Sample records for total enzyme activity

  1. [Study on relationship between effective components and soil enzyme activity in different growth patterns of Panax ginseng].

    PubMed

    Yang, Yan-Wen; Jiang, Yuan-Tong

    2016-08-01

    Study on 5 effective components and 6 soil enzyme activities of 2 different growth patterns, analyse the dates with the canonical correlation analysis, In order to reveal the relations between the effective components and soil enzyme activities. The result showed that they had a great relation between the effective components and soil enzyme activities, the activity of the same enzyme in humus soil was higher than that in farmland soil. Growth pattern of farmland soil, if the invertase and phosphatase activity were too high, which would inhibit the accumulation of total ginsenoside, water-miscible total proteins and total amino acid; Growth pattern of humus soil, if the invertase, urease and phosphatase activity were too high, which would inhibit the accumulation of total ginsenoside and the total essential oils. Integral soil enzyme activity can be used as a index of soil quality, which, together with other growth factors. The appropriate enzyme activity can accelerate the circulation and transformation of all kinds of material in the soil, improve effectively components accumulation. Copyright© by the Chinese Pharmaceutical Association.

  2. Defense reactions of bean genotypes to bacterial pathogens in controlled conditions

    NASA Astrophysics Data System (ADS)

    Uysal, B.; Bastas, K. K.

    2018-03-01

    This study was focused on the role of antioxidant enzymes and total protein in imparting resistance against common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli (Xap) and halo blight caused by Pseudomonas syringae pv. phaseolicola (Psp) in bean. Activities of Ascorbate peroxidase (APX), Catalase (CAT) and total protein were studied in resistant and susceptible bean genotypes. Five-day-old seedlings were inoculated with a bacterial suspension (108 CFU ml-1) and harvested at different time intervals (0, 12, 24 and 36 up to 72 h) under controlled growing conditions and assayed for antioxidant enzymes and total protein. Temporal increase of CAT, APX enzymes activities showed maximum activity at 12 h after both pathogens inoculation (hpi) in resistant cultivar, whereas in susceptible it increased at 72 h after both pathogens inoculation for CAT and 12, 24 h for APX enzymes. Maximum total protein activities were observed at 12 h and 24 h respectively after Xap, Psp inoculation (hpi) in resistant and maximum activities were observed at 24 h and 72 h respectively after Xap, Psp inoculation (hpi) in susceptible. Increase of antioxidant enzyme and total protein activities might be an important component in the defense strategy of resistance and susceptible bean genotypes against the bacterial infection. These findings suggest that disease protection is proportional to the amount of enhanced CAT, APX enzyme and total protein activity.

  3. Effects of different components of Mao Dongqing's total flavonoids and total saponins on transient ischemic attack (TIA) model of rats.

    PubMed

    Miao, Ming-San; Peng, Meng-Fan; Ma, Rui-Juan; Bai, Ming; Liu, Bao-Song

    2018-03-01

    Objective: To study the effects of the different components of the total flavonoids and total saponins from Mao Dongqing's active site on the rats of TIA model, determine the optimal reactive components ratio of Mao Dongqing on the rats of TIA. Methods: TIA rat model was induced by tail vein injection of tert butyl alcohol, the blank group was injected with the same amount of physiological saline, then behavioral score wasevaluated. Determination the level of glutamic acid in serum, the activity of Na+-K+-ATP enzyme, CA ++ -ATP enzyme and Mg ++ -ATP enzyme in Brain tissue, observe the changes of hippocampus in brain tissue, the comprehensive weight method was used to evaluate the efficacy of each component finally. Results: The contents of total flavonoids and total saponins in the active part of Mao Dongqing can significantly improve the pathological changes of brain tissue in rats, improve the activity of Na + -K + -ATP enzyme, Ca ++ -ATP enzyme and Mg ++ -ATP enzyme in the brain of rats, and reduce the level of glutamic acid in serum. The most significant of the contents was the ratio of 10:6. The different proportions of total flavonoids and total saponins in the active part of Mao Dongqing all has a better effect on the rats with TIA, and the ratio of 10:6 is the best active component for preventing and controlling TIA.

  4. [Effects of Different Reclaimed Scenarios on Soil Microbe and Enzyme Activities in Mining Areas].

    PubMed

    Li, Jun-jian; Liu, Feng; Zhou, Xiao-mei

    2015-05-01

    Abstract: Ecological degradation in the mining areas is greatly aggravated in recent several decades, and ecological restoration has become the primary measure for the sustainable development. Soil microbe and enzyme activity are sensitive indices to evaluate soil quality. Ecological reconstruction was initiated in Antaibao mining area, and we tested soil physicochemical properties, microbial populations of azotobacteria, nitrifying-bacteria and denitrifying-bacteria, and enzyme activities (including sucrose, polyphenol oxidase, dehydrogenase and urease) under different regeneration scenarios. Regeneration scenarios had significant effects on soil physicochemical properties, microbial population and enzyme activities. Total nitrogen was strongly correlated with azotobacteria and nitrifying-bacteria, however, total nitrogen was not correlated with denitrifying-bacteria. Phenol oxidase activity was negatively correlated with soil organic carbon and total nitrogen, but other enzyme activities were positively correlated with soil organic carbon and total nitrogen. Principal Component Analysis ( PCA) was applied to analyze the integrated fertility index (IFI). The highest and lowest IFIs were in Robinia pseudoacacia-Pinus tabuliformis mixed forests and un-reclaimed area, respectively. R. pseudoacacia-P. tabuliformis mixed forests were feasible for reclaimed mining areas in semi-arid region Northwest Shanxi.

  5. County-scale spatial distribution of soil enzyme activities and enzyme activity indices in agricultural land: implications for soil quality assessment.

    PubMed

    Tan, Xiangping; Xie, Baoni; Wang, Junxing; He, Wenxiang; Wang, Xudong; Wei, Gehong

    2014-01-01

    Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km(2)) scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI) and the geometric mean of enzyme activities (GME). At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality.

  6. A comparative study of extracellular glucanhydrolase and glucosyltransferase enzyme activities of five different serotypes of oral Streptococcus mutans.

    PubMed

    Felgenhauer, B; Trautner, K

    1982-01-01

    The activities of glucanhydrolase (EC 3.2.1.11) and glucosyltransferase (EC 2.4.1.5) in crude enzyme preparations of 44 strains of Streptococcus mutans of five serotypes were investigated. The strains were grown in a laboratory fermentor for 16 h and the enzymes were isolated by adding solid ammonium sulphate to the culture supernatant, resulting in a 12-fold enrichment of the enzymes. For glucanhydrolase, strains of serotype a showed the lowest total activity (0.768 U, approx. 120 ml), whereas strains of serotype d had an activity 39 times higher (29.9 U). The total activities of strains of serotypes b, c and e were 5.56, 6.30 and 7.06 U, respectively. For glucosyltransferase, strains of type e showed the highest total activity (293 U), whereas differences between strains of the other four types were insignificant (type a: 158 U; type b: 175 U; type c: 191 U; type d: 225 U; approx. 120 ml). A strong correlation was found between the glucanhydrolase activity and the percentage of insoluble glucan synthesized in vitro by the respective strains. This correlation was not substantially changed if the enzyme activities were expressed as specific activities, or as total activities against bacterial weight.

  7. Regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity in murine epidermis. Modulation of enzyme content and activation state by barrier requirements.

    PubMed Central

    Proksch, E; Elias, P M; Feingold, K R

    1990-01-01

    Epidermal cholesterol biosynthesis is regulated by barrier function. We quantitated the amount and activation state (phosphorylation-dephosphorylation) of the rate-limiting enzyme, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, in epidermis before and after barrier disruption. In murine epidermis we found high enzyme activity (1.75 +/- 0.02 nmol/min per mg protein). After acute barrier disruption, enzyme activity began to increase after 1.5 h, reaching a maximum increase by 2.5 h, and returned to normal by 15 h. Chronic barrier disruption increased total enzyme activity by 83%. In normal epidermis, measurement of HMG CoA reductase activity in microsomes isolated in NaF- vs. NaCl-containing buffers demonstrated that 46 +/- 2% of the enzyme was in the active form. After acute or chronic barrier disruption, a marked increase in the percentage of HMG CoA reductase in the active form was observed. Acute disruption increased enzyme activation state as early as 15 min, reaching a maximum after 2.5 h, with an increase still present at 15 h, indicating that changes in activation state had a close temporal relationship with barrier function. Increases in total HMG CoA reductase activity occurred only after profound barrier disruption, whereas changes in activation state occur with lesser degrees of barrier disruption. Artificial correction of barrier function prevented the increase in total HMG CoA reductase activity, and partially prevented the increase in enzyme activation. These results show that barrier requirements regulate epidermal cholesterol synthesis by modulating both the HMG CoA reductase amount and activation state. Images PMID:2312730

  8. Effects of Geroprotectors on Age-Related Changes in Proteolytic Digestive Enzyme Activities at Different Lighting Conditions.

    PubMed

    Morozov, A V; Khizhkin, E A; Svechkina, E B; Vinogradova, I A; Ilyukha, V A; Anisimov, V N; Khavinson, V Kh

    2015-10-01

    We studied the effect of melatonin and epithalon on age-related changes in proteolytic digestive enzyme activity in the pancreas and gastric mucosa of rats kept under different lighting conditions. In rats kept under standard illumination, pepsin activity and the total proteolytic activity in the stomach and pancreas increased by the age of 12 months, but then decreased. Constant and natural lighting disturbed the age dynamics of proteolytic digestive enzyme activity. Administration of melatonin and epithalon to animals exposed to constant lighting restored age dynamics of pepsin activity and little affected total proteolytic activity.

  9. Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil, Eastern China.

    PubMed

    Xie, Xuefeng; Pu, Lijie; Wang, Qiqi; Zhu, Ming; Xu, Yan; Zhang, Meng

    2017-12-31

    Soil enzyme activity during different years of reclamation and land use patterns could indicate changes in soil quality. The objective of this research is to explore the dynamics of 5 soil enzyme activities (dehydrogenase, amylase, urease, acid phosphatase and alkaline phosphatase) involved in C, N, and P cycling and their responses to changes in soil physicochemical properties resulting from long-term reclamation of coastal saline soil. Soil samples from a total of 55 sites were collected from a coastal reclamation area with different years of reclamation (0, 7, 32, 40, 63a) in this study. The results showed that both long-term reclamation and land use patterns have significant effects on soil physicochemical properties and enzyme activities. Compared with the bare flat, soil water content, soil bulk density, pH and electrical conductivity showed a decreasing trend after reclamation, whereas soil organic carbon, total nitrogen and total phosphorus tended to increase. Dehydrogenase, amylase and acid phosphatase activities initially increased and then decreased with increasing years of reclamation, whereas urease and alkaline phosphatase activities were characterized by an increase-decrease-increase trend. Moreover, urease, acid phosphatase and alkaline phosphatase activities exhibited significant differences between coastal saline soil with 63years of reclamation and bare flat, whereas dehydrogenase and amylase activities remained unchanged. Aquaculture ponds showed higher soil water content, pH and EC but lower soil organic carbon, total nitrogen and total phosphorus than rapeseed, broad bean and wheat fields. Rapeseed, broad bean and wheat fields displayed higher urease and alkaline phosphatase activities and lower dehydrogenase, amylase and acid phosphatase activities compared with aquaculture ponds. Redundancy analysis revealed that the soil physicochemical properties explained 74.5% of the variation in soil enzyme activities and that an obvious relationship existed between soil nutrients and soil enzyme activities. These results will assist governmental evaluation of the quality of reclaimed coastal soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Structure-Activity Relations In Enzymes: An Application Of IR-ATR Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fringeli, Urs P.; Ahlstrom, Peter; Vincenz, Claudius; Fringeli, Marianna

    1985-12-01

    Relations between structure and specific activity in immobilized acetylcholinesterase (ACNE) have been studied by means of pH- and Ca++-modulation technique combined with attenuated total reflection (ATR) infrared (IR) spectroscopy and enzyme activity measurement. Periodic modulation of pH and Ca++-concentration enabled a periodic on-off switching of about 40% of the total enzyme activity. It was found that about 0.5 to 1% of the amino acids were involved in this process. These 15 to 30 amino acids assumed antiparallel pleated sheet structure in the inhibited state and random and/or helical structure in the activated state.

  11. Magnetic Electrochemical Sensing Platform for Biomonitoring of Exposure to Organophosphorus Pesticides and Nerve Agents Based on Simultaneous Measurement of Total Enzyme Amount and Enzyme Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Dan; Wang, Jun; Wang, Limin

    We report a new approach for electrochemical quantification of enzymatic inhibition and phosphorylation for biomonitoring of exposure to organophosphorus (OP) pesticides and nerve agents based on a magnetic beads (MBs) immunosensing platform. The principle of this approach is based on the combination of MBs immuno-capture based enzyme activity assay and competitive immunoassay of total amount of enzyme for simultaneous detection of enzyme inhibition and phosphorylation in biological fluids. Butyrylcholinesterase (BChE) was chosen as a model enzyme. In competitive immunoassay, the target total BChE in a sample (mixture of OP-inhibited BChE and active BChE) competes with the BChE modified on themore » MBs to bind to the limited anti-BChE antibody labeled with quantum dots (QDs-anti-BChE), and followed by electrochemical stripping analysis of the bound QDs conjugate on the MBs. This assay shows a linear response over the total BChE concentration range of 0.1~20 nM. Simultaneously, real time BChE activity was measured on an electrochemical carbon nanotube-based sensor coupled with microflow injection system after immuno-capture by MBs-anti-BChE conjugate. Therefore, the formed phosphorylated adduct (OP-BChE) can be estimated by the difference values of the total amount BChE (including active and OP-inhibited) and active BChE from established calibration curves. This approach not only eliminates the difficulty in screening of low-dose OP exposure (less than 20% inhibition of BChE) because of individual variation of BChE values, but also avoids the drawback of the scarce availability of OP-BChE antibody. It is sensitive enough to detect 0.5 nM OP-BChE, which is less than 2% BChE inhibition. This method offers a new method for rapid, accurate, selective and inexpensive quantification of phosphorylated adducts and enzyme inhibition for biomonitoring of OP and nerve agent exposures.« less

  12. Nutraceutical composition of Zizyphus mauritiana Lamk (Indian ber): effect of enzyme-assisted processing.

    PubMed

    Koley, Tanmay Kumar; Walia, Shweta; Nath, Prerna; Awasthi, O P; Kaur, Charanjit

    2011-05-01

    Zizyphus (Indian ber) is an excellent source of several phenolic compounds. The effect of two cell wall degrading enzymes, namely pectinase and viscozyme, on the nutraceutical composition of Zizyphus juice was investigated in the present study. Enzyme assisted processing significantly (P < 0.05) improved the juice yield, total soluble solids, total phenolics and total antioxidant activity (AOX). There was significant increase in recovery of antioxidants, to the tune of 70.51%, 66%, and 45% respectively in ascorbic acid, total phenolics and total flavonoids through viscozyme. The in-vitro total AOX of juice extracted via enzyme-assisted processing was 20.9 and 15.59 μmol Trolox/ml in ferric-reducing antioxidant power and cupric-reducing antioxidant capacity assays, respectively. There was 41% increase in AOX of juice extracted with enzyme over straight pressed juice. Results indicate that enzyme-assisted processing can significantly improve the functional properties of the Zizyphus juice.

  13. Fermentation and complex enzyme hydrolysis enhance total phenolics and antioxidant activity of aqueous solution from rice bran pretreated by steaming with α-amylase.

    PubMed

    Liu, Lei; Zhang, Ruifen; Deng, Yuanyuan; Zhang, Yan; Xiao, Juan; Huang, Fei; Wen, Wei; Zhang, Mingwei

    2017-04-15

    In this study, rice bran was successively steamed with α-amylase, fermented with lactic acid bacteria, and hydrolyzed with complex enzymes. The changes in phenolic profiles and antioxidant activities of the corresponding aqueous solutions from three stages were investigated. Compared to the first stage, fermentation and complex enzyme hydrolysis significantly increased the total phenolics, total flavonoids, total FRAP and ORAC values by 59.2%, 56.6%, 73.6% and 45.4%, respectively. Twelve individual phenolics present in free or soluble conjugate forms were also analyzed during the processing. Ferulic acid was released in the highest amount among different phenolics followed by protocatechuic acid. Moreover, a major proportion of phenolics existed as soluble conjugates. The results showed that fermentation and complex enzyme hydrolysis enhanced total phenolics and antioxidant activities of aqueous solution from rice bran pretreated by steaming with α-amylase. This research could provide basis for the processing of rice bran beverage rich in phenolics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Ecotoxicological effects of copper and selenium combined pollution on soil enzyme activities in planted and unplanted soils.

    PubMed

    Hu, Bin; Liang, Dongli; Liu, Juanjuan; Xie, Junyu

    2013-04-01

    The present study explored the joint effects of Cu and Se pollution mechanisms on soil enzymes to provide references for the phytoremediation of contaminated areas and agricultural environmental protection. Pot experiments and laboratory analyses were carried out to study the individual and combined influences of Cu and Se on soil enzyme activities. The activities of four soil enzymes (urease, catalase, alkaline phosphatase, and nitrate reductase) were chosen. All soil enzyme activities tested were inhibited by Cu and Se pollution, either individually or combined, in varying degrees, following the order nitrate reductase>urease>catalase>alkaline phosphatase. Growing plants stimulated soil enzyme activity in a similar trend compared with treatments without plants. The joint effects of Cu and Se on catalase activity showed synergism at low concentrations and antagonism at high concentrations, whereas the opposite was observed for urease activity. However, nitrate reductase activity showed synergism both with and without plant treatments. The half maximal effective concentration (EC50) of exchangeable fractions had a similar trend with the EC50 of total content and was lower than that of total content. The EC50 values of nitrate reductase and urease activities were significantly lower for both Se and Cu (p<0.05), which indicated that they were more sensitive than the other two enzymes. Copyright © 2013 SETAC.

  15. Hydroxycinnamic acid decarboxylase activity of Brettanomyces bruxellensis involved in volatile phenol production: relationship with cell viability.

    PubMed

    Laforgue, R; Lonvaud-Funel, A

    2012-12-01

    Brettanomyces bruxellensis populations have been correlated with an increase in phenolic off-flavors in wine. The volatile phenols causing the olfactory defect result from the successive decarboxylation and reduction of hydroxycinnamic acids that are normal components of red wines. The growth of B. bruxellensis is preventable by adding sulfur dioxide (SO(2)), with variable effectiveness. Moreover, it was hypothesized that SO(2) was responsible for the entry of B. bruxellensis into a viable but non-culturable (VBNC) state. The aim of this project was to investigate the effects of SO(2) on the remaining enzyme activities of B. bruxellensis populations according to their viability and cultivability, focusing on the hydroxycinnamate decarboxylase enzyme, the first enzyme needed, rather than the metabolites produced. Enzyme activity was determined both in cell-free extracts and resting cells after various SO(2) treatments in synthetic media. After slight sulfiting (around 50 mg/L total SO(2)), the yeasts had lost part of their enzyme activity but not their cultivability. At higher doses (at least 75 mg/L total SO(2)) the majority of yeasts had lost their cultivability but still retained part of their enzyme activity. These results suggested that non culturable cells retained some enzyme activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Spatial distribution of total phenolic content, enzymatic activities and browning in white yam (Dioscorea rotundata) tubers.

    PubMed

    Graham-Acquaah, Seth; Ayernor, George Sodah; Bediako-Amoa, Betty; Saalia, Firibu Kwesi; Afoakwa, Emmanuel Ohene

    2014-10-01

    Browning in raw and processed yams resulting from enzymes, polyphenol oxidase (PPO) and peroxidase (POD), activities is a major limitation to the industrial utilization of Dioscorea varieties of yams. Two elite cultivars of D. rotundata species were selected to study the spatial distribution of total phenols and enzymes (PPO and POD) activities. The intensities of tissue darkening in fresh yam chips prepared from the tuber sections of cultivars during frozen storage were also studied. Total phenolic content was observed to be highest in the head and mid sections of the cultivars than at the tail end. PPO activity did not have any specific distribution pattern whereas POD activity was found to be more concentrated in the head than in the middle and tail regions. Browning was found to be most intense in the head regions of the two cultivars studied; and was observed to correlate with total phenol and dry matter contents of tubers. Between the two enzymes, POD activity appeared to be more related to browning than PPO.

  17. Preparation of progenin III from total steroidal saponins of Dioscorea nipponica Makino using a crude enzyme from Aspergillus oryzae strain.

    PubMed

    Liu, Tingqiang; Yu, Hongshan; Liu, Chunying; Bao, Yongming; Hu, Xiangchun; Wang, Yuanhao; Liu, Bing; Fu, Yaoyao; Tang, Sihui; Jin, Fengxie

    2013-05-01

    Progenin III, one of the most active spirostanol saponins, is a potential candidate for anti-cancer therapy due to its strong antitumor activity and low hemolytic activity. However, the concentration of progenin III is extremely low in natural Dioscorea plants. In this paper, the progenin III production from total steroidal saponins of Dioscorea nipponica Makino was studied using the crude enzyme from Aspergillus oryzae DLFCC-38. The crude enzyme converting total steroidal saponins into progenin III was obtained from the A. oryzae DLFCC-38 culture. For enzyme production, the strain was cultured for 72 h at 30 °C with shaking at 150 rpm in 5 % (w/v) malt extract medium containing 2 % (v/v) extract of D. nipponica as the enzyme inducer. The crude enzyme converted total steroidal saponins into major progenin III with a high yield when the reaction was carried out for 9 h at 50 °C and pH 5.0 with the 20 mg/ml of substrate. In the preparation of progenin III, 117 g of crude progenin III was obtained from 160 g of substrate, and the crude product was purified with silica gel column to obtain 60.3 g progenin III of 93.4 % purity.

  18. Watch Out for the "Living Dead": Cell-Free Enzymes and Their Fate.

    PubMed

    Baltar, Federico

    2017-01-01

    Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs) are the "gatekeepers" of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached), and dissolved (i.e., cell-free) enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100%) of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA) will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell's fate. In contrast, cell-free enzymes belong to a kind of "living dead" realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go "beyond the living things," studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles.

  19. Mineralogical impact on long-term patterns of soil nitrogen and phosphorus enzyme activities

    NASA Astrophysics Data System (ADS)

    Mikutta, Robert; Turner, Stephanie; Meyer-Stüve, Sandra; Guggenberger, Georg; Dohrmann, Reiner; Schippers, Axel

    2014-05-01

    Soil chronosequences provide a unique opportunity to study microbial activity over time in mineralogical diverse soils of different ages. The main objective of this study was to test the effect of mineralogical properties, nutrient and organic matter availability over whole soil pro-files on the abundance and activity of the microbial communities. We focused on microbio-logical processes involved in nitrogen and phosphorus cycling at the 120,000-year Franz Josef soil chronosequence. Microbial abundances (microbial biomass and total cell counts) and enzyme activities (protease, urease, aminopeptidase, and phosphatase) were determined and related to nutrient contents and mineralogical soil properties. Both, microbial abundances and enzyme activities decreased with soil depth at all sites. In the organic layers, microbial biomass and the activities of N-hydrolyzing enzymes showed their maximum at the intermediate-aged sites, corresponding to a high aboveground biomass. In contrast, the phosphatase activity increased with site age. The activities of N-hydrolyzing enzymes were positively correlated with total carbon and nitrogen contents, whereas the phosphatase activity was negatively correlated with the phosphorus content. In the mineral soil, the enzyme activities were generally low, thus reflecting the presence of strongly sorbing minerals. Sub-strate-normalized enzyme activities correlated negatively to clay content as well as poorly crystalline Al and Fe oxyhydroxides, supporting the view that the evolution of reactive sec-ondary mineral phases alters the activity of the microbial communities by constraining sub-strate availability. Our data suggest a strong mineralogical influence on nutrient cycling par-ticularly in subsoil environments.

  20. Synthesis and degradation of phenylalanine ammonia-lyase of Rhodosporidium toruloides.

    PubMed

    Gilbert, H J; Tully, M

    1982-05-01

    The regulation of the enzyme phenylalanine ammonia-lyase (PAL), which is of potential use in oral treatment of phenylketonuria, was investigated. Antiserum against PAL was prepared and was shown to be monospecific for the enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native enzyme and two inactive mutant forms of the enzyme were purified to homogeneity by immunoaffinity chromatography, using anti-PAL immunoglobulin G-Sepharose 4B. Both mutant enzymes contained intact prosthetic groups. The formation of PAL catalytic activity after phenylalanine was added to yeast cultures was paralleled by the appearance of enzyme antigen. During induction, uptake of [3H]leucine into the enzyme was higher than uptake into total protein. Our results are consistent with de novo synthesis of an enzyme induced by phenylalanine, rather than activation of a proenzyme. The half-lives of PAL and total protein were similar in both exponential and stationary phase cultures. No metabolite tested affected the rate of enzyme degradation. Glucose repressed enzyme synthesis, whereas ammonia reduced phenylalanine uptake and pool size and so may repress enzyme synthesis through inducer exclusion. The synthesis of enzyme antigen by a mutant unable to metabolize phenylalanine indicated that this amino acid is the physiological inducer of the enzyme.

  1. Subcellular distribution of serine acetyltransferase from Pisum sativum and characterization of an Arabidopsis thaliana putative cytosolic isoform.

    PubMed

    Ruffet, M L; Lebrun, M; Droux, M; Douce, R

    1995-01-15

    The intracellular compartmentation of serine acetyltransferase, a key enzyme in the L-cysteine biosynthesis pathway, has been investigated in pea (Pisum sativum) leaves, by isolation of organelles and fractionation of protoplasts. Enzyme activity was mainly located in mitochondria (approximately 76% of total cellular activity). Significant activity was also identified in both the cytosol (14% of total activity) and chloroplasts (10% of total activity). Three enzyme forms were separated by anion-exchange chromatography, and each form was found to be specific for a given intracellular compartment. To obtain cDNA encoding the isoforms, functional complementation experiments were performed using an Arabidopsis thaliana expression library and an Escherichia coli mutant devoid of serine acetyltransferase activity. This strategy allowed isolation of three distinct cDNAs encoding serine acetyltransferase isoforms, as confirmed by enzyme activity measurements, genomic hybridizations, and nucleotide sequencing. The cDNA and related gene for one of the three isoforms have been characterized. The predicted amino acid sequence shows that it encodes a polypeptide of M(r) 34,330 exhibiting 41% amino acid identity with the E. coli serine acetyltransferase. Since none of the general features of transit peptides could be observed in the N-terminal region of this isoform, we assume that it is a cytosolic form.

  2. Correlation Among Soil Enzyme Activities, Root Enzyme Activities, and Contaminant Removal in Two-Stage In Situ Constructed Wetlands Purifying Domestic Wastewater.

    PubMed

    Ni, Lixiao; Xu, Jiajun; Chu, Xianglin; Li, Shiyin; Wang, Peifang; Li, Yiping; Li, Yong; Zhu, Liang; Wang, Chao

    2016-07-01

    Two-stage in situ wetlands (two vertical flow constructed wetlands in parallel and a horizontal flow constructed wetland) were constructed for studying domestic wastewater purification and the correlations between contaminant removal and plant and soil enzyme activities. Results indicated the removal efficiency of NH4 (+) and NO3 (-) were significantly correlated with both urease and protease activity, and the removal of total phosphorus was significantly correlated with phosphatase activity. Chemical oxygen demand removal was not correlated with enzyme activity in constructed wetlands. Plant root enzyme (urease, phosphatase, protease and cellulose) activity correlation was apparent with all contaminant removal in the two vertical flow constructed wetlands. However, the correlation between the plant root enzyme activity and contaminant removal was poor in horizontal flow constructed wetlands. Results indicated that plant roots clearly played a role in the removal of contaminants.

  3. Maturation of the immune system of the male house cricket, Acheta domesticus.

    PubMed

    Piñera, Angelica V; Charles, Heather M; Dinh, Tracy A; Killian, Kathleen A

    2013-08-01

    The immune system functions to counteract the wide range of pathogens an insect may encounter during its lifespan, ultimately maintaining fitness and increasing the likelihood of survival to reproductive maturity. In this study, we describe the maturation of the innate immune system of the male house cricket Acheta domesticus during the last two nymphal stages, and during early and late adulthood. Total hemolymph phenoloxidase enzyme activity, lysozyme-like enzyme activity, the number of circulating hemocytes, and encapsulation ability were all determined for each developmental stage or age examined. The number of circulating hemocytes and lysozyme-like enzyme activity were similar for all developmental stages examined. Nymphs and newly molted adult males, however, had significantly lower total phenoloxidase activity than later adult stages, yet nymphs were able to encapsulate a nylon thread just as well as adults. Encapsulation ability would thus appear to be independent of total phenoloxidase activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Effect of seasonality and Cr(VI) on starch-sucrose partitioning and related enzymes in floating leaves of Salvinia minima.

    PubMed

    Rosa, Mariana; Prado, Carolina; Chocobar-Ponce, Silvana; Pagano, Eduardo; Prado, Fernando

    2017-09-01

    Effects of seasonality and increasing Cr(VI) concentrations on leaf starch-sucrose partitioning, sucrose- and starch-related enzyme activities, and carbon allocation toward leaf development were analyzed in fronds (floating leaves) of the floating fern Salvinia minima. Carbohydrates and enzyme activities of Cr-exposed fronds showed different patterns in winter and summer. Total soluble sugars, starch, glucose and fructose increased in winter fronds, while sucrose was higher in summer ones. Starch and soluble carbohydrates, except glucose, increased under increasing Cr(VI) concentrations in winter fronds, while in summer ones only sucrose increased under Cr(VI) treatment. In summer fronds starch, total soluble sugars, fructose and glucose practically stayed without changes in all assayed Cr(VI) concentrations. Enzyme activities related to starch and sucrose metabolisms (e.g. ADPGase, SPS, SS and AI) were higher in winter fronds than in summer ones. Total amylase and cFBPase activities were higher in summer fronds. Cr(VI) treatment increased enzyme activities, except ADPGase, in both winter and summer fronds but no clear pattern changes were observed. Data of this study show clearly that carbohydrate metabolism is differently perturbed by both seasonality and Cr(VI) treatment in summer and winter fronds, which affects leaf starch-sucrose partitioning and specific leaf area (SLA) in terms of carbon investment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Microbial dynamics and enzyme activities in tropical Andosols depending on land use and nutrient inputs

    NASA Astrophysics Data System (ADS)

    Mganga, Kevin; Razavi, Bahar; Kuzyakov, Yakov

    2015-04-01

    Microbial decomposition of soil organic matter is mediated by enzymes and is a key source of terrestrial CO2 emissions. Microbial and enzyme activities are necessary to understand soil biochemical functioning and identify changes in soil quality. However, little is known about land use and nutrients availability effects on enzyme activities and microbial processes, especially in tropical soils of Africa. This study was conducted to examine how microbial and enzyme activities differ between different land uses and nutrient availability. As Andosols of Mt. Kilimanjaro are limited by nutrient concentrations, we hypothesize that N and P additions will stimulate enzyme activity. N and P were added to soil samples (0-20 cm) representing common land use types in East Africa: (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) traditional Chagga homegardens. Total CO2 efflux from soil, microbial biomass and activities of β-glucosidase, cellobiohydrolase, chitinase and phosphatase involved in C, N and P cycling, respectively was monitored for 60 days. Total CO2 production, microbial biomass and enzyme activities varied in the order forest soils > grassland soils > arable soils. Increased β-glucosidase and cellobiohydrolase activities after N addition of grassland soils suggest that microorganisms increased N uptake and utilization to produce C-acquiring enzymes. Low N concentration in all soils inhibited chitinase activity. Depending on land use, N and P addition had an inhibitory or neutral effect on phosphatase activity. We attribute this to the high P retention of Andosols and low impact of N and P on the labile P fractions. Enhanced CO2 production after P addition suggests that increased P availability could stimulate soil organic matter biodegradation in Andosols. In conclusion, land use and nutrients influenced soil enzyme activities and microbial dynamics and demonstrated the decline in soil quality after landuse change. Key words: Andosols, β-glucosidase, Cellobiohydrolase, Chitinase, Phosphatase, Mt. Kilimanjaro

  6. Watch Out for the “Living Dead”: Cell-Free Enzymes and Their Fate

    PubMed Central

    Baltar, Federico

    2018-01-01

    Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs) are the “gatekeepers” of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached), and dissolved (i.e., cell-free) enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100%) of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA) will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell’s fate. In contrast, cell-free enzymes belong to a kind of “living dead” realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go “beyond the living things,” studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles. PMID:29354095

  7. Synthesis and degradation of phenylalanine ammonia-lyase of Rhodosporidium toruloides.

    PubMed Central

    Gilbert, H J; Tully, M

    1982-01-01

    The regulation of the enzyme phenylalanine ammonia-lyase (PAL), which is of potential use in oral treatment of phenylketonuria, was investigated. Antiserum against PAL was prepared and was shown to be monospecific for the enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native enzyme and two inactive mutant forms of the enzyme were purified to homogeneity by immunoaffinity chromatography, using anti-PAL immunoglobulin G-Sepharose 4B. Both mutant enzymes contained intact prosthetic groups. The formation of PAL catalytic activity after phenylalanine was added to yeast cultures was paralleled by the appearance of enzyme antigen. During induction, uptake of [3H]leucine into the enzyme was higher than uptake into total protein. Our results are consistent with de novo synthesis of an enzyme induced by phenylalanine, rather than activation of a proenzyme. The half-lives of PAL and total protein were similar in both exponential and stationary phase cultures. No metabolite tested affected the rate of enzyme degradation. Glucose repressed enzyme synthesis, whereas ammonia reduced phenylalanine uptake and pool size and so may repress enzyme synthesis through inducer exclusion. The synthesis of enzyme antigen by a mutant unable to metabolize phenylalanine indicated that this amino acid is the physiological inducer of the enzyme. PMID:7068528

  8. Effect of monospecific and mixed sea-buckthorn (Hippophae rhamnoides) plantations on the structure and activity of soil microbial communities.

    PubMed

    Yu, Xuan; Liu, Xu; Zhao, Zhong; Liu, Jinliang; Zhang, Shunxiang

    2015-01-01

    This study aims to evaluate the effect of different afforestation models on soil microbial composition in the Loess Plateau in China. In particular, we determined soil physicochemical properties, enzyme activities, and microbial community structures in the top 0 cm to 10 cm soil underneath a pure Hippophae rhamnoides (SS) stand and three mixed stands, namely, H. rhamnoides and Robinia pseucdoacacia (SC), H. rhamnoides and Pinus tabulaeformis (SY), and H. rhamnoides and Platycladus orientalis (SB). Results showed that total organic carbon (TOC), total nitrogen, and ammonium (NH4(+)) contents were higher in SY and SB than in SS. The total microbial biomass, bacterial biomass, and Gram+ biomass of the three mixed stands were significantly higher than those of the pure stand. However, no significant difference was found in fungal biomass. Correlation analysis suggested that soil microbial communities are significantly and positively correlated with some chemical parameters of soil, such as TOC, total phosphorus, total potassium, available phosphorus, NH4(+) content, nitrate content (NH3(-)), and the enzyme activities of urease, peroxidase, and phosphatase. Principal component analysis showed that the microbial community structures of SB and SS could clearly be discriminated from each other and from the others, whereas SY and SC were similar. In conclusion, tree species indirectly but significantly affect soil microbial communities and enzyme activities through soil physicochemical properties. In addition, mixing P. tabulaeformis or P. orientalis in H. rhamnoides plantations is a suitable afforestation model in the Loess Plateau, because of significant positive effects on soil nutrient conditions, microbial community, and enzyme activities over pure plantations.

  9. Purifying capability, enzyme activity, and nitrification potentials in December in integrated vertical flow constructed wetland with earthworms and different substrates.

    PubMed

    Xu, Defu; Gu, Jiaru; Li, Yingxue; Zhang, Yu; Howard, Alan; Guan, Yidong; Li, Jiuhai; Xu, Hui

    2016-01-01

    The response of purifying capability, enzyme activity, nitrification potentials, and total number of bacteria in the rhizosphere in December to wetland plants, substrates, and earthworms was investigated in integrated vertical flow constructed wetlands (IVFCW). The removal efficiency of total nitrogen (TN), NH4-N, chemical oxygen demand (COD), and total phosphorus (TP) was increased when earthworms were added into IVFCW. A significantly average removal efficiency of N in IVFCW that employed river sand as substrate and in IVFCW that employed a mixture of river sand and Qing sand as substrate was not found. However, the average removal efficiency of P was higher in IVFCW with a mixture of river sand and Qing sand as substrate than in IVFCW with river sand as substrate. Invertase activity in December was higher in IVFCW that used a mixture of river sand and Qing sand as substrate than in IVFCW which used only river sand as substrate. However, urease activity, nitrification potential, and total number of bacteria in December was higher in IVFCW that employed river sand as substrate than in IVFCW with a mixture of river sand and Qing sand as substrate. The addition of earthworms into the integrated vertical flow constructed wetland increased the above-ground biomass, enzyme activity (catalase, urease, and invertase), nitrification potentials, and total number of bacteria in December. The above-ground biomass of wetland plants was significantly positively correlated with urease and nitrification potentials (p < 0.01). The addition of earthworms into IVFCW increased enzyme activity and nitrification potentials in December, which resulted in improving purifying capability.

  10. Enzymatic processing of pigmented and non pigmented rice bran on changes in oryzanol, polyphenols and antioxidant activity.

    PubMed

    Prabhu, Ashish A; Jayadeep, A

    2015-10-01

    Bran from different rice varieties is a treasure of nutrients and nutraceuticals, and its use is limited due to the poor sensory and functional properties. Application of enzymes can alter the functional and phytochemical properties. So the effect of endo-xylanase, cellulase and their combination on microstructural, nutraceutical and antioxidant properties of pigmented (Jyothi) and non-pigmented (IR64) rice bran were investigated. Scanning electron micrograph revealed micro structural changes in fibre structures on processing. All the enzymatic processing methods resulted in an increase in the content of oryzanol, soluble, bound and total polyphenols, flavonoid and tannin. It also showed an increase in the bioactivity with respect to free radical scavenging activity and total antioxidant activity. However, extent of the increase in bio-actives varied with the type of bran and enzyme application method. Endo-xylanase showed higher percentage difference compared to controls of Jyothi and IR64 bran extracts respectively in the content of the bound (10 & 19 %) and total (20 & 14 %) polyphenols. Combination of both the enzymes resulted in higher percentage increase of bioactive components and properties. It resulted in greater percentage difference compared to controls of Jyothi and IR64 extracts respectively in the content of soluble (58 & 17 %) and total (21 & 14 %) polyphenols, flavonoids (12 & 38 %), γ-oryzanol (10 & 12 %), free radical scavenging activity (64 & 30 %) and total antioxidant activity (82 & 136 %). It may be concluded that enzymatic bio-processing of bran with cellulose and hemicellulose degrading enzymes can improve its nutraceutical properties, and it may be used for development of functional foods.

  11. [Effect of Panax notoginseng saponins on liver drug metablic enzyme activity, mRNA and protein expressions in rats].

    PubMed

    Chen, Yan-Jin; Wang, Yu-Guang; Ma, Zeng-Chun; Xiao, Cheng-Rong; Tan, Hong-Ling; Liang, Qian-De; Tang, Xiang-Lin; Zhao, Yong-Hong; Wang, Dong-Gen; Gao, Yue

    2014-10-01

    To study the effect of Panax notoginseng saponins (PNS) on liver drug metabolic enzyme activity, mRNA and protein expressions in rats. Male Wistar rats were randomly divided into nine groups. After administration of the test drugs, their liver microsomes, liver total RNA and total protein were extracted to detect the regulating effect of PNS on liver drug metabolic enzyme activity-related subtype enzymatic activity, mRNA and protein expression by substrate probe, quantitative PCR and Western Blot technology. The result of this experiment was that PNS could significantly induce CYP1A2 and CYP2E1 enzyme activity, mRNA expression, CYP2E1 protein expression level. PNS significantly induced CYP3A mRNA expression, but with no significant effect in CYP3A enzyme activity level. PNS had no significant effect CYP1A1 and CYP2B mRNA expressions and enzyme activity levels. PNS had selective regulations on different P450 subtypes, and the major subtypes were CYP1A2 and CYP2E1. In clinical practice, particularly in the combination with CYP1A2 and CYP2E1 metabolism-related drugs, full consideration shall be given to the possible drug interactions in order to avoid potential toxic and side effects. Meanwhile, whether the induction effect of CYP2E1 gets involved in ginsenoside's effect incavenging free radicals deserves further studies.

  12. Digestive enzymes activity in subsequent generations of Cameraria ohridella larvae harvested from horse chestnut trees after treatment with imidacloprid.

    PubMed

    Stygar, Dominika; Michalczyk, Katarzyna; Dolezych, Bogdan; Nakonieczny, Miroslaw; Migula, Pawel; Zaak, Maria; Sawczyn, Tomasz; Karcz-Socha, Iwona; Kukla, Michal; Zwirska-Korczala, Krystyna; Buldak, Rafal

    2013-01-01

    In the present study we describe the effect of chloronicotinoid pesticide (imidacloprid) on the digestive enzymes activity of the Cameraria ohridella larvae after lasting 1 year sublethal exposure to imidacloprid pesticide. Caterpillars - L4 stage (fourth instar, hyperphagic tissue-feeding phase) - were collected from chemically protected white horse chestnut trees 1 year after imidacloprid treatment, and compared with caterpillars collected from non-treated trees in a previous study. Enzymes activity of α-amylase, disaccharidases, glycosidases and proteases was assayed. The presence of pesticide in ingested food changed the digestive enzymes profile of caterpillars. The analysis of correlations between different digestive enzymes showed many significant correlations (P<0.05) among glycolytic activities like β-glucosidase and α-galactosidase activities. Statistically significant correlations for proteolytic activity were found between trypsin and chymotrypsin activity and aminopeptidase activity that occurred only in the 1st generation. PCA distinguished five primary components with eigenvalues higher than 1, from which the first two explain almost 59% of analyzed results. Surprisingly, in the pesticide treated groups significantly higher activities of sucrase and lactase in relation to control were found. In general, glycosidase (α-glucosidase, β-glucosidase and β-galactosidase) activities showed a similar pattern of activity in different generations. These results contrast with those obtained with control larvae, where significant differences in activities of α-glucosidase, β-glucosidase and β-galactosidase may result from the different quantity and quality food intake by subsequent generations of larvae. No inter-generation differences in total proteolytic activity were observed in treated larvae. The absolute value of total proteolytic activity was higher than that in the control group. The pesticide present in the vascular system of the horse chestnut tree significantly affected some of the digestive enzymes activities and - in consequence - also interrelationships between enzymes, what may affect the food digestion. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Effects of silver nanoparticles on soil enzyme activities with and without added organic matter.

    PubMed

    Peyrot, Caroline; Wilkinson, Kevin J; Desrosiers, Mélanie; Sauvé, Sébastien

    2014-01-01

    The effects of silver nanoparticles (AgNPs) on terrestrial ecosystems need to be better understood and assessed. Cationic silver (Ag+) has well-documented toxicity against bacteria, but it is not clear what will be the effect of nanoscale Ag. In the present study, the potential effects of AgNPs were investigated in soils by measuring activity of the enzymes phosphomonoesterase, arylsulfatase, β-D-glucosidase, and leucine-aminopeptidase. The toxicity of AgNPs was compared with that of ionic Ag, and the ameliorating effects of soil organic matter were evaluated. To this end, 2 soils with different organic matter contents were artificially contaminated with either AgNPs or Ag-acetate at equivalent total Ag concentrations. In general, enzyme activities were inhibited as a function of the Ag concentration in the soil. In the AgNP exposures, only a small fraction of the AgNP was actually truly dissolved (found in the <1-nm fraction), suggesting that the particulate forms of AgNPs resulted in a significant inhibition of soil enzymes. The addition of organic matter to the soils appeared to enhance enzyme activities; however, the mechanism of organic matter action is not clear given that dissolved Ag concentrations were similar in both the organic-matter–amended and unamended soils. The present study shows that the AgNP produces significant negative effects on the soil enzyme activities tested. The Ag chemical speciation measurements suggested that the AgNP caused greater toxic effects to the soil enzymes at the low Ag concentrations. For the larger concentrations of total soil Ag, causes of the negative effects on enzyme activities are less obvious but suggest that colloidal forms of Ag play a role.

  14. Characterization of the cellulolytic secretome of Trichoderma harzianum during growth on sugarcane bagasse and analysis of the activity boosting effects of swollenin.

    PubMed

    A L Rocha, Vanessa; N Maeda, Roberto; Pereira, Nei; F Kern, Marcelo; Elias, Luisa; Simister, Rachael; Steele-King, Clare; Gómez, Leonardo D; McQueen-Mason, Simon J

    2016-03-01

    This study demonstrates the production of an active enzyme cocktail produced by growing Trichoderma harzianum on sugarcane bagasse. The component enzymes were identified by LCMS-MS. Glycosyl hydrolases were the most abundant class of proteins, representing 67% of total secreted protein. Other carbohydrate active enzymes involved in cell wall deconstruction included lytic polysaccharide mono-oxygenases (AA9), carbohydrate-binding modules, carbohydrate esterases and swollenin, all present at levels of 1%. In total, proteases and lipases represented 5 and 1% of the total secretome, respectively, with the rest of the secretome being made up of proteins of unknown or putative function. This enzyme cocktail was efficient in catalysing the hydrolysis of sugarcane bagasse cellulolignin to fermentable sugars for potential use in ethanol production. Apart from mapping the secretome of T. harzianum, which is a very important tool to understand the catalytic performance of enzyme cocktails, the gene coding for T. harzianum swollenin was expressed in Aspergillus niger. This novel aspect in this work, allowed increasing the swollenin concentration by 95 fold. This is the first report about the heterologous expression of swollenin from T. harzianum, and the findings are of interest in enriching enzyme cocktail with this important accessory protein which takes part in the cellulose amorphogenesis. Despite lacking detectable glycoside activity, the addition of swollenin of T. harzianum increased by two-fold the hydrolysis efficiency of a commercial cellulase cocktail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:327-336, 2016. © 2016 American Institute of Chemical Engineers.

  15. Modification of deoiled cumin dietary fiber with laccase and cellulase under high hydrostatic pressure.

    PubMed

    Ma, Mengmei; Mu, Taihua

    2016-01-20

    In this study, we evaluated the effects of high hydrostatic pressure (HHP) and enzyme (laccase and cellulase) treatment on the structural, physicochemical, and functional properties and antioxidant activity of deoiled cumin dietary fiber (DF). HHP-enzyme treatment increased the contents of soluble dietary fiber (SDF) (30.37 g/100g), monosaccharides (except for glucose), uronic acids, and total polyphenol. HHP-enzyme treatment altered the honey-comb structure of DF and generated new polysaccharides. DF modified by HHP-enzyme treatment exhibited improved water retention capacity (10.02 g/g), water swelling capacity (11.19 mL/g), fat and glucose absorption capacities (10.44 g/g, 22.18-63.54 mmol/g), α-amylase activity inhibition ration (37.95%), and bile acid retardation index (48.85-52.58%). The antioxidant activity of DF was mainly correlated to total polyphenol content (R=0.8742). Therefore, DF modified by HHP-enzyme treatment from deoiled cumin could be used as a fiber-rich ingredient in functional foods. Copyright © 2015. Published by Elsevier Ltd.

  16. Soil microbial communities and enzyme activities in sea-buckthorn (Hippophae rhamnoides) plantation at different ages.

    PubMed

    Yang, Miao; Yang, Dan; Yu, Xuan

    2018-01-01

    The aim of this study was to assess the impact of forest age and season on the soil microbial community and enzyme activities in sea-buckthorn plantation system and to determine the relative contributions to soil microbial properties. Soil sampling was carried out in the dry season (April) and wet season (September) in four areas, including: abandoned farmland (NH), an 8-year- old plantation (young plantation, 8Y), a 13-year-old plantation (middle-aged plantation, 13Y), and an 18-year-old plantation (mature plantation, 18Y). The results showed that forest age and season have a significant effect on soil microbial community structure and enzyme activities. The total, bacterial, fungal, Gram-negative (G+), and Gram-positive (G-) PLFAs increased gradually with forest age, with the highest values detected in 18Y. All the detected enzyme activities showed the trend as a consequence of forest age. The microbial PLFAs and soil enzyme activities were higher in the wet season than the dry season. However, there were no significant interactions between forest age and season. A Correlation analysis suggested that soil microbial communities and enzyme activities were significantly and positively correlated with pH, total nitrogen (TN) and available phosphorus (AP). Season had a stronger influence on soil microbial communities than forest age. In general, sea-buckthorn plantations establishment might be a potential tool for maintaining and increasing soil fertility in arid and semi-arid regions.

  17. Soil microbial communities and enzyme activities in sea-buckthorn (Hippophae rhamnoides) plantation at different ages

    PubMed Central

    Yang, Miao; Yang, Dan

    2018-01-01

    The aim of this study was to assess the impact of forest age and season on the soil microbial community and enzyme activities in sea-buckthorn plantation system and to determine the relative contributions to soil microbial properties. Soil sampling was carried out in the dry season (April) and wet season (September) in four areas, including: abandoned farmland (NH), an 8-year- old plantation (young plantation, 8Y), a 13-year-old plantation (middle-aged plantation, 13Y), and an 18-year-old plantation (mature plantation, 18Y). The results showed that forest age and season have a significant effect on soil microbial community structure and enzyme activities. The total, bacterial, fungal, Gram-negative (G+), and Gram-positive (G-) PLFAs increased gradually with forest age, with the highest values detected in 18Y. All the detected enzyme activities showed the trend as a consequence of forest age. The microbial PLFAs and soil enzyme activities were higher in the wet season than the dry season. However, there were no significant interactions between forest age and season. A Correlation analysis suggested that soil microbial communities and enzyme activities were significantly and positively correlated with pH, total nitrogen (TN) and available phosphorus (AP). Season had a stronger influence on soil microbial communities than forest age. In general, sea-buckthorn plantations establishment might be a potential tool for maintaining and increasing soil fertility in arid and semi-arid regions. PMID:29324845

  18. d-limonene ameliorates diabetes and its complications in streptozotocin-induced diabetic rats.

    PubMed

    Bacanlı, Merve; Anlar, Hatice Gül; Aydın, Sevtap; Çal, Tuğbagül; Arı, Nuray; Ündeğer Bucurgat, Ülkü; Başaran, A Ahmet; Başaran, Nurşen

    2017-12-01

    It is known that diabetes causes some complications including alterations in lipid profile, hepatic enzyme levels but also it causes oxidative stress. Limonene, a major component of Citrus oils, has important health beneficial effects in lowering the level of oxidative stress due to its antioxidant activity. The aim of this study was to investigate the effects of D-limonene on streptozotocin (STZ)-induced diabetes in Wistar albino rats. For this purpose, DNA damage was evaluated by alkaline comet assay. Changes in the activities of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GSHPx) and the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), total glutathione (GSH), malondialdehyde (MDA), insulin, total bilirubin and BCA protein, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT), high density lipoprotein (HDL), low density lipoprotein (LDL), total cholesterol and triglyceride were also evaluated. D-limonene treatment was found to significantly decrease DNA damage, GR enzyme activities and MDA levels and significantly increase GSH levels and CAT, SOD and GSH-Px enzyme activities and altered lipid and liver enzyme parameters in diabetic rats. According to our results, it seems that D-limonene might have a role in the prevention of the complication of diabetes in rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of dry mycelium of Penicillium chrysogenum fertilizer on soil microbial community composition, enzyme activities and snap bean growth.

    PubMed

    Wang, Bing; Liu, Huiling; Cai, Chen; Thabit, Mohamed; Wang, Pu; Li, Guomin; Duan, Ziheng

    2016-10-01

    The dry mycelium fertilizer (DMF) was produced from penicillin fermentation fungi mycelium (PFFM) following an acid-heating pretreatment to degrade the residual penicillin. In this study, it was applied into soil as fertilizer to investigate its effects on soil properties, phytotoxicity, microbial community composition, enzyme activities, and growth of snap bean in greenhouse. As the results show, pH, total nitrogen, total phosphorus, total potassium, and organic matter of soil with DMF treatments were generally higher than CON treatment. In addition, the applied DMF did not cause heavy metal and residual drug pollution of the modified soil. The lowest GI values (<0.3) were recorded at DMF8 (36 kg DMF/plat) on the first days after applying the fertilizer, indicating that severe phytotoxicity appeared in the DMF8-modified soil. Results of microbial population and enzyme activities illustrated that DMF was rapidly decomposed and the decomposition process significantly affected microbial growth and enzyme activities. The DMF-modified soil phytotoxicity decreased at the late fertilization time. DMF1 was considered as the optimum amount of DMF dose based on principal component analysis scores. Plant height and plant yield of snap bean were remarkably enhanced with the optimum DMF dose.

  20. Effect of Monospecific and Mixed Sea-Buckthorn (Hippophae rhamnoides) Plantations on the Structure and Activity of Soil Microbial Communities

    PubMed Central

    Yu, Xuan; Liu, Xu; Zhao, Zhong; Liu, Jinliang; Zhang, Shunxiang

    2015-01-01

    This study aims to evaluate the effect of different afforestation models on soil microbial composition in the Loess Plateau in China. In particular, we determined soil physicochemical properties, enzyme activities, and microbial community structures in the top 0 cm to 10 cm soil underneath a pure Hippophae rhamnoides (SS) stand and three mixed stands, namely, H. rhamnoides and Robinia pseucdoacacia (SC), H. rhamnoides and Pinus tabulaeformis (SY), and H. rhamnoides and Platycladus orientalis (SB). Results showed that total organic carbon (TOC), total nitrogen, and ammonium (NH4 +) contents were higher in SY and SB than in SS. The total microbial biomass, bacterial biomass, and Gram+ biomass of the three mixed stands were significantly higher than those of the pure stand. However, no significant difference was found in fungal biomass. Correlation analysis suggested that soil microbial communities are significantly and positively correlated with some chemical parameters of soil, such as TOC, total phosphorus, total potassium, available phosphorus, NH4 + content, nitrate content (NH3 −), and the enzyme activities of urease, peroxidase, and phosphatase. Principal component analysis showed that the microbial community structures of SB and SS could clearly be discriminated from each other and from the others, whereas SY and SC were similar. In conclusion, tree species indirectly but significantly affect soil microbial communities and enzyme activities through soil physicochemical properties. In addition, mixing P. tabulaeformis or P. orientalis in H. rhamnoides plantations is a suitable afforestation model in the Loess Plateau, because of significant positive effects on soil nutrient conditions, microbial community, and enzyme activities over pure plantations. PMID:25658843

  1. Tissue enzyme studies in Macaca nemestrina monkeys.

    NASA Technical Reports Server (NTRS)

    Hubbard, R. W.; Hoffman, R. A.; Jenkins, D.

    1971-01-01

    Total enzyme activities in fresh tissue specimens from major organs of Macaca nemestrina were analyzed for lactic dehydrogenase (LDH), creatine phosphokinase (CPK), and aldolase. The concentration of these enzymes varied among the different tissue with skeletal muscle, heart, and brain having the highest activities. LDH isozymes determinations for the various tissues were also made. The spectrum of LDH isozyme distribution appears to be quite specific and characteristic for at least some of the tissues analyzed.

  2. Antioxidant Activity and Induction of mRNA Expressions of Antioxidant Enzymes in HEK-293 Cells of Moringa oleifera Leaf Extract.

    PubMed

    Vongsak, Boonyadist; Mangmool, Supachoke; Gritsanapan, Wandee

    2015-08-01

    The leaves of Moringa oleifera, collected in different provinces in Thailand, were determined for the contents of total phenolics, total flavonoids, major components, and antioxidant activity. The extract and its major active components were investigated for the inhibition of H2O2-induced reactive oxygen species production and the effects on antioxidant enzymes mRNA expression. The extract, crypto-chlorogenic acid, isoquercetin and astragalin, significantly reduced the reactive oxygen species production inducing by H2O2 in HEK-293 cells. Treatment with isoquercetin significantly increased the mRNA expression levels of antioxidant enzymes such as superoxide dismutase, catalase and heme oxygenase 1. These results confirm that M. oleifera leaves are good sources of natural antioxidant with isoquercetin as an active compound. Georg Thieme Verlag KG Stuttgart · New York.

  3. Effects of Nanoparticle Size on Multilayer Formation and Kinetics of Tethered Enzymes.

    PubMed

    Lata, James P; Gao, Lizeng; Mukai, Chinatsu; Cohen, Roy; Nelson, Jacquelyn L; Anguish, Lynne; Coonrod, Scott; Travis, Alexander J

    2015-09-16

    Despite numerous applications, we lack fundamental understanding of how variables such as nanoparticle (NP) size influence the activity of tethered enzymes. Previously, we showed that biomimetic oriented immobilization yielded higher specific activities versus nonoriented adsorption or carboxyl-amine binding. Here, we standardize NP attachment strategy (oriented immobilization via hexahistidine tags) and composition (Ni-NTA coated gold NPs), to test the impact of NP size (⌀5, 10, 20, and 50 nm) on multilayer formation, activity, and kinetic parameters (kcat, KM, kcat/KM) of enzymes representing three different classes: glucose-6-phosphate isomerase (GPI), an isomerase; Glyceraldehyde-3-phosphate dehydrogenase S (GAPDHS), an oxidoreductase; and pyruvate kinase (PK), a transferase. Contrary to other reports, we observed no trend in kinetic parameters for individual enzymes when found in monolayers (<100% enzyme coverage), suggesting an advantage for oriented immobilization versus other attachment strategies. Saturating the NPs to maximize activity per NP resulted in enzyme multilayer formation. Under these conditions, total activity per NP increased with increasing NP size. Conversely, specific activity for all three enzymes was highest when tethered to the smallest NPs, retaining a remarkable 73-94% of the activity of free/untethered enzymes. Multilayer formations caused a clear trend of kcat decreasing with increasing NP size, yet negligible change in KM. Understanding the fundamental relationships between NP size and tethered enzyme activity enables optimized design of various applications, maximizing activity per NP or activity per enzyme molecule.

  4. Complex enzyme hydrolysis releases antioxidative phenolics from rice bran.

    PubMed

    Liu, Lei; Wen, Wei; Zhang, Ruifen; Wei, Zhencheng; Deng, Yuanyuan; Xiao, Juan; Zhang, Mingwei

    2017-01-01

    In this study, phenolic profiles and antioxidant activity of rice bran were analyzed following successive treatment by gelatinization, liquefaction and complex enzyme hydrolysis. Compared with gelatinization alone, liquefaction slightly increased the total amount of phenolics and antioxidant activity as measured by ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Complex enzyme hydrolysis significantly increased the total phenolics, flavonoids, FRAP and ORAC by 46.24%, 79.13%, 159.14% and 41.98%, respectively, compared to gelatinization alone. Furthermore, ten individual phenolics present in free or soluble conjugate forms were also analyzed following enzymatic processing. Ferulic acid experienced the largest release, followed by protocatechuic acid and then quercetin. Interestingly, a major proportion of phenolics existed as soluble conjugates, rather than free form. Overall, complex enzyme hydrolysis releases phenolics, thus increasing the antioxidant activity of rice bran extract. This study provides useful information for processing rice bran into functional beverage rich in phenolics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Contrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical China

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Zhang, Xin-Yu; Zou, Hong-Tao; Kou, Liang; Yang, Yang; Wen, Xue-Fa; Li, Sheng-Gong; Wang, Hui-Min; Sun, Xiao-Min

    2017-10-01

    The nitrate to ammonium ratios in nitrogen (N) compounds in wet atmospheric deposits have increased over the recent past, which is a cause for some concern as the individual effects of nitrate and ammonium deposition on the biomass of different soil microbial communities and enzyme activities are still poorly defined. We established a field experiment and applied ammonium (NH4Cl) and nitrate (NaNO3) at monthly intervals over a period of 4 years. We collected soil samples from the ammonium and nitrate treatments and control plots in three different seasons, namely spring, summer, and fall, to evaluate the how the biomass of different soil microbial communities and enzyme activities responded to the ammonium (NH4Cl) and nitrate (NaNO3) applications. Our results showed that the total contents of phospholipid fatty acids (PLFAs) decreased by 24 and 11 % in the ammonium and nitrate treatments, respectively. The inhibitory effects of ammonium on Gram-positive bacteria (G+) and bacteria, fungi, actinomycetes, and arbuscular mycorrhizal fungi (AMF) PLFA contents ranged from 14 to 40 % across the three seasons. We also observed that the absolute activities of C, N, and P hydrolyses and oxidases were inhibited by ammonium and nitrate, but that nitrate had stronger inhibitory effects on the activities of acid phosphatase (AP) than ammonium. The activities of N-acquisition specific enzymes (enzyme activities normalized by total PLFA contents) were about 21 and 43 % lower in the ammonium and nitrate treatments than in the control, respectively. However, the activities of P-acquisition specific enzymes were about 19 % higher in the ammonium treatment than in the control. Using redundancy analysis (RDA), we found that the measured C, N, and P hydrolysis and polyphenol oxidase (PPO) activities were positively correlated with the soil pH and ammonium contents, but were negatively correlated with the nitrate contents. The PLFA biomarker contents were positively correlated with soil pH, soil organic carbon (SOC), and total N contents, but were negatively correlated with the ammonium contents. The soil enzyme activities varied seasonally, and were highest in March and lowest in October. In contrast, the contents of the microbial PLFA biomarkers were higher in October than in March and June. Ammonium may inhibit the contents of PLFA biomarkers more strongly than nitrate because of acidification. This study has provided useful information about the effects of ammonium and nitrate on soil microbial communities and enzyme activities.

  6. Alteration of white-rot basidiomycetes cellulase and xylanase activities in the submerged co-cultivation and optimization of enzyme production by Irpex lacteus and Schizophyllum commune.

    PubMed

    Metreveli, Eka; Kachlishvili, Eva; Singer, Steven W; Elisashvili, Vladimir

    2017-10-01

    Mono and dual cultures of four white-rot basidiomycete species were evaluated for cellulase and xylanase activity under submerged fermentation conditions. Co-cultivation of Pycnoporus coccineus or Trametes hirsuta with Schizophyllum commune displayed antagonistic interactions resulting in the decrease of endoglucanase and total cellulase activities. In contrast, increases in cellulase and xylanase activity were revealed through the compatible interactions of Irpex lacteus with S. commune. Co-cultivation conditions were optimized for maximum enzyme production by I. lacteus and S. commune, the best producers of cellulase/xylanase and β-glucosidase, respectively. An optimized medium for the target enzyme production by the mixed culture was established in a laboratory fermenter yielding 7U/mL total cellulase, 142U/mL endoglucanase, 104U/mL xylanase, and 5.2U/mL β-glucosidase. The dual culture approach resulted in an enzymatic mixture with 11% improved lignocellulose saccharification potential compared to enzymes from a monoculture of I. lacteus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. In Situ Enzyme Activity in the Dissolved and Particulate Fraction of the Fluid from Four Pitcher Plant Species of the Genus Nepenthes

    PubMed Central

    Takeuchi, Yayoi; Salcher, Michaela M.; Ushio, Masayuki; Shimizu-Inatsugi, Rie; Kobayashi, Masaki J.; Diway, Bibian; von Mering, Christian; Pernthaler, Jakob; Shimizu, Kentaro K.

    2011-01-01

    The genus Nepenthes, a carnivorous plant, has a pitcher to trap insects and digest them in the contained fluid to gain nutrient. A distinctive character of the pitcher fluid is the digestive enzyme activity that may be derived from plants and dwelling microbes. However, little is known about in situ digestive enzymes in the fluid. Here we examined the pitcher fluid from four species of Nepenthes. High bacterial density was observed within the fluids, ranging from 7×106 to 2.2×108 cells ml−1. We measured the activity of three common enzymes in the fluid: acid phosphatases, β-d-glucosidases, and β-d-glucosaminidases. All the tested enzymes detected in the liquid of all the pitcher species showed activity that considerably exceeded that observed in aquatic environments such as freshwater, seawater, and sediment. Our results indicate that high enzyme activity within a pitcher could assist in the rapid decomposition of prey to maximize efficient nutrient use. In addition, we filtered the fluid to distinguish between dissolved enzyme activity and particle-bound activity. As a result, filtration treatment significantly decreased the activity in all enzymes, while pH value and Nepenthes species did not affect the enzyme activity. It suggested that enzymes bound to bacteria and other organic particles also would significantly contribute to the total enzyme activity of the fluid. Since organic particles are themselves usually colonized by attached and highly active bacteria, it is possible that microbe-derived enzymes also play an important role in nutrient recycling within the fluid and affect the metabolism of the Nepenthes pitcher plant. PMID:21949872

  8. In situ enzyme activity in the dissolved and particulate fraction of the fluid from four pitcher plant species of the genus Nepenthes.

    PubMed

    Takeuchi, Yayoi; Salcher, Michaela M; Ushio, Masayuki; Shimizu-Inatsugi, Rie; Kobayashi, Masaki J; Diway, Bibian; von Mering, Christian; Pernthaler, Jakob; Shimizu, Kentaro K

    2011-01-01

    The genus Nepenthes, a carnivorous plant, has a pitcher to trap insects and digest them in the contained fluid to gain nutrient. A distinctive character of the pitcher fluid is the digestive enzyme activity that may be derived from plants and dwelling microbes. However, little is known about in situ digestive enzymes in the fluid. Here we examined the pitcher fluid from four species of Nepenthes. High bacterial density was observed within the fluids, ranging from 7×10(6) to 2.2×10(8) cells ml(-1). We measured the activity of three common enzymes in the fluid: acid phosphatases, β-D-glucosidases, and β-D-glucosaminidases. All the tested enzymes detected in the liquid of all the pitcher species showed activity that considerably exceeded that observed in aquatic environments such as freshwater, seawater, and sediment. Our results indicate that high enzyme activity within a pitcher could assist in the rapid decomposition of prey to maximize efficient nutrient use. In addition, we filtered the fluid to distinguish between dissolved enzyme activity and particle-bound activity. As a result, filtration treatment significantly decreased the activity in all enzymes, while pH value and Nepenthes species did not affect the enzyme activity. It suggested that enzymes bound to bacteria and other organic particles also would significantly contribute to the total enzyme activity of the fluid. Since organic particles are themselves usually colonized by attached and highly active bacteria, it is possible that microbe-derived enzymes also play an important role in nutrient recycling within the fluid and affect the metabolism of the Nepenthes pitcher plant.

  9. Soil microflora and enzyme activities in rhizosphere of Transgenic Bt cotton hybrid under different intercropping systems and plant protection schedules

    NASA Astrophysics Data System (ADS)

    Biradar, D. P.; Alagawadi, A. R.; Basavanneppa, M. A.; Udikeri, S. S.

    2012-04-01

    Field experiments were conducted over three rainy seasons of 2005-06 to 2007-08 on a Vertisol at Dharwad, Karnataka, India to study the effect of intercropping and plant protection schedules on productivity, soil microflora and enzyme activities in the rhizosphere of transgenic Bt cotton hybrid. The experiment consisted of four intercropping systems namely, Bt cotton + okra, Bt cotton + chilli, Bt cotton + onion + chilli and Bt cotton + redgram with four plant protection schedules (zero protection, protection for Bt cotton, protection for intercrop and protection for both crops). Observations on microbial populations and enzyme activities were recorded at 45, 90, 135 and 185 (at harvest) days after sowing (DAS). Averaged over years, Bt cotton + okra intercropping had significantly higher total productivity than Bt cotton + chilli and Bt cotton + redgram intercropping system and was similar to Bt cotton + chilli + onion intercropping system. With respect to plant protection schedules for bollworms, protection for both cotton and intercrops recorded significantly higher yield than the rest of the treatments. Population of total bacteria, fungi, actinomycetes, P-solubilizers, free-living N2 fixers as well as urease, phosphatase and dehydrogenase enzyme activities increased up to 135 days of crop growth followed by a decline. Among the intercropping systems, Bt cotton + chilli recorded significantly higher population of microorganisms and enzyme activities than other cropping systems. While Bt cotton with okra as intercrop recorded the least population of total bacteria and free-living N2 fixers as well as urease activity. Intercropping with redgram resulted in the least population of actinomycetes, fungi and P-solubilizers, whereas Bt cotton with chilli and onion recorded least activities of dehydrogenase and phosphatase. Among the plant protection schedules, zero protection recorded maximum population of microorganisms and enzyme activities. This was followed by the plant protection schedule taken up for main crop and for intercrops, but was least in the insecticide sprayed to both the crops. Data on interaction of intercropping and plant protection schedules indicated that Bt cotton with chilli as intercrop and with zero plant protection showed the highest population of P-solubilizers, N2 fixers as well as urease and phosphatase activities at 135 days of crop growth. Similarly, population of total bacteria, fungi and actinomycetes were highest in the treatment of Bt cotton + chilli + onion with zero protection but were on par with the treatment Bt cotton + chilli with zero protection at 135 days of crop growth. Dehydrogenase activity was found to be the highest in the treatment of Bt cotton + redgram with zero protection at 135 days of crop growth. Our studies showed harmful effects of insecticide sprays on soil microflora and enzyme activities.

  10. Effect of the French Oak Wood Extract Robuvit on Markers of Oxidative Stress and Activity of Antioxidant Enzymes in Healthy Volunteers: A Pilot Study

    PubMed Central

    Orszaghova, Zuzana; Laubertova, Lucia; Sabaka, Peter; Rohdewald, Peter; Durackova, Zdenka; Muchova, Jana

    2014-01-01

    We examined in vitro antioxidant capacity of polyphenolic extract obtained from the wood of oak Quercus robur (QR), Robuvit, using TEAC (Trolox equivalent antioxidant capacity) method and the effect of its intake on markers of oxidative stress, activity of antioxidant enzymes, and total antioxidant capacity in plasma of 20 healthy volunteers. Markers of oxidative damage to proteins, DNA, and lipids and activities of Cu/Zn-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined in the erythrocytes. We have found an in vitro antioxidant capacity of Robuvit of 6.37 micromole Trolox equivalent/mg of Robuvit. One month intake of Robuvit in daily dose of 300 mg has significantly decreased the serum level of advanced oxidation protein products (AOPP) and lipid peroxides (LP). Significantly increased activities of SOD and CAT as well as total antioxidant capacity of plasma after one month intake of Robuvit have been shown. In conclusion, we have demonstrated for the first time that the intake of Robuvit is associated with decrease of markers of oxidative stress and increase of activity of antioxidant enzymes and total antioxidant capacity of plasma in vivo. PMID:25254080

  11. [Seasonal variations of soil enzyme activities in typical plant communities in the Ebinur Lake wetland, China].

    PubMed

    Zhu, Hai Qiang; Li, Yan Hong; Li, Fa Dong

    2017-04-18

    In this study, the soil catalase, phosphatase and urease activities of typical plant communities of reed (Phragmites australis) and tamarisk (Tamarix ramosissima) and their influencing factors were investigated in Ebinur Lake wetland. The results showed that three soil enzyme activities of reed and tamarisk had seasonal dynamic characteristics during different growth periods. For the reed community, the peak concentrations of soil catalase, phosphatase and urease appeared at vigorous stage with 3.26, 0.60 and 0.33 mg·g -1 , respectively, and the minimum value occurred at budding stage and leaf-expansion stage. For the tamarisk community, the peak values of three soil enzyme activities appeared at withered stage with values of 6.33, 0.58 and 0.21 mg·g -1 , respectively, and the valley values were observed at flowering and vigorous stages. Urease was stable during different growth periods, and it could be used as an indicator to identify the differences of soil enzyme activities in the wetlands. The enzyme activities of reed and tamarisk had significant positive correlation with soil organic matter and total P in all growth periods, while there was no significant relationship between enzyme activities and soil water content. The enzyme activities of reed had significant positive correlation with ammonium nitrogen in the rapid growth period. There were no significant relationships between enzyme activities and soil salinity in both communities. The soil enzyme activities of reed and tamarisk were controlled by many factors. Soil organic matter, soil water and soil temperature were the main factors influencing the enzyme activities in the Ebinur Lake wetland.

  12. Expression and Characterization of Acidothermus celluloyticus E1 Endoglucanase in Transgenic Duckweed Lemna minor 8627

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y.; Cheng, J. J.; Himmel, M. E.

    2007-01-01

    Endoglucanase E1 from Acidothermus cellulolyticus was expressed cytosolically under control of the cauliflower mosaic virus 35S promoter in transgenic duckweed, Lemna minor 8627 without any obvious observable phenotypic effects on morphology or rate of growth. The recombinant enzyme co-migrated with the purified catalytic domain fraction of the native E1 protein on western blot analysis, revealing that the cellulose-binding domain was cleaved near or in the linker region. The duckweed-expressed enzyme was biologically active and the expression level was up to 0.24% of total soluble protein. The endoglucanase activity with carboxymethylcellulose averaged 0.2 units mg protein{sup -1} extracted from fresh duckweed.more » The optimal temperature and pH for E1 enzyme activity were about 80 C and pH 5, respectively. While extraction with HEPES (N-[2-hydroxyethyl]piperazine-N{prime}-[2-ethanesulfonic acid]) buffer (pH 8) resulted in the highest recovery of total soluble proteins and E1 enzyme, extraction with citrate buffer (pH 4.8) at 65 C enriched relative amounts of E1 enzyme in the extract. This study demonstrates that duckweed may offer new options for the expression of cellulolytic enzymes in transgenic plants.« less

  13. Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites.

    PubMed

    Ribeiro, António J M; Holliday, Gemma L; Furnham, Nicholas; Tyzack, Jonathan D; Ferris, Katherine; Thornton, Janet M

    2018-01-04

    M-CSA (Mechanism and Catalytic Site Atlas) is a database of enzyme active sites and reaction mechanisms that can be accessed at www.ebi.ac.uk/thornton-srv/m-csa. Our objectives with M-CSA are to provide an open data resource for the community to browse known enzyme reaction mechanisms and catalytic sites, and to use the dataset to understand enzyme function and evolution. M-CSA results from the merging of two existing databases, MACiE (Mechanism, Annotation and Classification in Enzymes), a database of enzyme mechanisms, and CSA (Catalytic Site Atlas), a database of catalytic sites of enzymes. We are releasing M-CSA as a new website and underlying database architecture. At the moment, M-CSA contains 961 entries, 423 of these with detailed mechanism information, and 538 with information on the catalytic site residues only. In total, these cover 81% (195/241) of third level EC numbers with a PDB structure, and 30% (840/2793) of fourth level EC numbers with a PDB structure, out of 6028 in total. By searching for close homologues, we are able to extend M-CSA coverage of PDB and UniProtKB to 51 993 structures and to over five million sequences, respectively, of which about 40% and 30% have a conserved active site. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Enzyme release of phenolics from muscadine grape (Vitis rotundifolia Michx.) skins and seeds.

    PubMed

    Xu, Changmou; Yagiz, Yavuz; Borejsza-Wysocki, Wlodzimierz; Lu, Jiang; Gu, Liwei; Ramírez-Rodrigues, Milena M; Marshall, Maurice R

    2014-08-15

    Enzyme degradation of plant cell wall polysaccharides can potentially enhance the release of bioactive phenolics. The aim of this study was to evaluate various combinations of solvent and enzyme, enzyme type (cellulase, pectinase, ß-glucosidase), and hydrolysis time (1, 4, 8, 24 h) on the release of muscadine grape skin and seed phenolics, and their antioxidant activities. Results showed that pre-treated muscadine skins and seeds with enzymes decreased total phenolic yield compared with solvent (50% ethanol) alone. Enzyme release of phenolics from skins of different muscadine varieties was significantly different while release from seeds was similar. Enzyme hydrolysis was found to shorten extraction time. Most importantly, enzyme hydrolysis modified the galloylated form of polyphenols to low molecular weight phenolics, releasing phenolic acids (especially gallic acid), and enhancing antioxidant activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Evaluation of enzymes inhibition activities of medicinal plant from Burkina Faso.

    PubMed

    Bangou, Mindiédiba Jean; Kiendrebeogo, Martin; Meda, Nâg-Tiero Roland; Coulibaly, Ahmed Yacouba; Compaoré, Moussa; Zeba, Boukaré; Millogo-Rasolodimby, Jeanne; Nacoulma, Odile Germaine

    2011-01-15

    The aim of the present study was to evaluate some enzymes inhibitory effects of 11 plant species belonging to 9 families from Burkina Faso. Methanolic extracts were used for their Glutathione-s-transferase (GST), Acetylcholinesterase (AChE), Carboxylesterase (CES) and Xanthine Oxidase (XO) inhibitory activities at final concentration of 100 microg mL(-1). The total phenolics, flavonoids and tannins were also determined spectrophotometrically using Folin-Ciocalteu, AlCl3 and ammonium citrate iron reagents, respectively. Among the 11 species tested, the best inhibitory percentages were found with Euphorbia hirta, Sclerocarya birrea and Scoparia dulcis (inhibition > 40%) followed by Annona senegalensis, Annona squamosa, Polygala arenaria and Ceratotheca sesamoides (inhibition > 25%). The best total phenolic and tannin contents were found with S. birrea with 56.10 mg GAE/100 mg extract and 47.75 mg TAE/100 mg extract, respectively. E hirta presented the higher total flavonoids (9.96 mg QE/100 mg extract). It's was found that Sclerocarya birrea has inhibited all enzymes at more than 30% and this activity is correlated to total tannins contents. Contrary to S. birrea, the enzymatic activities of E. hirta and S. dulcis are correlated to total flavonoids contents. Present findings suggest that the methanolic extracts of those plant species are potential inhibitors of GST, AChE, CES and XO and confirm their traditional uses in the treatment of mental disorders, gout, painful inflammations and cardiovascular diseases.

  16. Cellulase activities in biomass conversion: measurement methods and comparison.

    PubMed

    Dashtban, Mehdi; Maki, Miranda; Leung, Kam Tin; Mao, Canquan; Qin, Wensheng

    2010-12-01

    Cellulose, the major constituent of all plant materials and the most abundant organic molecule on the Earth, is a linear biopolymer of glucose molecules, connected by β-1,4-glycosidic bonds. Enzymatic hydrolysis of cellulose requires mixtures of hydrolytic enzymes including endoglucanases, exoglucanases (cellobiohydrolases), and β-glucosidases acting in a synergistic manner. In biopolymer hydrolysis studies, enzyme assay is an indispensable part. The most commonly used assays for the individual enzymes as well as total cellulase activity measurements, including their advantages and limitations, are summarized in this review article. In addition, some novel approaches recently used for enzyme assays are summarized.

  17. The Algicidal Fungus Trametes versicolor F21a Eliminating Blue Algae via Genes Encoding Degradation Enzymes and Metabolic Pathways Revealed by Transcriptomic Analysis.

    PubMed

    Dai, Wei; Chen, Xiaolin; Wang, Xuewen; Xu, Zimu; Gao, Xueyan; Jiang, Chaosheng; Deng, Ruining; Han, Guomin

    2018-01-01

    The molecular mechanism underlying the elimination of algal cells by fungal mycelia has not been fully understood. Here, we applied transcriptomic analysis to investigate the gene expression and regulation at time courses of Trametes versicolor F21a during the algicidal process. The obtained results showed that a total of 193, 332, 545, and 742 differentially expressed genes were identified at 0, 6, 12, and 30 h during the algicidal process, respectively. The gene ontology terms were enriched into glucan 1,4-α-glucosidase activity, hydrolase activity, lipase activity, and endopeptidase activity. The KEGG pathways were enriched in degradation and metabolism pathways including Glycolysis/Gluconeogenesis, Pyruvate metabolism, the Biosynthesis of amino acids, etc. The total expression levels of all Carbohydrate-Active enZYmes (CAZyme) genes for the saccharide metabolism were increased by two folds relative to the control. AA5, GH18, GH5, GH79, GH128, and PL8 were the top six significantly up-regulated modules among 43 detected CAZyme modules. Four available homologous decomposition enzymes of other species could partially inhibit the growth of algal cells. The facts suggest that the algicidal mode of T. versicolor F21a might be associated with decomposition enzymes and several metabolic pathways. The obtained results provide a new candidate way to control algal bloom by application of decomposition enzymes in the future.

  18. The dogfish shark (Squalus acanthias) increases both hepatic and extrahepatic ornithine urea cycle enzyme activities for nitrogen conservation after feeding.

    PubMed

    Kajimura, Makiko; Walsh, Patrick J; Mommsen, Thomas P; Wood, Chris M

    2006-01-01

    Urea not only is utilized as a major osmolyte in marine elasmobranchs but also constitutes their main nitrogenous waste. This study investigated the effect of feeding, and thus elevated nitrogen intake, on nitrogen metabolism in the Pacific spiny dogfish Squalus acanthias. We determined the activities of ornithine urea cycle (O-UC) and related enzymes in liver and nonhepatic tissues. Carbamoyl phosphate synthetase III (the rate-limiting enzyme of the O-UC) activity in muscle is high compared with liver, and the activities in both tissues increased after feeding. The contribution of muscle to urea synthesis in the dogfish body appears to be much larger than that of liver when body mass is considered. Furthermore, enhanced activities of the O-UC and related enzymes (glutamine synthetase, ornithine transcarbamoylase, arginase) were seen after feeding in both liver and muscle and were accompanied by delayed increases in plasma urea, trimethylamine oxide, total free amino acids, alanine, and chloride concentrations, as well as in total osmolality. The O-UC and related enzymes also occurred in the intestine but showed little change after feeding. Feeding did not change the rate of urea excretion, indicating strong N retention after feeding. Ammonia excretion, which constituted only a small percentage of total N excretion, was raised in fed fish, while plasma ammonia did not change, suggesting that excess ammonia in plasma is quickly ushered into synthesis of urea or protein. In conclusion, we suggest that N conservation is a high priority in this elasmobranch and that feeding promotes ureogenesis and growth. Furthermore, exogenous nitrogen from food is converted into urea not only by the liver but also by the muscle and to a small extent by the intestine.

  19. Temperature and UV light affect the activity of marine cell-free enzymes

    NASA Astrophysics Data System (ADS)

    Thomson, Blair; Hepburn, Christopher David; Lamare, Miles; Baltar, Federico

    2017-09-01

    Microbial extracellular enzymatic activity (EEA) is the rate-limiting step in the degradation of organic matter in the oceans. These extracellular enzymes exist in two forms: cell-bound, which are attached to the microbial cell wall, and cell-free, which are completely free of the cell. Contrary to previous understanding, cell-free extracellular enzymes make up a substantial proportion of the total marine EEA. Little is known about these abundant cell-free enzymes, including what factors control their activity once they are away from their sites (cells). Experiments were run to assess how cell-free enzymes (excluding microbes) respond to ultraviolet radiation (UVR) and temperature manipulations, previously suggested as potential control factors for these enzymes. The experiments were done with New Zealand coastal waters and the enzymes studied were alkaline phosphatase (APase), β-glucosidase, (BGase), and leucine aminopeptidase (LAPase). Environmentally relevant UVR (i.e. in situ UVR levels measured at our site) reduced cell-free enzyme activities by up to 87 % when compared to controls, likely a consequence of photodegradation. This effect of UVR on cell-free enzymes differed depending on the UVR fraction. Ambient levels of UV radiation were shown to reduce the activity of cell-free enzymes for the first time. Elevated temperatures (15 °C) increased the activity of cell-free enzymes by up to 53 % when compared to controls (10 °C), likely by enhancing the catalytic activity of the enzymes. Our results suggest the importance of both UVR and temperature as control mechanisms for cell-free enzymes. Given the projected warming ocean environment and the variable UVR light regime, it is possible that there could be major changes in the cell-free EEA and in the enzymes contribution to organic matter remineralization in the future.

  20. Induction of antioxidant enzyme activities by a phenylurea derivative, EDU.

    PubMed

    Stevens, T M; Boswell, G A; Adler, R; Ackerman, N R; Kerr, J S

    1988-10-01

    Oxygen free radicals have the potential to mediate cell injury. Defenses against such radicals include the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX). The purposes of this study were (1) to develop an in vitro model using human cells in which to investigate a potential pharmacologic agent as an inducer of these antioxidant enzymes; (2) to investigate the phenylurea derivative N-[2-(2-oxo-1-imidazolindinyl)ethyl]-N-phenylurea (EDU) in this model with paraquat (PQ) serving as the positive control; and (3) to determine if induction of the antioxidant enzymes by EDU occurs in vivo. Human gingival fibroblasts (Gin-1) were used as the target cell in vitro; PQ and EDU, an inducer of SOD and CAT activities in plants, were evaluated as antioxidant enzyme inducers. Total SOD activity in Gin-1 cells increased 2-fold (p less than 0.05) in the presence of 1.0 mM PQ for 18-48 hr compared with untreated controls. Gin-1 cells incubated with 0.25-2.0 mM PQ for 24 hr had significantly increased total SOD (1.5 to 2.0-fold; p less than 0.05). CAT activity increased with 1.0 and 2.0 mM PQ (p less than 0.05). In the presence of PQ, GSH-PX activity decreased (p less than 0.05) in a concentration-dependent manner, indicating inactivation of this enzyme. No toxicity, indicated by lactate dehydrogenase released into the incubation medium, was noted at PQ concentrations below 5.0 mM. In the presence of 0.125-2.0 mM EDU, total SOD activity in Gin-1 cells significantly increased (1.5 to 2.0-fold; p less than 0.05). CAT activity significantly increased in a dose-dependent manner (p less than 0.05), while GSH-PX activity remained constant following exposure to 0.125-2.0 mM EDU. Intraperitoneal administration of EDU to rats twice a day for 2 days at 100 mg/kg induced SOD activity in heart, liver, and lung compared to controls (p less than 0.05). CAT activity increased in the liver 56% and in the lung 36% (p less than 0.05). GSH-PX activity remained constant. Our findings indicate that Gin-1 cells are a useful model in which to study inducers of antioxidant enzymes in vitro and that the phenylurea compound EDU induces SOD and CAT activities both in vitro and in vivo.

  1. Identification of muscadine wine sulfur volatiles: pectinase versus skin-contact maceration.

    PubMed

    Gürbüz, Ozan; Rouseff, June; Talcott, Stephen T; Rouseff, Russell

    2013-01-23

    Muscadine grapes ( Vitis rotundifolia ) are widely grown in the southern United States, as the more common Vitis vinifera cannot be cultivated due to Pierce's disease. There is interest to determine if certain cultivars can be used for good-quality wine production. This study compared the effect of pectolytic enzyme pretreatment with conventional skin-contact fermentation on Muscadine (Noble, Vitis rotundifolia ) wine major volatiles, aroma active volatiles, and volatile sulfur compounds (VSCs). Volatile composition, aroma activity, and VSCs in the initial juice and wine samples after 3 years were determined by gas chromatography in combination with mass spectrometry (GC-MS), olfactory detection (GC-O), and pulsed flame photometric detection (GC-PFPD). Forty-three nonethanol MS volatiles were common to all samples. Total ion chromatogram (TIC) MS peak area increased 91% in the skin-contact wines from the initial juice but only 24% in the enzyme-treated wine. Thirty-one VSCs were detected. Twenty-four sulfur volatiles were identified by matching their retention characteristics on polar and nonpolar columns with those of standards or MS spectrum matches. Six of these (sulfur dioxide, 1-propanethiol, 3-mercapto-2-pentanone, 3-mercapto-2-butanone, 2,8-epithio-cis-p-menthane, and 1-p-menthene-8-thiol) were reported for the first time in muscadine wine. Five additional VSCs were tentatively identified by matching standardized retention values with literature values, and two remain unidentified. Total sulfur peak areas increased 400% in the skin-contact wine and 560% in the enzyme-treated wine compared to the initial juice. There were 42 aroma-active volatiles in the initial juice, 48 in the skin-contact wine, and 66 in the enzyme-treated wine. Eleven aroma-active volatiles in the skin-contact wine and 16 aroma volatiles in the enzyme-treated wine appear to be due to sulfur volatiles. Pectolytic enzyme-treated wines contained less total volatiles but more sulfur and aroma-active volatiles than the traditional skin-contact wine.

  2. Characterization of the Protease Activity of Detergents: Laboratory Practicals for Studying the Protease Profile and Activity of Various Commercial Detergents

    ERIC Educational Resources Information Center

    Valls, Cristina; Pujadas, Gerard; Garcia-Vallve, Santi; Mulero, Miquel

    2011-01-01

    Detergent enzymes account for about 30% of the total worldwide production of enzymes and are one of the largest and most successful applications of modern industrial biotechnology. Proteases can improve the wash performance of household, industrial, and institutional laundry detergents used to remove protein-based stains such as blood, grass, body…

  3. Influence of Tribulus terrestris on testicular enzyme in fresh water ornamental fish Poecilia latipinna.

    PubMed

    Kavitha, P; Subramanian, P

    2011-12-01

    The influence of Tribulus terrestris on the activities of testicular enzyme in Poecilia latipinna was assessed in lieu of reproductive manipulation. Different concentrations of (100, 150, 200, 250, and 300 mg) Tribulus terrestris extract and of a control were tested for testicular activity of enzymes in Poecilia latipinna for 2 months. The testis and liver were homogenized separately in 0.1 mol/l potassium phosphate buffer (0.1 mol/l, pH 7.2). The crude homogenate was centrifuged, and supernatant obtained was used as an enzyme extract for determination of activities. The activities of testicular functional enzyme ALP, ACP, SDH, LDH, and G6PDH levels were changed to different extent in treated groups compared with that of the control. The total body weight and testis weight were increased with the Tribulus terrestris-treated fish (Poecilia latipinna). These results suggest that Tribulus terrestris induced the testicular enzyme activity that may aid in the male reproductive functions. It is discernible from the present study that Tribulus terrestris has the inducing effect on reproductive system of Poecilia latipinna.

  4. Network Analysis of Enzyme Activities and Metabolite Levels and Their Relationship to Biomass in a Large Panel of Arabidopsis Accessions[C][W][OA

    PubMed Central

    Sulpice, Ronan; Trenkamp, Sandra; Steinfath, Matthias; Usadel, Bjorn; Gibon, Yves; Witucka-Wall, Hanna; Pyl, Eva-Theresa; Tschoep, Hendrik; Steinhauser, Marie Caroline; Guenther, Manuela; Hoehne, Melanie; Rohwer, Johann M.; Altmann, Thomas; Fernie, Alisdair R.; Stitt, Mark

    2010-01-01

    Natural genetic diversity provides a powerful resource to investigate how networks respond to multiple simultaneous changes. In this work, we profile maximum catalytic activities of 37 enzymes from central metabolism and generate a matrix to investigate species-wide connectivity between metabolites, enzymes, and biomass. Most enzyme activities change in a highly coordinated manner, especially those in the Calvin-Benson cycle. Metabolites show coordinated changes in defined sectors of metabolism. Little connectivity was observed between maximum enzyme activities and metabolites, even after applying multivariate analysis methods. Measurements of posttranscriptional regulation will be required to relate these two functional levels. Individual enzyme activities correlate only weakly with biomass. However, when they are used to estimate protein abundances, and the latter are summed and expressed as a fraction of total protein, a significant positive correlation to biomass is observed. The correlation is additive to that obtained between starch and biomass. Thus, biomass is predicted by two independent integrative metabolic biomarkers: preferential investment in photosynthetic machinery and optimization of carbon use. PMID:20699391

  5. Polyphenolic Contents and Antioxidant Activities of Underutilized Grape (Vitis vinifera L.) Pomace Extracts.

    PubMed

    Kabir, Faisal; Sultana, Mosammad Shahin; Kurnianta, Heri

    2015-09-01

    Grape pomace is an abundant source of underutilized winery by-products. Polyphenols were extracted from grape pomace using cellulase and gluco-amylase enzymes. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Folin-Ciocalteu's assays were used to measure antioxidant activity and total polyphenolic contents. Both cellulase, and gluco-amylase digested grape pomace showed efficient radical scavenging activity. In addition, the total polyphenolic contents of cellulase digested grape pomace showed lower concentrations were effective compared to higher concentrations, whereas gluco-amylase enzyme did not show remarkable variations. The DPPH radical scavenging activity and total polyphenolic contents were significantly higher in the cellulase digested grape pomace compared to the gluco-amylase digested and the not digested grape pomace. It is notable that enzymatic digestions were efficient for extracting polyphenols from grape pomace. The underutilized grape pomace polyphenols can be further used for food safety as a natural antioxidant.

  6. Polyphenolic Contents and Antioxidant Activities of Underutilized Grape (Vitis vinifera L.) Pomace Extracts

    PubMed Central

    Kabir, Faisal; Sultana, Mosammad Shahin; Kurnianta, Heri

    2015-01-01

    Grape pomace is an abundant source of underutilized winery by-products. Polyphenols were extracted from grape pomace using cellulase and gluco-amylase enzymes. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Folin-Ciocalteu’s assays were used to measure antioxidant activity and total polyphenolic contents. Both cellulase, and gluco-amylase digested grape pomace showed efficient radical scavenging activity. In addition, the total polyphenolic contents of cellulase digested grape pomace showed lower concentrations were effective compared to higher concentrations, whereas gluco-amylase enzyme did not show remarkable variations. The DPPH radical scavenging activity and total polyphenolic contents were significantly higher in the cellulase digested grape pomace compared to the gluco-amylase digested and the not digested grape pomace. It is notable that enzymatic digestions were efficient for extracting polyphenols from grape pomace. The underutilized grape pomace polyphenols can be further used for food safety as a natural antioxidant. PMID:26451359

  7. Blood antioxidant enzymes as markers of exposure or effect in coal miners.

    PubMed Central

    Perrin-Nadif, R; Auburtin, G; Dusch, M; Porcher, J M; Mur, J M

    1996-01-01

    OBJECTIVE--To investigate if blood Cu++/Zn++ superoxide dismutase, glutathione peroxidase, catalase, and total plasma antioxidant activities could be markers of biological activity resulting from exposure to respirable coal mine dust in active miners, and of pneumoconiosis in retired miners. METHODS--Blood samples were randomly obtained from active surface workers (n = 30) and underground miners (n = 34), and from retired miners without (n = 21), and with (n = 33) pneumoconiosis. Antioxidant enzyme activities and total plasma antioxidants were measured in erythrocytes and plasma. Non-parametric tests were completed by analyses of covariance to compare antioxidants between groups, taking into account potential confounding factors (age, smoking history (pack-years)). RESULTS--Erythrocyte Cu++/Zn++ superoxide dismutase activity was significantly higher in the group of underground miners than the group of surface workers. The differences in total plasma antioxidants and plasma glutathione peroxidase activity between both groups were related to age. Glutathione peroxidase activity increased in the plasma of retired miners with pneumoconiosis, compared with retired miners without pneumoconiosis. No differences were found either in erythrocyte antioxidant enzyme activities or in total plasma antioxidants between the groups of retired miners without and with pneumoconiosis. CONCLUSIONS--In this study, erythrocyte Cu++/Zn++ superoxide dismutase activity may be considered as a marker of effect of respirable coal mine dust in exposed workers. This result is in agreement with the hypothesis that reactive oxygen species are involved in cell injury induced by coal mine dust, and may be predictive of the degree of inflammation and pneumoconiosis induced by coal mine dust. The increase in glutathione peroxidase activity in the plasma of retired miners with pneumoconiosis may be the result of a response to the increasing hydrogen peroxide (H2O2) production due to the disease process. PMID:8563856

  8. [Correlation analysis of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata].

