NASA Astrophysics Data System (ADS)
Saad, Katherine M.; Wunch, Debra; Deutscher, Nicholas M.; Griffith, David W. T.; Hase, Frank; De Mazière, Martine; Notholt, Justus; Pollard, David F.; Roehl, Coleen M.; Schneider, Matthias; Sussmann, Ralf; Warneke, Thorsten; Wennberg, Paul O.
2016-11-01
Global and regional methane budgets are markedly uncertain. Conventionally, estimates of methane sources are derived by bridging emissions inventories with atmospheric observations employing chemical transport models. The accuracy of this approach requires correctly simulating advection and chemical loss such that modeled methane concentrations scale with surface fluxes. When total column measurements are assimilated into this framework, modeled stratospheric methane introduces additional potential for error. To evaluate the impact of such errors, we compare Total Carbon Column Observing Network (TCCON) and GEOS-Chem total and tropospheric column-averaged dry-air mole fractions of methane. We find that the model's stratospheric contribution to the total column is insensitive to perturbations to the seasonality or distribution of tropospheric emissions or loss. In the Northern Hemisphere, we identify disagreement between the measured and modeled stratospheric contribution, which increases as the tropopause altitude decreases, and a temporal phase lag in the model's tropospheric seasonality driven by transport errors. Within the context of GEOS-Chem, we find that the errors in tropospheric advection partially compensate for the stratospheric methane errors, masking inconsistencies between the modeled and measured tropospheric methane. These seasonally varying errors alias into source attributions resulting from model inversions. In particular, we suggest that the tropospheric phase lag error leads to large misdiagnoses of wetland emissions in the high latitudes of the Northern Hemisphere.
Zonal average earth radiation budget measurements from satellites for climate studies
NASA Technical Reports Server (NTRS)
Ellis, J. S.; Haar, T. H. V.
1976-01-01
Data from 29 months of satellite radiation budget measurements, taken intermittently over the period 1964 through 1971, are composited into mean month, season and annual zonally averaged meridional profiles. Individual months, which comprise the 29 month set, were selected as representing the best available total flux data for compositing into large scale statistics for climate studies. A discussion of spatial resolution of the measurements along with an error analysis, including both the uncertainty and standard error of the mean, are presented.
Hill, B.R.; DeCarlo, E.H.; Fuller, C.C.; Wong, M.F.
1998-01-01
Reliable estimates of sediment-budget errors are important for interpreting sediment-budget results. Sediment-budget errors are commonly considered equal to sediment-budget imbalances, which may underestimate actual sediment-budget errors if they include compensating positive and negative errors. We modified the sediment 'fingerprinting' approach to qualitatively evaluate compensating errors in an annual (1991) fine (<63 ??m) sediment budget for the North Halawa Valley, a mountainous, forested drainage basin on the island of Oahu, Hawaii, during construction of a major highway. We measured concentrations of aeolian quartz and 137Cs in sediment sources and fluvial sediments, and combined concentrations of these aerosols with the sediment budget to construct aerosol budgets. Aerosol concentrations were independent of the sediment budget, hence aerosol budgets were less likely than sediment budgets to include compensating errors. Differences between sediment-budget and aerosol-budget imbalances therefore provide a measure of compensating errors in the sediment budget. The sediment-budget imbalance equalled 25% of the fluvial fine-sediment load. Aerosol-budget imbalances were equal to 19% of the fluvial 137Cs load and 34% of the fluval quartz load. The reasonably close agreement between sediment- and aerosol-budget imbalances indicates that compensating errors in the sediment budget were not large and that the sediment-budget imbalance as a reliable measure of sediment-budget error. We attribute at least one-third of the 1991 fluvial fine-sediment load to highway construction. Continued monitoring indicated that highway construction produced 90% of the fluvial fine-sediment load during 1992. Erosion of channel margins and attrition of coarse particles provided most of the fine sediment produced by natural processes. Hillslope processes contributed relatively minor amounts of sediment.
NASA Astrophysics Data System (ADS)
Gilles, Luc; Wang, Lianqi; Ellerbroek, Brent
2008-07-01
This paper describes the modeling effort undertaken to derive the wavefront error (WFE) budget for the Narrow Field Infrared Adaptive Optics System (NFIRAOS), which is the facility, laser guide star (LGS), dual-conjugate adaptive optics (AO) system for the Thirty Meter Telescope (TMT). The budget describes the expected performance of NFIRAOS at zenith, and has been decomposed into (i) first-order turbulence compensation terms (120 nm on-axis), (ii) opto-mechanical implementation errors (84 nm), (iii) AO component errors and higher-order effects (74 nm) and (iv) tip/tilt (TT) wavefront errors at 50% sky coverage at the galactic pole (61 nm) with natural guide star (NGS) tip/tilt/focus/astigmatism (TTFA) sensing in J band. A contingency of about 66 nm now exists to meet the observatory requirement document (ORD) total on-axis wavefront error of 187 nm, mainly on account of reduced TT errors due to updated windshake modeling and a low read-noise NGS wavefront sensor (WFS) detector. A detailed breakdown of each of these top-level terms is presented, together with a discussion on its evaluation using a mix of high-order zonal and low-order modal Monte Carlo simulations.
Cost-effectiveness of the stream-gaging program in Kentucky
Ruhl, K.J.
1989-01-01
This report documents the results of a study of the cost-effectiveness of the stream-gaging program in Kentucky. The total surface-water program includes 97 daily-discharge stations , 12 stage-only stations, and 35 crest-stage stations and is operated on a budget of $950,700. One station used for research lacks adequate source of funding and should be discontinued when the research ends. Most stations in the network are multiple-use with 65 stations operated for the purpose of defining hydrologic systems, 48 for project operation, 47 for definition of regional hydrology, and 43 for hydrologic forecasting purposes. Eighteen stations support water quality monitoring activities, one station is used for planning and design, and one station is used for research. The average standard error of estimation of streamflow records was determined only for stations in the Louisville Subdistrict. Under current operating policy, with a budget of $223,500, the average standard error of estimation is 28.5%. Altering the travel routes and measurement frequency to reduce the amount of lost stage record would allow a slight decrease in standard error to 26.9%. The results indicate that the collection of streamflow records in the Louisville Subdistrict is cost effective in its present mode of operation. In the Louisville Subdistrict, a minimum budget of $214,200 is required to operate the current network at an average standard error of 32.7%. A budget less than this does not permit proper service and maintenance of the gages and recorders. The maximum budget analyzed was $268,200, which would result in an average standard error of 16.9% indicating that if the budget was increased by 20%, the percent standard error would be reduced 40 %. (USGS)
Sensitivity of planetary cruise navigation to earth orientation calibration errors
NASA Technical Reports Server (NTRS)
Estefan, J. A.; Folkner, W. M.
1995-01-01
A detailed analysis was conducted to determine the sensitivity of spacecraft navigation errors to the accuracy and timeliness of Earth orientation calibrations. Analyses based on simulated X-band (8.4-GHz) Doppler and ranging measurements acquired during the interplanetary cruise segment of the Mars Pathfinder heliocentric trajectory were completed for the nominal trajectory design and for an alternative trajectory with a longer transit time. Several error models were developed to characterize the effect of Earth orientation on navigational accuracy based on current and anticipated Deep Space Network calibration strategies. The navigational sensitivity of Mars Pathfinder to calibration errors in Earth orientation was computed for each candidate calibration strategy with the Earth orientation parameters included as estimated parameters in the navigation solution. In these cases, the calibration errors contributed 23 to 58% of the total navigation error budget, depending on the calibration strategy being assessed. Navigation sensitivity calculations were also performed for cases in which Earth orientation calibration errors were not adjusted in the navigation solution. In these cases, Earth orientation calibration errors contributed from 26 to as much as 227% of the total navigation error budget. The final analysis suggests that, not only is the method used to calibrate Earth orientation vitally important for precision navigation of Mars Pathfinder, but perhaps equally important is the method for inclusion of the calibration errors in the navigation solutions.
Wavefront error budget and optical manufacturing tolerance analysis for 1.8m telescope system
NASA Astrophysics Data System (ADS)
Wei, Kai; Zhang, Xuejun; Xian, Hao; Rao, Changhui; Zhang, Yudong
2010-05-01
We present the wavefront error budget and optical manufacturing tolerance analysis for 1.8m telescope. The error budget accounts for aberrations induced by optical design residual, manufacturing error, mounting effects, and misalignments. The initial error budget has been generated from the top-down. There will also be an ongoing effort to track the errors from the bottom-up. This will aid in identifying critical areas of concern. The resolution of conflicts will involve a continual process of review and comparison of the top-down and bottom-up approaches, modifying both as needed to meet the top level requirements in the end. As we all know, the adaptive optical system will correct for some of the telescope system imperfections but it cannot be assumed that all errors will be corrected. Therefore, two kinds of error budgets will be presented, one is non-AO top-down error budget and the other is with-AO system error budget. The main advantage of the method is that at the same time it describes the final performance of the telescope, and gives to the optical manufacturer the maximum freedom to define and possibly modify its own manufacturing error budget.
NASA Astrophysics Data System (ADS)
Kurdhi, N. A.; Nurhayati, R. A.; Wiyono, S. B.; Handajani, S. S.; Martini, T. S.
2017-01-01
In this paper, we develop an integrated inventory model considering the imperfect quality items, inspection error, controllable lead time, and budget capacity constraint. The imperfect items were uniformly distributed and detected on the screening process. However there are two types of possibilities. The first is type I of inspection error (when a non-defective item classified as defective) and the second is type II of inspection error (when a defective item classified as non-defective). The demand during the lead time is unknown, and it follows the normal distribution. The lead time can be controlled by adding the crashing cost. Furthermore, the existence of the budget capacity constraint is caused by the limited purchasing cost. The purposes of this research are: to modify the integrated vendor and buyer inventory model, to establish the optimal solution using Kuhn-Tucker’s conditions, and to apply the models. Based on the result of application and the sensitivity analysis, it can be obtained minimum integrated inventory total cost rather than separated inventory.
Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty
NASA Astrophysics Data System (ADS)
Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. B.; Alden, C.; White, J. W. C.
2015-04-01
Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr-1 in the 1960s to 0.3 Pg C yr-1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr-1 in the 1960s to almost 1.0 Pg C yr-1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO2 emissions from the atmosphere, although there are certain environmental costs associated with this service, such as the acidification of ocean waters.
Meteorological Error Budget Using Open Source Data
2016-09-01
ARL-TR-7831 ● SEP 2016 US Army Research Laboratory Meteorological Error Budget Using Open- Source Data by J Cogan, J Smith, P...needed. Do not return it to the originator. ARL-TR-7831 ● SEP 2016 US Army Research Laboratory Meteorological Error Budget Using...Error Budget Using Open-Source Data 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) J Cogan, J Smith, P Haines
Overview of the TOPEX/Poseidon Platform Harvest Verification Experiment
NASA Technical Reports Server (NTRS)
Morris, Charles S.; DiNardo, Steven J.; Christensen, Edward J.
1995-01-01
An overview is given of the in situ measurement system installed on Texaco's Platform Harvest for verification of the sea level measurement from the TOPEX/Poseidon satellite. The prelaunch error budget suggested that the total root mean square (RMS) error due to measurements made at this verification site would be less than 4 cm. The actual error budget for the verification site is within these original specifications. However, evaluation of the sea level data from three measurement systems at the platform has resulted in unexpectedly large differences between the systems. Comparison of the sea level measurements from the different tide gauge systems has led to a better understanding of the problems of measuring sea level in relatively deep ocean. As of May 1994, the Platform Harvest verification site has successfully supported 60 TOPEX/Poseidon overflights.
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
2008-01-01
An error budget is a commonly used tool in design of complex aerospace systems. It represents system performance requirements in terms of allowable errors and flows these down through a hierarchical structure to lower assemblies and components. The requirements may simply be 'allocated' based upon heuristics or experience, or they may be designed through use of physics-based models. This paper presents a basis for developing an error budget for models of the system, as opposed to the system itself. The need for model error budgets arises when system models are a principle design agent as is increasingly more common for poorly testable high performance space systems.
NASA Technical Reports Server (NTRS)
Miller, J. M.
1980-01-01
ATMOS is a Fourier transform spectrometer to measure atmospheric trace molecules over a spectral range of 2-16 microns. Assessment of the system performance of ATMOS includes evaluations of optical system errors induced by thermal and structural effects. In order to assess the optical system errors induced from thermal and structural effects, error budgets are assembled during system engineering tasks and line of sight and wavefront deformations predictions (using operational thermal and vibration environments and computer models) are subsequently compared to the error budgets. This paper discusses the thermal/structural error budgets, modelling and analysis methods used to predict thermal/structural induced errors and the comparisons that show that predictions are within the error budgets.
Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty
Ballantyne, A. P.; Andres, R.; Houghton, R.; ...
2015-04-30
Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we concludemore » that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr ₋1 in the 1960s to 0.3 Pg C yr ₋1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr ₋1 in the 1960s to almost 1.0 Pg C yr ₋1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO 2 emissions from the atmosphere, although there are certain environmental costs associated with this service, such as the acidification of ocean waters.« less
NASA Technical Reports Server (NTRS)
Thome, K.
2016-01-01
Knowledge of uncertainties and errors are essential for comparisons of remote sensing data across time, space, and spectral domains. Vicarious radiometric calibration is used to demonstrate the need for uncertainty knowledge and to provide an example error budget. The sample error budget serves as an example of the questions and issues that need to be addressed by the calibrationvalidation community as accuracy requirements for imaging spectroscopy data will continue to become more stringent in the future. Error budgets will also be critical to ensure consistency between the range of imaging spectrometers expected to be launched in the next five years.
Delanghe, Joris R; Cobbaert, Christa; Galteau, Marie-Madeleine; Harmoinen, Aimo; Jansen, Rob; Kruse, Rolf; Laitinen, Päivi; Thienpont, Linda M; Wuyts, Birgitte; Weykamp, Cas; Panteghini, Mauro
2008-01-01
The European In Vitro Diagnostics (IVD) directive requires traceability to reference methods and materials of analytes. It is a task of the profession to verify the trueness of results and IVD compatibility. The results of a trueness verification study by the European Communities Confederation of Clinical Chemistry (EC4) working group on creatinine standardization are described, in which 189 European laboratories analyzed serum creatinine in a commutable serum-based material, using analytical systems from seven companies. Values were targeted using isotope dilution gas chromatography/mass spectrometry. Results were tested on their compliance to a set of three criteria: trueness, i.e., no significant bias relative to the target value, between-laboratory variation and within-laboratory variation relative to the maximum allowable error. For the lower and intermediate level, values differed significantly from the target value in the Jaffe and the dry chemistry methods. At the high level, dry chemistry yielded higher results. Between-laboratory coefficients of variation ranged from 4.37% to 8.74%. Total error budget was mainly consumed by the bias. Non-compensated Jaffe methods largely exceeded the total error budget. Best results were obtained for the enzymatic method. The dry chemistry method consumed a large part of its error budget due to calibration bias. Despite the European IVD directive and the growing needs for creatinine standardization, an unacceptable inter-laboratory variation was observed, which was mainly due to calibration differences. The calibration variation has major clinical consequences, in particular in pediatrics, where reference ranges for serum and plasma creatinine are low, and in the estimation of glomerular filtration rate.
Uncertainty Propagation in an Ecosystem Nutrient Budget.
New aspects and advancements in classical uncertainty propagation methods were used to develop a nutrient budget with associated error for a northern Gulf of Mexico coastal embayment. Uncertainty was calculated for budget terms by propagating the standard error and degrees of fr...
A Comprehensive Radial Velocity Error Budget for Next Generation Doppler Spectrometers
NASA Technical Reports Server (NTRS)
Halverson, Samuel; Ryan, Terrien; Mahadevan, Suvrath; Roy, Arpita; Bender, Chad; Stefansson, Guomundur Kari; Monson, Andrew; Levi, Eric; Hearty, Fred; Blake, Cullen;
2016-01-01
We describe a detailed radial velocity error budget for the NASA-NSF Extreme Precision Doppler Spectrometer instrument concept NEID (NN-explore Exoplanet Investigations with Doppler spectroscopy). Such an instrument performance budget is a necessity for both identifying the variety of noise sources currently limiting Doppler measurements, and estimating the achievable performance of next generation exoplanet hunting Doppler spectrometers. For these instruments, no single source of instrumental error is expected to set the overall measurement floor. Rather, the overall instrumental measurement precision is set by the contribution of many individual error sources. We use a combination of numerical simulations, educated estimates based on published materials, extrapolations of physical models, results from laboratory measurements of spectroscopic subsystems, and informed upper limits for a variety of error sources to identify likely sources of systematic error and construct our global instrument performance error budget. While natively focused on the performance of the NEID instrument, this modular performance budget is immediately adaptable to a number of current and future instruments. Such an approach is an important step in charting a path towards improving Doppler measurement precisions to the levels necessary for discovering Earth-like planets.
Enhanced orbit determination filter sensitivity analysis: Error budget development
NASA Technical Reports Server (NTRS)
Estefan, J. A.; Burkhart, P. D.
1994-01-01
An error budget analysis is presented which quantifies the effects of different error sources in the orbit determination process when the enhanced orbit determination filter, recently developed, is used to reduce radio metric data. The enhanced filter strategy differs from more traditional filtering methods in that nearly all of the principal ground system calibration errors affecting the data are represented as filter parameters. Error budget computations were performed for a Mars Observer interplanetary cruise scenario for cases in which only X-band (8.4-GHz) Doppler data were used to determine the spacecraft's orbit, X-band ranging data were used exclusively, and a combined set in which the ranging data were used in addition to the Doppler data. In all three cases, the filter model was assumed to be a correct representation of the physical world. Random nongravitational accelerations were found to be the largest source of error contributing to the individual error budgets. Other significant contributors, depending on the data strategy used, were solar-radiation pressure coefficient uncertainty, random earth-orientation calibration errors, and Deep Space Network (DSN) station location uncertainty.
Cost effectiveness of the stream-gaging program in South Carolina
Barker, A.C.; Wright, B.C.; Bennett, C.S.
1985-01-01
The cost effectiveness of the stream-gaging program in South Carolina was documented for the 1983 water yr. Data uses and funding sources were identified for the 76 continuous stream gages currently being operated in South Carolina. The budget of $422,200 for collecting and analyzing streamflow data also includes the cost of operating stage-only and crest-stage stations. The streamflow records for one stream gage can be determined by alternate, less costly methods, and should be discontinued. The remaining 75 stations should be maintained in the program for the foreseeable future. The current policy for the operation of the 75 stations including the crest-stage and stage-only stations would require a budget of $417,200/yr. The average standard error of estimation of streamflow records is 16.9% for the present budget with missing record included. However, the standard error of estimation would decrease to 8.5% if complete streamflow records could be obtained. It was shown that the average standard error of estimation of 16.9% could be obtained at the 75 sites with a budget of approximately $395,000 if the gaging resources were redistributed among the gages. A minimum budget of $383,500 is required to operate the program; a budget less than this does not permit proper service and maintenance of the gages and recorders. At the minimum budget, the average standard error is 18.6%. The maximum budget analyzed was $850,000, which resulted in an average standard error of 7.6 %. (Author 's abstract)
Cost-effectiveness of the Federal stream-gaging program in Virginia
Carpenter, D.H.
1985-01-01
Data uses and funding sources were identified for the 77 continuous stream gages currently being operated in Virginia by the U.S. Geological Survey with a budget of $446,000. Two stream gages were identified as not being used sufficiently to warrant continuing their operation. Operation of these stations should be considered for discontinuation. Data collected at two other stations were identified as having uses primarily related to short-term studies; these stations should also be considered for discontinuation at the end of the data collection phases of the studies. The remaining 73 stations should be kept in the program for the foreseeable future. The current policy for operation of the 77-station program requires a budget of $446,000/yr. The average standard error of estimation of streamflow records is 10.1%. It was shown that this overall level of accuracy at the 77 sites could be maintained with a budget of $430,500 if resources were redistributed among the gages. A minimum budget of $428,500 is required to operate the 77-gage program; a smaller budget would not permit proper service and maintenance of the gages and recorders. At the minimum budget, with optimized operation, the average standard error would be 10.4%. The maximum budget analyzed was $650,000, which resulted in an average standard error of 5.5%. The study indicates that a major component of error is caused by lost or missing data. If perfect equipment were available, the standard error for the current program and budget could be reduced to 7.6%. This also can be interpreted to mean that the streamflow data have a standard error of this magnitude during times when the equipment is operating properly. (Author 's abstract)
TOWARD ERROR ANALYSIS OF LARGE-SCALE FOREST CARBON BUDGETS
Quantification of forest carbon sources and sinks is an important part of national inventories of net greenhouse gas emissions. Several such forest carbon budgets have been constructed, but little effort has been made to analyse the sources of error and how these errors propagate...
Cost effectiveness of the U.S. Geological Survey's stream-gaging program in Wisconsin
Walker, J.F.; Osen, L.L.; Hughes, P.E.
1987-01-01
A minimum budget of $510,000 is required to operate the program; a budget less than this does not permit proper service and maintenance of the gaging stations. At this minimum budget, the theoretical average standard error of instantaneous discharge is 14.4%. The maximum budget analyzed was $650,000 and resulted in an average standard of error of instantaneous discharge of 7.2%.
NASA Technical Reports Server (NTRS)
Lauvaux, Thomas; Miles, Natasha L.; Deng, Aijun; Richardson, Scott J.; Cambaliza, Maria O.; Davis, Kenneth J.; Gaudet, Brian; Gurney, Kevin R.; Huang, Jianhua; O'Keefe, Darragh;
2016-01-01
Urban emissions of greenhouse gases (GHG) represent more than 70% of the global fossil fuel GHG emissions. Unless mitigation strategies are successfully implemented, the increase in urban GHG emissions is almost inevitable as large metropolitan areas are projected to grow twice as fast as the world population in the coming 15 years. Monitoring these emissions becomes a critical need as their contribution to the global carbon budget increases rapidly. In this study, we developed the first comprehensive monitoring systems of CO2 emissions at high resolution using a dense network of CO2 atmospheric measurements over the city of Indianapolis. The inversion system was evaluated over a 8-month period and showed an increase compared to the Hestia CO2 emission estimate, a state-of-the-art building-level emission product, with a 20% increase in the total emissions over the area (from 4.5 to 5.7 Metric Megatons of Carbon +/- 0.23 Metric Megatons of Carbon). However, several key parameters of the inverse system need to be addressed to carefully characterize the spatial distribution of the emissions and the aggregated total emissions.We found that spatial structures in prior emission errors, mostly undetermined, affect significantly the spatial pattern in the inverse solution, as well as the carbon budget over the urban area. Several other parameters of the inversion were sufficiently constrained by additional observations such as the characterization of the GHG boundary inflow and the introduction of hourly transport model errors estimated from the meteorological assimilation system. Finally, we estimated the uncertainties associated with remaining systematic errors and undetermined parameters using an ensemble of inversions. The total CO2 emissions for the Indianapolis urban area based on the ensemble mean and quartiles are 5.26 - 5.91 Metric Megatons of Carbon, i.e. a statistically significant difference compared to the prior total emissions of 4.1 to 4.5 Metric Megatons of Carbon. We therefore conclude that atmospheric inversions are potentially able to constrain the carbon budget of the city, assuming sufficient data to measure the inflow of GHG over the city, but additional information on prior emissions and their associated error structures are required if we are to determine the spatial structures of urban emissions at high resolution.
NASA Technical Reports Server (NTRS)
Fisher, Brad; Wolff, David B.
2010-01-01
Passive and active microwave rain sensors onboard earth-orbiting satellites estimate monthly rainfall from the instantaneous rain statistics collected during satellite overpasses. It is well known that climate-scale rain estimates from meteorological satellites incur sampling errors resulting from the process of discrete temporal sampling and statistical averaging. Sampling and retrieval errors ultimately become entangled in the estimation of the mean monthly rain rate. The sampling component of the error budget effectively introduces statistical noise into climate-scale rain estimates that obscure the error component associated with the instantaneous rain retrieval. Estimating the accuracy of the retrievals on monthly scales therefore necessitates a decomposition of the total error budget into sampling and retrieval error quantities. This paper presents results from a statistical evaluation of the sampling and retrieval errors for five different space-borne rain sensors on board nine orbiting satellites. Using an error decomposition methodology developed by one of the authors, sampling and retrieval errors were estimated at 0.25 resolution within 150 km of ground-based weather radars located at Kwajalein, Marshall Islands and Melbourne, Florida. Error and bias statistics were calculated according to the land, ocean and coast classifications of the surface terrain mask developed for the Goddard Profiling (GPROF) rain algorithm. Variations in the comparative error statistics are attributed to various factors related to differences in the swath geometry of each rain sensor, the orbital and instrument characteristics of the satellite and the regional climatology. The most significant result from this study found that each of the satellites incurred negative longterm oceanic retrieval biases of 10 to 30%.
Levesque, Eric; Hoti, Emir; de La Serna, Sofia; Habouchi, Houssam; Ichai, Philippe; Saliba, Faouzi; Samuel, Didier; Azoulay, Daniel
2013-03-01
In the French healthcare system, the intensive care budget allocated is directly dependent on the activity level of the center. To evaluate this activity level, it is necessary to code the medical diagnoses and procedures performed on Intensive Care Unit (ICU) patients. The aim of this study was to evaluate the effects of using an Intensive Care Information System (ICIS) on the incidence of coding errors and its impact on the ICU budget allocated. Since 2005, the documentation on and monitoring of every patient admitted to our ICU has been carried out using an ICIS. However, the coding process was performed manually until 2008. This study focused on two periods: the period of manual coding (year 2007) and the period of computerized coding (year 2008) which covered a total of 1403 ICU patients. The time spent on the coding process, the rate of coding errors (defined as patients missed/not coded or wrongly identified as undergoing major procedure/s) and the financial impact were evaluated for these two periods. With computerized coding, the time per admission decreased significantly (from 6.8 ± 2.8 min in 2007 to 3.6 ± 1.9 min in 2008, p<0.001). Similarly, a reduction in coding errors was observed (7.9% vs. 2.2%, p<0.001). This decrease in coding errors resulted in a reduced difference between the potential and real ICU financial supplements obtained in the respective years (€194,139 loss in 2007 vs. a €1628 loss in 2008). Using specific computer programs improves the intensive process of manual coding by shortening the time required as well as reducing errors, which in turn positively impacts the ICU budget allocation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
van Walbeek, Corné
2014-01-01
Background The tobacco industry claims that illicit trade in cigarettes has increased sharply since the 1990s and that government has lost substantial tax revenue. Objectives (1) To determine whether cigarette excise tax revenue has been below budget in recent years, compared with previous decades. (2) To determine trends in the size of the illicit market since 1995. Methods For (1), mean percentage errors and root mean square percentage errors were calculated for budget revenue deviation for three products (cigarettes, beer and spirits), for various subperiods. For (2), predicted changes in total consumption, using actual cigarette price and GDP changes and previously published price and income elasticity estimates, were calculated and compared with changes in tax-paid consumption. Results Cigarette excise revenues were 0.7% below budget for 2000–2012 on average, compared with 3.0% below budget for beer and 4.7% below budget for spirits. There is no evidence that illicit trade in cigarettes in South Africa increased between 2002 and 2009. There is a substantial increase in illicit trade in 2010, probably peaking in 2011. In 2012 tax-paid consumption of cigarettes increased 2.6%, implying that the illicit market share decreased an estimated 0.6 percentage points. Conclusions Other than in 2010, there is no evidence that illicit trade is significantly undermining government revenue. Claims that illicit trade has consistently increased over the past 15 years, and has continued its sharp increase since 2010, are not supported. PMID:24431121
Developing Performance Estimates for High Precision Astrometry with TMT
NASA Astrophysics Data System (ADS)
Schoeck, Matthias; Do, Tuan; Ellerbroek, Brent; Herriot, Glen; Meyer, Leo; Suzuki, Ryuji; Wang, Lianqi; Yelda, Sylvana
2013-12-01
Adaptive optics on Extremely Large Telescopes will open up many new science cases or expand existing science into regimes unattainable with the current generation of telescopes. One example of this is high-precision astrometry, which has requirements in the range from 10 to 50 micro-arc-seconds for some instruments and science cases. Achieving these requirements imposes stringent constraints on the design of the entire observatory, but also on the calibration procedures, observing sequences and the data analysis techniques. This paper summarizes our efforts to develop a top down astrometry error budget for TMT. It is predominantly developed for the first-light AO system, NFIRAOS, and the IRIS instrument, but many terms are applicable to other configurations as well. Astrometry error sources are divided into 5 categories: Reference source and catalog errors, atmospheric refraction correction errors, other residual atmospheric effects, opto-mechanical errors and focal plane measurement errors. Results are developed in parametric form whenever possible. However, almost every error term in the error budget depends on the details of the astrometry observations, such as whether absolute or differential astrometry is the goal, whether one observes a sparse or crowded field, what the time scales of interest are, etc. Thus, it is not possible to develop a single error budget that applies to all science cases and separate budgets are developed and detailed for key astrometric observations. Our error budget is consistent with the requirements for differential astrometry of tens of micro-arc-seconds for certain science cases. While no show stoppers have been found, the work has resulted in several modifications to the NFIRAOS optical surface specifications and reference source design that will help improve the achievable astrometry precision even further.
Cost-effectiveness of the streamflow-gaging program in Wyoming
Druse, S.A.; Wahl, K.L.
1988-01-01
This report documents the results of a cost-effectiveness study of the streamflow-gaging program in Wyoming. Regression analysis or hydrologic flow-routing techniques were considered for 24 combinations of stations from a 139-station network operated in 1984 to investigate suitability of techniques for simulating streamflow records. Only one station was determined to have sufficient accuracy in the regression analysis to consider discontinuance of the gage. The evaluation of the gaging-station network, which included the use of associated uncertainty in streamflow records, is limited to the nonwinter operation of the 47 stations operated by the Riverton Field Office of the U.S. Geological Survey. The current (1987) travel routes and measurement frequencies require a budget of $264,000 and result in an average standard error in streamflow records of 13.2%. Changes in routes and station visits using the same budget, could optimally reduce the standard error by 1.6%. Budgets evaluated ranged from $235,000 to $400,000. A $235,000 budget increased the optimal average standard error/station from 11.6 to 15.5%, and a $400,000 budget could reduce it to 6.6%. For all budgets considered, lost record accounts for about 40% of the average standard error. (USGS)
Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty
NASA Astrophysics Data System (ADS)
Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. C.; Alden, C.; White, J. W. C.
2014-10-01
Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of C in the atmosphere, ocean, and land; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate error and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2 σ error of the atmospheric growth rate has decreased from 1.2 Pg C yr-1 in the 1960s to 0.3 Pg C yr-1 in the 2000s, leading to a ~20% reduction in the over-all uncertainty of net global C uptake by the biosphere. While fossil fuel emissions have increased by a factor of 4 over the last 5 decades, 2 σ errors in fossil fuel emissions due to national reporting errors and differences in energy reporting practices have increased from 0.3 Pg C yr-1 in the 1960s to almost 1.0 Pg C yr-1 during the 2000s. At the same time land use emissions have declined slightly over the last 5 decades, but their relative errors remain high. Notably, errors associated with fossil fuel emissions have come to dominate uncertainty in the global C budget and are now comparable to the total emissions from land use, thus efforts to reduce errors in fossil fuel emissions are necessary. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that C uptake has increased and 97% confident that C uptake by the terrestrial biosphere has increased over the last 5 decades. Although the persistence of future C sinks remains unknown and some ecosystem services may be compromised by this continued C uptake (e.g. ocean acidification), it is clear that arguably the greatest ecosystem service currently provided by the biosphere is the continued removal of approximately half of atmospheric CO2 emissions from the atmosphere.
Diffuse-flow conceptualization and simulation of the Edwards aquifer, San Antonio region, Texas
Lindgren, R.J.
2006-01-01
A numerical ground-water-flow model (hereinafter, the conduit-flow Edwards aquifer model) of the karstic Edwards aquifer in south-central Texas was developed for a previous study on the basis of a conceptualization emphasizing conduit development and conduit flow, and included simulating conduits as one-cell-wide, continuously connected features. Uncertainties regarding the degree to which conduits pervade the Edwards aquifer and influence ground-water flow, as well as other uncertainties inherent in simulating conduits, raised the question of whether a model based on the conduit-flow conceptualization was the optimum model for the Edwards aquifer. Accordingly, a model with an alternative hydraulic conductivity distribution without conduits was developed in a study conducted during 2004-05 by the U.S. Geological Survey, in cooperation with the San Antonio Water System. The hydraulic conductivity distribution for the modified Edwards aquifer model (hereinafter, the diffuse-flow Edwards aquifer model), based primarily on a conceptualization in which flow in the aquifer predominantly is through a network of numerous small fractures and openings, includes 38 zones, with hydraulic conductivities ranging from 3 to 50,000 feet per day. Revision of model input data for the diffuse-flow Edwards aquifer model was limited to changes in the simulated hydraulic conductivity distribution. The root-mean-square error for 144 target wells for the calibrated steady-state simulation for the diffuse-flow Edwards aquifer model is 20.9 feet. This error represents about 3 percent of the total head difference across the model area. The simulated springflows for Comal and San Marcos Springs for the calibrated steady-state simulation were within 2.4 and 15 percent of the median springflows for the two springs, respectively. The transient calibration period for the diffuse-flow Edwards aquifer model was 1947-2000, with 648 monthly stress periods, the same as for the conduit-flow Edwards aquifer model. The root-mean-square error for a period of drought (May-November 1956) for the calibrated transient simulation for 171 target wells is 33.4 feet, which represents about 5 percent of the total head difference across the model area. The root-mean-square error for a period of above-normal rainfall (November 1974-July 1975) for the calibrated transient simulation for 169 target wells is 25.8 feet, which represents about 4 percent of the total head difference across the model area. The root-mean-square error ranged from 6.3 to 30.4 feet in 12 target wells with long-term water-level measurements for varying periods during 1947-2000 for the calibrated transient simulation for the diffuse-flow Edwards aquifer model, and these errors represent 5.0 to 31.3 percent of the range in water-level fluctuations of each of those wells. The root-mean-square errors for the five major springs in the San Antonio segment of the aquifer for the calibrated transient simulation, as a percentage of the range of discharge fluctuations measured at the springs, varied from 7.2 percent for San Marcos Springs and 8.1 percent for Comal Springs to 28.8 percent for Leona Springs. The root-mean-square errors for hydraulic heads for the conduit-flow Edwards aquifer model are 27, 76, and 30 percent greater than those for the diffuse-flow Edwards aquifer model for the steady-state, drought, and above-normal rainfall synoptic time periods, respectively. The goodness-of-fit between measured and simulated springflows is similar for Comal, San Marcos, and Leona Springs for the diffuse-flow Edwards aquifer model and the conduit-flow Edwards aquifer model. The root-mean-square errors for Comal and Leona Springs were 15.6 and 21.3 percent less, respectively, whereas the root-mean-square error for San Marcos Springs was 3.3 percent greater for the diffuse-flow Edwards aquifer model compared to the conduit-flow Edwards aquifer model. The root-mean-square errors for San Antonio and San Pedro Springs were appreciably greater, 80.2 and 51.0 percent, respectively, for the diffuse-flow Edwards aquifer model. The simulated water budgets for the diffuse-flow Edwards aquifer model are similar to those for the conduit-flow Edwards aquifer model. Differences in percentage of total sources or discharges for a budget component are 2.0 percent or less for all budget components for the steady-state and transient simulations. The largest difference in terms of the magnitude of water budget components for the transient simulation for 1956 was a decrease of about 10,730 acre-feet per year (about 2 per-cent) in springflow for the diffuse-flow Edwards aquifer model compared to the conduit-flow Edwards aquifer model. This decrease in springflow (a water budget discharge) was largely offset by the decreased net loss of water from storage (a water budget source) of about 10,500 acre-feet per year.
First-order error budgeting for LUVOIR mission
NASA Astrophysics Data System (ADS)
Lightsey, Paul A.; Knight, J. Scott; Feinberg, Lee D.; Bolcar, Matthew R.; Shaklan, Stuart B.
2017-09-01
Future large astronomical telescopes in space will have architectures that will have complex and demanding requirements to meet the science goals. The Large UV/Optical/IR Surveyor (LUVOIR) mission concept being assessed by the NASA/Goddard Space Flight Center is expected to be 9 to 15 meters in diameter, have a segmented primary mirror and be diffraction limited at a wavelength of 500 nanometers. The optical stability is expected to be in the picometer range for minutes to hours. Architecture studies to support the NASA Science and Technology Definition teams (STDTs) are underway to evaluate systems performance improvements to meet the science goals. To help define the technology needs and assess performance, a first order error budget has been developed. Like the JWST error budget, the error budget includes the active, adaptive and passive elements in spatial and temporal domains. JWST performance is scaled using first order approximations where appropriate and includes technical advances in telescope control.
Geometric error characterization and error budgets. [thematic mapper
NASA Technical Reports Server (NTRS)
Beyer, E.
1982-01-01
Procedures used in characterizing geometric error sources for a spaceborne imaging system are described using the LANDSAT D thematic mapper ground segment processing as the prototype. Software was tested through simulation and is undergoing tests with the operational hardware as part of the prelaunch system evaluation. Geometric accuracy specifications, geometric correction, and control point processing are discussed. Cross track and along track errors are tabulated for the thematic mapper, the spacecraft, and ground processing to show the temporal registration error budget in pixel (42.5 microrad) 90%.
Cost effectiveness of the US Geological Survey's stream-gaging program in New York
Wolcott, S.W.; Gannon, W.B.; Johnston, W.H.
1986-01-01
The U.S. Geological Survey conducted a 5-year nationwide analysis to define and document the most cost effective means of obtaining streamflow data. This report describes the stream gaging network in New York and documents the cost effectiveness of its operation; it also identifies data uses and funding sources for the 174 continuous-record stream gages currently operated (1983). Those gages as well as 189 crest-stage, stage-only, and groundwater gages are operated with a budget of $1.068 million. One gaging station was identified as having insufficient reason for continuous operation and was converted to a crest-stage gage. Current operation of the 363-station program requires a budget of $1.068 million/yr. The average standard error of estimation of continuous streamflow data is 13.4%. Results indicate that this degree of accuracy could be maintained with a budget of approximately $1.006 million if the gaging resources were redistributed among the gages. The average standard error for 174 stations was calculated for five hypothetical budgets. A minimum budget of $970,000 would be needed to operated the 363-gage program; a budget less than this does not permit proper servicing and maintenance of the gages and recorders. Under the restrictions of a minimum budget, the average standard error would be 16.0%. The maximum budget analyzed was $1.2 million, which would decrease the average standard error to 9.4%. (Author 's abstract)
Cost effectiveness of the US Geological Survey stream-gaging program in Alabama
Jeffcoat, H.H.
1987-01-01
A study of the cost effectiveness of the stream gaging program in Alabama identified data uses and funding sources for 72 surface water stations (including dam stations, slope stations, and continuous-velocity stations) operated by the U.S. Geological Survey in Alabama with a budget of $393,600. Of these , 58 gaging stations were used in all phases of the analysis at a funding level of $328,380. For the current policy of operation of the 58-station program, the average standard error of estimation of instantaneous discharge is 29.3%. This overall level of accuracy can be maintained with a budget of $319,800 by optimizing routes and implementing some policy changes. The maximum budget considered in the analysis was $361,200, which gave an average standard error of estimation of 20.6%. The minimum budget considered was $299,360, with an average standard error of estimation of 36.5%. The study indicates that a major source of error in the stream gaging records is lost or missing data that are the result of streamside equipment failure. If perfect equipment were available, the standard error in estimating instantaneous discharge under the current program and budget could be reduced to 18.6%. This can also be interpreted to mean that the streamflow data records have a standard error of this magnitude during times when the equipment is operating properly. (Author 's abstract)
Error decomposition and estimation of inherent optical properties.
Salama, Mhd Suhyb; Stein, Alfred
2009-09-10
We describe a methodology to quantify and separate the errors of inherent optical properties (IOPs) derived from ocean-color model inversion. Their total error is decomposed into three different sources, namely, model approximations and inversion, sensor noise, and atmospheric correction. Prior information on plausible ranges of observation, sensor noise, and inversion goodness-of-fit are employed to derive the posterior probability distribution of the IOPs. The relative contribution of each error component to the total error budget of the IOPs, all being of stochastic nature, is then quantified. The method is validated with the International Ocean Colour Coordinating Group (IOCCG) data set and the NASA bio-Optical Marine Algorithm Data set (NOMAD). The derived errors are close to the known values with correlation coefficients of 60-90% and 67-90% for IOCCG and NOMAD data sets, respectively. Model-induced errors inherent to the derived IOPs are between 10% and 57% of the total error, whereas atmospheric-induced errors are in general above 43% and up to 90% for both data sets. The proposed method is applied to synthesized and in situ measured populations of IOPs. The mean relative errors of the derived values are between 2% and 20%. A specific error table to the Medium Resolution Imaging Spectrometer (MERIS) sensor is constructed. It serves as a benchmark to evaluate the performance of the atmospheric correction method and to compute atmospheric-induced errors. Our method has a better performance and is more appropriate to estimate actual errors of ocean-color derived products than the previously suggested methods. Moreover, it is generic and can be applied to quantify the error of any derived biogeophysical parameter regardless of the used derivation.
Improvements in lake water budget computations using Landsat data
NASA Technical Reports Server (NTRS)
Gervin, J. C.; Shih, S. F.
1979-01-01
A supervised multispectral classification was performed on Landsat data for Lake Okeechobee's extensive littoral zone to provide two types of information. First, the acreage of a given plant species as measured by satellite was combined with a more accurate transpiration rate to give a better estimate of evapotranspiration from the littoral zone. Second, the surface area coupled by plant communities was used to develop a better estimate of the water surface as a function of lake stage. Based on this information, more detailed representations of evapotranspiration and total water surface (and hence total lake volume) were provided to the water balance budget model for lake volume predictions. The model results based on information derived from satellite demonstrated a 94 percent reduction in cumulative lake stage error and a 70 percent reduction in the maximum deviation of the lake stage.
Groundwater discharge to lakes (GDL) - the disregarded component of lake nutrient budgets
NASA Astrophysics Data System (ADS)
Lewandowski, J.; Meinikmann, K.; Pöschke, F.; Nützmann, G.
2012-04-01
Eutrophication is a major threat to lakes in temperate climatic zones. It is necessary to determine the relevance of different nutrient sources to conduct effective management measures, to understand in-lake processes and to model future scenarios. A prerequisite for such nutrient budgets are water budgets. While most components of the water budget can be determined quite accurate the quantification of groundwater discharge to lakes (GDL) and surface water infiltration into the aquifer are much more difficult. For example, it is quite common to determine the groundwater component as residual in the water and nutrient budget which is extremely problematic since in that case all errors of the budget terms are summed up in the groundwater term. In total, we identified 10 different reasons for disregarding the groundwater path in nutrient budgets. We investigated the fate of the nutrients nitrogen and phosphorus on their pathway from the catchment through the reactive aquifer-lake interface into the lake. We reviewed the international literature and summarized numbers reported for GDL of nutrients. Since literature is quite sparse we also had a look at numbers reported for submarine groundwater discharge (SGD) of nutrients for which much more literature exists and which is despite some fundamental differences in principal comparable to GDL.
General Tool for Evaluating High-Contrast Coronagraphic Telescope Performance Error Budgets
NASA Technical Reports Server (NTRS)
Marchen, Luis F.
2011-01-01
The Coronagraph Performance Error Budget (CPEB) tool automates many of the key steps required to evaluate the scattered starlight contrast in the dark hole of a space-based coronagraph. The tool uses a Code V prescription of the optical train, and uses MATLAB programs to call ray-trace code that generates linear beam-walk and aberration sensitivity matrices for motions of the optical elements and line-of-sight pointing, with and without controlled fine-steering mirrors (FSMs). The sensitivity matrices are imported by macros into Excel 2007, where the error budget is evaluated. The user specifies the particular optics of interest, and chooses the quality of each optic from a predefined set of PSDs. The spreadsheet creates a nominal set of thermal and jitter motions, and combines that with the sensitivity matrices to generate an error budget for the system. CPEB also contains a combination of form and ActiveX controls with Visual Basic for Applications code to allow for user interaction in which the user can perform trade studies such as changing engineering requirements, and identifying and isolating stringent requirements. It contains summary tables and graphics that can be instantly used for reporting results in view graphs. The entire process to obtain a coronagraphic telescope performance error budget has been automated into three stages: conversion of optical prescription from Zemax or Code V to MACOS (in-house optical modeling and analysis tool), a linear models process, and an error budget tool process. The first process was improved by developing a MATLAB package based on the Class Constructor Method with a number of user-defined functions that allow the user to modify the MACOS optical prescription. The second process was modified by creating a MATLAB package that contains user-defined functions that automate the process. The user interfaces with the process by utilizing an initialization file where the user defines the parameters of the linear model computations. Other than this, the process is fully automated. The third process was developed based on the Terrestrial Planet Finder coronagraph Error Budget Tool, but was fully automated by using VBA code, form, and ActiveX controls.
Stability Error Budget for an Aggressive Coronagraph on a 3.8 m Telescope
NASA Technical Reports Server (NTRS)
Shaklan, Stuart B.; Marchen, Luis; Krist, John; Rud, Mayer
2011-01-01
We evaluate in detail the stability requirements for a band-limited coronagraph with an inner working angle as small as 2 lambda/D coupled to an off-axis, 3.8-m diameter telescope. We have updated our methodologies since presenting a stability error budget for the Terrestrial Planet Finder Coronagraph mission that worked at 4 lambda/D and employed an 8th-order mask to reduce aberration sensitives. In the previous work, we determined the tolerances relative to the total light leaking through the coronagraph. Now, we separate the light into a radial component, which is readily separable from a planet signal, and an azimuthal component, which is easily confused with a planet signal. In the current study, throughput considerations require a 4th-order coronagraph. This, combined with the more aggressive working angle, places extraordinarily tight requirements on wavefront stability and opto-mechanical stability. We find that the requirements are driven mainly by coma that leaks around the coronagraph mask and mimics the localized signal of a planet, and pointing errors that scatter light into the background, decreasing SNR. We also show how the requirements would be relaxed if a low-order aberration detection system could be employed.
NASA Astrophysics Data System (ADS)
Lauvaux, Thomas; Miles, Natasha L.; Deng, Aijun; Richardson, Scott J.; Cambaliza, Maria O.; Davis, Kenneth J.; Gaudet, Brian; Gurney, Kevin R.; Huang, Jianhua; O'Keefe, Darragh; Song, Yang; Karion, Anna; Oda, Tomohiro; Patarasuk, Risa; Razlivanov, Igor; Sarmiento, Daniel; Shepson, Paul; Sweeney, Colm; Turnbull, Jocelyn; Wu, Kai
2016-05-01
Based on a uniquely dense network of surface towers measuring continuously the atmospheric concentrations of greenhouse gases (GHGs), we developed the first comprehensive monitoring systems of CO2 emissions at high resolution over the city of Indianapolis. The urban inversion evaluated over the 2012-2013 dormant season showed a statistically significant increase of about 20% (from 4.5 to 5.7 MtC ± 0.23 MtC) compared to the Hestia CO2 emission estimate, a state-of-the-art building-level emission product. Spatial structures in prior emission errors, mostly undetermined, appeared to affect the spatial pattern in the inverse solution and the total carbon budget over the entire area by up to 15%, while the inverse solution remains fairly insensitive to the CO2 boundary inflow and to the different prior emissions (i.e., ODIAC). Preceding the surface emission optimization, we improved the atmospheric simulations using a meteorological data assimilation system also informing our Bayesian inversion system through updated observations error variances. Finally, we estimated the uncertainties associated with undetermined parameters using an ensemble of inversions. The total CO2 emissions based on the ensemble mean and quartiles (5.26-5.91 MtC) were statistically different compared to the prior total emissions (4.1 to 4.5 MtC). Considering the relatively small sensitivity to the different parameters, we conclude that atmospheric inversions are potentially able to constrain the carbon budget of the city, assuming sufficient data to measure the inflow of GHG over the city, but additional information on prior emission error structures are required to determine the spatial structures of urban emissions at high resolution.
The Terrestrial Planet Finder coronagraph dynamics error budget
NASA Technical Reports Server (NTRS)
Shaklan, Stuart B.; Marchen, Luis; Green, Joseph J.; Lay, Oliver P.
2005-01-01
The Terrestrial Planet Finder Coronagraph (TPF-C) demands extreme wave front control and stability to achieve its goal of detecting earth-like planets around nearby stars. We describe the performance models and error budget used to evaluate image plane contrast and derive engineering requirements for this challenging optical system.
Cost-effectiveness of the stream-gaging program in Nebraska
Engel, G.B.; Wahl, K.L.; Boohar, J.A.
1984-01-01
This report documents the results of a study of the cost-effectiveness of the streamflow information program in Nebraska. Presently, 145 continuous surface-water stations are operated in Nebraska on a budget of $908,500. Data uses and funding sources are identified for each of the 145 stations. Data from most stations have multiple uses. All stations have sufficient justification for continuation, but two stations primarily are used in short-term research studies; their continued operation needs to be evaluated when the research studies end. The present measurement frequency produces an average standard error for instantaneous discharges of about 12 percent, including periods when stage data are missing. Altering the travel routes and the measurement frequency will allow a reduction in standard error of about 1 percent with the present budget. Standard error could be reduced to about 8 percent if lost record could be eliminated. A minimum budget of $822,000 is required to operate the present network, but operations at that funding level would result in an increase in standard error to about 16 percent. The maximum budget analyzed was $1,363,000, which would result in an average standard error of 6 percent. (USGS)
Pellicle transmission uniformity requirements
NASA Astrophysics Data System (ADS)
Brown, Thomas L.; Ito, Kunihiro
1998-12-01
Controlling critical dimensions of devices is a constant battle for the photolithography engineer. Current DUV lithographic process exposure latitude is typically 12 to 15% of the total dose. A third of this exposure latitude budget may be used up by a variable related to masking that has not previously received much attention. The emphasis on pellicle transmission has been focused on increasing the average transmission. Much less, attention has been paid to transmission uniformity. This paper explores the total demand on the photospeed latitude budget, the causes of pellicle transmission nonuniformity and examines reasonable expectations for pellicle performance. Modeling is used to examine how the two primary errors in pellicle manufacturing contribute to nonuniformity in transmission. World-class pellicle transmission uniformity standards are discussed and a comparison made between specifications of other components in the photolithographic process. Specifications for other materials or parameters are used as benchmarks to develop a proposed industry standard for pellicle transmission uniformity.
