant NNX09AL99G.
NASA Astrophysics Data System (ADS)
Wang, Bin; Xu, Jun; Cao, Binggang; Zhou, Xuan
2015-05-01
This paper proposes a novel topology of multimode hybrid energy storage system (HESS) and its energy management strategy for electric vehicles (EVs). Compared to the conventional HESS, the proposed multimode HESS has more operating modes and thus it could in further enhance the efficiency of the system. The rule-based control strategy and the power-balancing strategy are developed for the energy management strategy to realize mode selection and power distribution. Generally, the DC-DC converter will operate at peak efficiency to convey the energy from the batteries to the UCs. Otherwise, the pure battery mode or the pure ultracapacitors (UCs) mode will be utilized without the DC-DC converter. To extend the battery life, the UCs have the highest priority to recycle the energy and the batteries are isolated from being recharged directly during regenerative braking. Simulations and experiments are established to validate the proposed multimode HESS and its energy management strategy. The results reveal that the energy losses in the DC-DC converter, the total energy consumption and the overall system efficiency of the proposed multimode HESS are improved compared to the conventional HESS.
Collaboration essential for an energy neutral urban water cycle.
Frijns, Jos; Mulder, Mirabella; Roorda, Jelle; Schepman, Hans; Voskamp, Tom
2013-01-01
Two Dutch water boards prepared a Master Plan with measures to substantially reduce their energy use by 2027. In total, more than 100 measures were identified such as bubble aeration and heat recovery from effluent. Together these measures result in a 90-95% reduction in energy use at the water boards. However, for the whole urban water cycle, thus including the energy required for warm water use in households, the total energy reduction from these measures at the water boards is only 5-6%. To attain the objective to have an energy neutral urban water cycle, collaboration with other sectors such as housing, energy, agriculture and industry will be essential. Active collaboration of the water boards through the incorporation of energy efficient water measures as part of the carbon neutral effort of cities is recognized to be a promising strategy.
Faith, M S; Rose, E; Matz, P E; Pietrobelli, A; Epstein, L H
2006-10-01
To illustrate the use and potential efficiency of the co-twin control design for testing behavioral economic theories of child nutrition. Co-twin control design, in which participating twins ate an ad libitum lunch on two laboratory visits. At visit 1, child food choices were not reinforced. On visit 2, twins were randomized to conditions such that one twin was reinforced for each fruit and vegetable serving consumed during lunch ('contingent') while his co-twin was reinforced irrespective of food intake ('non-contingent'). Six male twins, 5 years old, from three monozygotic twin pairs. Ad libitum intake of total energy (kcals), fat (kcals), and fruits and vegetables (servings) from the protocol test meals on the two visits. Compared to twins receiving non-contingent reinforcement, twins receiving contingent reinforcement increased fruit and vegetable intake by 2.0 servings, reduced fat intake 106.3 kcals, and reduced total energy intake by 112.7 kcals. The relative efficiency of the co-twin control design compared to a conventional between-groups design of unrelated children was most powerful for detecting 'substitution effects' (i.e., reduced total energy and fat intake) more so than for detecting increased fruit and vegetable intake. Genetically informative studies, including the co-twin control design, can provide conceptually elegant and efficient strategies for testing environmental theories of child nutrition and obesity.
Energy assessment of second generation (2G) ethanol production from wheat straw in Indian scenario.
Mishra, Archana; Kumar, Akash; Ghosh, Sanjoy
2018-03-01
Impact of second-generation ethanol (2G) use in transportation sector mainly depends upon energy efficiency of entire production process. The objective of present study was to determine energy efficiency of a potential lignocellulosic feedstock; wheat straw and its conversion into cellulosic ethanol in Indian scenario. Energy efficiency was determined by calculating Net energy ratio (NER), i.e. ratio of output energy obtained by ethanol and input energy used in ethanol production. Energy consumption and generation at each step is calculated briefly (11,837.35 MJ/ha during Indian dwarf irrigated variety of wheat crop production and 7.1148 MJ/kg straw during ethanol production stage). Total energy consumption is calculated as 8.2988 MJ/kg straw whereas energy generation from ethanol is 15.082 MJ/kg straw; resulting into NER > 1. Major portion of agricultural energy input is contributed by diesel and fertilisers whereas refining process of wheat straw feedstock to ethanol and by-products require mainly in the form of steam and electricity. On an average, 1671.8 kg water free ethanol, 930 kg lignin rich biomass (for combustion), and 561 kg C5-molasses (for fodder) per hectare are produced. Findings of this study, net energy ratio (1.81) and figure of merit (14.8028 MJ/nil kg carbon) proves wheat straw as highest energy efficient lignocellulosic feedstock for the country.
Reliability and energy efficiency of zero energy homes (Conference Presentation)
NASA Astrophysics Data System (ADS)
Dhere, Neelkanth G.
2016-09-01
Photovoltaic (PV) modules and systems are being installed increasingly on residential homes to increase the proportion of renewable energy in the energy mix. The ultimate goal is to attain sustainability without subsidy. The prices of PV modules and systems have declined substantially during the recent years. They will be reduced further to reach grid parity. Additionally the total consumed energy must be reduced by making the homes more energy efficient. FSEC/UCF Researchers have carried out research on development of PV cells and systems and on reducing the energy consumption in homes and by small businesses. Additionally, they have provided guidance on PV module and system installation and to make the homes energy efficient. The produced energy is fed into the utility grid and the consumed energy is obtained from the utility grid, thus the grid is assisting in the storage. Currently the State of Florida permits net metering leading to equal charge for the produced and consumed electricity. This paper describes the installation of 5.29 KW crystalline silicon PV system on a south-facing tilt at approximately latitude tilt on a single-story, three-bedroom house. It also describes the computer program on Building Energy Efficiency and the processes that were employed for reducing the energy consumption of the house by improving the insulation, air circulation and windows, etc. Finally it describes actual consumption and production of electricity and the installation of additional crystalline silicon PV modules and balance of system to make it a zero energy home.
Estimating customer electricity savings from projects installed by the U.S. ESCO industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvallo, Juan Pablo; Larsen, Peter H.; Goldman, Charles A.
The U.S. energy service company (ESCO) industry has a well-established track record of delivering substantial energy and dollar savings in the public and institutional facilities sector, typically through the use of energy savings performance contracts (ESPC) (Larsen et al. 2012; Goldman et al. 2005; Hopper et al. 2005, Stuart et al. 2013). This ~$6.4 billion industry, which is expected to grow significantly over the next five years, may play an important role in achieving demand-side energy efficiency under local/state/federal environmental policy goals. To date, there has been little or no research in the public domain to estimate electricity savings formore » the entire U.S. ESCO industry. Estimating these savings levels is a foundational step in order to determine total avoided greenhouse gas (GHG) emissions from demand-side energy efficiency measures installed by U.S. ESCOs. We introduce a method to estimate the total amount of electricity saved by projects implemented by the U.S. ESCO industry using the Lawrence Berkeley National Laboratory (LBNL) /National Association of Energy Service Companies (NAESCO) database of projects and LBNL’s biennial industry survey. We report two metrics: incremental electricity savings and savings from ESCO projects that are active in a given year (e.g., 2012). Overall, we estimate that in 2012 active U.S. ESCO industry projects generated about 34 TWh of electricity savings—15 TWh of these electricity savings were for MUSH market customers who did not rely on utility customer-funded energy efficiency programs (see Figure 1). This analysis shows that almost two-thirds of 2012 electricity savings in municipal, local and state government facilities, universities/colleges, K-12 schools, and healthcare facilities (i.e., the so-called “MUSH” market) were not supported by a utility customer-funded energy efficiency program.« less
Conceptual design of a high real-estate gradient cavity for a SRF ERL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Chen; Ben-Zvi, Ilan; Hao, Yue
The term “real-estate gradient” is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total acceleratingmore » efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this article, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).« less
Conceptual design of a high real-estate gradient cavity for a SRF ERL
NASA Astrophysics Data System (ADS)
Xu, Chen; Ben-Zvi, Ilan; Hao, Yue; Xin, Tianmu; Wang, Haipeng
2017-10-01
The term "real-estate gradient" is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total accelerating efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this paper, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).
Conceptual design of a high real-estate gradient cavity for a SRF ERL
Xu, Chen; Ben-Zvi, Ilan; Hao, Yue; ...
2017-07-19
The term “real-estate gradient” is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total acceleratingmore » efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this article, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).« less
The Role of Industrial Parks in Mitigating Greenhouse Gas Emissions from China.
Guo, Yang; Tian, Jinping; Zang, Na; Gao, Yang; Chen, Lujun
2018-06-14
This study uncovered the direct and indirect energy-related GHG emissions of 213 Chinese national-level industrial parks, providing 11% of China's GDP, from a life-cycle perspective. Direct emissions are sourced from fuel combustion, and indirect emissions are embodied in energy production. The results indicated that in 2015, the direct and indirect GHG emissions of the parks were 1042 and 181 million tonne CO2 eq., respectively, totally accounting for 11% of national GHG emissions. The total energy consumption of the parks accounted for 10% of national energy consumption. Coal constituted 74% of total energy consumption in these parks. Baseline and low-carbon scenarios are established for 2030, and five GHG mitigation measures targeting energy consumption are modeled. The GHG mitigation potential for these parks in 2030 is quantified as 116 million tonne, equivalent to 9.5% of the parks' total emission in 2015. The measures that increase the share of natural gas consumption, reduce the GHG emission factor of electricity grid, and improve the average efficiency of industrial coal-fired boilers, will totally contribute 94% and 98% in direct and indirect GHG emissions reductions, respectively. These findings will provide a solid foundation for the low-carbon development of Chinese industrial parks.
Simulation of a Novel Single-column Cryogenic Air Separation Process Using LNG Cold Energy
NASA Astrophysics Data System (ADS)
Jieyu, Zheng; Yanzhong, Li; Guangpeng, Li; Biao, Si
In this paper, a novel single-column air separation process is proposed with the implementation of heat pump technique and introduction of LNG coldenergy. The proposed process is verifiedand optimized through simulation on the Aspen Hysys® platform. Simulation results reveal that thepower consumption per unit mass of liquid productis around 0.218 kWh/kg, and the total exergy efficiency of the systemis 0.575. According to the latest literatures, an energy saving of 39.1% is achieved compared with those using conventional double-column air separation units.The introduction of LNG cold energy is an effective way to increase the system efficiency.
RECS Data Show Decreased Energy Consumption per Household
2012-01-01
Total United States energy consumption in homes has remained relatively stable for many years as increased energy efficiency has offset the increase in the number and average size of housing units, according to the newly released data from the Residential Energy Consumption Survey (RECS). The average household consumed 90 million British thermal units (Btu) in 2009 based on RECS. This continues the downward trend in average residential energy consumption of the last 30 years. Despite increases in the number and the average size of homes plus increased use of electronics, improvements in efficiency for space heating, air conditioning, and major appliances have all led to decreased consumption per household. Newer homes also tend to feature better insulation and other characteristics, such as double-pane windows, that improve the building envelope.
Energy and operation management of a microgrid using particle swarm optimization
NASA Astrophysics Data System (ADS)
Radosavljević, Jordan; Jevtić, Miroljub; Klimenta, Dardan
2016-05-01
This article presents an efficient algorithm based on particle swarm optimization (PSO) for energy and operation management (EOM) of a microgrid including different distributed generation units and energy storage devices. The proposed approach employs PSO to minimize the total energy and operating cost of the microgrid via optimal adjustment of the control variables of the EOM, while satisfying various operating constraints. Owing to the stochastic nature of energy produced from renewable sources, i.e. wind turbines and photovoltaic systems, as well as load uncertainties and market prices, a probabilistic approach in the EOM is introduced. The proposed method is examined and tested on a typical grid-connected microgrid including fuel cell, gas-fired microturbine, wind turbine, photovoltaic and energy storage devices. The obtained results prove the efficiency of the proposed approach to solve the EOM of the microgrids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langner, R.; Hendron, B.; Bonnema, E.
2014-08-01
The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi,more » to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.« less
Yousefi, Mohammad; Mahdavi Damghani, Abdolmajid; Khoramivafa, Mahmud
2016-04-01
The aims of this study were to determine energy requirement and global warming potential (GWP) in low and high input wheat production systems in western of Iran. For this purpose, data were collected from 120 wheat farms applying questionnaires via face-to-face interviews. Results showed that total energy input and output were 60,000 and 180,000 MJ ha(-1) in high input systems and 14,000 and 56,000 MJ ha(-1) in low input wheat production systems, respectively. The highest share of total input energy in high input systems recorded for electricity power, N fertilizer, and diesel fuel with 36, 18, and 13 %, respectively, while the highest share of input energy in low input systems observed for N fertilizer, diesel fuel, and seed with 32, 31, and 27 %. Energy use efficiency in high input systems (3.03) was lower than of low input systems (3.94). Total CO2, N2O, and CH4 emissions in high input systems were 1981.25, 31.18, and 1.87 kg ha(-1), respectively. These amounts were 699.88, 0.02, and 0.96 kg ha(-1) in low input systems. In high input wheat production systems, total GWP was 11686.63 kg CO2eq ha(-1) wheat. This amount was 725.89 kg CO2eq ha(-1) in low input systems. The results show that 1 ha of high input system will produce greenhouse effect 17 times of low input systems. So, high input production systems need to have an efficient and sustainable management for reducing environmental crises such as change climate.
Microgrid Analysis Tools Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez, Antonio; Haase, Scott G; Mathur, Shivani
2018-03-05
The over-arching goal of the Alaska Microgrid Partnership is to reduce the use of total imported fuel into communities to secure all energy services by at least 50% in Alaska's remote microgrids without increasing system life cycle costs while also improving overall system reliability, security, and resilience. One goal of the Alaska Microgrid Partnership is to investigate whether a combination of energy efficiency and high-contribution (from renewable energy) power systems can reduce total imported energy usage by 50% while reducing life cycle costs and improving reliability and resiliency. This presentation provides an overview of the following four renewable energy optimizationmore » tools. Information is from respective tool websites, tool developers, and author experience. Distributed Energy Resources Customer Adoption Model (DER-CAM) Microgrid Design Toolkit (MDT) Renewable Energy Optimization (REopt) Tool Hybrid Optimization Model for Electric Renewables (HOMER).« less
A hierarchical approach for the design improvements of an Organocat biorefinery.
Abdelaziz, Omar Y; Gadalla, Mamdouh A; El-Halwagi, Mahmoud M; Ashour, Fatma H
2015-04-01
Lignocellulosic biomass has emerged as a potentially attractive renewable energy source. Processing technologies of such biomass, particularly its primary separation, still lack economic justification due to intense energy requirements. Establishing an economically viable and energy efficient biorefinery scheme is a significant challenge. In this work, a systematic approach is proposed for improving basic/existing biorefinery designs. This approach is based on enhancing the efficiency of mass and energy utilization through the use of a hierarchical design approach that involves mass and energy integration. The proposed procedure is applied to a novel biorefinery called Organocat to minimize its energy and mass consumption and total annualized cost. An improved heat exchanger network with minimum energy consumption of 4.5 MJ/kgdry biomass is designed. An optimal recycle network with zero fresh water usage and minimum waste discharge is also constructed, making the process more competitive and economically attractive. Copyright © 2015 Elsevier Ltd. All rights reserved.
Plug-Load Control and Behavioral Change Research in GSA Office Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, I.; Cutler, D.; Sheppy, M.
2012-10-01
The U.S. General Services Administration (GSA) owns and leases over 354 million square feet (ft2) of space in over 9,600 buildings [1]. GSA is a leader among federal agencies in aggressively pursuing energy efficiency (EE) opportunities for its facilities and installing renewable energy (RE) systems to provide heating, cooling, and power to these facilities. According to several energy assessments of GSA's buildings conducted by the National Renewable Energy Laboratory (NREL), plug-loads account for approximately 21% of the total electricity consumed within a standard GSA Region 3 office building. This study aims to provide insight on how to effectively manage plug-loadmore » energy consumption and attain higher energy and cost savings for plug-loads. As GSA improves the efficiency of its building stock, plug-loads will become an even greater portion of its energy footprint.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Ian M.; Goldman, Charles A.; Murphy, Sean
The average cost to utilities to save a kilowatt-hour (kWh) in the United States is 2.5 cents, according to the most comprehensive assessment to date of the cost performance of energy efficiency programs funded by electricity customers. These costs are similar to those documented earlier. Cost-effective efficiency programs help ensure electricity system reliability at the most affordable cost as part of utility planning and implementation activities for resource adequacy. Building on prior studies, Berkeley Lab analyzed the cost performance of 8,790 electricity efficiency programs between 2009 and 2015 for 116 investor-owned utilities and other program administrators in 41 states. Themore » Berkeley Lab database includes programs representing about three-quarters of total spending on electricity efficiency programs in the United States.« less
NASA Astrophysics Data System (ADS)
Newell, Richard G., Jr.
Over the long run, the impacts of environmental policies will be greatly affected by the influence these policies have on the rate and direction of technological change. In particular, the roles played by energy prices and product regulation in energy-saving technology innovation are exceptionally important considerations in modeling climate change and evaluating alternative policy options. We analyze the effects of energy prices and energy-efficiency regulations on the menu of air conditioner and water heater models available on the market over a period of more than three decades, measuring their innovation in terms of improvements in the products' underlying characteristics. Through estimation of a series of "characteristics transformation surfaces," we find that during less than four decades, substantial innovation in these products reduced the total capital and operating costs of air conditioning by one-half and water heating by more than one-fifth. Although the overall rate of innovation in these products appears to be independent of energy prices and regulations, the evidence suggests that the direction of innovation may be responsive to energy price changes. This would imply that energy price increases induced innovation in a direction that lowered the capital cost tradeoffs inherent in producing more energy-efficient products. The evidence supporting "regulation-induced" changes in these tradeoffs is much weaker. Our estimates indicate that about one- to two-fifths of the energy-efficiency improvements in these products from 1973 to 1993 were associated with historical changes in energy prices. We also find that this responsiveness to price changes increased substantially after product labeling requirements came into effect, and that minimum efficiency standards had a significant positive effect on average efficiency levels. Nonetheless, a sizeable portion of historical efficiency improvements in these technologies is associated with the products' overall rate of innovation. Looking forward, we estimate that energy taxes of 10 to 30 percent of retail prices could significantly increase the energy efficiency of the product menu. We predict that such taxes would lead to additional efficiency increases in air conditioners of 6 to 26 percent. We conclude that the price-induced component of energy-efficiency innovation should not be ignored when assessing alternative climate change policies.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-09
... a few types of equipment where quality and efficiency are important: Inverters for solar PV power.... Geothermal. Hydropower. Wind power. Solar power. Both Thailand and the Philippines rank high on ITA's... through resources such as solar, wind energy, hydro and biomass resources. Total installed capacity of the...
Energy utilization and conservation in cotton gins
USDA-ARS?s Scientific Manuscript database
A 2013 survey of cotton gins found that energy costs, electricity and dryer fuel, were $6.11 per bale, 25% of the total variable costs of ginning. Recent studies have found that average electricity use at gins is approximately 35 kWh per bale, more efficient than older studies. However, gins must co...
Code of Federal Regulations, 2014 CFR
2014-01-01
... maintenance of the renewable energy system or energy efficiency improvement will operate or perform as..., and maintenance. Authoritative evidence that project team service providers have the necessary... and shakedown, warranties, insurance, financing, professional services, and operations and maintenance...
Code of Federal Regulations, 2013 CFR
2013-01-01
... maintenance of the renewable energy system or energy efficiency improvement will operate or perform as..., and maintenance. Authoritative evidence that project team service providers have the necessary... and shakedown, warranties, insurance, financing, professional services, and operations and maintenance...
Code of Federal Regulations, 2012 CFR
2012-01-01
... maintenance of the renewable energy system or energy efficiency improvement will operate or perform as..., and maintenance. Authoritative evidence that project team service providers have the necessary... and shakedown, warranties, insurance, financing, professional services, and operations and maintenance...
Mobil`s Energy Management Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoeneborn, F.C.
1997-06-01
Mobil`s Facilities Management Network sponsored a cross-divisional team to reduce energy costs. This team developed an Energy Management Plan to reduce energy costs by $25 million annually throughout all Mobil divisions over the next five years (total of $125 million committed savings). The core of this plan is the belief that energy costs are controllable and should be managed with the expertise that Mobil manages other parts of the business. Areas of focus are economic procurement, efficient consumption, and expertise sharing.
Biomechanical evaluation of an innovative spring-loaded axillary crutch design.
Zhang, Yanxin; Liu, Guangyu; Xie, Shengquan; Liger, Aurélien
2011-01-01
We evaluated an innovative spring-loaded crutch design by comparing its performance with standard crutches through a biomechanical approach. Gait analysis was conducted for 7 male subjects under two conditions: walking with standard crutches and with spring-loaded crutches. Three-dimensional kinematic data and ground reaction force were recorded. Spatiotemporal variables, external mechanical work, and elastic energy (for spring crutches) were calculated based on recorded data. The trajectories of vertical ground reaction forces with standard crutches had two main peaks before and after mid-stance, and those with optimized spring-loaded crutches had only one main peak. The magnitude of external mechanical work was significantly higher with spring-loaded crutches than with standard crutches for all subjects, and the transferred elastic energy made an important contribution to the total external work for spring-loaded crutches. No significant differences in the spatiotemporal parameters were observed. Optimized spring-loaded crutches can efficiently propel crutch walkers and could reduce the total energy expenditure in crutch walking. Further research using optimized spring-loaded crutches with respect to energy efficiency is recommended.
Demonstration of high coupling efficiency to Al capsule in rugby hohlraum on NIF
NASA Astrophysics Data System (ADS)
Ping, Y.; Smalyuk, V.; Amendt, P.; Bennett, D.; Chen, H.; Dewald, E.; Goyon, C.; Graziani, F.; Johnson, S.; Khan, S.; Landen, O.; Nikroo, A.; Pino, J.; Ralph, J.; Seugling, R.; Strozzi, D.; Tipton, R.; Tommasini, R.; Wang, M.; Loomis, E.; Merritt, E.; Montgomery, D.
2017-10-01
A new design of the double-shell approach predicts a high coupling efficiency from the hohlraum to the capsule, with 700 kJ in the capsule instead of 200kJ in the conventional low-Z single-shell scheme, improving prospects of double-shell performance. A recent experiment on NIF has evaluated a first step toward this goal of energy coupling using 0.7x subscale Al capsule, Au rugby hohlraum and 1MJ drive. A shell velocity of 150 μm/ns was measured, DANTE peak temperature of 255 eV was measured, and shell kinetic energy of 36 kJ was inferred using a rocket model, all close to predictions and consistent with 330kJ of total energy coupled to the capsule. Data analysis and more results from subsequent experiments will be presented. In the next step, an additional 2x increase of total coupled energy up to 700 kJ is projected for full-scale 2-MJ drive in U Rugby hohlraum. This work was performed under DOE contract DE-AC52-07NA27344.
Earthquake Energy Dissipation in Light of High-Velocity, Slip-Pulse Shear Experiments
NASA Astrophysics Data System (ADS)
Reches, Z.; Liao, Z.; Chang, J. C.
2014-12-01
We investigated the energy dissipation during earthquakes by analysis of high-velocity shear experiments conducted on room-dry, solid samples of granite, tonalite, and dolomite sheared at slip-velocity of 0.0006-1m/s, and normal stress of 1-11.5MPa. The experimental fault were loaded in one of three modes: (1) Slip-pulse of abrupt, intense acceleration followed by moderate deceleration; (2) Impact by a spinning, heavy flywheel (225 kg); and (3) Constant velocity loading. We refer to energy dissipation in terms of power-density (PD=shear stress*slip-velocity; units of MW/m^2), and Coulomb-energy-density (CED= mechanical energy/normal stress; units of m). We present two aspects: Relative energy dissipation of the above loading modes, and relative energy dissipation between impact experiments and moderate earthquakes. For the first aspect, we used: (i) the lowest friction coefficient of the dynamic weakening; (ii) the work dissipated before reaching the lowest friction; and (iii) the cumulative mechanical work during the complete run. The results show that the slip-pulse/impact modes are energy efficient relatively to the constant-velocity mode as manifested by faster, more intense weakening and 50-90% lower energy dissipation. Thus, for a finite amount of pre-seismic crustal energy, the efficiency of slip-pulse would amplify earthquake instability. For the second aspect, we compare the experimental CED of the impact experiments to the reported breakdown energy (EG) of moderate earthquakes, Mw = 5.6 to 7.2 (Chang et al., 2012). In is commonly assumed that the seismic EG is a small fraction of the total earthquake energy, and as expected in 9 out of 11 examined earthquakes, EG was 0.005 to 0.07 of the experimental CED. We thus speculate that the experimental relation of Coulomb-energy-density to total slip distance, D, CED = 0.605 × D^0.933, is a reasonable estimate of total earthquake energy, a quantity that cannot be determined from seismic data.
Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine
NASA Astrophysics Data System (ADS)
Ma, Zheshu; Chen, Hua; Zhang, Yong
2017-09-01
The increase of ship's energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO) is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI) and energy efficiency operational indicator (EEOI) aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.
The importance of geospatial data to calculate the optimal distribution of renewable energies
NASA Astrophysics Data System (ADS)
Díaz, Paula; Masó, Joan
2013-04-01
Specially during last three years, the renewable energies are revolutionizing the international trade while they are geographically diversifying markets. Renewables are experiencing a rapid growth in power generation. According to REN21 (2012), during last six years, the total renewables capacity installed grew at record rates. In 2011, the EU raised its share of global new renewables capacity till 44%. The BRICS nations (Brazil, Russia, India and China) accounted for about 26% of the total global. Moreover, almost twenty countries in the Middle East, North Africa, and sub-Saharan Africa have currently active markets in renewables. The energy return ratios are commonly used to calculate the efficiency of the traditional energy sources. The Energy Return On Investment (EROI) compares the energy returned for a certain source and the energy used to get it (explore, find, develop, produce, extract, transform, harvest, grow, process, etc.). These energy return ratios have demonstrated a general decrease of efficiency of the fossil fuels and gas. When considering the limitations of the quantity of energy produced by some sources, the energy invested to obtain them and the difficulties of finding optimal locations for the establishment of renewables farms (e.g. due to an ever increasing scarce of appropriate land) the EROI becomes relevant in renewables. A spatialized EROI, which uses variables with spatial distribution, enables the optimal position in terms of both energy production and associated costs. It is important to note that the spatialized EROI can be mathematically formalized and calculated the same way for different locations in a reproducible way. This means that having established a concrete EROI methodology it is possible to generate a continuous map that will highlight the best productive zones for renewable energies in terms of maximum energy return at minimum cost. Relevant variables to calculate the real energy invested are the grid connections between production and consumption, transportation loses and efficiency of the grid. If appropriate, the spatialized EROI analysis could include any indirect costs that the source of energy might produce, such as visual impacts, food market impacts and land price. Such a spatialized study requires GIS tools to compute operations using both spatial relations like distances and frictions, and topological relations like connectivity, not easy to consider in the way that EROI is currently calculated. In a broader perspective, by applying the EROI to various energy sources, a comparative analysis of the efficiency to obtain different source can be done in a quantitative way. The increase in energy investment is also accompanied by the increase of manufactures and policies. Further efforts will be necessary in the coming years to provide energy access through smart grids and to determine the efficient areas in terms of cost of production and energy returned on investment. The authors present the EROI as a reliable solution to address the input and output energy relationship and increase the efficiency in energy investment considering the appropriate geospatial variables. The spatialized EROI can be a useful tool to consider by decision makers when designing energy policies and programming energy funds, because it is an objective demonstration of which energy sources are more convenient in terms of costs and efficiency.
NASA Astrophysics Data System (ADS)
Qyyum, Muhammad Abdul; Wei, Feng; Hussain, Arif; Ali, Wahid; Sehee, Oh; Lee, Moonyong
2017-11-01
This research work unfolds a simple, safe, and environment-friendly energy efficient novel vortex tube-based natural gas liquefaction process (LNG). A vortex tube was introduced to the popular N2-expander liquefaction process to enhance the liquefaction efficiency. The process structure and condition were modified and optimized to take a potential advantage of the vortex tube on the natural gas liquefaction cycle. Two commercial simulators ANSYS® and Aspen HYSYS® were used to investigate the application of vortex tube in the refrigeration cycle of LNG process. The Computational fluid dynamics (CFD) model was used to simulate the vortex tube with nitrogen (N2) as a working fluid. Subsequently, the results of the CFD model were embedded in the Aspen HYSYS® to validate the proposed LNG liquefaction process. The proposed natural gas liquefaction process was optimized using the knowledge-based optimization (KBO) approach. The overall energy consumption was chosen as an objective function for optimization. The performance of the proposed liquefaction process was compared with the conventional N2-expander liquefaction process. The vortex tube-based LNG process showed a significant improvement of energy efficiency by 20% in comparison with the conventional N2-expander liquefaction process. This high energy efficiency was mainly due to the isentropic expansion of the vortex tube. It turned out that the high energy efficiency of vortex tube-based process is totally dependent on the refrigerant cold fraction, operating conditions as well as refrigerant cycle configurations.
Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kermeli, Katerina; Worrell, Ernst; Masanet, Eric
2011-12-01
The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and materialmore » costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.« less
2012-09-15
Control 19 4,321 639 Office 10 4,387 584 Hydropower 5 2,885 504 2.1.2 NTV emissions NTV petroleum consumption information is a combination of ...reductions that will occur because of planned engine efficiency changes in the floating plant . These reductions total 8,956 MTCO2e. In addition, a ...and/or the implementation of a variety of measures such as passive solar energy, planting trees and plants around buildings to achieve desired
NASA Technical Reports Server (NTRS)
Burrus, D.; Sabla, P. E.; Bahr, D. W.
1980-01-01
The feasibility of meeting or closely approaching the emissions goals established for the Energy Efficient Engine (E3) Project with an advanced design, single annular combustor was determined. A total of nine sector combustor configurations and one full-annular-combustor configuration were evaluated. Acceptable levels of carbon monoxide and hydrocarbon emissions were obtained with several of the sector combustor configurations tested, and several of the configurations tested demonstrated reduced levels of nitrogen oxides compared to conventional, single annular designs. None of the configurations tested demonstrated nitrogen oxide emission levels that meet the goal of the E3 Project.
Estimation of Transpiration and Water Use Efficiency Using Satellite and Field Observations
NASA Technical Reports Server (NTRS)
Choudhury, Bhaskar J.; Quick, B. E.
2003-01-01
Structure and function of terrestrial plant communities bring about intimate relations between water, energy, and carbon exchange between land surface and atmosphere. Total evaporation, which is the sum of transpiration, soil evaporation and evaporation of intercepted water, couples water and energy balance equations. The rate of transpiration, which is the major fraction of total evaporation over most of the terrestrial land surface, is linked to the rate of carbon accumulation because functioning of stomata is optimized by both of these processes. Thus, quantifying the spatial and temporal variations of the transpiration efficiency (which is defined as the ratio of the rate of carbon accumulation and transpiration), and water use efficiency (defined as the ratio of the rate of carbon accumulation and total evaporation), and evaluation of modeling results against observations, are of significant importance in developing a better understanding of land surface processes. An approach has been developed for quantifying spatial and temporal variations of transpiration, and water-use efficiency based on biophysical process-based models, satellite and field observations. Calculations have been done using concurrent meteorological data derived from satellite observations and four dimensional data assimilation for four consecutive years (1987-1990) over an agricultural area in the Northern Great Plains of the US, and compared with field observations within and outside the study area. The paper provides substantive new information about interannual variation, particularly the effect of drought, on the efficiency values at a regional scale.
Time-varying value of electric energy efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mims, Natalie A.; Eckman, Tom; Goldman, Charles
Electric energy efficiency resources save energy and may reduce peak demand. Historically, quantification of energy efficiency benefits has largely focused on the economic value of energy savings during the first year and lifetime of the installed measures. Due in part to the lack of publicly available research on end-use load shapes (i.e., the hourly or seasonal timing of electricity savings) and energy savings shapes, consideration of the impact of energy efficiency on peak demand reduction (i.e., capacity savings) has been more limited. End-use load research and the hourly valuation of efficiency savings are used for a variety of electricity planningmore » functions, including load forecasting, demand-side management and evaluation, capacity and demand response planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service. This study reviews existing literature on the time-varying value of energy efficiency savings, provides examples in four geographically diverse locations of how consideration of the time-varying value of efficiency savings impacts the calculation of power system benefits, and identifies future research needs to enhance the consideration of the time-varying value of energy efficiency in cost-effectiveness screening analysis. Findings from this study include: -The time-varying value of individual energy efficiency measures varies across the locations studied because of the physical and operational characteristics of the individual utility system (e.g., summer or winter peaking, load factor, reserve margin) as well as the time periods during which savings from measures occur. -Across the four locations studied, some of the largest capacity benefits from energy efficiency are derived from the deferral of transmission and distribution system infrastructure upgrades. However, the deferred cost of such upgrades also exhibited the greatest range in value of all the components of avoided costs across the locations studied. -Of the five energy efficiency measures studied, those targeting residential air conditioning in summer-peaking electric systems have the most significant added value when the total time-varying value is considered. -The increased use of rooftop solar systems, storage, and demand response, and the addition of electric vehicles and other major new electricity-consuming end uses are anticipated to significantly alter the load shape of many utility systems in the future. Data used to estimate the impact of energy efficiency measures on electric system peak demands will need to be updated periodically to accurately reflect the value of savings as system load shapes change. -Publicly available components of electric system costs avoided through energy efficiency are not uniform across states and utilities. Inclusion or exclusion of these components and differences in their value affect estimates of the time-varying value of energy efficiency. -Publicly available data on end-use load and energy savings shapes are limited, are concentrated regionally, and should be expanded.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLaski, A.; Gauthier, J.; Shugars, J.
Distribution transformers offer a largely untapped opportunity for efficiency improvements in buildings. Application of energy-efficient equipment can reduce transformer losses by about 20%, substantially cutting a facility's total electricity bill and offering typical paybacks less than three years. Since nearly all of the electricity powering the commercial and industrial sectors is stepped down in voltage by facility-owned distribution transformers, broad application of energy-efficient equipment will lead to huge economy-wide energy and dollar savings as well as associated environmental benefits. This opportunity has led to a multi-party coordinated effort that offers a new model for national partnerships to pursue market transformation.more » The model, called the Informal Collaborative Model for the purposes of this paper, is characterized by voluntary commitments of multiple stakeholders to carry out key market interventions in a coordinated fashion, but without pooling resources or control. Collaborative participants are joined by a common interest in establishing and expanding the market for a new product, service, or practice that will yield substantial energy savings. This paper summarizes the technical efficiency opportunity available in distribution transformers; discusses the market barriers to widespread adoption of energy-efficient transformers; and details an overall market transformation strategy to address the identified market barriers. The respective roles of each of the diverse players--manufacturers, government agencies, and utility and regional energy efficiency programs--are given particular attention. Each of the organizations involved brings a particular set of tools and capabilities for addressing the market barriers to more efficient transformers.« less
Safi, C; Cabas Rodriguez, L; Mulder, W J; Engelen-Smit, N; Spekking, W; van den Broek, L A M; Olivieri, G; Sijtsma, L
2017-09-01
Several cell disruption methods were tested on Nannochloropsis gaditana, to evaluate their efficiency in terms of cell disintegration, energy input and release of soluble proteins. High-pressure homogenization (HPH) and bead milling were the most efficient with >95% cell disintegration, ±50% (w/w) release of total proteins and low energy input (<0.5kWh.kg -1 biomass ). Enzymatic treatment required low energy input (<0.34kWh.kg -1 biomass ), but it only released ±35% protein (w/w). Pulsed Electric Field (PEF) was neither energy-efficient (10.44kWh.kg -1 biomass ) nor successful for protein release (only 10% proteins w/w) and cell disintegration. The release of proteins after applying HPH and bead milling always required less intensive operating conditions for cell disruption. The energy cost per unit of released protein ranged from 0.15-0.25 €.kg Protein -1 in case of HPH, and up to 2-20 €.kg Protein -1 in case of PEF. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantitative Financial Analysis of Alternative Energy Efficiency Shareholder Incentive Mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappers, Peter; Goldman, Charles; Chait, Michele
2008-08-03
Rising energy prices and climate change are central issues in the debate about our nation's energy policy. Many are demanding increased energy efficiency as a way to help reduce greenhouse gas emissions and lower the total cost of electricity and energy services for consumers and businesses. Yet, as the National Action Plan on Energy Efficiency (NAPEE) pointed out, many utilities continue to shy away from seriously expanding their energy efficiency program offerings because they claim there is insufficient profit-motivation, or even a financial disincentive, when compared to supply-side investments. With the recent introduction of Duke Energy's Save-a-Watt incentive mechanism andmore » ongoing discussions about decoupling, regulators and policymakers are now faced with an expanded and diverse landscape of financial incentive mechanisms, Determining the 'right' way forward to promote deep and sustainable demand side resource programs is challenging. Due to the renaissance that energy efficiency is currently experiencing, many want to better understand the tradeoffs in stakeholder benefits between these alternative incentive structures before aggressively embarking on a path for which course corrections can be time-consuming and costly. Using a prototypical Southwest utility and a publicly available financial model, we show how various stakeholders (e.g. shareholders, ratepayers, etc.) are affected by these different types of shareholder incentive mechanisms under varying assumptions about program portfolios. This quantitative analysis compares the financial consequences associated with a wide range of alternative incentive structures. The results will help regulators and policymakers better understand the financial implications of DSR program incentive regulation.« less
Fertilizer consumption and energy input for 16 crops in the United States
Amenumey, Sheila E.; Capel, Paul D.
2014-01-01
Fertilizer use by U.S. agriculture has increased over the past few decades. The production and transportation of fertilizers (nitrogen, N; phosphorus, P; potassium, K) are energy intensive. In general, about a third of the total energy input to crop production goes to the production of fertilizers, one-third to mechanization, and one-third to other inputs including labor, transportation, pesticides, and electricity. For some crops, fertilizer is the largest proportion of total energy inputs. Energy required for the production and transportation of fertilizers, as a percentage of total energy input, was determined for 16 crops in the U.S. to be: 19–60% for seven grains, 10–41% for two oilseeds, 25% for potatoes, 12–30% for three vegetables, 2–23% for two fruits, and 3% for dry beans. The harvested-area weighted-average of the fraction of crop fertilizer energy to the total input energy was 28%. The current sources of fertilizers for U.S. agriculture are dependent on imports, availability of natural gas, or limited mineral resources. Given these dependencies plus the high energy costs for fertilizers, an integrated approach for their efficient and sustainable use is needed that will simultaneously maintain or increase crop yields and food quality while decreasing adverse impacts on the environment.
Second-law efficiency of solar-thermal cavity receivers
NASA Technical Reports Server (NTRS)
Moynihan, P. I.
1983-01-01
Properly quantified performance of a solar-thermal cavity receiver must not only account for the energy gains and losses as dictated by the First Law of thermodynamics, but it must also account for the quality of that energy. However, energy quality can only be determined from the Second Law. An equation for the Second Law efficiency of a cavity receiver is derived from the definition of available energy, which is a thermodynamic property that measures the maximum amount of work obtainable when a system is allowed to come into unrestrained equilibrium with the surrounding environment. The fundamental concepts of the entropy and availability of radiation were explored from which a workable relationship among the reflected cone half-angle, the insolation, and the concentrator geometric characteristics was developed as part of the derivation of the Second Law efficiency. First and Second Law efficiencies were compared for data collected from two receivers that were designed for different purposes. A Second Law approach to quantifying the performance of a solar-thermal cavity receiver lends greater insight into the total performance than does the conventional First Law method.
Wang, Yongqiang; Núñez, Felipe; Doyle, Francis J.
2013-01-01
Synchronization is crucial to wireless sensor networks due to their decentralized structure. We propose an energy-efficient pulse-coupled synchronization strategy to achieve this goal. The basic idea is to reduce idle listening by intentionally introducing a large refractory period in the sensors’ cooperation. The large refractory period greatly reduces idle listening in each oscillation period, and is analytically proven to have no influence on the time to synchronization. Hence, it significantly reduces the total energy consumption in a synchronization process. A topology control approach tailored for pulse-coupled synchronization is given to guarantee a k-edge strongly connected interaction topology, which is tolerant to communication-link failures. The topology control approach is totally decentralized and needs no information exchange among sensors, and it is applicable to dynamic network topologies as well. This facilitates a completely decentralized implementation of the synchronization strategy. The strategy is applicable to mobile sensor networks, too. QualNet case studies confirm the effectiveness of the synchronization strategy. PMID:24307831
Analyzing Carbohydrate-Based Regenerative Fuel Cells as a Power Source for Unmanned Aerial Vehicles
2008-03-01
conventional means of generating electrical energy, such as turbines and internal combustion engines, in that the conventional methods normally have an...have 24 hours of daylight, this means that it must be able to store enough exergy (the total amount of energy that can theoretically be converted to...useful work, differentiated from useful energy by the efficiency of converting energy to work) to function during the time when exergy consumption is
Energy-efficient growth of phage Q Beta in Escherichia coli.