    PubMed

    Wu, Dan; Luo, Shi-qiong; Yang, Zhan-nan; Ma, Jing; Hong, Liang

    2015-04-01

    The relationship of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata were investigated by measuring nutrients, enzyme activity, pH, concentrations of microbe phospholipid fatty acids (PLFAs) in soils, and determining concentrations of polyphenols and total flavonoids of H. cordata. The research is aimed to understand characteristics of the planting soils and improve the quality of cultivated H. cordata. The soils at different sample sites varied greatly in nutrients, enzyme activity, pH, microbic PLFAs and polyphenols and all flavonoids. The content of total PLFAs in sample sites was following: bacteria > fungi > actinomyces > nematode. The content of bacteria PLFAs was 37.5%-65.0% at different sample sites. Activities of polyphenol oxidease, concentrations of available P and content of PLFAs of bacteria, actinomyces and total microorganisms in soils were significantly and positively related to the concentrations of polyphenols and total flavonoids of H. cordata, respectively (P < 0.05) . The Content of fungi PLFAs in soils was significantly and negatively related to concentrations of polyphenols and total flavonoids of H. cordata, respectively (P < 0.05). This study provides evidence that effectiveness of the soil nutrient, which may be improved due to transformation of soil microorganisms and enzymes to N and P in the soils, was beneficial to adaptation of H. cordata adapted to different soil conditions, and significantly affects metabolic accumulation of polyphenols and flavonoids of H. cordata.

  9. Synthesis and activity of Helicobacter pylori urease and catalase at low pH.

    PubMed Central

    Bauerfeind, P; Garner, R; Dunn, B E; Mobley, H L

    1997-01-01

    BACKGROUND: Helicobacter pylori produces large amounts of urease presumably to be prepared for the rare event of a sudden acid exposure. The hypothesis that H pylori is acid sensitive and protein production is inhibited by low pH was examined. METHODS: H pylori or its soluble enzymes were incubated buffered or unbuffered at a pH ranging from 2-7 in the presence of 5 mM urea for 30 minutes. After exposure, urease and catalase activities of whole cells, supernatants, and soluble enzyme preparations were measured at pH 6.8. Newly synthesised enzyme was quantified by immunoprecipitation of [35S]-methionine labelled protein. RESULTS: Exposure to buffer below pH 4 resulted in loss of intracellular urease activity. In soluble enzyme preparations and supernatant, no urease activity was measurable after incubation at pH < 5. In contrast, catalase in whole cells, supernatant, and soluble enzyme preparations remained active after exposure to pH > or = 3. Exposure below pH 5 inhibited synthesis of total protein including nascent urease and catalase. At pH 6 or 7, urease represented 10% of total protein, catalase 1.5%. Exposure of H pylori to unbuffered HCl (pH > 2) resulted in an immediate neutralisation; urease and catalase activities and synthesis were unchanged. CONCLUSION: Low surrounding pH reduces activity of urease and synthesis of nascent urease, catalase, and presumably of most other proteins. This suggests that H pylori is not acidophilic although it tolerates short-term exposure to low pH. PMID:9155571

  10. ENZYME ACTIVITIES DURING THE ASEXUAL CYCLE OF NEUROSPORA CRASSA

    PubMed Central

    Stine, G. J.

    1968-01-01

    Three enzymes, (a) nicotinamide adenine diphosphate-dependent glutamic dehydrogenase (NAD enzyme), (b) nictoinamide adenine triphosphate-dependent glutamic dehydrogenase (NADP enzyme), and (c) nicotinamide-adenine dinucleotidase (NADase), were measured in separate extracts of Neurospora crassa grown in Vogel's medium N and medium N + glutamate. Specific activities and total units per culture of each enzyme were determined at nine separate intervals phased throughout the asexual cycle. The separate dehydrogenases were lowest in the conidia, increased slowly during germination, and increased rapidly during logarithmic mycelial growth. The amounts of these enzymes present during germination were small when compared with those found later during the production of the conidiophores. The NAD enzyme may be necessary for pregermination synthesis. The NADP-enzyme synthesis was associated with the appearance of the germ tube. Although higher levels of the dehydrogenases in the conidiophores resulted in more enzyme being found in the differentiated conidia, the rate of germination was uneffected. The greatest activity for the NADase enzyme was associated with the conidia, early phases of germination, and later production of new conidia. NADase decreased significantly with the onset of logarithmic growth, remained low during the differentiation of conidiophores, and increased considerably as the conidiophores aged. PMID:4384627

  11. Responses of Biogeochemical Characteristics and Enzyme Activities in Sediment to Climate Warming under a Simulation Experiment in Geographically Isolated Wetlands of the Hulunbuir Grassland, China.

    PubMed

    Han, Liliang; Su, Derong; Lv, Shihai; Luo, Yan; Li, Xingfu; Jiao, Jian; Diao, Zhaoyan; Bu, He

    2017-08-27

    Climate warming generates a tremendous threat to the stability of geographically-isolated wetland (GIW) ecosystems and changes the type of evaporation and atmospheric precipitation in a region. The intrinsic balance of biogeochemical processes and enzyme activity in GIWs may be altered as well. In this paper, we sampled three types of GIWs exhibiting different kinds of flooding periods. With the participation of real-time temperature regulation measures, we assembled a computer-mediated wetland warming micro-system in June 2016 to simulate climate situation of ambient temperature (control group) and two experimental temperature differences (+2.5 °C and +5.0 °C) following a scientific climate change circumstance based on daily and monthly temperature monitoring at a two-minutes scale. Our results demonstrate that the contents of the total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) in the warmed showed, roughly, a balance or a slight decrease than the control treatment. Warming obstructed the natural subsidence of sediment, but reinforced the character of the ecological source, and reduced the activity of urease (URE), but promoted the activity of alkaline phosphatase (AKP) and sucrase (SUC). Redundancy analysis showed that sucrase, urease, available phosphorus (AP), and pH were the major correlating factors under warming conditions in our research scope. Total organic carbon, total nitrogen, sucrase, catalase (CAT), and alkaline phosphatase were the principal reference factors to reflect the ambient temperature variations. Nutrient compositions and enzyme activities in GIW ecosystems could be reconstructed under the warming influence.

  12. Irradiation effects on hydrases for biomedical applications

    NASA Astrophysics Data System (ADS)

    Furuta, Masakazu; Ohashi, Isao; Oka, Masahito; Hayashi, Toshio

    2000-03-01

    To apply an irradiation technique to sterilize "Hybrid" biomedical materials including enzymes, we selected papain, a well-characterized plant endopeptidase as a model to examine durability of enzyme activity under the practical irradiation condition in which limited data were available for irradiation inactivation of enzymes. Dry powder and frozen aqueous solution of papain showed significant durability against 60Co-gamma irradiation suggesting that, the commercial irradiation sterilizing method is applicable without modification. Although irradiation of unfrozen aqueous papain solution showed an unusual change of the enzymatic activity with the increasing doses, and was totally inactivated at 15 kGy, we managed to keep the residual activity more than 50% of initial activity after 30-kGy irradiation, taking such optimum conditions as increasing enzyme concentration from 10 to 100 mg/ml and purging with N 2 gas to suppress the formation of free radicals.

  13. The Algicidal Fungus Trametes versicolor F21a Eliminating Blue Algae via Genes Encoding Degradation Enzymes and Metabolic Pathways Revealed by Transcriptomic Analysis

    PubMed Central

    Dai, Wei; Chen, Xiaolin; Wang, Xuewen; Xu, Zimu; Gao, Xueyan; Jiang, Chaosheng; Deng, Ruining; Han, Guomin

    2018-01-01

    The molecular mechanism underlying the elimination of algal cells by fungal mycelia has not been fully understood. Here, we applied transcriptomic analysis to investigate the gene expression and regulation at time courses of Trametes versicolor F21a during the algicidal process. The obtained results showed that a total of 193, 332, 545, and 742 differentially expressed genes were identified at 0, 6, 12, and 30 h during the algicidal process, respectively. The gene ontology terms were enriched into glucan 1,4-α-glucosidase activity, hydrolase activity, lipase activity, and endopeptidase activity. The KEGG pathways were enriched in degradation and metabolism pathways including Glycolysis/Gluconeogenesis, Pyruvate metabolism, the Biosynthesis of amino acids, etc. The total expression levels of all Carbohydrate-Active enZYmes (CAZyme) genes for the saccharide metabolism were increased by two folds relative to the control. AA5, GH18, GH5, GH79, GH128, and PL8 were the top six significantly up-regulated modules among 43 detected CAZyme modules. Four available homologous decomposition enzymes of other species could partially inhibit the growth of algal cells. The facts suggest that the algicidal mode of T. versicolor F21a might be associated with decomposition enzymes and several metabolic pathways. The obtained results provide a new candidate way to control algal bloom by application of decomposition enzymes in the future. PMID:29755442

  14. [Effects of different tillage methods on phospholipid fatty acids and enzyme activities in calcareous cinnamon soil].

    PubMed

    Pei, Xue-Xia; Dang, Jian-You; Zhang, Ding-Yi; Wang, Jiao-Ai; Zhang, Jing

    2014-08-01

    In order to study changes of physical and chemical characteristics and microbial activities in soil under different tillage methods, effects of four tillage methods, rotary tillage (RT), subsoil tillage (ST), conventional tillage (CT) with corn straw returned to soil, and rotary tillage with no corn straw returned to soil (CK), on phospholipid fatty acids (PLFA) characteristics and hydrolase enzymes activities in calcareous cinnamon soil were investigated. The results showed that soil hydrolase enzymes activities, nutrient contents, microbial diversity varied greatly with the different tillage methods. Returning corn straw to soil increased the kinds, amount of soil total PLFAs, bacteria PLFAs and actonomycetes PLFAs, while decreased the fungi PLFAs, indicating that fungi was more adaptable than bacteria to an infertile environment. ST and CT resulted in higher amounts of total PLFAs, which were 74.7% and 53.3% higher than that of CK, indicating they were more beneficial to the growth of plants. They could also improve soil physical and chemical properties, increase alk-phosphatase, protease and urease activities, which would provide a favorable soil condition for high and stable crop yields.

  15. Effect of temperature and pH on polygalacturonase production by pectinolytic bacteria Bacillus licheniformis strain GD2a in submerged medium from Raja Nangka (Musa paradisiaca var. formatypica) banana peel waste

    NASA Astrophysics Data System (ADS)

    Widowati, E.; Utami, R.; Mahadjoeno, E.; Saputro, G. P.

    2017-04-01

    The aim of this research were to determine the effect of temperature (45°C, 55°C, 65°C) and pH (5.0; 6.0; 7.0) on the increase of total cell count and polygalacturonase enzyme activity produced from raja nangka banana (Musa paradisiaca var. formatypica) peel waste by pectinolytic bacterial Bacillus licheniformis strain GD2a. This research applied two sample repetition and one analysis repetition. The result showed temperature and pH affect total cell count. The total cell count on 45°C and pH 7 recorded the highest number at 9.469 log cell/ml. Temperature and pH also affected pectin concentration at the end of fermentation. The lowest pectin concentration recorded at 45°C and pH 7 was 0.425 %. The highest enzyme activity recorded at 65°C and pH 7 was 0.204 U/ml. The highest enzyme protein concentration was recorded at 65°C and resulted as 0.310 mg/ml on pH 6. The highest specific activity was 19.527 U/mg at 65°C and pH 7. By this result, could be concluded that optimum condition process on polygalacturonase production was at 65°C and pH 7 because it gave highest enzyme activity result (0,204 U/ml).

  16. Directed evolution of new and improved enzyme functions using an evolutionary intermediate and multidirectional search.

    PubMed

    Porter, Joanne L; Boon, Priscilla L S; Murray, Tracy P; Huber, Thomas; Collyer, Charles A; Ollis, David L

    2015-02-20

    The ease with which enzymes can be adapted from their native roles and engineered to function specifically for industrial or commercial applications is crucial to enabling enzyme technology to advance beyond its current state. Directed evolution is a powerful tool for engineering enzymes with improved physical and catalytic properties and can be used to evolve enzymes where lack of structural information may thwart the use of rational design. In this study, we take the versatile and diverse α/β hydrolase fold framework, in the form of dienelactone hydrolase, and evolve it over three unique sequential evolutions with a total of 14 rounds of screening to generate a series of enzyme variants. The native enzyme has a low level of promiscuous activity toward p-nitrophenyl acetate but almost undetectable activity toward larger p-nitrophenyl esters. Using p-nitrophenyl acetate as an evolutionary intermediate, we have generated variants with altered specificity and catalytic activity up to 3 orders of magnitude higher than the native enzyme toward the larger nonphysiological p-nitrophenyl ester substrates. Several variants also possess increased stability resulting from the multidimensional approach to screening. Crystal structure analysis and substrate docking show how the enzyme active site changes over the course of the evolutions as either a direct or an indirect result of mutations.

  17. Serum prolidase enzyme activity in obese subjects and its relationship with oxidative stress markers.

    PubMed

    Aslan, Mehmet; Duzenli, Ufuk; Esen, Ramazan; Soyoral, Yasemin Usul

    2017-10-01

    The relationship between increased serum enzyme activity of prolidase and increased rate of collagen turnover in the arterial wall has been asserted in previous studies. Collagen reflects much of the strength to the connective tissue involved in the arterial wall. Atherosclerosis is very common vessel disease and oxidative stress plays a pivotal role in the etiopathogenesis. Our objective was to examine the serum enzyme activity of prolidase and its possible relationships with oxidative stress parameters in obese subjects. Our present study was conducted 27 obese subjects and 26 age-matched healthy control subjects. The serum enzyme activity of prolidase in all study population was evaluated spectrophotometrically. Oxidative stress levels in obese subjects were analyzed with total antioxidant capacity (TAC) and total oxidant status (TOS) as well as oxidative stress index (OSI). Obese subjects have higher serum TOS and OSI indicators as well as prolidase activity than those in control subjects (for all; p<0.001). Moreover, obese subjects have lower levels of TAC than in those in healthy subjects (p<0.001). In the Pearson's correlation analysis, enzyme activity of prolidase was positively related with TOS (p<0.001, r=0.529) and OSI (p<0.001, r=0.519) as well as BMI (p<0.001, r=0.692) and inversely related with TAC (p<0.05, r=-0.405) in obese subjects. Increased serum prolidase activity and decreased antioxidant levels are likely to be a results of increased of oxidative stress levels in obese subjects. The significantly correlation between increased oxidative stress and increased prolidase activity may play a pivotal role in etiopathogenesis of atherosclerotic cardiovascular diseases in obese subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Short term total sleep deprivation in the rat increases antioxidant responses in multiple brain regions without impairing spontaneous alternation behavior

    PubMed Central

    Ramanathan, Lalini; Hu, Shuxin; Frautschy, Sally A.; Siegel, Jerome M.

    2009-01-01

    Total sleep deprivation (TSD) induces a broad spectrum of cognitive, behavioral and cellular changes. We previously reported that long term (5–11 days) TSD in the rat, by the disk-over-water method, decreases the activity of the antioxidant enzyme superoxide dismutase (SOD) in the brainstem and hippocampus. To gain insight into the mechanisms causing cognitive impairment, here we explore the early associations between metabolic activity, antioxidant responses and working memory (one form of cognitive impairment). Specifically we investigated the impact of short term (6 h) TSD, by gentle handling, on the levels of the endogenous antioxidant, total glutathione (GSHt), and the activities of the antioxidative enzymes, SOD and glutathione peroxidase (GPx). Short term TSD had no significant impact on SOD activity, but increased GSHt levels in the rat cortex, brainstem and basal forebrain, and GPx activity in the rat hippocampus and cerebellum. We also observed increased activity of hexokinase, (HK), the rate limiting enzyme of glucose metabolism, in the rat cortex and hypothalamus. We further showed that 6h of TSD leads to increased exploratory behavior to a new environment, without impairing spontaneous alternation behavior (SAB) in the Y maze. We conclude that acute (6h) sleep loss may trigger compensatory mechanisms (like increased antioxidant responses) that prevent initial deterioration in working memory. PMID:19850085

  19. Oxidation of monohydric phenol substrates by tyrosinase: effect of dithiothreitol on kinetics.

    PubMed

    Naish-Byfield, S; Cooksey, C J; Riley, P A

    1994-11-15

    The effect of thiol compounds on the monophenolase activity of tyrosinase was investigated using 4-hydroxyanisole as the substrate and dithiothreitol (DTT) as the model thiol compound. We have demonstrated three actions of DTT on tyrosinase-catalysed reactions: (1) direct reduction of the copper at the active site of the enzyme; (2) generation of secondary, oxidizable species by adduct formation with the o-quinone reaction product, 4-MOB, which leads to an increase in the total oxygen utilization by the reaction system; and (3) reversible inhibition of the enzyme. We confirm our previous observation that, at approx. 10 mol of DTT/mol of enzyme, the lag phase associated with monohydric phenol oxidation by tyrosinase is abolished. We suggest that this is due to reduction of the copper at the active site of the enzyme by DTT, since (a) reduction of active-site copper in situ by DTT was demonstrated by [Cu(I)]2-carbon monoxide complex formation and (b) abolition of the lag at low DTT concentration occurs without effect on the maximum rate of reaction or on the total amount of oxygen utilized. At concentrations of DTT above that required to abolish the lag, we found that the initial velocity of the reaction increased with increasing DTT, with a concomitant increase in the total oxygen utilization. This is due to the formation of DTT-4-methoxy-o-benzoquinone (4-MOB) adducts which provide additional dihydric phenol substrate either directly or by reducing nascent 4-MOB. We present n.m.r. evidence for the formation of mono- and di-aromatic DTT adducts with 4-MOB, consistent with a suggested reoxidation scheme in the presence of tyrosinase. Inhibition of the enzyme at concentrations of DTT above 300 pmol/unit of enzyme was released on exhaustion of DTT by adduct formation with 4-MOB as it was generated.

  20. Total solids content and degree of hydrolysis influence proteolytic inactivation kinetics following whey protein hydrolysate manufacture.

    PubMed

    Conesa, Celia; FitzGerald, Richard J

    2013-10-23

    The kinetics and thermodynamics of the thermal inactivation of Corolase PP in two different whey protein concentrate (WPC) hydrolysates with degree of hydrolysis (DH) values of ~10 and 21%, and at different total solids (TS) levels (from 5 to 30% w/v), were studied. Inactivation studies were performed in the temperature range from 60 to 75 °C, and residual enzyme activity was quantified using the azocasein assay. The inactivation kinetics followed a first-order model. Analysis of the activation energy, thermodynamic parameters, and D and z values, demonstrated that the inactivation of Corolase PP was dependent on solution TS. The intestinal enzyme preparation was more heat sensitive at low TS. Moreover, it was also found that the enzyme was more heat sensitive in solutions at higher DH.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schormann, Norbert; Velu, Sadanandan E.; Murugesan, Srinivasan

    Dihydrofolate reductase (DHFR) of the parasite Trypanosoma cruzi (T. cruzi) is a potential target for developing drugs to treat Chagas disease. We have undertaken a detailed structure-activity study of this enzyme. We report here synthesis and characterization of six potent inhibitors of the parasitic enzyme. Inhibitory activity of each compound was determined against T. cruzi and human DHFR. One of these compounds, ethyl 4-(5-[(2,4-diamino-6-quinazolinyl)methyl]amino-2-methoxyphenoxy)butanoate (6b) was co-crystallized with the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of T. cruzi and the crystal structure of the ternary enzyme:cofactor:inhibitor complex was determined. Molecular docking was used to analyze the potential interactions of all inhibitorsmore » with T. cruzi DHFR and human DHFR. Inhibitory activities of these compounds are discussed in the light of enzyme-ligand interactions. Binding affinities of each inhibitor for the respective enzymes were calculated based on the experimental or docked binding mode. An estimated 60-70% of the total binding energy is contributed by the 2,4-diaminoquinazoline scaffold.« less

  2. Total lactate dehydrogenase activity of tail muscle is not cold-adapted in nocturnal lizards from cool-temperate habitats.

    PubMed

    Hare, K M; Miller, J H; Clark, A G; Daugherty, C H

    2005-12-01

    The dependence of metabolic processes on temperature constrains the behavior, physiology and ecology of many ectothermic animals. The evolution of nocturnality in lizards, especially in temperate regions, requires adaptations for activity at low temperatures when optimal body temperatures are unlikely to be obtained. We examined whether nocturnal lizards have cold-adapted lactate dehydrogenase (LDH). LDH was chosen as a representative metabolic enzyme. We measured LDH activity of tail muscle in six lizard species (n=123: three nocturnal, two diurnal and one crepuscular) between 5 and 35 degrees C and found no differences in LDH-specific activity or thermal sensitivity among the species. Similarly, the specific activity and thermal sensitivity of LDH were similar between skinks and geckos. Similar enzyme activities among nocturnal and diurnal lizards indicate that there is no selection of temperature specific LDH enzyme activity at any temperature. As many nocturnal lizards actively thermoregulate during the day, LDH may be adapted for a broad range of temperatures rather than adapted specifically for the low temperatures encountered when the animals are active. The total activity of LDH in tropical and temperate lizards is not cold-adapted. More data are required on biochemical adaptations and whole animal thermal preferences before trends can be established.

  3. The biodiscovery potential of marine bacteria: an investigation of phylogeny and function

    PubMed Central

    Mühling, Martin; Joint, Ian; Willetts, Andrew J

    2013-01-01

    Summary A collection of marine bacteria isolated from a temperate coastal zone has been screened in a programme of biodiscovery. A total of 34 enzymes with biotechnological potential were screened in 374 isolates of marine bacteria. Only two enzymes were found in all isolates while the majority of enzyme activities were present in a smaller proportion of the isolates. A cluster analysis demonstrated no significant correlation between taxonomy and enzyme function. However, there was evidence of co-occurrence of some enzyme activity in the same isolate. In this study marine Proteobacteria had a higher complement of enzymes with biodiscovery potential than Actinobacteria; this contrasts with the terrestrial environment where the Actinobacteria phylum is a proven source of enzymes with important industrial applications. In addition, a number of novel enzyme functions were more abundant in this marine culture collection than would be expected on the basis of knowledge from terrestrial bacteria. There is a strong case for future investigation of marine bacteria as a source for biodiscovery. PMID:23557256

  4. Influence of time, storage temperature and freeze/thaw cycles on the activity of digestive enzymes from gilthead sea bream (Sparus aurata).

    PubMed

    Solovyev, Mikhail; Gisbert, Enric

    2016-10-01

    In this study, we tested the effects of long-term storage (2 years) at -20 °C and short-term storage (several hours) in ice and freeze/thaw cycles on the activities of pancreatic, gastric and intestinal (brush border and cytosolic) digestive enzymes in a teleost fish species. The results revealed a significant lose in activity of pancreatic (trypsin, chymotrypsin, total alkaline proteases and α-amylase) and intestinal cytosolic (leucine-alanine peptidase) enzymes between 140 and 270 days of storage at -20 °C, whereas in contrast, the activity of all the assayed brush border enzymes remained constant during the first 2 years of storage at -20 °C. During short-term storage conditions, the most stable enzymes assayed were those of the enterocytes of the brush border, which did not show any change in activity after being held for 5 h in ice. Five freezing and thawing cycles did not affect the activity of the intestinal brush border enzymes and the cytosolic ones, whereas the activity of trypsin, α-amylase and bile-salt-activated lipase was significantly affected by the number of freezing and thawing cycles. No changes in pepsin activity were found in samples exposed to 1 and 2 freezing and thawing cycles.

  5. Profiling of Volatile Compounds and Associated Gene Expression and Enzyme Activity during Fruit Development in Two Cucumber Cultivars

    PubMed Central

    Chen, Shuxia; Zhang, Ranran; Hao, Lining; Chen, Weifeng; Cheng, Siqiong

    2015-01-01

    Changes in volatile content, as well as associated gene expression and enzyme activity in developing cucumber fruits were investigated in two Cucumis sativus L. lines (No. 26 and No. 14) that differ significantly in fruit flavor. Total volatile, six-carbon (C6) aldehyde, linolenic and linoleic acid content were higher during the early stages, whereas the nine-carbon (C9) aldehyde content was higher during the latter stages in both lines. Expression of C. sativus hydroperoxide lyase (CsHPL) mirrored 13-hydroperoxide lyase (13-HPL) enzyme activity in variety No. 26, whereas CsHPL expression was correlated with 9-hydroperoxide lyase (9-HPL) enzyme activity in cultivar No. 14. 13-HPL activity decreased significantly, while LOX (lipoxygenase) and 9-HPL activity increased along with fruit ripening in both lines, which accounted for the higher C6 and C9 aldehyde content at 0-6 day post anthesis (dpa) and 9-12 dpa, respectively. Volatile compounds from fruits at five developmental stages were analyzed by principal component analysis (PCA), and heatmaps of volatile content, gene expression and enzyme activity were constructed. PMID:25799542

  6. Response surface methodology optimization of partitioning of xylanase form Aspergillus Niger by metal affinity polymer-salt aqueous two-phase systems.

    PubMed

    Fakhari, Mohamad Ali; Rahimpour, Farshad; Taran, Mojtaba

    2017-09-15

    Aqueous two phase affinity partitioning system using metal ligands was applied for partitioning and purification of xylanase produced by Aspergillus Niger. To minimization the number of experiments for the design parameters and develop predictive models for optimization of the purification process, response surface methodology (RSM) with a face-centered central composite design (CCF) has been used. Polyethylene glycol (PEG) 6000 was activated using epichlorohydrin, covalently linked to iminodiacetic acid (IDA), and the specific metal ligand Cu was attached to the polyethylene glycol-iminodiacetic acid (PEG-IDA). The influence of some experimental variables such as PEG (10-18%w/w), sodium sulfate (8-12%), PEG-IDA-Cu 2+ concentration (0-50% w/w of total PEG), pH of system (4-8) and crude enzyme loading (6-18%w/w) on xylanase and total protein partitioning coefficient, enzyme yield and enzyme specific activity were systematically evaluated. Two optimal point with high enzyme partitioning factor 10.97 and yield 79.95 (including 10% PEG, 12% Na 2 SO 4 , 50% ligand, pH 8 and 6% crude enzyme loading) and high specific activity in top phase 42.21 (including 14.73% PEG, 8.02% Na 2 SO 4 , 28.43% ligand, pH 7.7 and 6.08% crude enzyme loading) were attained. The adequacy of the RSM models was verified by a good agreement between experimental and predicted results. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Soil microbiological properties and enzymatic activities of long-term post-fire recovery in dry and semiarid Aleppo pine (Pinus halepensis M.) forest stands

    NASA Astrophysics Data System (ADS)

    Hedo, J.; Lucas-Borja, M. E.; Wic, C.; Andrés-Abellán, M.; de Las Heras, J.

    2015-02-01

    Wildfires affecting forest ecosystems and post-fire silvicultural treatments may cause considerable changes in soil properties. The capacity of different microbial groups to recolonise soil after disturbances is crucial for proper soil functioning. The aim of this work was to investigate some microbial soil properties and enzyme activities in semiarid and dry Aleppo pine (Pinus halepensis M.) forest stands. Different plots affected by a wildfire event 17 years ago without or with post-fire silvicultural treatments 5 years after the fire event were selected. A mature Aleppo pine stand, unaffected by wildfire and not thinned was used as a control. Physicochemical soil properties (soil texture, pH, carbonates, organic matter, electrical conductivity, total N and P), soil enzymes (urease, phosphatase, β-glucosidase and dehydrogenase activities), soil respiration and soil microbial biomass carbon were analysed in the selected forests areas and plots. The main finding was that long time after this fire event produces no differences in the microbiological soil properties and enzyme activities of soil after comparing burned and thinned, burned and not thinned, and mature plots. Moreover, significant site variation was generally seen in soil enzyme activities and microbiological parameters. We conclude that total vegetation recovery normalises post-fire soil microbial parameters, and that wildfire and post-fire silvicultural treatments are not significant factors affecting soil properties after 17 years.

  8. Effect of calcium and salicylic acid on quality retention in relation to antioxidative enzymes in radish stored under refrigerated conditions.

    PubMed

    Devi, Jomika; Bhatia, Surekha; Alam, M S; Dhillon, Tarsem Singh

    2018-03-01

    Effect of post harvest treatments with calcium chloride (CaCl 2 ) and salicylic acid (SA) on physiological and biochemical parameters in relation to activities of antioxidative enzymes were investigated in radish. Radish of variety Punjab Safed Mooli 2 was harvested, washed and treated with CaCl 2 (1, 1.5 and 2%) or SA (1, 1.5 and 2 mM). Treated as well as untreated radish were placed in open trays and stored under refrigerated (5 ± 1 °C, 90% RH) conditions for 42 days. Treatment of radish with CaCl 2 and SA slowed down changes in physiological weight, colour, total soluble solids, ascorbic acid, titrable acidity, total phenolics and antioxidant activity. Treated samples exhibited higher enhancement in activities of antioxidant enzymes viz. catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), peroxidase (POD), dehydroascorbate reductase (DHAR) and monodehydro-ascorbate reductase (MDHAR) than untreated samples. However SA was found to be more effective in slowing down the metabolic activities of radish as compared to CaCl 2 treatment. Among all the treatments, 1.5 mM SA maintained the quality parameters to greater extent probably by reducing the oxidative stress to larger extent due to highest activities of antioxidative enzymes and can be used to enhance the shelf life of radish during refrigerated storage.

  9. [Activity and thermal stability of acid phosphatase in homogenates of Amoeba proteus, acclimated to various temperatures].

    PubMed

    Sopina, V A

    2001-01-01

    Activity and thermoresistance of acid phosphatase were determined in supernatant of Amoeba proteus homogenates using 1-naphthyl phosphate (pH 4.0) and p-nitrophenyl phosphate (pH 5.5). Although tartrate-resistant and tartrate-sensitive acid phosphatases hydrolyse both substrates, the former mainly hydrolyses p-nitrophenyl phosphate and the latter 1-naphthyl phosphate. A decrease in the activity of the total and tartrate-sensitive acid phosphatases, when using 1-naphthyl phosphate, and of the total and tartrate-resistant acid phosphatases, when using p-nitrophenyl phosphate, was found in amoebae acclimated to 10 degrees C (10 degrees-amoebae) compared to those acclimated to 25 degrees C (25 degrees-amoebae). Using 1-naphthyl phosphate, the thermoresistance of the total acid phosphatase was lower in 10 degrees-amoebae than in 25 degrees-amoebae, but the thermostability of tartrate-resistant enzyme was the same in both groups of amoebae. Using p-nitrophenyl phosphate, the thermoresistance of the total and tartrate-resistant acid phosphatases was lower (the latter only slightly) in 10 degrees-amoebae than in 25 degrees-amoebae. It is suggested that at least with the use of 1-naphthyl phosphate a decrease in thermostability of the total acid phosphatase may be due to a decrease in thermoresistance of tartrate-sensitive enzyme. The results obtained confirm the author's previous data on the activity and thermostability of electrophoretic forms of acid phosphatase using 2-naphthyl phosphate in 10- and 25 degrees-amoebae (Sopina, 2001). It is the first case of discovering a correlation between changes in primary cell thermoresistance of amoebae cultured at different temperatures and changes in the activity and thermostability of acid phosphatase in their homogenates, with the number of electrophoretic forms of this enzyme and their mobility being permanent.

  10. Effects of frying oil and Houttuynia cordata thunb on xenobiotic-metabolizing enzyme system of rodents

    PubMed Central

    Chen, Ya-Yen; Chen, Chiao-Ming; Chao, Pi-Yu; Chang, Tsan-Ju; Liu, Jen-Fang

    2005-01-01

    AIM: To evaluate the effects of frying oil and Houttuynia cordata Thunb (H. cordata), a vegetable traditionally consumed in Taiwan, on the xenobiotic-metabolizing enzyme system of rodents. METHODS: Forty-eight Sprague-Dawley rats were fed with a diet containing 0%, 2% or 5% H. cordata powder and 15% fresh soybean oil or 24-h oxidized frying oil (OFO) for 28 d respectively. The level of microsomal protein, total cytochrome 450 content (CYP450) and enzyme activities including NADPH reductase, ethoxyresorufin O-deethylase (EROD), pentoxyresorufin O-dealkylase (PROD), aniline hydroxylase (ANH), aminopyrine demethylase (AMD), and quinone reductase (QR) were determined. QR represented phase II enzymes, the rest of the enzymes tested represented phase I enzymes. RESULTS: The oxidized frying oil feeding produced a significant increase in phase I and II enzyme systems, including the content of CYP450 and microsomal protein, and the activities of NADPH reductase, EROD, PROD, ANH, AMD and QR in rats (P<0.05). In addition, the activities of EROD, ANH and AMD decreased and QR increased after feeding with H. cordata in OFO-fed group (P<0.05). The feeding with 2% H. cordata diet showed the most significant effect. CONCLUSION: The OFO diet induces phases I and II enzyme activity, and the 2% H. cordata diet resulted in a better regulation of the xenobiotic-metabolizing enzyme system. PMID:15637750

  11. Kalpaamruthaa ameliorates mitochondrial and metabolic alterations in diabetes mellitus induced cardiovascular damage.

    PubMed

    Latha, Raja; Shanthi, Palanivelu; Sachdanandam, Panchanadham

    2014-12-01

    Efficacy of Kalpaamruthaa on the activities of lipid and carbohydrate metabolic enzymes, electron transport chain complexes and mitochondrial ATPases were studied in heart and liver of experimental rats. Cardiovascular damage (CVD) was developed in 8 weeks after type 2 diabetes mellitus induction with high fat diet (2 weeks) and low dose of streptozotocin (2 × 35 mg/kg b.w. i.p. in 24 hr interval). In CVD-induced rats, the activities of total lipase, cholesterol ester hydrolase and cholesterol ester synthetase were increased, while lipoprotein lipase and lecithin-cholesterol acyltransferase activities were decreased. The activities of lipid-metabolizing enzymes were altered by Kalpaamruthaa in CVD-induced rats towards normal. Kalpaamruthaa modulated the activities of glycolytic enzymes (hexokinase, phosphogluco-isomerase, aldolase and glucose-6-phosphate dehydrogenase), gluconeogenic enzymes (glucose-6-phosphatase and fructose-1, 6-bisphosphatase) and glycogenolytic enzyme (glycogen phosphorylase) along with increased glycogen content in the liver of CVD-induced rats. The activities of isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, α-ketoglutarate dehydrogenase, Complexes and ATPases (Na(+)/K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase) were decreased in CVD-induced rats, which were ameliorated by the treatment with Kalpaamruthaa. This study ascertained the efficacy of Kalpaamruthaa for the treatment of CVD in diabetes through the modulation of metabolizing enzymes and mitochondrial dysfunction.

  12. The relationship between angiotensin-converting enzyme (ACE) insertion (I) / deletion (D) polymorphism, serum ACE activity and bone mineral density (BMD) in older Chinese.

    PubMed

    Zhang, Ya-Feng; Wang, Hong; Cheng, Qiong; Qin, Ling; Tang, Nelson Ls; Leung, Ping-Chong; Kwok, Timothy Cy

    2017-01-01

    In this study, we set out to investigate the relationship between angiotensin-converting enzyme ( ACE) I/D polymorphism, serum ACE activity and bone mineral density (BMD) in older Chinese. A standardized, structured, face-to-face interview was performed to collect demographic information. BMD was measured using dual-energy X-ray absorptiometry (DXA). I/D genotypes of ACE were determined by polymerase chain reaction (PCR) amplification. Serum ACE activity was determined photometrically by a commercially available kinetic kit. Multiple linear regression analysis was used to examine the relationship between ACE I/D polymorphism, serum ACE activity and BMD. A total of 1567 males and 1760 females were selected for analyzing the relationship between ACE I/D polymorphism and BMD. There was no significant difference in spine BMD, total hip BMD and femur neck BMD among different ACE I/D genotypes both in males and females. A total of 1699 males and 1739 females were selected for analyzing the relationship between serum ACE activity and BMD. There was also no significant difference in spine BMD, total hip BMD and femur neck BMD among different serum ACE activity groups both in males and females. There was no relationship between ACE I/D polymorphism, serum ACE activity and BMD in older Chinese.

  13. Body Composition, Hemodynamic and Biochemical Parameters in Young Female Normal-Weight Oligo-amenorrheic and Eumenorrheic Athletes and Non-athletes

    PubMed Central

    Singhal, Vibha; de Lourdes Eguiguren, Maria; Eysenbach, Lindsey; Clarke, Hannah; Slattery, Meghan; Eddy, Kamryn; Ackerman, Kathryn E.; Misra, Madhusmita

    2014-01-01

    Aims Low-weight hypogonadal conditions such as anorexia nervosa are associated with marked changes in body composition, hemodynamic and hematological parameters, and liver enzymes. The impact of athletic activity in normal-weight adolescents with/without amenorrhea on these parameters has not been assessed. Our aim was to examine these parameters in normal-weight athletes and non-athletes and determine any associations of body composition, oligo-amenorrhea and exercise intensity. Methods We assessed vital signs, complete blood counts, liver enzymes, and regional body composition in 43 oligo-amenorrheic athletes (OAA), 24 eumenorrheic athletes (EA) and 23 non-athletes 14-21 years of age. Results BMI was lower in OAA than EA. Systolic and pulse pressure, and temperature were lowest in OAA. Blood counts did not differ among groups. AST was higher in both groups of athletes, while ALT was higher in OAA than EA and non-athletes. Total and regional fat was lower in OAA than other groups, positively associated with heart rate and inversely with liver enzymes. Conclusions Athletic activity is associated with higher AST, whereas menstrual dysfunction is associated with lower total and regional fat and higher ALT. Higher liver enzymes are associated with reductions in total and regional fat. PMID:25376841

  14. Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry.

    PubMed

    Ferreira Filho, Jaire Alves; Horta, Maria Augusta Crivelente; Beloti, Lilian Luzia; Dos Santos, Clelton Aparecido; de Souza, Anete Pereira

    2017-10-12

    Trichoderma harzianum is used in biotechnology applications due to its ability to produce powerful enzymes for the conversion of lignocellulosic substrates into soluble sugars. Active enzymes involved in carbohydrate metabolism are defined as carbohydrate-active enzymes (CAZymes), and the most abundant family in the CAZy database is the glycoside hydrolases. The enzymes of this family play a fundamental role in the decomposition of plant biomass. In this study, the CAZymes of T. harzianum were identified and classified using bioinformatic approaches after which the expression profiles of all annotated CAZymes were assessed via RNA-Seq, and a phylogenetic analysis was performed. A total of 430 CAZymes (3.7% of the total proteins for this organism) were annotated in T. harzianum, including 259 glycoside hydrolases (GHs), 101 glycosyl transferases (GTs), 6 polysaccharide lyases (PLs), 22 carbohydrate esterases (CEs), 42 auxiliary activities (AAs) and 46 carbohydrate-binding modules (CBMs). Among the identified T. harzianum CAZymes, 47% were predicted to harbor a signal peptide sequence and were therefore classified as secreted proteins. The GH families were the CAZyme class with the greatest number of expressed genes, including GH18 (23 genes), GH3 (17 genes), GH16 (16 genes), GH2 (13 genes) and GH5 (12 genes). A phylogenetic analysis of the proteins in the AA9/GH61, CE5 and GH55 families showed high functional variation among the proteins. Identifying the main proteins used by T. harzianum for biomass degradation can ensure new advances in the biofuel production field. Herein, we annotated and characterized the expression levels of all of the CAZymes from T. harzianum, which may contribute to future studies focusing on the functional and structural characterization of the identified proteins.

  15. Proteolytic enzymes from Bromelia antiacantha as tools for controlled tissue hydrolysis in entomology.

    PubMed

    Macció, Laura; Vallés, Diego; Cantera, Ana Maria

    2013-12-01

    A crude extract with high proteolytic activity (78.1 EU/mL), prepared from ripe fruit of Bromelia antiacantha was used to hydrolyze and remove soft tissues from the epigyne of Apopyllus iheringi. This enzymatic extract presented four actives isoforms which have a broad substrate specificity action. Enzyme action on samples was optimized after evaluation under different conditions of pH, enzyme-substrate ratio and time (parameters selected based on previous studies) of treatment (pH 4.0, 6.0 and 8.0 at 42°C with different amount of enzyme). Scanning electron microscopy was used to evaluate conditions resulting in complete digestion of epigyne soft tissues. Optimal conditions for soft tissue removal were 15.6 total enzyme units, pH 6.0 for 18 h at 42°C.

  16. Mold Pectinase Modified with Dialdehyde Derivatives of Dextran and Cellulose.

    PubMed

    Kobayashi, M; Chiba, Y; Funane, K; Ohya, S; Kato, Y

    1996-01-01

    Chemical modification of mold pectinase with dextran- and cellulose-dialdehydes was examined to improve the enzyme characteristics. The modified pectinase with dextran-dialdehyde retained about 50% of the original activity, and more than 80% of the total amino groups were modified. HPLC gel filtration analysis showed an increase in molecular weight of the reaction product. Reaction with cellulose-dialdehyde provided an immobilized form of pectinase. The immobilized pectinase was resistant to both acidic and alkaline pHs, and also acquired heat stability at 60°C. The optimum pH of the modified enzyme shifted from pH 4.5 to 5.0-5.5, and this enzyme had higher activity at neutral pH regions than the native enzyme. A rather low recovery of immobilized enzyme (14.5%) should be improved by the combination with various methods hitherto established.

  17. Mercury induced oxidative stress, DNA damage, and activation of antioxidative system and Hsp70 induction in duckweed (Lemna minor).

    PubMed

    Zhang, Tingting; Lu, Qianqian; Su, Chunlei; Yang, Yaru; Hu, Dan; Xu, Qinsong

    2017-09-01

    Mercury uptake and its effects on physiology, biochemistry and genomic stability were investigated in Lemna minor after 2 and 6d of exposure to 0-30μM Hg. The accumulation of Hg increased in a concentration- and duration-dependent manner, and was positively correlated with the leaf damage. Oxidative stress after Hg exposure was evidenced in L. minor by a significant decrease in photosynthetic pigments, an increase in malondialdehyde and lipoxygenase activities (total enzyme activity and isoenzymes activity). Fronds of L. minor exposed to Hg showed an induction of peroxidase, catalase, and ascorbate peroxidase activities (total enzyme activity and some isoenzymes activities). Exposure of L. minor to Hg reduced the activity (total enzyme activity and some isoenzymes activities) of glutathione reductase, and superoxide dismutase. Exposure to Hg produced a transient increase in the content of glutathione and ascorbic acid. The content of dehydroascorbate and oxidized glutathione in L. minor were high during the entire exposure period. Exposure of L. minor to Hg also caused the accumulation of proline and soluble sugars. The amplification of new bands and the absence of normal DNA amplicons in treated plants in the random amplified polymorphic DNA (RAPD) profile indicated that genomic template stability (GTS) was affected by Hg treatment. The accumulation of Hsp70 indicated the occurrence of a heat shock response at all Hg concentrations. These results suggest that L. minor plants were able to cope with Hg toxicity through the activation of various mechanisms involving enzymatic and non-enzymatic antioxidants, up-regulation of proline, and induction of Hsp70. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Inhibitory potentials of phenolic-rich extracts from Bridelia ferruginea on two key carbohydrate-metabolizing enzymes and Fe2+-induced pancreatic oxidative stress.

    PubMed

    Afolabi, Olakunle Bamikole; Oloyede, Omotade Ibidun; Agunbiade, Shadrack Oludare

    2018-05-01

    The current study was designed to evaluate the various antioxidant potentials and inhibitory effects of phenolic-rich leaf extracts of Bridelia ferruginea (BF) on the in vitro activities of some key enzymes involved in the metabolism of carbohydrates. In this study, BF leaf free and bound phenolic-rich extracts were used. We quantified total phenolic and flavonoid contents, and evaluated several antioxidant activities using assays for ferric reducing antioxidant power, total antioxidant activity (phosphomolybdenum reducing ability), 1,1-diphenyl-2-picrylhydrazyl and thiobarbituric acid reactive species. Also, extracts were tested for their ability to inhibit α-amylase and α-glucosidase activity. The total phenolic and total flavonoid contents in the free phenolic extract of BF were significantly greater than in the bound phenolic extract. Also, all the antioxidant activities considered were significantly greater in the free phenolic extract than in the bound phenolic extract. In the same vein, the free phenolic-rich extract had a significantly higher percentage inhibition against α-glucosidase activity (IC 50  = 28.5 µg/mL) than the bound phenolic extract (IC 50  = 340.0 µg/mL). On the contrary, the free phenolic extract (IC 50  = 210.0 µg/mL) had significantly lower inhibition against α-amylase than the bound phenolic-rich extract (IC 50  = 190.0 µg/mL). The phenolic-rich extracts of BF leaves showed antioxidant potentials and inhibited two key carbohydrate-metabolizing enzymes in vitro. Copyright © 2018 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  19. Differential effects of developmental hypo- and hyperthyroidism on acetylcholinesterase and butyrylcholinesterase activity in the spinal cord of developing postnatal rat pups.

    PubMed

    Koohestani, Faezeh; Brown, Chester M; Meisami, Esmail

    2012-11-01

    The plasticity and vulnerability of the rat spinal cord (SC) during postnatal development has been less investigated compared to other CNS structures. In this study, we determined the effects of thyroid hormonal (TH) deficiency and excess on postnatal growth and neurochemical development of the rat SC. The growth as well as the specific and total activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes of the SC were determined in hypo- and hyperthyroid rat pups at postnatal (P) days P1, P5, P10 and P21 (weaning), and were compared to age-matched untreated normal controls. AChE is a cholinergic synaptic enzyme while BuChE is a metabolic enzyme mainly found in glial cells and neurovascular cells. The SC is rich in somatic motor, autonomic cholinergic neurons and associated interneurons. Daily subcutaneous injection of pups with thyroxine (T4) and administration of antithyroid goitrogen propylthiouracil (PTU) in the litter's drinking water were used to induce hyper- and hypothyroidism, respectively. Enzyme assays were carried out spectrophotometrically at the above-mentioned ages, using SC homogenates with acetylthiocholine-chloride as the substrate, together with specific cholinesterase inhibitors, which specifically target AChE and BuChE. SC weights were significantly lower at P10 and P21 in hypothyroid pups but unchanged in the hyperthyroid ones. Hypothyroidism significantly reduced both specific and total AChE activity in SC of P10 and P21 rat pups, while having no effects on the BuChE activity, although total BuChE activity was decreased due to reduced total tissue weight. In contrast both specific and total AChE activities were markedly and significantly increased (>100%) in the P10 and P21 hyperthyroid pups. However, BuChE specific activity was unaffected by this treatment. The results indicate that hypothyroid condition significantly reduces, while hyperthyroidism increases, the postnatal development of cholinergic synapses, thereby influencing the functional development of this major sensory and motor structure. However, the neurochemical development of glia and other non-neuronal cells, where BuChE is mainly localized, is comparatively unaffected in these abnormal developmental conditions. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  20. Investigation on the Influence of Bio-catalytic Enzyme Produced from Fruit and Vegetable Waste on Palm Oil Mill Effluent

    NASA Astrophysics Data System (ADS)

    Rasit, Nazaitulshila; Chee Kuan, Ooi

    2018-04-01

    Pre-consumer waste from supermarkets, such as vegetables and fruits dreg are always discarded as solid waste and disposed to landfill. Implementing waste recovery method as a form of waste management strategy will reduce the amount of waste disposed. One of the ways to achieve this goal is through fermentation of the pre-consumer supermarket waste to produce a solution known as garbage enzyme. This study has been conducted to produce and characterize biocatalytic garbage enzyme and to evaluate its influence on palm oil mill effluent as a pre-treatment process before further biological process takes place. Garbage enzyme was produced by three-month long fermentation of a mixture of molasses, pre-consumer supermarket residues, and water in the ratio of 1:3:10. Subsequently, the characterization of enzyme was conducted based on pH, total solids (TS), total suspended solids (TSS), total dissolved solids (TDS), chemical oxygen demand (COD), and enzyme activities. The influence of produced enzyme was evaluated on oil & grease (O&G), TSS and COD of palm oil mill effluent (POME). Different levels of dilution of garbage enzyme to POME samples (5%, 10%, 15%) were explored as pre-treatment (duration of six days) and the results showed that the garbage enzyme contained bio-catalytic enzyme such as amylase, protease, and lipase. The pre-treatment showed removal of 90% of O&G in 15% dilution of garbage enzyme. Meanwhile, reduction of TSS and COD in dilution of 10% garbage enzyme were measured at 50% and 25% respectively. The findings of this study are important to analyse the effectiveness of pre-treatment for further improvement of anaerobic treatment process of POME, especially during hydrolysis stage.

  1. Cassava diet--a cause for mucopolysaccharidosis?

    PubMed

    Sreeja, V G; Leelamma, S

    2002-01-01

    Studies were carried out to determine the changes in glycosaminnoglycan (GAG) metabolism in rats fed cassava with varying cyanoglucoside levels and two levels of protein. Results indicated that there was an enhancement in the level of total and individual GAG with a corresponding reduction in the activity of enzymes involved in the degradation of glycosaminoglycan. These changes were significant for rats given a cassava diet (raw and boiled cassava) and low protein. The changes in total and individual GAG and the decrease in the activity of degrading enzymes was more for high cyanide (raw cassava) groups compared with other groups showing that consumption of untreated cassava is an additive factor for the promotion of mucopolysaccharidosis.

  2. Redox-initiated hydrogel system for detection and real-time imaging of cellulolytic enzyme activity.

    PubMed

    Malinowska, Klara H; Verdorfer, Tobias; Meinhold, Aylin; Milles, Lukas F; Funk, Victor; Gaub, Hermann E; Nash, Michael A

    2014-10-01

    Understanding the process of biomass degradation by cellulolytic enzymes is of urgent importance for biofuel and chemical production. Optimizing pretreatment conditions and improving enzyme formulations both require assays to quantify saccharification products on solid substrates. Typically, such assays are performed using freely diffusing fluorophores or dyes that measure reducing polysaccharide chain ends. These methods have thus far not allowed spatial localization of hydrolysis activity to specific substrate locations with identifiable morphological features. Here we describe a hydrogel reagent signaling (HyReS) system that amplifies saccharification products and initiates crosslinking of a hydrogel that localizes to locations of cellulose hydrolysis, allowing for imaging of the degradation process in real time. Optical detection of the gel in a rapid parallel format on synthetic and natural pretreated solid substrates was used to quantify activity of T. emersonii and T. reesei enzyme cocktails. When combined with total internal reflection fluorescence microscopy and AFM imaging, the reagent system provided a means to visualize enzyme activity in real-time with high spatial resolution (<2 μm). These results demonstrate the versatility of the HyReS system in detecting cellulolytic enzyme activity and suggest new opportunities in real-time chemical imaging of biomass depolymerization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Increased collagenase and dipeptidyl peptidase I activity in leucocytes from healthy elderly people

    PubMed Central

    Llorente, L; Richaud-Patin, Y; Díaz-Borjón, A; Jakez-Ocampo, J; Alvarado-De La Barrera, C

    1999-01-01

    The incidence of infectious diseases increases with ageing. The enzymatic activity of leucocytes may have a relevant role in the morbidity and mortality due to infections in the elderly. In this study we have compared the activity of enzymes involved in the inflammatory response in leucocytes from young and elderly women. A total of 35 healthy females was studied, 20 volunteers aged 78–98 years (mean 89.1 years) and 15 young controls aged 19–34 years (mean 26 years). All of them were in good clinical condition, without any acute or chronic disease. Intracellular enzyme activity was analysed by flow cytometry in leucocytes from young and elderly women. The enzyme substrates employed were for oxidative burst, l-aminopeptidase, collagenase, cathepsin B, C, D and, G and dipeptidyl peptidase I. The intracellular enzyme activity assessed by flow cytometry in leucocytes from young and elderly women was similar, as far as oxidative burst, l-aminopeptidase, cathepsin B, C, D and G are concerned. An increased collagenase activity was detected in granulocytes from elders. The mean fluorescence channels for this enzyme corresponded to 86 ± 23 and 60 ± 15 in cells from elders and controls, respectively (P = 0.01224). An increased dipeptidyl peptidase I activity was detected in lymphocytes from elderly women. The corresponding values for this enzyme in elders and the young were 65.9 ± 43.3 and 17.3 ± 5, respectively (P = 0.0036). The proper functional activity of intracellular enzymes involved in inflammatory responses is likely to be determinant for successful ageing. PMID:10361229

  4. Changes in Biochemical Characteristics and Activities of Ripening Associated Enzymes in Mango Fruit during the Storage at Different Temperatures

    PubMed Central

    Kimura, Yoshinobu

    2014-01-01

    As a part of the study to explore the possible strategy for enhancing the shelf life of mango fruits, we investigated the changes in biochemical parameters and activities of ripening associated enzymes of Ashwina hybrid mangoes at 4-day regular intervals during storage at −10°C, 4°C, and 30 ± 1°C. Titratable acidity, vitamin C, starch content, and reducing sugar were higher at unripe state and gradually decreased with the increasing of storage time at all storage temperatures while phenol content, total soluble solid, total sugar, and nonreducing sugar contents gradually increased. The activities of amylase, α-mannosidase, α-glucosidase, and invertase increased sharply within first few days and decreased significantly in the later stage of ripening at 30 ± 1°C. Meanwhile polyphenol oxidase, β-galactosidase, and β-hexosaminidase predominantly increased significantly with the increasing days of storage till later stage of ripening. At −10°C and 4°C, the enzymes as well as carbohydrate contents of storage mango changed slightly up to 4 days and thereafter the enzyme became fully dormant. The results indicated that increase in storage temperature and time correlated with changes in biochemical parameters and activities of glycosidases suggested the suppression of β-galactosidase and β-hexosaminidase might enhance the shelf life of mango fruits. PMID:25136564

  5. Hypolipidaemic effects of cyanidin 3-glucoside rich extract from black rice through regulating hepatic lipogenic enzyme activities.

    PubMed

    Um, Min Young; Ahn, Jiyun; Ha, Tae Youl

    2013-09-01

    Black rice is rich in anthocyanins, especially cyanidin-3-glucoside (C3G). This study examined the effects of a C3G-rich extract from black rice on hyperlipidaemia induced by a high fat/cholesterol diet (HFCD) in rats. Male Sprague-Dawley rats were fed either HFCD or HFCD containing 150 mg kg⁻¹ body weight C3G (HFCD+C3G) for 4 weeks. We found that C3G significantly decreased serum levels of total cholesterol, free cholesterol, triglycerides, and free fatty acids in rats fed a HFCD. Similarly, hepatic cholesterol and triglyceride levels and the activities of hepatic lipogenic enzymes (malic enzyme and glucose-6-phosphate dehydrogenase) were significantly reduced by C3G supplementation. These results suggest that C3G can ameliorate HFCD-induced hyperlipidaemia in part by modulating the activities of hepatic lipogenic enzymes. © 2013 Society of Chemical Industry.

  6. Quantitative Structure-Activity Relationship Modeling Coupled with Molecular Docking Analysis in Screening of Angiotensin I-Converting Enzyme Inhibitory Peptides from Qula Casein Hydrolysates Obtained by Two-Enzyme Combination Hydrolysis.

    PubMed

    Lin, Kai; Zhang, Lanwei; Han, Xue; Meng, Zhaoxu; Zhang, Jianming; Wu, Yifan; Cheng, Dayou

    2018-03-28

    In this study, Qula casein derived from yak milk casein was hydrolyzed using a two-enzyme combination approach, and high angiotensin I-converting enzyme (ACE) inhibitory activity peptides were screened by quantitative structure-activity relationship (QSAR) modeling integrated with molecular docking analysis. Hydrolysates (<3 kDa) derived from combinations of thermolysin + alcalase and thermolysin + proteinase K demonstrated high ACE inhibitory activities. Peptide sequences in hydrolysates derived from these two combinations were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). On the basis of the QSAR modeling prediction, a total of 16 peptides were selected for molecular docking analysis. The docking study revealed that four of the peptides (KFPQY, MPFPKYP, MFPPQ, and QWQVL) bound the active site of ACE. These four novel peptides were chemically synthesized, and their IC 50 was determined. Among these peptides, KFPQY showed the highest ACE inhibitory activity (IC 50 = 12.37 ± 0.43 μM). Our study indicated that Qula casein presents an excellent source to produce ACE inhibitory peptides.

  7. Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates

    PubMed Central

    Huang, Ruiqi; Hippauf, Frank; Rohrbeck, Diana; Haustein, Maria; Wenke, Katrin; Feike, Janie; Sorrelle, Noah; Piechulla, Birgit; Barkman, Todd J.

    2012-01-01

    In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection. Both forward and reverse mutagenesis studies validate the impact of one or a few sites toward increasing activity with ancestrally nonpreferred substrates. In one case, we document the occurrence of an evolutionary reversal of an active site residue that reversed enzyme properties. Furthermore, these studies show that functionally important amino acid replacements result in substrate discrimination as reflected in evolutionary changes in the specificity constant (kcat/KM) for competing substrates, even though adaptive substitutions may affect KM and kcat separately. In total, these results indicate that nonpreferred, or even latent, ancestral protein activities may be coopted at later times to become the primary or preferred protein activities. PMID:22315396

  8. Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates.

    PubMed

    Huang, Ruiqi; Hippauf, Frank; Rohrbeck, Diana; Haustein, Maria; Wenke, Katrin; Feike, Janie; Sorrelle, Noah; Piechulla, Birgit; Barkman, Todd J

    2012-02-21

    In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection. Both forward and reverse mutagenesis studies validate the impact of one or a few sites toward increasing activity with ancestrally nonpreferred substrates. In one case, we document the occurrence of an evolutionary reversal of an active site residue that reversed enzyme properties. Furthermore, these studies show that functionally important amino acid replacements result in substrate discrimination as reflected in evolutionary changes in the specificity constant (k(cat)/K(M)) for competing substrates, even though adaptive substitutions may affect K(M) and k(cat) separately. In total, these results indicate that nonpreferred, or even latent, ancestral protein activities may be coopted at later times to become the primary or preferred protein activities.

  9. Hydrolysis of various thai agricultural biomasses using the crude enzyme from Aspergillus aculeatus iizuka FR60 isolated from soil

    PubMed Central

    Boonmee, Atcha

    2012-01-01

    In this study, forty-two fungi from soil were isolated and tested for their carboxymethyl cellulase (CMCase) and xylanase activities. From all isolates, the fungal isolate FR60, which was identified as Aspergillus aculeatus Iizuka, showed high activities in both CMCase and xylanase with 517 mU/mg protein and 550 mU/mg protein, respectively. The crude enzyme from A. aculeatus Iizuka FR60 could hydrolyze several agricultural residues such as corncob, and sweet sorghum leaf and stalk at comparable rates with respect to the tested commercial enzymes and with a maximum rate in rice hull hydrolysis (29 μg sugar g-1 dry weight substrate mg-1 enzyme hr-1). The highest amount of glucose was obtained from corncob by using the crude enzyme from A. aculeatus Iizuka FR60 (10.1 g/100 g dry substrate). From overall enzymatic treatment results, the lowest sugar yield was from rice hulls treatment (1.6 g/100 g dry weight) and the highest amount of reducing sugar was obtained from rice straw treatment (15.3 g/100 g dry weight). Among tested agricultural wastes, rice hull could not be effectively hydrolyzed by enzymes, whereas sugarcane leaf and stalk, and peanut shell could be effectively hydrolyzed (30-31% total sugar comparing with total sugar yield from acid treatment). PMID:24031852

  10. Variation of Enzyme Activities and Metabolite Levels in 24 Arabidopsis Accessions Growing in Carbon-Limited Conditions1[W

    PubMed Central

    Cross, Joanna M.; von Korff, Maria; Altmann, Thomas; Bartzetko, Linda; Sulpice, Ronan; Gibon, Yves; Palacios, Natalia; Stitt, Mark

    2006-01-01

    Our understanding of the interaction of carbon (C) metabolism with nitrogen (N) metabolism and growth is based mainly on studies of responses to environmental treatments, and studies of mutants and transformants. Here, we investigate which metabolic parameters vary and which parameters change in a coordinated manner in 24 genetically diverse Arabidopsis (Arabidopsis thaliana) accessions, grown in C-limited conditions. The accessions were grown in short days, moderate light, and high nitrate, and analyzed for rosette biomass, levels of structural components (protein, chlorophyll), total phenols and major metabolic intermediates (sugars, starch, nitrate, amino acids), and the activities of seven representative enzymes from central C and N metabolism. The largest variation was found for plant weight, reducing sugars, starch at the end of the night, and several enzyme activities. High levels of one sugar correlated with high levels of other sugars and starch, and a trend to increased amino acids, slightly lower nitrate, and higher protein. The activities of enzymes at the interface of C and N metabolism correlated with each other, but were unrelated to carbohydrates, amino acid levels, and total protein. Rosette weight was unrelated or showed a weak negative trend to sugar and amino acid contents at the end of the day in most of the accessions, and was negatively correlated with starch at the end of the night. Rosette weight was positively correlated with several enzyme activities. We propose that growth is not related to the absolute levels of starch, sugars, and amino acids; instead, it is related to flux, which is indicated by the enzymatic capacity to use these central resources. PMID:17085515

  11. Short-Term Responses of Soil Respiration and C-Cycle Enzyme Activities to Additions of Biochar and Urea in a Calcareous Soil

    PubMed Central

    Song, Dali; Xi, Xiangyin; Huang, Shaomin; Liang, Guoqing; Sun, Jingwen; Zhou, Wei; Wang, Xiubin

    2016-01-01

    Biochar (BC) addition to soil is a proposed strategy to enhance soil fertility and crop productivity. However, there is limited knowledge regarding responses of soil respiration and C-cycle enzyme activities to BC and nitrogen (N) additions in a calcareous soil. A 56-day incubation experiment was conducted to investigate the combined effects of BC addition rates (0, 0.5, 1.0, 2.5 and 5.0% by mass) and urea (U) application on soil nutrients, soil respiration and C-cycle enzyme activities in a calcareous soil in the North China Plain. Our results showed soil pH values in both U-only and U plus BC treatments significantly decreased within the first 14 days and then stabilized, and CO2emission rate in all U plus BC soils decreased exponentially, while there was no significant difference in the contents of soil total organic carbon (TOC), dissolved organic carbon (DOC), total nitrogen (TN), and C/N ratio in each treatment over time. At each incubation time, soil pH, electrical conductivity (EC), TOC, TN, C/N ratio, DOC and cumulative CO2 emission significantly increased with increasing BC addition rate, while soil potential activities of the four hydrolytic enzymes increased first and then decreased with increasing BC addition rate, with the largest values in the U + 1.0%BC treatment. However, phenol oxidase activity in all U plus BC soils showed a decreasing trend with the increase of BC addition rate. Our results suggest that U plus BC application at a rate of 1% promotes increases in hydrolytic enzymes, does not highly increase C/N and C mineralization, and can improve in soil fertility. PMID:27589265

  12. Structure-Based and Random Mutagenesis Approaches Increase the Organophosphate-Degrading Activity of a Phosphotriesterase Homologue from Deinococcus radiodurans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawwa, Renda; Larsen, Sonia D.; Ratia, Kiira

    2010-11-09

    An enzyme from the amidohydrolase family from Deinococcus radiodurans (Dr-OPH) with homology to phosphotriesterase has been shown to exhibit activity against both organophosphate (OP) and lactone compounds. We have characterized the physical properties of Dr-OPH and have found it to be a highly thermostable enzyme, remaining active after 3 h of incubation at 60 C and withstanding incubation at temperatures up to 70 C. In addition, it can withstand concentrations of at least 200 mg/mL. These properties make Dr-OPH a promising candidate for development in commercial applications. However, compared to the most widely studied OP-degrading enzyme, that from Pseudomonas diminuta,more » Dr-OPH has low hydrolytic activity against certain OP substrates. Therefore, we sought to improve the OP-degrading activity of Dr-OPH, specifically toward the pesticides ethyl and methyl paraoxon, using structure-based and random approaches. Site-directed mutagenesis, random mutagenesis, and site-saturation mutagenesis were utilized to increase the OP-degrading activity of Dr-OPH. Out of a screen of more than 30,000 potential mutants, a total of 26 mutant enzymes were purified and characterized kinetically. Crystal structures of w.t. Dr-OPH, of Dr-OPH in complex with a product analog, and of 7 mutant enzymes were determined to resolutions between 1.7 and 2.4 {angstrom}. Information from these structures directed the design and production of 4 additional mutants for analysis. In total, our mutagenesis efforts improved the catalytic activity of Dr-OPH toward ethyl and methyl paraoxon by 126- and 322-fold and raised the specificity for these two substrates by 557- and 183-fold, respectively. Our work highlights the importance of an iterative approach to mutagenesis, proving that large rate enhancements are achieved when mutations are made in already active mutants. In addition, the relationship between the kinetic parameters and the introduced mutations has allowed us to hypothesize on those factors most important for maintaining the structure and function of the enzyme.« less

  13. Fermentation and complex enzyme hydrolysis for improving the total soluble phenolic contents, flavonoid aglycones contents and bio-activities of guava leaves tea.

    PubMed

    Wang, Lu; Luo, You; Wu, Yanan; Liu, Yan; Wu, Zhenqiang

    2018-10-30

    There are both soluble and insoluble-bound forms of phenolics in tea-leaf products. In order to increase total soluble phenolics contents, guava leaves tea (GLT) was first fermented with Monascus anka and Saccharomyces cerevisiae, and then hydrolyzed with complex enzymes. The changes in phenolics profiles, antioxidant activities and inhibitory effect on α-glucosidase in processed GLT were investigated. Compared with the un-fermented GLT, fermentation and complex enzymatic processing (FE) significantly increased the total phenolics, total flavonoids, quercetin and kaempferol contents by 2.1, 2.0, 13.0 and 6.8 times, respectively. After the FE, a major proportion of phenolics existed in the soluble form. Quercetin was released in the highest amount among different phenolics. In addition, soluble phenolic extracts from GLT following FE exhibited a highest antioxidant activity and inhibitory effect on α-glucosidase. The paper suggested an improved method for processing GLT into high-value products rich in phenolics and flavonoids aglycones with enhanced health benefits. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. [Effect of Low-Intensity 900 MHz Frequency Electromagnetic Radiation on Rat Brain Enzyme Activities Linked to Energy Metabolism].

    PubMed

    Petrosyan, M S; Nersesova, L S; Gazaryants, M G; Meliksetyan, G O; Malakyan, M G; Bajinyan, S A; Akopian, J I

    2015-01-01

    The research deals with the effect of low-intensity 900 MHz frequency electromagnetic radiation (EMR), power density 25 μW/cm2, on the following rat brain and blood serum enzyme activities: creatine kinase (CK), playing a central role in the process of storing and distributing the cell energy, as well as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) that play a key role in providing the conjunction of carbohydrate and amino acid metabolism. The comparative analysis of the changes in the enzyme activity studied at different times following the two-hour single, as well as fractional, radiation equivalent of the total time showed that the most radiosensitive enzyme is the brain creatine kinase, which may then be recommended as a marker of the radio frequency radiation impact. According to the analysis of the changing dynamics of the CK, ALT and AST activity level, with time these changes acquire the adaptive character and are directed to compensate the damaged cell energy metabolism.

  15. Effects on starch and amylolytic enzymes during Lepidium meyenii Walpers root storage.

    PubMed

    Rondán-Sanabria, Gerby Giovanna; Valcarcel-Yamani, Beatriz; Finardi-Filho, Flavio

    2012-10-01

    The high water content in maca (Lepidium meyenii W.) roots combined with the damage produced during or after harvest makes them vulnerable to attack by enzymes and microorganisms. Although starch degradation has been extensively studied, in maca roots there is a paucity of research regarding the starch reserves. In this paper, parameters of starch degradation are shown to be related to the action of amylolytic enzymes during storage at room temperature. Over the course of three weeks, the starch and protein content, soluble sugar, total amylolytic activity, and α- and β-amylase activity were measured. In addition, the integrity of starch granules was observed by scanning electron microscopy. Despite the evidence of dehydration, there were no significant differences (p ≤ 0.5) in the total starch content or in the activities of α- and β-amylase. After the third week the roots remained suitable for consumption. The results indicate a postharvest latency that can lead to sprout or to senescence, depending on the environmental conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Isolation and characterization of a fraction rich in ambiquitous enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamdar, S.; Wells, G.; Cohen, G.

    Mg/sup 2 +/-dependent phosphatidate phosphohydrolase (PPH) and CTP: phosphocholine cytidylyltransferase (PCT) have been recognized as ambiquitous enzymes. A fraction rich in the activities of these enzymes was isolated from rat adipose cytosol (1) by hydrophobic chromatography on butyl agarose and elution with buffer containing 1M NaCl; (2) by incubating cytosol with 1mM spermine at 23/sup 0/C for 30 min and centrifugation at 15,000 RPM for 15 min. This cytosolic fraction represented 5-10% of total protein and 60-90% total PPH and PCT. Such treatment of cytosol resulted in increase in the specific activity of PPH and PCT 8-20 fold. These fractionsmore » lacked lactate dehydrogenase, a cytosol marker and were also devoid of other enzymes involved in lipid synthesis, including glycerophosphate acyltransferase and diacylglycerol acyltransferase. SDS gel electrophoresis of these fractions indicated the presence of 8-10 protein bands. Electron microscopic examination showed the presence of lipid droplets surrounded by proteinaceous material and some vesicular structures. The presence of lipid in these fractions was also confirmed by /sup 32/P incorporation and autoradiography of /sup 32/P labeled lipids. These studies suggest that ambiquitous enzymes may reside in a separate membrane compartment present in the cytosol.« less

  17. [Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions.

    PubMed

    Cao, Rui; Wu, Fu Zhong; Yang, Wan Qin; Xu, Zhen Feng; Tani, Bo; Wang, Bin; Li, Jun; Chang, Chen Hui

    2016-04-22

    In order to understand the variations of soil microbial biomass and soil enzyme activities with the change of altitude, a field incubation was conducted in dry valley, ecotone between dry valley and mountain forest, subalpine coniferous forest, alpine forest and alpine meadow from 1563 m to 3994 m of altitude in the alpine-gorge region of western Sichuan. The microbial biomass carbon and nitrogen, and the activities of invertase, urease and acid phosphorus were measured in both soil organic layer and mineral soil layer. Both the soil microbial biomass and soil enzyme activities showed the similar tendency in soil organic layer. They increased from 2158 m to 3028 m, then decreased to the lowest value at 3593 m, and thereafter increased until 3994 m in the alpine-gorge region. In contrast, the soil microbial biomass and soil enzyme activities in mineral soil layer showed the trends as, the subalpine forest at 3028 m > alpine meadow at 3994 m > montane forest ecotone at 2158 m > alpine forest at 3593 m > dry valley at 1563 m. Regardless of altitudes, soil microbial biomass and soil enzyme activities were significantly higher in soil organic layer than in mineral soil layer. The soil microbial biomass was significantly positively correlated with the activities of the measured soil enzymes. Moreover, both the soil microbial biomass and soil enzyme activities were significantly positively correlated with soil water content, organic carbon, and total nitrogen. The activity of soil invertase was significantly positively correlated with soil phosphorus content, and the soil acid phosphatase was so with soil phosphorus content and soil temperature. In brief, changes in vegetation and other environmental factors resulting from altitude change might have strong effects on soil biochemical properties in the alpine-gorge region.

  18. STUDIES ON THE INTERMEDIARY CARBOHYDRATE METABOLISM OF AQUATIC ANIMALS

    PubMed Central

    DuBois, Kenneth P.; Geiling, E. M. K.; McBride, Arthur F.; Thomson, John F.

    1948-01-01

    1. Liver, kidney, brain, skeletal muscle, and cardiac muscle from one newborn and three adult long-snouted dolphins (Stenella plagiodon) were obtained for enzyme studies. 2. All of the dolphin tissues exhibited cytochrome oxidase, succinic dehydrogenase, and malic dehydrogenase activity. Considerable differences in the enzyme activities of the various tissues were noted, with cardiac muscle exhibiting the highest respiratory enzyme activity. The enzyme activities of dolphin tissues were lower than those of the corresponding rat tissues. 3. All of the dolphin tissues exhibited adenosine triphosphatase activity which was accelerated by magnesium and manganese but, in contrast to rat tissues, was only slightly activated by calcium. 4. Measurements of the distribution of acid-soluble phosphorus in dolphin tissues indicated that glycolysis in all of the tissues examined proceeded through the Emden-Meyerhof phosphorylation scheme. 5. The average glycogen content of dolphin skeletal muscle was 0.98 per cent as compared with 0.16 to 0.20 per cent for rat skeletal muscle. The high glycogen content of dolphin skeletal muscle indicates a ready source of substrate for glycolysis even during submergence when the blood supply may be differentially shunted to other organs. 6. Measurements of the organ weights of dolphins showed that the lungs occupy over three times and the liver one-half as much of the total body weight as do these organs in the rat. The heart and the thyroid gland of the dolphin are also larger in proportion to the total body weight than in the rat while the relative weights of the other tissues in the two species are about the same. PMID:18904758

  19. Nitrogen Deposition Reduces Decomposition Rates Through Shifts in Microbial Community Composition and Function

    NASA Astrophysics Data System (ADS)

    Waldrop, M.; Zak, D.; Sinsabaugh, R.

    2002-12-01

    Atmospheric nitrogen (N) deposition may alter soil biological activity in northern hardwood forests by repressing phenol oxidase enzyme activity and altering microbial community composition, thereby slowing decomposition and increasing the export of phenolic compounds. We tested this hypothesis by adding 13C-labelled cellobiose, vanillin, and catechol to control and N fertilized soils (30 and 80 kg ha-1) collected from three forests; two dominated by Acer Saccharum and one dominated by Quercus Alba and Quercus Velutina. While N deposition increased total microbial respiration, it decreased soil oxidative enzyme activities, resulting in slower degradation rates of all compounds, and larger DOC pools. This effect was larger in the oak forest, where fungi dominate C-cycling processes. DNA and 13C-phospolipid analyses showed that N addition altered the fungal community and reduced the activity of fungal and bacterial populations in soil, potentially explaining reduced soil enzyme activities and incomplete decomposition.

  20. Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island.

    PubMed

    Park, Myung Soo; Lee, Seobihn; Oh, Seung-Yoon; Cho, Ga Youn; Lim, Young Woon

    2016-10-01

    A total of 28 strains of 19 Penicillium species were isolated in a survey of extracellular enzyme-producing fungi from macroalgae along the coast of Jeju Island of Korea. Penicillium species were identified based on morphological and β-tubulin sequence analyses. In addition, the halo-tolerance and enzyme activity of all strains were evaluated. The diversity of Penicillium strains isolated from brown algae was higher than the diversity of strains isolated from green and red algae. The commonly isolated species were Penicillium antarcticum, P. bialowiezense, P. brevicompactum, P. crustosum, P. oxalicum, P. rubens, P. sumatrense, and P. terrigenum. While many strains showed endoglucanase, β-glucosidase, and protease activity, no alginase activity was detected. There was a positive correlation between halo-tolerance and endoglucanase activity within Penicillium species. Among 19 Penicillium species, three species-P. kongii, P. olsonii, and P. viticola-have not been previously recorded in Korea.

  1. [The activity of thermolability amylase in serum nonsmoking and smoking healthy persons and patients with pancreatitis].

    PubMed

    Sliwińska-Mossoń, Mariola; Milnerowicz, Halina

    2008-01-01

    The aim of this study is to prove the influence of tobacco smoking on total and thermolability amylase activity in the serum of non-smoking and smoking health persons and patients with diagnosed acute (AP), chronic exaggerated (CEP) and chronic pancreatitis (CP) and patients with diabetes. The blood has been collected from 28 healthy persons and 52 patients. The enzyme total activity has been determined using the colorimetric method with substrate 1,2-odilauryl-rac-glycero-3-glutaric acid -(6-methylresorufin) ester. The thermolability activity has been determined using the thermolability test. The tobacco smoke has been examined on the basic of concentration of cotinine in the serum of health persons and patients. The highest amylase total activity and her thermolability form have been found in smoking patients with diabetes. It has been noted that the serum amylase activity is significantly higher in smoking and healthy persons (p < 0.0002; p < 0.002) then in non-smoking and healthy patients. However no significant differences have been found between the thermolability total activity, however it has been noted higher thermolability thermolability activity in smoking patients with CP and nonsmoking patients with CP. Smoking patients with AP and CEP have been found to have a significantly increased enzyme and her form thermolability activity (p > 0.001; p > 0.005 respectively) when compared to non-smoking patients. Results of examination indicate that tobacco smoking has a significant influence on pancreatic amylase activity.

  2. Respiratory metabolism in the embryonic axis of germinating pea seed exposed to cadmium.

    PubMed

    Smiri, Moêz; Chaoui, Abdelilah; El Ferjani, Ezzedine

    2009-02-15

    Seeds of pea (Pisum sativum L.) were germinated for 5d by soaking in distilled water or 5mM cadmium nitrate. The relationships among cadmium stress, germination rate, changes in respiratory enzyme activities and carbohydrates mobilization were studied. Two cell fractions were obtained from embryonic axis: (1) mitochondria, used to determine enzyme activities of citric acid cycle and electron transport chain, and (2) soluble, to measure some enzyme activities involved in fermentation and pentose phosphate pathway. Activities of malate- and succinate-dehydrogenases (MDH, SDH) and NADH- and succinate-cytochrome c reductases (NCCR, SCCR) were rapidly inhibited, while cytochrome c oxidase (CCO) was unaltered by cadmium treatment. However, this stimulated the NADPH-generating enzyme activities of the pentose phosphate pathway, glucose-6-phosphate- and 6-phosphogluconate-dehydrogenases (G6PDH, 6PGDH), as well as enzyme activity of fermentation, alcohol dehydrogenase (ADH), with concomitant inhibition in the capacity of enzyme inactivator (INADH). Moreover, Cd restricted carbohydrate mobilization in the embryonic axis. Almost no glucose and less than 7% of control fructose and total soluble sugars were available in the embryo tissues after 5d of exposure to cadmium. Cotyledonary invertase isoenzyme activity was also inhibited by Cd. The results indicate that cadmium induces disorder in the resumption of respiration in germinating pea seeds. The contribution of Cd-stimulated alternative metabolic pathways to compensate for the failure in mitochondrial respiration is discussed in relation to the delay in seed germination and embryonic axis growth.

  3. Effect of bombesin on pancreatic secretion and gall bladder motility of the chicken.

    PubMed

    Linari, G; Linari, M B

    1975-12-01

    Bombesin strongly stimulated the chicken pancreatic secretion. When given by i.v. infusion, the threshold dose was of the order of 7.5-45.0 ng/kg/min and maximum enzyme output was obtained at a rate of 60 ng/kg/min. In addition to total enzyme output, enzyme concentration was also increased. Caerulein displayed a more potent stimulant effect, but composition of juice produced by the two polypeptides was similar. Tachyphylaxis occurred only with bombesin. Neither atropine nor gastric acidification affected the response to bombesin. Bombesin was totally ineffective in promoting gall bladder emptying. It is suggested that in the chicken, bombesin acts on the exocrine pancreas indirectly through release of an endogenous pancreozymin possibly devoid of cholecystokinetic activity.

  4. Oral administration of L-arginine in patients with angina or following myocardial infarction may be protective by increasing plasma superoxide dismutase and total thiols with reduction in serum cholesterol and xanthine oxidase

    PubMed Central

    Tripathi, Pratima; Chandra, M

    2009-01-01

    Administration of L-arginine has been shown to control ischemic injury by producing nitric oxide which dilates the vessels and thus maintains proper blood flow to the myocardium. In the present study attempt has been made to determine whether oral administration of L-arginine has any effect on oxidant/antioxidant homeostasis in ischemic myocardial patients [represented by the patients of acute angina (AA) and acute myocardial infarction (MI)]. L-arginine has antioxidant and antiapoptotic properties, decreases endothelin-1 expression and improves endothelial function, thereby controlling oxidative injury caused during myocardial ischemic syndrome. Effect of L-arginine administration on the status of free radical scavenging enzymes, pro-oxidant enzyme and antioxidants viz. total thiols, carbonyl content and plasma ascorbic acid levels in the patients has been evaluated. We have observed that L-arginine administration (three grams per day for 15 days) resulted in increased activity of free radical scavenging enzyme superoxide dismutase (SOD) and increase in the levels of total thiols (T-SH) and ascorbic acid with concomitant decrease in lipid per-oxidation, carbonyl content, serum cholesterol and the activity of proxidant enzyme, xanthine oxidase (XO). These findings suggest that the supplementation of L-arginine along with regular therapy may be beneficial to the patients of ischemic myocardial syndromes. PMID:20716909

  5. Screening and Characterization of Polygalacturonase as Potential Enzyme for Keprok Garut Orange (Citrus nobilis var. chrysocarpa) Juice Clarification

    NASA Astrophysics Data System (ADS)

    Widowati, E.; Utami, R.; Kalistyatika, K.

    2017-11-01

    Use of thermostable enzyme from bacilli for industrial application is significant. This research aimed to isolate thermophilic pectinolytic bacteria from orange peel and vegetable waste which produced thermostable polygalacturonase, to investigate the polygalacturonase ability in clarifying keprok Garut orange juice, and to characterize polygalacturonase based on pH optimum, temperature optimum, enzyme stability, enzyme kinetics KM, and Vmax. Obtained, 14 isolates that further selected to 4 best isolates based on highest polygalacturonase activity and keprok Garut orange juice clarification ability. Four selected enzyme isolates were AR 2, AR 4, KK 4, and KK 5 had ability to increase juice transmittance, decrease juice viscosity and also reduce total soluble solid. Furthermore 4 selected isolates were partially purified by ammonium sulphate precipitation and dialysis method. Four partially purified enzymes were known that enzyme character of AR 2 optimum at pH 6; AR 4 optimum at pH 5.5; KK 4 optimum at pH 6; and KK 5 optimum at pH 4.5. Four enzymes were optimum at temperature 60°C thus stable at temperature 50-60°C, this characteristic indicate that enzymes were thermostable. AR 2 showed active activity stable at pH 4-7; AR 4 showed active activity stable at pH 6-7; KK 4 showed active activity stable at pH 4-6; however KK 5 stable at pH 4-5. Enzyme AR 2 and KK 4 was getting inactive at pH 11, thus AR 4 and KK 5 inactive at pH 12. KM value of AR 2, AR 4, KK 4, and KK 5 was 0.0959; 0.0974; 0.0966; and 0.178 mg/ml respectively. Vmax of AR 2, AR 4, KK 4, and KK 5 was 0.0203; 0.0202; 0.0185; and 0.0229 U/ml respectively. Enzyme AR 2 was the most compatible enzyme to be applied in keprok Garut orange juice clarification for it had the lowest KM value.

  6. Zinc affects differently growth, photosynthesis, antioxidant enzyme activities and phytochelatin synthase expression of four marine diatoms.

    PubMed

    Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick

    2012-01-01

    Zinc-supplementation (20 μM) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.

  7. Zinc Affects Differently Growth, Photosynthesis, Antioxidant Enzyme Activities and Phytochelatin Synthase Expression of Four Marine Diatoms

    PubMed Central

    Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick

    2012-01-01

    Zinc-supplementation (20 μM) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses. PMID:22645501

  8. Regulation and seasonal dynamics of extracellular enzyme activities in the sediments of a large lowland river.

    PubMed

    Wilczek, Sabine; Fischer, Helmut; Pusch, Martin T

    2005-08-01

    We tested whether seasonal changes in the sources of organic substances for microbial metabolism were reflected changes in the activities of five extracellular enzymes in the eighth order lowland River Elbe, Germany. Leucine aminopeptidase showed the highest activities in the water column and the sediments, followed by phosphatase > beta-glucosidase > alpha-glucosidase > exo-1,4-beta-glucanase. Individual enzymes exhibited characteristic seasonal dynamics, as indicated by their relative contribution to cumulative enzyme activity. Leucine aminopeptidase was significantly more active in spring and summer. In contrast, the carbohydrate-degrading enzymes peaked in autumn, and beta-glucosidase activity peaked once again in winter. Thus, in sediments, the ratio of leucine aminopeptidase/beta-glucosidase reached significant higher medians in spring and summer (5-cm depth: ratio 7.7; 20-cm depth: ratio 10.1) than in autumn and winter (5-cm depth: ratio 3.7, 20-cm depth: ratio 6.3). The relative activity of phosphatase in the sediments was seasonally related to both the biomass of planktonic algae as well as to the high content of total particulate phosphorus in autumn and winter. Due to temporal shifts in organic matter supply and changes in the storage capacity of sediments, the seasonal peaks of enzyme activities in sediments exhibited a time lag of 2-3 months compared to that in the water column, along with a significant extension of peak width. Hence, our data show that the seasonal pattern of extracellular enzyme activities provides a sensitive approach to infer seasonal or temporary availability of organic matter in rivers from autochthonous and allochthonous sources. From the dynamics of individual enzyme activities, a consistent synoptic pattern of heterotrophic functioning in the studied river ecosystem could be derived. Our data support the revised riverine productivity model predicting that the metabolism of organic matter in high-order rivers is mainly fuelled by autochthonous production occurring in these reaches and riparian inputs.

  9. [Effect of low-intensity 900 MHz frequency electromagnetic radiation on rat liver and blood serum enzyme activities].

    PubMed

    Nersesova, L S; Petrosian, M S; Gazariants, M G; Mkrtchian, Z S; Meliksetian, G O; Pogosian, L G; Akopian, Zh I

    2014-01-01

    The comparative analysis of the rat liver and blood serum creatine kinase, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and purine nucleoside phosphorylase post-radiation activity levels after a total two-hour long single and fractional exposure of the animals to low-intensity 900 MHz frequency electromagnetic field showed that the most sensitive enzymes to the both schedules of radiation are the liver creatine kinase, as well as the blood serum creatine kinase and alkaline phosphatase. According to the comparative analysis of the dynamics of changes in the activity level of the liver and blood serum creatine kinase, alanine aminotransferase, aspartate aminotransferase and purine nucleoside phosphorylase, both single and fractional radiation schedules do not affect the permeability of a hepatocyte cell membrane, but rather cause changes in their energetic metabolism. The correlation analysis of the post-radiation activity level changes of the investigated enzymes did not reveal a clear relationship between them. The dynamics of post-radiation changes in the activity of investigated enzyme levels following a single and short-term fractional schedules of radiation did not differ essentially.

  10. Extraction of ginsenosides from fresh ginseng roots (Panax ginseng C.A. Meyer) using commercial enzymes and high hydrostatic pressure.

    PubMed

    Sunwoo, Hoon H; Kim, Chong-Tai; Kim, Do-Yeon; Maeng, Jin-Soo; Cho, Chang-Won; Lee, Soo-Jeong

    2013-07-01

    A combination of high hydrostatic pressure (HHP) and enzymatic hydrolysis (HHP-EH) was applied for the extraction of ginsenosides from fresh ginseng roots (Panax ginseng C.A. Myer). The highest yield of ginsenosides was obtained by using a mixture of three enzymes (Celluclast + Termamyl + Viscozyme) along with HHP (100 MPa, at 50 °C for 12 h) in comparison to control samples (no enzymes, atmosphere pressure, P < 0.05). Total ginsenosides increased by 184% while Rg1 + Rb1 increased by 273%. Application of these conditions significantly increased total ginsenosides by 49% and Rg1 + Rb1 by 103% compared to HHP treatment alone (P < 0.05). The effect of HHP on increased yield of ginsenosides is likely due in part, to acceleration of enzyme activity. Thus HHP-EH significantly improves the extraction of ginsenosides from fresh ginseng roots.

  11. Changes in sulfhydryl groups of honeybee glyceraldehyde phosphate dehydrogenase associated with generation of the intermediate plateau in its saturation kinetics

    NASA Technical Reports Server (NTRS)

    Gelb, W. G.; Brandts, J. F.; Nordin, J. H.

    1973-01-01

    Honeybee and rabbit muscle GPDH were studied to obtain information at the chemical level regarding anomolous saturation kinetics of the honeybee enzyme. Results demonstrate that the enzyme's sulfhydryl groups are implicated in the process. Measured by DTNB titration, native honeybee GPDH has one less active SH than the native rabbit muscle enzyme and displays changes in overall sulfhydryl reactivity after preincubation with G-3-P or G-3-P plus NAD+. The total DTNB reactive sulfhydryls of rabbit muscle GPDH are not changed by preincubation with NAD+ or G-3-P; honeybee GPDH, under certain conductions of preincubation with these ligands, shows a decrease of two total DTNB reactive SH groups. This difference has been confirmed by an independent experiment in which the two enzymes were carboxymethylated with C-14 bromoacetic acid.

  12. Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillespie, K.M.; Rogers, A.; Ainsworth, E. A.

    2011-01-31

    Soybeans (Glycine max Merr.) were grown at elevated carbon dioxide concentration ([CO{sub 2}]) or chronic elevated ozone concentration ([O{sub 3}]; 90 ppb), and then exposed to an acute O{sub 3} stress (200 ppb for 4 h) in order to test the hypothesis that the atmospheric environment alters the total antioxidant capacity of plants, and their capacity to respond to an acute oxidative stress. Total antioxidant metabolism, antioxidant enzyme activity, and antioxidant transcript abundance were characterized before, immediately after, and during recovery from the acute O{sub 3} treatment. Growth at chronic elevated [O{sub 3}] increased the total antioxidant capacity of plants,more » while growth at elevated [CO{sub 2}] decreased the total antioxidant capacity. Changes in total antioxidant capacity were matched by changes in ascorbate content, but not phenolic content. The growth environment significantly altered the pattern of antioxidant transcript and enzyme response to the acute O{sub 3} stress. Following the acute oxidative stress, there was an immediate transcriptional reprogramming that allowed for maintained or increased antioxidant enzyme activities in plants grown at elevated [O{sub 3}]. Growth at elevated [CO{sub 2}] appeared to increase the response of antioxidant enzymes to acute oxidative stress, but dampened and delayed the transcriptional response. These results provide evidence that the growth environment alters the antioxidant system, the immediate response to an acute oxidative stress, and the timing over which plants return to initial antioxidant levels. The results also indicate that future elevated [CO{sub 2}] and [O{sub 3}] will differentially affect the antioxidant system.« less

  13. Metatranscriptomics Reveals the Functions and Enzyme Profiles of the Microbial Community in Chinese Nong-Flavor Liquor Starter

    PubMed Central

    Huang, Yuhong; Yi, Zhuolin; Jin, Yanling; Huang, Mengjun; He, Kaize; Liu, Dayu; Luo, Huibo; Zhao, Dong; He, Hui; Fang, Yang; Zhao, Hai

    2017-01-01

    Chinese liquor is one of the world's best-known distilled spirits and is the largest spirit category by sales. The unique and traditional solid-state fermentation technology used to produce Chinese liquor has been in continuous use for several thousand years. The diverse and dynamic microbial community in a liquor starter is the main contributor to liquor brewing. However, little is known about the ecological distribution and functional importance of these community members. In this study, metatranscriptomics was used to comprehensively explore the active microbial community members and key transcripts with significant functions in the liquor starter production process. Fungi were found to be the most abundant and active community members. A total of 932 carbohydrate-active enzymes, including highly expressed auxiliary activity family 9 and 10 proteins, were identified at 62°C under aerobic conditions. Some potential thermostable enzymes were identified at 50, 62, and 25°C (mature stage). Increased content and overexpressed key enzymes involved in glycolysis and starch, pyruvate and ethanol metabolism were detected at 50 and 62°C. The key enzymes of the citrate cycle were up-regulated at 62°C, and their abundant derivatives are crucial for flavor generation. Here, the metabolism and functional enzymes of the active microbial communities in NF liquor starter were studied, which could pave the way to initiate improvements in liquor quality and to discover microbes that produce novel enzymes or high-value added products. PMID:28955318

  14. Lead nitrate-induced development of hypercholesterolemia in rats: sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis.

    PubMed

    Kojima, Misaki; Masui, Toshimitsu; Nemoto, Kiyomitsu; Degawa, Masakuni

    2004-12-01

    Changes in the gene expressions of hepatic enzymes responsible for cholesterol homeostasis were examined during the process of lead nitrate (LN)-induced development of hypercholesterolemia in male rats. Total cholesterol levels in the liver and serum were significantly increased at 3-72 h and 12-72 h, respectively, after LN-treatment (100 micromol/kg, i.v.). Despite the development of hypercholesterolemia, the genes for hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and other enzymes (FPPS, farnesyl diphosphate synthase; SQS, squalene synthase; CYP51, lanosterol 14alpha-demethylase) responsible for cholesterol biosynthesis were activated at 3-24 h and 12-18 h, respectively. On the other hand, the gene expression of cholesterol 7alpha-hydroxylase (CYP7A1), a catabolic enzyme of cholesterol, was remarkably suppressed at 3-72 h. The gene expression levels of cytokines interleukin-1beta (IL-1beta) and TNF-alpha, which activate the HMGR gene and suppress the CYP7A1 gene, were significantly increased at 1-3 h and 3-24 h, respectively. Furthermore, gene activation of SREBP-2, a gene activator of several cholesterogenic enzymes, occurred before the gene activations of FPPS, SQS and CYP51. This is the first report demonstrating sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis in LN-treated male rats. The mechanisms for the altered-gene expressions of hepatic enzymes in LN-treated rats are discussed.