NASA Astrophysics Data System (ADS)
Huang, C. L.; Hsu, N. S.; Hsu, F. C.; Liu, H. J.
2016-12-01
This study develops a novel methodology for the spatiotemporal groundwater calibration of mega-quantitative recharge and parameters by coupling a specialized numerical model and analytical empirical orthogonal function (EOF). The actual spatiotemporal patterns of groundwater pumpage are estimated by an originally developed back propagation neural network-based response matrix with the electrical consumption analysis. The spatiotemporal patterns of the recharge from surface water and hydrogeological parameters (i.e. horizontal hydraulic conductivity and vertical leakance) are calibrated by EOF with the simulated error hydrograph of groundwater storage, in order to qualify the multiple error sources and quantify the revised volume. The objective function of the optimization model is minimizing the root mean square error of the simulated storage error percentage across multiple aquifers, meanwhile subject to mass balance of groundwater budget and the governing equation in transient state. The established method was applied on the groundwater system of Chou-Shui River Alluvial Fan. The simulated period is from January 2012 to December 2014. The total numbers of hydraulic conductivity, vertical leakance and recharge from surface water among four aquifers are 126, 96 and 1080, respectively. Results showed that the RMSE during the calibration process was decreased dramatically and can quickly converse within 6th iteration, because of efficient filtration of the transmission induced by the estimated error and recharge across the boundary. Moreover, the average simulated error percentage according to groundwater level corresponding to the calibrated budget variables and parameters of aquifer one is as small as 0.11%. It represent that the developed methodology not only can effectively detect the flow tendency and error source in all aquifers to achieve accurately spatiotemporal calibration, but also can capture the peak and fluctuation of groundwater level in shallow aquifer.
Cost effectiveness of the US Geological Survey's stream-gaging programs in New Hampshire and Vermont
Smath, J.A.; Blackey, F.E.
1986-01-01
Data uses and funding sources were identified for the 73 continuous stream gages currently (1984) being operated. Eight stream gages were identified as having insufficient reason to continue their operation. Parts of New Hampshire and Vermont were identified as needing additional hydrologic data. New gages should be established in these regions as funds become available. Alternative methods for providing hydrologic data at the stream gaging stations currently being operated were found to lack the accuracy that is required for their intended use. The current policy for operation of the stream gages requires a net budget of $297,000/yr. The average standard error of estimation of the streamflow records is 17.9%. This overall level of accuracy could be maintained with a budget of $285,000 if resources were redistributed among gages. Cost-effective analysis indicates that with the present budget, the average standard error could be reduced to 16.6%. A minimum budget of $278,000 is required to operate the present stream gaging program. Below this level, the gages and recorders would not receive the proper service and maintenance. At the minimum budget, the average standard error would be 20.4%. The loss of correlative data is a significant component of the error in streamflow records, especially at lower budgetary levels. (Author 's abstract)
A General Tool for Evaluating High-Contrast Coronagraphic Telescope Performance Error Budgets
NASA Technical Reports Server (NTRS)
Marchen, Luis F.; Shaklan, Stuart B.
2009-01-01
This paper describes a general purpose Coronagraph Performance Error Budget (CPEB) tool that we have developed under the NASA Exoplanet Exploration Program. The CPEB automates many of the key steps required to evaluate the scattered starlight contrast in the dark hole of a space-based coronagraph. It operates in 3 steps: first, a CodeV or Zemax prescription is converted into a MACOS optical prescription. Second, a Matlab program calls ray-trace code that generates linear beam-walk and aberration sensitivity matrices for motions of the optical elements and line-of-sight pointing, with and without controlled coarse and fine-steering mirrors. Third, the sensitivity matrices are imported by macros into Excel 2007 where the error budget is created. Once created, the user specifies the quality of each optic from a predefined set of PSDs. The spreadsheet creates a nominal set of thermal and jitter motions and combines them with the sensitivity matrices to generate an error budget for the system. The user can easily modify the motion allocations to perform trade studies.
NASA Technical Reports Server (NTRS)
Stowe, Larry; Hucek, Richard; Ardanuy, Philip; Joyce, Robert
1994-01-01
Much of the new record of broadband earth radiation budget satellite measurements to be obtained during the late 1990s and early twenty-first century will come from the dual-radiometer Clouds and Earth's Radiant Energy System Instrument (CERES-I) flown aboard sun-synchronous polar orbiters. Simulation studies conducted in this work for an early afternoon satellite orbit indicate that spatial root-mean-square (rms) sampling errors of instantaneous CERES-I shortwave flux estimates will range from about 8.5 to 14.0 W/m on a 2.5 deg latitude and longitude grid resolution. Rms errors in longwave flux estimates are only about 20% as large and range from 1.5 to 3.5 W/sq m. These results are based on an optimal cross-track scanner design that includes 50% footprint overlap to eliminate gaps in the top-of-the-atmosphere coverage, and a 'smallest' footprint size to increase the ratio in the number of observations lying within to the number of observations lying on grid area boundaries. Total instantaneous measurement error also depends on the variability of anisotropic reflectance and emission patterns and on retrieval methods used to generate target area fluxes. Three retrieval procedures from both CERES-I scanners (cross-track and rotating azimuth plane) are used. (1) The baseline Earth Radiaton Budget Experiment (ERBE) procedure, which assumes that errors due to the use of mean angular dependence models (ADMs) in the radiance-to-flux inversion process nearly cancel when averaged over grid areas. (2) To estimate N, instantaneous ADMs are estimated from the multiangular, collocated observations of the two scanners. These observed models replace the mean models in computation of satellite flux estimates. (3) The scene flux approach, conducts separate target-area retrievals for each ERBE scene category and combines their results using area weighting by scene type. The ERBE retrieval performs best when the simulated radiance field departs from the ERBE mean models by less than 10%. For larger perturbations, both the scene flux and collocation methods produce less error than the ERBE retrieval. The scene flux technique is preferable, however, because it involves fewer restrictive assumptions.
NASA Astrophysics Data System (ADS)
Lv, M.; Ma, Z.; Yuan, X.
2017-12-01
It is important to evaluate the water budget closure on the basis of the currently available data including precipitation, evapotranspiration (ET), runoff, and GRACE-derived terrestrial water storage change (TWSC) before using them to resolve water-related issues. However, it remains challenging to achieve the balance without the consideration of human water use (e.g., inter-basin water diversion and irrigation) for the estimation of other water budget terms such as the ET. In this study, the terrestrial water budget closure is tested over the Yellow River Basin (YRB) and Changjiang River Basin (CJB, Yangtze River Basin) of China. First, the actual ET is reconstructed by using the GLDAS-1 land surface models, the high quality observation-based precipitation, naturalized streamflow, and the irrigation water (hereafter, ETrecon). The ETrecon, evaluated using the mean annual water-balance equation, is of good quality with the absolute relative errors less than 1.9% over the two studied basins. The total basin discharge (Rtotal) is calculated as the residual of the water budget among the observation-based precipitation, ETrecon, and the GRACE-TWSC. The value of the Rtotal minus the observed total basin discharge is used to evaluate the budget closure, with the consideration of inter-basin water diversion. After the ET reconstruction, the mean absolute imbalance value reduced from 3.31 cm/year to 1.69 cm/year and from 15.40 cm/year to 1.96 cm/year over the YRB and CJB, respectively. The estimation-to-observation ratios of total basin discharge improved from 180.8% to 86.8% over the YRB, and from 67.0% to 101.1% over the CJB. The proposed ET reconstruction method is applicable to other human-managed river basins to provide an alternative estimation.
Balancing the books - a statistical theory of prospective budgets in Earth System science
NASA Astrophysics Data System (ADS)
O'Kane, J. Philip
An honest declaration of the error in a mass, momentum or energy balance, ɛ, simply raises the question of its acceptability: "At what value of ɛ is the attempted balance to be rejected?" Answering this question requires a reference quantity against which to compare ɛ. This quantity must be a mathematical function of all the data used in making the balance. To deliver this function, a theory grounded in a workable definition of acceptability is essential. A distinction must be drawn between a retrospective balance and a prospective budget in relation to any natural space-filling body. Balances look to the past; budgets look to the future. The theory is built on the application of classical sampling theory to the measurement and closure of a prospective budget. It satisfies R.A. Fisher's "vital requirement that the actual and physical conduct of experiments should govern the statistical procedure of their interpretation". It provides a test, which rejects, or fails to reject, the hypothesis that the closing error on the budget, when realised, was due to sampling error only. By increasing the number of measurements, the discrimination of the test can be improved, controlling both the precision and accuracy of the budget and its components. The cost-effective design of such measurement campaigns is discussed briefly. This analysis may also show when campaigns to close a budget on a particular space-filling body are not worth the effort for either scientific or economic reasons. Other approaches, such as those based on stochastic processes, lack this finality, because they fail to distinguish between different types of error in the mismatch between a set of realisations of the process and the measured data.
Determination of Barometric Altimeter Errors for the Orion Exploration Flight Test-1 Entry
NASA Technical Reports Server (NTRS)
Brown, Denise L.; Munoz, Jean-Philippe; Gay, Robert
2011-01-01
The EFT-1 mission is the unmanned flight test for the upcoming Multi-Purpose Crew Vehicle (MPCV). During entry, the EFT-1 vehicle will trigger several Landing and Recovery System (LRS) events, such as parachute deployment, based on onboard altitude information. The primary altitude source is the filtered navigation solution updated with GPS measurement data. The vehicle also has three barometric altimeters that will be used to measure atmospheric pressure during entry. In the event that GPS data is not available during entry, the altitude derived from the barometric altimeter pressure will be used to trigger chute deployment for the drogues and main parachutes. Therefore it is important to understand the impact of error sources on the pressure measured by the barometric altimeters and on the altitude derived from that pressure. There are four primary error sources impacting the sensed pressure: sensor errors, Analog to Digital conversion errors, aerodynamic errors, and atmosphere modeling errors. This last error source is induced by the conversion from pressure to altitude in the vehicle flight software, which requires an atmosphere model such as the US Standard 1976 Atmosphere model. There are several secondary error sources as well, such as waves, tides, and latencies in data transmission. Typically, for error budget calculations it is assumed that all error sources are independent, normally distributed variables. Thus, the initial approach to developing the EFT-1 barometric altimeter altitude error budget was to create an itemized error budget under these assumptions. This budget was to be verified by simulation using high fidelity models of the vehicle hardware and software. The simulation barometric altimeter model includes hardware error sources and a data-driven model of the aerodynamic errors expected to impact the pressure in the midbay compartment in which the sensors are located. The aerodynamic model includes the pressure difference between the midbay compartment and the free stream pressure as a function of altitude, oscillations in sensed pressure due to wake effects, and an acoustics model capturing fluctuations in pressure due to motion of the passive vents separating the barometric altimeters from the outside of the vehicle.
Earth radiation budget measurement from a spinning satellite: Conceptual design of detectors
NASA Technical Reports Server (NTRS)
Sromovsky, L. A.; Revercomb, H. E.; Suomi, V. E.
1975-01-01
The conceptual design, sensor characteristics, sensor performance and accuracy, and spacecraft and orbital requirements for a spinning wide-field-of-view earth energy budget detector were investigated. The scientific requirements for measurement of the earth's radiative energy budget are presented. Other topics discussed include the observing system concept, solar constant radiometer design, plane flux wide FOV sensor design, fast active cavity theory, fast active cavity design and error analysis, thermopile detectors as an alternative, pre-flight and in-flight calibration plane, system error summary, and interface requirements.
Cost effectiveness of the stream-gaging program in Ohio
Shindel, H.L.; Bartlett, W.P.
1986-01-01
This report documents the results of the cost effectiveness of the stream-gaging program in Ohio. Data uses and funding sources were identified for 107 continuous stream gages currently being operated by the U.S. Geological Survey in Ohio with a budget of $682,000; this budget includes field work for other projects and excludes stations jointly operated with the Miami Conservancy District. No stream gage were identified as having insufficient reason to continue their operation; nor were any station identified as having uses specifically only for short-term studies. All 107 station should be maintained in the program for the foreseeable future. The average standard error of estimation of stream flow records is 29.2 percent at its present level of funding. A minimum budget of $679,000 is required to operate the 107-gage program; a budget less than this does no permit proper service and maintenance of the gages and recorders. At the minimum budget, the average standard error is 31.1 percent The maximum budget analyzed was $1,282,000, which resulted in an average standard error of 11.1 percent. A need for additional gages has been identified by the other agencies that cooperate in the program. It is suggested that these gage be installed as funds can be made available.
New Methods for Assessing and Reducing Uncertainty in Microgravity Studies
NASA Astrophysics Data System (ADS)
Giniaux, J. M.; Hooper, A. J.; Bagnardi, M.
2017-12-01
Microgravity surveying, also known as dynamic or 4D gravimetry is a time-dependent geophysical method used to detect mass fluctuations within the shallow crust, by analysing temporal changes in relative gravity measurements. We present here a detailed uncertainty analysis of temporal gravity measurements, considering for the first time all possible error sources, including tilt, error in drift estimations and timing errors. We find that some error sources that are actually ignored, can have a significant impact on the total error budget and it is therefore likely that some gravity signals may have been misinterpreted in previous studies. Our analysis leads to new methods for reducing some of the uncertainties associated with residual gravity estimation. In particular, we propose different approaches for drift estimation and free air correction depending on the survey set up. We also provide formulae to recalculate uncertainties for past studies and lay out a framework for best practice in future studies. We demonstrate our new approach on volcanic case studies, which include Kilauea in Hawaii and Askja in Iceland.
Imaging phased telescope array study
NASA Technical Reports Server (NTRS)
Harvey, James E.
1989-01-01
The problems encountered in obtaining a wide field-of-view with large, space-based direct imaging phased telescope arrays were considered. After defining some of the critical systems issues, previous relevant work in the literature was reviewed and summarized. An extensive list was made of potential error sources and the error sources were categorized in the form of an error budget tree including optical design errors, optical fabrication errors, assembly and alignment errors, and environmental errors. After choosing a top level image quality requirment as a goal, a preliminary tops-down error budget allocation was performed; then, based upon engineering experience, detailed analysis, or data from the literature, a bottoms-up error budget reallocation was performed in an attempt to achieve an equitable distribution of difficulty in satisfying the various allocations. This exercise provided a realistic allocation for residual off-axis optical design errors in the presence of state-of-the-art optical fabrication and alignment errors. Three different computational techniques were developed for computing the image degradation of phased telescope arrays due to aberrations of the individual telescopes. Parametric studies and sensitivity analyses were then performed for a variety of subaperture configurations and telescope design parameters in an attempt to determine how the off-axis performance of a phased telescope array varies as the telescopes are scaled up in size. The Air Force Weapons Laboratory (AFWL) multipurpose telescope testbed (MMTT) configuration was analyzed in detail with regard to image degradation due to field curvature and distortion of the individual telescopes as they are scaled up in size.
Gadoury, R.A.; Smath, J.A.; Fontaine, R.A.
1985-01-01
The report documents the results of a study of the cost-effectiveness of the U.S. Geological Survey 's continuous-record stream-gaging programs in Massachusetts and Rhode Island. Data uses and funding sources were identified for 91 gaging stations being operated in Massachusetts are being operated to provide data for two special purpose hydrologic studies, and they are planned to be discontinued at the conclusion of the studies. Cost-effectiveness analyses were performed on 63 continuous-record gaging stations in Massachusetts and 15 stations in Rhode Island, at budgets of $353,000 and $60,500, respectively. Current operations policies result in average standard errors per station of 12.3% in Massachusetts and 9.7% in Rhode Island. Minimum possible budgets to maintain the present numbers of gaging stations in the two States are estimated to be $340,000 and $59,000, with average errors per station of 12.8% and 10.0%, respectively. If the present budget levels were doubled, average standards errors per station would decrease to 8.1% and 4.2%, respectively. Further budget increases would not improve the standard errors significantly. (USGS)
Experimental demonstration of laser tomographic adaptive optics on a 30-meter telescope at 800 nm
NASA Astrophysics Data System (ADS)
Ammons, S., Mark; Johnson, Luke; Kupke, Renate; Gavel, Donald T.; Max, Claire E.
2010-07-01
A critical goal in the next decade is to develop techniques that will extend Adaptive Optics correction to visible wavelengths on Extremely Large Telescopes (ELTs). We demonstrate in the laboratory the highly accurate atmospheric tomography necessary to defeat the cone effect on ELTs, an essential milestone on the path to this capability. We simulate a high-order Laser Tomographic AO System for a 30-meter telescope with the LTAO/MOAO testbed at UCSC. Eight Sodium Laser Guide Stars (LGSs) are sensed by 99x99 Shack-Hartmann wavefront sensors over 75". The AO system is diffraction-limited at a science wavelength of 800 nm (S ~ 6-9%) over a field of regard of 20" diameter. Openloop WFS systematic error is observed to be proportional to the total input atmospheric disturbance and is nearly the dominant error budget term (81 nm RMS), exceeded only by tomographic wavefront estimation error (92 nm RMS). The total residual wavefront error for this experiment is comparable to that expected for wide-field tomographic adaptive optics systems of similar wavefront sensor order and LGS constellation geometry planned for Extremely Large Telescopes.
A comparison of advanced overlay technologies
NASA Astrophysics Data System (ADS)
Dasari, Prasad; Smith, Nigel; Goelzer, Gary; Liu, Zhuan; Li, Jie; Tan, Asher; Koh, Chin Hwee
2010-03-01
The extension of optical lithography to 22nm and beyond by Double Patterning Technology is often challenged by CDU and overlay control. With reduced overlay measurement error budgets in the sub-nm range, relying on traditional Total Measurement Uncertainty (TMU) estimates alone is no longer sufficient. In this paper we will report scatterometry overlay measurements data from a set of twelve test wafers, using four different target designs. The TMU of these measurements is under 0.4nm, within the process control requirements for the 22nm node. Comparing the measurement differences between DBO targets (using empirical and model based analysis) and with image-based overlay data indicates the presence of systematic and random measurement errors that exceeds the TMU estimate.
Adverse effects in dual-feed interferometry
NASA Astrophysics Data System (ADS)
Colavita, M. Mark
2009-11-01
Narrow-angle dual-star interferometric astrometry can provide very high accuracy in the presence of the Earth's turbulent atmosphere. However, to exploit the high atmospherically-limited accuracy requires control of systematic errors in measurement of the interferometer baseline, internal OPDs, and fringe phase. In addition, as high photometric SNR is required, care must be taken to maximize throughput and coherence to obtain high accuracy on faint stars. This article reviews the key aspects of the dual-star approach and implementation, the main contributors to the systematic error budget, and the coherence terms in the photometric error budget.
NASA Technical Reports Server (NTRS)
Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan
2013-01-01
A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.
Cost effectiveness of the stream-gaging program in Nevada
Arteaga, F.E.
1990-01-01
The stream-gaging network in Nevada was evaluated as part of a nationwide effort by the U.S. Geological Survey to define and document the most cost-effective means of furnishing streamflow information. Specifically, the study dealt with 79 streamflow gages and 2 canal-flow gages that were under the direct operation of Nevada personnel as of 1983. Cost-effective allocations of resources, including budget and operational criteria, were studied using statistical procedures known as Kalman-filtering techniques. The possibility of developing streamflow data at ungaged sites was evaluated using flow-routing and statistical regression analyses. Neither of these methods provided sufficiently accurate results to warrant their use in place of stream gaging. The 81 gaging stations were being operated in 1983 with a budget of $465,500. As a result of this study, all existing stations were determined to be necessary components of the program for the foreseeable future. At the 1983 funding level, the average standard error of streamflow records was nearly 28%. This same overall level of accuracy could have been maintained with a budget of approximately $445,000 if the funds were redistributed more equitably among the gages. The maximum budget analyzed, $1,164 ,000 would have resulted in an average standard error of 11%. The study indicates that a major source of error is lost data. If perfectly operating equipment were available, the standard error for the 1983 program and budget could have been reduced to 21%. (Thacker-USGS, WRD)
Cost-effectiveness of the U.S. Geological Survey stream-gaging program in Indiana
Stewart, J.A.; Miller, R.L.; Butch, G.K.
1986-01-01
Analysis of the stream gaging program in Indiana was divided into three phases. The first phase involved collecting information concerning the data need and the funding source for each of the 173 surface water stations in Indiana. The second phase used alternate methods to produce streamflow records at selected sites. Statistical models were used to generate stream flow data for three gaging stations. In addition, flow routing models were used at two of the sites. Daily discharges produced from models did not meet the established accuracy criteria and, therefore, these methods should not replace stream gaging procedures at those gaging stations. The third phase of the study determined the uncertainty of the rating and the error at individual gaging stations, and optimized travel routes and frequency of visits to gaging stations. The annual budget, in 1983 dollars, for operating the stream gaging program in Indiana is $823,000. The average standard error of instantaneous discharge for all continuous record gaging stations is 25.3%. A budget of $800,000 could maintain this level of accuracy if stream gaging stations were visited according to phase III results. A minimum budget of $790,000 is required to operate the gaging network. At this budget, the average standard error of instantaneous discharge would be 27.7%. A maximum budget of $1 ,000,000 was simulated in the analysis and the average standard error of instantaneous discharge was reduced to 16.8%. (Author 's abstract)
Performance of the Keck Observatory adaptive-optics system.
van Dam, Marcos A; Le Mignant, David; Macintosh, Bruce A
2004-10-10
The adaptive-optics (AO) system at the W. M. Keck Observatory is characterized. We calculate the error budget of the Keck AO system operating in natural guide star mode with a near-infrared imaging camera. The measurement noise and bandwidth errors are obtained by modeling the control loops and recording residual centroids. Results of sky performance tests are presented: The AO system is shown to deliver images with average Strehl ratios of as much as 0.37 at 1.58 microm when a bright guide star is used and of 0.19 for a magnitude 12 star. The images are consistent with the predicted wave-front error based on our error budget estimates.
Cost-effectiveness of the stream-gaging program in North Carolina
Mason, R.R.; Jackson, N.M.
1985-01-01
This report documents the results of a study of the cost-effectiveness of the stream-gaging program in North Carolina. Data uses and funding sources are identified for the 146 gaging stations currently operated in North Carolina with a budget of $777,600 (1984). As a result of the study, eleven stations are nominated for discontinuance and five for conversion from recording to partial-record status. Large parts of North Carolina 's Coastal Plain are identified as having sparse streamflow data. This sparsity should be remedied as funds become available. Efforts should also be directed toward defining the efforts of drainage improvements on local hydrology and streamflow characteristics. The average standard error of streamflow records in North Carolina is 18.6 percent. This level of accuracy could be improved without increasing cost by increasing the frequency of field visits and streamflow measurements at stations with high standard errors and reducing the frequency at stations with low standard errors. A minimum budget of $762,000 is required to operate the 146-gage program. A budget less than this does not permit proper service and maintenance of the gages and recorders. At the minimum budget, and with the optimum allocation of field visits, the average standard error is 17.6 percent.
Human errors and measurement uncertainty
NASA Astrophysics Data System (ADS)
Kuselman, Ilya; Pennecchi, Francesca
2015-04-01
Evaluating the residual risk of human errors in a measurement and testing laboratory, remaining after the error reduction by the laboratory quality system, and quantifying the consequences of this risk for the quality of the measurement/test results are discussed based on expert judgments and Monte Carlo simulations. A procedure for evaluation of the contribution of the residual risk to the measurement uncertainty budget is proposed. Examples are provided using earlier published sets of expert judgments on human errors in pH measurement of groundwater, elemental analysis of geological samples by inductively coupled plasma mass spectrometry, and multi-residue analysis of pesticides in fruits and vegetables. The human error contribution to the measurement uncertainty budget in the examples was not negligible, yet also not dominant. This was assessed as a good risk management result.
Cost-effectiveness of the stream-gaging program in Maine; a prototype for nationwide implementation
Fontaine, Richard A.; Moss, M.E.; Smath, J.A.; Thomas, W.O.
1984-01-01
This report documents the results of a cost-effectiveness study of the stream-gaging program in Maine. Data uses and funding sources were identified for the 51 continuous stream gages currently being operated in Maine with a budget of $211,000. Three stream gages were identified as producing data no longer sufficiently needed to warrant continuing their operation. Operation of these stations should be discontinued. Data collected at three other stations were identified as having uses specific only to short-term studies; it is recommended that these stations be discontinued at the end of the data-collection phases of the studies. The remaining 45 stations should be maintained in the program for the foreseeable future. The current policy for operation of the 45-station program would require a budget of $180,300 per year. The average standard error of estimation of streamflow records is 17.7 percent. It was shown that this overall level of accuracy at the 45 sites could be maintained with a budget of approximately $170,000 if resources were redistributed among the gages. A minimum budget of $155,000 is required to operate the 45-gage program; a smaller budget would not permit proper service and maintenance of the gages and recorders. At the minimum budget, the average standard error is 25.1 percent. The maximum budget analyzed was $350,000, which resulted in an average standard error of 8.7 percent. Large parts of Maine's interior were identified as having sparse streamflow data. It was determined that this sparsity be remedied as funds become available.
Comparison of direct and heterodyne detection optical intersatellite communication links
NASA Technical Reports Server (NTRS)
Chen, C. C.; Gardner, C. S.
1987-01-01
The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity.
Detecting Signatures of GRACE Sensor Errors in Range-Rate Residuals
NASA Astrophysics Data System (ADS)
Goswami, S.; Flury, J.
2016-12-01
In order to reach the accuracy of the GRACE baseline, predicted earlier from the design simulations, efforts are ongoing since a decade. GRACE error budget is highly dominated by noise from sensors, dealiasing models and modeling errors. GRACE range-rate residuals contain these errors. Thus, their analysis provides an insight to understand the individual contribution to the error budget. Hence, we analyze the range-rate residuals with focus on contribution of sensor errors due to mis-pointing and bad ranging performance in GRACE solutions. For the analysis of pointing errors, we consider two different reprocessed attitude datasets with differences in pointing performance. Then range-rate residuals are computed from these two datasetsrespectively and analysed. We further compare the system noise of four K-and Ka- band frequencies of the two spacecrafts, with range-rate residuals. Strong signatures of mis-pointing errors can be seen in the range-rate residuals. Also, correlation between range frequency noise and range-rate residuals are seen.
A Starshade Petal Error Budget for Exo-Earth Detection and Characterization
NASA Technical Reports Server (NTRS)
Shaklan, Stuart B.; Marchen, Luis; Lisman, P. Douglas; Cady, Eric; Martin, Stefan; Thomson, Mark; Dumont, Philip; Kasdin, N. Jeremy
2011-01-01
We present a starshade error budget with engineering requirements that are well within the current manufacturing and metrology capabilities. The error budget is based on an observational scenario in which the starshade spins about its axis on timescales short relative to the zodi-limited integration time, typically several hours. The scatter from localized petal errors is smoothed into annuli around the center of the image plane, resulting in a large reduction in the background flux variation while reducing thermal gradients caused by structural shadowing. Having identified the performance sensitivity to petal shape errors with spatial periods of 3-4 cycles/petal as the most challenging aspect of the design, we have adopted and modeled a manufacturing approach that mitigates these perturbations with 1-meter-long precision edge segments positioned using commercial metrology that readily meets assembly requirements. We have performed detailed thermal modeling and show that the expected thermal deformations are well within the requirements as well. We compare the requirements for four cases: a 32 meter diameter starshade with a 1.5 meter telescope, analyzed at 75 and 90 milliarcseconds, and a 40 meter diameter starshade with a 4 meter telescope, analyzed at 60 and 75 milliarcseconds.
NASA Technical Reports Server (NTRS)
Avis, L. M.; Green, R. N.; Suttles, J. T.; Gupta, S. K.
1984-01-01
Computer simulations of a least squares estimator operating on the ERBE scanning channels are discussed. The estimator is designed to minimize the errors produced by nonideal spectral response to spectrally varying and uncertain radiant input. The three ERBE scanning channels cover a shortwave band a longwave band and a ""total'' band from which the pseudo inverse spectral filter estimates the radiance components in the shortwave band and a longwave band. The radiance estimator draws on instantaneous field of view (IFOV) scene type information supplied by another algorithm of the ERBE software, and on a priori probabilistic models of the responses of the scanning channels to the IFOV scene types for given Sun scene spacecraft geometry. It is found that the pseudoinverse spectral filter is stable, tolerant of errors in scene identification and in channel response modeling, and, in the absence of such errors, yields minimum variance and essentially unbiased radiance estimates.
EUV local CDU healing performance and modeling capability towards 5nm node
NASA Astrophysics Data System (ADS)
Jee, Tae Kwon; Timoshkov, Vadim; Choi, Peter; Rio, David; Tsai, Yu-Cheng; Yaegashi, Hidetami; Koike, Kyohei; Fonseca, Carlos; Schoofs, Stijn
2017-10-01
Both local variability and optical proximity correction (OPC) errors are big contributors to the edge placement error (EPE) budget which is closely related to the device yield. The post-litho contact hole healing will be demonstrated to meet after-etch local variability specifications using a low dose, 30mJ/cm2 dose-to-size, positive tone developed (PTD) resist with relevant throughput in high volume manufacturing (HVM). The total local variability of the node 5nm (N5) contact holes will be characterized in terms of local CD uniformity (LCDU), local placement error (LPE), and contact edge roughness (CER) using a statistical methodology. The CD healing process has complex etch proximity effects, so the OPC prediction accuracy is challenging to meet EPE requirements for the N5. Thus, the prediction accuracy of an after-etch model will be investigated and discussed using ASML Tachyon OPC model.
Oriented Scintillation Spectrometer Experiment (OSSE). Revision A. Volume 1
1988-05-19
SYSTEM-LEVEL ENVIRONMENTAL TESTS ................... 108 3.5.1 OPERATION REPORT, PROOF MODEL STRUCTURE TESTS.. .108 3.5.1.1 PROOF MODEL MODAL SURVEY...81 3-21 ALIGNMENT ERROR BUDGET, FOV, A4 ................ 82 3-22 ALIGNMENT ERROR BUDGET, ROTATION AXIS, A4 ...... 83 3-23 OSSE PROOF MODEL MODAL SURVEY...PROOF MODEL MODAL SURVEY .................. 112 3-27-1 OSSE PROOF MODEL STATIC LOAD TEST ............. 116 3-27-2 OSSE PROOF MODEL STATIC LOAD TEST
Kinetic energy budgets in areas of intense convection
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.; Berecek, E. M.; Ebel, D. M.; Jedlovec, G. J.
1980-01-01
A kinetic energy budget analysis of the AVE-SESAME 1 period which coincided with the deadly Red River Valley tornado outbreak is presented. Horizontal flux convergence was found to be the major kinetic energy source to the region, while cross contour destruction was the major sink. Kinetic energy transformations were dominated by processes related to strong jet intrusion into the severe storm area. A kinetic energy budget of the AVE 6 period also is presented. The effects of inherent rawinsonde data errors on widely used basic kinematic parameters, including velocity divergence, vorticity advection, and kinematic vertical motion are described. In addition, an error analysis was performed in terms of the kinetic energy budget equation. Results obtained from downward integration of the continuity equation to obtain kinematic values of vertical motion are described. This alternate procedure shows promising results in severe storm situations.
Closing the brain-to-brain loop in laboratory testing.
Plebani, Mario; Lippi, Giuseppe
2011-07-01
Abstract The delivery of laboratory services has been described 40 years ago and defined with the foremost concept of "brain-to-brain turnaround time loop". This concept consists of several processes, including the final step which is the action undertaken on the patient based on laboratory information. Unfortunately, the need for systematic feedback to improve the value of laboratory services has been poorly understood and, even more risky, poorly applied in daily laboratory practice. Currently, major problems arise from the unavailability of consensually accepted quality specifications for the extra-analytical phase of laboratory testing. This, in turn, does not allow clinical laboratories to calculate a budget for the "patient-related total error". The definition and use of the term "total error" refers only to the analytical phase, and should be better defined as "total analytical error" to avoid any confusion and misinterpretation. According to the hierarchical approach to classify strategies to set analytical quality specifications, the "assessment of the effect of analytical performance on specific clinical decision-making" is comprehensively at the top and therefore should be applied as much as possible to address analytical efforts towards effective goals. In addition, an increasing number of laboratories worldwide are adopting risk management strategies such as FMEA, FRACAS, LEAN and Six Sigma since these techniques allow the identification of the most critical steps in the total testing process, and to reduce the patient-related risk of error. As a matter of fact, an increasing number of laboratory professionals recognize the importance of understanding and monitoring any step in the total testing process, including the appropriateness of the test request as well as the appropriate interpretation and utilization of test results.
Cost effectiveness of the stream-gaging program in Louisiana
Herbert, R.A.; Carlson, D.D.
1985-01-01
This report documents the results of a study of the cost effectiveness of the stream-gaging program in Louisiana. Data uses and funding sources were identified for the 68 continuous-record stream gages currently (1984) in operation with a budget of $408,700. Three stream gages have uses specific to a short-term study with no need for continued data collection beyond the study. The remaining 65 stations should be maintained in the program for the foreseeable future. In addition to the current operation of continuous-record stations, a number of wells, flood-profile gages, crest-stage gages, and stage stations, are serviced on the continuous-record station routes; thus, increasing the current budget to $423,000. The average standard error of estimate for data collected at the stations is 34.6%. Standard errors computed in this study are one measure of streamflow errors, and can be used as guidelines in comparing the effectiveness of alternative networks. By using the routes and number of measurements prescribed by the ' Traveling Hydrographer Program, ' the standard error could be reduced to 31.5% with the current budget of $423,000. If the gaging resources are redistributed, the 34.6% overall level of accuracy at the 68 continuous-record sites and the servicing of the additional wells or gages could be maintained with a budget of approximately $410,000. (USGS)
Nimbus-7 Earth radiation budget calibration history. Part 1: The solar channels
NASA Technical Reports Server (NTRS)
Kyle, H. Lee; Hoyt, Douglas V.; Hickey, John R.; Maschhoff, Robert H.; Vallette, Brenda J.
1993-01-01
The Earth Radiation Budget (ERB) experiment on the Nimbus-7 satellite measured the total solar irradiance plus broadband spectral components on a nearly daily basis from 16 Nov. 1978, until 16 June 1992. Months of additional observations were taken in late 1992 and in 1993. The emphasis is on the electrically self calibrating cavity radiometer, channel 10c, which recorded accurate total solar irradiance measurements over the whole period. The spectral channels did not have inflight calibration adjustment capabilities. These channels can, with some additional corrections, be used for short-term studies (one or two solar rotations - 27 to 60 days), but not for long-term trend analysis. For channel 10c, changing radiometer pointing, the zero offsets, the stability of the gain, the temperature sensitivity, and the influences of other platform instruments are all examined and their effects on the measurements considered. Only the question of relative accuracy (not absolute) is examined. The final channel 10c product is also compared with solar measurements made by independent experiments on other satellites. The Nimbus experiment showed that the mean solar energy was about 0.1 percent (1.4 W/sqm) higher in the excited Sun years of 1979 and 1991 than in the quiet Sun years of 1985 and 1986. The error analysis indicated that the measured long-term trends may be as accurate as +/- 0.005 percent. The worse-case error estimate is +/- 0.03 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Dam, M A; Mignant, D L; Macintosh, B A
In this paper, the adaptive optics (AO) system at the W.M. Keck Observatory is characterized. The authors calculate the error budget of the Keck AO system operating in natural guide star mode with a near infrared imaging camera. By modeling the control loops and recording residual centroids, the measurement noise and band-width errors are obtained. The error budget is consistent with the images obtained. Results of sky performance tests are presented: the AO system is shown to deliver images with average Strehl ratios of up to 0.37 at 1.58 {micro}m using a bright guide star and 0.19 for a magnitudemore » 12 star.« less
Cost-effectiveness of the stream-gaging program in New Jersey
Schopp, R.D.; Ulery, R.L.
1984-01-01
The results of a study of the cost-effectiveness of the stream-gaging program in New Jersey are documented. This study is part of a 5-year nationwide analysis undertaken by the U.S. Geological Survey to define and document the most cost-effective means of furnishing streamflow information. This report identifies the principal uses of the data and relates those uses to funding sources, applies, at selected stations, alternative less costly methods (that is flow routing, regression analysis) for furnishing the data, and defines a strategy for operating the program which minimizes uncertainty in the streamflow data for specific operating budgets. Uncertainty in streamflow data is primarily a function of the percentage of missing record and the frequency of discharge measurements. In this report, 101 continuous stream gages and 73 crest-stage or stage-only gages are analyzed. A minimum budget of $548,000 is required to operate the present stream-gaging program in New Jersey with an average standard error of 27.6 percent. The maximum budget analyzed was $650,000, which resulted in an average standard error of 17.8 percent. The 1983 budget of $569,000 resulted in a standard error of 24.9 percent under present operating policy. (USGS)
Space shuttle navigation analysis
NASA Technical Reports Server (NTRS)
Jones, H. L.; Luders, G.; Matchett, G. A.; Sciabarrasi, J. E.
1976-01-01
A detailed analysis of space shuttle navigation for each of the major mission phases is presented. A covariance analysis program for prelaunch IMU calibration and alignment for the orbital flight tests (OFT) is described, and a partial error budget is presented. The ascent, orbital operations and deorbit maneuver study considered GPS-aided inertial navigation in the Phase III GPS (1984+) time frame. The entry and landing study evaluated navigation performance for the OFT baseline system. Detailed error budgets and sensitivity analyses are provided for both the ascent and entry studies.
The Global Energy Balance of Titan
NASA Technical Reports Server (NTRS)
Li, Liming; Nixon, Conor A.; Achterberg, Richard K.; Smith, Mark A.; Gorius, Nicolas J. P.; Jiang, Xun; Conrath, Barney J.; Gierasch, Peter J.; Simon-Miller, Amy A.; Flasar, F. Michael;
2011-01-01
We report the first measurement of the global emitted power of Titan. Longterm (2004-2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 plus or minus 0.01) x 10(exp 8) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 5.3%.
Kinetic energy budget during strong jet stream activity over the eastern United States
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.; Scoggins, J. R.
1980-01-01
Kinetic energy budgets are computed during a cold air outbreak in association with strong jet stream activity over the eastern United States. The period is characterized by large generation of kinetic energy due to cross-contour flow. Horizontal export and dissipation of energy to subgrid scales of motion constitute the important energy sinks. Rawinsonde data at 3 and 6 h intervals during a 36 h period are used in the analysis and reveal that energy fluctuations on a time scale of less than 12 h are generally small even though the overall energy balance does change considerably during the period in conjunction with an upper level trough which moves through the region. An error analysis of the energy budget terms suggests that this major change in the budget is not due to random errors in the input data but is caused by the changing synoptic situation. The study illustrates the need to consider the time and space scales of associated weather phenomena in interpreting energy budgets obtained through use of higher frequency data.
76 FR 55139 - Order Making Fiscal Year 2012 Annual Adjustments to Registration Fee Rates
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-06
... Congressional Budget Office (``CBO'') and Office of Management and Budget (``OMB'') to project the aggregate... given by exp(FLAAMOP t + [sigma] n \\2\\/2), where [sigma] n denotes the standard error of the n-step...
The DiskMass Survey. II. Error Budget
NASA Astrophysics Data System (ADS)
Bershady, Matthew A.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.; Martinsson, Thomas
2010-06-01
We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio (Υ_{*}), and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies. We find that a disk inclination range of 25°-35° is optimal for our measurements, consistent with our survey design to select nearly face-on galaxies. Uncertainties in disk scale heights are significant, but can be estimated from radial scale lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and an extensive library of observed stars. We show that the baryon-to-total mass fraction ({F}_bar) is not a well-defined observational quantity because it is coupled to the halo mass model. This remains true even when the disk mass is known and spatially extended rotation curves are available. In contrast, the fraction of the rotation speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the baryonic disk contribution to the potential. We construct the error budget for the key quantities: dynamical disk mass surface density (Σdyn), disk stellar mass-to-light ratio (Υ^disk_{*}), and disk maximality ({F}_{*,max}^disk≡ V^disk_{*,max}/ V_c). Random and systematic errors in these quantities for individual galaxies will be ~25%, while survey precision for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.
Characterizing the SWOT discharge error budget on the Sacramento River, CA
NASA Astrophysics Data System (ADS)
Yoon, Y.; Durand, M. T.; Minear, J. T.; Smith, L.; Merry, C. J.
2013-12-01
The Surface Water and Ocean Topography (SWOT) is an upcoming satellite mission (2020 year) that will provide surface-water elevation and surface-water extent globally. One goal of SWOT is the estimation of river discharge directly from SWOT measurements. SWOT discharge uncertainty is due to two sources. First, SWOT cannot measure channel bathymetry and determine roughness coefficient data necessary for discharge calculations directly; these parameters must be estimated from the measurements or from a priori information. Second, SWOT measurement errors directly impact the discharge estimate accuracy. This study focuses on characterizing parameter and measurement uncertainties for SWOT river discharge estimation. A Bayesian Markov Chain Monte Carlo scheme is used to calculate parameter estimates, given the measurements of river height, slope and width, and mass and momentum constraints. The algorithm is evaluated using simulated both SWOT and AirSWOT (the airborne version of SWOT) observations over seven reaches (about 40 km) of the Sacramento River. The SWOT and AirSWOT observations are simulated by corrupting the ';true' HEC-RAS hydraulic modeling results with the instrument error. This experiment answers how unknown bathymetry and roughness coefficients affect the accuracy of the river discharge algorithm. From the experiment, the discharge error budget is almost completely dominated by unknown bathymetry and roughness; 81% of the variance error is explained by uncertainties in bathymetry and roughness. Second, we show how the errors in water surface, slope, and width observations influence the accuracy of discharge estimates. Indeed, there is a significant sensitivity to water surface, slope, and width errors due to the sensitivity of bathymetry and roughness to measurement errors. Increasing water-surface error above 10 cm leads to a corresponding sharper increase of errors in bathymetry and roughness. Increasing slope error above 1.5 cm/km leads to a significant degradation due to direct error in the discharge estimates. As the width error increases past 20%, the discharge error budget is dominated by the width error. Above two experiments are performed based on AirSWOT scenarios. In addition, we explore the sensitivity of the algorithm to the SWOT scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchesini, Danilo; Whitaker, Katherine E.; Brammer, Gabriel
2010-12-10
We use the optical to mid-infrared coverage of the NEWFIRM Medium-Band Survey (NMBS) to characterize, for the first time, the properties of a mass-complete sample of 14 galaxies at 3.0 {<=} z < 4.0 with M{sub star}>2.5 x 10{sup 11} M{sub sun}, and to derive significantly more accurate measurements of the high-mass end of the stellar mass function (SMF) of galaxies at 3.0 {<=} z < 4.0. The accurate photometric redshifts and well-sampled spectral energy distributions (SEDs) provided by the NMBS combined with the large surveyed area result in significantly reduced contributions from photometric redshift errors and cosmic variance tomore » the total error budget of the SMF. The typical very massive galaxy at 3.0 {<=} z < 4.0 is red and faint in the observer's optical, with a median r-band magnitude of (r{sub tot}) = 26.1, and median rest-frame U - V colors of (U - V) = 1.6. About 60% of the mass-complete sample has optical colors satisfying either the U- or the B-dropout color criteria, although {approx}50% of these galaxies has r>25.5. We find that {approx}30% of the sample has star formation rates (SFRs) from SED modeling consistent with zero, although SFRs of up to {approx}1-18 M{sub sun} yr{sup -1} are also allowed within 1{sigma}. However, >80% of the sample is detected at 24 {mu}m, resulting in total infrared luminosities in the range (0.5-4.0) x 10{sup 13} L{sub sun}. This implies the presence of either dust-enshrouded starburst activity (with SFRs of 600-4300 M{sub sun} yr{sup -1}) and/or highly obscured active galactic nuclei (AGNs). The contribution of galaxies with M{sub star}>2.5 x 10{sup 11} M{sub sun} to the total stellar mass budget at 3.0 {<=} z < 4.0 is {approx}8{sup +13}{sub -3}%. Compared to recent estimates of the stellar mass density in galaxies with M{sub star} {approx} 10{sup 9}-10{sup 11} M{sub sun} at z {approx} 5 and z {approx} 6, we find an evolution by a factor of 2-7 and 3-22 from z {approx} 5 and z {approx} 6, respectively, to z = 3.5. The previously found disagreement at the high-mass end between observed and model-predicted SMFs is now significant at the 3{sigma} level when only random uncertainties are considered. However, systematic uncertainties dominate the total error budget, with errors up to a factor of {approx}8 in the densities at the high-mass end, bringing the observed SMF in marginal agreement with the predicted SMF. Additional systematic uncertainties on the high-mass end could be potentially introduced by either (1) the intense star formation and/or the very common AGN activities as inferred from the MIPS 24 {mu}m detections, and/or (2) contamination by a significant population of massive, old, and dusty galaxies at z {approx} 2.6.« less
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, Larry, L.
2013-01-01
Great effort has been devoted towards validating geophysical parameters retrieved from ultraspectral infrared radiances obtained from satellite remote sensors. An error consistency analysis scheme (ECAS), utilizing fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of mean difference and standard deviation of error in both spectral radiance and retrieval domains. The retrieval error is assessed through ECAS without relying on other independent measurements such as radiosonde data. ECAS establishes a link between the accuracies of radiances and retrieved geophysical parameters. ECAS can be applied to measurements from any ultraspectral instrument and any retrieval scheme with its associated RTM. In this manuscript, ECAS is described and demonstrated with measurements from the MetOp-A satellite Infrared Atmospheric Sounding Interferometer (IASI). This scheme can be used together with other validation methodologies to give a more definitive characterization of the error and/or uncertainty of geophysical parameters retrieved from ultraspectral radiances observed from current and future satellite remote sensors such as IASI, the Atmospheric Infrared Sounder (AIRS), and the Cross-track Infrared Sounder (CrIS).
NASA Astrophysics Data System (ADS)
Nikolsky, Peter; Strolenberg, Chris; Nielsen, Rasmus; Nooitgedacht, Tjitte; Davydova, Natalia; Yang, Greg; Lee, Shawn; Park, Chang-Min; Kim, Insung; Yeo, Jeong-Ho
2013-04-01
As the International Technology Roadmap for Semiconductors critical dimension uniformity (CDU) specification shrinks, semiconductor companies need to maintain a high yield of good wafers per day and high performance (and hence market value) of finished products. This cannot be achieved without continuous analysis and improvement of on-product CDU as one of the main drivers for process control and optimization with better understanding of main contributors from the litho cluster: mask, process, metrology and scanner. We will demonstrate a study of mask CDU characterization and its impact on CDU Budget Breakdown (CDU BB) performed for advanced extreme ultraviolet (EUV) lithography with 1D (dense lines) and 2D (dense contacts) feature cases. We will show that this CDU contributor is one of the main differentiators between well-known ArFi and new EUV CDU budgeting principles. We found that reticle contribution to intrafield CDU should be characterized in a specific way: mask absorber thickness fingerprints play a role comparable with reticle CDU in the total reticle part of the CDU budget. Wafer CD fingerprints, introduced by this contributor, may or may not compensate variations of mask CDs and hence influence on total mask impact on intrafield CDU at the wafer level. This will be shown on 1D and 2D feature examples. Mask stack reflectivity variations should also be taken into account: these fingerprints have visible impact on intrafield CDs at the wafer level and should be considered as another contributor to the reticle part of EUV CDU budget. We also observed mask error enhancement factor (MEEF) through field fingerprints in the studied EUV cases. Variations of MEEF may play a role towards the total intrafield CDU and may need to be taken into account for EUV lithography. We characterized MEEF-through-field for the reviewed features, with results herein, but further analysis of this phenomenon is required. This comprehensive approach to quantifying the mask part of the overall EUV CDU contribution helps deliver an accurate and integral CDU BB per product/process and litho tool. The better understanding of the entire CDU budget for advanced EUVL nodes achieved by Samsung and ASML helps extend the limits of Moore's Law and to deliver successful implementation of smaller, faster and smarter chips in semiconductor industry.
Size, Stability and Incremental Budgeting Outcomes in Public Universities.
ERIC Educational Resources Information Center
Schick, Allen G.; Hills, Frederick S.
1982-01-01
Examined the influence of relative size in the analysis of total dollar and workforce budgets, and changes in total dollar and workforce budgets when correlational/regression methods are used. Data suggested that size dominates the analysis of total budgets, and is not a factor when discretionary dollar increments are analyzed. (JAC)
Assessing and measuring wetland hydrology
Rosenberry, Donald O.; Hayashi, Masaki; Anderson, James T.; Davis, Craig A.
2013-01-01
Virtually all ecological processes that occur in wetlands are influenced by the water that flows to, from, and within these wetlands. This chapter provides the “how-to” information for quantifying the various source and loss terms associated with wetland hydrology. The chapter is organized from a water-budget perspective, with sections associated with each of the water-budget components that are common in most wetland settings. Methods for quantifying the water contained within the wetland are presented first, followed by discussion of each separate component. Measurement accuracy and sources of error are discussed for each of the methods presented, and a separate section discusses the cumulative error associated with determining a water budget for a wetland. Exercises and field activities will provide hands-on experience that will facilitate greater understanding of these processes.