Kim, Hwijin; Yin, John
2004-10-20
The role of natural selection in the optimal design of organisms is controversial. Optimal forms, functions, or behaviors of organisms have long been claimed without knowledge of how genotype contributes to phenotype, delineation of design constraints, or reference to alternative designs. Moreover, arguments for optimal designs have been often based on models that were difficult, if not impossible, to test. Here, we begin to address these issues by developing and probing a kinetic model for the intracellular growth of bacteriophage Q beta in Escherichia coli. The model accounts for the energetic costs of all template-dependent polymerization reactions, in ATP equivalents, including RNA-dependent RNA elongation by the phage replicase and synthesis of all phage proteins by the translation machinery of the E. coli host cell. We found that translation dominated phage growth, requiring 85% of the total energy expenditure. Only 10% of the total energy was applied to activities other than the direct synthesis of progeny phage components, reflecting primarily the cost of making the negative-strand RNA template that is needed for replication of phage genomic RNA. Further, we defined an energy efficiency of phage growth and showed its direct relationship to the yield of phage progeny. Finally, we performed a sensitivity analysis and found that the growth of wild-type phage was optimized for progeny yield or energy efficiency, suggesting that phage Q beta has evolved to optimally utilize the finite resources of its host cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razhev, A M; Kargapol'tsev, E S; Churkin, D S
Results of an experimental study of the influence of a gas mixture (laser active medium) composition on an output energy and total efficiency of gas-discharge excimer lasers on ArF* (193 nm), KrCl* (222 nm), KrF* (248 nm) and XeCl* (308 nm) molecules operating without a buffer gas are presented. The optimal ratios of gas components (from the viewpoint of a maximum output energy) of an active medium are found, which provide an efficient operation of laser sources. It is experimentally confirmed that for gas-discharge excimer lasers on halogenides of inert gases the presence of a buffer gas in an activemore » medium is not a necessary condition for efficient operation. For the first time, in two-component gas mixtures of repetitively pulsed gas-discharge excimer lasers on electron transitions of excimer molecules ArF*, KrCl*, KrF* and XeCl*, the pulsed energy of laser radiation obtained under pumping by a transverse volume electric discharge in a low-pressure gas mixture without a buffer gas reached up to 170 mJ and a high pulsed output power (of up to 24 MW) was obtained at a FWHM duration of the KrF-laser pulse of 7 ns. The maximal total efficiency obtained in the experiment with two-component gas mixtures of KrF and XeCl lasers was 0.8%. (lasers)« less
Peng, Yuyang; Choi, Jaeho
2014-01-01
Improving the energy efficiency in wireless sensor networks (WSN) has attracted considerable attention nowadays. The multiple-input multiple-output (MIMO) technique has been proved as a good candidate for improving the energy efficiency, but it may not be feasible in WSN which is due to the size limitation of the sensor node. As a solution, the cooperative multiple-input multiple-output (CMIMO) technique overcomes this constraint and shows a dramatically good performance. In this paper, a new CMIMO scheme based on the spatial modulation (SM) technique named CMIMO-SM is proposed for energy-efficiency improvement. We first establish the system model of CMIMO-SM. Based on this model, the transmission approach is introduced graphically. In order to evaluate the performance of the proposed scheme, a detailed analysis in terms of energy consumption per bit of the proposed scheme compared with the conventional CMIMO is presented. Later, under the guide of this new scheme we extend our proposed CMIMO-SM to a multihop clustered WSN for further achieving energy efficiency by finding an optimal hop-length. Equidistant hop as the traditional scheme will be compared in this paper. Results from the simulations and numerical experiments indicate that by the use of the proposed scheme, significant savings in terms of total energy consumption can be achieved. Combining the proposed scheme with monitoring sensor node will provide a good performance in arbitrary deployed WSN such as forest fire detection system.
Data-Driven Learning of Total and Local Energies in Elemental Boron
NASA Astrophysics Data System (ADS)
Deringer, Volker L.; Pickard, Chris J.; Csányi, Gábor
2018-04-01
The allotropes of boron continue to challenge structural elucidation and solid-state theory. Here we use machine learning combined with random structure searching (RSS) algorithms to systematically construct an interatomic potential for boron. Starting from ensembles of randomized atomic configurations, we use alternating single-point quantum-mechanical energy and force computations, Gaussian approximation potential (GAP) fitting, and GAP-driven RSS to iteratively generate a representation of the element's potential-energy surface. Beyond the total energies of the very different boron allotropes, our model readily provides atom-resolved, local energies and thus deepened insight into the frustrated β -rhombohedral boron structure. Our results open the door for the efficient and automated generation of GAPs, and other machine-learning-based interatomic potentials, and suggest their usefulness as a tool for materials discovery.
Data-Driven Learning of Total and Local Energies in Elemental Boron.
Deringer, Volker L; Pickard, Chris J; Csányi, Gábor
2018-04-13
The allotropes of boron continue to challenge structural elucidation and solid-state theory. Here we use machine learning combined with random structure searching (RSS) algorithms to systematically construct an interatomic potential for boron. Starting from ensembles of randomized atomic configurations, we use alternating single-point quantum-mechanical energy and force computations, Gaussian approximation potential (GAP) fitting, and GAP-driven RSS to iteratively generate a representation of the element's potential-energy surface. Beyond the total energies of the very different boron allotropes, our model readily provides atom-resolved, local energies and thus deepened insight into the frustrated β-rhombohedral boron structure. Our results open the door for the efficient and automated generation of GAPs, and other machine-learning-based interatomic potentials, and suggest their usefulness as a tool for materials discovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development formore » improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics.« less
Minimization of power consumption during charging of superconducting accelerating cavities
NASA Astrophysics Data System (ADS)
Bhattacharyya, Anirban Krishna; Ziemann, Volker; Ruber, Roger; Goryashko, Vitaliy
2015-11-01
The radio frequency cavities, used to accelerate charged particle beams, need to be charged to their nominal voltage after which the beam can be injected into them. The standard procedure for such cavity filling is to use a step charging profile. However, during initial stages of such a filling process a substantial amount of the total energy is wasted in reflection for superconducting cavities because of their extremely narrow bandwidth. The paper presents a novel strategy to charge cavities, which reduces total energy reflection. We use variational calculus to obtain analytical expression for the optimal charging profile. Energies, reflected and required, and generator peak power are also compared between the charging schemes and practical aspects (saturation, efficiency and gain characteristics) of power sources (tetrodes, IOTs and solid state power amplifiers) are also considered and analysed. The paper presents a methodology to successfully identify the optimal charging scheme for different power sources to minimize total energy requirement.
Measured and simulated performance of Compton-suppressed TIGRESS HPGe clover detectors
NASA Astrophysics Data System (ADS)
Schumaker, M. A.; Hackman, G.; Pearson, C. J.; Svensson, C. E.; Andreoiu, C.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Boston, A. J.; Chakrawarthy, R. S.; Churchman, R.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Jones, B.; Maharaj, R.; Morton, A. C.; Phillips, A. A.; Sarazin, F.; Scraggs, H. C.; Smith, M. B.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.
2007-01-01
Tests of the performance of a 32-fold segmented HPGe clover detector coupled to a 20-fold segmented Compton-suppression shield, which form a prototype element of the TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS), have been made. Peak-to-total ratios and relative efficiencies have been measured for a variety of γ-ray energies. These measurements were used to validate a GEANT4 simulation of the TIGRESS detectors, which was then used to create a simulation of the full 12-detector array. Predictions of the expected performance of TIGRESS are presented. These predictions indicate that TIGRESS will be capable, for single 1 MeV γ rays, of absolute detection efficiencies of 17% and 9.4%, and peak-to-total ratios of 54% and 61% for the "high-efficiency" and "optimized peak-to-total" configurations of the array, respectively.
NASA Astrophysics Data System (ADS)
Panchenko, A. N.; Tarasenko, V. F.
2008-01-01
The parameters of sealed off barrier excilamps are studied at high excitation powers. The total output pulse energy up to 25 mJ is achieved (the emitting area of a KrCl excilamp was up to 1500 cm2, the output power was above 100 kW, and the efficiency achieved 10%). It is shown that a volume discharge was formed in the coaxial excilamp when the energy supplied to the working mixture was increased and the pulse repetition rate was increased up to 50 Hz. The peak radiation intensity on the excilamp surface achieved ~100 W cm-2. The optimal excitation energy of a barrier excilamp was found to be 0.1-0.2 mJ cm-3. The excilamp efficiency rapidly decreases with further increasing the input energy.
High efficiency silicon solar cell based on asymmetric nanowire.
Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M; Baek, Chang-Ki
2015-07-08
Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm(2) and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells.
Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brand, L.; Yee, S.; Baker, J.
2015-02-01
In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. Natural gas furnace performance can be measured in many ways. The annual fuel utilization efficiency (AFUE) rating provides a fixed value under specified conditions, akin to the EPA miles per gallon rating for new vehicles. The AFUE rating is providedmore » by the manufacturer to the consumer and is a way to choose between models tested on the same basis. This value is commonly used in energy modeling calculations. ASHRAE 103 is a consensus furnace testing standard developed by the engineering community. The procedure provided in the standard covers heat-up, cool down, condensate heat loss, and steady-state conditions and an imposed oversize factor. The procedure can be used to evaluate furnace performance with specified conditions or with some variation chosen by the tester. In this report the ASHRAE 103 test result will be referred to as Annualized Efficiency (AE) to avoid confusion, and any non-standard test conditions will be noted. Aside from these two laboratory tests, steady state or flue loss efficiency can be measured in the field under many conditions; typically as found or tuned to the manufacturers recommended settings. In this report, AE and steady-state efficiency will be used as measures of furnace performance.« less
Biomimetic light-harvesting funnels for re-directioning of diffuse light.
Pieper, Alexander; Hohgardt, Manuel; Willich, Maximilian; Gacek, Daniel Alexander; Hafi, Nour; Pfennig, Dominik; Albrecht, Andreas; Walla, Peter Jomo
2018-02-14
Efficient sunlight harvesting and re-directioning onto small areas has great potential for more widespread use of precious high-performance photovoltaics but so far intrinsic solar concentrator loss mechanisms outweighed the benefits. Here we present an antenna concept allowing high light absorption without high reabsorption or escape-cone losses. An excess of randomly oriented pigments collects light from any direction and funnels the energy to individual acceptors all having identical orientations and emitting ~90% of photons into angles suitable for total internal reflection waveguiding to desired energy converters (funneling diffuse-light re-directioning, FunDiLight). This is achieved using distinct molecules that align efficiently within stretched polymers together with others staying randomly orientated. Emission quantum efficiencies can be >80% and single-foil reabsorption <0.5%. Efficient donor-pool energy funneling, dipole re-orientation, and ~1.5-2 nm nearest donor-acceptor transfer occurs within hundreds to ~20 ps. Single-molecule 3D-polarization experiments confirm nearly parallel emitters. Stacked pigment selection may allow coverage of the entire solar spectrum.
Comparative Study Between Wind and Photovoltaic (PV) Systems
NASA Astrophysics Data System (ADS)
Taha, Wesam
This paper reviews two renewable energy systems; wind and photovoltaic (PV) systems. The common debate between the two of them is to conclude which one is better, in terms of cost and efficiency. Therefore, comparative study, in terms of cost and efficiency, is attempted. Regarding total cost of both, wind and PV systems, many parameters must be taken into consideration such as availability of energy (either wind or solar), operation and maintenance, availability of costumers, political influence, and the components used in building the system. The main components and parameters that play major role in determining the overall efficiency of wind systems are the wind turbine generator (WTG), gearbox and control technologies such as power, and speed control. On the other hand, in grid-connected PV systems (GCPVS), converter architecture along with maximum power point tracking (MPPT) algorithm and inverter topologies are the issues that affects the efficiency significantly. Cost and efficiency analyses of both systems have been carried out based on the statistics available till today and would be useful in the progress of renewable energy penetration throughout the world.
A Digital Compressed Sensing-Based Energy-Efficient Single-Spot Bluetooth ECG Node
Cai, Zhipeng; Zou, Fumin; Zhang, Xiangyu
2018-01-01
Energy efficiency is still the obstacle for long-term real-time wireless ECG monitoring. In this paper, a digital compressed sensing- (CS-) based single-spot Bluetooth ECG node is proposed to deal with the challenge in wireless ECG application. A periodic sleep/wake-up scheme and a CS-based compression algorithm are implemented in a node, which consists of ultra-low-power analog front-end, microcontroller, Bluetooth 4.0 communication module, and so forth. The efficiency improvement and the node's specifics are evidenced by the experiments using the ECG signals sampled by the proposed node under daily activities of lay, sit, stand, walk, and run. Under using sparse binary matrix (SBM), block sparse Bayesian learning (BSBL) method, and discrete cosine transform (DCT) basis, all ECG signals were essentially undistorted recovered with root-mean-square differences (PRDs) which are less than 6%. The proposed sleep/wake-up scheme and data compression can reduce the airtime over energy-hungry wireless links, the energy consumption of proposed node is 6.53 mJ, and the energy consumption of radio decreases 77.37%. Moreover, the energy consumption increase caused by CS code execution is negligible, which is 1.3% of the total energy consumption. PMID:29599945
A Digital Compressed Sensing-Based Energy-Efficient Single-Spot Bluetooth ECG Node.
Luo, Kan; Cai, Zhipeng; Du, Keqin; Zou, Fumin; Zhang, Xiangyu; Li, Jianqing
2018-01-01
Energy efficiency is still the obstacle for long-term real-time wireless ECG monitoring. In this paper, a digital compressed sensing- (CS-) based single-spot Bluetooth ECG node is proposed to deal with the challenge in wireless ECG application. A periodic sleep/wake-up scheme and a CS-based compression algorithm are implemented in a node, which consists of ultra-low-power analog front-end, microcontroller, Bluetooth 4.0 communication module, and so forth. The efficiency improvement and the node's specifics are evidenced by the experiments using the ECG signals sampled by the proposed node under daily activities of lay, sit, stand, walk, and run. Under using sparse binary matrix (SBM), block sparse Bayesian learning (BSBL) method, and discrete cosine transform (DCT) basis, all ECG signals were essentially undistorted recovered with root-mean-square differences (PRDs) which are less than 6%. The proposed sleep/wake-up scheme and data compression can reduce the airtime over energy-hungry wireless links, the energy consumption of proposed node is 6.53 mJ, and the energy consumption of radio decreases 77.37%. Moreover, the energy consumption increase caused by CS code execution is negligible, which is 1.3% of the total energy consumption.
Design and performance of the Ames electric-arc shock tunnel
NASA Technical Reports Server (NTRS)
Reller, J. O., Jr.
1973-01-01
A high enthalpy shock tunnel using arc-heated helium as the driver gas was designed for gas dynamic research at total stream energies from 7,000 to 35,000 j/g. The arc driver was found to be a relatively efficient energy converter. Tailored shock Mach numbers from 11.5 to 14.6 in air were demonstrated. A nozzle calibration with a total stream enthalpy of 18,600 j/g of air gave test times of 1.5 to 2.0 m sec at flow Mach numbers from 16 to 24.
NASA Astrophysics Data System (ADS)
Elghali, Siddig
Middle East and North Africa countries have been criticized for failing to utilize foreign direct investment energy resources efficiently. The changing of energy resources environment of the past decades with its growing emphasis on the importance of imminent energy supply challenges require strategists to consider different types of energy resources investment to improve energy supply. One type of energy investment will show effectiveness and efficiency in utilizing foreign direct investment in exposing RE, fossil fuels, natural gas, and reducing CO2 emissions. The purpose of this quantitative correlational study was to utilize foreign direct investment to predict total primary energy supply in the Middle East and North Africa region between 1971 and 2013. The study was conducted using a sample size of 43 years of energy supply resources and foreign direct investment from 1971 to 2013, which includes all of the years for which FDI is available. RE potential may equip Middle East and North Africa countries with sustainable and clean electricity for centuries to come, as non-renewable energy resources may not meet the demands globally and domestically or environmentally. As demands for fossil fuels grow, carbon emissions will increase. RE may be a better option of CO 2 emissions sequestration and will increase electricity to rural areas without government subsidies and complex decision-making policies. RE infrastructure will reduce water desalinization costs, cooling systems, and be useful in heating. Establishing concentrated solar power may be useful for the region cooperation, negotiations, and integration to share this energy. The alternative sought to fossil fuels was nuclear power. However, nuclear power depends on depleting, non-renewable uranium resources. The cost of uranium will increase if widely used and the presence of a nuclear plant in an unstable region is unsafe. Thus, renewable energy as a long-term option is efficient. A nonlinear regression analysis performed to test the foreign direct investment and energy supply predictor variables with the control variables relate to renewable energy resources, fossil fuels, natural gas, nuclear energy, and CO2 emissions. FDI to predict the total primary energy supply in the MENA region between 1971 and 2013. The predictor variable was FDI evaluated for all years between 1971 and 2013. The criterion variables were total primary energy supply from four distinct sources: fossil fuels (including crude oil, natural gas liquid, and refinery feedstocks); natural gas; renewables and waste; and electricity. The results of the nonlinear regression supported FDI inflow was significantly predictive of the total primary energy supply in the Middle East between 1971 and 2013. A future quantitative study could examine FDI and Energy Supply in the MENA for strategic energy and investment policies indicators. Significant prediction between FDI and energy supply should serve as a red flag to researchers and cause them to research further. The study outlines steps that could be followed in making a determination whether selected FDI were consistent with energy data, which would then suggest the need for further FDI and energy supply investigation.
Ratanatamskul, Chavalit; Saleart, Tawinan
2016-04-01
Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m(3)/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Lingbo; Hasanbeigi, Ali; Price, Lynn
2012-11-01
The pulp and paper industry ranks fourth in terms of energy consumption among industries worldwide. Globally, the pulp and paper industry accounted for approximately 5 percent of total world industrial final energy consumption in 2007, and contributed 2 percent of direct carbon dioxide (CO2) emissions from industry. Worldwide pulp and paper demand and production are projected to increase significantly by 2050, leading to an increase in this industry’s absolute energy use and greenhouse gas (GHG) emissions. Development of new energy-efficiency and GHG mitigation technologies and their deployment in the market will be crucial for the pulp and paper industry’s mid-more » and long-term climate change mitigation strategies. This report describes the industry’s processes and compiles available information on the energy savings, environmental and other benefits, costs, commercialization status, and references for 36 emerging technologies to reduce the industry’s energy use and GHG emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies that have already been commercialized for the pulp and paper industry, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. The purpose of this report is to provide engineers, researchers, investors, paper companies, policy makers, and other interested parties with easy access to a well-structured resource of information on these technologies.« less
Chance-constrained economic dispatch with renewable energy and storage
Cheng, Jianqiang; Chen, Richard Li-Yang; Najm, Habib N.; ...
2018-04-19
Increased penetration of renewables, along with uncertainties associated with them, have transformed how power systems are operated. High levels of uncertainty means that it is not longer possible to guarantee operational feasibility with certainty, instead constraints are required to be satisfied with high probability. We present a chance-constrained economic dispatch model that efficiently integrates energy storage and high renewable penetration to satisfy renewable portfolio requirements. Specifically, it is required that wind energy contributes at least a prespecified ratio of the total demand and that the scheduled wind energy is dispatchable with high probability. We develop an approximated partial sample averagemore » approximation (PSAA) framework to enable efficient solution of large-scale chanceconstrained economic dispatch problems. Computational experiments on the IEEE-24 bus system show that the proposed PSAA approach is more accurate, closer to the prescribed tolerance, and about 100 times faster than sample average approximation. Improved efficiency of our PSAA approach enables solution of WECC-240 system in minutes.« less
Chance-constrained economic dispatch with renewable energy and storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Jianqiang; Chen, Richard Li-Yang; Najm, Habib N.
Increased penetration of renewables, along with uncertainties associated with them, have transformed how power systems are operated. High levels of uncertainty means that it is not longer possible to guarantee operational feasibility with certainty, instead constraints are required to be satisfied with high probability. We present a chance-constrained economic dispatch model that efficiently integrates energy storage and high renewable penetration to satisfy renewable portfolio requirements. Specifically, it is required that wind energy contributes at least a prespecified ratio of the total demand and that the scheduled wind energy is dispatchable with high probability. We develop an approximated partial sample averagemore » approximation (PSAA) framework to enable efficient solution of large-scale chanceconstrained economic dispatch problems. Computational experiments on the IEEE-24 bus system show that the proposed PSAA approach is more accurate, closer to the prescribed tolerance, and about 100 times faster than sample average approximation. Improved efficiency of our PSAA approach enables solution of WECC-240 system in minutes.« less
Silicon solar cells by ion implantation and pulsed energy processing
NASA Technical Reports Server (NTRS)
Kirkpatrick, A. R.; Minnucci, J. A.; Shaughnessy, T. S.; Greenwald, A. C.
1976-01-01
A new method for fabrication of silicon solar cells is being developed around ion implantation in conjunction with pulsed electron beam techniques to replace conventional furnace processing. Solar cells can be fabricated totally in a vacuum environment at room temperature. Cells with 10% AM0 efficiency have been demonstrated. High efficiency cells and effective automated processing capabilities are anticipated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Pengxiu; Wang, Yuping; Li, Yida
2015-04-28
A time-dependent, quantum reaction dynamics calculation with seven degrees of freedom was carried out to study the energy efficiency in surmounting the approximate center energy barrier of OH + CH{sub 3}. The calculation shows the OH vibration excitations greatly enhance the reactivity, whereas the vibrational excitations of CH{sub 3} and the rotational excitations hinder the reactivity. On the basis of equal amount of total energy, although this reaction has a slight early barrier, it is the OH vibrational energy that is the dominate force in promoting the reactivity, not the translational energy. The studies on both the forward O +more » CH{sub 4} and reverse OH + CH{sub 3} reactions demonstrate, for these central barrier reactions, a small change of the barrier location can significantly change the energy efficacy roles on the reactivity. The calculated rate constants agree with the experimental data.« less
Geng, Yong; Liu, Zuoxi; Xue, Bing; Dong, Huijuan; Fujita, Tsuyoshi; Chiu, Anthony
2014-12-01
Industrial symbiosis is the sharing of services, utility, and by-product resources among industries. This is usually made in order to add value, reduce costs, and improve the environment, and therefore has been taken as an effective approach for developing an eco-industrial park, improving resource efficiency, and reducing pollutant emission. Most conventional evaluation approaches ignored the contribution of natural ecosystem to the development of industrial symbiosis and cannot reveal the interrelations between economic development and environmental protection, leading to a need of an innovative evaluation method. Under such a circumstance, we present an emergy analysis-based evaluation method by employing a case study at Shenyang Economic and Technological Development Zone (SETDZ). Specific emergy indicators on industrial symbiosis, including emergy savings and emdollar value of total emergy savings, were developed so that the holistic picture of industrial symbiosis can be presented. Research results show that nonrenewable inputs, imported resource inputs, and associated services could be saved by 89.3, 32.51, and 15.7 %, and the ratio of emergy savings to emergy of the total energy used would be about 25.58 %, and the ratio of the emdollar value of total emergy savings to the total gross regional product (GRP) of SETDZ would be 34.38 % through the implementation of industrial symbiosis. In general, research results indicate that industrial symbiosis could effectively reduce material and energy consumption and improve the overall eco-efficiency. Such a method can provide policy insights to industrial park managers so that they can raise appropriate strategies on developing eco-industrial parks. Useful strategies include identifying more potential industrial symbiosis opportunities, optimizing energy structure, increasing industrial efficiency, recovering local ecosystems, and improving public and industrial awareness of eco-industrial park policies.
NASA Astrophysics Data System (ADS)
Hoefflinger, Bernd
Chip-based electronics in 2010 consumed about 10% of the world's total electric power of ˜2 TW. We have seen throughout the book that all segments, processing, memory and communication, are expected to increase their performance or bandwidth by three orders of magnitude in the decade until 2020. If this progress would be realized, the world semiconductor revenue could grow by 50-100%, and the ICT industry by 43-66% in this decade (Fig. 6.1). Progress sustained at these levels certainly depends on investments and qualified manpower, but energy has become another roadblock almost overnight. In this chapter, we touch upon the life-cycle energy of chips by assessing the energy of Si wafer manufacturing, needed to bring the chips to life, and the power efficiencies in their respective operations. An outstanding segment of power-hungry chip operations is that of operating data centers, often called server farms. Their total operating power was ˜36 GW in 2010, and we look at their evolution under the prospect of a 1,000× growth in performance by 2020. One feasible scenario is that we succeed in improving the power efficiency of Processing 1,000×, Memory 1,000×, Communication 100×, within a decade. In this case, the total required power for the world's data centers would still increase 4× to 144 GW by 2020, equivalent to 40% of the total electrical power available in all of Europe. The power prospects for mobile/wireless as well as long-line cable/radio/satellite are equally serious. Any progression by less than the factors listed above will lead to economic growth smaller than the projections given above. This demands clearly that sustainable nanoelectronics must be minimum-energy (femtojoule) electronics.
Schreuder, Jan J; Castiglioni, Alessandro; Maisano, Francesco; Steendijk, Paul; Donelli, Andrea; Baan, Jan; Alfieri, Ottavio
2005-01-01
Surgical left ventricular restoration by means of endoventricular patch aneurysmectomy in patients with postinfarction aneurysm should result in acute improved left ventricular performance by decreasing mechanical dyssynchrony and increasing energy efficiency. Nine patients with left ventricular postinfarction aneurysm were studied intraoperatively before and after ventricular restoration with a conductance volume catheter to analyze pressure-volume relationships, energy efficiency, and mechanical dyssynchrony. The end-systolic elastance was used as a load-independent index of contractile state. Left ventricular energy efficiency was calculated from stroke work and total pressure-volume area. Segmental volume changes perpendicular to the long axis were used to calculate mechanical dyssynchrony. Statistical analysis was performed with the paired t test and least-squares linear regression. Endoventricular patch aneurysmectomy reduced end-diastolic volume by 37% (P < .001), with unchanged stroke volume. Systolic function improved, as derived from increased +dP/dt(max), by 42% (P < .03), peak ejection rate by 28% (P < .02), and ejection fraction by 16% (P < .0002). Early diastolic function improved, as shown by reduction of -dP/dt(max) by 34% (P < .006) and shortened tau by 30% (P < .001). Left ventricular end-systolic elastance increased from 1.2 +/- 0.6 to 2.2 +/- 1 mm Hg/mL (P < .001). Left ventricular energy efficiency increased by 36% (P < .002). Left ventricular mechanical dyssynchrony decreased during systole by 33% (P < .001) and during diastole by 20% (P < .005). Left ventricular restoration induced acute improvements in contractile state, energy efficiency, and relaxation, together with a decrease in left ventricular mechanical dyssynchrony.
Technical and Economic Aspects of Designing an Efficient Room Air-Conditioner Program in India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhyankar, Nikit; Shah, Nihar; Phadke, Amol
Several studies have projected a massive increase in the demand for air conditioners (ACs) over the next two decades in India. By 2030, room ACs could add 140 GW to the peak load, equivalent to over 30% of the total projected peak load. Therefore, there is significant interest among policymakers, regulators, and utilities in managing room AC demand by enhancing energy efficiency. Building on the historical success of the Indian Bureau of Energy Efficiency’s star-labeling program, Energy Efficiency Services Limited recently announced a program to accelerate the sale of efficient room ACs using bulk procurement, similar to their successful UJALAmore » light-emitting diode (LED) bulk procurement program. This report discusses some of the key considerations in designing a bulk procurement or financial incentive program for enhancing room AC efficiency in India. We draw upon our previous research to demonstrate the overall technical potential and price impact of room AC efficiency improvement and its technical feasibility in India. We also discuss the importance of using low global warming potential (GWP) refrigerants and smart AC equipment that is demand response (DR) ready.« less
Solar heating system final design package
NASA Technical Reports Server (NTRS)
1979-01-01
The system is composed of a warm air collector, a logic control unit and a universal switching and transport unit. The collector was originally conceived and designed as an integrated roof/wall system and therefore provides a dual function in the structure. The collector serves both as a solar energy conversion system and as a structural weather resistant skin. The control unit provides totally automatic control over the operation of the system. It receives input data from sensor probes in collectors, storage and living space. The logic was designed so as to make maximum use of solar energy and minimize use of conventional energy. The transport and switching unit is a high-efficiency air-handling system equipped with gear motor valves that respond to outputs from the control system. The fan unit was designed for maximum durability and efficiency in operation, and has permanently lubricated ball bearings and excellent air-handling efficiency.
New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiss, T.; Chaney, L.; Meyer, J.
Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic systemmore » simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.« less
Extinction cross-section suppression and active acoustic invisibility cloaking
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-10-01
Invisibility in its canonical form requires rendering a zero extinction cross-section (or energy efficiency) from an active or a passive object. This work demonstrates the successful theoretical realization of this physical effect for an active cylindrically radiating acoustic body, undergoing periodic axisymmetric harmonic vibrations near a flat rigid boundary. Radiating, amplification and extinction cross-sections of the active source are defined. Assuming monopole and dipole modal oscillations of the circular source, conditions are found where the extinction energy efficiency factor of the active source vanishes, achieving total invisibility with minimal influence of the source size. It also takes positive or negative values, depending on its size and distance from the boundary. Moreover, the amplification energy efficiency factor is negative for the acoustically-active source. These effects also occur for higher-order modal oscillations of the active source. The results find potential applications in the development of acoustic cloaking devices and invisibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-02-01
Over one million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 public housing authorities (PHAs) across the country indicated that there is a high level of interest in developing low-cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with four PHAs to develop packages of energy efficiency retrofit measures the PHAs can cost-effectively implement with their own staffs in the normal course of housing operations at the time whenmore » units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing, and measures that improve equipment efficiency. ARIES documented implementation in 18 housing units. Reductions in average air leakage were 16 percent and duct leakage reductions averaged 23 percent. Total source energy consumption savings due to implemented measures was estimated at 3-10 percent based on BEopt modeling with a simple payback of 1.6 to 2.5 years. Implementation challenges were encountered mainly related to required operational changes and budgetary constraints. Nevertheless, simple measures can feasibly be accomplished by PHA staff at low or no cost. At typical housing unit turnover rates, these measures could impact hundreds of thousands of units per year nationally.« less
Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-08-01
More than 1 million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 PHAs across the country indicated that there is a high level of interest in developing low cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with two public housing authorities (PHAs) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement with their own staffs in the normal course of housing operations atmore » the time when units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing and measures that improve equipment efficiency. ARIES documented implementation in ten housing units. Reductions in average air leakage were 16-20% and duct leakage reductions averaged 38%. Total source energy consumption savings was estimated at 6-10% based on BEopt modeling with a simple payback of 1.7 to 2.2 years. Implementation challenges were encountered mainly related to required operational changes and budgetary constraints. Nevertheless, simple measures can feasibly be accomplished by PHA staff at low or no cost. At typical housing unit turnover rates, these measures could impact hundreds of thousands of unit per year nationally.« less
NASA Astrophysics Data System (ADS)
Garrett, T. J.
2012-12-01
It is normally assumed that gains in energy efficiency are one of the best routes that society has available to it for stabilizing future carbon dioxide emissions. For a given degree of economic productivity less energy is consumed and a smaller quantity of fossil fuels is required. While certainly this observation is true in the instant, it ignores feedbacks in the economic system such that efficiency gains ultimately lead to greater energy consumption: taken as a global whole, they permit civilization to accelerate its expansion into the energy reserves that sustain it. Here this argument is formalized from a general thermodynamic perspective. The core result is that there exists a fixed, time-independent link between a very general representation of global inflation-adjusted economic wealth (units currency) and civilization's total capacity to consume power (units energy per time). Based on 40 years of available statistics covering more than a tripling of global GDP and a doubling of wealth, this constant has a value of 7.1 +/- 0.01 Watts per one thousand 2005 US dollars. Essentially, wealth is power. Civilization grows by dissipating power in order to sustain all its current activities and to incorporate more raw material into its existing structure. Growth of its structure is related to economic production, so more energy efficient economic production facilitates growth. Growth is into the reserves that sustain civilization, in which case there is a positive feedback in the economic system whereby energy efficiency gains ultimately "backfire" if their intended purpose is to reduce energy consumption and carbon dioxide emissions. The analogy that can be made is to a growing child: a healthy child who efficiently incorporates food into her structure grows quickly and is able to consume more in following years. Economically, an argument is made that, for a range of reasons, there are good reasons to refer to efficiency gains as economic "innovation", both for their physical nature and their links to traditional neo-classical economics.
The effect of life-cycle cost disclosure on consumer behavior
NASA Astrophysics Data System (ADS)
Deutsch, Matthias
For more than 20 years, analysts have reported on the so-called "energy paradox" or the "energy efficiency gap", referring to the fact that economic agents could in principle lower their total cost at current prices by using more energy-efficient technology but, nevertheless, often decide not to do so. Theory suggests that providing information in a simplified way could potentially reduce this "efficiency gap". Such simplification may be achieved by providing the estimated monetary operating cost and life-cycle cost (LCC) of a given appliance---which has been a recurring theme within the energy policy and efficiency labeling community. Yet, little is known so far about the causal effects of LCC disclosure on consumer action because of the gap between the acquisition of efficiency information and consumer purchasing behavior in the real marketplace. This dissertation bridges the gap by experimentally integrating LCC disclosure into two major German commercial websites---a price comparison engine for cooling appliances, and an online shop for washing machines. Internet users arriving on these websites were randomly assigned to two experimental groups, and the groups were exposed to different visual stimuli. The control group received regular product price information, whereas the treatment group was, in addition, offered information about operating cost and total LCC. Click-stream data of consumers' shopping behavior was evaluated with multiple regression analysis by controlling for several product characteristics. This dissertation finds that LCC disclosure reduces the mean energy use of chosen cooling appliances by 2.5% (p<0.01), and the energy use of chosen washing machines by 0.8% (p<0.001). For the latter, it also reduces the mean water use by 0.7% (p<0.05). These effects suggest a potential role for public policy in promoting LCC disclosure. While I do not attempt to estimate the costs of such a policy, a simple quantification shows that the benefits amount to 100 to 200 thousand Euros per year for Germany, given current predictions regarding the price of tradable permits for CO2, and not counting other potential benefits. Future research should strive for increasing external validity, using better instruments, and evaluating the effectiveness of different information formats for LCC disclosure.
Mohammadzadeh, Arash; Mahdavi Damghani, Abdolmajid; Vafabakhsh, Javad; Deihimfard, Reza
2017-07-01
Efficient use of energy in farming systems is one of the most important implications for decreasing greenhouse gas (GHG) emissions and mitigating global warming (GW). This paper describes the energy use patterns, analyze the economics, and report global warming potential effects of major crop production systems in East Azerbaijan province, Iran. For this purpose, 110 farmers whose main activity was major crop production in the region, including wheat, barley, carrot, tomato, onion, potato, alfalfa, corn silage, canola, and saffron, were surveyed. Some other data was obtained from the Ministry of Agriculture Jihad of Iran. Results showed that, in terms of total energy input, onion (87,556 Mj ha -1 ) and potato (80,869 Mj ha -1 ) production systems were more energy-intensive than other crops. Among the studied crops, the highest values of net return (6563.8 $ ha -1 ) and benefit/cost ratio (1.95) were related to carrot and corn silage production systems, respectively. Studies have also shown that onion and saffron production systems emit the highest (5332.6 kg CO2eq ha -1 ) and lowest (646.24 kg CO 2 eq ha -1 ) CO 2 eq. emission, respectively. When it was averaged across crops, diesel fuel accounted for the greatest GHG contribution with 43% of the total, followed by electric power (28%) and nitrogen fertilizer (21%). In the present study, eco-efficiency was calculated as a ratio of the gross production value and global warming potential effect for the studied crops. Out of all the studied crops, the highest values of eco-efficiency were calculated to be 8.65 $ kg CO 2 eq -1 for the saffron production system followed by the carrot (3.65 $ kg CO 2 eq -1 ) production. Generally, from the aspect of energy balance and use efficiency, the alfalfa production system was the best; however, from an economical point of view, the carrot production system was better than the other crops.
NASA Technical Reports Server (NTRS)
Kuchar, A. P.; Chamberlin, R.
1980-01-01
A scale model performance test was conducted as part of the NASA Energy Efficient Engine (E3) Program, to investigate the geometric variables that influence the aerodynamic design of exhaust system mixers for high-bypass, mixed-flow engines. Mixer configuration variables included lobe number, penetration and perimeter, as well as several cutback mixer geometries. Mixing effectiveness and mixer pressure loss were determined using measured thrust and nozzle exit total pressure and temperature surveys. Results provide a data base to aid the analysis and design development of the E3 mixed-flow exhaust system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth
End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of themore » LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new construction, commercial/industrial custom rebate programs). In this report, the focus is on gross energy savings and the costs borne by the program administrator—including administration, payments to implementation contractors, marketing, incentives to program participants (end users) and both midstream and upstream trade allies, and evaluation costs. We collected data on net savings and costs incurred by program participants. However, there were insufficient data on participant cost contributions, and uncertainty and variability in the ways in which net savings were reported and defined across states (and program administrators).« less
A socio-technical approach to improving retail energy efficiency behaviours.
Christina, Sian; Waterson, Patrick; Dainty, Andrew; Daniels, Kevin
2015-03-01
In recent years, the UK retail sector has made a significant contribution to societal responses on carbon reduction. We provide a novel and timely examination of environmental sustainability from a systems perspective, exploring how energy-related technologies and strategies are incorporated into organisational life. We use a longitudinal case study approach, looking at behavioural energy efficiency from within one of the UK's leading retailers. Our data covers a two-year period, with qualitative data from a total of 131 participants gathered using phased interviews and focus groups. We introduce an adapted socio-technical framework approach in order to describe an existing organisational behavioural strategy to support retail energy efficiency. Our findings point to crucial socio-technical and goal-setting factors which both impede and/or enable energy efficient behaviours, these include: tensions linked to store level perception of energy management goals; an emphasis on the importance of technology for underpinning change processes; and, the need for feedback and incentives to support the completion of energy-related tasks. We also describe the evolution of a practical operational intervention designed to address issues raised in our findings. Our study provides fresh insights into how sustainable workplace behaviours can be achieved and sustained over time. Secondly, we discuss in detail a set of issues arising from goal conflict in the workplace; these include the development of a practical energy management strategy to facilitate secondary organisational goals through job redesign. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
An exercise protocol designed to control energy expenditure for long-term space missions.
Matsuo, Tomoaki; Ohkawara, Kazunori; Seino, Satoshi; Shimojo, Nobutake; Yamada, Shin; Ohshima, Hiroshi; Tanaka, Kiyoji; Mukai, Chiaki
2012-08-01
Astronauts experience weight loss during spaceflight. Future space missions require a more efficient exercise program not only to maintain work efficiency, but also to control increased energy expenditure (EE). When discussing issues concerning EE incurred through exercise, excess post-exercise energy expenditure (EPEE) must also be considered. The aim of this study was to compare the total EE, including EPEE, induced by two types of interval cycling protocols with the total EE of a traditional, continuous cycling protocol. There were 10 healthy men, ages 20 to 31 yr, who completed 3 exercise sessions: sprint interval training (SIT) consisting of 7 sets of 30-s cycling at 120% VO2max with a 15-s rest between each bout; high-intensity interval aerobic training (HIAT) consisting of 3 sets of 3-min cycling at 80-90% VO2max with a 2-min active rest at 50% VO2max; and continuous aerobic training (CAT) consisting of 40 min of cycling at 60-65% VO2max. During each session, resting metabolic rate, exercise EE, and a 180-min post-exercise EE were measured. The EPEEs during the SIT, HIAT, and CAT averaged 32 +/- 19, 21 +/- 16, and 13 +/- 13 kcal, and the total EE for an entire exercise/ rest session averaged 109 +/- 20, 182 +/- 17, and 363 +/- 45 kcal, respectively. While the EPEE after the CAT was significantly less than after the SIT, the total EE with the CAT was the greatest of the three. The SIT and HIAT would be potential protocols to control energy expenditure for long space missions.
Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weitzel, E.; Hoeschele, M.
2014-09-01
A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated,more » distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.« less
Hawkins, Brian T; Sellgren, Katelyn L; Klem, Ethan J D; Piascik, Jeffrey R; Stoner, Brian R
2017-11-01
Decentralized, energy-efficient waste water treatment technologies enabling water reuse are needed to sustainably address sanitation needs in water- and energy-scarce environments. Here, we describe the effects of repeated recycling of disinfected blackwater (as flush liquid) on the energy required to achieve full disinfection with an electrochemical process in a prototype toilet system. The recycled liquid rapidly reached a steady state with total solids reliably ranging between 0.50 and 0.65% and conductivity between 20 and 23 mS/cm through many flush cycles over 15 weeks. The increase in accumulated solids was associated with increased energy demand and wide variation in the free chlorine contact time required to achieve complete disinfection. Further studies on the system at steady state revealed that running at higher voltage modestly improves energy efficiency, and established running parameters that reliably achieve disinfection at fixed run times. These results will guide prototype testing in the field.
Investigation of applications for high-power, self-critical fissioning uranium plasma reactors
NASA Technical Reports Server (NTRS)
Rodgers, R. J.; Latham, T. S.; Krascella, N. L.
1976-01-01
Analytical studies were conducted to investigate potentially attractive applications for gaseous nuclear cavity reactors fueled by uranium hexafluoride and its decomposition products at temperatures of 2000 to 6000 K and total pressures of a few hundred atmospheres. Approximate operating conditions and performance levels for a class of nuclear reactors in which fission energy removal is accomplished principally by radiant heat transfer from the high temperature gaseous nuclear fuel to surrounding absorbing media were determined. The results show the radiant energy deposited in the absorbing media may be efficiently utilized in energy conversion system applications which include (1) a primary energy source for high thrust, high specific impulse space propulsion, (2) an energy source for highly efficient generation of electricity, and (3) a source of high intensity photon flux for heating working fluid gases for hydrogen production or MHD power extraction.
NASA Technical Reports Server (NTRS)
Mielke, Steven P.; Kiang, Nancy Y.; Blankenship, Robert E.; Mauzerall, David
2012-01-01
Acaryochloris marina is the only species known to utilize chlorophyll (Chl) d as a principal photopigment. The peak absorption wavelength of Chl d is redshifted approx. 40 nm in vivo relative to Chl a, enabling this cyanobacterium to perform oxygenic phototrophy in niche environments enhanced in far-red light. We present measurements of the in vivo energy-storage (E-S) efficiency of photosynthesis in A. marina, obtained using pulsed photoacoustics (PA) over a 90-nm range of excitation wavelengths in the red and far-red. Together with modeling results, these measurements provide the first direct observation of the trap energies of PSI and PSII, and also the photosystem-specific contributions to the total E-S efficiency. We find the maximum observed efficiency in A. marina (40+/-1% at 735 nm) is higher than in the Chl a cyanobacterium Synechococcus leopoliensis (35+/-1% at 690 nm). The efficiency at peak absorption wavelength is also higher in A. marina (36+/-1% at 710 nm vs. 31+/-1% at 670 nm). In both species, the trap efficiencies are approx. 40% (PSI) and approx. 30% (PSII). The PSI trap in A. marina is found to lie at 740+/-5 nm, in agreement with the value inferred from spectroscopic methods. The best fit of the model to the PA data identifies the PSII trap at 723+/-3 nm, supporting the view that the primary electron-donor is Chl d, probably at the accessory (ChlD1) site. A decrease in efficiency beyond the trap wavelength, consistent with uphill energy transfer, is clearly observed and fit by the model. These results demonstrate that the E-S efficiency in A. marina is not thermodynamically limited, suggesting that oxygenic photosynthesis is viable in even redder light environments.