  15. Effect of immobile isolated enzymes from rumen liquid by using alginate matrices on the bay leaf extraction

    NASA Astrophysics Data System (ADS)

    Paramita, Vita; Yulianto, Mohammad Endy; Yohana, Eflita; Arifan, Fahmi; Hanifah, Amjad, Muhammad Taqiyuddin

    2015-12-01

    This research aims to develop the enzymatically of bay leaves phytochemical extraction process. The novelty and the main innovations of this research is the development of extraction process by using enzymatic extractor and isolate the enzymes from rumen liquid to shift the equilibrium phase, increase the extraction rate and increase the extraction yield. The activity of rumen liquid enzyme was represented by the activity of cellulase and protease. The analyze of total flavonoid content was performed by using UV-Vis Spectrofometry. The activity of immobilized enzyme of cellulase (0.08±0.00 U/ml) was lower than the un-immobilized one (0.23±0.00 U/ml). However, there was no difference activity of the immobilized (0.75±0.00 U/ml) and un-immobilized (0.76±0.01 U/ml) of protease. The model of mass transfer of un-immobilized enzyme can be fitted on the experimental data, however the model of mass transfer of immobilized enzyme did not match with the experimental data. The mass transfer coefficient of enzymatic extraction flavonoids bay leaf without immobilization was 0.17167 s-1 which greater than the reported value of obtained KLa from extraction by using electric heating.

  16. Subcellular distribution of gluconeogenetic enzymes in germinating castor bean endosperm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, M.; Beevers, H.

    1979-07-01

    The intracellular distribution of enzymes capable of catalyzing the reactions from oxaloacetate to sucrose in germinating castor bean endosperm has been studied by sucrose density gradient centrifugation. One set of glycolytic enzyme activities was detected in the plastids and another in the cytosol. The percentages of their activities in the plastids were less than 10% of total activities except for aldolase and fructose diphosphatase. The activities of several of the enzymes present in the plastids seem to be too low to account for the in vivo rate of gluconeogenesis whereas those in the cytosol are quite adequate. Furthermore, phosphoenolypyruvate carboxykinase,more » sucrose phosphate synthetase, and sucrose synthetase, which catalyze the first and final steps in the conversion of oxaloacetate to sucrose, were found only in the cytosol. It is deduced that in germinating castor bean endosperm the complete conversion of oxaloacetate to sucrose and CO/sub 2/ occurs in the cytosol. The plastids contain some enzymes of the pentose phosphate pathway, pyruvate dehydrogenase and fatty acid synthetase in addition to the set of glycolytic enzymes. This suggests that the role of the plastid in the endosperm of germinating castor bean is the production of fatty acids from sugar phosphates, as it is known to be in the endosperm during seed development.« less

  17. Changes in digestive enzyme activities during larval development of Chinese loach Paramisgurnus dabryanus (Dabry de Thiersant, 1872).

    PubMed

    Zhang, Yun-Long; Wu, Qiao-Wan; Hu, Wei-Hua; Wang, Fan; Zhao, Zhong-Bo; He, Hui; Shao, Wei-Han; Fan, Qi-Xue

    2015-12-01

    The digestive physiology of Chinese loach (Paramisgurnus dabryanus) was studied by assessing the specific and total activities of different pancreatic (trypsin, chymotrypsin, amylase and lipase), gastric (pepsin) and intestinal (alkaline phosphatase and leucine-aminopeptidase) enzymes from hatching to 40 days after hatching (DAH). Larvae were reared at 24.4 ± 0.4 °C and fed with rotifers from mouth opening (4 DAH) to 15 DAH, from 10 to 35 DAH with Cladocera and from 30 to 40 DAH with compound diet. Enzyme activities for trypsin, chymotrypsin, amylase and lipase were detected before the onset of exogenous feeding, indicating that these enzymes were genetically pre-programmed. Most of the pancreatic enzyme specific activities increased until 20 DAH and decreased thereafter. The pepsin activity of Chinese loach was firstly detected at 30 DAH, indicating the appearance of functional gastric gland. Alkaline phosphatase specific activity was detected from hatching onward, showed marked increase and reached the second peak at 20 DAH, while a gradual increase in specific leucine-aminopeptidase activity was observed until the end of the experiment. Accordingly, the larvae of Chinese loach possess a functional digestive system before the onset of exogenous feeding and the digestive capacity gradually increases as development progresses. The abrupt increase in intestinal enzyme activities between 10 and 20 DAH demonstrates onset of juvenile-like digestive mode in Chinese loach larvae. The increase in pepsin activity after 30 DAH indicates the shift from alkaline to acidic digestion in Chinese loach larvae, which may be considered as the onset of weaning.

  18. An active lifestyle induces positive antioxidant enzyme modulation in peripheral blood mononuclear cells of overweight/obese postmenopausal women.

    PubMed

    Farinha, Juliano Boufleur; De Carvalho, Nélson Rodrigues; Steckling, Flávia Mariel; De Vargas, Liziane Da Silva; Courtes, Aline Alves; Stefanello, Sílvio Terra; Martins, Caroline Curry; Bresciani, Guilherme; Dos Santos, Daniela Lopes; Soares, Félix Alexandre Antunes

    2015-01-15

    The aim of this study was to investigate the effects of an active lifestyle on mitochondrial functioning, viability, bioenergetics, and redox status markers in peripheral blood mononuclear cells (PBMC) of overweight/ obese postmenopausal women. We performed a cross-sectional study with postmenopausal women aged 45–64 years and body mass index N 25 kg/m2, divided into physically active (n = 23) and sedentary (n = 12) groups. Mitochondria functioning and viability, bioenergetics and redox status parameters were assessed in PBMC with spectrophotometric and fluorometric assays. No differences were found in the enzyme activity of complexes I and II of the electron transport chain (ETC), mitochondrial superoxide dismutase (MnSOD) activity, methyl-tetrazolium reduction levels and reduced glutathione and oxidized glutathione levels between the groups. However, the physically active group presented higher levels of reactive oxygen species (ROS) (P= 0.04) and increased catalase (CAT) (P= 0.029), total (P= 0.011) and cytosolic SOD (CuZnSOD) (P= 0.009) activities. An active lifestyle that includes aerobic exercise for at least 30 min, three times per week may improve antioxidant enzyme activities in PBMC in overweight/obese postmenopausal women, without changes in the activity of the ETC enzymes. However, this low intensity physical activity is not able to induce relevant mitochondrial adaptations.

  19. Direct measurement of catalase activity in living cells and tissue biopsies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scaglione, Christine N.; Xu, Qijin; Ramanujan, V. Krishnan, E-mail: Ramanujanv@csmc.edu

    Spatiotemporal regulation of enzyme-substrate interactions governs the decision-making steps in biological systems. Enzymes, being functional units of every living cell, contribute to the macromolecular stability of cell survival, proliferation and hence are vital windows to unraveling the biological complexity. Experimental measurements capturing this dynamics of enzyme-substrate interactions in real time add value to this understanding. Furthermore these measurements, upon validation in realistic biological specimens such as clinical biopsies – can further improve our capability in disease diagnostics and treatment monitoring. Towards this direction, we describe here a novel, high-sensitive measurement system for measuring diffusion-limited enzyme-substrate kinetics in real time. Usingmore » catalase (enzyme) and hydrogen peroxide (substrate) as the example pair, we demonstrate that this system is capable of direct measurement of catalase activity in vitro and the measured kinetics follows the classical Michaelis-Menten reaction kinetics. We further demonstrate the system performance by measuring catalase activity in living cells and in very small amounts of liver biopsies (down to 1 μg total protein). Catalase-specific enzyme activity is demonstrated by genetic and pharmacological tools. Finally we show the clinically-relevant diagnostic capability of our system by comparing the catalase activities in liver biopsies from young and old mouse (liver and serum) samples. We discuss the potential applicability of this system in clinical diagnostics as well as in intraoperative surgical settings. - Highlights: • A novel, direct measurement of Catalase enzyme activity via, oxygen sensing method. • Steady-stateprofiles of Catalase activity follow the Michaelis-Menten Kinetics. • Catalase-specific activity demonstrated using genetic and pharmacological tools. • Overcomes limitations of spectroscopic methods and indirect calorimetric approaches. • Clear demonstration of the applicability in cancer cells and aging animal tissues.« less

  20. Andrographolide powder treatment as antifeedant decreased digestive enzyme activity from Plutella xylostella (L.) larvae midgut

    NASA Astrophysics Data System (ADS)

    Madihah, Malini, Desak Made; Roviani, Hana; Rani, Nessa Vidya; Hermawan, Wawan

    2018-02-01

    Andrographolide, an active compound of Andrographis paniculata, has shown antifeedant activity against Plutella xylostella larvae by disrupting the midgut histological structures. This study aims to determine the activity of andrographolide in crystallized powder form against several digestive enzymes from the midgut of 4th instar P. xylostella larvae. The concentrations used were 0 (control), 1000, 1600, 2500, 4000 and 6500 ppm with four replications each. No-choice antifeedant test with leaf disc method is used in a bioassay for 24 hours. The midgut was dissected from 2nd until 6th segment of 4th instar larvae and was homogenized in iced-buffer solution. Furthermore, larvae's midgut samples were centrifuged at 10,000 rpm, 4°C for 20 min and the supernatant is used as enzyme source. The results showed that andrographolide significantly reduces the amylase, invertase, protease and trypsin activity, as well as total protein concentration compared with control (p<0.05) in a dose-dependent manner. This study provides information about the mode of action of andrographolide in inhibiting feed activity by the reduced digestive enzyme activity of 4th instar P. xylostella larvae.

  1. Direct measurement of catalase activity in living cells and tissue biopsies.

    PubMed

    Scaglione, Christine N; Xu, Qijin; Ramanujan, V Krishnan

    2016-01-29

    Spatiotemporal regulation of enzyme-substrate interactions governs the decision-making steps in biological systems. Enzymes, being functional units of every living cell, contribute to the macromolecular stability of cell survival, proliferation and hence are vital windows to unraveling the biological complexity. Experimental measurements capturing this dynamics of enzyme-substrate interactions in real time add value to this understanding. Furthermore these measurements, upon validation in realistic biological specimens such as clinical biopsies - can further improve our capability in disease diagnostics and treatment monitoring. Towards this direction, we describe here a novel, high-sensitive measurement system for measuring diffusion-limited enzyme-substrate kinetics in real time. Using catalase (enzyme) and hydrogen peroxide (substrate) as the example pair, we demonstrate that this system is capable of direct measurement of catalase activity in vitro and the measured kinetics follows the classical Michaelis-Menten reaction kinetics. We further demonstrate the system performance by measuring catalase activity in living cells and in very small amounts of liver biopsies (down to 1 μg total protein). Catalase-specific enzyme activity is demonstrated by genetic and pharmacological tools. Finally we show the clinically-relevant diagnostic capability of our system by comparing the catalase activities in liver biopsies from young and old mouse (liver and serum) samples. We discuss the potential applicability of this system in clinical diagnostics as well as in intraoperative surgical settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Direct Measurement of Catalase Activity in Living Cells and Tissue Biopsies

    PubMed Central

    Scaglione, Christine N; Xu, Qijin; Ramanujan, V. Krishnan

    2016-01-01

    Spatiotemporal regulation of enzyme-substrate interactions governs the decision-making steps in biological systems. Enzymes, being functional units of every living cell, contribute to the macromolecular stability of cell survival, proliferation and hence are vital windows to unraveling the biological complexity. Experimental measurements capturing this dynamics of enzyme-substrate interactions in real time add value to this understanding. Furthermore these measurements, upon validation in realistic biological specimens such as clinical biopsies – can further improve our capability in disease diagnostics and treatment monitoring. Towards this direction, we describe here a novel, high-sensitive measurement system for measuring diffusion-limited enzyme-substrate kinetics in real time. Using catalase (enzyme) and hydrogen peroxide (substrate) as the example pair, we demonstrate that this system is capable of direct measurement of catalase activity in vitro and the measured kinetics follows the classical Michaelis-Menten reaction kinetics. We further demonstrate the system performance by measuring catalase activity in living cells and in very small amounts of liver biopsies (down to 1μg total protein). Catalase-specific enzyme activity is demonstrated by genetic and pharamacological tools. Finally we show the clinically-relevant diagnostic capability of our system by comparing the catalase activities in liver biopsies from young and old mouse (liver and serum) samples. We discuss the potential applicability of this system in clinical diagnostics as well as in intraoperative surgical settings. PMID:26772884

  3. New perspective on glycoside hydrolase binding to lignin from pretreated corn stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarbrough, John M.; Mittal, Ashutosh; Mansfield, Elisabeth

    Background: Non-specific binding of cellulases to lignin has been implicated as a major factor in the loss of cellulase activity during biomass conversion to sugars. It is believed that this binding may strongly impact process economics through loss of enzyme activities during hydrolysis and enzyme recycling scenarios. The current model suggests glycoside hydrolase activities are lost though non-specific/non-productive binding of carbohydrate-binding domains to lignin, limiting catalytic site access to the carbohydrate components of the cell wall. Results: In this study, we compared component enzyme affinities of a commercial Trichoderma reesei cellulase formulation, Cellic CTec2, towards extracted corn stover lignin usingmore » sodium dodecyl sulfate-polyacrylamide gel electrophoresis and p-nitrophenyl substrate activities to monitor component binding, activity loss, and total protein binding. Protein binding was strongly affected by pH and ionic strength. β-D-glucosidases and xylanases, which do not have carbohydrate-binding modules (CBMs) and are basic proteins, demonstrated the strongest binding at low ionic strength, suggesting that CBMs are not the dominant factor in enzyme adsorption to lignin. Despite strong adsorption to insoluble lignin, β-D-glucosidase and xylanase activities remained high, with process yields decreasing only 4–15 % depending on lignin concentration. Conclusion: We propose that specific enzyme adsorption to lignin from a mixture of biomass-hydrolyzing enzymes is a competitive affinity where β-D-glucosidases and xylanases can displace CBM interactions with lignin. Process parameters, such as temperature, pH, and salt concentration influence the individual enzymes’ affinity for lignin, and both hydrophobic and electrostatic interactions are responsible for this binding phenomenon. Moreover, our results suggest that concern regarding loss of critical cell wall degrading enzymes to lignin adsorption may be unwarranted when complex enzyme mixtures are used to digest biomass.« less

  4. New perspective on glycoside hydrolase binding to lignin from pretreated corn stover

    DOE PAGES

    Yarbrough, John M.; Mittal, Ashutosh; Mansfield, Elisabeth; ...

    2015-12-18

    Background: Non-specific binding of cellulases to lignin has been implicated as a major factor in the loss of cellulase activity during biomass conversion to sugars. It is believed that this binding may strongly impact process economics through loss of enzyme activities during hydrolysis and enzyme recycling scenarios. The current model suggests glycoside hydrolase activities are lost though non-specific/non-productive binding of carbohydrate-binding domains to lignin, limiting catalytic site access to the carbohydrate components of the cell wall. Results: In this study, we compared component enzyme affinities of a commercial Trichoderma reesei cellulase formulation, Cellic CTec2, towards extracted corn stover lignin usingmore » sodium dodecyl sulfate-polyacrylamide gel electrophoresis and p-nitrophenyl substrate activities to monitor component binding, activity loss, and total protein binding. Protein binding was strongly affected by pH and ionic strength. β-D-glucosidases and xylanases, which do not have carbohydrate-binding modules (CBMs) and are basic proteins, demonstrated the strongest binding at low ionic strength, suggesting that CBMs are not the dominant factor in enzyme adsorption to lignin. Despite strong adsorption to insoluble lignin, β-D-glucosidase and xylanase activities remained high, with process yields decreasing only 4–15 % depending on lignin concentration. Conclusion: We propose that specific enzyme adsorption to lignin from a mixture of biomass-hydrolyzing enzymes is a competitive affinity where β-D-glucosidases and xylanases can displace CBM interactions with lignin. Process parameters, such as temperature, pH, and salt concentration influence the individual enzymes’ affinity for lignin, and both hydrophobic and electrostatic interactions are responsible for this binding phenomenon. Moreover, our results suggest that concern regarding loss of critical cell wall degrading enzymes to lignin adsorption may be unwarranted when complex enzyme mixtures are used to digest biomass.« less

  5. Comparison of a xylanase and a complex of non starch polysaccharide-degrading enzymes with regard to performance and bacterial metabolism in weaned piglets.

    PubMed

    Vahjen, Wilfried; Osswald, Tanja; Schäfer, Klaus; Simon, Ortwin

    2007-04-01

    Weaned piglets were fed a wheat based diet either non-supplemented or supplemented with a multi-enzyme preparation or a xylanase mono-enzyme preparation, respectively. Both enzyme preparations increased live weight gain nonsignificantly, but only animals of the xylanase group showed a trend (p = 0.076) for an improved feed conversion. Only precaecal digestibility of total amino acids was improved significantly when the mono-enzyme preparation was added. Improvements of digestibility of crude fat, crude protein and starch did not reach the significance level. Both enzyme preparations reduced jejunal viscosity, however viscosity in the colon was only reduced by the mono-enzyme preparation. Both enzymes significantly reduced Lactobacillus spp. cell numbers as well as bacterial metabolites in the stomach and showed similar nonsignificant modifications in jejunum contents except for acetate in the mono-enzyme group. Total jejunal bile acids were unchanged. Compared to the control, the ratio of the main conjugated to the main deconjugated bile acid was significantly higher in the mono-enzyme group. This study has shown that the mono- and multi-enzyme preparation can lead to improved performance in wheat based diets for piglets. Like in poultry, the main mode of action seems to be the reduction of small intestinal viscosity. However, the generation of fermentable carbohydrates by the multi-enzyme preparation may mask beneficial effects on performance due to the development of an active bile acid deconjugating microbiota in the small intestine.

  6. Antibody-directed targeting of lysostaphin adsorbed onto polylactide nanoparticles increases its antimicrobial activity against S. aureus in vitro

    NASA Astrophysics Data System (ADS)

    Satishkumar, R.; Vertegel, A. A.

    2011-12-01

    The objective of this paper was to study the effect of antibody-directed targeting of S. aureus by comparing the activities of lysostaphin conjugated to biodegradable polylactide nanoparticles (NPs) in the presence and in the absence of co-immobilized anti-S. aureus antibody. Lysostaphin-antibody-NP conjugates were synthesized through physical adsorption at different enzyme:antibody:NP ratios. The synthesized enzyme-NP conjugates were characterized by means of dynamic light scattering and zeta potential analysis, and the total protein binding yield on the NPs was characterized using Alexa Fluor 350 and 594 dyes for the S. aureus antibody and lysostaphin respectively. We observed enhanced antimicrobial activity for both enzyme-coated and enzyme-antibody-coated NPs for lysostaphin coatings corresponding to ~ 40% of the initial monolayer and higher compared to the free enzyme case (p < 0.05). At the highest antibody coating concentration, bacterial lysis rates for antibody-coated samples were significantly higher than for lysostaphin-coated samples lacking the antibody (p < 0.05). Such enzyme-NP conjugates thus have the potential for becoming novel therapeutic agents for treating antibiotic-resistant S. aureus infections.

  7. Açai (Euterpe oleracea Mart.) pulp dietary intake improves cellular antioxidant enzymes and biomarkers of serum in healthy women.

    PubMed

    Barbosa, Priscila Oliveira; Pala, Daniela; Silva, Carla Teixeira; de Souza, Melina Oliveira; do Amaral, Joana Ferreira; Vieira, Renata Adrielle Lima; Folly, Gilce Andrezza de Freitas; Volp, Ana Carolina Pinheiro; de Freitas, Renata Nascimento

    2016-06-01

    The aim of the present study was to evaluate the effect of açai pulp (Euterpe oleracea Martius) intake on the prevention of oxidative damage by measuring the activity of antioxidant enzymes and biomarkers of protein oxidation in women. A nutritional intervention study was conducted with thirty-five healthy women who were asked to consume 200 g/d of açai pulp for 4 wk. Blood samples were collected, and blood pressure and anthropometric parameters were measured before and after the experimental period. Antioxidant enzymes, superoxide dismutase, catalase, glutathione, production of reactive oxygen species, and total antioxidant capacity were evaluated in polymorphonuclear cells. Serum concentration of protein carbonyl and sulfhydryl groups were also determined. The açai intake increased catalase activity, total antioxidant capacity, and reduced the production of reactive oxygen species. Furthermore, it reduced serum concentration of protein carbonyl and increased total serum sulfhydryl groups. These results show the antioxidant benefit of dietary açai for the healthy women included in the present study, and may increase understanding of the beneficial health properties of this fruit. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Antidiabetic and Antioxidant Activity of Scoparia dulcis Linn.

    PubMed

    Mishra, M R; Mishra, A; Pradhan, D K; Panda, A K; Behera, R K; Jha, S

    2013-09-01

    The hypoglycaemic activity of methanol extract of Scoparia dulcis was performed on both in vitro and in vivo models along with determination of total extractable polyphenol. Methanol extract of Scoparia dulcis contains 4.9% and water extract contains 3.2% of total extractable polyphenol. The antioxidant activity showed very promising result in both the tested methods that is 2,2-diphenyl-1-picrylhydrazyl and ferric ion reducing capacity. The antioxidant activity is directly correlated to the antidiabetic potential of drug. The two enzymes (amylase and glycosidase) found in intestine are responsible for the increasing postprandial glucose in body. In vitro model was performed on these enzymes and the results showed that methanol extract of Scoparia dulcis was effective to check the postprandial glucose level. The in vivo hypoglycaemic activity of methanol extract of Scoparia dulcis was performed on streptozotocin-induced diabetes mellitus showed significant inhibition of blood glucose level as compared to control and similar to that of standard glibenclamide. The overall data potentiates the traditional value of Scoparia dulcis as an antidiabetic drug.

  9. Enhancing effect of Fe2+ on the formaldehyde production from trimethylamine N-oxide decomposition catalyzed by the extract of Harpadon nehereus kidney

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Zhou, Deqing; Zhao, Feng

    2011-03-01

    The effects of Fe2+ on the trimethylamine N-oxide (TMAO) demethylating activity of the Harpadon nehereus kidney extract were studied in this research. The activity of the kidney extract was presumably inhibited by ethylene diamine tetra-acetic acid (EDTA), which indicates that the kidney extract contains an enzyme or enzyme system with metal cations as activator. Activity of the kidney extract was enhanced significantly when Fe2+ was added into the model system in vitro. As the concentration of Fe2+ increased, the decomposing rate of TMAO increased rapidly until TMAO decomposed completely. The activity of the kidney extract was also enhanced by reductant such as ascorbic acid. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) was employed to determine the content of total iron in a number of fishery products. Significant positive correlation between the contents of total iron and endogenous formaldehyde (FA) was found, especially in marine products.

  10. Dietary phytic acid prevents fatty liver by reducing expression of hepatic lipogenic enzymes and modulates gut microflora in rats fed a high-sucrose diet.

    PubMed

    Sekita, Ayaka; Okazaki, Yukako; Katayama, Tetsuyuki

    2016-06-01

    The aim of this study was to investigate the effect of phytic acid (PA) on fatty liver and gut microflora in rats fed a high-sucrose (HSC) diet. Three groups of rats were fed a high-starch (HSR) diet or an HSC diet with or without 1.02% sodium PA for 12 d. We evaluated hepatic weight, total lipids, and triacylglycerol (TG) levels, the activities and expression of hepatic lipogenic enzymes (glucose-6-phosphate dehydrogenase, malic enzyme 1, and fatty acid synthetase), and fecal microflora. The HSC diet significantly increased hepatic total lipids and TG levels, and the activities and expression of the hepatic lipogenic enzymes compared with the HSR diet. These upregulations were clearly suppressed by dietary PA. Consumption of PA elevated the fecal ratio of Lactobacillus spp. and depressed the ratio of Clostridium cocoides, and suppressed the elevation in the ratio of C. leptum induced by the HSC diet. This work showed that dietary PA ameliorates sucrose-induced fatty liver through reducing the expression of hepatic lipogenesis genes and modulates gut microflora in rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Ganoderma lucidum total triterpenes prevent γ-radiation induced oxidative stress in Swiss albino mice in vivo.

    PubMed

    Smina, T P; Joseph, Jini; Janardhanan, K K

    2016-11-01

    The in vivo radio-protective effect of total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst was evaluated using Swiss albino mice, by pre-treatment with total triterpenes for 14 days, followed by a whole body exposure to γ-radiation. The activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and the level of reduced glutathione (GSH) were analysed in liver and brain homogenates. The extent of lipid and protein peroxidation was also estimated in liver and brain homogenates after irradiation. Protection of radiation-induced DNA strand breaks in peripheral blood lymphocytes and bone marrow cells was assessed using the comet assay. Total triterpenes were highly effective in reducing the levels of lipid peroxidation and protein oxidation to near normal values in both liver and brain tissues. Total triterpenes, when administered in vivo, were also found to be successful in restoring the antioxidant enzyme activities and GSH level in liver and brain of irradiated mice. Administration of total triterpenes, prior to radiation exposure, significantly decreased the DNA strand breaks. The results of the present study thus revealed the potential therapeutic use of Ganoderma total triterpenes as an adjuvant in radiation therapy.

  12. Energetic and Informative Interaction of Microwaves with Neurons and Enzymes

    NASA Astrophysics Data System (ADS)

    Maharramov, A. A.; Babazade, S. N.; Yusifov, E. Yu.; Gajiyev, A. M.

    2007-04-01

    Besides Purkinje Cells (PC) in cat cerebellum, experiments on Microwave-Living System interaction have been performed on some antioxidant enzymes - Super oxide dismutase (SOD), Catalase (C) and Glutathione peroxidase (GP) in the eye structures (pigment epithelium and neuronal structure - retina) in frogs, and on Glucose-6-Phosphatedehydrogenase (GPD) and Pyruvate-kinase (PK) in different organs - cerebellum, hypothalamus, liver and erythrocytes - of wistar albino rats. Exposure parameters of Microwaves of decimetre range (DRM) - total exposure, λ=65 cm, duration of exposition 10-20 minutes. According to the data obtained it may be concluded that, PC increasing their impulse activity irregularity, may react to the energetic (thermal) component of DRM action, whereas the result of informative (subtle) interaction between DRM and PC leads to the increase of regularity in electrophysiological activity of the latter. In the case of enzymes, in identification of the character of interactions, the type of the enzymes, the structure where an enzyme activity is studied and the physiological conditions related to such a factor as hunger, for example, take places. In this paper the effects of DRM on PC, G6PD and PK have been presented.

  13. Analysis of class II (hydrolytic) and class I (beta-lyase) apurinic/apyrimidinic endonucleases with a synthetic DNA substrate.

    PubMed Central

    Levin, J D; Demple, B

    1990-01-01

    We have developed simple and sensitive assays that distinguish the main classes of apurinic/apyrimidinic (AP) endonucleases: Class I enzymes that cleave on the 3' side of AP sites by beta-elimination, and Class II enzymes that cleave by hydrolysis on the 5' side. The distinction of the two types depends on the use of a synthetic DNA polymer that contains AP sites with 5'-[32P]phosphate residues. Using this approach, we now show directly that Escherichia coli endonuclease IV and human AP endonuclease are Class II enzymes, as inferred previously on the basis of indirect assays. The assay method does not exhibit significant interference by nonspecific nucleases or primary amines, which allows the ready determination of different AP endonuclease activities in crude cell extracts. In this way, we show that virtually all of the Class II AP endonuclease activity in E. coli can be accounted for by two enzymes: exonuclease III and endonuclease IV. In the yeast Saccharomyces cerevisiae, the Class II AP endonuclease activity is totally dependent on a single enzyme, the Apn1 protein, but there are probably multiple Class I enzymes. The versatility and ease of our approach should be useful for characterizing this important class of DNA repair enzymes in diverse systems. PMID:1698278

  14. In vitro antioxidant and hypoglycemic activities of Ethiopian spice blend Berbere.

    PubMed

    Loizzo, Monica R; Di Lecce, Giuseppe; Boselli, Emanuele; Bonesi, Marco; Menichini, Federica; Menichini, Francesco; Frega, Natale Giuseppe

    2011-11-01

    The metal chelating activity, antioxidant properties, and the effect on carbohydrate-hydrolyzing enzymes of Ethiopian spice blend Berbere have been investigated. Berbere contains a total amount of phenols corresponding to 71.3 mg chlorogenic acid equivalent per gram of extract and a total flavonoid content of 32.5 mg quercetin equivalent per gram of extract. An increase of the resistance towards forced oxidation was obtained when Berbere was added to sunflower oil. In order to evaluate the bioactivity of the non-polar constituents, an n-hexane extract was obtained from Berbere. The gas chromatography-mass spectrometry analysis revealed the presence of 19 fatty acids constituents (98.1% of the total oil content). Among them, linoleic acid was the major component (72.0% of the total lipids). The ethanolic extract had the highest ferric-reducing ability power (35.4 μM Fe(II)/g) and DPPH scavenging activity with a concentration giving 50% inhibition (IC(50)) value of 34.8 μg/ml. Moreover, this extract exhibited good hypoglycemic activity against α-amylase (IC(50) = 78.3 μg/ml). In conclusion, Ethiopian spice blend Berbere showed promising antioxidant and hypoglycemic activity via the inhibition of carbohydrate digestive enzymes. These activities may be of interest from functional point of view and for the revalorization of the spice blend in gastronomy also outside the African country.

  15. Effects of traditional Chinese medicine formula on ruminal fermentation, enzyme activities and nutrient digestibility of beef cattle.

    PubMed

    Zhu, Zhi; Song, Zhen-Hui; Cao, Li-Ting; Wang, Yong; Zhou, Wen-Zhang; Zhou, Pei; Zuo, Fu-Yuan

    2018-04-01

    This study was conducted to evaluate effects of traditional Chinese medicine formula (TCMF) combined with several herbs on ruminal fermentation, enzyme activities and nutrient digestibility. Twenty finishing bulls were assigned to control or different TCMFs (Yufeisan-1, -2, -3; 2.5% dry matter (DM) in concentrate). Results showed that DM intake was higher (P < 0.05) in the Yufeisan-3 group than others. Compared to control, apparent digestibility of crude protein and neutral detergent fiber were increased (P < 0.05) by Yufeisan-3. No changes were observed in ruminal pH, concentrations of ammonia-N, microbial crude protein and total volatile fatty acid, whereas ratio of acetate to propionate was lower (P < 0.05) and propionate proportion tended to be higher (P < 0.1) in three TCMFs than control. Ruminal xylanase (P = 0.061) and carboxymethylcellulase (P < 0.05) activities were higher in Yufeisan-3 than control. No changes were observed in abundance of total bacteria, fungi and protozoa, whereas Fibrobacter succinogenes (P = 0.062) and Ruminococcus flavefaciens (P < 0.05) were increased and total methanogens was reduced (P = 0.069) by Yufeisan-3 compared to control. Yufeisan-3 improved nutrient digestibility and ruminal enzyme activity, and modified fermentation and microbial community, maybe due to the presence of Herba agastaches, Cortex phellodendri and Gypsum fibrosum. © 2018 Japanese Society of Animal Science.

  16. Glycolytic and gluconeogenic enzyme activities in parenchymal and non-parenchymal cells from mouse liver

    PubMed Central

    Crisp, D. M.; Pogson, C. I.

    1972-01-01

    1. Parenchymal cells have been prepared from mouse liver by enzymic and mechanical means. 2. The dry weights, protein and DNA contents of these cells have been determined. 3. Mouse liver `M-' and `L-type' pyruvate kinases have been prepared free of contamination with each other; their kinetic properties have been examined and a method has been developed for their assay in total liver homogenates. 4. Recoveries of phosphoglycerate kinase, lactate dehydrogenase and phosphofructokinase in enzymically prepared cells indicate that little, if any, cytoplasmic protein is lost during preparation. 5. Parenchymal cells exhibit a very substantial increase in the activity ratio of glucokinase to hexokinase over that in total liver homogenate; in three out of eight experiments, hexokinase activity was undetectable. 6. `L-type' pyruvate kinase alone occurs in the parenchymal cell. Non-parenchymal cells are characterized by the presence of `M-type' activity only. 7. Parenchymal cells contain both glucose 6-phosphatase and fructose 1,6-diphosphatase. The non-parenchymal fraction appears to contain fructose 1,6-diphosphatase, but is devoid of glucose 6-phosphatase. 8. No aldolase A was detectable in the whole liver. Aldolase B occurs in both parenchymal and non-parenchymal tissue. 9. Parenchymal cells prepared by mechanical disruption of mouse liver with 20% polyvinyl alcohol exhibit a similar enzyme profile to those prepared enzymically. 10. The methodology involved in the preparation of isolated liver cells is discussed. The importance of the measurement of several parameters as criteria for establishing the viability of parenchymal cells is stressed. 11. The metabolic implications of the results in the present study are discussed. PMID:4262895

  17. Soil microbiological properties and enzymatic activities of long-term post-fire recovery in dry and semiarid Aleppo pine (Pinus halepensis M.) forest stands

    NASA Astrophysics Data System (ADS)

    Hedo, J.; Lucas-Borja, M. E.; Wic, C.; Andrés Abellán, M.; de Las Heras, J.

    2014-10-01

    Wildfires affecting forest ecosystems and post-fire silvicultural treatments may cause considerable changes in soil properties. The capacity of different microbial groups to recolonize soil after disturbances is crucial for proper soil functioning. The aim of this work was to investigate some microbial soil properties and enzyme activities in semiarid and dry Aleppo pine (Pinus halepensis M.) forest stands. Different plots affected by a wildfire event 17 years ago without or with post-fire silvicultural treatments five years after the fire event were selected. A mature Aleppo pine stand unaffected by wildfire and not thinned was used as a control. Physicochemical soil properties (soil texture, pH, carbonates, organic matter, electrical conductivity, total N and P), soil enzymes (urease, phosphatase, β-glucosidase and dehydrogenase activities), soil respiration and soil microbial biomass carbon were analysed in the selected forests areas and plots. The main finding was that long time after this fire event produces no differences in the microbiological soil properties and enzyme activities of soil after comparing burned and thinned, burned and not thinned, and mature plots. Thus, the long-term consequences and post-fire silvicultural management in the form of thinning have a significant effect on the site recovery after fire. Moreover, significant site variation was generally seen in soil enzyme activities and microbiological parameters. We conclude that total vegetation restoration normalises microbial parameters, and that wildfire and post-fire silvicultural treatments are not significant factors of soil properties after 17 years.

  18. Mitochondrial targeting increases specific activity of a heterologous valine assimilation pathway in Saccharomyces cerevisiae.

    PubMed

    Solomon, Kevin V; Ovadia, Elisa; Yu, Fujio; Mizunashi, Wataru; O'Malley, Michelle A

    2016-12-01

    Bio-based isobutantol is a sustainable 'drop in' substitute for petroleum-based fuels. However, well-studied production routes, such as the Ehrlich pathway, have yet to be commercialized despite more than a century of research. The more versatile bacterial valine catabolism may be a competitive alternate route producing not only an isobutanol precursor but several carboxylic acids with applications as biomonomers, and building blocks for other advanced biofuels. Here, we transfer the first two committed steps of the pathway from pathogenic Pseudomonas aeruginosa PAO1 to yeast to evaluate their activity in a safer model organism. Genes encoding the heteroligomeric branched chain keto-acid dehydrogenase (BCKAD; bkdA1, bkdA2, bkdB, lpdV ), and the homooligomeric acyl-CoA dehydrogenase (ACD; acd1 ) were tagged with fluorescence epitopes and targeted for expression in either the mitochondria or cytoplasm of S. cerevisiae . We verified the localization of our constructs with confocal fluorescence microscopy before measuring the activity of tag-free constructs. Despite reduced heterologous expression of mitochondria-targeted enzymes, their specific activities were significantly improved with total enzyme activities up to 138% greater than those of enzymes expressed in the cytoplasm. In total, our results demonstrate that the choice of protein localization in yeast has significant impact on heterologous activity, and suggests a new path forward for isobutanol production.

  19. Construction of Potent Recombinant Strain Through Intergeneric Protoplast Fusion in Endophytic Fungi for Anticancerous Enzymes Production Using Rice Straw.

    PubMed

    El-Gendy, Mervat Morsy Abbas Ahmed; Al-Zahrani, Salha Hassan Mastour; El-Bondkly, Ahmed Mohamed Ahmed

    2017-09-01

    Among all fungal endophytes isolates derived from different ethno-medical plants, the hyper-yield L-asparaginase and L-glutaminase wild strains Trichoderma sp. Gen 9 and Cladosporium sp. Gen 20 using rice straw under solid-state fermentation (SSF) were selected. The selected strains were used as parents for the intergeneric protoplast fusion program to construct recombinant strain for prompt improvement production of these enzymes in one recombinant strain. Among 21 fusants obtained, the recombinant strain AYA 20-1, with 2.11-fold and 2.58-fold increase in L-asparaginase and L-glutaminase activities more than the parental isolates Trichoderma sp. Gen 9 and Cladosporium sp. Gen 20, respectively, was achieved using rice straw under SSF. Both therapeutic enzymes L-asparaginase and L-glutaminase were purified and characterized from the culture supernatant of the recombinant AYA 20-1 strain with molecular weights of 50.6 and 83.2 kDa, respectively. Both enzymes were not metalloenzymes. Whereas thiol group blocking reagents such as p-chloromercurybenzoate and iodoacetamide totally inhibited L-asparaginase activity, which refer to sulfhydryl groups and cysteine residues involved in its catalytic activity, they have no effect toward L-glutaminase activity. Interestingly, potent anticancer, antioxidant, and antimicrobial activities were detected for both enzymes.

  20. Digestive enzyme activities of turbot (Scophthalmus maximus L.) during early developmental stages under culture condition.

    PubMed

    Tong, X H; Xu, S H; Liu, Q H; Li, J; Xiao, Z Z; Ma, D Y

    2012-06-01

    Digestive enzyme activities were analysed in turbot (Scophthalmus maximus) from hatching until 60 days after hatching (DAH). Trypsin sharply increased to the climax at 17 DAH and decreased until 31 DAH followed by a stable level thereafter. Amylase was determined at 4 DAH, reached the maximum value at 19 DAH and declined sharply to 39 DAH and remained at a low level thereafter, suggesting the carbohydrate component should remain at a low level in formulated diets. Pepsin was detected at 9 DAH and increased to 34 DAH and then remained at a stable level. The above results revealed pancreatic enzymes are no longer main enzymes for food digestion after the formation of functional stomach. Leucine-alanine peptidase (Leu-ala) and alkaline phosphatase (AP) and leucine aminopeptidase N (LAP) were found in newly hatched larvae. Both AP and LAP activities markedly increased to 23 DAH, decreased abruptly to 50 DAH and increased gradually to 60 DAH. Leu-ala reached the plateau from 23 to 39 DAH, followed by a decline to 46 DAH and an increase until 60 DAH. The brush border membrane (BBM)-bound enzyme activities increased from 30% at 31 DAH to 81% at 38 DAH of the total activities, indicating the maturation of intestinal tract.

  1. Coupling between Catalytic Loop Motions and Enzyme Global Dynamics

    PubMed Central

    Kurkcuoglu, Zeynep; Bakan, Ahmet; Kocaman, Duygu; Bahar, Ivet; Doruker, Pemra

    2012-01-01

    Catalytic loop motions facilitate substrate recognition and binding in many enzymes. While these motions appear to be highly flexible, their functional significance suggests that structure-encoded preferences may play a role in selecting particular mechanisms of motions. We performed an extensive study on a set of enzymes to assess whether the collective/global dynamics, as predicted by elastic network models (ENMs), facilitates or even defines the local motions undergone by functional loops. Our dataset includes a total of 117 crystal structures for ten enzymes of different sizes and oligomerization states. Each enzyme contains a specific functional/catalytic loop (10–21 residues long) that closes over the active site during catalysis. Principal component analysis (PCA) of the available crystal structures (including apo and ligand-bound forms) for each enzyme revealed the dominant conformational changes taking place in these loops upon substrate binding. These experimentally observed loop reconfigurations are shown to be predominantly driven by energetically favored modes of motion intrinsically accessible to the enzyme in the absence of its substrate. The analysis suggests that robust global modes cooperatively defined by the overall enzyme architecture also entail local components that assist in suitable opening/closure of the catalytic loop over the active site. PMID:23028297

  2. Obesity and lipid stress inhibit carnitine acetyltransferase activity.

    PubMed

    Seiler, Sarah E; Martin, Ola J; Noland, Robert C; Slentz, Dorothy H; DeBalsi, Karen L; Ilkayeva, Olga R; An, Jie; Newgard, Christopher B; Koves, Timothy R; Muoio, Deborah M

    2014-04-01

    Carnitine acetyltransferase (CrAT) is a mitochondrial matrix enzyme that catalyzes the interconversion of acetyl-CoA and acetylcarnitine. Emerging evidence suggests that this enzyme functions as a positive regulator of total body glucose tolerance and muscle activity of pyruvate dehydrogenase (PDH), a mitochondrial enzyme complex that promotes glucose oxidation and is feedback inhibited by acetyl-CoA. Here, we used tandem mass spectrometry-based metabolic profiling to identify a negative relationship between CrAT activity and muscle content of lipid intermediates. CrAT specific activity was diminished in muscles from obese and diabetic rodents despite increased protein abundance. This reduction in enzyme activity was accompanied by muscle accumulation of long-chain acylcarnitines (LCACs) and acyl-CoAs and a decline in the acetylcarnitine/acetyl-CoA ratio. In vitro assays demonstrated that palmitoyl-CoA acts as a direct mixed-model inhibitor of CrAT. Similarly, in primary human myocytes grown in culture, nutritional and genetic manipulations that promoted mitochondrial influx of fatty acids resulted in accumulation of LCACs but a pronounced decrease of CrAT-derived short-chain acylcarnitines. These results suggest that lipid-induced antagonism of CrAT might contribute to decreased PDH activity and glucose disposal in the context of obesity and diabetes.

  3. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice.

    PubMed

    Ahmed, Nisar; Tetlow, Ian J; Nawaz, Sehar; Iqbal, Ahsan; Mubin, Muhammad; Nawaz ul Rehman, Muhammad Shah; Butt, Aisha; Lightfoot, David A; Maekawa, Masahiko

    2015-08-30

    High temperature during grain filling affects yield, starch amylose content and activity of starch biosynthesis enzymes in basmati rice. To investigate the physiological mechanisms underpinning the effects of high temperature on rice grain, basmati rice was grown under two temperature conditions - 32 and 22 °C - during grain filling. High temperature decreased the grain filling period from 32 to 26 days, reducing yield by 6%, and caused a reduction in total starch (3.1%) and amylose content (22%). Measurable activities of key enzymes involved in sucrose to starch conversion, sucrose synthase, ADP-glucose pyrophosphorylase, starch phosphorylase and soluble starch synthase in endosperms developed at 32 °C were lower than those at 22 °C compared with similar ripening stage on an endosperm basis. In particular, granule-bound starch synthase (GBSS) activity was significantly lower than corresponding activity in endosperms developing at 22 °C during all developmental stages analyzed. Results suggest changes in amylose/amylopectin ratio observed in plants grown at 32 °C was attributable to a reduction in activity of GBSS, the sole enzyme responsible for amylose biosynthesis. © 2014 Society of Chemical Industry.

  4. High pressure, temperature and time-dependent effects on enzymatic and microbial properties of fresh sugarcane juice.

    PubMed

    Chauhan, O P; Ravi, N; Roopa, N; Kumar, Sumeet; Raju, P S

    2017-11-01

    Efficacy of variable high pressure, temperature and time on the browning causing enzymes and microbial activities, which are major spoilage factors during preservation of sugarcane juice, was studied. The juice was processed at 200-600 MPa pressure for 2-8 min at 40 and 60 °C and their effect on polyphenol oxidase and peroxidase as well as microbiological quality in terms of total plate count, yeast and molds and total coliforms was studied. Application of high pressures were found to cause significant decrease in enzymatic and microbial activities. The effects were found to be significantly more pronounced at 60 °C as compared to 40 °C. Process time also caused significant ( p  < 0.05) negative effect on microbial and enzyme activities. The sugarcane juice treated at 600 MPa for 6 min at 60 °C was found sufficient to inactivate the microbial counts completely. Whereas, enzymes were found to be completely inactivated in the samples processed at 600 MPa for 8 min at 60 °C. A pressure of 600 MPa at 60 °C for 8 min could be applied during commercial preservation of sugarcane juice for getting complete inactivation of browning causing enzymes and spoilage causing microorganisms.

  5. EFFECT OF ROENTGEN RADIATION ON $beta$-GLUCURONIDASE IN RAT TESTIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arata, L.; Santoro, R.; Severi, M.A.

    1962-04-30

    The testes were irradiated with a single 600-r dose and enzyme activity was determined in homogenates of testis, at 10-day intervals, up to the 50th postirradiation day. In comparison with the control value of 47.9 (units/mg fresh tissue), BETA -glucuronidase activity fell to 30.5 by the 10th day, then progressively rose to 78.4, 126.0, 242.0, and 275.0 in the subsequent 10-day periods. A parallel drop, followed by a rise, occurred in total activity of testis. Testicular weight fell, and seminal vesicular weight fell and then rose, during the 50-day period. Thus, the transient sterility and destruction of germinal epithelium inducedmore » by irradiation were reflected by a decrease in BETA - glucuronidase activity, whereas regeneration of this epithelium followed the rise in enzyme activity. Such parallel changes in epithelial function and enzyme activity were previously noted in vitamin E-deficient rats. (H.H.D.)« less

  6. [Soil basal respiration and enzyme activities in the root-layer soil of tea bushes in a red soil].

    PubMed

    Yu, Shen; He, Zhenli; Zhang, Rongguang; Chen, Guochao; Huang, Changyong

    2003-02-01

    Soil basal respiration potential, metabolic quotient (qCO2), and activities of urease, invertase and acid phosphomonoesterase were investigated in the root-layer of 10-, 40-, and 90-yr-old tea bushes grown on the same type of red soil. The soil daily basal respiration potential ranged from 36.23 to 58.52 mg.kg-1.d-1, and the potentials in the root-layer of 40- or 90-yr-old were greater than that of 10-yr old tea bushes. The daily qCO2, ranging from 0.30 to 0.68, was in the reverse trend. The activities of test three enzymes changed differently with tea bushes' age. Urease activity in the root-layer of all age tea bushes ranged from 41.48 to 47.72 mg.kg-1.h-1 and slightly decreased with tea bushes' age. Invertase activity was 189.29-363.40 mg.kg-1.h-1 and decreased with tea bushes' age, but its activity in the root-layer of 10-year old tea bushes was significantly greater than that in the root-layer soil of 40- or 90-year old tea bushes. Acid phosphomonoesterase activity (444.22-828.32 mg.kg-1.h-1) increased significantly with tea bushes' age. Soil basal respiration potential, qCO2 and activities of 3 soil enzymes were closely related to soil pH, soil organic carbon, total nitrogen and C/N ratio, total soluble phenol, and microbial biomass carbon, respectively.

  7. Time- and dose-dependent differential regulation of copper-zinc superoxide dismutase and manganese superoxide dismutase enzymatic activity and mRNA level by vitamin E in rat blood cells.

    PubMed

    Hajiani, Maliheh; Razi, Farideh; Golestani, Aboualfazl; Frouzandeh, Mehdi; Owji, Ali Akbar; Khaghani, Shahnaz; Ghannadian, Naghmeh; Shariftabrizi, Ahmad; Pasalar, Parvin

    2012-01-01

    Vitamin E is the most important lipid-soluble antioxidant. Recently, it has been proposed as a gene regulator, and its gene modulation effects have been observed at different levels of gene expression and cell signaling. This study was performed to investigate the effects of vitamin E on the activity and expression of the most important endogenous antioxidant enzyme, superoxide dismutase (SOD), in rat plasma. Twenty-eight male Sprauge-Dawley rats were divided into four groups: control group and three dosing groups. The control group received the vehicle (liquid paraffin), and the dosing groups received twice-weekly intraperitoneal injections of 10, 30, and 100 mg/kg of vitamin E ((±)-α-Tocopherol) for 6 weeks. Quantitative real-time reverse transcription-polymerase chain reaction and enzyme assays were used to assess the levels of Cu/Zn-SOD and Mn-SOD mRNA and enzyme activity levels in blood cells at 0, 2, 4, and 6 weeks following vitamin E administration. Catalase enzyme activity and total antioxidant capacity were also assessed in plasma at the same time intervals. Mn-SOD activity was significantly increased in the 100 and 30 mg/kg dosing groups after 4 and 6 weeks, with corresponding significant increase in their mRNA levels. Cu/Zn-SOD activity was not significantly changed in response to vitamin E administration at any time points, whereas Cu/Zn-SOD mRNA levels were significantly increased after longer time points with high doses (30 and 100 mg/kg) of vitamin E. Catalase enzyme activity was transiently but significantly increased after 4 weeks of vitamin E treatment in 30 and 100 mg/kg dosing groups. Total antioxidant status was significantly increased after 4 and 6 weeks in the 100 mg/kg dosing group. Only the chronic administration of higher doses of alpha-tocopherol is associated with the increased activity and expression of Mn-SOD in rats. Cu/Zn-SOD activity and expression does not dramatically change in response to vitamin E.

  8. Transcriptomic features associated with energy production in the muscles of Pacific bluefin tuna and Pacific cod.

    PubMed

    Shibata, Mami; Mekuchi, Miyuki; Mori, Kazuki; Muta, Shigeru; Chowdhury, Vishwajit Sur; Nakamura, Yoji; Ojima, Nobuhiko; Saitoh, Kenji; Kobayashi, Takanori; Wada, Tokio; Inouye, Kiyoshi; Kuhara, Satoru; Tashiro, Kosuke

    2016-06-01

    Bluefin tuna are high-performance swimmers and top predators in the open ocean. Their swimming is grounded by unique features including an exceptional glycolytic potential in white muscle, which is supported by high enzymatic activities. Here we performed high-throughput RNA sequencing (RNA-Seq) in muscles of the Pacific bluefin tuna (Thunnus orientalis) and Pacific cod (Gadus macrocephalus) and conducted a comparative transcriptomic analysis of genes related to energy production. We found that the total expression of glycolytic genes was much higher in the white muscle of tuna than in the other muscles, and that the expression of only six genes for glycolytic enzymes accounted for 83.4% of the total. These expression patterns were in good agreement with the patterns of enzyme activity previously reported. The findings suggest that the mRNA expression of glycolytic genes may contribute directly to the enzymatic activities in the muscles of tuna.

  9. Effects of small peptides, probiotics, prebiotics, and synbiotics on growth performance, digestive enzymes, and oxidative stress in orange-spotted grouper, Epinephelus coioides, juveniles reared in artificial seawater

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Cheng, Yongzhou; Chen, Xiaoyan; Liu, Zhaopu; Long, Xiaohua

    2017-01-01

    Aquaculture production efficiency may increase by using feed additives. This study investigated the effects of different dietary additives [w/w: 2% small peptides, 0.01% probiotics ( Bacillus licheniformis) and 0.2% prebiotics (inulin)] on growth performance, digestive enzyme activities, and oxidative stress in juvenile Epinephelus coioides reared in artificial seawater of two salt concentrations (13.5 vs. 28.5). Weight gain rate was significantly higher in fish fed the diet supplemented with small peptides, B. licheniformis, inulin, or synbiotics than that in fish fed the basal diet; the greatest weight gain rate was found in fish fed the small peptide treatment [56.0% higher than basal diet]. Higher feed efficiency was detected in fish fed the diet supplemented with small peptides than that of fish in the other dietary treatments. Total protease activity in the stomach and intestines was highest in fish fed the small peptide-treated diet, whereas lipase activity was highest in those fed synbiotics (combination of Bacillus licheniformis and inulin) than that in fish fed the other treatments. Antioxidant enzyme (total superoxide dismutase and catalase) activities and hepatic malondialdehyde content were higher in fish receiving the dietary supplements and maintained in artificial seawater containing 13.5 salinity compared with those in the control (28.5). Hepatic catalase activity in grouper fed the diets with small peptides or synbiotics decreased significantly compared with that in control fish. Overall, the three types of additives improved growth rate of juvenile grouper and digestive enzymes activities to varying degrees but did not effectively improve antioxidant capacity under low-salinity stress conditions.

  10. Oxidative Stress and Antioxidants in Tomato (Solanum lycopersicum) Plants Subjected to Boron Toxicity

    PubMed Central

    Cervilla, Luis M.; Blasco, Begoña; Ríos, Juan J.; Romero, Luis; Ruiz, Juan M.

    2007-01-01

    Background and Aims Boron (B) toxicity triggers the formation of reactive oxygen species in plant tissues. However, there is still a lack of knowledge as to how B toxicity affects the plant antioxidant defence system. It has been suggested that ascorbate could be important against B stress, although existing information is limited in this respect. The objective of this study was to analyse how ascorbate and some other components of the antioxidant network respond to B toxicity. Methods Two tomato (Solanum lycopersicum) cultivars (‘Kosaco’ and ‘Josefina’) were subjected to 0·05 (control), 0·5 and 2 mm B. The following were studied in leaves: dry weight; relative leaf growth rate; total and free B; H2O2; malondialdehyde; ascorbate; glutathione; sugars; total non-enzymatic antioxidant activity, and the activity of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, ascorbate oxidase and l-galactose dehydrogenase. Key Results The B-toxicity treatments diminished growth and boosted the amount of B, malondialdehyde and H2O2 in the leaves of the two cultivars, these trends being more pronounced in ‘Josefina’ than in ‘Kosaco’. B toxicity increased ascorbate concentration in both cultivars and increased glutathione only in ‘Kosaco’. Activities of antioxidant- and ascorbate-metabolizing enzymes were also induced. Conclusions High B concentration in the culture medium provokes oxidative damage in tomato leaves and induces a general increase in antioxidant enzyme activity. In particular, B toxicity increased ascorbate pool size. It also increased the activity of l-galactose dehydrogenase, an enzyme involved in ascorbate biosynthesis, and the activity of enzymes of the Halliwell–Asada cycle. This work therefore provides a starting point towards a better understanding of the role of ascorbate in the plant response against B stress. PMID:17660516

  11. Generic temperature compensation of biological clocks by autonomous regulation of catalyst concentration

    PubMed Central

    Hatakeyama, Tetsuhiro S.; Kaneko, Kunihiko

    2012-01-01

    Circadian clocks—ubiquitous in life forms ranging from bacteria to multicellular organisms—often exhibit intrinsic temperature compensation; the period of circadian oscillators is maintained constant over a range of physiological temperatures, despite the expected Arrhenius form for the reaction coefficient. Observations have shown that the amplitude of the oscillation depends on the temperature but the period does not; this suggests that although not every reaction step is temperature independent, the total system comprising several reactions still exhibits compensation. Here we present a general mechanism for such temperature compensation. Consider a system with multiple activation energy barriers for reactions, with a common enzyme shared across several reaction steps. The steps with the highest activation energy rate-limit the cycle when the temperature is not high. If the total abundance of the enzyme is limited, the amount of free enzyme available to catalyze a specific reaction decreases as more substrates bind to the common enzyme. We show that this change in free enzyme abundance compensates for the Arrhenius-type temperature dependence of the reaction coefficient. Taking the example of circadian clocks with cyanobacterial proteins KaiABC, consisting of several phosphorylation sites, we show that this temperature compensation mechanism is indeed valid. Specifically, if the activation energy for phosphorylation is larger than that for dephosphorylation, competition for KaiA shared among the phosphorylation reactions leads to temperature compensation. Moreover, taking a simpler model, we demonstrate the generality of the proposed compensation mechanism, suggesting relevance not only to circadian clocks but to other (bio)chemical oscillators as well. PMID:22566655

  12. Generic temperature compensation of biological clocks by autonomous regulation of catalyst concentration.

    PubMed

    Hatakeyama, Tetsuhiro S; Kaneko, Kunihiko

    2012-05-22

    Circadian clocks--ubiquitous in life forms ranging from bacteria to multicellular organisms--often exhibit intrinsic temperature compensation; the period of circadian oscillators is maintained constant over a range of physiological temperatures, despite the expected Arrhenius form for the reaction coefficient. Observations have shown that the amplitude of the oscillation depends on the temperature but the period does not; this suggests that although not every reaction step is temperature independent, the total system comprising several reactions still exhibits compensation. Here we present a general mechanism for such temperature compensation. Consider a system with multiple activation energy barriers for reactions, with a common enzyme shared across several reaction steps. The steps with the highest activation energy rate-limit the cycle when the temperature is not high. If the total abundance of the enzyme is limited, the amount of free enzyme available to catalyze a specific reaction decreases as more substrates bind to the common enzyme. We show that this change in free enzyme abundance compensates for the Arrhenius-type temperature dependence of the reaction coefficient. Taking the example of circadian clocks with cyanobacterial proteins KaiABC, consisting of several phosphorylation sites, we show that this temperature compensation mechanism is indeed valid. Specifically, if the activation energy for phosphorylation is larger than that for dephosphorylation, competition for KaiA shared among the phosphorylation reactions leads to temperature compensation. Moreover, taking a simpler model, we demonstrate the generality of the proposed compensation mechanism, suggesting relevance not only to circadian clocks but to other (bio)chemical oscillators as well.

  13. Activity of Selected Antioxidant Enzymes, Selenium Content and Fatty Acid Composition in the Liver of the Brown Hare (Lepus europaeus L.) in Relation to the Season of the Year.

    PubMed

    Drozd, Radosław; Pilarczyk, Renata; Pilarczyk, Bogumiła; Drozd, Arleta; Tomza-Marciniak, Agnieszka; Bombik, Teresa; Bąkowska, Małgorzata; Bombik, Elżbieta; Jankowiak, Dorota; Wasak, Agata

    2015-12-01

    The aim of the study was to evaluate the effect of low concentrations of selenium in the environment on the activity of selected antioxidant enzymes: Se-GSHPx, total GSHPx, SOD, CAT, and GST as well as fatty acid profile in the livers of brown hares during winter and spring. Liver tissues obtained from 20 brown hares collected in the north-eastern Poland in the winter and spring season were analyzed. In the tissue analyzed, a significantly lower level of selenium was noticeable in the spring compared to winter; however, values measured in both seasons indicated a deficiency of this element in the analyzed population of brown hares. There were no differences found that could indicate the influence of Se deficiency on the activity of antioxidant enzymes. The determined activity of antioxidant enzymes and fatty acid composition suggest a negligible impact of the low concentration of Se on the analyzed biochemical parameters of brown hare livers.

  14. The Protective Effect of Hydroalcoholic Extract of Zingiber officinale Roscoe (Ginger) on Ethanol-Induced Reproductive Toxicity in Male Rats.

    PubMed

    Akbari, Abolfazl; Nasiri, Khadijeh; Heydari, Mojtaba; Mosavat, Seyed Hamdollah; Iraji, Aida

    2017-10-01

    This study was conducted to evaluate the prophylactic effect of ginger extract on ethanol-induced reproductive toxicity in male rats. Twenty-eight adult male Sprague-Dawley rats were randomly divided into 4 groups and treated daily for 28 days as follows: control, control-ginger (1 g/kg of body weight [BW]/day by gavage), ethanol group (ethanol 4 g/kg of BW/day by gavage), and ginger-ethanol group. At the end of the experiment, all the rats were sacrificed and their testes were removed and used for measurement of the total homocysteine (tHcy), trace elements, antioxidant enzymes activity, and malondialdehyde (MDA). The results in the ethanol group indicate that ethanol decreased antioxidant enzymes activity and increased MDA and tHcy compared with the control groups ( P < .05). In ginger-ethanol group, ginger improved antioxidant enzymes activity and reduced tHcy and MDA compared to ethanol group ( P < .05). It can be concluded that ginger protects the ethanol-induced testicular damage and improves the hormonal levels, trace elements, antioxidant enzymes activity, and decreases tHcy and MDA.

  15. Phenol contents, oxidase activities, and the resistance of coffee to the leaf miner Leucoptera coffeella.

    PubMed

    Ramiro, Daniel Alves; Guerreiro-Filho, Oliveiro; Mazzafera, Paulo

    2006-09-01

    We examined the role of phenolic compounds, and the enzymes peroxidase and polyphenol oxidase, in the expression of resistance of coffee plants to Leucoptera coffeella (Lepidoptera: Lyonetiidae). The concentrations of total soluble phenols and chlorogenic acid (5-caffeoylquinic acid), and the activities of the oxidative enzymes peroxidase (POD) and polyphenol oxidase (PPO), were estimated in leaves of Coffea arabica, C. racemosa, and progenies of crosses between these species, which have different levels of resistance, before and after attack by this insect. The results indicate that phenols do not play a central role in resistance to the coffee leaf miner. Differences were detected between the parental species in terms of total soluble phenol concentrations and activities of the oxidative enzymes. However, resistant and susceptible hybrid plants did not differ in any of these characteristics. Significant induction of chlorogenic acid and PPO was only found in C. racemosa, the parental donator of the resistance genes against L. coffeella. High-performance liquid chromatography (HPLC) analysis also showed qualitative similarity between hybrids and the susceptible C. arabica. These results suggest that the phenolic content and activities of POD and PPO in response to the attack by the leaf miner may not be a strong evidence of their participation in direct defensive mechanisms.

  16. Effect of potential probiotic Rhodotorula benthica D30 on the growth performance, digestive enzyme activity and immunity in juvenile sea cucumber Apostichopus japonicus.

    PubMed

    Wang, Ji-hui; Zhao, Liu-qun; Liu, Jin-feng; Wang, Han; Xiao, Shan

    2015-04-01

    The effects of dietary addition of yeast Rhodotorula benthica (R. benthica) D30 which isolated from local sea mud at levels of 0 (control), 10(5), 10(6) and 10(7) CFU/g feed on the growth performance, digestive enzyme activity, immunity and disease resistance of juvenile sea cucumber Apostichopus japonicus were investigated. It was shown that dietary addition of R. benthica D30 significantly increased the growth rates of sea cucumbers (p < 0.05). The amylase activity, cellulase activity and alginase activity were increased for the animals from three probiotics treated groups. And with the supplemented concentration increased, the values of those digestive enzyme activities increased as well. Dietary addition of R. benthica D30 at the level of 10(7) CFU significantly increased the lysozyme, phagocytic and total nitric oxide synthase activity of A. japonicus (p < 0.05). While, the highest values of the phenoloxidase and alkaline phosphatase activity were found in sea cucumbers fed with R. benthica D30 at the level of 10(6) CFU. Whereas adding R. benthica D30 to diet had no significant effects on the total coelomocyte counts and acid phosphatase activity of A. japonicus (p > 0.05). It was observed that adding R. benthica D30 could significantly decrease the cumulative mortality of sea cucumbers. The present study demonstrated that dietary addition of R. benthica D30 could increase growth performance and some digestive enzyme activities, improve immunity and disease resistance of A. japonicus. And the medium (10(6) CFU) and high (10(7) CFU) additional levels showed better effects. It suggests that yeast R. benthica D30 could be a good probiotic for aquaculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Removal of heavy metals from tannery effluents of Ambur industrial area, Tamilnadu by Arthrospira (Spirulina) platensis.

    PubMed

    Balaji, S; Kalaivani, T; Rajasekaran, C; Shalini, M; Vinodhini, S; Priyadharshini, S Sunitha; Vidya, A G

    2015-06-01

    The present study was carried out with the tannery effluent contaminated with heavy metals collected from Ambur industrial area to determine the phycoremediation potential of Arthrospira (Spirulina) platensis. Two different concentrations (50 and 100 %) of heavy metals containing tannery effluent treated with A. platensis were analysed for growth, absorption spectra, biochemical properties and antioxidant enzyme activity levels. The effluent treatments revealed dose-dependent decrease in the levels of A. platensis growth (65.37 % for 50 % effluent and 49.32 % for 100 % effluent), chlorophyll content (97.43 % for 50 % effluent and 71.05 % for 100 % effluent) and total protein content (82.63 % for 50 % effluent and 62.10 % for 100 % effluent) that leads to the reduction of total solids, total dissolved solids and total suspended solids. A. platensis with lower effluent concentration was effective than at higher concentration. Treatment with the effluent also resulted in increased activity levels of antioxidant enzymes, such as superoxide dismutase (14.58 units/g fresh weight for 50 % and 24.57 units/g fresh weight for 100 %) and catalase (0.963 units/g fresh weight for 50 % and 1.263 units/g fresh weight for 100 %). Furthermore, heavy metal content was determined using atomic absorption spectrometry. These results indicated that A. platensis has the ability to combat heavy metal stress by the induction of antioxidant enzymes demonstrating its potential usefulness in phycoremediation of tannery effluent.

  18. Conversion of xylan by recyclable spores of Bacillus subtilis displaying thermophilic enzymes.

    PubMed

    Mattossovich, Rosanna; Iacono, Roberta; Cangiano, Giuseppina; Cobucci-Ponzano, Beatrice; Isticato, Rachele; Moracci, Marco; Ricca, Ezio

    2017-11-28

    The Bacillus subtilis spore has long been used to display antigens and enzymes. Spore display can be accomplished by a recombinant and a non-recombinant approach, with the latter proved more efficient than the recombinant one. We used the non-recombinant approach to independently adsorb two thermophilic enzymes, GH10-XA, an endo-1,4-β-xylanase (EC 3.2.1.8) from Alicyclobacillus acidocaldarius, and GH3-XT, a β-xylosidase (EC 3.2.1.37) from Thermotoga thermarum. These enzymes catalyze, respectively, the endohydrolysis of (1-4)-β-D-xylosidic linkages of xylans and the hydrolysis of (1-4)-β-D-xylans to remove successive D-xylose residues from the non-reducing termini. We report that both purified enzymes were independently adsorbed on purified spores of B. subtilis. The adsorption was tight and both enzymes retained part of their specific activity. When spores displaying either GH10-XA or GH3-XT were mixed together, xylan was hydrolysed more efficiently than by a mixture of the two free, not spore-adsorbed, enzymes. The high total activity of the spore-bound enzymes is most likely due to a stabilization of the enzymes that, upon adsorption on the spore, remained active at the reaction conditions for longer than the free enzymes. Spore-adsorbed enzymes, collected after the two-step reaction and incubated with fresh substrate, were still active and able to continue xylan degradation. The recycling of the mixed spore-bound enzymes allowed a strong increase of xylan degradation. Our results indicate that the two-step degradation of xylans can be accomplished by mixing spores displaying either one of two required enzymes. The two-step process occurs more efficiently than with the two un-adsorbed, free enzymes and adsorbed spores can be reused for at least one other reaction round. The efficiency of the process, the reusability of the adsorbed enzymes, and the well documented robustness of spores of B. subtilis indicate the spore as a suitable platform to display enzymes for single as well as multi-step reactions.

  19. Immobilization of Bacillus amyloliquefaciens SP1 and its alkaline protease in various matrices for effective hydrolysis of casein.

    PubMed

    Guleria, Shiwani; Walia, Abhishek; Chauhan, Anjali; Shirkot, C K

    2016-12-01

    An extracellular alkaline protease producing B. amyloliquefaciens SP1 was isolated from apple rhizosphere having multifarious plant growth-promoting activities. B. amyloliquefaciens SP1 protease was immobilized using various concentrations of calcium alginate, agar and polyacrylamide to determine the optimum concentration for formation of the beads. Enzyme activity before immobilization (at 60 °C, pH 8.0 for 5 min) was 3580 µg/ml/min. The results of immobilization with various matrices revealed that 3 % calcium alginate (2829.92 µg/ml/min), 2 % agar (2600 µg/ml/min) and 10 % polyacrylamide (5698.99 µg/ml/min) were optimum concentrations for stable bead formation. Immobilized enzyme reusability results indicated that calcium alginate, agar and polyacrylamide beads retained 25.63, 22.05 and 34.04 % activity in their fifth repeated cycle, respectively. In cell immobilization technique, the free movement of microorganisms is restricted in the process, and a semi-continuous system of fermentation can be used. In the present work, this technique has been used for alkaline protease production using different matrices. Polyacrylamide (10 %) was found with the highest total alkaline protease titer, i.e., 24,847 µg/ml/min semi-continuously for 18 days as compared to agar (total enzyme titer: 5800 in 10 days) and calcium alginate (total enzyme titer: 13,010 in 15 days). This present study reported that polyacrylamide (10 %) among different matrices has maximum potential of immobilization of B. amyloliquefaciens SP1 and its detergent stable alkaline protease with effective application in bloodstain removal.

  20. Hepatoprotective and Antioxidant Activity of Dunaliella salina in Paracetamol-induced Acute Toxicity in Rats

    PubMed Central

    Madkour, Fedekar F.; Abdel-Daim, M. M.

    2013-01-01

    Paracetamol has a reasonable safety profile when taken in therapeutic doses. However, it could induce hepatotoxicity and even more severe fatal acute hepatic damage when taken in an overdose. The green alga, Dunaliella salina was investigated for hepatoprotective and antioxidant activity against paracetamol-induced liver damage in rats. Male albino Wistar rats overdosed with paracetamol showed liver damage and oxidative stress as indicated by significantly (P<0.05) increased serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total and direct bilirubin, malondialdehyde, cholesterol and nitric oxide. At the same time, there were decreased activities of serum superoxide dismutase and total antioxidant capacity compared with the control group. Treatment with D. salina methanol extract at doses of 500 and 1000 mg/kg body weight or silymarin could significantly (P<0.05) decrease the liver damage marker enzymes, total and direct bilirubin, malondialdehyde, cholesterol and nitric oxide levels and increase the activities of superoxide dismutase and total antioxidant capacity in serum when compared with paracetamol intoxicated group. Liver histopathology also showed that D. salina reduced the centrilobular necrosis, congestion and inflammatory cell infiltration evoked by paracetamol overdose. These results suggest that D. salina exhibits a potent hepatoprotective effect on paracetamol-induced liver damage in rats, which may be due to both the increase of antioxidant enzymes activity and inhibition of lipid peroxidation. PMID:24591738

  1. Eicosapentaenoic acid and docosahexaenoic acid increase the degradation of amyloid-β by affecting insulin-degrading enzyme.

    PubMed

    Grimm, Marcus O W; Mett, Janine; Stahlmann, Christoph P; Haupenthal, Viola J; Blümel, Tamara; Stötzel, Hannah; Grimm, Heike S; Hartmann, Tobias

    2016-12-01

    Omega-3 polyunsaturated fatty acids (PUFAs) have been proposed to be highly beneficial in Alzheimer's disease (AD). AD pathology is closely linked to an overproduction and accumulation of amyloid-β (Aβ) peptides as extracellular senile plaques in the brain. Total Aβ levels are not only dependent on its production by proteolytic processing of the amyloid precursor protein (APP), but also on Aβ-clearance mechanisms, including Aβ-degrading enzymes. Here we show that the omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increase Aβ-degradation by affecting insulin-degrading enzyme (IDE), the major Aβ-degrading enzyme secreted into the extracellular space of neuronal and microglial cells. The identification of the molecular mechanisms revealed that EPA directly increases IDE enzyme activity and elevates gene expression of IDE. DHA also directly stimulates IDE enzyme activity and affects IDE sorting by increasing exosome release of IDE, resulting in enhanced Aβ-degradation in the extracellular milieu. Apart from the known positive effect of DHA in reducing Aβ production, EPA and DHA might ameliorate AD pathology by increasing Aβ turnover.

  2. Hydrolytic Enzyme Activities and Protein Pattern of Avocado Fruit Ripened in Air and in Low Oxygen, with and without Ethylene 1

    PubMed Central

    Kanellis, Angelos K.; Solomos, Theophanes; Mattoo, Autar K.

    1989-01-01

    The effect of 2.5% O2 atmosphere with and without ethylene on the activities of hydrolytic enzymes associated with cell walls, and total protein profile during ripening of avocado fruits (Persea americana Mill., cv Hass) were investigated. The low 2.5% O2 atmosphere prevented the rise in the activities of cellulase, polygalacturonase, and acid phosphatase in avocado fruits whose ripening was initiated with ethylene. Addition of 100 microliters per liter ethylene to low O2 atmosphere did not alter these suppressive effects of 2.5% O2. Furthermore, 2.5% O2 atmosphere delayed the development of a number of polypeptides that appear during ripening of avocado fruits while at the same time new polypeptides accumulated. The composition of the extraction buffer and its pH greatly affected the recovery of cellulase activity and its total immunoreactive protein. Images Figure 1 Figure 2 Figure 5 PMID:16666746

  3. Activities of red blood cell anti-oxidative enzymes (SOD, GPx) and total anti-oxidative capacity of serum (TAS) in men with coronary atherosclerosis and in healthy pilots.

    PubMed

    Zawadzka-Bartczak, Ewelina

    2005-09-01

    Reactive oxygen species (ROS) have been proposed to play important pathogenic roles, especially in harmful oxidative modifications of low-density cholesterol. Redox balance within the organism is largely determined by the activities of anti-oxidative enzymes of red blood cells and by the total anti-oxidative capacity of the serum (TAS). SOD and GPx activities and TAS in 13 men aged 42-65 years with coronary atherosclerosis (group I) were compared with those of both 15 clinically healthy pilots matched for age and lipid abnormalities (cholesterol and triglycerides) (group II) and 14 age-matched pilots without lipid abnormalities (group III). There were statistically significant differences in SOD and GPx activities and in TAS between the groups. 1. SOD and GPx activities and TAS were lower in men with advanced coronary atherosclerosis that in age-matched clinically healthy men with similar dyslipidemia and were even further decreased compared with clinically healthy men without dyslipidemia. 2. The decrease in SOD and GPx activities and TAS in men with advanced coronary atherosclerosis was more pronounced than the degree of hypercholesterolemia or hypertriglyceridemia. 3. If hyperlipidemia and the activity of antioxidative enzymes and TAS were considered without reference to other risk factors of atherosclerosis, it appeared that the decreases in SOD, GPx, and TAS may play a more important role in the development of the atherosclerotic process than isolated increases in free cholesterol or triglyceride levels.

  4. Cytochrome P450 Activity in Ex Vivo Cornea Models and a Human Cornea Construct.

    PubMed

    Kölln, Christian; Reichl, Stephan

    2016-07-01

    The pharmacokinetic behaviors of novel ophthalmic drugs are often preliminarily investigated in preclinical studies using ex vivo animal cornea or corneal cell culture models. During transcorneal passage, topically applied drugs may be affected by drug metabolizing enzymes. The knowledge regarding the functional expression of metabolic enzymes in corneal tissue is marginal; thus, the aim of this study was to investigate cytochrome P450 activity in an organotypic three-dimensional human cornea construct and to compare it with porcine and rabbit corneas, which are commonly used ex vivo cornea models. The total cytochrome P450 activity was determined by measuring the transformation of 7-ethoxycoumarin. Furthermore, the expression of the cytochrome P450 enzyme 2D6 (CYP2D6) was investigated at the protein level using immunohistochemistry and western blotting. CYP2D6 activity measurements were performed using a d-luciferin-based assay. In summary, similar levels of the total cytochrome P450 activity were identified in all 3 cornea models. The protein expression of CYP2D6 was confirmed in the human cornea construct and porcine cornea, whereas the signals in the rabbit cornea were weak. The analysis of the CYP2D6 activity indicated similar values for the human cornea construct and porcine cornea; however, a distinctly lower activity was observed in the rabbit cornea. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Beneficial influence of ellagic acid on biochemical indexes associated with experimentally induced colon carcinogenesis.

    PubMed

    Syed, Umesalma; Ganapasam, Sudhandiran

    2017-01-01

    To elucidate the key biochemical indexes associated with 1, 2-dimethylhydrazine (DMH)-induced colon carcinogenesis and the modulatory efficacy of a dietary polyphenol, ellagic acid (EA). Wistar rats were chosen to study objective, and were divided into 4 groups; Group 1-control rats; Group 2-rats received EA (60 mg/kg body weight/day, orally); rats in Group 3-induced with DMH (20 mg/kg body weight) subcutaneously for 15 weeks; DMH-induced Group 4 rats were initiated with EA treatment. We examined key citric acid cycle enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase and the activities of respiratory chain enzymes NADH dehydrogenase and Cytochrome-C-oxidase and membrane-bound enzyme profiles (Na +/K + ATPase, Ca 2+ ATPase and Mg 2+ ATPase), activities of lysosomal proteases such as β-D-glucuronidase, β-galactosidase and N-acety-β-D-glucosaminidase and cellular thiols (oxidized glutathione, protein thiols, and total thiols). It was found that administration of DMH to rats decreased both mitochondrial and membrane-bound enzymes activities, increased activities of lysosomal enzymes and further modulates cellular thiols levels. Treatment with EA significantly restored the mitochondrial and ATPases levels and further reduced lysosomal enzymes to near normalcy thereby restoring harmful effects induced by DMH. EA treatment was able to effectively restore the detrimental effects induced by DMH, which proves the chemoprotective function of EA against DMH-induced experimental colon carcinogenesis.

  6. Disconnect of microbial structure and function: enzyme activities and bacterial communities in nascent stream corridors.

    PubMed

    Frossard, Aline; Gerull, Linda; Mutz, Michael; Gessner, Mark O

    2012-03-01

    A fundamental issue in microbial and general ecology is the question to what extent environmental conditions dictate the structure of communities and the linkages with functional properties of ecosystems (that is, ecosystem function). We approached this question by taking advantage of environmental gradients established in soil and sediments of small stream corridors in a recently created, early successional catchment. Specifically, we determined spatial and temporal patterns of bacterial community structure and their linkages with potential microbial enzyme activities along the hydrological flow paths of the catchment. Soil and sediments were sampled in a total of 15 sites on four occasions spread throughout a year. Denaturing gradient gel electrophoresis (DGGE) was used to characterize bacterial communities, and substrate analogs linked to fluorescent molecules served to track 10 different enzymes as specific measures of ecosystem function. Potential enzyme activities varied little among sites, despite contrasting environmental conditions, especially in terms of water availability. Temporal changes, in contrast, were pronounced and remarkably variable among the enzymes tested. This suggests much greater importance of temporal dynamics than spatial heterogeneity in affecting specific ecosystem functions. Most strikingly, bacterial community structure revealed neither temporal nor spatial patterns. The resulting disconnect between bacterial community structure and potential enzyme activities indicates high functional redundancy within microbial communities even in the physically and biologically simplified stream corridors of early successional landscapes.

  7. Guaiacol peroxidase zymography for the undergraduate laboratory.

    PubMed

    Wilkesman, Jeff; Castro, Diana; Contreras, Lellys M; Kurz, Liliana

    2014-01-01

    This laboratory exercise presents a novel way to introduce undergraduate students to the specific detection of enzymatic activity by electrophoresis. First, students prepare a crude peroxidase extract and then analyze the homogenate via electrophoresis. Zymography, that is, a SDS-PAGE method to detect enzyme activity, is used to specifically detect peroxidase activity and furthermore, to analyze the total protein profile. After the assay, students may estimate the apparent molecular mass of the enzyme and discuss its structure. After the 4-h experiment, students gain knowledge concerning biological sample preparation, gel preparation, electrophoresis, and the importance of specific staining procedures for the detection of enzymatic activity. Copyright © 2014 The International Union of Biochemistry and Molecular Biology.

  8. Study on OELs for enzyme-containing detergent in China.

    PubMed

    Zhang, X D; Liang, Y X; Lee, C S; Jin, T Y

    2004-01-01

    This study is aimed at setting occupational exposure levels for total detergent dust and enzymes in detergent industries. The study population consisted of 795 workers from four enzyme-containing detergent manufacturing plants (A1, A2, B1 and B2), and 156 control workers from an electronic assembly factory. Work environment monitoring was conducted using high volume of air sampler fro measuring the concentration of total dust (mg/m3), and analyzing the level of enzyme (ng/m3) by ELISA method. A standard questionnaires, pulmonary function test, and skin prick test are used to assess health effects. The levels of detergent total dust varied from 0.2 mg/m3 to 12.54 mg/m3. For enzyme levels, in A1, B1 and B2, the concentration ranged from non-detectable to 9.92 ng/m3 and in A2, the concentration was analyzed by enzyme activity methods and was expressed as Gu/m3 (1 Gu/m3 = 16 ng/m3). The concentration is between 0.16-31.36 ng/m3. Non-specific irritation rates in exposed workers were significantly higher than that in controls. Based on the data collected from A1, B1 and control plants, 95% benchmark dose lower bound were calculated as 1.17 mg/m3. The difference of pulmonary function between exposed workers and controls is not significant. The results of SPT showed that neither Savinase- nor Alcalase-induced sensitization was found in controls. The prevalence rates of sensitization for Savinase and Alcalase were ranged between 3.2% and 31% in all enzyme-containing detergent manufacturers investigated. No case of occupational asthma was observed. For total dust, 1 mg/m3 is suggested as permissible concentration-time weighted average (PC-TWA), and 2 mg/m3 as permissible concentration-short term exposure limit (PC-STEL). For the enzyme Subtilisins, 15 ng/m3 is suggested as PC-TWA, and 30 ng/m3 as PC-STEL.

  9. Purification and biochemical characterization of feruloyl esterases from Aspergillus terreus MTCC 11096.

    PubMed

    Kumar, C Ganesh; Kamle, Avijeet; Kamal, Ahmed

    2013-01-01

    Aspergillus terreus MTCC 11096 isolated from the soils of agricultural fields cultivating sweet sorghum was previously identified to produce feruloyl esterases (FAEs). The enzymes responsible for feruloyl esterase activity were purified to homogeneity and named as AtFAE-1, AtFAE-2, and AtFAE-3. The enzymes were monomeric having molecular masses of 74, 23 and 36 kDa, respectively. Active protein bands were identified by a developed pH-dependent zymogram on native PAGE. The three enzymes exhibited variation in pH tolerance ranging between pH 5-8 and thermostability of up to 55°C. Inhibition studies revealed that the serine residue was essential for feruloyl esterase activity; moreover aspartyl and glutamyl residues are not totally involved at the active site. Metal ions such as Ca(2+), K(+), and Mg(2+) stabilized the enzyme activity for all three FAEs. Kinetic data indicated that all three enzymes showed catalytic efficiencies (k(cat) /K(m)) against different synthesized alkyl and aryl esters indicating their broad substrate specificity. The peptide mass fingerprinting by MALDI/TOF-MS analysis and enzyme affinity toward methoxy and hydroxy substituents on the benzene ring revealed that the AtFAE-1 belonged to type A while AtFAE-2 and AtFAE-3 were type C FAE. The FAEs could release 65 to 90% of ferulic acid from agrowaste substrates in the presence of xylanase. © 2013 American Institute of Chemical Engineers.

  10. Biochemical composition and antioxidant activity affected by spraying potassium sulfate in black grape (Vitis vinifera L. cv. Rasha).

    PubMed

    Zareei, Elnaz; Javadi, Taimoor; Aryal, Rishi

    2018-04-27

    The physiological and metabolic processes involved with grapevine growth and production are influenced by key macro and micro-nutrients. Potassium is an essential plant nutrient that affects growth and fruit quality. In this study, the impact of foliar spraying of potassium sulfate (K 2 SO 4 ) on qualitative characteristics of grape berries was evaluated in the cultivar 'Rasha', a commonly cultivated cultivar in Kurdistan province of Iran. Leaves of the fully-grown vines were sprayed with each of the 1.5 g L -1 and 3 g L -1 potassium sulfate solution once (one month after petal senescence) and twice (15 days after first spraying). The control plants were sprayed with distilled water. Various biochemical content and enzyme activities on the ripe berries were analyzed. Significant increase in anthocyanin, total protein content and antioxidant enzyme activities were observed in the berries treated twice with 3 g L -1 K 2 SO 4 . Concentrations of total carbohydrate, phenol and antioxidant activity in berries sprayed with K 2 SO 4 were higher compared to the controls. We observed a strong correlation between antioxidant activity and different phenolic compounds. These findings suggest that K 2 SO 4 treatment influences biosynthesis of phenolic compounds and antioxidant enzymes. Thus treatment by K 2 SO 4 could improve nutritional and qualitative attributes of grape. This article is protected by copyright. All rights reserved.

  11. Enzyme activity and AGE formation in a model of AST glycoxidation by D-fructose in vitro.

    PubMed

    Bousova, Iva; Vukasović, Danka; Juretić, Dubravka; Palicka, Vladimir; Drsata, Jaroslav

    2005-03-01

    Non-enzymatic glycation as the chain reaction between reducing sugars and free amino groups of proteins has been shown to correlate with physiological ageing and severity of diabetes. The process involves oxidative steps (glycoxidation). In this paper, the effect of D-fructose as a reactive sugar on aspartate aminotransferase (AST) as a model protein was monitored by measurements of the enzyme activity and formation of fluorescent advanced glycation end products (AGEs). Change in the AST activity was considered as a measure of the overall protein damage caused by glycation, and total AGEs and pentosidine represent, at least partly, the formation of glycoxidation products. Catalytic activity of AST in an incubation mixture containing D-fructose (50 mmol L(-1)), decreased compared to control values to 42% (p < 0.05) and to 11% (p < 0.05) on the 5th and on 21st day of incubation, respectively. In the presence of fructose, total fluorescent AGEs concentration was significantly higher since 5th day of incubation (110%, p < 0.05) and the fluorescent pentosidine concentration from 15th day of incubation (117%, p < 0.05) compared to control values, respectively. Catalytic activity of AST clearly and quantitatively demonstrated functional changes in the enzyme molecule caused by structural modifications initiated by fructose, while the evaluation of AGE formation and especially that of pentosidine by fluorescence measurement was less reliable.

  12. Endophytic fungus Phomopsis liquidambari and different doses of N-fertilizer alter microbial community structure and function in rhizosphere of rice

    PubMed Central

    Siddikee, Md. Ashaduzzaman; Zereen, Mst Israt; Li, Cai-Feng; Dai, Chuan-Chao

    2016-01-01

    Microbial community structure and functions of rhizosphere soil of rice were investigated after applying low and high doses of nitrogenous fertilizer and Phomopsis liquidambari. Average well color development, substrate richness, catabolic diversity and soil enzymes activities varied after applying N-fertilizer and P. liquidambari and were greater in P. liquidambari treated soil than only N-fertilization. Multivariate analysis distinctly separated the catabolic and enzymes activity profile which statistically proved alteration of microbial functional diversity. Nitrogen fertilizer altered microbial community structure revealed by the increased content of total PLFAs, specific subgroup marker PLFAs except fungal PLFAs and by the decreased ratio of G+/G−, sat/monunsat, iso/anteiso, F/B except trans/cis while P. liquidambari inoculation enhanced N-fertilization effect except increased fungal PLFA and decreased trans/cis. PCA using identified marker PLFAs revealed definite discrimination among the treatments which further statistically confirmed structural changed of microbial community. Nitrogenase activity representative of N-fixing community decreased in N-fertilizer treatment while P. liquidambari inoculation increased. In short, application of P. liquidambari with low doses of N-fertilizer improved rice growth and reduced N-fertilizer requirement by increasing enzymes activities involved in C, N and P cycling, structural and functional diversity of microbes, nitrogenase activity involved in N2 fixation and accumulation of total-N. PMID:27596935

  13. Carbonyl Reduction of NNK by Recombinant Human Lung Enzymes. Identification of HSD17β12 as the Reductase important in (R)-NNAL formation in Human Lung.

    PubMed

    Ashmore, Joseph H; Luo, Shaman; Watson, Christy J W; Lazarus, Philip

    2018-05-17

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is the most abundant and carcinogenic tobacco-specific nitrosamine in tobacco and tobacco smoke. The major metabolic pathway for NNK is carbonyl reduction to form the (R) and (S) enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) which, like NNK, is a potent lung carcinogen. The goal of the present study was to characterize NNAL enantiomer formation in human lung and identify the enzymes responsible for this activity. While (S)-NNAL was the major enantiomer of NNAL formed in incubations with NNK in lung cytosolic fractions, (R)-NNAL comprised ~60 and ~95% of the total NNAL formed in lung whole cell lysates and microsomes, respectively. In studies examining the role of individual recombinant reductase enzymes in lung NNAL enantiomer formation, AKR1C1, AKR1C2, AKR1C3, AKR1C4 and CBR1 all exhibited (S)-NNAL formation activity. To identify the microsomal enzymes responsible for (R)-NNAL formation, 28 microsomal reductase enzymes were screened for expression by real-time PCR in normal human lung. HSD17β6, HSD17β12, KDSR, NSDHL, RDH10, RDH11 and SDR16C5 were all expressed at levels >HSD11β1, the only previously reported microsomal reductase enzyme with NNK-reducing activity, with HSD17β12 the most highly expressed. Of these lung-expressing enzymes, only HSD17β12 exhibited activity against NNK, forming primarily (>95%) (R)-NNAL, a pattern consistent with that observed in lung microsomes. siRNA knockdown of HSD17β12 resulted in significant decreases in (R)-NNAL formation activity in HEK293 cells. These data suggest that both cytosolic and microsomal enzymes are active against NNK and that HSD17β12 is the major active microsomal reductase that contributes to (R)-NNAL formation in human lung.

  14. Subcellular distribution and activation by non-ionic detergents of guanylate cyclase in cerebral cortex of rat.

    PubMed

    Deguchi, T; Amano, E; Nakane, M

    1976-11-01

    Non-ionic detergents stimulated particulate guanylate cyclase activity in cerebral cortex of rat 8- to 12-fold while stimulation of soluble enzyme was 1.3- to 2.5-fold. Among various detergents, Lubrol PX was the most effective one. The subcellular distribution of guanylate cyclase activity was examined with or without 0.5% Lubrol PX. Without Lubrol PX two-thirds of the enzyme activity was detected in the soluble fraction. In the presence of Lubrol PX, however, two-thirds of guanylate cyclase activity was recovered in the crude mitochondrial fraction. Further fractionation revealed that most of the particulate guanylate cyclase activity was associated with synaptosomes. The sedimentation characteristic of the particulate guanylate cyclase activity was very close to those of choline acetyltransferase and acetylcholine esterase activities, two synaptosomal enzymes. When the crude mitochondrial fraction was subfractionated after osmotic shock, most of guanylate cyclase activity as assayed in the absence of Lubrol PX was released into the soluble fraction while the rest of the enzyme activity was tightly bound to synaptic membrane fractions. The total guanylate cyclase activity recovered in the synaptosomal soluble fraction was 6 to 7 times higher than that of the starting material. The specific enzyme activity reached more than 1000 pmol per min per mg protein, which was 35-fold higher than that of the starting material. The membrane bound guanylate cyclase activity was markedly stimulated by Lubrol PX. Guanylate cyclase activity in the synaptosomal soluble fraction, in contrast, was suppressed by the addition of Lubrol PX. The observation that most of guanylate cyclase activity was detected in synaptosomes, some of which was tightly bound to the synaptic membrane fraction upon hypoosmotic treatment, is consistent with the concept that cyclic GMP is involved in neural transmission.

  15. Size exclusion chromatography for the removal of pigments from extracellular ligninolytic enzyme extracts from decayed wheat straw.

    PubMed

    Shukla, Dharmendra; Patel, Bhavesh; Modi, Hasmukh; Vyas, Bharat Rajiv Manuel

    2011-11-01

    Solid-state fermentation of wheat straw was carried out by a native white rot basidiomycete Daedaleopsis flavida strain 5A. Extract prepared from the 12-day decayed wheat straw contained extracellular ligninolytic enzymes like manganese peroxidase (MnP), manganese-independent peroxidase (MIP), lignin peroxidase (LiP) and laccase along with straw-degraded products and pigments. Sephacryl S-200 size exclusion chromatography in 16/100 column was used for the separation of these ligninolytic enzymes and straw-degraded products and pigments. Recovery of pigment-free ligninolytic enzyme activities as protein was 40% of the total proteins loaded and specific LiP activity increased 34 fold after size exclusion chromatography. Thus accurate estimation of LiP by veratryl alcohol oxidation assay was possible only after the removal of interfering pigments. The reproducibility of size exclusion chromatography is adjudged satisfactory from the consistent results obtained after seven repetitive uses of matrices.

  16. The influence of detergents and active components of detergent on bioproduction of organic matters and enzymatic activity of some species of fungi.

    PubMed

    Stojanović, Jelica; Stojanović, Marina; Iles, Deana; Mijusković, Zoran

    2004-01-01

    Detergent (Merix, "Merima " Krusevac) applied in concentration of 1% vol. showed specific influence on the bioproduction of some 15 different amino acids and on the enzyme activity of the species of fungi A. niger, A. alternata and T. roseum. Detergent has significantly stimulated the production of 15 analyzed amino acids of the fungi species A. niger. The same applied concentration of detergent has decreased or considerably decreased the production of some 14 of totally 15 analyzed amino acids of investigated fungi species A. alternata and T. roseum. The enzyme activity of the fungi A. niger was more intensive in relation to the species A. alternata and T. roseum during the experimental period or in some phases of the experimental period. The detergent component, ethoxyled oleyl-cetyl alcohol, in concentration of 0.01%, 0.1% and 1% showed an inhibitory effect, or significant inhibitory effect on the enzyme activity of the examined species of fungi (A. niger, A. alternata and T. roseum).

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    THOMAS, PAUL; JANAVE, M. T.

    Mangoes were gamma-irradiated at a dose rate of 4 Krad per min in doses of 15 to 200 Krad. Methods are described for extraction of the enzyme, assay of enzyme activity, and estimation of total phenolic constituents, ascorbic acid, and pH. Above doses of 75 Krad discoloration increased with dose and longer storage periods. An increase in activity of polyphenol oxidase was found with increasing radiation doses; a several-fold increase was observed at 200 Krad. This increase was correlated with external manifestations of radiation injury. Possible ways in which the activation of polyphenol oxidase in mango fruits is brought aboutmore » by irradiation are discussed. (HLW)« less

  18. Obesity and lipid stress inhibit carnitine acetyltransferase activity[S

    PubMed Central

    Seiler, Sarah E.; Martin, Ola J.; Noland, Robert C.; Slentz, Dorothy H.; DeBalsi, Karen L.; Ilkayeva, Olga R.; An, Jie; Newgard, Christopher B.; Koves, Timothy R.; Muoio, Deborah M.