Error Budgets for the Exoplanet Starshade (exo-s) Probe-Class Mission Study
NASA Technical Reports Server (NTRS)
Shaklan, Stuart B.; Marchen, Luis; Cady, Eric; Ames, William; Lisman, P. Douglas; Martin, Stefan R.; Thomson, Mark; Regehr, Martin
2015-01-01
Exo-S is a probe-class mission study that includes the Dedicated mission, a 30 millimeters starshade co-launched with a 1.1 millimeter commercial telescope in an Earth-leading deep-space orbit, and the Rendezvous mission, a 34 millimeter starshade intended to work with a 2.4 millimeters telescope in an Earth-Sun L2 orbit. A third design, referred to as the Rendezvous Earth Finder mission, is based on a 40 millimeter starshade and is currently under study. This paper presents error budgets for the detection of Earth-like planets with each of these missions. The budgets include manufacture and deployment tolerances, the allowed thermal fluctuations and dynamic motions, formation flying alignment requirements, surface and edge reflectivity requirements, and the allowed transmission due to micrometeoroid damage.
Error budgets for the Exoplanet Starshade (Exo-S) probe-class mission study
NASA Astrophysics Data System (ADS)
Shaklan, Stuart B.; Marchen, Luis; Cady, Eric; Ames, William; Lisman, P. Douglas; Martin, Stefan R.; Thomson, Mark; Regehr, Martin
2015-09-01
Exo-S is a probe-class mission study that includes the Dedicated mission, a 30 m starshade co-launched with a 1.1 m commercial telescope in an Earth-leading deep-space orbit, and the Rendezvous mission, a 34 m starshade intended to work with a 2.4 m telescope in an Earth-Sun L2 orbit. A third design, referred to as the Rendezvous Earth Finder mission, is based on a 40 m starshade and is currently under study. This paper presents error budgets for the detection of Earth-like planets with each of these missions. The budgets include manufacture and deployment tolerances, the allowed thermal fluctuations and dynamic motions, formation flying alignment requirements, surface and edge reflectivity requirements, and the allowed transmission due to micrometeoroid damage.
NASA Astrophysics Data System (ADS)
Wu, Guocan; Zheng, Xiaogu; Dan, Bo
2016-04-01
The shallow soil moisture observations are assimilated into Common Land Model (CoLM) to estimate the soil moisture in different layers. The forecast error is inflated to improve the analysis state accuracy and the water balance constraint is adopted to reduce the water budget residual in the assimilation procedure. The experiment results illustrate that the adaptive forecast error inflation can reduce the analysis error, while the proper inflation layer can be selected based on the -2log-likelihood function of the innovation statistic. The water balance constraint can result in reducing water budget residual substantially, at a low cost of assimilation accuracy loss. The assimilation scheme can be potentially applied to assimilate the remote sensing data.
40 CFR 97.256 - Account error.
Code of Federal Regulations, 2010 CFR
2010-07-01
... BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR SO2 Allowance Tracking System § 97.256... any error in any CAIR SO2 Allowance Tracking System account. Within 10 business days of making such...
Improved Calibration through SMAP RFI Change Detection
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey; De Amici, Giovanni; Mohammed, Priscilla; Peng, Jinzheng
2017-01-01
Anthropogenic Radio-Frequency Interference (RFI) drove both the SMAP (Soil Moisture Active Passive) microwave radiometer hardware and Level 1 science algorithm designs to use new technology and techniques for the first time on a spaceflight project. Care was taken to provide special features allowing the detection and removal of harmful interference in order to meet the error budget. Nonetheless, the project accepted a risk that RFI and its mitigation would exceed the 1.3-K error budget. Thus, RFI will likely remain a challenge afterwards due to its changing and uncertain nature. To address the challenge, we seek to answer the following questions: How does RFI evolve over the SMAP lifetime? What calibration error does the changing RFI environment cause? Can time series information be exploited to reduce these errors and improve calibration for all science products reliant upon SMAP radiometer data? In this talk, we address the first question.
Cost effectiveness of stream-gaging program in Michigan
Holtschlag, D.J.
1985-01-01
This report documents the results of a study of the cost effectiveness of the stream-gaging program in Michigan. Data uses and funding sources were identified for the 129 continuous gaging stations being operated in Michigan as of 1984. One gaging station was identified as having insufficient reason to continue its operation. Several stations were identified for reactivation, should funds become available, because of insufficiencies in the data network. Alternative methods of developing streamflow information based on routing and regression analyses were investigated for 10 stations. However, no station records were reproduced with sufficient accuracy to replace conventional gaging practices. A cost-effectiveness analysis of the data-collection procedure for the ice-free season was conducted using a Kalman-filter analysis. To define missing-record characteristics, cross-correlation coefficients and coefficients of variation were computed at stations on the basis of daily mean discharge. Discharge-measurement data were used to describe the gage/discharge rating stability at each station. The results of the cost-effectiveness analysis for a 9-month ice-free season show that the current policy of visiting most stations on a fixed servicing schedule once every 6 weeks results in an average standard error of 12.1 percent for the current $718,100 budget. By adopting a flexible servicing schedule, the average standard error could be reduced to 11.1 percent. Alternatively, the budget could be reduced to $700,200 while maintaining the current level of accuracy. A minimum budget of $680,200 is needed to operate the 129-gaging-station program; a budget less than this would not permit proper service and maintenance of stations. At the minimum budget, the average standard error would be 14.4 percent. A budget of $789,900 (the maximum analyzed) would result in a decrease in the average standard error to 9.07 percent. Owing to continual changes in the composition of the network and the changes in the uncertainties of streamflow accuracy at individual stations, the cost-effectiveness analysis will need to be updated regularly if it is to be used as a management tool. Cost of these updates need to be considered in decisions concerning the feasibility of flexible servicing schedules.
Budgets of divergent and rotational kinetic energy during two periods of intense convection
NASA Technical Reports Server (NTRS)
Buechler, D. E.; Fuelberg, H. E.
1986-01-01
The derivations of the energy budget equations for divergent and rotational components of kinetic energy are provided. The intense convection periods studied are: (1) synoptic scale data of 3 or 6 hour intervals and (2) mesoalphascale data every 3 hours. Composite energies and averaged budgets for the periods are presented; the effects of random data errors on derived energy parameters is investigated. The divergent kinetic energy and rotational kinetic energy budgets are compared; good correlation of the data is observed. The kinetic energies and budget terms increase with convective development; however, the conversion of the divergent and rotational energies are opposite.
22 CFR 96.33 - Budget, audit, insurance, and risk assessment requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... its governing body, if applicable, for management of its funds. The budget discloses all remuneration (including perquisites) paid to the agency's or person's board of directors, managers, employees, and... determining the type and amount of professional, general, directors' and officers', errors and omissions, and...
Determination of Barometric Altimeter Errors for the Orion Exploration Flight Test-1 Entry
NASA Technical Reports Server (NTRS)
Brown, Denise L.; Bunoz, Jean-Philippe; Gay, Robert
2012-01-01
The Exploration Flight Test 1 (EFT-1) mission is the unmanned flight test for the upcoming Multi-Purpose Crew Vehicle (MPCV). During entry, the EFT-1 vehicle will trigger several Landing and Recovery System (LRS) events, such as parachute deployment, based on on-board altitude information. The primary altitude source is the filtered navigation solution updated with GPS measurement data. The vehicle also has three barometric altimeters that will be used to measure atmospheric pressure during entry. In the event that GPS data is not available during entry, the altitude derived from the barometric altimeter pressure will be used to trigger chute deployment for the drogues and main parachutes. Therefore it is important to understand the impact of error sources on the pressure measured by the barometric altimeters and on the altitude derived from that pressure. The error sources for the barometric altimeters are not independent, and many error sources result in bias in a specific direction. Therefore conventional error budget methods could not be applied. Instead, high fidelity Monte-Carlo simulation was performed and error bounds were determined based on the results of this analysis. Aerodynamic errors were the largest single contributor to the error budget for the barometric altimeters. The large errors drove a change to the altitude trigger setpoint for FBC jettison deploy.
Investigation of Primary Mirror Segment's Residual Errors for the Thirty Meter Telescope
NASA Technical Reports Server (NTRS)
Seo, Byoung-Joon; Nissly, Carl; Angeli, George; MacMynowski, Doug; Sigrist, Norbert; Troy, Mitchell; Williams, Eric
2009-01-01
The primary mirror segment aberrations after shape corrections with warping harness have been identified as the single largest error term in the Thirty Meter Telescope (TMT) image quality error budget. In order to better understand the likely errors and how they will impact the telescope performance we have performed detailed simulations. We first generated unwarped primary mirror segment surface shapes that met TMT specifications. Then we used the predicted warping harness influence functions and a Shack-Hartmann wavefront sensor model to determine estimates for the 492 corrected segment surfaces that make up the TMT primary mirror. Surface and control parameters, as well as the number of subapertures were varied to explore the parameter space. The corrected segment shapes were then passed to an optical TMT model built using the Jet Propulsion Laboratory (JPL) developed Modeling and Analysis for Controlled Optical Systems (MACOS) ray-trace simulator. The generated exit pupil wavefront error maps provided RMS wavefront error and image-plane characteristics like the Normalized Point Source Sensitivity (PSSN). The results have been used to optimize the segment shape correction and wavefront sensor designs as well as provide input to the TMT systems engineering error budgets.
Propagation of angular errors in two-axis rotation systems
NASA Astrophysics Data System (ADS)
Torrington, Geoffrey K.
2003-10-01
Two-Axis Rotation Systems, or "goniometers," are used in diverse applications including telescope pointing, automotive headlamp testing, and display testing. There are three basic configurations in which a goniometer can be built depending on the orientation and order of the stages. Each configuration has a governing set of equations which convert motion between the system "native" coordinates to other base systems, such as direction cosines, optical field angles, or spherical-polar coordinates. In their simplest form, these equations neglect errors present in real systems. In this paper, a statistical treatment of error source propagation is developed which uses only tolerance data, such as can be obtained from the system mechanical drawings prior to fabrication. It is shown that certain error sources are fully correctable, partially correctable, or uncorrectable, depending upon the goniometer configuration and zeroing technique. The system error budget can be described by a root-sum-of-squares technique with weighting factors describing the sensitivity of each error source. This paper tabulates weighting factors at 67% (k=1) and 95% (k=2) confidence for various levels of maximum travel for each goniometer configuration. As a practical example, this paper works through an error budget used for the procurement of a system at Sandia National Laboratories.
Designing Measurement Studies under Budget Constraints: Controlling Error of Measurement and Power.
ERIC Educational Resources Information Center
Marcoulides, George A.
1995-01-01
A methodology is presented for minimizing the mean error variance-covariance component in studies with resource constraints. The method is illustrated using a one-facet multivariate design. Extensions to other designs are discussed. (SLD)
Quantifying uncertainty in forest nutrient budgets
Ruth D. Yanai; Carrie R. Levine; Mark B. Green; John L. Campbell
2012-01-01
Nutrient budgets for forested ecosystems have rarely included error analysis, in spite of the importance of uncertainty to interpretation and extrapolation of the results. Uncertainty derives from natural spatial and temporal variation and also from knowledge uncertainty in measurement and models. For example, when estimating forest biomass, researchers commonly report...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-28
... Identifier: CMS-10003] Public Information Collection Requirements Submitted to the Office of Management and Budget (OMB); Correction AGENCY: Centers for Medicare & Medicaid Services (CMS), HHS. ACTION: Correction of notice. SUMMARY: This document corrects a technical error in the notice [Document Identifier: CMS...
An Analysis of C4I Effectiveness Using the RESA Wargame
1994-06-01
the Target from Both comunities based on Warfare Specialty. SOURCE DF SS MS F p War Spec 1 1.0 1.0 0.02 0.898 ERROR 22 1372.6 62.4 TOTAL 23 1373.6...requirements. During the post Cold War era, a declining defense budget has forced complicated decisions concerning which systems the military will be...F-14 NFO 24. LT Donald Zwick, USN, EA-6B NFO 69 Appendix B: Basic Experimental Results Coil Col2 Col3 CoW4 Col5 Col6 Co17 War SpeC Level Stk Pack Sup
Water and nutrient budgets for Vancouver Lake, Vancouver, Washington, October 2010-October 2012
Sheibley, Rich W.; Foreman, James R.; Marshall, Cameron A.; Welch, Wendy B.
2014-01-01
Vancouver Lake, a large shallow lake in Clark County, near Vancouver, Washington, has been undergoing water-quality problems for decades. Recently, the biggest concern for the lake are the almost annual harmful cyanobacteria blooms that cause the lake to close for recreation for several weeks each summer. Despite decades of interest in improving the water quality of the lake, fundamental information on the timing and amount of water and nutrients entering and exiting the lake is lacking. In 2010, the U.S. Geological Survey conducted a 2-year field study to quantify water flows and nutrient loads in order to develop water and nutrient budgets for the lake. This report presents monthly and annual water and nutrient budgets from October 2010–October 2012 to identify major sources and sinks of nutrients. Lake River, a tidally influenced tributary to the lake, flows into and out of the lake almost daily and composed the greatest proportion of both the water and nutrient budgets for the lake, often at orders of magnitude greater than any other source. From the water budget, we identified precipitation, evaporation and groundwater inflow as minor components of the lake hydrologic cycle, each contributing 1 percent or less to the total water budget. Nutrient budgets were compiled monthly and annually for total nitrogen, total phosphorus, and orthophosphate; and, nitrogen loads were generally an order of magnitude greater than phosphorus loads across all sources. For total nitrogen, flow from Lake River at Felida, Washington, made up 88 percent of all inputs into the lake. For total phosphorus and orthophosphate, Lake River at Felida flowing into the lake was 91 and 76 percent of total inputs, respectively. Nutrient loads from precipitation and groundwater inflow were 1 percent or less of the total budgets. Nutrient inputs from Burnt Bridge Creek and Flushing Channel composed 12 percent of the total nitrogen budget, 8 percent of the total phosphorus budget, and 21 percent of the orthophosphate budget. We identified several data gaps and areas for future research, which include the need for better understanding nutrient inputs to the lake from sediment resuspension and better quantification of indirect nutrient inputs to the lake from Salmon Creek.
Dalton, Melinda S.; Aulenbach, Brent T.; Torak, Lynn J.
2004-01-01
Lake Seminole is a 37,600-acre impoundment formed at the confluence of the Flint and Chattahoochee Rivers along the Georgia?Florida State line. Outflow from Lake Seminole through Jim Woodruff Lock and Dam provides headwater to the Apalachicola River, which is a major supply of freshwater, nutrients, and detritus to ecosystems downstream. These rivers,together with their tributaries, are hydraulically connected to karst limestone units that constitute most of the Upper Floridan aquifer and to a chemically weathered residuum of undifferentiated overburden. The ground-water flow system near Lake Seminole consists of the Upper Floridan aquifer and undifferentiated overburden. The aquifer is confined below by low-permeability sediments of the Lisbon Formation and, generally, is semiconfined above by undifferentiated overburden. Ground-water flow within the Upper Floridan aquifer is unconfined or semiconfined and discharges at discrete points by springflow or diffuse leakage into streams and other surface-water bodies. The high degree of connectivity between the Upper Floridan aquifer and surface-water bodies is limited to the upper Eocene Ocala Limestone and younger units that are in contact with streams in the Lake Seminole area. The impoundment of Lake Seminole inundated natural stream channels and other low-lying areas near streams and raised the water-level altitude of the Upper Floridan aquifer near the lake to nearly that of the lake, about 77 feet. Surface-water inflow from the Chattahoochee and Flint Rivers and Spring Creek and outflow to the Apalachicola River through Jim Woodruff Lock and Dam dominate the water budget for Lake Seminole. About 81 percent of the total water-budget inflow consists of surface water; about 18 percent is ground water, and the remaining 1 percent is lake precipitation. Similarly, lake outflow consists of about 89 percent surface water, as flow to the Apalachicola River through Jim Woodruff Lock and Dam, about 4 percent ground water, and about 2 percent lake evaporation. Measurement error and uncertainty in flux calculations cause a flow imbalance of about 4 percent between inflow and outflow water-budget components. Most of this error can be attributed to errors in estimating ground-water discharge from the lake, which was calculated using a ground-water model calibrated to October 1986 conditions for the entire Apalachicola?Chattahoochee?Flint River Basin and not just the area around Lake Seminole. Evaporation rates were determined using the preferred, but mathematically complex, energy budget and five empirical equations: Priestley-Taylor, Penman, DeBruin-Keijman, Papadakis, and the Priestley-Taylor used by the Georgia Automated Environmental Monitoring Network. Empirical equations require a significant amount of data but are relatively easy to calculate and compare well to long-term average annual (April 2000?March 2001) pan evaporation, which is 65 inches. Calculated annual lake evaporation, for the study period, using the energy-budget method was 67.2 inches, which overestimated long-term average annual pan evaporation by 2.2 inches. The empirical equations did not compare well with the energy-budget method during the 18-month study period, with average differences in computed evaporation using each equation ranging from 8 to 26 percent. The empirical equations also compared poorly with long-term average annual pan evaporation, with average differences in evaporation ranging from 3 to 23 percent. Energy budget and long-term average annual pan evaporation estimates did compare well, with only a 3-percent difference between estimates. Monthly evaporation estimates using all methods ranged from 0.7 to 9.5 inches and were lowest during December 2000 and highest during May 2000. Although the energy budget is generally the preferred method, the dominance of surface water in the Lake Seminole water budget makes the method inaccurate and difficult to use, because surface water makes up m
Logging-related increases in stream density in a northern California watershed
Matthew S. Buffleben
2012-01-01
Although many sediment budgets estimate the effects of logging, few have considered the potential impact of timber harvesting on stream density. Failure to consider changes in stream density could lead to large errors in the sediment budget, particularly between the allocation of natural and anthropogenic sources of sediment.This study...
Use of Earth's magnetic field for mitigating gyroscope errors regardless of magnetic perturbation.
Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard
2011-01-01
Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth's magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth's magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment.
Use of Earth’s Magnetic Field for Mitigating Gyroscope Errors Regardless of Magnetic Perturbation
Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard
2011-01-01
Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth’s magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth’s magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment. PMID:22247672
Developing an Earth system Inverse model for the Earth's energy and water budgets.
NASA Astrophysics Data System (ADS)
Haines, K.; Thomas, C.; Liu, C.; Allan, R. P.; Carneiro, D. M.
2017-12-01
The CONCEPT-Heat project aims at developing a consistent energy budget for the Earth system in order to better understand and quantify global change. We advocate a variational "Earth system inverse" solution as the best methodology to bring the necessary expertise from different disciplines together. L'Ecuyer et al (2015) and Rodell et al (2015) first used a variational approach to adjust multiple satellite data products for air-sea-land vertical fluxes of heat and freshwater, achieving closed budgets on a regional and global scale. However their treatment of horizontal energy and water redistribution and its uncertainties was limited. Following the recent work of Liu et al (2015, 2017) which used atmospheric reanalysis convergences to derive a new total surface heat flux product from top of atmosphere fluxes, we have revisited the variational budget approach introducing a more extensive analysis of the role of horizontal transports of heat and freshwater, using multiple atmospheric and ocean reanalysis products. We find considerable improvements in fluxes in regions such as the North Atlantic and Arctic, for example requiring higher atmospheric heat and water convergences over the Arctic than given by ERA-Interim, thereby allowing lower and more realistic oceanic transports. We explore using the variational uncertainty analysis to produce lower resolution corrections to higher resolution flux products and test these against in situ flux data. We also explore the covariance errors implied between component fluxes that are imposed by the regional budget constraints. Finally we propose this as a valuable methodology for developing consistent observational constraints on the energy and water budgets in climate models. We take a first look at the same regional budget quantities in CMIP5 models and consider the implications of the differences for the processes and biases active in the models. Many further avenues of investigation are possible focused on better valuing the uncertainties in observational flux products and setting requirement targets for future observation programs.
Statistical analysis of the surface figure of the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
Lightsey, Paul A.; Chaney, David; Gallagher, Benjamin B.; Brown, Bob J.; Smith, Koby; Schwenker, John
2012-09-01
The performance of an optical system is best characterized by either the point spread function (PSF) or the optical transfer function (OTF). However, for system budgeting purposes, it is convenient to use a single scalar metric, or a combination of a few scalar metrics to track performance. For the James Webb Space Telescope, the Observatory level requirements were expressed in metrics of Strehl Ratio, and Encircled Energy. These in turn were converted to the metrics of total rms WFE and rms WFE within spatial frequency domains. The 18 individual mirror segments for the primary mirror segment assemblies (PMSA), the secondary mirror (SM), tertiary mirror (TM), and Fine Steering Mirror have all been fabricated. They are polished beryllium mirrors with a protected gold reflective coating. The statistical analysis of the resulting Surface Figure Error of these mirrors has been analyzed. The average spatial frequency distribution and the mirror-to-mirror consistency of the spatial frequency distribution are reported. The results provide insight to system budgeting processes for similar optical systems.
Ultraspectral sounding retrieval error budget and estimation
NASA Astrophysics Data System (ADS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, Larrabee L.; Yang, Ping
2011-11-01
The ultraspectral infrared radiances obtained from satellite observations provide atmospheric, surface, and/or cloud information. The intent of the measurement of the thermodynamic state is the initialization of weather and climate models. Great effort has been given to retrieving and validating these atmospheric, surface, and/or cloud properties. Error Consistency Analysis Scheme (ECAS), through fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of absolute and standard deviation of differences in both spectral radiance and retrieved geophysical parameter domains. The retrieval error is assessed through ECAS without assistance of other independent measurements such as radiosonde data. ECAS re-evaluates instrument random noise, and establishes the link between radiometric accuracy and retrieved geophysical parameter accuracy. ECAS can be applied to measurements of any ultraspectral instrument and any retrieval scheme with associated RTM. In this paper, ECAS is described and demonstration is made with the measurements of the METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI).
Ultraspectral Sounding Retrieval Error Budget and Estimation
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping
2011-01-01
The ultraspectral infrared radiances obtained from satellite observations provide atmospheric, surface, and/or cloud information. The intent of the measurement of the thermodynamic state is the initialization of weather and climate models. Great effort has been given to retrieving and validating these atmospheric, surface, and/or cloud properties. Error Consistency Analysis Scheme (ECAS), through fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of absolute and standard deviation of differences in both spectral radiance and retrieved geophysical parameter domains. The retrieval error is assessed through ECAS without assistance of other independent measurements such as radiosonde data. ECAS re-evaluates instrument random noise, and establishes the link between radiometric accuracy and retrieved geophysical parameter accuracy. ECAS can be applied to measurements of any ultraspectral instrument and any retrieval scheme with associated RTM. In this paper, ECAS is described and demonstration is made with the measurements of the METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI)..
Extended Kalman filter for attitude estimation of the earth radiation budget satellite
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Bar-Itzhack, Itzhack Y.
1989-01-01
The design and testing of an Extended Kalman Filter (EKF) for ground attitude determination, misalignment estimation and sensor calibration of the Earth Radiation Budget Satellite (ERBS) are described. Attitude is represented by the quaternion of rotation and the attitude estimation error is defined as an additive error. Quaternion normalization is used for increasing the convergence rate and for minimizing the need for filter tuning. The development of the filter dynamic model, the gyro error model and the measurement models of the Sun sensors, the IR horizon scanner and the magnetometers which are used to generate vector measurements are also presented. The filter is applied to real data transmitted by ERBS sensors. Results are presented and analyzed and the EKF advantages as well as sensitivities are discussed. On the whole the filter meets the expected synergism, accuracy and robustness.
NASA Astrophysics Data System (ADS)
Locatelli, Robin; Bousquet, Philippe; Chevallier, Frédéric
2013-04-01
Since the nineties, inverse modelling by assimilating atmospheric measurements into a chemical transport model (CTM) has been used to derive sources and sinks of atmospheric trace gases. More recently, the high global warming potential of methane (CH4) and unexplained variations of its atmospheric mixing ratio caught the attention of several research groups. Indeed, the diversity and the variability of methane sources induce high uncertainty on the present and the future evolution of CH4 budget. With the increase of available measurement data to constrain inversions (satellite data, high frequency surface and tall tower observations, FTIR spectrometry,...), the main limiting factor is about to become the representation of atmospheric transport in CTMs. Indeed, errors in transport modelling directly converts into flux changes when assuming perfect transport in atmospheric inversions. Hence, we propose an inter-model comparison in order to quantify the impact of transport and modelling errors on the CH4 fluxes estimated into a variational inversion framework. Several inversion experiments are conducted using the same set-up (prior emissions, measurement and prior errors, OH field, initial conditions) of the variational system PYVAR, developed at LSCE (Laboratoire des Sciences du Climat et de l'Environnement, France). Nine different models (ACTM, IFS, IMPACT, IMPACT1x1, MOZART, PCTM, TM5, TM51x1 and TOMCAT) used in TRANSCOM-CH4 experiment (Patra el al, 2011) provide synthetic measurements data at up to 280 surface sites to constrain the inversions performed using the PYVAR system. Only the CTM (and the meteorological drivers which drive them) used to create the pseudo-observations vary among inversions. Consequently, the comparisons of the nine inverted methane fluxes obtained for 2005 give a good order of magnitude of the impact of transport and modelling errors on the estimated fluxes with current and future networks. It is shown that transport and modelling errors lead to a discrepancy of 27 TgCH4 per year at global scale, representing 5% of the total methane emissions for 2005. At continental scale, transport and modelling errors have bigger impacts in proportion to the area of the regions, ranging from 36 TgCH4 in North America to 7 TgCH4 in Boreal Eurasian, with a percentage range from 23% to 48%. Thus, contribution of transport and modelling errors to the mismatch between measurements and simulated methane concentrations is large considering the present questions on the methane budget. Moreover, diagnostics of statistics errors included in our inversions have been computed. It shows that errors contained in measurement errors covariance matrix are under-estimated in current inversions, suggesting to include more properly transport and modelling errors in future inversions.
NASA Astrophysics Data System (ADS)
Kleinherenbrink, Marcel; Riva, Riccardo; Sun, Yu
2016-11-01
In this study, for the first time, an attempt is made to close the sea level budget on a sub-basin scale in terms of trend and amplitude of the annual cycle. We also compare the residual time series after removing the trend, the semiannual and the annual signals. To obtain errors for altimetry and Argo, full variance-covariance matrices are computed using correlation functions and their errors are fully propagated. For altimetry, we apply a geographically dependent intermission bias [Ablain et al.(2015)], which leads to differences in trends up to 0.8 mm yr-1. Since Argo float measurements are non-homogeneously spaced, steric sea levels are first objectively interpolated onto a grid before averaging. For the Gravity Recovery And Climate Experiment (GRACE), gravity fields full variance-covariance matrices are used to propagate errors and statistically filter the gravity fields. We use four different filtered gravity field solutions and determine which post-processing strategy is best for budget closure. As a reference, the standard 96 degree Dense Decorrelation Kernel-5 (DDK5)-filtered Center for Space Research (CSR) solution is used to compute the mass component (MC). A comparison is made with two anisotropic Wiener-filtered CSR solutions up to degree and order 60 and 96 and a Wiener-filtered 90 degree ITSG solution. Budgets are computed for 10 polygons in the North Atlantic Ocean, defined in a way that the error on the trend of the MC plus steric sea level remains within 1 mm yr-1. Using the anisotropic Wiener filter on CSR gravity fields expanded up to spherical harmonic degree 96, it is possible to close the sea level budget in 9 of 10 sub-basins in terms of trend. Wiener-filtered Institute of Theoretical geodesy and Satellite Geodesy (ITSG) and the standard DDK5-filtered CSR solutions also close the trend budget if a glacial isostatic adjustment (GIA) correction error of 10-20 % is applied; however, the performance of the DDK5-filtered solution strongly depends on the orientation of the polygon due to residual striping. In 7 of 10 sub-basins, the budget of the annual cycle is closed, using the DDK5-filtered CSR or the Wiener-filtered ITSG solutions. The Wiener-filtered 60 and 96 degree CSR solutions, in combination with Argo, lack amplitude and suffer from what appears to be hydrological leakage in the Amazon and Sahel regions. After reducing the trend, the semiannual and the annual signals, 24-53 % of the residual variance in altimetry-derived sea level time series is explained by the combination of Argo steric sea levels and the Wiener-filtered ITSG MC. Based on this, we believe that the best overall solution for the MC of the sub-basin-scale budgets is the Wiener-filtered ITSG gravity fields. The interannual variability is primarily a steric signal in the North Atlantic Ocean, so for this the choice of filter and gravity field solution is not really significant.
Performance analysis of next-generation lunar laser retroreflectors
NASA Astrophysics Data System (ADS)
Ciocci, Emanuele; Martini, Manuele; Contessa, Stefania; Porcelli, Luca; Mastrofini, Marco; Currie, Douglas; Delle Monache, Giovanni; Dell'Agnello, Simone
2017-09-01
Starting from 1969, Lunar Laser Ranging (LLR) to the Apollo and Lunokhod Cube Corner Retroreflectors (CCRs) provided several tests of General Relativity (GR). When deployed, the Apollo/Lunokhod CCRs design contributed only a negligible fraction of the ranging error budget. Today the improvement over the years in the laser ground stations makes the lunar libration contribution relevant. So the libration now dominates the error budget limiting the precision of the experimental tests of gravitational theories. The MoonLIGHT-2 project (Moon Laser Instrumentation for General relativity High-accuracy Tests - Phase 2) is a next-generation LLR payload developed by the Satellite/lunar/GNSS laser ranging/altimetry and Cube/microsat Characterization Facilities Laboratory (SCF _ Lab) at the INFN-LNF in collaboration with the University of Maryland. With its unique design consisting of a single large CCR unaffected by librations, MoonLIGHT-2 can significantly reduce error contribution of the reflectors to the measurement of the lunar geodetic precession and other GR tests compared to Apollo/Lunokhod CCRs. This paper treats only this specific next-generation lunar laser retroreflector (MoonLIGHT-2) and it is by no means intended to address other contributions to the global LLR error budget. MoonLIGHT-2 is approved to be launched with the Moon Express 1(MEX-1) mission and will be deployed on the Moon surface in 2018. To validate/optimize MoonLIGHT-2, the SCF _ Lab is carrying out a unique experimental test called SCF-Test: the concurrent measurement of the optical Far Field Diffraction Pattern (FFDP) and the temperature distribution of the CCR under thermal conditions produced with a close-match solar simulator and simulated space environment. The focus of this paper is to describe the SCF _ Lab specialized characterization of the performance of our next-generation LLR payload. While this payload will improve the contribution of the error budget of the space segment (MoonLIGHT-2) to GR tests and to constraints on new gravitational theories (like non-minimally coupled gravity and spacetime torsion), the description of the associated physics analysis and global LLR error budget is outside of the chosen scope of present paper. We note that, according to Reasenberg et al. (2016), software models used for LLR physics and lunar science cannot process residuals with an accuracy better than few centimeters and that, in order to process millimeter ranging data (or better) coming from (not only) future reflectors, it is necessary to update and improve the respective models inside the software package. The work presented here on results of the SCF-test thermal and optical analysis shows that a good performance is expected by MoonLIGHT-2 after its deployment on the Moon. This in turn will stimulate improvements in LLR ground segment hardware and help refine the LLR software code and models. Without a significant improvement of the LLR space segment, the acquisition of improved ground LLR hardware and challenging LLR software refinements may languish for lack of motivation, since the librations of the old generation LLR payloads largely dominate the global LLR error budget.
Cost-effectiveness of the stream-gaging program in Missouri
Waite, L.A.
1987-01-01
This report documents the results of an evaluation of the cost effectiveness of the 1986 stream-gaging program in Missouri. Alternative methods of developing streamflow information and cost-effective resource allocation were used to evaluate the Missouri program. Alternative methods were considered statewide, but the cost effective resource allocation study was restricted to the area covered by the Rolla field headquarters. The average standard error of estimate for records of instantaneous discharge was 17 percent; assuming the 1986 budget and operating schedule, it was shown that this overall degree of accuracy could be improved to 16 percent by altering the 1986 schedule of station visitations. A minimum budget of $203,870, with a corresponding average standard error of estimate 17 percent, is required to operate the 1986 program for the Rolla field headquarters; a budget of less than this would not permit proper service and maintenance of the stations or adequate definition of stage-discharge relations. The maximum budget analyzed was $418,870, which resulted in an average standard error of estimate of 14 percent. Improved instrumentation can have a positive effect on streamflow uncertainties by decreasing lost records. An earlier study of data uses found that data uses were sufficient to justify continued operation of all stations. One of the stations investigated, Current River at Doniphan (07068000) was suitable for the application of alternative methods for simulating discharge records. However, the station was continued because of data use requirements. (Author 's abstract)
Assessment of Satellite Surface Radiation Products in Highland Regions with Tibet Instrumental Data
NASA Technical Reports Server (NTRS)
Yang, Kun; Koike, Toshio; Stackhouse, Paul; Mikovitz, Colleen
2006-01-01
This study presents results of comparisons between instrumental radiation data in the elevated Tibetan Plateau and two global satellite products: the Global Energy and Water Cycle Experiment - Surface Radiation Budget (GEWEX-SRB) and International Satellite Cloud Climatology Project - Flux Data (ISCCP-FD). In general, shortwave radiation (SW) is estimated better by ISCCP-FD while longwave radiation (LW) is estimated better by GEWEX-SRB, but all the radiation components in both products are under-estimated. Severe and systematic errors were found in monthly-mean SRB SW (on plateau-average, -48 W/sq m for downward SW and -18 W/sq m for upward SW) and FD LW (on plateau-average, -37 W/sq m for downward LW and -62 W/sq m for upward LW) for radiation. Errors in monthly-mean diurnal variations are even larger than the monthly mean errors. Though the LW errors can be reduced about 10 W/sq m after a correction for altitude difference between the site and SRB and FD grids, these errors are still higher than that for other regions. The large errors in SRB SW was mainly due to a processing mistake for elevation effect, but the errors in SRB LW was mainly due to significant errors in input data. We suggest reprocessing satellite surface radiation budget data, at least for highland areas like Tibet.
Michael Köhl; Charles Scott; Daniel Plugge
2013-01-01
Uncertainties are a composite of errors arising from observations and the appropriateness of models. An error budget approach can be used to identify and accumulate the sources of errors to estimate change in emissions between two points in time. Various forest monitoring approaches can be used to estimate the changes in emissions due to deforestation and forest...
Modeling and analysis of pinhole occulter experiment
NASA Technical Reports Server (NTRS)
Ring, J. R.
1986-01-01
The objectives were to improve pointing control system implementation by converting the dynamic compensator from a continuous domain representation to a discrete one; to determine pointing stability sensitivites to sensor and actuator errors by adding sensor and actuator error models to treetops and by developing an error budget for meeting pointing stability requirements; and to determine pointing performance for alternate mounting bases (space station for example).
Economics of human performance and systems total ownership cost.
Onkham, Wilawan; Karwowski, Waldemar; Ahram, Tareq Z
2012-01-01
Financial costs of investing in people is associated with training, acquisition, recruiting, and resolving human errors have a significant impact on increased total ownership costs. These costs can also affect the exaggerate budgets and delayed schedules. The study of human performance economical assessment in the system acquisition process enhances the visibility of hidden cost drivers which support program management informed decisions. This paper presents the literature review of human total ownership cost (HTOC) and cost impacts on overall system performance. Economic value assessment models such as cost benefit analysis, risk-cost tradeoff analysis, expected value of utility function analysis (EV), growth readiness matrix, multi-attribute utility technique, and multi-regressions model were introduced to reflect the HTOC and human performance-technology tradeoffs in terms of the dollar value. The human total ownership regression model introduces to address the influencing human performance cost component measurement. Results from this study will increase understanding of relevant cost drivers in the system acquisition process over the long term.
Sea Level Budget along the East Coast of North America
NASA Astrophysics Data System (ADS)
Pease, A. M.; Davis, J. L.; Vinogradova, N. T.
2016-12-01
We analyzed tide gauge data, taken from 1955 to 2015, from 29 locations along the east coast of North America. A well-documented period of sea-level acceleration began around 1990. The sea level rate (referenced to epoch 1985.0) and acceleration (post-1990) are spatially and temporally variable, due to various physical processes, each of which is also spatially and temporally variable. To determine the sea-level budgets for rate and acceleration, we considered a number of major contributors to sea level change: ocean density and dynamics, glacial isostatic adjustment (GIA), the inverted barometer effect, and mass change associated with the Greenland Ice Sheet (GIS) and the Antarctic Ice Sheet (AIS). The geographic variability in the budgets for sea-level rate is dominated by GIA. At some sites, GIA is the largest contributor to the rate. The geographic variability in the budgets for sea-level acceleration is dominated by ocean dynamics and density and GIS mass loss. The figure below shows budgets for sea-level rate (left) and acceleration (right) for Key West, Fla., (top) and The Battery in New York City (bottom). The blue represents values (with error bar shown) estimated from tide gauge observations, and the yellow represents the total values estimated from the individual model contributions (each in red, green, cyan, pink, and black). The estimated totals for rate and acceleration are good matches to the tide-gauge inferences. To achieve a reasonable fit, a scaling factor (admittance) for the combined contribution of ocean dynamics and density was estimated; this admittance may reflect the low spatial sampling of the GECCO2 model we used, or other problems in modeling coastal sea-level. The significant contributions of mass loss to the acceleration enable us to predict that, if such mass-loss continues or increases, the character of sea-level change on the North American east coast will change in the next 50-100 years. In particular, whereas GIA presently dominates the spatial variability of sea-level change, mass loss from Greenland and Antarctica will dominate it by 2050-2100. However, the long-term contribution of ocean dynamics and density remain more of a question.
CBO’s Revenue Forecasting Record
2015-11-01
1983 1988 1993 1998 2003 2008 2013 -10 0 10 20 30 CBO Administration CBO’s Mean Forecast Error (1.1%) Forecast Errors for CBO’s and the...Administration’s Two-Year Revenue Projections CONGRESS OF THE UNITED STATES CONGRESSIONAL BUDGET OFFICE CBO CBO’s Revenue Forecasting Record NOVEMBER 2015...
NASA Technical Reports Server (NTRS)
De Boer, G.; Shupe, M.D.; Caldwell, P.M.; Bauer, Susanne E.; Persson, O.; Boyle, J.S.; Kelley, M.; Klein, S.A.; Tjernstrom, M.
2014-01-01
Atmospheric measurements from the Arctic Summer Cloud Ocean Study (ASCOS) are used to evaluate the performance of three atmospheric reanalyses (European Centre for Medium Range Weather Forecasting (ECMWF)- Interim reanalysis, National Center for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) reanalysis, and NCEP-DOE (Department of Energy) reanalysis) and two global climate models (CAM5 (Community Atmosphere Model 5) and NASA GISS (Goddard Institute for Space Studies) ModelE2) in simulation of the high Arctic environment. Quantities analyzed include near surface meteorological variables such as temperature, pressure, humidity and winds, surface-based estimates of cloud and precipitation properties, the surface energy budget, and lower atmospheric temperature structure. In general, the models perform well in simulating large-scale dynamical quantities such as pressure and winds. Near-surface temperature and lower atmospheric stability, along with surface energy budget terms, are not as well represented due largely to errors in simulation of cloud occurrence, phase and altitude. Additionally, a development version of CAM5, which features improved handling of cloud macro physics, has demonstrated to improve simulation of cloud properties and liquid water amount. The ASCOS period additionally provides an excellent example of the benefits gained by evaluating individual budget terms, rather than simply evaluating the net end product, with large compensating errors between individual surface energy budget terms that result in the best net energy budget.
Ma, H. -Y.; Klein, S. A.; Xie, S.; ...
2018-02-27
Many weather forecast and climate models simulate warm surface air temperature (T 2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T 2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions ofmore » surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T 2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T 2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.« less
NASA Astrophysics Data System (ADS)
Ma, H.-Y.; Klein, S. A.; Xie, S.; Zhang, C.; Tang, S.; Tang, Q.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Ahlgrimm, M.; Berg, L. K.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Liu, Y.; Merryfield, W.; Qian, Y.; Roehrig, R.; Wang, Y.-C.
2018-03-01
Many weather forecast and climate models simulate warm surface air temperature (T2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions of surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, H. -Y.; Klein, S. A.; Xie, S.
Many weather forecast and climate models simulate warm surface air temperature (T 2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T 2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions ofmore » surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T 2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T 2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.« less
Advanced CD-SEM solution for edge placement error characterization of BEOL pitch 32nm metal layers
NASA Astrophysics Data System (ADS)
Charley, A.; Leray, P.; Lorusso, G.; Sutani, T.; Takemasa, Y.
2018-03-01
Metrology plays an important role in edge placement error (EPE) budgeting. Control for multi-patterning applications as new critical distances needs to be measured (edge to edge) and requirements become tighter and tighter in terms of accuracy and precision. In this paper we focus on imec iN7 BEOL platform and particularly on M2 patterning scheme using SAQP + block EUV for a 7.5 track logic design. Being able to characterize block to SAQP edge misplacement is important in a budgeting exercise (1) but is also extremely difficult due to challenging edge detection with CD-SEM (similar materials, thin layers, short distances, 3D features). In this study we develop an advanced solution to measure block to SAQP placement, we characterize it in terms of sensitivity, precision and accuracy through the comparison to reference metrology. In a second phase, the methodology is applied to budget local effects and the results are compared to the characterization of the SAQP and block independently.
Performance of the Gemini Planet Imager’s adaptive optics system
Poyneer, Lisa A.; Palmer, David W.; Macintosh, Bruce; ...
2016-01-07
The Gemini Planet Imager’s adaptive optics (AO) subsystem was designed specifically to facilitate high-contrast imaging. We give a definitive description of the system’s algorithms and technologies as built. Ultimately, the error budget indicates that for all targets and atmospheric conditions AO bandwidth error is the largest term.
2005-12-01
Revenues Under CBO’s Long-Term Budget Scenarios 56A-8. Real Gross Domestic Product Under CBO’s Long-Term Budget Scenarios 57A-9. Total Surplus or...scenarios suggest that total federal spending for Medicare and Medicaid in 2050 could range anywhere from 7 percent of gross domestic product (GDP)—a...see the Congressional Budget Office’s glossary of budgetary and economic terms, available at www.cbo.gov. 2. The future path of productivity growth
Impact of orphan drugs on Latvian budget.
Logviss, Konstantins; Krievins, Dainis; Purvina, Santa
2016-05-11
Number of orphan medicinal products on the market and number of rare disease patients, taking these usually expensive products, are increasing. As a result, budget impact of orphan drugs is growing. This factor, along with the cost-effectiveness of orphan drugs, is often considered in the reimbursement decisions, directly affecting accessibility of rare disease therapies. The current study aims to assess the budget impact of orphan drugs in Latvia. Our study covered a 5-year period, from 2010 to 2014. Impact of orphan drugs on Latvian budget was estimated from the National Health Service's perspective. It was calculated in absolute values and relative to total pharmaceutical market and total drug reimbursement budget. A literature review was performed for comparison with other European countries. Orphan drug annual expenditure ranged between EUR 2.065 and 3.065 million, with total 5-year expenditure EUR 12.467 million. It constituted, on average, 0.84 % of total pharmaceutical market and 2.14 % of total drug reimbursement budget, respectively. Average annual per patient expenditures varied widely, from EUR 1 534 to EUR 580 952. The most costly treatment was enzyme replacement therapy (Elaprase) for MPS II. Glivec had the highest share (34 %) of the total orphan drug expenditure. Oncological drugs represented more than a half of the total orphan drug expenditure, followed by drugs for metabolic and endocrine conditions and medicines for cardiopulmonary diseases. Three indications: Ph+ CML, MPS II, and PAH accounted for nearly 90 % of the total orphan drug expenditure. Budget impact of orphan drugs in Latvia is very small. It increased slightly over a period of five years, due to the slight increase in the number of patients and the number of orphan drugs reimbursed. Current Latvian drug reimbursement system is not sufficient for most orphan drugs.
Evaluating Micrometeorological Estimates of Groundwater Discharge from Great Basin Desert Playas.
Jackson, Tracie R; Halford, Keith J; Gardner, Philip M
2018-03-06
Groundwater availability studies in the arid southwestern United States traditionally have assumed that groundwater discharge by evapotranspiration (ET g ) from desert playas is a significant component of the groundwater budget. However, desert playa ET g rates are poorly constrained by Bowen ratio energy budget (BREB) and eddy-covariance (EC) micrometeorological measurement approaches. Best attempts by previous studies to constrain ET g from desert playas have resulted in ET g rates that are within the measurement error of micrometeorological approaches. This study uses numerical models to further constrain desert playa ET g rates that are within the measurement error of BREB and EC approaches, and to evaluate the effect of hydraulic properties and salinity-based groundwater density contrasts on desert playa ET g rates. Numerical models simulated ET g rates from desert playas in Death Valley, California and Dixie Valley, Nevada. Results indicate that actual ET g rates from desert playas are significantly below the uncertainty thresholds of BREB- and EC-based micrometeorological measurements. Discharge from desert playas likely contributes less than 2% of total groundwater discharge from Dixie and Death Valleys, which suggests discharge from desert playas also is negligible in other basins. Simulation results also show that ET g from desert playas primarily is limited by differences in hydraulic properties between alluvial fan and playa sediments and, to a lesser extent, by salinity-based groundwater density contrasts. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Stannard, David L.; Rosenberry, Donald O.; Winter, Thomas C.; Parkhurst, Renee S.
2004-01-01
Micrometeorological measurements of evapotranspiration (ET) often are affected to some degree by errors arising from limited fetch. A recently developed model was used to estimate fetch-induced errors in Bowen-ratio energy-budget measurements of ET made at a small wetland with fetch-to-height ratios ranging from 34 to 49. Estimated errors were small, averaging −1.90%±0.59%. The small errors are attributed primarily to the near-zero lower sensor height, and the negative bias reflects the greater Bowen ratios of the drier surrounding upland. Some of the variables and parameters affecting the error were not measured, but instead are estimated. A sensitivity analysis indicates that the uncertainty arising from these estimates is small. In general, fetch-induced error in measured wetland ET increases with decreasing fetch-to-height ratio, with increasing aridity and with increasing atmospheric stability over the wetland. Occurrence of standing water at a site is likely to increase the appropriate time step of data integration, for a given level of accuracy. Occurrence of extensive open water can increase accuracy or decrease the required fetch by allowing the lower sensor to be placed at the water surface. If fetch is highly variable and fetch-induced errors are significant, the variables affecting fetch (e.g., wind direction, water level) need to be measured. Fetch-induced error during the non-growing season may be greater or smaller than during the growing season, depending on how seasonal changes affect both the wetland and upland at a site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-01-01
The FY DOE budge totals $12.6 billion in budget authority and $11.1 billion in budget outlays. The budget authority being requested consists of $10.3 billion in new authority and a $2.3 billion reappropriation of expiring funds for the Strategic Petroleum Reserve. Areas covered in the Energy budget are: energy conservation; research, development, and applications; regulation and information; direct energy production; strategic energy production; and energy security reserve. Other areas include: general science, defense activities; departmental administration; and legislative proposal - spent fuel. Budget totals are compared for 1980 and 1981. A detailed discussion of the FY 1981 activities to bemore » undertaken to carry out these activities is provided. (MCW)« less
NASA Astrophysics Data System (ADS)
Yamada, Yoshiyuki; Gouda, Naoteru; Yano, Taihei; Kobayashi, Yukiyasu; Tsujimoto, Takuji; Suganuma, Masahiro; Niwa, Yoshito; Sako, Nobutada; Hatsutori, Yoichi; Tanaka, Takashi
2006-06-01
We explain simulation tools in JASMINE project (JASMINE simulator). The JASMINE project stands at the stage where its basic design will be determined in a few years. Then it is very important to simulate the data stream generated by astrometric fields at JASMINE in order to support investigations into error budgets, sampling strategy, data compression, data analysis, scientific performances, etc. Of course, component simulations are needed, but total simulations which include all components from observation target to satellite system are also very important. We find that new software technologies, such as Object Oriented(OO) methodologies are ideal tools for the simulation system of JASMINE(the JASMINE simulator). In this article, we explain the framework of the JASMINE simulator.
ERIC Educational Resources Information Center
Britt, Steuart-Henderson
1979-01-01
Methods for establishing an advertising budget are reviewed. They include methods based on percentage of sales or profits, unit of sales, and objective and task. Also discussed are ways to allocate a promotional budget. The most common breakdowns are: departmental budgets, total budget, calendar periods, media, and sales area. (JMD)
Moss, Marshall E.; Gilroy, Edward J.
1980-01-01
This report describes the theoretical developments and illustrates the applications of techniques that recently have been assembled to analyze the cost-effectiveness of federally funded stream-gaging activities in support of the Colorado River compact and subsequent adjudications. The cost effectiveness of 19 stream gages in terms of minimizing the sum of the variances of the errors of estimation of annual mean discharge is explored by means of a sequential-search optimization scheme. The search is conducted over a set of decision variables that describes the number of times that each gaging route is traveled in a year. A gage route is defined as the most expeditious circuit that is made from a field office to visit one or more stream gages and return to the office. The error variance is defined as a function of the frequency of visits to a gage by using optimal estimation theory. Currently a minimum of 12 visits per year is made to any gage. By changing to a six-visit minimum, the same total error variance can be attained for the 19 stations with a budget of 10% less than the current one. Other strategies are also explored. (USGS)
Physical Validation of TRMM TMI and PR Monthly Rain Products Over Oklahoma
NASA Technical Reports Server (NTRS)
Fisher, Brad L.
2004-01-01
The Tropical Rainfall Measuring Mission (TRMM) provides monthly rainfall estimates using data collected by the TRMM satellite. These estimates cover a substantial fraction of the earth's surface. The physical validation of TRMM estimates involves corroborating the accuracy of spaceborne estimates of areal rainfall by inferring errors and biases from ground-based rain estimates. The TRMM error budget consists of two major sources of error: retrieval and sampling. Sampling errors are intrinsic to the process of estimating monthly rainfall and occur because the satellite extrapolates monthly rainfall from a small subset of measurements collected only during satellite overpasses. Retrieval errors, on the other hand, are related to the process of collecting measurements while the satellite is overhead. One of the big challenges confronting the TRMM validation effort is how to best estimate these two main components of the TRMM error budget, which are not easily decoupled. This four-year study computed bulk sampling and retrieval errors for the TRMM microwave imager (TMI) and the precipitation radar (PR) by applying a technique that sub-samples gauge data at TRMM overpass times. Gridded monthly rain estimates are then computed from the monthly bulk statistics of the collected samples, providing a sensor-dependent gauge rain estimate that is assumed to include a TRMM equivalent sampling error. The sub-sampled gauge rain estimates are then used in conjunction with the monthly satellite and gauge (without sub- sampling) estimates to decouple retrieval and sampling errors. The computed mean sampling errors for the TMI and PR were 5.9% and 7.796, respectively, in good agreement with theoretical predictions. The PR year-to-year retrieval biases exceeded corresponding TMI biases, but it was found that these differences were partially due to negative TMI biases during cold months and positive TMI biases during warm months.