Efficient data communication protocols for wireless networks
NASA Astrophysics Data System (ADS)
Zeydan, Engin
In this dissertation, efficient decentralized algorithms are investigated for cost minimization problems in wireless networks. For wireless sensor networks, we investigate both the reduction in the energy consumption and throughput maximization problems separately using multi-hop data aggregation for correlated data in wireless sensor networks. The proposed algorithms exploit data redundancy using a game theoretic framework. For energy minimization, routes are chosen to minimize the total energy expended by the network using best response dynamics to local data. The cost function used in routing takes into account distance, interference and in-network data aggregation. The proposed energy-efficient correlation-aware routing algorithm significantly reduces the energy consumption in the network and converges in a finite number of steps iteratively. For throughput maximization, we consider both the interference distribution across the network and correlation between forwarded data when establishing routes. Nodes along each route are chosen to minimize the interference impact in their neighborhood and to maximize the in-network data aggregation. The resulting network topology maximizes the global network throughput and the algorithm is guaranteed to converge with a finite number of steps using best response dynamics. For multiple antenna wireless ad-hoc networks, we present distributed cooperative and regret-matching based learning schemes for joint transmit beanformer and power level selection problem for nodes operating in multi-user interference environment. Total network transmit power is minimized while ensuring a constant received signal-to-interference and noise ratio at each receiver. In cooperative and regret-matching based power minimization algorithms, transmit beanformers are selected from a predefined codebook to minimize the total power. By selecting transmit beamformers judiciously and performing power adaptation, the cooperative algorithm is shown to converge to pure strategy Nash equilibrium with high probability throughout the iterations in the interference impaired network. On the other hand, the regret-matching learning algorithm is noncooperative and requires minimum amount of overhead. The proposed cooperative and regret-matching based distributed algorithms are also compared with centralized solutions through simulation results.
Energy use in the New Zealand food system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, M.G.; Earle, M.D.
1985-03-01
The study covered the total energy requirements of the production, processing, wholesale distribution, retailing, shopping and household sectors of the food system in New Zealand. This included the direct energy requirements, and the indirect energy requirements in supplying materials, buildings and equipment. Data were collected from a wide range of literature sources, and converted into forms required for this research project. Also, data were collected in supplementary sample surveys at the wholesale distribution, retailing and shopping sectors. The details of these supplementary surveys are outlined in detailed survey reports fully referenced in the text. From these base data, the totalmore » energy requirements per unit product (MJ/kg) were estimated for a wide range of food chain steps. Some clear alternatives in terms of energy efficiency emerged from a comparison of these estimates. For example, it was found that it was most energy efficient to use dehydrated vegetables, followed by fresh vegetables, freeze dried vegetables, canned vegetables and then finally frozen vegetables.« less
Sarmiento-Franco, L; MacLeod, M G; McNab, J M
2000-12-01
1. The yields of true metabolisable energy (TME) and net energy (NE) from chaya leaf meal and wheatfeed were mcasured in tube-fed cockerels. 2. TME, 5.76 MJ/kg, from chava leaf meal was lower than from wheatfeed, 8.39 MJ/kg. The total heat increment attributable to the feeding of chaya leaf meal was 1-7 times greater than that of wheatfeed. 3. The net efficiency of utilisation of ME (k) from chaya leaf meal was 0.64, while that from wheatfeed was 0.86. The role of different chemical composition, especially the high fibre content of the materials, is discussed. 4. The metabolisable energy and net energy values derived from chava leaf meal represented 0.34 and 0.23 respectively of its gross energy content. The combination of lower TME and lower net efficiency of utilisation led to chaya having a NE value, 3.86 MJ/kg, which was only 0.53 that of wheatfeed.
Brehm, Merel-Anne; Beelen, Anita; Doorenbosch, Caroline A M; Harlaar, Jaap; Nollet, Frans
2007-10-01
To investigate the effects of total-contact fitted carbon-composite knee-ankle-foot orthoses (KAFOs) on energy cost of walking in patients with former polio who normally wear a conventional leather/metal KAFO or plastic/metal KAFO. A prospective uncontrolled study with a multiple baseline and follow-up design. Follow-up measurements continued until 26 weeks after intervention. Twenty adults with polio residuals (mean age 55 years). Each participant received a new carbon-composite KAFO, fitted according to a total-contact principle, which resulted in a rigid, lightweight and well-fitting KAFO. Energy cost of walking, walking speed, biomechanics of gait, physical functioning and patient satisfaction. The energy cost decreased significantly, by 8%, compared with the original KAFO. Furthermore, the incremention energy cost during walking with the carbon-composite KAFO was reduced by 18% towards normative values. An improvement in knee flexion, forward excursion of the centre of pressure, peak ankle moment, and timing of peak ankle power were significantly associated with the decrease in energy cost. Walking speed and physical functioning remained unchanged. In patients with former polio, carbon-composite KAFOs are superior to conventional leather/metal and plastic/metal KAFOs with respect to improving walking efficiency and gait, and are therefore important in reducing overuse and maintaining functional abilities in polio survivors.
Public Housing: A Tailored Approach to Energy Retrofits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, J.; Conlin, F.; Podorson, D.
2014-06-01
Over one million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 PHAs across the country indicated that there is a high level of interest in developing low cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with two public housing authorities (PHAs) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement with their own staffs in the normal course of housing operations at themore » time when units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing and measures that improve equipment efficiency. ARIES documented implementation in ten housing units. Reductions in average air leakage were 16-20% and duct leakage reductions averaged 38%. Total source energy consumption savings was estimated at 6-10% based on BEopt modeling with a simple payback of 1.7 to 2.2 years. Implementation challenges were encountered mainly related to required operational changes and budgetary constraints. Nevertheless, simple measures can feasibly be accomplished by PHA staff at low or no cost. At typical housing unit turnover rates, these measures could impact hundreds of thousands of unit per year nationally.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messenger, Mike; Bharvirkar, Ranjit; Golemboski, Bill
Public and private funding for end-use energy efficiency actions is expected to increase significantly in the United States over the next decade. For example, Barbose et al (2009) estimate that spending on ratepayer-funded energy efficiency programs in the U.S. could increase frommore » $3.1 billion in 2008 to $$7.5 and 12.4 billion by 2020 under their medium and high scenarios. This increase in spending could yield annual electric energy savings ranging from 0.58% - 0.93% of total U.S. retail sales in 2020, up from 0.34% of retail sales in 2008. Interest in and support for energy efficiency has broadened among national and state policymakers. Prominent examples include {approx}$$18 billion in new funding for energy efficiency programs (e.g., State Energy Program, Weatherization, and Energy Efficiency and Conservation Block Grants) in the 2009 American Recovery and Reinvestment Act (ARRA). Increased funding for energy efficiency should result in more benefits as well as more scrutiny of these results. As energy efficiency becomes a more prominent component of the U.S. national energy strategy and policies, assessing the effectiveness and energy saving impacts of energy efficiency programs is likely to become increasingly important for policymakers and private and public funders of efficiency actions. Thus, it is critical that evaluation, measurement, and verification (EM&V) is carried out effectively and efficiently, which implies that: (1) Effective program evaluation, measurement, and verification (EM&V) methodologies and tools are available to key stakeholders (e.g., regulatory agencies, program administrators, consumers, and evaluation consultants); and (2) Capacity (people and infrastructure resources) is available to conduct EM&V activities and report results in ways that support program improvement and provide data that reliably compares achieved results against goals and similar programs in other jurisdictions (benchmarking). The National Action Plan for Energy Efficiency (2007) presented commonly used definitions for EM&V in the context of energy efficiency programs: (1) Evaluation (E) - The performance of studies and activities aimed at determining the effects and effectiveness of EE programs; (2) Measurement and Verification (M&V) - Data collection, monitoring, and analysis associated with the calculation of gross energy and demand savings from individual measures, sites or projects. M&V can be a subset of program evaluation; and (3) Evaluation, Measurement, and Verification (EM&V) - This term is frequently seen in evaluation literature. EM&V is a catchall acronym for determining both the effectiveness of program designs and estimates of load impacts at the portfolio, program and project level. This report is a scoping study that assesses current practices and methods in the evaluation, measurement and verification (EM&V) of ratepayer-funded energy efficiency programs, with a focus on methods and practices currently used for determining whether projected (ex-ante) energy and demand savings have been achieved (ex-post). M&V practices for privately-funded energy efficiency projects (e.g., ESCO projects) or programs where the primary focus is greenhouse gas reductions were not part of the scope of this study. We identify and discuss key purposes and uses of current evaluations of end-use energy efficiency programs, methods used to evaluate these programs, processes used to determine those methods; and key issues that need to be addressed now and in the future, based on discussions with regulatory agencies, policymakers, program administrators, and evaluation practitioners in 14 states and national experts in the evaluation field. We also explore how EM&V may evolve in a future in which efficiency funding increases significantly, innovative mechanisms for rewarding program performance are adopted, the role of efficiency in greenhouse gas mitigation is more closely linked, and programs are increasingly funded from multiple sources often with multiple program administrators and intended to meet multiple purposes.« less
Hackel, Richard P.
1992-01-01
A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain.
Hester, Nathan; Li, Ke; Schramski, John R; Crittenden, John
2012-04-30
Globally, residential energy consumption continues to rise due to a variety of trends such as increasing access to modern appliances, overall population growth, and the overall increase of electricity distribution. Currently, residential energy consumption accounts for approximately one-fifth of total U.S. energy consumption. This research analyzes the effectiveness of a range of energy-saving measures for residential houses in semi-arid climates. These energy-saving measures include: structural insulated panels (SIP) for exterior wall construction, daylight control, increased window area, efficient window glass suitable for the local weather, and several combinations of these. Our model determined that energy consumption is reduced by up to 6.1% when multiple energy savings technologies are combined. In addition, pre-construction technologies (structural insulated panels (SIPs), daylight control, and increased window area) provide roughly 4 times the energy savings when compared to post-construction technologies (window blinds and efficient window glass). The model also illuminated the importance variations in local climate and building configuration; highlighting the site-specific nature of this type of energy consumption quantification for policy and building code considerations. Published by Elsevier Ltd.
The limited role of recombination energy in common envelope removal
NASA Astrophysics Data System (ADS)
Grichener, Aldana; Sabach, Efrat; Soker, Noam
2018-05-01
We calculate the outward energy transport time by convection and photon diffusion in an inflated common envelope and find this time to be shorter than the envelope expansion time. We conclude therefore that most of the hydrogen recombination energy ends in radiation rather than in kinetic energy of the outflowing envelope. We use the stellar evolution code MESA and inject energy inside the envelope of an asymptotic giant branch star to mimic energy deposition by a spiraling-in stellar companion. During 1.7 years the envelope expands by a factor of more than 2. Along the entire evolution the convection can carry the energy very efficiently outwards, to the radius where radiative transfer becomes more efficient. The total energy transport time stays within several months, shorter than the dynamical time of the envelope. Had we included rapid mass loss, as is expected in the common envelope evolution, the energy transport time would have been even shorter. It seems that calculations that assume that most of the recombination energy ends in the outflowing gas might be inaccurate.
Energy efficient sensor network implementations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frigo, Janette R; Raby, Eric Y; Brennan, Sean M
In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study.more » We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.« less
NASA Astrophysics Data System (ADS)
Nardi, I.; Ambrosini, D.; de Rubeis, T.; Paoletti, D.; Muttillo, M.; Sfarra, S.
2017-11-01
In the last years, the importance of integrating the production of electricity with the production of sanitary hot water led to the development of new solutions, i.e. PV/T systems. It is well known that hybrid photovoltaic-thermal systems, able to produce electricity and thermal energy at the same time with better energetic performance in comparison with two separate systems, present many advantages for application in a residential building. A PV/T is constituted generally by a common PV panel with a metallic pipe, in which fluid flows. Pipe accomplishes two roles: it absorbs the heat from the PV panel, thus increasing, or at least maintaining its efficiency; furthermore, it stores the heat for sanitary uses. In this work, the thermal and electrical efficiencies of a commercial PV/T panel have been evaluated during the summer season in different days, to assess the effect of environmental conditions on the system total efficiency. Moreover, infrared thermographic diagnosis in real time has been effected during the operating mode in two conditions: with cooling and without cooling; cooling was obtained by natural flowing water. This analysis gave information about the impact of a non-uniform temperature distribution on the thermal and electrical performance. Furthermore, measurements have been performed in two different operating modes: 1) production of solely electrical energy and 2) simultaneous production of thermal and electrical energy. Finally, total efficiency is largely increased by using a simple solar concentrator nearby the panel.
Energy efficient engine: Fan test hardware detailed design report
NASA Technical Reports Server (NTRS)
Sullivan, T. J.
1980-01-01
A single stage fan and quarter stage booster were designed for the energy efficient engine. The fan has an inlet radius ratio of 0.342 and a specific flow rate of 208.9 Kg/S sq m (42.8 lbm/sec sq ft). The fan rotor has 32 medium aspect ratio (2.597) titanium blades with a partspan shroud at 55% blade height. The design corrected fan tip speed is 411.5 M/S (1350 ft/sec). The quarter stage island splits the total fan flow with approximately 22% of the flow being supercharged by the quarter stage rotor. The fan bypass ratio is 6.8. The core flow total pressure ratio is 1.67 and the fan bypass pressure ratio is 1.65. The design details of the fan and booster blading, and the fan frame and static structure for the fan configuration are presented.
Yao, Y. X.; Liu, J.; Liu, C.; ...
2015-08-28
We present an efficient method for calculating the electronic structure and total energy of strongly correlated electron systems. The method extends the traditional Gutzwiller approximation for one-particle operators to the evaluation of the expectation values of two particle operators in the many-electron Hamiltonian. The method is free of adjustable Coulomb parameters, and has no double counting issues in the calculation of total energy, and has the correct atomic limit. We demonstrate that the method describes well the bonding and dissociation behaviors of the hydrogen and nitrogen clusters, as well as the ammonia composed of hydrogen and nitrogen atoms. We alsomore » show that the method can satisfactorily tackle great challenging problems faced by the density functional theory recently discussed in the literature. The computational workload of our method is similar to the Hartree-Fock approach while the results are comparable to high-level quantum chemistry calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pederson, Mark R., E-mail: mark.pederson@science.doe.gov
2015-02-14
A recent modification of the Perdew-Zunger self-interaction-correction to the density-functional formalism has provided a framework for explicitly restoring unitary invariance to the expression for the total energy. The formalism depends upon construction of Löwdin orthonormalized Fermi-orbitals which parametrically depend on variational quasi-classical electronic positions. Derivatives of these quasi-classical electronic positions, required for efficient minimization of the self-interaction corrected energy, are derived and tested, here, on atoms. Total energies and ionization energies in closed-shell singlet atoms, where correlation is less important, using the Perdew-Wang 1992 Local Density Approximation (PW92) functional, are in good agreement with experiment and non-relativistic quantum-Monte-Carlo results albeitmore » slightly too low.« less
NREL’s Advanced Analytics Research for Energy-Efficient Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutscher, Chuck; Livingood, Bill; Wilson, Eric
At NREL, we believe in building better buildings. More importantly, high-performance buildings that can do more and be smarter than ever before. Forty percent of the total energy consumption in the United States comes from buildings. Working together, we can dramatically shrink that number. But first, it starts with the research: our observations, experiments, modeling, analysis, and more. NREL’s advanced analytics research has already proven to reduce energy use, save money, and stabilize the grid.
Variation of a Lightning NOx Indicator for National Climate Assessment
NASA Technical Reports Server (NTRS)
Koshak, W. J.; Vant-Hull, B.; McCaul, E. W.; Peterson, H. S.
2014-01-01
In support of the National Climate Assessment (NCA) program, satellite Lightning Imaging Sensor (LIS) data is used to estimate lightning nitrogen oxides (LNOx) production over the southern portion of the conterminous US. The total energy of each flash is estimated by analyzing the LIS optical event data associated with each flash (i.e., event radiance, event footprint area, and derivable event range). The LIS detects an extremely small fraction of the total flash energy; this fraction is assumed to be constant apart from the variability associated with the flash optical energy detected across the narrow (0.909 nm) LIS band. The estimate of total energy from each flash is converted to moles of LNOx production by assuming a chemical yield of 10(17) molecules Joule(-1). The LIS-inferred variable LNOx production from each flash is summed to obtain total LNOx production, and then appropriately enhanced to account for LIS detection efficiency and LIS view time. Annual geographical plots and time series of LNOx production are provided for a 16 year period (1998-2013).
Water footprint and carbon footprint of the energy consumption in sunflower agroecosystems.
Yousefi, Mohammad; Khoramivafa, Mahmud; Damghani, Abdolmajid Mahdavi
2017-08-01
The aims of this study were to assess the energy requirements, carbon footprint, and water footprint of sunflower production in Kermanshah province, western Iran. Data were collected from 70 sunflower production agroecosystems which were selected based on random sampling method in summer 2012. Results indicated that total input and output energy in sunflower production were 26,973.87 and 64,833.92 MJha -1 , respectively. The highest share of total input energy in sunflower agroecosystems was recorded for electricity power, N fertilizer, and diesel fuel with 35, 19, and 17%, respectively. Also, energy use efficiency, water footprint, greenhouse gas (GHG) emission, and carbon footprint were calculated as 2.40, 3.41 m 3 kg -1 , 2042.091 kg CO 2eq ha -1 , and 0.875 kg CO 2eq kg -1 , respectively. 0.18 of sunflower water footprint was related to green water footprint and the remaining 82% was related to blue water footprint. Also, the highest share of carbon footprint was related to electricity power (nearby 80%). Due to the results of this study, reducing use of fossil fuel and non-renewable energy resource and application of sufficient irrigation systems by efficient use of water resource are essential in order to achieve low carbon footprint, environmental challenges, and also sustainability of agricultural production systems.
Momentum and Heat Flux Measurements in the Exhaust of VASIMR using Helium Propellant
NASA Technical Reports Server (NTRS)
Chavers, D. Gregory; Chang-Diaz, Franklin R.; Irvine, Claude; Squire, Jared P.
2003-01-01
Interplanetary travel requires propulsion systems that can provide high specific impulse (Isp), while also having sufficient thrust to rapidly accelerate large payloads. One such propulsion system is the Variable Specific Impulse Magneto-plasma Rocket (VASIMR), which creates, heats, and ejects plasma to provide variable thrust and Isp, designed to optimally meet the mission requirements. The fraction of the total energy invested in creating the plasma, as compared to the plasma's total kinetic energy, is an important factor in determining the overall system efficiency. In VASIMR, this 'frozen flow loss' is appreciable when at high thrust, but negligible at high Isp. The loss applies to other electric thrusters as well. If some of this energy could be recovered through recombination processes, and reinjected as neutral kinetic energy, the efficiency of VASIMR, in its low Isp/high thrust mode may be improved. An experiment is being conducted to investigate the possibility of recovering some of the energy used to create the plasma by studying the flow characteristics of the charged and neutral particles in the exhaust of the thruster. This paper will cover the measurements of momentum flux and heat flux in the exhaust of the VASIMR test facility using helium as the propellant where the heat flux is comprised of both kinetic and plasma recombination energy. The flux measurements also assist in diagnosing and verifying the plasma conditions in the existing experiment.
Marconi, Valeria; Hachez, Hélèn; Renders, Anne; Docquier, Pierre-Louis; Detrembleur, Chrisitine
2014-09-01
Multilevel surgery is commonly performed to improve walking in children with cerebral palsy (CP). Classical gait analysis (kinetics, kinematics) demonstrated positive outcomes after this intervention, however it doesn't give global indication about gait's features. The assessment of energy cost and mechanical work of locomotion can provide an overall description of walking functionality. Therefore, we propose to describe the effects of multilevel surgery in children with CP, considering energetics, mechanical work, kinetic and kinematic of walking. We measured external, internal, total work, energy cost, recovery, efficiency, kinetic and kinematic of walking in 10 children with CP (4 girls, 6 boys; 13 years ± 2) before and 1 year after multilevel surgery. Kinetic and kinematic results are partially comparable to previous findings, energy cost of walking is significantly reduced (p < 0.05); external, internal, total work, recovery, efficiency are not significantly different (p = 0.129; p = 0.147; p = 0.795; p = 0.119; p = 0.21). The improvement of the walking's energy consumption is not accompanied by a corresponding improvement of mechanical work. Therefore it is conceivable that the improvement of walking economy depend on a reduced effort of the muscle to maintain the posture, rather then to an improvement of the mechanism of energy recovery typical of human locomotion. Copyright © 2014 Elsevier B.V. All rights reserved.
Predicting Envelope Leakage in Attached Dwellings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faakye, O.; Arena, L.; Griffiths, D.
2013-07-01
The most common method for measuring air leakage is to use a single blower door to pressurize and/or depressurize the test unit. In detached housing, the test unit is the entire home and the single blower door measures air leakage to the outside. In attached housing, this 'single unit', 'total', or 'solo' test method measures both the air leakage between adjacent units through common surfaces as well air leakage to the outside. Measuring and minimizing this total leakage is recommended to avoid indoor air quality issues between units, reduce energy losses to the outside, reduce pressure differentials between units, andmore » control stack effect. However, two significant limitations of the total leakage measurement in attached housing are: for retrofit work, if total leakage is assumed to be all to the outside, the energy benefits of air sealing can be significantly over predicted; for new construction, the total leakage values may result in failing to meet an energy-based house tightness program criterion. The scope of this research is to investigate an approach for developing a viable simplified algorithm that can be used by contractors to assess energy efficiency program qualification and/or compliance based upon solo test results.« less
Yan, Linbo; He, Boshu
2017-07-01
A clean power generation system was built based on the steam co-gasification of biomass and coal in a quadruple fluidized bed gasifier. The chemical looping with oxygen uncoupling technology was used to supply oxygen for the calciner. The solid oxide fuel cell and the steam turbine were combined to generate power. The calcium looping and mineral carbonation were used for CO 2 capture and sequestration. The aim of this work was to study the characteristics of this system. The effects of key operation parameters on the system total energy efficiency (ŋ ten ), total exergy efficiency (ŋ tex ) and carbon sequestration rate (R cs ) were detected. The energy and exergy balance calculations were implemented and the corresponding Sankey and Grassmann diagrams were drawn. It was found that the maximum energy and exergy losses occurred in the steam turbine. The system ŋ ten and ŋ tex could be ∼50% and ∼47%, and R cs could be over unit. Copyright © 2017 Elsevier Ltd. All rights reserved.
Design and Development of a Residential Gas-Fired Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vineyard, Edward Allan; Abu-Heiba, Ahmad; Mahderekal, Dr. Isaac
2017-01-01
Heating, ventilating, and air-conditioning equipment consumes 43% of the total primary energy consumption in U.S. households. Presently, conventional gas furnaces have maximum heating efficiencies of 98%. Electric air conditioners used in association with the furnace for cooling have a minimum seasonal energy efficiency ratio (SEER) of 14.0. A residential gas-fired heat pump (RGHP) was developed and tested under standard rating conditions, resulting in a significant increase in heating efficiency of over 40% versus conventional natural gas furnaces. The associated efficiency of the RGHP in cooling mode is comparable in efficiency to an electric air conditioner (14.0 SEER) when compared onmore » a primary energy basis. The RGHP is similar in nature to a conventional heat pump but with two main differences. First, the primary energy savings are higher, based on a site versus source comparison, as the result of using natural gas to supply shaft power to the compressor rather than an electric motor. Second, waste heat is recovered from the engine to supplement space heating and reduce the energy input. It can also be used to provide supplemental water heating. The system utilizes a programmable logic controller that allows variable-speed operation to achieve improved control to meet building loads. RGHPs significantly reduce peak electric use during periods of high demand, especially peak summer loads, as well as peak winter loads in regions with widespread use of electric heating. This contributes to leveling year-round gas loads, with the potential to increase annual gas demand in some regions. The widespread adoption of RGHPs will contribute to significant reductions in primary energy consumption and carbon emissions through improved efficiencies.« less
NASA Astrophysics Data System (ADS)
Chentouf, M.; Allouch, M.
2018-05-01
Producing electricity at an affordable price while taking into account environmental concerns has become a major challenge in Morocco. Moreover, the technical and financial issues related to renewable electricity plants are still hindering their efficient integration in the country. In fact, the energy sector (both electricity and heat) accounted for more than half of all Greenhouse Gases (GHG) emissions in the kingdom due to the major reliance on fossil fuels for answering the growing local demand. The key strategies to alleviate this critical situation include the integration of more renewable energies in the total energy mix and the enhancement of energy efficiency measures in different sectors. This paper strives to (1) evaluate the potential of carbon dioxide mitigation in Moroccan electricity sector following the actual and projected strategies and (2) highlight the policy schemes to be taken in order to achieve the ambitious carbon dioxide mitigation targets in the mid-term. A system dynamics model was built in order to simulate different scenarios of carbon dioxide mitigation policies up to 2030. The results shows that the achievement of renewable energies projects by 2030 could save 228.143 MtCO2 between 2020 and 2030 and an additional 18.127 MtCO2 could be avoided in the same period by enhancing energy efficiency measures.
Kaufman, Kenton R; Levine, James A; Brey, Robert H; McCrady, Shelly K; Padgett, Denny J; Joyner, Michael J
2008-07-01
To quantify the energy efficiency of locomotion and free-living physical activity energy expenditure of transfemoral amputees using a mechanical and microprocessor-controlled prosthetic knee. Repeated-measures design to evaluate comparative functional outcomes. Exercise physiology laboratory and community free-living environment. Subjects (N=15; 12 men, 3 women; age, 42+/-9 y; range, 26-57 y) with transfemoral amputation. Research participants were long-term users of a mechanical prosthesis (20+/-10 y as an amputee; range, 3-36 y). They were fitted with a microprocessor-controlled knee prosthesis and allowed to acclimate (mean time, 18+/-8 wk) before being retested. Objective measurements of energy efficiency and total daily energy expenditure were obtained. The Prosthetic Evaluation Questionnaire was used to gather subjective feedback from the participants. Subjects demonstrated significantly increased physical activity-related energy expenditure levels in the participant's free-living environment (P=.04) after wearing the microprocessor-controlled prosthetic knee joint. There was no significant difference in the energy efficiency of walking (P=.34). When using the microprocessor-controlled knee, the subjects expressed increased satisfaction in their daily lives (P=.02). People ambulating with a microprocessor-controlled knee significantly increased their physical activity during daily life, outside the laboratory setting, and expressed an increased quality of life.
McParland, S; Lewis, E; Kennedy, E; Moore, S G; McCarthy, B; O'Donovan, M; Butler, S T; Pryce, J E; Berry, D P
2014-09-01
Interest is increasing in the feed intake complex of individual dairy cows, both for management and animal breeding. However, energy intake data on an individual-cow basis are not routinely available. The objective of the present study was to quantify the ability of routinely undertaken mid-infrared (MIR) spectroscopy analysis of individual cow milk samples to predict individual cow energy intake and efficiency. Feed efficiency in the present study was described by residual feed intake (RFI), which is the difference between actual energy intake and energy used (e.g., milk production, maintenance, and body tissue anabolism) or supplied from body tissue mobilization. A total of 1,535 records for energy intake, RFI, and milk MIR spectral data were available from an Irish research herd across 36 different test days from 535 lactations on 378 cows. Partial least squares regression analyses were used to relate the milk MIR spectral data to either energy intake or efficiency. The coefficient of correlation (REX) of models to predict RFI across lactation ranged from 0.48 to 0.60 in an external validation data set; the predictive ability was, however, strongest (REX=0.65) in early lactation (<60 d in milk). The inclusion of milk yield as a predictor variable improved the accuracy of predicting energy intake across lactation (REX=0.70). The correlation between measured RFI and measured energy balance across lactation was 0.85, whereas the correlation between RFI and energy balance, both predicted from the MIR spectrum, was 0.65. Milk MIR spectral data are routinely generated for individual cows throughout lactation and, therefore, the prediction equations developed in the present study can be immediately (and retrospectively where MIR spectral data have been stored) applied to predict energy intake and efficiency to aid in management and breeding decisions. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
School Finance. Trends and Issues.
ERIC Educational Resources Information Center
Hadderman, Margaret, Comp.
During the past several years, policymakers and practitioners have concentrated their energies on resolving equity/adequacy issues, reforming school tax structures, improving schools' efficiency and cost-effectiveness, developing school-based accountability, and exploring alternative cost-cutting and fundraising strategies. Total expenditures for…
Van de Walle, P; Hallemans, A; Schwartz, M; Truijen, S; Gosselink, R; Desloovere, K
2012-02-01
Gait efficiency in children with cerebral palsy is usually quantified by metabolic energy expenditure. Mechanical energy estimations, however, can be a valuable supplement as they can be assessed during gait analysis and plotted over the gait cycle, thus revealing information on timing and sources of increases in energy expenditure. Unfortunately, little information on validity and sensitivity exists. Three mechanical estimation approaches: (1) centre of mass (CoM) approach, (2) sum of segmental energies (SSE) approach and (3) integrated joint power approach, were validated against oxygen consumption and each other. Sensitivity was assessed in typical gait and in children with diplegia. CoM approach underestimated total energy expenditure and showed poor sensitivity. SSE approach overestimated energy expenditure and showed acceptable sensitivity. Validity and sensitivity were best in the integrated joint power approach. This method is therefore preferred for mechanical energy estimation in children with diplegia. However, mechanical energy should supplement, not replace metabolic energy, as total energy expended is not captured in any mechanical approach. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kozlov, A. V.; Terenchenko, A. S.; Luksho, V. A.; Karpukhin, K. E.
2017-01-01
This work is devoted to the experimental investigation of the possibilities to reduce greenhouse gas emissions and to increase energy efficiency of engines that use natural gas as the main fuel and the analysis of economic efficiency of use of dual fuel engines in vehicles compared to conventional diesel. The results of experimental investigation of a 190 kW dual-fuel engine are presented; it is shown that quantitative and qualitative working process control may ensure thermal efficiency at the same level as that of the diesel engine and in certain conditions 5...8% higher. The prospects for reduction of greenhouse gas emissions have been assessed. The technical and economic evaluation of use of dual fuel engines in heavy-duty vehicles has been performed, taking into account the total life cycle. It is shown that it is possible to reduce life cycle costs by two times.
Energy analysis of coal, fission, and fusion power plants
NASA Astrophysics Data System (ADS)
Tsoulfanidis, N.
1981-04-01
The method of net energy analysis has been applied to coal, fission, and fusion power plants. Energy consumption over the lifetime of the plants has been calculated for construction, operation and maintenance, fuel, public welfare, and land use and restoration. Thermal and electric energy requirements were obtained separately for each energy consuming sector. The results of the study are presented in three ways: total energy requirements, energy gain ratio, and payback periods. All three types of power plants are net producers of energy. The coal and fusion power plants are superior to fission plants from the energy efficiency point of view. Fission plants will improve considerably if the centrifuge replaces the gaseous diffusion as a method of enrichment.
Van Eerden, E; Van Den Brand, H; Heetkamp, M J W; Decuypere, E; Kemp, B
2006-10-01
This experiment was conducted to investigate whether feed efficiency, as measured by residual feed intake as a phenotypic trait, affects energy partitioning in pullets that have received Salmonella inoculation as an immune challenge. In each of 8 trials, energy partitioning was measured during 5 wk in 15-wk-old efficient (R-) and nonefficient (R+) pullets, which were housed per efficiency group in 2 identical climate respiration chambers. After 1 wk of adaptation, the pullets in 4 trials were orally inoculated with 10(8) cfu of Salmonella enteritidis; pullets in the remaining trials were not inoculated and served as controls. Heat production was calculated from continuous recordings of O(2) consumption and CO(2) production. Energy and N partitioning were recorded on a weekly basis. Blood samples for analyses on thyroid hormones were taken at 16, 17, and 19 wk of age. There were no interactions between efficiency type and Salmonella treatment or Salmonella treatment effects in energy partitioning, except for a short-term increase in heat production in inoculated pullets. Nonefficient pullets had higher gross energy and ME intake, higher estimated ME for maintenance, lower ME:gross energy ratio, and higher total heat production and nonactivity-related heat production compared with R- pullets. Triiodothyronine levels in R+ pullets were higher at 16 and 17 wk but were lower at 19 wk of age compared with R- pullets. Thyroxine levels were higher in R- at 16 wk and showed interactions between efficiency type and Salmonella treatment at 17 and 19 wk of age. Body weights and spleen weights did not differ between efficiency groups. Nonefficient pullets had higher heart, liver, and ovary weights and more large yellow follicles than R- pullets. There were no Salmonella effects on body and organ weights. We conclude that R+ pullets have a faster running energy metabolism and that they put more resources into organ development than R- pullets. Inoculation with Salmonella has a short-term effect on nonactivity-related heat production but does not affect energy partitioning, regardless of efficiency type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, David M.; Belzer, David B.; Livingston, Olga V.
Pacific Northwest National Laboratory (PNNL) modeled the employment impacts of a major national initiative to accelerate energy efficiency trends at one of two levels: • 15 percent savings by 2030. In this scenario, efficiency activities save about 15 percent of the Annual Energy Outlook (AEO) Reference Case electricity consumption by 2030. It is assumed that additional energy savings in both the residential and commercial sectors begin in 2015 at zero, and then increase in an S-shaped market penetration curve, with the level of savings equal to about 7.0 percent of the AEO 2014 U.S. national residential and commercial electricity consumptionmore » saved by 2020, 14.8 percent by 2025, and 15 percent by 2030. • 10 percent savings by 2030. In this scenario, additional savings begin at zero in 2015, increase to 3.8 percent in 2020, 9.8 percent by 2025, and 10 percent of the AEO reference case value by 2030. The analysis of the 15 percent case indicates that by 2030 more than 300,000 new jobs would likely result from such policies, including an annual average of more than 60,000 jobs directly supporting the installation and maintenance of energy efficiency measures and practices. These are new jobs resulting initially from the investment associated with the construction of more energy-efficient new buildings or the retrofit of existing buildings and would be sustained for as long as the investment continues. Based on what is known about the current level of building-sector energy efficiency jobs, this would represent an increase of more than 10 percent from the current estimated level of over 450,000 such jobs. The more significant and longer-lasting effect comes from the redirection of energy bill savings toward the purchase of other goods and services in the general economy, with its attendant influence on increasing the total number of jobs. This example analysis utilized PNNL’s ImSET model, a modeling framework that PNNL has used over the past two decades to assess the economic impacts of the U.S. Department of Energy’s (DOE’s) energy efficiency programs in the buildings sector.« less
Mixotrophic cultivation of Chlorella for local protein production using agro-food by-products.
Salati, Silvia; D'Imporzano, Giuliana; Menin, Barbara; Veronesi, Davide; Scaglia, Barbara; Abbruscato, Pamela; Mariani, Paola; Adani, Fabrizio
2017-04-01
A local strain of Chlorella vulgaris was cultivated by using cheese whey (CW), white wine lees (WL) and glycerol (Gly), coming from local agro-industrial activities, as C sources (2.2gCL -1 ) to support algae production under mixotrophic conditions in Lombardy. In continuous mode, Chlorella increased biomass production compared with autotrophic conditions by 1.5-2 times, with the best results obtained for the CW substrate, i.e. 0.52gL -1 d -1 of algal biomass vs. 0.24gL -1 d -1 of algal biomass for autotrophic conditions, and protein content for both conditions adopted close to 500gkg -1 DM. Mixotrophic conditions gave a much higher energy recovery efficiency (EF) than autotrophic conditions, i.e. organic carbon energy efficiency (EF oc ) of 32% and total energy efficiency (Ef t ) of 8%, respectively, suggesting the potential for the culture of algae as a sustainable practice to recover efficiently waste-C and a means of local protein production. Copyright © 2017 Elsevier Ltd. All rights reserved.
High-Efficiency Solar Thermal Vacuum Demonstration Completed for Refractive Secondary Concentrator
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2001-01-01
Common to many of the space applications that utilize solar thermal energy--such as electric power conversion, thermal propulsion, and furnaces--is a need for highly efficient, solar concentration systems. An effort is underway at the NASA Glenn Research Center to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (>2000 K). The innovative refractive secondary concentrator offers significant advantages over all other types of secondary concentrators. The refractive secondary offers the highest throughput efficiency, provides for flux tailoring, requires no active cooling, relaxes the pointing and tracking requirements of the primary concentrator, and enables very high system concentration ratios. This technology has broad applicability to any system that requires the conversion of solar energy to heat. Glenn initiated the development of the refractive secondary concentrator in support of Shooting Star, a solar thermal propulsion flight experiment, and continued the development in support of Space Solar Power.
Towards Efficient Supercomputing: Searching for the Right Efficiency Metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Chung-Hsing; Kuehn, Jeffery A; Poole, Stephen W
2012-01-01
The efficiency of supercomputing has traditionally been in the execution time. In early 2000 s, the concept of total cost of ownership was re-introduced, with the introduction of efficiency measure to include aspects such as energy and space. Yet the supercomputing community has never agreed upon a metric that can cover these aspects altogether and also provide a fair basis for comparison. This paper exam- ines the metrics that have been proposed in the past decade, and proposes a vector-valued metric for efficient supercom- puting. Using this metric, the paper presents a study of where the supercomputing industry has beenmore » and how it stands today with respect to efficient supercomputing.« less
An approach to optimised control of HVAC systems in indoor swimming pools
NASA Astrophysics Data System (ADS)
Ribeiro, Eliseu M. A.; Jorge, Humberto M. M.; Quintela, Divo A. A.
2016-04-01
Indoor swimming pools are recognised as having a high level of energy consumption and present a great potential for energy saving. The energy is spent in several ways such as evaporation heat loss from the pool, high rates of ventilation required to guarantee the indoor air quality, and ambient temperatures with expressive values (typically 28-30°C) required to maintain conditions of comfort. This paper presents an approach to optimising control of heat ventilation and air conditioning systems that could be implemented in a building energy management system. It is easily adapted to any kind of pool and results in significant energy consumption reduction. The development and validation of the control model were carried out with a building thermal simulation software. The use of this control model in the case study building could reduce the energy efficiency index by 7.14 points (7.4% of total) which adds up to an energy cost saving of 15,609€ (7.5% of total).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starr, C.
The projection of global energy demand to the year 2060 is of particular interest because of its relevance to the current greenhouse concerns. The long-term growth of global energy demand in the time scale of climatic change has received relatively little attention in the public discussion of national policy alternatives. The sociological, political, and economic issues have rarely been mentioned in this context. This study emphasizes that the two major driving forces are global population growth and economic growth (gross national product per capita), as would be expected. The modest annual increases assumed in this study result in a yearmore » 2060 annual energy use of >4 times the total global current use (year 1986) if present trends continue, and >2 times with extreme efficiency improvements in energy use. Even assuming a zero per capita growth for energy and economics, the population increase by the year 2060 results in a 1.5 times increase in total annual energy use.« less
Battery Cell Thermal Runaway Calorimeter
NASA Technical Reports Server (NTRS)
Darcy, Eric
2017-01-01
We currently have several methods for determining total energy output of an 18650 lithium ion cell. We do not, however, have a good method for determining the fraction of energy that dissipates via conduction through the cell can vs. the energy that is released in the form of ejecta. Knowledge of this fraction informs the design of our models, battery packs, and storage devices; (a) No longer need to assume cell stays together in modeling (b) Increase efficiency of TR mitigation (c) Shave off excess protection.
Toward an energy efficient community
NASA Astrophysics Data System (ADS)
Horn, M.
1980-10-01
The current oil policy of the OPEC countries means that a substantial oil shortage may be expected in the future. Conservative estimates indicate an oil shortage of 65 billion tons in the year 2000. The results of numerous new studies show that (from the technological point of view) the savings potential is high enough to achieve an absolute decrease in total energy consumption by the year 2000, provided better use is made of secondary energy sources in the form of electric power, gas, and solar heat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbara, E. de; Marti, G. V.; Capurro, O. A.
The detection efficiency of a time-of-flight system based on two micro-channel plates (MCP) time zero detectors plus a conventional silicon surface barrier detector was obtained from heavy ion elastic recoil measurements (this ToF spectrometer is mainly devoted to measurements of total fusion cross section of weakly bound projectiles on different mass-targets systems). In this work we have used beams of {sup 7}Li, {sup 16}O, {sup 32}S and {sup 35}Cl to study the mass region of interest for its application to measurements fusion cross sections in the {sup 6,7}Li+{sup 27}Al systems at energies around and above the Coulomb barrier (0.8V{sub B{<=}}E{<=}2.0V{submore » B}). As the efficiency of a ToF spectrometer is strongly dependent on the energy and mass of the detected particles, we have covered a wide range of the scattered particle energies with a high degree of accuracy at the lowest energies. The different experimental efficiency curves obtained in that way were compared with theoretical electronic stopping power curves on carbon foils and were applied.« less
DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser.
Banerjee, Saumyabrata; Ertel, Klaus; Mason, Paul D; Phillips, P Jonathan; De Vido, Mariastefania; Smith, Jodie M; Butcher, Thomas J; Hernandez-Gomez, Cristina; Greenhalgh, R Justin S; Collier, John L
2015-07-27
The Diode Pumped Optical Laser for Experiments (DiPOLE) project at the Central Laser Facility aims to develop a scalable, efficient high pulse energy diode pumped laser amplifier system based on cryogenic gas cooled, multi-slab ceramic Yb:YAG technology. We present recent results obtained from a scaled down prototype laser system designed for operation at 10 Hz pulse repetition rate. At 140 K, the system generated 10.8 J of energy in a 10 ns pulse at 1029.5 nm when pumped by 48 J of diode energy at 940 nm, corresponding to an optical to optical conversion efficiency of 22.5%. To our knowledge, this represents the highest pulse energy obtained from a cryo cooled Yb laser to date and the highest efficiency achieved by a multi-Joule diode pumped solid state laser system. Additionally, we demonstrated shot-to-shot energy stability of 0.85% rms for the system operated at 7 J, 10 Hz during several runs lasting up to 6 hours, with more than 50 hours in total. We also demonstrated pulse shaping capability and report on beam, wavefront and focal spot quality.
Electric urban delivery trucks: energy use, greenhouse gas emissions, and cost-effectiveness.
Lee, Dong-Yeon; Thomas, Valerie M; Brown, Marilyn A
2013-07-16
We compare electric and diesel urban delivery trucks in terms of life-cycle energy consumption, greenhouse gas (GHG) emissions, and total cost of ownership (TCO). The relative benefits of electric trucks depend heavily on vehicle efficiency associated with drive cycle, diesel fuel price, travel demand, electric drive battery replacement and price, electricity generation and transmission efficiency, electric truck recharging infrastructure, and purchase price. For a drive cycle with frequent stops and low average speed such as the New York City Cycle (NYCC), electric trucks emit 42-61% less GHGs and consume 32-54% less energy than diesel trucks, depending upon vehicle efficiency cases. Over an array of possible conditions, the median TCO of electric trucks is 22% less than that of diesel trucks on the NYCC. For a drive cycle with less frequent stops and high average speed such as the City-Suburban Heavy Vehicle Cycle (CSHVC), electric trucks emit 19-43% less GHGs and consume 5-34% less energy, but cost 1% more than diesel counterparts. Considering current and projected U.S. regional electricity generation mixes, for the baseline case, the energy use and GHG emissions ratios of electric to diesel trucks range from 48 to 82% and 25 to 89%, respectively.