    2014-01-01

    Carnitine acetyltransferase (CrAT) is a mitochondrial matrix enzyme that catalyzes the interconversion of acetyl-CoA and acetylcarnitine. Emerging evidence suggests that this enzyme functions as a positive regulator of total body glucose tolerance and muscle activity of pyruvate dehydrogenase (PDH), a mitochondrial enzyme complex that promotes glucose oxidation and is feedback inhibited by acetyl-CoA. Here, we used tandem mass spectrometry-based metabolic profiling to identify a negative relationship between CrAT activity and muscle content of lipid intermediates. CrAT specific activity was diminished in muscles from obese and diabetic rodents despite increased protein abundance. This reduction in enzyme activity was accompanied by muscle accumulation of long-chain acylcarnitines (LCACs) and acyl-CoAs and a decline in the acetylcarnitine/acetyl-CoA ratio. In vitro assays demonstrated that palmitoyl-CoA acts as a direct mixed-model inhibitor of CrAT. Similarly, in primary human myocytes grown in culture, nutritional and genetic manipulations that promoted mitochondrial influx of fatty acids resulted in accumulation of LCACs but a pronounced decrease of CrAT-derived short-chain acylcarnitines. These results suggest that lipid-induced antagonism of CrAT might contribute to decreased PDH activity and glucose disposal in the context of obesity and diabetes. PMID:24395925

  19. K+ Stimulation of ATPase Activity Associated with the Chloroplast Inner Envelope 1

    PubMed Central

    Wu, Weihua; Berkowitz, Gerald A.

    1992-01-01

    Studies were conducted to characterize ATPase activity associated with purified chloroplast inner envelope preparations from spinach (Spinacea oleracea L.) plants. Comparison of free Mg2+ and Mg·ATP complex effects on ATPase activity revealed that any Mg2+ stimulation of activity was likely a function of the use of the Mg·ATP complex as a substrate by the enzyme; free Mg2+ may be inhibitory. In contrast, a marked (one- to twofold) stimulation of ATPase activity was noted in the presence of K+. This stimulation had a pH optimum of approximately pH 8.0, the same pH optimum found for enzyme activity in the absence of K+. K+ stimulation of enzyme activity did not follow simple Michaelis-Menton kinetics. Rather, K+ effects were consistent with a negative cooperativity-type binding of the cation to the enzyme, with the Km increasing at increasing substrate. Of the total ATPase activity associated with the chloroplast inner envelope, the K+-stimulated component was most sensitive to the inhibitors oligomycin and vanadate. It was concluded that K+ effects on this chloroplast envelope ATPase were similar to this cation's effects on other transport ATPases (such as the plasmalemma H+-ATPase). Such ATPases are thought to be indirectly involved in active K+ uptake, which can be facilitated by ATPase-dependent generation of an electrical driving force. Thus, K+ effects on the chloroplast enzyme in vitro were found to be consistent with the hypothesized role of this envelope ATPase in facilitating active cation transport in vivo. ImagesFigure 3 PMID:16668922

  20. Direct immobilization of tyrosinase enzyme from natural mushrooms (Agaricus bisporus) on D-sorbitol cinnamic ester.

    PubMed

    Marín-Zamora, María Elisa; Rojas-Melgarejo, Francisco; García-Cánovas, Francisco; García-Ruiz, Pedro Antonio

    2006-11-10

    Mushroom tyrosinase was immobilized from an extract onto the totally cinnamoylated derivative of D-sorbitol by direct adsorption as a result of the intense hydrophobic interactions that took place. The immobilization pH value and mass of lyophilized mushrooms were important parameters that affected the immobilization efficiency, while the immobilization time and immobilization support concentration were not important in this respect. The extracted/immobilized enzyme could best be measured above pH 3.5 and the optimum measuring temperature was 55 degrees C. The apparent Michaelis constant using 4-tert-butylcatechol as substrate was 0.38+/-0.02 mM, which was lower than for the soluble enzyme from Sigma (1.41+/-0.20 mM). Immobilization stabilized the extracted enzyme against thermal inactivation and made it less susceptible to activity loss during storage. The operational stability was higher than in the case of the tyrosinase supplied by Sigma and immobilized on the same support. The results show that the use of p-nitrophenol as enzyme-inhibiting substrate during enzyme extraction and immobilization made the use of ascorbic acid unnecessary and is a suitable method for extracting and immobilizing the tyrosinase enzyme, providing good enzymatic activity and stability.

  1. Age-dependent denaturation of enzymes in the human lens: a paradigm for organismic aging?

    PubMed

    Zhu, Xiangjia; Korlimbinis, Anastasia; Truscott, Roger J W

    2010-10-01

    Little is known about the rate of denaturation of proteins within the human body. To monitor this decline, human eye lenses were dissected into discrete regions that were formed at different stages of life and assayed for activity of lactate dehydrogenase (LDH) and a particularly stable enzyme, glutathione reductase (GR). Activity was highest for both enzymes in the most recently synthesized outer part of the lens, decreased further into the lens, and, for LDH, was barely detectable in nuclear regions that consist of proteins that were synthesized in utero. For LDH, 95% of total lens activity was found in the outer half of the adult lens at all ages. Activity was unchanged in the outermost part of the lens as a function of age, suggesting that the ability of humans to synthesize the two enzymes is not impaired, even up to the tenth decade. After age of 40, LDH activity declined steadily in the interior of the lens at the rate of 8.3% per decade. GR activity diminished more slowly, and western blotting indicated that both denaturation of the enzyme and truncation were responsible. These data support the view that few, if any, metabolic pathways remain in the center of older lenses. Exposure of the enzymes to physiological pH and temperature over a period of decades is presumably sufficient to cause denaturation. The center of older human lenses is a unique environment in which the accumulation of untoward posttranslational modifications to proteins can be studied in the absence of significant enzymatic amelioration.

  2. The effectiveness of dietary sunflower meal and exogenous enzyme on growth, digestive enzymes, carcass traits, and blood chemistry of broilers.

    PubMed

    Alagawany, Mahmoud; Attia, Adel I; Ibrahim, Zenat A; Mahmoud, Reda A; El-Sayed, Sabry A

    2017-05-01

    High costs of conventional protein feed sources including soybean meal (SBM) generated the need for finding other alternatives. Thus, the present study was designed to evaluate the impact of graded replacements of SBM by sunflower seed meal (SFM) with or without enzyme supplementation on growth performance, digestive enzymes, carcass traits, and blood profile of broiler chickens. A total of 240 unsexed 1-week-old broiler chicks (Hubbard) were randomly divided into eight treatment groups of 30 chicks each in five replicates each of six chicks in a factorial design (4 × 2) arrangement, including four levels of SFM (0, 25, 50, and 75% replacing SBM) and two levels of enzyme (0- or 0.1-g/kg diet) supplementation. Performance traits including feed conversion ratio, body weight, and weight gain were significantly (P < 0.01) improved with increasing SFM up to 50% substitution for SBM or with enzyme supplementation in broiler diet during the experiment. However, feed intake of broiler chicks was decreased with enzyme supplementation (P < 0.05). The activities of digestive enzymes (protease and amylase) were significantly (P < 0.05) influenced and enhanced by SFM and enzyme inclusion in diets, respectively. The activities of protease and amylase were improved with SFM diet supplemented with 0.1 g/kg enzyme in comparison with those with the un-supplemented diet. The evaluated carcass traits were not statistically (P > 0.05) influenced by feeding SFM meal or enzyme addition. Biochemical blood parameters were significantly (P < 0.01) affected by SFM, enzyme, or their interaction in broiler diets, except for globulin that was not affected by dietary enzyme. It is concluded that increasing SFM level in the diet up to 50% replacing SBM with the supplementation of enzyme improved the growth performance and enhanced positively carcass traits as well as the activity of digestive enzymes in broiler chickens.

  3. Structures of benthic prokaryotic communities and their hydrolytic enzyme activities resuspended from samples of intertidal mudflats: An experimental approach

    NASA Astrophysics Data System (ADS)

    Mallet, Clarisse; Agogué, Hélène; Bonnemoy, Frédérique; Guizien, Katell; Orvain, Francis; Dupuy, Christine

    2014-09-01

    Resuspended sediment can increase plankton biomass and the growth of bacteria, thus influencing the coastal planktonic microbial food web. But little is known about resuspension itself: is it a single massive change or a whole series of events and how does it affect the quantity and quality of resuspended prokaryotic cells? We simulated the sequential erosion of mud cores to better understand the fate and role of benthic prokaryotes resuspended in the water column. We analyzed the total, attached and free-living prokaryotic cells resuspended, their structure and the activities of their hydrolytic enzymes in terms of the biotic and abiotic factors that affect the composition of microphytobenthic biofilm. Free living prokaryotes were resuspended during the fluff layer erosion phase (for shear velocities below 5 cm · s- 1) regardless of the bed sediment composition. At the higher shear velocities, resuspended prokaryotes were attached to particulate matter. Free and attached cells are thus unevenly distributed, scattered throughout the organic matter (OM) in the uppermost mm of the sediment. Only 10-27% of the total cells initially resuspended were living and most of the Bacteria were Cyanobacteria and Gamma-proteobacteria; their numbers increased to over 30% in parallel with the hydrolytic enzyme activity at highest shear velocity. These conditions released prokaryotic cells having different functions that lie deep in the sediment; the most important of them are Archaea. Finally, composition of resuspended bacterial populations varied with resuspension intensity, and intense resuspension events boosted the microbial dynamics and enzyme activities in the bottom layers of sea water.

  4. Liver lipid composition and antioxidant enzyme activities of spontaneously hypertensive rats after ingestion of dietary fats (fish, olive and high-oleic sunflower oils).

    PubMed

    Ruiz-Gutiérrez, V; Vázquez, C M; Santa-Maria, C

    2001-06-01

    Hypertension is associated with greater than normal lipoperoxidation and an imbalance in antioxidant status, suggesting that oxidative stress is important in the pathogenesis of this disease. Although many studies have examined the effect of antioxidants in the diet on hypertensión and other disorders, less attention has been given to the evaluation of the role of specific dietary lipids in modulating endogenous antioxidant enzyme status. Previously, we have described that liver antioxidant enzyme activities may be modulated by consumption of different oils in normotensive rats. The purpose of the present study was to examine the effects of feeding different lipidic diets (olive oil, OO, high-oleic-acid sunflower oil, HOSO, and fish oil, FO) on liver antioxidant enzyme activities of spontaneously hypertensive rats (SHR). Plasma and liver lipid composition was also studied. Total triacylglycerol concentration increases in plasma and liver of animals fed on the HOSO and OO diets and decreases in those fed on the FO diet, relative to rats fed the control diet. The animals fed on the oil-enriched diet show similar hepatic cholesterol and phospholipid contents, which are higher than the control group. Consumption of the FO diet results in a decrease in the total cholesterol and phospholipid concentration in plasma, compared with the high-oleic-acid diets. In liver, the FO group show higher levels of polyunsaturated fatty acids (PUFA) of the (n - 3) series, in relation to the animals fed on the diets enriched in oleic acid. Livers of FO-fed rats, compared with those of OO- and HOSO-fed rats showed: (i) significantly higher activities of catalase, glutathione peroxidase and Cu/Zn superoxide dismutase; (ii) no differences in the NADPH-cytochrome c reductase activity. The HOSO diet had a similar effect on liver antioxidant enzyme activities as the OO diet. In conclusion, it appears that changes in the liver fatty acid composition due mainly to n - 3 lipids may enhance the efficiency of the antioxidant defence system and may yield a benefit in the hypertension status. The two monounsaturated fatty acids oils studied (OO and HOSO), with the same high content of oleic acid, but different content of natural antioxidants, had similar effects on the antioxidant enzyme activities studied.

  5. Zinc and magnesium in the uterus of the pregnant and pseudopregnant mouse and the effects of Mg2+ ions on uterine alkaline phosphatase.

    PubMed

    Buxton, L E; Murdoch, R N

    1981-01-01

    The levels of zinc and magnesium in the mouse uterus during early pregnancy and pseudopregnancy were determined using atomic absorption spectroscopy techniques. The total zinc and magnesium content of the uterus increased between days 5 and 12 of pregnancy and between days 5 and 9 of content of the pseudopregnancy when decidual cells were present. However, the metals were not accumulated at a rate sufficient to match increases in uterine weight and constant concentrations (micrograms of metals per gram wet weight ot tissue) were not maintained over the various reproductive stages studied. The accumulation of the metals was associated with the presence of decidual cells, and non-decidualized horns of pseudopregnant mice failed to increase their total content of zinc and magnesium between days 5 and 9. The magnesium content of each uterus was usually between 5- and 13-fold greater than the total zinc content. mg2+ in low concentration (0-2mM) stimulated both the pyrophosphatase and orthophosphatase activities of purified preparations of the mouse uterine metalloenzyme, alkaline phosphatase. Higher concentrations (up to 8 mM) of the cation decreased pyrophosphatase activity but did not alter orthophosphatase activity. Mg/+ was more effective, however, in increasing the orthophosphatase activity of the enzyme and its stimulating effects in this case were greater in carbonate-bicarbonate buffer than in glycine-NaOH buffer. Mg2+ did not significantly influence apparent Km values or the response of the enzyme to changes in temperature. Zn2+, however, was required to maintain the stability of alkaline phosphatase apoenzyme preparations. It was concluded that during normal pregnancy and pseudopregnancy zinc and magnesium would always be present in amounts considerably greater than those required to saturate alkaline phosphatase for full catalytic activity. Thus, while the metals exert major effects on the activity and stability of the enzyme in vitro, they may not be major factors involved in the in utero regulation of the enzyme during early pregnancy.

  6. Changes in Soil Carbon and Enzyme Activity As a Result of Different Long-Term Fertilization Regimes in a Greenhouse Field

    PubMed Central

    Zhang, Lili; Chen, Wei; Burger, Martin; Yang, Lijie; Gong, Ping; Wu, Zhijie

    2015-01-01

    In order to discover the advantages and disadvantages of different fertilization regimes and identify the best management practice of fertilization in greenhouse fields, soil enzyme activities involved in carbon (C) transformations, soil chemical characteristics, and crop yields were monitored after long-term (20-year) fertilization regimes, including no fertilizer (CK), 300 kg N ha-1 and 600 kg N ha-1 as urea (N1 and N2), 75 Mg ha-1 horse manure compost (M), and M with either 300 or 600 kg N ha-1 urea (MN1 and MN2). Compared with CK, fertilization increased crop yields by 31% (N2) to 69% (MN1). However, compared with CK, inorganic fertilization (especially N2) also caused soil acidification and salinization. In the N2 treatment, soil total organic carbon (TOC) decreased from 14.1±0.27 g kg-1 at the beginning of the long-term experiment in 1988 to 12.6±0.11 g kg-1 (P<0.05). Compared to CK, N1 and N2 exhibited higher soil α-galactosidase and β-galactosidase activities, but lower soil α-glucosidase and β-glucosidase activities (P<0.05), indicating that inorganic fertilization had different impacts on these C transformation enzymes. Compared with CK, the M, MN1 and MN2 treatments exhibited higher enzyme activities, soil TOC, total nitrogen, dissolved organic C, and microbial biomass C and N. The fertilization regime of the MN1 treatment was identified as optimal because it produced the highest yields and increased soil quality, ensuring sustainability. The results suggest that inorganic fertilizer alone, especially in high amounts, in greenhouse fields is detrimental to soil quality. PMID:25706998

  7. Effects of 20 standard amino acids on the growth, total fatty acids production, and γ-linolenic acid yield in Mucor circinelloides.

    PubMed

    Tang, Xin; Zhang, Huaiyuan; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2014-12-01

    Twenty standard amino acids were examined as single nitrogen source on the growth, total fatty acids production, and yield of γ-linolenic acid (GLA) in Mucor circinelloides. Of the amino acids, tyrosine gave the highest biomass and lipid accumulation and thus resulted in a high GLA yield with respective values of 17.8 g/L, 23 % (w/w, dry cell weight, DCW), and 0.81 g/L, which were 36, 25, and 72 % higher than when the fungus was grown with ammonium tartrate. To find out the potential mechanism underlying the increased lipid accumulation of M. circinelloides when grown on tyrosine, the activity of lipogenic enzymes of the fungus during lipid accumulation phase was measured. The enzyme activities of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and ATP-citrate lyase were up-regulated, while NADP-isocitrate dehydrogenase was down-regulated by tyrosine during the lipid accumulation phase of the fungus which suggested that these enzymes may be involved in the increased lipid biosynthesis by tyrosine in this fungus.

  8. Effects of dietary supplementation of resveratrol on performance, egg quality, yolk cholesterol and antioxidant enzyme activity of laying hens.

    PubMed

    Feng, Z H; Gong, J G; Zhao, G X; Lin, X; Liu, Y C; Ma, K W

    2017-10-01

    1. This experiment was conducted to evaluate the effects of dietary supplementation of resveratrol on laying performance, egg quality, egg yolk cholesterol and antioxidant enzyme activities of laying hens. 2. A total of 360 Beijing PINK-1 laying hens (60 weeks old) were randomly distributed among five dietary treatments, each of which included 6 replicates of 12 hens. Dietary treatments were basal diet supplemented with 0 (control), 0.5, 1.0, 2.0 and 4.0 g/kg diet resveratrol. The study lasted for 9 weeks including 1 week of adaptation and 8 weeks of the main experimental period. 3. The results indicated that dietary resveratrol significantly improved feed conversion ratios during 5-8 weeks and 1-8 weeks of the trial. Increasing dietary concentrations of the resveratrol linearly improved Haugh unit and albumen height of eggs. 4. The content of total cholesterol (TC), total triglyceride (TG), low density lipoprotein cholesterol (LDL-C), very low density lipoprotein cholesterol (VLDL-C) in serum and cholesterol in yolk was significantly decreased by dietary resveratrol, and there were significant linear correlations between these indexes and resveratrol supplemental levels. 5. Dietary resveratrol supplementation significantly improved serum Glutathione peroxidase (GSH-Px) enzyme activity and decreased serum malondialdehyde (MDA) content in groups with 2.0 and 4.0 g/kg resveratrol as compared to the control, respectively. However, supplementation of resveratrol did not affect the activity of serum superoxide dismutase (SOD). 6. It is concluded that resveratrol supplementation has a positive effect on performance, lipid-related traits and antioxidant activity of laying hens.

  9. [Investigation of some virulence factors in Trichosporon spp. strains].

    PubMed

    Demir, Feyza; Kuştimur, Semra

    2014-10-01

    The frequency of fungal infections have increased recently in parallel to prolonged survival of patients with chronical infections, common use of the broad-spectrum antibiotics and cytotoxic drugs and surgical interventions. Fungi such as Trichosporon, Fusarium and Geotrichum that were previously evaluated as contaminant/colonization, become important causes of morbidity and mortality especially in neutropenic patients. The aim of this study was to investigate the presence of virulence factors such as acid proteinase, phospholipase, esterase, coagulase and hemolytic activity among Trichosporon species. A total of 40 Trichosporon strains, of them 24 (60%) were T.asahii, 6 (15%) were T.inkin and 10 (25%) were the other species (one of each of T.aquatile, T.asteroides, T.coremiiforme, T.cutaneum, T.dermatis, T.faecale, T.japonicum, T.montevideense, T.mucoides, T.ovoides) were included in the study. Identification of the isolates was performed according to microscopic morphology (blastospores, arthrospores, pseudohyphae and true hyphae) on corn meal agar media, and carbohydrate assimilation patterns (API ID32C; bioMérieux, France). Secretory acid proteinase, phospholipase and esterase activities of the strains were evaluated by 1% bovine serum albumin containing agar, by egg yolk containing solid medium, and by Tween 80 containing solid medium, respectively. Hemolytic activity of the isolates were evaluated by 5-10% sheep blood Sabouraud dextrose agar. Coagulase enzyme activity was determined by using human and rabbit plasma. In our study, all of the 40 Trichosporon spp. strains were found negative in terms of acid proteinase and phospholipase enzyme activity, however all were positive for esterase enzyme activity. Hemolytic enzyme activity were identified in a total of 15 (37.5%) strains, being "+++" in three strains (2 T.asahii, 1 T.japonicum), and "++" in 12 isolates (9 T.asahii, 1 T.inkin, 1 T.asteroides, 1 T.mentevideense). Although 11 of those 15 positive strains were T.asahii, there was no statistical difference between the species in terms of hemolytic enzyme activity (p> 0.05). Coagulase enzyme activity was detected in 5% (2/40; 1 T.asahii, 1 T.inkin) of the strains with human plasma and in 27.5% (11/40; 9 T.asahii, 1 T.inkin, 1 T.montevideense) with rabbit plasma. In conclusion, our data indicated that esterase, coagulase and hemolytic activities detected in Trichosporon spp. might play role in the pathogenesis of Trichosporon infections, however, further large-scaled clinical and mycological studies are needed to prove this relation.

  10. In-silico identification of the binding mode of synthesized adamantyl derivatives inside cholinesterase enzymes

    PubMed Central

    Al-Aboudi, Amal; Al-Qawasmeh, Raed A; Shahwan, Alaa; Mahmood, Uzma; Khalid, Asaad; Ul-Haq, Zaheer

    2015-01-01

    Aim: To investigate the binding mode of synthesized adamantly derivatives inside of cholinesterase enzymes using molecular docking simulations. Methods: A series of hybrid compounds containing adamantane and hydrazide moieties was designed and synthesized. Their inhibitory activities against acetylcholinesterase (AChE) and (butyrylcholinesterase) BChE were assessed in vitro. The binding mode of the compounds inside cholinesterase enzymes was investigated using Surflex-Dock package of Sybyl7.3 software. Results: A total of 26 adamantyl derivatives were synthesized. Among them, adamantane-1-carboxylic acid hydrazide had an almost equal inhibitory activity towards both enzymes, whereas 10 other compounds exhibited moderate inhibitory activity against BChE. The molecular docking studies demonstrated that hydrophobic interactions between the compounds and their surrounding residues in the active site played predominant roles, while hydrophilic interactions were also found. When the compounds were docked inside each enzyme, they exhibited stronger interactions with BChE over AChE, possibly due to the larger active site of BChE. The binding affinities of the compounds for BChE and AChE estimated were in agreement with the experimental data. Conclusion: The new adamantly derivatives selectively inhibit BChE with respect to AChE, thus making them good candidates for testing the hypothesis that BChE inhibitors would be more efficient and better tolerated than AChE inhibitors in the treatment of Alzheimer's disease. PMID:25937631

  11. Effects of dietary protein levels and 2-methylbutyrate on ruminal fermentation, nutrient degradability, bacterial populations and urinary purine derivatives in Simmental steers.

    PubMed

    Wang, C; Liu, Q; Guo, G; Huo, W J; Pei, C X; Zhang, S L; Yang, W Z

    2018-06-01

    The objective of this study was to evaluate the effects of dietary crude protein (CP) levels and 2-methylbutyrate (MB) supplementation on ruminal fermentation, bacterial populations, microbial enzyme activity and urinary excretion of purine derivatives (PD) in Simmental steers. Eight ruminally cannulated Simmental steers, averaging 18 months of age and 465 ± 8.6 kg of body weight (BW), were used in a replicated 4 × 4 Latin square design by a 2 × 2 factorial arrangement. Low protein (98.5 g CP/kg dry matter [LP] or high protein (128.7 g CP/kg dry matter [HP]) diets were fed with MB supplementation (0 g [MB-] or 16.8 g steer -1  day -1 [MB+]). Steers were fed a total mixed ration with dietary corn straw to concentrate ratio of 50:50 (dry matter [DM] basis). The CP × MB interaction was observed for ruminal total VFA, molar proportions of acetate and propionate, acetate to propionate ratio, ammonia-N, effective degradability of neutral detergent fibre (NDF) and CP, microbial enzyme activity, bacterial populations and total PD excretion (p < .05). Ruminal pH decreased (p < .05), but ruminal total VFA concentration increased (p < .05) with increasing dietary CP level or MB supplementation. Acetate molar proportion increased (p = .043) with MB supplementation, but was not affected by dietary CP level. Propionate molar proportion decreased (p < .05) with increasing dietary CP level or MB supplementation. Consequently, acetate-to-propionate ratio increased (p = .001) with MB supplementation, but was not affected by dietary CP level. Ruminal ammonia-N content increased (p = .034) with increasing dietary CP level, but decreased (p = .012) with MB supplementation. The effective degradability of NDF and CP increased (p < .05) with increasing dietary CP level or MB supplementation. Microbial enzyme activity, bacterial populations and total PD excretion also increased (p < .05) with increasing dietary CP level or MB supplementation. The results indicated that ruminal fermentation, nutrient degradability, microbial enzyme activity, ruminal bacterial populations and microbial protein synthesis improved with increasing dietary CP level or MB supplementation in steers. © 2017 Blackwell Verlag GmbH.

  12. Determining oxidant and antioxidant status in patients with genital warts.

    PubMed

    Cokluk, Erdem; Sekeroglu, Mehmet Ramazan; Aslan, Mehmet; Balahoroglu, Ragip; Bilgili, Serap Gunes; Huyut, Zubeyir

    2015-09-01

    Warts are abnormal skin growths caused by human papilloma virus (HPV) infections within the skin of patients. Genital warts usually appear in the perianal and perigenital regions. Asymptomatic warts may be activated after years and may damage natural immunity. The inflammation that occurs during this process may lead to an imbalance between the prooxidant and the antioxidant systems. The aim of this study was to investigate erythrocyte glutathione peroxidase (GSH-Px) activity, serum paraoxonase enzyme levels, and oxidative stress levels in patients with genital warts. In total, 32 patients with genital warts and 35 healthy subjects were included in this study. Erythrocyte GSH-Px activity, serum catalase activity, and paraoxonase enzyme, and malondialdehyde (MDA) levels were determined. Erythrocyte GSH-Px activity, serum MDA levels, and catalase activity were significantly higher in patients with genital warts than in controls (P < 0.01, P < 0.05, and P < 0.05, respectively). However, serum paraoxonase enzyme levels were not significantly different between groups (P > 0.05). Serum triglyceride levels were significantly lower in patients with genital warts than in controls (P < 0.01). However, there were no statistically significant differences between groups with respect to total cholesterol, high-density lipoprotein cholesterol, or low-density lipoprotein cholesterol levels (all P > 0.05). Our data suggest that oxidative stress is increased in genital warts. Increased oxidative stress levels may contribute to the pathogenesis of genital warts, and prolonged HPV infection due to chronic inflammation could also affect oxidative stress.

  13. Total Phenolic Content and Antioxidant Activity of Different Types of Chocolate, Milk, Semisweet, Dark, and Soy, in Cerebral Cortex, Hippocampus, and Cerebellum of Wistar Rats.

    PubMed

    da Silva Medeiros, Niara; Koslowsky Marder, Roberta; Farias Wohlenberg, Mariane; Funchal, Cláudia; Dani, Caroline

    2015-01-01

    Chocolate is a product consumed worldwide and it stands out for presenting an important amount of phenolic compounds. In this study, the total phenolic content and antioxidant activity in the cerebral cortex, hippocampus, and cerebellum of male Wistar rats when consuming different types of chocolate, including milk, semisweet, dark, and soy, was evaluated. The total polyphenols concentration and antioxidant activity in vitro by the method of DPPH radical-scavenging test were evaluated in chocolate samples. Lipid peroxidation (TBARS), protein oxidation (carbonyl), sulfhydryl groups, and activity of SOD enzyme in cerebral cortex, hippocampus, and cerebellum of rats treated or not with hydrogen peroxide and/or chocolate were also evaluated. The dark chocolate demonstrated higher phenolic content and antioxidant activity, followed by semisweet, soy, and milk chocolates. The addition of chocolate in the diet of the rats reduced lipid peroxidation and protein oxidation caused by hydrogen peroxide. In the sulfhydryl assay, we observed that the levels of nonenzymatic defenses only increased with the chocolate treatments The SOD enzyme activity was modulated in the tissues treated with the chocolates. We observed in the samples of chocolate a significant polyphenol content and an important antioxidant activity; however, additional studies with different chocolates and other tissues are necessary to further such findings.

  14. Total Phenolic Content and Antioxidant Activity of Different Types of Chocolate, Milk, Semisweet, Dark, and Soy, in Cerebral Cortex, Hippocampus, and Cerebellum of Wistar Rats

    PubMed Central

    da Silva Medeiros, Niara; Koslowsky Marder, Roberta; Farias Wohlenberg, Mariane; Funchal, Cláudia; Dani, Caroline

    2015-01-01

    Chocolate is a product consumed worldwide and it stands out for presenting an important amount of phenolic compounds. In this study, the total phenolic content and antioxidant activity in the cerebral cortex, hippocampus, and cerebellum of male Wistar rats when consuming different types of chocolate, including milk, semisweet, dark, and soy, was evaluated. The total polyphenols concentration and antioxidant activity in vitro by the method of DPPH radical-scavenging test were evaluated in chocolate samples. Lipid peroxidation (TBARS), protein oxidation (carbonyl), sulfhydryl groups, and activity of SOD enzyme in cerebral cortex, hippocampus, and cerebellum of rats treated or not with hydrogen peroxide and/or chocolate were also evaluated. The dark chocolate demonstrated higher phenolic content and antioxidant activity, followed by semisweet, soy, and milk chocolates. The addition of chocolate in the diet of the rats reduced lipid peroxidation and protein oxidation caused by hydrogen peroxide. In the sulfhydryl assay, we observed that the levels of nonenzymatic defenses only increased with the chocolate treatments The SOD enzyme activity was modulated in the tissues treated with the chocolates. We observed in the samples of chocolate a significant polyphenol content and an important antioxidant activity; however, additional studies with different chocolates and other tissues are necessary to further such findings. PMID:26649198

  15. In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes.

    PubMed

    Deo, Permal; Hewawasam, Erandi; Karakoulakis, Aris; Claudie, David J; Nelson, Robert; Simpson, Bradley S; Smith, Nicholas M; Semple, Susan J

    2016-11-04

    There is a need to develop potential new therapies for the management of diabetes and hypertension. Australian medicinal plants collected from the Kuuku I'yu (Northern Kaanju) homelands, Cape York Peninsula, Queensland, Australia were investigated to determine their therapeutic potential. Extracts were tested for inhibition of protein glycation and key enzymes relevant to the management of hyperglycaemia and hypertension. The inhibitory activities were further correlated with the antioxidant activities. Extracts of five selected plant species were investigated: Petalostigma pubescens, Petalostigma banksii, Memecylon pauciflorum, Millettia pinnata and Grewia mesomischa. Enzyme inhibitory activity of the plant extracts was assessed against α-amylase, α-glucosidase and angiotensin converting enzyme (ACE). Antiglycation activity was determined using glucose-induced protein glycation models and formation of protein-bound fluorescent advanced glycation endproducts (AGEs). Antioxidant activity was determined by measuring the scavenging effect of plant extracts against 1, 1-diphenyl-2-picryl hydrazyl (DPPH) and using the ferric reducing anti-oxidant potential assay (FRAP). Total phenolic and flavonoid contents were also determined. Extracts of the leaves of Petalostigma banksii and P. pubescens showed the strongest inhibition of α-amylase with IC 50 values of 166.50 ± 5.50 μg/mL and 160.20 ± 27.92 μg/mL, respectively. The P. pubescens leaf extract was also the strongest inhibitor of α-glucosidase with an IC 50 of 167.83 ± 23.82 μg/mL. Testing for the antiglycation potential of the extracts, measured as inhibition of formation of protein-bound fluorescent AGEs, showed that P. banksii root and fruit extracts had IC 50 values of 34.49 ± 4.31 μg/mL and 47.72 ± 1.65 μg/mL, respectively, which were significantly lower (p < 0.05) than other extracts. The inhibitory effect on α-amylase, α-glucosidase and the antiglycation potential of the extracts did not correlate with the total phenolic, total flavonoid, FRAP or DPPH. For ACE inhibition, IC 50 values ranged between 266.27 ± 6.91 to 695.17 ± 15.38 μg/mL. The tested Australian medicinal plant extracts inhibit glucose-induced fluorescent AGEs, α-amylase, α-glucosidase and ACE with extracts of Petalostigma species showing the most promising activity. These medicinal plants could potentially be further developed as therapeutic agents in the treatment of hyperglycaemia and hypertension.

  16. Thermodynamic properties of the β-glucosidase from Thermotoga maritima extend the upper limit of thermophilicity.

    PubMed

    Mehmood, Muhammad A; Shahid, Izzah; Hussain, Khadim; Latif, Farooq; Rajoka, Muhammad I

    2014-01-01

    Enzymes from thermophilic organisms are believed to be strong candidates for industrial applications due to their ability to withstand temperature-induced enzyme inactivation. The present study demonstrated molecular cloning, over-expression, purification and characterization of β-glucosidase from Thermotoga maritima. The bglA gene with a capacity to encode a 51 kDa enzyme was heterologously expressed in E. coli M15. The enzyme was produced @130 mgL(-1) in LB media and @440 mgL(-1) in Dubos salt medium accounting 40-47 % of total cellular soluble proteins when lactose was used as an inducer. The enzyme showed a peak activity between pH and temperature range of 5.0-7.0 and 80-100 °C, respectively. The activity was fairly stable up to 140 °C. The turnover rate (kcat) of the enzyme was 187.1±20 s(-1), whereas the Km and Vmax values were 0.56 mM and 238±2.4 IU mg(-1) protein, respectively. The enzyme was shown to have half-life of 136, 71 and 12.6 h at 80, 90 and 100 °C, respectively. Thermodynamics parameters including melting temperature (130 °C), activation energy for inactivation (36.92 kJmole(-1)), enthalpy (33.73 kJmole(-1)), Gibb's free energy (127.96 kJmole(-1)) and entropy (-246.46 Jmole(-1)K(-1)) have shown that the enzyme have enhanced hydrophobic interactions to prevent its thermal unfolding. These features endorse the industrial applications of the enzyme.

  17. Antioxidant Expression Response to Free Radicals in Active Men and Women Fallowing to a Session Incremental Exercise; Numerical Relationship Between Antioxidants and Free Radicals.

    PubMed

    Baghaiee, Behrouz; Aliparasti, Mohammad Reza; Almasi, Shohreh; Siahkuhian, Marefat; Baradaran, Behzad

    2016-06-01

    Energy production is a necessary process to continue physical activities, and exercise is associated with more oxygen consumption and increase of oxidative stress. what seems important is the numerical relationship between antioxidant and free radicals. Although the activity of some enzymes increases with physical activities, but it is possible that gene expression of this enzyme is not changed during exercise. The aim of the present study is to investigate the antioxidant enzymes gene expression and changes in malondialdehyde (MDA) and total antioxidant capacity (TAC) levels in men and women affected by a session of incremental exercise and to carefully and numerically assess the relationship between MDA changes and gene expression and activity of antioxidant enzymes. 12 active men and 12 active women (21 - 24 years old) participated voluntarily in this study. Peripheral blood samples were taken from the subjects in three phases, before and after graduated exercise test (GXT) and 3 hours later (recovery). The gene expression of manganese superoxide dismutase (MnSOD) enzyme increased significantly in women in the recovery phase (P < 0.05). Catalase gene expression significantly increased in men in both phases (immediately & recovery) (P < 0.05). But the changes in active women were only significant immediately after the exercise. TAC levels increased significantly in men in the recovery phase and in active women immediately after the exercise (P < 0.05). MDA activity also increased significantly in men in both phases (P < 0.05). However, in women the increase was significant only in the recovery phase (P < 0.05). There was a reverse relationship between changes in MnSOD and copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) levels and MDA in men (P < 0.05). In active women there was also a significant relationship between changes in MDA and gene expression of Cu/ZnSOD and TAC (P < 0.05). The increase in free radicals during incremental exercises challenges gene expression and activity of antioxidant enzymes. However, despite the negative effects of free radicals, in women, activity and gene expression of antioxidant enzymes respond appropriately to free radicals.

  18. Antidiabetic and Antioxidant Activity of Scoparia dulcis Linn.

    PubMed Central

    Mishra, M. R.; Mishra, A.; Pradhan, D. K.; Panda, A. K.; Behera, R. K.; Jha, S.

    2013-01-01

    The hypoglycaemic activity of methanol extract of Scoparia dulcis was performed on both in vitro and in vivo models along with determination of total extractable polyphenol. Methanol extract of Scoparia dulcis contains 4.9% and water extract contains 3.2% of total extractable polyphenol. The antioxidant activity showed very promising result in both the tested methods that is 2,2-diphenyl-1-picrylhydrazyl and ferric ion reducing capacity. The antioxidant activity is directly correlated to the antidiabetic potential of drug. The two enzymes (amylase and glycosidase) found in intestine are responsible for the increasing postprandial glucose in body. In vitro model was performed on these enzymes and the results showed that methanol extract of Scoparia dulcis was effective to check the postprandial glucose level. The in vivo hypoglycaemic activity of methanol extract of Scoparia dulcis was performed on streptozotocin-induced diabetes mellitus showed significant inhibition of blood glucose level as compared to control and similar to that of standard glibenclamide. The overall data potentiates the traditional value of Scoparia dulcis as an antidiabetic drug. PMID:24403665

  19. Association of reduction of AFB1-induced liver tumours by antioxidants with increased activity of microsomal enzymes.

    PubMed

    Nyandieka, H S; Wakhis, J; Kilonzo, M M

    1990-10-01

    The influence of nutritional factors on aflatoxin B1 (AFB1)-induced liver tumours was investigated in rats. When a dose of 500 micrograms AFB1/kg body weight was given to rats in the absence of any anticarcinogen, 80 per cent of the rats developed liver tumours as compared to 0 to 40 per cent in those which received anticarcinogens. While beta-carotene totally inhibited the development of liver tumours ascorbic acid, selenium, and uric acid reduced the percentages of tumour-bearing rats to 13 per cent each. GSH and vitamin E also reduced these percentages to 20 and 40 per cent respectively. The reduction of tumour incidence by each anticarcinogen was associated with induction of increased microsomal enzyme activity. Inhibition of AFB1-induced liver cancer development thus seems to occur through microsomal enzyme induction and AFB1 activation.

  20. Studies on the alterations in haematological indices, micronuclei induction and pathological marker enzyme activities in Channa punctatus (spotted snakehead) perciformes, channidae exposed to thermal power plant effluent.

    PubMed

    Javed, Mehjbeen; Ahmad, Irshad; Ahmad, Ajaz; Usmani, Nazura; Ahmad, Masood

    2016-01-01

    The present study was conducted to assess the toxicity of thermal power plant effluent containing heavy metals (Fe > Cu > Zn > Mn > Ni > Co > Cr) on haematological indices, micronuclei, lobed nuclei and activity of pathological marker enzymes [alkaline phosphatase (ALP), aspartate transferase (AST), alanine transferase (ALT) and creatine kinase (CK)] in Channa punctatus. Total erythrocyte count (-54.52 %), hemoglobin (-36.98 %), packed cell volume (-36.25 %), mean corpuscular hemoglobin concentration (-1.41 %) and oxygen (O2) carrying capacity (-37.04 %) declined significantly over reference fish, however total leukocyte count (+25.43 %), mean corpuscular hemoglobin (+33.52 %) and mean corpuscular volume (+35.49 %) showed elevation. High frequency of micronuclei (1133.3 %) and lobed nuclei (150 %) were observed in exposed fish which may indicate mutagenesis. Activities of pathological marker enzymes ALP, AST, ALT and CK increased significantly in serum of exposed fish. The ratio of ALT: AST in exposed fish was beyond 1 which indicates manifestation of pathological processes. These biomarkers show that fish have macrocytic hypochromic anemia. Leukocytosis showed general defence response against heavy metal toxicity and marker enzymes showed tissue degeneration. In conclusion, thermal power plant effluent has strong potential to induce micronuclei, tissue pathology, making the fish anemic, weak, stressed and vulnerable to diseases.

  1. Ribulose-1,5-bisphosphate Carboxylase/Oxygenase and Polyphenol Oxidase in the Tobacco Mutant Su/su and Three Green Revertant Plants 1

    PubMed Central

    Koivuniemi, Paul J.; Tolbert, N. E.; Carlson, Peter S.

    1980-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) was crystallized from a heterozygous tobacco (Nicotiana tabacum L.) aurea mutant (Su/su), its wild-type sibling (su/su), and green revertant plants regenerated from green spots found on leaves of haploid Su plants. No differences were found in the specific activity or kinetic parameters of this enzyme, when comparing Su/su and su/su plants of the same age, which had been grown under identical conditions. The enzyme crystallized from revertant plants was also identical to the enzyme from wild-type plants with the exception of one clone, designated R2. R2 has a chromosome number approximately double that of the wild-type (87.0 ± 11.1 versus 48). The enzyme from R2 had a lower Vmax for CO2, although the Km values were identical to those for the enzyme from the wild-type plant. The enzyme from all mutant plants had identical isoelectric points, identical molecular weight as demonstrated by migration on native and sodium dodecyl sulfate (SDS)-polyacrylamide gels, and the same ratio of large to small subunits as the enzyme from the wild-type. The large subunit of the enzyme from tobacco leaves exhibited a different electrophoretic pattern than did the large subunit from spinach; there were two to three bands on SDS-polyacrylamide gels for the tobacco enzyme whereas the enzyme from spinach had only one species of large subunit. Total polyphenol oxidase activity was the same in leaves from the heterozygous mutant (Su/su) and wild-type (su/su) plants when correlated with developmental age as represented by morphology rather than by the chronological age of the plants. There was a marked increase in the soluble activity of this enzyme with increasing age of both plant types and also as a result of varying environmental conditions. Ribulose-1,5-bisphosphate carboxylase/oxygenase activity correlated inversely with increases in the soluble activity of polyphenol oxidase in crude homogenates from which the carboxylase/oxygenase was crystallized over a generation of Su/su and su/su plants. Criteria are outlined for determining if differences in activity of ribulose-1,5-bisphosphate carboxylase/oxygenase are caused by an effect of polyphenol oxidase activity and/or by some other extrinsic parameter. PMID:16661290

  2. Purification and biochemical characterization of ionically unbound polyphenol oxidase from Musa paradisiaca leaf.

    PubMed

    Diwakar, Sanjeev Kumar; Mishra, Sarad Kumar

    2011-01-01

    An ionically unbound and thermostable polyphenol oxidase (PPO) was extracted from the leaf of Musa paradisiaca. The enzyme was purified 2.54-fold with a total yield of 9.5% by ammonium sulfate precipitation followed by Sephadex G-100 gel filtration chromatography. The purified enzyme exhibited a clear single band on native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS) PAGE. It was found to be monomeric protein with molecular mass of about 40 kD. The zymographic study using crude extract as enzyme source showed a very clear band around 40 kD and a faint band at around 15 kD, which might be isozymes. The enzyme was optimally active at pH 7.0 and 50°C temperature. The enzyme was active in wide range of pH (4.0-9.0) and temperature (30-90°C). From the thermal inactivation studies in the range 60-75°C, the half-life (t(1/2)) values of the enzyme ranged from 17 to 77 min. The inactivation energy (Ea) value of PPO was estimated to be 91.3 kJ mol(-1). It showed higher specificity with catechol (K(m) = 8 mM) as compared to 4-methylcatechol (K(m) = 10 mM). Among metal ions and reagents tested, Cu(2+), Fe(2+), Hg(2+), Mn(2+), Ni(2+), protocatechuic acid, and ferrulic acid enhanced the enzyme activity, while K(+), Na(+), Co(2+), kojic acid, ascorbic acid, ethylenediamine tetraacetic acid (EDTA), sodium azide, β-mercaptoethanol, and L-cysteine inhibited the activity of the enzyme.

  3. Phospholipase A2 from Bothrops alternatus (víbora de la cruz) venom. Purification and some characteristic properties.

    PubMed

    Nisenbom, H E; Seki, C; Vidal, J C

    1986-01-01

    One single protein species with phospholipase activity has been isolated from Bothrops alternatus venom by a procedure involving gel-filtration on Sephadex G-50 (Step 1), chromatography on SP-Sephadex C-50 (Step 2) and gel-filtration on Sephadex G-75 (Step 3). The purified sample behaved as a homogeneous, monodisperse protein with a molecular weight of 15,000 and isoelectric point of 5.04. The yield in enzyme activity was 48% of the starting material and the apparent purification was 51-fold. When assayed on 1,2-diheptanoyl- or 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine, fatty acids and lysolecithins were the only reaction products, in accordance with the predicted stoichiometry. Studies on positional specificity suggested that the enzyme is a phospholipase A2. The enzyme requires Ca2+ ions for activity and exhibited stereochemical specificity, since the enantiomeric 2, 3-diheptanoyl-sn-glycero-1-phosphorylcholine was not hydrolyzed. Under the experimental conditions employed, reaction products representative of either phospholipase B or C activities could not be detected. After Step 1, the phospholipase activity recovered was higher than the total activity in the crude venom sample, which is explained by the separation of an inhibitor during enzyme purification. The inhibitor was responsible for the initial lag period that characterized the kinetics of the enzyme reaction with crude venom acting on aggregated substrates (lipoprotein, vesicles or micelles), while the rate of hydrolysis of monomeric lecithins was not affected.

  4. EVIDENCE FOR AN EXOCELLULAR SITE FOR THE ACID PHOSPHATASE OF SACCHAROMYCES MELLIS1

    PubMed Central

    Weimberg, Ralph; Orton, William L.

    1964-01-01

    Weimberg, Ralph (Northern Regional Research Laboratory, Peoria, Ill.), and William L. Orton. Evidence for an exocellular site for the acid phosphatase of Saccharomyces mellis. J. Bacteriol. 88:1743–1754. 1964.—Evidence is presented which demonstrates an exocellular location for acid phosphatase in Saccharomyces mellis. Derepressed intact cells exhibit acid phosphatase activity. The properties of the system are similar to those shown by the enzyme in cell-free extracts. There is no increase in total activity when cell-free extracts are prepared. Enzymatically active cell walls were prepared by leaching acetone-dried cells of this yeast in dilute acetate buffer (pH 6.5) plus β-mercaptoethanol. The insoluble residue, consisting mainly of cell-wall material and containing the phosphatase, was treated with a variety of hydrolytic enzymes and other chemicals. Only papain and crude snail gut extracts dissociated the enzyme from the particulate fraction in nearly quantitative amounts. The mechanism of release by these two enzymes probably differs. Of all enzymes tested, only the snail gut extract digested the cell walls. By dividing the procedure for making protoplasts of S. mellis into two steps, acid phosphatase may be dissociated from resting cells and recovered as an active soluble enzyme. The first step is to pretreat the cells with a thiol reagent. The second step is to digest the cell wall by enzymes present in crude snail gut extracts. Arsenite must be included in the second step to protect the phosphatase from inactivation. The phosphatase is quantitatively released before the cell becomes osmotically fragile. Images PMID:14240965

  5. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area.

    PubMed

    Ciarkowska, Krystyna; Sołek-Podwika, Katarzyna; Wieczorek, Jerzy

    2014-01-01

    The activities of soil enzymes in relation to the changes occurring in the soil on a degraded area in southern Poland after zinc and lead mining were analyzed. An evaluation of the usefulness of urease and invertase activities for estimating the progress of the rehabilitation processes in degraded soil was performed. The data show that the soil samples differed significantly in organic carbon (0.68-104.0 g kg(-1)) and total nitrogen (0.03-8.64 g kg(-1)) content in their surface horizons. All of the soil samples (apart from one covered with forest) had very high total concentrations of zinc (4050-10,884 mg kg(-1)), lead (959-6661 mg kg(-1)) and cadmium (24.4-174.3 mg kg(-1)) in their surface horizons, and similar concentrations in their deeper horizons. Nevertheless, the amounts of the soluble forms of the above-mentioned heavy metals were quite low and they accounted for only a small percentage of the total concentrations: 1.4% for Zn, 0.01% for Pb and 2.6% for Cd. Urease activities were ranked as follows: soil from flotation settler (0.88-1.78 μg N-NH4(+) 2h(-1) g(-1))

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slade, Daniel J.; Fang, Pengfei; Dreyton, Christina J.

    Protein arginine deiminases (PADs) are calcium-dependent histone-modifying enzymes whose activity is dysregulated in inflammatory diseases and cancer. PAD2 functions as an Estrogen Receptor (ER) coactivator in breast cancer cells via the citrullination of histone tail arginine residues at ER binding sites. Although an attractive therapeutic target, the mechanisms that regulate PAD2 activity are largely unknown, especially the detailed role of how calcium facilitates enzyme activation. To gain insights into these regulatory processes, we determined the first structures of PAD2 (27 in total), and through calcium-titrations by X-ray crystallography, determined the order of binding and affinity for the six calcium ionsmore » that bind and activate this enzyme. These structures also identified several PAD2 regulatory elements, including a calcium switch that controls proper positioning of the catalytic cysteine residue, and a novel active site shielding mechanism. Additional biochemical and mass-spectrometry-based hydrogen/deuterium exchange studies support these structural findings. The identification of multiple intermediate calcium-bound structures along the PAD2 activation pathway provides critical insights that will aid the development of allosteric inhibitors targeting the PADs.« less

  7. Enzymes of acetylcholine metabolism in the rat cochlea.

    PubMed

    Godfrey, D A; Ross, C D

    1985-01-01

    The distributions within the rat cochlea of choline acetyltransferase and acetylcholinesterase activities were measured to evaluate the prominence of cholinergic mechanisms in cochlear function. Samples obtained by microdissection of freeze-dried bony labyrinths were assayed radiometrically. Activities of both enzymes were highest in regions containing olivocochlear fibers and terminals, especially the organ of Corti and spiral ganglion. Within the organ of Corti, activities of both enzymes were consistently higher in the vicinity of the inner hair cells than in that of the outer hair cells and were much lower in the apical turn than in middle or basal turns. Surgical cuts in the brain stem transecting the olivocochlear pathway on one side led within seven days to total loss of choline acetyltransferase activity in the ipsilateral organ of Corti. It is concluded that all cholinergic structures in the rat organ of Corti derive from the brain stem and that synapses on or near both inner and outer hair cells are cholinergic.

  8. Acute and chronic effects of clofibrate and clofibric acid on the enzymes acetylcholinesterase, lactate dehydrogenase and catalase of the mosquitofish, Gambusia holbrooki.

    PubMed

    Nunes, B; Carvalho, F; Guilhermino, L

    2004-12-01

    The objective of this study was to investigate both acute and chronic effects of clofibrate and clofibric acid on the enzymes acetylcholinesterase (AChE), lactate dehydrogenase (LDH) and catalase (CAT) of the mosquitofish (Gambusia holbrooki). AChE, commonly used as a biomarker of neurotoxicity, was determined in the total head. LDH, an important enzyme of anaerobic metabolism, was quantified in dorsal muscle, and CAT, enzyme which has been used as indicative parameter of peroxisome proliferation, was determined in the liver. Furthermore, alterations of body and liver weight were also determined, through the calculation of the ratios final body weight/initial body weight, liver weight/final body weight, liver weight/gills weight and liver weight/head weight. Acute exposure of G. holbrooki to both clofibrate and clofibric acid induced a decrease in liver CAT activity, an increase in muscle LDH activity, while no effects were observed on AChE activity. However, chronic exposure did not alter significantly the enzymatic activities, suggesting reduced or null effects over these pathways, relative to effects reported in other species. No effects were observed for the calculated ratios, except a significant weight reduction for males chronically exposed to clofibrate.

  9. Hypoglycemic and Hypolipidemic Effects of the Cracked-Cap Medicinal Mushroom Phellinus rimosus (Higher Basidiomycetes) in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Rony, Kuttikkadan A; Ajith, Thekkuttuparambil A; Janardhanan, Kainoor K

    2015-01-01

    Phellinus rimosus is a parasitic host specific polypore mushroom with profound antioxidant, antihepatotoxic, anti-inflammatory, antitumor, and antimutagenic activities. This study investigated the hypoglycemic and hypolipidemic activities of the wood-inhabiting polypore mushroom Ph. Rimosus in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by single intraperitoneal injection of STZ (45 mg/kg) to Wistar rats. The effects of 30 days treatment with Ph. Rimosus (50 and 250 mg/ kg) and glibenclamide (0.65 mg/kg) on blood glucose level, serum insulin, serum lipid profile, liver glycogen, liver function enzymes, and non-enzymic and enzymic antioxidants activities in pancreas, liver, and kidney were evaluated in STZ-induced diabetic rats. Oral administration of Ph. Rimosus extract exhibited a significant reduction in blood glucose, triacylglycerol, total cholesterol, LDL-cholesterol, and liver function enzymes, and increased serum insulin, liver glycogen, and HDL-cholesterol levels in STZ-induced diabetic rats. Furthermore, Ph. Rimosus treatment increased antioxidant status in pancreas, liver, and kidney tissues with concomitant decreases in levels of thiobarbituric acid- reactive substances. Results of this study indicated that Ph. Rimosus possessed significant hypoglycemic and hypolipidemic activities and this effect may be related to its insulinogenic and antioxidant effect.

  10. Effects of dietary probiotic supplementation on LXRα and CYP7α1 gene expression, liver enzyme activities and fat metabolism in ducks.

    PubMed

    Huang, Z; Mu, C; Chen, Y; Zhu, Z; Chen, C; Lan, L; Xu, Q; Zhao, W; Chen, G

    2015-04-01

    1. The objective of this study was to investigate the effects of dietary probiotic supplementation on liver X receptor alpha (LXRα) and cholesterol 7α-hydroxylase (CYP7α1) mRNA levels, protein enzymatic activities and fat metabolism in Cherry Valley Pekin ducks. 2. A total of 750 one-day-old Cherry Valley Pekin ducks were randomly divided into 5 groups with three replicates of 50 ducks each in a completely randomised experiment. Each group was fed on a basal diet supplemented with 0, 500, 1000, 1500 or 2000 mg probiotics/kg. 3. Body rate and feed conversion ratio were highest and abdominal subcutaneous fat % was lowest at 1000 mg probiotic/kg. 4. The mRNA levels of LXRα and CYP7α1 in liver tissue was estimated by RT-PCR; serum triglyceride (TG) and total cholesterol (TC) concentrations were measured by ELISA. 5. The expression levels and enzyme activity of LXRα and CYP7α1 increased in conjunction with decreases in TG and TC concentrations following probiotic supplementation to a maximum at 1000 mg probiotics/kg and decreased thereafter. 6. It is concluded that dietary probiotics can enhance LXRα and CYP7α1 enzyme activities in the liver and reduce lipid concentrations and fat deposition in ducks.

  11. [Diversity and enzyme-producing activity of culturable halophilic bacteria in Daishan Saltern of East China].

    PubMed

    Yang, Dan-Dan; Li, Qian; Huang, Jing-Jing; Chen, Min

    2012-11-01

    Soil and saline water samples were collected from the Daishan Saltern of East China, and the halophilic bacteria were isolated and cultured by using selective media, aimed to investigate the diversity and enzyme-producing activity of culturable halophilic bacteria in saltern environment. A total of 181 strains were isolated by culture-dependent method. Specific primers were used to amplify the 16S rRNA gene of bacteria and archaea. The operation taxonomy units (OTUs) were determined by ARDRA method, and the representative strain of each OTU was sequenced. The phylogenetic position of all the isolated strains was determined by 16S rRNA sequencing. The results showed that the isolated 181 strains displayed 21 operational taxonomic units (OTUs), of which, 12 OTUs belonged to halophilic bacteria, and the others belonged to halophilic archaea. Phylogenetic analysis indicated that there were 7 genera presented among the halophilic bacteria group, and 4 genera presented among the halophilic archaea group. The dominant halophilic strains were of Halomonas and Haloarcula, with 46.8% in halophilic bacteria and 49.1% in halophilic archaea group, respectively. Enzyme-producing analysis indicated that most strains displayed enzyme-producing activity, including the activities of producing amylase, proteinase and lipase, and the dominant strains capable of enzyme-producing were of Haloarcula. Our results showed that in the environment of Daishan Saltern, there existed a higher diversity of halophilic bacteria, being a source sink for screening enzyme-producing bacterial strains.

  12. Collagenases in human synovial fluid

    PubMed Central

    Harris, Edward D.; DiBona, Donald R.; Krane, Stephen M.

    1969-01-01

    An enzyme which degrades native collagen at neutral pH has been isolated from cultures of rheumatoid synovium in vitro, but little or no collagenolytic activity has been found in homogenates of fresh rheumatoid synovium. Similar to most other mammalian collagenases this synovial enzyme is readily inhibited by serum proteins. Proteins of synovial fluid are derived largely from serum and synovial fluid from noninflamed joints was found to inhibit synovial collagenase; the inhibitor was destroyed by trypsin, but not by hyaluronidase. Inhibitory activity was reduced in approximately one-half of the fluids from patients with rheumatoid arthritis. In a total of nine synovial fluids, collagenolytic activity was detectable. This activity was not present in constant amounts in synovial fluids aspirated at different times from the same patient and tended to vary inversely with the titer of inhibitory proteins. The collagenolytic activity in the synovial fluids from different patients was variably inhibited by serum proteins. Two distinct collagenases were detected in some rheumatoid synovial fluids and separated by gel filtration. One, labeled “B” enzyme, with an estimated molecular weight 20,000-25,000 resembled the collagenase obtained from synovial cultures. The other, labeled “A” enzyme degraded collagen fibrils as well as collagen in solution. Disc electrophoresis on acrylamide gels and electron microscopy of segment long spacing (SLS) aggregates of reaction products of the enzymes at 27°C demonstrated that both “A” and “B” enzymes cleaved collagen molecules at a point three-quarters from the amino terminal end of the molecule. Thus collagen degradation in rheumatoid arthritis could result from the operation of these two collagenases. Images PMID:4309955

  13. HPLC-DAD Analysis and In-Vitro Property of Polyphenols Extracts from (Solanum Aethiopium) Fruits on α -Amylase, α -Glucosidase and Angiotensin - 1- Converting Enzyme Activities

    PubMed Central

    Nwanna, E. E; Ibukun, E. O; Oboh, G.; Ademosun, A. O.; Boligon, A. A.; Athayde, M.

    2014-01-01

    AIM: Garden egg (Solanum aethiopium) is an edible fruits vegetable with  different species.This study investigated characterisation and the effect of the phenolics extracts from S. aethiopium species with enzymes linked with type -2-diabetes (α-amylase and α-glucosidase) and hypertension [Angiotensin-1-converting enzyme (ACE)]. METHODS: Fresh samples of the 5 species of the garden egg namely, [Solanum gilo (PW), Solanum torvum (TWS), Solanum kumba (PGR), Solanum incanum (GSB), and Solanum indicum (WSB)] were oven-dried at 50°C and milled into flour. The aqueous extracts were prepared (1:50 w/v). The phenolic contents (total phenol and total flavonoid), vitamin C and 1,1-diphenyl–2-picrylhydrazyl (DPPH), the antioxidant activities of the extracts were evaluated. The ability of the extracts to inhibit diabetes enzymes in rat pancreas as well as the inhibition of angiotensin-1-converting (ACE) enzyme in lungs homogenates in vitro were investigated. Furthermore, the fruits polyphenols were identified and quantified using HPLC-DAD. RESULTS: The phenolic contents ranged from 2.70-3.76 mgGAE/g, while there were no significant (P>0.05) differences in their flavonoid content and ability to reduce Fe3+ to Fe2+. The vitamin C contents of the species ranged from 4.01-6.52 mg/ml. The extracts scavenged DPPH in a dose dependent manner with the IC50 values ranging from 3.23-4.20 mg/ml. Furthermore, the extracts showed strong inhibition of α-glucosidase, mild inhibition of α-amylase and strong inhibition of ACE activities. CONCLUSION: This study showed that the inhibition of the key enzymes relevant to type-2 diabetes and hypertension could be part of the mechanisms by which garden egg manage/prevent the degenerative conditions. PMID:25598760

  14. Biochemical effect of chocolate colouring and flavouring like substances on thyroid function and protein biosynthesis.

    PubMed

    el-Saadany, S S

    1991-01-01

    Synthetic chocolate colourant, flavourant and the mixture of both were administered to healthy adult male albino rats to evaluate their effect on the nucleic acids metabolism, i.e. deoxyribonucleic and ribonucleic acids (DNA and RNA), total serum protein, thyroid hormones (T4 and T3) and nuclease enzymes, i.e. cytoplasmic- and mitochondrial deoxyribonuclease and ribonuclease (DNase and RNase) in brain, liver, and kidneys. Also, the activity of the fundamental enzymes of the oxidative pentose phosphate pathway, i.e. cytoplasmic and mitochondrial glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase (G-6-PD and 6-PGD), as well as total lipids and cholesterol contents in the same organs were studied. Ingestion of the studied food additives significantly increased serum protein, RNA and T4 hormone, while, DNA and T3 hormone were insignificantly elevated. In connection with this, the hydrolytic enzymes of nucleic acids (DNase and RNase activities) were stimulated by all studied food additives and in all mentioned organs. The activity of G-6-PD and 6-PGD in both cytoplasmic and mitochondrial fractions of all studied organs were increased. The highest increase was noticed in rats fed on diets supplemented with the mixture of both colourant and flavourant followed by colourant then flavourant, respectively.

  15. Cloning and Expression of Yak Active Chymosin in Pichia pastoris

    PubMed Central

    Luo, Fan; Jiang, Wei Hua; Yang, Yuan Xiao; Li, Jiang; Jiang, Ming Feng

    2016-01-01

    Rennet, a complex of enzymes found in the stomachs of ruminants, is an important component for cheese production. In our study, we described that yak chymosin gene recombinant Pichia pastoris strain could serve as a novel source for rennet production. Yaks total RNA was extracted from the abomasum of an unweaned yak. The yak preprochymosin, prochymosin, and chymosin genes from total RNA were isolated using gene specific primers based on cattle chymosin gene sequence respectively and analyzed their expression pattern byreal time-polymerase chain reaction. The result showed that the chymosin gene expression level of the sucking yaks was 11.45 times higher than one of adult yaks and yak chymosin belongs to Bovidae family in phylogenetic analysis. To express each, the preprochymosin, prochymosin, and chymosin genes were ligated into the expression vector pPICZαA, respectively, and were expressed in Pichia pastoris X33. The results showed that all the recombinant clones of P. pastoris containing the preprochymosin, prochymosin or chymosin genes could produce the active form of recombinant chymosin into the culture supernatant. Heterologous expressed prochymosin (14.55 Soxhlet unit/mL) had the highest enzyme activity of the three expressed chymosin enzymes. Therefore, we suggest that the yak chymosin gene recombinant Pichia pastoris strain could provide an alternative source of rennet production. PMID:27004812

  16. Cloning and Expression of Yak Active Chymosin in Pichia pastoris.

    PubMed

    Luo, Fan; Jiang, Wei Hua; Yang, Yuan Xiao; Li, Jiang; Jiang, Ming Feng

    2016-09-01

    Rennet, a complex of enzymes found in the stomachs of ruminants, is an important component for cheese production. In our study, we described that yak chymosin gene recombinant Pichia pastoris strain could serve as a novel source for rennet production. Yaks total RNA was extracted from the abomasum of an unweaned yak. The yak preprochymosin, prochymosin, and chymosin genes from total RNA were isolated using gene specific primers based on cattle chymosin gene sequence respectively and analyzed their expression pattern byreal time-polymerase chain reaction. The result showed that the chymosin gene expression level of the sucking yaks was 11.45 times higher than one of adult yaks and yak chymosin belongs to Bovidae family in phylogenetic analysis. To express each, the preprochymosin, prochymosin, and chymosin genes were ligated into the expression vector pPICZαA, respectively, and were expressed in Pichia pastoris X33. The results showed that all the recombinant clones of P. pastoris containing the preprochymosin, prochymosin or chymosin genes could produce the active form of recombinant chymosin into the culture supernatant. Heterologous expressed prochymosin (14.55 Soxhlet unit/mL) had the highest enzyme activity of the three expressed chymosin enzymes. Therefore, we suggest that the yak chymosin gene recombinant Pichia pastoris strain could provide an alternative source of rennet production.

  17. Changes of reduced glutathion, glutathion reductase, and glutathione peroxidase after radiation in guinea pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erden, M.; Bor, N.M.

    1984-04-01

    In this series of experiments the protective action of reduced glutathion due to ionizing radiation has been studied. In the experimental group 18 guinea pigs were exposed to successive radiations of 150 rad 3 or 4 days apart. Total dose given amounted to 750 rad which is the LD50 for guinea pigs. Blood samples were taken 30 min after each exposure. The control series were sham radiated but otherwise treated identically. The cells of the removed blood samples were separated by centrifugation and were subjected to the reduced glutathion stability test. GSSGR, GPer, and LDH enzyme activities were also measuredmore » of which the latter served as a marked enzyme. It was found that LDH did not show any alteration after radiation. The reduced glutathion stability test showed a consistent but minor reduction (P greater than 0.05), in the experimental group. GSSGR enzyme activity on the other hand was reduced significantly (from 176.48 +/- 11.32 to 41.34 +/- 1.17 IU/ml of packed erythrocytes, P less than 0.001) in the same group. GPer activity showed a consistent but minor elevation during the early phase of the experimental group. It was later increased significantly beginning after 600 rad total radiation on the fourth session (P less than 0.050).« less

  18. Rat oesophageal cytochrome P450 (CYP) monooxygenase system: comparison to the liver and relevance in N-nitrosodiethylamine carcinogenesis.

    PubMed

    Pinto, L F; Moraes, E; Albano, R M; Silva, M C; Godoy, W; Glisovic, T; Lang, M A

    2001-11-01

    N-nitrosodiethylamine (NDEA) is able to induce tumours in the rat oesophagus. It has been suggested that this could be due to tissue specific expression of NDEA activating cytochrome P450 enzymes. We investigated this by characterizing the oesophageal monooxygenase complex of male Wistar rats and comparing it with that of the liver. Total amount of cytochrome P450, NADPH P450 reductase, cytochrome b5 and cytochrome b5 reductase of the oesophageal mucosa was approximately 7% of what was found in the liver. In addition, major differences were found in the cytochrome P450 isoenzyme composition between these organs: CYP 2B1/2B2 and CYP3A were found only in the liver, whereas CYP1A1 was constitutively expressed only in the oesophagus. Of the two well-known nitrosamine metabolizing enzymes, CYP2A3 was found only in the oesophagus whereas CYP2E1 was exclusively expressed in the liver. Catalytic studies, western blotting and RT-PCR analyses confirmed the expression of CYP2A3 in the oesophagus. CYP2A enzymes are known to be good catalysts of NDEA metabolism. Oesophageal microsomes had a K(m) for NDEA metabolism, which was about one-third of that of hepatic microsomes, but they showed similar activities when compared per nmol of total P450. NDEA activity in the oesophagus was significantly increased by coumarin (CO), which also induced oesophageal CYP2A3. Immunoinhibition of the microsomal NDEA activity showed that up to 70% of this reaction is catalysed by CYP2A3 in the oesophagus, whereas no inhibition of the hepatic NDEA activity could be achieved by the anti-CYP2A5 antibody. NDEA, but not N-nitrosodimethylamine (NDMA) inhibited the oesophageal metabolism of CO. The results of the present investigation show major differences in the enzyme composition of the oesophageal and hepatic monooxygenase complexes, and are in accordance with the hypothesis that the NDEA organotropism could, to a large extent, be due to the tissue specific expression of the activating enzymes.

  19. Effects of Sublethal Exposure to a Glyphosate-Based Herbicide Formulation on Metabolic Activities of Different Xenobiotic-Metabolizing Enzymes in Rats.

    PubMed

    Larsen, Karen; Najle, Roberto; Lifschitz, Adrián; Maté, María L; Lanusse, Carlos; Virkel, Guillermo L

    2014-07-01

    The activities of different xenobiotic-metabolizing enzymes in liver subcellular fractions from Wistar rats exposed to a glyphosate (GLP)-based herbicide (Roundup full II) were evaluated in this work. Exposure to the herbicide triggered protective mechanisms against oxidative stress (increased glutathione peroxidase activity and total glutathione levels). Liver microsomes from both male and female rats exposed to the herbicide had lower (45%-54%, P < 0.01) hepatic cytochrome P450 (CYP) levels compared to their respective control animals. In female rats, the hepatic 7-ethoxycoumarin O-deethylase (a general CYP-dependent enzyme activity) was 57% higher (P < 0.05) in herbicide-exposed compared to control animals. Conversely, this enzyme activity was 58% lower (P < 0.05) in male rats receiving the herbicide. Lower (P < 0.05) 7-ethoxyresorufin O-deethlyase (EROD, CYP1A1/2 dependent) and oleandomycin triacetate (TAO) N-demethylase (CYP3A dependent) enzyme activities were observed in liver microsomes from exposed male rats. Conversely, in females receiving the herbicide, EROD increased (123%-168%, P < 0.05), whereas TAO N-demethylase did not change. A higher (158%-179%, P < 0.01) benzyloxyresorufin O-debenzylase (a CYP2B-dependent enzyme activity) activity was only observed in herbicide-exposed female rats. In herbicide-exposed rats, the hepatic S-oxidation of methimazole (flavin monooxygenase dependent) was 49% to 62% lower (P < 0.001), whereas the carbonyl reduction of menadione (a cytosolic carbonyl reductase-dependent activity) was higher (P < 0.05). Exposure to the herbicide had no effects on enzymatic activities dependent on carboxylesterases, glutathione transferases, and uridinediphospho-glucuronosyltransferases. This research demonstrated certain biochemical modifications after exposure to a GLP-based herbicide. Such modifications may affect the metabolic fate of different endobiotic and xenobiotic substances. The pharmacotoxicological significance of these findings remains to be clarified. © The Author(s) 2014.

  20. Comprehensive characterization of non-cellulosic recalcitrant cell wall carbohydrates in unhydrolyzed solids from AFEX-pretreated corn stover.

    PubMed

    Gunawan, Christa; Xue, Saisi; Pattathil, Sivakumar; da Costa Sousa, Leonardo; Dale, Bruce E; Balan, Venkatesh

    2017-01-01

    Inefficient carbohydrate conversion has been an unsolved problem for various lignocellulosic biomass pretreatment technologies, including AFEX, dilute acid, and ionic liquid pretreatments. Previous work has shown 22% of total carbohydrates are typically unconverted, remaining as soluble or insoluble oligomers after hydrolysis (72 h) with excess commercial enzyme loading (20 mg enzymes/g biomass). Nearly one third (7 out of 22%) of these total unconverted carbohydrates are present in unhydrolyzed solid (UHS) residues. The presence of these unconverted carbohydrates leads to a considerable sugar yield loss, which negatively impacts the overall economics of the biorefinery. Current commercial enzyme cocktails are not effective to digest specific cross-linkages in plant cell wall glycans, especially some of those present in hemicelluloses and pectins. Thus, obtaining information about the most recalcitrant non-cellulosic glycan cross-linkages becomes a key study to rationally improve commercial enzyme cocktails, by supplementing the required enzyme activities for hydrolyzing those unconverted glycans. In this work, cell wall glycans that could not be enzymatically converted to monomeric sugars from AFEX-pretreated corn stover (CS) were characterized using compositional analysis and glycome profiling tools. The pretreated CS was hydrolyzed using commercial enzyme mixtures comprising cellulase and hemicellulase at 7% glucan loading (~20% solid loading). The carbohydrates present in UHS and liquid hydrolysate were evaluated over a time period of 168 h enzymatic hydrolysis. Cell wall glycan-specific monoclonal antibodies (mAbs) were used to characterize the type and abundance of non-cellulosic polysaccharides present in UHS over the course of enzymatic hydrolysis. 4- O -methyl-d-glucuronic acid-substituted xylan and pectic-arabinogalactan were found to be the most abundant epitopes recognized by mAbs in UHS and liquid hydrolysate, suggesting that the commercial enzyme cocktails used in this work are unable to effectively target those substituted polysaccharide residues. To our knowledge, this is the first report using glycome profiling as a tool to dynamically monitor recalcitrant cell wall carbohydrates during the course of enzymatic hydrolysis. Glycome profiling of UHS and liquid hydrolysates unveiled some of the glycans that are not cleaved and enriched after enzyme hydrolysis. The major polysaccharides include 4- O -methyl-d-glucuronic acid-substituted xylan and pectic-arabinogalactan, suggesting that enzymes with glucuronidase and arabinofuranosidase activities are required to maximize monomeric sugar yields. This methodology provides a rapid tool to assist in developing new enzyme cocktails, by supplementing the existing cocktails with the required enzyme activities for achieving complete deconstruction of pretreated biomass in the future.

  1. Determination of some enzymes and macro- and microelements in stallion seminal plasma and their correlations to semen quality.

    PubMed

    Pesch, Sandra; Bergmann, Martin; Bostedt, Hartwig

    2006-07-15

    Seminal plasma is very important for sperm metabolism as well as sperm function and survival and transport in the female genital tract. Analysis of enzyme activities and concentrations of elements can estimate integrity and function of sperm cell membranes. In man much data are available about biochemical analyses of seminal plasma. However, not many studies have been conducted in horses yet. We collected ejaculates from 72 stallions, measured the volume, obtained seminal plasma by centrifugation and examined spermatozoa with light microscopy for motility, concentration, for dead sperm and morphology. Of seminal plasma fluid, we measured activities of aspartate-amino-transferase (AST), gamma-glutamyl-transferase (GGT), alkaline phosphatase (AlP), acid phosphatase (AcP) and lactate-dehydrogenase (LDH) as well as concentrations of sodium (Na(+)), potassium (K(+)), total and ionised calcium (Ca(TOTAL)/Ca(2+)), magnesium (Mg(2+)), phosphate (P), chloride (Cl), copper (Cu), iron (Fe) and zinc (Zn). In addition, correlations among different parameters in light microscopy and seminal plasma were statistically examined by using the Spearman rank correlation coefficient. Median enzyme activities for AST, GGT, AlP, AcP and LDH were 80.0, 7,500, 30,200, 20.0, 81.0 IU/L, respectively. Concentrations of Na(+), K(+), Ca(TOTAL), Ca(2+), Mg(2+), P, Cl were 110.5, 22.1, 2.9, 1.7, 3.1, 1.1 and 114.5 mmol/L, and of microelements Cu, Fe and Zn were 17.8, 1.9 and 13.2 micromol/L, respectively. Furthermore, we found significant correlations between semen volume as well as sperm concentration and AST, GGT, AlP, AcP and LDH as well as Fe and Zn. This made us propose a primary testicular and epididymal origin of these parameters. Significant correlation between GGT and motility may be a sign for its function for cell protection against free radicals. LDH activity significantly correlates with motility and progressive motility, live:dead-ratio and pathomorphology. In our study, LDH seems to be the most predictive enzyme for semen quality. This is the first report about GGT, AcP and LDH activities as well as iron in equine seminal plasma.

  2. Complementary DNA cloning, functional expression and characterization of a novel cytochrome P450, CYP2D50, from equine liver.

    PubMed

    DiMaio Knych, H K; Stanley, S D

    2008-10-01

    Members of the CYP2D family constitute only about 2-4% of total hepatic CYP450s, however, they are responsible for the metabolism of 20-25% of commonly prescribed therapeutic compounds. CYP2D enzymes have been identified in a number of different species. However, vast differences in the metabolic activity of these enzymes have been well documented. In the horse, the presence of a member of the CYP2D family has been suggested from studies with equine liver microsomes, however its presence has not been definitively proven. In this study a cDNA encoding a novel CYP2D enzyme (CYP2D50) was cloned from equine liver and expressed in a baculovirus expression system. The nucleotide sequence of CYP2D50 was highly homologous to that of human CYP2D6 and therefore the activity of the enzyme was characterized using dextromethorphan and debrisoquine, two isoform selective substrates for the human orthologue. CYP2D50 displayed optimal catalytic activity with dextromethorphan using molar ratios of CYP2D50 to NADPH CYP450 reductase of 1:15. Although CYP2D50 and CYP2D6 shared significant sequence homology, there were striking differences in the catalytic activity between the two enzymes. CYP2D50 dextromethorphan-O-demethylase activity was nearly 180-fold slower than the human counterpart, CYP2D6. Similarly, rates of formation of 4-hydroxydebrisoquine activity were 50-fold slower for CYP2D50 compared to CYP2D6. The results of this study demonstrate substantial interspecies variability in metabolism of substrates by CYP2D orthologues in the horse and human and support the need to fully characterize this enzyme system in equids.

  3. Effects of microcystins contamination on soil enzyme activities and microbial community in two typical lakeside soils.

    PubMed

    Cao, Qing; Steinman, Alan D; Su, Xiaomei; Xie, Liqiang

    2017-12-01

    A 30-day indoor incubation experiment was conducted to investigate the effects of different concentrations of microcystin (1, 10, 100 and 1000 μg eq. MC-LR L -1 ) on soil enzyme activity, soil respiration, physiological profiles, potential nitrification, and microbial abundance (total bacteria, total fungi, ammonia-oxidizing bacteria and archaea) in two lakeside soils in China (Soil A from the lakeside of Lake Poyanghu at Jiujiang; Soil B from the lakeside of Lake Taihu at Suzhou). Of the enzymes tested, only phenol oxidase activity was negatively affected by microcystin application. In contrast, dehydrogenase activity was stimulated in the 1000 μg treatment, and a stimulatory effect also occurred with soil respiration in contaminated soil. The metabolic profiles of the microbial communities indicated that overall carbon metabolic activity in the soils treated with high microcystin concentrations was inhibited, and high concentrations of microcystin also led to different patterns of potential carbon utilization. High microcystin concentrations (100, 1000 μg eq. MC-LR L -1 in Soil A; 10, 100 1000 μg eq. MC-LR L -1 in Soil B) significantly decreased soil potential nitrification rate. Furthermore, the decrease in soil potential nitrification rate was positively correlated with the decrease of the amoA gene abundance, which corresponds to the ammonia-oxidizing bacterial community. We conclude that application of microcystin-enriched irrigation water can significantly impact soil microbial community structure and function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading.

    PubMed

    Chen, Bo; Pernodet, Nadine; Rafailovich, Miriam H; Bakhtina, Asya; Gross, Richard A

    2008-12-02

    A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity.

  5. Optimization of liquid-state fermentation conditions for the glyphosate degradation enzyme production of strain Aspergillus oryzae by ultraviolet mutagenesis.

    PubMed

    Fu, Gui-Ming; Li, Ru-Yi; Li, Kai-Min; Hu, Ming; Yuan, Xiao-Qiang; Li, Bin; Wang, Feng-Xue; Liu, Cheng-Mei; Wan, Yin

    2016-11-16

    This study aimed to obtain strains with high glyphosate-degrading ability and improve the ability of glyphosate degradation enzyme by the optimization of fermentation conditions. Spore from Aspergillus oryzae A-F02 was subjected to ultraviolet mutagenesis. Single-factor experiment and response surface methodology were used to optimize glyphosate degradation enzyme production from mutant strain by liquid-state fermentation. Four mutant strains were obtained and named as FUJX 001, FUJX 002, FUJX 003, and FUJX 004, in which FUJX 001 gave the highest total enzyme activity. Starch concentration at 0.56%, GP concentration at 1,370 mg/l, initial pH at 6.8, and temperature at 30°C were the optimum conditions for the improved glyphosate degradation endoenzyme production of A. oryzae FUJX 001. Under these conditions, the experimental endoenzyme activity was 784.15 U/100 ml fermentation liquor. The result (784.15 U/100 ml fermentation liquor) was approximately 14-fold higher than that of the original strain. The result highlights the potential of glyphosate degradation enzyme to degrade glyphosate.

  6. Optimization of Growth Conditions for Purification and Production of L-Asparaginase by Spirulina maxima

    PubMed Central

    El Baroty, Gamal S.

    2016-01-01

    L-asparaginase (L-AsnA) is widely distributed among microorganisms and has important applications in medicine and in food technology sectors. Therefore, the ability of the production, purification, and characterization of AsnA from Spirulina maxima (SM) were tested. SM cultures grown in Zarrouk medium containing different N2 (in NaNO3 form) concentrations (1.25, 2.50, and 5.0 g/L) for 18 days contained a significant various quantity of dry biomass yields and AsnA enzyme levels. MS L-AsnA activity was found to be directly proportional to the N2 concentration. The cultures of SM at large scales (300 L medium, 5 g/L N2) showed a high AsnA enzyme activity (898 IU), total protein (405 mg/g), specific enzyme activity (2.21 IU/mg protein), and enzyme yield (51.28 IU/L) compared with those in low N2 cultures. The partial purification of crude MS AsnA enzyme achieved by 80% ammonium sulfate AS precipitated and CM-Sephadex C-200 gel filtration led to increases in the purification of enzyme with 5.28 and 10.91 times as great as that in SM crude enzymes. Optimum pH and temperature of purified AsnA for the hydrolyzate were 8.5 and 37 ± 0.2°C, respectively. To the best of our knowledge, this is the first report on L-asparaginase production in S. maxima. PMID:27525017

  7. The effectiveness of crude papain enzyme supplement for tilapia’s (Oreochromis niloticus) growth at the floating nets of Cirata Reservoir

    NASA Astrophysics Data System (ADS)

    Rostika, R.; Sunarto; Sugiyanto, H. N.; Dewanti, L. P.

    2018-03-01

    Papain is an enzyme capable of hydrolyzing protease into a more simple elements i.e. the peptide to amino acids. The enzyme in the feed can increase the absorption of protein and digestion rate in the digestive tract of fish. This research examined the effective level of enzyme papain to increase the Feed Utilization Efficiency (FUE), Protein Efficiency Ratio (PER) and Average Daily Gain (ADG). This research used Completely Randomized Design (CRD) with five treatments i.e. treatment A (control), treatment B (1.5 %), treatment C (2.25 %), treatment D (3 %) and treatment E (3.75 %) in triplicate. Tilapia (Oreochromis niloticus) with the average initial weight of 17 g, and initial total lenght of 8–10 cm was fed three times daily at feeding rate of 5 % of the total body weight. The results showed that supplementation of papain in the feed significantly increased the activity of protease, FUE, PER and ADG. The optimal dose of the enzyme papain at 3.75 % was able to increase 48.31 % of FUE, 2.13 % of PER and 2.07 % of ADG.

  8. Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing

    PubMed Central

    2014-01-01

    Background The use of cold-active enzymes has many advantages, including reduced energy consumption and easy inactivation. The ikaite columns of SW Greenland are permanently cold (4-6°C) and alkaline (above pH 10), and the microorganisms living there and their enzymes are adapted to these conditions. Since only a small fraction of the total microbial diversity can be cultured in the laboratory, a combined approach involving functional screening of a strain collection and a metagenomic library was undertaken for discovery of novel enzymes from the ikaite columns. Results A strain collection with 322 cultured isolates was screened for enzymatic activities identifying a large number of enzyme producers, with a high re-discovery rate to previously characterized strains. A functional expression library established in Escherichia coli identified a number of novel cold-active enzymes. Both α-amylases and β-galactosidases were characterized in more detail with respect to temperature and pH profiles and one of the β-galactosidases, BGalI17E2, was able to hydrolyze lactose at 5°C. A metagenome sequence of the expression library indicated that the majority of enzymatic activities were not detected by functional expression. Phylogenetic analysis showed that different bacterial communities were targeted with the culture dependent and independent approaches and revealed the bias of multiple displacement amplification (MDA) of DNA isolated from complex microbial communities. Conclusions Many cold- and/or alkaline-active enzymes of industrial relevance were identified in the culture based approach and the majority of the enzyme-producing isolates were closely related to previously characterized strains. The function-based metagenomic approach, on the other hand, identified several enzymes (β-galactosidases, α-amylases and a phosphatase) with low homology to known sequences that were easily expressed in the production host E. coli. The β-galactosidase BGalI17E2 was able to hydrolyze lactose at low temperature, suggesting a possibly use in the dairy industry for this enzyme. The two different approaches complemented each other by targeting different microbial communities, highlighting the usefulness of combining methods for bioprospecting. Finally, we document here that ikaite columns constitute an important source of cold- and/or alkaline-active enzymes with industrial application potential. PMID:24886068

  9. Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing.

    PubMed

    Vester, Jan Kjølhede; Glaring, Mikkel Andreas; Stougaard, Peter

    2014-05-20

    The use of cold-active enzymes has many advantages, including reduced energy consumption and easy inactivation. The ikaite columns of SW Greenland are permanently cold (4-6°C) and alkaline (above pH 10), and the microorganisms living there and their enzymes are adapted to these conditions. Since only a small fraction of the total microbial diversity can be cultured in the laboratory, a combined approach involving functional screening of a strain collection and a metagenomic library was undertaken for discovery of novel enzymes from the ikaite columns. A strain collection with 322 cultured isolates was screened for enzymatic activities identifying a large number of enzyme producers, with a high re-discovery rate to previously characterized strains. A functional expression library established in Escherichia coli identified a number of novel cold-active enzymes. Both α-amylases and β-galactosidases were characterized in more detail with respect to temperature and pH profiles and one of the β-galactosidases, BGalI17E2, was able to hydrolyze lactose at 5°C. A metagenome sequence of the expression library indicated that the majority of enzymatic activities were not detected by functional expression. Phylogenetic analysis showed that different bacterial communities were targeted with the culture dependent and independent approaches and revealed the bias of multiple displacement amplification (MDA) of DNA isolated from complex microbial communities. Many cold- and/or alkaline-active enzymes of industrial relevance were identified in the culture based approach and the majority of the enzyme-producing isolates were closely related to previously characterized strains. The function-based metagenomic approach, on the other hand, identified several enzymes (β-galactosidases, α-amylases and a phosphatase) with low homology to known sequences that were easily expressed in the production host E. coli. The β-galactosidase BGalI17E2 was able to hydrolyze lactose at low temperature, suggesting a possibly use in the dairy industry for this enzyme. The two different approaches complemented each other by targeting different microbial communities, highlighting the usefulness of combining methods for bioprospecting. Finally, we document here that ikaite columns constitute an important source of cold- and/or alkaline-active enzymes with industrial application potential.

  10. Characterization of the 4,6-α-glucanotransferase GTFB enzyme of Lactobacillus reuteri 121 isolated from inclusion bodies.

    PubMed

    Bai, Yuxiang; van der Kaaij, Rachel Maria; Woortman, Albert Jan Jacob; Jin, Zhengyu; Dijkhuizen, Lubbert

    2015-06-09

    The GTFB enzyme of the probiotic bacterium Lactobacillus reuteri 121 is a 4,6-α-glucanotransferase of glycoside hydrolase family 70 (GH70; http://www.cazy.org ). Contrary to the glucansucrases in GH70, GTFB is unable to use sucrose as substrate, but instead converts malto-oligosaccharides and starch into isomalto-/malto- polymers that may find application as prebiotics and dietary fibers. The GTFB enzyme expresses well in Escherichia coli BL21 Star (DE3), but mostly accumulates in inclusion bodies (IBs) which generally contain wrongly folded protein and inactive enzyme. Denaturation followed by refolding, as well as ncIB preparation were used for isolation of active GTFB protein from inclusion bodies. Soluble, refolded and ncIB GTFB were compared using activity assays, secondary structure analysis by FT-IR, and product analyses by NMR, HPAEC and SEC. Expression of GTFB in E. coli yielded > 100 mg/l relatively pure and active but mostly insoluble GTFB protein in IBs, regardless of the expression conditions used. Following denaturing, refolding of GTFB protein was most efficient in double distilled H2O. Also, GTFB ncIBs were active, with approx. 10 % of hydrolysis activity compared to the soluble protein. When expressed as units of activity obtained per liter E. coli culture, the total amount of ncIB GTFB expressed possessed around 180 % hydrolysis activity and 100 % transferase activity compared to the amount of soluble GTFB enzyme obtained from one liter culture. The product profiles obtained for the three GTFB enzyme preparations were similar when analyzed by HPAEC and NMR. SEC investigation also showed that these 3 enzyme preparations yielded products with similar size distributions. FT-IR analysis revealed extended β-sheet formation in ncIB GTFB providing an explanation at the molecular level for reduced GTFB activity in ncIBs. The thermostability of ncIB GTFB was relatively high compared to the soluble and refolded GTFB. In view of their relatively high yield, activity and high thermostability, both refolded and ncIB GTFB derived from IBs in E. coli may find industrial application in the synthesis of modified starches.

  11. Comparative characterization of proteins secreted by Neurospora sitophila in solid-state and submerged fermentation.

    PubMed

    Li, Yanjun; Peng, Xiaowei; Chen, Hongzhang

    2013-10-01

    Although submerged fermentation (SmF) accounts for most of current enzyme industries, it has been reported that solid-state fermentation (SSF) can produce higher enzyme yields in laboratory scale. In order to understand the reasons contributing to high enzyme production in SSF, this study compared the cellulase activities and secretomes of Neurospora sitophila cultured in SSF and SmF using steam exploded wheat straw as carbon source and enzyme inducer. The total amounts of protein and biomass (glucosamine content) in SSF were respectively 30 and 2.8 times of those in SmF. The CMCase, FPA and β-glucoside activities in SSF were 53-181 times of those in SmF. Both in SSF and SmF, N. sitophila secreted the most critical cellulases and hemicellulases known for Trichoderma reesei, although a β-xylosidase was exclusively identified in SSF. Six endoglucanases were identified in N. sitophila secretion with the high CMCase activity. The non-enzyme proteins in SSF were involved in fungal mycelia growth and conidiation; while those in SmF were more related to glycometabolism and stress tolerance. This revealed that SSF more likely serves as a natural habitat for filamentous fungi to facilitate the enzyme secretion. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis.

    PubMed

    Altindag, Ozlem; Erel, Ozcan; Aksoy, Nurten; Selek, Sahabettin; Celik, Hakim; Karaoglanoglu, Mustafa

    2007-02-01

    The purpose of this study was to determine serum oxidative/antioxidative status in patients with knee osteoarthritis and its relation with prolidase activity, which plays an important role in collagen metabolism. Serum antioxidative status was evaluated by measuring total antioxidant capacity (TAC), thiol level and catalase enzyme activity in patients with osteoarthritis and in healthy controls. Serum oxidative status was evaluated by measuring total peroxide (TP) and lipid hydroperoxide. Oxidative stress index (OSI) was calculated. Prolidase enzyme activity was measured to investigate the collagen metabolism. Serum TAC, thiol level, catalase activity and prolidase activity were significantly lower in patients than in controls (P < 0.001, for all). In contrast, TP, lipid hydroperoxide and OSI values were significantly higher in patients than in controls (P < 0.001 for all). Further, prolidase activity was negatively correlated with TP and OSI, and positively correlated with TAC. The present results indicate that the oxidant parameters increased and antioxidant parameters decreased in patients with osteoarthritis; therefore, these patients may be exposed to a potent oxidative stress. Decreased collagen metabolism may be related with oxidative stress, which has a role in the ethiopathogenesis and/or in the progression of the disease.

  13. Improved Starch Digestion of Sucrase-deficient Shrews Treated With Oral Glucoamylase Enzyme Supplements.

    PubMed

    Nichols, Buford L; Avery, Stephen E; Quezada-Calvillo, Roberto; Kilani, Shadi B; Lin, Amy Hui-Mei; Burrin, Douglas G; Hodges, Benjamin E; Chacko, Shaji K; Opekun, Antone R; Hindawy, Marwa El; Hamaker, Bruce R; Oda, Sen-Ichi

    2017-08-01

    Although named because of its sucrose hydrolytic activity, this mucosal enzyme plays a leading role in starch digestion because of its maltase and glucoamylase activities. Sucrase-deficient mutant shrews, Suncus murinus, were used as a model to investigate starch digestion in patients with congenital sucrase-isomaltase deficiency.Starch digestion is much more complex than sucrose digestion. Six enzyme activities, 2 α-amylases (Amy), and 4 mucosal α-glucosidases (maltases), including maltase-glucoamylase (Mgam) and sucrase-isomaltase (Si) subunit activities, are needed to digest starch to absorbable free glucose. Amy breaks down insoluble starch to soluble dextrins; mucosal Mgam and Si can either directly digest starch to glucose or convert the post-α-amylolytic dextrins to glucose. Starch digestion is reduced because of sucrase deficiency and oral glucoamylase enzyme supplement can correct the starch maldigestion. The aim of the present study was to measure glucogenesis in suc/suc shrews after feeding of starch and improvement of glucogenesis by oral glucoamylase supplements. Sucrase mutant (suc/suc) and heterozygous (+/suc) shrews were fed with C-enriched starch diets. Glucogenesis derived from starch was measured as blood C-glucose enrichment and oral recombinant C-terminal Mgam glucoamylase (M20) was supplemented to improve starch digestion. After feedings, suc/suc and +/suc shrews had different starch digestions as shown by blood glucose enrichment and the suc/suc had lower total glucose concentrations. Oral supplements of glucoamylase increased suc/suc total blood glucose and quantitative starch digestion to glucose. Sucrase deficiency, in this model of congenital sucrase-isomaltase deficiency, reduces blood glucose response to starch feeding. Supplementing the diet with oral recombinant glucoamylase significantly improved starch digestion in the sucrase-deficient shrew.

  14. Effect of dietary Spirulina (Arthrospira) platensis on the growth performance, antioxidant enzyme activity, nutrient digestibility, cecal microflora, excreta noxious gas emission, and breast meat quality of broiler chickens.

    PubMed

    Park, J H; Lee, S I; Kim, I H

    2018-04-17

    This study examined the effects of dietary Spirulina (Arthrospira) platensis supplementation on growth performance, antioxidant enzyme activity, nutrient digestibility, cecal microflora, excreta noxious gas emission, organ weight and breast meat quality in broiler chickens. In total, 800 Ross 308 male broiler chickens (1-d-old) were randomly divided into 5 dietary treatments with 10 replicate cages (16 birds/replicate) per treatment for 5 wk. The dietary treatments were a control basal diet without Spirulina or with 0.25, 0.5, 0.75, or 1.0% Spirulina. Body weight gain, feed conversion, and/or European production efficiency index improved linearly with supplementation of Spirulina during d 8 to 21, 22 to 35, and overall d 1 to 35 (P < 0.05). Dietary Spirulina supplementation caused a significant increase in the serum enzyme activity of superoxide dismutase and glutathione peroxidase (linear, P < 0.05). Apparent total tract digestibility of dry matter and nitrogen showed a linear increase in Spirulina supplementation (P < 0.05). Cecal Lactobacillus count linearly increased and excreta ammonia gas emission linearly decreased, as dietary Spirulina supplementation increased (P < 0.05). There were no significant effects on relative organ weight and breast meat quality of broilers fed with Spirulina diets; however, 7 d drip loss linearly decreased in treatment groups fed with Spirulina (P < 0.05). These results indicate that adding Spirulina to the diet of broilers can improve antioxidant enzyme activity, dry matter and nitrogen digestibility, cecal Lactobacillus population, excreta ammonia gas emission, and 7 d drip loss of breast meat. In addition, dietary inclusion of 1.0% Spirulina powder might provide a good alternative to improve broiler chicken production.