Pattern uniformity control in integrated structures
NASA Astrophysics Data System (ADS)
Kobayashi, Shinji; Okada, Soichiro; Shimura, Satoru; Nafus, Kathleen; Fonseca, Carlos; Biesemans, Serge; Enomoto, Masashi
2017-03-01
In our previous paper dealing with multi-patterning, we proposed a new indicator to quantify the quality of final wafer pattern transfer, called interactive pattern fidelity error (IPFE). It detects patterning failures resulting from any source of variation in creating integrated patterns. IPFE is a function of overlay and edge placement error (EPE) of all layers comprising the final pattern (i.e. lower and upper layers). In this paper, we extend the use cases with Via in additional to the bridge case (Block on Spacer). We propose an IPFE budget and CD budget using simple geometric and statistical models with analysis of a variance (ANOVA). In addition, we validate the model with experimental data. From the experimental results, improvements in overlay, local-CDU (LCDU) of contact hole (CH) or pillar patterns (especially, stochastic pattern noise (SPN)) and pitch walking are all critical to meet budget requirements. We also provide a special note about the importance of the line length used in analyzing LWR. We find that IPFE and CD budget requirements are consistent to the table of the ITRS's technical requirement. Therefore the IPFE concept can be adopted for a variety of integrated structures comprising digital logic circuits. Finally, we suggest how to use IPFE for yield management and optimization requirements for each process.
NASA Technical Reports Server (NTRS)
1978-01-01
Development of systems for obtaining radiation budget and cloud data is discussed. Instruments for measuring total solar irradiance, total infrared flux, reflected solar flux, and cloud heights and properties are considered. Other topics discussed include sampling by multiple satellites, user identification, and determination of the parameters that need to be measured.
Design Optimization for the Measurement Accuracy Improvement of a Large Range Nanopositioning Stage
Torralba, Marta; Yagüe-Fabra, José Antonio; Albajez, José Antonio; Aguilar, Juan José
2016-01-01
Both an accurate machine design and an adequate metrology loop definition are critical factors when precision positioning represents a key issue for the final system performance. This article discusses the error budget methodology as an advantageous technique to improve the measurement accuracy of a 2D-long range stage during its design phase. The nanopositioning platform NanoPla is here presented. Its specifications, e.g., XY-travel range of 50 mm × 50 mm and sub-micrometric accuracy; and some novel designed solutions, e.g., a three-layer and two-stage architecture are described. Once defined the prototype, an error analysis is performed to propose improvement design features. Then, the metrology loop of the system is mathematically modelled to define the propagation of the different sources. Several simplifications and design hypothesis are justified and validated, including the assumption of rigid body behavior, which is demonstrated after a finite element analysis verification. The different error sources and their estimated contributions are enumerated in order to conclude with the final error values obtained from the error budget. The measurement deviations obtained demonstrate the important influence of the working environmental conditions, the flatness error of the plane mirror reflectors and the accurate manufacture and assembly of the components forming the metrological loop. Thus, a temperature control of ±0.1 °C results in an acceptable maximum positioning error for the developed NanoPla stage, i.e., 41 nm, 36 nm and 48 nm in X-, Y- and Z-axis, respectively. PMID:26761014
Performance evaluation of a 1.6-µm methane DIAL system from ground, aircraft and UAV platforms.
Refaat, Tamer F; Ismail, Syed; Nehrir, Amin R; Hair, John W; Crawford, James H; Leifer, Ira; Shuman, Timothy
2013-12-16
Methane is an efficient absorber of infrared radiation and a potent greenhouse gas with a warming potential 72 times greater than carbon dioxide on a per molecule basis. Development of methane active remote sensing capability using the differential absorption lidar (DIAL) technique enables scientific assessments of the gas emission and impacts on the climate. A performance evaluation of a pulsed DIAL system for monitoring atmospheric methane is presented. This system leverages a robust injection-seeded pulsed Nd:YAG pumped Optical Parametric Oscillator (OPO) laser technology operating in the 1.645 µm spectral band. The system also leverages an efficient low noise, commercially available, InGaAs avalanche photo-detector (APD). Lidar signals and error budget are analyzed for system operation on ground in the range-resolved DIAL mode and from airborne platforms in the integrated path DIAL (IPDA) mode. Results indicate system capability of measuring methane concentration profiles with <1.0% total error up to 4.5 km range with 5 minute averaging from ground. For airborne IPDA, the total error in the column dry mixing ratio is less than 0.3% with 0.1 sec average using ground returns. This system has a unique capability of combining signals from the atmospheric scattering from layers above the surface with ground return signals, which provides methane column measurement between the atmospheric scattering layer and the ground directly. In such case 0.5% and 1.2% total errors are achieved with 10 sec average from airborne platforms at 8 km and 15.24 km altitudes, respectively. Due to the pulsed nature of the transmitter, the system is relatively insensitive to aerosol and cloud interferences. Such DIAL system would be ideal for investigating high latitude methane releases over polar ice sheets, permafrost regions, wetlands, and over ocean during day and night. This system would have commercial potential for fossil fuel leaks detection and industrial monitoring applications.
NASA Technical Reports Server (NTRS)
Stowe, Larry; Ardanuy, Philip; Hucek, Richard; Abel, Peter; Jacobowitz, Herbert
1991-01-01
A set of system simulations was performed to evaluate candidate scanner configurations to fly as a part of the Earth Radiation Budget Instrument (ERBI) on the polar platforms during the 1990's. The simulation is considered of instantaneous sampling (without diurnal averaging) of the longwave and shortwave fluxes at the top of the atmosphere (TOA). After measurement and subsequent inversion to the TOA, the measured fluxes were compared to the reference fluxes for 2.5 deg lat/long resolution targets. The reference fluxes at this resolution are obtained by integrating over the 25 x 25 = 625 grid elements in each target. The differences between each of these two resultant spatially averaged sets of target measurements (errors) are taken and then statistically summarized. Five instruments are considered: (1) the Conically Scanning Radiometer (CSR); (2) the ERBE Cross Track Scanner; (3) the Nimbus-7 Biaxial Scanner; (4) the Clouds and Earth's Radiant Energy System Instrument (CERES-1); and (5) the Active Cavity Array (ACA). Identical studies of instantaneous error were completed for many days, two seasons, and several satellite equator crossing longitudes. The longwave flux errors were found to have the same space and time characteristics as for the shortwave fluxes, but the errors are only about 25 pct. of the shortwave errors.
Benhamou, Dan; Piriou, Vincent; De Vaumas, Cyrille; Albaladejo, Pierre; Malinovsky, Jean-Marc; Doz, Marianne; Lafuma, Antoine; Bouaziz, Hervé
2017-04-01
Patient safety is improved by the use of labelled, ready-to-use, pre-filled syringes (PFS) when compared to conventional methods of syringe preparation (CMP) of the same product from an ampoule. However, the PFS presentation costs more than the CMP presentation. To estimate the budget impact for French hospitals of switching from atropine in ampoules to atropine PFS for anaesthesia care. A model was constructed to simulate the financial consequences of the use of atropine PFS in operating theatres, taking into account wastage and medication errors. The model tested different scenarios and a sensitivity analysis was performed. In a reference scenario, the systematic use of atropine PFS rather than atropine CMP yielded a net one-year budget saving of €5,255,304. Medication errors outweighed other cost factors relating to the use of atropine CMP (€9,425,448). Avoidance of wastage in the case of atropine CMP (prepared and unused) was a major source of savings (€1,167,323). Significant savings were made by means of other scenarios examined. The sensitivity analysis suggests that the results obtained are robust and stable for a range of parameter estimates and assumptions. The financial model was based on data obtained from the literature and expert opinions. The budget impact analysis shows that even though atropine PFS is more expensive than atropine CMP, its use would lead to significant cost savings. Savings would mainly be due to fewer medication errors and their associated consequences and the absence of wastage when atropine syringes are prepared in advance. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.
Determination of the carbon budget of a pasture: effect of system boundaries and flux uncertainties
NASA Astrophysics Data System (ADS)
Felber, R.; Bretscher, D.; Münger, A.; Neftel, A.; Ammann, C.
2015-12-01
Carbon (C) sequestration in the soil is considered as a potential important mechanism to mitigate greenhouse gas (GHG) emissions of the agricultural sector. It can be quantified by the net ecosystem carbon budget (NECB) describing the change of soil C as the sum of all relevant import and export fluxes. NECB was investigated here in detail for an intensively grazed dairy pasture in Switzerland. Two budget approaches with different system boundaries were applied: NECBtot for system boundaries including the grazing cows and NECBpast for system boundaries excluding the cows. CO2 and CH4 exchange induced by soil/vegetation processes as well as direct emissions by the animals were derived from eddy covariance measurements. Other C fluxes were either measured (milk yield, concentrate feeding) or derived based on animal performance data (intake, excreta). For the investigated year, both approaches resulted in a small non-significant C loss: NECBtot - 13 ± 61 g C m-2 yr-1 and NECBpast - 17 ± 81 g C m-2 yr-1. The considerable uncertainties, depending on the approach, were mainly due to errors in the CO2 exchange or in the animal related fluxes. The associated GHG budget revealed CH4 emissions from the cows to be the major contributor, but with much lower uncertainty compared to NECB. Although only one year of data limit the representativeness of the carbon budget results, they demonstrated the important contribution of the non-CO2 fluxes depending on the chosen system boundaries and the effect of their propagated uncertainty in an exemplary way. The simultaneous application and comparison of both NECB approaches provides a useful consistency check for the carbon budget determination and can help to identify and eliminate systematic errors.
Determination of the carbon budget of a pasture: effect of system boundaries and flux uncertainties
NASA Astrophysics Data System (ADS)
Felber, Raphael; Bretscher, Daniel; Münger, Andreas; Neftel, Albrecht; Ammann, Christof
2016-05-01
Carbon (C) sequestration in the soil is considered as a potential important mechanism to mitigate greenhouse gas (GHG) emissions of the agricultural sector. It can be quantified by the net ecosystem carbon budget (NECB) describing the change of soil C as the sum of all relevant import and export fluxes. NECB was investigated here in detail for an intensively grazed dairy pasture in Switzerland. Two budget approaches with different system boundaries were applied: NECBtot for system boundaries including the grazing cows and NECBpast for system boundaries excluding the cows. CO2 and CH4 exchange induced by soil/vegetation processes as well as direct emissions by the animals were derived from eddy covariance measurements. Other C fluxes were either measured (milk yield, concentrate feeding) or derived based on animal performance data (intake, excreta). For the investigated year, both approaches resulted in a small near-neutral C budget: NECBtot -27 ± 62 and NECBpast 23 ± 76 g C m-2 yr-1. The considerable uncertainties, depending on the approach, were mainly due to errors in the CO2 exchange or in the animal-related fluxes. The comparison of the NECB results with the annual exchange of other GHG revealed CH4 emissions from the cows to be the major contributor in terms of CO2 equivalents, but with much lower uncertainty compared to NECB. Although only 1 year of data limit the representativeness of the carbon budget results, they demonstrate the important contribution of the non-CO2 fluxes depending on the chosen system boundaries and the effect of their propagated uncertainty in an exemplary way. The simultaneous application and comparison of both NECB approaches provides a useful consistency check for the carbon budget determination and can help to identify and eliminate systematic errors.
Onorbit IMU alignment error budget
NASA Technical Reports Server (NTRS)
Corson, R. W.
1980-01-01
The Star Tracker, Crew Optical Alignment Sight (COAS), and Inertial Measurement Unit (IMU) from a complex navigation system with a multitude of error sources were combined. A complete list of the system errors is presented. The errors were combined in a rational way to yield an estimate of the IMU alignment accuracy for STS-1. The expected standard deviation in the IMU alignment error for STS-1 type alignments was determined to be 72 arc seconds per axis for star tracker alignments and 188 arc seconds per axis for COAS alignments. These estimates are based on current knowledge of the star tracker, COAS, IMU, and navigation base error specifications, and were partially verified by preliminary Monte Carlo analysis.
24 CFR 968.225 - Budget revisions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Budget revisions. 968.225 Section... Fewer Than 250 Units) § 968.225 Budget revisions. (a) A PHA shall not incur any modernization cost in excess of the total HUD-approved CIAP budget. A PHA shall submit a budget revision, in a form prescribed...
The impact of 14-nm photomask uncertainties on computational lithography solutions
NASA Astrophysics Data System (ADS)
Sturtevant, John; Tejnil, Edita; Lin, Tim; Schultze, Steffen; Buck, Peter; Kalk, Franklin; Nakagawa, Kent; Ning, Guoxiang; Ackmann, Paul; Gans, Fritz; Buergel, Christian
2013-04-01
Computational lithography solutions rely upon accurate process models to faithfully represent the imaging system output for a defined set of process and design inputs. These models, which must balance accuracy demands with simulation runtime boundary conditions, rely upon the accurate representation of multiple parameters associated with the scanner and the photomask. While certain system input variables, such as scanner numerical aperture, can be empirically tuned to wafer CD data over a small range around the presumed set point, it can be dangerous to do so since CD errors can alias across multiple input variables. Therefore, many input variables for simulation are based upon designed or recipe-requested values or independent measurements. It is known, however, that certain measurement methodologies, while precise, can have significant inaccuracies. Additionally, there are known errors associated with the representation of certain system parameters. With shrinking total CD control budgets, appropriate accounting for all sources of error becomes more important, and the cumulative consequence of input errors to the computational lithography model can become significant. In this work, we examine with a simulation sensitivity study, the impact of errors in the representation of photomask properties including CD bias, corner rounding, refractive index, thickness, and sidewall angle. The factors that are most critical to be accurately represented in the model are cataloged. CD Bias values are based on state of the art mask manufacturing data and other variables changes are speculated, highlighting the need for improved metrology and awareness.
NASA Astrophysics Data System (ADS)
Yoon, Yeosang; Garambois, Pierre-André; Paiva, Rodrigo C. D.; Durand, Michael; Roux, Hélène; Beighley, Edward
2016-01-01
We present an improvement to a previously presented algorithm that used a Bayesian Markov Chain Monte Carlo method for estimating river discharge from remotely sensed observations of river height, width, and slope. We also present an error budget for discharge calculations from the algorithm. The algorithm may be utilized by the upcoming Surface Water and Ocean Topography (SWOT) mission. We present a detailed evaluation of the method using synthetic SWOT-like observations (i.e., SWOT and AirSWOT, an airborne version of SWOT). The algorithm is evaluated using simulated AirSWOT observations over the Sacramento and Garonne Rivers that have differing hydraulic characteristics. The algorithm is also explored using SWOT observations over the Sacramento River. SWOT and AirSWOT height, width, and slope observations are simulated by corrupting the "true" hydraulic modeling results with instrument error. Algorithm discharge root mean square error (RMSE) was 9% for the Sacramento River and 15% for the Garonne River for the AirSWOT case using expected observation error. The discharge uncertainty calculated from Manning's equation was 16.2% and 17.1%, respectively. For the SWOT scenario, the RMSE and uncertainty of the discharge estimate for the Sacramento River were 15% and 16.2%, respectively. A method based on the Kalman filter to correct errors of discharge estimates was shown to improve algorithm performance. From the error budget, the primary source of uncertainty was the a priori uncertainty of bathymetry and roughness parameters. Sensitivity to measurement errors was found to be a function of river characteristics. For example, Steeper Garonne River is less sensitive to slope errors than the flatter Sacramento River.
Science support for the Earth radiation budget experiment
NASA Technical Reports Server (NTRS)
Coakley, James A., Jr.
1994-01-01
The work undertaken as part of the Earth Radiation Budget Experiment (ERBE) included the following major components: The development and application of a new cloud retrieval scheme to assess errors in the radiative fluxes arising from errors in the ERBE identification of cloud conditions. The comparison of the anisotropy of reflected sunlight and emitted thermal radiation with the anisotropy predicted by the Angular Dependence Models (ADM's) used to obtain the radiative fluxes. Additional studies included the comparison of calculated longwave cloud-free radiances with those observed by the ERBE scanner and the use of ERBE scanner data to track the calibration of the shortwave channels of the Advanced Very High Resolution Radiometer (AVHRR). Major findings included: the misidentification of cloud conditions by the ERBE scene identification algorithm could cause 15 percent errors in the shortwave flux reflected by certain scene types. For regions containing mixtures of scene types, the errors were typically less than 5 percent, and the anisotropies of the shortwave and longwave radiances exhibited a spatial scale dependence which, because of the growth of the scanner field of view from nadir to limb, gave rise to a view zenith angle dependent bias in the radiative fluxes.
NASA Astrophysics Data System (ADS)
O'Brien, Katherine R.; Weber, Tony R.; Leigh, Catherine; Burford, Michele A.
2016-12-01
Accurate reservoir budgets are important for understanding regional fluxes of sediment and nutrients. Here we present a comprehensive budget of sediment (based on total suspended solids, TSS), total nitrogen (TN) and total phosphorus (TP) for two subtropical reservoirs on rivers with highly intermittent flow regimes. The budget is completed from July 1997 to June 2011 on the Somerset and Wivenhoe reservoirs in southeast Queensland, Australia, using a combination of monitoring data and catchment model predictions. A major flood in January 2011 accounted for more than half of the water entering and leaving both reservoirs in that year, and approximately 30 % of water delivered to and released from Wivenhoe over the 14-year study period. The flood accounted for an even larger proportion of total TSS and nutrient loads: in Wivenhoe more than one-third of TSS inputs and two-thirds of TSS outputs between 1997 and 2011 occurred during January 2011. During non-flood years, mean historical concentrations provided reasonable estimates of TSS and nutrient loads leaving the reservoirs. Calculating loads from historical mean TSS and TP concentrations during January 2011, however, would have substantially underestimated outputs over the entire study period, by up to a factor of 10. The results have important implications for sediment and nutrient budgets in catchments with highly episodic flow. First, quantifying inputs and outputs during major floods is essential for producing reliable long-term budgets. Second, sediment and nutrient budgets are dynamic, not static. Characterizing uncertainty and variability is therefore just as important for meaningful reservoir budgets as accurate quantification of loads.
On estimating total daily evapotranspiration from remote surface temperature measurements
NASA Technical Reports Server (NTRS)
Carlson, Toby N.; Buffum, Martha J.
1989-01-01
A method for calculating daily evapotranspiration from the daily surface energy budget using remotely sensed surface temperature and several meteorological variables is presented. Vaules of the coefficients are determined from simulations with a one-dimensional boundary layer model with vegetation cover. Model constants are obtained for vegetation and bare soil at two air temperature and wind speed levels over a range of surface roughness and wind speeds. A different means of estimating the daily evapotranspiration based on the time rate of increase of surface temperature during the morning is also considered. Both the equations using our model-derived constants and field measurements are evaluated, and a discussion of sources of error in the use of the formulation is given.
Towards the 1 mm/y stability of the radial orbit error at regional scales
NASA Astrophysics Data System (ADS)
Couhert, Alexandre; Cerri, Luca; Legeais, Jean-François; Ablain, Michael; Zelensky, Nikita P.; Haines, Bruce J.; Lemoine, Frank G.; Bertiger, William I.; Desai, Shailen D.; Otten, Michiel
2015-01-01
An estimated orbit error budget for the Jason-1 and Jason-2 GDR-D solutions is constructed, using several measures of orbit error. The focus is on the long-term stability of the orbit time series for mean sea level applications on a regional scale. We discuss various issues related to the assessment of radial orbit error trends; in particular this study reviews orbit errors dependent on the tracking technique, with an aim to monitoring the long-term stability of all available tracking systems operating on Jason-1 and Jason-2 (GPS, DORIS, SLR). The reference frame accuracy and its effect on Jason orbit is assessed. We also examine the impact of analysis method on the inference of Geographically Correlated Errors as well as the significance of estimated radial orbit error trends versus the time span of the analysis. Thus a long-term error budget of the 10-year Jason-1 and Envisat GDR-D orbit time series is provided for two time scales: interannual and decadal. As the temporal variations of the geopotential remain one of the primary limitations in the Precision Orbit Determination modeling, the overall accuracy of the Jason-1 and Jason-2 GDR-D solutions is evaluated through comparison with external orbits based on different time-variable gravity models. This contribution is limited to an East-West “order-1” pattern at the 2 mm/y level (secular) and 4 mm level (seasonal), over the Jason-2 lifetime. The possibility of achieving sub-mm/y radial orbit stability over interannual and decadal periods at regional scales and the challenge of evaluating such an improvement using in situ independent data is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, H. -Y.; Klein, S. A.; Xie, S.
Many weather forecasting and climate models simulate a warm surface air temperature (T2m) bias over mid-latitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multi-model intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to T2m bias using a short-term hindcast approach with observations mainly from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site during the period of April to August 2011. The present study examines the contributionmore » of surface energy budget errors to the bias. All participating models simulate higher net shortwave and longwave radiative fluxes at the surface but there is no consistency on signs of biases in latent and sensible heat fluxes over the Central U.S. and ARM SGP. Nevertheless, biases in net shortwave and downward longwave fluxes, as well as surface evaporative fraction (EF) are the main contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF is affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis suggests that radiation errors are always an important source of T2m error for long-term climate runs with EF errors either of equal or lesser importance. However, for the short-term hindcasts, EF errors are more important provided a model has a substantial EF bias.« less
Towards the 1 mm/y Stability of the Radial Orbit Error at Regional Scales
NASA Technical Reports Server (NTRS)
Couhert, Alexandre; Cerri, Luca; Legeais, Jean-Francois; Ablain, Michael; Zelensky, Nikita P.; Haines, Bruce J.; Lemoine, Frank G.; Bertiger, William I.; Desai, Shailen D.; Otten, Michiel
2015-01-01
An estimated orbit error budget for the Jason-1 and Jason-2 GDR-D solutions is constructed, using several measures of orbit error. The focus is on the long-term stability of the orbit time series for mean sea level applications on a regional scale. We discuss various issues related to the assessment of radial orbit error trends; in particular this study reviews orbit errors dependent on the tracking technique, with an aim to monitoring the long-term stability of all available tracking systems operating on Jason-1 and Jason-2 (GPS, DORIS, SLR). The reference frame accuracy and its effect on Jason orbit is assessed. We also examine the impact of analysis method on the inference of Geographically Correlated Errors as well as the significance of estimated radial orbit error trends versus the time span of the analysis. Thus a long-term error budget of the 10-year Jason-1 and Envisat GDR-D orbit time series is provided for two time scales: interannual and decadal. As the temporal variations of the geopotential remain one of the primary limitations in the Precision Orbit Determination modeling, the overall accuracy of the Jason-1 and Jason-2 GDR-D solutions is evaluated through comparison with external orbits based on different time-variable gravity models. This contribution is limited to an East-West "order-1" pattern at the 2 mm/y level (secular) and 4 mm level (seasonal), over the Jason-2 lifetime. The possibility of achieving sub-mm/y radial orbit stability over interannual and decadal periods at regional scales and the challenge of evaluating such an improvement using in situ independent data is discussed.
Towards the 1 mm/y Stability of the Radial Orbit Error at Regional Scales
NASA Technical Reports Server (NTRS)
Couhert, Alexandre; Cerri, Luca; Legeais, Jean-Francois; Ablain, Michael; Zelensky, Nikita P.; Haines, Bruce J.; Lemoine, Frank G.; Bertiger, William I.; Desai, Shailen D.; Otten, Michiel
2014-01-01
An estimated orbit error budget for the Jason-1 and Jason-2 GDR-D solutions is constructed, using several measures of orbit error. The focus is on the long-term stability of the orbit time series for mean sea level applications on a regional scale. We discuss various issues related to the assessment of radial orbit error trends; in particular this study reviews orbit errors dependent on the tracking technique, with an aim to monitoring the long-term stability of all available tracking systems operating on Jason-1 and Jason-2 (GPS, DORIS,SLR). The reference frame accuracy and its effect on Jason orbit is assessed. We also examine the impact of analysis method on the inference of Geographically Correlated Errors as well as the significance of estimated radial orbit error trends versus the time span of the analysis. Thus a long-term error budget of the 10-year Jason-1 and Envisat GDR-D orbit time series is provided for two time scales: interannual and decadal. As the temporal variations of the geopotential remain one of the primary limitations in the Precision Orbit Determination modeling, the overall accuracy of the Jason-1 and Jason-2 GDR-D solutions is evaluated through comparison with external orbits based on different time-variable gravity models. This contribution is limited to an East-West "order-1" pattern at the 2 mm/y level (secular) and 4 mm level (seasonal), over the Jason-2 lifetime. The possibility of achieving sub-mm/y radial orbit stability over interannual and decadal periods at regional scales and the challenge of evaluating such an improvement using in situ independent data is discussed.
NASA Astrophysics Data System (ADS)
Aziz, Wan Noor Hayatie Wan Abdul; Aziz, Rossidah Wan Abdul; Shuib, Adibah; Razi, Nor Faezah Mohamad
2014-06-01
Budget planning enables an organization to set priorities towards achieving certain goals and to identify the highest priorities to be accomplished with the available funds, thus allowing allocation of resources according to the set priorities and constraints. On the other hand, budget execution and monitoring enables allocated funds or resources to be utilized as planned. Our study concerns with investigating the relationship between budget allocation and budget utilization of faculties in a public university in Malaysia. The focus is on the university's operations management financial allocation and utilization based on five categories which are emolument expenditure, academic or services and supplies expenditure, maintenance expenditure, student expenditure and others expenditure. The analysis on financial allocation and utilization is performed based on yearly quarters. Data collected include three years faculties' budget allocation and budget utilization performance involving a sample of ten selected faculties of a public university in Malaysia. Results show that there are positive correlation and significant relationship between quarterly budget allocation and quarterly budget utilization. This study found that emolument give the highest contribution to the total allocation and total utilization for all quarters. This paper presents some findings based on statistical analysis conducted which include descriptive statistics and correlation analysis.
Swing arm profilometer: analytical solutions of misalignment errors for testing axisymmetric optics
NASA Astrophysics Data System (ADS)
Xiong, Ling; Luo, Xiao; Liu, Zhenyu; Wang, Xiaokun; Hu, Haixiang; Zhang, Feng; Zheng, Ligong; Zhang, Xuejun
2016-07-01
The swing arm profilometer (SAP) has been playing a very important role in testing large aspheric optics. As one of most significant error sources that affects the test accuracy, misalignment error leads to low-order errors such as aspherical aberrations and coma apart from power. In order to analyze the effect of misalignment errors, the relation between alignment parameters and test results of axisymmetric optics is presented. Analytical solutions of SAP system errors from tested mirror misalignment, arm length L deviation, tilt-angle θ deviation, air-table spin error, and air-table misalignment are derived, respectively; and misalignment tolerance is given to guide surface measurement. In addition, experiments on a 2-m diameter parabolic mirror are demonstrated to verify the model; according to the error budget, we achieve the SAP test for low-order errors except power with accuracy of 0.1 μm root-mean-square.
Impact of numerical choices on water conservation in the E3SM Atmosphere Model Version 1 (EAM V1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kai; Rasch, Philip J.; Taylor, Mark A.
The conservation of total water is an important numerical feature for global Earth system models. Even small conservation problems in the water budget can lead to systematic errors in century-long simulations for sea level rise projection. This study quantifies and reduces various sources of water conservation error in the atmosphere component of the Energy Exascale Earth System Model. Several sources of water conservation error have been identified during the development of the version 1 (V1) model. The largest errors result from the numerical coupling between the resolved dynamics and the parameterized sub-grid physics. A hybrid coupling using different methods formore » fluid dynamics and tracer transport provides a reduction of water conservation error by a factor of 50 at 1° horizontal resolution as well as consistent improvements at other resolutions. The second largest error source is the use of an overly simplified relationship between the surface moisture flux and latent heat flux at the interface between the host model and the turbulence parameterization. This error can be prevented by applying the same (correct) relationship throughout the entire model. Two additional types of conservation error that result from correcting the surface moisture flux and clipping negative water concentrations can be avoided by using mass-conserving fixers. With all four error sources addressed, the water conservation error in the V1 model is negligible and insensitive to the horizontal resolution. The associated changes in the long-term statistics of the main atmospheric features are small. A sensitivity analysis is carried out to show that the magnitudes of the conservation errors decrease strongly with temporal resolution but increase with horizontal resolution. The increased vertical resolution in the new model results in a very thin model layer at the Earth’s surface, which amplifies the conservation error associated with the surface moisture flux correction. We note that for some of the identified error sources, the proposed fixers are remedies rather than solutions to the problems at their roots. Future improvements in time integration would be beneficial for this model.« less
Impact of numerical choices on water conservation in the E3SM Atmosphere Model version 1 (EAMv1)
NASA Astrophysics Data System (ADS)
Zhang, Kai; Rasch, Philip J.; Taylor, Mark A.; Wan, Hui; Leung, Ruby; Ma, Po-Lun; Golaz, Jean-Christophe; Wolfe, Jon; Lin, Wuyin; Singh, Balwinder; Burrows, Susannah; Yoon, Jin-Ho; Wang, Hailong; Qian, Yun; Tang, Qi; Caldwell, Peter; Xie, Shaocheng
2018-06-01
The conservation of total water is an important numerical feature for global Earth system models. Even small conservation problems in the water budget can lead to systematic errors in century-long simulations. This study quantifies and reduces various sources of water conservation error in the atmosphere component of the Energy Exascale Earth System Model. Several sources of water conservation error have been identified during the development of the version 1 (V1) model. The largest errors result from the numerical coupling between the resolved dynamics and the parameterized sub-grid physics. A hybrid coupling using different methods for fluid dynamics and tracer transport provides a reduction of water conservation error by a factor of 50 at 1° horizontal resolution as well as consistent improvements at other resolutions. The second largest error source is the use of an overly simplified relationship between the surface moisture flux and latent heat flux at the interface between the host model and the turbulence parameterization. This error can be prevented by applying the same (correct) relationship throughout the entire model. Two additional types of conservation error that result from correcting the surface moisture flux and clipping negative water concentrations can be avoided by using mass-conserving fixers. With all four error sources addressed, the water conservation error in the V1 model becomes negligible and insensitive to the horizontal resolution. The associated changes in the long-term statistics of the main atmospheric features are small. A sensitivity analysis is carried out to show that the magnitudes of the conservation errors in early V1 versions decrease strongly with temporal resolution but increase with horizontal resolution. The increased vertical resolution in V1 results in a very thin model layer at the Earth's surface, which amplifies the conservation error associated with the surface moisture flux correction. We note that for some of the identified error sources, the proposed fixers are remedies rather than solutions to the problems at their roots. Future improvements in time integration would be beneficial for V1.
The Budget and Economic Outlook: Fiscal Years 2007 to 2016
2006-01-01
2001 and 2003. d. The estimated trend in the ratio of output to hours worked in the nonfarm business sector . Total, Total, 1950- 1974- 1982- 1991...Potential Labor Productivity in the Nonfarm Business Sectord Overall Economy Nonfarm Business Sector TFP adjustments Contributions to the Growth of...on CBO’s Baseline Budget Projections 123D-1. Relationship of the Budget to the Federal Sector of the National Income and Product Accounts 128D-2
Covariance Analysis Tool (G-CAT) for Computing Ascent, Descent, and Landing Errors
NASA Technical Reports Server (NTRS)
Boussalis, Dhemetrios; Bayard, David S.
2013-01-01
G-CAT is a covariance analysis tool that enables fast and accurate computation of error ellipses for descent, landing, ascent, and rendezvous scenarios, and quantifies knowledge error contributions needed for error budgeting purposes. Because GCAT supports hardware/system trade studies in spacecraft and mission design, it is useful in both early and late mission/ proposal phases where Monte Carlo simulation capability is not mature, Monte Carlo simulation takes too long to run, and/or there is a need to perform multiple parametric system design trades that would require an unwieldy number of Monte Carlo runs. G-CAT is formulated as a variable-order square-root linearized Kalman filter (LKF), typically using over 120 filter states. An important property of G-CAT is that it is based on a 6-DOF (degrees of freedom) formulation that completely captures the combined effects of both attitude and translation errors on the propagated trajectories. This ensures its accuracy for guidance, navigation, and control (GN&C) analysis. G-CAT provides the desired fast turnaround analysis needed for error budgeting in support of mission concept formulations, design trade studies, and proposal development efforts. The main usefulness of a covariance analysis tool such as G-CAT is its ability to calculate the performance envelope directly from a single run. This is in sharp contrast to running thousands of simulations to obtain similar information using Monte Carlo methods. It does this by propagating the "statistics" of the overall design, rather than simulating individual trajectories. G-CAT supports applications to lunar, planetary, and small body missions. It characterizes onboard knowledge propagation errors associated with inertial measurement unit (IMU) errors (gyro and accelerometer), gravity errors/dispersions (spherical harmonics, masscons), and radar errors (multiple altimeter beams, multiple Doppler velocimeter beams). G-CAT is a standalone MATLAB- based tool intended to run on any engineer's desktop computer.
Key Questions on the Obama Administration's 2014 Education Budget Request. Issue Brief
ERIC Educational Resources Information Center
New America Foundation, 2013
2013-01-01
President Obama sent his fiscal year 2014 budget request to Congress on April 10, 2013. The New America Foundation's Education Policy Program released this subsequent issue brief, "Key Questions on the Obama Administration's 2014 Budget Request." Obama's budget request totals $71.2 billion in appropriations funding for the U.S.…
Lens-mount stability trade-off: a survey exemplified for DUV wafer inspection objectives
NASA Astrophysics Data System (ADS)
Bouazzam, Achmed; Erbe, Torsten; Fahr, Stephan; Werschnik, Jan
2015-09-01
The position stability of optical elements is an essential part of the tolerance budget of an optical system because its compensation would require an alignment step after the lens has left the factory. In order to achieve a given built performance the stability error contribution needs to be known and accounted for. Given a high-end lens touching the edge of technology not knowing, under- or overestimating this contribution becomes a serious cost and risk factor. If overestimated the remaining parts of the budget need to be tighter. If underestimated the total project might fail. For many mounting principles the stability benchmark is based on previous systems or information gathered by elaborated testing of complete optical systems. This renders the development of a new system into a risky endeavour, because these experiences are not sufficiently precise and tend to be not transferable when scaling of the optical elements is intended. This contribution discusses the influences of different optical mounting concepts on the position stability using the example of high numerical aperture (HNA) inspection lenses working in the deep ultraviolet (DUV) spectrum. A method to investigate the positional stability is presented for selected mounting examples typical for inspection lenses.
Evaluation of the cost effectiveness of the 1983 stream-gaging program in Kansas
Medina, K.D.; Geiger, C.O.
1984-01-01
The results of an evaluation of the cost effectiveness of the 1983 stream-gaging program in Kansas are documented. Data uses and funding sources were identified for the 140 complete record streamflow-gaging stations operated in Kansas during 1983 with a budget of $793,780. As a result of the evaluation of the needs and uses of data from the stream-gaging program, it was found that the 140 gaging stations were needed to meet these data requirements. The average standard error of estimation of streamflow records was 20.8 percent, assuming the 1983 budget and operating schedule of 6-week interval visitations and based on 85 of the 140 stations. It was shown that this overall level of accuracy could be improved to 18.9 percent by altering the 1983 schedule of station visitations. A minimum budget of $760 ,000, with a corresponding average error of estimation of 24.9 percent, is required to operate the 1983 program. None of the stations investigated were suitable for the application of alternative methods for simulating discharge records. Improved instrumentation can have a very positive impact on streamflow uncertainties by decreasing lost record. (USGS)
Dual view Geostationary Earth Radiation Budget from the Meteosat Second Generation satellites.
NASA Astrophysics Data System (ADS)
Dewitte, Steven; Clerbaux, Nicolas; Ipe, Alessandro; Baudrez, Edward; Moreels, Johan
2017-04-01
The diurnal cycle of the radiation budget is a key component of the tropical climate. The geostationary Meteosat Second Generation (MSG) satellites carrying both the broadband Geostationary Earth Radiation Budget (GERB) instrument with nadir resolution of 50 km and the multispectral Spinning Enhanced VIsible and InfraRed Imager (SEVIRI) with nadir resolution of 3 km offer a unique opportunity to observe this diurnal cycle. The geostationary orbit has the advantage of good temporal sampling but the disadvantage of fixed viewing angles, which makes the measurements of the broadband Top Of Atmosphere (TOA) radiative fluxes more sensitive to angular dependent errors. The Meteosat-10 (MSG-3) satellite observes the earth from the standard position at 0° longitude. From October 2016 onwards the Meteosat-8 (MSG-1) satellite makes observations from a new position at 41.5° East over the Indian Ocean. The dual view from Meteosat-8 and Meteosat-10 allows the assessment and correction of angular dependent systematic errors of the flux estimates. We demonstrate this capability with the validation of a new method for the estimation of the clear-sky TOA albedo from the SEVIRI instruments.
NASA Astrophysics Data System (ADS)
Vanhaelewyn, Gauthier; Duchatelet, Pierre; Vigouroux, Corinne; Dils, Bart; Kumps, Nicolas; Hermans, Christian; Demoulin, Philippe; Mahieu, Emmanuel; Sussmann, Ralf; de Mazière, Martine
2010-05-01
The Fourier Transform Infra Red (FTIR) remote measurements of atmospheric constituents at the observatories at Saint-Denis (20.90°S, 55.48°E, 50 m a.s.l., Île de la Réunion) and Jungfraujoch (46.55°N, 7.98°E, 3580 m a.s.l., Switzerland) are affiliated to the Network for the Detection of Atmospheric Composition Change (NDACC). The European NDACC FTIR data for CH4 were improved and homogenized among the stations in the EU project HYMN. One important application of these data is their use for the validation of satellite products, like the validation of SCIAMACHY or IASI CH4 columns. Therefore, it is very important that errors and uncertainties associated to the ground-based FTIR CH4 data are well characterized. In this poster we present a comparison of errors on retrieved vertical concentration profiles of CH4 between Saint-Denis and Jungfraujoch. At both stations, we have used the same retrieval algorithm, namely SFIT2 v3.92 developed jointly at the NASA Langley Research Center, the National Center for Atmospheric Research (NCAR) and the National Institute of Water and Atmosphere Research (NIWA) at Lauder, New Zealand, and error evaluation tools developed at the Belgian Institute for Space Aeronomy (BIRA-IASB). The error components investigated in this study are: smoothing, noise, temperature, instrumental line shape (ILS) (in particular the modulation amplitude and phase), spectroscopy (in particular the pressure broadening and intensity), interfering species and solar zenith angle (SZA) error. We will determine if the characteristics of the sites in terms of altitude, geographic locations and atmospheric conditions produce significant differences in the error budgets for the retrieved CH4 vertical profiles
NASA Astrophysics Data System (ADS)
Meftah, M.; Keckhut, P.; Damé, L.; Bekki, S.; Sarkissian, A.; Hauchecorne, A.
2018-05-01
Within the past decade, satellites constellations have become possible and practical. One of the interest to use a satellites constellation is to measure the true Earth Radiation Imbalance, which is a crucial quantity for testing climate models and for predicting the future course of global warming. This measurement presents a high interest because the 2001-2010 decade has not shown the accelerating pace of global warming that most models predict, despite the fact that the greenhouse-gas radiative forcing continues to rise. All estimates (ocean heat content and top of atmosphere) show that over the past decade the Earth radiation imbalance ranges between 0.5 to 1W-2. Up to now, the Earth radiation imbalance has not been measured directly. The only way to measure the imbalance with sufficient accuracy is to measure both the incoming solar radiations (total solar irradiance) and the outgoing terrestrial radiations (top of atmosphere outgoing longwave radiations and shortwave radiations) onboard the same satellite, and ideally, with the same instrument. The incoming solar radiations and the outgoing terrestrial radiations are of nearly equal magnitude of the order of 340.5W-2. The objective is to measure these quantities over time by using differential Sun-Earth measurements (to counter calibration errors) with an accuracy better than 0.05Wm-2 at 1σ. It is also necessary to have redundant instruments to track aging in space in order to measure during a decade and to measure the global diurnal cycle with a dozen satellites. Solar irradiance and Earth Radiation Budget (SERB) is a potential first in orbit demonstration satellite. The SERB nano-satellite aims to measure on the same platform the different components of the Earth radiation budget and the total solar irradiance. Instrumental payloads (solar radiometer and Earth radiometers) can acquire the technical maturity for the future large missions (constellation that insure global measurement cover) by flying in a CubeSat. This paper is intended to demonstrate the ability to build a low-cost satellite with a high accuracy measurement in order to have constant flow of data from space.
Permanent Shift?: Library Budgets 2010
ERIC Educational Resources Information Center
Oder, Norman
2010-01-01
It's no surprise that libraries in "LJ"'s annual budget survey reported an overall downward trend, with the expected decline in total budgets some 2.6% and the change in materials budgets 3.5%. Per capita funding is nudging down after years of steady if sometimes modest increases, with a projected decline of 1.6% in FY10. After all, the country…
2 CFR 170.330 - Total compensation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 2 Grants and Agreements 1 2014-01-01 2014-01-01 false Total compensation. 170.330 Section 170.330 Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET GOVERNMENTWIDE GUIDANCE FOR GRANTS AND AGREEMENTS Reserved REPORTING SUBAWARD AND...
2 CFR 170.330 - Total compensation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 2 Grants and Agreements 1 2013-01-01 2013-01-01 false Total compensation. 170.330 Section 170.330 Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET GOVERNMENTWIDE GUIDANCE FOR GRANTS AND AGREEMENTS NATIONAL POLICY REQUIREMENTS...
HD 140283: A STAR IN THE SOLAR NEIGHBORHOOD THAT FORMED SHORTLY AFTER THE BIG BANG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, Howard E.; Nelan, Edmund P.; VandenBerg, Don A.
HD 140283 is an extremely metal-deficient and high-velocity subgiant in the solar neighborhood, having a location in the Hertzsprung-Russell diagram where absolute magnitude is most sensitive to stellar age. Because it is bright, nearby, unreddened, and has a well-determined chemical composition, this star avoids most of the issues involved in age determinations for globular clusters. Using the Fine Guidance Sensors on the Hubble Space Telescope, we have measured a trigonometric parallax of 17.15 {+-} 0.14 mas for HD 140283, with an error one-fifth of that determined by the Hipparcos mission. Employing modern theoretical isochrones, which include effects of helium diffusion,more » revised nuclear reaction rates, and enhanced oxygen abundance, we use the precise distance to infer an age of 14.46 {+-} 0.31 Gyr. The quoted error includes only the uncertainty in the parallax, and is for adopted surface oxygen and iron abundances of [O/H] = -1.67 and [Fe/H] = -2.40. Uncertainties in the stellar parameters and chemical composition, especially the oxygen content, now contribute more to the error budget for the age of HD 140283 than does its distance, increasing the total uncertainty to about {+-}0.8 Gyr. Within the errors, the age of HD 140283 does not conflict with the age of the Universe, 13.77 {+-} 0.06 Gyr, based on the microwave background and Hubble constant, but it must have formed soon after the big bang.« less
Estimating diffusivity from the mixed layer heat and salt balances in the North Pacific
NASA Astrophysics Data System (ADS)
Cronin, M. F.; Pelland, N.; Emerson, S. R.; Crawford, W. R.
2015-12-01
Data from two National Oceanographic and Atmospheric Administration (NOAA) surface moorings in the North Pacific, in combination with data from satellite, Argo floats and glider (when available), are used to evaluate the residual diffusive flux of heat across the base of the mixed layer from the surface mixed layer heat budget. The diffusion coefficient (i.e., diffusivity) is then computed by dividing the diffusive flux by the temperature gradient in the 20-m transition layer just below the base of the mixed layer. At Station Papa in the NE Pacific subpolar gyre, this diffusivity is 1×10-4 m2/s during summer, increasing to ~3×10-4 m2/s during fall. During late winter and early spring, diffusivity has large errors. At other times, diffusivity computed from the mixed layer salt budget at Papa correlate with those from the heat budget, giving confidence that the results are robust for all seasons except late winter-early spring and can be used for other tracers. In comparison, at the Kuroshio Extension Observatory (KEO) in the NW Pacific subtropical recirculation gyre, somewhat larger diffusivity are found based upon the mixed layer heat budget: ~ 3×10-4 m2/s during the warm season and more than an order of magnitude larger during the winter, although again, wintertime errors are large. These larger values at KEO appear to be due to the increased turbulence associated with the summertime typhoons, and weaker wintertime stratification.
Estimating diffusivity from the mixed layer heat and salt balances in the North Pacific
NASA Astrophysics Data System (ADS)
Cronin, Meghan F.; Pelland, Noel A.; Emerson, Steven R.; Crawford, William R.
2015-11-01
Data from two National Oceanographic and Atmospheric Administration (NOAA) surface moorings in the North Pacific, in combination with data from satellite, Argo floats and glider (when available), are used to evaluate the residual diffusive flux of heat across the base of the mixed layer from the surface mixed layer heat budget. The diffusion coefficient (i.e., diffusivity) is then computed by dividing the diffusive flux by the temperature gradient in the 20 m transition layer just below the base of the mixed layer. At Station Papa in the NE Pacific subpolar gyre, this diffusivity is 1 × 10-4 m2/s during summer, increasing to ˜3 × 10-4 m2/s during fall. During late winter and early spring, diffusivity has large errors. At other times, diffusivity computed from the mixed layer salt budget at Papa correlate with those from the heat budget, giving confidence that the results are robust for all seasons except late winter-early spring and can be used for other tracers. In comparison, at the Kuroshio Extension Observatory (KEO) in the NW Pacific subtropical recirculation gyre, somewhat larger diffusivities are found based upon the mixed layer heat budget: ˜ 3 × 10-4 m2/s during the warm season and more than an order of magnitude larger during the winter, although again, wintertime errors are large. These larger values at KEO appear to be due to the increased turbulence associated with the summertime typhoons, and weaker wintertime stratification.
Investigation of scene identification algorithms for radiation budget measurements
NASA Technical Reports Server (NTRS)
Diekmann, F. J.
1986-01-01
The computation of Earth radiation budget from satellite measurements requires the identification of the scene in order to select spectral factors and bidirectional models. A scene identification procedure is developed for AVHRR SW and LW data by using two radiative transfer models. These AVHRR GAC pixels are then attached to corresponding ERBE pixels and the results are sorted into scene identification probability matrices. These scene intercomparisons show that there generally is a higher tendency for underestimation of cloudiness over ocean at high cloud amounts, e.g., mostly cloudy instead of overcast, partly cloudy instead of mostly cloudy, for the ERBE relative to the AVHRR results. Reasons for this are explained. Preliminary estimates of the errors of exitances due to scene misidentification demonstrates the high dependency on the probability matrices. While the longwave error can generally be neglected the shortwave deviations have reached maximum values of more than 12% of the respective exitances.
Prototype Development of a Geostationary Synthetic Thinned Aperture Radiometer, GeoSTAR
NASA Technical Reports Server (NTRS)
Tanner, Alan B.; Wilson, William J.; Kangaslahti, Pekka P.; Lambrigsten, Bjorn H.; Dinardo, Steven J.; Piepmeier, Jeffrey R.; Ruf, Christopher S.; Rogacki, Steven; Gross, S. M.; Musko, Steve
2004-01-01
Preliminary details of a 2-D synthetic aperture radiometer prototype operating from 50 to 58 GHz will be presented. The instrument is being developed as a laboratory testbed, and the goal of this work is to demonstrate the technologies needed to do atmospheric soundings with high spatial resolution from Geostationary orbit. The concept is to deploy a large sparse aperture Y-array from a geostationary satellite, and to use aperture synthesis to obtain images of the earth without the need for a large mechanically scanned antenna. The laboratory prototype consists of a Y-array of 24 horn antennas, MMIC receivers, and a digital cross-correlation sub-system. System studies are discussed, including an error budget which has been derived from numerical simulations. The error budget defines key requirements, such as null offsets, phase calibration, and antenna pattern knowledge. Details of the instrument design are discussed in the context of these requirements.
NASA Technical Reports Server (NTRS)
Gardner, Robert; Gillis, James W.; Griesel, Ann; Pardo, Bruce
1985-01-01
An analysis of the direction finding (DF) and fix estimation algorithms in TRAILBLAZER is presented. The TRAILBLAZER software analyzed is old and not currently used in the field. However, the algorithms analyzed are used in other current IEW systems. The underlying algorithm assumptions (including unmodeled errors) are examined along with their appropriateness for TRAILBLAZER. Coding and documentation problems are then discussed. A detailed error budget is presented.
WFIRST: Managing Telescope Wavefront Stability to Meet Coronagraph Performance
NASA Astrophysics Data System (ADS)
Noecker, Martin; Poberezhskiy, Ilya; Kern, Brian; Krist, John; WFIRST System Engineering Team
2018-01-01
The WFIRST coronagraph instrument (CGI) needs a stable telescope and active wavefront control to perform coronagraph science with an expected sensitivity of 8x10-9 in the exoplanet-star flux ratio (SNR=10) at 200 milliarcseconds angular separation. With its subnanometer requirements on the stability of its input wavefront error (WFE), the CGI employs a combination of pointing and wavefront control loops and thermo-mechanical stability to meet budget allocations for beam-walk and low-order WFE, which enable stable starlight speckles on the science detector that can be removed by image subtraction. We describe the control strategy and the budget framework for estimating and budgeting the elements of wavefront stability, and the modeling strategy to evaluate it.
NASA Technical Reports Server (NTRS)
Barkstrom, B. R.
1983-01-01
The measurement of the earth's radiation budget has been chosen to illustrate the technique of objective system design. The measurement process is an approximately linear transformation of the original field of radiant exitances, so that linear statistical techniques may be employed. The combination of variability, measurement strategy, and error propagation is presently made with the help of information theory, as suggested by Kondratyev et al. (1975) and Peckham (1974). Covariance matrices furnish the quantitative statement of field variability.