An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata
NASA Astrophysics Data System (ADS)
Khosroshahy, Milad Bagherian; Moaiyeri, Mohammad Hossein; Navi, Keivan; Bagherzadeh, Nader
Nanotechnologies, notably quantum-dot cellular automata, have achieved major attentions for their prominent features as compared to the conventional CMOS circuitry. Quantum-dot cellular automata, particularly owning to its considerable reduction in size, high switching speed and ultra-low energy consumption, is considered as a potential alternative for the CMOS technology. As the memory unit is one of the most essential components in a digital system, designing a well-optimized QCA random access memory (RAM) cell is an important area of research. In this paper, a new five-input majority gate is presented which is suitable for implementing efficient single-layer QCA circuits. In addition, a new RAM cell with set and reset capabilities is designed based on the proposed majority gate, which has an efficient and low-energy structure. The functionality, performance and energy consumption of the proposed designs are evaluated based on the QCADesigner and QCAPro tools. According to the simulation results, the proposed RAM design leads to on average 38% lower total energy dissipation, 25% smaller area, 20% lower cell count, 28% lower delay and 60% lower QCA cost as compared to its previous counterparts.
NHTS brief : energy use and fuel efficiency
DOT National Transportation Integrated Search
2008-04-01
A number of factors affect fuel consumption in the U.S., such as total driving population and annual vehicle miles of travel per driver. According the National Household Travel Survey (NHTS) data series, both of these have nearly doubled since 1969.
Energy-Efficient Wide Datapath Integer Arithmetic Logic Units Using Superconductor Logic
NASA Astrophysics Data System (ADS)
Ayala, Christopher Lawrence
Complementary Metal-Oxide-Semiconductor (CMOS) technology is currently the most widely used integrated circuit technology today. As CMOS approaches the physical limitations of scaling, it is unclear whether or not it can provide long-term support for niche areas such as high-performance computing and telecommunication infrastructure, particularly with the emergence of cloud computing. Alternatively, superconductor technologies based on Josephson junction (JJ) switching elements such as Rapid Single Flux Quantum (RSFQ) logic and especially its new variant, Energy-Efficient Rapid Single Flux Quantum (ERSFQ) logic have the capability to provide an ultra-high-speed, low power platform for digital systems. The objective of this research is to design and evaluate energy-efficient, high-speed 32-bit integer Arithmetic Logic Units (ALUs) implemented using RSFQ and ERSFQ logic as the first steps towards achieving practical Very-Large-Scale-Integration (VLSI) complexity in digital superconductor electronics. First, a tunable VHDL superconductor cell library is created to provide a mechanism to conduct design exploration and evaluation of superconductor digital circuits from the perspectives of functionality, complexity, performance, and energy-efficiency. Second, hybrid wave-pipelining techniques developed earlier for wide datapath RSFQ designs have been used for efficient arithmetic and logic circuit implementations. To develop the core foundation of the ALU, the ripple-carry adder and the Kogge-Stone parallel prefix carry look-ahead adder are studied as representative candidates on opposite ends of the design spectrum. By combining the high-performance features of the Kogge-Stone structure and the low complexity of the ripple-carry adder, a 32-bit asynchronous wave-pipelined hybrid sparse-tree ALU has been designed and evaluated using the VHDL cell library tuned to HYPRES' gate-level characteristics. The designs and techniques from this research have been implemented using RSFQ logic and prototype chips have been fabricated. As a joint work with HYPRES, a 20 GHz 8-bit Kogge-Stone ALU consisting of 7,950 JJs total has been fabricated using a 1.5 μm 4.5 kA/cm2 process and fully demonstrated. An 8-bit sparse-tree ALU (8,832 JJs total) and a 16-bit sparse-tree adder (12,785 JJs total) have also been fabricated using a 1.0 μm 10 kA/cm 2 process and demonstrated under collaboration with Yokohama National University and Nagoya University (Japan).
Solid state radioisotopic energy converter for space nuclear power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, P.M.
1993-01-10
Recent developments in materials technology now make it possible to fabricate nonthermal thin-film radioisotopic energy converters (REC) with a specific power of 24 W/kg and a 10 year working life at 5 to 10 watts. This creates applications never before possible, such as placing the power supply directly on integrated circuit chips. The efficiency of the REC is about 25% which is two to three times greater than the 6 to 8% capabilities of current thermoelectric systems. Radioisotopic energy converters have the potential to meet many future space power requirements for a wide variety of applications with less mass, bettermore » efficiency, and less total area than other power conversion options. These benefits result in significant dollar savings over the projected mission lifetime.« less
Liu, Lu; Masfary, Osama; Antonopoulos, Nick
2012-01-01
The increasing trends of electrical consumption within data centres are a growing concern for business owners as they are quickly becoming a large fraction of the total cost of ownership. Ultra small sensors could be deployed within a data centre to monitor environmental factors to lower the electrical costs and improve the energy efficiency. Since servers and air conditioners represent the top users of electrical power in the data centre, this research sets out to explore methods from each subsystem of the data centre as part of an overall energy efficient solution. In this paper, we investigate the current trends of Green IT awareness and how the deployment of small environmental sensors and Site Infrastructure equipment optimization techniques which can offer a solution to a global issue by reducing carbon emissions.
Lee, Kilhung
2010-01-01
This paper presents a medium access control and scheduling scheme for wireless sensor networks. It uses time trees for sending data from the sensor node to the base station. For an energy efficient operation of the sensor networks in a distributed manner, time trees are built in order to reduce the collision probability and to minimize the total energy required to send data to the base station. A time tree is a data gathering tree where the base station is the root and each sensor node is either a relaying or a leaf node of the tree. Each tree operates in a different time schedule with possibly different activation rates. Through the simulation, the proposed scheme that uses time trees shows better characteristics toward burst traffic than the previous energy and data arrival rate scheme. PMID:22319270
Wireless Sensor for Measuring Pump Efficiency: Small Business Voucher Project with KCF Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugate, David L.; Liu, Xiaobing; Gehl, Anthony C.
This document is to fulfill the final report requirements for the Small Business Voucher (SBV) CRADA project with ORNL and KCF Technologies (CRADA/NFE-16-06133). Pumping systems account for nearly 20% of the world’s electrical energy demand and range from 25-50% of the energy usage in many industrial and building power plants. The energy cost is the largest element in the total cost of owning a pump (~40%). In response to a recent DOE mandate for improved pump efficiency pump manufacturers are preparing for the changes that the impending regulations will bring, including design improvements. This mandate also establishes a need formore » new low cost pump efficiency measurement systems. The standard industry definition of pump efficiency is the mechanical water horsepower delivered divided by the electrical horsepower input to the motor. KCF Technologies has developed a new sensor measurement technique to estimate fluid pump efficiency using a thermodynamic approach. KCF Technologies applied for a SBV grant with ORNL as the research partner. KCF needed a research partner with the proper facilities to demonstrate the efficacy of its wireless sensor unit for measuring pump efficiency. The ORNL Building Technologies Research and Integration Center (BTRIC) test resources were used to test and demonstrate the successful measurement of pump efficiency with the KCF sensor technology. KCF is now working on next steps to commercialize this sensing technology.« less
Del Dottore, Emanuela; Mondini, Alessio; Sadeghi, Ali; Mattoli, Virgilio; Mazzolai, Barbara
2017-12-22
This paper presents a comparative analysis in terms of energy required by an artificial probe to penetrate soil implementing two different strategies: a straight penetration movement and a circumnutation, which is an oscillatory movement performed by plant roots. The role of circumnutations in plant roots is still debated. We hypothesized that circumnutation movements can help roots in penetrating soil, and validated our assumption by testing the probe at three distinct soil densities and using various combinations of circumnutation amplitudes and periods for each soil. The comparison was based on the total work done by the system while circumnutating at its tip level with respect to that shown by the same system in straight penetration. The total energy evaluation confirmed an improvement obtained by circumnutations up to 33%. We also proposed a fitting model for our experimental data that was used to estimate energy needed by the probe to penetrate soil at different dimensions and circumnutation amplitudes. Results showed the existence of a trade-off among penetration velocity, circumnutation period, and amplitude toward an energy consumption optimization, expressed by the lead angle of the helical path that should stay in the range between 46° and 65°. Moreover, circumnutations with appropriate amplitude (~10°) and period (~80 s) values were more efficient than straight penetration also at different probe tip dimensions, up to a threshold diameter (from 2 mm to 55 mm). Based on the obtained results, we speculated that circumnutations can represent a strategy used by plant roots to reduce the pressure and energy needed to penetrate soil. The translation of this biological feature in robotic systems will allow improving their energetic efficiency in digging tasks, and thus open new scenarios for use in search and rescue, environmental monitoring, and soil exploration.
Hackel, R.P.
1992-10-20
A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain. 6 figs.
El Ashry, El Sayed H; El Nemr, Ahmed; Ragab, Safaa
2012-03-01
Quantum chemical calculations using the density functional theory (B3LYP/6-31G DFT) and semi-empirical AM1 methods were performed on ten pyridine derivatives used as corrosion inhibitors for mild steel in acidic medium to determine the relationship between molecular structure and their inhibition efficiencies. Quantum chemical parameters such as total negative charge (TNC) on the molecule, energy of highest occupied molecular orbital (E (HOMO)), energy of lowest unoccupied molecular orbital (E (LUMO)) and dipole moment (μ) as well as linear solvation energy terms, molecular volume (Vi) and dipolar-polarization (π) were correlated to corrosion inhibition efficiency of ten pyridine derivatives. A possible correlation between corrosion inhibition efficiencies and structural properties was searched to reduce the number of compounds to be selected for testing from a library of compounds. It was found that theoretical data support the experimental results. The results were used to predict the corrosion inhibition of 24 related pyridine derivatives.
SEEA SOUTHEAST CONSORTIUM FINAL TECHNICAL REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, Timothy; Ball, Kia; Fournier, Ashley
In 2010 the Southeast Energy Efficiency Alliance (SEEA) received a $20 million Energy Efficiency and Conservation Block Grant (EECBG) under the U.S. Department of Energy’s Better Building Neighborhood Program (BBNP). This grant, funded by the American Recovery and Reinvestment Act, also included sub-grantees in 13 communities across the Southeast, known as the Southeast Consortium. The objective of this project was to establish a framework for energy efficiency retrofit programs to create models for replication across the Southeast and beyond. To achieve this goal, SEEA and its project partners focused on establishing infrastructure to develop and sustain the energy efficiency marketmore » in specific localities across the southeast. Activities included implementing minimum training standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency through strategic marketing and outreach and addressing real or perceived financial barriers to investments in whole-home energy efficiency through a variety of financing mechanisms. The anticipated outcome of these activities would be best practice models for program design, marketing, financing, data collection and evaluation as well as increased market demand for energy efficiency retrofits and products. The Southeast Consortium’s programmatic impacts along with the impacts of the other BBNP grantees would further the progress towards the overall goal of energy efficiency market transformation. As the primary grantee SEEA served as the overall program administrator and provided common resources to the 13 Southeast Consortium sub-grantees including contracted services for contractor training, quality assurance testing, data collection, reporting and compliance. Sub-grantee programs were located in cities across eight states including Alabama, Florida, Georgia, Louisiana, North Carolina, South Carolina, Tennessee, Virginia and the U.S. Virgin Islands. Each sub-grantee program was designed to address the unique local conditions and population of its community. There was great diversity in programs design, types of financing and incentives, building stock characteristics, climate and partnerships. From 2010 through 2013, SEEA and its sub-grantee programs focused on determining best practices in program administration, workforce development, marketing and consumer education, financing, and utility partnerships. One of the common themes among programs that were most successful in each of these areas was strong partnerships and collaborations with people or organizations in the community. In many instances engaged partners proved to be the key to addressing barriers such as access to financing, workforce development opportunities and access to utility bill data. The most challenging barrier proved to be the act of building a market for energy efficiency where none previously existed. With limited time and resources, educating homeowners of the value in investing in energy efficiency while engaging electric and gas utilities served as a significant barrier for several programs. While there is still much work to be done to continue to transform the energy efficiency market in the Southeast, the programmatic activities led by SEEA and its sub-grantees resulted in 8,180 energy audits and 5,155 energy efficiency retrofits across the Southeast. In total the Southeast Consortium saved an estimated 27,915,655.93 kWh and generated an estimated $ 2,291,965.90 in annual energy cost savings in the region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparn, Bethany; Hunsberger, Randolph
Water and wastewater treatment plants and distribution systems use significant amounts of energy, around 2 - 4% of the total electricity used in the US, and their energy use is projected to increase as populations increase and regulations become more stringent. Water and wastewater systems have largely been disconnected from the electric utilities' efforts to improve energy efficiency and provide energy efficiency and provide grid services, likely because their core mission is to provide clean water and treated wastewater. Energy efficiency has slowly crept into the water and wastewater industry as the economic benefit has become more apparent, but theremore » is still potential for significant improvement. Some of the larger, more progressive water utilities are starting to consider providing grid services; however, it remains a foreign concept to many. This report explores intrinsic mechanisms by which the water and wastewater industries can provide exchangeable services, the benefit to the parties involved, and the barriers to implementation. It also highlights relevant case studies and next steps. Although opportunities for increasing process efficiencies are certainly available, this report focuses on the exchangeable services that water and wastewater loads can provide to help maintain grid reliability, keep overall costs down, and increase the penetration of distributed renewables on the electric grid. These services have potential to provide water utilities additional value streams, using existing equipment with modest or negligible upgrade cost.« less
Public Housing: A Tailored Approach to Energy Retrofits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, J.; Conlin, F.; Podorson, D.
2016-02-18
Over one million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 public housing authorities (PHAs) across the country indicated that there is a high level of interest in developing low-cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with four PHAs to develop packages of energy efficiency retrofit measures the PHAs can cost-effectively implement with their own staffs in the normal course of housing operations at the time whenmore » units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing, and measures that improve equipment efficiency. ARIES documented implementation in 18 housing units. Reductions in average air leakage were 16% and duct leakage reductions averaged 23%. Total source energy consumption savings due to implemented measures was estimated at 3-10% based on BEopt modeling with a simple payback of 1.6 to 2.5 years. Implementation challenges were encountered mainly related to required operational changes and budgetary constraints. Nevertheless, simple measures can feasibly be accomplished by PHA staff at low or no cost. At typical housing unit turnover rates, these measures could impact hundreds of thousands of units per year nationally.« less
NASA Astrophysics Data System (ADS)
Vergou, Theognosia; Patzelt, Alexa; Richter, Heike; Schanzer, Sabine; Zastrow, Leonhard; Golz, Karin; Doucet, Olivier; Antoniou, Christina; Sterry, Wolfram; Lademann, Juergen
2011-10-01
The development of sunscreens with high sun protection factor (SPF) values but low filter concentrations is the ultimate goal. The purpose of the present study was to investigate why a sunscreen spray and cream with different concentrations of the same UV-filters provided the same SPF. Therefore, the homogeneity of the distribution of both sunscreens was investigated by laser scanning microscopy (LSM) and tape stripping (TS). Additionally, the energy transfer mechanisms of the sunscreens on the skin were analyzed. The TS and LSM showed a better homogeneity of the distribution of the spray. With Wood's light, a total absorption of the irradiation was detected in the spray area. In contrast, after cream treatment, an intensive fluorescent signal was observed. It was demonstrated that this fluorescent signal was caused by nonthermal energy transferred from the UV-filters to one compound of the cream releasing its excitation energy by fluorescence. This nonthermal energy transfer seemed to be the reason for the high efficiency of the cream, which is subjected to thermal relaxation. The transfer of UV photon energy into fluorescent light represents a new approach to increase the efficiency of sunscreens and could form the basis for a new generation of sunscreens.
Energy efficient sensor scheduling with a mobile sink node for the target tracking application.
Maheswararajah, Suhinthan; Halgamuge, Saman; Premaratne, Malin
2009-01-01
Measurement losses adversely affect the performance of target tracking. The sensor network's life span depends on how efficiently the sensor nodes consume energy. In this paper, we focus on minimizing the total energy consumed by the sensor nodes whilst avoiding measurement losses. Since transmitting data over a long distance consumes a significant amount of energy, a mobile sink node collects the measurements and transmits them to the base station. We assume that the default transmission range of the activated sensor node is limited and it can be increased to maximum range only if the mobile sink node is out-side the default transmission range. Moreover, the active sensor node can be changed after a certain time period. The problem is to select an optimal sensor sequence which minimizes the total energy consumed by the sensor nodes. In this paper, we consider two different problems depend on the mobile sink node's path. First, we assume that the mobile sink node's position is known for the entire time horizon and use the dynamic programming technique to solve the problem. Second, the position of the sink node is varied over time according to a known Markov chain, and the problem is solved by stochastic dynamic programming. We also present sub-optimal methods to solve our problem. A numerical example is presented in order to discuss the proposed methods' performance.
Energy Efficient Sensor Scheduling with a Mobile Sink Node for the Target Tracking Application
Maheswararajah, Suhinthan; Halgamuge, Saman; Premaratne, Malin
2009-01-01
Measurement losses adversely affect the performance of target tracking. The sensor network's life span depends on how efficiently the sensor nodes consume energy. In this paper, we focus on minimizing the total energy consumed by the sensor nodes whilst avoiding measurement losses. Since transmitting data over a long distance consumes a significant amount of energy, a mobile sink node collects the measurements and transmits them to the base station. We assume that the default transmission range of the activated sensor node is limited and it can be increased to maximum range only if the mobile sink node is out-side the default transmission range. Moreover, the active sensor node can be changed after a certain time period. The problem is to select an optimal sensor sequence which minimizes the total energy consumed by the sensor nodes. In this paper, we consider two different problems depend on the mobile sink node's path. First, we assume that the mobile sink node's position is known for the entire time horizon and use the dynamic programming technique to solve the problem. Second, the position of the sink node is varied over time according to a known Markov chain, and the problem is solved by stochastic dynamic programming. We also present sub-optimal methods to solve our problem. A numerical example is presented in order to discuss the proposed methods' performance PMID:22399934
Hurley, A M; Lopez-Villalobos, N; McParland, S; Lewis, E; Kennedy, E; O'Donovan, M; Burke, J L; Berry, D P
2018-02-01
The objective of the present study was to investigate the phenotypic inter- and intra-relationships within and among alternative feed efficiency metrics across different stages of lactation and parities; the expected effect of genetic selection for feed efficiency on the resulting phenotypic lactation profiles was also quantified. A total of 8,199 net energy intake (NE I ) test-day records from 2,505 lactations on 1,290 cows were used. Derived efficiency traits were either ratio based or residual based; the latter were derived from least squares regression models. Residual energy intake (REI) was defined as NE I minus predicted energy requirements based on lactation performance; residual energy production (REP) was defined as net energy for lactation minus predicted energy requirements based on lactation performance. Energy conversion efficiency was defined as net energy for lactation divided by NE I . Pearson phenotypic correlations among traits were computed across lactation stages and parities, and the significance of the differences was determined using the Fisher r-to-z transformation. Sources of variation in the feed efficiency metrics were investigated using linear mixed models, which included the fixed effects of contemporary group, breed, parity, stage of lactation, and the 2-way interaction of parity by stage of lactation. With the exception of REI, parity was associated with all efficiency and production traits. Stage of lactation, as well as the 2-way interaction of parity by stage of lactation, were associated with all efficiency and production traits. Phenotypic correlations among the efficiency and production traits differed not only by stage of lactation but also by parity. For example, the strong phenotypic correlation between REI and energy balance (EB; 0.89) for cows in parity 3 or greater and early lactation was weaker for parity 1 cows at the same lactation stage (0.81), suggesting primiparous cows use the ingested energy for both milk production and growth. Nonetheless, these strong phenotypic correlations between REI and EB suggested negative REI animals (i.e., more efficient) are also in more negative EB. These correlations were further supported when assessing the effect on phenotypic performance of animals genetically divergent for feed intake and efficiency based on parental average. Animals genetically selected to have lower REI resulted in cows who consumed less NE I but were also in negative EB throughout the entire lactation. Nonetheless, such repercussions of negative EB do not imply that selection for negative REI (as defined here) should not be practiced, but instead should be undertaken within the framework of a balanced breeding objective, which includes traits such as reproduction and health. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Genetics of alternative definitions of feed efficiency in grazing lactating dairy cows.
Hurley, A M; López-Villalobos, N; McParland, S; Lewis, E; Kennedy, E; O'Donovan, M; Burke, J L; Berry, D P
2017-07-01
The objective of the present study was to estimate genetic parameters across lactation for measures of energy balance (EB) and a range of feed efficiency variables as well as to quantify the genetic inter-relationships between them. Net energy intake (NEI) from pasture and concentrate intake was estimated up to 8 times per lactation for 2,481 lactations from 1,274 Holstein-Friesian cows. A total of 8,134 individual feed intake measurements were used. Efficiency traits were either ratio based or residual based; the latter were derived from least squares regression models. Residual energy intake (REI) was defined as NEI minus predicted energy requirements [e.g., net energy of lactation (NE L ), maintenance, and body tissue anabolism] or supplied from body tissue mobilization; residual energy production was defined as the difference between actual NE L and predicted NE L based on NEI, maintenance, and body tissue anabolism/catabolism. Energy conversion efficiency was defined as NE L divided by NEI. Random regression animal models were used to estimate residual, additive genetic, and permanent environmental (co)variances across lactation. Heritability across lactation stages varied from 0.03 to 0.36 for all efficiency traits. Within-trait genetic correlations tended to weaken as the interval between lactation stages compared lengthened for EB, REI, residual energy production, and NEI. Analysis of eigenvalues and associated eigenfunctions for EB and the efficiency traits indicate the ability to genetically alter the profile of these lactation curves to potentially improve dairy cow efficiency differently at different stages of lactation. Residual energy intake and EB were moderately to strongly genetically correlated with each other across lactation (genetic correlations ranged from 0.45 to 0.90), indicating that selection for lower REI alone (i.e., deemed efficient cows) would favor cows with a compromised energy status; nevertheless, selection for REI within a holistic breeding goal could be used to overcome such antagonisms. The smallest (8.90% of genetic variance) and middle (11.22% of genetic variance) eigenfunctions for REI changed sign during lactation, indicating the potential to alter the shape of the REI lactation profile. Results from the present study suggest exploitable genetic variation exists for a range of efficiency traits, and the magnitude of this variation is sufficiently large to justify consideration of the feed efficiency complex in future dairy breeding goals. Moreover, it is possible to alter the trajectories of the efficiency traits to suit a particular breeding objective, although this relies on very precise across-parity genetic parameter estimates, including genetic correlations with health and fertility traits (as well as other traits). Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
A long-term, integrated impact assessment of alternative building energy code scenarios in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Sha; Eom, Jiyong; Evans, Meredydd
2014-04-01
China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, ismore » developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13% - 22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement.« less
USDA-ARS?s Scientific Manuscript database
Based on a study done by Thoma et al. (2010) the energy used in fluid milk processing in the United States of America is responsible for approximately 2 million metric tons of greenhouse gas (GHG) emissions within the total life cycle of milk. These emissions come from electricity use (about 75 perc...
Dynamic Analyses of Result Quality in Energy-Aware Approximate Programs
NASA Astrophysics Data System (ADS)
RIngenburg, Michael F.
Energy efficiency is a key concern in the design of modern computer systems. One promising approach to energy-efficient computation, approximate computing, trades off output precision for energy efficiency. However, this tradeoff can have unexpected effects on computation quality. This thesis presents dynamic analysis tools to study, debug, and monitor the quality and energy efficiency of approximate computations. We propose three styles of tools: prototyping tools that allow developers to experiment with approximation in their applications, online tools that instrument code to determine the key sources of error, and online tools that monitor the quality of deployed applications in real time. Our prototyping tool is based on an extension to the functional language OCaml. We add approximation constructs to the language, an approximation simulator to the runtime, and profiling and auto-tuning tools for studying and experimenting with energy-quality tradeoffs. We also present two online debugging tools and three online monitoring tools. The first online tool identifies correlations between output quality and the total number of executions of, and errors in, individual approximate operations. The second tracks the number of approximate operations that flow into a particular value. Our online tools comprise three low-cost approaches to dynamic quality monitoring. They are designed to monitor quality in deployed applications without spending more energy than is saved by approximation. Online monitors can be used to perform real time adjustments to energy usage in order to meet specific quality goals. We present prototype implementations of all of these tools and describe their usage with several applications. Our prototyping, profiling, and autotuning tools allow us to experiment with approximation strategies and identify new strategies, our online tools succeed in providing new insights into the effects of approximation on output quality, and our monitors succeed in controlling output quality while still maintaining significant energy efficiency gains.
Solar-hydrogen energy system for Pakistan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutfi, N.
1990-01-01
A solar-hydrogen energy system has been proposed for Pakistan as the best replacement for the present fossil fuel based energy system. It has been suggested to produce hydrogen via photovoltaic-electrolysis, utilizing the available non-agricultural sunny terrain in Baluchistan region. There will be a desalination plant for sea water desalination. The area under the photovoltaic panels with the availability of water would provide suitable environment for growing some cash crops. This would change the cast useless desert land into green productive farms. In order to show the quantitative benefits of the proposed system, future trends of important energy and economical parametersmore » have been studied with and without hydrogen introduction. The following parameters have been included: population, energy demand (fossil + hydrogen), energy production (fossil + hydrogen), gross national product, fossil energy imports, world energy prices, air pollution, quality of life, environmental savings due to hydrogen introduction, savings due to the higher utilization efficiency of hydrogen, by-product credit, agricultural income, income from hydrogen sale, photovoltaic cell area, total land area, water desalination plant capacity, capital investment, operating and maintenance cost, and total income from the system. The results indicate that adopting the solar-hydrogen energy system would eliminate the import dependency of fossil fuels, increase gross product per capita, reduce pollution, improve quality of life and establish a permanent and clean energy system. The total annual expenditure on the proposed system is less than the total income from the proposed system. The availability of water, the cash crop production, electricity and hydrogen would result in rapid development of Baluchistan, the largest province of Pakistan.« less
NASA Technical Reports Server (NTRS)
Felder, James L.; Tong, Michael T.; Chu, Julio
2012-01-01
In a previous study by the authors it was shown that the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with a turboelectric distributed propulsion (TeDP) system, was able to meet the NASA Subsonic Fixed Wing (SFW) project goal for N+3 generation aircraft of at least a 60% reduction in total energy consumption as compared to the best in class current generation aircraft. This previous study combined technology assumptions that represented the highest anticipated values that could be matured to technology readiness level (TRL) 4-6 by 2030. This paper presents the results of a sensitivity analysis of the total mission energy consumption to reductions in each key technology assumption. Of the parameters examined, the mission total energy consumption was most sensitive to changes to total pressure loss in the propulsor inlet. The baseline inlet internal pressure loss is assumed to be an optimistic 0.5%. An inlet pressure loss of 3% increases the total energy consumption 9%. However changes to reduce inlet pressure loss can result in additional distortion to the fan which can reduce fan efficiency or vice versa. It is very important that the inlet and fan be analyzed and optimized as a single unit. The turboshaft hot section is assumed to be made of ceramic matrix composite (CMC) with a 3000 F maximum material temperature. Reducing the maximum material temperature to 2700 F increases the mission energy consumption by only 1.5%. Thus achieving a 3000 F temperature in CMCs is important but not central to achieving the energy consumption objective of the N3-X/TeDP. A key parameter in the efficiency of superconducting motors and generators is the size of the superconducting filaments in the stator. The size of the superconducting filaments in the baseline model is assumed to be 10 microns. A 40 micron filament, which represents current technology, results in a 200% increase in AC losses in the motor and generator stators. This analysis shows that for a system with 40 micron filaments the higher stator losses plus the added weight and power of larger cryocoolers results in a 4% increase in mission energy consumption. If liquid hydrogen is used to cool the superconductors the 40 micron fibers results in a 200% increase in hydrogen required for cooling. Each pound of hydrogen used as fuel displaces 3 pounds of jet fuel. For the N3-X on the reference mission the additional hydrogen due to the increase stator losses reduces the total fuel weight 10%. The lighter fuel load and attendant vehicle resizing reduces the total energy consumption more than the higher stator losses increase it. As a result with hydrogen cooling there is a slight reduction in mission energy consumption with increasing stator losses. This counter intuitive result highlights the need to consider the full system impact of changes rather than just at the component or subsystem level.
Energy efficiency in new museum build: THEpUBLIC
NASA Astrophysics Data System (ADS)
Battle, G.; Yuen, C. H. N.; Zanchetta, M.; D'Cruz, P.
2006-12-01
The project MUSEUMS, awarded the Thermie Grant from the European Commission, has applied and tested new and innovative technologies for optimizing energy efficiency and sustainability in nine retrofitted and new museum buildings in Europe. The project will significantly contribute to the acceptance of innovative and renewable technologies in public buildings by demonstrating that retrofitted and new museum buildings can fully meet architectural, functional, comfort, control and safety requirements as well as achieve total energy savings of over 35% and reduce CO2 emissions by over 50%. THEpUBLIC will be a stunning and modern flagship building containing six storeys, with a total area of 11,000Âm2 of galleries for exhibitions, digital art and hands-on displays. In addition, there will be workspaces, creative spaces, retail opportunities, restaurant facilities, public areas, conference rooms and other multi-function spaces. Initiated by Jubilee Arts, the THEpUBLIC, designed by Alsop Architects, will introduce and engage its 400,000 expected visitors in the principles of energy and the environment through a display of art, education, technology and entertainment in the centre of West Bromwich, Sandwell. It will serve as a catalyst for urban regeneration within Sandwell.Battle McCarthy's key environmental design solutions for THEpUBLIC include natural daylighting, mixed-mode ventilation system with operable windows, low energy and maintenance cost systems, potential for integrating renewable energy collection systems, borehole water systems for cooling and water supply, an intelligent facade system with external shading and natural ventilation and night cooling systems.
A model for Entropy Production, Entropy Decrease and Action Minimization in Self-Organization
NASA Astrophysics Data System (ADS)
Georgiev, Georgi; Chatterjee, Atanu; Vu, Thanh; Iannacchione, Germano
In self-organization energy gradients across complex systems lead to change in the structure of systems, decreasing their internal entropy to ensure the most efficient energy transport and therefore maximum entropy production in the surroundings. This approach stems from fundamental variational principles in physics, such as the principle of least action. It is coupled to the total energy flowing through a system, which leads to increase the action efficiency. We compare energy transport through a fluid cell which has random motion of its molecules, and a cell which can form convection cells. We examine the signs of change of entropy, and the action needed for the motion inside those systems. The system in which convective motion occurs, reduces the time for energy transmission, compared to random motion. For more complex systems, those convection cells form a network of transport channels, for the purpose of obeying the equations of motion in this geometry. Those transport networks are an essential feature of complex systems in biology, ecology, economy and society.
NASA Astrophysics Data System (ADS)
Gamil, A. M.; Gilani, S. I.; Al-Kayiem, H. H.
2013-06-01
Solar energy is the most available, clean, and inexpensive source of energy among the other renewable sources of energy. Malaysia is an encouraging location for the development of solar energy systems due to abundant sunshine (10 hours daily with average solar energy received between 1400 and 1900 kWh/m2). In this paper the design of heliostat field of 3 dual-axis heliostat units located in Ipoh, Malaysia is introduced. A mathematical model was developed to estimate the sun position and calculate the cosine losses in the field. The study includes calculating the incident solar power to a fixed target on the tower by analysing the tower height and ground distance between the heliostat and the tower base. The cosine efficiency was found for each heliostat according to the sun movement. TRNSYS software was used to simulate the cosine efficiencies and field hourly incident solar power input to the fixed target. The results show the heliostat field parameters and the total incident solar input to the receiver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Xuanfeng, E-mail: Xuanfeng.ding@beaumont.org; Li, Xiaoqiang; Zhang, J. Michele
Purpose: To present a novel robust and delivery-efficient spot-scanning proton arc (SPArc) therapy technique. Methods and Materials: A SPArc optimization algorithm was developed that integrates control point resampling, energy layer redistribution, energy layer filtration, and energy layer resampling. The feasibility of such a technique was evaluated using sample patients: 1 patient with locally advanced head and neck oropharyngeal cancer with bilateral lymph node coverage, and 1 with a nonmobile lung cancer. Plan quality, robustness, and total estimated delivery time were compared with the robust optimized multifield step-and-shoot arc plan without SPArc optimization (Arc{sub multi-field}) and the standard robust optimized intensity modulatedmore » proton therapy (IMPT) plan. Dose-volume histograms of target and organs at risk were analyzed, taking into account the setup and range uncertainties. Total delivery time was calculated on the basis of a 360° gantry room with 1 revolutions per minute gantry rotation speed, 2-millisecond spot switching time, 1-nA beam current, 0.01 minimum spot monitor unit, and energy layer switching time of 0.5 to 4 seconds. Results: The SPArc plan showed potential dosimetric advantages for both clinical sample cases. Compared with IMPT, SPArc delivered 8% and 14% less integral dose for oropharyngeal and lung cancer cases, respectively. Furthermore, evaluating the lung cancer plan compared with IMPT, it was evident that the maximum skin dose, the mean lung dose, and the maximum dose to ribs were reduced by 60%, 15%, and 35%, respectively, whereas the conformity index was improved from 7.6 (IMPT) to 4.0 (SPArc). The total treatment delivery time for lung and oropharyngeal cancer patients was reduced by 55% to 60% and 56% to 67%, respectively, when compared with Arc{sub multi-field} plans. Conclusion: The SPArc plan is the first robust and delivery-efficient proton spot-scanning arc therapy technique, which could potentially be implemented into routine clinical practice.« less
Modeling of clover detector in addback mode
NASA Astrophysics Data System (ADS)
Kshetri, R.
2012-07-01
Based on absorption and scattering of gamma-rays, a formalism has been presented for modeling the clover germanium detector in addback mode and to predict its response for high energy γ-rays. In the present formalism, the operation of a bare clover detector could be described in terms of three quantities only. Considering an additional parameter, the formalism could be extended for suppressed clover. Using experimental data on relative single crystal efficiency and addback factor as input, the peak-to-total ratio has been calculated for three energies (Eγ = 3.401, 5.324 and 10.430 MeV) where direct measurement of peak-to-total ratio is impossible due to absence of a radioactive source having single monoenergetic gamma-ray of that energy. The experimental validation and consistency of the formalism have been shown considering data for TIGRESS clover detector. In a recent work (R. Kshetri, JINST 2012 7 P04008), we showed that for a given γ-ray energy, the formalism could be used to predict the peak-to-total ratio as a function of number of detector modules. In the present paper, we have shown that for a given composite detector (clover detector is considered here), the formalism could be used to predict the peak-to-total ratio as a function of γ-ray energy.
Takatani, S; Orime, Y; Tasai, K; Ohara, Y; Naito, K; Mizuguchi, K; Makinouchi, K; Damm, G; Glueck, J; Ling, J
1994-01-01
A multipurpose miniature electromechanical energy system has been developed to yield a compact, efficient, durable, and biocompatible total artificial heart (TAH) and ventricular assist device (VAD). Associated controller-driver electronics were recently miniaturized and converted into hybrid circuits. The hybrid controller consists of a microprocessor and controller, motor driver, Hall sensor, and commutation circuit hybrids. The sizing study demonstrated that all these components can be incorporated in the pumping unit of the TAH and VAD, particularly in the centerpiece of the TAH and the motor housing of the VAD. Both TAH and VAD pumping units will start when their power line is connected to either the internal power pack or the external battery unit. As a redundant driving and diagnostic port, an emergency port was newly added and will be placed in subcutaneous location. In case of system failure, the skin will be cut down, and an external motor drive or a pneumatic driver will be connected to this port to run the TAH. This will minimize the circulatory arrest time. Overall efficiency of the TAH without the transcutaneous energy transmission system was 14-18% to deliver pump outputs of 4-9 L/min against the right and left afterload pressures of 25 and 100 mm Hg. The internal power requirement ranged from 6 to 13 W. The rechargeable batteries such as NiCd or NiMH with 1 AH capacity can run the TAH for 30-45 min. The external power requirement, when TETS efficiency of 75% was assumed, ranged from 8 to 18 W. The accelerated endurance test in the 42 degrees C saline bath demonstrated stable performance over 4 months. Long-term endurance and chronic animal studies will continue toward a system with 5 years durability by the year 2000.
Experimental Investigation on Design Enhancement of Axial Fan Using Fixed Guide Vane
NASA Astrophysics Data System (ADS)
Munisamy, K. M.; Govindasamy, R.; Thangaraju, S. K.
2015-09-01
Airflow passes through the rotating blade in an axial flow fan will experience a helical flow pattern. This swirling effect leads the system to experience swirl energy losses or pressure drop yet reducing the total efficiency of the fan system. A robust tool to encounter this air spin past the blade is by introducing guide vane to the system. Owing to its importance, a new approach in designing outlet guide vane design for a commercial usage 1250mm diameter axial fan with a 30° pitch angle impeller has been introduced in this paper. A single line metal of proper curvature guide vane design technique has been adopted for this study. By choosing fan total efficiency as a target variable to be improved, the total and static pressure on the design point were set to be constraints. Therefore, the guide vane design was done based on the improvement target on the static pressure in system. The research shows that, with the improvement in static pressure by 29.63% through guide vane installation, the total fan efficiency is increased by 5.12%, thus reduces the fan power by 5.32%. Good agreement were found, that when the fan total efficiency increases, the power consumption of the fan is reduced. Therefore, this new approach of guide vane design can be applied to improve axial fan performance.
Economic Analysis of Solar Energy Using in Oil Sector Economy in Republic of Tatarstan
NASA Astrophysics Data System (ADS)
Kulikova, L. I.; Goshunova, A. V.; Nutfullina, D. I.
2017-11-01
In the current economic conditions further increase of the profit or maintenance of its current level on the base of extensive development factors is no longer possible. The example of the oil-extracting company in the Republic of Tatarstan demonstrates that in the future it will be possible to replace traditional energy sources with solar energy; it will reduce energy costs for oil extraction, production costs and provide an increase of corporate efficiency. The economic analysis results show that the use of solar electricity can lead to 4.68% reduction in total electricity costs. In addition, the energy consumption per ton of oil produced is reduced. The share of electricity costs in the oil cost is reducing from 12.13% to 11.56%. Consequently, in the long term, the impact of total energy costs reduction can become more significant. In this way solar energy can become quite a real alternative in ensuring the energy needs of the economy of the oil-extracting sector of the Republic of Tatarstan and become a driver of intensive economic development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torcellini, Paul A.; Bonnema, Eric; Goldwasser, David
Building energy consumption can only be measured at the site or at the point of utility interconnection with a building. Often, to evaluate the total energy impact, this site-based energy consumption is translated into source energy, that is, the energy at the point of fuel extraction. Consistent with this approach, the U.S. Department of Energy's (DOE) definition of zero energy buildings uses source energy as the metric to account for energy losses from the extraction, transformation, and delivery of energy. Other organizations, as well, use source energy to characterize the energy impacts. Four methods of making the conversion from sitemore » energy to source energy were investigated in the context of the DOE definition of zero energy buildings. These methods were evaluated based on three guiding principles--improve energy efficiency, reduce and stabilize power demand, and use power from nonrenewable energy sources as efficiently as possible. This study examines relative trends between strategies as they are implemented on very low-energy buildings to achieve zero energy. A typical office building was modeled and variations to this model performed. The photovoltaic output that was required to create a zero energy building was calculated. Trends were examined with these variations to study the impacts of the calculation method on the building's ability to achieve zero energy status. The paper will highlight the different methods and give conclusions on the advantages and disadvantages of the methods studied.« less
Reply to Comment on ‘The most energy efficient way to charge the capacitor in a RC circuit’
NASA Astrophysics Data System (ADS)
Wang, Dake
2018-07-01
The recent comment on the paper (Wang 2017 Phys. Educ. 52 065019) attempts to show that the energy loss involved in charging a RC circuit is independent of the charging rate if the loss within the current source is considered. In this reply, the transistor-based control circuit is examined in more detail to reveal the mistake made in the analysis used in the comment. This reply demonstrates that there are additional energy contributions by the control, and, consequently, the total energy loss does depend on the charging rate and the waveform used.
Kaufman, Kenton R.; Levine, James A.; Brey, Robert H.; McCrady, Shelly K.; Padgett, Denny J.; Joyner, Michael J.
2009-01-01
Objective To quantify the energy efficiency of locomotion and free-living physical activity energy expenditure of transfemoral amputees using a mechanical and microprocessor-controlled prosthetic knee. Design Repeated-measures design to evaluate comparative functional outcomes. Setting Exercise physiology laboratory and community free-living environment. Participants Subjects (N=15; 12 men, 3 women; age, 42±9y; range, 26 –57y) with transfemoral amputation. Intervention Research participants were long-term users of a mechanical prosthesis (20±10y as an amputee; range, 3–36y). They were fitted with a microprocessor-controlled knee prosthesis and allowed to acclimate (mean time, 18±8wk) before being retested. Main Outcome Measures Objective measurements of energy efficiency and total daily energy expenditure were obtained. The Prosthetic Evaluation Questionnaire was used to gather subjective feedback from the participants. Results Subjects demonstrated significantly increased physical activity–related energy expenditure levels in the participant’s free-living environment (P=.04) after wearing the microprocessor-controlled prosthetic knee joint. There was no significant difference in the energy efficiency of walking (P=.34). When using the microprocessor-controlled knee, the subjects expressed increased satisfaction in their daily lives (P=.02). Conclusions People ambulating with a microprocessor-controlled knee significantly increased their physical activity during daily life, outside the laboratory setting, and expressed an increased quality of life. PMID:18586142
Design and testing of a uniformly solar energy TIR-R concentration lenses for HCPV systems.
Shen, S C; Chang, S J; Yeh, C Y; Teng, P C
2013-11-04
In this paper, total internal reflection-refraction (TIR-R) concentration (U-TIR-R-C) lens module were designed for uniformity using the energy configuration method to eliminate hot spots on the surface of solar cell and increase conversion efficiency. The design of most current solar concentrators emphasizes the high-power concentration of solar energy, however neglects the conversion inefficiency resulting from hot spots generated by uneven distributions of solar energy concentrated on solar cells. The energy configuration method proposed in this study employs the concept of ray tracing to uniformly distribute solar energy to solar cells through a U-TIR-R-C lens module. The U-TIR-R-C lens module adopted in this study possessed a 76-mm diameter, a 41-mm thickness, concentration ratio of 1134 Suns, 82.6% optical efficiency, and 94.7% uniformity. The experiments demonstrated that the U-TIR-R-C lens module reduced the core temperature of the solar cell from 108 °C to 69 °C and the overall temperature difference from 45 °C to 10 °C, and effectively relative increased the conversion efficiency by approximately 3.8%. Therefore, the U-TIR-R-C lens module designed can effectively concentrate a large area of sunlight onto a small solar cell, and the concentrated solar energy can be evenly distributed in the solar cell to achieve uniform irradiance and effectively eliminate hot spots.