  15. Effects of isobutyrate supplementation on ruminal microflora, rumen enzyme activities and methane emissions in Simmental steers.

    PubMed

    Wang, C; Liu, Q; Zhang, Y L; Pei, C X; Zhang, S L; Wang, Y X; Yang, W Z; Bai, Y S; Shi, Z G; Liu, X N

    2015-02-01

    The objective of this study was to evaluate the effects of isobutyrate supplementation on rumen microflora, enzyme activities and methane emissions in Simmental steers consuming a corn stover-based diet. Eight ruminally cannulated Simmental steers were used in a replicated 4 × 4 Latin square experiment. The treatments were control (without isobutyrate), low isobutyrate (LIB), moderate isobutyrate (MIB) and high isobutyrate (HIB) with 8.4, 16.8 and 25.2 g isobutyrate per steer per day respectively. Isobutyrate was hand-mixed into the concentrate portion. Diet consisted of 60% corn stover and 40% concentrate [dry matter (DM) basis]. Dry matter intake (averaged 9 kg/day) was restricted to a maximum of 90% of ad libitum intake. Population of total bacteria, cellulolytic bacteria and anaerobic fungi were linearly increased, whereas that of protozoa and total methanogens was linearly reduced with increasing isobutyrate supplementation. Real-time PCR quantification of population of Ruminococcus albus, Ruminococcus flavefaciens, Butyrivibrio fibrisolvens and Fibrobacter succinogenes was linearly increased with increasing isobutyrate supplementation. Activities of carboxymethyl cellulase, xylanase and β-glucosidase were linearly increased, whereas that of protease was linearly reduced. Methane production was linearly decreased with increasing isobutyrate supplementation. Effective degradabilities of cellulose and hemicellulose of corn stover were linearly increased, whereas that of crude protein in diet was linearly decreased with increasing isobutyrate supplementation. The present results indicate that isobutyrate supplemented improved microflora, rumen enzyme activities and methane emissions in steers. It was suggested that the isobutyrate stimulated the digestive micro-organisms or enzymes in a dose-dependent manner. In the experimental conditions of this trial, the optimum isobutyrate dose was approximately 16.8 g isobutyrate per steer per day. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  16. Hepatoprotective activity of aqueous extract of Portulaca oleracea in combination with lycopene in rats

    PubMed Central

    Anusha, M.; Venkateswarlu, M.; Prabhakaran, V.; Taj, S. Shareen; Kumari, B. Pushpa; Ranganayakulu, D.

    2011-01-01

    Objective: To investigate the hepatoprotective activity of the aqueous extract of the aerial parts of Portulaca oleracea (P. oleracea) in combination with lycopene against carbon tetrachloride induced hepatotoxicity in rats. Materials and Methods: Hepatotoxicity was induced in male Wistar rats by intraperitoneal injection of carbon tetrachloride (0.1 ml/kg b.w for 14 days). The aqueous extract of P. oleracea in combination with lycopene (50 mg/kg b.w) was administered to the experimental animals at two selected doses for 14 days. The hepatoprotective activity of the combination was evaluated by the liver function marker enzymes in the serum [aspartate transaminases (AST), alanine transaminases (ALT), alkaline phosphatase (Alk.P), total bilirubin (TB), total protein (TP) and total cholesterol (TC)], pentobarbitone induced sleeping time (PST) and histopathological studies of liver. Results: Both the treatment groups showed hepatoprotective effect against carbon tetrachloride induced hepatotoxicity by significantly restoring the levels of serum enzymes to normal which was comparable to that of silymarin group. Besides, the results obtained from PST and histopathological results also support the study. Conclusions: The oral administration of P. oleracea in combination with lycopene significantly ameliorates CCl4 hepatotoxicity in rats. PMID:22022001

  17. Isopentenyldiphosphate:dimethylallyldiphosphate isomerase: Construction of a high-level heterologous expression system for the gene from Saccharomyces cerevisiae and identification of an active-site nucleophile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Street, I.P.; Poulter, C.D.

    1990-08-14

    Isopentenyldiphosphate:dimethylallyldiphosphate isomerase (IPP isomerase) is an enzyme in isoprene metabolism which catalyzes the interconversion of the fundamental five-carbon homoallylic and allylic diphosphate building blocks for the pathway. The gene encoding IPP isomerase has recently been isolated from Saccharomyces cerevisiae. A heterologous expression system was constructed for the gene and used to overexpress IPP isomerase in Escherichia coli. In transformants carrying the expression vector, IPP isomerase activity was increased by over 100,000-fold relative to that of the untransformed host strain. The overexpressed enzyme constitutes 30-35% of the total soluble cell protein and can be purified to homogeneity in two steps. Recombinantmore » IPP isomerase was indistinguishable from that purified from yeast. 3-(Fluoromethyl)-3-butenyl diphosphate (FIPP) is a specific active-site-directed inhibitor of IPP isomerase from Claviceps purpurea. Inactivation of yeast IPP isomerase by FIPP was active-site-directed, and inhibition resulted in formation of a stoichiometric enzyme-inhibitor complex. The site of covalent attachment in the enzyme-inhibitor complex was determined by inactivating IPP isomerase with (4-{sup 3}H)FIPP, followed by digestion of the labeled enzyme with trypsin and purification of the resulting radioactive peptides by reversed-phase high-performance liquid chromatography. The primary site of attachment was Cys-139.« less

  18. A molecular dynamics study of the complete binding process of meropenem to New Delhi metallo-β-lactamase 1.

    PubMed

    Duan, Juan; Hu, Chuncai; Guo, Jiafan; Guo, Lianxian; Sun, Jia; Zhao, Zuguo

    2018-02-28

    The mechanism of substrate hydrolysis of New Delhi metallo-β-lactamase 1 (NDM-1) has been reported, but the process in which NDM-1 captures and transports the substrate into its active center remains unknown. In this study, we investigated the process of the substrate entry into the NDM-1 activity center through long unguided molecular dynamics simulations using meropenem as the substrate. A total of 550 individual simulations were performed, each of which for 200 ns, and 110 of them showed enzyme-substrate binding events. The results reveal three categories of relatively persistent and noteworthy enzyme-substrate binding configurations, which we call configurations A, B, and C. We performed binding free energy calculations of the enzyme-substrate complexes of different configurations using the molecular mechanics Poisson-Boltzmann surface area method. The role of each residue of the active site in binding the substrate was investigated using energy decomposition analysis. The simulated trajectories provide a continuous atomic-level view of the entire binding process, revealing potentially valuable regions where the enzyme and the substrate interact persistently and five possible pathways of the substrate entering into the active center, which were validated using well-tempered metadynamics. These findings provide important insights into the binding mechanism of meropenem to NDM-1, which may provide new prospects for the design of novel metallo-β-lactamase inhibitors and enzyme-resistant antibiotics.

  19. Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation.

    PubMed

    Shen, Weihang; Zhu, Nengwu; Cui, Jiaying; Wang, Huajin; Dang, Zhi; Wu, Pingxiao; Luo, Yidan; Shi, Chaohong

    2016-02-01

    A series of toxicity bioassays was conducted to monitor the ecotoxicity of soils in the different phases of bioremediation. Artificially oil-contaminated soil was inoculated with a petroleum hydrocarbon-degrading bacterial consortium containing Burkholderia cepacia GS3C, Sphingomonas GY2B and Pandoraea pnomenusa GP3B strains adapted to crude oil. Soil ecotoxicity in different phases of bioremediation was examined by monitoring total petroleum hydrocarbons, soil enzyme activities, phytotoxicity (inhibition of seed germination and plant growth), malonaldehyde content, superoxide dismutase activity and bacterial luminescence. Although the total petroleum hydrocarbon (TPH) concentration in soil was reduced by 64.4%, forty days after bioremediation, the phytotoxicity and Photobacterium phosphoreum ecotoxicity test results indicated an initial increase in ecotoxicity, suggesting the formation of intermediate metabolites characterized by high toxicity and low bioavailability during bioremediation. The ecotoxicity values are a more valid indicator for evaluating the effectiveness of bioremediation techniques compared with only using the total petroleum hydrocarbon concentrations. Among all of the potential indicators that could be used to evaluate the effectiveness of bioremediation techniques, soil enzyme activities, phytotoxicity (inhibition of plant height, shoot weight and root fresh weight), malonaldehyde content, superoxide dismutase activity and luminescence of P. phosphoreum were the most sensitive. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Manuka honey protects middle-aged rats from oxidative damage

    PubMed Central

    Jubri, Zakiah; Rahim, Noor Baitee Abdul; Aan, Goon Jo

    2013-01-01

    OBJECTIVE: This study aimed to determine the effect of manuka honey on the oxidative status of middle-aged rats. METHOD: Twenty-four male Sprague-Dawley rats were divided into young (2 months) and middle-aged (9 months) groups. They were further divided into two groups each, which were either fed with plain water (control) or supplemented with 2.5 g/kg body weight of manuka honey for 30 days. The DNA damage level was determined via the comet assay, the plasma malondialdehyde level was determined using high performance liquid chromatography, and the antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, glutathione peroxidase and catalase) were determined spectrophotometrically in the erythrocytes and liver. The antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl and ferric reducing/antioxidant power assays, and the total phenolic content of the manuka was analyzed using UV spectrophotometry and the Folin-Ciocalteu method, respectively. RESULTS: Supplementation with manuka honey reduced the level of DNA damage, the malondialdehyde level and the glutathione peroxidase activity in the liver of both the young and middle-aged groups. However, the glutathione peroxidase activity was increased in the erythrocytes of middle-aged rats given manuka honey supplementation. The catalase activity was reduced in the liver and erythrocytes of both young and middle-aged rats given supplementation. Manuka honey was found to have antioxidant activity and to have a high total phenolic content. These findings showed a strong correlation between the total phenolic content and antioxidant activity. CONCLUSIONS: Manuka honey reduces oxidative damage in young and middle-aged rats; this effect could be mediated through the modulation of its antioxidant enzyme activities and its high total phenolic content. Manuka honey can be used as an alternative supplement at an early age to improve the oxidative status. PMID:24270958

  1. Manuka honey protects middle-aged rats from oxidative damage.

    PubMed

    Jubri, Zakiah; Rahim, Noor Baitee Abdul; Aan, Goon Jo

    2013-11-01

    This study aimed to determine the effect of manuka honey on the oxidative status of middle-aged rats. Twenty-four male Sprague-Dawley rats were divided into young (2 months) and middle-aged (9 months) groups. They were further divided into two groups each, which were either fed with plain water (control) or supplemented with 2.5 g/kg body weight of manuka honey for 30 days. The DNA damage level was determined via the comet assay, the plasma malondialdehyde level was determined using high performance liquid chromatography, and the antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, glutathione peroxidase and catalase) were determined spectrophotometrically in the erythrocytes and liver. The antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl and ferric reducing/antioxidant power assays, and the total phenolic content of the manuka was analyzed using UV spectrophotometry and the Folin-Ciocalteu method, respectively. Supplementation with manuka honey reduced the level of DNA damage, the malondialdehyde level and the glutathione peroxidase activity in the liver of both the young and middle-aged groups. However, the glutathione peroxidase activity was increased in the erythrocytes of middle-aged rats given manuka honey supplementation. The catalase activity was reduced in the liver and erythrocytes of both young and middle-aged rats given supplementation. Manuka honey was found to have antioxidant activity and to have a high total phenolic content. These findings showed a strong correlation between the total phenolic content and antioxidant activity. Manuka honey reduces oxidative damage in young and middle-aged rats; this effect could be mediated through the modulation of its antioxidant enzyme activities and its high total phenolic content. Manuka honey can be used as an alternative supplement at an early age to improve the oxidative status.

  2. Some limitation in the use of the I- method for measuring the peroxidase activity from bovine thyroid gland.

    PubMed

    Salano, F; Iborra, J L; Lozano, J A

    1981-09-01

    Studied for measuring the peroxidase activity from thyroid gland have usually been achieved on the basis of the H2O2 oxidation of I- to I3- catalyzed by peroxidase. The activity assay has been found to depend on several factors such as the relative order of reagent addition, protein content of the enzyme preparation, presence of detergent and the pH of the reaction medium. At below 7.0 pH, the contribution of the non-enzymic transformation of I- to total activity became quite significant, to the extent that at below 6.5 pH, the chemical reaction predominates over the enzymic one. At values above 7.0 pH, a very rapid decomposition of the product was observed. Guaiacol oxidation has been considered to be a more reliable method than the iodide one, especially when the substrate concentration and temperature vary, and when the activity of relatively rich in protein samples, as well as of some other substances that might interfere with the I3- formation, are going to be measured.

  3. Influence of zinc on bacterial populations and their proteolytic enzyme activities in freshwater environments: a cross-site comparison.

    PubMed

    Rasmussen, Lauren; Olapade, Ola A

    2016-04-01

    Temporal responses of indigenous bacterial populations and proteolytic enzyme (i.e., aminopeptidase) activities in the bacterioplankton assemblages from 3 separate freshwater environments were examined after exposure to various zinc (Zn) concentrations under controlled microcosm conditions. Zn concentrations (ranging from 0 to 10 μmol/L) were added to water samples collected from the Kalamazoo River, Rice Creek, and Huron River and examined for bacterial abundance and aminopeptidase activities at various time intervals over a 48 h incubation period in the dark. The results showed that the Zn concentrations did not significantly influence total bacterial counts directly; however, aminopeptidase activities varied significantly to increasing zinc treatments over time. Also, analysis of variance and linear regression analyses revealed significant positive relationships between bacterial numbers and their hydrolytic enzyme activities, suggesting that both probably co-vary with increasing Zn concentrations in aquatic systems. The results from this study serve as additional evidence of the ecological role of Zn as an extracellular peptidase cofactor on the dynamics of bacterial assemblages in aquatic environments.

  4. High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Hong L.; Dai, Ziyu; Hsieh, Chia W.

    Large-scale production of effective cellulose hydrolytic enzymes is the key to the bioconversion of agricultural residues to ethanol. The goal of this study was to develop a rice plant as a bioreactor for the large-scale production of cellulose hydrolytic enzymes via genetic transformation, and to simultaneously improve rice straw as an efficient biomass feedstock for conversion of cellulose to glucose. In this study, the cellulose hydrolytic enzyme {beta}-1, 4-endoglucanase (E1) from the thermophilic bacterium Acidothermus cellulolyticus was overexpressed in rice through Agrobacterium-mediated transformation. The expression of the bacterial gene in rice was driven by the constitutive Mac promoter, a hybridmore » promoter of Ti plasmid mannopine synthetase promoter and cauliflower mosaic virus 35S promoter enhancer with the signal peptide of tobacco pathogenesis-related protein for targeting the protein to the apoplastic compartment for storage. A total of 52 transgenic rice plants from six independent lines expressing the bacterial enzyme were obtained, which expressed the gene at high levels with a normal phenotype. The specific activities of E1 in the leaves of the highest expressing transgenic rice lines were about 20 fold higher than those of various transgenic plants obtained in previous studies and the protein amounts accounted for up to 6.1% of the total leaf soluble protein. Zymogram and temperature-dependent activity analyses demonstrated the thermostability of the enzyme and its substrate specificity against cellulose, and a simple heat treatment can be used to purify the protein. In addition, hydrolysis of transgenic rice straw with cultured cow gastric fluid yielded almost twice more reducing sugars than wild type straw. Taken together, these data suggest that transgenic rice can effectively serve as a bioreactor for large-scale production of active, thermostable cellulose hydrolytic enzymes. As a feedstock, direct expression of large amount of cellulases in transgenic rice may also facilitate saccharification of cellulose in rice straw and significantly reduce the costs for hydrolytic enzymes.« less

  5. Effect of Patulin from Penicillium vulpinum on the Activity of Glutathione-S-Transferase and Selected Antioxidative Enzymes in Maize

    PubMed Central

    Ismaiel, Ahmed A.

    2017-01-01

    The mycotoxin patulin (PAT) was purified from Penicillium vulpinum CM1 culture that has been isolated from a soil cultivated with maize. The effect of PAT and of a fungal culture filtrate on the activities of glutathione-S-transferase (GST) and some antioxidant enzymes viz. ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) was investigated in roots and shoots of 8-day-old maize seedlings. PAT and culture filtrate caused significant reduction effects in a dose-related manner on the total GST activity. Upon application of the high PAT concentration (25 μg·mL−1) and of the concentrated fungal filtrate (100%, v/v), the reduction in GST activity of roots was 73.8–76.0% and of shoots was 60–61.7%. Conversely, significant increases in the activities of antioxidant enzymes were induced. Application of 25 μg·PAT·mL−1 increased APX, GR, DHAR, and MDHAR activity of root by 2.40-, 2.00-, 1.24-, and 2.16-fold, respectively. In shoots, the enzymatic activity was increased by 1.57-, 1.45-, 1.45-, and 1.61-fold, respectively. Similar induction values of the enzymatic activity were obtained upon application of the concentrated fungal filtrate. This is the first report describing the response of GST and antioxidant enzyme activities of plant cells to PAT toxicity. PMID:28737668

  6. Strawberry Polyphenols Attenuate Ethanol-Induced Gastric Lesions in Rats by Activation of Antioxidant Enzymes and Attenuation of MDA Increase

    PubMed Central

    Alvarez-Suarez, José M.; Dekanski, Dragana; Ristić, Slavica; Radonjić, Nevena V.; Petronijević, Nataša D.; Giampieri, Francesca; Astolfi, Paola; González-Paramás, Ana M.; Santos-Buelga, Celestino; Tulipani, Sara; Quiles, José L.; Mezzetti, Bruno; Battino, Maurizio

    2011-01-01

    Background and Aim Free radicals are implicated in the aetiology of gastrointestinal disorders such as gastric ulcer, colorectal cancer and inflammatory bowel disease. Strawberries are common and important fruit due to their high content of essential nutrient and beneficial phytochemicals which seem to have relevant biological activity on human health. In the present study we investigated the antioxidant and protective effects of three strawberry extracts against ethanol-induced gastric mucosa damage in an experimental in vivo model and to test whether strawberry extracts affect antioxidant enzyme activities in gastric mucosa. Methods/Principal Findings Strawberry extracts were obtained from Adria, Sveva and Alba cultivars. Total antioxidant capacity and radical scavenging capacity were performed by TEAC, ORAC and electron paramagnetic resonance assays. Identification and quantification of anthocyanins was carried out by HPLC-DAD-MS analyses. Different groups of animals received 40 mg/day/kg body weight of strawberry crude extracts for 10 days. Gastric damage was induced by ethanol. The ulcer index was calculated together with the determination of catalase and SOD activities and MDA contents. Strawberry extracts are rich in anthocyanins and present important antioxidant capacity. Ethanol caused severe gastric damage and strawberry consumption protected against its deleterious role. Antioxidant enzyme activities increased significantly after strawberry extract intake and a concomitantly decrease in gastric lipid peroxidation was found. A significant correlation between total anthocyanin content and percent of inhibition of ulcer index was also found. Conclusions Strawberry extracts prevented exogenous ethanol-induced damage to rats' gastric mucosa. These effects seem to be associated with the antioxidant activity and phenolic content in the extract as well as with the capacity of promoting the action of antioxidant enzymes. A diet rich in strawberries might exert a beneficial effect in the prevention of gastric diseases related to generation of reactive oxygen species. PMID:22016781

  7. Elevated CO2 benefits the soil microenvironment in the rhizosphere of Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils.

    PubMed

    Huang, Shuping; Jia, Xia; Zhao, Yonghua; Bai, Bo; Chang, Yafei

    2017-02-01

    Soil contamination by heavy metals in combination with elevated atmospheric CO 2 has important effects on the rhizosphere microenvironment by influencing plant growth. Here, we investigated the response of the R. pseudoacacia rhizosphere microenvironment to elevated CO 2 in combination with cadmium (Cd)- and lead (Pb)-contamination. Organic compounds (total soluble sugars, soluble phenolic acids, free amino acids, and organic acids), microbial abundance and activity, and enzyme activity (urease, dehydrogenase, invertase, and β-glucosidase) in rhizosphere soils increased significantly (p < 0.05) under elevated CO 2 relative to ambient CO 2 ; however, l-asparaginase activity decreased. Addionally, elevated CO 2 alone affected soil microbial community in the rhizosphere. Heavy metals alone resulted in an increase in total soluble sugars, free amino acids, and organic acids, a decrease in phenolic acids, microbial populations and biomass, and enzyme activity, and a change in microbial community in rhizosphere soils. Elevated CO 2 led to an increase in organic compounds, microbial populations, biomass, and activity, and enzyme activity (except for l-asparaginase), and changes in microbial community under Cd, Pb, or Cd + Pb treatments relative to ambient CO 2 . In addition, elevated CO 2 significantly (p < 0.05) enhanced the removal ratio of Cd and Pb in rhizosphere soils. Overall, elevated CO 2 benefited the rhizosphere microenvironment of R. pseudoacacia seedlings under heavy metal stress, which suggests that increased atmospheric CO 2 concentrations could have positive effects on soil fertility and rhizosphere microenvironment under heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. BIOCHEMICAL INDICATORS OF HEPATOTOXICITY IN BLOOD SERUM OF RATS UNDER THE EFFECT OF NOVEL 4-THIAZOLIDINONE DERIVATIVES AND DOXORUBICIN AND THEIR COMPLEXES WITH POLYETHYLENEGLYCOL-CONTAINING NANOSCALE POLYMERIC CARRIER.

    PubMed

    Kobylinska, L I; Havrylyuk, D Ya; Ryabtseva, A O; Mitina, N E; Zaichenko, O S; Lesyk, R B; Zimenkovsky, B S; Stoika, R S

    2015-01-01

    The aim of this study was to compare the effect of new synthetic 4-tiazolidinone derivatives (compounds 3882, 3288 and 3833) and doxorubicin (positive control) in free form and in their complexes with synthetic polyethyleneglycol-containing nanoscale polymeric carrier on the biochemical indicators of hepatotoxicity in blood serum of rats. The activity of enzymes considered as the markers of hepatotoxicity, as well as. the concentration of total protein, urea and creatinine were measured in blood serum of rats. It was found that after injection of investigated compounds the activities ofalanine aminotransferase, alkaline phosphatase and α-amylase increased in comparison to control. Doxorubicin injection was accompanied by 4-fold increase in the activity of γ-glutamyltransferase, and injection ofcompound 3833 led to 2.5-fold elevation ofthe activity of this enzyme. Complexation ofthese antineoplastic derivatives with a synthetic nanocarrier lowered the activity ofthe investigated enzymes substantially if compared to the effect of these compounds infreeform. The most evident decrease was measured for α-amylase, γ-glutamyltransferase and lactate dehydrogenase activities. The normalization of concentrations of total protein, urea and creatinine in blood serum of rats treated with complexes of the studied compounds with a polymeric carrier comparing with their introduction infreeform was also detected. Thus, the immobilization by novel polymeric carrier of anticancer drugs possessing high general toxicity in the treated organism mitigates their toxic effect, which is evident as normalization of specific biochemical indicators of the hepatodestructive effects of the anticancer drugs.

  9. [Enzymatic activity, slime production and antifungal agent sensitivity of Candida sp].

    PubMed

    Silva, Jaqueline Otero; Ferreira, Joseane Cristina; Candido, Regina Célia

    2007-01-01

    Abilith of Candida spp to secrete extracellular enzymes and slime has been associated as pathogenicity factors. Out of a total of 37 strains of Candida sp, 100% were proteinase producers, 83.8% were phospholipase producers, 64.9% were slime producers and 100% were sensitive to fluconazole and itraconazole. Seventeen typings (enzymes/slime) were found. This methodology presented a good discrimination rate (D=0.93) and could be used for phenotypic characterization of yeasts.

  10. A broad survey reveals substitution tolerance of residues ligating FeS clusters in [NiFe] hydrogenase

    PubMed Central

    2014-01-01

    Background In order to understand the effects of FeS cluster attachment in [NiFe] hydrogenase, we undertook a study to substitute all 12 amino acid positions normally ligating the three FeS clusters in the hydrogenase small subunit. Using the hydrogenase from Alteromonas macleodii “deep ecotype” as a model, we substituted one of four amino acids (Asp, His, Asn, Gln) at each of the 12 ligating positions because these amino acids are alternative coordinating residues in otherwise conserved-cysteine positions found in a broad survey of NiFe hydrogenase sequences. We also hoped to discover an enzyme with elevated hydrogen evolution activity relative to a previously reported “G1” (H230C/P285C) improved enzyme in which the medial FeS cluster Pro and the distal FeS cluster His were each substituted for Cys. Results Among all the substitutions screened, aspartic acid substitutions were generally well-tolerated, and examination suggests that the observed deficiency in enzyme activity may be largely due to misprocessing of the small subunit of the enzyme. Alignment of hydrogenase sequences from sequence databases revealed many rare substitutions; the five substitutions present in databases that we tested all exhibited measurable hydrogen evolution activity. Select substitutions were purified and tested, supporting the results of the screening assay. Analysis of these results confirms the importance of small subunit processing. Normalizing activity to quantity of mature small subunit, indicative of total enzyme maturation, weakly suggests an improvement over the “G1” enzyme. Conclusions We have comprehensively screened 48 amino acid substitutions of the hydrogenase from A. macleodii “deep ecotype”, to understand non-canonical ligations of amino acids to FeS clusters and to improve hydrogen evolution activity of this class of hydrogenase. Our studies show that non-canonical ligations can be functional and also suggests a new limiting factor in the production of active enzyme. PMID:24934472

  11. Development of digestive enzyme activity in larvae of spotted sand bass Paralabrax maculatofasciatus. 1. Biochemical analysis.

    PubMed

    Alvarez-González, C A; Moyano-López, F J; Civera-Cerecedo, R; Carrasco-Chávez, V; Ortiz-Galindo, J L; Dumas, S

    2008-12-01

    Spotted sand bass Paralabrax maculatofasciatus is a potential aquaculture species in Northwest Mexico. In the last few years it has been possible to close its life cycle and to develop larviculture technology at on pilot scale using live food, however survival values are low (11%) and improvements in growth and survival requires the study of the morpho-physiological development during the initial ontogeny. In this research digestive activity of several enzymes were evaluated in larvae, from hatching to 30 days after hatching (dah), and in live prey (rotifers and Artemia), by use of biochemical and electrophoretic techniques. This paper, is the first of two parts, and covers only the biochemical analysis. All digestive enzyme activities were detected from mouth opening; however the, maximum activities varied among different digestive enzymes. For alkaline protease and trypsin the maximum activities were detected from 12 to 18 dah. Acid protease activity was observed from day 12 onwards. The other digestive enzymes appear between days 4 and 18 after hatching, with marked fluctuations. These activities indicate the beginning of the juvenile stage and the maturation of the digestive system, in agreement with changes that occur during morpho-physiological development and food changes from rotifers to Artemia. All enzymatic activities were detected in rotifers and Artemia, and their contribution to enhancement the digestion capacity of the larvae appears to be low, but cannot be minimised. We concluded that the enzymatic equipment of P. maculatofasciatus larvae is similar to that of other marine fish species, that it becomes complete between days 12 and 18 after hatching, and that it is totally efficient up to 25 dah.

  12. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying.

    PubMed

    Popova, Antoaneta V; Rausch, Saskia; Hundertmark, Michaela; Gibon, Yves; Hincha, Dirk K

    2015-10-01

    The accumulation of Late Embryogenesis Abundant (LEA) proteins in plants is associated with tolerance against stresses such as freezing and desiccation. Two main functions have been attributed to LEA proteins: membrane stabilization and enzyme protection. We have hypothesized previously that LEA7 from Arabidopsis thaliana may stabilize membranes because it interacts with liposomes in the dry state. Here we show that LEA7, contrary to this expectation, did not stabilize liposomes during drying and rehydration. Instead, it partially preserved the activity of the enzyme lactate dehydrogenase (LDH) during drying and freezing. Fourier-transform infrared (FTIR) spectroscopy showed no evidence of aggregation of LDH in the dry or rehydrated state under conditions that lead to complete loss of activity. To approximate the complex influence of intracellular conditions on the protective effects of a LEA protein in a convenient in-vitro assay, we measured the activity of two Arabidopsis enzymes (glucose-6-P dehydrogenase and ADP-glucose pyrophosphorylase) in total soluble leaf protein extract (Arabidopsis soluble proteome, ASP) after drying and rehydration or freezing and thawing. LEA7 partially preserved the activity of both enzymes under these conditions, suggesting its role as an enzyme protectant in vivo. Further FTIR analyses indicated the partial reversibility of protein aggregation in the dry ASP during rehydration. Similarly, aggregation in the dry ASP was strongly reduced by LEA7. In addition, mixtures of LEA7 with sucrose or verbascose reduced aggregation more than the single additives, presumably through the effects of the protein on the H-bonding network of the sugar glasses. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation.

    PubMed

    Xun, Feifei; Xie, Baoming; Liu, Shasha; Guo, Changhong

    2015-01-01

    To investigate the effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on phytoremediation in saline-alkali soil contaminated by petroleum, saline-alkali soil samples were artificially mixed with different amount of oil, 5 and 10 g/kg, respectively. Pot experiments with oat plants (Avena sativa) were conducted under greenhouse condition for 60 days. Plant biomass, physiological parameters in leaves, soil enzymes, and degradation rate of total petroleum hydrocarbon were measured. The result demonstrated that petroleum inhibited the growth of the plant; however, inoculation with PGPR in combination with AMF resulted in an increase in dry weight and stem height compared with noninoculated controls. Petroleum stress increased the accumulation of malondialdehyde (MDA) and free proline and the activities of the antioxidant enzyme such as superoxide dismutase, catalase, and peroxidase. Application of PGPR and AMF augmented the activities of three enzymes compared to their respective uninoculated controls, but decreased the MDA and free proline contents, indicating that PGPR and AMF could make the plants more tolerant to harmful hydrocarbon contaminants. It also improved the soil quality by increasing the activities of soil enzyme such as urease, sucrase, and dehydrogenase. In addition, the degradation rate of total petroleum hydrocarbon during treatment with PGPR and AMF in moderately contaminated soil reached a maximum of 49.73%. Therefore, we concluded the plants treated with a combination of PGPR and AMF had a high potential to contribute to remediation of saline-alkali soil contaminated with petroleum.

  14. [Effects of long-term fertilization on enzyme activities in black soil of Northeast China].

    PubMed

    Wang, Shu-Qi; Han, Xiao-Zeng; Qiao, Yun-Fa; Wang, Shou-Yu

    2008-03-01

    In this paper, black soil samples at the depths of 0-20 cm and 20-40 cm were collected from the Hailun Agricultural Ecology Station of Chinese Academy of Sciences to study the effects of long-term fertilization on their urease, invertase, phosphatase and catalase activities and total C and N contents. The results showed that long-term application of chemical fertilizers and organic manure increased the activities of urease, invertase and phosphatase in 0-20 cm and 20-40 cm soil layers in different degree, and the combined application of them increased the activities of the three enzymes significantly, with an increment of 43.6%-113.2%, 25.9%-79.5% and 14.7%-134.4% in 0-20 cm soil layer and 56.1%-127.2%, 14.5%-113.8% and 16.2%-207.2% in 20-40 cm soil layer, respectively. However, long-term application of chemical fertilizers without organic manure had little effects on catalase activity. The activities of urease, invertase and phosphatase decreased with increasing soil depth. Long-term application of N fertilizer increased urease activity, and P fertilization had obvious positive effect on phosphatase activity. Long-term fertilization also had obvious effects on the soil total C and N contents and C/N ratio.

  15. Inactivation of muscle adenylate kinase by site-specific destruction of tyrosine 95 using potassium ferrate.

    PubMed

    Crivellone, M D; Hermodson, M; Axelrod, B

    1985-03-10

    Potassium ferrate, an analog of orthophosphate and a potent oxidizing agent, was found to irreversibly inactivate porcine muscle adenylate kinase. Inhibition was prevented by competitive inhibitors or substrates, indicating that the action of ferrate was site-specific. Inactivation was accompanied by the loss of Cys-25 and Tyr-95. P1,P5-di(adenosine 5')-pentaphosphate (10(-7) M), a powerful competitive inhibitor, gave 50% protection to the enzyme from ferrate inactivation. No loss of tyrosine or cysteine residues was observed under conditions of total protection. The degree of inactivation was proportional to the amount of Tyr-95 destroyed. However, Cys-25 was totally oxidized when only 55% inactivation had occurred. Partially inactivated enzyme exhibited a Km for ATP and AMP similar to that of the untreated enzyme. It appears that Cys-25 may be proximate to a phosphate-binding site but is not directly involved in the catalytic reaction. The results suggest that Tyr-95 is located in the vicinity of a phosphate-binding region of adenylate kinase and is essential for enzyme activity.

  16. Immobilization of Aspergillus niger xylanase on magnetic latex beads.

    PubMed

    Tyagi, R; Gupta, M N

    1995-04-01

    Xylanase from Pectinex 3XL was purified 70-fold by precipitation with an enteric polymer, Eudragit S-100. The purified xylanase was immobilized on magnetic latex beads via carbodi-imide coupling. The immobilized preparation showed 80% of the total activity bound to the beads. The pH optimum remained unchanged at 6.0 and the Km increased from 0.25 g/100 ml (free enzyme) to 0.39 g/100 ml on immobilization. Immobilization resulted in significant thermal stability at 60 degrees C. The time course of hydrolysis of xylan at 60 degrees C by free enzyme as well as immobilized enzyme was also studied.

  17. Antithrombotic Protective Effects of Arg-Pro-Gly-Pro Peptide during Emotional Stress Provoked by Forced Swimming Test in Rats.

    PubMed

    Grigor'eva, M E; Lyapina, L A

    2017-01-01

    Blood coagulation was enhanced and all factors (total, enzyme, and non-enzyme) of the fibrinolytic system were suppressed in rats in 60 min after forced swimming test. Argininecontaining tetrapeptide glyproline Arg-Pro-Gly-Pro administered prior to this test activated fibrinolysis and prevented hypercoagulation. Administration of this peptide in 5 min after swimming test also enhanced anticoagulant, fibrinolytic, and antithrombotic activity of the blood. Therefore, glyproline Arg-Pro-Gly-Pro exerted both preventive and curative effects on the hemostasis system and prevented enhancement of blood coagulation provoked by emotional stress modeled by forced swimming test.

  18. Test/QA Plan for Verification of Microcystin Test Kits

    EPA Science Inventory

    Microcystin test kits are used to quantitatively measure total microcystin in recreational waters. These test kits are based on enzyme-linked immunosorbent assays (ELISA) with antibodies that bind specifically to microcystins or phosphate activity inhibition where the phosphatas...

  19. Selenium concentrations and enzyme activities of glutathione metabolism in wild long-tailed ducks and common eiders

    USGS Publications Warehouse

    Franson, J. Christian; Hoffman, David J.; Flint, Paul L.

    2011-01-01

    The relationships of selenium (Se) concentrations in whole blood with plasma activities of total glutathione peroxidase, Se-dependent glutathione peroxidase, and glutathione reductase were studied in long-tailed ducks (Clangula hyemalis) and common eiders (Somateria mollissima) sampled along the Beaufort Sea coast of Alaska, USA. Blood Se concentrations were >8 μg/g wet weight in both species. Linear regression revealed that the activities of total and Se-dependent glutathione peroxidase were significantly related to Se concentrations only in long-tailed ducks, raising the possibility that these birds were experiencing early oxidative stress.

  20. Biochemical Characterization of the Lactobacillus reuteri Glycoside Hydrolase Family 70 GTFB Type of 4,6-α-Glucanotransferase Enzymes That Synthesize Soluble Dietary Starch Fibers.

    PubMed

    Bai, Yuxiang; van der Kaaij, Rachel Maria; Leemhuis, Hans; Pijning, Tjaard; van Leeuwen, Sander Sebastiaan; Jin, Zhengyu; Dijkhuizen, Lubbert

    2015-10-01

    4,6-α-Glucanotransferase (4,6-α-GTase) enzymes, such as GTFB and GTFW of Lactobacillus reuteri strains, constitute a new reaction specificity in glycoside hydrolase family 70 (GH70) and are novel enzymes that convert starch or starch hydrolysates into isomalto/maltopolysaccharides (IMMPs). These IMMPs still have linear chains with some α1→4 linkages but mostly (relatively long) linear chains with α1→6 linkages and are soluble dietary starch fibers. 4,6-α-GTase enzymes and their products have significant potential for industrial applications. Here we report that an N-terminal truncation (amino acids 1 to 733) strongly enhances the soluble expression level of fully active GTFB-ΔN (approximately 75-fold compared to full-length wild type GTFB) in Escherichia coli. In addition, quantitative assays based on amylose V as the substrate are described; these assays allow accurate determination of both hydrolysis (minor) activity (glucose release, reducing power) and total activity (iodine staining) and calculation of the transferase (major) activity of these 4,6-α-GTase enzymes. The data show that GTFB-ΔN is clearly less hydrolytic than GTFW, which is also supported by nuclear magnetic resonance (NMR) analysis of their final products. From these assays, the biochemical properties of GTFB-ΔN were characterized in detail, including determination of kinetic parameters and acceptor substrate specificity. The GTFB enzyme displayed high conversion yields at relatively high substrate concentrations, a promising feature for industrial application. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Loss of Complex I activity in the Escherichia coli enzyme results from truncating the C-terminus of subunit K, but not from cross-linking it to subunits N or L.

    PubMed

    Zhu, Shaotong; Canales, Alejandra; Bedair, Mai; Vik, Steven B

    2016-06-01

    Complex I is a multi-subunit enzyme of the respiratory chain with seven core subunits in its membrane arm (A, H, J, K, L, M, and N). In the enzyme from Escherichia coli the C-terminal ten amino acids of subunit K lie along the lateral helix of subunit L, and contribute to a junction of subunits K, L and N on the cytoplasmic surface. Using double cysteine mutagenesis, the cross-linking of subunit K (R99C) to either subunit L (K581C) or subunit N (T292C) was attempted. A partial yield of cross-linked product had no effect on the activity of the enzyme, or on proton translocation, suggesting that the C-terminus of subunit K has no dynamic role in function. To further elucidate the role of subunit K genetic deletions were constructed at the C-terminus. Upon the serial deletion of the last 4 residues of the C-terminus of subunit K, various results were obtained. Deletion of one amino acid had little effect on the activity of Complex I, but deletions of 2 or more amino acids led to total loss of enzyme activity and diminished levels of subunits L, M, and N in preparations of membrane vesicles. Together these results suggest that while the C-terminus of subunit K has no dynamic role in energy transduction by Complex I, it is vital for the correct assembly of the enzyme.

  2. Impact of ultraviolet radiation treatments on the physicochemical properties, antioxidants, enzyme activity and microbial load in freshly prepared hand pressed strawberry juice.

    PubMed

    Bhat, Rajeev; Stamminger, Rainer

    2015-07-01

    Freshly prepared, hand-pressed strawberry fruit juice was exposed to ultraviolet radiation (254 nm) at room temperature (25 ℃ ± 1 ℃) for 15, 30 and 60 min with 0 min serving as control. Results revealed decrease in pH, total soluble solids and titratable acidity, while colour parameters (L*, a* and b* values) and clarity of juice (% transmittance) increased significantly. All the results corresponded to exposure time to ultraviolet radiation. Bioactive compounds (total phenolics, ascorbic acid and anthocyanins) decreased along with a recorded reduction in polyphenol oxidase enzyme and 1,1-diphenyl-2-picryl hydrazyl radical scavenging activities, which were again dependent on exposure time. Results on the microbial studies showed significant reduction by 2-log cycles in aerobic plate count as well as in total yeast and mould counts. Though negative results were observed for certain parameters, this is the first time it was endeavoured to demonstrate the impact of ultraviolet radiation radiation on freshly prepared, hand-pressed strawberries juice. © The Author(s) 2014.

  3. Delayed O-methylation of l-DOPA in MB-COMT-deficient mice after oral administration of l-DOPA and carbidopa.

    PubMed

    Tammimäki, Anne; Aonurm-Helm, Anu; Männistö, Pekka T

    2018-04-01

    1. Catechol-O-methyltransferase (COMT) is involved in the O-methylation of l-DOPA, dopamine, and other catechols. The enzyme is expressed in two isoforms: soluble (S-COMT), which resides in the cytoplasm, and membrane-bound (MB-COMT), which is anchored to intracellular membranes. 2. To obtain specific information on the functions of COMT isoforms, we studied how a complete MB-COMT deficiency affects the total COMT activity in the body, peripheral l-DOPA levels, and metabolism after l-DOPA (10 mg kg -1 ) plus carbidopa (30 mg kg -1 ) administration by gastric tube in wild-type (WT) and MB-COMT-deficient mice. l-DOPA and 3-O-methyl-l-DOPA (3-OMD) levels were assayed in plasma, duodenum, and liver. 3. We showed that the selective lack of MB-COMT did not alter the total COMT activity, COMT enzyme kinetics, l-DOPA levels, or the total O-methylation of l-DOPA but delayed production of 3-OMD in plasma and peripheral tissues.

  4. Variable interaction specificity and symbiont performance in Panamanian Trachymyrmex and Sericomyrmex fungus-growing ants.

    PubMed

    De Fine Licht, Henrik H; Boomsma, Jacobus J

    2014-12-04

    Cooperative benefits of mutualistic interactions are affected by genetic variation among the interacting partners, which may have consequences for interaction-specificities across guilds of sympatric species with similar mutualistic life histories. The gardens of fungus-growing (attine) ants produce carbohydrate active enzymes that degrade plant material collected by the ants and offer them food in exchange. The spectrum of these enzyme activities is an important symbiont service to the host but may vary among cultivar genotypes. The sympatric occurrence of several Trachymyrmex and Sericomyrmex higher attine ants in Gamboa, Panama provided the opportunity to do a quantitative study of species-level interaction-specificity. We genotyped the ants for Cytochrome Oxidase and their Leucoagaricus fungal cultivars for ITS rDNA. Combined with activity measurements for 12 carbohydrate active enzymes, these data allowed us to test whether garden enzyme activity was affected by fungal strain, farming ants or combinations of the two. We detected two cryptic ant species, raising ant species number from four to six, and we show that the 38 sampled colonies reared a total of seven fungal haplotypes that were different enough to represent separate Leucoagaricus species. The Sericomyrmex species and one of the Trachymyrmex species reared the same fungal cultivar in all sampled colonies, but the remaining four Trachymyrmex species largely shared the other cultivars. Fungal enzyme activity spectra were significantly affected by both cultivar species and farming ant species, and more so for certain ant-cultivar combinations than others. However, relative changes in activity of single enzymes only depended on cultivar genotype and not on the ant species farming a cultivar. Ant cultivar symbiont-specificity varied from almost full symbiont sharing to one-to-one specialization, suggesting that trade-offs between enzyme activity spectra and life-history traits such as desiccation tolerance, disease susceptibility and temperature sensitivity may apply in some combinations but not in others. We hypothesize that this may be related to ecological specialization in general, but this awaits further testing. Our finding of both cryptic ant species and extensive cultivar diversity underlines the importance of identifying all species-level variation before embarking on estimates of interaction specificity.

  5. Phenolic Extracts from Clerodendrum volubile Leaves Inhibit Cholinergic and Monoaminergic Enzymes Relevant to the Management of Some Neurodegenerative Diseases.

    PubMed

    Oboh, Ganiyu; Ogunruku, Omodesola O; Oyeleye, Sunday I; Olasehinde, Tosin A; Ademosun, Ayokunle O; Boligon, Aline Augusti

    2017-05-04

    This study investigated the inhibitory effects of phenolic-rich extracts from Clerodendrum volubile leaves on cholinergic [acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)] and monoaminergic [monoamine oxidase (MAO)] enzymes' activities and pro-oxidants [Fe 2+ and quinolinic acid-(QA)] induced lipid peroxidation in rats brain homogenates in vitro. Free phenolic extracts (FPE) and bound phenolic extracts (BPE) were obtained via solvent extraction, and the total phenol and flavonoid contents were evaluated. The phenolic constituents of the extracts were also determined using high performance liquid chromatography coupled with diode array detector (HPLC-DAD). Our findings revealed that FPE had higher AChE (2.06 μg/mL), BChE (2.79 μg/mL), and MAO (2.81 μg/mL) inhibitory effects than BPE [AChE, 2.80 μg/mL; BChE, 3.40 μg/mL; MAO, 3.39 μg/mL]. Furthermore, FPE also had significantly (P < 0.05) higher inhibitory effects on Fe 2+ and QA-induced lipid peroxidation compared to BPE. FPE (162.61 mg GAE/g) had higher total phenol content than BPE. However, BPE (18.65 mg QE/g) had significantly higher total flavonoid content than FPE (13.32 mg QE/g). Phenolic acids (such as gallic acid, catechin, chlorogenic, caffeic, ellagic, p-Coumaric acids) and flavonoids (catechins, rutin and quercetin) were present in both extracts. This study revealed that the enzymes' inhibitory activities and antioxidant potentials of phenolic-rich extracts from C. volubile could be part of the mechanism of actions behind its use for memory/cognitive function as obtained in folklore. However, FPE exhibited significantly higher enzymes, inhibitory and antioxidant potentials than BPE.

  6. Phosphatidylserine metabolism modification precedes manganese-induced apoptosis and phosphatidylserine exposure in PC12 cells.

    PubMed

    Ferrara, G; Gambelunghe, A; Mozzi, R; Marchetti, M C; Migliorati, G; Muzi, G; Buratta, S

    2013-12-01

    Long-term exposure to high manganese (Mn) levels can lead to Parkinson-like neurological disorders. Molecular mechanisms underlying Mn cytotoxicity have been not defined. It is known that Mn induces apoptosis in PC12 cells and that this involves the activation of some signal transduction pathways. Although the role of phospholipids in apoptosis and signal transduction is well-known, the membrane phospholipid component in Mn-related damage has not yet been investigated. Phosphatidylserine (PS) facilitates protein translocation from cytosol to plasma membrane and PS exposure on the cell surface allows macrophage recognition of apoptotic cells. This study investigates the effects of MnCl2 on PS metabolism in PC12 cells, relating them to those on cell apoptosis. Apoptosis induction decreased PS radioactivity of PC12 cells incubated with radioactive serine. MnCl2 reduced PS radioactivity even under conditions that did not affect cell viability or PS exposure, suggesting that the effects on PS metabolism may represent an early event in cell apoptosis. Thus the latter conditions that also induced a greater PS decarboxylation were utilized for further investigating on the effects on PS synthesis, by measuring the activity and expression of PS-synthesizing enzymes, in cell lysates and in total cellular membranes (TM). Compared with corresponding controls, enzyme activity of MnCl2-treated cells was lower in cell lysates and greater in TM. Evaluating the expression of two isoforms of PS-synthesizing enzyme (PSS), PSSII was increased both in cell lysate and TM, while PSSI was unchanged. MnCl2 addition to control cell lysate reduced enzyme activity. These results suggest Mn plays a dual role on PS synthesis. Once inside the cell, Mn inhibits the enzyme/s, thus accounting for reduced PS synthesis in lysates and intact cells. On the other hand, it increases PSSII expression in cell membranes. The possibility that this occurs to counteract the direct effects of Mn ions on enzyme activity cannot be excluded. The effects on membrane enzyme activity and expression may also participate to PS exposure, observed at longer periods of treatment, by increasing membrane PS content. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Metabolism of d-Arabinose: Origin of a d-Ribulokinase Activity in Escherichia coli1

    PubMed Central

    LeBlanc, Donald J.; Mortlock, Robert P.

    1971-01-01

    The kinase responsible for the phosphorylation of d-ribulose was purified 45.5-fold from a strain of Escherichia coli K-12 capable of growth on d-arabinose with no separation of d-ribulo- or l-fuculokinase activities. Throughout the purification, the ratios of activities remained essentially constant. A nonadditive effect of combining both substrates in an assay mixture; identical Km values for adenosine triphosphate with either l-fuculose or d-ribulose as substrate; and, the irreversible loss of activity on both substrates, after removal of magnesium ions from the enzyme preparation, suggest that the dual activity is due to the same enzyme. A fourfold greater affinity of the enzyme for l-fuculose than for d-ribulose, as well as a higher relative activity on l-fuculose, suggest that the natural substrate for this enzyme is l-fuculose. The product of the purified enzyme, with d-ribulose as substrate, was prepared. The ratio of total phosphorous to ribulose phosphate was 1.01:1, indicating that the product was ribulose monophosphate. The behavior of the kinase product in the cysteine-carbazole and orcinol reactions, as well as the results of periodate oxidation assays, provided evidence that it was not d-ribulose-5-phosphate. Reaction of this compound with a cell-free extract of E. coli possessing l-fuculose-l-phosphate aldolase activity resulted in the production of dihydroxyacetone phosphate and glycolaldehyde. The kinase product failed to reduce 2,3,5-triphenyltetrazolium and possessed a half-life of approximately 1.5 min in the presence of 1 n HCl at 100 C. These properties suggested that the phosphate group was attached to carbon atom 1 of d-ribulose. PMID:4323967

  8. Protein arginine deiminase 2 binds calcium in an ordered fashion: Implications for inhibitor design

    DOE PAGES

    Slade, Daniel J.; Fang, Pengfei; Dreyton, Christina J.; ...

    2015-01-26

    Protein arginine deiminases (PADs) are calcium-dependent histone-modifying enzymes whose activity is dysregulated in inflammatory diseases and cancer. PAD2 functions as an Estrogen Receptor (ER) coactivator in breast cancer cells via the citrullination of histone tail arginine residues at ER binding sites. Although an attractive therapeutic target, the mechanisms that regulate PAD2 activity are largely unknown, especially the detailed role of how calcium facilitates enzyme activation. To gain insights into these regulatory processes, we determined the first structures of PAD2 (27 in total), and through calcium-titrations by X-ray crystallography, determined the order of binding and affinity for the six calcium ionsmore » that bind and activate this enzyme. These structures also identified several PAD2 regulatory elements, including a calcium switch that controls proper positioning of the catalytic cysteine residue, and a novel active site shielding mechanism. Additional biochemical and mass-spectrometry-based hydrogen/deuterium exchange studies support these structural findings. The identification of multiple intermediate calcium-bound structures along the PAD2 activation pathway provides critical insights that will aid the development of allosteric inhibitors targeting the PADs.« less

  9. Protein Arginine Deiminase 2 Binds Calcium in an Ordered Fashion: Implications for Inhibitor Design

    PubMed Central

    2015-01-01

    Protein arginine deiminases (PADs) are calcium-dependent histone-modifying enzymes whose activity is dysregulated in inflammatory diseases and cancer. PAD2 functions as an Estrogen Receptor (ER) coactivator in breast cancer cells via the citrullination of histone tail arginine residues at ER binding sites. Although an attractive therapeutic target, the mechanisms that regulate PAD2 activity are largely unknown, especially the detailed role of how calcium facilitates enzyme activation. To gain insights into these regulatory processes, we determined the first structures of PAD2 (27 in total), and through calcium-titrations by X-ray crystallography, determined the order of binding and affinity for the six calcium ions that bind and activate this enzyme. These structures also identified several PAD2 regulatory elements, including a calcium switch that controls proper positioning of the catalytic cysteine residue, and a novel active site shielding mechanism. Additional biochemical and mass-spectrometry-based hydrogen/deuterium exchange studies support these structural findings. The identification of multiple intermediate calcium-bound structures along the PAD2 activation pathway provides critical insights that will aid the development of allosteric inhibitors targeting the PADs. PMID:25621824

  10. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content.

    PubMed

    Lee, Do Kyung; Jang, Seok; Baek, Eun Hye; Kim, Mi Jin; Lee, Kyung Soon; Shin, Hea Soon; Chung, Myung Jun; Kim, Jin Eung; Lee, Kang Oh; Ha, Nam Joo

    2009-06-11

    Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. In vitro culture experiments were performed to evaluate the ability of Bifidobacterium spp. isolated from healthy Koreans (20 approximately 30 years old) to reduce cholesterol-levels in MRS broth containing polyoxyethanylcholesterol sebacate. Animal experiments were performed to investigate the effects on lowering cholesterol, inhibiting harmful enzyme activities, and controlling fecal water content. For animal studies, 0.2 ml of the selected strain cultures (108 approximately 109 CFU/ml) were orally administered to SD rats (fed a high-cholesterol diet) every day for 2 weeks. B. longum SPM1207 reduced serum total cholesterol and LDL levels significantly (p < 0.05), and slightly increased serum HDL. B. longum SPM1207 also increased fecal LAB levels and fecal water content, and reduced body weight and harmful intestinal enzyme activities. Daily consumption of B. longum SPM1207 can help in managing mild to moderate hypercholesterolemia, with potential to improve human health by helping to prevent colon cancer and constipation.

  11. Agarolytic culturable bacteria associated with three antarctic subtidal macroalgae.

    PubMed

    Sánchez Hinojosa, Verónica; Asenjo, Joel; Leiva, Sergio

    2018-05-21

    Bacterial communities of Antarctic marine macroalgae remain largely underexplored in terms of diversity and biotechnological applications. In this study, three Antarctic subtidal macroalgae (Himantothallus grandifolius, Pantoneura plocamioides and Plocamium cartilagineum), two of them endemic of Antarctica, were investigated as a source for isolation of agar-degrading bacteria. A total of 21 epiphytic isolates showed agarolytic activity at low temperature on agar plates containing agar as the sole carbon source. 16S rRNA identification showed that the agar-degrading bacteria belonged to the genera Cellulophaga, Colwellia, Lacinutrix, Olleya, Paraglaciecola, Pseudoalteromonas and Winogradskyella. The agarase enzyme from a potential new species of the genus Olleya was selected for further purification. The enzyme was purified from the culture supernatant of Olleya sp. HG G5.3 by ammonium sulfate precipitation and ion-exchange chromatography. Molecular weight of the agarase was estimated to be 38 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The purified enzyme exhibited activity at 4 °C, retaining > 50% of its maximum activity at this temperature. This is the first study reporting the phylogeny of agar-degrading bacteria isolated from Antarctic subtidal macroalgae and the results suggest the huge potential of Antarctic algae-associated bacteria as a source of cold-active hydrolytic enzymes of biotechnological interest.

  12. Heterologous Acidothermus cellulolyticus 1,4-β-Endoglucanase E1 Produced Within the Corn Biomass Converts Corn Stover Into Glucose

    NASA Astrophysics Data System (ADS)

    Ransom, Callista; Balan, Venkatesh; Biswas, Gadab; Dale, Bruce; Crockett, Elaine; Sticklen, Mariam

    Commercial conversion of lignocellulosic biomass to fermentable sugars requires inexpensive bulk production of biologically active cellulase enzymes, which might be achieved through direct production of these enzymes within the biomass crops. Transgenic corn plants containing the catalytic domain of Acidothermus cellulolyticus E1 endo-1,4-β glucanase and the bar bialaphos resistance coding sequences were generated after Biolistic® (BioRad Hercules, CA) bombardment of immature embryo-derived cells. E1 sequences were regulated under the control of the cauliflower mosaic virus 35S promoter and tobacco mosaic virus translational enhancer, and E1 protein was targeted to the apoplast using the signal peptide of tobacco pathogenesis-related protein to achieve accumulation of this enzyme. The integration, expression, and segregation of E1 and bar transgenes were demonstrated, respectively, through Southern and Western blotting, and progeny analyses. Accumulation of up to 1.13% of transgenic plant total soluble proteins was detected as biologically active E1 by enzymatic activity assay. The corn-produced, heterologous E1 could successfully convert ammonia fiber explosion-pretreated corn stover polysaccharides into glucose as a fermentable sugar for ethanol production, confirming that the E1 enzyme is produced in its active from.

  13. Short-term fasting induces intra-hepatic lipid accumulation and decreases intestinal mass without reduced brush-border enzyme activity in mink (Mustela vison) small intestine.

    PubMed

    Bjornvad, C R; Elnif, J; Sangild, P T

    2004-11-01

    For many mammalian species short-term fasting is associated with intestinal atrophy and decreased digestive capacity. Under natural conditions, strictly carnivorous animals often experience prey scarcity during winter, and they may therefore be particularly well adapted to short-term food deprivation. To examine how the carnivorous gastrointestinal tract is affected by fasting, small-intestinal structure, brush-border enzyme activities and hepatic structure and function were examined in fed mink (controls) and mink that had been fasted for 1-10 days. During the first 1-2 days of fasting, intestinal mass decreased more rapidly than total body mass and villus heights were reduced 25-40%. In contrast, tissue-specific activity of the brush-border enzymes sucrase, maltase, lactase, aminopeptidase A and dipeptidylpeptidase IV increased 0.5- to 1.5-fold at this time, but returned to prefasting levels after 6 days of fasting. After 6-10 days of fasting there was a marked increase in the activity of hepatic enzymes and accumulation of intra-hepatic lipid vacuoles. Thus, mink may be a useful model for studying fasting-induced intestinal atrophy and adaptation as well as mechanisms involved in accumulation of intra-hepatic lipids following food deprivation in strictly carnivorous domestic mammals, such as cats and ferrets.

  14. Silicate enhanced enzymatic dehairing: a new lime-sulfide-free process for cowhides.

    PubMed

    Saravanabhavan, Subramani; Thanikaivelan, Palanisamy; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni

    2005-05-15

    A conventional dehairing process with sodium sulfide and lime is a major source of the pollution from the tanning industry. In other words, conventional dehairing processes degrade the hair to the extent that it cannot be recovered; thus, these processes become a major contributor to wastewater pollution. In this study, an attempt has been made to develop a lime and sulfide-free dehairing process using a commercial enzyme formulation with the activation of a silicate salt. A dip and pile method of application has been standardized. The amount of enzyme and sodium metasilicate has also been optimized based on complete removal of hair. Enhancement of enzyme activity by the addition of silicate has been demonstrated through activity measurements. Hair removal is found to be complete using scanning electron microscope analysis. Strength and bulk properties of the experimental leathers are comparable to that of control leathers. The process enjoys a significant reduction in chemical oxygen demand (COD) and total solids (TS) by 53 and 26%, respectively. More importantly, the application of enzyme for dehairing results in an 8% area increase in the final leather. Also, the process is proven to be techno-economically feasible.

  15. Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naive first-episode schizophrenic patients

    PubMed Central

    2011-01-01

    Background The aim of this study was to determine glutathione levels and antioxidant enzyme activities in the drug-naive first-episode patients with schizophrenia in comparison with healthy control subjects. Methods It was a case-controlled study carried on twenty-three patients (20 men and 3 women, mean age = 29.3 ± 7.5 years) recruited in their first-episode of schizophrenia and 40 healthy control subjects (36 men and 9 women, mean age = 29.6 ± 6.2 years). In patients, the blood samples were obtained prior to the initiation of neuroleptic treatments. Glutathione levels: total glutathione (GSHt), reduced glutathione (GSHr) and oxidized glutathione (GSSG) and antioxidant enzyme activities: superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) were determined by spectrophotometry. Results GSHt and reduced GSHr were significantly lower in patients than in controls, whereas GSSG was significantly higher in patients. GPx activity was significantly higher in patients compared to control subjects. CAT activity was significantly lower in patients, whereas the SOD activity was comparable to that of controls. Conclusion This is a report of decreased plasma levels of GSHt and GSHr, and impaired antioxidant enzyme activities in drug-naive first-episode patients with schizophrenia. The GSH deficit seems to be implicated in psychosis, and may be an important indirect biomarker of oxidative stress in schizophrenia early in the course of illness. Finally, our results provide support for further studies of the possible role of antioxidants as neuroprotective therapeutic strategies for schizophrenia from early stages. PMID:21810251

  16. A microplate reader-based method to quantify NADH-cytochrome b5 reductase activity for diagnosis of recessive congenital methaemoglobinemia.

    PubMed

    Kedar, Prabhakar; Desai, Anand; Warang, Prashant; Colah, Roshan

    2017-05-01

    Congenital methemoglobinemia due to NADH-cytochrome b5 reductase 3 (CYB5R3) deficiencies is an autosomal recessive disorder that occurs sporadically worldwide, A sensitive, accurate, and rapid analysis of NADH-CYB5R enzyme concentrations is necessary for the diagnosis of RCM. Here we present an alternative microplate method that is based on a standard 96-well microplate format and microplate reader that simplify the quantification of NADH-CYB5R activity. TECAN (Infinite 200 PRO series) microplate reader with Tecan's proven Magellan™ software measured the NADH-CYB5R enzyme activity in 250 normal controls and previously diagnosed 25 cases of RCM due to NADH-CYB5R deficiency in the Indian population using 96-well microplates using 200 μl of total reaction mixture and also compared with standard spectrophotometric assay. We have also studied stability of the hemolysate stored at 4 and -20°C temperature. Enzyme activity in all 25 samples ranged from 6.09 to 10.07 IU/g Hb (mean ± SD: 8.08 ± 1.99 IU/g Hb) where as normal control ranged (n = 250) between 13.42 and 21.58 IU/g Hb) (mean ± SD: 17.5 ± 4.08 IU/g of Hb). Data obtained from the microplate reader were compared with standard spectrophotometer method and found 100% concordance using both methods. Microplate method allows differentiating between normal, deficient and intermediate enzyme activity. It was observed that samples had significant loss of activity when stored at 4°C and retained stable activity at -20°C for 1 week time. Our new method, incorporating a whole process of enzyme assay into a microplate format is readily applicable and allows rapid monitoring of enzyme assay. It is readily applicable to quantitative assay on pediatric sample as well as large number of samples for population screening.

  17. Influence of root-knot nematode infestation on antioxidant enzymes, chlorophyll content and growth in Pogostemon cablin (Blanco) Benth.

    PubMed

    Bhau, B S; Borah, Bitupon; Ahmed, Reshma; Phukon, P; Gogoi, Barbi; Sarmah, D K; Lal, M; Wann, S B

    2016-04-01

    Plants adapt themselves to overcome adverse environmental conditions, and this involves a plethora of concurrent cellular activities. Physiological experiments or metabolic profiling can quantify this response. Among several diseases of Pogostemon cablin (Blanco) Benth. (Patchouli), root-knot nematode infection caused by Meloidogyne incognita (Kofoid and White) Chitwood causes severe damage to the plant and hence, the oil production. In the present study, we identified M. incognita morphologically and at molecular level using sequenced characterized amplified region marker (SCAR). M. incognita was artificially inoculated at different levels of second stage juveniles (J₂) to examine the effect on Patchouli plant growth parameters. Peroxidase and polyphenol oxidase enzyme activity and changes in the total phenol and chlorophyll contents in M. incognita was also evaluated in response to infection. The results have demonstrated that nematode infestation leads to increased peroxidase activities in the leaves of the patchouli plants and thereby, increase in phenolic content as a means of defence against nematode infestation. Chlorophyll content was also found decreased but no changes in polyphenol oxidase enzyme activity.

  18. Changes in the structure and function of soil ecosystems in soils contaminated with heavy metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuperman, R.; Parmelee, R.; Carreiro, M.

    1995-09-01

    The structure and function of soil communities in an area with a wide range of concentrations of heavy metals was studied in portions of the U.S. Army`s Aberdeen Proving Ground, Maryland. The study included survey of soil macro- and microinvertebrate communities, soil microorganisms, enzyme activities and the rates of nutrient dynamics in soil. Soil macroinvertebrate communities showed significant reductions in the adundance of several taxonomic and functional groups in contaminated areas. The total numbers of nematodes and numbers of fungivore, bacterivore and omnivore-predator nematodes were lower in the more contaminated areas. The numbers of active bacteria and fungi were lowermore » in areas of soil contamination. Significant reduction in the activities of all enzymes closely paralleled the increase in heavy metal concentrations. Ten-to-fifty fold reductions in enzyme activities were observed as heavy metal concentrations increased. These results suggest that soil contamination with heavy metals may have detrimental effects on soil biota and the rates of organic matter degradation and subsequent release of nutrients to aboveground communities in the area.« less

  19. Changes in the structure and function of soil ecosystems in soils contaminated with heavy metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuperman, R.; Parmelee, R.; Carreiro, M.

    1995-06-01

    The structure and function of soil communities in an area with a wide range of concentrations of heavy metals was studied in portions of the U.S. Army`s Aberdeen Proving Ground, Maryland. The study included survey of soil macro- and microinvertebrate communities, soil microorganisms, enzyme activities and the rates of nutrient dynamics in soil. Soil macroinvertebrate communities showed significant reductions in the abundance of several taxonomic and functional groups in contaminated areas. The total numbers of nematodes and numbers of fungivore, bacterivore and omnivore-predator nematodes were lower in the more contaminated areas. The numbers of active bacteria and fungi were lowermore » in areas of soil contamination. Significant reduction in the activities of all enzymes closely paralleled the increase in heavy metal concentrations. Ten-to-fifty fold reductions in enzyme activities were observed as heavy metal concentrations increased. These results suggest that soil contamination with heavy metals may have detrimental effects on soil biota and the rates of organic matter degradation and subsequent release of nutrients to aboveground communities in the area.« less

  20. Phenolic Compounds from Olea europaea L. Possess Antioxidant Activity and Inhibit Carbohydrate Metabolizing Enzymes In Vitro.

    PubMed

    Dekdouk, Nadia; Malafronte, Nicola; Russo, Daniela; Faraone, Immacolata; De Tommasi, Nunziatina; Ameddah, Souad; Severino, Lorella; Milella, Luigi

    2015-01-01

    Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI) was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects.

  1. Phenolic Compounds from Olea europaea L. Possess Antioxidant Activity and Inhibit Carbohydrate Metabolizing Enzymes In Vitro

    PubMed Central

    Dekdouk, Nadia; Malafronte, Nicola; Russo, Daniela; Faraone, Immacolata; Ameddah, Souad; Severino, Lorella

    2015-01-01

    Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI) was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects. PMID:26557862

  2. Repeated application of composted tannery sludge affects differently soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms.

    PubMed

    Araújo, Ademir Sérgio Ferreira; Lima, Luciano Moura; Santos, Vilma Maria; Schmidt, Radomir

    2016-10-01

    Repeated application of composted tannery sludge (CTS) changes the soil chemical properties and, consequently, can affect the soil microbial properties. The aim of this study was to evaluate the responses of soil microbial biomass and ammonia-oxidizing organisms to repeated application of CTS. CTS was applied repeatedly during 6 years, and, at the sixth year, the soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms were determined in the soil. The treatments consisted of 0 (without CTS application), 2.5, 5, 10, and 20 t ha(-1) of CTS (dry basis). Soil pH, EC, SOC, total N, and Cr concentration increased with the increase in CTS rate. Soil microbial biomass did not change significantly with the amendment of 2.5 Mg ha(-1), while it decreased at the higher rates. Total and specific enzymes activity responded differently after CTS application. The abundance of bacteria did not change with the 2.5-Mg ha(-1) CTS treatment and decreased after this rate, while the abundance of archaea increased significantly with the 2.5-Mg ha(-1) CTS treatment. Repeated application of different CTS rates for 6 years had different effects on the soil microbial biomass and ammonia-oxidizing organisms as a response to changes in soil chemical properties.

  3. [Biosensor development in clinical analysis].

    PubMed

    Boitieux, J L; Desmet, G; Thomas, D

    1985-01-01

    The use of enzymes immobilized or as markers formed the subject of more than thousand publications in the field of industry or biomedical applications, during the last five years. Recently, some authors published works concerning immobilization of total microorganisms for catalytic purposes, others use the enzymatic activity for marking molecules involved in immunological analysis processes. Together industrial biotechnology and medical analysis laboratory are interested with the evolution of these procedures involving the activity of immobilized enzymes. Enzyme immobilization allowed the lowering of analysis costs for, in this case, the enzyme can be used several times. We take account of the two main cases which are encountered during utilization of immobilized enzymes of analytical purposes. The enzyme is used directly for the catalysed reaction or it is used as enzymatic marker. These both aspects are developed mainly for the elaboration of enzymatic and immunoenzymatic electrodes and the realization of automatic computerized devices allowing continuous estimation of numerous biological blood parameters. From these two precise examples, glucose and antigen determination, the authors show the evolution of these technologies in the field of immobilized enzymes or captors and the analysis of signals given by these electrodes requiring a computerized treatment. This new technology opens to important potentialities in the analytical field. The automatization of these devices allowing the control in real time, will probably make easier the optimization steps of procedures actually used in the biomedical sphere.

  4. [Effects of controlled release blend bulk urea on soil nitrogen and soil enzyme activity in wheat and rice fields].

    PubMed

    Zhang, Jing Sheng; Wang, Chang Quan; Li, Bing; Liang, Jing Yue; He, Jie; Xiang, Hao; Yin, Bin; Luo, Jing

    2017-06-18

    A field experiment was conducted to investigate the effect of controlled-release fertilizer (CRF) combined with urea (UR) on the soil fertility and environment in wheat-rice rotation system. Changes in four forms of nitrogen (total nitrogen, ammonium nitrogen, nitrate nitrogen, and microbial biomass nitrogen) and in activities of three soil enzymes participating in nitrogen transformation (urease, protease, and nitrate reductase) were measured in seven fertilization treatments (no fertilization, routine fertilization, 10%CRF+90%UR, 20%CRF+80%UR, 40%CRF+60%UR, 80%CRF+20%UR, and 100%CRF). The results showed that soil total nitrogen was stable in the whole growth period of wheat and rice. There was no significant difference among the treatments of over 20% CRF in soil total nitrogen content of wheat and rice. The soil inorganic nitrogen content was increased dramatically in treatments of 40% or above CRF during the mid-late growing stages of wheat and rice. With the advance of the growth period, conventional fertilization significantly decreased soil microbial biomass nitrogen, but the treatments of 40% and above CRF increased the soil microbial biomass nitrogen significantly. The soil enzyme activities were increased with over 40% of CRF in the mid-late growing stage of wheat and rice. By increasing the CRF ratio, the soil protease activity and nitrate reductase activity were improved gradually, and peaked in 100% CRF. The treatments of above 20% CRF could decrease the urease activity in tillering stage of rice and delay the peak of ammonium nitrogen, which would benefit nitrogen loss reduction. The treatments of 40% and above CRF were beneficial to improving soil nitrogen supply and enhancing soil urease and protease activities, which could promote the effectiveness of nitrogen during the later growth stages of wheat and rice. The 100% CRF treatment improved the nitrate reductase activity significantly during the later stage of wheat and rice. Compared with the treatments of 40%-80% CRF, 100% CRF reduced the soil nitrate content of 20-40 cm soil layer in wheat significantly suggesting it could reduce the loss of nitrogen.

  5. Purple Corn (Zea mays L.) Phenolic Compounds Profile and Its Assessment as an Agent Against Oxidative Stress in Isolated Mouse Organs

    PubMed Central

    Ramos-Escudero, Fernando; Muñoz, Ana María; Alvarado-Ortíz, Carlos; Alvarado, Ángel

    2012-01-01

    Abstract This study was designed to determine the contents of total polyphenols, flavonoids, flavonols, flavanols, and anthocyanins of purple corn (Zea mays L.) extracts obtained with different methanol:water concentrations, acidified with 1% HCl (1 N). Another objective was to determine the antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and deoxyribose assay, individual phenolic compounds by high-performance liquid chromatography (HPLC), and endogenous antioxidant enzyme (superoxide dismutase [SOD], catalase [CAT], and total peroxidase [TPX]) activity and lipid peroxidation activity (thiobarbituric acid–reactive substances [TBARS] assay) in isolated mouse organs. Overall, the highest total content of polyphenols, anthocyanins, flavonoids, flavonols, and flavanols was obtained with the 80:20 methanol:water extract, acidified with 1% HCl (1 N). The 50% inhibitory concentration values obtained by the DPPH and ABTS assays with this extract were 66.3 μg/mL and 250 μg/mL, respectively. The antioxidant activity by the FRAP assay was 26.1 μM Trolox equivalents/g, whereas the deoxyribose assay presented 93.6% inhibition. Because of these results, the 80:20 methanol:water extract, acidified with 1% HCl (1 N), was used for the remaining tests. Eight phenolic compounds were identified by HPLC: chlorogenic acid, caffeic acid, rutin, ferulic acid, morin, quercetin, naringenin, and kaempferol. Furthermore, it was observed that the purple corn extract was capable of significantly reducing lipid peroxidation (lower malondialdehyde [MDA] concentrations by the TBARS assay) and at the same time increasing endogenous antioxidant enzyme (CAT, TPX, and SOD) activities in isolated mouse kidney, liver, and brain. On the basis of the results, it was concluded that the purple corn extract contained various bioactive phenolic compounds that exhibited considerable in vitro antioxidant activity, which correlated well with the decreased MDA formation and increase in activity of endogenous antioxidant enzymes observed in the isolated mouse organs. This warrants further in vivo studies with purple corn extracts to assess its antioxidant activity and other bioactivities. PMID:22082063

  6. Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs.

    PubMed

    Ramos-Escudero, Fernando; Muñoz, Ana María; Alvarado-Ortíz, Carlos; Alvarado, Ángel; Yáñez, Jaime A

    2012-02-01

    This study was designed to determine the contents of total polyphenols, flavonoids, flavonols, flavanols, and anthocyanins of purple corn (Zea mays L.) extracts obtained with different methanol:water concentrations, acidified with 1% HCl (1 N). Another objective was to determine the antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and deoxyribose assay, individual phenolic compounds by high-performance liquid chromatography (HPLC), and endogenous antioxidant enzyme (superoxide dismutase [SOD], catalase [CAT], and total peroxidase [TPX]) activity and lipid peroxidation activity (thiobarbituric acid-reactive substances [TBARS] assay) in isolated mouse organs. Overall, the highest total content of polyphenols, anthocyanins, flavonoids, flavonols, and flavanols was obtained with the 80:20 methanol:water extract, acidified with 1% HCl (1 N). The 50% inhibitory concentration values obtained by the DPPH and ABTS assays with this extract were 66.3 μg/mL and 250 μg/mL, respectively. The antioxidant activity by the FRAP assay was 26.1 μM Trolox equivalents/g, whereas the deoxyribose assay presented 93.6% inhibition. Because of these results, the 80:20 methanol:water extract, acidified with 1% HCl (1 N), was used for the remaining tests. Eight phenolic compounds were identified by HPLC: chlorogenic acid, caffeic acid, rutin, ferulic acid, morin, quercetin, naringenin, and kaempferol. Furthermore, it was observed that the purple corn extract was capable of significantly reducing lipid peroxidation (lower malondialdehyde [MDA] concentrations by the TBARS assay) and at the same time increasing endogenous antioxidant enzyme (CAT, TPX, and SOD) activities in isolated mouse kidney, liver, and brain. On the basis of the results, it was concluded that the purple corn extract contained various bioactive phenolic compounds that exhibited considerable in vitro antioxidant activity, which correlated well with the decreased MDA formation and increase in activity of endogenous antioxidant enzymes observed in the isolated mouse organs. This warrants further in vivo studies with purple corn extracts to assess its antioxidant activity and other bioactivities.

  7. Relationships between environmental organochlorine contaminant residues, plasma corticosterone concentrations, and intermediary metabolic enzyme activities in Great Lakes herring gull embryos.

    PubMed Central

    Lorenzen, A; Moon, T W; Kennedy, S W; Glen, G A

    1999-01-01

    Experiments were conducted to survey and detect differences in plasma corticosterone concentrations and intermediary metabolic enzyme activities in herring gull (Larus argentatus) embryos environmentally exposed to organochlorine contaminants in ovo. Unincubated fertile herring gull eggs were collected from an Atlantic coast control site and various Great Lakes sites in 1997 and artificially incubated in the laboratory. Liver and/or kidney tissues from approximately half of the late-stage embryos were analyzed for the activities of various intermediary metabolic enzymes known to be regulated, at least in part, by corticosteroids. Basal plasma corticosterone concentrations were determined for the remaining embryos. Yolk sacs were collected from each embryo and a subset was analyzed for organochlorine contaminants. Regression analysis of individual yolk sac organochlorine residue concentrations, or 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TEQs), with individual basal plasma corticosterone concentrations indicated statistically significant inverse relationships for polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDDs/PCDFs), total polychlorinated biphenyls (PCBs), non-ortho PCBs, and TEQs. Similarly, inverse relationships were observed for the activities of two intermediary metabolic enzymes (phosphoenolpyruvate carboxykinase and malic enzyme) when regressed against PCDDs/PCDFs. Overall, these data suggest that current levels of organochlorine contamination may be affecting the hypothalamo-pituitary-adrenal axis and associated intermediary metabolic pathways in environmentally exposed herring gull embryos in the Great Lakes. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:10064546

  8. Identification of novel superoxide dismutase isoenzymes in the olive (Olea europaea L.) pollen.

    PubMed

    Zafra, Adoración; Castro, Antonio Jesús; Alché, Juan de Dios

    2018-06-08

    Among antioxidant enzymes, the superoxide dismutase (SOD) family is a major actor in catalysing the disproportionation of superoxide. Apart from its role as antioxidant, these enzymes have a role in cell signalling, and Cu,Zn-SOD proteins are also major pollen allergens. In order to deepen our understanding of the SOD isoenzymes present in olive pollen and to analyse the molecular variability of the pollen Cu,Zn-SOD family, we carried out biochemical, transcriptomic and localization studies of pollen grains from different olive cultivars and other allergenic species. Olive pollen showed a high rate of total SOD activity in all cultivars assayed, which did not correlate with pollen viability. Mass spectrometry analysis together with activity assays and Western blotting experiments enabled us to identify new forms of Cu,Zn-SOD enzyme (including chloroplastidic and peroxisomal forms) as well as differentially expressed Mn-, Fe- and Cu,Zn-SOD isoenzymes among the pollen of different olive cultivars and allergenic species. Ultrastructural localization of Cu,Zn-SOD revealed its plastidial localization in the pollen grain. We also identified the occurrence of a shorter form of one of the cytosolic Cu,Zn-SOD enzymes, likely as the result of alternative splicing. This shorter enzyme showed lower SOD activity as compared to the full length form. The presence of multiple SOD isoenzymes in the olive pollen could be related to the need of finely tuning the ROS metabolism during the transition from its quiescent condition at maturity to a highly metabolically active state at germination.

  9. Purification, characterization and kinetic properties of extracellular L-asparaginase produced by Cladosporium sp.

    PubMed

    Mohan Kumar, N S; Manonmani, H K

    2013-04-01

    L-asparaginase from Cladosporium sp. grown on wheat bran by SSF was purified. Enzyme appeared to be a trimer with homodimer of 37 kDa and another 47 kDa amounting to total mass of 121 kDa as estimated by SDS-PAGE and 120 kDa on gel filtration column. The optimum temperature and pH of the enzyme were 30 °C and 6.3, respectively with Vmax of 4.44 μmol/mL/min and Km of 0.1 M. Substrate specificity studies indicated that, L-asparaginase has greater affinity towards L-asparagine with substrate hydrolysis efficiency (Vmax/Km ratio) eightfold higher than that of L-glutamine. L-asparaginase activity in presence of thiols studied showed decrease in Vmax and increase in Km, indicating nonessential mode of inactivation. Among the thiols tested, β-mercaptomethanol, exerted inhibitory effect, suggesting a critical role of disulphide linkages in maintaining a suitable conformation of the enzyme. Metal ions such as Ca(2+), Co(2+), Cu(2+), Mg(2+), Na(+), K(+) and Zn(2+) significantly affected enzyme activity whereas presence of Fe(3+), Pb(2+) and KI stimulated the activity. Detergents studied also enhanced L-asparaginase activity. In-vitro half-life of purified L-asparaginase in mammalian blood serum was 93.69 h. The enzyme inhibited acrylamide formation in potato chips by 96 % making it a potential candidate for food industry to reduce acrylamide content in starchy fried food commodities.

  10. Screening of white-rot fungi manganese peroxidases: a comparison between the specific activities of the enzyme from different native producers

    PubMed Central

    2012-01-01

    In this study manganese peroxidase (MnP) enzymes from selected white-rot fungi were isolated and compared for potential future recombinant production. White-rot fungi were cultivated in small-scale in liquid media and a simplified process was established for the purification of extracellular enzymes. Five lignin degrading organisms were selected (Bjerkandera sp., Phanerochaete (P.) chrysosporium, Physisporinus (P.) rivulosus, Phlebia (P.) radiata and Phlebia sp. Nf b19) and studied for MnP production in small-scale. Extracellular MnP activity was followed and cultivations were harvested at proximity of the peak activity. The production of MnPs varied in different organisms but was clearly regulated by inducing liquid media components (Mn2+, veratryl alcohol and malonate). In total 8 different MnP isoforms were purified. Results of this study reinforce the conception that MnPs from distinct organisms differ substantially in their properties. Production of the extracellular enzyme in general did not reach a substantial level. This further suggests that these native producers are not suitable for industrial scale production of the enzyme. The highest specific activities were observed with MnPs from P. chrysosporium (200 U mg-1), Phlebia sp. Nf b19 (55 U mg-1) and P. rivulosus (89 U mg-1) and these MnPs are considered as the most potential candidates for further studies. The molecular weight of the purified MnPs was estimated to be between 45–50 kDa. PMID:23190610

  11. Muscle enzyme release does not predict muscle function impairment after triathlon.

    PubMed

    Margaritis, I; Tessier, F; Verdera, F; Bermon, S; Marconnet, P

    1999-06-01

    We sought to determine the effects of a long distance triathlon (4 km swim, 120 km bike-ride, and 30 km run) on the four-day kinetics of the biochemical markers of muscle damage, and whether they were quantitatively linked with muscle function impairment and soreness. Data were collected from 2 days before until 4 days after the completion of the race. Twelve triathletes performed the triathlon and five did not. Maximal voluntary contraction (MVC), muscle soreness (DOMS) and total serum CK, CK-MB, LDH, AST and ALT activities were assessed. Significant changes after triathlon completion were found for all muscle damage indirect markers over time (p < 0.0001). MVC of the knee extensor and flexor muscles decreased over time (p < 0.05). There is disparity in the time point at which peak values where reached for DOMS, MVC and enzyme leakage. There is no correlation between serum enzyme leakage, DOMS and MVC impairment which occur after triathlon. Long distance triathlon race caused muscle damage, but extent, as well as muscle recovery cannot be evaluated by the magnitude of changes in serum enzyme activities. Muscle enzyme release cannot be used to predict the magnitude of the muscle function impairment caused by muscle damage.

  12. Efficient Production of Active Polyhydroxyalkanoate Synthase in Escherichia coli by Coexpression of Molecular Chaperones

    PubMed Central

    Thomson, Nicholas M.; Saika, Azusa; Ushimaru, Kazunori; Sangiambut, Smith; Tsuge, Takeharu; Summers, David K.

    2013-01-01

    The type I polyhydroxyalkanoate synthase from Cupriavidus necator was heterologously expressed in Escherichia coli with simultaneous overexpression of chaperone proteins. Compared to expression of synthase alone (14.55 mg liter−1), coexpression with chaperones resulted in the production of larger total quantities of enzyme, including a larger proportion in the soluble fraction. The largest increase was seen when the GroEL/GroES system was coexpressed, resulting in approximately 6-fold-greater enzyme yields (82.37 mg liter−1) than in the absence of coexpressed chaperones. The specific activity of the purified enzyme was unaffected by coexpression with chaperones. Therefore, the increase in yield was attributed to an enhanced soluble fraction of synthase. Chaperones were also coexpressed with a polyhydroxyalkanoate production operon, resulting in the production of polymers with generally reduced molecular weights. This suggests a potential use for chaperones to control the physical properties of the polymer. PMID:23335776

  13. Enzyme Technology of Peroxidases: Immobilization, Chemical and Genetic Modification

    NASA Astrophysics Data System (ADS)

    Longoria, Adriana; Tinoco, Raunel; Torres, Eduardo

    An overview of enzyme technology applied to peroxidases is made. Immobilization on organic, inorganic, and hybrid supports; chemical modification of amino acids and heme group; and genetic modification by site-directed and random mutagenesis are included. Different strategies that were carried out to improve peroxidase performance in terms of stability, selectivity, and catalytic activity are analyzed. Immobilization of peroxidases on inorganic and organic materials enhances the tolerance of peroxidases toward the conditions normally found in many industrial processes, such as the presence of an organic solvent and high temperature. In addition, it is shown that immobilization helps to increase the Total Turnover Number at levels high enough to justify the use of a peroxidase-based biocatalyst in a synthesis process. Chemical modification of peroxidases produces modified enzymes with higher thermostability and wider substrate variability. Finally, through mutagenesis approaches, it is possible to produce modified peroxidases capable of oxidizing nonnatural substrates with high catalytic activity and affinity.

  14. Rational engineering of a mesohalophilic carbonic anhydrase to an extreme halotolerant biocatalyst

    PubMed Central

    Warden, Andrew C.; Williams, Michelle; Peat, Thomas S.; Seabrook, Shane A.; Newman, Janet; Dojchinov, Greg; Haritos, Victoria S.

    2015-01-01

    Enzymes expressed by highly salt-tolerant organisms show many modifications compared with salt-affected counterparts including biased amino acid and lower α-helix content, lower solvent accessibility and negative surface charge. Here, we show that halotolerance can be generated in an enzyme solely by modifying surface residues. Rational design of carbonic anhydrase II is undertaken in three stages replacing 18 residues in total, crystal structures confirm changes are confined to surface residues. Catalytic activities and thermal unfolding temperatures of the designed enzymes increase at high salt concentrations demonstrating their shift to halotolerance, whereas the opposite response is found in the wild-type enzyme. Molecular dynamics calculations reveal a key role for sodium ions in increasing halotolerant enzyme stability largely through interactions with the highly ordered first Na+ hydration shell. For the first time, an approach to generate extreme halotolerance, a trait with broad application in industrial biocatalysis, in a wild-type enzyme is demonstrated. PMID:26687908

  15. Effects of commercial pectolytic and cellulolytic enzyme preparations on the apple cell wall.

    PubMed

    Dongowski, G; Sembries, S

    2001-09-01

    The action of three different commercial enzyme combinations on apple cell wall material has been examined in a model system under conditions of mash and pomace treatment by using an alcohol-insoluble substance prepared from apples. A part of the total dietary fiber, for example, galacturonan (pectin), appeared in the soluble fraction after enzymatic mash treatment. The soluble fraction increased intensely during pomace treatment. Furthermore, enzyme actions caused a change in the water-binding capacity of residues as well as changes in the monosaccharide composition and in the molecular weight distribution of saccharides in filtrates (soluble parts). The extent of decomposition of cell wall material and the increase of soluble oligomeric and/or polymeric dietary fiber components are caused by both the composition (pectinases, cellulases, and hemicellulases) and the activities of the enzyme preparations. The model experiments allow an insight into the reactions occurring during enzyme action on the plant cell wall, for example, during apple juice production using pectolytic and cellulolytic enzyme preparations.

  16. Evolutionary patterns of proteinase activity in attine ant fungus gardens

    PubMed Central

    2011-01-01

    Background Attine ants live in symbiosis with a basidiomycetous fungus that they rear on a substrate of plant material. This indirect herbivory implies that the symbiosis is likely to be nitrogen deprived, so that specific mechanisms may have evolved to enhance protein availability. We therefore hypothesized that fungal proteinase activity may have been under selection for efficiency and that different classes of proteinases might be involved. Results We determined proteinase activity profiles across a wide pH range for fungus gardens of 14 Panamanian species of fungus-growing ants, representing eight genera. We mapped these activity profiles on an independently obtained molecular phylogeny of the symbionts and show that total proteinase activity in lower attine symbionts peaks at ca. pH 6. The higher attine symbionts that have no known free-living relatives had much higher proteinase activities than the lower attine symbionts. Their total in vitro proteinase activity peaked at pH values around 5, which is close to the pH that the ants maintain in their fungus gardens, suggesting that the pH optimum of fungal proteinases may have changed after the irreversible domestication of evolutionary more derived fungal symbionts. This notion is also supported by buffering capacities of fungus gardens at pH 5.2 being remarkably high, and suggests that the fungal symbiont actively helps to maintain garden acidity at this specific level. Metalloproteinases dominated the activity profiles of lower attine gardens and may thus represent the ancestral type of proteinase production, whereas serine proteinase activity dominated the activity profiles of the higher attine gardens reared by Trachymyrmex and Sericomyrmex, suggesting that there may be trade-offs in the production of these enzyme classes. Remarkably, the single symbiont that is shared by species of the crown group of Atta and Acromyrmex leaf-cutting ants mostly showed metalloproteinase activity, suggesting that recurrent changes in enzyme production may have occurred throughout the domestication history of fungus-garden symbionts. Conclusions Proteinase pH optima and buffering capacities of fungal symbionts appear to have evolved remarkable adaptations to living in obligate symbiosis with farming ants. Although the functional roles of serine and metalloproteinases in fungus gardens are unknown, the differential production of these classes of proteolytic enzymes suggest that substrate specificity may be important and that trade-offs may prevent the simultaneous upregulation of both classes of enzymes. PMID:21247468

  17. [Features of influence adenosine, AMP and hyperadrenalinemiya on the immune status, metabolic enzymes of purine nucleotides and the antioxidant defense system].

    PubMed

    Tapbergenov, S O; Sovetov, B S; Tapbergenov, A T

    2016-11-01

    Administration of a large dose of adrenaline (4 mg/kg 60 min before analysis) increased blood levels of total leukocytes, lymphocytes, decreased T-cell suppressors, leukocyte migration inhibition reaction (LMIR) and NBT test, but increased the level of conjugated dienes (CD). Administration of AMPand adenosine increased levels of total leukocytes, lymphocytes, T- lymphocytes, T-helpers, decreased the level of malondialdehyde (MDA), LMIR, and T-cell suppressors. Sympathetic hyperactivation induced by administration of a large dose of adrenaline (4 mg/kg 60 min before analysis) was accompanied by an increase in heart and liver activities of glutathione peroxidase (GPx), catalase, AMP deaminase (AMPD), and adenosine deaminase (AD). Administration of AMP or adenosine caused a decrease in activities of glutathione reductase (GR), GPx, catalase, a decrease in the MDA level and an increase in activities of AMPD and AD in the heart. In the liver AMP and adenosine also caused a decrease in activities of glutathione reductase (GR), GPx, a decrease in the MDA level and an increase in activities of AMPD and AD. The data obtained suggest that administration of adrenaline, AMP, and adenosine influences activity of enzymes involved in purine nucleotide metabolism. However, in contrast to adrenaline, administration of AMP or adenosine does not provoke stress reaction.

  18. Enhancement of expression and apparent secretion of Erwinia chrysanthemi endoglucanase (encoded by celZ) in Escherichia coli B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, S.; Yomano, L.P.; Saleh, A.Z.

    1999-06-01

    Escherichia coli B has been engineered as a biocatalyst for the conversion of lignocellulose into ethanol. Previous research has demonstrated that derivatives of E. coli B can produce high levels of Erwinia chrysanthemi endoglucanase (encoded by celZ) as a periplasmic product and that this enzyme can function with commercial fungal cellulase to increase ethanol production. In this study, the authors have demonstrated two methods that improve celZ expression in E. coli B. Initially, with a low-copy-number vector, two E. coli glycolytic gene promoters (gap and eno) were tested and found to be less effective than the original celZ promoter. Bymore » screening 18,000 random fragments of Zymomonas mobilis DNA, a surrogate promoter was identified which increased celZ expression up to sixfold. With this promoter, large polar inclusion bodies were clearly evident in the periplasmic space. Sequencing revealed that the most active surrogate promoter is derived from five Sau3A1 fragments, one of which was previously sequenced in Z. mobilis. Visual inspection indicated that this DNA fragment contains at least five putative promoter regions, two of which were confirmed by primer extension analysis. Addition of the out genes from E. chrysanthemi EC16 caused a further increase in the production of active enzyme and facilitated secretion or release of over half of the activity into the extracellular environment. With the most active construct, of a total of 13,000 IU of active enzyme per liter of culture, 7,800 IU was in the supernatant. The total active endoglucanase was estimated to represent 4 to 6% of cellular protein.« less

  19. Evaluation of indigenous grains from the Peruvian Andean region for antidiabetes and antihypertension potential using in vitro methods.

    PubMed

    Ranilla, Lena Galvez; Apostolidis, Emmanouil; Genovese, Maria Ines; Lajolo, Franco Maria; Shetty, Kalidas

    2009-08-01

    The health-relevant functionality of 10 thermally processed Peruvian Andean grains (five cereals, three pseudocereals, and two legumes) was evaluated for potential type 2 diabetes-relevant antihyperglycemia and antihypertension activity using in vitro enzyme assays. Inhibition of enzymes relevant for managing early stages of type 2 diabetes such as hyperglycemia-relevant alpha-glucosidase and alpha-amylase and hypertension-relevant angiotensin I-converting enzyme (ACE) were assayed along with the total phenolic content, phenolic profiles, and antioxidant activity based on the 1,1-diphenyl-2-picrylhydrazyl radical assay. Purple corn (Zea mays L.) (cereal) exhibited high free radical scavenging-linked antioxidant activity (77%) and had the highest total phenolic content (8 +/- 1 mg of gallic acid equivalents/g of sample weight) and alpha-glucosidase inhibitory activity (51% at 5 mg of sample weight). The major phenolic compound in this cereal was protocatechuic acid (287 +/- 15 microg/g of sample weight). Pseudocereals such as Quinoa (Chenopodium quinoa Willd) and Kañiwa (Chenopodium pallidicaule Aellen) were rich in quercetin derivatives (1,131 +/- 56 and 943 +/- 35 microg [expressed as quercetin aglycone]/g of sample weight, respectively) and had the highest antioxidant activity (86% and 75%, respectively). Andean legumes (Lupinus mutabilis cultivars SLP-1 and H-6) inhibited significantly the hypertension-relevant ACE (52% at 5 mg of sample weight). No alpha-amylase inhibitory activity was found in any of the evaluated Andean grains. This in vitro study indicates the potential of combination of Andean whole grain cereals, pseudocereals, and legumes to develop effective dietary strategies for managing type 2 diabetes and associated hypertension and provides the rationale for animal and clinical studies.

  20. Quantifying microbial activity in deep subsurface sediments using a tritium based hydrognease enzyme assay

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Nickel, J.; Kallmeyer, J.