40 CFR Appendix C to Part 97 - Final Section 126 Rule: Trading Budget
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Final Section 126 Rule: Trading Budget... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Pt. 97, App. C Appendix C to Part 97—Final Section 126 Rule: Trading Budget ST F126-EGU F126-NEGU Total DC 207 26...
40 CFR Appendix C to Part 97 - Final Section 126 Rule: Trading Budget
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Final Section 126 Rule: Trading Budget... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Pt. 97, App. C Appendix C to Part 97—Final Section 126 Rule: Trading Budget ST F126-EGU F126-NEGU Total DC 207 26...
40 CFR Appendix C to Part 97 - Final Section 126 Rule: Trading Budget
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Final Section 126 Rule: Trading Budget... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Pt. 97, App. C Appendix C to Part 97—Final Section 126 Rule: Trading Budget ST F126-EGU F126-NEGU Total DC 207 26...
40 CFR Appendix C to Part 97 - Final Section 126 Rule: Trading Budget
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Final Section 126 Rule: Trading Budget... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Pt. 97, App. C Appendix C to Part 97—Final Section 126 Rule: Trading Budget ST F126-EGU F126-NEGU Total DC 207 26...
Xie, Jipan; Diener, Melissa; De, Gourab; Yang, Hongbo; Wu, Eric Q; Namjoshi, Madhav
2013-01-01
To estimate the budget impact of everolimus as the first and second treatment option after letrozole or anastrozole (L/A) failure for post-menopausal women with hormone receptor positive (HR+), human epidermal growth factor receptor-2 negative (HER2-) advanced breast cancer (ABC). Pharmacy and medical budget impacts (2011 USD) were estimated over the first year of everolimus use in HR+, HER2- ABC from a US payer perspective. Epidemiology data were used to estimate target population size. Pre-everolimus entry treatment options included exemestane, fulvestrant, and tamoxifen. Pre- and post-everolimus entry market shares were estimated based on market research and assumptions. Drug costs were based on wholesale acquisition cost. Patients were assumed to be on treatment until progression or death. Annual medical costs were calculated as the average of pre- and post-progression medical costs weighted by the time in each period, adjusted for survival. One-way and two-way sensitivity analyses were conducted to assess the model robustness. In a hypothetical 1,000,000 member plan, 72 and 159 patients were expected to be candidates for everolimus treatment as first and second treatment option, respectively, after L/A failure. The total budget impact for the first year post-everolimus entry was $0.044 per member per month [PMPM] (pharmacy budget: $0.058 PMPM; medical budget: -$0.014 PMPM), assuming 10% of the target population would receive everolimus. The total budget impacts for the first and second treatment options after L/A failure were $0.014 PMPM (pharmacy budget: $0.018; medical budget: -$0.004) and $0.030 PMPM (pharmacy budget: $0.040; medical budget: -$0.010), respectively. Results remained robust in sensitivity analyses. Assumptions about some model input parameters were necessary and may impact results. Increased pharmacy costs for HR+, HER2- ABC following everolimus entry are expected to be partially offset by reduced medical service costs. Pharmacy and total budget increases were modest.
Permafrost thaw strongly reduces allowable CO2 emissions for 1.5°C and 2°C
NASA Astrophysics Data System (ADS)
Kechiar, M.; Gasser, T.; Kleinen, T.; Ciais, P.; Huang, Y.; Burke, E.; Obersteiner, M.
2017-12-01
We quantify how the inclusion of carbon emission from permafrost thaw impacts the budgets of allowable anthropogenic CO2 emissions. We use the compact Earth system model OSCAR v2.2 which we expand with a permafrost module calibrated to emulate the behavior of the complex models JSBACH, ORCHIDEE and JULES. When using the "exceedance" method and with permafrost thaw turned off, we find budgets very close to the CMIP5 models' estimates reported by IPCC. With permafrost thaw turned on, the total budgets are reduced by 3-4%. This corresponds to a 33-45% reduction of the remaining budget for 1.5°C, and a 9-13% reduction for 2°C. When using the "avoidance" method, however, permafrost thaw reduces the total budget by 3-7%, which corresponds to reductions by 33-56% and 56-79% of the remaining budget for 1.5°C and 2°C, respectively. The avoidance method relies on many scenarios that actually peak below the target whereas the exceedance method overlooks the carbon emitted by thawed permafrost after the temperature target is reached, which explains the difference. If we use only the subset of scenarios in which there is no net negative emissions, the permafrost-induced reduction in total budgets rises to 6-15%. Permafrost thaw therefore makes the emission budgets strongly path-dependent. We also estimate budgets of needed carbon capture in scenarios overshooting the temperature targets. Permafrost thaw strongly increases these capture budgets: in the case of a 1.5°C target overshot by 0.5°C, which is in line with the Paris agreement, about 30% more carbon must be captured. Our conclusions are threefold. First, inclusion of permafrost thaw systematically reduces the emission budgets, and very strongly so if the temperature target is overshot. Second, the exceedance method, that is the only one that complex models can follow, only partially accounts for the effect of slow non-linear processes such as permafrost thaw, leading to overestimated budgets. Third, the newfound strong path-dependency of the budgets renders the concept more delicate to use. For instance, using a budget that implicitly assumes a large development of negative emission technologies may lead to missing the target if these are not as scalable as anticipated.
NASA Technical Reports Server (NTRS)
Li, Zhanqing; Whitlock, Charles H.; Charlock, Thomas P.
1995-01-01
Global sets of surface radiation budget (SRB) have been obtained from satellite programs. These satellite-based estimates need validation with ground-truth observations. This study validates the estimates of monthly mean surface insolation contained in two satellite-based SRB datasets with the surface measurements made at worldwide radiation stations from the Global Energy Balance Archive (GEBA). One dataset was developed from the Earth Radiation Budget Experiment (ERBE) using the algorithm of Li et al. (ERBE/SRB), and the other from the International Satellite Cloud Climatology Project (ISCCP) using the algorithm of Pinker and Laszlo and that of Staylor (GEWEX/SRB). Since the ERBE/SRB data contain the surface net solar radiation only, the values of surface insolation were derived by making use of the surface albedo data contained GEWEX/SRB product. The resulting surface insolation has a bias error near zero and a root-mean-square error (RMSE) between 8 and 28 W/sq m. The RMSE is mainly associated with poor representation of surface observations within a grid cell. When the number of surface observations are sufficient, the random error is estimated to be about 5 W/sq m with present satellite-based estimates. In addition to demonstrating the strength of the retrieving method, the small random error demonstrates how well the ERBE derives from the monthly mean fluxes at the top of the atmosphere (TOA). A larger scatter is found for the comparison of transmissivity than for that of insolation. Month to month comparison of insolation reveals a weak seasonal trend in bias error with an amplitude of about 3 W/sq m. As for the insolation data from the GEWEX/SRB, larger bias errors of 5-10 W/sq m are evident with stronger seasonal trends and almost identical RMSEs.
Billions for biodefense: federal agency biodefense funding, FY2009-FY2010.
Franco, Crystal
2009-09-01
Since 2001, the United States government has spent substantial resources on preparing the nation against a bioterrorist attack. Earlier articles in this series analyzed civilian biodefense funding by the federal government for fiscal years (FY) 2001 through 2009. This article updates those figures with budgeted amounts for FY2010, specifically analyzing the budgets and allocations for biodefense at the Departments of Health and Human Services, Defense, Homeland Security, Agriculture, and State; the Environmental Protection Agency; and the National Science Foundation. This year's article also provides an assessment of the proportion of the biodefense budget that serves multiple programmatic goals and benefits, including research into infectious disease pathogenesis and immunology, public health planning and preparedness, and disaster response efforts. The FY2010 federal budget for civilian biodefense totals $6.05 billion. Of that total, $4.96 billion is budgeted for programs that serve multiple goals and provide manifold benefits.
Clinton Administration announces FY 2001 budget request
NASA Astrophysics Data System (ADS)
Showstack, Randy
Blessed with a strong US. economy the Clinton Administration on February 7 released a fiscal year 2001 federal budget request totaling a whopping $1,835 billion. Most of the funding request is slated for big ticket items including Social Security defense spending, Medicaid, Medicare, and paying down the federal debt. However, within the 19% of the budget that funds non-defense discretionary programs,science agencies receive fairly healthy increases.The National Science Foundation (NSF) budget request would increase NSF funding by 17.3% $675 million and bring the total budget request to $4.6 billion. This includes significant increases for several initiatives: biocomplexity in the environment, information technology research, nanoscale science and engineering, and 21st century workforce. Among the major Earth science projects are launching the Earthscope initiative which includes the US Array and San Andreas Fault Observatory at Depth (SAFOD) and the National Ecological Observatory Network (NEON).
Discovery and New Frontiers Project Budget Analysis Tool
NASA Technical Reports Server (NTRS)
Newhouse, Marilyn E.
2011-01-01
The Discovery and New Frontiers (D&NF) programs are multi-project, uncoupled programs that currently comprise 13 missions in phases A through F. The ability to fly frequent science missions to explore the solar system is the primary measure of program success. The program office uses a Budget Analysis Tool to perform "what-if" analyses and compare mission scenarios to the current program budget, and rapidly forecast the programs ability to meet their launch rate requirements. The tool allows the user to specify the total mission cost (fixed year), mission development and operations profile by phase (percent total mission cost and duration), launch vehicle, and launch date for multiple missions. The tool automatically applies inflation and rolls up the total program costs (in real year dollars) for comparison against available program budget. Thus, the tool allows the user to rapidly and easily explore a variety of launch rates and analyze the effect of changes in future mission or launch vehicle costs, the differing development profiles or operational durations of a future mission, or a replan of a current mission on the overall program budget. Because the tool also reports average monthly costs for the specified mission profile, the development or operations cost profile can easily be validate against program experience for similar missions. While specifically designed for predicting overall program budgets for programs that develop and operate multiple missions concurrently, the basic concept of the tool (rolling up multiple, independently-budget lines) could easily be adapted to other applications.
Co-optimization of lithographic and patterning processes for improved EPE performance
NASA Astrophysics Data System (ADS)
Maslow, Mark J.; Timoshkov, Vadim; Kiers, Ton; Jee, Tae Kwon; de Loijer, Peter; Morikita, Shinya; Demand, Marc; Metz, Andrew W.; Okada, Soichiro; Kumar, Kaushik A.; Biesemans, Serge; Yaegashi, Hidetami; Di Lorenzo, Paolo; Bekaert, Joost P.; Mao, Ming; Beral, Christophe; Larivière, Stephane
2017-03-01
Complimentary lithography is already being used for advanced logic patterns. The tight pitches for 1D Metal layers are expected to be created using spacer based multiple patterning ArF-i exposures and the more complex cut/block patterns are made using EUV exposures. At the same time, control requirements of CDU, pattern shift and pitch-walk are approaching sub-nanometer levels to meet edge placement error (EPE) requirements. Local variability, such as Line Edge Roughness (LER), Local CDU, and Local Placement Error (LPE), are dominant factors in the total Edge Placement error budget. In the lithography process, improving the imaging contrast when printing the core pattern has been shown to improve the local variability. In the etch process, it has been shown that the fusion of atomic level etching and deposition can also improve these local variations. Co-optimization of lithography and etch processing is expected to further improve the performance over individual optimizations alone. To meet the scaling requirements and keep process complexity to a minimum, EUV is increasingly seen as the platform for delivering the exposures for both the grating and the cut/block patterns beyond N7. In this work, we evaluated the overlay and pattern fidelity of an EUV block printed in a negative tone resist on an ArF-i SAQP grating. High-order Overlay modeling and corrections during the exposure can reduce overlay error after development, a significant component of the total EPE. During etch, additional degrees of freedom are available to improve the pattern placement error in single layer processes. Process control of advanced pitch nanoscale-multi-patterning techniques as described above is exceedingly complicated in a high volume manufacturing environment. Incorporating potential patterning optimizations into both design and HVM controls for the lithography process is expected to bring a combined benefit over individual optimizations. In this work we will show the EPE performance improvement for a 32nm pitch SAQP + block patterned Metal 2 layer by cooptimizing the lithography and etch processes. Recommendations for further improvements and alternative processes will be given.
NASA Technical Reports Server (NTRS)
Holdaway, Daniel; Yang, Yuekui
2016-01-01
Satellites always sample the Earth-atmosphere system in a finite temporal resolution. This study investigates the effect of sampling frequency on the satellite-derived Earth radiation budget, with the Deep Space Climate Observatory (DSCOVR) as an example. The output from NASA's Goddard Earth Observing System Version 5 (GEOS-5) Nature Run is used as the truth. The Nature Run is a high spatial and temporal resolution atmospheric simulation spanning a two-year period. The effect of temporal resolution on potential DSCOVR observations is assessed by sampling the full Nature Run data with 1-h to 24-h frequencies. The uncertainty associated with a given sampling frequency is measured by computing means over daily, monthly, seasonal and annual intervals and determining the spread across different possible starting points. The skill with which a particular sampling frequency captures the structure of the full time series is measured using correlations and normalized errors. Results show that higher sampling frequency gives more information and less uncertainty in the derived radiation budget. A sampling frequency coarser than every 4 h results in significant error. Correlations between true and sampled time series also decrease more rapidly for a sampling frequency less than 4 h.
Children's Budget 2016. 10th Anniversary Edition
ERIC Educational Resources Information Center
Monsif, John, Ed.; Gluck, Elliott, Ed.
2016-01-01
Federal spending dedicated to children represents just 7.83 percent of the federal budget in fiscal year 2016, and total spending on children's programs has decreased by five percent in the last two years, according to "Children's Budget 2016." The federal government makes more than 200 distinct investments in children. These include…
Source partitioning of methane emissions and its seasonality in the U.S. Midwest
USDA-ARS?s Scientific Manuscript database
The methane (CH4) budget and its source partitioning are poorly constrained in the Midwestern, United States. We used tall tower (185 m) aerodynamic flux measurements and atmospheric scale factor Bayesian inversions (SFBI) to constrain the monthly budget and to partition the total budget into natura...
Precipitation and Diabatic Heating Distributions from TRMM/GPM
NASA Astrophysics Data System (ADS)
Olson, W. S.; Grecu, M.; Wu, D.; Tao, W. K.; L'Ecuyer, T.; Jiang, X.
2016-12-01
The initial focus of our research effort was the development of a physically-based methodology for estimating 3D precipitation distributions from a combination of spaceborne radar and passive microwave radiometer observations. This estimation methodology was originally developed for applications to Global Precipitation Measurement (GPM) mission sensor data, but it has recently been adapted to Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar and Microwave Imager observations. Precipitation distributions derived from the TRMM sensors are interpreted using cloud-system resolving model simulations to infer atmospheric latent+eddy heating (Q1-QR) distributions in the tropics and subtropics. Further, the estimates of Q1-QR are combined with estimates of radiative heating (QR), derived from TRMM Microwave Imager and Visible and Infrared Scanner data as well as environmental properties from NCEP reanalyses, to yield estimates of the large-scale total diabatic heating (Q1). A thirteen-year database of precipitation and diabatic heating is constructed using TRMM observations from 1998-2010 as part of NASA's Energy and Water cycle Study program. State-dependent errors in precipitation and heating products are evaluated by propagating the potential errors of a priori modeling assumptions through the estimation method framework. Knowledge of these errors is critical for determining the "closure" of global water and energy budgets. Applications of the precipitation/heating products to climate studies will be presented at the conference.
Error budgeting single and two qubit gates in a superconducting qubit
NASA Astrophysics Data System (ADS)
Chen, Z.; Chiaro, B.; Dunsworth, A.; Foxen, B.; Neill, C.; Quintana, C.; Wenner, J.; Martinis, John. M.; Google Quantum Hardware Team Team
Superconducting qubits have shown promise as a platform for both error corrected quantum information processing and demonstrations of quantum supremacy. High fidelity quantum gates are crucial to achieving both of these goals, and superconducting qubits have demonstrated two qubit gates exceeding 99% fidelity. In order to improve gate fidelity further, we must understand the remaining sources of error. In this talk, I will demonstrate techniques for quantifying the contributions of control, decoherence, and leakage to gate error, for both single and two qubit gates. I will also discuss the near term outlook for achieving quantum supremacy using a gate-based approach in superconducting qubits. This work is supported Google Inc., and by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1605114.
Wright, S.A.; Schoellhamer, D.H.
2005-01-01
[1] Where rivers encounter estuaries, a transition zone develops where riverine and tidal processes both affect sediment transport processes. One such transition zone is the Sacramento-San Joaquin River Delta, a large, complex system where several rivers meet to form an estuary (San Francisco Bay). Herein we present the results of a detailed sediment budget for this river/estuary transitional system. The primary regional goal of the study was to measure sediment transport rates and pathways in the delta in support of ecosystem restoration efforts. In addition to achieving this regional goal, the study has produced general methods to collect, edit, and analyze (including error analysis) sediment transport data at the interface of rivers and estuaries. Estimating sediment budgets for these systems is difficult because of the mixed nature of riverine versus tidal transport processes, the different timescales of transport in fluvial and tidal environments, and the sheer complexity and size of systems such as the Sacramento-San Joaquin River Delta. Sediment budgets also require error estimates in order to assess whether differences in inflows and outflows, which could be small compared to overall fluxes, are indeed distinguishable from zero. Over the 4 year period of this study, water years 1999-2002, 6.6 ?? 0.9 Mt of sediment entered the delta and 2.2 ?? 0.7 Mt exited, resulting in 4.4 ?? 1.1 Mt (67 ?? 17%) of deposition. The estimated deposition rate corresponding to this mass of sediment compares favorably with measured inorganic sediment accumulation on vegetated wetlands in the delta.
Characterizing biospheric carbon balance using CO2 observations from the OCO-2 satellite
NASA Astrophysics Data System (ADS)
Miller, Scot M.; Michalak, Anna M.; Yadav, Vineet; Tadić, Jovan M.
2018-05-01
NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite launched in summer of 2014. Its observations could allow scientists to constrain CO2 fluxes across regions or continents that were previously difficult to monitor. This study explores an initial step toward that goal; we evaluate the extent to which current OCO-2 observations can detect patterns in biospheric CO2 fluxes and constrain monthly CO2 budgets. Our goal is to guide top-down, inverse modeling studies and identify areas for future improvement. We find that uncertainties and biases in the individual OCO-2 observations are comparable to the atmospheric signal from biospheric fluxes, particularly during Northern Hemisphere winter when biospheric fluxes are small. A series of top-down experiments indicate how these errors affect our ability to constrain monthly biospheric CO2 budgets. We are able to constrain budgets for between two and four global regions using OCO-2 observations, depending on the month, and we can constrain CO2 budgets at the regional level (i.e., smaller than seven global biomes) in only a handful of cases (16 % of all regions and months). The potential of the OCO-2 observations, however, is greater than these results might imply. A set of synthetic data experiments suggests that retrieval errors have a salient effect. Advances in retrieval algorithms and to a lesser extent atmospheric transport modeling will improve the results. In the interim, top-down studies that use current satellite observations are best-equipped to constrain the biospheric carbon balance across only continental or hemispheric regions.
Weighing Rocky Exoplanets with Improved Radial Velocimetry
NASA Astrophysics Data System (ADS)
Xuesong Wang, Sharon; Wright, Jason; California Planet Survey Consortium
2016-01-01
The synergy between Kepler and the ground-based radial velocity (RV) surveys have made numerous discoveries of small and rocky exoplanets, opening the age of Earth analogs. However, most (29/33) of the RV-detected exoplanets that are smaller than 3 Earth radii do not have their masses constrained to better than 20% - limited by the current RV precision (1-2 m/s). Our work improves the RV precision of the Keck telescope, which is responsible for most of the mass measurements for small Kepler exoplanets. We have discovered and verified, for the first time, two of the dominant terms in Keck's RV systematic error budget: modeling errors (mostly in deconvolution) and telluric contamination. These two terms contribute 1 m/s and 0.6 m/s, respectively, to the RV error budget (RMS in quadrature), and they create spurious signals at periods of one sidereal year and its harmonics with amplitudes of 0.2-1 m/s. Left untreated, these errors can mimic the signals of Earth-like or Super-Earth planets in the Habitable Zone. Removing these errors will bring better precision to ten-year worth of Keck data and better constraints on the masses and compositions of small Kepler planets. As more precise RV instruments coming online, we need advanced data analysis tools to overcome issues like these in order to detect the Earth twin (RV amplitude 8 cm/s). We are developing a new, open-source RV data analysis tool in Python, which uses Bayesian MCMC and Gaussian processes, to fully exploit the hardware improvements brought by new instruments like MINERVA and NASA's WIYN/EPDS.
Preventing Marketing Efforts That Bomb.
ERIC Educational Resources Information Center
Sevier, Robert A.
2000-01-01
In a marketplace overwhelmed with messages, too many institutions waste money on ineffective marketing. Highlights five common marketing errors: limited definition of marketing; unwillingness to address strategic issues; no supporting data; fuzzy goals and directions; and unrealistic expectations, time lines, and budgets. Though trustees are not…
A manual to identify sources of fluvial sediment
Gellis, Allen C.; Fitzpatrick, Faith A.; Schubauer-Berigan, Joseph
2016-01-01
Sediment is an important pollutant of concern that can degrade and alter aquatic habitat. A sediment budget is an accounting of the sources, storage, and export of sediment over a defined spatial and temporal scale. This manual focuses on field approaches to estimate a sediment budget. We also highlight the sediment fingerprinting approach to attribute sediment to different watershed sources. Determining the sources and sinks of sediment is important in developing strategies to reduce sediment loads to water bodies impaired by sediment. Therefore, this manual can be used when developing a sediment TMDL requiring identification of sediment sources.The manual takes the user through the seven necessary steps to construct a sediment budget:Decision-making for watershed scale and time period of interestFamiliarization with the watershed by conducting a literature review, compiling background information and maps relevant to study questions, conducting a reconnaissance of the watershedDeveloping partnerships with landowners and jurisdictionsCharacterization of watershed geomorphic settingDevelopment of a sediment budget designData collectionInterpretation and construction of the sediment budgetGenerating products (maps, reports, and presentations) to communicate findings.Sediment budget construction begins with examining the question(s) being asked and whether a sediment budget is necessary to answer these question(s). If undertaking a sediment budget analysis is a viable option, the next step is to define the spatial scale of the watershed and the time scale needed to answer the question(s). Of course, we understand that monetary constraints play a big role in any decision.Early in the sediment budget development process, we suggest getting to know your watershed by conducting a reconnaissance and meeting with local stakeholders. The reconnaissance aids in understanding the geomorphic setting of the watershed and potential sources of sediment. Identifying the potential sediment sources early in the design of the sediment budget will help later in deciding which tools are necessary to monitor erosion and/or deposition at these sources. Tools can range from rapid inventories to estimate the sediment budget or quantifying sediment erosion, deposition, and export through more rigorous field monitoring. In either approach, data are gathered and erosion and deposition calculations are determined and compared to the sediment export with a description of the error uncertainty. Findings are presented to local stakeholders and management officials.Sediment fingerprinting is a technique that apportions the sources of fine-grained sediment in a watershed using tracers or fingerprints. Due to different geologic and anthropogenic histories, the chemical and physical properties of sediment in a watershed may vary and often represent a unique signature (or fingerprint) for each source within the watershed. Fluvial sediment samples (the target sediment) are also collected and exhibit a composite of the source properties that can be apportioned through various statistical techniques. Using an unmixing-model and error analysis, the final apportioned sediment is determined.
Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil
Dunne, T.; Mertes, L.A.K.; Meade, R.H.; Richey, J.E.; Forsberg, B.R.
1998-01-01
Sediment transport through the Brazilian sector of the Amazon River valley, a distance of 2010 km, involves exchanges between the channel and the flood plain that in each direction exceed the annual flux of sediment out of the river at O??bidos (???1200 Mt yr-1). The exchanges occur through bank erosion, bar deposition, settling from diffuse overbank flow, and sedimentation in flood-plain channels. We estimated the magnitude of these exchanges for each of 10 reaches of the valley, and combined them with calculations of sediment transport into and out of the reaches based on sediment sampling and flow records to define a sediment budget for each reach. Residuals in the sediment budget of a reach include errors of estimation and erosion or deposition within the channel. The annual supply of sediment entering the channel from bank erosion was estimated to average 1570 Mt yr-1 (1.3 ?? the O??bidos flux) and the amount transferred from channel transport to the bars (380 Mt yr-1) and the flood plain (460 Mt yr-1 in channelized flow; 1230 Mt yr-1 in diffuse overbank flow) totaled 2070 Mt yr-1 (1.7 ?? the O??bidos flux). Thus, deposition on the bars and flood plain exceeded bank erosion by 500 Mt yr-1 over a 10-16 yr period. Sampling and calculation of sediment loads in the channel indicate a net accumulation in the valley floor of approximately 200 Mt yr-1 over 16 yr, crudely validating the process-based calculations of the sediment budget, which in turn illuminate the physical controls on each exchange process. Another 300-400 Mt yr-1 are deposited in a delta plain downstream of O??bidos. The components of the sediment budget reflect hydrologie characteristics of the valley floor and geomorphic characteristics of the channel and flood plain, which in turn are influenced by tectonic features of the Amazon structural trough.
Most science spared big budget bite
NASA Astrophysics Data System (ADS)
Richman, Barbara T.
Most science budgets emerged unscathed from President Ronald Reagan's fiscal 1983 budget proposal. Total funding for research and development came out slightly ahead of inflation, as did funding for basic research (Eos, February 16, p. 162). The National Science Foundation (NSF) edged past the projected 7.3% inflation rate for 1982, and the National Aeronautics and Space Administration (NASA) budget is to be increased by 10.6%. However, the U.S. Geological Survey (USGS) is budgeted for a 4.2% increase in funding, and the National Oceanic and Atmospheric Administration (NOAA) will take an 8.3% cut.
Pluri-annual sediment budget in a navigated river system: the Seine River (France).
Vilmin, Lauriane; Flipo, Nicolas; de Fouquet, Chantal; Poulin, Michel
2015-01-01
This study aims at quantifying pluri-annual Total Suspended Matter (TSM) budgets, and notably the share of river navigation in total re-suspension at a long-term scale, in the Seine River along a 225 km stretch including the Paris area. Erosion is calculated based on the transport capacity concept with an additional term for the energy dissipated by river navigation. Erosion processes are fitted for the 2007-2011 period based on i) a hydrological typology of sedimentary processes and ii) a simultaneous calibration and retrospective validation procedure. The correlation between observed and simulated TSM concentrations is higher than 0.91 at all monitoring stations. A variographic analysis points out the possible sources of discrepancies between the variabilities of observed and simulated TSM concentrations at three time scales: sub-weekly, monthly and seasonally. Most of the error on the variability of simulated concentrations concerns sub-weekly variations and may be caused by boundary condition estimates rather than modeling of in-river processes. Once fitted, the model permits to quantify that only a small fraction of the TSM flux sediments onto the river bed (<0.3‰). The river navigation contributes significantly to TSM re-suspension in average (about 20%) and during low flow periods (over 50%). Given the significant impact that sedimentary processes can have on the water quality of rivers, these results highlight the importance of taking into account river navigation as a source of re-suspension, especially during low flow periods when biogeochemical processes are the most intense. Copyright © 2014 Elsevier B.V. All rights reserved.
Strategy And The Spreadsheet: Optimizing The Total Army To Satisfy Both
2016-02-11
historically reduces military end strength at the conclusion of major conflicts. The Budget Control Act of 2011 imposed sequestration spending limits on...the military that began the process of drawing down the military through fiscal year 2021. While the 2016 defense budget delays sequestration cuts... budget by a wide margin, has started repeating a historical cycle of budget driven defense cuts. The Army’s large force represents an attractive
Budget impact analysis of drugs for ultra-orphan non-oncological diseases in Europe.
Schlander, Michael; Adarkwah, Charles Christian; Gandjour, Afschin
2015-02-01
Ultra-orphan diseases (UODs) have been defined by a prevalence of less than 1 per 50,000 persons. However, little is known about budget impact of ultra-orphan drugs. For analysis, the budget impact analysis (BIA) had a time horizon of 10 years (2012-2021) and a pan-European payer's perspective, based on prevalence data for UODs for which patented drugs are available and/or for which drugs are in clinical development. A total of 18 drugs under patent protection or orphan drug designation for non-oncological UODs were identified. Furthermore, 29 ultra-orphan drugs for non-oncological diseases under development that have the potential of reaching the market by 2021 were found. Total budget impact over 10 years was estimated to be €15,660 and €4965 million for approved and pipeline ultra-orphan drugs, respectively (total: €20,625 million). The analysis does not support concerns regarding an uncontrolled growth in expenditures for drugs for UODs.
Anderson, Mark T.
1995-01-01
The study of ground-water and surface-water interactions often employs streamflow-gaging records and hydrologic budgets to determine ground-water seepage. Because ground-water seepage usually is computed as a residual in the hydrologic budget approach, all uncertainty of measurement and estimation of budget components is associated with the ground-water seepage. This uncertainty can exceed the estimate, especially when streamflow and its associated error of measurement, is large relative to other budget components. In a study of Rapid Creek in western South Dakota, the hydrologic budget approach with hydrochemistry was combined to determine ground-water seepage. The City of Rapid City obtains most of its municipal water from three infiltration galleries (Jackson Springs, Meadowbrook, and Girl Scout) constructed in the near-stream alluvium along Rapid Creek. The reach of Rapid Creek between Pactola Reservoir and Rapid City and, in particular the two subreaches containing the galleries, were studied intensively to identify the sources of water to each gallery. Jackson Springs Gallery was found to pump predominantly ground water with a minor component of surface water. Meadowbrook and Girl Scout Galleries induce infiltration of surface water from Rapid Creek but also have a significant component of ground water.
Control-structure interaction/mirror motion compensation
NASA Technical Reports Server (NTRS)
Mclaren, Mark; Chu, Peter; Price, Xen
1992-01-01
Space Systems/Loral (formerly Ford Aerospace, Space Systems Division) has implemented a rigid-body Mirror Motion Compensation (MMC) scheme for the GOES-I/M spacecraft currently being built for NASA and NOAA. This has resulted in a factor of 15 reduction in pointing error due to rigid-body spacecraft motion induced by the periodic black-body calibration maneuvers required for the instruments. For GOES the spacecraft and the payload mirrors are considered as rigid bodies. The structural flexibility effects are small and are included in the total pointing budget as a separate item. This paper extends the MMC technique to include structural flexibility. For large multi-payload platforms, the structural flexibility effects can be more important in sensor pointing jitter as the result of payload motion. Sensitivity results are included to show the importance of the dynamic model fidelity.
NASA Astrophysics Data System (ADS)
Taylor, Thomas E.; L'Ecuyer, Tristan; Slusser, James; Stephens, Graeme; Krotkov, Nick; Davis, John; Goering, Christian
2005-08-01
Extensive sensitivity and error characteristics of a recently developed optimal estimation retrieval algorithm which simultaneously determines aerosol optical depth (AOD), aerosol single scatter albedo (SSA) and total ozone column (TOC) from ultra-violet irradiances are described. The algorithm inverts measured diffuse and direct irradiances at 7 channels in the UV spectral range obtained from the United States Department of Agriculture's (USDA) UV-B Monitoring and Research Program's (UVMRP) network of 33 ground-based UV-MFRSR instruments to produce aerosol optical properties and TOC at all seven wavelengths. Sensitivity studies of the Tropospheric Ultra-violet/Visible (TUV) radiative transfer model performed for various operating modes (Delta-Eddington versus n-stream Discrete Ordinate) over domains of AOD, SSA, TOC, asymmetry parameter and surface albedo show that the solutions are well constrained. Realistic input error budgets and diagnostic and error outputs from the retrieval are analyzed to demonstrate the atmospheric conditions under which the retrieval provides useful and significant results. After optimizing the algorithm for the USDA site in Panther Junction, Texas the retrieval algorithm was run on a cloud screened set of irradiance measurements for the month of May 2003. Comparisons to independently derived AOD's are favorable with root mean square (RMS) differences of about 3% to 7% at 300nm and less than 1% at 368nm, on May 12 and 22, 2003. This retrieval method will be used to build an aerosol climatology and provide ground-truthing of satellite measurements by running it operationally on the USDA UV network database.
The impact of 14nm photomask variability and uncertainty on computational lithography solutions
NASA Astrophysics Data System (ADS)
Sturtevant, John; Tejnil, Edita; Buck, Peter D.; Schulze, Steffen; Kalk, Franklin; Nakagawa, Kent; Ning, Guoxiang; Ackmann, Paul; Gans, Fritz; Buergel, Christian
2013-09-01
Computational lithography solutions rely upon accurate process models to faithfully represent the imaging system output for a defined set of process and design inputs. These models rely upon the accurate representation of multiple parameters associated with the scanner and the photomask. Many input variables for simulation are based upon designed or recipe-requested values or independent measurements. It is known, however, that certain measurement methodologies, while precise, can have significant inaccuracies. Additionally, there are known errors associated with the representation of certain system parameters. With shrinking total CD control budgets, appropriate accounting for all sources of error becomes more important, and the cumulative consequence of input errors to the computational lithography model can become significant. In this work, we examine via simulation, the impact of errors in the representation of photomask properties including CD bias, corner rounding, refractive index, thickness, and sidewall angle. The factors that are most critical to be accurately represented in the model are cataloged. CD bias values are based on state of the art mask manufacturing data and other variables changes are speculated, highlighting the need for improved metrology and communication between mask and OPC model experts. The simulations are done by ignoring the wafer photoresist model, and show the sensitivity of predictions to various model inputs associated with the mask. It is shown that the wafer simulations are very dependent upon the 1D/2D representation of the mask and for 3D, that the mask sidewall angle is a very sensitive factor influencing simulated wafer CD results.
Vanos, J K; Warland, J S; Gillespie, T J; Kenny, N A
2012-11-01
The purpose of this paper is to implement current and novel research techniques in human energy budget estimations to give more accurate and efficient application of models by a variety of users. Using the COMFA model, the conditioning level of an individual is incorporated into overall energy budget predictions, giving more realistic estimations of the metabolism experienced at various fitness levels. Through the use of VO(2) reserve estimates, errors are found when an elite athlete is modelled as an unconditioned or a conditioned individual, giving budgets underpredicted significantly by -173 and -123 W m(-2), respectively. Such underprediction can result in critical errors regarding heat stress, particularly in highly motivated individuals; thus this revision is critical for athletic individuals. A further improvement in the COMFA model involves improved adaptation of clothing insulation (I (cl)), as well clothing non-uniformity, with changing air temperature (T (a)) and metabolic activity (M (act)). Equivalent T (a) values (for I (cl) estimation) are calculated in order to lower the I (cl) value with increasing M (act) at equal T (a). Furthermore, threshold T (a) values are calculated to predict the point at which an individual will change from a uniform I (cl) to a segmented I (cl) (full ensemble to shorts and a T-shirt). Lastly, improved relative velocity (v (r)) estimates were found with a refined equation accounting for the degree angle of wind to body movement. Differences between the original and improved v (r) equations increased with higher wind and activity speeds, and as the wind to body angle moved away from 90°. Under moderate microclimate conditions, and wind from behind a person, the convective heat loss and skin temperature estimates were 47 W m(-2) and 1.7°C higher when using the improved v (r) equation. These model revisions improve the applicability and usability of the COMFA energy budget model for subjects performing physical activity in outdoor environments. Application is possible for other similar energy budget models, and within various urban and rural environments.
NASA Astrophysics Data System (ADS)
Vanos, J. K.; Warland, J. S.; Gillespie, T. J.; Kenny, N. A.
2012-11-01
The purpose of this paper is to implement current and novel research techniques in human energy budget estimations to give more accurate and efficient application of models by a variety of users. Using the COMFA model, the conditioning level of an individual is incorporated into overall energy budget predictions, giving more realistic estimations of the metabolism experienced at various fitness levels. Through the use of VO2 reserve estimates, errors are found when an elite athlete is modelled as an unconditioned or a conditioned individual, giving budgets underpredicted significantly by -173 and -123 W m-2, respectively. Such underprediction can result in critical errors regarding heat stress, particularly in highly motivated individuals; thus this revision is critical for athletic individuals. A further improvement in the COMFA model involves improved adaptation of clothing insulation ( I cl), as well clothing non-uniformity, with changing air temperature ( T a) and metabolic activity ( M act). Equivalent T a values (for I cl estimation) are calculated in order to lower the I cl value with increasing M act at equal T a. Furthermore, threshold T a values are calculated to predict the point at which an individual will change from a uniform I cl to a segmented I cl (full ensemble to shorts and a T-shirt). Lastly, improved relative velocity ( v r) estimates were found with a refined equation accounting for the degree angle of wind to body movement. Differences between the original and improved v r equations increased with higher wind and activity speeds, and as the wind to body angle moved away from 90°. Under moderate microclimate conditions, and wind from behind a person, the convective heat loss and skin temperature estimates were 47 W m-2 and 1.7°C higher when using the improved v r equation. These model revisions improve the applicability and usability of the COMFA energy budget model for subjects performing physical activity in outdoor environments. Application is possible for other similar energy budget models, and within various urban and rural environments.
Simulating a transmon implementation of the surface code, Part I
NASA Astrophysics Data System (ADS)
Tarasinski, Brian; O'Brien, Thomas; Rol, Adriaan; Bultink, Niels; Dicarlo, Leo
Current experimental efforts aim to realize Surface-17, a distance-3 surface-code logical qubit, using transmon qubits in a circuit QED architecture. Following experimental proposals for this device, and currently achieved fidelities on physical qubits, we define a detailed error model that takes experimentally relevant error sources into account, such as amplitude and phase damping, imperfect gate pulses, and coherent errors due to low-frequency flux noise. Using the GPU-accelerated software package 'quantumsim', we simulate the density matrix evolution of the logical qubit under this error model. Combining the simulation results with a minimum-weight matching decoder, we obtain predictions for the error rate of the resulting logical qubit when used as a quantum memory, and estimate the contribution of different error sources to the logical error budget. Research funded by the Foundation for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO/OCW), IARPA, an ERC Synergy Grant, the China Scholarship Council, and Intel Corporation.
NASA Technical Reports Server (NTRS)
Browning, P. A.; Fuelberg, H. E.
1983-01-01
Divergent and rotational components of the synoptic scale kinetic energy balance are presented using rawinsonde data at 3 and 6 h intervals from the Atmospheric Variability Experiment (AVE 4). Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclose and move with the convection. Although small in magnitude, the divergent wind component played an important role in the cross contour generation and horizontal flux divergence of kinetic energy. The importance of V sub D appears directly to the presence and intensity of convection within the area. Although K sub D usually comprised less than 10 percent of the total kinetic energy content within the storm environment, as much as 87 percent of the total horizontal flux divergence and 68 percent of the total cross contour generation was due to the divergent component in the upper atmosphere. Generation of kinetic energy by the divergent component appears to be a major factor in the creation of an upper level wind maximum on the poleward side of one of the complexes. A random error analysis is presented to assess confidence limits in the various energy parameters.
77 FR 55240 - Order Making Fiscal Year 2013 Annual Adjustments to Registration Fee Rates
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-07
... Management and Budget (``OMB'') to project the aggregate offering price for purposes of the fiscal year 2012... AAMOP is given by exp(FLAAMOP t + [sigma] n \\2\\/2), where [sigma] n denotes the standard error of the n...
Cost effectiveness of the stream-gaging program in Pennsylvania
Flippo, H.N.; Behrendt, T.E.
1985-01-01
This report documents a cost-effectiveness study of the stream-gaging program in Pennsylvania. Data uses and funding were identified for 223 continuous-record stream gages operated in 1983; four are planned for discontinuance at the close of water-year 1985; two are suggested for conversion, at the beginning of the 1985 water year, for the collection of only continuous stage records. Two of 11 special-purpose short-term gages are recommended for continuation when the supporting project ends; eight of these gages are to be discontinued and the other will be converted to a partial-record type. Current operation costs for the 212 stations recommended for continued operation is $1,199,000 per year in 1983. The average standard error of estimation for instantaneous streamflow is 15.2%. An overall average standard error of 9.8% could be attained on a budget of $1,271,000, which is 6% greater than the 1983 budget, by adopted cost-effective stream-gaging operations. (USGS)
Multidisciplinary Analysis of the NEXUS Precursor Space Telescope
NASA Astrophysics Data System (ADS)
de Weck, Olivier L.; Miller, David W.; Mosier, Gary E.
2002-12-01
A multidisciplinary analysis is demonstrated for the NEXUS space telescope precursor mission. This mission was originally designed as an in-space technology testbed for the Next Generation Space Telescope (NGST). One of the main challenges is to achieve a very tight pointing accuracy with a sub-pixel line-of-sight (LOS) jitter budget and a root-mean-square (RMS) wavefront error smaller than λ/50 despite the presence of electronic and mechanical disturbances sources. The analysis starts with the assessment of the performance for an initial design, which turns out not to meet the requirements. Twentyfive design parameters from structures, optics, dynamics and controls are then computed in a sensitivity and isoperformance analysis, in search of better designs. Isoperformance allows finding an acceptable design that is well "balanced" and does not place undue burden on a single subsystem. An error budget analysis shows the contributions of individual disturbance sources. This paper might be helpful in analyzing similar, innovative space telescope systems in the future.
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Chow, Chi-Wai; Chiang, Ming-Feng; Shih, Fu-Yuan; Pan, Ci-Ling
2011-09-01
In a wavelength division multiplexed-passive optical network (WDM-PON), different fiber lengths and optical components would introduce different power budgets to different optical networking units (ONUs). Besides, the power decay of the distributed optical carrier from the optical line terminal owing to aging of the optical transmitter could also reduce the injected power into the ONU. In this work, we propose and demonstrate a carrier distributed WDM-PON using a reflective semiconductor optical amplifier-based ONU that can adjust its upstream data rate to accommodate different injected optical powers. The WDM-PON is evaluated at standard-reach (25 km) and long-reach (100 km). Bit-error rate measurements at different injected optical powers and transmission lengths show that by adjusting the upstream data rate of the system (622 Mb/s, 1.25 and 2.5 Gb/s), error-free (<10-9) operation can still be achieved when the power budget drops.
Error Budgeting and Tolerancing of Starshades for Exoplanet Detection
NASA Technical Reports Server (NTRS)
Shaklan, Stuart B.; Noecker, M. Charley; Glassman, Tiffany; Lo, Amy S.; Dumont, Philip J.; Kasdin, N. Jeremy; Cady, Eric J.; Vanderbei, Robert; Lawson, Peter R.
2010-01-01
A flower-like starshade positioned between a star and a space telescope is an attractive option for blocking the starlight to reveal the faint reflected light of an orbiting Earth-like planet. Planet light passes around the petals and directly enters the telescope where it is seen along with a background of scattered light due to starshade imperfections. We list the major perturbations that are expected to impact the performance of a starshade system and show that independent models at NGAS and JPL yield nearly identical optical sensitivities. We give the major sensitivities in the image plane for a design consisting of a 34-m diameter starshade, and a 2-m diameter telescope separated by 39,000 km, operating between 0.25 and 0.55 um. These sensitivities include individual petal and global shape terms evaluated at the inner working angle. Following a discussion of the combination of individual perturbation terms, we then present an error budget that is consistent with detection of an Earth-like planet 26 magnitudes fainter than its host star.
(Updated) NCI Fiscal 2016 Bypass Budget Proposes $25 Million for Frederick National Lab | Poster
By Nancy Parrish, Staff Writer; image by Richard Frederickson, Staff Photographer The additional funding requested for Frederick National Laboratory for Cancer Research (FNLCR) in the Fiscal 2016 Bypass Budget was $25 million, or approximately 3.5 percent of the total additional funding request of $715 million. Officially called the Professional Judgment Budget, the Bypass Budget is a result of the National Cancer Act of 1971, which authorizes NCI to submit a budget directly to the president, to send to Congress. With a focus on NCI’s research priorities and areas of cancer research with potential for investment, the Bypass Budget specifies additional funding, over and above the current budget, that is needed to advance
NASA Astrophysics Data System (ADS)
Senten, C.; de Mazière, M.; Dils, B.; Hermans, C.; Kruglanski, M.; Neefs, E.; Scolas, F.; Vandaele, A. C.; Vanhaelewyn, G.; Vigouroux, C.; Carleer, M.; Coheur, P. F.; Fally, S.; Barret, B.; Baray, J. L.; Delmas, R.; Leveau, J.; Metzger, J. M.; Mahieu, E.; Boone, C.; Walker, K. A.; Bernath, P. F.; Strong, K.
2008-01-01
Ground-based high spectral resolution Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique to obtain information on the total column abundances and on the vertical distribution of various constituents in the atmosphere. This work presents results from two short-term FTIR measurement campaigns in 2002 and 2004, held at the (sub)tropical site Ile de La Réunion (21°S, 55°E). These campaigns represent the first FTIR observations carried out at this site. The results include total column amounts from the surface up to 100 km of ozone (O3), methane (CH4), nitrous oxide (N2O), carbon monoxide (CO), ethane (C2H6), hydrogen chloride (HCl), hydrogen fluoride (HF) and nitric acid (HNO3), as well as some vertical profile information for the first four mentioned trace gases. The data are characterised in terms of the vertical information content and associated error budget. In the 2004 time series, the seasonal increase of the CO concentration was observed by the end of October, along with a sudden rise that has been attributed to biomass burning events in southern Africa and Madagascar. This attribution was based on trajectory modeling. In the same period, other biomass burning gases such as C2H6 also show an enhancement in their total column amounts which is highly correlated with the increase of the CO total columns. The observed total column values for CO are consistent with correlative data from MOPITT (Measurements Of Pollution In The Troposphere). Comparisons between our ground-based FTIR observations and space-borne observations from ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) and HALOE (Halogen Occultation Experiment) confirm the feasibility of the FTIR measurements at Ile de La Réunion.
NASA Technical Reports Server (NTRS)
Kim, J. H.; Hudson, R. D.; Thompson, A. M.
1996-01-01
Error analysis of archived total 03 from total ozone mapping spectrometer (TOMS) (version 6) presented. Daily total 03 maps for the tropics, from the period October 6-21, 1992, are derived from TOMS radiances following correction for these errors. These daily maps, averaged together, show a wavelike feature, which is observed in all latitude bands, underlying sharp peaks which occur at different longitudes depending on the latitude. The wave pattern is used to derive both time-averaged stratospheric and tropospheric 03 fields. The nature of the wave pattern (stratospheric or tropospheric) cannot be determined with certainty due to missing data (no Pacific sondes, no lower stratospheric Stratospheric Aerosol and Gas Experiment (SAGE) ozone for 18 months after the Mt. Pinatubo eruption) and significant uncertainties in the corroborative satellite record in the lower stratosphere (solar backscattered ultraviolet (SBUV), microwave limb sounder (MLS)). However, the time- averaged tropospheric ozone field, based on the assumption that the wave feature is stratospheric, agrees within 10% with ultraviolet differential absorption laser Transport and Atmospheric Chemistry near the Equator-Atlantic) (TRACE A) 03 measurements from the DC-8 and with ozonesonde measurements over Brazzaville, Congo, Ascension Island, and Natal, Brazil, for the period October 6-21, 1992. The derived background (nonpolluted) Indian Ocean tropospheric ozone amount, 26 Dobson units (DU), agrees with the cleanest African ozonesonde profiles for September-October 1992. The assumption of a totally tropospheric wave (flat stratosphere) gives 38 DU above the western Indian Ocean and 15-40% disagreements with the sondes. Tropospheric column 03 is high from South America to Africa, owing to interaction of dynamics with biomass burning emissions. Comparison with fire distributions from advanced very high resolution radiometer (AVHHR) during October 1992 suggests that tropospheric 03 produced from biomass burning in South America and Africa dominates the 03 budget in the tropical southern hemisphere during the study period.
A Positive Move: 12th Annual College M&O Cost Study
ERIC Educational Resources Information Center
Agron, Joe
2006-01-01
Colleges placed more of an emphasis on maintenance and operations (M&O) this school year by increasing the amount spent on M&O as a percentage of total budget. According to "American School & University's" 12th annual College Maintenance and Operations Cost Study, spending on M&O as a percentage of total college budget increased to 11 percent from…
Estimating the budget impact of orphan drugs in Sweden and France 2013–2020
2014-01-01
Background The growth in expenditure on orphan medicinal products (OMP) across Europe has been identified as a concern. Estimates of future expenditure in Europe have suggested that OMPs could account for a significant proportion of total pharmaceutical expenditure in some countries, but few of these forecasts have been well validated. This analysis aims to establish a robust forecast of the future budget impact of OMPs on the healthcare systems in Sweden and France. Methods A dynamic forecasting model was created to estimate the budget impact of OMPs in Sweden and France between 2013 and 2020. The model used historical data on OMP designation and approval rates to predict the number of new OMPs coming to the market. Average OMP sales were estimated for each year post-launch by regression analysis of historical sales data. Total forecast sales were compared with expected sales of all pharmaceuticals in each country to quantify the relative budget impact. Results The model predicts that by 2020, 152 OMPs will have marketing authorization in Europe. The base case OMP budget impacts are forecast to grow from 2.7% in Sweden and 3.2% in France of total drug expenditure in 2013 to 4.1% in Sweden and 4.9% in France by 2020. The principal driver of expenditure growth is the number of new OMPs obtaining OMP designation. This is tempered by the slowing success rate for new approvals and the loss of intellectual property protection on existing orphan medicines. Given the forward-looking nature of the analysis, uncertainty exists around model parameters and sensitivity analysis found peak year budget impact varying between 2% and 11%. Conclusion The budget impact of OMPs in Sweden and France is likely to remain sustainable over time and a relatively small proportion of total pharmaceutical expenditure. This forecast could be affected by changes in the success rate for OMP approvals, average cost of OMPs, and the type of companies developing OMPs. PMID:24524281
Estimating the budget impact of orphan drugs in Sweden and France 2013-2020.