Lenssen, N
1993-01-01
China is emerging as a serious producer of carbon emissions from its burning of coal. China contributes 11% of global carbon emissions, which is still less than its population share. Economic reforms are likely to boost emissions. 33% of all fuel burned in China produces useful energy compared to 50-60% in the USA and Japan. Low prices encourage wasteful use. The Chinese government responds to energy shortages by investing scarce capital in building more mines, power plants, and oil wells. It is unlikely that investing in expanding conventional energy supplies will be a viable solution, regardless of the availability of capital to invest, because air pollution threatens life. Particulate suspension is 14 times greater in China than in the USA. 14% of the country is affected by acid rain. Global warming may be affecting the northern drought prone areas. The solutions must involve greater efficiency. Industrial consumption of energy is more than 66% of energy produced. Energy use for a typical steel or cement factory is 7-75% greater per ton than Western countries, i.e., 55-60% efficiency versus 80% in Europe. The inefficiency is due to poor maintenance and operating procedures and old or obsolete technology. The savings in building a compact, fluorescent light bulb factory is compared to the cost of building coal-fired power plants and transmission facilities. Conservation of heat in northern buildings could be accomplished with boiler improvements, insulation, and double- glazed windows. A $3 billion/year investment could yield a cut in energy demand by nearly 50%. The carbon emissions would be reduced from 1.4 billion tons to 1 billion tons in 2025. Between 1980 and 1985 the energy efficiency program was able to reduce growth in energy from 7% to 4% without slowing growth in industrial production. Since 1985, the government has directed expenditures toward expanding the energy supply, which reduced efficiency expenditures from 10% to 6% of total investment. Alternatives are natural gas or solar, wind, biomass, and geothermal energy. Alternatives are natural gas or solar, wind, biomass, and geothermal energy. International lending agencies must now shift their support to renewable resource development and efficiency improvement and education; an example from industrialized countries would also be very persuasive.
Energy budget for the cultured, zooxanthellate octocoral Sinularia flexibilis.
Khalesi, Mohammad K; Beeftink, H H; Wijffels, R H
2011-12-01
The zooxanthellate octocoral Sinularia flexibilis is a producer of potential pharmaceutically important metabolites such as antimicrobial and cytotoxic substances. Controlled rearing of the coral, as an alternative for commercial exploitation of these compounds, requires the study of species-specific growth requirements. In this study, phototrophic vs. heterotrophic daily energy demands of S. flexibilis was investigated through light and Artemia feeding trials in the laboratory. Rate of photosynthetic oxygen by zooxanthellae in light (≈200 μmol quanta m⁻² s⁻¹) was measured for the coral colonies with and without feeding on Artemia nauplii. Respiratory oxygen was measured in the dark, again with and without Artemia nauplii. Photosynthesis-irradiance curve at light intensities of 0, 50, 100, 200, and 400 μmol quanta m⁻² s⁻¹ showed an increase in photosynthetic oxygen production up to a light intensity between 100 and 200 μmol quanta m⁻² s⁻¹. The photosynthesis to respiration ratio (P/R > 1) confirmed phototrophy of S. flexibilis. Both fed and non-fed colonies in the light showed high carbon contribution by zooxanthellae to animal (host) respiration values of 111-127%. Carbon energy equivalents allocated to the coral growth averaged 6-12% of total photosynthesis energy (mg C g⁻¹ buoyant weight day⁻¹ and about 0.02% of the total daily radiant energy. "Light utilization efficiency (ε)" estimated an average ε value of 75% 12 h⁻¹ for coral practical energetics. This study shows that besides a fundamental role of phototrophy vs. heterotrophy in daily energy budget of S. flexibilis, an efficient fraction of irradiance is converted to useable energy.
Stocker, Andrea; Großmann, Anett; Madlener, Reinhard; Wolter, Marc Ingo
2011-10-01
This paper reports on the Austrian research project "Renewable energy in Austria: Modeling possible development trends until 2020". The project investigated possible economic and ecological effects of a substantially increased use of renewable energy sources in Austria. Together with stakeholders and experts, three different scenarios were defined, specifying possible development trends for renewable energy in Austria. The scenarios were simulated for the period 2006-2020, using the integrated environment-energy-economy model "e3.at". The modeling results indicate that increasing the share of renewable energy sources in total energy use is an important but insufficient step towards achieving a sustainable energy system in Austria. A substantial increase in energy efficiency and a reduction of residential energy consumption also form important cornerstones of a sustainable energy policy.
A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel
Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and themore » U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel industry, and final steel product mix in both countries. The share of lower energy intensity electric arc furnace production in each country was a key determinant of total steel sector energy efficiency. Overall steel sector structure, in terms of average plant vintage and production capacity, is also an important variable though data were not available to quantify this in a scenario. The methodology developed in this report, along with the accompanying quantitative and qualitative analyses, provides a foundation for comparative international assessment of steel sector energy intensity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cimpan, Ciprian, E-mail: cic@kbm.sdu.dk; Wenzel, Henrik
2013-07-15
Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogasmore » and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full stream combustion. Sensitivity to assumptions regarding virgin plastic substitution was tested and was found to mostly favour plastic recovery.« less
Selection of axial hydraulic turbines for low-head microhydropower plants
NASA Astrophysics Data System (ADS)
Šoukal, J.; Pochylý, F.; Varchola, M.; Parygin, A. G.; Volkov, A. V.; Khovanov, G. P.; Naumov, A. V.
2015-12-01
The creation of highly efficient hydroturbines for low-head microhydropower plants is considered. The use of uncontrolled (propeller) hydroturbines is a promising means of minimizing costs and the time for their recoupment. As an example, experimental results from Brno University of Technology are presented. The model axial hydraulic turbine produced by Czech specialists performs well. The rotor diameter of this turbine is 194 mm. In the design of the working rotor, ANSYS Fluent software is employed. Means of improving the efficiency of microhydropower plants by optimal selection of the turbine parameters in the early stages of design are outlined. The energy efficiency of the hydroturbine designed for use in a microhydropower plant may be assessed on the basis of the coefficient of energy utilization, which is a function of the total losses in all the pipeline elements and losses in the channel including the hydroturbine rotor. The limit on the coefficient of energy utilization in the pressure pipeline is the hydraulic analog of the Betz-Joukowsky limit, which is widely used in the design of wind generators. The proposed approach is experimentally verified at Moscow Power Engineering Institute. A model axial hydraulic turbine with four different rotors is designed for the research. The diameter of all four rotors is the same: 80 mm. The pipeline takes the form of a siphon. Working rotor R2, designed with parameter optimization, is characterized by the highest coefficient of energy utilization of the pressure pipeline and maximum efficiency. That confirms that the proposed approach is a promising means of maximizing the overall energy efficiency of the microhydropower plant.
A study of the effectiveness and energy efficiency of ultrasonic emulsification.
Li, Wu; Leong, Thomas S H; Ashokkumar, Muthupandian; Martin, Gregory J O
2017-12-20
Three essential experimental parameters in the ultrasonic emulsification process, namely sonication time, acoustic amplitude and processing volume, were individually investigated, theoretically and experimentally, and correlated to the emulsion droplet sizes produced. The results showed that with a decrease in droplet size, two kinetic regions can be separately correlated prior to reaching a steady state droplet size: a fast size reduction region and a steady state transition region. In the fast size reduction region, the power input and sonication time could be correlated to the volume-mean diameter by a power-law relationship, with separate power-law indices of -1.4 and -1.1, respectively. A proportional relationship was found between droplet size and processing volume. The effectiveness and energy efficiency of droplet size reduction was compared between ultrasound and high-pressure homogenisation (HPH) based on both the effective power delivered to the emulsion and the total electric power consumed. Sonication could produce emulsions across a broad range of sizes, while high-pressure homogenisation was able to produce emulsions at the smaller end of the range. For ultrasonication, the energy efficiency was higher at increased power inputs due to more effective droplet breakage at high ultrasound intensities. For HPH the consumed energy efficiency was improved by operating at higher pressures for fewer passes. At the laboratory scale, the ultrasound system required less electrical power than HPH to produce an emulsion of comparable droplet size. The energy efficiency of HPH is greatly improved at large scale, which may also be true for larger scale ultrasonic reactors.
A 400-kWe high-efficiency steam turbine for industrial cogeneration
NASA Technical Reports Server (NTRS)
Leibowitz, H. M.
1982-01-01
An advanced state-of-the-art steam turbine-generator developed to serve as the power conversion subsystem for the Department of Energy's Sandia National Laboratories' Solar Total-Energy Project (STEP) is described. The turbine-generator, which is designed to provide 400-kW of net electrical power, represents the largest turbine-generator built specifically for commercial solar-powered cogeneration. The controls for the turbine-generator incorporate a multiple, partial-arc entry to provide efficient off-design performance, as well as an extraction control scheme to permit extraction flow regulation while maintaining 110-spsig pressure. Normal turbine operation is achieved while synchronized to a local utility and in a stand-alone mode. In both cases, the turbine-generator features automatic load control as well as remote start-up and shutdown capability. Tests totaling 200 hours were conducted to confirm the integrity of the turbine's mechanical structure and control function. Performance tests resulted in a measured inlet throttle flow of 8,450 pounds per hour, which was near design conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz-Ramírez, Pablo, E-mail: rapeitor@ug.uchile.cl; Ruiz, Andrés
The Monte Carlo simulation of the gamma spectroscopy systems is a common practice in these days. The most popular softwares to do this are MCNP and Geant4 codes. The intrinsic spatial efficiency method is a general and absolute method to determine the absolute efficiency of a spectroscopy system for any extended sources, but this was only demonstrated experimentally for cylindrical sources. Due to the difficulty that the preparation of sources with any shape represents, the simplest way to do this is by the simulation of the spectroscopy system and the source. In this work we present the validation of themore » intrinsic spatial efficiency method for sources with different geometries and for photons with an energy of 661.65 keV. In the simulation the matrix effects (the auto-attenuation effect) are not considered, therefore these results are only preliminaries. The MC simulation is carried out using the FLUKA code and the absolute efficiency of the detector is determined using two methods: the statistical count of Full Energy Peak (FEP) area (traditional method) and the intrinsic spatial efficiency method. The obtained results show total agreement between the absolute efficiencies determined by the traditional method and the intrinsic spatial efficiency method. The relative bias is lesser than 1% in all cases.« less
Optimizing Cluster Heads for Energy Efficiency in Large-Scale Heterogeneous Wireless Sensor Networks
Gu, Yi; Wu, Qishi; Rao, Nageswara S. V.
2010-01-01
Many complex sensor network applications require deploying a large number of inexpensive and small sensors in a vast geographical region to achieve quality through quantity. Hierarchical clustering is generally considered as an efficient and scalable way to facilitate the management and operation of such large-scale networks and minimize the total energy consumption for prolonged lifetime. Judicious selection of cluster heads for data integration and communication is critical to the success of applications based on hierarchical sensor networks organized as layered clusters. We investigate the problem of selecting sensor nodes in a predeployed sensor network to be the cluster heads tomore » minimize the total energy needed for data gathering. We rigorously derive an analytical formula to optimize the number of cluster heads in sensor networks under uniform node distribution, and propose a Distance-based Crowdedness Clustering algorithm to determine the cluster heads in sensor networks under general node distribution. The results from an extensive set of experiments on a large number of simulated sensor networks illustrate the performance superiority of the proposed solution over the clustering schemes based on k -means algorithm.« less
Mathematical analysis and coordinated current allocation control in battery power module systems
NASA Astrophysics Data System (ADS)
Han, Weiji; Zhang, Liang
2017-12-01
As the major energy storage device and power supply source in numerous energy applications, such as solar panels, wind plants, and electric vehicles, battery systems often face the issue of charge imbalance among battery cells/modules, which can accelerate battery degradation, cause more energy loss, and even incur fire hazard. To tackle this issue, various circuit designs have been developed to enable charge equalization among battery cells/modules. Recently, the battery power module (BPM) design has emerged to be one of the promising solutions for its capability of independent control of individual battery cells/modules. In this paper, we propose a new current allocation method based on charging/discharging space (CDS) for performance control in BPM systems. Based on the proposed method, the properties of CDS-based current allocation with constant parameters are analyzed. Then, real-time external total power requirement is taken into account and an algorithm is developed for coordinated system performance control. By choosing appropriate control parameters, the desired system performance can be achieved by coordinating the module charge balance and total power efficiency. Besides, the proposed algorithm has complete analytical solutions, and thus is very computationally efficient. Finally, the efficacy of the proposed algorithm is demonstrated using simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimbalkar, Sachin U.; Wenning, Thomas J.; Guo, Wei
In the United States, manufacturing facilities account for about 32% of total domestic energy consumption in 2014. Robust energy tracking methodologies are critical to understanding energy performance in manufacturing facilities. Due to its simplicity and intuitiveness, the classic energy intensity method (i.e. the ratio of total energy use over total production) is the most widely adopted. However, the classic energy intensity method does not take into account the variation of other relevant parameters (i.e. product type, feed stock type, weather, etc.). Furthermore, the energy intensity method assumes that the facilities’ base energy consumption (energy use at zero production) is zero,more » which rarely holds true. Therefore, it is commonly recommended to utilize regression models rather than the energy intensity approach for tracking improvements at the facility level. Unfortunately, many energy managers have difficulties understanding why regression models are statistically better than utilizing the classic energy intensity method. While anecdotes and qualitative information may convince some, many have major reservations about the accuracy of regression models and whether it is worth the time and effort to gather data and build quality regression models. This paper will explain why regression models are theoretically and quantitatively more accurate for tracking energy performance improvements. Based on the analysis of data from 114 manufacturing plants over 12 years, this paper will present quantitative results on the importance of utilizing regression models over the energy intensity methodology. This paper will also document scenarios where regression models do not have significant relevance over the energy intensity method.« less
Liu, Lu; Masfary, Osama; Antonopoulos, Nick
2012-01-01
The increasing trends of electrical consumption within data centres are a growing concern for business owners as they are quickly becoming a large fraction of the total cost of ownership. Ultra small sensors could be deployed within a data centre to monitor environmental factors to lower the electrical costs and improve the energy efficiency. Since servers and air conditioners represent the top users of electrical power in the data centre, this research sets out to explore methods from each subsystem of the data centre as part of an overall energy efficient solution. In this paper, we investigate the current trends of Green IT awareness and how the deployment of small environmental sensors and Site Infrastructure equipment optimization techniques which can offer a solution to a global issue by reducing carbon emissions. PMID:22778660
Application of Superconducting Power Cables to DC Electric Railway Systems
NASA Astrophysics Data System (ADS)
Ohsaki, Hiroyuki; Lv, Zhen; Sekino, Masaki; Tomita, Masaru
For novel design and efficient operation of next-generation DC electric railway systems, especially for their substantial energy saving, we have studied the feasibility of applying superconducting power cables to them. In this paper it is assumed that a superconducting power cable is applied to connect substations supplying electric power to trains. An analysis model line was described by an electric circuit, which was analyzed with MATLAB-Simulink. From the calculated voltages and currents of the circuit, the regenerative brake and the energy losses were estimated. In addition, assuming the heat loads of superconducting power cables and the cryogenic efficiency, the energy saving of the total system was evaluated. The results show that the introduction of superconducting power cables could achieve the improved use of regenerative brake, the loss reduction, the decreased number of substations, the reduced maintenance, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbose, Galen; Goldman, Charles; Hoffman, Ian
2012-09-11
We develop projections of future spending on, and savings from, energy efficiency programs funded by electric and gas utility customers in the United States, under three scenarios through 2025. Our analysis, which updates a previous LBNL study, relies on detailed bottom-up modeling of current state energy efficiency policies, regulatory decisions, and demand-side management and utility resource plans. The three scenarios are intended to represent a range of potential outcomes under the current policy environment (i.e., without considering possible major new policy developments). By 2025, spending on electric and gas efficiency programs (excluding load management programs) is projected to double frommore » 2010 levels to $9.5 billion in the medium case, compared to $15.6 billion in the high case and $6.5 billion in the low case. Compliance with statewide legislative or regulatory savings or spending targets is the primary driver for the increase in electric program spending through 2025, though a significant share of the increase is also driven by utility DSM planning activity and integrated resource planning. Our analysis suggests that electric efficiency program spending may approach a more even geographic distribution over time in terms of absolute dollars spent, with the Northeastern and Western states declining from over 70% of total U.S. spending in 2010 to slightly more than 50% in 2025, with the South and Midwest splitting the remainder roughly evenly. Under our medium case scenario, annual incremental savings from customer-funded electric energy efficiency programs increase from 18.4 TWh in 2010 in the U.S. (which is about 0.5% of electric utility retail sales) to 28.8 TWh in 2025 (0.8% of retail sales). These savings would offset the majority of load growth in the Energy Information Administration’s most recent reference case forecast, given specific assumptions about the extent to which future energy efficiency program savings are captured in that forecast. However, the pathway that customer-funded efficiency programs ultimately take will depend on a series of key challenges and uncertainties associated both with the broader market and policy context and with the implementation and regulatory oversight of the energy efficiency programs themselves.« less
NASA Technical Reports Server (NTRS)
1980-01-01
The system's operational performance from May 1979 through April 1980 is described. Solar energy satisfied 23 percent of the total performance load, which was significantly below the design value of 56 percent. A fossil savings of 80.89 million Btu's or 578 gallons of fuel oil is estimated. If uncontrolled losses could have been reduced to an inconsequential level, the system's efficiency would have been improved considerably.
Direct Electricity from Heat: A Solution to Assist Aircraft Power Demands
NASA Technical Reports Server (NTRS)
Goldsby, Jon C.
2010-01-01
A thermionic device produces an electrical current with the application of a thermal gradient whereby the temperature at one electrode provides enough thermal energy to eject electrons. The system is totally predicated on the thermal gradient and the work function of the electrode collector relative to the emitter electrode. Combined with a standard thermoelectric device high efficiencies may result, capable of providing electrical energy from the waste heat of gas turbine engines.
An investigation of the Performance of a Conical Solar Water Heater in the Kingdom of Bahrain
NASA Astrophysics Data System (ADS)
Gaaliche, Nessreen; Ayhan, Teoman; Fathallah, Raouf
2017-11-01
Domestic water heater corresponds to 25% of the house energy consumption and can play an important role to reduce energy house expenses. Solar energy offers a preferred renewable energy resource because of its economic and environmental advantages. It is considered the best alternative to reduce domestic water heater energy consumption cost. Converting solar energy into heat can be considered among the simplest used systems. Solar thermal conversion is more efficient than solar electrical direct conversion method. Solar water heater systems are particularly easy to use and to repair. The integrated conical solar collector water heater (ICSCWH) is so far the easiest among water heating systems. The ICSCWH converts directly and efficiently the solar flux into heat. In order to expand the utilization of ICSCWH systems, many design modifications have been examined and analyzed. This study provides an experimental investigation and mathematical simulation of an ICSCWH system equipped with a glass cover resulting in the increase of the maximum absorption. Integrating the cone-shaped heat collector with an aluminum spiral pipe flow system may enhance the efficiency of the proposed system. In order to maximize the solar radiation of the system, the solar water heater has been designed in a conical shape, which removes the need to change its orientation toward the sun to receive the maximum sun radiation during the day. In this system, the heating of water has been obtained using the spiral pipe flow without the use of the solar cells and mirrors in order to reduce the total cost. The storage water tank of this system is coupled with a conical solar collector. Based on the above design, the solar water heater has been fabricated and tested. In addition, an analytical modeling approach aiming to predict the flow rate within the conical integrated collector storage solar water heater (ICSSWH) and its efficiency, was developed. Modeling through a numerical simulation approach based on energy equations was performed. Considering the entire water amount and the total area of the cone, the amount of water (facing the sun per unit absorbing area in the two symmetrical parts of the system) is found to increase, which is expected to reach a maximum water temperature at a high performance. Our experimental findings show that the daily performance is around 32% and the highest water temperature of about 45°C is obtained in the system at 4 pm, according to seasons and weather conditions. An efficient and simple mathematical simulation approach for the new conical solar water heater is described then validates using experimental data.
NASA Astrophysics Data System (ADS)
Dreißigacker, Volker
2018-04-01
The development of new technologies for large-scale electricity storage is a key element in future flexible electricity transmission systems. Electricity storage in adiabatic compressed air energy storage (A-CAES) power plants offers the prospect of making a substantial contribution to reach this goal. This concept allows efficient, local zero-emission electricity storage on the basis of compressed air in underground caverns. The compression and expansion of air in turbomachinery help to balance power generation peaks that are not demand-driven on the one hand and consumption-induced load peaks on the other. For further improvements in cost efficiencies and flexibility, system modifications are necessary. Therefore, a novel concept regarding the integration of an electrical heating component is investigated. This modification allows increased power plant flexibilities and decreasing component sizes due to the generated high temperature heat with simultaneously decreasing total round trip efficiencies. For an exemplarily A-CAES case simulation studies regarding the electrical heating power and thermal energy storage sizes were conducted to identify the potentials in cost reduction of the central power plant components and the loss in round trip efficiency.
Brown, Emery; Ma, Chunrui; Acharya, Jagaran; Ma, Beihai; Wu, Judy; Li, Jun
2014-12-24
The energy storage properties of Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films grown via pulsed laser deposition were evaluated at variable film thickness of 125, 250, 500, and 1000 nm. These films show high dielectric permittivity up to ∼1200. Cyclic I-V measurements were used to evaluate the dielectric properties of these thin films, which not only provide the total electric displacement, but also separate contributions from each of the relevant components including electric conductivity (D1), dielectric capacitance (D2), and relaxor-ferroelectric domain switching polarization (P). The results show that, as the film thickness increases, the material transits from a linear dielectric to nonlinear relaxor-ferroelectric. While the energy storage per volume increases with the film thickness, the energy storage efficiency drops from ∼80% to ∼30%. The PLZT films can be optimized for different energy storage applications by tuning the film thickness to optimize between the linear and nonlinear dielectric properties and energy storage efficiency.
Brown, Emery; Ma, Chunrui; Acharya, Jagaran; ...
2014-12-24
The energy storage properties of Pb 0.92La 0.08Zr 0.52Ti 0.48O 3 (PLZT) films grown via pulsed laser deposition were evaluated at variable film thickness of 125, 250, 500, and 1000 nm. These films show high dielectric permittivity up to ~1200. Cyclic I–V measurements were used to evaluate the dielectric properties of these thin films, which not only provide the total electric displacement, but also separate contributions from each of the relevant components including electric conductivity (D1), dielectric capacitance (D2), and relaxor-ferroelectric domain switching polarization (P). Our results show that, as the film thickness increases, the material transits from a linearmore » dielectric to nonlinear relaxor-ferroelectric. And while the energy storage per volume increases with the film thickness, the energy storage efficiency drops from ~80% to ~30%. The PLZT films can be optimized for different energy storage applications by tuning the film thickness to optimize between the linear and nonlinear dielectric properties and energy storage efficiency.« less
Schimpe, Michael; Naumann, Maik; Truong, Nam; ...
2017-11-08
Energy efficiency is a key performance indicator for battery storage systems. A detailed electro-thermal model of a stationary lithium-ion battery system is developed and an evaluation of its energy efficiency is conducted. The model offers a holistic approach to calculating conversion losses and auxiliary power consumption. Sub-models for battery rack, power electronics, thermal management as well as the control and monitoring components are developed and coupled to a comprehensive model. The simulation is parametrized based on a prototype 192 kWh system using lithium iron phosphate batteries connected to the low voltage grid. The key loss mechanisms are identified, thoroughly analyzedmore » and modeled. Generic profiles featuring various system operation modes are evaluated to show the characteristics of stationary battery systems. Typically the losses in the power electronics outweigh the losses in the battery at low power operating points. The auxiliary power consumption dominates for low system utilization rates. For estimation of real-world performance, the grid applications Primary Control Reserve, Secondary Control Reserve and the storage of surplus photovoltaic power are evaluated. Conversion round-trip efficiency is in the range of 70-80%. Finally, overall system efficiency, which also considers system power consumption, is 8-13 percentage points lower for Primary Control Reserve and the photovoltaic-battery application. However, for Secondary Control Reserve, the total round-trip efficiency is found to be extremely low at 23% due to the low energy throughput of this application type.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schimpe, Michael; Naumann, Maik; Truong, Nam
Energy efficiency is a key performance indicator for battery storage systems. A detailed electro-thermal model of a stationary lithium-ion battery system is developed and an evaluation of its energy efficiency is conducted. The model offers a holistic approach to calculating conversion losses and auxiliary power consumption. Sub-models for battery rack, power electronics, thermal management as well as the control and monitoring components are developed and coupled to a comprehensive model. The simulation is parametrized based on a prototype 192 kWh system using lithium iron phosphate batteries connected to the low voltage grid. The key loss mechanisms are identified, thoroughly analyzedmore » and modeled. Generic profiles featuring various system operation modes are evaluated to show the characteristics of stationary battery systems. Typically the losses in the power electronics outweigh the losses in the battery at low power operating points. The auxiliary power consumption dominates for low system utilization rates. For estimation of real-world performance, the grid applications Primary Control Reserve, Secondary Control Reserve and the storage of surplus photovoltaic power are evaluated. Conversion round-trip efficiency is in the range of 70-80%. Finally, overall system efficiency, which also considers system power consumption, is 8-13 percentage points lower for Primary Control Reserve and the photovoltaic-battery application. However, for Secondary Control Reserve, the total round-trip efficiency is found to be extremely low at 23% due to the low energy throughput of this application type.« less
Attributes of the Federal Energy Management Program's Federal Site Building Characteristics Database
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loper, Susan A.; Sandusky, William F.
2010-12-31
Typically, the Federal building stock is referred to as a group of about one-half million buildings throughout the United States. Additional information beyond this level is generally limited to distribution of that total by agency and maybe distribution of the total by state. However, additional characterization of the Federal building stock is required as the Federal sector seeks ways to implement efficiency projects to reduce energy and water use intensity as mandated by legislation and Executive Order. Using a Federal facility database that was assembled for use in a geographic information system tool, additional characterization of the Federal building stockmore » is provided including information regarding the geographical distribution of sites, building counts and percentage of total by agency, distribution of sites and building totals by agency, distribution of building count and floor space by Federal building type classification by agency, and rank ordering of sites, buildings, and floor space by state. A case study is provided regarding how the building stock has changed for the Department of Energy from 2000 through 2008.« less
Energy-water nexus for mass cultivation of algae.
Murphy, Cynthia Folsom; Allen, David T
2011-07-01
Microalgae are currently considered a potential feedstock for the production of biofuels. This work addresses the energy needed to manage the water used in the mass cultivation of saline, eukaryotic algae grown in open pond systems. Estimates of both direct and upstream energy requirements for obtaining, containing, and circulating water within algae cultivation systems are developed. Potential productivities are calculated for each of the 48 states within the continental U.S. based on theoretical photosynthetic efficiencies, growing season, and total available land area. Energy output in the form of algal biodiesel and the total energy content of algal biomass are compared to energy inputs required for water management. The analysis indicates that, for current technologies, energy required for water management alone is approximately seven times greater than energy output in the form of biodiesel and more than double that contained within the entire algal biomass. While this analysis addresses only currently identified species grown in an open-pond system, the water management requirements of any algae system will be substantial; therefore, it is critical that an energy assessment of water management requirements be performed for any cultivation technology and algal type in order to fully understand the energy balance of algae-derived biofuels.
Schell, S; Wilkens, J J
2012-03-07
Laser-driven particle acceleration is a potentially cost-efficient and compact new technology that might replace synchrotrons or cyclotrons for future proton or heavy-ion radiation therapy. Since the energy spectrum of laser-accelerated particles is rather wide, compared to the monoenergetic beams of conventional machines, studies have proposed the usage of broader spectra for the treatment of at least certain parts of the target volume to make the process more efficient. The thereby introduced additional uncertainty in the applied energy spectrum is analysed in this note. It is shown that the uncertainty can be categorized into a change of the total number of particles, and a change in the energy distribution of the particles. The former one can be monitored by a simple fluence detector and cancels for a high number of statistically fluctuating shots. The latter one, the redistribution of a fixed number of particles to different energy bins in the window of transmitted energies of the energy selection system, only introduces smaller changes to the resulting depth dose curve. Therefore, it might not be necessary to monitor this uncertainty for all applied shots. These findings might enable an easier uncertainty management for particle therapy with broad energy spectra.
A Broadband High Dynamic Range Digital Receiving System for Electromagnetic Signals
2010-08-26
dB. [0014] In Steinbrecher (United States Patent No. 7,250,920), an air interface metasurface is described that efficiently captures incident...broadband electromagnetic energy and provides a method for segmenting the total metasurface capture area into a plurality of smaller capture areas...such that the sum of the capture areas is equal to the total capture area of the metasurface . The segmentation of the electromagnetic capture area is
Biofuels done right: land efficient animal feeds enable large environmental and energy benefits.
Dale, Bruce E; Bals, Bryan D; Kim, Seungdo; Eranki, Pragnya
2010-11-15
There is an intense ongoing debate regarding the potential scale of biofuel production without creating adverse effects on food supply. We explore the possibility of three land-efficient technologies for producing food (actually animal feed), including leaf protein concentrates, pretreated forages, and double crops to increase the total amount of plant biomass available for biofuels. Using less than 30% of total U.S. cropland, pasture, and range, 400 billion liters of ethanol can be produced annually without decreasing domestic food production or agricultural exports. This approach also reduces U.S. greenhouse gas emissions by 670 Tg CO₂-equivalent per year, or over 10% of total U.S. annual emissions, while increasing soil fertility and promoting biodiversity. Thus we can replace a large fraction of U.S. petroleum consumption without indirect land use change.
Highly improved voltage efficiency of seawater battery by use of chloride ion capturing electrode
NASA Astrophysics Data System (ADS)
Kim, Kyoungho; Hwang, Soo Min; Park, Jeong-Sun; Han, Jinhyup; Kim, Junsoo; Kim, Youngsik
2016-05-01
Cost-effective and eco-friendly battery system with high energy density is highly desirable. Herein, we report a seawater battery with a high voltage efficiency, in which a chloride ion-capturing electrode (CICE) consisting of Ag foil is utilized as the cathode. The use of Ag as the cathode leads to a sharp decrease in the voltage gaps between charge and discharge curves, based on reversible redox reaction of Ag/AgCl (at ∼2.9 V vs. Na+/Na) in a seawater catholyte during cycling. The Ag/AgCl reaction proves to be highly reversible during battery cycling. The battery employing the Ag electrode shows excellent cycling performance with a high Coulombic efficiency (98.6-98.7%) and a highly improved voltage efficiency (90.3% compared to 73% for carbonaceous cathode) during 20 cycles (total 500 h). These findings demonstrate that seawater batteries using a CICE could be used as next-generation batteries for large-scale stationary energy storage plants.
An energy-aware routing protocol for query-based applications in wireless sensor networks.
Ahvar, Ehsan; Ahvar, Shohreh; Lee, Gyu Myoung; Crespi, Noel
2014-01-01
Wireless sensor network (WSN) typically has energy consumption restriction. Designing energy-aware routing protocol can significantly reduce energy consumption in WSNs. Energy-aware routing protocols can be classified into two categories, energy savers and energy balancers. Energy saving protocols are used to minimize the overall energy consumed by a WSN, while energy balancing protocols attempt to efficiently distribute the consumption of energy throughout the network. In general terms, energy saving protocols are not necessarily good at balancing energy consumption and energy balancing protocols are not always good at reducing energy consumption. In this paper, we propose an energy-aware routing protocol (ERP) for query-based applications in WSNs, which offers a good trade-off between traditional energy balancing and energy saving objectives and supports a soft real time packet delivery. This is achieved by means of fuzzy sets and learning automata techniques along with zonal broadcasting to decrease total energy consumption.
An Energy-Aware Routing Protocol for Query-Based Applications in Wireless Sensor Networks
Crespi, Noel
2014-01-01
Wireless sensor network (WSN) typically has energy consumption restriction. Designing energy-aware routing protocol can significantly reduce energy consumption in WSNs. Energy-aware routing protocols can be classified into two categories, energy savers and energy balancers. Energy saving protocols are used to minimize the overall energy consumed by a WSN, while energy balancing protocols attempt to efficiently distribute the consumption of energy throughout the network. In general terms, energy saving protocols are not necessarily good at balancing energy consumption and energy balancing protocols are not always good at reducing energy consumption. In this paper, we propose an energy-aware routing protocol (ERP) for query-based applications in WSNs, which offers a good trade-off between traditional energy balancing and energy saving objectives and supports a soft real time packet delivery. This is achieved by means of fuzzy sets and learning automata techniques along with zonal broadcasting to decrease total energy consumption. PMID:24696640
Ma, Chao; Huang, Zhonghua; Wang, Zhiqi; Zhou, Linxuan; Li, Yinlin
2017-01-01
Capacitive coupling intra-body communication (CC-IBC) has become one of the candidates for healthcare sensor networks due to its positive prevailing features of energy efficiency, transmission rate and security. Under the CC-IBC scheme, some of the electric field emitted from signal (SIG) electrode of the transmitter will couple directly to the ground (GND) electrode, acting equivalently as an internal impedance of the signal source and inducing considerable energy losses. However, none of the previous works have fully studied the problem. In this paper, the underlying theory of such energy loss is investigated and quantitatively evaluated using conventional parameters. Accordingly, a method of electric active shielding is proposed to reduce the displacement current across the SIG-GND electrodes, leading to less power loss. In addition, the variation of such loss in regard to frequency range and positions on human body was also considered. The theory was validated by finite element method simulation and experimental measurement. The prototype result shows that the receiving power has been improved by approximate 5.5 dBm while the total power consumption is maximally 9 mW less using the proposed technique, providing an energy efficient option in physical layer for wearable and implantable healthcare sensor networks. PMID:28885546
Devasenapathy, Deepa; Kannan, Kathiravan
2015-01-01
The traffic in the road network is progressively increasing at a greater extent. Good knowledge of network traffic can minimize congestions using information pertaining to road network obtained with the aid of communal callers, pavement detectors, and so on. Using these methods, low featured information is generated with respect to the user in the road network. Although the existing schemes obtain urban traffic information, they fail to calculate the energy drain rate of nodes and to locate equilibrium between the overhead and quality of the routing protocol that renders a great challenge. Thus, an energy-efficient cluster-based vehicle detection in road network using the intention numeration method (CVDRN-IN) is developed. Initially, sensor nodes that detect a vehicle are grouped into separate clusters. Further, we approximate the strength of the node drain rate for a cluster using polynomial regression function. In addition, the total node energy is estimated by taking the integral over the area. Finally, enhanced data aggregation is performed to reduce the amount of data transmission using digital signature tree. The experimental performance is evaluated with Dodgers loop sensor data set from UCI repository and the performance evaluation outperforms existing work on energy consumption, clustering efficiency, and node drain rate. PMID:25793221
Devasenapathy, Deepa; Kannan, Kathiravan
2015-01-01
The traffic in the road network is progressively increasing at a greater extent. Good knowledge of network traffic can minimize congestions using information pertaining to road network obtained with the aid of communal callers, pavement detectors, and so on. Using these methods, low featured information is generated with respect to the user in the road network. Although the existing schemes obtain urban traffic information, they fail to calculate the energy drain rate of nodes and to locate equilibrium between the overhead and quality of the routing protocol that renders a great challenge. Thus, an energy-efficient cluster-based vehicle detection in road network using the intention numeration method (CVDRN-IN) is developed. Initially, sensor nodes that detect a vehicle are grouped into separate clusters. Further, we approximate the strength of the node drain rate for a cluster using polynomial regression function. In addition, the total node energy is estimated by taking the integral over the area. Finally, enhanced data aggregation is performed to reduce the amount of data transmission using digital signature tree. The experimental performance is evaluated with Dodgers loop sensor data set from UCI repository and the performance evaluation outperforms existing work on energy consumption, clustering efficiency, and node drain rate.
The Rise and Fall of Industrial Agriculture
ERIC Educational Resources Information Center
Geno, Larry M.
1976-01-01
This article analyzes the evolution of industrial agriculture in Canada. Population pressures and technology caused the development of industrial agriculture. Although total crop yields have increased, energy efficiency and nutritional quality have decreased. Also intensive agriculture has degraded the soil and lowered air and water qualities. (MR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvill, Anna; Bushman, Kate; Ellsworth, Amy
2014-06-17
The EnergyFit Nevada (EFN) Better Buildings Neighborhood Program (BBNP, and referred to in this document as the EFN program) currently encourages Nevada residents to make whole-house energy-efficient improvements by providing rebates, financing, and access to a network of qualified home improvement contractors. The BBNP funding, consisting of 34 Energy Efficiency Conservation Block Grants (EECBG) and seven State Energy Program (SEP) grants, was awarded for a three-year period to the State of Nevada in 2010 and used for initial program design and implementation. By the end of first quarter in 2014, the program had achieved upgrades in 553 homes, with anmore » average energy reduction of 32% per home. Other achievements included: Completed 893 residential energy audits and installed upgrades in 0.05% of all Nevada single-family homes1 Achieved an overall conversation rate of 38.1%2 7,089,089 kWh of modeled energy savings3 Total annual homeowner energy savings of approximately $525,7523 Efficiency upgrades completed on 1,100,484 square feet of homes3 $139,992 granted in loans to homeowners for energy-efficiency upgrades 29,285 hours of labor and $3,864,272 worth of work conducted by Nevada auditors and contractors4 40 contractors trained in Nevada 37 contractors with Building Performance Institute (BPI) certification in Nevada 19 contractors actively participating in the EFN program in Nevada 1 Calculated using 2012 U.S. Census data reporting 1,182,870 homes in Nevada. 2 Conversion rate through March 31, 2014, for all Nevada Retrofit Initiative (NRI)-funded projects, calculated using the EFN tracking database. 3 OptiMiser energy modeling, based on current utility rates. 4 This is the sum of $3,596,561 in retrofit invoice value and $247,711 in audit invoice value.« less
GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig Turchi; Guangdong Zhu; Michael Wagner
2014-10-01
This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant usingmore » the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.« less
United Kingdom Country Analysis Brief
2016-01-01
The United Kingdom (UK) is the fifth-largest economy in the world in terms of gross domestic product. Following years as a net exporter of crude oil and natural gas, the UK became a net importer of both fuels in 2004 and 2005, respectively. Production from UK oil and natural gas fields peaked in the late 1990s and has generally declined over the past several years as the discovery of new reserves and new production has not kept pace with the maturation of existing fields. Production of petroleum and other liquids increased in 2015, as investments made when oil prices were high came to fruition, but the UK remains a net importer. Renewable energy use, particularly in the electric power sector, has more than doubled over the past decade (2005-14). However, petroleum and natural gas continue to account for most of UK's energy consumption. In 2014, petroleum and natural gas accounted for 36% and 33%, respectively, of total energy consumption (Figure 2).1 Coal also continues to be a significant part of total energy consumption (16% in 2014). Energy use per unit of gross domestic product (GDP) in the UK is one of the lowest among western economies. The UK has seen total primary energy consumption decline by almost 20% over the past decade (2005-14). This decline resulted from smaller contribution of energy-intensive industry to the economy, economic contraction, and improvements in energy efficiency.
Payne, W. Vance
2017-01-01
A 2715 ft2 (252 m2), two story, residential home of the style typical of the Gaithersburg, Maryland area was constructed in 2012 to demonstrate technologies for net-zero energy (NZE) homes (or ZEH). The NIST Net-Zero Energy Residential Test Facility (NZERTF) functions as a laboratory to support the development and adoption of cost-effective NZE designs, technologies, construction methods, and building codes. The primary design goal was to meet the comfort and functional needs of the simulated occupants. The first annual test period began on July 1, 2013 and ended June 30, 2014. During the first year of operation, the home's annual energy consumption was 13039 kWh (4.8 kWh ft-2, 51.7 kWh m-2), and the 10.2 kW solar photovoltaic system generated an excess of 484 kWh. During this period the heating and air conditioning of the home was performed by a novel air-source heat pump that utilized a reheat heat exchanger to allow hot compressor discharge gas to reheat the supply air during a dedicated dehumidification mode. During dedicated dehumidification, room temperature air was supplied to the living space until the relative humidity setpoint of 50% was satisfied. The heat pump consumed a total of 6225 kWh (2.3 kWh ft-2, 24.7 kWh m-2) of electrical energy for cooling, heating, and dehumidification. Annual cooling efficiency was 10.1 Btu W-1h-1 (2.95 W W-1), relative to the rated SEER of the heat pump of 15.8 Btu W-1h-1 (4.63 W W-1). Annual heating efficiency was 7.10 Btu W-1h-1 (2.09 W W-1), compared with the unit's rated HSPF of 9.05 Btu W-1h-1 (2.65 W W-1). These field measured efficiency numbers include dedicated dehumidification operation and standby energy use for the year. Annual sensible heat ratio was approximately 70%. Standby energy consumption was 5.2 % and 3.5 % of the total electrical energy used for cooling and heating, respectively. PMID:28729740
Payne, W Vance
2016-01-01
A 2715 ft 2 (252 m 2 ), two story, residential home of the style typical of the Gaithersburg, Maryland area was constructed in 2012 to demonstrate technologies for net-zero energy (NZE) homes (or ZEH). The NIST Net-Zero Energy Residential Test Facility (NZERTF) functions as a laboratory to support the development and adoption of cost-effective NZE designs, technologies, construction methods, and building codes. The primary design goal was to meet the comfort and functional needs of the simulated occupants. The first annual test period began on July 1, 2013 and ended June 30, 2014. During the first year of operation, the home's annual energy consumption was 13039 kWh (4.8 kWh ft -2 , 51.7 kWh m -2 ), and the 10.2 kW solar photovoltaic system generated an excess of 484 kWh. During this period the heating and air conditioning of the home was performed by a novel air-source heat pump that utilized a reheat heat exchanger to allow hot compressor discharge gas to reheat the supply air during a dedicated dehumidification mode. During dedicated dehumidification, room temperature air was supplied to the living space until the relative humidity setpoint of 50% was satisfied. The heat pump consumed a total of 6225 kWh (2.3 kWh ft -2, 24.7 kWh m -2 ) of electrical energy for cooling, heating, and dehumidification. Annual cooling efficiency was 10.1 Btu W -1 h -1 (2.95 W W -1 ), relative to the rated SEER of the heat pump of 15.8 Btu W -1 h -1 (4.63 W W -1 ). Annual heating efficiency was 7.10 Btu W -1 h -1 (2.09 W W -1 ), compared with the unit's rated HSPF of 9.05 Btu W -1 h -1 (2.65 W W -1 ). These field measured efficiency numbers include dedicated dehumidification operation and standby energy use for the year. Annual sensible heat ratio was approximately 70%. Standby energy consumption was 5.2 % and 3.5 % of the total electrical energy used for cooling and heating, respectively.