    2012-12-01

    Microbial life is widespread in Earth's subsurface and estimated to represent a significant fraction of Earth's total living biomass. However, very little is known about subsurface microbial activity and its fundamental role in biogeochemical cycles of carbon and other biologically important elements. Hydrogen is one of the most important elements in subsurface anaerobic microbial metabolism. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways. They either consume or produce protons for ATP synthesis. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy generating metabolic processes to electron acceptors such as CO2 or sulfate. H2ase enzyme targets a key metabolic compound in cellular metabolism therefore the assay can be used as a measure for total microbial activity without the need to identify any specific metabolic process. Using the highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey, in marine sediments of the Barents Sea and in deep subseafloor sediments from the Nankai Trough. H2ase activity could be quantified at all depths of all sites but the activity distribution varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from ca. 20 mmol H2 cm-3d-1 close to the sediment-water interface to 0.5 mmol H2 cm-3d-1 at a depth of 0.8 m. In samples from the Barents Sea H2ase activity ranged between 0.1 to 2.5 mmol H2 cm-3d-1 down to a depth of 1.60 m. At all sites the sulfate reduction rate profile followed the upper part of the H2ase activity profile until sulfate reduction reached the minimum detection limit (ca. 10 pmol cm-3d-1). H2ase activity could still be quantified after the decline of sulfate reduction, indicating that other microbial processes are becoming quantitatively more important. Similarly, H2ase activity could be quantified at greater depths (ca. 400 mbsf) in Nankai Trough sediments. Nankai Trough is one of the world's most geologically active accretionary wedges, where the Philippine Plate is subducting under the southwest of Japan. Due to the transient faulting, huge amounts of energy are liberated that enhance chemical transformations of organic and inorganic matter. An increase in H2ase activity could be observed at greater depth, which suggests that microbial activity is stimulated by the fault activity. Current techniques for the quantification of microbial activity in deep sediments have already reached their physical and technical limits and-in many cases- are still not sensitive enough to quantify extremely low rates of microbial activity. Additional to the quantification of specific processes, estimates of total microbial activity will provide valuable information on energy flux and microbial metabolism in the subsurface biosphere and other low-energy environments as well as help identifying hotspots of microbial activity. The tritium H2ase assay has a potential to become a valuable tool to measure total subsurface microbial activity.

  1. Screening of pectinase-producing microorganisms with polygalacturonase activity.

    PubMed

    Zeni, Jamile; Cence, Karine; Grando, Camila Elis; Tiggermann, Lídia; Colet, Rosicler; Lerin, Lindomar A; Cansian, Rogério L; Toniazzo, Geciane; de Oliveira, Débora; Valduga, Eunice

    2011-02-01

    The aim of this work was to perform the screening of microorganisms, previously isolated from samples of agro-industrial waste and belonging to the culture collection of our laboratory, able to produce polygalacturonases (PG). A total of 107 microorganisms, 92 newly isolated and 15 pre-identified, were selected as potential producers of enzymes with PG activity. From these microorganisms, 20 strains were able to synthesize PG with activities above 3 U mL(-1). After the kinetic study, the enzyme activity was increased up to 13 times and the microorganism identified as Aspergillus niger ATCC 9642 and the newly isolated W23, W43, and D2 (Penicillium sp.) after 24 h of fermentation led to PG activities of 30, 41, 43, and 45 U mL(-1), respectively. The RAPD analysis demonstrated that the selected strains differs genetically, indicating that no duplication of strains among them in the experiments for polygalacturonases production was verified.

  2. Does 1-Allyl-3-methylimidazolium chloride Act as a Biocompatible Solvent for Stem Bromelain?

    PubMed

    Jha, Indrani; Bisht, Meena; Venkatesu, Pannuru

    2016-06-30

    The broader scope of ILs in chemical sciences particularly in pharmaceutical, bioanalytical and many more applications is increasing day by day. Hitherto, a very less amount of research is available in the depiction of conformational stability, activity, and thermal stability of enzymes in the presence of ILs. In the present study, the perturbation in the structure, stability, and activity of stem bromelain (BM) has been observed in the presence of 1-allyl-3-methylimidazolium chloride ([Amim][Cl]) using various techniques. This is the first report in which the influence of [Amim][Cl] has been studied on the enzyme BM. Fluorescence spectroscopy has been utilized to map out the changes in the environment around tryptophan (Trp) residues of BM and also to discuss the variations in the thermal stability of BM as an outcome of its interaction with the IL at different concentrations. Further, the work delineates the denaturing effect of high concentration of IL on enzyme structure and activity. It dictates the fact that low concentrations (0.01-0.10 M) of [Amim][Cl] are only changing the structural arrangement of the protein without having harsh consequences on its activity and stability. However, high concentrations of IL proved to be totally devastating for both activity and stability of BM. The observed decrease in the stability of BM at high concentration may be due to the combined effect of cation and anion interactions with the protein residues. The present work is successful in dictating the probable mechanism of interaction between BM and [Amim][Cl]. These results can prove to be fruitful in the studies of enzymes in aqueous IL systems since the used IL is thermally stable and nonvolatile in nature thereby providing a pathway of alteration in the activity of enzymes in potentially green systems.

  3. Short-term effects of CO2 leakage on the soil bacterial community in a simulated gas leakage scenario.

    PubMed

    Ma, Jing; Zhang, Wangyuan; Zhang, Shaoliang; Zhu, Qianlin; Feng, Qiyan; Chen, Fu

    2017-01-01

    The technology of carbon dioxide (CO 2 ) capture and storage (CCS) has provided a new option for mitigating global anthropogenic emissions with unique advantages. However, the potential risk of gas leakage from CO 2 sequestration and utilization processes has attracted considerable attention. Moreover, leakage might threaten soil ecosystems and thus cannot be ignored. In this study, a simulation experiment of leakage from CO 2 geological storage was designed to investigate the short-term effects of different CO 2 leakage concentration (from 400 g m -2 day -1 to 2,000 g m -2 day -1 ) on soil bacterial communities. A shunt device and adjustable flow meter were used to control the amount of CO 2 injected into the soil. Comparisons were made between soil physicochemical properties, soil enzyme activities, and microbial community diversity before and after injecting different CO 2 concentrations. Increasing CO 2 concentration decreased the soil pH, and the largest variation ranged from 8.15 to 7.29 ( p < 0.05). Nitrate nitrogen content varied from 1.01 to 4.03 mg/Kg, while Olsen-phosphorus and total phosphorus demonstrated less regular downtrends. The fluorescein diacetate (FDA) hydrolytic enzyme activity was inhibited by the increasing CO 2 flux, with the average content varying from 22.69 to 11.25 mg/(Kg h) ( p < 0.05). However, the increasing activity amplitude of the polyphenol oxidase enzyme approached 230%, while the urease activity presented a similar rising trend. Alpha diversity results showed that the Shannon index decreased from 7.66 ± 0.13 to 5.23 ± 0.35 as the soil CO 2 concentration increased. The dominant phylum in the soil samples was Proteobacteria , whose proportion rose rapidly from 28.85% to 67.93%. In addition, the proportion of Acidobacteria decreased from 19.64% to 9.29% ( p < 0.01). Moreover, the abundances of genera Methylophilus , Methylobacillus , and Methylovorus increased, while GP4 , GP6 and GP7 decreased. Canonical correlation analysis results suggested that there was a correlation between the abundance variation of Proteobacteria , Acidobacteria , and the increasing nitrate nitrogen, urease and polyphenol oxidase enzyme activities, as well as the decreasing FDA hydrolytic enzyme activity, Olsen-phosphorus and total phosphorus contents. These results might be useful for evaluating the risk of potential CO 2 leakages on soil ecosystems.

  4. A Haloalkane Dehalogenase from a Marine Microbial Consortium Possessing Exceptionally Broad Substrate Specificity.

    PubMed

    Buryska, Tomas; Babkova, Petra; Vavra, Ondrej; Damborsky, Jiri; Prokop, Zbynek

    2018-01-15

    The haloalkane dehalogenase enzyme DmmA was identified by marine metagenomic screening. Determination of its crystal structure revealed an unusually large active site compared to those of previously characterized haloalkane dehalogenases. Here we present a biochemical characterization of this interesting enzyme with emphasis on its structure-function relationships. DmmA exhibited an exceptionally broad substrate specificity and degraded several halogenated environmental pollutants that are resistant to other members of this enzyme family. In addition to having this unique substrate specificity, the enzyme was highly tolerant to organic cosolvents such as dimethyl sulfoxide, methanol, and acetone. Its broad substrate specificity, high overexpression yield (200 mg of protein per liter of cultivation medium; 50% of total protein), good tolerance to organic cosolvents, and a broad pH range make DmmA an attractive biocatalyst for various biotechnological applications. IMPORTANCE We present a thorough biochemical characterization of the haloalkane dehalogenase DmmA from a marine metagenome. This enzyme with an unusually large active site shows remarkably broad substrate specificity, high overexpression, significant tolerance to organic cosolvents, and activity under a broad range of pH conditions. DmmA is an attractive catalyst for sustainable biotechnology applications, e.g., biocatalysis, biosensing, and biodegradation of halogenated pollutants. We also report its ability to convert multiple halogenated compounds to corresponding polyalcohols. Copyright © 2018 American Society for Microbiology.

  5. Correlation of glucosinolate content to myrosinase activity in horseradish (Armoracia rusticana).

    PubMed

    Li, Xian; Kushad, Mosbah M

    2004-11-17

    Fully developed horseradish (Armoracia rusticana Gaertn., Mey., & Scherb.) roots from 27 accessions and leaves from a subset of 9 accessions were evaluated for glucosinolates and myrosinase enzyme activity. Eight different glucosinolates were detected (based on HPLC retention times as desulfoglucosinolates) in both root and leaf tissues. The sum of these glucosinolates, referred to as total, ranged from 2 to 296 micromol g(-1) of dry weight (DW) in both tissues. Four glucosinolates (sinigrin, glucobrassicin, neoglucobrassicin, and gluconasturtiin) were detected in major quantities. In fully developed roots, sinigrin concentration represented approximately 83%, gluconasturtiin approximately 11%, and glucobrassicin approximately 1% of the total glucosinolates. Approximately the same proportions of individual glucosinolates appeared in fully developed leaves, except that glucobrassicin was substituted by neoglucobrassicin and gluconasturtiin concentration was significantly lower (<1%). At least four other glucosinolates were detected in very small quantities (<1%) in both roots and leaves. Myrosinase (beta-thioglucoside glucohydrolase, EC 3.2.3.1) is the enzyme responsible for the hydrolysis of the parent glucosinolates into biologically active products. Very little is known about myrosinase activity and the correlation of its activity to total and individual glucosinolates in plant tissues. Significant differences in myrosinase activity were detected between the roots and leaves, ranging from 1.2 to 57.1 units g(-1) of DW. Data showed no correlation between myrosinase activity and total and/or individual glucosinolates in the roots. However, in the leaves, significant correlations were found between myrosinase activity and total glucosinolates (0.78 at P = 0.01) and between myrosinase activity and sinigrin (0.80 at P = 0.01). Glucosinolates content and myrosinase activity were also correlated in young and fully developed roots and leaves and during tissue crushing. Glucobrassicin concentration in the roots and neoglucobrassicin concentration in the leaves were significantly higher in young than in fully developed tissue. Crushing of the tissue resulted in rapid hydrolysis of sinigrin and glucobrassicin, as expected, from the presence of myrosinase. Likewise, myrosinase activity declined rapidly after crushing, perhaps due to inactivation by the reaction products and/or the depletion of its substrates.

  6. Pummelo Protects Doxorubicin-Induced Cardiac Cell Death by Reducing Oxidative Stress, Modifying Glutathione Transferase Expression, and Preventing Cellular Senescence

    PubMed Central

    Chularojmontri, L.; Gerdprasert, O.; Wattanapitayakul, S. K.

    2013-01-01

    Citrus flavonoids have been shown to reduce cardiovascular disease (CVD) risks prominently due to their antioxidant effects. Here we investigated the protective effect of pummelo (Citrus maxima, CM) fruit juice in rat cardiac H9c2 cells against doxorubicin (DOX-) induced cytotoxicity. Four antioxidant compositions (ascorbic acid, hesperidin, naringin, and gallic acid) were determined by HPLC. CM significantly increased cardiac cell survival from DOX toxicity as evaluated by MTT assay. Reduction of cellular oxidative stress was monitored by the formation of DCF fluorescent product and total glutathione (GSH) levels. The changes in glutathione-S-transferase (GST) activity and expression were determined by enzyme activity assay and Western blot analysis, respectively. Influence of CM on senescence-associated β-galactosidase activity (SA-β-gal) was also determined. The mechanisms of cytoprotection involved reduction of intracellular oxidative stress, maintaining GSH availability, and enhanced GST enzyme activity and expression. DOX-induced cellular senescence was also attenuated by long-term CM treatment. Thus, CM fruit juice can be promoted as functional fruit to protect cells from oxidative cell death, enhance the phase II GSTP enzyme activity, and decrease senescence phenotype population induced by cardiotoxic agent such as DOX. PMID:23401708

  7. Effects of lead and zinc mining contamination on bacterial community diversity and enzyme activities of vicinal cropland.

    PubMed

    Qu, Juanjuan; Ren, Guangming; Chen, Bao; Fan, Jinghua; E, Yong

    2011-11-01

    In the process of mining activity, many kinds of heavy metals enter into soils with dust, causing serious contamination to the environment. In this study, six soils were sampled from cropland at different distances from a lead/zinc mine in Heilongjiang Province, China. The total contents of lead and zinc in the vicinal cropland exceeded the third level of environmental quality standard for soil in China, which indicated that soils in this area were moderately contaminated. Bacterial community diversity and population were greatly decreased when the concentrations of lead and zinc were beyond 1,500 and 995 mg kg(-1), respectively, as analyzed by plate counting and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The bands of DGGE patterns varied with the degree of contamination. The activities of soil urease, phosphatase, and dehydrogenase were negatively correlated with the concentrations of lead and zinc. The highest inhibitory effect of heavy metals on soil enzyme activities was observed in urease. It was noted that PCR-DGGE patterns combined with soil enzyme activity analysis can be indices for the soil quality assessment by heavy metal contamination.

  8. Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil.

    PubMed

    Wang, Xiubin; Zhou, Wei; Liang, Guoqing; Song, Dali; Zhang, Xiaoya

    2015-12-15

    In this study, the characteristics of maize biochar produced at different pyrolysis temperatures (300, 450 and 600°C) and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil were investigated. As pyrolysis temperature increased, ash content, pH, electrical conductivity, surface area, pore volume and aromatic carbon content of biochar increased while yield, ratios of oxygen:carbon and hydrogen: carbon and alkyl carbon content decreased. During incubation, SOC, total N, and ammonium-N contents increased in all biochar-amended treatments compared with the urea treatment; however, soil nitrate-N content first increased and then decreased with increasing pyrolysis temperature of the applied biochar. Extracellular enzyme activities associated with carbon transformation first increased and then decreased with biochars pyrolyzed at 450 and 600°C. Protease activity markedly increased with increased pyrolysis temperatures, whereas pyrolysis temperature had limited effect on soil urease activity. The results indicated that the responses of extracellular enzymes to biochar were dependent on the pyrolysis temperature, the enzyme itself and incubation time as well. Copyright © 2015. Published by Elsevier B.V.

  9. Balancing the stability and the catalytic specificities of OP hydrolases with enhanced V-agent activities.

    PubMed

    Reeves, T E; Wales, M E; Grimsley, J K; Li, P; Cerasoli, D M; Wild, J R

    2008-06-01

    Rational site-directed mutagenesis and biophysical analyses have been used to explore the thermodynamic stability and catalytic capabilities of organophosphorus hydrolase (OPH) and its genetically modified variants. There are clear trade-offs in the stability of modifications that enhance catalytic activities. For example, the H254R/H257L variant has higher turnover numbers for the chemical warfare agents VX (144 versus 14 s(-1) for the native enzyme (wild type) and VR (Russian VX, 465 versus 12 s(-1) for wild type). These increases are accompanied by a loss in stability in which the total Gibb's free energy for unfolding is 19.6 kcal/mol, which is 5.7 kcal/mol less than that of the wild-type enzyme. X-ray crystallographic studies support biophysical data that suggest amino acid residues near the active site contribute to the chemical and thermal stability through hydrophobic and cation-pi interactions. The cation-pi interactions appear to contribute an additional 7 kcal/mol to the overall global stability of the enzyme. Using rational design, it has been possible to make amino acid changes in this region that restored the stability, yet maintained effective V-agent activities, with turnover numbers of 68 and 36 s(-1) for VX and VR, respectively. This study describes the first rationally designed, stability/activity balance for an OPH enzyme with a legitimate V-agent activity, and its crystal structure.

  10. Determination of total creatine kinase activity in blood serum using an amperometric biosensor based on glucose oxidase and hexokinase.

    PubMed

    Kucherenko, I S; Soldatkin, O O; Lagarde, F; Jaffrezic-Renault, N; Dzyadevych, S V; Soldatkin, A P

    2015-11-01

    Creatine kinase (CK: adenosine-5-triphosphate-creatine phosphotransferase) is an important enzyme of muscle cells; the presence of a large amount of the enzyme in blood serum is a biomarker of muscular injuries, such as acute myocardial infarction. This work describes a bi-enzyme (glucose oxidase and hexokinase based) biosensor for rapid and convenient determination of CK activity by measuring the rate of ATP production by this enzyme. Simultaneously the biosensor determines glucose concentration in the sample. Platinum disk electrodes were used as amperometric transducers. Glucose oxidase and hexokinase were co-immobilized via cross-linking with BSA by glutaraldehyde and served as a biorecognition element of the biosensor. The biosensor work at different concentrations of CK substrates (ADP and creatine phosphate) was investigated; optimal concentration of ADP was 1mM, and creatine phosphate - 10 mM. The reproducibility of the biosensor responses to glucose, ATP and CK during a day was tested (relative standard deviation of 15 responses to glucose was 2%, to ATP - 6%, to CK - 7-18% depending on concentration of the CK). Total time of CK analysis was 10 min. The measurements of creatine kinase in blood serum samples were carried out (at 20-fold sample dilution). Twentyfold dilution of serum samples was chosen as optimal for CK determination. The biosensor could distinguish healthy and ill people and evaluate the level of CK increase. Thus, the biosensor can be used as a test-system for CK analysis in blood serum or serve as a component of multibiosensors for determination of important blood substances. Determination of activity of other kinases by the developed biosensor is also possible for research purposes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Expression of phosphatidylcholine biosynthetic enzymes during early embryogenesis in the amphibian Bufo arenarum.

    PubMed

    Fernández-Bussy, Rodrigo; Mouguelar, Valeria; Banchio, Claudia; Coux, Gabriela

    2015-04-01

    In the principal route of phosphatidylcholine (PC) synthesis the regulatory steps are catalysed by CTP:phosphocholine cytidylyltransferase (CCT) and choline kinase (CK). Knock-out mice in Pcyt1a (CCT gene) and Chka1 (CK gene) resulted in preimplantation embryonic lethality, demonstrating the essential role of this pathway. However, there is still a lack of detailed CCT and CK expression analysis during development. The aim of the current work was to study the expression during early development of both enzymes in the external-fertilization vertebrate Bufo arenarum. Reverse transcription polymerase chain reaction (RT-PCR) and western blot confirmed their presence in unfertilized eggs. Analysis performed in total extracts from staged embryos showed constant protein levels of both enzymes until the 32-cell stage: then they decreased, reaching a minimum in the gastrula before starting to recover. CTP:phosphocholine cytidylyltransferase is an amphitropic enzyme that inter-converts between cytosolic inactive and membrane-bound active forms. Immunoblot analysis demonstrated that the cytosolic:total CCT protein ratio does not change throughout embryogenesis, suggesting a progressive decline of CCT activity in early development. However, PC (and phosphatidylethanolamine) content per egg/embryo remained constant throughout the stages analysed. In conclusion, the current data for B. arenarum suggest that net synthesis of PC mediated by CCT and CK is not required in early development and that supplies for membrane biosynthesis are fulfilled by lipids already present in the egg/embryo reservoirs.

  12. The Impact of Enzyme Characteristics on Corn Stover Fiber Degradation and Acid Production During Ensiled Storage

    NASA Astrophysics Data System (ADS)

    Ren, Haiyu; Richard, Tom L.; Moore, Kenneth J.

    Ensilage can be used to store lignocellulosic biomass before industrial bioprocessing. This study investigated the impacts of seven commerical enzyme mixtures derived from Aspergillus niger, Trichoderma reesei, and T. longibrachiatum. Treatments included three size grades of corn stover, two enzyme levels (1.67 and 5 IU/g dry matter based on hemicellulase), and various ratios of cellulase to hemicellulase (C ∶ H). The highest C ∶ H ratio tested, 2.38, derived from T. reesei, resulted in the most effective fermentation, with lactic acid as the dominant product. Enzymatic activity during storage may complement industrial pretreatment; creating synergies that could reduce total bioconversion costs.

  13. Aroma Release in Wine Using Co-Immobilized Enzyme Aggregates.

    PubMed

    Ahumada, Katherine; Martínez-Gil, Ana; Moreno-Simunovic, Yerko; Illanes, Andrés; Wilson, Lorena

    2016-11-08

    Aroma is a remarkable factor of quality and consumer preference in wine, representing a distinctive feature of the product. Most aromatic compounds in varietals are in the form of glycosidic precursors, which are constituted by a volatile aglycone moiety linked to a glucose residue by an O -glycosidic bond; glucose is often linked to another sugar (arabinose, rhamnose or apiose). The use of soluble β-glycosidases for aroma liberation implies the addition of a precipitating agent to remove it from the product and precludes its reuse after one batch. An attractive option from a technological perspective that will aid in removing such constraints is the use of immobilized glycosidases. Immobilization by aggregation and crosslinking is a simple strategy producing enzyme catalysts of very high specific activity, being an attractive option to conventional immobilization to solid inert supports. The purpose of this work was the evaluation of co-immobilized β-glycosidases crosslinked aggregates produced from the commercial preparation AR2000, which contains the enzymes involved in the release of aromatic terpenes in Muscat wine (α-l-arabinofuranosidase and β-d-glucopyranosidase). To do so, experiments were conducted with co-immobilized crosslinked enzyme aggregates (combi-CLEAs), and with the soluble enzymes, using an experiment without enzyme addition as control. Stability of the enzymes at the conditions of winemaking was assessed and the volatiles composition of wine was determined by SPE-GC-MS. Stability of enzymes in combi-CLEAs was much higher than in soluble form, 80% of the initial activity remaining after 60 days in contact with the wine; at the same conditions, the soluble enzymes had lost 80% of their initial activities after 20 days. Such higher stabilities will allow prolonged use of the enzyme catalyst reducing its impact in the cost of winemaking. Wine treated with combi-CLEAs was the one exhibiting the highest concentration of total terpenes (18% higher than the control) and the highest concentrations of linalool (20% higher), nerol (20% higher) and geraniol (100% higher), which are the most important terpenes in determining Muscat typicity. Co-immobilized enzymes were highly stable at winemaking conditions, so their reutilization is possible and technologically attractive by reducing the impact of enzyme cost on winemaking cost.

  14. Fructose 2,6-bisphosphate and 6-phosphofructo-2-kinase during liver regeneration.

    PubMed Central

    Rosa, J L; Ventura, F; Carreras, J; Bartrons, R

    1990-01-01

    Glycogen and fructose 2,6-bisphosphate levels in rat liver decreased quickly after partial hepatectomy. After 7 days the glycogen level was normalized and fructose 2,6-bisphosphate concentration still remained low. The 'active' (non-phosphorylated) form of 6-phosphofructo-2-kinase varied in parallel with fructose 2,6-bisphosphate levels, whereas the 'total' activity of the enzyme decreased only after 24 h, similarly to glucokinase. The response of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from hepatectomized rats (96 h) to sn-glycerol 3-phosphate and to cyclic AMP-dependent protein kinase was different from that of the enzyme from control animals and similar to that of the foetal isoenzyme. PMID:2173548

  15. Encapsulation of enzyme via one-step template-free formation of stable organic-inorganic capsules: A simple and efficient method for immobilizing enzyme with high activity and recyclability.

    PubMed

    Huang, Renliang; Wu, Mengyun; Goldman, Mark J; Li, Zhi

    2015-06-01

    Enzyme encapsulation is a simple, gentle, and general method for immobilizing enzyme, but it often suffers from one or more problems regarding enzyme loading efficiency, enzyme leakage, mechanical stability, and recyclability. Here we report a novel, simple, and efficient method for enzyme encapsulation to overcome these problems by forming stable organic-inorganic hybrid capsules. A new, facile, one-step, and template-free synthesis of organic-inorganic capsules in aqueous phase were developed based on PEI-induced simultaneous interfacial self-assembly of Fmoc-FF and polycondensation of silicate. Addition of an aqueous solution of Fmoc-FF and sodium silicate into an aqueous solution of PEI gave a new class of organic-inorganic hybrid capsules (FPSi) with multi-layered structure in high yield. The capsules are mechanically stable due to the incorporation of inorganic silica. Direct encapsulation of enzyme such as epoxide hydrolase SpEH and BSA along with the formation of the organic-inorganic capsules gave high yield of enzyme-containing capsules (∼1.2 mm in diameter), >90% enzyme loading efficiency, high specific enzyme loading (158 mg protein g(-1) carrier), and low enzyme leakage (<3% after 48 h incubation). FPSi-SpEH capsules catalyzed the hydrolysis of cyclohexene oxide to give (1R, 2R)-cyclohexane-1,2-diol in high yield and concentration, with high specific activity (6.94 U mg(-1) protein) and the same high enantioselectivity as the free enzyme. The immobilized SpEH demonstrated also excellent operational stability and recyclability: retaining 87% productivity after 20 cycles with a total reaction time of 80 h. The new enzyme encapsulation method is efficient, practical, and also better than other reported encapsulation methods. © 2015 Wiley Periodicals, Inc.

  16. Taraxacum officinale Weber extracts inhibit LPS-induced oxidative stress and nitric oxide production via the NF-κB modulation in RAW 264.7 cells.

    PubMed

    Park, Chung Mu; Park, Ji Young; Noh, Kyung Hee; Shin, Jin Hyuk; Song, Young Sun

    2011-01-27

    The common dandelion (Taraxacum officinale G.H. Weber ex Wiggers, Asteraceae) has been widely used in folklore medicine to treat dyspepsia, heartburn, and spleen and liver disorders. To compare the antioxidative and anti-inflammatory activities of Taraxacum officinale methanol extract (TOME) and water extract (TOWE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and assess their constitutional differences, including luteolin, chicoric acid, and total phenol content. Antioxidative enzyme activities, nitric oxide (NO) production, and inducible NO synthase (iNOS) and nuclear factor (NF)-κB expression were estimated by biochemical analysis, the Griess reaction, reverse transcription-polymerase chain reaction, western hybridization, and electrophoretic mobility shift assay. High-performance liquid chromatography and the Folin-Ciocalteau method were used to analyze functional phytochemicals and total phenol content. TOME and TOWE significantly reduced NO production with an IC(50) of 79.9 and 157.5 μg/mL, respectively, without cytotoxicity. Depleted glutathione (GSH) and antioxidative enzyme activities, including superoxide dismutase, catalase, GSH-peroxidase, and GSH-reductase, were restored by dandelion extracts. Both extracts inhibited LPS-stimulated iNOS gene expression and that of its transcription factor, NF-κB, in parallel with nitrite reduction. TOME showed more potent antioxidative and anti-inflammatory capacities than TOWE, which was attributable to its high total phenol, luteolin, and chicoric acid content. These results indicate that TOME and TOWE inhibit oxidative stress and inflammatory responses through elevated de novo synthesis of antioxidative enzymes and suppression of iNOS expression by NF-κB inactivation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Sulfur Deprivation Results in Oxidative Perturbation in Chlorella sorokiniana (211/8k).

    PubMed

    Salbitani, Giovanna; Vona, Vincenza; Bottone, Claudia; Petriccione, Milena; Carfagna, Simona

    2015-05-01

    Sulfur deficiency in plant cells has not been considered as a potential abiotic factor that can induce oxidative stress. We studied the antioxidant defense system of Chlorella sorokiniana cultured under sulfur (S) deficiency, imposed for a maximum period of 24 h, to evaluate the effect of an S shortage on oxidative stress. S deprivation induced an immediate (30 min) but transient increase in the intracellular H2O2 content, which suggests that S limitation can lead to a temporary redox disturbance. After 24 h, S deficiency in Chlorella cells decreased the glutathione content to <10% of the value measured in cells that were not subjected to S deprivation. Consequently, we assumed that the cellular antioxidative mechanisms could be altered by a decrease in the total glutathione content. The total ascorbate pool increased within 2 h after the initiation of S depletion, and remained high until 6 h; however, ascorbate regeneration was inhibited under limited S conditions, indicated by a significant decrease in the ascorbate/dehydroascorbate (AsA/DHA) ratios. Furthermore, ascorbate peroxidase (APX) and superoxide dismutase (SOD) were activated under S deficiency, but we assumed that these enzymes were involved in maintaining the cellular H2O2 balance for at least 4 h after the initiation of S starvation. We concluded that S deprivation triggers redox changes and induces antioxidant enzyme activities in Chlorella cells. The accumulation of total ascorbate, changes in the reduced glutathione/oxidized glutathione (GSH/GSSG) ratios and an increase in the activity of SOD and APX enzymes indicate that oxidative perturbation occurs during S deprivation. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Increased brain lysosomal pepstatin-insensitive proteinase activity in patients with neurodegenerative diseases.

    PubMed

    Junaid, M A; Pullarkat, R K

    1999-04-02

    A recent study has shown mutations in CLN2 gene, that encodes a novel lysosomal pepstatin-insensitive proteinase (LPIP), in the pathophysiology of late-infantile neuronal ceroid lipofuscinosis (LINCL). We have measured the LPIP activities in brains from various forms of human neuronal ceroid lipofuscinoses (NCL), canine ceroid lipofuscinosis and other neurodegenerative disorders with a highly sensitive assay using a tetrapeptide Gly-Phe-Phe-Leu-amino-trifluoromethyl coumarin (AFC) as substrate. Brain LPIP has a pH optimum of 3.5 and an apparent km of 100 microM for the crude enzyme. The enzyme activity is totally absent in LINCL patients. Pronounced increase in the LPIP activity was seen in patients suffering from infantile (INCL), juvenile (JNCL) and adult (ANCL) forms of neuronal ceroid lipofuscinoses. LPIP activity was also found to be increased about two-fold in Alzheimer's disease when compared with normal or age-matched controls, while in globoidal-cell leukodystrophy (Krabbe's disease) it was similar to the normal controls. Although mannose-6-phosphorylated LPIP is increased 13-fold in brains of patients with JNCL, this form of LPIP did not have any enzyme activity. The mechanism by which LPIP activities are increased in a wide range of neurodegenerative diseases is unknown, although neuronal loss, followed by gliosis are common characteristics of these diseases.

  19. Metallo-β-Lactamase Producers in Environmental Microbiota: New Molecular Class B Enzyme in Janthinobacterium lividum

    PubMed Central

    Rossolini, Gian Maria; Condemi, Maria Adelaide; Pantanella, Fabrizio; Docquier, Jean-Denis; Amicosante, Gianfranco; Thaller, Maria Cristina

    2001-01-01

    Eleven environmental samples from different sources were screened for the presence of metallo-β-lactamase-producing bacteria by using a selective enrichment medium containing a carbapenem antibiotic and subsequently testing each isolate for production of EDTA-inhibitable carbapenemase activity. A total of 15 metallo-β-lactamase-producing isolates, including 10 Stenotrophomonas maltophilia isolates, 3 Chryseobacterium spp., one Aeromonas hydrophila isolate, and one Janthinobacterium lividum isolate (a species in which production of metallo-β-lactamase activity was not previously reported), were obtained from 8 samples. In the J. lividum isolate, named JAC1, production of metallo-β-lactamase activity was elicited upon exposure to β-lactams. Screening of a JAC1 genomic library for clones showing a reduced imipenem susceptibility led to the isolation of a metallo-β-lactamase determinant encoding a new member (named THIN-B) of the highly divergent subclass B3 lineage of metallo-β-lactamases. THIN-B is most closely related (35.6% identical residues) to the L1 enzyme of S. maltophilia and more distantly related to the FEZ-1 enzyme of Legionella gormanii (27.8% identity) and to the GOB-1 enzyme of Chryseobacterium meningosepticum (24.2% identity). Sequences related to blaTHIN-B, and inducible production of metallo-β-lactamase activity, were also detected in the J. lividum type strain DSM1522. Expression of the blaTHIN-B gene in Escherichia coli resulted in decreased susceptibility to several β-lactams, including penicillins, cephalosporins (including cephamycins and oxyimino cephalosporins), and carbapenems, revealing a broad substrate specificity of the enzyme. The results of this study indicated that metallo-β-lactamase-producing bacteria are widespread in the environment and identified a new molecular class B enzyme in the environmental species J. lividum. PMID:11181369

  20. Metallo-beta-lactamase producers in environmental microbiota: new molecular class B enzyme in Janthinobacterium lividum.

    PubMed

    Rossolini, G M; Condemi, M A; Pantanella, F; Docquier, J D; Amicosante, G; Thaller, M C

    2001-03-01

    Eleven environmental samples from different sources were screened for the presence of metallo-beta-lactamase-producing bacteria by using a selective enrichment medium containing a carbapenem antibiotic and subsequently testing each isolate for production of EDTA-inhibitable carbapenemase activity. A total of 15 metallo-beta-lactamase-producing isolates, including 10 Stenotrophomonas maltophilia isolates, 3 Chryseobacterium spp., one Aeromonas hydrophila isolate, and one Janthinobacterium lividum isolate (a species in which production of metallo-beta-lactamase activity was not previously reported), were obtained from 8 samples. In the J. lividum isolate, named JAC1, production of metallo-beta-lactamase activity was elicited upon exposure to beta-lactams. Screening of a JAC1 genomic library for clones showing a reduced imipenem susceptibility led to the isolation of a metallo-beta-lactamase determinant encoding a new member (named THIN-B) of the highly divergent subclass B3 lineage of metallo-beta-lactamases. THIN-B is most closely related (35.6% identical residues) to the L1 enzyme of S. maltophilia and more distantly related to the FEZ-1 enzyme of Legionella gormanii (27.8% identity) and to the GOB-1 enzyme of Chryseobacterium meningosepticum (24.2% identity). Sequences related to bla(THIN-B), and inducible production of metallo-beta-lactamase activity, were also detected in the J. lividum type strain DSM1522. Expression of the bla(THIN-B) gene in Escherichia coli resulted in decreased susceptibility to several beta-lactams, including penicillins, cephalosporins (including cephamycins and oxyimino cephalosporins), and carbapenems, revealing a broad substrate specificity of the enzyme. The results of this study indicated that metallo-beta-lactamase-producing bacteria are widespread in the environment and identified a new molecular class B enzyme in the environmental species J. lividum.

  1. Optimization of moistening solution concentration on xylanase activity in solid state fermentation from oil palm empty fruit bunches

    NASA Astrophysics Data System (ADS)

    Mardawati, Efri; Parlan; Rialita, Tita; Nurhadi, Bambang

    2018-03-01

    Xylanase is an enzyme used in the industrial world, including food industry. Xylanase can be utilized as a 1,4-β-xylosidic endo-hydrolysis catalyst of xylanase, a hemicellulose component for obtaining a xylose monomer. This study aims to determine the optimum concentration of the fermentation medium using Response Surface Method (RSM) in the production of xylanase enzyme from oil palm empty fruit bunches (OPEFB) through solid state fermentation process. The variables varied in this study used factor A (ammonium sulphate concentration 1.0-2.0 g/L), B (concentration of potassium dihydrogen phosphate 1.5-2.5 g/L) and C (urea concentration 0.2 – 0.5 g/L). The data was analysed by using Design Expert version 10.0.1.0 especially CCD with total 17 running including 3 times replicated of canter point. Trichoderma viride was used for the process production of xylanase enzyme. The ratio between substrate and moistening solution used was 0.63 g / mL with temperature of 32.80C, 60 h incubation time. The analysis of enzyme activity was done by DNS method with 1% xylan as substrate. Analysis of protein content in enzyme was done by Bradford method. The optimum of moistening solution concentration in this fermentation was obtained. They are, the ammonium sulphate concentration of 1.5 g/L, potassium dihydrogen phosphate 2.0 g/L and urea 0.35 g/L with activity of 684.70 U/mL, specific activity enzyme xylanase 6261.58 U/mg, protein content 0.1093 U/mg, the model was validated using experiment design with perfect reliability value 0.96.

  2. Phosphorous digestibility and activity of intestinal phytase in hybrid tilapia, Oreochromis niloticus X O. aureus

    USGS Publications Warehouse

    La Vorgna, M.W.; Hafez, Y.; Hughes, S.G.; Handwerker, T.

    2003-01-01

    Experiments were conducted to determine the degree to which phytate-bound phosphorus from plant protein sources could be used by hybrid tilapia (Oreochromis niloticus X O. aureus). Utilizing an inert marker technique with chromic oxide, hybrid tilapia in our study were effective at utilizing both inorganic and phytate phosphorus as evidenced by average apparent digestibility values of 93.2% and 90.0% for total and phytate phosphorus, respectively. Analysis of the intestinal brush border membrane of the tilapia revealed enzyme activity that was capable of hydrolyzing phytic acid. The presence of phytic acid hydrolyzing enzyme activity in the intestinal brush border provides a probable mechanism by which these hybrid tilapia are able to utilize phytate phosphorus effectively. ?? 2003 by The Haworth Press, Inc. All rights reserved.

  3. Methionine biosynthesis in higher plants. II. Purification and characterization of cystathionine beta-lyase from spinach chloroplasts.

    PubMed

    Droux, M; Ravanel, S; Douce, R

    1995-01-10

    Cystathionine beta-lyase, the second enzyme of the transsulfuration pathway leading to homocysteine synthesis was purified over 16,000-fold from spinach (Spinacia oleracea L.) leaf chloroplasts (soluble fraction). Enzyme activity was followed along the purification scheme by either a colorimetric method for the determination of cysteine or by fluorescence detection of the bimane derivative of L-homocysteine after reverse-phase HPLC. Cystathionine beta-lyase has a molecular mass of 170,000 +/- 5000 Da and consists of four identical subunits of 44,000 Da. The enzyme exhibits an absorption spectrum in the visible range with a maximum at 418 nm due to pyridoxal 5'-phosphate. The chloroplastic enzyme catalyzes alpha,beta-cleavage of the thioether L-cystathionine and the dithioacetal L-djenkolate with apparent Km values of 0.15 and 0.34 mM, respectively, and apparent Vm values corresponding to a specific activity of 13 Units mg-1. However, no activity was detected toward the disulfide L-cysteine. With either L-cystathionine and L-djenkolate as substrate, maximal activity was obtained between pH 8.3 and pH 9.0. Besides the chloroplastic enzyme form, anion exchange chromatography of a total spinach leaf extract allowed the detection of a second pool of cystathionine beta-lyase activity that is associated with the cytosolic compartment and eluted at a lower salt concentration than the chloroplastic isoform. Kinetics of inactivation of cystathionine beta-lyase by the L-alpha-(2-aminoethoxyvinyl) glycine (AVG), an analogue of L-cystathionine, are consistent with the existence of an intermediate reversible enzyme inhibitor complex (apparent inhibition constant Kappi of 110 microM) preceding the irreversible formation of a final inactivated state of the enzyme (kd = 4.8 x 10(-3) s-1). Pyridoxal 5'-phosphate free in solution binds AVG with an apparent dissociation constant Kapp in the order of 350 microM. The comparison between the Kapp (free pyridoxal 5'-phosphate) and Kappi (enzyme inactivation) values indicate that the prosthetic group of spinach chloroplast cystathionine beta-lyase is freely accessible to the inhibitor compound AVG.

  4. Extraction and identification of α-amylase inhibitor peptides from Nephelium lappacheum and Nephelium mutabile seed protein using gastro-digestive enzymes.

    PubMed

    Evaristus, Natashya Anak; Wan Abdullah, Wan Nadiah; Gan, Chee-Yuen

    2018-04-01

    The potential of N. lappacheum and N. mutabile seed as a source of α-amylase inhibitor peptides was explored based on the local traditional practice of using the seed. Different gastro-digestive enzymes (i.e. pepsin or chymotrypsin) or a sequential digestion were used to extract the peptides. The effects of digestion time and enzyme to substrate (E:S) ratio on the α-amylase inhibitory activity were investigated. Results showed that chymotrypsin was effective in producing the inhibitor peptides from rambutan seed protein at E:S ratio 1:20 for 1 h, whereas pepsin was more effective for pulasan seed protein under the same condition. A total of 20 and 31 novel inhibitor peptides were identified, respectively. These peptides could bind with the subsites of α-amylase (i.e. Trp58, Trp59, Tyr62, Asp96, Arg195, Asp197, Glu233, His299, Asp300, and His305) and formed a sliding barrier that preventing the formation of enzyme/substrate intermediate leading to lower α-amylase activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Epichlorohydrin induced biochemical changes in the rose-ringed parakeet, Psittacula krameri Scopoli.

    PubMed

    Hans, B; Kaur, S; Sangha, G K

    1999-08-01

    Intraperitoneal administration of epichlorohydrin (ECH) at the dose level of 20 and 50 mg/kg body weight inhibited spermatogenesis in the testis of parakeet during breeding season. A total load of 60 mg/kg body weight of ECH given on 3 consecutive days proved to be lethal. Testicular proteins, nucleic acids (DNA and RNA), phospholipids and acid phosphatase activity were decreased, while the lipids, total cholesterol and alkaline phosphatase activity increased after ECH administration. The results suggest that the testicular atrophy caused by ECH was associated with an alteration in the activities of macromolecules and enzymes related to specific events of spermatogenesis.

  6. Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe's milk cheese.

    PubMed

    Ozturkoglu-Budak, Sebnem; Wiebenga, Ad; Bron, Peter A; de Vries, Ronald P

    2016-11-21

    We previously identified the microbiota present during cheese ripening and observed high protease and lipase activity in Divle Cave cheese. To determine the contribution of individual isolates to enzyme activities, we investigated a range of species representing this microbiota for their proteolytic and lipolytic ability. In total, 17 fungal, 5 yeast and 18 bacterial strains, previously isolated from Divle Cave cheese, were assessed. Qualitative protease and lipase activities were performed on skim-milk agar and spirit-blue lipase agar, respectively, and resulted in a selection of strains for quantitative assays. For the quantitative assays, the strains were grown on minimal medium containing irradiated Divle Cave cheese, obtained from the first day of ripening. Out of 16 selected filamentous fungi, Penicillium brevicompactum, Penicillium cavernicola and Penicillium olsonii showed the highest protease activity, while Mucor racemosus was the best lipase producer. Yarrowia lipolytica was the best performing yeast with respect to protease and lipase activity. From the 18 bacterial strains, 14 and 11 strains, respectively showed protease and lipase activity in agar plates. Micrococcus luteus, Bacillus stratosphericus, Brevibacterium antiquum, Psychrobacter glacincola and Pseudomonas proteolytica displayed the highest protease and lipase activity. The proteases of yeast and filamentous fungi were identified as mainly aspartic protease by specific inhibition with Pepstatin A, whereas inhibition by PMSF (phenylmethylsulfonyl fluoride) indicated that most bacterial enzymes belong to serine type protease. Our results demonstrate that aspartic proteases, which usually have high milk clotting activity, are predominantly derived from fungal strains, and therefore fungal enzymes appear to be more suitable for use in the cheese industry. Microbial enzymes studied in this research might be alternatives for rennin (chymosin) from animal source because of their low cost and stable availability. Future studies will aim to purify these enzymes to test their suitability for use in similar artisanal cheeses or in large scale commercial cheeses. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. VARIATION IN THE GROUP-SPECIFIC CARBOHYDRATE OF GROUP A STREPTOCOCCI

    PubMed Central

    McCarty, Maclyn

    1956-01-01

    Soil organisms have been isolated which elaborate induced enzymes capable of attacking group A and variant (V) streptococcal carbohydrates. The V enzyme hydrolyzes V carbohydrate extensively to dialyzable split products with resultant total loss of precipitating activity with homologous antisera. The split products inhibit the reaction between intact V carbohydrate and its antiserum: evidence is presented which indicates that rhamnose oligosaccharides are responsible for the inhibitory effect. The serological specificity of the V carbohydrate thus appears to be primarily dependent on a rhamnose-rhamnose linkage. The effect of the A enzyme on A carbohydrate is characterized by the removal of 50 to 70 per cent of the total glucosamine in the form of free N-acetyl-glucosamine. As a result of this treatment, the residual carbohydrate loses its reactivity with specific group A antisera and at the same time develops markedly increased cross-reactivity with V antisera. This cross-reactivity is in turn eliminated by treatment with V enzyme. The evidence suggests that the specificity of group A carbohydrate is determined to a large extent by side chains of N-acetyl-glucosamine which also serve to mask underlying rhamnose-rhamnose linkages with V specificity. PMID:13367334

  8. Purification and characteristics of an inducible by polycyclic aromatic hydrocarbons NADP(+)-dependent naphthalenediol dehydrogenase (NDD) in Mucor circinelloides YR-1.

    PubMed

    Camacho-Morales, Reyna Lucero; Zazueta-Novoa, Vanesa; Casillas, Juana Lizbeth González; Ballesteros, Elizabeth Aranda; Bote, Juan Antonio Ocampo; Zazueta-Sandoval, Roberto

    2014-05-01

    We detected NADP(+)-dependent dihydrodiol dehydrogenase (DD) activity in a cell-free extract from Mucor circinelloides YR-1, after high-speed centrifugation. We analyzed the enzymatic activity in the cytosolic fraction by zymograms, as described previously, and eight different DD activity bands were revealed. Five constitutive DD activities (DD1-5) were present when glucose was used as carbon source and three inducible activities (NDD, PDD1 and PDD2) when aromatic hydrocarbon compounds were used. NDD activity was induced all of the aromatic hydrocarbon compounds. The highest DD activity inducer was naphthalene and the lowest was pyrene. One of the enzymes showed higher activity with cis-naphthalene-diol rather than with trans-nahthalenediol as a substrate. We purified this particular enzyme to homogeneity and found that it had an isoelectric point of 4.6. The molecular weight for the native protein was 197.4kDa and 49.03±0.5kDa for the monomer that conforms it, suggesting a homotetrameric structure for the complete enzyme. Polyclonal antibodies were raised against it and obtained. NDD activity was almost totally inhibited when antibodies were used at low concentrations, and in native immunoblots only one band, which corresponds to the activity band detected in the zymograms, could be detected. In denaturing PAGE immunoblots only one band was detected. This band corresponds to the purified protein band of 49kDa detected in SDS-PAGE gels. The other two inducible enzymes PDD1 and PDD2 were present only when phenanthrene was used as sole carbon source in the culture media. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Digestive enzyme activity in the intestine of Nile tilapia (Oreochromis niloticus L.) under pond and cage farming systems.

    PubMed

    Santos, Juliana Ferreira; Soares, Karollina Lopes Siqueira; Assis, Caio Rodrigo Dias; Guerra, Carlos Augusto Martins; Lemos, Daniel; Carvalho, Luiz Bezerra; Bezerra, Ranilson Souza

    2016-10-01

    The effect of different farming systems (cage, pond) upon digestive enzyme activities of Nile tilapia was evaluated. Juvenile Nile tilapia (87.61 ± 1.52 g) were simultaneously cultured in pond and cage systems during 90 days. Cages used nutritional biphasic plan (35 and 32 % crude protein-CP feeds) and ponds used nutritional triphasic plan (35, 32 and 28 % CP feeds). Biometric measurements were monthly performed for adjustments in feeding regimes and removal of intestine tissues to evaluate the performance of enzyme activities. Total proteolytic, amylase and lipase activities were not statistically different between the treatments throughout the periods analyzed (31, 63 and 94 days of culture). However, trypsin and chymotrypsin activities were higher with 31 and 63 days of culture in fish from pond system, suggesting that natural food may have influenced these activities. A positive correlation was observed between the recommended concentration of essential amino acids for Nile tilapia and specific aminopeptidases activity in fish cage system. Substrate-SDS-PAGE revealed 12 active proteolytic bands in both systems. However, integrated density (ID) values were higher in the bands of ponds. Specimens of either cage or pond exhibited five bands of amylolytic activity. Fish from cage and pond systems showed the highest values of ID within 31 days of cultivation. In this study, the complexity of digestive functions could be verified for animals maintained under commercial conditions. Some of the assessed enzymes may show adaptations of their activities and/or expression that allow the fish to achieve a more efficient nutrient assimilation.

  10. Changes in the sugar content of sweet sorghum stems under natural conditions during winter in saline soil of the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    Li, Ying; Yuan, Fang; Wang, Baoshan

    2018-02-01

    In order to investigate the maximum storage period during their natural growth state, the sweet sorghum (Sorghum bicolor L. Moench) stems of four cultivars were analyzed to determine changes in contents of water, total sugars, main soluble sugars and the enzyme activity. From early November 2016 to late January 2017, the decrease in the total sugar content and the contents of sucrose, glucose and fructose slowed down, and the enzyme activities (sucrose synthase and sucrose phosphate synthase) involving sucrose metabolism in the stem remained stable. However, these indicators decreased significantly after the end of January 2017. Low temperatures and a dry environment were conducive to the storage of the sweet sorghum stems. During the winter (from early November 2016 to late January 2017) in northern China, the sweet sorghum plants can be stored naturally in the field via regulating sowing dates, which saves a lot of storage space and production costs for bioethanol company.

  11. Low trans structured fat from flaxseed oil improves plasma and hepatic lipid metabolism in apo E(-/-) mice.

    PubMed

    Cho, Yun-Young; Kwon, Eun-Young; Kim, Hye-Jin; Park, Yong-Bok; Lee, Ki-Teak; Park, Taesun; Choi, Myung-Sook

    2009-07-01

    The objective of this study was to explicate the effects of feeding low trans structured fat from flaxseed oil (LF) on plasma and hepatic lipid metabolism involved in apo E(-/-) mice. The animals were fed a commercial shortening (CS), commercial low trans fat (CL) and LF diet based on AIN-76 diet (10% fat) for 12 weeks. LF supplementation exerted a significant suppression in hepatic lipid accumulation with the concomitant decrease in liver weight. The LF significantly lowered plasma total cholesterol and free fatty acid whereas it significantly increased HDL-C concentration and the HDL-C/total-C ratio compared to the CS group. Reduction of hepatic lipid levels in the LF group was related with the suppression of hepatic enzyme activities for fatty acid and triglyceride synthesis, and cholesterol regulating enzyme activity compared to the CS and CL groups. Accordingly, low trans structured fat from flaxseed oil is highly effective for improving hyperlipidemia and hepatic lipid accumulation in apo E(-/-) mice.

  12. Effect of Chitosan Coating on the Postharvest Quality and Antioxidant Enzyme System Response of Strawberry Fruit during Cold Storage

    PubMed Central

    Petriccione, Milena; Mastrobuoni, Francesco; Pasquariello, Maria Silvia; Zampella, Luigi; Nobis, Elvira; Capriolo, Giuseppe; Scortichini, Marco

    2015-01-01

    The effectiveness of chitosan fruit coating to delay the qualitative and nutraceutical traits of three strawberry cultivars, namely “Candonga”, “Jonica” and “Sabrina”, as well as the effects of chitosan on antioxidant enzymes were evaluated. The fruits were coated with 1% and 2% chitosan solution and stored at 2 °C for nine days. Samples were taken every three days. Physico-chemical (weight loss, soluble solid content and titratable acidity) and nutraceutical (total polyphenol, anthocyanin, flavonoid, ascorbic acid content and antioxidant capacity) properties along with the enzymatic activity (catalase (CAT), ascorbate peroxidase (APX), polyphenol oxidase (PPO), guaiacol peroxidase (GPX) and lipoxygenase (LOX)) were evaluated. Chitosan treatment significantly reduced water loss and delayed the qualitative changes in color, titratable acidity and ascorbic acid content in dose- and cultivar-dependent manners. Additionally, changes in the total polyphenol, anthocyanin and flavonoid contents and the antioxidant capacity of chitosan-coated strawberry fruits were delayed. Chitosan coating enhanced the activity of some antioxidant enzymes, preventing flesh browning and reducing membrane damage. A global view of the responses of the three strawberry cultivars to chitosan coating and storage temperature was obtained using principal component analysis. Chitosan-coated fruit exhibited a slower rate of deterioration, compared to uncoated fruit in all tested cultivars. PMID:28231220

  13. Subtropical urban turfs: Carbon and nitrogen pools and the role of enzyme activity.

    PubMed

    Kong, Ling; Chu, L M

    2018-03-01

    Urban grasslands not only provide a recreational venue for urban residents, but also sequester organic carbon in vegetation and soils through photosynthesis, and release carbon dioxide through respiration, which largely contribute to carbon storage and fluxes at regional and global scales. We investigated organic carbon and nitrogen pools in subtropical turfs and found that dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) were regulated by several factors including microbial activity which is indicated by soil enzymatic activity. We observed a vertical variation and different temporal patterns in both soil DOC, DON and enzyme activities, which decreased significantly with increasing soil depths. We further found that concentration of soil DON was linked with turf age. There were correlations between grass biomass and soil properties, and soil enzyme activities. In particular, soil bulk density was significantly correlated with soil moisture and soil organic carbon (SOC). In addition, DOC correlated significantly with DON. Significant negative correlations were also observed between soil total dissolved nitrogen (TDN) and grass biomass of Axonopus compressus and Zoysia matrella. Specifically, grass biomass was significantly correlated with the soil activity of urease and β-glucosidase. Soil NO 3 -N concentration also showed negative correlations with the activity of both β-glucosidase and protease but there were no significant correlations between cellulase and soil properties or grass biomass. Our study demonstrated a relationship between soil C and N dynamics and soil enzymes that could be modulated to enhance SOC pools through management and maintenance practices. Copyright © 2017. Published by Elsevier B.V.

  14. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes.

    PubMed

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu

    2017-03-06

    To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH 4 -N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO 3 -N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems.

  15. [Effects of elevated ozone concentrations on enzyme activities and organic acids content in wheat rhizospheric soil.

    PubMed

    Yin, Wei Qin; Jing, Hao Qi; Wang, Ya Bo; Wei, Si Yu; Sun, Yue; Wang, Sheng Sen; Wang, Xuai Zhi

    2018-02-01

    The elevated concentration of tropospheric ozone (O 3 ) is an important global climate change driver, with adverse impacts on soil ecological environment and crop growth. In this study, a pot experiment was carried out in an open top chamber (OTC), to investigate the effects of elevated ozone concentration on soil enzyme activities (catalase, polyphenol oxidase, dehydrogenase and invertase), organic acids contents (oxalic acid, citric acid and malic acid) at different growth stages (tillering, jointing, heading and ripening stages) of wheat, and combined with the rhizospheric soil physicochemical properties and plant root characteristics to analyze the underlying reasons. The results showed that, elevated ozone concentration increased soil catalase, polyphenol oxidase, dehydrogenase and invertase activities at wheat ripening period to different degrees, with the effects on the activities of catalase and polyphenol oxidase being statistically significant. At the heading stage, activities of dehydrogenase and invertase were significantly increased by up to 76.7%. At the ripening stage, elevated ozone concentration significantly increased the content of citric acid and malic acid and redox potential (Eh) in rhizospheric soil, but reduced soil pH, electrical conductivity, total carbon and nitrogen. For root characteristics, elevated ozone concentrations significantly reduced the wheat root biomass, total root length and root surface area but increased the average root diameter.

  16. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu

    2017-03-01

    To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH4-N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO3-N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems.

  17. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes

    PubMed Central

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu

    2017-01-01

    To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH4-N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO3-N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems. PMID:28262753

  18. The potential medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological targets.

    PubMed

    Koc, Suheda; Isgor, Belgin S; Isgor, Yasemin G; Shomali Moghaddam, Naznoosh; Yildirim, Ozlem

    2015-05-01

    Plants and most of the plant-derived compounds have long been known for their potential pharmaceutical effects. They are well known to play an important role in the treatment of several diseases from diabetes to various types of cancers. Today most of the clinically effective pharmaceuticals are developed from plant-derived ancestors in the history of medicine. The aim of this study was to evaluate the free radical scavenging activity and total phenolic and flavonoid contents of methanol, ethanol, and acetone extracts from flowers and leaves of Onopordum acanthium L., Carduus acanthoides L., Cirsium arvense (L.) Scop., and Centaurea solstitialis L., all from the Asteraceae family, for investigating their potential medicinal values of biological targets that are participating in the antioxidant defense system such as catalase (CAT), glutathione S-transferase (GST), and glutathione peroxidase (GPx). In this study, free radical scavenging activity and total phenolic and flavonoid contents of the plant samples were assayed by DPPH, Folin-Ciocalteu, and aluminum chloride colorimetric methods. Also, the effects of extracts on CAT, GST, and GPx enzyme activities were investigated. The highest phenolic and flavonoid contents were detected in the acetone extract of C. acanthoides flowers, with 90.305 mg GAE/L and 185.43 mg Q/L values, respectively. The highest DPPH radical scavenging was observed with the methanol leaf extracts of C. arvense with an IC50 value of 366 ng/mL. The maximum GPx and GST enzyme inhibition activities were observed with acetone extracts from the flower of C. solstitialis with IC50 values of 79 and 232 ng/mL, respectively.

  19. Seasonal changes on microbial metabolism and biomass in the euphotic layer of Sicilian Channel.

    PubMed

    Zaccone, R; Caruso, G; Leonardi, M; Maimone, G; Monticelli, L S; Azzaro, M; Cuttitta, A; Patti, B; La Ferla, R

    2015-12-01

    As a part of a wider project on fisheries ecology, several biological and environmental parameters were monitored during two oceanographic cruises (BANSIC 2012 and NOVESAR 2013) in the Sicily Channel, which connects the Western and Eastern Mediterranean basins. The prokaryotic abundances and biomass as well as hydrolysis rates on organic matter were investigated in the euphotic layer of a retention area for fish larval stages including anchovy (Engraulis encrasicolus, Linnaeus, 1758) with the aim to investigate the different biogeochemical signatures in two seasonal conditions. The environmental parameters, particulate organic carbon and nitrogen together with heterotrophic production were also measured. Results showed significant increases for most of the studied parameters with increasing temperature during summer. This had effects on the Carbon cycle and recycling of nutrients; in fact total prokaryotic abundance and biomass, as well as carbon hydrolyzed by two enzymes (Leucine aminopeptidase and β-glucosidase), increased significantly during summer. Conversely Alkaline phosphatase activity, Chlorophyll concentration and Oxygen increased during winter. The same environmental parameters affected also the presence of fish eggs. Moreover high percentages of free enzymes (i.e., enzymes not associated with cells) were measured, accounting for percentages variable from 12 to 95 % of the total enzymatic activity, with values generally higher in summer than in winter. In this oligotrophic environment, the prokaryotic biomass was supported by the C hydrolyzed by enzymatic activities. The ratio between the hydrolyzed C and prokaryotic biomass was higher in winter than in summer, indicating that alkaline phosphatase activity contribute to an efficient incorporation of C into biomass in winter. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effects of feeding diets contaminated with Fusarium mycotoxins on blood biochemical parameters of broiler chickens.

    PubMed

    Faixová, Zita; Faix, Stefan; Borutová, Radka; Leng, Lubomír

    2010-09-01

    This study was conducted to investigate the effects of deoxynivalenol (DON) and zearalenone (ZEA) on some biochemical indices of broiler chickens. Twenty-four Ross 308 hybrid broiler chickens of both sexes were fed diets containing maize contaminated with Fusarium mycotoxins. The diets included a control diet (DON 0.60 mg/kg feed; ZEA 0.07 mg/kg feed), an experimental 1 diet (DON 3.4 mg kg⁻¹ feed; ZEA 3.4 mg kg⁻¹ feed), and an experimental 2 diet (DON 8.2 mg kg⁻¹ feed; ZEA 8.3 mg kg⁻¹ feed). Contaminated diets were fed from 14 days of age for 14 days. Blood samples were collected from 4-week-old birds. Chicks fed a diet containing a low level of contaminated maize (experimental 1) had decreased plasma potassium, magnesium, phosphorus, total protein, albumin, triglycerides, free glycerol concentrations and increased cholesterol and calcium levels as well as alkaline phosphatase (ALP) and aspartate aminotransferase (AST) enzyme activities as compared to the control. Feeding a diet contaminated with high levels of mycotoxins (experimental 2) resulted in decreased plasma potassium, magnesium, total protein, albumin, triglycerides, free glycerol concentrations and increased plasma ALP, alanine aminotransferase (ALT) and AST enzyme activities. The effect of mycotoxin-contaminated diets on ALP activity was dose dependent. Chloride concentration was not affected by the diets. It can be concluded that feeding diets contaminated with both levels of Fusarium mycotoxins significantly affected protein, lipid and mineral metabolism as well as AST and ALP enzyme activities in broiler chickens.

  1. Angiotensin I-Converting Enzyme Inhibitor Activity on Egg Albumen Fermentation

    PubMed Central

    Nahariah, N.; Legowo, A. M.; Abustam, E.; Hintono, A.

    2015-01-01

    Lactobacillus plantarum is used for fermentation of fish products, meat and milk. However, the utilization of these bacteria in egg processing has not been done. This study was designed to evaluate the potential of fermented egg albumen as a functional food that is rich in angiotensin I-converting enzyme inhibitors activity (ACE-inhibitor activity) and is antihypertensive. A completely randomized design was used in this study with six durations of fermentation (6, 12, 18, 24, 30, and 36 h) as treatments. Six hundred eggs obtained from the same chicken farm were used in the experiment as sources of egg albumen. Bacteria L. plantarum FNCC 0027 used in the fermentation was isolated from cow’s milk. The parameters measured were the total bacteria, dissolved protein, pH, total acid and the activity of ACE-inhibitors. The results showed that there were significant effects of fermentation time on the parameters tested. Total bacteria increased significantly during fermentation for 6, 12, 18, and 24 h and then decreased with the increasing time of fermentation to 30 and 36 h. Soluble protein increased significantly during fermentation to 18 h and then subsequently decreased during of fermentation to 24, 30, and 36 h. The pH value decreased markedly during fermentation. The activities of ACE-inhibitor in fermented egg albumen increased during fermentation to 18 h and then decreased with the increasing of the duration of fermentation to 24, 30, and 36 h. The egg albumen which was fermented for 18 h resulted in a functional food that was rich in ACE-inhibitor activity. PMID:25715689

  2. Changes in antioxidant status, protein concentration, acetylcholinesterase, (Na+,K+)-, and Mg2+ -ATPase activities in the brain of hyper- and hypothyroid adult rats.

    PubMed

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Mourouzis, Iordanis; Varonos, Dennis; Cokkinos, Dennis; Tsakiris, Stylianos

    2005-06-01

    It is a common knowledge that metabolic reactions increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how the metabolic reactions could affect the total antioxidant status (TAS), protein concentration (PC) and the activities of acetylcholinesterase (AChE), (Na+,K+)-ATPase and Mg2+ -ATPase in the brain of hyper- and hypothyroid adult male rats. Hyperthyroidism was induced in rats by subcutaneous administration of thyroxine (25 microg/l00 g body weight) once daily for 14 days, while hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. TAS, PC, and enzyme activities were evaluated spectrophotometrically in the homogenated brain of each animal. TAS, PC, and Mg2+ -ATPase activity were found unaffected in hyperthyroidism, while AChE and Na+,K+ -ATPase activities were reduced by 25% (p < 0.01). In contrast, TAS, (Na+,K+)-ATPase and Mg2+-ATPase activities were found to be increased (approx. 23-30%, p < 0.001) in the hypothyroid brain, while AChE activity and PC were shown to be inhibited (approx. 23-30%, p < 0.001). These changes on brain enzyme activities may reflect the different metabolic effects of hyper- and hypothyroidism. Such changes of the enzyme activities may differentially modulate the brain intracellular Mg2+, neural excitability, as well as the uptake and release of biogenic amines.

  3. Role of the conserved amino acids of the 'SDN' loop (Ser130, Asp131 and Asn132) in a class A beta-lactamase studied by site-directed mutagenesis.

    PubMed

    Jacob, F; Joris, B; Lepage, S; Dusart, J; Frère, J M

    1990-10-15

    Ser130, Asp131 and Asn132 ('SDN') are highly conserved residues in class A beta-lactamases forming one wall of the active-site cavity. All three residues of the SDN loop in Streptomyces albus G beta-lactamase were modified by site-directed mutagenesis. The mutant proteins were expressed in Streptomyces lividans, purified from culture supernatants and their kinetic parameters were determined for several substrates. Ser130 was substituted by Asn, Ala and Gly. The first modification yielded an almost totally inactive protein, whereas the smaller-side-chain mutants (A and G) retained some activity, but were less stable than the wild-type enzyme. Ser130 might thus be involved in maintaining the structure of the active-site cavity. Mutations of Asp131 into Glu and Gly proved to be highly detrimental to enzyme stability, reflecting significant structural perturbations. Mutation of Asn132 into Ala resulted in a dramatically decreased enzymic activity (more than 100-fold) especially toward cephalosporin substrates, kcat. being the most affected parameter, which would indicate a role of Asn132 in transition-state stabilization rather than in ground-state binding. Comparison of the N132A and the previously described N132S mutant enzymes underline the importance of an H-bond-forming residue at position 132 for the catalytic process.

  4. Effects of emulsified octadecanic acids on gas production and cellulolysis by the rumen anaerobic fungus, Piromyces communis M014.

    PubMed

    Kim, Chang-H; Lee, Shin J; Ha, Jong K; Kim, Wan Y; Lee, Sung S

    2008-02-01

    Responses of the rumen anaerobic fungus, Piromyces communis M014, to octadecanic long-chain fatty acids (LCFAs) were evaluated by measuring total and hydrogen gas productions, filter paper (FP) cellulose degradation and polysaccharidase enzyme activities. Octadecanic acids (stearic acid, C(18:0); oleic acid, C(18:1); linoleic acid, C(18:2) and linolenic acid, C(18:3)) were emulsified by ultrasonication under anaerobic conditions, and added to the medium at the level of 0.001%. When P. communis M014 was grown in culture with stearic and oleic acids, the cumulative gas production, FP cellulose digestion and enzyme activities were significantly (p<0.05) increased in the early incubation times relative to those for the control. However, the addition of linolenic acid inhibited all of the investigated parameters, including cellulose degradation, enzyme activities and gas production, up to 168h incubation. These results indicated that stearic and oleic acids tended to have stimulatory effects on fungal cellulolysis, whereas linolenic acid caused a significant (p<0.05) inhibitory effect on cellulolysis by the rumen fungus. The fungus, P. communis M014, can biohydrogenate C(18) unsaturated fatty acids to escape from their toxic effects. Therefore, in this study, the results indicated that the more highly the added C(18) LCFA to the fungal culture was unsaturated, the higher the inhibition of gas production and cellulase enzyme activity was.

  5. Silymarin Ameliorates Oxidative Stress and Enhances Antioxidant Defense System Capacity in Cadmium-Treated Mice.

    PubMed

    Farjad, Elham; Momeni, Hamid Reza

    2018-10-01

    Cadmium is an environmental pollutant which induces oxidative stress while silymarin as an antioxidant is able to scavenge free radicals. The aim of the present study was to investigate the effect of silymarin on oxidative stress markers and antioxidant defense system capacity in mice treated with cadmium chloride. In this experimental study, adult mice were divided into four groups as follow: i. Control, ii. Cadmium chloride (5 mg/kg b.w., s.c.), iii. Silymarin+cadmium chloride, and iv. Silymarin (100 mg/kg b.w., i.p.). Mice were treated with cadmium chloride for 24 hours and silymarin was administered 24 hours before the cadmium. Blood samples were then collected from the experimental groups and their sera were prepared. To investigate oxidative stress markers in the serum, the amount of malondialdehyde (MDA) and thiol groups (-SH) were evaluated. To measure the total antioxidant power in the serum, Ferric Reducing/ Antioxidant Power (FRAP) method was used. In addition, the activity of enzymes including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) was assessed to evaluate serum antioxidant defense power. In the cadmium-treated group, the amount of MDA significantly increased as compared to the control group. In silymarin+cadmium group, silymarin significantly ameliorated the level of MDA compared to the cadmium group. In addition, cadmium significantly reduced serum FRAP, the activity of antioxidant defense system enzymes and thiol groups compared to the control. In silymarin+cadmium group, silymarin could significantly reverse the reduction of these markers compared to the cadmium group. Administration of silymarin alone caused a significant increase in serum FRAP, the activity of antioxidant defense system enzymes and thiol groups compared to the control group. Silymarin as a powerful antioxidant reverses the toxic effect of cadmium on the serum levels of lipid peroxidation, total antioxidant power, antioxidant defense system enzymes activity and thiol groups. Copyright© by Royan Institute. All rights reserved.

  6. Angiotensin converting enzyme (ACE) gene expression in experimentally induced liver cirrhosis in rats.

    PubMed

    Shahid, Syed Muhammad; Fatima, Syeda Nuzhat; Mahboob, Tabassum

    2013-09-01

    Angiotensin converting enzyme (ACE) is a key player of Renin Angiotensin System (RAS), involved in conversion of active product, angiotensin-II. Alterations in RAS have been implicated in the pathophysiology of various diseases involving heart, kidney, lung and liver. This study is designed to investigate the association of ACE gene expression in induction of liver cirrhosis in rats. Total 12 male albino Wistar rats were selected and divided in two groups. Control group received 0.9% NaCl, where as Test group received thioacidamide (TAA), dissolved in 0.9%NaCl, injected intraperitoneally at a dosage of 200mg/Kg of body weight, twice a week for 12 weeks. The rats were decapitated and blood sample was collected at the end of experimental period and used for liver functions, enzyme activity, antioxidant enzymes and lipid peroxidation estimations. Genomic DNA was isolated from excised tissue determine the ACE genotypes using specific primers. The ACE gene expression in liver tissue was assessed using the quantitative RT-PCR method. The activity of ALT, total and direct bilirubin, SOD and CAT levels were significantly high (p<0.05) and level of MDA was significantly low (p<0.05) in TAA treated rats as compared to control rats. The ACE gene expression after 12 weeks TAA treatment in cirrhotic rats was significantly increased (p<0.05) in comparison to controls. This study describes the importance of RAS in the development of hepatic fibrosis and the benefits of modulation of this system ACE gene expression. The finding of major up-regulation of ACE in the experimental rat liver provides further insight into the complexities of the RAS and its regulation in liver injury. The development of specific modulators of ACE activity and function, in future, will help determine the role of ACE and its genetic variants in the pathophysiology of liver disease.

  7. Biochemical and genetic analyses of N metabolism in maize testcross seedlings: 2. Roots.

    PubMed

    Silva, Ignacio Trucillo; Abbaraju, Hari Kishan R; Fallis, Lynne P; Liu, Hongjun; Lee, Michael; Dhugga, Kanwarpal S

    2018-06-01

    Intracellular factors differentially affected enzyme activities of N assimilation in the roots of maize testcrosses where alanine aminotransferase and glutamate synthase were the main enzymes regulating the levels of glutamate. N is a key macronutrient for plant growth and development. Breeding maize with improved efficiency in N use could help reduce environmental contamination as well as increase profitability for the farmers. Quantitative trait loci (QTL) mapping of traits related to N metabolism in the root tissue was undertaken in a maize testcross mapping population grown in hydroponic cultures. N concentration was negatively correlated with root and total dry mass. Neither the enzyme activities nor metabolites were appreciably correlated between the root and leaf tissues. Repeatability measures for most of the enzymes were lower than for dry mass. Weak negative correlations between most of the enzymes and dry mass resulted likely from dilution and suggested the presence of excess of enzyme activities for maximal biomass production. Glutamate synthase and alanine aminotransferase each explained more variation in glutamate concentration than either aspartate aminotransferase or asparagine synthetase whereas glutamine synthetase was inconsequential. Twenty-six QTL were identified across all traits. QTL models explained 7-43% of the variance with no significant epistasis between the QTL. Thirteen candidate genes were identified underlying QTL within 1-LOD confidence intervals. All the candidate genes were located in trans configuration, unlinked or even on different chromosomes, relative to the known genomic positions of the corresponding structural genes. Our results have implications in improving NUE in maize and other crop plants.

  8. Purification and characterization of a novel milk-clotting metalloproteinase from Paenibacillus spp. BD3526.

    PubMed

    Hang, Feng; Wang, Qinbo; Hong, Qing; Liu, Peiyi; Wu, Zhengjun; Liu, Zhenmin; Zhang, Hao; Chen, Wei

    2016-04-01

    In this study, a milk-clotting enzyme (MCE) isolated from Paenibacillus spp. BD3526 was purified and characterized. The MCE was purified 8.9-fold with a 10.11% recovery using ammonium sulfate precipitation and anion-exchange chromatography and the specific milk-clotting activity (MCA) reached 6791.73 SU/mg. The enzyme was characterized as a 35kDa metalloproteinase, and the zymogen of which was encoded by a 1671 bp gene named zinc metalloproteinase precursor (zmp) with a predicted molecular weight of 59.6 kDa. The optimal temperature for MCA and proteolytic activity (PA) was 65°C and 60°C, respectively. The enzyme was stable over a pH range of 5.0-9.0 and at temperatures below 50°C. The MCA was completely inactivated when the enzyme was heated at 60°C for 30 min, and the PA was totally inactivated for 20 and 10 min when the enzyme was heated at 55°C and 60°C, respectively. The BD3526 enzyme was preferentially active towards κ-casein (κ-CN) and β-casein (β-CN), as determined by sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE), whereas the hydrolysis of αs-casein (αs-CN) was slow and comparable to that caused by chymosin and asparatic acid proteinase from Rhizomucor miehei. The cleavage site of the metalloproteinase in κ-CN was located at the Met106-Ala107 bond, as determined by mass spectrometry analysis. Copyright © 2016. Published by Elsevier B.V.

  9. Extracellular enzymatic activity of two hydrolases in wastewater treatment for biological nutrient removal.

    PubMed

    Berrio-Restrepo, Jorge Mario; Saldarriaga, Julio César; Correa, Mauricio Andrés; Aguirre, Néstor Jaime

    2017-10-01

    Due to the complex nature of the wastewater (both domestic and non-domestic) composition, biological processes are widely used to remove nutrients, such as carbon (C), nitrogen (N), and phosphorous (P), which cause instability and hence contribute to the damage of water bodies. Systems with different configurations have been developed (including anaerobic, anoxic, and aerobic conditions) for the joint removal of carbon, nitrogen, and phosphorus. The goal of this research is to evaluate the extracellular activity of β-glucosidase and phosphatase enzymes in a University of Cape Town (UCT) system fed with two synthetic wastewaters of different molecular complexity. Both types of waters have medium strength characteristics similar to those of domestic wastewater with a mean C/N/P ratio of 100:13:1. The operation parameters were hydraulic retention time (HRT) of 10 h, solid retention time (SRT) of 12 days, mean concentration of the influent in terms of chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and total phosphorus (TP) of 600, 80, and 6 mg/L, respectively. According to the results obtained, statistically significant differences have been found in the extracellular enzyme activities with the evaluated wastewaters and in the units comprising the treatment system in some of the cases. An analysis of principal components showed that the extracellular enzymatic activity has been correlated to nutrient concentration in wastewater, biomass concentration in the system, and metabolic conditions of treatment phases. Additionally, this research has allowed determining an inverse relationship between wastewater biodegradability and the extracellular enzyme activity of β-glucosidase and phosphatase. These results highlight the importance of including the analysis of biomass biochemical characteristics as control methods in wastewater treatment systems for the nutrient removal.

  10. Influences of Different Halophyte Vegetation on Soil Microbial Community at Temperate Salt Marsh.

    PubMed

    Chaudhary, Doongar R; Kim, Jinhyun; Kang, Hojeong

    2018-04-01

    Salt marshes are transitional zone between terrestrial and aquatic ecosystems, occupied mainly by halophytic vegetation which provides numerous ecological services to coastal ecosystem. Halophyte-associated microbial community plays an important role in the adaptation of plants to adverse condition and also affected habitat characteristics. To explore the relationship between halophytes and soil microbial community, we studied the soil enzyme activities, soil microbial community structure, and functional gene abundance in halophytes- (Carex scabrifolia, Phragmites australis, and Suaeda japonica) covered and un-vegetated (mud flat) soils at Suncheon Bay, South Korea. Higher concentrations of total, Gram-positive, Gram-negative, total bacterial, and actinomycetes PLFAs (phospholipid fatty acids) were observed in the soil underneath the halophytes compared with mud flat soil and were highest in Carex soil. Halophyte-covered soils had different microbial community composition due to higher abundance of Gram-negative bacteria than mud flat soil. Similar to PLFA concentrations, the increased activities of β-glucosidase, cellulase, phosphatase, and sulfatase enzymes were observed under halophyte soil compared to mud flat soil and Carex exhibited highest activities. The abundance of archaeal 16S rRNA, fungal ITS, and denitrifying genes (nirK, nirS, and nosZ) were not influenced by the halophytes. Abundance bacterial 16S rRNA and dissimilatory (bi)sulfite (dsrA) genes were highest in Carex-covered soil. The abundance of functional genes involved in methane cycle (mcrA and pmoA) was not affected by the halophytes. However, the ratios of mcrA/pmoA and mcrA/dsrA increased in halophyte-covered soils which indicate higher methanogenesis activities. The finding of the study also suggests that halophytes had increased the microbial and enzyme activities, and played a pivotal role in shaping microbial community structure.

  11. Interactions of 2,4,6-trinitrotoluene (TNT) with xenobiotic biotransformation system in European eel Anguilla anguilla (Linnaeus, 1758).

    PubMed

    Della Torre, Camilla; Corsi, Ilaria; Arukwe, Augustine; Valoti, Massimo; Focardi, Silvano

    2008-11-01

    The aim of the present study was to investigate the interaction of 2,4,6-trinitrotoluene (TNT) with liver biotransformation enzymes in European eel Anguilla anguilla (Linnaeus, 1758). Eels were exposed to 0.5, 1 and 2.5mg/l nominal concentrations of TNT for 6 and 24h. Modulation of CYP1A1, UDPGT and GST genes was investigated by real-time PCR. Total CYP450 content, NADPH cytochrome c reductase activity, CYP1A and CYP2B-like activities, such as EROD, MROD and BROD, as well as GST and UDPGT activities, were measured by biochemical assays. An in vitro study was performed on EROD in order to evaluate catalytic modulation by TNT. No modulation of the CYP1A1 gene or protein was observed in TNT-exposed eels. On the other hand, a significant decline of EROD and MROD activities was observed in vivo. An increase in NADPH cyt c reductase, and phase II enzymes (UDPGT and GST) were observed at both gene expression and activity levels. The overall results indicated that TNT is a potential competitive inhibitor of CYP1A activities. A TNT metabolic pathway involving NADPH cyt c reductase and phase II enzymes is also suggested.

  12. Important photosynthetic contribution from the non-foliar green organs in cotton at the late growth stage.

    PubMed

    Hu, Yuan-Yuan; Zhang, Ya-Li; Luo, Hong-Hai; Li, Wei; Oguchi, Riichi; Fan, Da-Yong; Chow, Wah Soon; Zhang, Wang-Feng

    2012-02-01

    Non-foliar green organs are recognized as important carbon sources after leaves. However, the contribution of each organ to total yield has not been comprehensively studied in relation to the time-course of changes in surface area and photosynthetic activity of different organs at different growth stages. We studied the contribution of leaves, main stem, bracts and capsule wall in cotton by measuring their time-course of surface area development, O(2) evolution capacity and photosynthetic enzyme activity. Because of the early senescence of leaves, non-foliar organs increased their surface area up to 38.2% of total at late growth stage. Bracts and capsule wall showed less ontogenetic decrease in O(2) evolution capacity per area and photosynthetic enzyme activity than leaves at the late growth stage. The total capacity for O(2) evolution of stalks and bolls (bracts plus capsule wall) was 12.7 and 23.7% (total ca. 36.4%), respectively, as estimated by multiplying their surface area by their O(2) evolution capacity per area. We also kept the bolls (from 15 days after anthesis) or main stem (at the early full bolling stage) in darkness for comparison with non-darkened controls. Darkening the bolls and main stem reduced the boll weight by 24.1 and 9%, respectively, and the seed weight by 35.9 and 16.3%, respectively. We conclude that non-foliar organs significantly contribute to the yield at the late growth stage.

  13. Alkalistable endo-β-1,4-xylanase production from a newly isolated alkalitolerant Penicillium sp. SS1 using agro-residues.

    PubMed

    Bajaj, Bijender Kumar; Sharma, Mukul; Sharma, Sunny

    2011-09-01

    Thermostable and alkalitolerant xylanases have got intense research focus due to their vast applications in various industries including pulp and paper, food, feed, textile, biofuel, etc. In the present investigation, a Penicillum sp. SS1 isolated from degrading woody material was found to produce moderately thermoactive and alkalistable endo-β-1,4-xylanase (xylanase). Maximum xylanase production was observed after fourth day of fermentation (43.84 IU/ml). The organism produced substantial quantities of xylanase using agricultural residues like wheat bran (20.6 IU/ml), rice bran (21.8 IU/ml) and sawdust (10.7 IU/ml) as carbon sources. The enzyme preparation was totally free of filter paper activity (FPase) and possessed negligible carboxymethyl cellulase (CMCase) activity; this could be an important feature of enzyme if the intended application of enzyme is in pulp and paper industries. Among nitrogen sources examined, yeast extract supported maximum xylanase production (45.74 IU/ml), and was followed by soybean meal (22.2 IU/ml) and ammonium sulphate (20 IU/ml). Maximum xylanase production was observed at initial medium pH 9 (25.6 IU/ml); however, at pH 8 and 10 also significantly high enzyme titre was observed (24 and 21.2 IU/ml, respectively). Thus, Penicillium sp. SS1 displayed capability of growing and producing xylanase at high alkaline pH (8-10). Maximum xylanase activity was reported at 50 °C, however, significantly high activity was observed at 60 °C (65.4%), however, at 70-80 °C activity was lost considerably. At 50-60 °C the enzyme retained very high activity up to 30-60 min (91-100%), however, prolonged incubation (90 min) caused considerable activity reduction (residual activity 63-68%).

  14. Expression and purification of spinach nitrite reductase in E. coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellissimo, D.; Privalle, L.

    1991-03-11

    The study of structure-function relationships in nitrite reductase (NiR) by site-directed mutagenesis requires an expression system from which suitable quantities of active enzyme can be purified. Spinach NiR cDNA was cloned into pUC18 and expressed in E.coli JM109 as a beta-galactosidase fusion protein. The IPTG-induced fusion protein contains five additional amino acids at the N-terminus. The expressed NiR in aerobic cultures was mostly insoluble and inactive indicating the presence of inclusion bodies. By altering growth conditions, active NiR could represent 0.5-1.0% of the total E.coli protein, Effects of the addition of delta-aminolevulinic acid, a heme precursor, and anaerobic growth weremore » also examined. Spinach NiR was purified approximately 200 fold to homogeneity. When subjected to electrophoresis on SDS polyacrylamide gels, the NiR migrated as a single band with similar mobility to pure spinach enzyme. The expressed enzyme also reacted with rabbit anti-spinach NiR antibody as visualized by Western blot analysis. The absorption spectrum of the E.coli-expressed enzyme was identical to spinach enzyme with a Soret and alpha band a 386 and 573 nm, respectively, and an A{sub 278}/A{sub 386} = 1.9. The addition of nitrite produced the characteristic shifts in the spectrum. The E. coli-expressed NiR catalyzed the methylviologen-dependent reduction of nitrite. The specific activity was 100 U/mg. The K{sub m} determined for nitrite was 0.3 mM which is in agreement with values reported for the enzyme. These results indicate that the E.coli-expressed NiR is fully comparable to spinach NiR in purity, catalytic activity and physical state. Site-directed mutants have been made using PCR to examine structure-function relationships in this enzyme.« less

  15. Metabolism of hydroxypyruvate in a mutant of barley lacking NADH-dependent hydroxypyruvate reductase, an important photorespiratory enzyme activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, A.J.S.; Blackwell, R.D.; Lea, P.J.

    1989-09-01

    A mutant of barley (Hordeum vulgare L.), LaPr 88/29, deficient in NADH-dependent hydroxypyruvate reductase (HPR) activity has been isolated. The activities of both NADH (5%) and NADPH-dependent (19%) HPR were severely reduced in this mutant compared to the wild type. Although lacking an enzyme in the main carbon pathway of photorespiration, this mutant was capable of CO{sub 2} fixation rates equivalent to 75% of that of the wild type, in normal atmospheres and 50% O{sub 2}. There also appeared to be little disruption to the photorespiratory metabolism as ammonia release, CO{sub 2} efflux and {sup 14}CO{sub 2} release from L-(U-{supmore » 14}C)serine feeding were similar in both mutant and wild-type leaves. When leaves of LaPr 88/29 were fed either ({sup 14}C)serine or {sup 14}CO{sub 2}, the accumulation of radioactivity was in serine and not in hydroxypyruvate, although the mutant was still able to metabolize over 25% of the supplied ({sup 14}C)serine into sucrose. After 3 hours in air the soluble amino acid pool was almost totally dominated by serine and glycine. LaPr 88/29 has also been used to show that NADH-glyoxylate reductase and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-dependent HPR activity is due to the NADH-dependent enzyme. We also suggest that the alternative NADPH activity can metabolize a proportion, but not all, of the hydroxypyruvate produced during photorespiration and may thus form a useful backup to the NADH-dependent enzyme under conditions of maximal photorespiration.« less

  16. Thermostable Fe/Mn superoxide dismutase from Bacillus licheniformis SPB-13 from thermal springs of Himalayan region: Purification, characterization and antioxidative potential.

    PubMed

    Thakur, Abhishek; Kumar, Pradeep; Lata, Jeevan; Devi, Neena; Chand, Duni

    2018-05-01

    Superoxide dismutase (SOD; EC 1.15.1.1) is an enzyme that scavenges free radicals and increases the longevity. In this study, a thermostable superoxide dismutase (SOD) from Bacillus licheniformis SPB-13, from Himalayan region was purified to homogeneity using ion exchange chromatography (DEAE-Sepharose). The SDS and native PAGE analysis showed that SOD is composed of two subunits of 32 kDa each and total molecular mass of the enzyme was estimated as 68 kDa. The specific activity of enzyme was 3965.51 U/mg and was purified to 16.17 folds. The SOD showed maximum activity with 60 mM Tris-HCl buffer at pH 8.0 for 2 min of incubation. Enzyme along with FeCl 3 as metal ion remained active till 70 °C. After reaction variables optimization, enzyme activity increased from 3965.51 to 4015.72 U/mg. Kinetic analysis of SOD showed k m of 1.4 mM of NADH and V max of 10000 U/mg of protein. Turnover number (k cat ) and catalytic efficiency (k cat /K m ) were found to be 11,333 s -1 and 7092.2 s -1 ·mM -1 NADH. The activation energy (E a ) was calculated as 2.67 kJ·mol -1 . After typing, it was found to be a member of Fe/Mn SOD family with IC 50 value of 25 μg/ml, prevented the cell death at a concentration of 30 μg/ml and it increased the cell viability by 30%. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Enhanced Phytoremediation of Crude Oil-Polluted Soil by Four Plant Species: Effect of Inorganic and Organic Bioaugumentation.

    PubMed

    Nwaichi, Eucharia Oluchi; Frac, Magdalena; Nwoha, Paul Aleruchi; Eragbor, Progress

    2015-01-01

    A field experiment investigating the removal and/or uptake of Polycyclic Aromatic Hydrocarbons (PAHs) and specific metals (As, Cd, Cr) from a crude oil polluted agricultural soil was performed during the 2013 wet season using four plant species: Fimbristylis littoralis, Hevea brasilensis (Rubber plants), Cymbopogom citratus (Lemon grass), and Vigna subterranea (Bambara nuts). Soil functional diversity and soil-enzyme interactions were also investigated. The diagnostic ratios and the correlation analysis identified mixed petrogenic and pyrogenic sources as the main contributors of PAHs at the study site. A total of 16 PAHs were identified, 6 of which were carcinogenic. Up to 42.4 mg kg(-1) total PAHs was recorded prior to the experiments. At 90 d, up to 92% total PAH reduction and 96% As removal were achieved using F. littoralis, the best performing species. The organic soil amendment (poultry dung) rendered most of the studied contaminants unavailable for uptake. However, the organic amendment accounted for over 70% of the increased dehydrogenase, phosphatase, and proteolytic enzymes activities in the study. Overall, the combined use of soil amendments and phytoremediation significantly improved the microbial community activity, thus promoting the restoration of the ecosystem.

  18. The biotechnological potential of subtilisin-like fibrinolytic enzyme from a newly isolated Lactobacillus plantarum KSK-II in blood destaining and antimicrobials.

    PubMed

    Kotb, Essam

    2015-01-01

    An antimicrobial oxidative- and SDS-stable fibrinolytic alkaline protease designated as KSK-II was produced by Lactobacillus plantarum KSK-II isolated from kishk, a traditional Egyptian food. Maximum enzyme productivity was obtained in medium containing 1% lactose and 0.5% soybean flour as carbon and nitrogen sources, respectively. Purification of enzyme increased its specific activity to 1,140-fold with a recovery of 33% and molecular weight of 43.6 kDa. Enzyme activity was totally lost in the presence of ethylenediaminetetraacetic acid and was restored after addition of Fe(2+) suggesting that KSK-II is a metalloprotease and Fe(2+) acts as cofactor. Enzyme hydrolyzed not only the natural proteins but also synthetic substrates, particularly Suc-Ala-Ala-Pro-Phe-pNA. KSK-II can hydrolyze the Lys-X easier than Arg-X; thus, it was considered as a subtilisin-family protease. Its apparent Km , Vmax , and Kcat were 0.41 mM, 6.4 µmol mg(-1) min(-1) , and 28.0 s(-1) , respectively. KSK-II is industrially important from the perspectives of its maximal activity at 50°C (stable up to 70°C), ability to function at alkaline pH (10.0), stability at broad pH ranges (7.5-12.0) in addition to its stability toward SDS, H2 O2 , organic solvents, and detergents. We emphasize for the first time the potential of fibrinolytic activity for alkaline proteases used in detergents especially in blood destaining. © 2014 American Institute of Chemical Engineers.

  19. Effect of ageing and ischemia on enzymatic activities linked to Krebs' cycle, electron transfer chain, glutamate and aminoacids metabolism of free and intrasynaptic mitochondria of cerebral cortex.

    PubMed

    Villa, Roberto Federico; Gorini, Antonella; Hoyer, Siegfried

    2009-12-01

    The effect of ageing and the relationships between the catalytic properties of enzymes linked to Krebs' cycle, electron transfer chain, glutamate and aminoacid metabolism of cerebral cortex, a functional area very sensitive to both age and ischemia, were studied on mitochondria of adult and aged rats, after complete ischemia of 15 minutes duration. The maximum rate (Vmax) of the following enzyme activities: citrate synthase, malate dehydrogenase, succinate dehydrogenase for Krebs' cycle; NADH-cytochrome c reductase as total (integrated activity of Complex I-III), rotenone sensitive (Complex I) and cytochrome oxidase (Complex IV) for electron transfer chain; glutamate dehydrogenase, glutamate-oxaloacetate-and glutamate-pyruvate transaminases for glutamate metabolism were assayed in non-synaptic, perikaryal mitochondria and in two populations of intra-synaptic mitochondria, i.e., the light and heavy mitochondrial fraction. The results indicate that in normal, steady-state cerebral cortex, the value of the same enzyme activity markedly differs according (a) to the different populations of mitochondria, i.e., non-synaptic or intra-synaptic light and heavy, (b) and respect to ageing. After 15 min of complete ischemia, the enzyme activities of mitochondria located near the nucleus (perikaryal mitochondria) and in synaptic structures (intra-synaptic mitochondria) of the cerebral tissue were substantially modified by ischemia. Non-synaptic mitochondria seem to be more affected by ischemia in adult and particularly in aged animals than the intra-synaptic light and heavy mitochondria. The observed modifications in enzyme activities reflect the metabolic state of the tissue at each specific experimental condition, as shown by comparative evaluation with respect to the content of energy-linked metabolites and substrates. The derangements in enzyme activities due to ischemia is greater in aged than in adult animals and especially the non-synaptic and the intra-synaptic light mitochondria seems to be more affected in aged animals. These data allow the hypothesis that the observed modifications of catalytic activities in non-synaptic and intra-synaptic mitochondrial enzyme systems linked to energy metabolism, amino acids and glutamate metabolism are primary responsible for the physiopathological responses of cerebral tissue to complete cerebral ischemia for 15 min duration during ageing.

  20. Mitochondrial Bioenergetics and Dysfunction in Failing Heart.

    PubMed

    Sheeran, Freya L; Pepe, Salvatore

    2017-01-01

    Energy insufficiency has been recognized as a key feature of systolic heart failure. Although mitochondria have long been known to sustain myocardial work energy supply, the capacity to therapeutically target mitochondrial bioenergetics dysfunction is hampered by a complex interplay of multiple perturbations that progressively compound causing myocardial failure and collapse. Compared to non-failing human donor hearts, activity rates of complexes I and IV, nicotinamide nucleotide transhydrogenase (NADPH-transhydrogenase, Nnt) and the Krebs cycle enzymes isocitrate dehydrogenase, malate dehydrogenase and aconitase are markedly decreased in end-stage heart failure. Diminished REDOX capacity with lower total glutathione and coenzyme Q 10 levels are also a feature of chronic left ventricular failure. Decreased enzyme activities in part relate to abundant and highly specific oxidative, nitrosylative, and hyperacetylation modifications. In this brief review we highlight that energy deficiency in end-stage failing human left ventricle predominantly involves concomitantly impaired activities of key electron transport chain and Krebs cycle enzymes rather than altered expression of respective genes or proteins. Augmented oxidative modification of these enzyme subunit structures, and the formation of highly reactive secondary metabolites, implicates dysfunction due to diminished capacity for management of mitochondrial reactive oxygen species, which contribute further to progressive decreases in bioenergetic capacity and contractile function in human heart failure.