Hutchings, Adam; Schey, Carina; Dutton, Richard; Achana, Felix; Antonov, Karolina
2014-02-13
The growth in expenditure on orphan medicinal products (OMP) across Europe has been identified as a concern. Estimates of future expenditure in Europe have suggested that OMPs could account for a significant proportion of total pharmaceutical expenditure in some countries, but few of these forecasts have been well validated. This analysis aims to establish a robust forecast of the future budget impact of OMPs on the healthcare systems in Sweden and France. A dynamic forecasting model was created to estimate the budget impact of OMPs in Sweden and France between 2013 and 2020. The model used historical data on OMP designation and approval rates to predict the number of new OMPs coming to the market. Average OMP sales were estimated for each year post-launch by regression analysis of historical sales data. Total forecast sales were compared with expected sales of all pharmaceuticals in each country to quantify the relative budget impact. The model predicts that by 2020, 152 OMPs will have marketing authorization in Europe. The base case OMP budget impacts are forecast to grow from 2.7% in Sweden and 3.2% in France of total drug expenditure in 2013 to 4.1% in Sweden and 4.9% in France by 2020. The principal driver of expenditure growth is the number of new OMPs obtaining OMP designation. This is tempered by the slowing success rate for new approvals and the loss of intellectual property protection on existing orphan medicines. Given the forward-looking nature of the analysis, uncertainty exists around model parameters and sensitivity analysis found peak year budget impact varying between 2% and 11%. The budget impact of OMPs in Sweden and France is likely to remain sustainable over time and a relatively small proportion of total pharmaceutical expenditure. This forecast could be affected by changes in the success rate for OMP approvals, average cost of OMPs, and the type of companies developing OMPs.
Waterborne nutrient flow through an upland-peatland watershed in Minnesota
Elon S. Verry; D.R. Timmons
1982-01-01
Water and nutrient flow were measured on a complex upland-peatland watershed in north central Minnesota. Annual water budgets for upland and peatland components and for the total watershed were developed. Nutrient input and output budgets were developed for each component on a seasonal basis, using net precipitation inputs, and an annual nutrient budget was developed...
Source partitioning of methane emissions and its seasonality in the U.S. Midwest
Zichong Chen; Timothy J. Griffis; John M. Baker; Dylan B. Millet; Jeffrey D. Wood; Edward J. Dlugokencky; Arlyn E. Andrews; Colm Sweeney; Cheng Hu; Randall K. Kolka
2018-01-01
The methane (CH4) budget and its source partitioning are poorly constrained in the Midwestern United States. We used tall tower (185 m) aerodynamic flux measurements and atmospheric scale factor Bayesian inversions to constrain the monthly budget and to partition the total budget into natural (e.g., wetlands) and anthropogenic (e.g., livestock,...
Ground-Water Budgets for the Wood River Valley Aquifer System, South-Central Idaho, 1995-2004
Bartolino, James R.
2009-01-01
The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Haley, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system which consists of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the ground-water resource. To help address these concerns this report describes a ground-water budget developed for the Wood River Valley aquifer system for three selected time periods: average conditions for the 10-year period 1995-2004, and the single years of 1995 and 2001. The 10-year period 1995-2004 represents a range of conditions in the recent past for which measured data exist. Water years 1995 and 2001 represent the wettest and driest years, respectively, within the 10-year period based on precipitation at the Ketchum Ranger Station. Recharge or inflow to the Wood River Valley aquifer system occurs through seven main sources (from largest to smallest): infiltration from tributary canyons, streamflow loss from the Big Wood River, areal recharge from precipitation and applied irrigation water, seepage from canals and recharge pits, leakage from municipal pipes, percolation from septic systems, and subsurface inflow beneath the Big Wood River in the northern end of the valley. Total estimated mean annual inflow or recharge to the aquifer system for 1995-2004 is 270,000 acre-ft/yr (370 ft3/s). Total recharge for the wet year 1995 and the dry year 2001 is estimated to be 270,000 acre-ft/yr (370 ft3/s) and 220,000 acre-ft/yr (300 ft3/s), respectively. Discharge or outflow from the Wood River Valley aquifer system occurs through five main sources (from largest to smallest): Silver Creek streamflow gain, ground-water pumpage, Big Wood River streamflow gain, direct evapotranspiration from riparian vegetation, and subsurface outflow (treated separately). Total estimated mean 1995-2004 annual outflow or discharge from the aquifer system is 250,000 acre-ft/yr (350 ft3/s). Estimated total discharge is 240,000 acre-ft/yr (330 ft3/s) for both the wet year 1995 and the dry year 2001. The budget residual is the difference between estimated ground-water inflow and outflow and encompasses subsurface outflow, ground-water storage change, and budget error. For 1995-2004, mean annual inflow exceeded outflow by 20,000 acre-ft/yr (28 ft3/s); for the wet year 1995, mean annual inflow exceeded outflow by 30,000 acre-ft/yr (41 ft3/s); for the dry year 2001, mean annual outflow exceeded inflow by 20,000 acre-ft/yr (28 ft3/s). These values represent 8, 13, and 8 percent, respectively, of total outflows for the same periods. It is difficult to differentiate the relative contributions of the three residual components, although the estimated fluctuations between the wet and dry year budgets likely are primarily caused by changes in ground-water storage. The individual components in the wet and dry year ground-water budgets responded in a consistent manner to changes in precipitation and temperature. Although the ground-water budgets for the three periods indicated that ground-water storage is replenished in wet years, statistical analyses by Skinner and others (2007) suggest that such replenishment is not complete and over the long term more water is removed from storage than is replaced. In other words, despite restoration of water to ground-water storage in wet years, changes have occurred in either recharge and (or) discharge to cause ground-water storage to decline over time. Such changes may include, but are not limited to: lining or abandoning canals and ditches, conversion of surface-water irriga
Federal Agency biodefense funding, FY2011-FY2012.
Franco, Crystal; Sell, Tara Kirk
2011-06-01
Since 2001, the United States government has spent substantial resources on preparing the nation against a bioterrorist attack. Earlier articles in this series have analyzed civilian biodefense funding by the federal government for fiscal years (FY) 2001 through proposed funding for FY2011. This article updates those figures with budgeted amounts for FY2012, specifically analyzing the budgets and allocations for biodefense at the Departments of Health and Human Services, Defense, Homeland Security, Agriculture, Commerce, and State; the Environmental Protection Agency; and the National Science Foundation. This article also includes an updated assessment of the proportion of biodefense funding provided for programs that address multiple scientific, public health, healthcare, national security, and international security issues in addition to biodefense. The FY2012 federal budget for civilian biodefense totals $6.42 billion. Of that total, $5.78 billion (90%) is budgeted for programs that have both biodefense and nonbiodefense goals and applications, and $637.6 million (10%) is budgeted for programs that have objectives solely related to biodefense.
Federal agency biodefense funding, FY2013-FY2014.
Sell, Tara Kirk; Watson, Matthew
2013-09-01
Since 2001, the United States government has spent substantial resources on preparing the nation against a bioterrorist attack. Earlier articles in this series have analyzed civilian biodefense funding by the federal government for fiscal years (FY) 2001 through proposed funding for FY2013. This article updates those figures with budgeted amounts for FY2014, specifically analyzing the budgets and allocations for biodefense at the Departments of Health and Human Services, Defense, Homeland Security, Agriculture, Commerce, Veterans Affairs, and State; the Environmental Protection Agency; and the National Science Foundation. This article also includes an updated assessment of the proportion of biodefense funding provided for programs that address multiple scientific, public health, healthcare, national security, and international security issues in addition to biodefense. The FY2014 federal budget for civilian biodefense totals $6.69 billion. Of that total, $5.86 billion (88%) is budgeted for programs that have both biodefense and nonbiodefense goals and applications, and $835 million (12%) is budgeted for programs that have objectives solely related to biodefense.
Federal agency biodefense funding, FY2010-FY2011.
Franco, Crystal; Sell, Tara Kirk
2010-06-01
Since 2001, the United States government has spent substantial resources on preparing the nation against a bioterrorist attack. Earlier articles in this series have analyzed civilian biodefense funding by the federal government for fiscal years (FY) 2001 through FY2010. This article updates those figures with budgeted amounts for FY2011, specifically analyzing the budgets and allocations for biodefense at the Departments of Health and Human Services, Defense, Homeland Security, Agriculture, Commerce, and State; the Environmental Protection Agency; and the National Science Foundation. This article also includes an updated assessment of the proportion of biodefense funding provided for programs that address multiple public health, healthcare, national security, and international security issues in addition to biodefense. The FY2011 federal budget for civilian biodefense totals $6.48 billion. Of that total, $5.90 billion (91%) is budgeted for programs that have both biodefense and nonbiodefense goals and applications, and $577.9 million (9%) is budgeted for programs that deal strictly with biodefense.
Federal Agency Biodefense Funding, FY2013-FY2014
Watson, Matthew
2013-01-01
Since 2001, the United States government has spent substantial resources on preparing the nation against a bioterrorist attack. Earlier articles in this series have analyzed civilian biodefense funding by the federal government for fiscal years (FY) 2001 through proposed funding for FY2013. This article updates those figures with budgeted amounts for FY2014, specifically analyzing the budgets and allocations for biodefense at the Departments of Health and Human Services, Defense, Homeland Security, Agriculture, Commerce, Veterans Affairs, and State; the Environmental Protection Agency; and the National Science Foundation. This article also includes an updated assessment of the proportion of biodefense funding provided for programs that address multiple scientific, public health, healthcare, national security, and international security issues in addition to biodefense. The FY2014 federal budget for civilian biodefense totals $6.69 billion. Of that total, $5.86 billion (88%) is budgeted for programs that have both biodefense and nonbiodefense goals and applications, and $835 million (12%) is budgeted for programs that have objectives solely related to biodefense. PMID:23906009
Demonstrating Starshade Performance as Part of NASA's Technology Development for Exoplanet Missions
NASA Astrophysics Data System (ADS)
Kasdin, N. Jeremy; Spergel, D. N.; Vanderbei, R. J.; Lisman, D.; Shaklan, S.; Thomson, M. W.; Walkemeyer, P. E.; Bach, V. M.; Oakes, E.; Cady, E. J.; Martin, S. R.; Marchen, L. F.; Macintosh, B.; Rudd, R.; Mikula, J. A.; Lynch, D. H.
2012-01-01
In this poster we describe the results of our project to design, manufacture, and measure a prototype starshade petal as part of the Technology Development for Exoplanet Missions program. An external occult is a satellite employing a large screen, or starshade,that flies in formation with a spaceborne telescope to provide the starlight suppression needed for detecting and characterizing exoplanets. Among the advantages of using an occulter are the broadband allowed for characterization and the removal of light for the observatory, greatly relaxing the requirements on the telescope and instrument. In this first two-year phase we focused on the key requirement of manufacturing a precision petal with the precise tolerances needed to meet the overall error budget. These tolerances are established by modeling the effect that various mechanical and thermal errors have on scatter in the telescope image plane and by suballocating the allowable contrast degradation between these error sources. We show the results of this analysis and a representative error budget. We also present the final manufactured occulter petal and the metrology on its shape that demonstrates it meets requirements. We show that a space occulter built of petals with the same measured shape would achieve better than 1e-9 contrast. We also show our progress in building and testing sample edges with the sharp radius of curvature needed for limiting solar glint. Finally, we describe our plans for the second TDEM phase.
NASA Astrophysics Data System (ADS)
Correia, Carlos M.; Bond, Charlotte Z.; Sauvage, Jean-François; Fusco, Thierry; Conan, Rodolphe; Wizinowich, Peter L.
2017-10-01
We build on a long-standing tradition in astronomical adaptive optics (AO) of specifying performance metrics and error budgets using linear systems modeling in the spatial-frequency domain. Our goal is to provide a comprehensive tool for the calculation of error budgets in terms of residual temporally filtered phase power spectral densities and variances. In addition, the fast simulation of AO-corrected point spread functions (PSFs) provided by this method can be used as inputs for simulations of science observations with next-generation instruments and telescopes, in particular to predict post-coronagraphic contrast improvements for planet finder systems. We extend the previous results and propose the synthesis of a distributed Kalman filter to mitigate both aniso-servo-lag and aliasing errors whilst minimizing the overall residual variance. We discuss applications to (i) analytic AO-corrected PSF modeling in the spatial-frequency domain, (ii) post-coronagraphic contrast enhancement, (iii) filter optimization for real-time wavefront reconstruction, and (iv) PSF reconstruction from system telemetry. Under perfect knowledge of wind velocities, we show that $\\sim$60 nm rms error reduction can be achieved with the distributed Kalman filter embodying anti- aliasing reconstructors on 10 m class high-order AO systems, leading to contrast improvement factors of up to three orders of magnitude at few ${\\lambda}/D$ separations ($\\sim1-5{\\lambda}/D$) for a 0 magnitude star and reaching close to one order of magnitude for a 12 magnitude star.
Application of Monte-Carlo Analyses for the Microwave Anisotropy Probe (MAP) Mission
NASA Technical Reports Server (NTRS)
Mesarch, Michael A.; Rohrbaugh, David; Schiff, Conrad; Bauer, Frank H. (Technical Monitor)
2001-01-01
The Microwave Anisotropy Probe (MAP) is the third launch in the National Aeronautics and Space Administration's (NASA's) a Medium Class Explorers (MIDEX) program. MAP will measure, in greater detail, the cosmic microwave background radiation from an orbit about the Sun-Earth-Moon L2 Lagrangian point. Maneuvers will be required to transition MAP from it's initial highly elliptical orbit to a lunar encounter which will provide the remaining energy to send MAP out to a lissajous orbit about L2. Monte-Carlo analysis methods were used to evaluate the potential maneuver error sources and determine their effect of the fixed MAP propellant budget. This paper will discuss the results of the analyses on three separate phases of the MAP mission - recovering from launch vehicle errors, responding to phasing loop maneuver errors, and evaluating the effect of maneuver execution errors and orbit determination errors on stationkeeping maneuvers at L2.
NASA Technical Reports Server (NTRS)
Nishimura, T.
1975-01-01
This paper proposes a worst-error analysis for dealing with problems of estimation of spacecraft trajectories in deep space missions. Navigation filters in use assume either constant or stochastic (Markov) models for their estimated parameters. When the actual behavior of these parameters does not follow the pattern of the assumed model, the filters sometimes result in very poor performance. To prepare for such pathological cases, the worst errors of both batch and sequential filters are investigated based on the incremental sensitivity studies of these filters. By finding critical switching instances of non-gravitational accelerations, intensive tracking can be carried out around those instances. Also the worst errors in the target plane provide a measure in assignment of the propellant budget for trajectory corrections. Thus the worst-error study presents useful information as well as practical criteria in establishing the maneuver and tracking strategy of spacecraft's missions.
NASA Astrophysics Data System (ADS)
Nunes, A.; Ivanov, V. Y.
2014-12-01
Although current global reanalyses provide reasonably accurate large-scale features of the atmosphere, systematic errors are still found in the hydrological and energy budgets of such products. In the tropics, precipitation is particularly challenging to model, which is also adversely affected by the scarcity of hydrometeorological datasets in the region. With the goal of producing downscaled analyses that are appropriate for a climate assessment at regional scales, a regional spectral model has used a combination of precipitation assimilation with scale-selective bias correction. The latter is similar to the spectral nudging technique, which prevents the departure of the regional model's internal states from the large-scale forcing. The target area in this study is the Amazon region, where large errors are detected in reanalysis precipitation. To generate the downscaled analysis, the regional climate model used NCEP/DOE R2 global reanalysis as the initial and lateral boundary conditions, and assimilated NOAA's Climate Prediction Center (CPC) MORPHed precipitation (CMORPH), available at 0.25-degree resolution, every 3 hours. The regional model's precipitation was successfully brought closer to the observations, in comparison to the NCEP global reanalysis products, as a result of the impact of a precipitation assimilation scheme on cumulus-convection parameterization, and improved boundary forcing achieved through a new version of scale-selective bias correction. Water and energy budget terms were also evaluated against global reanalyses and other datasets.
NASA Astrophysics Data System (ADS)
Evrard, Rebecca L.; Ding, Yifeng
2018-01-01
Clouds play a large role in the Earth's global energy budget, but the impact of cirrus clouds is still widely questioned and researched. Cirrus clouds reside high in the atmosphere and due to cold temperatures are comprised of ice crystals. Gaining a better understanding of ice cloud optical properties and the distribution of cirrus clouds provides an explanation for the contribution of cirrus clouds to the global energy budget. Using radiative transfer models (RTMs), accurate simulations of cirrus clouds can enhance the understanding of the global energy budget as well as improve the use of global climate models. A newer, faster RTM such as the visible infrared imaging radiometer suite (VIIRS) fast radiative transfer model (VFRTM) is compared to a rigorous RTM such as the line-by-line radiative transfer model plus the discrete ordinates radiative transfer program. By comparing brightness temperature (BT) simulations from both models, the accuracy of the VFRTM can be obtained. This study shows root-mean-square error <0.2 K for BT difference using reanalysis data for atmospheric profiles and updated ice particle habit information from the moderate-resolution imaging spectroradiometer collection 6. At a higher resolution, the simulated results of the VFRTM are compared to the observations of VIIRS resulting in a <1.5 % error from the VFRTM for all cases. The VFRTM is validated and is an appropriate RTM to use for global cloud retrievals.
NASA Astrophysics Data System (ADS)
Mosier, Gary E.; Femiano, Michael; Ha, Kong; Bely, Pierre Y.; Burg, Richard; Redding, David C.; Kissil, Andrew; Rakoczy, John; Craig, Larry
1998-08-01
All current concepts for the NGST are innovative designs which present unique systems-level challenges. The goals are to outperform existing observatories at a fraction of the current price/performance ratio. Standard practices for developing systems error budgets, such as the 'root-sum-of- squares' error tree, are insufficient for designs of this complexity. Simulation and optimization are the tools needed for this project; in particular tools that integrate controls, optics, thermal and structural analysis, and design optimization. This paper describes such an environment which allows sub-system performance specifications to be analyzed parametrically, and includes optimizing metrics that capture the science requirements. The resulting systems-level design trades are greatly facilitated, and significant cost savings can be realized. This modeling environment, built around a tightly integrated combination of commercial off-the-shelf and in-house- developed codes, provides the foundation for linear and non- linear analysis on both the time and frequency-domains, statistical analysis, and design optimization. It features an interactive user interface and integrated graphics that allow highly-effective, real-time work to be done by multidisciplinary design teams. For the NGST, it has been applied to issues such as pointing control, dynamic isolation of spacecraft disturbances, wavefront sensing and control, on-orbit thermal stability of the optics, and development of systems-level error budgets. In this paper, results are presented from parametric trade studies that assess requirements for pointing control, structural dynamics, reaction wheel dynamic disturbances, and vibration isolation. These studies attempt to define requirements bounds such that the resulting design is optimized at the systems level, without attempting to optimize each subsystem individually. The performance metrics are defined in terms of image quality, specifically centroiding error and RMS wavefront error, which directly links to science requirements.
Cost Benefit Analysis. Community College of Vermont.
ERIC Educational Resources Information Center
Parker, Charles A.
A cost benefit analysis of the Community College of Vermont revealed that (1) the proportions of State support of the total budgets for Vermont's institutions of higher education are 22.7% at UVM, 37.2% at the VSC, and 12.7% for the Community College; (2) tuition is budgeted for FY73 to generate 27% of total cost at UVM, 29.6% at the VSC, and…
How Can School Funding Increase If Operating Budgets Are Declining? Get the Facts... #2
ERIC Educational Resources Information Center
Kansas Association of School Boards (NJ1), 2012
2012-01-01
State and local funding for general operating budgets for Kansas public schools will be at a five-year low this school year, yet total Kansas school district spending will reach an all-time high of $5.67 billion according to estimates released by the Kansas State Department of Education. Total per pupil spending is projected to reach $12,454 per…
(Updated) NCI Fiscal 2016 Bypass Budget Proposes $25 Million for Frederick National Lab | Poster
By Nancy Parrish, Staff Writer; image by Richard Frederickson, Staff Photographer The additional funding requested for Frederick National Laboratory for Cancer Research (FNLCR) in the Fiscal 2016 Bypass Budget was $25 million, or approximately 3.5 percent of the total additional funding request of $715 million. Officially called the Professional Judgment Budget, the Bypass
Summary of the Governor's Proposed 2010-11 Budget. Report 10-02
ERIC Educational Resources Information Center
Woolfork, Kevin
2010-01-01
The proposed 2010-11 state budget closes an anticipated $20 billion funding gap as total State General Fund spending is expected to decline for the fourth consecutive year. The budget essentially maintains higher education and K-12 funding at 2009-10 levels, but proposes some policy changes to K-12 that will result in the loss of significant…
40 CFR Appendix C to Part 97 - Final Section 126 Rule: Trading Budget
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Final Section 126 Rule: Trading Budget C Appendix C to Part 97 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR.... C Appendix C to Part 97—Final Section 126 Rule: Trading Budget ST F126-EGU F126-NEGU Total DC 207 26...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, C.J.; McVey, B.; Quimby, D.C.
The level of field errors in an FEL is an important determinant of its performance. We have computed 3D performance of a large laser subsystem subjected to field errors of various types. These calculations have been guided by simple models such as SWOOP. The technique of choice is utilization of the FELEX free electron laser code that now possesses extensive engineering capabilities. Modeling includes the ability to establish tolerances of various types: fast and slow scale field bowing, field error level, beam position monitor error level, gap errors, defocusing errors, energy slew, displacement and pointing errors. Many effects of thesemore » errors on relative gain and relative power extraction are displayed and are the essential elements of determining an error budget. The random errors also depend on the particular random number seed used in the calculation. The simultaneous display of the performance versus error level of cases with multiple seeds illustrates the variations attributable to stochasticity of this model. All these errors are evaluated numerically for comprehensive engineering of the system. In particular, gap errors are found to place requirements beyond mechanical tolerances of {plus minus}25{mu}m, and amelioration of these may occur by a procedure utilizing direct measurement of the magnetic fields at assembly time. 4 refs., 12 figs.« less
Measuring Earth's Radiation Budget from the Vicinity of the Moon
NASA Astrophysics Data System (ADS)
Swartz, W. H.; Lorentz, S. R.; Erlandson, R. E.; Cahalan, R. F.; Huang, P. M.
2018-02-01
We propose to measure Earth's radiation budget (integrated total and solar-reflected shortwave) using broadband radiometers and other technology demonstrated in space. The instrument is compact, autonomous, and has modest resource requirements.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
... be submitted to the Office of Management and Budget (OMB) for review and approval. Proposed... size to evaluate the measurement error structure of the diet and physical activity assessment... on cancer research, diagnosis, prevention and treatment. Dietary and physical activity data will be...
Semiannual Report to Congress, No. 49. April 1, 2004-September 30, 2004
ERIC Educational Resources Information Center
US Department of Education, 2004
2004-01-01
This report highlights significant work of the U.S. Department of Education's Office of Inspector General for the 6-month period ending September 30, 2004. Sections include: Activities and Accomplishments; Elimination of Fraud and Error in Student Aid Programs; Budget and Performance Integration; Financial Management; Expanded Electronic…
Prediction errors in wildland fire situation analyses.
Geoffrey H. Donovan; Peter Noordijk
2005-01-01
Wildfires consume budgets and put the heat on fire managers to justify and control suppression costs. To determine the appropriate suppression strategy, land managers must conduct a wildland fire situation analysis (WFSA) when:A wildland fire is expected to or does escape initial attack,A wildland fire managed for resource benefits...
Resource-Bounded Information Gathering for Correlation Clustering
2007-01-01
5], budgeted learning, [4], and active learning , for example, [3]. 3 Acknowledgments We thank Avrim Blum, Katrina Ligett, Chris Pal, Sridhar...2007 3. N. Roy, A. McCallum, Toward Optimal Active Learning through Sampling Estima- tion of Error Reduction, Proc. of 18th ICML, 2001 4. A. Kapoor, R
1985-12-20
Report) Approved for Public Disemination I 17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report) I1. SUPPLEMENTARY...Continue an riverl. aid. It neceseary ind Idoni..•y by block number) Fix Estimation Statistical Assumptions, Error Budget, Unnodclcd Errors, Coding...llgedl i t Eh’ fI) t r !". 1 I ’ " r, tl 1: a Icr it h m hc ro ,, ] y zcd arc Csedil other Current TIV! Sysem ’ he report examines the underlying
Rose, Darya B; Nellesen, Dave; Neary, Maureen P; Cai, Beilei
2017-04-01
Advanced neuroendocrine tumors (NETs) are a rare malignancy with considerable need for effective therapies. Everolimus is a mammalian target of rapamycin (mTOR) inhibitor approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) in 2016 for treatment of adults with progressive, well-differentiated, non-functional NETs of gastrointestinal (GI) or lung origin that are unresectable, locally advanced, or metastatic. To assess the 3-year budget impact for a typical US health plan following availability of everolimus for treatment of GI and lung NETs. Methods An economic model was developed that considered two perspectives: an entire health plan and a pharmacy budget. The total budget impact included costs of drug therapies, administration, hospitalizations, physician visits, monitoring, and adverse events (AEs). The pharmacy model only considered drug costs. In a US health plan with 1 million members, the model estimated 66 patients with well-differentiated, non-functional, and advanced or metastatic GI NETs and 20 with lung NETs undergoing treatment each year. Total budget impact in the first through third year after FDA approval ranged from $0.0568-$0.1443 per member per month (PMPM) for GI NETs and from $0.0181-$0.0355 PMPM for lung NETs. The total budget impact was lower than the pharmacy budget impact because it included cost offsets from administration and AE management for everolimus compared with alternative therapies (e.g. chemotherapies). Because GI and lung NETs are rare diseases with limited published data, several assumptions were made that may influence interpretation of results. The budget impact for everolimus was minimal in this rare disease area with a high unmet need, largely due to low disease prevalence. These results should be considered in the context of significant clinical benefits potentially provided by everolimus, including significantly longer progression-free survival (PFS) for advanced GI and lung NET patients.
Budget impact of pasireotide LAR for the treatment of acromegaly, a rare endocrine disorder.
Zhang, J J; Nellesen, D; Ludlam, W H; Neary, M P
2016-01-01
Acromegaly is a rare disorder characterized by the over-production of growth hormone (GH). Patients often experience a range of chronic comorbidities including hypertension, cardiac dysfunction, diabetes, osteoarthropathy, and obstructive sleep apnea. Untreated or inadequately controlled patients incur substantial healthcare costs, while normalization of GH levels may reduce morbidity and mortality rates to be comparable to the general population. To assess the 3-year budget impact of pasireotide LAR on a US managed care health plan following pasireotide LAR availability. Two separate economic models were developed: one from the perspective of an entire health plan and another from the perspective of a pharmacy budget. The total budget impact model includes costs of drug therapies and other costs for treatment, monitoring, management of adverse events, and comorbidities. The pharmacy cost calculator only considers drug costs. The total estimated budget impact associated with the introduction of pasireotide LAR is 0.31 cents ($0.0031) per member per month (PMPM) in the first year, 0.78 cents ($0.0078) in the second year, and 1.42 cents ($0.0142) in the third year following FDA approval. Costs were similar or lower from a pharmacy budget impact perspective. For each patient achieving disease control, cost savings from reduced comorbidities amounted to $10,240 per year. Published data on comorbidities for acromegaly are limited. In the absence of data on acromegaly-related costs for some comorbidities, comorbidity costs for the general population were used (may be under-estimates). The budget impact of pasireotide LAR is expected to be modest, with an expected increase of 1.42 cents PMPM on the total health plan budget in the third year after FDA approval. The efficacy of pasireotide LAR in acromegaly, as demonstrated in head-to-head trials compared with currently available treatment options, is expected to be associated with a reduction of the prevalence of comorbidities.
Constraining the mass–richness relationship of redMaPPer clusters with angular clustering
Baxter, Eric J.; Rozo, Eduardo; Jain, Bhuvnesh; ...
2016-08-04
The potential of using cluster clustering for calibrating the mass–richness relation of galaxy clusters has been recognized theoretically for over a decade. In this paper, we demonstrate the feasibility of this technique to achieve high-precision mass calibration using redMaPPer clusters in the Sloan Digital Sky Survey North Galactic Cap. By including cross-correlations between several richness bins in our analysis, we significantly improve the statistical precision of our mass constraints. The amplitude of the mass–richness relation is constrained to 7 per cent statistical precision by our analysis. However, the error budget is systematics dominated, reaching a 19 per cent total errormore » that is dominated by theoretical uncertainty in the bias–mass relation for dark matter haloes. We confirm the result from Miyatake et al. that the clustering amplitude of redMaPPer clusters depends on galaxy concentration as defined therein, and we provide additional evidence that this dependence cannot be sourced by mass dependences: some other effect must account for the observed variation in clustering amplitude with galaxy concentration. Assuming that the observed dependence of redMaPPer clustering on galaxy concentration is a form of assembly bias, we find that such effects introduce a systematic error on the amplitude of the mass–richness relation that is comparable to the error bar from statistical noise. Finally, the results presented here demonstrate the power of cluster clustering for mass calibration and cosmology provided the current theoretical systematics can be ameliorated.« less
Hybrid enabled thin film metrology using XPS and optical
NASA Astrophysics Data System (ADS)
Vaid, Alok; Iddawela, Givantha; Mahendrakar, Sridhar; Lenahan, Michael; Hossain, Mainul; Timoney, Padraig; Bello, Abner F.; Bozdog, Cornel; Pois, Heath; Lee, Wei Ti; Klare, Mark; Kwan, Michael; Kang, Byung Cheol; Isbester, Paul; Sendelbach, Matthew; Yellai, Naren; Dasari, Prasad; Larson, Tom
2016-03-01
Complexity of process steps integration and material systems for next-generation technology nodes is reaching unprecedented levels, the appetite for higher sampling rates is on the rise, while the process window continues to shrink. Current thickness metrology specifications reach as low as 0.1A for total error budget - breathing new life into an old paradigm with lower visibility for past few metrology nodes: accuracy. Furthermore, for advance nodes there is growing demand to measure film thickness and composition on devices/product instead of surrogate planar simpler pads. Here we extend our earlier work in Hybrid Metrology to the combination of X-Ray based reference technologies (high performance) with optical high volume manufacturing (HVM) workhorse metrology (high throughput). Our stated goal is: put more "eyes" on the wafer (higher sampling) and enable move to films on pattern structure (control what matters). Examples of 1X front-end applications are used to setup and validate the benefits.
Soil Carbon Budget During Establishment of Short Rotation Woody Crops
NASA Astrophysics Data System (ADS)
Coleman, M. D.
2003-12-01
Carbon budgets were monitored following forest harvest and during re-establishment of short rotation woody crops. Soil CO2 efflux was monitored using infared gas analyzer methods, fine root production was estimated with minirhizotrons, above ground litter inputs were trapped, coarse root inputs were estimated with developed allometric relationships, and soil carbon pools were measured in loblolly pine and cottonwood plantations. Our carbon budget allows evaluation of errors, as well as quantifying pools and fluxes in developing stands during non-steady-state conditions. Soil CO2 efflux was larger than the combined inputs from aboveground litter fall and root production. Fine-root production increased during stand development; however, mortality was not yet equivalent to production, showing the belowground carbon budget was not yet in equilibrium and root carbon standing crop was accruing. Belowground production was greater in cottonwood than pine, but the level of pine soil CO2 efflux was equal to or greater than that of cottonwood, indicating heterotrophic respiration was higher for pine. Comparison of unaccounted efflux with soil organic carbon changes provides verification of loss or accrual.
Cost-effectiveness of the stream-gaging program in Maryland, Delaware, and the District of Columbia
Carpenter, David H.; James, R.W.; Gillen, D.F.
1987-01-01
This report documents the results of a cost-effectiveness study of the stream-gaging program in Maryland, Delaware, and the District of Columbia. Data uses and funding sources were identified for 99 continuously operated stream gages in Maryland , Delaware, and the District of Columbia. The current operation of the program requires a budget of $465,260/year. The average standard error of estimation of streamflow records is 11.8%. It is shown that this overall level of accuracy at the 99 sites could be maintained with a budget of $461,000, if resources were redistributed among the gages. (USGS)
Saha, Amartya K.; Moses, Christopher S.; Price, Rene M.; Engel, Victor; Smith, Thomas J.; Anderson, Gordon
2012-01-01
Water budget parameters are estimated for Shark River Slough (SRS), the main drainage within Everglades National Park (ENP) from 2002 to 2008. Inputs to the water budget include surface water inflows and precipitation while outputs consist of evapotranspiration, discharge to the Gulf of Mexico and seepage losses due to municipal wellfield extraction. The daily change in volume of SRS is equated to the difference between input and outputs yielding a residual term consisting of component errors and net groundwater exchange. Results predict significant net groundwater discharge to the SRS peaking in June and positively correlated with surface water salinity at the mangrove ecotone, lagging by 1 month. Precipitation, the largest input to the SRS, is offset by ET (the largest output); thereby highlighting the importance of increasing fresh water inflows into ENP for maintaining conditions in terrestrial, estuarine, and marine ecosystems of South Florida.
Observing the earth radiation budget from satellites - Past, present, and a look to the future
NASA Technical Reports Server (NTRS)
House, F. B.
1985-01-01
Satellite measurements of the radiative exchange between the planet earth and space have been the objective of many experiments since the beginning of the space age in the late 1950's. The on-going mission of the Earth Radiation Budget (ERB) experiments has been and will be to consider flight hardware, data handling and scientific analysis methods in a single design strategy. Research and development on observational data has produced an analysis model of errors associated with ERB measurement systems on polar satellites. Results show that the variability of reflected solar radiation from changing meteorology dominates measurement uncertainties. As an application, model calculations demonstrate that measurement requirements for the verification of climate models may be satisfied with observations from one polar satellite, provided there is information on diurnal variations of the radiation budget from the ERBE mission.
NASA Astrophysics Data System (ADS)
Khan, Yousaf; Afridi, Muhammad Idrees; Khan, Ahmed Mudassir; Rehman, Waheed Ur; Khan, Jahanzeb
2014-09-01
Hybrid wavelength-division multiplexed/time-division multiplexed passive optical access networks (WDM/TDM-PONs) combine the advance features of both WDM and TDM PONs to provide a cost-effective access network solution. We demonstrate and analyze the transmission performances and power budget issues of a colorless hybrid WDM/TDM-PON scheme. A 10-Gb/s downstream differential phase shift keying (DPSK) and remodulated upstream on/off keying (OOK) data signals are transmitted over 25 km standard single mode fiber. Simulation results show error free transmission having adequate power margins in both downstream and upstream transmission, which prove the applicability of the proposed scheme to future passive optical access networks. The power budget confines both the PON splitting ratio and the distance between the Optical Line Terminal (OLT) and Optical Network Unit (ONU).
Six Preparedness Strategies for Librarians in Tough Economic Times
ERIC Educational Resources Information Center
MacKellar, Pamela
2010-01-01
It is no secret that library budgets are in a downward spiral like the rest of the economy. The recent annual budget survey by the "Library Journal" indicates that per capita funding for libraries will decline 1.6%, and total library budgets will be reduced by 2.6% in FY 2010. Librarians are all too familiar with this bad news, and some of them…
ERIC Educational Resources Information Center
General Accounting Office, Washington, DC. Health, Education, and Human Services Div.
This study examined the total number of federally funded teacher training programs (excluding student loans and grants that could be used for teacher training), the budget obligations for teacher training programs, the number of teachers trained by these programs, and differences in services across the programs. The study found that in fiscal year…
Marine Corps IT Hardware: A Method for Categorizing and Determining Technology Refreshment Cycles
2015-06-01
PPB&E Planning, Programming, Budgeting and Execution xiv ROI return on investment SABRS Standard Accounting, Budgeting and Reporting System...and manage IT assets are the Standard Accounting, Budgeting and Reporting System ( SABRS ), the Total Force Structure Management System (TFSMS), and...Defense Property Accountability System (DPAS). The TFSMS and DPAS systems account for the physical hardware assets, while SABRS accounts for costs
Oakton Community College Annual Budget, Fiscal Year 1998-1999, Community College District 535.
ERIC Educational Resources Information Center
Oakton Community Coll., Des Plaines, IL.
This report provides the annual budget for Oakton (Illinois) Community College's fiscal year 1998-1999. The budget contains a total of $59,751,098 in revenues and $61,697,515 in expenditures, a 5.29% increase. The deficit is due primarily to remodeling and outfitting of facilities at one of the campuses and deployment of a computing system for the…
Effect of slope errors on the performance of mirrors for x-ray free electron laser applications
Pardini, Tom; Cocco, Daniele; Hau-Riege, Stefan P.
2015-12-02
In this work we point out that slope errors play only a minor role in the performance of a certain class of x-ray optics for X-ray Free Electron Laser (XFEL) applications. Using physical optics propagation simulations and the formalism of Church and Takacs [Opt. Eng. 34, 353 (1995)], we show that diffraction limited optics commonly found at XFEL facilities posses a critical spatial wavelength that makes them less sensitive to slope errors, and more sensitive to height error. Given the number of XFELs currently operating or under construction across the world, we hope that this simple observation will help tomore » correctly define specifications for x-ray optics to be deployed at XFELs, possibly reducing the budget and the timeframe needed to complete the optical manufacturing and metrology.« less
Effect of slope errors on the performance of mirrors for x-ray free electron laser applications.
Pardini, Tom; Cocco, Daniele; Hau-Riege, Stefan P
2015-12-14
In this work we point out that slope errors play only a minor role in the performance of a certain class of x-ray optics for X-ray Free Electron Laser (XFEL) applications. Using physical optics propagation simulations and the formalism of Church and Takacs [Opt. Eng. 34, 353 (1995)], we show that diffraction limited optics commonly found at XFEL facilities posses a critical spatial wavelength that makes them less sensitive to slope errors, and more sensitive to height error. Given the number of XFELs currently operating or under construction across the world, we hope that this simple observation will help to correctly define specifications for x-ray optics to be deployed at XFELs, possibly reducing the budget and the timeframe needed to complete the optical manufacturing and metrology.
HD 140283: A Star in the Solar Neighborhood that Formed Shortly after the Big Bang
NASA Astrophysics Data System (ADS)
Bond, Howard E.; Nelan, Edmund P.; VandenBerg, Don A.; Schaefer, Gail H.; Harmer, Dianne
2013-03-01
HD 140283 is an extremely metal-deficient and high-velocity subgiant in the solar neighborhood, having a location in the Hertzsprung-Russell diagram where absolute magnitude is most sensitive to stellar age. Because it is bright, nearby, unreddened, and has a well-determined chemical composition, this star avoids most of the issues involved in age determinations for globular clusters. Using the Fine Guidance Sensors on the Hubble Space Telescope, we have measured a trigonometric parallax of 17.15 ± 0.14 mas for HD 140283, with an error one-fifth of that determined by the Hipparcos mission. Employing modern theoretical isochrones, which include effects of helium diffusion, revised nuclear reaction rates, and enhanced oxygen abundance, we use the precise distance to infer an age of 14.46 ± 0.31 Gyr. The quoted error includes only the uncertainty in the parallax, and is for adopted surface oxygen and iron abundances of [O/H] = -1.67 and [Fe/H] = -2.40. Uncertainties in the stellar parameters and chemical composition, especially the oxygen content, now contribute more to the error budget for the age of HD 140283 than does its distance, increasing the total uncertainty to about ±0.8 Gyr. Within the errors, the age of HD 140283 does not conflict with the age of the Universe, 13.77 ± 0.06 Gyr, based on the microwave background and Hubble constant, but it must have formed soon after the big bang. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.
Total carbon accumulation in a tropical forest landscape.
Sierra, Carlos A; Del Valle, Jorge I; Restrepo, Hector I
2012-12-19
Regrowing tropical forests worldwide sequester important amounts of carbon and restore part of the C emissions emitted by deforestation. However, there are large uncertainties concerning the rates of carbon accumulation after the abandonment of agricultural and pasture land. We report here accumulation of total carbon stocks (TCS) in a chronosequence of secondary forests at a mid-elevation landscape (900-1200 m asl) in the Andean mountains of Colombia. We found positive accumulation rates for all ecosystem pools except soil carbon, which showed no significant trend of recovery after 36 years of secondary succession. We used these data to develop a simple model to predict accumulation of TCS over time. This model performed remarkably well predicting TCS at other chronosequences in the Americas (Root Mean Square Error < 40 Mg C ha-1), which provided an opportunity to explore different assumptions in the calculation of large-scale carbon budgets. Simulations of TCS with our empirical model were used to test three assumptions often made in carbon budgets: 1) the use of carbon accumulation in tree aboveground biomass as a surrogate for accumulation of TCS, 2) the implicit consideration of carbon legacies from previous land-use, and 3) the omission of landscape age in calculating accumulation rates of TCS. Our simulations showed that in many situations carbon can be released from regrowing secondary forests depending on the amount of carbon legacies and the average age of the landscape. In most cases, the rates used to predict carbon accumulation in the Americas were above the rates predicted in our simulations. These biome level rates seemed to be realistic only in landscapes not affected by carbon legacies from previous land-use and mean ages of around 10 years.
Total carbon accumulation in a tropical forest landscape
2012-01-01
Background Regrowing tropical forests worldwide sequester important amounts of carbon and restore part of the C emissions emitted by deforestation. However, there are large uncertainties concerning the rates of carbon accumulation after the abandonment of agricultural and pasture land. We report here accumulation of total carbon stocks (TCS) in a chronosequence of secondary forests at a mid-elevation landscape (900-1200 m asl) in the Andean mountains of Colombia. Results We found positive accumulation rates for all ecosystem pools except soil carbon, which showed no significant trend of recovery after 36 years of secondary succession. We used these data to develop a simple model to predict accumulation of TCS over time. This model performed remarkably well predicting TCS at other chronosequences in the Americas (Root Mean Square Error < 40 Mg C ha-1), which provided an opportunity to explore different assumptions in the calculation of large-scale carbon budgets. Simulations of TCS with our empirical model were used to test three assumptions often made in carbon budgets: 1) the use of carbon accumulation in tree aboveground biomass as a surrogate for accumulation of TCS, 2) the implicit consideration of carbon legacies from previous land-use, and 3) the omission of landscape age in calculating accumulation rates of TCS. Conclusions Our simulations showed that in many situations carbon can be released from regrowing secondary forests depending on the amount of carbon legacies and the average age of the landscape. In most cases, the rates used to predict carbon accumulation in the Americas were above the rates predicted in our simulations. These biome level rates seemed to be realistic only in landscapes not affected by carbon legacies from previous land-use and mean ages of around 10 years. PMID:23249727
Mujasi, Paschal N; Puig-Junoy, Jaume
2015-08-20
There is need for the Uganda Ministry of Health to understand predictors of primary health care pharmaceutical expenditure among districts in order to guide budget setting and to improve efficiency in allocation of the set budget among districts. Cross sectional, retrospective observational study using secondary data. The value of pharmaceuticals procured by primary health care facilities in 87 randomly selected districts for the Financial Year 2011/2012 was collected. Various specifications of the dependent variable (pharmaceutical expenditure) were used: total pharmaceutical expenditure, Per capita district pharmaceutical expenditure, pharmaceutical expenditure per district health facility and pharmaceutical expenditure per outpatient department visit. Andersen's behaviour model of health services utilisation was used as conceptual framework to identify independent variables likely to influence health care utilisation and hence pharmaceutical expenditure. Econometric analysis was conducted to estimate parameters of various regression models. All models were significant overall (P < 0.01), with explanatory power ranging from 51 to 82%. The log linear model for total pharmaceutical expenditure explained about 80% of the observed variation in total pharmaceutical expenditure (Adjusted R(2) = 0.797) and contained the following variables: Immunisation coverage, Total outpatient department attendance, Urbanisation, Total number of government health facilities and total number of Health Centre IIs. The model based on Per capita Pharmaceutical expenditure explained about 50% of the observed variation in per capita pharmaceutical expenditure (Adjusted R(2) = 0.513) and was more balanced with the following variables: Outpatient per capita attendance, percentage of rural population below poverty line 2005, Male Literacy rate, Whether a district is characterised by MOH as difficult to reach or not and the Human poverty index. The log-linear model based on total pharmaceutical expenditure works acceptably well and can be considered useful for predicting future total pharmaceutical expenditure following observed trends. It can be used as a simple tool for rough estimation of the potential overall national primary health pharmaceutical expenditure to guide budget setting. The model based on pharmaceutical expenditure per capita is a more balanced model containing both need and enabling factor variables. These variables would be useful in allocating any set budget to districts.
Nutrition sensitivity of the 2014 budget statement of Republic of Ghana.
Laar, Amos; Aryeetey, Richmond N O; Akparibo, Robert; Zotor, Francis
2015-11-01
Ghana's Constitution and several international treaties she has ratified demonstrate support for fundamental human rights to nutrition and freedom from hunger. However, it is unknown how this support is being translated into investment in nutrition. National budgets are important vehicles through which governments communicate intent to address pertinent national challenges. The present paper assesses the nutrition sensitivity of Ghana's budget statement for the year ending 31 December 2014. We perused the budget in its entirety, examining allocations to various sectors with the goal of identifying support for direct nutrition interventions. We examined allocations to various sectors as per cent of gross domestic product (GDP). The review shows that the total revenue and grants for the 2014 fiscal year is Ghana Cedis (GH¢) 26 001·9 million (25 % of GDP). The total expenditure for the same period is estimated at GH¢34 956·8 million (33·1 % of GDP). The health sector is allocated GH¢3 353 707 814 (3·8 % of GDP). As of 28 October 2014, the Bank of Ghana's Official Exchange Rate was US$1 = GH¢3·20. It is one of the key sectors whose interventions directly or indirectly impact on nutrition. However, the proportion of the national budget that goes to direct nutrition interventions is not evident in the budget. Nutrition is embedded in other budget lines. Allocations to relevant nutrition-sensitive sectors are very low (<0·5 % of GDP). We conclude that Ghana's 2014 budget statement pays scant attention to nutrition. By embedding nutrition in other budget lines, Ghana runs the risk of perpetually rolling out national spending actions insensitive to nutrition.
An Analysis of Possible Federal Budget Process Reforms
1984-09-01
Page I. Congressional Budget Timetable Linder the 1974 Budget Act. ............. 44 Ii. Summary of Economic Assumptions ......... 66 III. Illustration... Export -Import Bank ............. 25 14 40 52 Grants to Amtrak ............ - - 880 -- Other ....................... 98 409 253 127 Total, guaranteed...Adminis- tration ......... 5.8 4.5 4.5 1.9 1.9 1.9 Foreign military sales .............. 3.9 5.1 5.7 5.1 5.2 5.3 Export -Import Bank ............... 3.5
John L. Campbell; James W. Hornbeck; Myron J. Mitchell; Mary Beth Adams; Mark S. Castro; Charles T. Driscoll; Jeffrey S. Kahl; James N. Kochenderfer; Gene E. Likens; James A. Lynch; Peter S. Murdoch; Sarah J. Nelson; James B. Shanley
2004-01-01
Input-output budgets for dissolved inorganic nitrogen (DIN) are summarized for 24 small watersheds at 15 locations in the northeastern United States. The study watersheds are completely forested, free of recent physical disturbances, and span a geographical region bounded by West Virginia on the south and west, and Maine on the north and east. Total N budgets are not...
A Bayesian approach to multisource forest area estimation
Andrew O. Finley
2007-01-01
In efforts such as land use change monitoring, carbon budgeting, and forecasting ecological conditions and timber supply, demand is increasing for regional and national data layers depicting forest cover. These data layers must permit small area estimates of forest and, most importantly, provide associated error estimates. This paper presents a model-based approach for...
Cost-efficient selection of a marker panel in genetic studies
Jamie S. Sanderlin; Nicole Lazar; Michael J. Conroy; Jaxk Reeves
2012-01-01
Genetic techniques are frequently used to sample and monitor wildlife populations. The goal of these studies is to maximize the ability to distinguish individuals for various genetic inference applications, a process which is often complicated by genotyping error. However, wildlife studies usually have fixed budgets, which limit the number of geneticmarkers available...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Submission for OMB Review... Office of Management and Budget (OMB) a request to review and approve the information collection listed... measurement error structure of the diet and physical activity assessment instruments and the heterogeneity of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-16
... and by educating the public, especially young people, about tobacco products and the dangers their use... identified. When FDA receives tobacco-specific adverse event and product problem information, it will use the... quality problem, or product use error occurs. This risk identification process is the first necessary step...
ERIC Educational Resources Information Center
Meyer, J. Patrick; Liu, Xiang; Mashburn, Andrew J.
2014-01-01
Researchers often use generalizability theory to estimate relative error variance and reliability in teaching observation measures. They also use it to plan future studies and design the best possible measurement procedures. However, designing the best possible measurement procedure comes at a cost, and researchers must stay within their budget…
Matthews, Grant
2004-12-01
The Geostationary Earth Radiation Budget (GERB) experiment is a broadband satellite radiometer instrument program intended to resolve remaining uncertainties surrounding the effect of cloud radiative feedback on future climate change. By use of a custom-designed diffraction-aberration telescope model, the GERB detector spatial response is recovered by deconvolution applied to the ground calibration point-spread function (PSF) measurements. An ensemble of randomly generated white-noise test scenes, combined with the measured telescope transfer function results in the effect of noise on the deconvolution being significantly reduced. With the recovered detector response as a base, the same model is applied in construction of the predicted in-flight field-of-view response of each GERB pixel to both short- and long-wave Earth radiance. The results of this study can now be used to simulate and investigate the instantaneous sampling errors incurred by GERB. Also, the developed deconvolution method may be highly applicable in enhancing images or PSF data for any telescope system for which a wave-front error measurement is available.