On Maximizing the Throughput of Packet Transmission under Energy Constraints.
Wu, Weiwei; Dai, Guangli; Li, Yan; Shan, Feng
2018-06-23
More and more Internet of Things (IoT) wireless devices have been providing ubiquitous services over the recent years. Since most of these devices are powered by batteries, a fundamental trade-off to be addressed is the depleted energy and the achieved data throughput in wireless data transmission. By exploiting the rate-adaptive capacities of wireless devices, most existing works on energy-efficient data transmission try to design rate-adaptive transmission policies to maximize the amount of transmitted data bits under the energy constraints of devices. Such solutions, however, cannot apply to scenarios where data packets have respective deadlines and only integrally transmitted data packets contribute. Thus, this paper introduces a notion of weighted throughput, which measures how much total value of data packets are successfully and integrally transmitted before their own deadlines. By designing efficient rate-adaptive transmission policies, this paper aims to make the best use of the energy and maximize the weighted throughput. What is more challenging but with practical significance, we consider the fading effect of wireless channels in both offline and online scenarios. In the offline scenario, we develop an optimal algorithm that computes the optimal solution in pseudo-polynomial time, which is the best possible solution as the problem undertaken is NP-hard. In the online scenario, we propose an efficient heuristic algorithm based on optimal properties derived for the optimal offline solution. Simulation results validate the efficiency of the proposed algorithm.
Prediction of 4H-SiC betavoltaic microbattery characteristics based on practical Ni-63 sources.
Gui, Gui; Zhang, Kan; Blanchard, James P; Ma, Zhenqiang
2016-01-01
We have investigated the performance of 4H-SiC betavoltaic microbatteries under exposure to the practical Ni-63 sources using the Monte Carlo method and Synopsys® Medici device simulator. A typical planar p-n junction betavoltaic device with the Ni-63 source of 20% purity on top is modeled in the simulation. The p-n junction structure includes a p+ layer, a p- layer, an n+ layer, and an n- layer. In order to obtain an accurate and valid predication, our simulations consider several practical factors, including isotope impurities, self-absorption, and full beta energy spectra. By simulating the effects of both the p-n junction configuration and the isotope source thickness on the battery output performance, we have achieved the optimal design of the device and maximum energy conversion efficiency. Our simulation results show that the energy conversion efficiency increases as the doping concentration and thickness of the p- layer increase, whereas it is independent of the total depth of the p-n junction. Furthermore, the energy conversion efficiency decreases as the thickness of the practical Ni-63 source increases, because of self-absorption in the isotope source. Therefore, we propose that a p-n junction betavoltaic cell with a thicker and heavily doped p- layer under exposure to a practical Ni-63 source with an appreciable thickness could produce the optimal energy conversion efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.
High efficient waste-to-energy in Amsterdam: getting ready for the next steps.
Murer, Martin J; Spliethoff, Hartmut; de Waal, Chantal M W; Wilpshaar, Saskia; Berkhout, Bart; van Berlo, Marcel A J; Gohlke, Oliver; Martin, Johannes J E
2011-10-01
Waste-to-energy (WtE) plants are traditionally designed for clean and economical disposal of waste. Design for output on the other hand was the guideline when projecting the HRC (HoogRendement Centrale) block of Afval Energie Bedrijf Amsterdam. Since commissioning of the plant in 2007, operation has continuously improved. In December 2010, the block's running average subsidy efficiency for one year exceeded 30% for the first time. The plant can increase its efficiency even further by raising the steam temperature to 480°C. In addition, the plant throughput can be increased by 10% to reduce the total cost of ownership. In order to take these steps, good preparation is required in areas such as change in heat transfer in the boiler and the resulting higher temperature upstream of the super heaters. A solution was found in the form of combining measured data with a computational fluid dynamics (CFD) model. Suction and acoustic pyrometers are used to obtain a clear picture of the temperature distribution in the first boiler pass. With the help of the CFD model, the change in heat transfer and vertical temperature distribution was predicted. For the increased load, the temperature is increased by 100°C; this implies a higher heat transfer in the first and second boiler passes. Even though the new block was designed beyond state-of-the art in waste-to-energy technology, margins remain for pushing energy efficiency and economy even further.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNeil, Michael A.; Iyer, Maithili
The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptivemore » frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.« less
Static Converter for High Energy Utilization, Modular, Small Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Genk, Mohamed S.; Tournier, Jean-Michel P.
2002-07-01
This paper presents and analyzes the performance of high efficiency, high total energy utilization, static converters, which could be used in conjunction with small nuclear reactor plants in remote locations and in undersea applications, requiring little or no maintenance. The converters consist of a top cycle of Alkali Metal Thermal-to-Electric Conversion (AMTEC) units and PbTe thermoelectric (TE) bottom cycle. In addition to converting the reactor thermal power to electricity at 1150 K or less, at a thermodynamic efficiency in the low to mid thirties, the heat rejection from the TE bottom cycle could be used for space heating, industrial processing,more » or sea water desalination. The results indicated that for space heating applications, where the rejected thermal power from the TE bottom cycle is removed by natural convection of ambient air, a total utilization of the reactor thermal power of > 80% is possible. When operated at 1030 K, potassium AMTEC/TE converters are not only more efficient than the sodium AMTEC/TE converters but produce more electrical power. The present analysis showed that a single converter could be sized to produce up to 100 kWe and 70 kWe, for the Na-AMTEC/TE units when operating at 1150 K and the K-AMTEC/TE units when operating at 1030 K, respectively. Such modularity is an added advantage to the high-energy utilization of the present AMTEC/TE converters. (authors)« less
IEA EBC annex 53: Total energy use in buildings—Analysis and evaluation methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshino, Hiroshi; Hong, Tianzhen; Nord, Natasa
One of the most significant barriers to achieving deep building energy efficiency is a lack of knowledge about the factors determining energy use. In fact, there is often a significant discrepancy between designed and real energy use in buildings, which is poorly understood but are believed to have more to do with the role of human behavior than building design. Building energy use is mainly influenced by six factors: climate, building envelope, building services and energy systems, building operation and maintenance, occupants’ activities and behavior, and indoor environmental quality. In the past, much research focused on the first three factors.more » However, the next three human-related factors can have an influence as significant as the first three. Annex 53 employed an interdisciplinary approach, integrating building science, architectural engineering, computer modeling and simulation, and social and behavioral science to develop and apply methods to analyze and evaluate the real energy use in buildings considering the six influencing factors. Finally, outcomes from Annex 53 improved understanding and strengthen knowledge regarding the robust prediction of total energy use in buildings, enabling reliable quantitative assessment of energy-savings measures, policies, and techniques.« less
IEA EBC annex 53: Total energy use in buildings—Analysis and evaluation methods
Yoshino, Hiroshi; Hong, Tianzhen; Nord, Natasa
2017-07-18
One of the most significant barriers to achieving deep building energy efficiency is a lack of knowledge about the factors determining energy use. In fact, there is often a significant discrepancy between designed and real energy use in buildings, which is poorly understood but are believed to have more to do with the role of human behavior than building design. Building energy use is mainly influenced by six factors: climate, building envelope, building services and energy systems, building operation and maintenance, occupants’ activities and behavior, and indoor environmental quality. In the past, much research focused on the first three factors.more » However, the next three human-related factors can have an influence as significant as the first three. Annex 53 employed an interdisciplinary approach, integrating building science, architectural engineering, computer modeling and simulation, and social and behavioral science to develop and apply methods to analyze and evaluate the real energy use in buildings considering the six influencing factors. Finally, outcomes from Annex 53 improved understanding and strengthen knowledge regarding the robust prediction of total energy use in buildings, enabling reliable quantitative assessment of energy-savings measures, policies, and techniques.« less
Stress drop with constant, scale independent seismic efficiency and overshoot
Beeler, N.M.
2001-01-01
To model dissipated and radiated energy during earthquake stress drop, I calculate dynamic fault slip using a single degree of freedom spring-slider block and a laboratory-based static/kinetic fault strength relation with a dynamic stress drop proportional to effective normal stress. The model is scaled to earthquake size assuming a circular rupture; stiffness varies inversely with rupture radius, and rupture duration is proportional to radius. Calculated seismic efficiency, the ratio of radiated to total energy expended during stress drop, is in good agreement with laboratory and field observations. Predicted overshoot, a measure of how much the static stress drop exceeds the dynamic stress drop, is higher than previously published laboratory and seismic observations and fully elasto-dynamic calculations. Seismic efficiency and overshoot are constant, independent of normal stress and scale. Calculated variation of apparent stress with seismic moment resembles the observational constraints of McGarr [1999].
NASA Astrophysics Data System (ADS)
Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.
2016-12-01
Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.
McDonald, Robert I.; Fargione, Joseph; Kiesecker, Joe; Miller, William M.; Powell, Jimmie
2009-01-01
Concern over climate change has led the U.S. to consider a cap-and-trade system to regulate emissions. Here we illustrate the land-use impact to U.S. habitat types of new energy development resulting from different U.S. energy policies. We estimated the total new land area needed by 2030 to produce energy, under current law and under various cap-and-trade policies, and then partitioned the area impacted among habitat types with geospatial data on the feasibility of production. The land-use intensity of different energy production techniques varies over three orders of magnitude, from 1.9–2.8 km2/TW hr/yr for nuclear power to 788–1000 km2/TW hr/yr for biodiesel from soy. In all scenarios, temperate deciduous forests and temperate grasslands will be most impacted by future energy development, although the magnitude of impact by wind, biomass, and coal to different habitat types is policy-specific. Regardless of the existence or structure of a cap-and-trade bill, at least 206,000 km2 will be impacted without substantial increases in energy efficiency, which saves at least 7.6 km2 per TW hr of electricity conserved annually and 27.5 km2 per TW hr of liquid fuels conserved annually. Climate policy that reduces carbon dioxide emissions may increase the areal impact of energy, although the magnitude of this potential side effect may be substantially mitigated by increases in energy efficiency. The possibility of widespread energy sprawl increases the need for energy conservation, appropriate siting, sustainable production practices, and compensatory mitigation offsets. PMID:19707570
McDonald, Robert I; Fargione, Joseph; Kiesecker, Joe; Miller, William M; Powell, Jimmie
2009-08-26
Concern over climate change has led the U.S. to consider a cap-and-trade system to regulate emissions. Here we illustrate the land-use impact to U.S. habitat types of new energy development resulting from different U.S. energy policies. We estimated the total new land area needed by 2030 to produce energy, under current law and under various cap-and-trade policies, and then partitioned the area impacted among habitat types with geospatial data on the feasibility of production. The land-use intensity of different energy production techniques varies over three orders of magnitude, from 1.9-2.8 km(2)/TW hr/yr for nuclear power to 788-1000 km(2)/TW hr/yr for biodiesel from soy. In all scenarios, temperate deciduous forests and temperate grasslands will be most impacted by future energy development, although the magnitude of impact by wind, biomass, and coal to different habitat types is policy-specific. Regardless of the existence or structure of a cap-and-trade bill, at least 206,000 km(2) will be impacted without substantial increases in energy efficiency, which saves at least 7.6 km(2) per TW hr of electricity conserved annually and 27.5 km(2) per TW hr of liquid fuels conserved annually. Climate policy that reduces carbon dioxide emissions may increase the areal impact of energy, although the magnitude of this potential side effect may be substantially mitigated by increases in energy efficiency. The possibility of widespread energy sprawl increases the need for energy conservation, appropriate siting, sustainable production practices, and compensatory mitigation offsets.
A comparative study of energy balance among housewives of Ludhiana city.
Kaur, N; Mann, S K; Sidhu, P; Sangha, J K
1997-01-01
Energy gap is the main nutritional factor which affects work efficiency in all age groups. The low intake of food results in impaired working efficiency and a low level of vitality. Energy balance was evaluated among 30 healthy, nonpregnant, nonlactating housewives aged 29-40 years drawn from the campus of Punjab Agricultural University and its surrounding areas. The women's mean overall energy intake was 1777 +or- 31 kcal/day, 87% of the ICMR (1990) recommended allowances. Total energy expenditure was measured using a computer-based Nutriguide program of Song et al., Caltrac, FAO/WHO/UNU (1985) equations based upon body weight, and an ICMR (1990) prediction equation also based upon body weight. Statistical analysis identified a significant difference in the energy expenditure measured by all 4 methods except between the FAO/WHO/UNU and ICMR prediction equations. The overall energy balance was maximum and positive according to Caltrac at 4.5 kcal/day. The energy expenditure measured by the Nutriguide, FAO/WHO/UNU, and ICMR methods was significantly correlated to weight. Energy intake was significantly and highly correlated to energy balance in all of the 4 methods. While the subjects were overweight when compared with Life Insurance Corporation of India (1965) Standards, the women's body mass index of 23.11 kg/sq.m was within the normal range.
NASA Astrophysics Data System (ADS)
Herrera, D.; Bennadji, A.
2013-07-01
In order to achieve the CO2 reduction targets set by the Scottish government, it will be necessary to improve the energy efficiency of existing buildings. Within the total Scottish building stock, historic and traditionally constructed buildings are an important proportion, in the order of 19 % (Curtis, 2010), and represent cultural, emotional and identity values that should be protected. However, retrofit interventions could be a complex operation because of the several aspects that are involved in the hygrothermal performance of traditional buildings. Moreover, all these factors interact with each other and therefore need to be analysed as a whole. Upgrading the envelope of traditional buildings may produce severe changes to the moisture migration leading to superficial or interstitial condensation and thus fabric decay and mould growth. Retrofit projects carried out in the past have failed because of the misunderstanding, or the lack of expert prediction, of the potential consequences associated to the envelope's alteration. The evaluation of potential risks, prior to any alteration on building's physics in order to improve its energy efficiency, is critical to avoid future damage on the wall's performance or occupants' health and well being. The aim of this PhD research project is to point out the most critical aspects related to the energy efficiency improvement of traditional buildings and to develop a risk based methodology that helps owners and practitioners during the decision making process.
NASA Astrophysics Data System (ADS)
Marleau, Gabriel-Dominique; Klahr, Hubert; Kuiper, Rolf; Mordasini, Christoph
2017-02-01
The key aspect determining the postformation luminosity of gas giants has long been considered to be the energetics of the accretion shock at the surface of the planet. We use one-dimensional radiation-hydrodynamical simulations to study the radiative loss efficiency and to obtain postshock temperatures and pressures and thus entropies. The efficiency is defined as the fraction of the total incoming energy flux that escapes the system (roughly the Hill sphere), taking into account the energy recycling that occurs ahead of the shock in a radiative precursor. We focus in this paper on a constant equation of state (EOS) to isolate the shock physics but use constant and tabulated opacities. While robust quantitative results will have to await a self-consistent treatment including hydrogen dissociation and ionization, the results presented here show the correct qualitative behavior and can be understood from semianalytical calculations. The shock is found to be isothermal and supercritical for a range of conditions relevant to the core accretion formation scenario (CA), with Mach numbers { M }≳ 3. Across the shock, the entropy decreases significantly by a few times {k}{{B}}/{{baryon}}. While nearly 100% of the incoming kinetic energy is converted to radiation locally, the efficiencies are found to be as low as roughly 40%, implying that a significant fraction of the total accretion energy is brought into the planet. However, for realistic parameter combinations in the CA scenario, we find that a nonzero fraction of the luminosity always escapes the Hill sphere. This luminosity could explain, at least in part, recent observations in the young LkCa 15 and HD 100546 systems.
Bitra, Venkata S P; Womac, Alvin R; Igathinathane, C; Miu, Petre I; Yang, Yuechuan T; Smith, David R; Chevanan, Nehru; Sokhansanj, Shahab
2009-12-01
Lengthy straw/stalk of biomass may not be directly fed into grinders such as hammer mills and disc refiners. Hence, biomass needs to be preprocessed using coarse grinders like a knife mill to allow for efficient feeding in refiner mills without bridging and choking. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented knife mill. Direct power inputs were determined for different knife mill screen openings from 12.7 to 50.8 mm, rotor speeds between 250 and 500 rpm, and mass feed rates from 1 to 11 kg/min. Overall accuracy of power measurement was calculated to be +/-0.003 kW. Total specific energy (kWh/Mg) was defined as size reduction energy to operate mill with biomass. Effective specific energy was defined as the energy that can be assumed to reach the biomass. The difference is parasitic or no-load energy of mill. Total specific energy for switchgrass, wheat straw, and corn stover chopping increased with knife mill speed, whereas, effective specific energy decreased marginally for switchgrass and increased for wheat straw and corn stover. Total and effective specific energy decreased with an increase in screen size for all the crops studied. Total specific energy decreased with increase in mass feed rate, but effective specific energy increased for switchgrass and wheat straw, and decreased for corn stover at increased feed rate. For knife mill screen size of 25.4 mm and optimum speed of 250 rpm, optimum feed rates were 7.6, 5.8, and 4.5 kg/min for switchgrass, wheat straw, and corn stover, respectively, and the corresponding total specific energies were 7.57, 10.53, and 8.87 kWh/Mg and effective specific energies were 1.27, 1.50, and 0.24 kWh/Mg for switchgrass, wheat straw, and corn stover, respectively. Energy utilization ratios were calculated as 16.8%, 14.3%, and 2.8% for switchgrass, wheat straw, and corn stover, respectively. These data will be useful for preparing the feed material for subsequent fine grinding operations and designing new mills.
NASA Astrophysics Data System (ADS)
Shrubsole, C.; Das, P.; Milner, J.; Hamilton, I. G.; Spadaro, J. V.; Oikonomou, E.; Davies, M.; Wilkinson, P.
2015-11-01
Dwellings are a substantial source of global CO2 emissions. The energy used in homes for heating, cooking and running electrical appliances is responsible for a quarter of current total UK emissions and is a key target of government policies for greenhouse gas abatement. Policymakers need to understand the potential impact that such decarbonization policies have on the indoor environment and health for a full assessment of costs and benefits. We investigated these impacts in two contrasting settings of the UK: London, a predominantly older city and Milton Keynes, a growing new town. We employed SCRIBE, a building physics-based health impact model of the UK housing stock linked to the English Housing Survey, to examine changes, 2010-2050, in end-use energy demand, CO2 emissions, winter indoor temperatures, airborne pollutant concentrations and associated health impacts. For each location we modelled the existing (2010) housing stock and three future scenarios with different levels of energy efficiency interventions combined with either a business-as-usual, or accelerated decarbonization of the electricity grid approach. The potential for CO2 savings was appreciably greater in London than Milton Keynes except when substantial decarbonization of the electricity grid was assumed, largely because of the lower level of current energy efficiency in London and differences in the type and form of the housing stock. The average net impact on health per thousand population was greater in magnitude under all scenarios in London compared to Milton Keynes and more beneficial when it was assumed that purpose-provided ventilation (PPV) would be part of energy efficiency interventions, but more detrimental when interventions were assumed not to include PPV. These findings illustrate the importance of considering ventilation measures for health protection and the potential variation in the impact of home energy efficiency strategies, suggesting the need for tailored policy approaches in different locations, rather than adopting a universally rolled out strategy.
NASA Astrophysics Data System (ADS)
Saadon, S.; Abu Talib, A. R.
2016-10-01
Due to energy shortage and global warming, issues of energy saving have become more important. To increase the energy efficiency and reduce the fuel consumption, waste heat recovery is a significant method for energy saving. The organic Rankine cycle (ORC) has great potential to recover the waste heat from the core jet exhaust of a turbofan engine and use it to produce power. Preliminary study of the design concept and thermodynamic performance of this ORC system would assist researchers to predict the benefits of using the ORC system to extract the exhaust heat engine. In addition, a mathematical model of the heat transfer of this ORC system is studied and developed. The results show that with the increment of exhaust heat temperature, the mass flow rate of the working fluid, net power output and the system thermal efficiency will also increase. Consequently, total consumption of jet fuel could be significantly saved as well.
High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.
Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi
2015-11-01
We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.
Investigation of the electronic, magnetic and optical properties of newest carbon allotrope
NASA Astrophysics Data System (ADS)
Kazemi, Samira; Moradian, Rostam
2018-05-01
We investigate triple properties of monolayer pentagon graphene that include electronic, magnetic and optical properties based on density functional theory (DFT). Our results show that in the electronic and magnetic properties this structure with a direct energy gap of about 2.2 eV along Γ - Γ direction and total magnetic moment of 0.0013 μB per unit cell is almost a non-magnetic semiconductor. Also, its optical properties show that if this allotrope used in solar cell technology, its efficiency in the low energy will be better, because, in the range of energy, its loss energy function and reflectivity will be minimum.
Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos
2012-07-11
The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.
Energy Efficiency Optimization in Relay-Assisted MIMO Systems With Perfect and Statistical CSI
NASA Astrophysics Data System (ADS)
Zappone, Alessio; Cao, Pan; Jorswieck, Eduard A.
2014-01-01
A framework for energy-efficient resource allocation in a single-user, amplify-and-forward relay-assisted MIMO system is devised in this paper. Previous results in this area have focused on rate maximization or sum power minimization problems, whereas fewer results are available when bits/Joule energy efficiency (EE) optimization is the goal. The performance metric to optimize is the ratio between the system's achievable rate and the total consumed power. The optimization is carried out with respect to the source and relay precoding matrices, subject to QoS and power constraints. Such a challenging non-convex problem is tackled by means of fractional programming and and alternating maximization algorithms, for various CSI assumptions at the source and relay. In particular the scenarios of perfect CSI and those of statistical CSI for either the source-relay or the relay-destination channel are addressed. Moreover, sufficient conditions for beamforming optimality are derived, which is useful in simplifying the system design. Numerical results are provided to corroborate the validity of the theoretical findings.
Pirbhulal, Sandeep; Zhang, Heye; Mukhopadhyay, Subhas Chandra; Li, Chunyue; Wang, Yumei; Li, Guanglin; Wu, Wanqing; Zhang, Yuan-Ting
2015-01-01
Body Sensor Network (BSN) is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG), Photoplethysmography (PPG), Electrocardiogram (ECG), etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV) for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA), Data Encryption Standard (DES) and Rivest Shamir Adleman (RSA). Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption. PMID:26131666
Pirbhulal, Sandeep; Zhang, Heye; Mukhopadhyay, Subhas Chandra; Li, Chunyue; Wang, Yumei; Li, Guanglin; Wu, Wanqing; Zhang, Yuan-Ting
2015-06-26
Body Sensor Network (BSN) is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG), Photoplethysmography (PPG), Electrocardiogram (ECG), etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV) for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA), Data Encryption Standard (DES) and Rivest Shamir Adleman (RSA). Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption.
An energy harvesting solution based on the post-buckling response of non-prismatic slender beams
NASA Astrophysics Data System (ADS)
Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Alavi, Amir H.; Lajnef, Nizar
2017-04-01
Systems based on post-buckled structural elements have been extensively used in many applications such as actuation, remote sensing and energy harvesting thanks to their efficiency enhancement. The post-buckling snap- through behavior of bilaterally constrained beams has been used to create an efficient energy harvesting mechanism under quasi-static excitations. The conversion mechanism has been used to transform low-rate and low-frequency excitations into high-rate motions. Electric energy can be generated from such high-rate motions using piezoelectric transducers. However, lack of control over the post-buckling behavior severely limits the mechanism's efficiency. This study aims to maximize the levels of the harvestable power by controlling the location of the snapping point along the beam at different buckling transitions. Since the snap-through location cannot be controlled by tuning the geometry properties of a uniform cross-section beam, non-uniform cross sections are examined. An energy-based theoretical model is herein developed to predict the post-buckling response of non-uniform cross-section beams. The total potential energy is minimized under constraints that represent the physical confinement of the beam between the lateral boundaries. Experimentally validated results show that changing the shape and geometry dimensions of non- uniform cross-section beams allows for the accurate control of the snap-through location at different buckling transitions. A 78.59% increase in harvested energy levels is achieved by optimizing the beam's shape.
Zanton, G I; Heinrichs, A J
2016-04-01
The objective of this study was to evaluate the effects of limit feeding diets of different predicted energy density on the efficiency of utilization of feed and nitrogen and rumen responses in younger and older Holstein heifers. Eight rumen-cannulated Holstein heifers (4 heifers beginning at 257 ± 7 d, hereafter "young," and 4 heifers beginning at 610 ± 16 d, hereafter "old") were limit-fed high [HED; 2.64 Mcal/kg of dry matter (DM), 15.31% crude protein (CP)] or low (LED; 2.42 Mcal/kg of DM, 14.15% CP) energy density diets according to a 4-period, split-plot Latin square design with 28-d periods. Diets were limit-fed to provide isonitrogenous and isoenergetic intake on a rumen empty body weight (BW) basis at a level predicted to support approximately 800 g/d of average daily gain. During the last 7d of each period, rumen contents were subsampled over a 24-h period, rumen contents were completely evacuated, and total collection of feces and urine was made over 4d. Intakes of DM and water were greater for heifers fed LED, although, by design, calculated intake of metabolizable energy did not differ between age groups or diets when expressed relative to rumen empty BW. Rumen pH was lower, ammonia (NH3-N) concentration tended to be higher, and volatile fatty acids (VFA) concentration was not different for HED compared with LED and was unaffected by age group. Rumen content mass was greater for heifers fed LED and for old heifers, so when expressing rumen fermentation responses corrected for this difference in pool size, NH3-N pool size was not different between diets and total moles of VFA in the rumen were greater for heifers fed LED, whereas these pool sizes were greater for old heifers. Total-tract digestibility of potentially digestible neutral detergent fiber (NDF) was greater in heifers fed LED and for young heifers, whereas the fractional rate of ruminal passage and digestion of NDF were both greater in heifers fed LED. Digestibility of N was greater for heifers fed HED, but was unaffected by age group, whereas the efficiency of N retention was greater for heifers fed HED and for young heifers. Manure output was reduced in heifers fed HED, but the effect was largest in old heifers. Results confirm previous studies in which young heifers utilize N more efficiently than old heifers, primarily through greater efficiency of postabsorptive metabolism. Results also support the concept of limit feeding HED diets as a potential means to reduce manure excretion and increase nitrogen efficiency. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Auroral nitric oxide concentration and infrared emission
NASA Astrophysics Data System (ADS)
Reidy, W. P.; Degges, T. C.; Hurd, A. G.; Stair, A. T., Jr.; Ulwick, J. C.
1982-05-01
Rocket-borne measurements of infrared auroral emission by nitric oxide are analyzed. Four rocket flights provided opportunities to measure 5.3- and 2.7-micron NO emission by means of infrared fixed band radiometers and CVF spectrometers, narrow band photometers, and incident energy spectra on various occasions. Analysis of infrared emission profiles and electron flux data indicates the NO density to be significantly enhanced with respect to midlatitude values. NO emission in the fundamental 5.3-micron band is attributed to resonance excitation by warm earth radiation, collisional excitation primarily by O atoms and chemiluminescence from the reaction of N with O2; with an energy efficiency of 0.015. The overtone band emission at 2.7 microns is accounted for by chemiluminescence produced with an energy efficiency of 0.0054. Total photon yield for the chemiluminescence reaction is estimated to range from 1.2 to 2.4 vibrational quanta per NO molecule.
Characteristic evaluation of a Lithium-6 loaded neutron coincidence spectrometer.
Hayashi, M; Kaku, D; Watanabe, Y; Sagara, K
2007-01-01
Characteristics of a (6)Li-loaded neutron coincidence spectrometer were investigated from both measurements and Monte Carlo simulations. The spectrometer consists of three (6)Li-glass scintillators embedded in a liquid organic scintillator BC-501A, which can detect selectively neutrons that deposit the total energy in the BC-501A using a coincidence signal generated from the capture event of thermalised neutrons in the (6)Li-glass scintillators. The relative efficiency and the energy response were measured using 4.7, 7.2 and 9.0 MeV monoenergetic neutrons. The measured ones were compared with the Monte Carlo calculations performed by combining the neutron transport code PHITS and the scintillator response calculation code SCINFUL. The experimental light output spectra were in good agreement with the calculated ones in shape. The energy dependence of the detection efficiency was reproduced by the calculation. The response matrices for 1-10 MeV neutrons were finally obtained.
Selective deuterium ion acceleration using the Vulcan petawatt laser
NASA Astrophysics Data System (ADS)
Krygier, A. G.; Morrison, J. T.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.
2015-05-01
We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, > 10 20 W / cm 2 laser pulse by cryogenically freezing heavy water (D2O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°-8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.
Baun, Christian
2016-01-01
Clusters usually consist of servers, workstations or personal computers as nodes. But especially for academic purposes like student projects or scientific projects, the cost for purchase and operation can be a challenge. Single board computers cannot compete with the performance or energy-efficiency of higher-value systems, but they are an option to build inexpensive cluster systems. Because of the compact design and modest energy consumption, it is possible to build clusters of single board computers in a way that they are mobile and can be easily transported by the users. This paper describes the construction of such a cluster, useful applications and the performance of the single nodes. Furthermore, the clusters' performance and energy-efficiency is analyzed by executing the High Performance Linpack benchmark with a different number of nodes and different proportion of the systems total main memory utilized.
Energy-efficient digital and wireless IC design for wireless smart sensing
NASA Astrophysics Data System (ADS)
Zhou, Jun; Huang, Xiongchuan; Wang, Chao; Tae-Hyoung Kim, Tony; Lian, Yong
2017-10-01
Wireless smart sensing is now widely used in various applications such as health monitoring and structural monitoring. In conventional wireless sensor nodes, significant power is consumed in wirelessly transmitting the raw data. Smart sensing adds local intelligence to the sensor node and reduces the amount of wireless data transmission via on-node digital signal processing. While the total power consumption is reduced compared to conventional wireless sensing, the power consumption of the digital processing becomes as dominant as wireless data transmission. This paper reviews the state-of-the-art energy-efficient digital and wireless IC design techniques for reducing the power consumption of the wireless smart sensor node to prolong battery life and enable self-powered applications.
Creep feeding nursing beef calves.
Lardy, Gregory P; Maddock, Travis D
2007-03-01
Creep feeding can be used to increase calf weaning weights. However, the gain efficiency of free-choice, energy-based creep feeds is relatively poor. Generally, limit-feeding, high-protein creep feeds are more efficient, and gains may be similar to those produced by creep feeds offered free choice. Creep feeding can increase total organic matter intake and improve the overall energy status of the animal. Creep-fed calves tend to acclimate to the feedlot more smoothly than unsupplemented calves. Furthermore, provision of a high-starch creep feed may have a positive influence on subsequent carcass quality traits. Creep feeding can be applied to numerous environmental situations to maximize calf performance; however, beef cattle producers should consider their individual situations carefully before making the decision to creep feed.
Higher-harmonics suppressor for soft x rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waki, I.; Hirai, Y.; Momose, A.
We have developed an apparatus for suppressing higher harmonics contained in the soft x-ray output beam of grazing-incidence grating monochromators. It consists of eight pairs of total-reflection mirrors. Each pair serves as a low-pass filter with the cutoff energy different from one another. The eight pairs are designed to cover an energy range of 80--1600 eV with an efficiency of harmonic suppression better than 97%, while transmitting more than 50% of the fundamental photons. We have tested its preliminary performance on the soft x-ray beamline BL-8A at the Photon Factory. We present the observed transmission efficiencies and the effects ofmore » the harmonic suppressor on measurements of reflectivity and fluorescence spectra.« less
Stocker, Andrea; Großmann, Anett; Madlener, Reinhard; Wolter, Marc Ingo
2011-01-01
This paper reports on the Austrian research project “Renewable energy in Austria: Modeling possible development trends until 2020”. The project investigated possible economic and ecological effects of a substantially increased use of renewable energy sources in Austria. Together with stakeholders and experts, three different scenarios were defined, specifying possible development trends for renewable energy in Austria. The scenarios were simulated for the period 2006–2020, using the integrated environment–energy–economy model “e3.at”. The modeling results indicate that increasing the share of renewable energy sources in total energy use is an important but insufficient step towards achieving a sustainable energy system in Austria. A substantial increase in energy efficiency and a reduction of residential energy consumption also form important cornerstones of a sustainable energy policy. PMID:21976785
NASA Astrophysics Data System (ADS)
Fajingbesi, F. E.; Midi, N. S.; Khan, S.
2017-06-01
Green energy sources or renewable energy system generally utilize modular approach in their design. This sort of power sources are generally in DC form or in single cases AC. Due to high fluctuation in the natural origin of this energy (wind & solar) source they are stored as DC. DC power however are difficult to transfer over long distances hence DC to AC converters and storage system are very important in green energy system design. In this work we have designed a novel multilevel DC to AC converter that takes into account the modular design of green energy systems. A power conversion efficiency of 99% with reduced total harmonic distortion (THD) was recorded from our simulated system design.
Biotechnological storage and utilization of entrapped solar energy.
Bhattacharya, Sumana; Schiavone, Marc; Nayak, Amiya; Bhattacharya, Sanjoy K
2005-03-01
Our laboratory has recently developed a device employing immobilized F0F1 adenosine triphosphatase (ATPase) that allows synthesis of adenosine triphosphate (ATP) from adenosine 5'-diphosphate and inorganic phosphate using solar energy. We present estimates of total solar energy received by Earth's land area and demonstrate that its efficient capture may allow conversion of solar energy and storage into bonds of biochemicals using devices harboring either immobilized ATPase or NADH dehydrogenase. Capture and storage of solar energy into biochemicals may also enable fixation of CO2 emanating from polluting units. The cofactors ATP and NADH synthesized using solar energy could be used for regeneration of acceptor D-ribulose-1,5-bisphosphate from 3-phosphoglycerate formed during CO2 fixation.
USING TIME VARIANT VOLTAGE TO CALCULATE ENERGY CONSUMPTION AND POWER USE OF BUILDING SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhmalbaf, Atefe; Augenbroe , Godfried
2015-12-09
Buildings are the main consumers of electricity across the world. However, in the research and studies related to building performance assessment, the focus has been on evaluating the energy efficiency of buildings whereas the instantaneous power efficiency has been overlooked as an important aspect of total energy consumption. As a result, we never developed adequate models that capture both thermal and electrical characteristics (e.g., voltage) of building systems to assess the impact of variations in the power system and emerging technologies of the smart grid on buildings energy and power performance and vice versa. This paper argues that the powermore » performance of buildings as a function of electrical parameters should be evaluated in addition to systems’ mechanical and thermal behavior. The main advantage of capturing electrical behavior of building load is to better understand instantaneous power consumption and more importantly to control it. Voltage is one of the electrical parameters that can be used to describe load. Hence, voltage dependent power models are constructed in this work and they are coupled with existing thermal energy models. Lack of models that describe electrical behavior of systems also adds to the uncertainty of energy consumption calculations carried out in building energy simulation tools such as EnergyPlus, a common building energy modeling and simulation tool. To integrate voltage-dependent power models with thermal models, the thermal cycle (operation mode) of each system was fed into the voltage-based electrical model. Energy consumption of systems used in this study were simulated using EnergyPlus. Simulated results were then compared with estimated and measured power data. The mean square error (MSE) between simulated, estimated, and measured values were calculated. Results indicate that estimated power has lower MSE when compared with measured data than simulated results. Results discussed in this paper will illustrate the significance of enhancing building energy models with electrical characteristics. This would support different studies such as those related to modernization of the power system that require micro scale building-grid interaction, evaluating building energy efficiency with power efficiency considerations, and also design and control decisions that rely on accuracy of building energy simulation results.« less
Investigation of Recombination Processes In A Magnetized Plasma
NASA Technical Reports Server (NTRS)
Chavers, Greg; Chang-Diaz, Franklin; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Interplanetary travel requires propulsion systems that can provide high specific impulse (Isp), while also having sufficient thrust to rapidly accelerate large payloads. One such propulsion system is the Variable Specific Impulse Magneto-plasma Rocket (VASIMR), which creates, heats, and exhausts plasma to provide variable thrust and Isp, optimally meeting the mission requirements. A large fraction of the energy to create the plasma is frozen in the exhaust in the form of ionization energy. This loss mechanism is common to all electromagnetic plasma thrusters and has an impact on their efficiency. When the device operates at high Isp, where the exhaust kinetic energy is high compared to the ionization energy, the frozen flow component is of little consequence; however, at low Isp, the effect of the frozen flow may be important. If some of this energy could be recovered through recombination processes, and re-injected as neutral kinetic energy, the efficiency of VASIMR, in its low Isp/high thrust mode may be improved. In this operating regime, the ionization energy is a large portion of the total plasma energy. An experiment is being conducted to investigate the possibility of recovering some of the energy used to create the plasma. This presentation will cover the progress and status of the experiment involving surface recombination of the plasma.
Pilli, Sridhar; More, Tanaji; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y
2015-07-01
The effect of thermal pre-treatment on sludge anaerobic digestion (AD) efficiency was studied at different total solids (TS) concentrations (20.0, 30.0 and 40.0 g TS/L) and digestion times (0, 5, 10, 15, 20 and 30 days) for primary, secondary and mixed wastewater sludge. Moreover, sludge pre-treatment, AD and disposal processes were evaluated based on a mass-energy balance and corresponding greenhouse gas (GHG) emissions. Mass balance revealed that the least quantity of digestate was generated by thermal pre-treated secondary sludge at 30.0 g TS/L. The net energy (energy output-energy input) and energy ratio (energy output/energy input) for thermal pre-treated sludge was greater than control in all cases. The reduced GHG emissions of 73.8 × 10(-3) g CO2/g of total dry solids were observed for the thermal pre-treated secondary sludge at 30.0 g TS/L. Thermal pre-treatment of sludge is energetically beneficial and required less retention time compared to control. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Sha; Evans, Meredydd; Kyle, Page; Vu, Linh; Tan, Qing; Gupta, Ashu; Patel, Pralit
2018-03-01
The Nationally Determined Contributions are allowing countries to examine options for reducing emissions through a range of domestic policies. India, like many developing countries, has committed to reducing emissions through specific policies, including building energy codes. Here we assess the potential of these sectoral policies to help in achieving mitigation targets. Collectively, it is critically important to see the potential impact of such policies across developing countries in meeting national and global emission goals. Buildings accounted for around one third of global final energy use in 2010, and building energy consumption is expected to increase as income grows in developing countries. Using the Global Change Assessment Model, this study finds that implementing a range of energy efficiency policies robustly can reduce total Indian building energy use by 22% and lower total Indian carbon dioxide emissions by 9% in 2050 compared to the business-as-usual scenario. Among various policies, energy codes for new buildings can result in the most significant savings. For all building energy policies, well-coordinated, consistent implementation is critical, which requires coordination across different departments and agencies, improving capacity of stakeholders, and developing appropriate institutions to facilitate policy implementation.
Cooperative and Integrated Vehicle and Intersection Control for Energy Efficiency (CIVIC-E²)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Yunfei; Seliman, Salaheldeen M. S.; Wang, Enshu
Recent advances in connected vehicle technologies enable vehicles and signal controllers to cooperate and improve the traffic management at intersections. This paper explores the opportunity for cooperative and integrated vehicle and intersection control for energy efficiency (CIVIC-E 2) to contribute to a more sustainable transportation system. We propose a two-level approach that jointly optimizes the traffic signal timing and vehicles' approach speed, with the objective being to minimize total energy consumption for all vehicles passing through an isolated intersection. More specifically, at the intersection level, a dynamic programming algorithm is designed to find the optimal signal timing by explicitly consideringmore » the arrival time and energy profile of each vehicle. At the vehicle level, a model predictive control strategy is adopted to ensure that vehicles pass through the intersection in a timely fashion. Our simulation study has shown that the proposed CIVIC-E 2 system can significantly improve intersection performance under various traffic conditions. Compared with conventional fixed-time and actuated signal control strategies, the proposed algorithm can reduce energy consumption and queue length by up to 31% and 95%, respectively.« less
Cooperative and Integrated Vehicle and Intersection Control for Energy Efficiency (CIVIC-E²)
Hou, Yunfei; Seliman, Salaheldeen M. S.; Wang, Enshu; ...
2018-02-15
Recent advances in connected vehicle technologies enable vehicles and signal controllers to cooperate and improve the traffic management at intersections. This paper explores the opportunity for cooperative and integrated vehicle and intersection control for energy efficiency (CIVIC-E 2) to contribute to a more sustainable transportation system. We propose a two-level approach that jointly optimizes the traffic signal timing and vehicles' approach speed, with the objective being to minimize total energy consumption for all vehicles passing through an isolated intersection. More specifically, at the intersection level, a dynamic programming algorithm is designed to find the optimal signal timing by explicitly consideringmore » the arrival time and energy profile of each vehicle. At the vehicle level, a model predictive control strategy is adopted to ensure that vehicles pass through the intersection in a timely fashion. Our simulation study has shown that the proposed CIVIC-E 2 system can significantly improve intersection performance under various traffic conditions. Compared with conventional fixed-time and actuated signal control strategies, the proposed algorithm can reduce energy consumption and queue length by up to 31% and 95%, respectively.« less
Guo, Jian-hua; Wang, Shu-ying; Peng, Yong-zhen; Zheng, Ya-nan; Huang, Hui-jun; Ge, Shi-jian; Sun, Zhi-rong
2008-12-01
Preliminary studies had been conducted to determine the correctness of the theory and technique of energy saving achieved by limited filamentous bulking under low DO using a lab-scale A/O reactor with real domestic wastewater as the influent. The results showed that SVI could be maintained 150-230 mL/g and sludge settleability would not become very poor under the condition of low DO. During the period of limited filamentous bulking, COD and total nitrogen removal efficiencies were improved, and distinct simultaneous nitrification and denitrification (SND) was achieved, while ammonia removal efficiency would slightly decline with decreasing of DO, compared with the period of good settleability sludge under high DO. COD, ammonia and total nitrogen removal efficiencies were 86%, 70% and 63%, respectively. It was found that about 10%-25% nitrogen would be removed by SND based on the mass balance of nitrogen. Besides, SS in the effluent was almost negligible and the effluent turbidity was lower than 3 NTU. Significantly, aeration consumptions would be decreased by 17% under the condition with DO of 0.5 mg/L compared with 2.0 mg/L according to theoretical calculation of air requirements to keep different DO levels, which was about 57% in lab-scale reactor correspondingly.
NASA Astrophysics Data System (ADS)
Sanaye, Sepehr; Katebi, Arash
2014-02-01
Energy, exergy, economic and environmental (4E) analysis and optimization of a hybrid solid oxide fuel cell and micro gas turbine (SOFC-MGT) system for use as combined generation of heat and power (CHP) is investigated in this paper. The hybrid system is modeled and performance related results are validated using available data in literature. Then a multi-objective optimization approach based on genetic algorithm is incorporated. Eight system design parameters are selected for the optimization procedure. System exergy efficiency and total cost rate (including capital or investment cost, operational cost and penalty cost of environmental emissions) are the two objectives. The effects of fuel unit cost, capital investment and system power output on optimum design parameters are also investigated. It is observed that the most sensitive and important design parameter in the hybrid system is fuel cell current density which has a significant effect on the balance between system cost and efficiency. The selected design point from the Pareto distribution of optimization results indicates a total system exergy efficiency of 60.7%, with estimated electrical energy cost 0.057 kW-1 h-1, and payback period of about 6.3 years for the investment.