  1. Enzyme potentiated desensitisation in treatment of seasonal allergic rhinitis: double blind randomised controlled study.

    PubMed

    Radcliffe, Michael J; Lewith, George T; Turner, Richard G; Prescott, Philip; Church, Martin K; Holgate, Stephen T

    2003-08-02

    To assess the efficacy of enzyme potentiated desensitisation in the treatment of severe summer hay fever poorly controlled by pharmacotherapy. Double blind randomised placebo controlled parallel group study. Hospital in Hampshire. 183 participants aged between 18 and 64 with a history of severe summer hay fever for at least two years; all were skin prick test positive to timothy grass pollen. 90 randomised to active treatment; 93 randomised to placebo. Active treatment: two injections of enzyme potentiated desensitisation, given between eight and 11 weeks apart, each comprising 200 Fishman units of beta glucuronidase, 50 pg 1,3-cyclohexanediol, 50 ng protamine sulphate, and a mixed inhaled allergen extract (pollen mixes for trees, grasses, and weeds; allergenic fungal spores; cat and dog danders; dust and storage mites) in a total volume of 0.05 ml of buffered saline. Placebo: two injections of 0.05 ml buffered saline solution. Proportion of problem-free days; global rhinoconjunctivitis quality of life scores assessed weekly during pollen season. The active treatment group and the placebo group did not differ in the proportion of problem-free days, quality of life scores, symptom severity scores, change in quantitative skin prick provocation threshold, or change in conjunctival provocation threshold. No clinically significant adverse reactions occurred. Enzyme potentiated desensitisation showed no treatment effect in this study.

  2. Exposure to leachate from municipal battery recycling site: implication as key inhibitor of steroidogenic enzymes and risk factor of prostate damage in rats.

    PubMed

    Akintunde, Jacob K; Oboh, G

    2013-01-01

    Few or no studies have measured the effect of short- and long-term exposure to industrial leachate. Mature male Wistar strain albino rats (175-220 g) underwent sub-chronic exposure to leachate from the Elewi Odo municipal battery recycling site (EOMABRL) via oral administration for a period of 60 days at different doses (20%, 40%, 60%, 80%, and 100%) per kilogram of body weight to evaluate the toxic effects of the leachate on male reproductive function using steroidogenic enzymes and biomarkers of prostate damage. Control groups were treated equally but were given distilled water instead of the leachate. After the treatment periods, results showed that the treatment induced systemic toxicity at the doses tested by causing a significant (p<0.05) loss in absolute body weight and decline in growth rate. There was a marked significant decrease (p<0.05) in testicular activities of Δ(5)-3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase. Conversely, the activity of prostatic acid phosphatase, a key marker enzyme for prostrate damage was significantly (p<0.05) elevated in the treated rats. Similarly, the administration of EOMABRL significantly (p<0.05) exacerbated the activity of total acid phosphatase with concomitant increase in the activity of prostatic alkaline phosphatase. These findings conclude that exposure to leachate from a battery recycling site induces sub-chronic testicular toxicity by inhibiting key steroidogenic enzymes and activating key markers linked with prostate damage/cancer in rats.

  3. Metal availability, soil nutrient, and enzyme activity in response to application of organic amendments in Cd-contaminated soil.

    PubMed

    Yang, Zhanbiao; Liu, Lixia; Lv, Yanfeng; Cheng, Zhang; Xu, Xiaoxun; Xian, Junren; Zhu, Xuemei; Yang, Yuanxiang

    2018-01-01

    The study investigated the effects of organic amendments: green tea amendment (GTA) and oil cake amendment (OCA) on Cd bioavailability, soil nutrients, and soil enzyme activity in Cd-contaminated soil. The amendments were added to the soil at the doses of 1, 3, and 5% and were incubated for 45 days. Then, pakchoi cabbage was planted to test the remediation effect of the above two organic amendments. The diethylenetriaminepentaacetic acid (DTPA)-extractable Cd in GTA and OCA treatments was reduced by 14.69-27.51 and 13.75-68.77%, respectively, compared to no amendment-applied treatment. The application of GTA and OCA notably decreased the proportion of exchangeable fraction of Cd, but increased the percentage of oxide and organic-bound fraction of Cd, thereby suppressing the uptake by pakchoi cabbage. Cd concentration of aboveground parts decreased by 8.21-18.05 and 7.77-35.89% in GTA and OCA treatments, respectively. Relative to the no amendment-applied treatment, both GTA and OCA had enhanced soil nutrients and enzyme activities largely. Redundancy analysis showed that organic matter, total P, available N, and DTPA-extractable Cd significantly affected the enzyme activities. Furthermore, the application of OCA at the dose of 5% was more effective in reducing bioavailable Cd, enhancing soil available nutrients and urease and catalase activities in contaminated soil. These results indicated that oil cake should be used to immobilize metal and improve fertility and quality of Cd-contaminated soil.

  4. Towards complete hydrolysis of soy flour carbohydrates by enzyme mixtures for protein enrichment: A modeling approach.

    PubMed

    Loman, Abdullah Al; Ju, Lu-Kwang

    2016-05-01

    Soy protein is a well-known nutritional supplement in proteinaceous food and animal feed. However, soybeans contain complex carbohydrate. Selective carbohydrate removal by enzymes could increase the protein content and remove the indigestibility of soy products for inclusion in animal feed. Complete hydrolysis of soy flour carbohydrates is challenging due to the presence of proteins and different types of non-structural polysaccharides. This study is designed to guide complex enzyme mixture required for hydrolysis of all types of soy flour carbohydrates. Enzyme broths from Aspergillus niger, Aspergillus aculeatus and Trichoderma reesei fermentations were evaluated in this study for soy carbohydrate hydrolysis. The resultant hydrolysate was measured for solubilized carbohydrate by both total carbohydrate and reducing sugar analyses. Conversion data attained after 48h hydrolysis were first fitted with models to determine the maximum fractions of carbohydrate hydrolyzable by each enzyme group, i.e., cellulase, xylanase, pectinase and α-galactosidase. Kinetic models were then developed to describe the increasing conversions over time under different enzyme activities and process conditions. The models showed high fidelity in predicting soy carbohydrate hydrolysis over broad ranges of soy flour loading (5-25%) and enzyme activities: per g soy flour, cellulase, 0.04-30 FPU; xylanase, 3.5-618U; pectinase, 0.03-120U; and α-galactosidase, 0.01-60U. The models are valuable in guiding the development and production of optimal enzyme mixtures toward hydrolysis of all types of carbohydrates present in soy flour and in optimizing the design and operation of hydrolysis reactor and process. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Priming effect in topsoil and subsoil induced by earthworm burrows

    NASA Astrophysics Data System (ADS)

    Thu, Duyen Hoang Thi

    2017-04-01

    Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently important hotspots of microbial mediated carbon and C turnover through their burrowing activity. However, it is still unknown to which extend earthworms affect priming effect in top- and subsoil horizons. More labile C inputs in earthworm burrows were hypothesized to trigger higher priming of soil organic matter (SOM) decomposition compared to rhizosphere and bulk soil. Moreover, this effect was expected to be more pronounced in subsoil due to its greater C and nutrient limitation. To test these hypotheses, biopores and bulk soil were sampled from topsoil (0-30 cm) and two subsoil depths (45-75 and 75-105 cm). Additionally, rhizosphere samples were taken from the topsoil. Total organic C (Corg), total N (TN), total P (TP) and enzyme activities involved in C-, N-, and P-cycling (cellobiohydrolase, β-glucosidase, xylanase, chitinase, leucine aminopeptidase and phosphatase) were measured. Priming effects were calculated as the difference in SOM-derived CO2 from soil with or without 14C-labelled glucose addition. Enzyme activities in biopores were positively correlated with Corg, TN and TP, but in bulk soil this correlation was negative. The more frequent fresh and labile C inputs to biopores caused 4 to 20 time higher absolute priming of SOM turnover due to enzyme activities that were one order of magnitude higher than in bulk soil. In subsoil biopores, reduced labile C inputs and lower N availability stimulated priming twofold greater than in topsoil. In contrast, a positive priming effect in bulk soil was only detected at 75-105 cm depth. We conclude that earthworm burrows provide not only the linkage between top- and subsoil for C and nutrients, but strongly increase microbial activities and accelerate SOM turnover in subsoil, contributing to nutrient mobilization for roots and CO2 emission increase as a greenhouse gas. Additionally, the mechanisms of native SOM decomposition are distinct between topsoil and subsoil, which relies on the fresh C input and nutrient availability. Keywords: Priming effect; Earthworms; Organic matter decomposition; Biopores; Subsoil; Microbial hotspots.

  6. Effect of a marathon run on serum lipoproteins, creatine kinase, and lactate dehydrogenase in recreational runners.

    PubMed

    Kobayashi, Yoshio; Takeuchi, Toshiko; Hosoi, Teruo; Yoshizaki, Hidekiyo; Loeppky, Jack A

    2005-12-01

    The objective of this study was to determine the effect of a marathon run on serum lipid and lipoprotein concentrations and serum muscle enzyme activities and follow their recovery after the run. These blood concentrations were measured before, immediately after, and serially after a marathon run in 15 male recreational runners. The triglyceride level was significantly elevated postrace, then fell 30% below baseline 1 day after the run, and returned to baseline after 1 week. Total cholesterol responded less dramatically but with a similar pattern. High-density lipoprotein cholesterol remained significantly elevated and low-density lipoprotein cholesterol was transiently reduced for 3 days after the run. The total cholesterol/high-density cholesterol ratio was significantly lowered for 3 days. Serum lactate dehydrogenase activity significantly doubled postrace and then declined but remained elevated for 2 weeks. Serum creatine kinase activity peaked 24 hr after the run, with a 15-fold rise, and returned to baseline after 1 week. The rise of these enzymes reflects mechanically damaged muscle cells leaking contents into the interstitial fluid. It is concluded that a prolonged strenuous exercise bout in recreational runners, such as a marathon, produces beneficial changes in lipid blood profiles that are significant for only 3 days. However, muscle damage is also evident for 1 week or more from the dramatic and long-lasting effect on enzyme levels. Laboratory values for these runners were outside normal ranges for some days after the race.

  7. A route from darkness to light: emergence and evolution of luciferase activity in AMP-CoA-ligases inferred from a mealworm luciferase-like enzyme.

    PubMed

    Viviani, V R; Prado, R A; Neves, D R; Kato, D; Barbosa, J A

    2013-06-11

    The origin of luciferases and of bioluminescence is enigmatic. In beetles, luciferases seem to have evolved from AMP-CoA-ligases. How the new oxygenase luminogenic function originated from AMP-ligases leading to luciferases is one of the most challenging mysteries of bioluminescence. Comparison of the cloned luciferase-like enzyme from the nonluminescent Zophobas morio mealworm and beetle luciferases showed that the oxygenase activity may have emerged as a stereoselective oxidative drift with d-luciferin, a substrate that cannot be easily thioesterified to CoA as in the case of the l-isomer. While the overall kcat displayed by beetle luciferases is orders of magnitude greater than that of the luciferase-like enzyme, the respective oxidation rates and quantum yields of bioluminescence are roughly similar, suggesting that the rate constant of the AMP-ligase activity exerted on the new d-luciferin substrate in beetle protoluciferases was the main enzymatic property that suffered optimization during the evolution of luciferases. The luciferase-like enzyme and luciferases boost the rate of luciferyl-adenylate chemiluminescent oxidation by factors of 10(6) and 10(7), respectively, as compared to the substrate spontaneous oxidation in buffer. A similar enhancement of luciferyl-adenylate chemiluminescence is provided by nucleophilic aprotic solvents, implying that the peptide bonds in the luciferin binding site of beetle luciferase could provide a similar catalytically favorable environment. These data suggest that the luciferase-like enzyme and other similar AMP-ligases are potential alternative oxygenases. Site-directed mutagenesis studies of the luciferase-like enzyme and the red light-producing luciferase of Phrixotrix hirtus railroadworm confirm here a critical role for T/S345 in luciferase function. Mutations such as I327T/S in the luciferase-like enzyme, which simultaneously increases luciferase activity and promotes blue shifts in the emission spectrum, could have been critical for evolving functional bioluminescence from red-emitting protoluciferases. Through the combination of I327T/S mutations and N-terminal fusion, the luminescence activity of this enzyme was increased to visible levels, with the development of a totally new orange-emitting luciferase. These results open the possibility of engineering luciferase activity in a set of AMP-CoA-ligases.

  8. Polyketone polymer: a new support for direct enzyme immobilization.

    PubMed

    Agostinelli, E; Belli, F; Tempera, G; Mura, A; Floris, G; Toniolo, L; Vavasori, A; Fabris, S; Momo, F; Stevanato, R

    2007-01-20

    Polyketone polymer -[-CO-CH(2)-CH(2)-](n)-, obtained by copolymerization of ethene and carbon monoxide, is utilized for immobilization of three different enzymes, one peroxidase from horseradish (HRP) and two amine oxidases, from bovine serum (BSAO) and lentil seedlings (LSAO). The easy immobilization procedure is carried out in diluted buffer, at pH 7.0 and 3 degrees C, gently mixing the proteins with the polymer. No bifunctional reagents and spacer arms are required for the immobilization, which occurs exclusively via a large number of hydrogen bonds between the carbonyl groups of the polymer and the -NH groups of the polypeptidic chain. Experiments demonstrate a high linking capacity of polymer for BSAO and an extraordinary strong linkage for LSAO. Moreover, activity measurements demonstrate that immobilized LSAO totally retains the catalytic characteristics of the free enzyme, where only a limited increase of K(M) value is observed. Finally, the HRP-activated polymer is successfully used as active packed bed of an enzymatic reactor for continuous flow conversion and flow injection analysis of hydrogen peroxide containing solutions.

  9. Recognition and Binding of the PF2 Lectin to α-Amylase From Zabrotes subfasciatus (Coleoptera:Bruchidae) Larval Midgut

    PubMed Central

    Lagarda-Diaz, I.; Geiser, D.; Guzman-Partida, A.M.; Winzerling, J.; Vazquez-Moreno, L.

    2014-01-01

    Abstract Amylases are an important family of enzymes involved in insect carbohydrate metabolism that are required for the survival of insect larvae. For this reason, enzymes from starch-dependent insects are targets for insecticidal control. PF2 ( Olneya tesota ) is a lectin that is toxic to Zabrotes subfasciatus (Coleoptera: Bruchidae) larvae. In this study, we evaluated recognition of the PF2 lectin to α-amylases from Z. subfasciatus midgut and the effect of PF2 on α-amylase activity. PF2 caused a decrease of total amylase activity in vitro. Subsequently, several α-amylase isoforms were isolated from insect midgut tissues using ion exchange chromatography. Three enzyme isoforms were verified by an in-gel assay for amylase activity; however, only one isoform was recognized by antiamylase serum and PF2. The identity of this Z. subfasciatus α-amylase was confirmed by liquid chromatography−tandem mass spectrometry. The findings strongly suggest that a glycosylated α-amylase isoform from larval Z. subfasciatus midgut interacts with PF2, which interferes with starch digestion. PMID:25528751

  10. Transcriptome, antioxidant enzyme activity and histopathology analysis of hepatopancreas from the white shrimp Litopenaeus vannamei fed with aflatoxin B1(AFB1).

    PubMed

    Zhao, Wei; Wang, Lei; Liu, Mei; Jiang, Keyong; Wang, Mengqiang; Yang, Guang; Qi, Cancan; Wang, Baojie

    2017-09-01

    Aflatoxin produced by Aspergillus flavus or Aspergillus parasiticus fungi during grain and feed processing and storage. Aflatoxins cause severe health problems reducing the yield and profitability of shrimp cultures. We sought to understand the interaction between shrimp immunity and aflatoxin B1 (AFB1), analyzing transcriptome expression, antioxidant enzyme activity, and histological features of the hepatopancreas of shrimp fed with AFB1. From over 4 million high-quality reads, de novo unigene assembly produced 103,644 fully annotated genes. A total of 1024 genes were differentially expressed in shrimp fed with AFB1, being involved in functions, such as peroxidase metabolism, signal transduction, transcriptional control, apoptosis, proteolysis, endocytosis, and cell adhesion and cell junction. Upon AFB1 challenge, there were severe histological alterations in shrimp hepatopancreas. AFB1 challenge increased the activity of several antioxidant enzymes. Our data contribute to improve the current understanding of host-AFB1 interaction, providing an abundant source for identification of novel genes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Proteomics-based compositional analysis of complex cellulase-hemicellulase mixtures.

    PubMed

    Chundawat, Shishir P S; Lipton, Mary S; Purvine, Samuel O; Uppugundla, Nirmal; Gao, Dahai; Balan, Venkatesh; Dale, Bruce E

    2011-10-07

    Efficient deconstruction of cellulosic biomass to fermentable sugars for fuel and chemical production is accomplished by a complex mixture of cellulases, hemicellulases, and accessory enzymes (e.g., >50 extracellular proteins). Cellulolytic enzyme mixtures, produced industrially mostly using fungi like Trichoderma reesei, are poorly characterized in terms of their protein composition and its correlation to hydrolytic activity on cellulosic biomass. The secretomes of commercial glycosyl hydrolase-producing microbes was explored using a proteomics approach with high-throughput quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Here, we show that proteomics-based spectral counting approach is a reasonably accurate and rapid analytical technique that can be used to determine protein composition of complex glycosyl hydrolase mixtures that also correlates with the specific activity of individual enzymes present within the mixture. For example, a strong linear correlation was seen between Avicelase activity and total cellobiohydrolase content. Reliable, quantitative and cheaper analytical methods that provide insight into the cellulosic biomass degrading fungal and bacterial secretomes would lead to further improvements toward commercialization of plant biomass-derived fuels and chemicals.

  12. Experiment K304: Studies of specific hepatic enzymes and liver constituents involved in the conversion of carbohydrates to lipids in rats exposed to prolonged space flight

    NASA Technical Reports Server (NTRS)

    Abraham, S.; Klein, H. P.; Lin, C. Y.; Volkmann, C.; Tigranyan, R. A.; Vetrova, E. G.

    1981-01-01

    The effects of space flight on the activities of 26 enzymes concerned with carbohydrate and lipid metabolism in hepatic tissue taken from male Wistar rats are investigated. These activities were measured in the various hepatic cell compartments, i.e., cytosol, mitochondria and microsomes. In addition, the levels of glycogen, total lipids, phospholipids, triglycerides, cholesterol, cholesterol esters, and the fatty acid composition of the rat livers were also examined and quantified. A similar group of ground-based rats treated in an identical manner served as controls. Both flight and synchronous control rats were sacrificed at three time intervals: R+0, 7-11 hours after recovery; R+6, after 6 days; R+6(S), after 6 days (having undergone 2-5 hour periods of fixed stress in a "backupward" position on days 0, 3, 4, 5 and 6) and R+29, after 29 days post-flight. Although most of the enzyme activities and the amounts of liver constituents studied were unaffected by the period of weightlessness, some significant differences were observed.

  13. Biochemical surface modification of Co-Cr-Mo.

    PubMed

    Puleo, D A

    1996-01-01

    Because of the limited mechanical properties of tissue substitutes formed by culturing cells on polymeric scaffolds, other approaches to tissue engineering must be explored for applications that require complete and immediate ability to bear weight, e.g. total joint replacements. Biochemical surface modification offers a way to partially regulate events at the bone-implant interface to obtain preferred tissue responses. Tresyl chloride, gamma-aminopropyltriethoxysilane (APS) and p-nitrophenyl chloroformate (p-NPC) immobilization schemes were used to couple a model enzyme, trypsin, on bulk samples of Co-Cr-Mo. For comparison, samples were simply adsorbed with protein. The three derivatization schemes resulted in different patterns and levels of activity. Tresyl chloride was not effective in immobilizing active enzyme on Co-Cr-Mo. Aqueous silanization with 12.5% APS resulted in optimal immobilized activity. Activity on samples derivatized with 0.65 mg p-NPC cm-2 was four to five times greater than that on samples simple adsorbed with enzyme or optimally derivatized with APS and was about eight times that on tresylated samples. This work demonstrates that, although different methods have different effectiveness, chemical derivatization can be used to alter the amount and/or stability of biomolecules immobilized on the surface of Co-Cr-Mo.

  14. Soil Properties, Nutrient Dynamics, and Soil Enzyme Activities Associated with Garlic Stalk Decomposition under Various Conditions

    PubMed Central

    Han, Xu; Cheng, Zhihui; Meng, Huanwen

    2012-01-01

    The garlic stalk is a byproduct of garlic production and normally abandoned or burned, both of which cause environmental pollution. It is therefore appropriate to determine the conditions of efficient decomposition, and equally appropriate to determine the impact of this decomposition on soil properties. In this study, the soil properties, enzyme activities and nutrient dynamics associated with the decomposition of garlic stalk at different temperatures, concentrations and durations were investigated. Stalk decomposition significantly increased the values of soil pH and electrical conductivity. In addition, total nitrogen and organic carbon concentration were significantly increased by decomposing stalks at 40°C, with a 5∶100 ratio and for 10 or 60 days. The highest activities of sucrase, urease and alkaline phosphatase in soil were detected when stalk decomposition was performed at the lowest temperature (10°C), highest concentration (5∶100), and shortest duration (10 or 20 days). The evidence presented here suggests that garlic stalk decomposition improves the quality of soil by altering the value of soil pH and electrical conductivity and by changing nutrient dynamics and soil enzyme activity, compared to the soil decomposition without garlic stalks. PMID:23226411

  15. Higher Plasma Pyridoxal Phosphate Is Associated with Increased Antioxidant Enzyme Activities in Critically Ill Surgical Patients

    PubMed Central

    Cheng, Chien-Hsiang; Huang, Shih-Chien; Chiang, Ting-Yu; Wong, Yueching

    2013-01-01

    Critically ill patients experience severe stress, inflammation and clinical conditions which may increase the utilization and metabolic turnover of vitamin B-6 and may further increase their oxidative stress and compromise their antioxidant capacity. This study was conducted to examine the relationship between vitamin B-6 status (plasma and erythrocyte PLP) oxidative stress, and antioxidant capacities in critically ill surgical patients. Thirty-seven patients in surgical intensive care unit of Taichung Veterans General Hospital, Taiwan, were enrolled. The levels of plasma and erythrocyte PLP, serum malondialdehyde, total antioxidant capacity, and antioxidant enzyme activities (i.e., superoxide dismutase (SOD), glutathione S-transferase, and glutathione peroxidase) were determined on the 1st and 7th days of admission. Plasma PLP was positively associated with the mean SOD activity level on day 1 (r = 0.42, P < 0.05), day 7 (r = 0.37, P < 0.05), and on changes (Δ (day 7 − day 1)) (r = 0.56, P < 0.01) after adjusting for age, gender, and plasma C-reactive protein concentration. Higher plasma PLP could be an important contributing factor in the elevation of antioxidant enzyme activity in critically ill surgical patients. PMID:23819116

  16. Ion-exchange chromatography: basic principles and application to the partial purification of soluble mammalian prolyl oligopeptidase.

    PubMed

    Cummins, Philip M; Dowling, Oonagh; O'Connor, Brendan F

    2011-01-01

    Ion-exchange chromatography (IEC) allows for the separation of ionizable molecules on the basis of differences in charge properties. Its large sample-handling capacity, broad applicability (particularly to proteins and enzymes), moderate cost, powerful resolving ability, and ease of scale-up and automation have led to it becoming one of the most versatile and widely used of all liquid chromatography (LC) techniques. In this chapter, we review the basic principles of IEC, as well as the broader criteria for selecting IEC conditions. By way of further illustration, we outline protocols necessary to partially purify a serine peptidase from bovine whole brain cytosolic fraction, covering crude tissue extract preparation through to partial purification of the target enzyme using anion-exchange chromatography. Protocols for assaying total protein and enzyme activity in both pre- and post-IEC fractions are also described. The target serine peptidase, prolyl oligopeptidase (POP, EC3.4.21.26), is an 80-kDa enzyme with endopeptidase activity towards peptide substrates of ≤30 amino acids. POP is a ubiquitous post-proline cleaving enzyme with particularly high expression levels in the mammalian brain, where it participates in the metabolism of neuroactive peptides and peptide-like hormones (e.g. thyroliberin, gonadotropin-releasing hormone).

  17. Erythrocyte phosphofructokinase in rat strains with genetically determined differences in 2,3-diphosphoglycerate levels.

    PubMed

    Noble, N A; Tanaka, K R

    1981-02-01

    We have studied the erythrocyte enzyme phosphofructokinase (PFK) from two strains of Long-Evans rats with genetically determined differences in erythrocyte 2,3-diphosphoglycerate (DPG) levels. The DPG difference is due to two alleles at one locus. With one probable exception, the genotype at this locus is always associated with the hemoglobin (Hb) electrophoretic phenotype, due to a polymorphism at the III beta-globin locus. The enzyme PFK has been implicated in the DPG difference because glycolytic intermediate levels suggest that this enzyme has a higher in vivo activity in High-DPG strain rats, although the total PFK activity does not differ. We report here that partially purified erythrocyte PFK from Low-DPG strain cells is inhibited significantly more at physiological levels of DPG (P less than 0.01) than PFK from High-DPG strain erythrocytes. Citrate and adenosine triphosphate also inhibit the Low-DPG enzyme more than the High-DPG enzyme. Therefore, a structurally different PFK, with a greater sensitivity to inhibitors, may explain the lower DPG and ATP levels observed in Low-DPG strain animals. These data support a two-locus (Hb and PFK) hypothesis and provide a gene marker to study the underlying genetic and physiologic relationships of these loci.

  18. Draft genome sequence of Streptomyces sp. strain F1, a potential source for glycoside hydrolases isolated from Brazilian soil.

    PubMed

    Melo, Ricardo Rodrigues de; Persinoti, Gabriela Felix; Paixão, Douglas Antonio Alvaredo; Squina, Fábio Márcio; Ruller, Roberto; Sato, Helia Harumi

    Here, we show the draft genome sequence of Streptomyces sp. F1, a strain isolated from soil with great potential for secretion of hydrolytic enzymes used to deconstruct cellulosic biomass. The draft genome assembly of Streptomyces sp. strain F1 has 69 contigs with a total genome size of 8,142,296bp and G+C 72.65%. Preliminary genome analysis identified 175 proteins as Carbohydrate-Active Enzymes, being 85 glycoside hydrolases organized in 33 distinct families. This draft genome information provides new insights on the key genes encoding hydrolytic enzymes involved in biomass deconstruction employed by soil bacteria. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  19. Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils

    PubMed Central

    Kaiser, Christina; Franklin, Oskar; Richter, Andreas; Dieckmann, Ulf

    2015-01-01

    The chemical structure of organic matter has been shown to be only marginally important for its decomposability by microorganisms. The question of why organic matter does accumulate in the face of powerful microbial degraders is thus key for understanding terrestrial carbon and nitrogen cycling. Here we demonstrate, based on an individual-based microbial community model, that social dynamics among microbes producing extracellular enzymes (‘decomposers') and microbes exploiting the catalytic activities of others (‘cheaters') regulate organic matter turnover. We show that the presence of cheaters increases nitrogen retention and organic matter build-up by downregulating the ratio of extracellular enzymes to total microbial biomass, allowing nitrogen-rich microbial necromass to accumulate. Moreover, increasing catalytic efficiencies of enzymes are outbalanced by a strong negative feedback on enzyme producers, leading to less enzymes being produced at the community level. Our results thus reveal a possible control mechanism that may buffer soil CO2 emissions in a future climate. PMID:26621582

  20. Production of l(+)-lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans DSM2314 in a simultaneous saccharification and fermentation strategy.

    PubMed

    van der Pol, Edwin C; Eggink, Gerrit; Weusthuis, Ruud A

    2016-01-01

    Sugars derived from lignocellulose-rich sugarcane bagasse can be used as feedstock for production of l(+)-lactic acid, a precursor for renewable bioplastics. In our research, acid-pretreated bagasse was hydrolysed with the enzyme cocktail GC220 and fermented by the moderate thermophilic bacterium Bacillus coagulans DSM2314. Saccharification and fermentation were performed simultaneously (SSF), adding acid-pretreated bagasse either in one batch or in two stages. SSF was performed at low enzyme dosages of 10.5-15.8 FPU/g DW bagasse. The first batch SSF resulted in an average productivity of 0.78 g/l/h, which is not sufficient to compete with lactic acid production processes using high-grade sugars. Addition of 1 g/l furfural to precultures can increase B. coagulans resistance towards by-products present in pretreated lignocellulose. Using furfural-containing precultures, productivity increased to 0.92 g/l/h, with a total lactic acid production of 91.7 g in a 1-l reactor containing 20% W/W DW bagasse. To increase sugar concentrations, bagasse was solubilized with a liquid fraction, obtained directly after acid pretreatment. Solubilizing the bagasse fibres with water increased the average productivity to 1.14 g/l/h, with a total lactic acid production of 84.2 g in a 1-l reactor. Addition of bagasse in two stages reduced viscosity during SSF, resulting in an average productivity in the first 23 h of 2.54 g/l/h, similar to productivities obtained in fermentations using high-grade sugars. Due to fast accumulation of lactic acid, enzyme activity was repressed during two-stage SSF, resulting in a decrease in productivity and a slightly lower total lactic acid production of 75.6 g. In this study, it is shown that an adequate production of lactic acid from lignocellulose was successfully accomplished by a two-stage SSF process, which combines acid-pretreated bagasse, B. coagulans precultivated in the presence of furfural as microorganism, and GC220 as enzyme cocktail. The process may be further improved by enhancing enzyme hydrolysis activities at high lactic acid concentrations.

  1. Bovine brain pyroglutamyl aminopeptidase (type-1): purification and characterisation of a neuropeptide-inactivating peptidase.

    PubMed

    Cummins, P M; O'Connor, B

    1996-08-01

    Pyroglutamyl aminopeptidase type-1 (PAP-I) is reported to be a soluble, broad specificity aminopeptidase, capable of removing the pyroglutamic acid (pGlu) residue from the amino terminus of pGlu-peptides (e.g. TRH, LHRH, neurotensin and bombesin). The central aim of this study was to undertake, for the first time, the complete purification and characterisation of a PAP activity observed within the cytosolic fraction of bovine whole brain and to compare the properties of the enzyme with previous findings. A series of chromatographic steps (DEAE-Sepharose, Sephacryl S-200 and Activated Thiol Sepharose 4B) generated a soluble PAP activity purified to near homogeneity with a total active yield of 6.6% The enzyme displayed a native molecular mass of approximately 23,700 Da, which compares well with that value obtained under denaturing conditions via SDS-PAGE (24,000 Da), suggesting that the enzyme exists as a monomer. The expression of PAP activity displayed an absolute requirement for the presence of a disulphide bond-reducing agent such as DTT, whilst optimum activity was observed at pH 8.5. strong inhibition of PAP activity was observed with a number of different agents, including transition metal ions, sulphydryl-blocking agents and 2-pyrrolidone (a pGlu analog). A broad pyroglutamyl substrate specificity, which excludes substrates commencing with the pGlu-Pro bond, was also demonstrated for the bovine brain enzyme. Based on a comparison of these findings with those reported for PAP-I in other mammalian tissues, the soluble PAP activity observed in bovine whole brain can tentatively be classified as a pyroglutamyl aminopeptidase type-1 (EC 3.4.19.3).

  2. Temporal changes of metal bioavailability and extracellular enzyme activities in relation to afforestation of highly contaminated calcareous soil.

    PubMed

    Hu, Yahu; Huang, Yu; Su, Jieqiong; Gao, Zhuo; Li, Shuqi; Nan, Zhongren

    2018-05-01

    Metal bioavailability and extracellular enzyme activity are two important indicators of soil quality in metal-contaminated soil. However, it is unclear how the chronosequence effect modifies these two factors in highly contaminated calcareous soils undergoing afforestation. We used Populus simonii Carr. and the calciphilous Ulmus macrocarpa Hance as contrasting tree species to study the chronosequence effect. We found that afforestation significantly increased soil total nitrogen (N) content as well as soil carbon (C)/phosphorus (P) and N/P ratios, but decreased soil total P content and soil C/N ratio, regardless of the tree species and stand age, suggesting strong P limitation. However, available P did not change significantly with stand age. In both tree species, P mobilization depleted soil organic matter through the priming effect of dissolved organic carbon, whereas the decrease in soil pH in the U. macrocarpa stands enhanced CaCO 3 dissolution, collectively reducing the capacity of the soil to immobilize metals, resulting in increased metal bioavailability with stand age. The activity of oxidase (dehydrogenase) was positively correlated with bioavailable zinc concentration, soil electrical conductivity, and soil total N content. Hydrolase activities (alkaline phosphatase, β-glucosidase, and urease) were significantly positively correlated with the ratios of soil C/N and C/P, soil pH, and CaCO 3 , but negatively correlated with soil N/P ratio and bioavailable cadmium concentration. Increasing stand age was associated with the gradual recovery of oxidase activity and remarkable inhibition of hydrolase activity. Our results suggest that the combination of soil hydrolase activity and metal bioavailability can predict soil quality in the afforestation of highly contaminated soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Redox regulation of antioxidant enzymes: post-translational modulation of catalase and glutathione peroxidase activity by resveratrol in diabetic rat liver.

    PubMed

    Sadi, Gökhan; Bozan, Davut; Yildiz, Huseyin Bekir

    2014-08-01

    Resveratrol is a strong antioxidant that exhibits blood glucose-lowering effects, which might contribute to its usefulness in preventing complications associated with diabetes. The present study aimed to investigate resveratrol effects on catalase (CAT) and glutathione peroxidase (GPx) gene and protein expression, their phosphorylation states and activities in rat liver of STZ-induced diabetes. Diabetes increased the levels of total protein phosphorylation and p-CAT, while mRNA expression, protein levels, and activity were reduced. Although diabetes induced transcriptional repression over GPx, it did not affect the protein levels and activity. When resveratrol was administered to diabetic rats, an increase in activity was associated with an increase in p-GPx levels. Decrease in Sirtuin1 (SIRT1) and nuclear factor erythroid 2-related factor (Nrf2) and increase in nuclear factor kappa B (NFκB) gene expression in diabetes were associated with a decrease in CAT and GPx mRNA expression. A possible compensatory mechanism for reduced gene expression of antioxidant enzymes is proved to be nuclear translocation of redox-sensitive Nrf2 and NFκB in diabetes which is confirmed by the increase in nuclear and decrease in cytoplasmic protein levels of Nrf2 and NFκB. Taken together, these findings revealed that an increase in the oxidized state in diabetes intricately modified the cellular phosphorylation status and regulation of antioxidant enzymes. Gene regulation of antioxidant enzymes was accompanied by nuclear translocation of Nrf2 and NFκB. Resveratrol administration also activated a coordinated cytoprotective response against diabetes-induced changes in liver tissues.

  4. Expression of a Streptococcus mutans glucosyltransferase gene in Escherichia coli.

    PubMed

    Robeson, J P; Barletta, R G; Curtiss, R

    1983-01-01

    Chromosomal DNA from Streptococcus mutans strain UAB90 (serotype c) was cloned into Escherichia coli K-12. The clone bank was screened for any sucrose-hydrolyzing activity by selection for growth on raffinose in the presence of isopropyl-beta-D-thiogalactoside. A clone expressing an S. mutans glucosyltransferase was identified. The S. mutans DNA encoding this enzyme is a 1.73-kilobase fragment cloned into the HindIII site of plasmid pBR322. We designated the gene gtfA. The plasmid-encoded gtfA enzyme, a 55,000-molecular-weight protein, is synthesized at 40% the level of pBR322-encoded beta-lactamase in E. coli minicells. Using sucrose as substrate, the gtfA enzyme catalyzes the formation of fructose and a glucan with an apparent molecular weight of 1,500. We detected the gtfA protein in S. mutans cells with antibody raised against the cloned gtfA enzyme. Immunologically identical gtfA protein appears to be present in S. mutans cells of serotypes c, e, and f, and a cross-reacting protein was made by serotype b cells. Proteins from serotype a, g, and d S. mutans cells did not react with antibody to gtfA enzyme. The gtfA activity was present in the periplasmic space of E. coli clones, since 15% of the total gtfA activity was released by cold osmotic shock and the clones were able to grow on sucrose as sole carbon source.

  5. NAD+ glycohydrolase, an ecto-enzyme of calf spleen cells.

    PubMed Central

    Muller, H M; Muller, C D; Schuber, F

    1983-01-01

    By using a sensitive fluorimetric assay of NAD+ glycohydrolase (EC 3.2.2.6), we showed that calf spleen cells are able to hydrolyse 1,N6-etheno-NAD+ given in the medium. The observed rates of substrate hydrolysis and product accumulation in the medium are equivalent. Moreover, the splenocytes are able to cleave the nicotinamide-ribose bond of a water-soluble polymer of NAD+, and their NAD+ glycohydrolase activity is fully inhibited by a high-molecular-weight Blue Dextran. Selective permeation of the cellular membrane digitonin revealed an intracellular pool of NAD+ glycohydrolase, which accounts for 25% of the total activity. We conclude that NAD+ glycohydrolase associated with the splenocytes has the characteristics of an ecto-enzyme. PMID:6192807

  6. First draft genome sequencing of indole acetic acid producing and plant growth promoting fungus Preussia sp. BSL10.

    PubMed

    Khan, Abdul Latif; Asaf, Sajjad; Khan, Abdur Rahim; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Lee, In-Jung

    2016-05-10

    Preussia sp. BSL10, family Sporormiaceae, was actively producing phytohormone (indole-3-acetic acid) and extra-cellular enzymes (phosphatases and glucosidases). The fungus was also promoting the growth of arid-land tree-Boswellia sacra. Looking at such prospects of this fungus, we sequenced its draft genome for the first time. The Illumina based sequence analysis reveals an approximate genome size of 31.4Mbp for Preussia sp. BSL10. Based on ab initio gene prediction, total 32,312 coding sequences were annotated consisting of 11,967 coding genes, pseudogenes, and 221 tRNA genes. Furthermore, 321 carbohydrate-active enzymes were predicted and classified into many functional families. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Rice protein improves oxidative stress by regulating glutathione metabolism and attenuating oxidative damage to lipids and proteins in rats.

    PubMed

    Yang, Lin; Chen, Jia-Hou; Xu, Tong; Zhou, Ai-Shen; Yang, Hong-Kun

    2012-10-05

    To evaluate the effects of rice protein (RP) on glutathione metabolism and oxidative damage. Seven-week-old male Wistar rats were fed diets containing casein and RP without cholesterol for 3weeks. Plasma and liver lipid levels, hepatic accumulation of total glutathione (T-GSH), oxidized glutathione (GSSG), reduced glutathione (GSH), malondialdehyde (MDA) and protein carbonyl (PCO) were measured. In the liver, the total antioxidative capacity (T-AOC), mRNA levels of glutamate cysteine ligase catalytic subunit (GCLC) and glutamate cysteine ligase modulatory subunit (GCLM), and the activities of hepatic catalase (CAT), total superoxide dismutase (T-SOD), γ-glutamylcysteine synthetase (γ-GCS), glutathione S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GSHPx) were also measured. T-AOC, GCLC and GCLM mRNA levels, antioxidative enzyme activities (T-SOD and CAT) and glutathione metabolism related enzyme activities (γ-GCS, GST, GR and GSHPx) were effectively stimulated by RP feeding compared to casein, and RP significantly reduced the hepatic accumulation of MDA and PCO in rats. These results indicate that lipid-lowering activity was induced by RP feeding. The present study demonstrates that RP improves oxidative stress primarily through enzymatic and non-enzymatic antioxidative defense mechanisms, reflected by enhancing the antioxidative status and attenuating the oxidative damage to lipids and proteins. These results suggest that RP can prevent hyperlipidemia in part through modifying glutathione metabolism, and sulfur amino acids may be the main modulator of this antioxidative mechanism. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. [Effect of total ischemia and 3',5'-cAMP on the activity of the thermostable cytoplasmic inhibitor of Ca2+ ion transport in rat heart mitochondria].

    PubMed

    Turakulov, Ia Kh; Luchenko, M B; Gaĭnutdinov, M Kh; Abidov, A A

    1985-01-01

    Activity of cytoplasmic inhibitor of Ca2+ transport in rat heart mitochondria was studied after total ischemia and incubation of heart homogenates with cAMP. Distinct inactivation of the inhibitor occurred under these conditions. The decrease of the inhibitor activity in ischemic myocardium appears to serve as a compensatory mechanism: 1. pyruvate dehydrogenase and the enzymes of tricarboxylic acid cycle were activated due to increase in Ca2+ concentration in mitochondria, 2. as a result of Ca2+ accumulation in mitochondria the elevated concentration of Ca2+ was decreased in myoplasm, which developed after impairment of plasmatic membranes and of sarcoplasmic reticulum membranes.

  9. Effect of under- and overfeeding on sheep and goat milk and plasma enzymes activities related to oxidation.

    PubMed

    Tsiplakou, E; Mitsiopoulou, C; Mavrommatis, A; Karaiskou, C; Chronopoulou, E G; Mavridis, G; Sotirakoglou, K; Labrou, N E; Zervas, G

    2018-02-01

    Twenty-four dairy sheep and goats, respectively, were assigned each to three homogenous subgroups per animal species and fed the same diet in quantities which met 70% (underfeeding), 100% (control) and 130% (overfeeding) of their energy and crude protein requirements. The results showed that the underfed sheep in comparison with the control had significantly lower glutathione reductase (GR), superoxide dismutase (SOD), catalase and glutathione peroxidase (GPX) activities and total antioxidant capacity (measured with Ferric Reducing Ability of Plasma [FRAP] assay) in their blood plasma. A significant increase in the glutathione transferase (GST) and GPX activities, malondialdehyde content and total antioxidant capacity (measured with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) [ABTS] assay) in the blood plasma of underfed goats compared with controls was observed, while the opposite happened for the GR and SOD activities. The underfeeding in both animal species caused a significant increase in the protein carbonyls (PC) content of their blood plasma. The overfeeding, compared with the control, caused a significant decline in the GPX activity and total antioxidant capacity (measured with FRAP) in the blood plasma of sheep while the opposite happened for the GPX and GST activities in the case of goats. The overfed animals, of both species, compared with the respective controls, had higher PC content in their blood plasma. The feeding level had no noticeable impact on the antioxidants' enzymes activities of milk in both animal species. Moreover, the underfeeding in the blood plasma and the overfeeding in milk of both animal species resulted into a significant increase in the PC content. Finally, only in sheep milk, the underfeeding, compared with the respective control, and overfeeding reduced significantly the total antioxidant capacity (measured with ABTS). The feeding level caused oxidative stress in both organism and milk but the response was different in animal species and needs further investigation. © 2017 Blackwell Verlag GmbH.

  10. Identification and expression analysis of starch branching enzymes involved in starch synthesis during the development of chestnut (Castanea mollissima Blume) cotyledons

    PubMed Central

    Li, Zhi; Zhao, Yanyan; Jiang, Yichen; Zhang, Qing; Cao, Qingqin; Fang, Kefeng; Xing, Yu; Qin, Ling

    2017-01-01

    Chinese chestnut (Castanea mollissima Blume) is native to China and distributes widely in arid and semi-arid mountain area with barren soil. As a perennial crop, chestnut is an alternative food source and acts as an important commercial nut tree in China. Starch is the major metabolite in nuts, accounting for 46 ~ 64% of the chestnut dry weight. The accumulation of total starch and amylopectin showed a similar increasing trend during the development of nut. Amylopectin contributed up to 76% of the total starch content at 80 days after pollination (DAP). The increase of total starch mainly results from amylopectin synthesis. Among genes associated with starch biosynthesis, CmSBEs (starch branching enzyme) showed significant increase during nut development. Two starch branching enzyme isoforms, CmSBE I and CmSBE II, were identified from chestnut cotyledon using zymogram analysis. CmSBE I and CmSBE II showed similar patterns of expression during nut development. The accumulations of CmSBE transcripts and proteins in developing cotyledons were characterized. The expressions of two CmSBE genes increased from 64 DAP and reached the highest levels at 77 DAP, and SBE activity reached its peak at 74 DAP. These results suggested that the CmSBE enzymes mainly contributed to amylopectin synthesis and influenced the amylopectin content in the developing cotyledon, which would be beneficial to chestnut germplasm selection and breeding. PMID:28542293

  11. Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Saisi; Uppugundla, Nirmal; Bowman, Michael J.

    Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18–25 % of the total soluble sugars in the hydrolysate and 12–18 % of the total polysaccharides in the inlet biomass (untreated), equivalent to a yield loss of about 7–9 kg of monomeric sugars per 100 kg of inlet dry biomass (untreated). These oligosaccharides represent a yield loss and also inhibit commercial hydrolytic enzymes, with both being serious bottlenecks for economical biofuel production frommore » cellulosic biomass. Very little is understood about the nature of these oligomers and why they are recalcitrant to commercial enzymes. This work presents a robust method for separating recalcitrant oligosaccharides from high solid loading hydrolysate in gramme quantities. Composition analysis, recalcitrance study and enzyme inhibition study were performed to understand their chemical nature. Results indicate that, oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, and ammonia fibre expansion: AFEX). The methodology for large-scale separation of recalcitrant oligosaccharides from 25 % solids-loading AFEXcorn stover hydrolysate using charcoal fractionation and size exclusion chromatography is reported for the first time. Oligosaccharides with higher degree of polymerization (DP) were recalcitrant towards commercial enzyme mixtures [Ctec2, Htec2 and Multifect pectinase (MP)] compared to lower DP oligosaccharides. Enzyme inhibition studies using processed substrates (Avicel and xylan) showed that low DP oligosaccharides also inhibit commercial enzymes. Addition of monomeric sugars to oligosaccharides increases the inhibitory effects of oligosaccharides on commercial enzymes. In conclusion, the carbohydrate composition of the recalcitrant oligosaccharides, ratios of different DP oligomers and their distribution profiles were determined. Recalcitrance and enzyme inhibition studies help determine whether the commercial enzyme mixtures lack the enzyme activities required to completely de-polymerize the plant cell wall. Such studies clarify the reasons for oligosaccharide accumulation and contribute to strategies by which oligosaccharides can be converted into fermentable sugars and provide higher biofuel yields with less enzyme.« less

  12. Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis

    DOE PAGES

    Xue, Saisi; Uppugundla, Nirmal; Bowman, Michael J.; ...

    2015-11-26

    Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18–25 % of the total soluble sugars in the hydrolysate and 12–18 % of the total polysaccharides in the inlet biomass (untreated), equivalent to a yield loss of about 7–9 kg of monomeric sugars per 100 kg of inlet dry biomass (untreated). These oligosaccharides represent a yield loss and also inhibit commercial hydrolytic enzymes, with both being serious bottlenecks for economical biofuel production frommore » cellulosic biomass. Very little is understood about the nature of these oligomers and why they are recalcitrant to commercial enzymes. This work presents a robust method for separating recalcitrant oligosaccharides from high solid loading hydrolysate in gramme quantities. Composition analysis, recalcitrance study and enzyme inhibition study were performed to understand their chemical nature. Results indicate that, oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, and ammonia fibre expansion: AFEX). The methodology for large-scale separation of recalcitrant oligosaccharides from 25 % solids-loading AFEXcorn stover hydrolysate using charcoal fractionation and size exclusion chromatography is reported for the first time. Oligosaccharides with higher degree of polymerization (DP) were recalcitrant towards commercial enzyme mixtures [Ctec2, Htec2 and Multifect pectinase (MP)] compared to lower DP oligosaccharides. Enzyme inhibition studies using processed substrates (Avicel and xylan) showed that low DP oligosaccharides also inhibit commercial enzymes. Addition of monomeric sugars to oligosaccharides increases the inhibitory effects of oligosaccharides on commercial enzymes. In conclusion, the carbohydrate composition of the recalcitrant oligosaccharides, ratios of different DP oligomers and their distribution profiles were determined. Recalcitrance and enzyme inhibition studies help determine whether the commercial enzyme mixtures lack the enzyme activities required to completely de-polymerize the plant cell wall. Such studies clarify the reasons for oligosaccharide accumulation and contribute to strategies by which oligosaccharides can be converted into fermentable sugars and provide higher biofuel yields with less enzyme.« less

  13. Effect of Degeneration on Fluid-Solid Interaction within Intervertebral Disk Under Cyclic Loading - A Meta-Model Analysis of Finite Element Simulations.

    PubMed

    Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin

    2015-01-01

    The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid-fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid-solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid-fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk.

  14. CO2-H2O based pretreatment and enzyme hydrolysis of soybean hulls.

    PubMed

    Islam, S M Mahfuzul; Li, Qian; Loman, Abdullah Al; Ju, Lu-Kwang

    2017-11-01

    The high carbohydrate content of soybean hull makes it an attractive biorefinery resource. But hydrolyzing its complex structure requires concerted enzyme activities, at least cellulase, xylanase, pectinase and α-galactosidase. Effective pretreatment that generates minimal inhibitory products is important to facilitate enzymatic hydrolysis. Combined CO 2 -H 2 O pretreatment and enzymatic hydrolysis by Aspergillus niger and Trichoderma reesei enzyme broths was studied here. The pretreatment was evaluated at 80°C-180°C temperature and 750psi-1800psi pressure, with fixed moisture content (66.7%) and pretreatment time (30min). Ground hulls without and with different pretreatments were hydrolyzed by enzyme at 50°C and pH 4.8 and compared for glucose, xylose, galactose, arabinose, mannose and total reducing sugar release. CO 2 -H 2 O pretreatment at 1250psi and 130°C was found to be optimal. Compared to the unpretreated hulls hydrolyzed with 2.5-fold more enzyme, this pretreatment improved glucose, xylose, galactose, arabinose and mannose releases by 55%, 35%, 105%, 683% and 52%, respectively. Conversions of 97% for glucose, 98% for xylose, 41% for galactose, 59% for arabinose, 87% for mannose and 89% for total reducing sugar were achieved with Spezyme CP at 18FPU/g hull. Monomerization of all carbohydrate types was demonstrated. At the optimum pretreatment condition, generation of inhibitors acetic acid, furfural and hydroxymethylfurfural (HMF) was negligible, 1.5mg/g hull in total. The results confirmed the effective CO 2 -H 2 O pretreatment of soybean hulls at much lower pressure and temperature than those reported for biomass of higher lignin contents. The lower pressure requirement reduces the reactor cost and makes this new pretreatment method more practical and economical. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Effect of Degeneration on Fluid–Solid Interaction within Intervertebral Disk Under Cyclic Loading – A Meta-Model Analysis of Finite Element Simulations

    PubMed Central

    Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin

    2015-01-01

    The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid–fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid–solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid–fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk. PMID:25674562

  16. Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol.

    PubMed

    Oraby, Hesham; Venkatesh, Balan; Dale, Bruce; Ahmad, Rashid; Ransom, Callista; Oehmke, James; Sticklen, Mariam

    2007-12-01

    The catalytic domain of Acidothermus cellulolyticus thermostable endoglucanase gene (encoding for endo-1,4-beta-glucanase enzyme or E1) was constitutively expressed in rice. Molecular analyses of T1 plants confirmed presence and expression of the transgene. The amount of E1 enzyme accounted for up to 4.9% of the plant total soluble proteins, and its accumulation had no apparent deleterious effects on plant growth and development. Approximately 22 and 30% of the cellulose of the Ammonia Fiber Explosion (AFEX)-pretreated rice and maize biomass respectively was converted into glucose using rice E1 heterologous enzyme. As rice is the major food crop of the world with minimal use for its straw, our results suggest a successful strategy for producing biologically active hydrolysis enzymes in rice to help generate alcohol fuel, by substituting the wasteful and polluting practice of rice straw burning with an environmentally friendly technology.

  17. The effects of ingested petroleum on the maphthalene-metabolizing properties of the liver tissue in seawater-adapted mallard ducks (Anas platyrhynchos)

    USGS Publications Warehouse

    Gorsline, J.; Holmes, W.N.; Cronshaw, J.

    1981-01-01

    Hepatic mixed function oxidase activities were estimated in seawater-adapted mallard ducks (Anas platyrhynchos) that had been consuming food contaminated with one of five different types of crude oil. After 50 days of exposure to contaminated food, enzyme activities of liver microsomal preparations were assessed in terms of their naphthalenemetabolizing properties in vitro. Although dose-dependent increases in the total hepatic enzyme activities (nmole naphthalene metabolized per minute per unit mass body weight) were observed in birds consuming food contaminated with each type of crude oil, three patterns of response were apparent. Crude oils from South Louisiana and Kuwait stimulated large and significant increases in the specific activity of the enzyme system (nmole naphthalene metabolized per minute per unit mass microsomal protein), whereas little or no increase in either microsomal protein content or relative liver weight were observed. In contrast, two crude oils from Santa Barbara, Calif., induced only small increases in specific activity but significant increases occurred in hepatic microsomal protein concentration and relative liver weight. The crude oil from Prudhoe Bay, Ala., evoked intermediate patterns of response. The possible significance of these data is discussed in relation to the survival of seabirds consuming petroleum-contaminated food and drinking water.

  18. From by-product to valuable components: Efficient enzymatic conversion of lactose in whey using β-galactosidase from Streptococcus thermophilus.

    PubMed

    Geiger, Barbara; Nguyen, Hoang-Minh; Wenig, Stefanie; Nguyen, Hoang Anh; Lorenz, Cindy; Kittl, Roman; Mathiesen, Geir; Eijsink, Vincent G H; Haltrich, Dietmar; Nguyen, Thu-Ha

    2016-12-15

    β-Galactosidase from Streptococcus thermophilus was overexpressed in a food-grade organism, Lactobacillus plantarum WCFS1. Laboratory cultivations yielded 11,000 U of β-galactosidase activity per liter of culture corresponding to approximately 170 mg of enzyme. Crude cell-free enzyme extracts obtained by cell disruption and subsequent removal of cell debris showed high stability and were used for conversion of lactose in whey permeate. The enzyme showed high transgalactosylation activity. When using an initial concentration of whey permeate corresponding to 205 g L -1 lactose, the maximum yield of galacto-oligosaccharides (GOS) obtained at 50°C reached approximately 50% of total sugar at 90% lactose conversion, meaning that efficient valorization of the whey lactose was obtained. GOS are of great interest for both human and animal nutrition; thus, efficient conversion of lactose in whey into GOS using an enzymatic approach will not only decrease the environmental impact of whey disposal, but also create additional value.

  19. Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates.

    PubMed

    Peciulyte, Ausra; Anasontzis, George E; Karlström, Katarina; Larsson, Per Tomas; Olsson, Lisbeth

    2014-11-01

    The industrial production of cellulolytic enzymes is dominated by the filamentous fungus Trichoderma reesei (anamorph of Hypocrea jecorina). In order to develop optimal enzymatic cocktail, it is of importance to understand the natural regulation of the enzyme profile as response to the growth substrate. The influence of the complexity of cellulose on enzyme production by the microorganisms is not understood. In the present study we attempted to understand how different physical and structural properties of cellulose-rich substrates affected the levels and profiles of extracellular enzymes produced by T. reesei. Enzyme production by T. reesei Rut C-30 was studied in submerged cultures on five different cellulose-rich substrates, namely, commercial cellulose Avicel® and industrial-like cellulosic pulp substrates which consist mainly of cellulose, but also contain residual hemicellulose and lignin. In order to evaluate the hydrolysis of the substrates by the fungal enzymes, the spatial polymer distributions were characterised by cross-polarisation magic angle spinning carbon-13 nuclear magnetic resonance (CP/MAS (13)C-NMR) in combination with spectral fitting. Proteins in culture supernatants at early and late stages of enzyme production were labeled by Tandem Mass Tags (TMT) and protein profiles were analysed by liquid chromatography-tandem mass spectrometry. The data have been deposited to the ProteomeXchange with identifier PXD001304. In total 124 proteins were identified and quantified in the culture supernatants, including cellulases, hemicellulases, other glycoside hydrolases, lignin-degrading enzymes, auxiliary activity 9 (AA9) family (formerly GH61), supporting activities of proteins and enzymes acting on cellulose, proteases, intracellular proteins and several hypothetical proteins. Surprisingly, substantial differences in the enzyme profiles were found even though there were minor differences in the chemical composition between the cellulose-rich substrates. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. CO(2)-induced total phenolics in suspension cultures of Panax ginseng C. A. Mayer roots: role of antioxidants and enzymes.

    PubMed

    Ali, Mohammad Babar; Hahn, Eun Joo; Paek, Kee-Yoeup

    2005-05-01

    The effects of different concentrations of CO(2) (1%, 2.5% and 5%) on the antioxidant capacity, total phenols, flavonoids, protein content and phenol biosynthetic enzymes in roots of Panax ginseng were studied in bioreactor (working volume 4 l) after 15, 30 and 45 days. CO(2) induced accumulation of total phenolics in a concentration and duration dependent manner. Total phenols, flavonoids and 1,1-diphenyl-2-picrylhydrazyl (DPPH) activity increased 60%, 30% and 20% at 2.5% CO(2) after 45 days compared to control in P. ginseng roots which indicated that phenolics compounds played an important role in protecting the plants from CO(2). Hypothesizing that increasing the phenolic compounds in roots of P. ginseng may increase its nutritional functionality; we investigated whether pentose phosphate pathway (PPP), shikimate/phenylpropanoid pathway enzymes have a role in phenolics mobilization in P. ginseng roots. Fresh weight (FW), dry weight (DW) and growth ratio was increased at 1% and 2.5% CO(2) only after 45 days, however, unaffected after 15 and 30 days. Results also indicated that high CO(2) progressively stimulated the activities of glucose 6 phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49), shikimate dehydrogenase (SKDH, E.C. 1.1.1.25), phenylalanine ammonia lyase (PAL, E.C. 4.3.1.5), cinnamyl alcohol dehydrogenase (CAD, E.C. 1.1.1.195), caffeic acid (CA) peroxidase and chlorogenic acid (CGA) peroxidase after 15, 30 and 45 days. Increased CO(2) levels resulted in increases in accumulation of total protein (45%), non-protein thiol (NP-SH) (30%) and cysteine contents (52%) after 45 days compared to control and increased activities of beta-glucosidase (GS, E.C. 3.2.1.21) and polyphenol oxidase (PPO, E.C. 1.10.3.2) in P. ginseng roots indicated that they played an important role in protecting the plants from CO(2). These results strongly suggest that high concentration of CO(2) delivered to ginseng root suspension cultures induced the accumulation of total phenolics possessing high antioxidant properties probably useful for human health. Therefore, roots of P. ginseng are considered as a good source of phenolics compounds with high antioxidants capacity and can be produced on a large scale.

  1. Effects of continuous hypoxia on energy metabolism in cultured cerebro-cortical neurons.

    PubMed

    Malthankar-Phatak, Gauri H; Patel, Anant B; Xia, Ying; Hong, Soonsun; Chowdhury, Golam M I; Behar, Kevin L; Orina, Isaac A; Lai, James C K

    2008-09-10

    Mechanisms underlying hypoxia-induced neuronal adaptation have not been fully elucidated. In the present study we investigated glucose metabolism and the activities of glycolytic and TCA cycle enzymes in cerebro-cortical neurons exposed to hypoxia (3 days in 1% of O2) or normoxia (room air). Hypoxia led to increased activities of LDH (194%), PK (90%), and HK (24%) and decreased activities of CS (15%) and GDH (34%). Neurons were incubated with [1-(13)C]glucose for 45 and 120 min under normoxic or hypoxic (120 min only) conditions and 13C enrichment determined in the medium and cell extract using 1H-{13C}-NMR. In hypoxia-treated neurons [3-(13)C]lactate release into the medium was 428% greater than in normoxia-treated controls (45-min normoxic incubation) and total flux through lactate was increased by 425%. In contrast glucose oxidation was reduced significantly in hypoxia-treated neurons, even when expressed relative to total cellular protein, which correlated with the reduced activities of the measured mitochondrial enzymes. The results suggest that surviving neurons adapt to prolonged hypoxia by up-regulation of glycolysis and down-regulation of oxidative energy metabolism, similar to certain other cell types. The factors leading to adaptation and survival for some neurons but not others remain to be determined.

  2. Effect of total flavonoids of Spatholobus suberectus Dunn on PCV2 induced oxidative stress in RAW264.7 cells.

    PubMed

    Chen, Hai-Lan; Yang, Jian; Fu, Yuan-Fang; Meng, Xi-Nan; Zhao, Wei-Dan; Hu, Ting-Jun

    2017-05-02

    This study was carried out to investigate the effect of total flavonoids of Spatholobus suberectus Dunn (TFSD) on PCV2 induced oxidative stress in RAW264.7 cells. Oxidative stress model was established in RAW264.7 cells by infecting with PCV2. Virus infected cells were then treated with various concentrations (25 mg/ml, 50 mg/ml and 100 mg/ml) of TFSD. The levels of oxidative stress related molecules (NO, ROS, GSH and GSSG) and activities of associated enzymes (SOD, MPO and XOD were analyzed using ultraviolet spectrophotometry, fluorescence method and commercialized detection kits. PCV2 infection induced significant increase of NO secretion, ROS generation, GSSG content, activities of both XOD and MPO, and dramatically decrease of GSH content and SOD activity in RAW264.7 cells (P < 0.05). After treating with TFSD, PCV2 induced alteration of oxidative stress related molecule levels and enzyme activities were recovered to a level similar to control. Our findings indicated that TFSD was able to regulate oxidative stress induced by PCV2 infection in RAW264.7 cells, which supports the ethnomedicinal use of this herb as an alternative or complementary therapeutic drug for reactive oxygen-associated pathologies.

  3. Effects of the naturally occurring alkenylbenzenes eugenol and trans-anethole on drug-metabolizing enzymes in the rat liver.

    PubMed

    Rompelberg, C J; Verhagen, H; van Bladeren, P J

    1993-09-01

    In order to study the effects of trans-anethole and eugenol on drug-metabolizing enzyme activities in vivo, male Wistar rats were treated by gavage with trans-anethole (125 or 250 mg/kg body weight) or eugenol (250, 500 or 1000 mg/kg body weight) daily for 10 days. In liver microsomes and cytosol various phase-I and phase-II biotransformation enzyme activities were determined. No effect on total cytochrome P-450 content in liver microsomes from rats treated with eugenol or trans-anethole was observed. Administration of 1000 mg eugenol/kg body weight, but not the lower doses, significantly increased cytochrome P-450-dependent 7-ethoxy-resorufin O-deethylation (EROD) and 7-pentoxyresorufin O-depentylation (PROD); administration of trans-anethole (125 or 250 mg/kg body weight) did not alter EROD and PROD activities. In rat liver cytosol, UDP-glucuronyl transferase (GT) activity towards the substrate 4-chlorophenol was significantly increased in all treated rats, and activity towards 4-hydroxybiphenyl as substrate was significantly increased in rats treated with 250 mg trans-anethole/kg or with 500 or 1000 mg eugenol/kg. DT-diaphorase (DTD) activity was only significantly enhanced in the liver cytosol of rats treated with trans-anethole at 250 mg/kg body weight. Enhancement of cytosolic glutathione S-transferase (GST) activity towards 1-chloro-2,4-dinitrobenzene was found for all eugenol- and trans-anethole-treated rats. In addition, significantly increased levels of GST subunit 2 were measured by HPLC in the liver cytosol of rats treated with eugenol (500 or 1000 mg/kg body eight) or trans-anethole (250 mg/kg body weight). It is concluded that both eugenol and trans-anethole preferentially induced phase II biotransformation enzymes in rat liver in vivo.

  4. Improved Activity of a Thermophilic Cellulase, Cel5A, from Thermotoga maritima on Ionic Liquid Pretreated Switchgrass

    PubMed Central

    Chen, Zhiwei; Pereira, Jose H.; Liu, Hanbin; Tran, Huu M.; Hsu, Nathan S. Y.; Dibble, Dean; Singh, Seema; Adams, Paul D.; Sapra, Rajat; Hadi, Masood Z.; Simmons, Blake A.; Sale, Kenneth L.

    2013-01-01

    Ionic liquid pretreatment of biomass has been shown to greatly reduce the recalcitrance of lignocellulosic biomass, resulting in improved sugar yields after enzymatic saccharification. However, even under these improved saccharification conditions the cost of enzymes still represents a significant proportion of the total cost of producing sugars and ultimately fuels from lignocellulosic biomass. Much of the high cost of enzymes is due to the low catalytic efficiency and stability of lignocellulolytic enzymes, especially cellulases, under conditions that include high temperatures and the presence of residual pretreatment chemicals, such as acids, organic solvents, bases, or ionic liquids. Improving the efficiency of the saccharification process on ionic liquid pretreated biomass will facilitate reduced enzyme loading and cost. Thermophilic cellulases have been shown to be stable and active in ionic liquids but their activity is typically at lower levels. Cel5A_Tma, a thermophilic endoglucanase from Thermotoga maritima, is highly active on cellulosic substrates and is stable in ionic liquid environments. Here, our motivation was to engineer mutants of Cel5A_Tma with higher activity on 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) pretreated biomass. We developed a robotic platform to screen a random mutagenesis library of Cel5A_Tma. Twelve mutants with 25–42% improvement in specific activity on carboxymethyl cellulose and up to 30% improvement on ionic-liquid pretreated switchgrass were successfully isolated and characterized from a library of twenty thousand variants. Interestingly, most of the mutations in the improved variants are located distally to the active site on the protein surface and are not directly involved with substrate binding. PMID:24244549

  5. Improved activity of a thermophilic cellulase, Cel5A, from Thermotoga maritima on ionic liquid pretreated switchgrass.

    PubMed

    Chen, Zhiwei; Pereira, Jose H; Liu, Hanbin; Tran, Huu M; Hsu, Nathan S Y; Dibble, Dean; Singh, Seema; Adams, Paul D; Sapra, Rajat; Hadi, Masood Z; Simmons, Blake A; Sale, Kenneth L

    2013-01-01

    Ionic liquid pretreatment of biomass has been shown to greatly reduce the recalcitrance of lignocellulosic biomass, resulting in improved sugar yields after enzymatic saccharification. However, even under these improved saccharification conditions the cost of enzymes still represents a significant proportion of the total cost of producing sugars and ultimately fuels from lignocellulosic biomass. Much of the high cost of enzymes is due to the low catalytic efficiency and stability of lignocellulolytic enzymes, especially cellulases, under conditions that include high temperatures and the presence of residual pretreatment chemicals, such as acids, organic solvents, bases, or ionic liquids. Improving the efficiency of the saccharification process on ionic liquid pretreated biomass will facilitate reduced enzyme loading and cost. Thermophilic cellulases have been shown to be stable and active in ionic liquids but their activity is typically at lower levels. Cel5A_Tma, a thermophilic endoglucanase from Thermotoga maritima, is highly active on cellulosic substrates and is stable in ionic liquid environments. Here, our motivation was to engineer mutants of Cel5A_Tma with higher activity on 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) pretreated biomass. We developed a robotic platform to screen a random mutagenesis library of Cel5A_Tma. Twelve mutants with 25-42% improvement in specific activity on carboxymethyl cellulose and up to 30% improvement on ionic-liquid pretreated switchgrass were successfully isolated and characterized from a library of twenty thousand variants. Interestingly, most of the mutations in the improved variants are located distally to the active site on the protein surface and are not directly involved with substrate binding.

  6. Treatment performance and microorganism community structure of integrated vertical-flow constructed wetland plots for domestic wastewater.

    PubMed

    Wu, Su-qing; Chang, Jun-jun; Dai, Yanran; Wu, Zhen-bin; Liang, Wei

    2013-06-01

    In order to investigate the treatment performance and microorganism mechanism of IVCW for domestic wastewater in central of China, two parallel pilot-scale IVCW systems were built to evaluate purification efficiencies, microbial community structure and enzyme activities. The results showed that mean removal efficiencies were 81.03 % for COD, 51.66 % for total nitrogen (TN), 42.50 % for NH4 (+)-N, and 68.01 % for TP. Significant positive correlations between nitrate reductase activities and TN and NH4 (+)-N removal efficiencies, along with a significant correlation between substrate enzyme activity and operation time, were observed. Redundancy analysis demonstrated gram-negative bacteria were mainly responsible for urease and phosphatase activities, and also played a major role in dehydrogenase and nitrate reductase activities. Meanwhile, anaerobic bacteria, gram-negative bacteria, and saturated FA groups, gram-positive bacteria exhibited good correlations with the removal of COD (p=0.388), N (p=0.236), and TP (p=0.074), respectively. The IVCW system can be used to treat domestic wastewater effectively.

  7. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Javed, Rabia; Usman, Muhammad; Tabassum, Saira; Zia, Muhammad

    2016-11-01

    Different biological activities of capped and uncapped ZnO nanoparticles were investigated, and the effects of potential capping agents on these biological activities were studied. ZnO nanoparticles were synthesized and capped by polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) using a simple chemical method of co-precipitation. Characterization by X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR) and UV-vis spectroscopy confirmed the crystallinity, size, functional group, and band gap of synthesized nanoparticles. Reduction in size occurred from 34 nm to 26 nm due to surfactant. Results of all biological activities indicated significantly higher values in capped as compared to uncapped nanoparticles. Antibacterial activity against Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC15224), and Acetobacter was obtained. This activity was more prominent against Gram-positive bacteria, and ZnO-PVP nanoparticles elucidated highest antibacterial activity (zone of inhibition 17 mm) against Gram-positive, Bacillus subtilis species. Antioxidant activities including total flavonoid content, total phenolic content, total antioxidant capacity, total reducing power and %age inhibition of DPPH, and antidiabetic activity against α-amylase enzyme found to be exhibited highest by ZnO-PEG nanoparticles.

  8. The effects of metyrapone, chalcone epoxide, benzil, clotrimazole and related compounds on the activity of microsomal epoxide hydrolase in situ, in purified form and in reconstituted systems towards different substrates.

    PubMed

    Seidegård, J; DePierre, J W; Guenthner, T M; Oesch, F

    1986-09-01

    The influence of metyrapone, chalcone epoxide, benzil and clotrimazole on the activity of microsomal epoxide hydrolase towards styrene oxide, benzo[a]pyrene 4,5-oxide, estroxide and androstene oxide was investigated. The studies were performed using liver microsomes from rats, rabbits, mice and humans; epoxide hydrolase purified from rat liver microsomes to apparent homogeneity; and the purified enzyme incorporated into liposomes composed of egg-yolk phosphatidylcholine or total rat liver microsomal lipids. All four effectors were found to activate the hydrolysis of styrene oxide by epoxide hydrolase in situ in rat liver microsomal membranes, in agreement with earlier findings. Epoxide hydrolase activity towards styrene oxide in liver microsomes from mouse, rabbit and man was also increased by all four effectors. The most striking effect was a 680% activation by clotrimazole in rat liver microsomes. However, none of the effectors activated microsomal epoxide hydrolase more than 50% when benzo[a]pyrene 4,5-oxide, estroxide or androstene oxide was used as substrate. Indeed, clotrimazole was found to inhibit microsomal epoxide hydrolase activity towards estroxide 30-50% and towards androstene oxide 60-90%. The effects of these four compounds were found to be virtually identical in the preparations from rats, rabbits, mice and humans. The effects of metyrapone, chalcone epoxide, benzil and clotrimazole on purified epoxide hydrolase were qualitatively the same as those on epoxide hydrolase in intact microsomes, but much smaller in magnitude. These effects were increased in magnitude only slightly by incorporation of the purified enzyme into liposomes made from egg-yolk phosphatidylcholine. However, when incorporation into liposomes composed of total microsomal lipids was performed, the effects seen were essentially of the same magnitude as with intact microsomes. When the extent of activation was plotted against effector concentration, three different patterns were found with different effectors. Activation of epoxide hydrolase activity towards styrene oxide by clotrimazole was found to be uncompetitive with the substrate and highly structure specific. On the other hand, inhibition of epoxide hydrolase activity towards androstene oxide by clotrimazole was found to be competitive in microsomes. It is concluded that the marked effects of these four modulators on microsomal epoxide hydrolase activity are due to an interaction with the enzyme protein itself, but that the presence of total microsomal phospholipids allows the maximal expression leading to similar degrees of modulation as those observed in intact microsomes.(ABSTRACT TRUNCATED AT 400 WORDS)

  9. Continuous production of ethanol from starch using glucoamylase and yeast co-immobilized in pectin gel.

    PubMed

    Giordano, Raquel L C; Trovati, Joubert; Schmidell, Willibaldo

    2008-03-01

    This work presents a continuous simultaneous saccharification and fermentation (SSF) process to produce ethanol from starch using glucoamylase and Saccharomyces cerevisiae co-immobilized in pectin gel. The enzyme was immobilized on macroporous silica, after silanization and activation of the support with glutaraldehyde. The silica-enzyme derivative was co-immobilized with yeast in pectin gel. This biocatalyst was used to produce ethanol from liquefied manioc root flour syrup, in three fixed bed reactors. The initial reactor yeast load was 0.05 g wet yeast/ml of reactor (0.1 g wet yeast/g gel), used in all SSF experiments. The enzyme concentration in the reactor was defined by running SSF batch assays, using different amount of silica-enzyme derivative, co-immobilized with yeast in pectin gel. The chosen reactor enzyme concentration, 3.77 U/ml, allowed fermentation to be the rate-limiting step in the batch experiment. In this condition, using initial substrate concentration of 166.0 g/l of total reducing sugars (TRS), 1 ml gel/1 ml of medium, ethanol productivity of 8.3 g/l/h was achieved, for total conversion of starch to ethanol and 91% of the theoretical yield. In the continuous runs, feeding 163.0 g/l of TRS and using the same enzyme and yeast concentrations used in the batch run, ethanol productivity was 5.9 g ethanol/l/h, with 97% of substrate conversion and 81% of the ethanol theoretical yield. Diffusion effects in the extra-biocatalyst film seemed to be reduced when operating at superficial velocities above 3.7 x 10(-4) cm/s.

  10. Proteomic analysis and food-grade enzymes of Moringa oleifer Lam. a Lam. flower.

    PubMed

    Shi, Yanan; Wang, Xuefeng; Huang, Aixiang

    2018-08-01

    Moringa oleifer Lam. flower contain high-proteins and function nutrients. Many advances have been made to it, but there is still no proteomic information of this species. Total protein from the flowers applied shotgun 2DLC-MS/MS proteomic identified 9443 peptides corresponding to 4004 high-confidence proteins by Proteome Discoverer™ Software 2.1. These proteins were mostly distributed ranging between 40 and 70 kDa. Gene Ontology (GO) analysis indicated that the largest of the proteins were cytoplasm 72.7%, catalytic activity 61.5% and macromolecule metabolism 43.7%, and KEGG analysis revealed that the largest group of 129 proteins was involved in Ribosome to directing protein synthesis (translation). Moreover, a number of commercially important food-grade enzymes were commented, 261 proteins were annotated as carbohydrate-active enzymes, 16 protease, 22 proteins are assigned to the citrate cycle, which the top proteins were assigned to GH family, cysteine synthase and serine/threonine-protein phosphatase. These enzymes indicated that is a new source with potential use for fermentation and brewing industry, fruit and vegetable storage and the development of function peptides. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Enzyme inhibitory and radical scavenging effects of some antidiabetic plants of Turkey.

    PubMed

    Orhan, Nilüfer; Hoçbaç, Sanem; Orhan, Didem Deliorman; Asian, Mustafa; Ergun, Fatma

    2014-06-01

    Ethnopharmacological field surveys demonstrated that many plants, such as Gentiana olivieri, Helichrysum graveolens, Helichrysum plicatum ssp. plicatum, Juniperus oxycedrus ssp. oxycedrus, Juniperus communis var. saxatilis, Viscum album (ssp. album, ssp. austriacum), are used as traditional medicine for diabetes in different regions of Anatolia. The present study was designed to evaluate the in vitro antidiabetic effects of some selected plants, tested in animal models recently. α-glucosidase and α-amylase enzyme inhibitory effects of the plant extracts were investigated and Acarbose was used as a reference drug. Additionally, radical scavenging capacities were determined using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) ABTS radical cation scavenging assay and total phenolic content of the extracts were evaluated using Folin Ciocalteu method. H. graveolens ethanol extract exhibited the highest inhibitory activity (55.7 % ± 2.2) on α-amylase enzyme. Additionally, J. oxycedrus hydro-alcoholic leaf extract had potent α-amylase inhibitory effect, while the hydro-alcoholic extract of J. communis fruit showed the highest α-glucosidase inhibitory activity (IC50: 4.4 μg/ml). Results indicated that, antidiabetic effect of hydro-alcoholic extracts of H. graveolens capitulums, J. communis fruit and J. oxycedrus leaf might arise from inhibition of digestive enzymes.

  12. Complex Enzyme-Assisted Extraction Releases Antioxidative Phenolic Compositions from Guava Leaves.

    PubMed

    Wang, Lu; Wu, Yanan; Liu, Yan; Wu, Zhenqiang

    2017-09-30

    Phenolics in food and fruit tree leaves exist in free, soluble-conjugate, and insoluble-bound forms. In this study, in order to enhance the bioavailability of insoluble-bound phenolics from guava leaves (GL), the ability of enzyme-assisted extraction in improving the release of insoluble-bound phenolics was investigated. Compared to untreated GL, single xylanase-assisted extraction did not change the composition and yield of soluble phenolics, whereas single cellulase or β -glucosidase-assisted extraction significantly enhanced the soluble phenolics content of PGL. However, complex enzyme-assisted extraction (CEAE) greatly improved the soluble phenolics content, flavonoids content, ABTS, DPPH, and FRAP by 103.2%, 81.6%, 104.4%, 126.5%, and 90.3%, respectively. Interestingly, after CEAE, a major proportion of phenolics existed in the soluble form, and rarely in the insoluble-bound form. Especially, the contents of quercetin and kaempferol with higher bio-activity were enhanced by 3.5- and 2.2-fold, respectively. More importantly, total soluble phenolics extracts of GL following CEAE exhibited the highest antioxidant activity and protective effect against supercoiled DNA damage. This enzyme-assisted extraction technology can be useful for extracting biochemical components from plant matrix, and has good potential for use in the food and pharmaceutical industries.

  13. [THE ROLE OF FOOD OBJECTS AND ENTERAL MICROBIOTA PROTEASES IN NUTRITIVE AND TEMPERATURE ADAPTATIONS OF THE DIGESTIVE SYSTEM IN FISH].

    PubMed

    Kuz'mina, V V

    2015-01-01

    The review presents data on the activity and some temperature characteristics of proteases in the potential food objects of fishes and some enteral microbiota representatives that provide induced autolysis and symbiotic digestion. It is shown that during the active feeding period the total protease activity in the prey tissues exceeds the total protease activity in the fish gastric mucosa by 5-10 times. At low temperature, the relative activity of the prey tissue lysosomal hydrolases (20-35%) and the enteral microbiota enzymes (up to 45%) may exceed that of proteases synthesized by the hepatopancreas and functioning in the consumers' intestinal mucosa (less than 10% maximal activity). The data presented indicate the important role of proteases of food objects and enteral microbiota in nutritive adaptations of the fish digestive system.

  14. Assessing the effect of selection with deltamethrin on biological parameters and detoxifying enzymes in Aedes aegypti (L.).

    PubMed

    Alvarez-Gonzalez, Leslie C; Briceño, Arelis; Ponce-Garcia, Gustavo; Villanueva-Segura, O Karina; Davila-Barboza, Jesus A; Lopez-Monroy, Beatriz; Gutierrez-Rodriguez, Selene M; Contreras-Perera, Yamili; Rodriguez-Sanchez, Iram P; Flores, Adriana E

    2017-11-01

    Resistance to insecticides through one or several mechanisms has a cost for an insect in various parameters of its biological cycle. The present study evaluated the effect of deltamethrin on detoxifying enzymes and biological parameters in a population of Aedes aegypti selected for 15 generations. The enzyme activities of alpha- and beta-esterases, mixed-function oxidases and glutathione-S-transferases were determined during selection, along with biological parameters. Overexpression of mixed-function oxidases as a mechanism of metabolic resistance to deltamethrin was found. There were decreases in percentages of eggs hatching, pupation and age-specific survival and in total survival at the end of the selection (F 16 ). Although age-specific fecundity was not affected by selection with deltamethrin, total fertility, together with lower survival, significantly affected gross reproduction rate, gradually decreasing due to deltamethrin selection. Similarly, net reproductive rate and intrinsic growth rate were affected by selection. Alterations in life parameters could be due to the accumulation of noxious effects or deleterious genes related to detoxifying enzymes, specifically those coding for mixed-function oxidases, along with the presence of recessive alleles of the V1016I and F1534C mutations, associating deltamethrin resistance with fitness cost in Ae. aegypti. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Relationship between physical activity and markers of oxidative stress in independent community-living elderly individuals.

    PubMed

    Fraile-Bermúdez, A B; Kortajarena, M; Zarrazquin, I; Maquibar, A; Yanguas, J J; Sánchez-Fernández, C E; Gil, J; Irazusta, A; Ruiz-Litago, F

    2015-10-01

    The aim of the present study was to examine the relationship between objective data of physical activity and markers of oxidative stress in older men and women. Participants were old adults, aged≥60years (61 women and 34 men) who were all capable of performing basic daily activities by themselves and lived on their own. To describe physical activity we used objective data measured by accelerometers which record active and sedentary periods during everyday life for five days. Determination of oxidative stress was conducted from three perspectives: determination plasma total antioxidant status (TAS), plasma antioxidant enzyme activities, i.e., glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD), and membrane lipid peroxidation (TBARS). In the group of women, those who met physical activity recommendations (WR) had lower level of TAS. In addition, the moderate to vigorous physical activity (MVPA) was negatively correlated with TAS. Simultaneously, MVPA was correlated with increase in the GPx antioxidant enzyme activity, and the counts per minute were positively correlated with CAT activity. In the group of men, the cpm and the MVPA were negatively correlated with lipid peroxidation while lifestyle physical activity was positively correlated with CAT activity. These findings suggest that MVPA in the elderly although it is related to a decrease in the TAS in women, induces adaptive increase in antioxidant enzyme activity and decreases lipid peroxidation in both women and men. These results suggest that at this time of life, it is not only the amount of physical activity performed that is important but also its intensity. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Inhibitory effect of burdock leaves on elastase and tyrosinase activity.

    PubMed

    Horng, Chi-Ting; Wu, Hsing-Chen; Chiang, Ni-Na; Lee, Chiu-Fang; Huang, Yu-Syuan; Wang, Hui-Yun; Yang, Jai-Sing; Chen, Fu-An

    2017-10-01

    Burdock ( Arctium lappa L.) leaves generate a considerable amount of waste following burdock root harvest in Taiwan. To increase the use of burdock leaves, the present study investigated the optimal methods for producing burdock leaf extract (BLE) with high antioxidant polyphenolic content, including drying methods and solvent extraction concentration. In addition, the elastase and tyrosinase inhibitory activity of BLE was examined. Burdock leaves were dried by four methods: Shadow drying, oven drying, sun drying and freeze-drying. The extract solution was then subjected to total polyphenol content analysis and the method that produced BLE with the highest amount of total antioxidant components was taken forward for further analysis. The 1,1-diphenyl-2-pycrylhydrazyl scavenging, antielastase and antityrosinase activity of the BLE were measured to enable the evaluation of the antioxidant and skin aging-associated enzyme inhibitory activities of BLE. The results indicated that the total polyphenolic content following extraction with ethanol (EtOH) was highest using the freeze-drying method, followed by the oven drying, shadow drying and sun drying methods. BLE yielded a higher polyphenol content and stronger antioxidant activity as the ratio of the aqueous content of the extraction solvent used increased. BLE possesses marked tyrosinase and elastase inhibitory activities, with its antielastase activity notably stronger compared with its antityrosinase activity. These results indicate that the concentration of the extraction solvent was associated with the antioxidant and skin aging-associated enzyme inhibitory activity of BLE. The reactive oxygen species scavenging theory of skin aging may explain the tyrosinase and elastase inhibitory activity of BLE. In conclusion, the optimal method for obtaining BLE with a high antioxidant polyphenolic content was freeze-drying followed by 30-50% EtOH extraction. In addition, the antielastase and antityrosinase activities of the BLE produced may be aid in the development of skincare products with antiwrinkle and skin-evening properties.

  17. Inhibitory effect of burdock leaves on elastase and tyrosinase activity

    PubMed Central

    Horng, Chi-Ting; Wu, Hsing-Chen; Chiang, Ni-Na; Lee, Chiu-Fang; Huang, Yu-Syuan; Wang, Hui-Yun; Yang, Jai-Sing; Chen, Fu-An

    2017-01-01

    Burdock (Arctium lappa L.) leaves generate a considerable amount of waste following burdock root harvest in Taiwan. To increase the use of burdock leaves, the present study investigated the optimal methods for producing burdock leaf extract (BLE) with high antioxidant polyphenolic content, including drying methods and solvent extraction concentration. In addition, the elastase and tyrosinase inhibitory activity of BLE was examined. Burdock leaves were dried by four methods: Shadow drying, oven drying, sun drying and freeze-drying. The extract solution was then subjected to total polyphenol content analysis and the method that produced BLE with the highest amount of total antioxidant components was taken forward for further analysis. The 1,1-diphenyl-2-pycrylhydrazyl scavenging, antielastase and antityrosinase activity of the BLE were measured to enable the evaluation of the antioxidant and skin aging-associated enzyme inhibitory activities of BLE. The results indicated that the total polyphenolic content following extraction with ethanol (EtOH) was highest using the freeze-drying method, followed by the oven drying, shadow drying and sun drying methods. BLE yielded a higher polyphenol content and stronger antioxidant activity as the ratio of the aqueous content of the extraction solvent used increased. BLE possesses marked tyrosinase and elastase inhibitory activities, with its antielastase activity notably stronger compared with its antityrosinase activity. These results indicate that the concentration of the extraction solvent was associated with the antioxidant and skin aging-associated enzyme inhibitory activity of BLE. The reactive oxygen species scavenging theory of skin aging may explain the tyrosinase and elastase inhibitory activity of BLE. In conclusion, the optimal method for obtaining BLE with a high antioxidant polyphenolic content was freeze-drying followed by 30–50% EtOH extraction. In addition, the antielastase and antityrosinase activities of the BLE produced may be aid in the development of skincare products with antiwrinkle and skin-evening properties. PMID:28912875

  18. Integrated Lateral Flow Test Strip with Electrochemical Sensor for Quantification of Phosphorylated Cholinesterase: Biomarker of Exposure to Organophosphorus Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Dan; Wang, Jun; Wang, Limin

    An integrated lateral flow test strip with electrochemical sensor (LFTSES) device with rapid, selective and sensitive response for quantification of exposure to organophosphorus (OP) pesticides and nerve agents has been developed. The principle of this approach is based on parallel measurements of post-exposure and baseline acetylcholinesterase (AChE) enzyme activity, where reactivation of the phosphorylated AChE is exploited to enable measurement of total amount of AChE (including inhibited and active) which is used as a baseline for calculation of AChE inhibition. Quantitative measurement of phosphorylated adduct (OP-AChE) was realized by subtracting the active AChE from the total amount of AChE. Themore » proposed LFTSES device integrates immunochromatographic test strip technology with electrochemical measurement using a disposable screen printed electrode which is located under the test zone. It shows linear response between AChE enzyme activity and enzyme concentration from 0.05 to 10 nM, with detection limit of 0.02 nM. Based on this reactivation approach, the LFTSES device has been successfully applied for in vitro red blood cells inhibition studies using chlorpyrifos oxon as a model OP agent. This approach not only eliminates the difficulty in screening of low-dose OP exposure because of individual variation of normal AChE values, but also avoids the problem in overlapping substrate specificity with cholinesterases and avoids potential interference from other electroactive species in biological samples. It is baseline free and thus provides a rapid, sensitive, selective and inexpensive tool for in-field and point-of-care assessment of exposures to OP pesticides and nerve agents.« less

  19. Acute toxicity and sublethal effects of gallic and pelargonic acids on the zebrafish Danio rerio.

    PubMed

    Techer, Didier; Milla, Sylvain; Fontaine, Pascal; Viot, Sandrine; Thomas, Marielle

    2015-04-01

    Gallic and pelargonic acids are naturally found in a variety of plants and food products. Despite their extensive use in man-made applications, little is known regarding their potential risks to aquatic vertebrates. The aim of this work was to assess the acute toxicity of these polyphenolic and fatty acid compounds to the zebrafish. In order to get insights into sublethal effects, the enzyme activity of usual biomarkers related to oxidative stress and biotransformation were also assessed in fish. These latter included total superoxide dismutase, catalase as well as total glutathione peroxidase for antioxidant defence mechanisms and glutathione S-transferase for biotransformation related enzyme. Gallic acid was practically non-toxic (96-h lethal concentration (LC50) > 100 mg/L) whereas pelargonic acid was slightly toxic (96-h LC50 of 81.2 mg/L). Moreover, biomarker analyses indicated enhanced superoxide dismutase activity in fish exposed to 20, 40 and 100 mg/L of gallic acid compared to control. A dose-dependent induction of glutathione peroxidase and glutathione S-transferase was reported following gallic acid exposure at the tested concentrations of 10, 20 and 40 mg/L, with the exception of 100 mg/L of substance where basal activity levels were reported. In the case of pelargonic acid, there was no change in antioxidant enzyme activity while an inhibition of glutathione S-transferase was observed from organisms exposed to 45, 58 and 76 mg/L of test solution. The results concerning sublethal effects on biological parameters of zebrafish highlighted thereby the need for further investigations following chronic exposure to both organic acids.

  20. 1,3-Regiospecific ethanolysis of soybean oil catalyzed by crosslinked porcine pancreas lipase aggregates.

    PubMed

    Ramos, Margarita D; Miranda, Letícia P; Giordano, Raquel L C; Fernandez-Lafuente, Roberto; Kopp, William; Tardioli, Paulo W

    2018-04-25

    The preparation of crosslinked aggregates of pancreatic porcine lipase (PPL-CLEA) was systematically studied, evaluating the influence of three precipitants and two crosslinking agents, as well as the use of soy protein as an alternative feeder protein on the catalytic properties and stability of the immobilized PPL. Standard CLEAs showed a global yield (CLEA' observed activity/offered total activity) of less than 4%, whereas with the addition of soy protein (PPL:soy protein mass ratio of 1:3) the global yield was approximately fivefold higher. The CLEA of PPL prepared with soy protein as feeder (PPL:soy protein mass ratio of 1:3) and glutaraldehyde as crosslinking reagent (10 μmol of aldehyde groups/mg of total protein) was more active mainly because of the reduced enzyme leaching in the washing step. This CLEA, named PPL-SOY-CLEA, had an immobilization yield around 60% and an expressed activity around 40%. In the ethanolysis of soybean oil, the PPL-SOY-CLEA yielded maximum fatty acid ethyl ester (FAEE) concentration around 12-fold higher than that achieved using soluble PPL (34 h reaction at 30°C, 300 rpm stirring, soybean oil/ethanol molar ratio of 1:5) with an enzyme load around 2-fold lower (very likely due to free enzyme inactivation). The operational stability of the PPL-SOY-CLEA in the ethanolysis of soybean oil in a vortex flow type reactor showed that FAEE yield was higher than 50% during ten reaction cycles of 24 h. This reactor configuration may be an attractive alternative to the conventional stirred reactors for biotransformations in industrial plants using carrier-free biocatalysts. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  1. Proteomic and enzymatic response under Cr(VI) overload in yeast isolated from textile-dye industry effluent.

    PubMed

    Irazusta, Verónica; Bernal, Anahí Romina; Estévez, María Cristina; de Figueroa, Lucía I C

    2018-02-01

    Cyberlindnera jadinii M9 and Wickerhamomyces anomalus M10 isolated from textile-dye liquid effluents has shown capacity for chromium detoxification via Cr(VI) biological reduction. The aim of the study was to evaluate the effect of hexavalent chromium on synthesis of novel and/or specific proteins involved in chromium tolerance and reduction in response to chromium overload in two indigenous yeasts. A study was carried out following a proteomic approach with W. anomalus M10 and Cy. jadinii M9 strains. For this, proteins extracts belonging to total cell extracts, membranes and mitochondria were analyzed. When Cr(VI) was added to culture medium there was an over-synthesis of 39 proteins involved in different metabolic pathways. In both strains, chromium supplementation changed protein biosynthesis by upregulating proteins involved in stress response, methionine metabolism, energy production, protein degradation and novel oxide-reductase enzymes. Moreover, we observed that Cy. jadinii M9 and W. anomalus M10 displayed ability to activate superoxide dismutase, catalase and chromate reductase activity. Two enzymes from the total cell extracts, type II nitroreductase (Frm2) and flavoprotein wrbA (Ycp4), were identified as possibly responsible for inducing crude chromate-reductase activity in cytoplasm of W. anomalus M10 under chromium overload. In Cy.jadinii M9, mitochondrial Ferredoxine-NADP reductase (Yah1) and membrane FAD flavoprotein (Lpd1) were identified as probably involved in Cr(VI) reduction. To our knowledge, this is the first study proposing chromate reductase activity of these four enzymes in yeast and reporting a relationship between protein synthesis, enzymatic response and chromium biospeciation in Cy. jadinii and W. anomalus. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. [Variations of soil microbial community composition and enzyme activities with different salinities on Yuyao coast, Zhejiang, China].

    PubMed

    Sun, Hui; Zhang, Jian Feng; Xu, Hua Sen; Chen, Guang Cai; Wang, Li Ping

    2016-10-01

    In October 2015, soil samples with different salinity were collected in a coast area in Yuyao, Zhejiang, and soil microbial community composition, soil catalase, urease activities, as well as soil physical and chemical properties were studied. The results showed that Nitrospira took absolute advantage in the bacterial community, and showed good correlations to total potassium. Cladosporium and Fusarium were predominant in the fungal community. Meanwhile, Cladosporium was related to soil urease and total nitrogen, and same correlation was found between Fusarium and soil urease. Catalase activity ranged from 3.52 to 4.56 mL·g -1 , 3.08 to 4.61 mL·g -1 and 5.81 to 6.91 mL·g -1 for soils with heavy, medium and weak salinity, respectively. Catalase activity increased with the soil layer deepening, which was directly related to soil total potassium, and indirectly related to pH, organic matter, total nitrogen and total phosphorus through total potassium. Soil urease activity ranged among 0.04 to 0.52 mg·g -1 , 0.08 to 1.07 mg·g -1 and 0.27 to 8.21 mg·g -1 for each saline soil, respectively. Urease activity decreased with soil layer deepening which was directly related to soil total nitrogen, and was indirectly related to pH, organic matter and total potassium through total nitrogen. The total phosphorus was the largest effect factor on the bacterial community CCA ordination, and the urease was on fungal community.