Precision VUV Spectro-Polarimetry for Solar Chromospheric Magnetic Field Measurements
NASA Astrophysics Data System (ADS)
Ishikawa, R.; Bando, T.; Hara, H.; Ishikawa, S.; Kano, R.; Kubo, M.; Katsukawa, Y.; Kobiki, T.; Narukage, N.; Suematsu, Y.; Tsuneta, S.; Aoki, K.; Miyagawa, K.; Ichimoto, K.; Kobayashi, K.; Auchère, F.; Clasp Team
2014-10-01
The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a VUV spectro-polarimeter optimized for measuring the linear polarization of the Lyman-α line (121.6 nm) to be launched in 2015 with NASA's sounding rocket (Ishikawa et al. 2011; Narukage et al. 2011; Kano et al. 2012; Kobayashi et al. 2012). With this experiment, we aim to (1) observe the scattering polarization in the Lyman-α line, (2) detect the Hanle effect, and (3) assess the magnetic fields in the upper chromosphere and transition region for the first time. The polarization measurement error consists of scale error δ a (error in amplitude of linear polarization), azimuth error Δφ (error in the direction of linear polarization), and spurious polarization ɛ (false linear polarization signals). The error ɛ should be suppressed below 0.1% in the Lyman-α core (121.567 nm ±0.02 nm), and 0.5% in the Lyman-α wing (121.567 nm ±0.05 nm), based on our scientific requirements shown in Table 2 of Kubo et al. (2014). From scientific justification, we adopt Δ φ<2° and δ a<10% as the instrument requirements. The spectro-polarimeter features a continuously rotating MgF2 waveplate (Ishikawa et al. 2013), a dual-beam spectrograph with a spherical grating working also as a beam splitter, and two polarization analyzers (Bridou et al. 2011), which are mounted at 90 degree from each other to measure two orthogonal polarization simultaneously. For the optical layout of the CLASP instrument, see Figure 3 in Kubo et al. (2014). Considering the continuous rotation of the half-waveplate, the modulation efficiency is 0.64 both for Stokes Q and U. All the raw data are returned and demodulation (successive addition or subtraction of images) is done on the ground. We control the CLASP polarization performance in the following three steps. First, we evaluate the throughput and polarization properties of each optical component in the Lyman-α line, using the Ultraviolet Synchrotron ORbital Radiation Facility (UVSOR) at the Institute for Molecular Science. The second step is polarization calibration of the spectro-polarimeter after alignment. Since the spurious polarization caused by the axisymmetric telescope is estimated to be negligibly small because of the symmetry (Ishikawa et al. 2014), we do not perform end-to-end polarization calibration. As the final step, before the scientific observation near the limb, we make a short observation at the Sun center and verify the polarization sensitivity, because the scattering polarization is expected to be close to zero at the Sun center due to symmetric geometry. In order to clarify whether we will be able to achieve the required polarization sensitivity and accuracy via these steps, we exercise polarization error budget, by investigating all the possible causes and their magnitudes of polarization errors, all of which are not necessarily verified by the polarization calibration. Based on these error budgets, we conclude that a polarization sensitivity of 0.1% in the line core, δ a<10% and Δ φ<2° can be achieved combined with the polarization calibration of the spectro-polarimeter and the onboard calibration at the Sun center(refer to Ishikawa et al. 2014, for the detail). We are currently conducting verification tests of the flight components and development of the UV light source for the polarization calibration. From 2014 spring, we will begin the integration, alignment, and calibration. We will update the error budgets throughout the course of these tests.
Development of a funding, cost, and spending model for satellite projects
NASA Technical Reports Server (NTRS)
Johnson, Jesse P.
1989-01-01
The need for a predictive budget/funging model is obvious. The current models used by the Resource Analysis Office (RAO) are used to predict the total costs of satellite projects. An effort to extend the modeling capabilities from total budget analysis to total budget and budget outlays over time analysis was conducted. A statistical based and data driven methodology was used to derive and develop the model. Th budget data for the last 18 GSFC-sponsored satellite projects were analyzed and used to build a funding model which would describe the historical spending patterns. This raw data consisted of dollars spent in that specific year and their 1989 dollar equivalent. This data was converted to the standard format used by the RAO group and placed in a database. A simple statistical analysis was performed to calculate the gross statistics associated with project length and project cost ant the conditional statistics on project length and project cost. The modeling approach used is derived form the theory of embedded statistics which states that properly analyzed data will produce the underlying generating function. The process of funding large scale projects over extended periods of time is described by Life Cycle Cost Models (LCCM). The data was analyzed to find a model in the generic form of a LCCM. The model developed is based on a Weibull function whose parameters are found by both nonlinear optimization and nonlinear regression. In order to use this model it is necessary to transform the problem from a dollar/time space to a percentage of total budget/time space. This transformation is equivalent to moving to a probability space. By using the basic rules of probability, the validity of both the optimization and the regression steps are insured. This statistically significant model is then integrated and inverted. The resulting output represents a project schedule which relates the amount of money spent to the percentage of project completion.
NASA Astrophysics Data System (ADS)
Glück, Martin; Pott, Jörg-Uwe; Sawodny, Oliver
2017-06-01
Adaptive Optics (AO) systems in large telescopes do not only correct atmospheric phase disturbances, but they also telescope structure vibrations induced by wind or telescope motions. Often the additional wavefront error due to mirror vibrations can dominate the disturbance power and contribute significantly to the total tip-tilt Zernike mode error budget. Presently, these vibrations are compensated for by common feedback control laws. However, when observing faint natural guide stars (NGS) at reduced control bandwidth, high-frequency vibrations (>5 Hz) cannot be fully compensated for by feedback control. In this paper, we present an additional accelerometer-based disturbance feedforward control (DFF), which is independent of the NGS wavefront sensor exposure time to enlarge the “effective servo bandwidth”. The DFF is studied in a realistic AO end-to-end simulation and compared with commonly used suppression concepts. For the observation in the faint (>13 mag) NGS regime, we obtain a Strehl ratio by a factor of two to four larger in comparison with a classical feedback control. The simulation realism is verified with real measurement data from the Large Binocular Telescope (LBT); the application for on-sky testing at the LBT and an implementation at the E-ELT in the MICADO instrument is discussed.
Wilkinson, S N; Dougall, C; Kinsey-Henderson, A E; Searle, R D; Ellis, R J; Bartley, R
2014-01-15
The use of river basin modelling to guide mitigation of non-point source pollution of wetlands, estuaries and coastal waters has become widespread. To assess and simulate the impacts of alternate land use or climate scenarios on river washload requires modelling techniques that represent sediment sources and transport at the time scales of system response. Building on the mean-annual SedNet model, we propose a new D-SedNet model which constructs daily budgets of fine sediment sources, transport and deposition for each link in a river network. Erosion rates (hillslope, gully and streambank erosion) and fine sediment sinks (floodplains and reservoirs) are disaggregated from mean annual rates based on daily rainfall and runoff. The model is evaluated in the Burdekin basin in tropical Australia, where policy targets have been set for reducing sediment and nutrient loads to the Great Barrier Reef (GBR) lagoon from grazing and cropping land. D-SedNet predicted annual loads with similar performance to that of a sediment rating curve calibrated to monitored suspended sediment concentrations. Relative to a 22-year reference load time series at the basin outlet derived from a dynamic general additive model based on monitoring data, D-SedNet had a median absolute error of 68% compared with 112% for the rating curve. RMS error was slightly higher for D-SedNet than for the rating curve due to large relative errors on small loads in several drought years. This accuracy is similar to existing agricultural system models used in arable or humid environments. Predicted river loads were sensitive to ground vegetation cover. We conclude that the river network sediment budget model provides some capacity for predicting load time-series independent of monitoring data in ungauged basins, and for evaluating the impact of land management on river sediment load time-series, which is challenging across large regions in data-poor environments. © 2013. Published by Elsevier B.V. All rights reserved.
Achievable flatness in a large microwave power transmitting antenna
NASA Technical Reports Server (NTRS)
Ried, R. C.
1980-01-01
A dual reference SPS system with pseudoisotropic graphite composite as a representative dimensionally stable composite was studied. The loads, accelerations, thermal environments, temperatures and distortions were calculated for a variety of operational SPS conditions along with statistical considerations of material properties, manufacturing tolerances, measurement accuracy and the resulting loss of sight (LOS) and local slope distributions. A LOS error and a subarray rms slope error of two arc minutes can be achieved with a passive system. Results show that existing materials measurement, manufacturing, assembly and alignment techniques can be used to build the microwave power transmission system antenna structure. Manufacturing tolerance can be critical to rms slope error. The slope error budget can be met with a passive system. Structural joints without free play are essential in the assembly of the large truss structure. Variations in material properties, particularly for coefficient of thermal expansion from part to part, is more significant than actual value.
Understanding error generation in fused deposition modeling
NASA Astrophysics Data System (ADS)
Bochmann, Lennart; Bayley, Cindy; Helu, Moneer; Transchel, Robert; Wegener, Konrad; Dornfeld, David
2015-03-01
Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08-0.30 mm) are generally greater than in the x direction (0.12-0.62 mm) and the z direction (0.21-0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology.
A reactive nitrogen budget for Lake Michigan
The reactive nitrogen budget for Lake Michigan was reviewed and updated, making use of recent estimates of watershed and atmospheric nitrogen loads. The updated total N load to Lake Michigan was approximately double the previous estimate from the Lake Michigan Mass Balance study ...
U.S. Department of Transportation Fiscal Year 2004 Budget in Brief
DOT National Transportation Integrated Search
2003-01-01
The Department's FY 2004 budget request totals $54.3 billion in mandatory and discretionary funding. This represents an overall increase of $2.9 billion or 6 percent when compared to the President's FY 2003 request. The Department's five key performa...
NASA Astrophysics Data System (ADS)
Richman, Barbara T.
Support for science generally is strong in President Ronald Reagan's fiscal 1983 budget proposal, released last week; agency budgets for the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS), however, did not beat inflation.Total federal funding for research and development and related facilities rose 9.6% to $44.3 billion, beating the 7.3% inflation rate estimated for 1982 by the Office of Management and Budget. Obligations for basic research by various departments and agencies also topped inflation. The President proposes federal funding of $5.82 billion in fiscal 1983, compared with $5.35 billion in 1982.
Proposed NASA Budget Includes Asteroid Capture but Cuts Planetary Science and Education
NASA Astrophysics Data System (ADS)
Balcerak, Ernie
2013-04-01
The Obama administration's proposed 17.7 billion budget for NASA for fiscal year (FY) 2014 provides 105 million for several asteroid-related initiatives, including preliminary studies for a potential mission that would capture an asteroid and drag it into orbit around the Moon. The agency's total proposed budget is down slightly compared to FY 2012 (see Table ; comparisons are to FY 2012 because government agencies had been operating on a continuing resolution for 2013 and final spending levels for 2013 were not available at the time the president released his proposed 2014 budget).
The Budget and Economic Outlook: 2017 to 2027
2017-01-01
JANUARY 2017 The Budget and Economic Outlook: 2017 to 2027 Provided as a convenience, this “screen-friendly” version is identical in content to the...Years referred to in describing the economic outlook are calendar years. Numbers in the text, tables, and figures may not add up to totals because...as is a glossary of common budgetary and economic terms (www.cbo.gov/publication/42904). CBO THE BUDGET AND ECONOMIC OUTLOOK: 2017 TO 2027 JANUARY
The Budget and Economic Outlook: Fiscal Years 2012 to 2022
2012-01-01
in the budget because they are treated under the principles governing credit programs (that is, the budget records only the present value of the...CBO forecasts various categories of income by projecting their shares of total gross domestic income. (In principle , GDI equals GDP, but in...Vincent R. Reinhart, “After the Fall,” in Federal Reserve Bank of Kansas City, Macroeconomic Challenges: The Decade Ahead (Kansas City: Federal Reserve
Gandois, L; Nicolas, M; VanderHeijden, G; Probst, A
2010-11-01
The trace metal (TM: Cd, Cu, Ni, Pb and Zn) budget (stocks and annual fluxes) was evaluated in a forest stand (silver fir, Abies alba Miller) in north-eastern France. Trace metal concentrations were measured in different tree compartments in order to assess TM partitioning and dynamics in the trees. Inputs included bulk deposition, estimated dry deposition and weathering. Outputs were leaching and biomass exportation. Atmospheric deposition was the main input flux. The estimated dry deposition accounted for about 40% of the total trace metal deposition. The relative importance of leaching (estimated by a lumped parameter water balance model, BILJOU) and net biomass uptake (harvesting) for ecosystem exportation depended on the element. Trace metal distribution between tree compartments (stem wood and bark, branches and needles) indicated that Pb was mainly stored in the stem, whereas Zn and Ni, and to a lesser extent Cd and Cu, were translocated to aerial parts of the trees and cycled in the ecosystem. For Zn and Ni, leaching was the main output flux (>95% of the total output) and the plot budget (input-output) was negative, whereas for Pb the biomass net exportation represented 60% of the outputs and the budget was balanced. Cadmium and Cu had intermediate behaviours, with 18% and 30% of the total output relative to biomass exportation, respectively, and the budgets were negative. The net uptake by biomass was particularly important for Pb budgets, less so for Cd and Cu and not very important for Zn and Ni in such forest stands. Copyright © 2010 Elsevier B.V. All rights reserved.
Proposed NOAA Budget Includes Hefty Increase for Satellites
NASA Astrophysics Data System (ADS)
Showstack, Randy
2010-03-01
The Obama administration's proposed fiscal year (FY) 2011 budget for the U.S. National Oceanic and Atmospheric Administration (NOAA) would provide the agency with $5.55 billion, which represents a total increase of $806.1 million, or 17% above the FY 2010 budget enacted by Congress. At a February briefing about the budget, NOAA administrator Jane Lubchenco said the budget is a very good package for the agency and that it reflects the administration's commitment to the environment, science, public safety, and job creation. Noting that the agency's budget remained essentially flat between FY 2005 and FY 2008 during the George W. Bush administration, Lubchenco said, “the increasing demand for NOAA's services, coupled with a static budget, created a major challenge for NOAA in delivering on expectations.” She said the funding picture for the agency improved with the FY 2009 and FY 2010 enacted budgets. Lubchenco noted that the proposed budget would include $949 million for research and development, an $82 million increase, adding, “Our 2011 request for each line office [within NOAA] is higher than it was in 2010, and we are better aligned with congressional funding levels than in previous budgets.”
77 FR 27802 - Proposed Collection; Comments Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-11
... Costs: 0. Total Annual Costs (Operating/Maintaining systems or Purchasing Services): 0. The National... following public information collection request (ICR) to the Office of Management and Budget (OMB) for... Endowment for the Arts, Office of Management and Budget, Room 10235, Washington, DC 20503 202/395-7316...
U.S. Department of Transportation : FY 1998 budget in brief
DOT National Transportation Integrated Search
1998-01-01
The fiscal year (FY) 1998 budget request for DOT makes a down payment on meeting the : transportation challenges of the 21st century. A total of $38.4 billion is proposed to support : transportation programs in FY 1998. This is approximately one perc...
Federal agency biodefense funding, FY2012-FY2013.
Franco, Crystal; Sell, Tara Kirk
2012-06-01
Since 2001, the United States government has spent substantial resources on preparing the nation against a bioterrorist attack. Earlier articles in this series have analyzed civilian biodefense funding by the federal government for fiscal years (FY) 2001 through proposed funding for FY2012. This article updates those figures with budgeted amounts for FY2013, specifically analyzing the budgets and allocations for civilian biodefense at the Departments of Health and Human Services, Defense, Homeland Security, Agriculture, Commerce, and State; the Environmental Protection Agency; and the National Science Foundation. As in previous years, our analysis indicates that the majority (>90%) of the "biodefense" programs included in the FY2013 budget have both biodefense and non-biodefense goals and applications-that is, programs to improve infectious disease research, public health and hospital preparedness, and disaster response more broadly. Programs that focus solely on biodefense represent a small proportion (<10%) of our analysis, as the federal agencies continue to prioritize all-hazards preparedness. For FY2013, the federal budget for programs focused solely on civilian biodefense totals $574.2 million, and the budget for programs with multiple goals and applications, including biodefense, is $4.96 billion, for an overall total of $5.54 billion.
Atmospheric energetics as related to cyclogenesis over the eastern United States. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
West, P. W.
1973-01-01
A method is presented to investigate the atmospheric energy budget as related to cyclogenesis. Energy budget equations are developed that are shown to be advantageous because the individual terms represent basic physical processes which produce changes in atmospheric energy, and the equations provide a means to study the interaction of the cyclone with the larger scales of motion. The work presented represents an extension of previous studies because all of the terms of the energy budget equations were evaluated throughout the development period of the cyclone. Computations are carried out over a limited atmospheric volume which encompasses the cyclone, and boundary fluxes of energy that were ignored in most previous studies are evaluated. Two examples of cyclogenesis over the eastern United States were chosen for study. One of the cases (1-4 November, 1966) represented an example of vigorous development, while the development in the other case (5-8 December, 1969) was more modest. Objectively analyzed data were used in the evaluation of the energy budget terms in order to minimize computational errors, and an objective analysis scheme is described that insures that all of the resolution contained in the rawinsonde observations is incorporated in the analyses.
Sloto, Ronald A.; Buxton, Debra E.
2005-01-01
This pilot study, done by the U.S. Geological Survey in cooperation with the Delaware River Basin Commission, developed annual water budgets using available data for five watersheds in the Delaware River Basin with different degrees of urbanization and different geological settings. A basin water budget and a water-use budget were developed for each watershed. The basin water budget describes inputs to the watershed (precipitation and imported water), outputs of water from the watershed (streamflow, exported water, leakage, consumed water, and evapotranspiration), and changes in ground-water and surface-water storage. The water-use budget describes water withdrawals in the watershed (ground-water and surface-water withdrawals), discharges of water in the watershed (discharge to surface water and ground water), and movement of water of water into and out of the watershed (imports, exports, and consumed water). The water-budget equations developed for this study can be applied to any watershed in the Delaware River Basin. Data used to develop the water budgets were obtained from available long-term meteorological and hydrological data-collection stations and from water-use data collected by regulatory agencies. In the Coastal Plain watersheds, net ground-water loss from unconfined to confined aquifers was determined by using ground-water-flow-model simulations. Error in the water-budget terms is caused by missing data, poor or incomplete measurements, overestimated or underestimated quantities, measurement or reporting errors, and the use of point measurements, such as precipitation and water levels, to estimate an areal quantity, particularly if the watershed is hydrologically or geologically complex or the data-collection station is outside the watershed. The complexity of the water budgets increases with increasing watershed urbanization and interbasin transfer of water. In the Wissahickon Creek watershed, for example, some ground water is discharged to streams in the watershed, some is exported as wastewater, and some is exported for public supply. In addition, ground water withdrawn outside the watershed is imported for public supply or imported as wastewater for treatment and discharge in the watershed. A GIS analysis was necessary to quantify many of the water-budget components. The 89.9-square mile East Branch Brandywine Creek watershed in Pennsylvania is a rural watershed with reservoir storage that is underlain by fractured rock. Water budgets were developed for 1977-2001. Average annual precipitation, streamflow, and evapotranspiration were 46.89, 21.58, and 25.88 inches, respectively. Some water was imported (average of 0.68 inches) into the watershed for public-water supply and as wastewater for treatment and discharge; these imports resulted in a net gain of water to the watershed. More water was discharged to East Branch Brandywine Creek than was withdrawn from it; the net discharge resulted in an increase in streamflow. Most ground water was withdrawn (average of 0.25 inches) for public-water supply. Surface water was withdrawn (average of 0.58 inches) for public-water and industrial supply. Discharge of water by sewage-treatment plants and industries (average of 1.22 inches) and regulation by Marsh Creek Reservoir caused base flow to appear an average of 7.2 percent higher than it would have been without these additional sources. On average, 67 percent of the difference was caused by sewage-treatment-plant and industrial discharges, and 33 percent was caused by regulation of the Marsh Creek Reservoir. Water imports, withdrawals, and discharges have been increasing as the watershed becomes increasingly urbanized. The 64-square mile Wissahickon Creek watershed in Pennsylvania is an urban watershed underlain by fractured rock. Water budgets were developed for 1987-98. Average annual precipitation, streamflow, and evapotranspiration were 47.23, 22.24, and 23.12 inches, respectively. The watershed is highly u
NASA Astrophysics Data System (ADS)
Nergui, T.; Lamb, B. K.; Chung, S. H.
2016-12-01
Excess reactive nitrogen (N) from anthropogenic activities is known to cause detrimental effects on the environment. Natural climate variability such as the El Niño Southern Oscillation (ENSO) can affect regional N budgets due to spatial patterns of atmospheric transport and other meteorological conditions associated with ENSO forcing. This study aims to quantify atmospheric N fluxes over the Pacific Northwest to improve our understanding of how ENSO influences regional N budget. The WRF-MEGAN-SMOKE-CMAQ modeling framework is used to simulate atmospheric physical and chemical processes from summer of 1997 to summer of 1999, which includes one of the strongest ENSO events on record. Total N emissions over Washington, Idaho, and Oregon were about 357 Gg N in 1998, of which 96% was from transportation, electricity generation, and industrial activities. The emissions were about 110 Gg N in summer (Jun-Aug) and 63 Gg N in winter (Dec-Feb). This seasonality is mainly driven by emissions from agriculture, wildfire, and biogenic sources (32±16 Gg N), with a maximum in summer (49 Gg N) and a minimum in winter (9 Gg N). Regional total N deposition was about 259 Gg N in 1998, which was 72 % of the regional emissions. Total N deposition rates were lower (36 Gg N) in winter of 1997/1998 and higher in the following spring (82 Gg N) and summer (81 Gg N). Dry deposition is dominant over wet deposition in the region. Depending on the season, dry and wet deposition accounted for 49-70% and 30-51% of the total deposition rates, respectively. During the 1997-98 El Niño and 1998-99 La Niña winters, wet and dry deposition contributed about equally to the total deposition. A mass balance calculation with an assumption of no N accumulation in the troposphere indicates that about 26±9 Gg N was transported out of the region on a seasonal basis. Initial results for 1999 show that 32 Gg N was transported out of the region in 1997-98 El Niño winter, while the net N transport was about 27 Gg N in 1998-99 La Niña winter. The study results will provide atmospheric N budget over the Pacific Northwest at multiple temporal scales extended over different climate regimes set by ENSO forcing. Further, the atmospheric N budget results will be integrated with terrestrial and aquatic N budgets to yield a complete N budget for the region and for the Columbia River Basin.
Space shuttle post-entry and landing analysis. Volume 2: Appendices
NASA Technical Reports Server (NTRS)
Crawford, B. S.; Duiven, E. M.
1973-01-01
Four candidate navigation systems for the space shuttle orbiter approach and landing phase are evaluated in detail. These include three conventional navaid systems and a single-station one-way Doppler system. In each case, a Kalman filter is assumed to be mechanized in the onboard computer, blending the navaid data with IMU and altimeter data. Filter state dimensions ranging from 6 to 24 are involved in the candidate systems. Comprehensive truth models with state dimensions ranging from 63 to 82 are formulated and used to generate detailed error budgets and sensitivity curves illustrating the effect of variations in the size of individual error sources on touchdown accuracy. The projected overall performance of each system is shown in the form of time histories of position and velocity error components.
Sunrise/sunset thermal shock disturbance analysis and simulation for the TOPEX satellite
NASA Technical Reports Server (NTRS)
Dennehy, C. J.; Welch, R. V.; Zimbelman, D. F.
1990-01-01
It is shown here that during normal on-orbit operations the TOPEX low-earth orbiting satellite is subjected to an impulsive disturbance torque caused by rapid heating of its solar array when entering and exiting the earth's shadow. Error budgets and simulation results are used to demonstrate that this sunrise/sunset torque disturbance is the dominant Normal Mission Mode (NMM) attitude error source. The detailed thermomechanical modeling, analysis, and simulation of this torque is described, and the predicted on-orbit performance of the NMM attitude control system in the face of the sunrise/sunset disturbance is presented. The disturbance results in temporary attitude perturbations that exceed NMM pointing requirements. However, they are below the maximum allowable pointing error which would cause the radar altimeter to break lock.
Altimeter error sources at the 10-cm performance level
NASA Technical Reports Server (NTRS)
Martin, C. F.
1977-01-01
Error sources affecting the calibration and operational use of a 10 cm altimeter are examined to determine the magnitudes of current errors and the investigations necessary to reduce them to acceptable bounds. Errors considered include those affecting operational data pre-processing, and those affecting altitude bias determination, with error budgets developed for both. The most significant error sources affecting pre-processing are bias calibration, propagation corrections for the ionosphere, and measurement noise. No ionospheric models are currently validated at the required 10-25% accuracy level. The optimum smoothing to reduce the effects of measurement noise is investigated and found to be on the order of one second, based on the TASC model of geoid undulations. The 10 cm calibrations are found to be feasible only through the use of altimeter passes that are very high elevation for a tracking station which tracks very close to the time of altimeter track, such as a high elevation pass across the island of Bermuda. By far the largest error source, based on the current state-of-the-art, is the location of the island tracking station relative to mean sea level in the surrounding ocean areas.
NASA Astrophysics Data System (ADS)
Zhang, Chengzhu; Xie, Shaocheng; Klein, Stephen A.; Ma, Hsi-yen; Tang, Shuaiqi; Van Weverberg, Kwinten; Morcrette, Cyril J.; Petch, Jon
2018-03-01
All the weather and climate models participating in the Clouds Above the United States and Errors at the Surface project show a summertime surface air temperature (T2 m) warm bias in the region of the central United States. To understand the warm bias in long-term climate simulations, we assess the Atmospheric Model Intercomparison Project simulations from the Coupled Model Intercomparison Project Phase 5, with long-term observations mainly from the Atmospheric Radiation Measurement program Southern Great Plains site. Quantities related to the surface energy and water budget, and large-scale circulation are analyzed to identify possible factors and plausible links involved in the warm bias. The systematic warm season bias is characterized by an overestimation of T2 m and underestimation of surface humidity, precipitation, and precipitable water. Accompanying the warm bias is an overestimation of absorbed solar radiation at the surface, which is due to a combination of insufficient cloud reflection and clear-sky shortwave absorption by water vapor and an underestimation in surface albedo. The bias in cloud is shown to contribute most to the radiation bias. The surface layer soil moisture impacts T2 m through its control on evaporative fraction. The error in evaporative fraction is another important contributor to T2 m. Similar sources of error are found in hindcast from other Clouds Above the United States and Errors at the Surface studies. In Atmospheric Model Intercomparison Project simulations, biases in meridional wind velocity associated with the low-level jet and the 500 hPa vertical velocity may also relate to T2 m bias through their control on the surface energy and water budget.
Avulsion research using flume experiments and highly accurate and temporal-rich SfM datasets
NASA Astrophysics Data System (ADS)
Javernick, L.; Bertoldi, W.; Vitti, A.
2017-12-01
SfM's ability to produce high-quality, large-scale digital elevation models (DEMs) of complicated and rapidly evolving systems has made it a valuable technique for low-budget researchers and practitioners. While SfM has provided valuable datasets that capture single-flood event DEMs, there is an increasing scientific need to capture higher temporal resolution datasets that can quantify the evolutionary processes instead of pre- and post-flood snapshots. However, flood events' dangerous field conditions and image matching challenges (e.g. wind, rain) prevent quality SfM-image acquisition. Conversely, flume experiments offer opportunities to document flood events, but achieving consistent and accurate DEMs to detect subtle changes in dry and inundated areas remains a challenge for SfM (e.g. parabolic error signatures).This research aimed at investigating the impact of naturally occurring and manipulated avulsions on braided river morphology and on the encroachment of floodplain vegetation, using laboratory experiments. This required DEMs with millimeter accuracy and precision and at a temporal resolution to capture the processes. SfM was chosen as it offered the most practical method. Through redundant local network design and a meticulous ground control point (GCP) survey with a Leica Total Station in red laser configuration (reported 2 mm accuracy), the SfM residual errors compared to separate ground truthing data produced mean errors of 1.5 mm (accuracy) and standard deviations of 1.4 mm (precision) without parabolic error signatures. Lighting conditions in the flume were limited to uniform, oblique, and filtered LED strips, which removed glint and thus improved bed elevation mean errors to 4 mm, but errors were further reduced by means of an open source software for refraction correction. The obtained datasets have provided the ability to quantify how small flood events with avulsion can have similar morphologic and vegetation impacts as large flood events without avulsion. Further, this research highlights the potential application of SfM in the laboratory and ability to document physical and biological processes at greater spatial and temporal resolution. Marie Sklodowska-Curie Individual Fellowship: River-HMV, 656917
An audit of the global carbon budget: identifying and reducing sources of uncertainty
NASA Astrophysics Data System (ADS)
Ballantyne, A. P.; Tans, P. P.; Marland, G.; Stocker, B. D.
2012-12-01
Uncertainties in our carbon accounting practices may limit our ability to objectively verify emission reductions on regional scales. Furthermore uncertainties in the global C budget must be reduced to benchmark Earth System Models that incorporate carbon-climate interactions. Here we present an audit of the global C budget where we try to identify sources of uncertainty for major terms in the global C budget. The atmospheric growth rate of CO2 has increased significantly over the last 50 years, while the uncertainty in calculating the global atmospheric growth rate has been reduced from 0.4 ppm/yr to 0.2 ppm/yr (95% confidence). Although we have greatly reduced global CO2 growth rate uncertainties, there remain regions, such as the Southern Hemisphere, Tropics and Arctic, where changes in regional sources/sinks will remain difficult to detect without additional observations. Increases in fossil fuel (FF) emissions are the primary factor driving the increase in global CO2 growth rate; however, our confidence in FF emission estimates has actually gone down. Based on a comparison of multiple estimates, FF emissions have increased from 2.45 ± 0.12 PgC/yr in 1959 to 9.40 ± 0.66 PgC/yr in 2010. Major sources of increasing FF emission uncertainty are increased emissions from emerging economies, such as China and India, as well as subtle differences in accounting practices. Lastly, we evaluate emission estimates from Land Use Change (LUC). Although relative errors in emission estimates from LUC are quite high (2 sigma ~ 50%), LUC emissions have remained fairly constant in recent decades. We evaluate the three commonly used approaches to estimating LUC emissions- Bookkeeping, Satellite Imagery, and Model Simulations- to identify their main sources of error and their ability to detect net emissions from LUC.; Uncertainties in Fossil Fuel Emissions over the last 50 years.
NASA Astrophysics Data System (ADS)
Plazas, A. A.; Shapiro, C.; Kannawadi, A.; Mandelbaum, R.; Rhodes, J.; Smith, R.
2016-10-01
Weak gravitational lensing (WL) is one of the most powerful techniques to learn about the dark sector of the universe. To extract the WL signal from astronomical observations, galaxy shapes must be measured and corrected for the point-spread function (PSF) of the imaging system with extreme accuracy. Future WL missions—such as NASA’s Wide-Field Infrared Survey Telescope (WFIRST)—will use a family of hybrid near-infrared complementary metal-oxide-semiconductor detectors (HAWAII-4RG) that are untested for accurate WL measurements. Like all image sensors, these devices are subject to conversion gain nonlinearities (voltage response to collected photo-charge) that bias the shape and size of bright objects such as reference stars that are used in PSF determination. We study this type of detector nonlinearity (NL) and show how to derive requirements on it from WFIRST PSF size and ellipticity requirements. We simulate the PSF optical profiles expected for WFIRST and measure the fractional error in the PSF size (ΔR/R) and the absolute error in the PSF ellipticity (Δe) as a function of star magnitude and the NL model. For our nominal NL model (a quadratic correction), we find that, uncalibrated, NL can induce an error of ΔR/R = 1 × 10-2 and Δe 2 = 1.75 × 10-3 in the H158 bandpass for the brightest unsaturated stars in WFIRST. In addition, our simulations show that to limit the bias of ΔR/R and Δe in the H158 band to ˜10% of the estimated WFIRST error budget, the quadratic NL model parameter β must be calibrated to ˜1% and ˜2.4%, respectively. We present a fitting formula that can be used to estimate WFIRST detector NL requirements once a true PSF error budget is established.
NASA Astrophysics Data System (ADS)
Vitharana, V. H. P.; Chinda, T.
2018-04-01
Lower back pain (LBP), prevalence is high among the heavy equipment operators leading to high compensation cost in the construction industry. It is found that proper training program assists in reducing chances of having LBP. This study, therefore aims to examine different safety related budget available to support LBP related training program for different age group workers, utilizing system dynamics modeling approach. The simulation results show that at least 2.5% of the total budget must be allocated in the safety and health budget to reduce the chances of having LBP cases.
Budgeting in health care systems.
Maynard, A
1984-01-01
During the last decade there has been a recognition that all health care systems, public and private, are characterised by perverse incentives (especially moral hazard and third party pays) which generate inefficiency in the use of scarce economic resources. Inefficiency is unethical: doctors who use resources inefficiently deprive potential patients of care from which they could benefit. To eradicate unethical and inefficient practices two economic rules have to be followed: (i) no service should be provided if its total costs exceed its total benefits; (ii) if total benefits exceed total costs, the level of provision should be at that level at which the additional input cost (marginal cost) is equal to the additional benefits (marginal benefit). This efficiency test can be applied to health care systems, their component parts and the individuals (especially doctors) who control resource allocation within them. Unfortunately, all health care systems neither generate this relevant decision making data nor are they flexible enough to use it to affect health care decisions. There are two basic varieties of budgeting system: resource based and production targeted. The former generates obsession with cash limits and too little regard of the benefits, particularly at the margins, of alternative patterns of resource allocation. The latter generates undue attention to the production of processes of care and scant regard for costs, especially at the margins. Consequently, one set of budget rules may lead to cost containment regardless of benefits and the other set of budget rules may lead to output maximization regardless of costs. To close this circle of inefficiency it is necessary to evolve market-like structures. To do this a system of client group (defined broadly across all existing activities public and private) budgets is advocated with an identification of the budget holder who has the capacity to shift resources and seek out cost effective policies. Negotiated output targets with defined budgets and incentives for decision makers to economise in their use of resources are being incorporated into experiments in the health care systems of Western Europe and the United States. Undue optimism about the success of these experiments must be avoided because these problems have existed in the West and in the Soviet bloc for decades and efficient solutions are noticeable by their absence.
Generalized sediment budgets of the Lower Missouri River, 1968–2014
Heimann, David C.
2016-09-13
Sediment budgets of the Lower Missouri River were developed in a study led by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers. The scope of the study included the development of a long-term (post-impoundment, 1968–2014) average annual sediment budget and selected annual, monthly, and daily sediment budgets for a reach and period that adequate data were available. Included in the analyses were 31 main-stem and tributary stations of the Lower Missouri River and two Mississippi River stations—the Mississippi River below Grafton, Illinois, and the Mississippi River at St. Louis, Missouri.Long-term average annual suspended-sediment loads of Missouri River main-stem stations ranged from 0.33 million tons at the Missouri River at Yankton, South Dakota, station to 71.2 million tons at Missouri River at Hermann, Mo., station. Gaged tributary gains accounted for 9–36 percent of the local reach budgets and cumulative gaged tributary contributions accounted for 84 percent of the long-term average suspended-sediment load of the Missouri River at Hermann, Mo., station. Although the sediment budgets for seven defined main-stem reaches generally were incomplete—missing bedload, reach storage, and ungaged tributary contributions—the budget residuals (net result of sediment inputs and outputs) for six of the seven reaches ranged from -7.0 to 1.7 million tons, or from -9.2 to 4.0 percent of the reach output suspended-sediment load, and were within the 10 percent reported measurement error of annual suspended-sediment loads for large rivers. The remaining reach, downstream from Gavin’s Point Dam, extended from Yankton, S. Dak., to Sioux City, Iowa, and had a budget residual of -9.8 million tons, which was -88 percent of the suspended-sediment load at Sioux City.The Lower Missouri River reach from Omaha, Nebraska, to Nebraska City, Nebr., had periods of concurrent sediment data for each primary budget component with which to analyze and determine a suspended-sediment budget for selected annual, monthly, and daily time increments. The temporal changes in the cumulative annual budget residuals were poorly correlated with the comparatively steady 1968–2011 annual stage trends at the Missouri River at Nebraska City, Nebr., station. An accurate total sediment budget is developed by having concurrent data available for all primary suspended and bedload components for a reach of interest throughout a period. Such a complete budget, with concurrent record for suspended-sediment load and bedload components, is unavailable for any reach and period in the Lower Missouri River. The primary data gaps are in bedload data, and also in suspended-sediment gains and losses including ungaged tributary inputs and sediment storage. Bedload data gaps in the Missouri River Basin are much more prevalent than suspended-sediment data gaps, and the first step in the development of reach bedload budgets is the establishment of a standardized bedload monitoring program at main-stem stations.The temporal changes in flow-adjusted suspended-sediment concentrations analyzed at main-stem Missouri River stations indicated an overall downward change in concentrations between 1968 and 2014. Temporary declines in flow-adjusted suspended-sediment concentrations during and following large floods were evident but generally returned to near pre-flood values within about 6 months.Data uncertainties associated with the development of a sediment budget include uncertainties associated with the collection of suspended-sediment and bedload data and the computation of suspended-sediment loads. These uncertainties vary depending on the frequency of data collection, the variability of conditions being represented by the discrete samples, and the statistical approach to suspended-sediment load computations. The coefficients of variation of suspended-sediment loads of Missouri River tributary stations for 1968–2014 were greater, 75.0 percent, than the main-stem stations, 47.1 percent. The lower coefficient of variation at main-stem stations compared to tributaries, primarily is the result of the lower variability in streamflow and sediment discharge identified at main-stem stations. To obtain similar accuracy between suspended-sediment loads at main-stem and tributary stations, a longer period of record is required of the tributary stations. During 1968–2014, however, the Missouri River main-stem station record was much more complete (87 percent) than the tributary station record (28 percent).
Autonomy versus Affirmative Action: What Price Social Justice?
ERIC Educational Resources Information Center
Cavalier, Anne; Slaughter, Sheila
1982-01-01
A study measured costs of an affirmative action/equal employment opportunity program at one institution through cost analysis of personnel, operating expenses, and capital replacement value. Costs incurred in one budget cycle were 0.4 percent of the total institutional budget, most spent indirectly through faculty time, and were found…
75 FR 38126 - Final Notice of Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
... Office of Management and Budget (OMB) for review and clearance in accordance with the Paperwork Reduction... things, a description of the likely respondents, proposed frequency of response, and estimated total... Service (VETS), Office of Management and Budget, Room 10235, Washington, DC 20503, Telephone: 202-395-7316...
Seagrasses dominate macrophyte biomass in many estuaries. Historically, it has been assumed that because of the large standing stock seagrasses also dominate primary production. We tested this assumption by developing 3 carbon budgets to examine the contribution of autotrophic ...
Information about Student Enrollment, College Staff and the Budget.
ERIC Educational Resources Information Center
College of the Canyons, Santa Clarita, CA. Office of Institutional Development.
Consisting primarily of charts and tables, this report provides historical data on student enrollment, college staff, and the budget at California's College of the Canyons, focusing primarily on the period from 1990-94. The first section provides tables on student enrollment, including total headcount; enrollment by gender, age group,…
Fiscal Year 1999 Higher Education Budget Recommendations. Operations and Grants.
ERIC Educational Resources Information Center
Illinois State Board of Higher Education, Springfield.
This report presents staff recommendations of the Illinois Board of Higher Education concerning budget recommendations for higher education operations and grants for fiscal year 1999. General funds recommendations total $2,207.1 million, an increase of 6.1 percent over 1998 appropriations. Recommendations are also included for locally-held…
Naval Postgraduate School Solar Cell Array Tester
2010-12-01
PROGRAM MANAGEMENT ................................45 1. SCHEDULE .....................................47 B. BUDGET...budget and schedule from December 2009 to September 2010. In addition, a total development cost estimate, including labor, equipment, and testing... scheduler becomes active, all tasks become eligible to run, and normal operations begin. Figure 21 shows a diagram of the startup actions [32
NASA Astrophysics Data System (ADS)
Pan, Ming; Troy, Tara; Sahoo, Alok; Sheffield, Justin; Wood, Eric
2010-05-01
Documentation of the water cycle and its evolution over time is a primary scientific goal of the Global Energy and Water Cycle Experiment (GEWEX) and fundamental to assessing global change impacts. In developed countries, observation systems that include in-situ, remote sensing and modeled data can provide long-term, consistent and generally high quality datasets of water cycle variables. The export of these technologies to less developed regions has been rare, but it is these regions where information on water availability and change is probably most needed in the face of regional environmental change due to climate, land use and water management. In these data sparse regions, in situ data alone are insufficient to develop a comprehensive picture of how the water cycle is changing, and strategies that merge in-situ, model and satellite observations within a framework that results in consistent water cycle records is essential. Such an approach is envisaged by the Global Earth Observing System of Systems (GOESS), but has yet to be applied. The goal of this study is to quantify the variation and changes in the global water cycle over the past 50 years. We evaluate the global water cycle using a variety of independent large-scale datasets of hydrologic variables that are used to bridge the gap between sparse in-situ observations, including remote-sensing based retrievals, observation-forced hydrologic modeling, and weather model reanalyses. A data assimilation framework that blends these disparate sources of information together in a consistent fashion with attention to budget closure is applied to make best estimates of the global water cycle and its variation. The framework consists of a constrained Kalman filter applied to the water budget equation. With imperfect estimates of the water budget components, the equation additionally has an error residual term that is redistributed across the budget components using error statistics, which are estimated from the uncertainties among data products. The constrained Kalman filter treats the budget closure constraint as a perfect observation within the assimilation framework. Precipitation is estimated using gauge observations, reanalysis products, and remote sensing products for below 50°N. Evapotranspiration is estimated in a number of ways: from the VIC land surface hydrologic model forced with a hybrid reanalysis-observation global forcing dataset, from remote sensing retrievals based on a suite of energy balance and process based models, and from an atmospheric water budget approach using reanalysis products for the atmospheric convergence and storage terms and our best estimate for precipitation. Terrestrial water storage changes, including surface and subsurface changes, are estimated using estimates from both VIC and the GRACE remote sensing retrievals. From these components, discharge can then be calculated as a residual of the water budget and compared with gauge observations to evaluate the closure of the water budget. Through the use of these largely independent data products, we estimate both the mean seasonal cycle of the water budget components and their uncertainties for a set of 20 large river basins across the globe. We particularly focus on three regions of interest in global changes studies: the Northern Eurasian region which is experiencing rapid change in terrestrial processes; the Amazon which is a central part of the global water, energy and carbon budgets; and Africa, which is predicted to face some of the most critical challenges for water and food security in the coming decades.
Impact of Parameterized Lee Wave Drag on the Energy Budget of an Eddying Global Ocean Model
2013-08-26
Teixeira, J., Peng, M., Hogan, T.F., Pauley, R., 2002. Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models...Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model David S. Trossman a,⇑, Brian K. Arbic a, Stephen T...input and output terms in the total mechanical energy budget of a hybrid coordinate high-resolution global ocean general circulation model forced by winds
Review of the Fiscal Year 2013 (FY13) Defense Environmental International Cooperation (DEIC) Program
2014-03-01
year. Of the remaining projects, the Advisory Group then identifies those projects that it feels merit support, but were not as high a priority... remaining 20 percent of the original budget. Thus, even if a project were listed for such funding, it would not necessarily be funded even if the full...DEIC program budget were available, since the total costs for such projects exceed the overall remaining DEIC budget (even before any cuts). This
Minuteman 2020: Maintaining the Operational Army National Guard
2013-03-01
billion dollars of that amount taken from the DOD. Furthermore, a budget super committee identified a total of 2.1 trillion dollars in cuts mandated...in the 2011 Budget Control Act. As a condition, if the super committee failed to reach a bi-partisan agreement by 31 December 2012, an additional...terms of the Defense Department…as far as our budget is concerned, as far as our ability to respond to the threats that are out there, it has a big
NASA Astrophysics Data System (ADS)
Conley, Stephen A.
Energy exchange between the tropical oceans and the atmosphere plays an important role in the climate of the planet. By far the most abundant form of this transfer occurs in regions of shallow (generally non-precipitating) convection that takes place underneath the gentle lid of the trade wind inversion. Understanding the atmospheric dynamics and exchange of chemical species between the ocean and atmosphere in this region is a critical step on the path to accurate modeling of the earth's climate. This work focuses on dimethyl sulfide (DMS), ozone (O3) and the boundary layer dynamics of the region. In the MBL, DMS and O3 both exhibited the well-known diurnal cycle of buildup at night followed by daytime destruction. DMS ranged from 50-95 pptv in the daytime to 90-110 pptv at night and O3 from 16-18 ppb during the daytime to 17-21 ppb at night. Contributions from horizontal advection are included using a multivariate regression of the observed mixing ratio as a function of time and space within the MBL to estimate the mean gradients and trends. With this technique we can use the residual term in the budget as an estimate of overall photochemical oxidation. Error analysis of the various terms in the DMS budget indicate that chemical losses acting on time scales of up to 110 hours can be inferred with this technique. On average, photochemistry accounted for ˜ 7.4 ppt hr-1 loss rate for the seven daytime flights, with an estimated error of 0.6 ppt hr-1. The loss rate due to expected OH oxidation is sufficient to explain the net DMS destruction without invoking the action of additional oxidants (e.g., reactive halogens) . The observed ocean flux of DMS averaged 3.1 (+/- 1.5) mumol m-2d-1, and generally decreased throughout the sunlit hours. Averaged over the mission, horizontal advection was negligible in the DMS budget but was significant in the budgets of individual flights. The ozone budget included the same dynamical terms as the DMS budget but also included loss to photolysis, OH and HO2. Photolysis is the dominant chemical sink (˜ 0.29 ppb/hour). Horizontal advection and vertical flux divergence contribute similar amounts to the budget (0.08 ppb hr-1 , 0.06 ppb hr-1). The advective source is consistent with the picture from the Total Ozone Mapping Spectrometer (TOMS) indicating higher levels of ozone upwind from the PASE region. The entrainment flux from the FT to the BuL was estimated at 0.07 ppb m s-1. A budget of turbulent kinetic energy (TKE) exhibited evenly distributed shear production throughout the MBL along with an expected linear profile of buoyancy production. Two loci of approximately equal parts shear production, transport, and buoyancy production sustain TKE in the BuL at levels of ˜70% that within the MBL. A mean cloud fraction profile from the experiment confirms a bimodal distribution of trade wind cumuli with a major peak at the top and a secondary peak in the lower third of the BuL, consistent with the picture of shallow convection supplying the bulk of the TKE to this layer, but not uniformly in the vertical. Surface latent heat fluxes were measured by eddy covariance and were on average found to be 30% less the standard NOAA bulk model. The Bowen ratio averaged 0.05 with very little flight to flight variability (+/-0.03). The observed east-southeasterly winds averaged 8 ms -1 (at 10 meters) in this region feeding into the ITCZ located at approximately 10 degrees N. On most flights a low level jet was observed either within or just above the BuL. During the four week mission, SST over the entire region decreased by 1.5C as a tropical instability wave brought colder water to the equatorial mid Pacific with winds surface winds increasing by 0.5 m s-1 during the experiment. The shape of the cospectra between vertical wind speed and potential temperature exhibited the traditional Kaimal form; however, water vapor and DMS cospectra exhibited less power at the highest frequencies with their cospectral peaks shifted toward larger scales. (Abstract shortened by UMI.)
Linking budgets to desired academic outputs at Dalhousie University.
MacDougall, B; Ruedy, J
1995-05-01
In 1993, faced with continuing university budget reductions and dissatisfaction with the budget-allocation process, the Faculty of Medicine at Dalhousie University undertook a financial planning process. The goal was to develop a new resource-allocation model to better link academic budget support to desired academic outputs over a three-year period. Department heads categorized academic outputs (e.g., teaching, research, administration, and subcategories of these), determined their relative values (expressed as percentages of the total department budget to be projected), and identified acceptable units of measuring the outputs (e.g., for teaching in the first and second years of medical school, the unit was the number of teaching hours). When dollar values were assigned to the units of measure, the new model was used to calculate budget allocations for all departments. However, many departments showed large negative shifts in their budgets; these shifts were too large to be achieved within three years because of departments' contractual obligations. Therefore, a practical limit in budget shift was determined. This adjustment permitted a three-year projection of academic budgets to be made for each department. The use of the resource-allocation model has achieved the Faculty's goal by creating a better rationalization of budgets to academic outputs, but carries the risk that departments might abandon essential but "undervalued" academic activities.
Laboratory errors and patient safety.
Miligy, Dawlat A
2015-01-01
Laboratory data are extensively used in medical practice; consequently, laboratory errors have a tremendous impact on patient safety. Therefore, programs designed to identify and reduce laboratory errors, as well as, setting specific strategies are required to minimize these errors and improve patient safety. The purpose of this paper is to identify part of the commonly encountered laboratory errors throughout our practice in laboratory work, their hazards on patient health care and some measures and recommendations to minimize or to eliminate these errors. Recording the encountered laboratory errors during May 2008 and their statistical evaluation (using simple percent distribution) have been done in the department of laboratory of one of the private hospitals in Egypt. Errors have been classified according to the laboratory phases and according to their implication on patient health. Data obtained out of 1,600 testing procedure revealed that the total number of encountered errors is 14 tests (0.87 percent of total testing procedures). Most of the encountered errors lay in the pre- and post-analytic phases of testing cycle (representing 35.7 and 50 percent, respectively, of total errors). While the number of test errors encountered in the analytic phase represented only 14.3 percent of total errors. About 85.7 percent of total errors were of non-significant implication on patients health being detected before test reports have been submitted to the patients. On the other hand, the number of test errors that have been already submitted to patients and reach the physician represented 14.3 percent of total errors. Only 7.1 percent of the errors could have an impact on patient diagnosis. The findings of this study were concomitant with those published from the USA and other countries. This proves that laboratory problems are universal and need general standardization and bench marking measures. Original being the first data published from Arabic countries that evaluated the encountered laboratory errors and launch the great need for universal standardization and bench marking measures to control the laboratory work.
The Soil Sink for Nitrous Oxide: Trivial Amount but Challenging Question
NASA Astrophysics Data System (ADS)
Davidson, E. A.; Savage, K. E.; Sihi, D.