NASA Astrophysics Data System (ADS)
Lee, Keun
Renewable energy in different forms has been used in various applications for survival since the beginning of human existence. However, there is a new dire need to reevaluate and recalibrate the overall energy issue both nationally and globally. This includes, but is not limited to, the finite availability of fossil fuel, energy sustainability with an increasing demand, escalating energy costs, environmental impact such as global warming and green-house gases, to name a few. This dissertation is primarily focused and related to the production and usage of electricity from non-hydro renewable sources. Among non-hydro renewable energy sources, electricity generation from wind and solar energy are the fastest-growing technologies in the United States and in the world. However, due to the intermittent nature of such renewable sources, energy storage devices are required to maintain proper operation of the grid system and in order to increase reliability. A hybrid system, as the name suggests, is a combination of different forms of non-renewable and renewable energy generation, with or without storage devices. Hybrid systems, when applied properly, are able to improve reliability and enhance stability, reduce emissions and noise pollution, provide continuous power, increase operation life, reduce cost, and efficiently use all available energy. In the United States (U.S.), buildings consume approximately 40% of the total primary energy and 74% of the total electricity. Therefore, reduction of energy consumption and improved energy efficiency in U.S. buildings will play a vital role in the overall energy picture. Electrical energy usage for any such building varies widely depending on age (construction technique), electricity and natural gas usage, appearance, location and climate. In this research, a hybrid system including non-renewable and renewable energy generation with storage devices specifically for building applications, is studied in detail. This research deals with the optimization of the hybrid system design (which consists of PV panels and/or wind turbines and/or storage devices for building applications) by developing an algorithm designed to make the system cost effective and energy efficient. Input data includes electrical load demand profile of the buildings, buildings' structural and geographical characteristics, real time pricing of electricity, and the costs of hybrid systems and storage devices. When the electrical load demand profile of a building that is being studied is available, a measured demand profile is directly used as input data. However, if that information is not available, a building's electric load demand is estimated using a developed algorithm based on three large data sources from a public domain, and used as input data. Using the acquired input data, the algorithm of this research is designed and programmed in order to determine the size of renewable components and to minimize the total yearly net cost. This dissertation also addresses the parametric sensitivity analysis to determine which factors are more significant and are expected to produce useful guidelines in the decision making process. An engineered and more practical, simplified solution has been provided for the optimized design process.
Photosymbiotic giant clams are transformers of solar flux.
Holt, Amanda L; Vahidinia, Sanaz; Gagnon, Yakir Luc; Morse, Daniel E; Sweeney, Alison M
2014-12-06
'Giant' tridacnid clams have evolved a three-dimensional, spatially efficient, photodamage-preventing system for photosymbiosis. We discovered that the mantle tissue of giant clams, which harbours symbiotic nutrition-providing microalgae, contains a layer of iridescent cells called iridocytes that serve to distribute photosynthetically productive wavelengths by lateral and forward-scattering of light into the tissue while back-reflecting non-productive wavelengths with a Bragg mirror. The wavelength- and angle-dependent scattering from the iridocytes is geometrically coupled to the vertically pillared microalgae, resulting in an even re-distribution of the incoming light along the sides of the pillars, thus enabling photosynthesis deep in the tissue. There is a physical analogy between the evolved function of the clam system and an electric transformer, which changes energy flux per area in a system while conserving total energy. At incident light levels found on shallow coral reefs, this arrangement may allow algae within the clam system to both efficiently use all incident solar energy and avoid the photodamage and efficiency losses due to non-photochemical quenching that occur in the reef-building coral photosymbiosis. Both intra-tissue radiometry and multiscale optical modelling support our interpretation of the system's photophysics. This highly evolved 'three-dimensional' biophotonic system suggests a strategy for more efficient, damage-resistant photovoltaic materials and more spatially efficient solar production of algal biofuels, foods and chemicals.
Renewable energy: key factor of China’s energy revolution
NASA Astrophysics Data System (ADS)
Shen, Wan
2017-12-01
To realize the sustainable development of China’s energy industry, it is necessary to speed up the transformation of energy development mode and deepen the reform of the energy system in an all-round way so as to establish a clean, low-carbon, safe and efficient modern energy system. This paper analysed the opportunities and challenges in energy sectors to promote the energy mix update in China. Fossil energy, especially coal, has brought great progress to the world as well as a great deal of negative effects. In recent years, China’s greenhouse gas emissions continued to grow rapidly, and has become the world’s largest greenhouse gas emitter. To deal with the challenge, the Chinese government has promised that renewable energy will account for 15% of total energy consumption in 2020 and 20% in 2030. This goal requires China to add 800 to 1000 GW of wind, solar and other clean energy.
Geothermal pump down-hole energy regeneration system
Matthews, Hugh B.
1982-01-01
Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 s surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.
Antiproton powered propulsion with magnetically confined plasma engines
NASA Technical Reports Server (NTRS)
Lapointe, Michael R.
1989-01-01
Matter-antimatter annihilation releases more energy per unit mass than any other method of energy production, making it an attractive energy source for spacecraft propulsion. In the magnetically confined plasma engine, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas. The resulting charged annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. The calculated energy transfer efficiencies for a low number density (10(14)/cu cm) hydrogen propellant are insufficient to warrant operating the engine in this mode. Efficiencies are improved using moderate propellant number densities (10(16)/cu cm), but the energy transferred to the plasma in a realistic magnetic mirror system is generally limited to less than 2 percent of the initial proton-antiproton annihilation energy. The energy transfer efficiencies are highest for high number density (10(18)/cu cm) propellants, but plasma temperatures are reduced by excessive radiation losses. Low to moderate thrust over a wide range of specific impulse can be generated with moderate propellant number densities, while higher thrust but lower specific impulse may be generated using high propellant number densities. Significant mass will be required to shield the superconducting magnet coils from the high energy gamma radiation emitted by neutral pion decay. The mass of such a radiation shield may dominate the total engine mass, and could severely diminish the performance of antiproton powered engines which utilize magnetic confinement. The problem is compounded in the antiproton powered plasma engine, where lower energy plasma bremsstrahlung radiation may cause shield surface ablation and degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granderson, Jessica; Touzani, Samir; Custodio, Claudine
Trustworthy savings calculations are critical to convincing investors in energy efficiency projects of the benefit and cost-effectiveness of such investments and their ability to replace or defer supply-side capital investments. However, today’s methods for measurement and verification (M&V) of energy savings constitute a significant portion of the total costs of efficiency projects. They also require time-consuming manual data acquisition and often do not deliver results until years after the program period has ended. The rising availability of “smart” meters, combined with new analytical approaches to quantifying savings, has opened the door to conducting M&V more quickly and at lower cost,more » with comparable or improved accuracy. These meter- and software-based approaches, increasingly referred to as “M&V 2.0”, are the subject of surging industry interest, particularly in the context of utility energy efficiency programs. Program administrators, evaluators, and regulators are asking how M&V 2.0 compares with more traditional methods, how proprietary software can be transparently performance tested, how these techniques can be integrated into the next generation of whole-building focused efficiency programs. This paper expands recent analyses of public-domain whole-building M&V methods, focusing on more novel M&V2.0 modeling approaches that are used in commercial technologies, as well as approaches that are documented in the literature, and/or developed by the academic building research community. We present a testing procedure and metrics to assess the performance of whole-building M&V methods. We then illustrate the test procedure by evaluating the accuracy of ten baseline energy use models, against measured data from a large dataset of 537 buildings. The results of this study show that the already available advanced interval data baseline models hold great promise for scaling the adoption of building measured savings calculations using Advanced Metering Infrastructure (AMI) data. Median coefficient of variation of the root mean squared error (CV(RMSE)) was less than 25% for every model tested when twelve months of training data were used. With even six months of training data, median CV(RMSE) for daily energy total was under 25% for all models tested. Finally, these findings can be used to build confidence in model robustness, and the readiness of these approaches for industry uptake and adoption« less
Granderson, Jessica; Touzani, Samir; Custodio, Claudine; ...
2016-04-16
Trustworthy savings calculations are critical to convincing investors in energy efficiency projects of the benefit and cost-effectiveness of such investments and their ability to replace or defer supply-side capital investments. However, today’s methods for measurement and verification (M&V) of energy savings constitute a significant portion of the total costs of efficiency projects. They also require time-consuming manual data acquisition and often do not deliver results until years after the program period has ended. The rising availability of “smart” meters, combined with new analytical approaches to quantifying savings, has opened the door to conducting M&V more quickly and at lower cost,more » with comparable or improved accuracy. These meter- and software-based approaches, increasingly referred to as “M&V 2.0”, are the subject of surging industry interest, particularly in the context of utility energy efficiency programs. Program administrators, evaluators, and regulators are asking how M&V 2.0 compares with more traditional methods, how proprietary software can be transparently performance tested, how these techniques can be integrated into the next generation of whole-building focused efficiency programs. This paper expands recent analyses of public-domain whole-building M&V methods, focusing on more novel M&V2.0 modeling approaches that are used in commercial technologies, as well as approaches that are documented in the literature, and/or developed by the academic building research community. We present a testing procedure and metrics to assess the performance of whole-building M&V methods. We then illustrate the test procedure by evaluating the accuracy of ten baseline energy use models, against measured data from a large dataset of 537 buildings. The results of this study show that the already available advanced interval data baseline models hold great promise for scaling the adoption of building measured savings calculations using Advanced Metering Infrastructure (AMI) data. Median coefficient of variation of the root mean squared error (CV(RMSE)) was less than 25% for every model tested when twelve months of training data were used. With even six months of training data, median CV(RMSE) for daily energy total was under 25% for all models tested. Finally, these findings can be used to build confidence in model robustness, and the readiness of these approaches for industry uptake and adoption« less
Khan, Majid I; Gansterer, Wilfried N; Haring, Guenter
2013-05-15
Over the last decade a large number of routing protocols has been designed for achieving energy efficiency in data collecting wireless sensor networks. The drawbacks of using a static sink are well known. It has been argued in the literature that a mobile sink may improve the energy dissipation compared to a static one. Some authors focus on minimizing Emax , the maximum energy dissipation of any single node in the network, while others aim at minimizing Ebar , the average energy dissipation over all nodes. In our paper we take a more holistic view, considering both Emax and Ebar . The main contribution of this paper is to provide a simulation-based analysis of the energy efficiency of WSNs with static and mobile sinks. The focus is on two important configuration parameters: mobility path of the sink and duty cycling value of the nodes. On the one hand, it is well known that in the case of a mobile sink with fixed trajectory the choice of the mobility path influences energy efficiency. On the other hand, in some types of applications sensor nodes spend a rather large fraction of their total lifetime in idle mode, and therefore higher energy efficiency can be achieved by using the concept of reduced duty cycles. In particular, we quantitatively analyze the influence of duty cycling and the mobility radius of the sink as well as their interrelationship in terms of energy consumption for a well-defined model scenario. The analysis starts from general load considerations and is refined into a geometrical model. This model is validated by simulations which are more realistic in terms of duty cycling than previous work. It is illustrated that over all possible configuration scenarios in terms of duty cycle and mobility radius of the sink the energy dissipation in the WSN can vary up to a factor of nine in terms of Emax and up to a factor of 17 in terms of Ebar. It turns out that in general the choice of the duty cycle value is more important for achieving energy efficiency than the choice of the mobility radius of the sink. Moreover, for small values of the duty cycle, a static sink turns out to be optimal in terms of both Emax and Ebar . For larger values of the duty cycle, a mobile sink has advantages over a static sink, especially in terms of Emax . These insights into the basic interrelationship between duty cycle value and mobility radius of a mobile sink are relevant for energy efficient operation of homogeneous WSNs beyond our model scenario.
7 CFR 1710.255 - Energy efficiency work plans-energy efficiency borrowers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 11 2014-01-01 2014-01-01 false Energy efficiency work plans-energy efficiency... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.255 Energy efficiency work plans—energy efficiency borrowers. (a) All energy efficiency borrowers must maintain a...
High Energy Density Capacitors for Pulsed Power Applications
2009-07-01
As a result of this effort, the US Military has access to capacitors that are about a third the size and half the cost of the capacitors that were...resistor in terms of shock and vibration, mounting requirements, total volume, system reliability, and cost . All of these parameters were improved...it t tipo ymer m qua y an capac or cons ruc on. Energy Density of 10,000 Shot High Efficiency Pulse Power Capacitors The primary driver was 1 5
Zubrowska-Sudol, M
2018-04-01
The goal of the study was to evaluate the possibility of carbon source recovery from excess sludge by mechanical disintegration for biological denitrification. The total efficiency of denitrification, unit demand for organic compounds for denitrification, unit volume of disintegrated sludge and unit cost of nitrogen removal as a function of energy density used for excess sludge disintegration (70, 140 and 210 kJ/L) were analyzed. In the study a full-scale disc disintegrator was used (motor power: 30 kWh, motor speed: 2,950 rpm). It was shown that the amounts of organic compounds released from the activated sludge flocs at all tested levels of energy density are high enough to be used to intensify the removal of nitrogen compounds from wastewater. It was also documented that the energy density provided during process of disintegration was an important factor determining the characteristics of organic compounds obtained under the disintegration for their use in order to intensify the process of denitrification. The highest value of total efficiency of denitrification (50.5 ± 3.1 mg N/L) was obtained for carbon source recovery from excess sludge at 70 kJ/L, but the lowest unit cost of nitrogen removal occurred for 140 kJ/L (0.0019 ± 0.0011 EUR/g N).
Köck, A; Ledinek, M; Gruber, L; Steininger, F; Fuerst-Waltl, B; Egger-Danner, C
2018-01-01
This study is part of a larger project whose overall objective was to evaluate the possibilities for genetic improvement of efficiency in Austrian dairy cattle. In 2014, a 1-yr data collection was carried out. Data from 6,519 cows kept on 161 farms were recorded. In addition to routinely recorded data (e.g., milk yield, fertility, disease data), data of novel traits [e.g., body weight (BW), body condition score (BCS), lameness score, body measurements] and individual feeding information and feed quality were recorded on each test-day. The specific objective of this study was to estimate genetic parameters for efficiency (related) traits and to investigate their relationships with BCS and lameness in Austrian Fleckvieh, Brown Swiss, and Holstein cows. The following efficiency (related) traits were considered: energy-corrected milk (ECM), BW, dry matter intake (DMI), energy intake (INEL), ratio of milk output to metabolic BW (ECM/BW 0.75 ), ratio of milk output to DMI (ECM/DMI), and ratio of milk energy output to total energy intake (LE/INEL, LE = energy in milk). For Fleckvieh, the heritability estimates of the efficiency (related) traits ranged from 0.11 for LE/INEL to 0.44 for BW. Heritabilities for BCS and lameness were 0.19 and 0.07, respectively. Repeatabilities were high and ranged from 0.30 for LE/INEL to 0.83 for BW. Heritability estimates were generally lower for Brown Swiss and Holstein, but repeatabilities were in the same range as for Fleckvieh. In all 3 breeds, more-efficient cows were found to have a higher milk yield, lower BW, slightly higher DMI, and lower BCS. Higher efficiency was associated with slightly fewer lameness problems, most likely due to the lower BW (especially in Fleckvieh) and higher DMI of the more-efficient cows. Body weight and BCS were positively correlated. Therefore, when selecting for a lower BW, BCS is required as additional information because, otherwise, no distinction between large animals with low BCS and smaller animals with normal BCS would be possible. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Wei-Ming
Energy is the backbone of modern life which is highly related to national security, economic growth, and environmental protection. For Taiwan, a region having limited conventional energy resources but constructing economies and societies with high energy intensity, energy became the throat of national security and development. This dissertation explores energy solutions for Taiwan by constructing a sustainable and comprehensive energy planning framework (SCENE) and by simulating alternative energy pathways on the horizon to 2030. The Long-range Energy Alternatives Planning system (LEAP) is used as a platform for the energy simulation. The study models three scenarios based on the E4 (energy -- environment -- economic -- equity) perspectives. Three scenarios refer to the business-as-usual scenario (BAU), the government target scenario (GOV), and the renewable and efficiency scenario (REEE). The simulation results indicate that the most promising scenario for Taiwan is the REEE scenario, which aims to save 48.7 million tonnes of oil equivalent (Mtoe) of final energy consumption. It avoids USD 11.1 billion on electricity expenditure in final demand sectors. In addition, the cost of the REEE path is the lowest among all scenarios before 2020 in the electricity generation sector. In terms of global warming potential (GWP), the REEE scenario could reduce 35 percent of the GWP in the demand sectors, the lowest greenhouse gases emission in relation to all other scenarios. Based on lowest energy consumption, competitive cost, and least harm to the environment, the REEE scenario is the best option to achieve intergenerational equity. This dissertation proposes that promoting energy efficiency and utilizing renewable energy is the best strategy for Taiwan. For efficiency improvement, great energy saving potentials do exist in Taiwan so that Taiwan needs more ambitious targets, policies, and implementation mechanisms for energy efficiency enhancement to slow down and decrease total final energy demand in the long term. In terms of adopting renewable energy, this dissertation suggests increasing the proportion of renewable electricity to 30 percent by 2030, using proven and market competitive renewable technologies to harvest Taiwan's abundant renewable potential. To achieve this goal, it is crucial to construct stable funding sources and promote the transparency, longevity, and certainty of policies.
NASA Astrophysics Data System (ADS)
Oda, Takuya; Akisawa, Atushi; Kashiwagi, Takao
If the economic activity in the commercial and residential sector continues to grow, improvement in energy conversion efficiencies of energy supply systems is necessary for CO2 mitigation. In recent years, the electricity driven hot water heat pump (EDHP) and the solar photo voltaic (PV) are commercialized. The fuel cell (FC) of co-generation system (CGS) for the commercial and residential sector will be commercialized in the future. The aim is to indicate the ideal energy supply system of the users sector, which both manages the economical cost and CO2 mitigation, considering the grid power system. In the paper, cooperative Japanese energy supply systems are modeled by linear-programming. It includes the grid power system and energy systems of five commercial sectors and a residential sector. The demands of sectors are given by the objective term for 2005 to 2025. 24 hours load for each 3 annual seasons are considered. The energy systems are simulated to be minimize the total cost of energy supply, and to be mitigate the CO2 discharge. As result, the ideal energy system at 2025 is shown. The CGS capacity grows to 30% (62GW) of total power system, and the EDHP capacity is 26GW, in commercial and residential sectors.
NASA Astrophysics Data System (ADS)
Beeri, Ofer; Rotem, Oded; Hazan, Eden; Katz, Eugene A.; Braun, Avi; Gelbstein, Yaniv
2015-09-01
An experimental demonstration of the combined photovoltaic (PV) and thermoelectric conversion of concentrated sunlight (with concentration factor, X, up to ˜300) into electricity is presented. The hybrid system is based on a multi-junction PV cell and a thermoelectric generator (TEG). The latter increases the electric power of the system and dissipates some of the excessive heat. For X ≤ 200, the system's maximal efficiency, ˜32%, was mostly due to the contribution from the PV cell. With increasing X and system temperature, the PV cell's efficiency decreased while that of the TEG increased. Accordingly, the direct electrical contribution of the TEG started to dominate in the total system power, reaching ˜20% at X ≈ 290. Using a simple steady state finite element modeling, the cooling effect of the TEG on the hybrid system's efficiency was proved to be even more significant than its direct electrical contribution for high solar concentrations. As a result, the total efficiency contribution of the TEG reached ˜40% at X ≈ 200. This suggests a new system optimization concept that takes into account the PV cell's temperature dependence and the trade-off between the direct electrical generation and cooling capabilities of the TEG. It is shown that the hybrid system has a real potential to exceed 50% total efficiency by using more advanced PV cells and TE materials.
Combining Accuracy and Efficiency: An Incremental Focal-Point Method Based on Pair Natural Orbitals.
Fiedler, Benjamin; Schmitz, Gunnar; Hättig, Christof; Friedrich, Joachim
2017-12-12
In this work, we present a new pair natural orbitals (PNO)-based incremental scheme to calculate CCSD(T) and CCSD(T0) reaction, interaction, and binding energies. We perform an extensive analysis, which shows small incremental errors similar to previous non-PNO calculations. Furthermore, slight PNO errors are obtained by using T PNO = T TNO with appropriate values of 10 -7 to 10 -8 for reactions and 10 -8 for interaction or binding energies. The combination with the efficient MP2 focal-point approach yields chemical accuracy relative to the complete basis-set (CBS) limit. In this method, small basis sets (cc-pVDZ, def2-TZVP) for the CCSD(T) part are sufficient in case of reactions or interactions, while some larger ones (e.g., (aug)-cc-pVTZ) are necessary for molecular clusters. For these larger basis sets, we show the very high efficiency of our scheme. We obtain not only tremendous decreases of the wall times (i.e., factors >10 2 ) due to the parallelization of the increment calculations as well as of the total times due to the application of PNOs (i.e., compared to the normal incremental scheme) but also smaller total times with respect to the standard PNO method. That way, our new method features a perfect applicability by combining an excellent accuracy with a very high efficiency as well as the accessibility to larger systems due to the separation of the full computation into several small increments.
Sun/Earth: how to use solar and climatic energies today
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, R.L.
1976-01-01
This book graphically presents many concepts that are cost-effective today for the utilization of free natural energy sources in homes and other buildings. All of the natural energy concepts presented are in a process of continuing development. Many of them are immediately economic and practical, while some are not. It takes the application of money to construct devices to harness natural energy or to construct energy efficient forms of architecture. In numerous cases operational energy is not required to employ the Sun, wind, water, and Earth as free anti-inflationary energy sources. In other cases a very small input of operationalmore » energy in comparison to the total energy output is required. All land and buildings are solar collectors. The problem is how to cost effectively make them efficient collectors of solar radiation in winter and how to use natural forms of energy to cool and ventilate them during summer and other seasons of the year. Regional and microclimatic conditions vary throughout the world. Topography and landscaping can play an important role in climatic control and climatic effect upon architecture. The examples presented for optimized energy conservation and solar active and passive systems are generic to most northern latitudes, but need modification or adaption to specific locations and climates. An annotated bibliography, containing additional reference, is included.« less
Residential Two-Stage Gas Furnaces - Do They Save Energy?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lekov, Alex; Franco, Victor; Lutz, James
2006-05-12
Residential two-stage gas furnaces account for almost a quarter of the total number of models listed in the March 2005 GAMA directory of equipment certified for sale in the United States. Two-stage furnaces are expanding their presence in the market mostly because they meet consumer expectations for improved comfort. Currently, the U.S. Department of Energy (DOE) test procedure serves as the method for reporting furnace total fuel and electricity consumption under laboratory conditions. In 2006, American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE) proposed an update to its test procedure which corrects some of the discrepancies found in themore » DOE test procedure and provides an improved methodology for calculating the energy consumption of two-stage furnaces. The objectives of this paper are to explore the differences in the methods for calculating two-stage residential gas furnace energy consumption in the DOE test procedure and in the 2006 ASHRAE test procedure and to compare test results to research results from field tests. Overall, the DOE test procedure shows a reduction in the total site energy consumption of about 3 percent for two-stage compared to single-stage furnaces at the same efficiency level. In contrast, the 2006 ASHRAE test procedure shows almost no difference in the total site energy consumption. The 2006 ASHRAE test procedure appears to provide a better methodology for calculating the energy consumption of two-stage furnaces. The results indicate that, although two-stage technology by itself does not save site energy, the combination of two-stage furnaces with BPM motors provides electricity savings, which are confirmed by field studies.« less
Energy-efficient building design in cold climates: Schools as a case study
NASA Astrophysics Data System (ADS)
Rangel Ruiz, Rocio
Buildings account for great amounts of greenhouse gas emissions. In terms of energy, buildings account for one third of the total amount of energy used in the country every year! Schools account for 14 percent of the energy used annually in commercial and institutional buildings. Further, schools are one of the most commonly constructed building types in Canada and spaces such as classrooms are often duplicated. This makes them preferred candidates for the research that was undertaken where energy-efficient solutions that can be transferred to different school designs were derived. Throughout the study, the Commercial Building Incentive Program (CBIP) was used as a benchmark. The objectives of the study were to demonstrate energy-efficient concepts, provide a case study to evaluate solutions, develop typological models and provide an understanding of the innovation process. The technological and societal aspects of the energy-efficient design were addressed. With respect to the technological aspects, the first step was the analysis of conventional design using a school in Calgary as a case study. The optimization of conventional design was undertaken using computer modeling to identify best practice solutions. Aspects that were included in the studies were lighting design, envelope characteristics, HVAC systems and building plant systems. The inclusion of passive design included the analysis of daylighting and natural ventilation. Computer modeling was used to assess daylighting in classrooms with unilateral and bilateral daylighting. Illuminance levels, glare and light distribution were evaluated. The study of natural ventilation was undertaken using literature review. Airflow and outdoor temperatures were the focus to identify solutions that could be incorporated into the design of classrooms. It was concluded that achieving excellence in energy efficiency in schools could be achieved using readily available technologies. Energy savings of up to 63 percent better than Canada's Model National Energy Code for Buildings (MNECB) reference case and utility cost savings of 30,000 (on a 50,000 annual cost) were achieved through conventional design optimization. Additional energy savings of three percent and utility cost savings of $7,000 were seen when passive strategies were included in the design. With respect to the societal aspects, an exploratory research study was undertaken to examine innovation. Architects and energy consultants were interviewed. All design professionals included in the study had participated in projects approved for a grant under CBIP. The purpose of the study was to identify drivers and barriers to energy efficiency. The study demonstrated that external and internal innovation pressures have a significant effect on whether or not the technology is adopted. Suggestions for reducing barriers and further promoting energy efficiency are discussed in this thesis. It is expected that the research will not only aid designers in assessing projects with regard to local priorities, but will also provide building guidelines that serve as tools for the development of the Canadian energy compliance for CO2 emissions.
Optimizing Irregular Applications for Energy and Performance on the Tilera Many-core Architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavarría-Miranda, Daniel; Panyala, Ajay R.; Halappanavar, Mahantesh
Optimizing applications simultaneously for energy and performance is a complex problem. High performance, parallel, irregular applications are notoriously hard to optimize due to their data-dependent memory accesses, lack of structured locality and complex data structures and code patterns. Irregular kernels are growing in importance in applications such as machine learning, graph analytics and combinatorial scientific computing. Performance- and energy-efficient implementation of these kernels on modern, energy efficient, multicore and many-core platforms is therefore an important and challenging problem. We present results from optimizing two irregular applications { the Louvain method for community detection (Grappolo), and high-performance conjugate gradient (HPCCG) {more » on the Tilera many-core system. We have significantly extended MIT's OpenTuner auto-tuning framework to conduct a detailed study of platform-independent and platform-specific optimizations to improve performance as well as reduce total energy consumption. We explore the optimization design space along three dimensions: memory layout schemes, compiler-based code transformations, and optimization of parallel loop schedules. Using auto-tuning, we demonstrate whole node energy savings of up to 41% relative to a baseline instantiation, and up to 31% relative to manually optimized variants.« less
Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei
2013-01-14
Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).
Liao, Yaozu; Wang, Haige; Zhu, Meifang; Thomas, Arne
2018-03-01
Supercapacitors have received increasing interest as energy storage devices due to their rapid charge-discharge rates, high power densities, and high durability. In this work, novel conjugated microporous polymer (CMP) networks are presented for supercapacitor energy storage, namely 3D polyaminoanthraquinone (PAQ) networks synthesized via Buchwald-Hartwig coupling between 2,6-diaminoanthraquinone and aryl bromides. PAQs exhibit surface areas up to 600 m 2 g -1 , good dispersibility in polar solvents, and can be processed to flexible electrodes. The PAQs exhibit a three-electrode specific capacitance of 576 F g -1 in 0.5 m H 2 SO 4 at a current of 1 A g -1 retaining 80-85% capacitances and nearly 100% Coulombic efficiencies (95-98%) upon 6000 cycles at a current density of 2 A g -1 . Asymmetric two-electrode supercapacitors assembled by PAQs show a capacitance of 168 F g -1 of total electrode materials, an energy density of 60 Wh kg -1 at a power density of 1300 W kg -1 , and a wide working potential window (0-1.6 V). The asymmetric supercapacitors show Coulombic efficiencies up to 97% and can retain 95.5% of initial capacitance undergo 2000 cycles. This work thus presents novel promising CMP networks for charge energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Griffin, J. W.; Popov, A. A.
2018-07-01
It is now possible, through electrical, hydraulic or mechanical means, to power the front wheel of a motorcycle. The aim of this is often to improve performance in limit-handling scenarios including off-road low-traction conditions and on-road high-speed cornering. Following on from research into active torque distribution in 4-wheeled vehicles, the possibility exists for efficiency improvements to be realised by reducing the total amount of energy dissipated as slip at the wheel-road contact. This paper presents the results of an investigation into the effect that varying the torque distribution ratio has on the energy consumption of the two-wheeled vehicle. A 13-degree of freedom multibody model was created, which includes the effects of suspension, aerodynamics and gyroscopic bodies. SimMechanics, from the MathWorks?, is used for automatic generation of equations of motion and time-domain simulation, in conjunction with MATLAB and Simulink. A simple driver model is used to control the speed and yaw rate of the motorcycle. The handling characteristics of the motorcycle are quantitatively analysed, and the impact of torque distribution on energy consumption is considered during straight line and cornering situations. The investigation has shown that only a small improvement in efficiency can be made by transferring a portion of the drive torque to the front wheel. Tyre longevity could be improved by reduced slip energy dissipation.
Numerical Analysis of the Trailblazer Inlet Flowfield for Hypersonic Mach Numbers
NASA Technical Reports Server (NTRS)
Steffen, C. J., Jr.; DeBonis, J. R.
1999-01-01
A study of the Trailblazer vehicle inlet was conducted using the Global Air Sampling Program (GASP) code for flight Mach numbers ranging from 4-12. Both perfect gas and finite rate chemical analysis were performed with the intention of making detailed comparisons between the two results. Inlet performance was assessed using total pressure recovery and kinetic energy efficiency. These assessments were based upon a one-dimensional stream-thrust-average of the axisymmetric flowfield. Flow visualization utilized to examine the detailed shock structures internal to this mixed-compression inlet. Kinetic energy efficiency appeared to be the least sensitive to differences between the perfect gas and finite rate chemistry results. Total pressure recovery appeared to be the most sensitive discriminator between the perfect gas and finite rate chemistry results for flight Mach numbers above Mach 6. Adiabatic wall temperature was consistently overpredicted by the perfect gas model for flight Mach numbers above Mach 4. The predicted shock structures were noticeably different for Mach numbers from 6-12. At Mach 4, the perfect gas and finite rate chemistry models collapse to the same result.
Xia, Ao; Cheng, Jun; Ding, Lingkan; Lin, Richen; Huang, Rui; Zhou, Junhu; Cen, Kefa
2013-10-01
The effects of pre-treatment methods on saccharification and hydrogen fermentation of Chlorella pyrenoidosa biomass were investigated. When raw biomass and biomass pre-treated by steam heating, by microwave heating, and by ultrasonication were used as feedstock, the hydrogen yields were only 8.8-12.7 ml/g total volatile solids (TVS) during dark fermentation. When biomass was pre-treated by steam heating with diluted acid and by microwave heating with diluted acid, the dark hydrogen yields significantly increased to 75.6 ml/g TVS and 83.3 ml/g TVS, respectively. Steam heating with diluted acid is the preferred pre-treatment method of C. pyrenoidosa biomass to improve hydrogen yield during dark fermentation and photofermentation, which is followed by methanogenesis to increase energy conversion efficiency (ECE). A total hydrogen yield of 198.3 ml/g TVS and a methane yield of 186.2 ml/g TVS corresponding to an overall ECE of 34.0% were obtained through the three-stage process (dark fermentation, photofermentation, and methanogenesis). Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hull, J. R.
Since its introduction, the concept of nonimaging solar concentrators, as exemplified by the compound parabolic concentrator (CPC) design, has greatly enhanced the ability to collect solar energy efficiently in thermal and photovoltaic devices. When used as a primary concentrator, a CPC can provide significant concentration without the complication of a tracking mechanism and its associated maintenance problems. When used as a secondary, a CPC provides higher total concentration, or for a fixed concentration, tolerates greater tracking error in the primary.
Leites, Gabriela T; Cunha, Giovani S; Chu, Lisa; Meyer, Flavia; Timmons, Brian W
2016-11-01
Little is known about energy yield during exercise in the heat in boys compared with men. To investigate substrate utilization with and without exogenous carbohydrate (CHO exo ) intake, seven boys [11.2 ± 0.2 (SE) yr] and nine men (24.0 ± 1.1 yr) cycled (4 × 20-min bouts) at a fixed metabolic heat production (Ḣ p ) per unit body mass (6 W/kg) in a climate chamber (38°C and 50% relative humidity), on two occasions. Participants consumed a 13 C-enriched 8% CHO beverage (CARB) or placebo beverage (CONT) in a double-blinded, counterbalanced manner. Substrate utilization was calculated for the last 60 min of exercise. CHO exo oxidation rate (2.0 ± 0.3 vs. 2.5 ± 0.2 mg·kg fat-free mass -1 ·min -1 , P = 0.02) and CHO exo oxidation efficiency (12.8 ± 0.6 vs. 16.0 ± 0.9%, P = 0.01) were lower in boys compared with men exercising in the heat. Total carbohydrate (CHO total ), endogenous CHO (CHO endo ), and total fat (Fat total ) remained stable in boys and men (P > 0.05) during CARB, whereas CHO total oxidation rate decreased (P < 0.001) and Fat total oxidation rate increased over time similarly in boys and men during CONT (P < 0.001). The relative contribution of CHO exo to total energy yield increased over time in both groups (P < 0.001). In conclusion, endogenous substrate metabolism and the relative contribution of fuels to total energy yield were not different between groups. The ingestion of a CHO beverage during exercise in the heat may be as beneficial for boys as men to spare endogenous substrate. Copyright © 2016 the American Physiological Society.
Relevance of Clean Coal Technology for India’s Energy Security: A Policy Perspective
NASA Astrophysics Data System (ADS)
Garg, Amit; Tiwari, Vineet; Vishwanathan, Saritha
2017-07-01
Climate change mitigation regimes are expected to impose constraints on the future use of fossil fuels in order to reduce greenhouse gas (GHG) emissions. In 2015, 41% of total final energy consumption and 64% of power generation in India came from coal. Although almost a sixth of the total coal based thermal power generation is now super critical pulverized coal technology, the average CO2 emissions from the Indian power sector are 0.82 kg-CO2/kWh, mainly driven by coal. India has large domestic coal reserves which give it adequate energy security. There is a need to find options that allow the continued use of coal while considering the need for GHG mitigation. This paper explores options of linking GHG emission mitigation and energy security from 2000 to 2050 using the AIM/Enduse model under Business-as-Usual scenario. Our simulation analysis suggests that advanced clean coal technologies options could provide promising solutions for reducing CO2 emissions by improving energy efficiencies. This paper concludes that integrating climate change security and energy security for India is possible with a large scale deployment of advanced coal combustion technologies in Indian energy systems along with other measures.
Yuan, Dandan; Tian, Lei; Li, Zhida; Jiang, Hong; Yan, Chao; Dong, Jing; Wu, Hongjun; Wang, Baohui
2018-02-15
Herein, we report the solar thermal electrochemical process (STEP) aniline oxidation in wastewater for totally solving the two key obstacles of the huge energy consumption and passivation film in the electrochemical treatment. The process, fully driven by solar energy without input of any other energies, sustainably serves as an efficient thermoelectrochemical oxidation of aniline by the control of the thermochemical and electrochemical coordination. The thermocoupled electrochemical oxidation of aniline achieved a fast rate and high efficiency for the full minimization of aniline to CO 2 with the stability of the electrode and without formation of polyaniline (PAN) passivation film. A clear mechanism of aniline oxidation indicated a switching of the reactive pathway by the STEP process. Due to the coupling of solar thermochemistry and electrochemistry, the electrochemical current remained stable, significantly improving the oxidation efficiency and mineralization rate by apparently decreasing the electrolytic potential when applied with high temperature. The oxidation rate of aniline and chemical oxygen demand (COD) removal rate could be lifted up to 2.03 and 2.47 times magnification compared to conventional electrolysis, respectively. We demonstrate that solar-driven STEP processes are capable of completely mineralizing aniline with high utilization of solar energy. STEP aniline oxidation can be utilized as a green, sustainable water treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The report is an overview of electric energy efficiency programs. It takes a concise look at what states are doing to encourage energy efficiency and how it impacts electric utilities. Energy efficiency programs began to be offered by utilities as a response to the energy crises of the 1970s. These regulatory-driven programs peaked in the early-1990s and then tapered off as deregulation took hold. Today, rising electricity prices, environmental concerns, and national security issues have renewed interest in increasing energy efficiency as an alternative to additional supply. In response, new methods for administering, managing, and delivering energy efficiency programs aremore » being implemented. Topics covered in the report include: Analysis of the benefits of energy efficiency and key methods for achieving energy efficiency; evaluation of the business drivers spurring increased energy efficiency; Discussion of the major barriers to expanding energy efficiency programs; evaluation of the economic impacts of energy efficiency; discussion of the history of electric utility energy efficiency efforts; analysis of the impact of energy efficiency on utility profits and methods for protecting profitability; Discussion of non-utility management of energy efficiency programs; evaluation of major methods to spur energy efficiency - systems benefit charges, resource planning, and resource standards; and, analysis of the alternatives for encouraging customer participation in energy efficiency programs.« less
The total flow concept for geothermal energy conversion
NASA Technical Reports Server (NTRS)
Austin, A. L.
1974-01-01
A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.
NASA Technical Reports Server (NTRS)
Roelke, R. J.; Haas, J. E.
1981-01-01
The aerodynamic performance of the inlet manifold and stator assembly of the compressor drive turbine was experimentally determined with cold air as the working fluid. The investigation included measurements of mass flow and stator-exit fluid torque as well as radial surveys of total pressure and flow angle at the stator inlet and annulus surveys of total pressure and flow angle at the stator exit. The stator-exit aftermixed flow conditions and overall stator efficiency were obtained and compared with their design values and the experimental results from three other stators. In addition, an analysis was made to determine the constituent aerodynamic losses that made up the stator kinetic energy loss.
NASA Astrophysics Data System (ADS)
Bartl, J.; Sætran, L.
2016-09-01
In state-of-the-art wind farms each turbine is controlled individually aiming for optimum turbine power not considering wake effects on downstream turbines. Wind farm control concepts aim for optimizing the overall power output of the farm taking wake interactions between the individual turbines into account. This experimental wind tunnel study investigates axial induction based control concepts. It is examined how the total array efficiency of two in-line model turbines is affected when the upstream turbine's tip speed ratio (λcontrol) or blade pitch angle (β-control) is modified. The focus is particularly directed on how the wake flow behind the upstream rotor is affected when its axial induction is reduced in order to leave more kinetic energy in the wake to be recovered by a downstream turbine. It is shown that the radial distribution of kinetic energy in the wake area can be controlled by modifying the upstream turbine's tip speed ratio. By pitching out the upstream turbine's blades, however, the available kinetic energy in the wake is increased at an equal rate over the entire blade span. Furthermore, the total array efficiency of the two turbine setup is mapped depending on the upstream turbines tip speed ratio and pitch angle. For a small turbine separation distance of x/D=3 the downstream turbine is able to recover the major part of the power lost on the upstream turbine. However, no significant increase in the two-turbine array efficiency is achieved by altering the upstream turbine's operation point away from its optimum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; Lu, Hongyou; Price, Lynn K.
In the U.S., energy consumption by steam and process heat combined accounts for over 50% of the total energy use from industrial systems (see Figure 1). The use of boilers, process heaters, and furnaces for generating steam and heat in industrial facilities, commercial settings, and institutions consumes significant amounts of energy and is one of major sources of hazardous air pollutants, which contribute significantly to local pollution and global climate change. To address the energy and environmental challenges caused by boiler systems in the U.S., the country has taken a series of actions to reduce emissions from industrial, commercial andmore » institutional boilers, improve the efficiency of steam systems, replace coal with cleaner energy resources, and promote the wider use of combined heat and power (CHP).« less
Malaysia Country Analysis Brief
2017-01-01
Malaysia's energy industry is a critical sector of growth for the entire economy, and it makes up almost 20% of the total gross domestic product. New tax and investment incentives, starting in 2010, aim to promote oil and natural gas exploration and development in the country's deepwater and marginal fields as well as promote energy efficiency measures and use of alternative energy sources. These fiscal incentives are part of the country's economic transformation program to leverage its resources and geographic location to be one of Asia's top energy players by 2020. Another key pillar in Malaysia's energy strategy is to become a regional oil and natural gas storage, trading, and development hub that will attract technical expertise and downstream services that can compete in Asia.
On-Shore Central Hydraulic Power Generation for Wind and Tidal Energy
NASA Technical Reports Server (NTRS)
Jones, Jack A.; Bruce, Allan; Lim, Steven; Murray, Luke; Armstrong, Richard; Kimbrall, Richard; Cook-Chenault, Kimberly; DeGennaro, Sean
2012-01-01
Tidal energy, offshore wind energy, and onshore wind energy can be converted to electricity at a central ground location by means of converting their respective energies into high-pressure hydraulic flows that are transmitted to a system of generators by high-pressure pipelines. The high-pressure flows are then efficiently converted to electricity by a central power plant, and the low-pressure outlet flow is returned. The Department of Energy (DOE) is presently supporting a project led by Sunlight Photonics to demonstrate a 15 kW tidal hydraulic power generation system in the laboratory and possibly later submerged in the ocean. All gears and submerged electronics are completely eliminated. A second portion of this DOE project involves sizing and costing a 15 MW tidal energy system for a commercial tidal energy plant. For this task, Atlantis Resources Corporation s 18-m diameter demonstrated tidal blades are rated to operate in a nominal 2.6 m/sec tidal flow to produce approximately one MW per set of tidal blades. Fifteen units would be submerged in a deep tidal area, such as in Maine s Western Passage. All would be connected to a high-pressure (20 MPa, 2900 psi) line that is 35 cm ID. The high-pressure HEPG fluid flow is transported 500-m to on-shore hydraulic generators. HEPG is an environmentally-friendly, biodegradable, watermiscible fluid. Hydraulic adaptations to ORPC s cross-flow turbines are also discussed. For 15 MW of wind energy that is onshore or offshore, a gearless, high efficiency, radial piston pump can replace each set of top-mounted gear-generators. The fluid is then pumped to a central, easily serviceable generator location. Total hydraulic/electrical efficiency is 0.81 at full rated wind or tidal velocities and increases to 0.86 at 1/3 rated velocities.