  3. Marine-derived Penicillium in Korea: diversity, enzyme activity, and antifungal properties.

    PubMed

    Park, Myung Soo; Fong, Jonathan J; Oh, Seung-Yoon; Kwon, Kae Kyoung; Sohn, Jae Hak; Lim, Young Woon

    2014-08-01

    The diversity of marine-derived Penicillium from Korea was investigated using morphological and multigene phylogenetic approaches, analyzing sequences of the internal transcribed spacer region, β-tubulin gene, and RNA polymerase subunit II gene. In addition, the biological activity of all isolated strains was evaluated. We tested for the extracellular enzyme activity of alginase, endoglucanase, and β-glucosidase, and antifungal activity against two plant pathogens (Colletotrichum acutatum and Fusarium oxysporum). A total of 184 strains of 36 Penicillium species were isolated, with 27 species being identified. The most common species were Penicillium polonicum (19.6 %), P. rubens (11.4 %), P. chrysogenum (11.4 %), and P. crustosum (10.9 %). The diversity of Penicillium strains isolated from soil (foreshore soil and sand) and marine macroorganisms was higher than the diversity of strains isolated from seawater. While many of the isolated strains showed alginase and β-glucosidase activity, no endoglucanase activity was found. More than half the strains (50.5 %) showed antifungal activity against at least one of the plant pathogens tested. Compared with other strains in this study, P. citrinum (strain SFC20140101-M662) showed high antifungal activity against both plant pathogens. The results reported here expand our knowledge of marine-derived Penicillium diversity. The relatively high proportion of strains that showed antifungal and enzyme activity demonstrates that marine-derived Penicillium have great potential to be used in the production of natural bioactive products for pharmaceutical and/or industrial use.

  4. Effects of oregano essential oil with or without feed enzymes on growth performance, digestive enzyme, nutrient digestibility, lipid metabolism and immune response of broilers fed on wheat-soybean meal diets.

    PubMed

    Basmacioğlu Malayoğlu, H; Baysal, S; Misirlioğlu, Z; Polat, M; Yilmaz, H; Turan, N

    2010-02-01

    1. The study was conducted to determine the effects of dietary supplementation of enzyme and oregano essential oil at two levels, alone or together, on performance, digestive enzyme, nutrient digestibility, lipid metabolism and immune response of broilers fed on wheat-soybean meal based diets. 2. The following dietary treatments were used from d 0 to 21. Diet 1 (control, CONT): a commercial diet containing no enzyme or oregano essential oil, diet 2 (ENZY): supplemented with enzyme, diet 3 (EO250): supplemented with essential oil at 250 mg/kg feed, diet 4 (EO500): supplemented with essential oil at 500 mg/kg feed, diet 5 (ENZY + EO250): supplemented with enzyme and essential oil at 250 mg/kg, and diet 6 (ENZY + EO500): supplemented with enzyme and essential oil at 500 mg/kg. 3. Birds fed on diets containing ENZY, EO250 and ENZY + EO250 had significantly higher weight gain than those given CONT diet from d 0 to 7. No significant effects on feed intake, feed conversion ratio, mortality, organ weights except for jejunum weight and intestinal lengths was found with either enzyme or essential oil, alone or in combination, over the 21-d growth period. The supplementation of essential oil together with enzyme decreased jejunum weight compared with essential oil alone. 4. Supplementation with enzyme significantly decreased viscosity and increased dry matter of digesta, but did not alter pH of digesta. There was no effect of essential oil alone at either concentration on viscosity, dry matter or pH of digesta. A significant decrease in viscosity of digesta appeared when essential oil was used with together enzyme. 5. The supplementation of essential oil at both levels with or without enzyme significantly increased chymotrypsin activity in the digestive system, and improved crude protein digestibility. 6. The higher concentration of essential oil with and without enzyme significantly increased serum total cholesterol concentrations. No significant effect on immune response was found with either enzyme or essential oil, alone or together. 7. Enzymes and essential oil had different modes of actions. The supplementation of enzyme with essential oil in diets is likely more effective in view of performance, nutrient digestibility, enzyme activities and immune system.

  5. Primary, Secondary Metabolites, Photosynthetic Capacity and Antioxidant Activity of the Malaysian Herb Kacip Fatimah (Labisia Pumila Benth) Exposed to Potassium Fertilization under Greenhouse Conditions

    PubMed Central

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z. E.; Karimi, Ehsan; Ghasemzadeh, Ali

    2012-01-01

    A randomized complete block design was used to characterize the relationship between production of total phenolics, flavonoids, ascorbic acid, carbohydrate content, leaf gas exchange, phenylalanine ammonia-lyase (PAL), soluble protein, invertase and antioxidant enzyme activities (ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) in Labisia pumila Benth var. alata under four levels of potassium fertilization experiments (0, 90, 180 and 270 kg K/ha) conducted for 12 weeks. It was found that the production of total phenolics, flavonoids, ascorbic acid and carbohydrate content was affected by the interaction between potassium fertilization and plant parts. As the potassium fertilization levels increased from 0 to 270 kg K/ha, the production of soluble protein and PAL activity increased steadily. At the highest potassium fertilization (270 kg K/ha) L. pumila exhibited significantly higher net photosynthesis (A), stomatal conductance (gs), intercellular CO2 (Ci), apparent quantum yield (ξ) and lower dark respiration rates (Rd), compared to the other treatments. It was found that the production of total phenolics, flavonoids and ascorbic acid are also higher under 270 kg K/ha compared to 180, 90 and 0 kg K/ha. Furthermore, from the present study, the invertase activity was also found to be higher in 270 kg K/ha treatment. The antioxidant enzyme activities (APX, CAT and SOD) were lower under high potassium fertilization (270 kg K/ha) and have a significant negative correlation with total phenolics and flavonoid production. From this study, it was observed that the up-regulation of leaf gas exchange and downregulation of APX, CAT and SOD activities under high supplementation of potassium fertilizer enhanced the carbohydrate content that simultaneously increased the production of L. pumila secondary metabolites, thus increasing the health promoting effects of this plant. PMID:23203128

  6. The effects of high dose of two manganese supplements (organic and inorganic) on the rumen microbial ecosystem.

    PubMed

    Kišidayová, Svetlana; Pristaš, Peter; Zimovčáková, Michaela; Blanár Wencelová, Monika; Homol'ová, Lucia; Mihaliková, Katarína; Čobanová, Klaudia; Grešáková, Ľubomíra; Váradyová, Zora

    2018-01-01

    Little is known about the effects of the high dose and types of manganese supplements on rumen environment at manganese intake level close above the limit of 150 mg/kg of dry feed matter. The effects of high dose of two manganese supplements (organic and inorganic) on rumen microbial ecosystem after four months of treatment of 18 lambs divided into three treatment groups were studied. We examined the enzyme activities (α-amylase, xylanase, and carboxymethyl cellulase), total and differential microscopic counts of rumen ciliates, total microscopic counts of bacteria, and fingerprinting pattern of the eubacterial and ciliates population analyzed by PCR-DGGE. Lambs were fed a basal diet with a basal Mn content (34.3 mg/kg dry matter; control) and supplemented either with inorganic manganous sulfate or organic Mn-chelate hydrate (daily 182.7, 184 mg/kg dry matter of feed, respectively). Basal diet, offered twice daily, consisted of ground barley and hay (268 and 732 g/kg dry matter per animal and day). The rumens of the lambs harbored ciliates of the genera of Entodinium, Epidinium, Diplodinium, Eudiplodinium, Dasytricha, and Isotricha. No significant differences between treatment groups were observed in the total ciliate number, the number of ciliates at the genus level, as well as the total number of bacteria. Organic Mn did decrease the species richness and diversity of the eubacterial population examined by PCR-DGGE. No effects of type of Mn supplement on the enzyme activities were observed. In comparison to the control, α-amylase specific activities were decreased and carboxymethyl-cellulase specific activities were increased by the Mn supplements. Xylanase activities were not influenced. In conclusion, our results suggested that the intake of tested inorganic and organic manganese supplements in excess may affect the specific groups of eubacteria. More studies on intake of Mn supplements at a level close to the limit can reveal if the changes in microbial population impact remarkably the other rumen enzymatic activities.

  7. The effects of high dose of two manganese supplements (organic and inorganic) on the rumen microbial ecosystem

    PubMed Central

    Pristaš, Peter; Zimovčáková, Michaela; Blanár Wencelová, Monika; Homol'ová, Lucia; Mihaliková, Katarína; Čobanová, Klaudia; Grešáková, Ľubomíra; Váradyová, Zora

    2018-01-01

    Little is known about the effects of the high dose and types of manganese supplements on rumen environment at manganese intake level close above the limit of 150 mg/kg of dry feed matter. The effects of high dose of two manganese supplements (organic and inorganic) on rumen microbial ecosystem after four months of treatment of 18 lambs divided into three treatment groups were studied. We examined the enzyme activities (α-amylase, xylanase, and carboxymethyl cellulase), total and differential microscopic counts of rumen ciliates, total microscopic counts of bacteria, and fingerprinting pattern of the eubacterial and ciliates population analyzed by PCR-DGGE. Lambs were fed a basal diet with a basal Mn content (34.3 mg/kg dry matter; control) and supplemented either with inorganic manganous sulfate or organic Mn-chelate hydrate (daily 182.7, 184 mg/kg dry matter of feed, respectively). Basal diet, offered twice daily, consisted of ground barley and hay (268 and 732 g/kg dry matter per animal and day). The rumens of the lambs harbored ciliates of the genera of Entodinium, Epidinium, Diplodinium, Eudiplodinium, Dasytricha, and Isotricha. No significant differences between treatment groups were observed in the total ciliate number, the number of ciliates at the genus level, as well as the total number of bacteria. Organic Mn did decrease the species richness and diversity of the eubacterial population examined by PCR-DGGE. No effects of type of Mn supplement on the enzyme activities were observed. In comparison to the control, α-amylase specific activities were decreased and carboxymethyl-cellulase specific activities were increased by the Mn supplements. Xylanase activities were not influenced. In conclusion, our results suggested that the intake of tested inorganic and organic manganese supplements in excess may affect the specific groups of eubacteria. More studies on intake of Mn supplements at a level close to the limit can reveal if the changes in microbial population impact remarkably the other rumen enzymatic activities. PMID:29324899

  8. Novel Bioengineered Cassava Expressing an Archaeal Starch Degradation System and a Bacterial ADP-Glucose Pyrophosphorylase for Starch Self-Digestibility and Yield Increase

    PubMed Central

    Ligaba-Osena, Ayalew; Jones, Jenna; Donkor, Emmanuel; Chandrayan, Sanjeev; Pole, Farris; Wu, Chang-Hao; Vieille, Claire; Adams, Michael W. W.; Hankoua, Bertrand B.

    2018-01-01

    To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava (Manihot esculenta), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus, together with the gene encoding a modified ADP-glucose pyrophosphorylase (glgC) from Escherichia coli, were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability. PMID:29541080

  9. Lecithin-cholesterol acyltransferase in brain: Does oxidative stress influence the 24-hydroxycholesterol esterification?

    PubMed

    La Marca, Valeria; Maresca, Bernardetta; Spagnuolo, Maria Stefania; Cigliano, Luisa; Dal Piaz, Fabrizio; Di Iorio, Giuseppe; Abrescia, Paolo

    2016-04-01

    24-Hydroxycholesterol (24OH-C) is esterified by the enzyme lecithin-cholesterol acyltransferase (LCAT) in the cerebrospinal fluid (CSF). We report here that the level of 24OH-C esters was lower in CSF of patients with amyotrophic lateral sclerosis than in healthy subjects (54% vs 68% of total 24OH-C, p=0.0005; n=8). Similarly, the level of 24OH-C esters in plasma was lower in patients than in controls (62% vs 77% of total 24OH-C; p=0.0076). The enzyme amount in CSF, as measured by densitometry of the protein band revealed by immunoblotting, was about 4-fold higher in patients than in controls (p=0.0085). As differences in the concentration of the LCAT stimulator Apolipoprotein E were not found, we hypothesized that the reduced 24OH-C esterification in CSF of patients might depend on oxidative stress. We actually found that oxidative stress reduced LCAT activity in vitro, and 24OH-C effectively stimulated the enzyme secretion from astrocytoma cells in culture. Enhanced LCAT secretion from astrocytes might represent an adaptive response to the increase of non-esterified 24OH-C percentage, aimed to avoid the accumulation of this neurotoxic compound. The low degree of 24OH-C esterification in CSF or plasma might reflect reduced activity of LCAT during neurodegeneration. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  10. Novel Bioengineered Cassava Expressing an Archaeal Starch Degradation System and a Bacterial ADP-Glucose Pyrophosphorylase for Starch Self-Digestibility and Yield Increase.

    PubMed

    Ligaba-Osena, Ayalew; Jones, Jenna; Donkor, Emmanuel; Chandrayan, Sanjeev; Pole, Farris; Wu, Chang-Hao; Vieille, Claire; Adams, Michael W W; Hankoua, Bertrand B

    2018-01-01

    To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava ( Manihot esculenta ), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus , together with the gene encoding a modified ADP-glucose pyrophosphorylase ( glgC ) from Escherichia coli , were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability.

  11. UHPLC-QqQ-MS/MS identification, quantification of polyphenols from Passiflora subpeltata fruit pulp and determination of nutritional, antioxidant, α-amylase and α-glucosidase key enzymes inhibition properties.

    PubMed

    Shanmugam, Saravanan; Gomes, Isla Alcântara; Denadai, Marina; Dos Santos Lima, Bruno; de Souza Araújo, Adriano Antunes; Narain, Narendra; Neta, Maria Terezinha Santos Leite; Serafini, Mairim Russo; Quintans-Júnior, Lucindo José; Thangaraj, Parimelazhagan

    2018-06-01

    The diabetic key enzymes inhibition, nutritional, antioxidant activity and bioactive compounds identification of Passiflora subpeltata fruit pulp were investigated. Fifteen polyphenolic compounds including protocatechuic acid, ferulic acid, vanillic acid, epicatechin, p-coumaric acid, cinnamic acid, eriodictyol and quercetin-3-glucoside were identified in the pulp of this species by using UHPLC-QqQ-MS/MS analysis. The total carbohydrates and crude protein contents in fruit pulp were 2.62 mg glucose equivalent/g sample fruit pulp and 8.80 mg BSA equivalent/g sample fruit pulp, respectively. The fresh fruit pulp of P. subpeltata contained high total phenolic (724.76 mg GAE/g sample) content and it revealed very high DPPH • (IC 50 of 5.667 μg/mL) and ABTS +• (6794.96 μM trolox equivalent/g sample) scavenging activities. In the key enzymes assays useful for diabetic inhibition the fresh fruit pulp characterized maximum inhibition of α-amylase and α-glucosidase IC 50 of 18.69 and 32.63 μg/mL, respectively. Thus, these results lead to conclude that this fruit specie could be very useful source in nutraceutical products preparations for Type 2 diabetic suffering humans. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Specificity in transition state binding: the Pauling model revisited.

    PubMed

    Amyes, Tina L; Richard, John P

    2013-03-26

    Linus Pauling proposed that the large rate accelerations for enzymes are caused by the high specificity of the protein catalyst for binding the reaction transition state. The observation that stable analogues of the transition states for enzymatic reactions often act as tight-binding inhibitors provided early support for this simple and elegant proposal. We review experimental results that support the proposal that Pauling's model provides a satisfactory explanation for the rate accelerations for many heterolytic enzymatic reactions through high-energy reaction intermediates, such as proton transfer and decarboxylation. Specificity in transition state binding is obtained when the total intrinsic binding energy of the substrate is significantly larger than the binding energy observed at the Michaelis complex. The results of recent studies that aimed to characterize the specificity in binding of the enolate oxygen at the transition state for the 1,3-isomerization reaction catalyzed by ketosteroid isomerase are reviewed. Interactions between pig heart succinyl-coenzyme A:3-oxoacid coenzyme A transferase (SCOT) and the nonreacting portions of coenzyme A (CoA) are responsible for a rate increase of 3 × 10(12)-fold, which is close to the estimated total 5 × 10(13)-fold enzymatic rate acceleration. Studies that partition the interactions between SCOT and CoA into their contributing parts are reviewed. Interactions of the protein with the substrate phosphodianion group provide an ~12 kcal/mol stabilization of the transition state for the reactions catalyzed by triosephosphate isomerase, orotidine 5'-monophosphate decarboxylase, and α-glycerol phosphate dehydrogenase. The interactions of these enzymes with the substrate piece phosphite dianion provide a 6-8 kcal/mol stabilization of the transition state for reaction of the appropriate truncated substrate. Enzyme activation by phosphite dianion reflects the higher dianion affinity for binding to the enzyme-transition state complex compared with that of the free enzyme. Evidence is presented that supports a model in which the binding energy of the phosphite dianion piece, or the phosphodianion group of the whole substrate, is utilized to drive an enzyme conformational change from an inactive open form E(O) to an active closed form E(C), by closure of a phosphodianion gripper loop. Members of the enolase and haloalkanoic acid dehalogenase superfamilies use variable capping domains to interact with nonreacting portions of the substrate and sequester the substrate from interaction with bulk solvent. Interactions of this capping domain with the phenyl group of mandelate have been shown to activate mandelate racemase for catalysis of deprotonation of α-carbonyl carbon. We propose that an important function of these capping domains is to utilize the binding interactions with nonreacting portions of the substrate to activate the enzyme for catalysis.

  13. Specificity in Transition State Binding: The Pauling Model Revisited

    PubMed Central

    Amyes, Tina L.; Richard, John P.

    2013-01-01

    Linus Pauling proposed that the large rate accelerations for enzymes are due to the high specificity of the protein catalyst for binding the reaction transition state. The observation that stable analogs of the transition states for enzymatic reactions often act as tight-binding binding inhibitors provided early support for this simple and elegant proposal. We review experimental results which support the proposal that Pauling’s model provides a satisfactory explanation for the rate accelerations for many heterolytic enzymatic reactions through high energy reaction intermediates, such as proton transfer and decarboxylation. Specificity in transition state binding is obtained when the total intrinsic binding energy of the substrate is significantly larger than the binding energy observed at the Michaelis complex. The results of recent studies to characterize the specificity in binding of the enolate oxygen at the transition state for the 1,3-isomerization reaction catalyzed by ketosteroid isomerase are reviewed. Interactions between pig heart succinyl-CoA:3-oxoacid coenzyme A transferase (SCOT) and the nonreacting portions of CoA are responsible for a rate increase of 3 × 1012-fold, which is close to the estimated total 5 × 1013-fold enzymatic rate acceleration. Studies that partition the interactions between SCOT and CoA into their contributing parts are reviewed. Interactions of the protein with the substrate phosphodianion group provide a ca. 12 kcal/mol stabilization of the transition state for the reactions catalyzed by triosephosphate isomerase, orotidine 5′-monophosphate decarboxylase and α-glycerol phosphate dehydrogenase. The interactions of these enzymes with the substrate piece phosphite dianion provide a 6 – 8 kcal/mol stabilization of the transition state for reaction of the appropriate truncated substrate. Enzyme activation by phosphite dianion reflects the higher dianion affinity for binding to the enzyme-transition state complex compared with the free enzyme. Evidence is presented that supports a model in which the binding energy of the phosphite dianion piece, or the phosphodianion group of the whole substrate, is utilized to drive an enzyme conformational change from an inactive open form EO to an active closed form EC, by closure of a phosphodianion gripper loop. Members of the enolase and haloalkanoic acid dehalogenase superfamilies use variable capping domains to interact with nonreacting portions of the substrate and sequester the substrate from interaction with bulk solvent. Interactions of this capping domain with the phenyl group of mandelate have been shown to activate mandelate racemase for catalysis of deprotonation of α-carbonyl carbon. We propose that an important function of these capping domains is to utilize the binding interactions with nonreacting portions of the substrate to activate the enzyme for catalysis. PMID:23327224

  14. Lipoproteins alter the catalytic behavior of the platelet-activating factor acetylhydrolase in human plasma.

    PubMed Central

    Stafforini, D M; Carter, M E; Zimmerman, G A; McIntyre, T M; Prescott, S M

    1989-01-01

    Platelet-activating factor (PAF) has been implicated as a mediator of inflammation, allergy, shock, and thrombosis. A specific degradative enzyme, PAF acetylhydrolase (EC 3.1.1.47), is found in plasma and could regulate the concentration of PAF in blood. In plasma, 70% of the PAF acetylhydrolase is found with low density lipoprotein (LDL), and the remainder is in high density lipoprotein (HDL). In previous studies we found that with subsaturating concentrations of PAF the activity in LDL seemed to be the relevant one; e.g., depletion of LDL slowed degradation of PAF, while removal of HDL accelerated the degradation slightly. We have pursued this observation by using plasma from humans with lipoprotein mutations. In abetalipoproteinemia, all of the PAF acetylhydrolase activity was in HDL, whereas in Tangier disease all of the activity was in LDL. In both conditions the total activity measured in an optimized assay was normal or increased. However, when we measured the t1/2 of PAF in plasma, we found that it was prolonged in subjects with abetalipoproteinemia compared to normal controls. Conversely, the t1/2 in Tangier plasma was shortened. We next demonstrated that the PAF acetylhydrolase in HDL was recognized by an antibody to the enzyme purified from LDL, establishing that the enzyme in the two particles is the same protein. Finally, we inactivated the PAF acetylhydrolase in isolated lipoprotein particles and then reconstituted them with enzyme from the opposite particle. The reconstituted particles were used to measure the t1/2 of PAF, and we again found that the LDL particle was more efficient. We conclude that the lipoprotein environment of the PAF acetylhydrolase markedly influences its catalytic behavior. This may be important in pathophysiology and will complicate attempts to assess the role of this enzyme in such circumstances. Images PMID:2928339

  15. Antagonistic activity of endo-β-1,3-glucanase from a novel isolate, Streptomyces sp. 9X166, against black rot in orchids.

    PubMed

    Sakdapetsiri, Chatsuda; Fukuta, Yasuhisa; Aramsirirujiwet, Yaovapa; Shirasaka, Norifumi; Kitpreechavanich, Vichien

    2016-05-01

    A total of 123 actinomycetes was isolated from 12 varieties of wild orchids and screened for potential antagonistic activity against Phytophthora, which causes black rot disease in orchids. In vitro and in vivo experimental results revealed that Streptomyces sp. strain 9X166 showed the highest antagonistic activity; its β-1,3-glucanase production ability was a key mechanism for growth inhibition of the pathogen. PCR amplification and DNA sequencing of the 16S ribosomal RNA gene allowed the identification of this strain, with high similarity (99.93%) to the novel species Streptomyces similaensis. The glucanase enzyme, purified to homogeneity by anion exchange and gel filtration chromatography, showed a specific activity of 58 U mg(-1) (a 3.9-fold increase) and yield of 6.4%. The molecular weight, as determined by SDS-PAGE and gel filtration, was approximately 99 and 80 kDa, respectively, suggesting that the enzyme was a monomer. The purified enzyme showed the highest substrate specificity to laminarin, indicating that it was β-1,3-glucanase. The hydrolyzed products of cello-oligosaccharides suggested that this enzyme was endo-type β-1,3-glucanase. Streptomyces sp. 9X166 culture filtrate, possessing β-1,3-glucanase activity, could degrade both freeze-dried and living mycelium. This is the first report on a β-1,3-glucanase-producing Streptomyces sp. that could be an effective biocontrol agent for black rot disease in orchids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Single point mutations distributed in 10 soluble and membrane regions of the Nicotiana plumbaginifolia plasma membrane PMA2 H+-ATPase activate the enzyme and modify the structure of the C-terminal region.

    PubMed

    Morsomme, P; Dambly, S; Maudoux, O; Boutry, M

    1998-12-25

    The Nicotiana plumbaginifolia pma2 (plasma membrane H+-ATPase) gene is capable of functionally replacing the H+-ATPase genes of the yeast Saccharomyces cerevisiae, provided that the external pH is kept above 5.0. Single point mutations within the pma2 gene were previously identified that improved H+-ATPase activity and allowed yeast growth at pH 4.0. The aim of the present study was to identify most of the PMA2 positions, the mutation of which would lead to improved growth and to determine whether all these mutations result in similar enzymatic and structural modifications. We selected additional mutants in total 42 distinct point mutations localized in 30 codons. They were distributed in 10 soluble and membrane regions of the enzyme. Most mutant PMA2 H+-ATPases were characterized by a higher specific activity, lower inhibition by ADP, and lower stimulation by lysophosphatidylcholine than wild-type PMA2. The mutants thus seem to be constitutively activated. Partial tryptic digestion and immunodetection showed that the PMA2 mutants had a conformational change making the C-terminal region more accessible. These data therefore support the hypothesis that point mutations in various H+-ATPase parts displace the inhibitory C-terminal region, resulting in enzyme activation. The high density of mutations within the first half of the C-terminal region suggests that this part is involved in the interaction between the inhibitory C-terminal region and the rest of the enzyme.

  17. Total antioxidant and oxidant status of plasma and renal tissue of cisplatin-induced nephrotoxic rats: protection by floral extracts of Calendula officinalis Linn.

    PubMed

    Verma, Pawan Kumar; Raina, Rajinder; Sultana, Mudasir; Singh, Maninder; Kumar, Pawan

    2016-01-01

    The present study was aimed to determine the total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) of plasma and renal tissue in cisplatin (cDDP) induced nephrotoxic rats and its protection by treatments with floral extracts of Calendula officinalis Linn. Treatment with cDDP elevated (p < 0.05) the levels of blood urea nitrogen, creatinine (CR), TOS, OSI and malondialdehyde (MDA) but lowered (p < 0.05) total plasma proteins, TAS, total thiols (TTH), blood glutathione (GSH) and antioxidant enzymes compared to the control group. Pre- and post-treatments of ethanolic floral extract of C. officinalis along with cDDP restored (p > 0.05) CR, albumin, TOS, GSH and activities of antioxidant enzymes in blood and renal tissue. Ethanolic extract treatments reduced (p < 0.05) MDA level in renal tissue without restoring the erythrocyte MDA level following cDDP treatment. These observations were further supported by the histopathological findings in renal tissue. Observations of the present study have shown that treatments with ethanolic floral extract of C. officinalis protect cDDP induced nephrotoxicity by restoring antioxidant system of the renal tissue.

  18. Exogenous calcium induces tolerance to atrazine stress in Pennisetum seedlings and promotes photosynthetic activity, antioxidant enzymes and psbA gene transcripts.

    PubMed

    Erinle, Kehinde Olajide; Jiang, Zhao; Ma, Bingbing; Li, Jinmei; Chen, Yukun; Ur-Rehman, Khalil; Shahla, Andleeb; Zhang, Ying

    2016-10-01

    Calcium (Ca) has been reported to lessen oxidative damages in plants by upregulating the activities of antioxidant enzymes. However, atrazine mediated reactive oxygen species (ROS) reduction by Ca is limited. This study therefore investigated the effect of exogenously applied Ca on ROS, antioxidants activity and gene transcripts, the D1 protein (psbA gene), and chlorophyll contents in Pennisetum seedlings pre-treated with atrazine. Atrazine toxicity increased ROS production and enzyme activities (ascorbate peroxidase APX, peroxidase POD, Superoxide dismutase SOD, glutathione-S-transferase GST); but decreased antioxidants (APX, POD, and Cu/Zn SOD) and psbA gene transcripts. Atrazine also decreased the chlorophyll contents, but increased chlorophyll (a/b) ratio. Contrarily, Ca application to atrazine pre-treated seedlings lowered the harmful effects of atrazine by reducing ROS levels, but enhancing the accumulation of total chlorophyll contents. Ca-protected seedlings in the presence of atrazine manifested reduced APX and POD activity, whereas SOD and GST activity was further increased with Ca application. Antioxidant gene transcripts that were down-regulated by atrazine toxicity were up-regulated with the application of Ca. Calcium application also resulted in up-regulation of the D1 protein. In conclusion, ability of calcium to reverse atrazine-induced oxidative damage and calcium regulatory role on GST in Pennisetum was presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Potential Activities of Freshwater Exo- and Endo-Acting Extracellular Peptidases in East Tennessee and the Pocono Mountains.

    PubMed

    Mullen, Lauren; Boerrigter, Kim; Ferriero, Nicholas; Rosalsky, Jeff; Barrett, Abigail van Buren; Murray, Patrick J; Steen, Andrew D

    2018-01-01

    Proteins constitute a particularly bioavailable subset of organic carbon and nitrogen in aquatic environments but must be hydrolyzed by extracellular enzymes prior to being metabolized by microorganisms. Activities of extracellular peptidases (protein-degrading enzymes) have frequently been assayed in freshwater systems, but such studies have been limited to substrates for a single enzyme [leucyl aminopeptidase (Leu-AP)] out of more than 300 biochemically recognized peptidases. Here, we report kinetic measurements of extracellular hydrolysis of five substrates in 28 freshwater bodies in the Delaware Water Gap National Recreation Area in the Pocono Mountains (PA, United States) and near Knoxville (TN, United States), between 2013 and 2016. The assays putatively test for four aminopeptidases (arginyl aminopeptidase, glyclyl aminopeptidase, Leu-AP, and pyroglutamyl aminopeptidase), which cleave N -terminal amino acids from proteins, and trypsin, an endopeptidase, which cleaves proteins mid-chain. Aminopeptidase and the trypsin-like activity were observed in all water bodies, indicating that a diverse set of peptidases is typical in freshwater. However, ratios of peptidase activities were variable among sites: aminopeptidases dominated at some sites and trypsin-like activity at others. At a given site, the ratios remained fairly consistent over time, indicating that they are driven by ecological factors. Studies in which only Leu-AP activity is measured may underestimate the total peptidolytic capacity of an environment, due to the variable contribution of endopeptidases.

  20. Potential Activities of Freshwater Exo- and Endo-Acting Extracellular Peptidases in East Tennessee and the Pocono Mountains

    PubMed Central

    Mullen, Lauren; Boerrigter, Kim; Ferriero, Nicholas; Rosalsky, Jeff; Barrett, Abigail van Buren; Murray, Patrick J.; Steen, Andrew D.

    2018-01-01

    Proteins constitute a particularly bioavailable subset of organic carbon and nitrogen in aquatic environments but must be hydrolyzed by extracellular enzymes prior to being metabolized by microorganisms. Activities of extracellular peptidases (protein-degrading enzymes) have frequently been assayed in freshwater systems, but such studies have been limited to substrates for a single enzyme [leucyl aminopeptidase (Leu-AP)] out of more than 300 biochemically recognized peptidases. Here, we report kinetic measurements of extracellular hydrolysis of five substrates in 28 freshwater bodies in the Delaware Water Gap National Recreation Area in the Pocono Mountains (PA, United States) and near Knoxville (TN, United States), between 2013 and 2016. The assays putatively test for four aminopeptidases (arginyl aminopeptidase, glyclyl aminopeptidase, Leu-AP, and pyroglutamyl aminopeptidase), which cleave N-terminal amino acids from proteins, and trypsin, an endopeptidase, which cleaves proteins mid-chain. Aminopeptidase and the trypsin-like activity were observed in all water bodies, indicating that a diverse set of peptidases is typical in freshwater. However, ratios of peptidase activities were variable among sites: aminopeptidases dominated at some sites and trypsin-like activity at others. At a given site, the ratios remained fairly consistent over time, indicating that they are driven by ecological factors. Studies in which only Leu-AP activity is measured may underestimate the total peptidolytic capacity of an environment, due to the variable contribution of endopeptidases. PMID:29559961

  1. [Study of enzymes of xenobiotic metabolism in the evaluation of quality of protein-containing wheat germ flakes and wallpaper flour].

    PubMed

    Martinchuk, A N; E En Gyn; Safronova, A M; Peskova, E V

    1991-01-01

    Intake of wheat upholstery meal by growing rats was attended by a sharp decrease in the content and activity of xenobiotic metabolism enzymes in the hepatic microsomes, that was caused by the low biological value of the meal proteins. Hepatic microsomes of the rats that were fed with wheat germ flakes showed increased specific content of cytochromes P-450 and b5, but the total blood protein content per 100 g of body mass was lower than during casein consumption. No significant changes were detected in hydroxylation rate of benz(a)pyrene, aniline and ethylmorphine. During consumption of wheat germ flakes induction of UDP-glucuronide-transferase was detected in hepatic microsomes. Wheat germ flakes induced a 5-fold increase of Se-dependent glutathione peroxidase activity. Wheat germ flakes produced no significant effect on glutathione-S-aryltransferase and glutathione reductase activity.

  2. Condensed Tannins from Longan Bark as Inhibitor of Tyrosinase: Structure, Activity, and Mechanism.

    PubMed

    Chai, Wei-Ming; Huang, Qian; Lin, Mei-Zhen; Ou-Yang, Chong; Huang, Wen-Yang; Wang, Ying-Xia; Xu, Kai-Li; Feng, Hui-Ling

    2018-01-31

    In this study, the content, structure, antityrosinase activity, and mechanism of longan bark condensed tannins were evaluated. The findings obtained from mass spectrometry demonstrated that longan bark condensed tannins were mixtures of procyanidins, propelargonidins, prodelphinidins, and their acyl derivatives (galloyl and p-hydroxybenzoate). The enzyme analysis indicated that these mixtures were efficient, reversible, and mixed (competitive is dominant) inhibitor of tyrosinase. What's more, the mixtures showed good inhibitions on proliferation, intracellular enzyme activity and melanogenesis of mouse melanoma cells (B 16 ). From molecular docking, the results showed the interactions between inhibitors and tyrosinase were driven by hydrogen bond, electrostatic, and hydrophobic interactions. In addition, high levels of total phenolic and extractable condensed tannins suggested that longan bark might be a good source of tyrosinase inhibitor. This study would offer theoretical basis for the development of longan bark condensed tannins as novel food preservatives and medicines of skin diseases.

  3. Cocoa-enriched diet enhances antioxidant enzyme activity and modulates lymphocyte composition in thymus from young rats.

    PubMed

    Ramiro-Puig, Emma; Urpí-Sardà, Mireia; Pérez-Cano, Francisco J; Franch, Angels; Castellote, Cristina; Andrés-Lacueva, Cristina; Izquierdo-Pulido, Maria; Castell, Margarida

    2007-08-08

    Cocoa is a rich source of flavonoids, mainly (-)-epicatechin, (+)-catechin, and procyanidins. This article reports the effect of continuous cocoa intake on antioxidant capacity in plasma and tissues, including lymphoid organs and liver, from young rats. Weaned Wistar rats received natural cocoa (4% or 10% food intake) for three weeks, corresponding to their infancy. Flavonoid absorption was confirmed through the quantification of epicatechin metabolites in urine. Total antioxidant capacity (TAC) and the activity of antioxidant enzymes, superoxide dismutase (SOD) and catalase, were examined. Cocoa intake enhanced TAC in all tissues especially in thymus. Moreover, thymus SOD and catalase activities were also dose-dependently increased by cocoa. It was also analyzed whether the enhanced antioxidant system in thymus could influence its cellular composition. An increase in the percentage of thymocytes in advanced development stage was found. In summary, cocoa diet enhances thymus antioxidant defenses and influences thymocyte differentiation.

  4. The protective effect of blueberry anthocyanins against perfluorooctanoic acid-induced disturbance in planarian (Dugesia japonica).

    PubMed

    Yuan, Zuoqing; Zhang, Jianyong; Tu, Changchao; Wang, Zhijing; Xin, Wenpeng

    2016-05-01

    The influence of blueberry anthocyanins on perfluorooctanoic acid (PFOA)-induced stress response in planarian mitochondria was investigated. PFOA at 15mg/L and anthocyanins at 10 or 20mg/L were individually and simultaneously administered to planarians for up to 10d. The results showed PFOA treatment induced an increase in mitochondrial permeability transition pore opening and a decrease antioxidant capacity and enzyme activities. In anthocyanin treated animals, the activity of succinate dehydrogenase, cytochrome oxidase and monoamine oxidase increased, but mitochondrial permeability transition pore opening decreased and total antioxidant capacity increased. An improvement in above-mentioned physiological and biochemical parameters was found in the combined PFOA and anthocyanin treated animals, in a dose-dependent manner. Anthocyanins attenuated the PFOA induced toxicity; antioxidant capacity and enzyme activities are involved in the protective mechanism of anthocyanins. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Activity of xenobiotic-metabolizing enzymes in the liver of rats with multi-vitamin deficiency.

    PubMed

    Tutelyan, Victor A; Kravchenko, Lidia V; Aksenov, Ilya V; Trusov, Nikita V; Guseva, Galina V; Kodentsova, Vera M; Vrzhesinskaya, Oksana A; Beketova, Nina A

    2013-01-01

    The purpose of the study was to determine how multi-vitamin deficiency affects xenobiotic-metabolizing enzyme (XME) activities in the rat liver. Vitamin levels and XME activities were studied in the livers of male Wistar rats who were fed for 4 weeks with semi-synthetic diets containing either adequate (100 % of recommended vitamin intake) levels of vitamins (control), or decreased vitamin levels (50 % or 20 % of recommended vitamin intake). The study results have shown that moderate vitamin deficiency (50 %) leads to a decrease of vitamin A levels only, and to a slight increase, as compared with the control, in the following enzyme activities: methoxyresorufin O-dealkylase (MROD) activity of CYP1 A2 - by 34 % (p < 0.05), UDP-glucuronosyl transferase - by 26 % (p < 0.05), and quinone reductase - by 55 % (p < 0.05). Profound vitamin deficiency (20 %) led to a decrease of vitamins A, E, B1, B2, and C, and enzyme activities in the liver: MROD - to 78 % of the control level (p < 0.05), 4-nitrophenol hydroxylase - to 74 % (p < 0.05), heme oxygenase-1 - to 83 % (p < 0.05), and quinone reductase - to 60 % (p < 0.05). At the same time, the UDP-glucuronosyl transferase activity and ethoxyresorufin O-dealkylase activity of CYP1A1, pentoxyresorufin O-dealkylase activity of CYP2B1/2 and 6β-testosterone hydroxylase, as well as the total activity of glutathione transferase did not differ from the control levels. The study has demonstrated that profound multi-vitamin deficiency is associated with a decrease in the expression of CYP1A2 and CYP3A1 mRNAs to 62 % and 79 %, respectively. These data indicated that a short-term but profound multi-vitamin deficiency in rats leads to a decrease in the activities and expression of the some XME that play an important role in detoxification of xenobiotics and metabolism of drugs and antioxidant protection.

  6. Induction of albuminuria in mice: synergistic effect of two monoclonal antibodies directed to different domains of aminopeptidase A.

    PubMed

    Mentzel, S; van Son, J P; Dijkman, H B; Wetzels, J F; Assmann, K J

    1999-04-01

    Aminopeptidase A is an enzyme that is present on podocytes and is involved in the degradation of angiotensin II. In previous studies in mice, we administered single monoclonal antibodies directed against aminopeptidase A. We observed that only monoclonal antibodies that inhibited aminopeptidase A enzyme activity caused albuminuria. In this study, the effects of the combined injections of two monoclonal anti-aminopeptidase A antibodies (mAbs) were studied, using a combination of anti-aminopeptidase A mAbs that were directed against two different domains involved in the aminopeptidase A enzyme activity (ASD-3 or ASD-37) and an anti-aminopeptidase A mAb not related to the enzyme active site (ASD-41). An injection of the combinations ASD-3/37 (total 4 mg, 1:1 ratio) and ASD-37/41 (total 4 mg, 1:1 ratio) in doses that do not cause albuminuria when given alone (4 mg) induced massive albuminuria at day 1 after injection. The combination ASD-3/41 had no effect. This albuminuria was not dependent on systemic immune mediators of inflammation and could not merely be related to a blockade of aminopeptidase A enzyme activity. However, a correlation was observed between the induction of albuminuria and the aggregation of the mAbs injected and aminopeptidase A on the podocytes. An injection of the combinations ASD-3/37 or ASD-37/41 did not cause an increase in systemic blood pressure. The treatment with a combination of enalapril and losartan lowered blood pressure (53 +/- 10 vs. 90 +/- 3 mm Hg in untreated mice) and reduced the acute albuminuria by 55% (11,145 +/- 864 vs. 24,517 +/- 2448 micrograms albumin/18 hr in untreated mice). However, similar effects were observed using triple therapy. Therefore, the reduction of albuminuria by the combined treatment of enalapril/losartan seems to be the consequence of the reduction in the systemic blood pressure. These findings argue against a specific role for angiotensin II in this model. The combined injection of two mAbs directed against different domains of aminopeptidase A induces a massive albuminuria in mice, which is not merely dependent on angiotensin II. We hypothesize that the direct binding of mAbs to at least two pathogenic domains on aminopeptidase A triggers the podocyte to release mediators that are involved in the observed albuminuria.

  7. ATP sulfurylase from higher plants: kinetic and structural characterization of the chloroplast and cytosol enzymes from spinach leaf.

    PubMed

    Renosto, F; Patel, H C; Martin, R L; Thomassian, C; Zimmerman, G; Segel, I H

    1993-12-01

    Two forms of ATP sulfurylase were purified from spinach leaf. The major (chloroplast) form accounts for 85 to 90% of the total leaf activity (0.03 +/- 0.01 adenosine-5'-phosphosulfate (APS) synthesis units x gram fresh weight-1). Both enzyme forms appear to be tetramers composed of 49- to 50-kDa subunits with the minor (cytosolic) form being slightly larger than the chloroplast form. The specific activities (units x milligram protein-1) of the chloroplast form at pH 8.0, 30 degrees C, were as follows: APS synthesis, 16; molybdolysis, 229; ATP synthesis, 267; selenolysis, 4.1; fluorophosphate activation, 11. Kinetic constants for the physiological reaction were as follows: KmA = 0.046 mM, K(ia) = 0.85 mM, KmB = 0.25 mM, KmQ = 0.37 microM, K(iq) = 64-85 nM, and KmP = 10 microM, where A = MgATP, B = SO4(2-), P = total PPi at 5 mM Mg2+, and Q = APS. The kinetic constants for molybdolysis were similar to those of the APS synthesis reaction. The kinetic constants of the minor (cytosol) form were similar to those of the major form with two exceptions: (a) The molybdolysis activity was 120 units x milligram protein-1, yielding a Vmax (ATP synthesis)/Vmax (molybdolysis) ratio close to 2 (compared to about unity for the chloroplast form) and (b) KmA was greater (0.24 and 0.15 mM for APS synthesis and molybdolysis, respectively). Initial velocity measurements (made over an extended range of MgATP and SO4(2-) concentrations), product inhibition studies (by initial velocity methods and by reaction progress curve analyses), dead end inhibition studies (with monovalent and divalent oxyanions), and kcat/Km comparisons (for SO4(2-) and MoO4(2-) support a random AB-ordered PQ kinetic mechanism in which MgATP and SO4(2-) bind in a highly synergistic manner. Equilibrium binding studies indicated the presence of one APS site per subunit. HPLC elution profiles of chymotryptic and tryptic peptides were essentially the same for both enzyme forms. The N-terminal sequence of residues 5-20 of the cytosol enzyme was identical to residues 1-16 of the chloroplast enzyme.

  8. Laser light and magnetic field stimulation effect on biochemical, enzymes activities and chlorophyll contents in soybean seeds and seedlings during early growth stages.

    PubMed

    Asghar, Tehseen; Jamil, Yasir; Iqbal, Munawar; Zia-Ul-Haq; Abbas, Mazhar

    2016-12-01

    Laser and magnetic field bio-stimulation attracted the keen interest of scientific community in view of their potential to enhance seed germination, seedling growth, physiological, biochemical and yield attributes of plants, cereal crops and vegetables. Present study was conducted to appraise the laser and magnetic field pre-sowing seed treatment effects on soybean sugar, protein, nitrogen, hydrogen peroxide (H 2 O 2 ) ascorbic acid (AsA), proline, phenolic and malondialdehyde (MDA) along with chlorophyll contents (Chl "a" "b" and total chlorophyll contents). Specific activities of enzymes such as protease (PRT), amylase (AMY), catalyst (CAT), superoxide dismutase (SOD) and peroxides (POD) were also assayed. The specific activity of enzymes (during germination and early growth), biochemical and chlorophyll contents were enhanced significantly under the effect of both laser and magnetic pre-sowing treatments. Magnetic field treatment effect was slightly higher than laser treatment except PRT, AMY and ascorbic acid contents. However, both treatments (laser and magnetic field) effects were significantly higher versus control (un-treated seeds). Results revealed that laser and magnetic field pre-sowing seed treatments have potential to enhance soybean biological moieties, chlorophyll contents and metabolically important enzymes (degrade stored food and scavenge reactive oxygen species). Future study should be focused on growth characteristics at later stages and yield attributes. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Enzyme potentiated desensitisation in treatment of seasonal allergic rhinitis: double blind randomised controlled study

    PubMed Central

    Radcliffe, Michael J; Lewith, George T; Turner, Richard G; Prescott, Philip; Church, Martin K; Holgate, Stephen T

    2003-01-01

    Objective To assess the efficacy of enzyme potentiated desensitisation in the treatment of severe summer hay fever poorly controlled by pharmacotherapy. Design Double blind randomised placebo controlled parallel group study. Setting Hospital in Hampshire. Participants 183 participants aged between 18 and 64 with a history of severe summer hay fever for at least two years; all were skin prick test positive to timothy grass pollen. 90 randomised to active treatment; 93 randomised to placebo. Interventions Active treatment: two injections of enzyme potentiated desensitisation, given between eight and 11 weeks apart, each comprising 200 Fishman units of β glucuronidase, 50 pg 1,3-cyclohexanediol, 50 ng protamine sulphate, and a mixed inhaled allergen extract (pollen mixes for trees, grasses, and weeds; allergenic fungal spores; cat and dog danders; dust and storage mites) in a total volume of 0.05 ml of buffered saline. Placebo: two injections of 0.05 ml buffered saline solution. Main outcome measures Proportion of problem-free days; global rhinoconjunctivitis quality of life scores assessed weekly during pollen season. Results The active treatment group and the placebo group did not differ in the proportion of problem-free days, quality of life scores, symptom severity scores, change in quantitative skin prick provocation threshold, or change in conjunctival provocation threshold. No clinically significant adverse reactions occurred. Conclusions Enzyme potentiated desensitisation showed no treatment effect in this study. PMID:12896934

  10. Rate equation for creatine kinase predicts the in vivo reaction velocity: /sup 31/P NMR surface coil studies in brain, heart, and skeletal muscle of the living rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bittl, J.A.; DeLayre, J.; Ingwall, J.S.

    1987-09-22

    Brain, heart, and skeletal muscle contain four different creatine kinase isozymes and various concentrations of substrates for the creatine kinase reaction. To identify if the velocity of the creatine kinase reaction under cellular conditions is regulated by enzyme activity and substrate concentrations as predicted by the rate equation, the authors used /sup 31/P NMR and spectrophotometric techniques to measure reaction velocity, enzyme content, isozyme distribution, and concentrations of substrates in brain, heart, and skeletal muscle of living rat under basal or resting conditions. The total tissue activity of creatine kinase in the direction of MgATP synthesis provided an estimate formore » V/sub max/ and exceeded the NMR-determined in vivo reaction velocities by an order of magnitude. The isozyme composition varied among the three tissues: >99% BB for brain; 14% MB, 61% MM, and 25% mitochondrial for heart; and 98% MM and 2% mitochondrial for skeletal muscle. The NMR-determined reaction velocities agreed with predicted values from the creatine kinase rate equation. The concentrations of free creatine and cytosolic MgADP, being less than or equal to the dissociation constants for each isozyme, were dominant terms in the creatine kinase rate equation for predicting the in vivo reaction velocity. Thus, they observed that the velocity of the creatine kinase reaction is regulated by total tissue enzyme activity and by the concentrations of creatine and MgADP in a manner that is independent of isozyme distribution.« less

  11. Antidiabetic effect of flax and pumpkin seed mixture powder: effect on hyperlipidemia and antioxidant status in alloxan diabetic rats.

    PubMed

    Makni, Mohamed; Fetoui, Hamadi; Gargouri, Nabil K; Garoui, El Mouldi; Zeghal, Najiba

    2011-01-01

    Reactive oxygen species play a crucial role in the pathogenesis of diabetes and its complications. This study aims to examine the effects of flax and pumpkin powder seed mixture on alloxan induced diabetes in Wistar rats. Animals were allocated into three groups of six rats each: a control group (CD), diabetic group (DD) and diabetic rats fed with flax and pumpkin seed mixture (DMS) group. The diabetic rats (DD) presented a significant increase in glycemia, plasma and liver lipid parameters such as total lipid, total cholesterol and triglycerides compared to the control group (CD). In addition, plasma and liver malonaldialdehyde levels (MDA, an index of lipid peroxidation) significantly increased compared to (CD). Antioxidant enzymes activities such as catalase, superoxide dismutase, and reduced glutathione (GSH) levels significantly decreased in the plasma and liver of diabetic rats compared to controls. Diet supplemented with flax and pumpkin seed mixture in the DMS group ameliorated antioxidant enzymes activities and level of GSH in diabetic rats and significantly decreased MDA levels. The present study revealed a significant increase in the activities of aspartate aminotransferase and alanine aminotransferase on diabetic status, indicating considerable hepatocellular injury. The administration of flax and pumpkin seed mixture attenuated the increased levels of the plasma enzymes produced by the induction of diabetes and caused a subsequent recovery towards normalization comparable to the control group animals. Our results thus suggest that flax and pumpkin seed mixture supplemented to diet may be helpful in preventing diabetic complications in adult rats. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Hyaluronidase, phospholipase A2 and protease inhibitory activity of plants used in traditional treatment of snakebite-induced tissue necrosis in Mali, DR Congo and South Africa.

    PubMed

    Molander, Marianne; Nielsen, Line; Søgaard, Søren; Staerk, Dan; Rønsted, Nina; Diallo, Drissa; Chifundera, Kusamba Zacharie; van Staden, Johannes; Jäger, Anna K

    2014-11-18

    Snakebite envenomation, every year, causes estimated 5-10,000 mortalities and results in more than 5-15,000 amputations in sub-Saharan Africa alone. Antiserum is not easily accessible in these regions or doctors are simply not available, thus more than 80% of all patients seek traditional practitioners as first-choice. Therefore it is important to investigate whether the plants used in traditional medicine systems contain compounds against the necrosis-inducing enzymes of snake venom. Extracts from traditionally used plants from DR Congo, Mali and South Africa were tested in hyaluronidase, phospholipase A2 and protease enzyme bioassays using Bitis arietans and Naja nigricollis as enzyme source. A total of 226 extracts from 94 different plant species from the three countries, Mali, Democratic Republic of Congo and South Africa were tested in phospholipase A2, proteases and hyaluronidase enzyme assays. Forty plant species showed more than 90% inhibition in one or more assay. Fabaceae, Anacardiaceae and Malvaceae were the families with the highest number of active species, and the active compounds were distributed in different plant parts depending on plant species. Polyphenols were removed in the search for specific enzyme inhibitors against hyaluronidase, phospholipase A2 or proteases from extracts with IC50 values below 100µg/ml. Water extracts of Pupalia lappacea, Combretum molle, Strychnos innocua and Grewia mollis and ethanol extract of Lannea acida and Bauhinia thonningii still showed IC50 values below 100µg/ml in either the hyaluronidase or protease bioassay after removal of polyphenols. As four of the active plants are widely distributed in the areas where the snake species Bitis arietans and Naja nigricollis occur a potential inhibitor of the necrotic enzymes is accessible for many people in sub-Saharan Africa. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Evaluation of microbial dynamics during post-consumption food waste composting.

    PubMed

    Awasthi, Sanjeev Kumar; Wong, Jonathan W C; Li, Jiao; Wang, Quan; Zhang, Zengqiang; Kumar, Sunil; Awasthi, Mukesh Kumar

    2018-03-01

    The objective of present study was to evaluate the efficacy of bacterial consortium to boost the microbial population and enzyme activities during post-consumption food waste (PCFWs) composting. Three treatments of PCFWs mixed with saw dust and 10% zeolite (dry weight basis) was design, where treatments T-2 and T-3 were applied with two distinctive bacterial consortium, respectively, while T-1 was served as control. The results showed that total aerobic proteolytic, amylolytic, cellulolytic, oil degrading and total aerobic bacteria populations were significantly higher in treatment T2 and T3 than T1. Consequently, the selected hydrolytic enzymes were also higher in T2 and T3 than T1, whose apparently gave the interesting information about rate of decomposition and end product stability. Furthermore, T2 and T3 showed significant correlations between the enzymatic activities and microbial population with other physico-chemical parameters. Based on germination assays and CO 2 -C evolution rate, T2 and T3 were considered phytotoxic free and highly stable final compost on day 56. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. 6-gingerol, an active ingredient of ginger, protects acetaminophen-induced hepatotoxicity in mice.

    PubMed

    Sabina, Evan Prince; Pragasam, Samuel Joshua; Kumar, Suresh; Rasool, Mahaboobkhan

    2011-11-01

    To investigate the hepatoprotective efficacy of 6-gingerol against acetaminophen-induced hepatotoxicity in mice. Mice were injected with a single dose of acetaminophen (900 mg/kg) to induce hepatotoxicity, while 6-gingerol (30 mg/kg) or the standard drug silymarin (25 mg/kg) was given 30 min after the acetaminophen administration. The mice were sacrificed 4 h after acetaminophen injection to determine the activities of liver marker enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP), total bilirubin in serum, and lipid peroxidation and antioxidant status (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione transferase and glutathione) in liver homogenate. The treatment of 6-gingerol and silymarin to acetaminophen-induced hepatotoxicity showed significant hepatoprotective effect by lowering the hepatic marker enzymes (AST, ALT, and ALP) and total bilirubin in serum (P<0.05). In addition, 6-gingerol and silymarin treatment prevented the elevation of hepatic malondialdehyde formation and the depletion of antioxidant status in the liver of acetaminophen-intoxicated mice (P<0.05). The results evidently demonstrate that 6-gingerol has promising hepatoprotective effect which is comparable to the standard drug silymarin.

  15. Purine nucleoside phosphorylase and the enzymatic antioxidant defense system in breast milk from women with different levels of arsenic exposure.

    PubMed

    Gaxiola-Robles, Ramón; Labrada-Martagón, Vanessa; Bitzer-Quintero, Oscar Kurt; Zenteno-Savín, Tania; Méndez-Rodríguez, Lía Celina

    2015-05-01

    Purine nucleoside phosphorylase (PNP) is an ubiquitous enzyme which plays an important role in arsenic (As) detoxification. As is a toxic metalloid present in air, soil and water; is abundant in the environment and is readily transferred along the trophic chain, being found even in human breast milk. Milk is the main nutrient source for the growth and development of neonates. Information on breast milk synthesis and its potential defense mechanism against As toxicity is scarce. In this study, PNP and antioxidant enzymes activities, as well as glutathione (GSH) and total arsenic (TAs) concentrations, were quantified in breast milk samples. PNP, superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR) activities and GSH concentration were determined spectrophotometrically; TAs concentration ([TAs]) was measured by atomic absorption spectrometry. Data suggest an increase in PNP activity (median = 0.034 U mg protein-1) in the presence of TAs (median = 1.16 g L(-1)). To explain the possible association of PNP activity in breast milk with the activity of the antioxidant enzymes as well as with GSH and TAs concentrations, generalized linear models were built. In the adjusted model, GPx and GR activities showed a statistically significant (p<0.01) association with PNP activity. These results may suggest that PNP activity increases in the presence of TAs as part of the detoxification mechanism in breast milk. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  16. Estimating the magnitude of near-membrane PDE4 activity in living cells.

    PubMed

    Xin, Wenkuan; Feinstein, Wei P; Britain, Andrea L; Ochoa, Cristhiaan D; Zhu, Bing; Richter, Wito; Leavesley, Silas J; Rich, Thomas C

    2015-09-15

    Recent studies have demonstrated that functionally discrete pools of phosphodiesterase (PDE) activity regulate distinct cellular functions. While the importance of localized pools of enzyme activity has become apparent, few studies have estimated enzyme activity within discrete subcellular compartments. Here we present an approach to estimate near-membrane PDE activity. First, total PDE activity is measured using traditional PDE activity assays. Second, known cAMP concentrations are dialyzed into single cells and the spatial spread of cAMP is monitored using cyclic nucleotide-gated channels. Third, mathematical models are used to estimate the spatial distribution of PDE activity within cells. Using this three-tiered approach, we observed two pharmacologically distinct pools of PDE activity, a rolipram-sensitive pool and an 8-methoxymethyl IBMX (8MM-IBMX)-sensitive pool. We observed that the rolipram-sensitive PDE (PDE4) was primarily responsible for cAMP hydrolysis near the plasma membrane. Finally, we observed that PDE4 was capable of blunting cAMP levels near the plasma membrane even when 100 μM cAMP were introduced into the cell via a patch pipette. Two compartment models predict that PDE activity near the plasma membrane, near cyclic nucleotide-gated channels, was significantly lower than total cellular PDE activity and that a slow spatial spread of cAMP allowed PDE activity to effectively hydrolyze near-membrane cAMP. These results imply that cAMP levels near the plasma membrane are distinct from those in other subcellular compartments; PDE activity is not uniform within cells; and localized pools of AC and PDE activities are responsible for controlling cAMP levels within distinct subcellular compartments. Copyright © 2015 the American Physiological Society.

  17. Estimating the magnitude of near-membrane PDE4 activity in living cells

    PubMed Central

    Xin, Wenkuan; Feinstein, Wei P.; Britain, Andrea L.; Ochoa, Cristhiaan D.; Zhu, Bing; Richter, Wito; Leavesley, Silas J.

    2015-01-01

    Recent studies have demonstrated that functionally discrete pools of phosphodiesterase (PDE) activity regulate distinct cellular functions. While the importance of localized pools of enzyme activity has become apparent, few studies have estimated enzyme activity within discrete subcellular compartments. Here we present an approach to estimate near-membrane PDE activity. First, total PDE activity is measured using traditional PDE activity assays. Second, known cAMP concentrations are dialyzed into single cells and the spatial spread of cAMP is monitored using cyclic nucleotide-gated channels. Third, mathematical models are used to estimate the spatial distribution of PDE activity within cells. Using this three-tiered approach, we observed two pharmacologically distinct pools of PDE activity, a rolipram-sensitive pool and an 8-methoxymethyl IBMX (8MM-IBMX)-sensitive pool. We observed that the rolipram-sensitive PDE (PDE4) was primarily responsible for cAMP hydrolysis near the plasma membrane. Finally, we observed that PDE4 was capable of blunting cAMP levels near the plasma membrane even when 100 μM cAMP were introduced into the cell via a patch pipette. Two compartment models predict that PDE activity near the plasma membrane, near cyclic nucleotide-gated channels, was significantly lower than total cellular PDE activity and that a slow spatial spread of cAMP allowed PDE activity to effectively hydrolyze near-membrane cAMP. These results imply that cAMP levels near the plasma membrane are distinct from those in other subcellular compartments; PDE activity is not uniform within cells; and localized pools of AC and PDE activities are responsible for controlling cAMP levels within distinct subcellular compartments. PMID:26201952

  18. Labile and recalcitrant organic matter utilization by river biofilm under increasing water temperature.

    PubMed

    Ylla, Irene; Romaní, Anna M; Sabater, Sergi

    2012-10-01

    Microbial biofilms in rivers contribute to the decomposition of the available organic matter which typically shows changes in composition and bioavailability due to their origin, seasonality, and watershed characteristics. In the context of global warming, enhanced biofilm organic matter decomposition would be expected but this effect could be specific when either a labile or a recalcitrant organic matter source would be available. A laboratory experiment was performed to mimic the effect of the predicted increase in river water temperature (+4 °C above an ambient temperature) on the microbial biofilm under differential organic matter sources. The biofilm microbial community responded to higher water temperature by increasing bacterial cell number, respiratory activity (electron transport system) and microbial extracellular enzymes (extracellular enzyme activity). At higher temperature, the phenol oxidase enzyme explained a large fraction of respiratory activity variation suggesting an enhanced microbial use of degradation products from humic substances. The decomposition of hemicellulose (β-xylosidase activity) seemed to be also favored by warmer conditions. However, at ambient temperature, the enzymes highly responsible for respiration activity variation were β-glucosidase and leu-aminopeptidase, suggesting an enhanced microbial use of polysaccharides and peptides degradation products. The addition of labile dissolved organic carbon (DOC; dipeptide plus cellobiose) caused a further augmentation of heterotrophic biomass and respiratory activity. The changes in the fluorescence index and the ratio Abs(250)/total DOC indicated that higher temperature accelerated the rates of DOC degradation. The experiment showed that the more bioavailable organic matter was rapidly cycled irrespective of higher temperature while degradation of recalcitrant substances was enhanced by warming. Thus, pulses of carbon at higher water temperature might have consequences for DOC processing.

  19. Biotransformation and tissue distribution of protopine and allocryptopine and effects of Plume Poppy Total Alkaloid on liver drug-metabolizing enzymes.

    PubMed

    Huang, Ya-Jun; Cheng, Pi; Zhang, Zhuo-Yi; Tian, Shi-Jie; Sun, Zhi-Liang; Zeng, Jian-Guo; Liu, Zhao-Ying

    2018-01-11

    In this study, the biotransformation in the plasma, urine and feces of rats following oral administration of protopine (PRO) and allocryptopine (ALL)were explored using HPLC-QqTOF MS. An HPLC-MS/MS method for the determination of tissues was developed and applied to the tissue distribution study in rats following intragastric administration of Plume Poppy Total Alkaloid for 3 weeks. A total of ten PRO metabolites and ten ALL metabolites were characterized in rats in vivo. Among these metabolites, six PRO metabolites and five ALL metabolites were reported for the first time. The predicated metabolic pathways including ring cleavage, demethylation following ring cleavage, and glucuronidation were proposed. The low-concentration residue of PRO and ALL in various tissues was detected at 24 h and 48 h after dosing, which indicated that both compounds could be widely distributed in tissues and exist as low levels of residue. The activities of erythromycin N-demethylase, aminopyrine N-demethylase and NAD (P)H quinone oxidoreductase in female rats can be induced post-dose, but these activities were inhibited in male rats. The proposed biotransformation and residues of PRO and ALL and their effects on enzymes may provide a basis for clarifying the metabolism and interpreting pharmacokinetics.

  20. Dephosphorylation and quantification of organic phosphorus in poultry litter by purified phytic-acid high affinity Aspergillus phosphohydrolases.

    PubMed

    Dao, Thanh H; Hoang, Khanh Q

    2008-08-01

    Extracellular phosphohydrolases mediate the dephosphorylation of phosphoesters and influence bioavailability and loss of agricultural P to the environment to pose risks of impairment of sensitive aquatic ecosystems. Induction and culture of five strains of Aspergillus were conducted to develop a source of high-affinity and robust phosphohydrolases for detecting environmental P and quantifying bioactive P pools in heterogeneous environmental specimens. Enzyme stability and activity against organic P in poultry litter were evaluated in 71 samples collected across poultry producing regions of Arkansas, Maryland, and Oklahoma of the US Differences existed in strains' adaptability to fermentation medium as they showed a wide range of phytate-degrading activity. Phosphohydrolases from Aspergillus ficuum had highest activity when the strain was cultured on a primarily chemical medium, compared to Aspergillus oryzae which preferred a wheat bran-based organic medium. Kinetics parameters of A. ficuum enzymes (K(m)=210 microM; V(max) of 407 nmol s(-1)) indicated phytic acid-degrading potential equivalent to that of commercial preparations. Purified A. ficuum phosphohydrolases effectively quantified litter bioactive P pools, showing that organic P occurred at an average of 54 (+/-14)% of total P, compared to inorganic phosphates, which averaged 41 (+/-12)%. Litter management and land application options must consider the high water-extractable and organic P concentrations and the biological availability of the organic enzyme-labile P pool. Robustness of A. ficuum enzymes and simplicity of the in situ ligand-based enzyme assay may thus increase routine assessment of litter bioactive P composition to sense for on-farm accumulation of such environmentally-sensitive P forms.

  1. Oxidation of d-Amino Acids by a Particulate Enzyme from Pseudomonas aeruginosa

    PubMed Central

    Marshall, Vincent P.; Sokatch, John R.

    1968-01-01

    A particulate d-amino acid dehydrogenase has been partially purified from cell free extracts of Pseudomonas aeruginosa grown on dl-valine as the source of carbon and energy. A standard assay was developed which utilized 2,6-dichlorophenol-indophenol as the electron acceptor. The pH optimum for enzyme activity ranged from 6.0 to 8.0, depending on the amino acid assayed. The enzyme was most active with monoamino-monocarboxylic amino acids and histidine. The Michaelis constant for d-phenylalanine was found to be 1.3 × 10-3m d-phenylalanine. Constants could not be calculated for the other amino acids oxidized because anomalous plots of V as a function of V/S were obtained. Spectra of enzyme preparations reduced with d-valine or sodium hydrosulfite exhibited adsorption bands typical of the α, β, and γ bands of cytochromes as well as bleaching in the flavin region of the spectrum. When dl-valine was added to a medium with glycerol as the energy source, d-amino acid dehydrogenase was detected after the addition of valine and was produced at a rate directly proportional to the synthesis of total protein. The enzyme was formed when d-valine, l-valine, or dl-alanine was the source of carbon and energy, but not when glucose, glycerol, or succinate was the energy source. PMID:4384679

  2. Trends in resource utilization and prescription of anticonvulsants for patients with active epilepsy in Germany from 2003 to 2013 - A ten-year overview.

    PubMed

    Willems, Laurent M; Richter, Saskia; Watermann, Nina; Bauer, Sebastian; Klein, Karl Martin; Reese, Jens-Peter; Schöffski, Oliver; Hamer, Hajo M; Knake, Susanne; Rosenow, Felix; Strzelczyk, Adam

    2018-06-01

    This study evaluated trends in resource use and prescription patterns in patients with active epilepsy over a 10-year period at the same outpatient clinic of a German epilepsy center. We analyzed a cross-sectional patient sample of consecutive adults with active epilepsy over a 3-month period in 2013 and compared them with equally acquired data from the years 2003 and 2008. Using validated patient questionnaires, data on socioeconomic status, course of epilepsy, as well as direct and indirect costs were recorded. A total of 198 patients (mean age: 39.6±15.0years, 49.5% male) were enrolled and compared with our previous assessments in 2003 (n=101) and 2008 (n=151). In the 2013 cohort, 75.8% of the patients had focal epilepsy, and the majority were taking antiepileptic drugs (AEDs) (39.9% monotherapy, 59.1% polytherapy). We calculated epilepsy-specific costs of €3674 per three months per patient. Direct medical costs were mainly due to anticonvulsants (20.9% of total direct costs) and to hospitalization (20.8% of total direct costs). The proportion of enzyme-inducing anticonvulsants and 'old' AEDs decreased between 2003 and 2013. Indirect costs of €1795 in 2013 were mainly due to early retirement (55.0% of total indirect costs), unemployment (26.5%), and days off due to seizures (18.2%). In contrast to our previous findings from 2003 and 2008, our data show a stagnating cost increase with slightly reduced total costs and balanced direct and indirect costs in patients with active epilepsy. These findings are accompanied by an ongoing cost-neutral increase in the prescription of 'newer' and non-enzyme-inducing AEDs. However, the number and distribution of indirect cost components remained unchanged. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Effect of enzymes on anaerobic digestion of primary sludge and septic tank performance.

    PubMed

    Diak, James; Örmeci, Banu; Kennedy, Kevin J

    2012-11-01

    Enzyme additives are believed to improve septic tank performance by increasing the hydrolysis and digestion rates and maintaining a healthy microbial population. Previous studies reported mixed results on the effectiveness of enzymes on mesophilic and thermophilic digestion, and it is not clear whether enzymes would be effective under septic tank conditions where there is no heating or mixing, quantities of enzymes added are small, and they can be washed out quickly. In this study, batch reactors and continuous-flow reactors designed and operated as septic tanks were used to evaluate whether enzymatic treatment would increase the hydrolysis and digestion rates in primary sludge. Total solids, volatile solids, total suspended solids, total and soluble chemical oxygen demand, concentrations of protein, carbohydrate, ammonia and volatile acids in sludge and effluent samples were measured to determine the differences in digestion rates in the presence and absence of enzymes. Overall, no significant improvement was observed in enzyme-treated reactors compared with the control reactors.

  4. Potential enzyme activities in cryoturbated organic matter of arctic soils

    NASA Astrophysics Data System (ADS)

    Schnecker, J.; Wild, B.; Rusalimova, O.; Mikutta, R.; Guggenberger, G.; Richter, A.

    2012-12-01

    An estimated 581 Gt organic carbon is stored in arctic soils that are affected by cryoturbtion, more than in today's atmosphere (450 Gt). The high amount of organic carbon is, amongst other factors, due to topsoil organic matter (OM) that has been subducted by freeze-thaw processes. This cryoturbated OM is usually hundreds to thousands of years old, while the chemical composition remains largely unaltered. It has therefore been suggested, that the retarded decomposition rates cannot be explained by unfavourable abiotic conditions in deeper soil layers alone. Since decomposition of soil organic material is dependent on extracellular enzymes, we measured potential and actual extracellular enzyme activities in organic topsoil, mineral subsoil and cryoturbated material from three different tundra sites, in Zackenberg (Greenland) and Cherskii (North-East Siberia). In addition we analysed the microbial community structure by PLFAs. Hydrolytic enzyme activities, calculated on a per gram dry mass basis, were higher in organic topsoil horizons than in cryoturbated horizons, which in turn were higher than in mineral horizons. When calculated on per gram carbon basis, the activity of the carbon acquiring enzyme exoglucanase was not significantly different between cryoturbated and topsoil organic horizons in any of the three sites. Oxidative enzymes, i.e. phenoloxidase and peroxidase, responsible for degradation of complex organic substances, showed higher activities in topsoil organic and cryoturbated horizons than in mineral horizons, when calculated per gram dry mass. Specific activities (per g C) however were highest in mineral horizons. We also measured actual cellulase activities (by inhibiting microbial uptake of products and without substrate addition): calculated per g C, the activities were up to ten times as high in organic topsoil compared to cryoturbated and mineral horizons, the latter not being significantly different. The total amount of PLFAs, as a proxy for microbial biomass, was significantly higher in topsoil organic horizons than in cryoturbated and mineral horizons. Changes in the microbial community composition were mainly caused by the relative amount of fungal biomarkers. Within the fungal community the biomarker 18:2w6, which is often associated with ectomycorrhiza, was negatively correlated to the general fungal biomarker 18:1w9. This negative correlation indicates a shift from mycorrhizal to saprotrophic fungi from topsoil towards cryoturbatad and mineral subsoil horizons. In summary, the measured oxidative and hydrolytic (potential) enzyme activities cannot explain the previously observed retarded decomposition in cryoturbated horizons. The measured actual cellulase activity however was strongly reduced in cryoturbated material compared to topsoil horizons. A possible explanation for the observed strong reduction of actual cellulase activity could lie within the fungal community structure which shifted towards saprotrophic fungi from topsoil to cryoturbated horizons.

  5. Responses of soil enzyme activity and microbial community compositions to nitrogen addition in bulk and microaggregate soil in the temperate steppe of Inner Mongolia

    NASA Astrophysics Data System (ADS)

    Shi, Yao; Sheng, Lianxi; Wang, Zhongqiang; Zhang, Xinyu; He, Nianpeng; Yu, Qiang

    2016-10-01

    In order to explore the responses of soil enzyme activities and microbial community compositions to long-term nitrogen (N) addition in both bulk soil and microaggregate of chestnut soil, we conducted a 7-year urea addition experiment with N treatments at 6 levels (0, 56, 112, 224, 392 and 560 kg N ha-1 yr-1) in a temperate steppe of Inner Mongolia in China. Soil properties and the activities of four enzymes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were measured in both bulk soil and microaggregate, and phospholipid fatty acids (PLFAs) were measured in bulk soil. The results indicated that: 1) in bulk soil, N addition significantly decreased β-1,4-glucosidase (BG) and leucine aminopeptidase (LAP) activities at the treatment amounts of 224, 392 and 560 kg N ha-1 yr-1, and obviously suppressed β-1,4-N-acetylglucosaminidase (NAG) activity at the treatment amount of 560 kg N ha-1 yr-1. N addition enhanced total PLFAs (totPLFAs) and bacterial PLFAs (bacPLFAs) at the treatment amounts of 392 and 560 kg N ha-1 yr-1, respectively, but fungal PLFAs showed no response to N addition. The activities of BG, NAG and LAP were positively correlated with soil pH, but negatively correlated with the concentration of NH 4 + -N; 2) in microaggregate (53-250 μm), the activities of BG, NAG and AP showed no response to increased addition of N, but the significantly decreased LAP activity was observed at the treatment amount of 392 kg N ha-1 yr-1. These results suggested that enzyme activities were more sensitive to N addition than PLFA biomarkers in soil, and LAP activity in microaggregate may be a good indicator for evaluating N cycle response to long-term N addition.

  6. Biochemical and Molecular Characterization of a Serine Keratinase from Brevibacillus brevis US575 with Promising Keratin-Biodegradation and Hide-Dehairing Activities

    PubMed Central

    Jaouadi, Nadia Zaraî; Rekik, Hatem; Badis, Abdelmalek; Trabelsi, Sahar; Belhoul, Mouna; Yahiaoui, Amina Benkiar; Aicha, Houda Ben; Toumi, Abdessatar; Bejar, Samir; Jaouadi, Bassem

    2013-01-01

    Dehairing is one of the highly polluting operations in the leather industry. The conventional lime-sulfide process used for dehairing produces large amounts of sulfide, which poses serious toxicity and disposal problems. This operation also involves hair destruction, a process that leads to increased chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspended solid (TSS) loads in the effluent. With these concerns in mind, enzyme-assisted dehairing has often been proposed as an alternative method. The main enzyme preparations so far used involved keratinases. The present paper reports on the purification of an extracellular keratinase (KERUS) newly isolated from Brevibacillus brevis strain US575. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer with a molecular mass of 29121.11 Da. The sequence of the 27 N-terminal residues of KERUS showed high homology with those of Bacillus keratinases. Optimal activity was achieved at pH 8 and 40°C. Its thermoactivity and thermostability were upgraded in the presence of 5 mM Ca2+. The enzyme was completely inhibited by phenylmethanesulfonyl fluoride (PMSF) and diiodopropyl fluorophosphates (DFP), which suggests that it belongs to the serine protease family. KERUS displayed higher levels of hydrolysis, substrate specificity, and catalytic efficiency than NUE 12 MG and KOROPON® MK EG keratinases. The enzyme also exhibited powerful keratinolytic activity that made it able to accomplish the entire feather-biodegradation process on its own. The kerUS gene encoding KERUS was cloned, sequenced, and expressed in Escherichia coli. The biochemical properties of the extracellular purified recombinant enzyme (rKERUS) were similar to those of native KERUS. Overall, the findings provide strong support for the potential candidacy of this enzyme as an effective and eco-friendly alternative to the conventional chemicals used for the dehairing of rabbit, goat, sheep and bovine hides in the leather processing industry. PMID:24146914

  7. Temperature effect in the production of multiple xylanases by Aspergillus fumigatus.

    PubMed

    Lenartovicz, Veridiana; Marques de Souza, Cristina Giatti; Moreira, Fabiana Guillen; Peralta, Rosane Marina

    2002-01-01

    This work has evaluated the temperature effect in the production of multiple xylanases by a locally isolated strain of Aspergillus fumigatus Fresenius. Three isoenzymes, identified as xylanases I, II, and III with apparent molecular weight of 45.7 KDa, 39.8 KDa and 18.2 KDa, respectively, were produced in cultures developed at 30 degrees C and at 42 degrees C. The pattern of distribution of xylanase activity among the three isoenzymes was greatly affected by the growth temperature: at 30 degrees C, the total xylanase activity was distributed homogeneously among the three enzymes, while at 42 degrees C, the total xylanase activity was mainly due to the fractions with the highest MW (I and II) and the xylanase III was a minor component.

  8. Purification, characterization, and substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata.

    PubMed

    Feng, Bing; Hu, Wei; Ma, Bai-ping; Wang, Yong-ze; Huang, Hong-ze; Wang, Sheng-qi; Qian, Xiao-hong

    2007-10-01

    It has been previously reported that a glucoamylase from Curvularia lunata is able to hydrolyze the terminal 1,2-linked rhamnosyl residues of sugar chains at C-3 position of steroidal saponins. In this work, the enzyme was isolated and identified after isolation and purification by column chromatography including gel filtration and ion-exchange chromatography. Analysis of protein fragments by MALDI-TOF/TOF proteomics Analyzer indicated the enzyme to be 1,4-alpha-D-glucan glucohydrolase EC 3.2.1.3, GA and had considerable homology with the glucoamylase from Aspergillus oryzae. We first found that the glucoamylase was produced from C. lunata and was able to hydrolyze the terminal rhamnosyl of steroidal saponins. The enzyme had the general character of glucoamylase, which hydrolyze starch. It had a molecular mass of 66 kDa and was optimally active at 50 degrees C, pH 4, and specific activity of 12.34 U mg of total protein(-1) under the conditions, using diosgenin-3-O-alpha-L-rhamnopyranosyl(1-->4)-[alpha-L-rhamnopyranosyl (1-->2)]-beta-D-glucopyranoside (compound II) as the substrate. Furthermore, four kinds of commercial glucoamylases from Aspergillus niger were investigated in this work, and they had the similar activity in hydrolyzing terminal rhamnosyl residues of steroidal saponin.

  9. [Effects of tree species transition on soil microbial community composition and functions in subtropical China].

    PubMed

    Ding, Guo Chang; Wang, Xiao Hua; Yang, Qi Fan; Lin, Qun Xing; Huang, Zhi Qun

    2017-11-01

    We employed a comparative study to examine the effects of tree species transition on soil microbial biomass, community composition and enzymes activities under Cunninghamia lanceolata (Lamb.) Hook, Eucalyptus grandis and a N-fixing species, Acacia melanoxylon in subtropical China. Results showed that the effect of tree species on soil microbial community and enzymes activities was significant only in the 0-10 cm soil layer. Reforestation with N-fixing species A. melanoxylon on the C. lanceolata harvest site significantly increased the total phospholipid fatty acid (PLFA), fungal PLFAs, Gram-positive bacterial PLFAs, Gram-negative bacterial PLFAs and actinomycetes biomasses in the 0-10 cm soil layer. The principal component analysis (PCA) showed that the soil microbial community composition in A. melanoxylon soil differed significantly from that in C. lanceolata and E. grandis soils. N-fixing species (A. melanoxylon) significantly enhanced the percent abundance of Gram-positive bacteria, Gram-negative bacteria and actinomycetes. Activities of cellobiohydrolase, N-acetyl-β-d-glucosaminidase and acid phosphatase were significantly higher under A. melanoxylon than under C. lanceolata and E. grandis plantations. Our results suggested that reforestation with N-fixing species, A. melanoxylon on C. lanceolata harvest site could increase soil microbial biomass, enzyme activities and soil organic matter content.

  10. Antioxidant status of pigeon pea, Cajanus cajan in the presence of endosulfan stress.

    PubMed

    Mathad, Pratima; Siddaling, N C

    2009-05-01

    Antioxidative status study was made in cotyledons of 7days old as well as in leaf and stem tissues of 30 and 60 days old pigeon pea (Cajanus cajan) namely Asha and Maruti subjected to different doses of endosulfan in the range 0.1-1.0%. The results revealed that the activities of the antioxidative enzymes and the antioxidant contents such as the super oxide dismutase (SOD), peroxidase (POD), reducing power (RP), ascorbic acid (AsA) and total phenols (TP) increased with increase in the concentrations of endosulfan in different parts of the plants in both the varieties. It was interesting to note that the increase in the antioxidative enzymes and the antioxidant contents were higher in leaves than in stem and cotyledons in both the plant varieties. The Asha showed lower activity of SOD and higher activity of POD than the Maruti. The RP and AsA contents were higher whereas the TP content was lower in Asha than Maruti. The observed variations in the activities of the oxidative enzymes and the antioxidant contents of the plants treated with the varying concentration of endosulfan indicated that the antioxidative system in the plants plays a fundamental role in minimizing the deleterious effects of the oxidative stress in the two varieties of Cajanus cajan.

  11. Purification and characterization of a bacterial nitrophenol oxygenase which converts ortho-nitrophenol to catechol and nitrite.

    PubMed Central

    Zeyer, J; Kocher, H P

    1988-01-01

    A nitrophenol oxygenase which stoichiometrically converted ortho-nitrophenol (ONP) to catechol and nitrite was isolated from Pseudomonas putida B2 and purified. The substrate specificity of the enzyme was broad and included several halogen- and alkyl-substituted ONPs. The oxygenase consisted of a single polypeptide chain with a molecular weight of 58,000 (determined by gel filtration) or 65,000 (determined on a sodium dodecyl sulfate-polyacrylamide gel). The enzymatic reaction was NADPH dependent, and one molecule of oxygen was consumed per molecule of ONP converted. Enzymatic activity was stimulated by magnesium or manganese ions, whereas the addition of flavin adenine dinucleotide, flavin mononucleotide, or reducing agents had no effect. The apparent Kms for ONP and NADPH were 8 and 140 microM, respectively. 2,4-Dinitrophenol competitively (Ki = 0.5 microM) inhibited ONP turnover. The optimal pH for enzyme stability and activity was in the range of 7.5 to 8.0. At 40 degrees C, the enzyme was totally inactivated within 2 min; however, in the presence of 1 mM ONP, 40% of the activity was recovered, even after 10 min. Enzymatic activity was best preserved at -20 degrees C in the presence of 50% glycerol. Images PMID:3350791

  12. Immunological characterization of plant ornithine transcarbamylases

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Williamson, C. L.; Poggenburg, C. A.; Lynes, M. A.

    1990-01-01

    Pea (Pisum sativum L.) ornithine transcarbamylase (OTC) antisera were used to investigate the immunological relatedness of several plant and animal OTC enzymes. The antisera immunoprecipitated OTC activity in all monocot and dicot species tested, and sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of immunoprecipitated protein revealed monomeric proteins ranging from 35,200 to 36,800 daltons in size. Pea OTC antisera did not recognize mammalian OTC protein. OTC activity and protein levels detected on sodium dodecyl sulfate polyacrylamide gel electrophoresis immunoblots from homogenates of green leaf, etiolated epicotyl and cotyledon, and root tissues of pea were poorly correlated. This might result from differences in amounts of enzymatically active OTC protein in the homogenates. Alternatively, the antisera may fail to recognize different isozyme forms of OTC, which have been reported for some plant species. A putative cytosolic precursor OTC (pOTC) polypeptide exhibiting and Mr = 39,500 to 40,000 daltons was immunoprecipitated from in vitro translation mixtures of total pea leaf poly(A)+ RNA. The size of the pOTC polypeptide, as compared with mature OTC monomer (36,000 daltons), suggests that a 4 kilodalton N-terminal leader sequence, like that responsible for mitochondrial targeting of the mammalian enzyme, may be involved in organellar import of the plant enzyme.

  13. Recognition and binding of the PF2 lectin to α-amylase from Zabrotes subfasciatus (Coleoptera:Bruchidae) larval midgut.

    PubMed

    Lagarda-Diaz, I; Geiser, D; Guzman-Partida, A M; Winzerling, J; Vazquez-Moreno, L

    2014-01-01

    Amylases are an important family of enzymes involved in insect carbohydrate metabolism that are required for the survival of insect larvae. For this reason, enzymes from starch-dependent insects are targets for insecticidal control. PF2 (Olneya tesota) is a lectin that is toxic to Zabrotes subfasciatus (Coleoptera: Bruchidae) larvae. In this study, we evaluated recognition of the PF2 lectin to α-amylases from Z. subfasciatus midgut and the effect of PF2 on α-amylase activity. PF2 caused a decrease of total amylase activity in vitro. Subsequently, several α-amylase isoforms were isolated from insect midgut tissues using ion exchange chromatography. Three enzyme isoforms were verified by an in-gel assay for amylase activity; however, only one isoform was recognized by antiamylase serum and PF2. The identity of this Z. subfasciatus α-amylase was confirmed by liquid chromatography-tandem mass spectrometry. The findings strongly suggest that a glycosylated α-amylase isoform from larval Z. subfasciatus midgut interacts with PF2, which interferes with starch digestion. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  14. Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation.

    PubMed

    Gutarra, Melissa L E; Godoy, Mateus G; Maugeri, Francisco; Rodrigues, Maria Isabel; Freire, Denise M G; Castilho, Leda R

    2009-11-01

    The production of a lipase by a wild-type Brazilian strain of Penicillium simplicissimum in solid-state fermentation of babassu cake, an abundant residue of the oil industry, was studied. The enzyme production reached about 90 U/g in 72 h, with a specific activity of 4.5 U/mg of total proteins. The crude lipase showed high activities at 35-60 degrees C and pH 4.0-6.0, with a maximum activity at 50 degrees C and pH 4.0-5.0. Enzyme stability was enhanced at pH 5.0 and 6.0, with a maximum half-life of 5.02 h at 50 degrees C and pH 5.0. Thus, this lipase shows a thermophilic and thermostable behavior, what is not common among lipases from mesophilic filamentous fungi. The crude enzyme catalysed the hydrolysis of triglycerides and p-nitrophenyl esters (C4:0-C18:0), preferably acting on substrates with medium-chain fatty acids. This non-purified lipase in addition to interesting properties showed a reduced production cost making feasible its applicability in many fields.

  15. Is the catalytic activity of triosephosphate isomerase fully optimized? An investigation based on maximization of entropy production.

    PubMed

    Bonačić Lošić, Željana; Donđivić, Tomislav; Juretić, Davor

    2017-03-01

    Triosephosphate isomerase (TIM) is often described as a fully evolved housekeeping enzyme with near-maximal possible reaction rate. The assumption that an enzyme is perfectly evolved has not been easy to confirm or refute. In this paper, we use maximization of entropy production within known constraints to examine this assumption by calculating steady-state cyclic flux, corresponding entropy production, and catalytic activity in a reversible four-state scheme of TIM functional states. The maximal entropy production (MaxEP) requirement for any of the first three transitions between TIM functional states leads to decreased total entropy production. Only the MaxEP requirement for the product (R-glyceraldehyde-3-phosphate) release step led to a 30% increase in enzyme activity, specificity constant k cat /K M , and overall entropy production. The product release step, due to the TIM molecular machine working in the physiological direction of glycolysis, has not been identified before as the rate-limiting step by using irreversible thermodynamics. Together with structural studies, our results open the possibility for finding amino acid substitutions leading to an increased frequency of loop six opening and product release.

  16. A comparative study on the activity of fungal lytic polysaccharide monooxygenases for the depolymerization of cellulose in soybean spent flakes.

    PubMed

    Pierce, Brian C; Agger, Jane Wittrup; Zhang, Zhenghong; Wichmann, Jesper; Meyer, Anne S

    2017-09-08

    Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes capable of the oxidative breakdown of polysaccharides. They are of industrial interest due to their ability to enhance the enzymatic depolymerization of recalcitrant substrates by glycoside hydrolases. In this paper, twenty-four lytic polysaccharide monooxygenases (LPMOs) expressed in Trichoderma reesei were evaluated for their ability to oxidize the complex polysaccharides in soybean spent flakes, an abundant and industrially relevant substrate. TrCel61A, a soy-polysaccharide-active AA9 LPMO from T. reesei, was used as a benchmark in this evaluation. In total, seven LPMOs demonstrated activity on pretreated soy spent flakes, with the products from enzymatic treatments evaluated using mass spectrometry and high performance anion exchange chromatography. The hydrolytic boosting effect of the top-performing enzymes was evaluated in combination with endoglucanase and beta-glucosidase. Two enzymes (TrCel61A and Aspte6) showed the ability to release more than 36% of the pretreated soy spent flake glucose - a greater than 75% increase over the same treatment without LPMO addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Sepsis-induced activation of endogenous GLP-1 system is enhanced in type 2 diabetes.

    PubMed

    Perl, Sivan H; Bloch, Olga; Zelnic-Yuval, Dana; Love, Itamar; Mendel-Cohen, Lior; Flor, Hadar; Rapoport, Micha J

    2018-05-01

    High levels of circulating GLP-1 are associated with severity of sepsis in critically ill nondiabetic patients. Whether patients with type 2 diabetes (T2D) display different activation of the endogenous GLP-1 system during sepsis and whether it is affected by diabetes-related metabolic parameters are not known. Serum levels of GLP-1 (total and active forms) and its inhibitor enzyme sDPP-4 were determined by ELISA on admission and after 2 to 4 days in 37 sepsis patients with (n = 13) and without T2D (n = 24) and compared to normal healthy controls (n = 25). Correlations between GLP-1 system activation and clinical, inflammatory, and diabetes-related metabolic parameters were performed. A 5-fold (P < .001) and 2-fold (P < .05) increase in active and total GLP-1 levels, respectively, were found on admission as compared to controls. At 2 to 4 days from admission, the level of active GLP-1 forms in surviving patients were decreased significantly (P < .005), and positively correlated with inflammatory marker CRP (r = 0.33, P = .05). T2D survivors displayed a similar but more enhanced pattern of GLP-1 response than nondiabetic survivors. Nonsurvivors demonstrate an early extreme increase of both total and active GLP-1 forms, 9.5-fold and 5-fold, respectively (P < .05). The initial and late levels of circulating GLP-1 inhibitory enzyme sDPP-4 were twice lower in all studied groups (P < .001), compared with healthy controls. Taken together, these data indicate that endogenous GLP-1 system is activated during sepsis. Patients with T2D display an enhanced and prolonged activation as compared to nondiabetic patients. Extreme early increased GLP-1 levels during sepsis indicate poor prognosis. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Shiitake Culinary-Medicinal Mushroom, Lentinus edodes (Agaricomycetes): A Species with Antioxidant, Immunomodulatory, and Hepatoprotective Activities in Hypercholesterolemic Rats.

    PubMed

    Nisar, Jaweria; Mustafa, Imtiaz; Anwar, Haseeb; Sohail, Muhammad Umar; Hussain, Ghulam; Ullah, Muhammad Irfan; Faisal, Muhammad Naeem; Bukhari, Shazia Anwer; Basit, Abdul

    2017-01-01

    Lentinus edodes is a culinary-medicinal mushroom that has an established history of use in Asian therapies. The mushroom offers well-documented beneficial health effects such as antihypercholesterolemic, antitumor, and antibacterial activities. In this study, dried powder of L. edodes fruiting bodies was used to evaluate immunomodulatory, hepatoprotective, and antioxidant effects in hypercholesterolemic rats. Albino rats (n = 24) were divided into 3 groups: the control (CON) group, the hypercholesterolemia-only group (HCG), and the L. edodes group (LEG). Hypercholesterolemia was induced in rats in the HCG and LEG by feeding cholesterol and cholic acid in a chow maintenance diet (CMD) for 24 days. The CON group was fed the CMD throughout the experiment. The HCG continued on the high-cholesterol diet without any L. edodes supplement. The LEG was fed the high-cholesterol diet supplemented with L. edodes for an additional 42 days. Various biological health biomarkers, such as total antioxidant capacity, total oxidant status, arylesterase, paraoxonase activity, and liver enzymes in serum were studied to evaluate antioxidant and hepatoprotective responses. Cell-mediated immunity was evaluated in each group through a delayed type of hypersensitivity reaction. The total oxidant status decreased significantly (P ≤ 0.05) after administration of L. edodes in the diet. The cell-mediated immune response significantly increased (P ≤ 0.05) in the LEG. The significant decrease in liver enzymes supports the hepatoprotective effect of L. edodes. In conclusion, the results show the immunomodulatory, hepatoprotective, and antioxidant activities of L. edodes supplementation in hypercholesterolemic rats.

  19. Trypsin digestion for determining orientation of ATPase in Halobacterium saccharovorum membrane vesicles

    NASA Technical Reports Server (NTRS)

    Kristjansson, H.; Hochstein, L. I.

    1986-01-01

    Membranes prepared by low pressure disruption of cells exhibited no ATPase activity in the absence of Triton X-100, although 43% of the total menadione reductase activity was detected. Trypsin digestion reduced menadione reductase activity by 45% whereas ATPase activity was not affected. Disruption of the membrane fraction at higher pressure solubilized about 45% of the ATPase activity. The soluble activity was still enhanced by Triton X-100, suggesting that the detergent, besides disrupting membrane vesicles, also activated the ATPase. The discrepancy in localization of menadione reductase and ATPase activities raised questions regarding the reliability of using a single marker enzyme as an indicator of vesicle orientation.

  20. Development of an indirect method for measuring porcine pancreatic lipase in human duodenal fluid.

    PubMed

    Tuvignon, N; Abousalham, A; Tocques, F; De Caro, J; De Caro, A; Laugier, R; Carrière, F

    2008-12-15

    Patients with exocrine pancreatic insufficiency are usually treated with porcine pancreatic enzymes but the bioavailability of these enzymes in the gut remains a matter of discussion. In order to determine the duodenal availability of porcine pancreatic lipase (PPL) present in pancreatic extracts (PE) taken orally, we developed a method for quantifying PPL in samples containing both PPL and human pancreatic lipase (HPL). Total pancreatic lipase activity measurements using the pH-stat technique and tributyrin as substrate were combined with an HPL-specific ELISA. Based on the known specific activity of the purified HPL, its activity was deduced from the ELISA measurements, and the PPL activity was obtained by subtracting the HPL activity from the total pancreatic lipase activity. This assay was established and validated using various samples containing pure PPL and recombinant HPL or PE, mixed or not with human duodenal juice. Samples collected in vivo from patients treated with PE were also tested. It was found that PPL did not affect the HPL ELISA, and the indirect PPL assay gave a measurement accuracy of 6.6% with the samples containing pure PPL and 10% with those containing PE. This assay was also used successfully to discriminate between PPL and the endogenous HPL present in the duodenal contents of patients with severe pancreatic insufficiency treated with PE. This method might provide a useful means of assessing the availability of PEs at their site of action, in the absence of a PPL-specific ELISA.

Top