On-Shore Central Hydraulic Power Generation for Wind and Tidal Energy
NASA Technical Reports Server (NTRS)
Jones, Jack A.; Bruce, Allan; Lim, Steven; Murray, Luke; Armstrong, Richard; Kimball, Richard; Cook-Chenault, Kimberly; DeGennaro, Sean
2012-01-01
Tidal energy, offshore wind energy, and onshore wind energy can be converted to electricity at a central ground location by means of converting their respective energies into high-pressure hydraulic flows that are transmitted to a system of generators by high-pressure pipelines. The high-pressure flows are then efficiently converted to electricity by a central power plant, and the low-pressure outlet flow is returned. The Department of Energy (DOE) is presently supporting a project led by Sunlight Photonics to demonstrate a 15 kilowatt tidal hydraulic power generation system in the laboratory and possibly later submerged in the ocean. All gears and submerged electronics are completely eliminated.A second portion of this DOE project involves sizing and costing a 15 megawatt tidal energy system for a commercial tidal energy plant. For this task, Atlantis Resources Corporation's 18-m diameter demonstrated tidal blades are rated to operate in a nominal 2.6 m/sec tidal flow to produce approximately one megawatt per set of tidal blades. Fifteen units would be submerged in a deep tidal area, such as in Maine's Western Passage. All would be connected to a high-pressure (20 megapascals, 2900 pounds per square inch) line that is 35 cm ID. The high-pressure HEPG fluid flow is transported 500-m to on-shore hydraulic generators. HEPG is an environmentally-friendly, biodegradable, water-miscible fluid. Hydraulic adaptations to ORPC's cross-flow turbines are also discussed.For 15 megawatt of wind energy that is onshore or offshore, a gearless, high efficiency, radial piston pump can replace each set of top-mounted gear-generators. The fluid is then pumped to a central, easily serviceable generator location. Total hydraulic/electrical efficiency is 0.81 at full rated wind or tidal velocities and increases to 0.86 at 1/3 rated velocities.
Water intensity assessment of shale gas resources in the Wattenberg field in northeastern Colorado.
Goodwin, Stephen; Carlson, Ken; Knox, Ken; Douglas, Caleb; Rein, Luke
2014-05-20
Efficient use of water, particularly in the western U.S., is an increasingly important aspect of many activities including agriculture, urban, and industry. As the population increases and agriculture and energy needs continue to rise, the pressure on water and other natural resources is expected to intensify. Recent advances in technology have stimulated growth in oil and gas development, as well as increasing the industry's need for water resources. This study provides an analysis of how efficiently water resources are used for unconventional shale development in Northeastern Colorado. The study is focused on the Wattenberg Field in the Denver-Julesberg Basin. The 2000 square mile field located in a semiarid climate with competing agriculture, municipal, and industrial water demands was one of the first fields where widespread use of hydraulic fracturing was implemented. The consumptive water intensity is measured using a ratio of the net water consumption and the net energy recovery and is used to measure how efficiently water is used for energy extraction. The water and energy use as well as energy recovery data were collected from 200 Noble Energy Inc. wells to estimate the consumptive water intensity. The consumptive water intensity of unconventional shale in the Wattenberg is compared with the consumptive water intensity for extraction of other fuels for other energy sources including coal, natural gas, oil, nuclear, and renewables. 1.4 to 7.5 million gallons is required to drill and hydraulically fracture horizontal wells before energy is extracted in the Wattenberg Field. However, when the large short-term total freshwater-water use is normalized to the amount of energy produced over the lifespan of a well, the consumptive water intensity is estimated to be between 1.8 and 2.7 gal/MMBtu and is similar to surface coal mining.
NASA Astrophysics Data System (ADS)
Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.
2018-06-01
Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.
NASA Astrophysics Data System (ADS)
Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.
2017-12-01
Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.
Energy efficiency and greenhouse gas emission intensity of petroleum products at U.S. refineries.
Elgowainy, Amgad; Han, Jeongwoo; Cai, Hao; Wang, Michael; Forman, Grant S; DiVita, Vincent B
2014-07-01
This paper describes the development of (1) a formula correlating the variation in overall refinery energy efficiency with crude quality, refinery complexity, and product slate; and (2) a methodology for calculating energy and greenhouse gas (GHG) emission intensities and processing fuel shares of major U.S. refinery products. Overall refinery energy efficiency is the ratio of the energy present in all product streams divided by the energy in all input streams. Using linear programming (LP) modeling of the various refinery processing units, we analyzed 43 refineries that process 70% of total crude input to U.S. refineries and cover the largest four Petroleum Administration for Defense District (PADD) regions (I, II, III, V). Based on the allocation of process energy among products at the process unit level, the weighted-average product-specific energy efficiencies (and ranges) are estimated to be 88.6% (86.2%-91.2%) for gasoline, 90.9% (84.8%-94.5%) for diesel, 95.3% (93.0%-97.5%) for jet fuel, 94.5% (91.6%-96.2%) for residual fuel oil (RFO), and 90.8% (88.0%-94.3%) for liquefied petroleum gas (LPG). The corresponding weighted-average, production GHG emission intensities (and ranges) (in grams of carbon dioxide-equivalent (CO2e) per megajoule (MJ)) are estimated to be 7.8 (6.2-9.8) for gasoline, 4.9 (2.7-9.9) for diesel, 2.3 (0.9-4.4) for jet fuel, 3.4 (1.5-6.9) for RFO, and 6.6 (4.3-9.2) for LPG. The findings of this study are key components of the life-cycle assessment of GHG emissions associated with various petroleum fuels; such assessment is the centerpiece of legislation developed and promulgated by government agencies in the United States and abroad to reduce GHG emissions and abate global warming.
Drackley, J K; Cardoso, F C
2014-05-01
The 6 to 8-week period centered on parturition, known as the transition or periparturient period, is critical to welfare and profitability of individual cows. Fertility of high-producing cows is compromised by difficult transitions. Deficiencies in either nutritional or non-nutritional management increase risk for periparturient metabolic disorders and infectious diseases, which decrease subsequent fertility. A primary factor impeding fertility is the extent of negative energy balance (NEB) early postpartum, which may inhibit timing of first ovulation, return to cyclicity, and oocyte quality. In particular, pronounced NEB during the first 10 days to 2 weeks (the time of greatest occurrence of health problems) is critical for later reproductive efficiency. Avoiding over-conditioning and preventing cows from over-consuming energy relative to their requirements in late gestation result in higher dry matter intake (DMI) and less NEB after calving. A pooled statistical analysis of previous studies in our group showed that days to pregnancy are decreased (by 10 days) by controlling energy intake to near requirements of cows before calving compared with allowing cows to over-consume energy. To control energy intake, total mixed rations (TMR) must be well balanced for metabolizable protein, minerals and vitamins yet limit total DM consumed, and cows must uniformly consume the TMR without sorting. Dietary management to maintain blood calcium and rumen health around and after calving also are important. Opportunities may exist to further improve energy status in fresh cows. Recent research to manipulate the glucogenic to lipogenic balance and the essential fatty acid content of tissues are intriguing. High-producing cows that adapt successfully to lactation can have high reproductive efficiency, and nutritional management of the transition period both pre- and post-calving must facilitate that adaptation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taroyan, Youra; Williams, Thomas
The interaction of an intergranular downdraft with an embedded vertical magnetic field is examined. It is demonstrated that the downdraft may couple to small magnetic twists leading to an instability. The descending plasma exponentially amplifies the magnetic twists when it decelerates with depth due to increasing density. Most efficient amplification is found in the vicinity of the level, where the kinetic energy density of the downdraft reaches equipartition with the magnetic energy density. Continual extraction of energy from the decelerating plasma and growth in the total azimuthal energy occurs as a consequence of the wave-flow coupling along the downdraft. Themore » presented mechanism may drive vortices and torsional motions that have been detected between granules and in simulations of magnetoconvection.« less
Energy Conservation in Optical Fibers With Distributed Brick-Walls Filters
NASA Astrophysics Data System (ADS)
Garcia, Javier; Ghozlan, Hassan; Kramer, Gerhard
2018-05-01
A band-pass filtering scheme is proposed to mitigate spectral broadening and channel coupling in the Nonlinear Schr\\"odinger (NLS) fiber optic channel. The scheme is modeled by modifying the NLS Equation to include an attenuation profile with multiple brick-wall filters centered at different frequencies. It is shown that this brick-walls profile conserves the total in-band energy of the launch signal. Furthermore, energy fluctuations between the filtered channels are characterized, and conditions on the channel spacings are derived that ensure energy conservation in each channel. The maximum spectral efficiency of such a system is derived, and a constructive rule for achieving it using Sidon sequences is provided.
A Super Energy Mitigation Nanostructure at High Impact Speed Based on Buckyball System
Xu, Jun; Li, Yibing; Xiang, Yong; Chen, Xi
2013-01-01
The energy mitigation properties of buckyballs are investigated using molecular dynamics (MD) simulations. A one dimensional buckyball long chain is employed as a unit cell of granular fullerene particles. Two types of buckyballs i.e. C60 and C720 with recoverable and non-recoverable behaviors are chosen respectively. For C60 whose deformation is relatively small, a dissipative contact model is proposed. Over 90% of the total impact energy is proven to be mitigated through interfacial reflection of wave propagation, the van der Waals interaction, covalent potential energy and atomistic kinetic energy evidenced by the decent force attenuation and elongation of transmitted impact. Further, the C720 system is found to outperform its C60 counterpart and is able to mitigate over 99% of the total kinetic energy by using a much shorter chain thanks to its non-recoverable deformation which enhances the four energy dissipation terms. Systematic studies are carried out to elucidate the effects of impactor speed and mass, as well as buckyball size and number on the system energy mitigation performance. This one dimensional buckyball system is especially helpful to deal with the impactor of high impact speed but small mass. The results may shed some lights on the research of high-efficiency energy mitigation material selections and structure designs. PMID:23724082
Correlation energy functional within the GW -RPA: Exact forms, approximate forms, and challenges
NASA Astrophysics Data System (ADS)
Ismail-Beigi, Sohrab
2010-05-01
In principle, the Luttinger-Ward Green’s-function formalism allows one to compute simultaneously the total energy and the quasiparticle band structure of a many-body electronic system from first principles. We present approximate and exact expressions for the correlation energy within the GW -random-phase approximation that are more amenable to computation and allow for developing efficient approximations to the self-energy operator and correlation energy. The exact form is a sum over differences between plasmon and interband energies. The approximate forms are based on summing over screened interband transitions. We also demonstrate that blind extremization of such functionals leads to unphysical results: imposing physical constraints on the allowed solutions (Green’s functions) is necessary. Finally, we present some relevant numerical results for atomic systems.
Scenario analysis of energy-based low-carbon development in China.
Zhou, Yun; Hao, Fanghua; Meng, Wei; Fu, Jiafeng
2014-08-01
China's increasing energy consumption and coal-dominant energy structure have contributed not only to severe environmental pollution, but also to global climate change. This article begins with a brief review of China's primary energy use and associated environmental problems and health risks. To analyze the potential of China's transition to low-carbon development, three scenarios are constructed to simulate energy demand and CO₂ emission trends in China up to 2050 by using the Long-range Energy Alternatives Planning System (LEAP) model. Simulation results show that with the assumption of an average annual Gross Domestic Product (GDP) growth rate of 6.45%, total primary energy demand is expected to increase by 63.4%, 48.8% and 12.2% under the Business as Usual (BaU), Carbon Reduction (CR) and Integrated Low Carbon Economy (ILCE) scenarios in 2050 from the 2009 levels. Total energy-related CO₂ emissions will increase from 6.7 billiontons in 2009 to 9.5, 11, 11.6 and 11.2 billiontons; 8.2, 9.2, 9.6 and 9 billiontons; 7.1, 7.4, 7.2 and 6.4 billiontons in 2020, 2030, 2040 and 2050 under the BaU, CR and ILCE scenarios, respectively. Total CO₂ emission will drop by 19.6% and 42.9% under the CR and ILCE scenarios in 2050, compared with the BaU scenario. To realize a substantial cut in energy consumption and carbon emissions, China needs to make a long-term low-carbon development strategy targeting further improvement of energy efficiency, optimization of energy structure, deployment of clean coal technology and use of market-based economic instruments like energy/carbon taxation. Copyright © 2014. Published by Elsevier B.V.
Energy analysis of holographic lenses for solar concentration
NASA Astrophysics Data System (ADS)
Marín-Sáez, Julia; Collados, M. Victoria; Chemisana, Daniel; Atencia, Jesús
2017-05-01
The use of volume and phase holographic elements in the design of photovoltaic solar concentrators has become very popular as an alternative solution to refractive systems, due to their high efficiency, low cost and possibilities of building integration. Angular and chromatic selectivity of volume holograms can affect their behavior as solar concentrators. In holographic lenses, angular and chromatic selectivity varies along the lens plane. Besides, considering that the holographic materials are not sensitive to the wavelengths for which the solar cells are most efficient, the reconstruction wavelength is usually different from the recording one. As a consequence, not all points of the lens work at Bragg condition for a defined incident direction or wavelength. A software tool that calculates the direction and efficiency of solar rays at the output of a volume holographic element has been developed in this study. It allows the analysis of the total energy that reaches the solar cell, taking into account the sun movement, the solar spectrum and the sensitivity of the solar cell. The dependence of the recording wavelength on the collected energy is studied with this software. As the recording angle is different along a holographic lens, some zones of the lens could not act as a volume hologram. The efficiency at the transition zones between volume and thin behavior in lenses recorded in Bayfol HX is experimentally analyzed in order to decide if the energy of generated higher diffraction orders has to be included in the simulation.
Solid-state Isotopic Power Source for Computer Memory Chips
NASA Technical Reports Server (NTRS)
Brown, Paul M.
1993-01-01
Recent developments in materials technology now make it possible to fabricate nonthermal thin-film radioisotopic energy converters (REC) with a specific power of 24 W/kg and a 10 year working life at 5 to 10 watts. This creates applications never before possible, such as placing the power supply directly on integrated circuit chips. The efficiency of the REC is about 25 percent which is two to three times greater than the 6 to 8 percent capabilities of current thermoelectric systems. Radio isotopic energy converters have the potential to meet many future space power requirements for a wide variety of applications with less mass, better efficiency, and less total area than other power conversion options. These benefits result in significant dollar savings over the projected mission lifetime.
Tandem photovoltaic solar cells and increased solar energy conversion efficiency
NASA Technical Reports Server (NTRS)
Loferski, J. J.
1976-01-01
Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.
Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes.
Celik, Ilke; Mason, Brooke E; Phillips, Adam B; Heben, Michael J; Apul, Defne
2017-04-18
An ex-ante life cycle inventory was developed for single walled carbon nanotube (SWCNT) PV cells, including a laboratory-made 1% efficient device and an aspirational 28% efficient four-cell tandem device. The environmental impact of unit energy generation from the mono-Si PV technology was used as a reference point. Compared to monocrystalline Si (mono-Si), the environmental impacts from 1% SWCNT was ∼18 times higher due mainly to the short lifetime of three years. However, even with the same short lifetime, the 28% cell had lower environmental impacts than mono-Si. The effects of lifetime and efficiency on the environmental impacts were further examined. This analysis showed that if the SWCNT device efficiency had the same value as the best efficiency of the material under comparison, to match the total normalized impacts of the mono- and poly-Si, CIGS, CdTe, and a-Si devices, the SWCNT devices would need a lifetime of 2.8, 3.5, 5.3, 5.1, and 10.8 years, respectively. It was also found that if the SWCNT PV has an efficiency of 4.5% or higher, its energy payback time would be lower than other existing and emerging PV technologies. The major impacts of SWCNT PV came from the cell's materials synthesis.
Moraes, Celso; Myung, Sunghee; Lee, Sangkeum; Har, Dongsoo
2017-01-10
Provision of energy to wireless sensor networks is crucial for their sustainable operation. Sensor nodes are typically equipped with batteries as their operating energy sources. However, when the sensor nodes are sited in almost inaccessible locations, replacing their batteries incurs high maintenance cost. Under such conditions, wireless charging of sensor nodes by a mobile charger with an antenna can be an efficient solution. When charging distributed sensor nodes, a directional antenna, rather than an omnidirectional antenna, is more energy-efficient because of smaller proportion of off-target radiation. In addition, for densely distributed sensor nodes, it can be more effective for some undercharged sensor nodes to harvest energy from neighboring overcharged sensor nodes than from the remote mobile charger, because this reduces the pathloss of charging signal due to smaller distances. In this paper, we propose a hybrid charging scheme that combines charging by a mobile charger with a directional antenna, and energy trading, e.g., transferring and harvesting, between neighboring sensor nodes. The proposed scheme is compared with other charging scheme. Simulations demonstrate that the hybrid charging scheme with a directional antenna achieves a significant reduction in the total charging time required for all sensor nodes to reach a target energy level.
Moraes, Celso; Myung, Sunghee; Lee, Sangkeum; Har, Dongsoo
2017-01-01
Provision of energy to wireless sensor networks is crucial for their sustainable operation. Sensor nodes are typically equipped with batteries as their operating energy sources. However, when the sensor nodes are sited in almost inaccessible locations, replacing their batteries incurs high maintenance cost. Under such conditions, wireless charging of sensor nodes by a mobile charger with an antenna can be an efficient solution. When charging distributed sensor nodes, a directional antenna, rather than an omnidirectional antenna, is more energy-efficient because of smaller proportion of off-target radiation. In addition, for densely distributed sensor nodes, it can be more effective for some undercharged sensor nodes to harvest energy from neighboring overcharged sensor nodes than from the remote mobile charger, because this reduces the pathloss of charging signal due to smaller distances. In this paper, we propose a hybrid charging scheme that combines charging by a mobile charger with a directional antenna, and energy trading, e.g., transferring and harvesting, between neighboring sensor nodes. The proposed scheme is compared with other charging scheme. Simulations demonstrate that the hybrid charging scheme with a directional antenna achieves a significant reduction in the total charging time required for all sensor nodes to reach a target energy level. PMID:28075372
Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra
2014-01-01
This paper presents an experimental investigation on a four-stroke single cylinder diesel engine fuelled with the blends of Mahua oil methyl ester (MOME) and diesel. The performance emission, energy, and exergy analysis has been carried out in B20 (mixture of 80% diesel by volume with 20% MOME). From energy analysis, it was observed that the fuel energy input as well as energy carried away by exhaust gases was 6.25% and 11.86% more in case of diesel than that of B20. The unaccounted losses were 10.21% more in case of diesel than B20. The energy efficiency was 28%, while the total losses were 72% for diesel. In case of B20, the efficiency was 65.74 % higher than that of diesel. The exergy analysis shows that the input availability of diesel fuel is 1.46% more than that of B20. For availability in brake power as well as exhaust gases of diesel were 5.66 and 32% more than that of B20. Destructed availability of B20 was 0.97% more than diesel. Thus, as per as performance, emission, energy, and exergy part were concerned; B20 is found to be very close with that of diesel. PMID:27350999
Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra
2014-01-01
This paper presents an experimental investigation on a four-stroke single cylinder diesel engine fuelled with the blends of Mahua oil methyl ester (MOME) and diesel. The performance emission, energy, and exergy analysis has been carried out in B20 (mixture of 80% diesel by volume with 20% MOME). From energy analysis, it was observed that the fuel energy input as well as energy carried away by exhaust gases was 6.25% and 11.86% more in case of diesel than that of B20. The unaccounted losses were 10.21% more in case of diesel than B20. The energy efficiency was 28%, while the total losses were 72% for diesel. In case of B20, the efficiency was 65.74 % higher than that of diesel. The exergy analysis shows that the input availability of diesel fuel is 1.46% more than that of B20. For availability in brake power as well as exhaust gases of diesel were 5.66 and 32% more than that of B20. Destructed availability of B20 was 0.97% more than diesel. Thus, as per as performance, emission, energy, and exergy part were concerned; B20 is found to be very close with that of diesel.
Numerical studies on alpha production from high energy proton beam interaction with Boron
NASA Astrophysics Data System (ADS)
Moustaizis, S. D.; Lalousis, P.; Hora, H.; Korn, G.
2017-05-01
Numerical investigations on high energy proton beam interaction with high density Boron plasma allows to simulate conditions concerning the alpha production from recent experimental measurements . The experiments measure the alpha production due to p11B nuclear fusion reactions when a laser-driven high energy proton beam interacts with Boron plasma produced by laser beam interaction with solid Boron. The alpha production and consequently the efficiency of the process depends on the initial proton beam energy, proton beam density, the Boron plasma density and temperature, and their temporal evolution. The main advantage for the p11B nuclear fusion reaction is the production of three alphas with total energy of 8.9 MeV, which could enhance the alpha heating effect and improve the alpha production. This particular effect is termed in the international literature as the alpha avalanche effect. Numerical results using a multi-fluid, global particle and energy balance, code shows the alpha production efficiency as a function of the initial energy of the proton beam, the Boron plasma density, the initial Boron plasma temperature and the temporal evolution of the plasma parameters. The simulations enable us to determine the interaction conditions (proton beam - B plasma) for which the alpha heating effect becomes important.
75 FR 34657 - Energy Efficiency and Sustainable Design Standards for New Federal Buildings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... Efficiency and Sustainable Design Standards for New Federal Buildings AGENCY: Office of Energy Efficiency and....S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Federal Energy Management... June 11, 2010. Cathy Zoi, Assistant Secretary, Energy Efficiency and Renewable Energy. [FR Doc. 2010...
48 CFR 23.203 - Energy-efficient products.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...
48 CFR 23.203 - Energy-efficient products.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...
48 CFR 23.203 - Energy-efficient products.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...
48 CFR 23.203 - Energy-efficient products.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...
48 CFR 23.203 - Energy-efficient products.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...
Potentials for Platooning in U.S. Highway Freight Transport: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muratori, Matteo; Holden, Jacob; Lammert, Michael
2017-03-15
Smart technologies enabling connection among vehicles and between vehicles and infrastructure as well as vehicle automation to assist human operators are receiving significant attention as means for improving road transportation systems by reducing fuel consumption - and related emissions - while also providing additional benefits through improving overall traffic safety and efficiency. For truck applications, currently responsible for nearly three-quarters of the total U.S. freight energy use and greenhouse gas (GHG) emissions, platooning has been identified as an early feature for connected and automated vehicles (CAVs) that could provide significant fuel savings and improved traffic safety and efficiency without radicalmore » design or technology changes compared to existing vehicles. A statistical analysis was performed based on a large collection of real-world U.S. truck usage data to estimate the fraction of total miles that are technically suitable for platooning. In particular, our analysis focuses on estimating 'platoonable' mileage based on overall highway vehicle use and prolonged high-velocity traveling, establishing that about 65% of the total miles driven by combination trucks could be driven in platoon formation, leading to a 4% reduction in total truck fuel consumption. This technical potential for 'platoonable' miles in the U.S. provides an upper bound for scenario analysis considering fleet willingness to platoon as an estimate of overall benefits of early adoption of CAV technologies. A benefit analysis is proposed to assess the overall potential for energy savings and emissions mitigation by widespread implementation of highway platooning for trucks.« less
Energy management and cooperation in microgrids
NASA Astrophysics Data System (ADS)
Rahbar, Katayoun
Microgrids are key components of future smart power grids, which integrate distributed renewable energy generators to efficiently serve the load demand locally. However, random and intermittent characteristics of renewable energy generations may hinder the reliable operation of microgrids. This thesis is thus devoted to investigating new strategies for microgrids to optimally manage their energy consumption, energy storage system (ESS) and cooperation in real time to achieve the reliable and cost-effective operation. This thesis starts with a single microgrid system. The optimal energy scheduling and ESS management policy is derived to minimize the energy cost of the microgrid resulting from drawing conventional energy from the main grid under both the off-line and online setups, where the renewable energy generation/load demand are assumed to be non-causally known and causally known at the microgrid, respectively. The proposed online algorithm is designed based on the optimal off-line solution and works under arbitrary (even unknown) realizations of future renewable energy generation/load demand. Therefore, it is more practically applicable as compared to solutions based on conventional techniques such as dynamic programming and stochastic programming that require the prior knowledge of renewable energy generation and load demand realizations/distributions. Next, for a group of microgrids that cooperate in energy management, we study efficient methods for sharing energy among them for both fully and partially cooperative scenarios, where microgrids are of common interests and self-interested, respectively. For the fully cooperative energy management, the off-line optimization problem is first formulated and optimally solved, where a distributed algorithm is proposed to minimize the total (sum) energy cost of microgrids. Inspired by the results obtained from the off-line optimization, efficient online algorithms are proposed for the real-time energy management, which are of low complexity and work given arbitrary realizations of renewable energy generation/load demand. On the other hand, for self-interested microgrids, the partially cooperative energy management is formulated and a distributed algorithm is proposed to optimize the energy cooperation such that energy costs of individual microgrids reduce simultaneously over the case without energy cooperation while limited information is shared among the microgrids and the central controller.
A preliminary survey of household and personal carbon dioxide emissions in Ireland.
Kenny, Tricia; Gray, N F
2009-02-01
A model specifically designed for Ireland was used to measure CO(2)e emissions (CO(2), CH(4) and N(2)O) from Irish households for the first time. A total of 103 Irish households with occupancy rates varying between 1 and 6 (mean 2.9) were surveyed. The average annual household emission was found to be 16.55 t CO(2)e y(-1), which is equivalent to an average personal emission of 5.70 t CO(2)e Ca(-1) y(-1) comprising 42.2% related to home energy use, 35.1% to transport, 20.6% to air travel and other fuel intensive leisure activities, and just 2.1% associated with household waste disposal. Air travel accounts for an average personal emission of 1.152 t CO(2)e Ca(-1) y(-1), although this is highest in single and two person households at 1.693 and 2.227 t CO(2)e Ca(-1) y(-1) respectively. Household energy consumption becomes more efficient when occupancy rate increases. The most energy efficient homes in the survey were terraced with a natural gas heating systems. The least efficient were detached house with oil fuelled heating system.
Turbulent Mixing in Gravity Currents with Transverse Shear
NASA Astrophysics Data System (ADS)
White, Brian; Helfrich, Karl; Scotti, Alberto
2010-11-01
A parallel flow with horizontal shear and horizontal density gradient undergoes an intensification of the shear by gravitational tilting and stretching, rapidly breaking down into turbulence. Such flows have the potential for substantial mixing in estuaries and the coastal ocean. We present high-resolution numerical results for the mixing efficiency of these flows, which can be viewed as gravity currents with transverse shear, and contrast them with the well-studied case of stably stratified, homogeneous turbulence (uniform vertical density and velocity gradients). For a sheared gravity current, the buoyancy flux, turbulent Reynolds stress, and dissipation are well out of equilibrium. The total kinetic energy first increases as potential energy is transferred to the gravity current, but rapidly decays once turbulence sets in. Despite the non-equilibrium character, mixing efficiencies are slightly higher but qualitatively similar to homogeneous stratified turbulence. Efficiency decreases in the highly energetic regime where the dissipation rate is large compared with viscosity and stratification, ɛ/(νN^2)>100, further declining as turbulence decays and kinetic energy dissipation dominates the buoyancy flux. In general, the mixing rate, parameterized by a turbulent eddy diffusivity, increases with the strength of the transverse shear.
NASA Astrophysics Data System (ADS)
Welaya, Yousri M. A.; Mosleh, M.; Ammar, Nader R.
2013-12-01
Strong restrictions on emissions from marine power plants (particularly SO x , NO x ) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and steam turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. The analyzed variant of the combined cycle includes a SOFC operated with natural gas fuel and a steam turbine with a single-pressure waste heat boiler. The calculations were performed for two types of tubular and planar SOFCs, each with an output power of 18 MW. This paper includes a detailed energy analysis of the combined system. Mass and energy balances are performed not only for the whole plant but also for each component in order to evaluate the thermal efficiency of the combined cycle. In addition, the effects of using natural gas as a fuel on the fuel cell voltage and performance are investigated. It has been found that a high overall efficiency approaching 60% may be achieved with an optimum configuration using the SOFC system. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-11-01
Active cloaking in its basic form requires that the extinction cross-section (or energy efficiency) from a radiating body vanishes. In this analysis, this physical effect is demonstrated for an active cylindrically radiating acoustic source in a non-viscous fluid, undergoing periodic axisymmetric harmonic vibrations near a rigid corner (i.e., quarter-space). The rigorous multipole expansion method in cylindrical coordinates, the method of images, and the addition theorem of cylindrical wave functions are used to derive closed-form mathematical expressions for the radiating, amplification, and extinction cross-sections of the active source. Numerical computations are performed assuming monopole and dipole modal oscillations of the circular source. The results reveal some of the situations where the extinction energy efficiency factor of the active source vanishes depending on its size and location with respect to the rigid corner, thus, achieving total invisibility. Moreover, the extinction energy efficiency factor varies between positive or negative values. These effects also occur for higher-order modal oscillations of the active source. The results find potential applications in the development of acoustic cloaking devices and invisibility in underwater acoustics or other areas.
Wang, Kai; Yi, Chao; Liu, Chang; ...
2015-03-18
The price of energy to separate tightly bound electron-hole pair (or charge-transfer state) and extract freely movable charges from low-mobility materials represents fundamental losses for many low-cost photovoltaic devices. In bulk heterojunction (BHJ) polymer solar cells (PSCs), approximately 50% of the total efficiency lost among all energy loss pathways is due to the photogenerated charge carrier recombination within PSCs and low charge carrier mobility of disordered organic materials. To address these issues, we introduce magnetic nanoparticles (MNPs) and orientate these MNPS within BHJ composite by an external magnetostatic field. Over 50% enhanced efficiency was observed from BHJ PSCs incorporated withmore » MNPs and an external magnetostatic field alignment when compared to the control BHJ PSCs. The optimization of BHJ thin film morphology, suppression of charge carrier recombination, and enhancement in charge carrier collection result in a greatly increased short-circuit current density and fill factor, as a result, enhanced power conversion efficiency.« less
Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.
2016-01-01
Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290
10 CFR 431.16 - Test procedures for the measurement of energy efficiency.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Test procedures for the measurement of energy efficiency. 431.16 Section 431.16 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR... Methods of Determining Efficiency § 431.16 Test procedures for the measurement of energy efficiency. For...
10 CFR 431.16 - Test procedures for the measurement of energy efficiency.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Test procedures for the measurement of energy efficiency. 431.16 Section 431.16 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR... Methods of Determining Efficiency § 431.16 Test procedures for the measurement of energy efficiency. For...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKane, Aimee; Scheihing, Paul; Williams, Robert
2007-07-01
More than fifteen years after the launch of programs in theU.K. and U.S., industry still offers one of the largest opportunities forenergy savings worldwide. The International Energy Agency (IEA) estimatesthe savings potential from cost-optimization of industrial motor-drivensystems alone at 7 percent of global electricity use. The U.S. Departmentof Energy (USDOE) Industrial Technologies Program estimates 7 percentsavings potential in total US industrial energy use through theapplication of proven best practice. Simple paybacks for these types ofprojects are frequently two years or less. The technology required toachieve these savings is widely available; the technical skills requiredto identify energy saving opportunities are knownmore » and transferable.Although programs like USDOE's Best Practices have been highlysuccessful, most plants, as supported by 2002 MECS data, remain eitherunaware or unmotivated to improve their energy efficiency--as evidencedby the 98 percent of US industrial facilities reporting to MECS say thatthey lack a full-time energy manager. With the renewed interest in energyefficiency worldwide and the emergence of carbon trading and newfinancial instruments such as white certificates1, there is a need tointroduce greater transparency into the way that industrial facilitiesidentify, develop, and document energy efficiency projects. Historically,industrial energy efficiency projects have been developed by plantengineers, frequently with assistance from consultants and/or supplierswith highly specialized technical skills. Under this scenario,implementation of energy efficiency improvements is dependent onindividuals. These individuals typically include "champions" within anindustrial facility or corporation, working in cooperation withconsultants or suppliers who have substantial knowledge based on years ofexperience. This approach is not easily understood by others without thisspecialized technical knowledge, penetrates the market fairly slowly, andhas no assurance of persistence, since champions may leave the company orbe reassigned after project completion.This paper presents an alternatescenario that builds on the body of expert knowledge concerning energymanagement best practices and the experience of industrial champions toengage industry in continuous energy efficiency improvement at thefacility rather than the individual level. Under this scenario,standardized methodologies for applying and validating energy managementbest practices in industrial facilities will be developed through aconsensus process involving both plant personnel and specializedconsultants and suppliers. The resulting protocols will describe aprocess or framework for conducting an energy savings assessment andverifying the results that will be transparent to policymakers, managers,and the financial community, and validated by a third-party organization.Additionally, a global dialogue is being initiated by the United NationsIndustrial Development Organization (UNIDO) concerning the development ofan international industrial energy management standard that would be ISOcompatible. The proposed scenario will combine the resulting standardwith the best practice protocols for specific energy systems (i.e.,steam, process heating, compressed air, pumping systems, etc.) to formthe foundation of a third party, performance-based certification programfor the overall industrial facility that is compatible with existingmanagement systems, including ISO 9001:2000, 14001:2004 and 6 Sigma. Thelong term goal of this voluntary, industry designed certification programis to develop a transparent, globally accepted system for validatingenergy efficiency projects and management practices. This system wouldcreate a verified record of energy savings with potential market valuethat could be recognized among sectors and countries.« less
Carbon and energy footprint of electrochemical vinegar wastewater treatment
NASA Astrophysics Data System (ADS)
Gerek, Emine Esra; Yilmaz, Seval; Savaş Koparal, A.; Nezih Gerek, Ömer
2017-11-01
Electrochemical treatment of wastewaters that are rich in organic compounds is a popular method, due to its acidic nature that avoids biological treatment. In many cases, the pollution hazard is considered as the chemical oxygen demand (COD) from active carbon, and the success of the treatment is measured in terms of how much this specific parameter is reduced. However, if electricity is used during the treatment process, the treatment "itself" has manufacturing and operational energy costs. Many of the studies consider energy utilization as a monetary cost, and try to reduce its amount. However, the energy cost of the treatment also causes emission of carbon at the energy producing side of the closed loop. This carbon emission can be converted into oxygen demand, too. Therefore, it can be argued that one must look for the total optimal carbon efficiency (or oxygen demand), while reducing the COD. We chose a highly acidic wastewater case of vinegar production, which is a popular food product in Turkey, to demonstrate the high energy consumption and carbon emission problem of the electrochemical treatment approach. A novel strategy is presented to monitor total oxygen demand simultaneously at the treatment and energy production sides. Necessity of renewable energy utilization and conditions on process termination points are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Tianbiao L.; Wei, Xiaoliang; Nie, Zimin
The worldwide increasing energy demands and rising CO2 emissions motivate a search of new technologies to take advantage of renewable energy such as solar and wind. Rechargeable redox flow batteries (RFBs) with their high power density, high energy efficiency, scalability (up to MW and MWh), and safety features are one suitable option for integrating such energy sources and overcoming their intermittency. Source limitation and forbidden high system costs of current RFBs technologies impede wide implementation. Here we report a total organic aqueous redox flow battery (OARFB), using low cost and sustainable MV (anolyte) and 4-HO-TEMPO (catholyte), and benign NaCl supportingmore » electrolyte. The electrochemical properties of the organic redox active materials were studied using cyclic voltammetry and rotating disk electrode voltammetry. The MV/4-HO-TEMPO ARFB has an exceptionally high cell voltage, 1.25 V. Prototypes of the organic ARFB can be operated at high current densities ranging from 20 to 100 mA/cm2, and deliver stable capacity for 100 cycles with nearly 100% coulombic efficiency. The overall technical characters of the MV/4-HO-TEMPO ARFB are very attractive for continuous technic development.« less
Roy, Abhishek; Klinefelter, Alicia; Yahya, Farah B; Chen, Xing; Gonzalez-Guerrero, Luisa Patricia; Lukas, Christopher J; Kamakshi, Divya Akella; Boley, James; Craig, Kyle; Faisal, Muhammad; Oh, Seunghyun; Roberts, Nathan E; Shakhsheer, Yousef; Shrivastava, Aatmesh; Vasudevan, Dilip P; Wentzloff, David D; Calhoun, Benton H
2015-12-01
This paper presents a batteryless system-on-chip (SoC) that operates off energy harvested from indoor solar cells and/or thermoelectric generators (TEGs) on the body. Fabricated in a commercial 0.13 μW process, this SoC sensing platform consists of an integrated energy harvesting and power management unit (EH-PMU) with maximum power point tracking, multiple sensing modalities, programmable core and a low power microcontroller with several hardware accelerators to enable energy-efficient digital signal processing, ultra-low-power (ULP) asymmetric radios for wireless transmission, and a 100 nW wake-up radio. The EH-PMU achieves a peak end-to-end efficiency of 75% delivering power to a 100 μA load. In an example motion detection application, the SoC reads data from an accelerometer through SPI, processes it, and sends it over the radio. The SPI and digital processing consume only 2.27 μW, while the integrated radio consumes 4.18 μW when transmitting at 187.5 kbps for a total of 6.45 μW.
NASA Astrophysics Data System (ADS)
Fatihah Salleh, Siti; Eqwan Roslan, Mohd; Isa, Aishah Mohd; Faizal Basri Nair, Mohd; Syafiqah Salleh, Siti
2018-03-01
One of Malaysia’s key strategies to promote efficient energy use in the country is to implement the minimum energy performance standards (MEPS) through the Electricity Regulations (Amendment) 2013. Five selected electrical appliances (refrigerator, air conditioner, television, domestic fans and lamp fittings) must comply with MEPS requirement in order to be sold in Malaysian market. Manufacturers, importers or distributors are issued Certificate of Approval (COA) if products are MEPS-compliant. In 2015, 1,215 COAs were issued but the number of MEPS products in the market is unknown. This work collects sales data from major manufacturers to estimate the annual sales of MEPS appliances and the cumulative electricity consumption and electricity saving. It was found that most products sold have 3-star rating and above. By year 2015, total cumulative electricity savings gained from MEPS implementation is 3,645 GWh, with air conditioner being the highest contributor (30%). In the future, it is recommended that more MEPS products and related incentives be introduced to further improve efficiency of energy use in Malaysia.
Disposal of Energy by UV-B Sunscreens
NASA Astrophysics Data System (ADS)
Nordlund, Thomas; Krishnan, Rajagopal
2008-03-01
Ideal sunscreens absorb dangerous UV light and dispose of the energy safely. ``Safe disposal'' usually means conversion to heat. However, efficient absorption entails a high radiative rate, which implies high energy-transfer and other rates, unless some process intervenes to ``defuse'' the excited state. We studied the excited-state kinetics of three UV-B (290-320 nm) sunscreens by absorption, steady-state and time-resolved fluorescence. Excited-state rate analysis suggests that some sunscreens have low radiative-rate ``dark'' states, in addition to normal excited states.* We deduce dark states when sunscreens of high extinction coefficient do not show lifetimes and total emission consistent with such high radiative rates. A high radiative rate, accompanied by efficient fluorescence emission and/or transfer, may be unfavorable for a sunscreen. In spite of its dark excited state, padimate O shows significant re-emission of light in the UV-A (320-400 nm) and energy transfer to a natural component of excised skin, probably collagen. * Krishnan, R. and T.M. Nordlund (2007) J. Fluoresc. DOI 10.1007/s10895-007-0264-3.
Development of a Multicenter Density Functional Tight Binding Model for Plutonium Surface Hydriding.
Goldman, Nir; Aradi, Bálint; Lindsey, Rebecca K; Fried, Laurence E
2018-05-08
We detail the creation of a multicenter density functional tight binding (DFTB) model for hydrogen on δ-plutonium, using a framework of new Slater-Koster interaction parameters and a repulsive energy based on the Chebyshev Interaction Model for Efficient Simulation (ChIMES), where two- and three-center atomic interactions are represented by linear combinations of Chebyshev polynomials. We find that our DFTB/ChIMES model yields a total electron density of states for bulk δ-Pu that compares well to that from Density Functional Theory, as well as to a grid of energy calculations representing approximate H 2 dissociation paths on the δ-Pu (100) surface. We then perform molecular dynamics simulations and minimum energy pathway calculations to determine the energetics of surface dissociation and subsurface diffusion on the (100) and (111) surfaces. Our approach allows for the efficient creation of multicenter repulsive energies with a relatively small investment in initial DFT calculations. Our efforts are particularly pertinent to studies that rely on quantum calculations for interpretation and validation, such as experimental determination of chemical reactivity both on surfaces and in condensed phases.
Air pollution may alter efforts to mitigate climate change
NASA Astrophysics Data System (ADS)
Yassaa, Noureddine
2016-02-01
Renewable energy, considered in the past as a mitigation option to climate change by reducing carbon emission, is now becoming a source of energy security and competing fossil fuels in many areas of the world. According to recent reports (e.g., IEA, IRENA, REN21), renewable energy has reached in 2014 a historical record of power generation capacity. With 1712 GW installed capacity in 2014, renewable energy represents 27.7% of the world's power generating capacity. Solar photovoltaic (PV) energy, conversion of solar light to electricity through solar panels, has increased to reach 177 GW mostly due to the political engagement for the deployment of renewable through targeted programs and the decrease of PV panels prize in the market (roughly 80% decrease since 2008 according to IRENA's report). Concentrated Solar Power (CSP), reaching a total capacity of 4.4 GW in 2014 (REN21 Report), is also demonstrating a clear growth and progresses have been made with regards to the efficiency, the storage capacity and the cost. In order to reduce the energy consumption and carbon emissions, water solar heaters are being installed in the rooftop of households and a total capacity of 406 GW thermal was recorded in 2014 (REN21 Report).
NASA Astrophysics Data System (ADS)
Wang, Wei; Zhong, Ming; Cheng, Ling; Jin, Lu; Shen, Si
2018-02-01
In the background of building global energy internet, it has both theoretical and realistic significance for forecasting and analysing the ratio of electric energy to terminal energy consumption. This paper firstly analysed the influencing factors of the ratio of electric energy to terminal energy and then used combination method to forecast and analyse the global proportion of electric energy. And then, construct the cointegration model for the proportion of electric energy by using influence factor such as electricity price index, GDP, economic structure, energy use efficiency and total population level. At last, this paper got prediction map of the proportion of electric energy by using the combination-forecasting model based on multiple linear regression method, trend analysis method, and variance-covariance method. This map describes the development trend of the proportion of electric energy in 2017-2050 and the proportion of electric energy in 2050 was analysed in detail using scenario analysis.