2015-12-01
Net uptake of atmospheric nitrous oxide (N2O) has been observed sporadically for many years. Such observations have often been discounted as measurement error or noise, but they were reported frequently enough to gain some acceptance as valid. The advent of fast response field instruments with good sensitivity and precision has permitted confirmation that some soils can be small sinks of N2O. With regards to "closing the global N2O budget" the soil sink is trivial, because it is smaller than the error terms of most other budget components. Although not important from a global budget perspective, the existence of a soil sink for atmospheric N2O presents a fascinating challenge for understanding the physical, chemical, and biological processes that explain the sink. Reduction of N2O by classical biological denitrification requires reducing conditions generally found in wet soil, and yet we have measured the N2O sink in well drained soils, where we also simultaneously measure a sink for atmospheric methane (CH4). Co-occurrence of N2O reduction and CH4 oxidation would require a broad range of microsite conditions within the soil, spanning high and low oxygen concentrations. Abiotic sinks for N2O or other biological processes that consume N2O could exist, but have not yet been identified. We are attempting to simulate processes of diffusion of N2O, CH4, and O2 from the atmosphere and within a soil profile to determine if classical biological N2O reduction and CH4 oxidation at rates consistent with measured fluxes are plausible.
The East Asian Atmospheric Water Cycle and Monsoon Circulation in the Met Office Unified Model
NASA Astrophysics Data System (ADS)
Rodríguez, José M.; Milton, Sean F.; Marzin, Charline
2017-10-01
In this study the low-level monsoon circulation and observed sources of moisture responsible for the maintenance and seasonal evolution of the East Asian monsoon are examined, studying the detailed water budget components. These observational estimates are contrasted with the Met Office Unified Model (MetUM) climate simulation performance in capturing the circulation and water cycle at a variety of model horizontal resolutions and in fully coupled ocean-atmosphere simulations. We study the role of large-scale circulation in determining the hydrological cycle by analyzing key systematic errors in the model simulations. MetUM climate simulations exhibit robust circulation errors, including a weakening of the summer west Pacific Subtropical High, which leads to an underestimation of the southwesterly monsoon flow over the region. Precipitation and implied diabatic heating biases in the South Asian monsoon and Maritime Continent region are shown, via nudging sensitivity experiments, to have an impact on the East Asian monsoon circulation. By inference, the improvement of these tropical biases with increased model horizontal resolution is hypothesized to be a factor in improvements seen over East Asia with increased resolution. Results from the annual cycle of the hydrological budget components in five domains show a good agreement between MetUM simulations and ERA-Interim reanalysis in northern and Tibetan domains. In simulations, the contribution from moisture convergence is larger than in reanalysis, and they display less precipitation recycling over land. The errors are closely linked to monsoon circulation biases.
Radiometric Spacecraft Tracking for Deep Space Navigation
NASA Technical Reports Server (NTRS)
Lanyi, Gabor E.; Border, James S.; Shin, Dong K.
2008-01-01
Interplanetary spacecraft navigation relies on three types of terrestrial tracking observables.1) Ranging measures the distance between the observing site and the probe. 2) The line-of-sight velocity of the probe is inferred from Doppler-shift by measuring the frequency shift of the received signal with respect to the unshifted frequency. 3) Differential angular coordinates of the probe with respect to natural radio sources are nominally obtained via a differential delay technique of (Delta) DOR (Delta Differential One-way Ranging). The accuracy of spacecraft coordinate determination depends on the measurement uncertainties associated with each of these three techniques. We evaluate the corresponding sources of error and present a detailed error budget.
Decoding small surface codes with feedforward neural networks
NASA Astrophysics Data System (ADS)
Varsamopoulos, Savvas; Criger, Ben; Bertels, Koen
2018-01-01
Surface codes reach high error thresholds when decoded with known algorithms, but the decoding time will likely exceed the available time budget, especially for near-term implementations. To decrease the decoding time, we reduce the decoding problem to a classification problem that a feedforward neural network can solve. We investigate quantum error correction and fault tolerance at small code distances using neural network-based decoders, demonstrating that the neural network can generalize to inputs that were not provided during training and that they can reach similar or better decoding performance compared to previous algorithms. We conclude by discussing the time required by a feedforward neural network decoder in hardware.
X-band uplink ground systems development: Part 2
NASA Technical Reports Server (NTRS)
Johns, C. E.
1987-01-01
The prototype X-band exciter testing has been completed. Stability and single-sideband phase noise measurements have been made on the X-band exciter signal (7.145-7.235 GHz) and on the coherent X- and S-band receiver test signals (8.4-8.5 GHz and 2.29-2.3 GHz) generated within the exciter equipment. Outputs are well within error budgets.
1982-04-25
the Directorate of Programs (AFLC/ XRP ), and 11-4 * the Directorate of Logistics Plans and Programs, Aircraft/Missiles Program Division of the Air Staff...OWRM). * The P-18 Exhibit/Budget Estimate Submission (BES), a document developed by AFLC/LOR, is reviewed by AFLC/ XRP , and is presented to HQ USAF
Catic, Tarik; Lekic, Lana; Zah, Vlad; Tabakovic, Vedad
2017-09-01
Diabetes is reaching epidemiological scales worldwide. Beside health implications diabetes bears significant financial impact on health systems. Different treatment options aiming to prevent diabetes complications are available. Dipeptidyl-peptidase-IV (DPP-4) inhibitors like linagliptin are usually add-on therapy to metformin in order to achieve glycemic control. Expenditure for oral antidiabetic medicines in Bosnia and Herzegovina (B&H) is low accounting for only 2.53% of the total drug market expenditure. Linagliptin is not reimbursed in B&H mainly due to it's perception of high cost medication. To assess budget impact (BI) of introducing linagliptin into health insurance reimbursement list in B&H through development of the budget impact model (BIM). Budget impact model was developed using Microsoft Excel 2010 based on current legislation and practice in B&H. Local epidemiology data and data on drug consumption from government reports in 2014 were used. Two scenarios with three-year time horizon have been developed: 1) without and 2) with linagliptin reimbursed and compared. Inclusion of linagliptin into reimbursement list in Canton Sarajevo and Canton Tuzla would have positive budget impact on national level of B&H resulting in total savings of 18,194€, 235,570€ and 699,472€, in 2016, 2017 and 2018, respectively. Introduction of linagliptin into reimbursement list would decrease total costs for DPP-4 inhibitors and is favorable for positive decision on reimbursement in B&H. Applying BIM in decision making would assure better allocation and planning of resources at any region or administrative level in B&H.
NASA Astrophysics Data System (ADS)
Anderton, Rupert N.; Cameron, Colin D.; Burnett, James G.; Güell, Jeff J.; Sanders-Reed, John N.
2014-06-01
This paper discusses the design of an improved passive millimeter wave imaging system intended to be used for base security in degraded visual environments. The discussion starts with the selection of the optimum frequency band. The trade-offs between requirements on detection, recognition and identification ranges and optical aperture are discussed with reference to the Johnson Criteria. It is shown that these requirements also affect image sampling, receiver numbers and noise temperature, frame rate, field of view, focusing requirements and mechanisms, and tolerance budgets. The effect of image quality degradation is evaluated and a single testable metric is derived that best describes the effects of degradation on meeting the requirements. The discussion is extended to tolerance budgeting constraints if significant degradation is to be avoided, including surface roughness, receiver position errors and scan conversion errors. Although the reflective twist-polarization imager design proposed is potentially relatively low cost and high performance, there is a significant problem with obscuration of the beam by the receiver array. Methods of modeling this accurately and thus designing for best performance are given.
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Bar-Itzhack, Itzhack Y.; Rokni, Mohammad
1990-01-01
The testing and comparison of two Extended Kalman Filters (EKFs) developed for the Earth Radiation Budget Satellite (ERBS) is described. One EKF updates the attitude quaternion using a four component additive error quaternion. This technique is compared to that of a second EKF, which uses a multiplicative error quaternion. A brief development of the multiplicative algorithm is included. The mathematical development of the additive EKF was presented in the 1989 Flight Mechanics/Estimation Theory Symposium along with some preliminary testing results using real spacecraft data. A summary of the additive EKF algorithm is included. The convergence properties, singularity problems, and normalization techniques of the two filters are addressed. Both filters are also compared to those from the ERBS operational ground support software, which uses a batch differential correction algorithm to estimate attitude and gyro biases. Sensitivity studies are performed on the estimation of sensor calibration states. The potential application of the EKF for real time and non-real time ground attitude determination and sensor calibration for future missions such as the Gamma Ray Observatory (GRO) and the Small Explorer Mission (SMEX) is also presented.
NFIRAOS in 2015: engineering for future integration of complex subsystems
NASA Astrophysics Data System (ADS)
Atwood, Jenny; Andersen, David; Byrnes, Peter; Densmore, Adam; Fitzsimmons, Joeleff; Herriot, Glen; Hill, Alexis
2016-07-01
The Narrow Field InfraRed Adaptive Optics System (NFIRAOS) will be the first-light facility Adaptive Optics (AO) system for the Thirty Meter Telescope (TMT). NFIRAOS will be able to host three science instruments that can take advantage of this high performance system. NRC Herzberg is leading the design effort for this critical TMT subsystem. As part of the final design phase of NFIRAOS, we have identified multiple subsystems to be sub-contracted to Canadian industry. The scope of work for each subcontract is guided by the NFIRAOS Work Breakdown Structure (WBS) and is divided into two phases: the completion of the final design and the fabrication, assembly and delivery of the final product. Integration of the subsystems at NRC will require a detailed understanding of the interfaces between the subsystems, and this work has begun by defining the interface physical characteristics, stability, local coordinate systems, and alignment features. In order to maintain our stringent performance requirements, the interface parameters for each subsystem are captured in multiple performance budgets, which allow a bottom-up error estimate. In this paper we discuss our approach for defining the interfaces in a consistent manner and present an example error budget that is influenced by multiple subsystems.
76 FR 30925 - Information Collection; Submission for OMB Review, Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-27
.../startup): None. Total Burden Cost (operating/maintenance): None. Instrument: Application and Budget.../startup): None. Total Burden Cost (operating/maintenance): None. AmeriCorps\\*\\VISTA Project Progress...,800 hours. Total Burden Cost (capital/startup): None. Total Burden Cost (operating/maintenance): None...
On Hardness of Pricing Items for Single-Minded Bidders
NASA Astrophysics Data System (ADS)
Khandekar, Rohit; Kimbrel, Tracy; Makarychev, Konstantin; Sviridenko, Maxim
We consider the following item pricing problem which has received much attention recently. A seller has an infinite numbers of copies of n items. There are m buyers, each with a budget and an intention to buy a fixed subset of items. Given prices on the items, each buyer buys his subset of items, at the given prices, provided the total price of the subset is at most his budget. The objective of the seller is to determine the prices such that her total profit is maximized.
1984-09-04
Mazda will be the fourth Japanese company to begin production in the U.S. after Honda Motor Co, Nissan Motor Co and Toyota Motor Corp. [Text] [0W060315 Tokyo KYODO in English 0257 GMT 6 Aug 84] CSO: 4100/236 END 74 ...II. Total amount, ratio increase 1. Total amount The 1984 defense budget increased to 293,460,000,000 yen, compared to 275,420,000,000 yen. In...agencies is below 0 percent. In spite of the severe financial situation, the ratio increase of the defense budget was 6.55 percent compared to the
Marston, Luke; Kelly, Gerard C; Hale, Erick; Clements, Archie C A; Hodge, Andrew; Jimenez-Soto, Eliana
2014-08-18
The goal of malaria elimination faces numerous challenges. New tools are required to support the scale up of interventions and improve national malaria programme capacity to conduct detailed surveillance. This study investigates the cost factors influencing the development and implementation of a spatial decision support system (SDSS) for malaria elimination in the two elimination provinces of Isabel and Temotu, Solomon Islands. Financial and economic costs to develop and implement a SDSS were estimated using the Solomon Islands programme's financial records. Using an ingredients approach, verified by stakeholders and operational reports, total costs for each province were quantified. A budget impact sensitivity analysis was conducted to investigate the influence of variations in standard budgetary components on the costs and to identify potential cost savings. A total investment of US$ 96,046 (2012 constant dollars) was required to develop and implement the SDSS in two provinces (Temotu Province US$ 49,806 and Isabel Province US$ 46,240). The single largest expense category was for computerized equipment totalling approximately US$ 30,085. Geographical reconnaissance was the most expensive phase of development and implementation, accounting for approximately 62% of total costs. Sensitivity analysis identified different cost factors between the provinces. Reduced equipment costs would deliver a budget saving of approximately 10% in Isabel Province. Combined travel costs represented the greatest influence on the total budget in the more remote Temotu Province. This study provides the first cost analysis of an operational surveillance tool used specifically for malaria elimination in the South-West Pacific. It is demonstrated that the costs of such a decision support system are driven by specialized equipment and travel expenses. Such factors should be closely scrutinized in future programme budgets to ensure maximum efficiencies are gained and available resources are allocated effectively.
A blinded determination of H0 from low-redshift Type Ia supernovae, calibrated by Cepheid variables
NASA Astrophysics Data System (ADS)
Zhang, Bonnie R.; Childress, Michael J.; Davis, Tamara M.; Karpenka, Natallia V.; Lidman, Chris; Schmidt, Brian P.; Smith, Mathew
2017-10-01
Presently, a >3σ tension exists between values of the Hubble constant H0 derived from analysis of fluctuations in the cosmic microwave background by Planck, and local measurements of the expansion using calibrators of Type Ia supernovae (SNe Ia). We perform a blinded re-analysis of Riess et al. (2011) to measure H0 from low-redshift SNe Ia, calibrated by Cepheid variables and geometric distances including to NGC 4258. This paper is a demonstration of techniques to be applied to the Riess et al. (2016) data. Our end-to-end analysis starts from available Harvard -Smithsonian Center for Astrophysics (CfA3) and Lick Observatory Supernova Search (LOSS) photometries, providing an independent validation of Riess et al. (2011). We obscure the value of H0 throughout our analysis and the first stage of the referee process, because calibration of SNe Ia requires a series of often subtle choices, and the potential for results to be affected by human bias is significant. Our analysis departs from that of Riess et al. (2011) by incorporating the covariance matrix method adopted in Supernova Legacy Survey and Joint Lightcurve Analysis to quantify SN Ia systematics, and by including a simultaneous fit of all SN Ia and Cepheid data. We find H_0 = 72.5 ± 3.1 ({stat}) ± 0.77 ({sys}) km s-1 Mpc-1with a three-galaxy (NGC 4258+LMC+MW) anchor. The relative uncertainties are 4.3 per cent statistical, 1.1 per cent systematic, and 4.4 per cent total, larger than in Riess et al. (2011) (3.3 per cent total) and the Efstathiou (2014) re-analysis (3.4 per cent total). Our error budget for H0 is dominated by statistical errors due to the small size of the SN sample, whilst the systematic contribution is dominated by variation in the Cepheid fits, and for the SNe Ia, uncertainties in the host galaxy mass dependence and Malmquist bias.
Error-Resilient Unequal Error Protection of Fine Granularity Scalable Video Bitstreams
NASA Astrophysics Data System (ADS)
Cai, Hua; Zeng, Bing; Shen, Guobin; Xiong, Zixiang; Li, Shipeng
2006-12-01
This paper deals with the optimal packet loss protection issue for streaming the fine granularity scalable (FGS) video bitstreams over IP networks. Unlike many other existing protection schemes, we develop an error-resilient unequal error protection (ER-UEP) method that adds redundant information optimally for loss protection and, at the same time, cancels completely the dependency among bitstream after loss recovery. In our ER-UEP method, the FGS enhancement-layer bitstream is first packetized into a group of independent and scalable data packets. Parity packets, which are also scalable, are then generated. Unequal protection is finally achieved by properly shaping the data packets and the parity packets. We present an algorithm that can optimally allocate the rate budget between data packets and parity packets, together with several simplified versions that have lower complexity. Compared with conventional UEP schemes that suffer from bit contamination (caused by the bit dependency within a bitstream), our method guarantees successful decoding of all received bits, thus leading to strong error-resilience (at any fixed channel bandwidth) and high robustness (under varying and/or unclean channel conditions).
NASA Astrophysics Data System (ADS)
Lea, D. M.; Legleiter, C. J.
2014-12-01
Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing. This study used remotely sensed data and field measurements to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8 km reach. Aerial photographs from 1994-2012 and cross-section surveys were used to assess lateral channel mobility and develop a morphologic sediment budget for quantifying net sediment flux for a series of budget cells. A drainage area-to-discharge relationship and digital elevation model (DEM) developed from LiDAR data were used to obtain the discharge and slope values, respectively, needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of channel mobility and sediment transfer. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volume of sediment eroded or deposited during each time increment. Our results indicated a lack of strong correlation between stream power gradients and sediment flux, which we attributed to the geomorphic complexity of the Soda Butte Creek watershed and the inability of our relatively simple statistical approach to link sediment dynamics expressed at a sub-budget cell scale to larger-scale driving forces such as stream power gradients. Future studies should compare the moderate spatial resolution techniques used in this study to very-high resolution data acquired from new fluvial remote sensing technologies to better understand the amount of error associated with stream power, sediment transport, and channel change calculated from historical datasets.
Advanced NASA Earth Science Mission Concept for Vegetation 3D Structure, Biomass and Disturbance
NASA Technical Reports Server (NTRS)
Ranson, K. Jon
2007-01-01
Carbon in forest canopies represents about 85% of the total carbon in the Earth's aboveground biomass (Olson et al., 1983). A major source of uncertainty in global carbon budgets derives from large errors in the current estimates of these carbon stocks (IPCC, 2001). The magnitudes and distributions of terrestrial carbon storage along with changes in sources and sinks for atmospheric C02 due to land use change remain the most significant uncertainties in Earth's carbon budget. These uncertainties severely limit accurate terrestrial carbon accounting; our ability to evaluate terrestrial carbon management schemes; and the veracity of atmospheric C02 projections in response to further fossil fuel combustion and other human activities. Measurements of vegetation three-dimensional (3D) structural characteristics over the Earth's land surface are needed to estimate biomass and carbon stocks and to quantify biomass recovery following disturbance. These measurements include vegetation height, the vertical profile of canopy elements (i.e., leaves, stems, branches), andlor the volume scattering of canopy elements. They are critical for reducing uncertainties in the global carbon budget. Disturbance by natural phenomena, such as fire or wind, as well as by human activities, such as forest harvest, and subsequent recovery, complicate the quantification of carbon storage and release. The resulting spatial and temporal heterogeneity of terrestrial biomass and carbon in vegetation make it very difficult to estimate terrestrial carbon stocks and quantify their dynamics. Vegetation height profiles and disturbance recovery patterns are also required to assess ecosystem health and characterize habitat. The three-dimensional structure of vegetation provides habitats for many species and is a control on biodiversity. Canopy height and structure influence habitat use and specialization, two fundamental processes that modify species richness and abundance across ecosystems. Accurate and consistent 3D measurements of forest structure at the landscape scale are needed for assessing impacts to animal habitats and biodiversity following disturbance.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-23
...: Submission for the Office of Management and Budget (OMB) Review; Comment Request AGENCY: Nuclear Regulatory... the total number of hours needed annually to complete the requirement or request: 183.5. 10. Abstract... regulations and requirements, both technical and quality, in purchase documents. In order to ensure that...
75 FR 65511 - Employee Benefits Security Administration; Submission for OMB Review
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-25
... Management and Budget (OMB) for review and approval in accordance with the Paperwork Reduction Act of 1995... estimated total burden may be obtained from the RegInfo.gov Web site at http://www.reginfo.gov/public/do...--Employee Benefits Security Administration (EBSA), Office of Management and Budget, Room 10235, Washington...
Information about Student Enrollment, College Staff and the Budget.
ERIC Educational Resources Information Center
College of the Canyons, Santa Clarita, CA. Office of Institutional Development.
Consisting primarily of charts and tables, this report provides historical data on student enrollment, college staff, and the budget at California's College of the Canyons, focusing primarily on the period from 1991 to 1995. The first section provides tables on student enrollment, including total headcount; enrollment by full-/part-time status,…
Budget Pressures Churn Workforce
ERIC Educational Resources Information Center
Cavanagh, Sean
2011-01-01
When the budget-cutting ended this year in one rural North Texas school district, the people-moving began. Forced to chop its total staff to 55 employees from 64, the Perrin-Whitt Consolidated Independent school system went the route of many districts across the country: It made the majority of its reductions by encouraging early retirements and…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-01
... collection requirement described below has been submitted to the Office of Management and Budget (OMB) for... be sent to: HUD Desk Officer, Office of Management and Budget, New Executive Office Building... total cash compensation paid for with Section 8 and Section 9 funds. The new elements replace several...
13 CFR 130.450 - Matching funds.
Code of Federal Regulations, 2010 CFR
2010-01-01
... in the budget proposal. Cash sources shall be identified by name and account. All applicants must... agreement. The account containing such cash must be under the direct management of the SBDC Director, or, if... received by the SBDC during the budget period, as long as the total Cash Match provided by the SBDC is 50...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-09
... sport fish and wildlife management and restoration, including: Improvement of fish and wildlife habitats... and 91400-9782-Survey-7B] Information Collection Sent to the Office of Management and Budget (OMB) for... of Activity household participant Completion time per Total burden responses responses response hours...
U.S. Government Security Response to Attacks on its Diplomatic Missions, 1979-2012: How Effective?
2013-06-14
Wars: The Secret History of the CIA, Afghanistan, and Bin Laden, from the Soviet 14 Invasion to September 10, 2001 contained relevant information...with the totals from the other fiscal year budgets, to show the department’s budget authority from 1979 through 2012. History of the Bureau of
NASA Astrophysics Data System (ADS)
Gillaspy, J. D.; Chantler, C. T.; Paterson, D.; Hudson, L. T.; Serpa, F. G.; Takács, E.
2010-04-01
The first measurement of hydrogen-like vanadium x-ray Lyman alpha transitions has been made. The measurement was made on an absolute scale, fully independent of atomic structure calculations. Sufficient signal was obtained to reduce the statistical uncertainty to a small fraction of the total uncertainty budget. Potential sources of systematic error due to Doppler shifts were eliminated by performing the measurement on trapped ions. The energies for Ly α1 (1s-2p3/2) and Ly α2 (1s-2p1/2) are found to be 5443.95(25) eV and 5431.10(25) eV, respectively. These results are within approximately 1.5 σ (experimental) of the theoretical values 5443.63 eV and 5430.70 eV. The results are discussed in terms of their relation to the Lamb shift and the development of an x-ray wavelength standard based on a compact source of trapped highly charged ions.
Using evidence to strengthen accountability for health financing in Sierra Leone.
Lebbie, Sowo A; Le Voir, Rosanna; Tom-Kargbo, Joanna; Yilla, Mohamed Drissa; Kamara, Abu Bakarr; Nam, Sara L
2016-12-01
In 2012, the government of Sierra Leone cut the national budget allocation to the health sector. Civil society organizations planned a nationwide health budget advocacy campaign, coinciding with the 2012 general elections, to hold future leaders to account on financing for women's and children's health. As part of the campaign, Evidence for Action produced district health budget tracking scorecards. The scorecards presented Ministry of Finance data on the allocation and disbursement of health funds in each district. The data were communicated using simple, non-technical language so that citizens could understand the key messages and take action. A total of 5600 scorecards were shared at district electoral forums attended by political candidates, community members, and health activists. Since the election, the proportion of the total government budget allocated to health increased from 7.4% in 2012 to 11.2% in 2014. However, transforming politicians' commitments and pledges into implementation has been challenging, confirming that accountability is a long-term process. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.
Energy budget for yearling lake trout, Salvelinus namaycush
Rottiers, Donald V.
1993-01-01
Components of the energy budget of yearling lake trout (Salvelinus namaycush) were derived from data gathered in laboratory growth and metabolism studies; values for energy lost as waste were estimated with previously published equations. Because the total caloric value of food consumed by experimental lake trout was significantly different during the two years in which the studies were done, separate annual energy budgets were formulated. The gross conversion efficiency in yearling lake trout fed ad libitum rations of alewives at 10A?C was 26.6% to 41%. The distribution of energy with temperature was similar for each component of the energy budget. Highest conversion efficiencies were observed in fish fed less than ad libitum rations; fish fed an amount of food equivalent to about 4% of their body weight at 10A?C had a conversion efficiency of 33% to 45.1%. Physiologically useful energy was 76.1-80.1% of the total energy consumed. Estimated growth for age-I and -II lake fish was near that observed for laboratory fish held at lake temperatures and fed reduced rations.
Author Correction: Emission budgets and pathways consistent with limiting warming to 1.5 °C
NASA Astrophysics Data System (ADS)
Millar, Richard J.; Fuglestvedt, Jan S.; Friedlingstein, Pierre; Rogelj, Joeri; Grubb, Michael J.; Matthews, H. Damon; Skeie, Ragnhild B.; Forster, Piers M.; Frame, David J.; Allen, Myles R.
2018-06-01
In the version of this Article originally published, a coding error resulted in the erroneous inclusion of a subset of RCP4.5 and RCP8.5 simulations in the sets used for RCP2.6 and RCP6, respectively, leading to an incorrect depiction of the data of the latter two sets in Fig. 1b and RCP2.6 in Table 2. This coding error has now been corrected. The graphic and quantitative changes in the corrected Fig. 1b and Table 2 are contrasted with the originally published display items below. The core conclusions of the paper are not affected, but some numerical values and statements have also been updated as a result; these are listed below. All these errors have now been corrected in the online versions of this Article.
ANNUAL WATER BUDGETS FOR A FORESTED SINKHOLE WETLAND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Dr. Andrew Jason; Neary, Vincent S
2012-01-01
Annual water budgets spanning two years, 2004 and 2005, are constructed for a sinkhole wetland in the Tennessee Highland Rim following conversion of 13 % of its watershed to impervious surfaces. The effect of watershed development on the hydrology of the study wetland was significant. Surface runoff was the dominant input, with a contribution of 61.4 % of the total. An average of 18.9 % of gross precipitation was intercepted by the canopy and evaporated. Seepage from the surface water body to the local groundwater system accounted for 83.1 % of the total outflow. Deep recharge varied from 43.2 %more » (2004) to 12.1 % (2005) of total outflow. Overall, evapotranspiration accounted for 72.4 % of the total losses, with an average of 65.7 % lost from soil profile storage. The annual water budgets indicate that deep recharge is a significant hydrologic function performed by isolated sinkhole wetlands, or karst pans, on the Tennessee Highland Rim. Continued hydrologic monitoring of sinkhole wetlands are needed to evaluate hydrologic function and response to anthropogenic impacts. The regression technique developed to estimate surface runoff entering the wetland is shown to provide reasonable annual runoff estimates, but further testing is needed.« less
Lievens, Y; Van den Bogaert, W; Rijnders, A; Kutcher, G; Kesteloot, K
2000-09-01
To analyze the reimbursement modalities for radiotherapy in the different Western European countries, as well as to investigate if these differences have an impact on the palliative radiotherapy practice for bone metastases. A questionnaire was sent to 565 radiotherapy centres included in the 1997 ESTRO directory. In this questionnaire the reimbursement strategy applied in the different centres was assessed, with respect to the use of a budget (departmental or hospital budget), case payment and/or fee-for-service reimbursement. The differences were analyzed according to country and to type and size of the radiotherapy centre. A total of 170 centres (86% of the responders) returned the questionnaire. Most frequent is budget reimbursement: some form of budget reimbursement is found in 69% of the centres, whereas 46% of the centres are partly reimbursed through fee-for-service and 35% through case payment. The larger the department, the more frequent the reimbursement through a budget or a case payment system and the less the importance of fee-for-service reimbursement (chi(2): P=0.0012; logit: P=0.0055). Whereas private centres are almost equally reimbursed by fee-for-service financing as by budget or case payment, radiotherapy departments in university hospitals receive the largest part of their financial resources through a budget or by case payment (83%) (chi(2): P=0.002; logit: P=0.0073). A correlation between the country and the radiotherapy reimbursement system was also demonstrated (P=0.002), radiotherapy centres in Spain, the Netherlands and the United Kingdom being almost entirely reimbursed through a budget and/or case payment and centres in Germany and Switzerland mostly through a fee-for-service system. In budget and case payment financing lower total number of fractions and lower total dose (chi(2): P=0.003; logit: P=0.0120) as well as less shielding blocks (chi(2): P=0.003; logit: P=0.0066) are used. A same tendency is found for the use of isodose calculations and field set-up, but without being statistically significant (P=0.264 and P=0.061 res.). The type of the centre and the reimbursement modality influence the fractionation regimen independently (P=0.0274). This is not the case for the centre size and the reimbursement, which were found to exert correlated effects on the fractionation schedule (P=0.1042). Reimbursement systems seem to influence radiotherapy practice. One should therefore aim to develop reimbursement criteria that pursue to deliver, not only the best qualitative, but also the most cost-effective treatments to the patients.
Direct Aerosol Forcing Uncertainty
Mccomiskey, Allison
2008-01-15
Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.
Holistic approach for overlay and edge placement error to meet the 5nm technology node requirements
NASA Astrophysics Data System (ADS)
Mulkens, Jan; Slachter, Bram; Kubis, Michael; Tel, Wim; Hinnen, Paul; Maslow, Mark; Dillen, Harm; Ma, Eric; Chou, Kevin; Liu, Xuedong; Ren, Weiming; Hu, Xuerang; Wang, Fei; Liu, Kevin
2018-03-01
In this paper, we discuss the metrology methods and error budget that describe the edge placement error (EPE). EPE quantifies the pattern fidelity of a device structure made in a multi-patterning scheme. Here the pattern is the result of a sequence of lithography and etching steps, and consequently the contour of the final pattern contains error sources of the different process steps. EPE is computed by combining optical and ebeam metrology data. We show that high NA optical scatterometer can be used to densely measure in device CD and overlay errors. Large field e-beam system enables massive CD metrology which is used to characterize the local CD error. Local CD distribution needs to be characterized beyond 6 sigma, and requires high throughput e-beam system. We present in this paper the first images of a multi-beam e-beam inspection system. We discuss our holistic patterning optimization approach to understand and minimize the EPE of the final pattern. As a use case, we evaluated a 5-nm logic patterning process based on Self-Aligned-QuadruplePatterning (SAQP) using ArF lithography, combined with line cut exposures using EUV lithography.
A summary of research on mesoscale energetics of severe storm environments
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.
1985-01-01
The goals of this research were to better understand interactions between areas of intense convection and their surrounding mesoscale environments by using diagnostic budgets of kinetic (KE) and available potential energy (APE). Three cases of intense convection were examined in detail. 1) Atmospheric Variability Experiments (AVE) carried out on 24 to 25 April 1975 were studied. Synoptic scale data at 3 to 6 hour intervals, contained two mesoscale convective complexes (MCCs). Analyses included total KE budgets and budgets of divergent and rotational components of KE. 2) AVE-Severe Environmental Storms and Mesoscale Experiments (SESAME)-4 carried out on 10 to 11 April 1979 were studied. Synotpic and meso alpha-scale data (250 km spacing, 3 hour intervals), contained the Red River Valley tornado outbreak. Analyses included total KE budgets (separate synoptic and mesoscale version), budgets for the divergent and rotational components, and the generation of APE by diabatic processes. 3) AVE-SESAME 5 studies were carried out on 20 to 31 May 1979. Synoptic and meso beta-scale data (75 km spacing, 1 1/2 to 3 hour intervals), contained a small MCC. Analyses include separate KE budgets for the synotic and meso beta-scales and a water vapor budget. Major findings of these investigations are: (1) The synoptic scale storm environment contains energy conversions and transports that are comparable to those of mature midlatitude cyclones. (2) Energetic in the mesoscale storm environment are often an order of magnitude larger than those in an undisturbed region. (3) Mesoscale wind maxima form in the upper troposphere on the poleward sides of convective areas, whereas speeds decrease south of storm regions.
NASA Technical Reports Server (NTRS)
Stoll, John C.
1995-01-01
The performance of an unaided attitude determination system based on GPS interferometry is examined using linear covariance analysis. The modelled system includes four GPS antennae onboard a gravity gradient stabilized spacecraft, specifically the Air Force's RADCAL satellite. The principal error sources are identified and modelled. The optimal system's sensitivities to these error sources are examined through an error budget and by varying system parameters. The effects of two satellite selection algorithms, Geometric and Attitude Dilution of Precision (GDOP and ADOP, respectively) are examined. The attitude performance of two optimal-suboptimal filters is also presented. Based on this analysis, the limiting factors in attitude accuracy are the knowledge of the relative antenna locations, the electrical path lengths from the antennae to the receiver, and the multipath environment. The performance of the system is found to be fairly insensitive to torque errors, orbital inclination, and the two satellite geometry figures-of-merit tested.
Systematic Biases in Parameter Estimation of Binary Black-Hole Mergers
NASA Technical Reports Server (NTRS)
Littenberg, Tyson B.; Baker, John G.; Buonanno, Alessandra; Kelly, Bernard J.
2012-01-01
Parameter estimation of binary-black-hole merger events in gravitational-wave data relies on matched filtering techniques, which, in turn, depend on accurate model waveforms. Here we characterize the systematic biases introduced in measuring astrophysical parameters of binary black holes by applying the currently most accurate effective-one-body templates to simulated data containing non-spinning numerical-relativity waveforms. For advanced ground-based detectors, we find that the systematic biases are well within the statistical error for realistic signal-to-noise ratios (SNR). These biases grow to be comparable to the statistical errors at high signal-to-noise ratios for ground-based instruments (SNR approximately 50) but never dominate the error budget. At the much larger signal-to-noise ratios expected for space-based detectors, these biases will become large compared to the statistical errors but are small enough (at most a few percent in the black-hole masses) that we expect they should not affect broad astrophysical conclusions that may be drawn from the data.
NASA Astrophysics Data System (ADS)
Kirstetter, P.; Hong, Y.; Gourley, J. J.; Chen, S.; Flamig, Z.; Zhang, J.; Howard, K.; Petersen, W. A.
2011-12-01
Proper characterization of the error structure of TRMM Precipitation Radar (PR) quantitative precipitation estimation (QPE) is needed for their use in TRMM combined products, water budget studies and hydrological modeling applications. Due to the variety of sources of error in spaceborne radar QPE (attenuation of the radar signal, influence of land surface, impact of off-nadir viewing angle, etc.) and the impact of correction algorithms, the problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements (GV) using NOAA/NSSL's National Mosaic QPE (NMQ) system. An investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) on the basis of a 3-month-long data sample. A significant effort has been carried out to derive a bias-corrected, robust reference rainfall source from NMQ. The GV processing details will be presented along with preliminary results of PR's error characteristics using contingency table statistics, probability distribution comparisons, scatter plots, semi-variograms, and systematic biases and random errors.
Teimouri, Fatemeh; Kebriaeezadeh, Abbas; Zahraei, Seyed Mohsen; Gheiratian, MohammadMahdi; Nikfar, Shekoufeh
2017-01-14
Health decision makers need to know the impact of the development of a new intervention on the public health and health care costs so that they can plan for economic and financial objectives. The aim of this study was to determine the budget impact of adding Haemophilus influenzae type b (Hib) as a part of a Pentavalent vaccine (Hib-HBV-DTP) to the national childhood immunization schedule of Iran. An excel-based model was developed to determine the costs of including the Pentavalent vaccine in the national immunization program (NIP), comparing the present schedule with the previous one (including separate DTP and hepatitis B vaccines). The total annual costs included the cost of vaccination (the vaccine and syringe) and the cost of Hib treatment. The health outcome was the estimated annual cases of the diseases. The net budget impact was the difference in the total annual cost between the two schedules. Uncertainty about the vaccine effectiveness, vaccination coverage, cost of the vaccine, and cost of the diseases were handled through scenario analysis. The total cost of vaccination during 5 years was $18,060,463 in the previous program and $67,774,786 in the present program. Inclusion of the Pentavalent vaccine would increase the vaccination cost about $49 million, but would save approximately $6 million in the healthcare costs due to reduction of disease cases and treatment costs. The introduction of the Pentavalent vaccine resulted in a net increase in the healthcare budget expenditure across all scenarios from $43.4 million to $50.7 million. The results of this study showed that the inclusion of the Pentavalent vaccine in the NIP of Iran had a significant impact on the health care budget and increased the financial burden on the government. Budget impact of including Pentavalent vaccine in the national immunization schedule of Iranᅟ.
NASA Astrophysics Data System (ADS)
Schlegel, N.; Larour, E. Y.; Gardner, A. S.; Lang, C.; Miller, C. E.; van den Broeke, M. R.
2016-12-01
How Greenland ice flow may respond to future increases in surface runoff and to increases in the frequency of extreme melt events is unclear, as it requires detailed comprehension of Greenland surface climate and the ice sheet's sensitivity to associated uncertainties. With established uncertainty quantification tools run within the framework of Ice Sheet System Model (ISSM), we conduct decadal-scale forward modeling experiments to 1) quantify the spatial resolution needed to effectively force distinct components of the surface radiation budget, and subsequently surface mass balance (SMB), in various regions of the ice sheet and 2) determine the dynamic response of Greenland ice flow to variations in components of the net radiation budget. The Glacier Energy and Mass Balance (GEMB) software is a column surface model (1-D) that has recently been embedded as a module within ISSM. Using the ISSM-GEMB framework, we perform sensitivity analyses to determine how perturbations in various components of the surface radiation budget affect model output; these model experiments allow us predict where and on what spatial scale the ice sheet is likely to dynamically respond to changes in these parameters. Preliminary results suggest that SMB should be forced at at least a resolution of 23 km to properly capture dynamic ice response. In addition, Monte-Carlo style sampling analyses reveals that the areas with the largest uncertainty in mass flux are located near the equilibrium line altitude (ELA), upstream of major outlet glaciers in the North and West of the ice sheet. Sensitivity analysis indicates that these areas are also the most vulnerable on the ice sheet to persistent, far-field shifts in SMB, suggesting that continued warming, and upstream shift in the ELA, are likely to result in increased velocities, and consequentially SMB-induced thinning upstream of major outlet glaciers. Here, we extend our investigation to consider various components of the surface radiation budget separately, in order to determine how and where errors in these fields may independently impact ice flow. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere and Interdisciplinary Research in Earth Science Programs.
Global Patterns of Legacy Nitrate Storage in the Vadose Zone
NASA Astrophysics Data System (ADS)
Ascott, M.; Gooddy, D.; Wang, L.; Stuart, M.; Lewis, M.; Ward, R.; Binley, A. M.
2017-12-01
Global-scale nitrogen (N) budgets have been developed to quantify the impact of man's influence on the nitrogen cycle. However, these budgets often do not consider legacy effects such as accumulation of nitrate in the deep vadose zone. In this presentation we show that the vadose zone is an important store of nitrate which should be considered in future nitrogen budgets for effective policymaking. Using estimates of depth to groundwater and nitrate leaching for 1900-2000, we quantify for the first time the peak global storage of nitrate in the vadose zone, estimated as 605 - 1814 Teragrams (Tg). Estimates of nitrate storage are validated using previous national and basin scale estimates of N storage and observed groundwater nitrate data for North America and Europe. Nitrate accumulation per unit area is greatest in North America, China and Central and Eastern Europe where thick vadose zones are present and there is an extensive history of agriculture. In these areas the long solute travel time in the vadose zone means that the anticipated impact of changes in agricultural practices on groundwater quality may be substantially delayed. We argue that in these areas use of conventional nitrogen budget approaches is inappropriate and their continued use will lead to significant errors.
Budget boosts overall research but cuts NOAA and USGS funds
NASA Astrophysics Data System (ADS)
Richman, Barbara T.
Science in general, and physical sciences in particular, show growth far above projected inflation in President Ronald Reagan's fiscal 1984 budget proposal. Total funding requested for all federal research and development, including facilities, is $47 billion, up 17.2% over fiscal 1983, jumping hurdles over the 5% projected inflation rate. Defense R&D is slated to soar 29% to $30.3 billion, while non-defense R&D would rise 0.4% to $16.7 billion. Table 1 shows the proposed research and development budgets by major departments and agencies.
Framing Climate Goals in Terms of Cumulative CO2-Forcing-Equivalent Emissions
NASA Astrophysics Data System (ADS)
Jenkins, S.; Millar, R. J.; Leach, N.; Allen, M. R.
2018-03-01
The relationship between cumulative CO2 emissions and CO2-induced warming is determined by the Transient Climate Response to Emissions (TCRE), but total anthropogenic warming also depends on non-CO2 forcing, complicating the interpretation of emissions budgets based on CO2 alone. An alternative is to frame emissions budgets in terms of CO2-forcing-equivalent (CO2-fe) emissions—the CO2 emissions that would yield a given total anthropogenic radiative forcing pathway. Unlike conventional "CO2-equivalent" emissions, these are directly related to warming by the TCRE and need to fall to zero to stabilize warming: hence, CO2-fe emissions generalize the concept of a cumulative carbon budget to multigas scenarios. Cumulative CO2-fe emissions from 1870 to 2015 inclusive are found to be 2,900 ± 600 GtCO2-fe, increasing at a rate of 67 ± 9.5 GtCO2-fe/yr. A TCRE range of 0.8-2.5°C per 1,000 GtC implies a total budget for 0.6°C of additional warming above the present decade of 880-2,750 GtCO2-fe, with 1,290 GtCO2-fe implied by the Coupled Model Intercomparison Project Phase 5 median response, corresponding to 19 years' CO2-fe emissions at the current rate.
Source Partitioning of Methane Emissions and its Seasonality in the U.S. Midwest
NASA Astrophysics Data System (ADS)
Chen, Zichong; Griffis, Timothy J.; Baker, John M.; Millet, Dylan B.; Wood, Jeffrey D.; Dlugokencky, Edward J.; Andrews, Arlyn E.; Sweeney, Colm; Hu, Cheng; Kolka, Randall K.
2018-02-01
The methane (CH4) budget and its source partitioning are poorly constrained in the Midwestern United States. We used tall tower (185 m) aerodynamic flux measurements and atmospheric scale factor Bayesian inversions to constrain the monthly budget and to partition the total budget into natural (e.g., wetlands) and anthropogenic (e.g., livestock, waste, and natural gas) sources for the period June 2016 to September 2017. Aerodynamic flux observations indicated that the landscape was a CH4 source with a mean annual CH4 flux of +13.7 ± 0.34 nmol m-2 s-1 and was rarely a net sink. The scale factor Bayesian inversion analyses revealed a mean annual source of +12.3 ± 2.1 nmol m-2 s-1. Flux partitioning revealed that the anthropogenic source (7.8 ± 1.6 Tg CH4 yr-1) was 1.5 times greater than the bottom-up gridded United States Environmental Protection Agency inventory, in which livestock and oil/gas sources were underestimated by 1.8-fold and 1.3-fold, respectively. Wetland emissions (4.0 ± 1.2 Tg CH4 yr-1) were the second largest source, accounting for 34% of the total budget. The temporal variability of total CH4 emissions was dominated by wetlands with peak emissions occurring in August. In contrast, emissions from oil/gas and other anthropogenic sources showed relatively weak seasonality.
Iskrov, G; Jessop, E; Miteva-Katrandzhieva, T; Stefanov, R
2015-05-01
This study aimed to estimate the impact of rare disease (RD) drugs on Bulgaria's National Health Insurance Fund's (NHIF) total drug budget for 2011-2014. While standard budget impact analysis is usually used in a prospective way, assessing the impact of new health technologies on the health system's sustainability, we adopted a retrospective approach instead. Budget impact was quantified from a NHIF perspective. Descriptive statistics was used to analyse cost details, while dynamics was studied, using chain-linked growth rates (every period preceding the accounting period serves as a base). NHIF costs for RD therapies were expected to increase up to 74.5 million BGN in 2014 (7.8% of NHIF's total pharmaceutical expenditure). Greatest increase in cost per patient and number of patients treated was observed in conditions, for which there were newly approved for funding therapies. While simple cost drivers are well known - number of patients treated and mean cost per patient - in real-world settings these two factors are likely to depend on the availability and accessibility of effective innovative therapies. As RD were historically underdiagnosed, undertreated and underfunded in Bulgaria, improved access to RD drugs will inevitably lead to increasing budget burden for payers. Based on the evidence from this study, we propose a theoretical framework of a budget impact study for RD. First, a retrospective analysis could provide essential health policy insights in terms of impact on accessibility and population health, which are significant benchmarks in shaping funding decisions in healthcare. We suggest an interaction between the classical prospective BIA with the retrospective analysis in order to optimise health policy decision-making. Second, we recommend budget impact studies to focus on RD rather than orphan drugs (OD). In policy context, RD are the public health priority. OD are just one of the tools to address the complex issues of RD. Moreover, OD is a dynamic characteristic and compromises the consistency and comparability of the calculated budget indicators.
View-Dependent Simplification of Arbitrary Polygonal Environments
2006-01-01
of backfacing nodes are not rendered [ Kumar 96]. 4.3 Triangle-Budget Simplification The screenspace error threshold and silhouette test allow the user...Greg Turk, and Dinesh Manocha for their invaluable guidance and support throughout this project. Funding for this work was provided by DARPA...Proceedings Visualization 95 , IEEE Computer Society Press (Atlanta, GA), 1995, pp. 296-303. [ Kumar 96] Kumar , Subodh, D. Manocha, W. Garrett, M. Lin
LORAN-C LATITUDE-LONGITUDE CONVERSION AT SEA: PROGRAMMING CONSIDERATIONS.
McCullough, James R.; Irwin, Barry J.; Bowles, Robert M.
1985-01-01
Comparisons are made of the precision of arc-length routines as computer precision is reduced. Overland propagation delays are discussed and illustrated with observations from offshore New England. Present practice of LORAN-C error budget modeling is then reviewed with the suggestion that additional terms be considered in future modeling. Finally, some detailed numeric examples are provided to help with new computer program checkout.
Social Security Fraud and Error Prevention Act of 2014
Rep. Becerra, Xavier [D-CA-34
2014-02-26
House - 02/26/2014 Referred to the Committee on Ways and Means, and in addition to the Committee on the Budget, for a period to be subsequently determined by the Speaker, in each case for consideration of such provisions as fall within the jurisdiction of the committee concerned. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-05
... Management and Budget (``OMB'') to project aggregate offering price for purposes of the fiscal year 2010... methodology it developed in consultation with the CBO and OMB to project dollar volume for purposes of prior... AAMOP is given by exp(FLAAMOP t + [sigma] n \\2\\/2), where [sigma] n denotes the standard error of the n...
Skylab water balance error analysis
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1977-01-01
Estimates of the precision of the net water balance were obtained for the entire Skylab preflight and inflight phases as well as for the first two weeks of flight. Quantitative estimates of both total sampling errors and instrumentation errors were obtained. It was shown that measurement error is minimal in comparison to biological variability and little can be gained from improvement in analytical accuracy. In addition, a propagation of error analysis demonstrated that total water balance error could be accounted for almost entirely by the errors associated with body mass changes. Errors due to interaction between terms in the water balance equation (covariances) represented less than 10% of the total error. Overall, the analysis provides evidence that daily measurements of body water changes obtained from the indirect balance technique are reasonable, precise, and relaible. The method is not biased toward net retention or loss.
NASA Astrophysics Data System (ADS)
Krinitskiy, Mikhail; Sinitsyn, Alexey
2017-04-01
Shortwave radiation is an important component of surface heat budget over sea and land. To estimate them accurate observations of cloud conditions are needed including total cloud cover, spatial and temporal cloud structure. While massively observed visually, for building accurate SW radiation parameterizations cloud structure needs also to be quantified using precise instrumental measurements. While there already exist several state of the art land-based cloud-cameras that satisfy researchers needs, their major disadvantages are associated with inaccuracy of all-sky images processing algorithms which typically result in the uncertainties of 2-4 octa of cloud cover estimates with the resulting true-scoring cloud cover accuracy of about 7%. Moreover, none of these algorithms determine cloud types. We developed an approach for cloud cover and structure estimating, which provides much more accurate estimates and also allows for measuring additional characteristics. This method is based on the synthetic controlling index, namely the "grayness rate index", that we introduced in 2014. Since then this index has already demonstrated high efficiency being used along with the technique namely the "background sunburn effect suppression", to detect thin clouds. This made it possible to significantly increase the accuracy of total cloud cover estimation in various sky image states using this extension of routine algorithm type. Errors for the cloud cover estimates significantly decreased down resulting the mean squared error of about 1.5 octa. Resulting true-scoring accuracy is more than 38%. The main source of this approach uncertainties is the solar disk state determination errors. While the deep neural networks approach lets us to estimate solar disk state with 94% accuracy, the final result of total cloud estimation still isn`t satisfying. To solve this problem completely we applied the set of machine learning algorithms to the problem of total cloud cover estimation directly. The accuracy of this approach varies depending on algorithm choice. Deep neural networks demonstrated the best accuracy of more than 96%. We will demonstrate some approaches and the most influential statistical features of all-sky images that lets the algorithm reach that high accuracy. With the use of our new optical package a set of over 480`000 samples has been collected in several sea missions in 2014-2016 along with concurrent standard human observed and instrumentally recorded meteorological parameters. We will demonstrate the results of the field measurements and will discuss some still remaining problems and the potential of the further developments of machine learning approach.
Decentralization and health resource allocation: a case study at the district level in Indonesia.
Abdullah, Asnawi; Stoelwinder, Johannes
2008-01-01
Health resource allocation has been an issue of political debate in many health systems. However, the debate has tended to concentrate on vertical allocation from the national to regional level. Allocation within regions or institutions has been largely ignored. This study was conducted to contribute analysis to this gap. The objective was to investigate health resource allocation within District Health Offices (DHOs) and to compare the trends and patterns of several budget categories before and after decentralization. The study was conducted in three districts in the Province of Nanggroe Aceh Darussalam. Six fiscal year budgets, two before decentralization and four after, were studied. Data was collected from the Local Government Planning Office and DHOs. Results indicated that in the first year of implementing a decentralization policy, the local government budget rose sharply, particularly in the wealthiest district. In contrast, in relatively poor districts the budget was only boosted slightly. Increasing total local government budgets had a positive impact on increasing the health budget. The absolute amount of health budgets increased significantly, but by percentage did not change very much. Budgets for several projects and budget items increased significantly, but others, such as health promotion, monitoring and evaluation, and public-goods-related activities, decreased. This study concluded that decentralization in Indonesia had made a positive impact on district government fiscal capacity and had affected DHO budgets positively. However, an imbalanced budget allocation between projects and budget items was obvious, and this needs serious attention from policy makers. Otherwise, decentralization will not significantly improve the health system in Indonesia.
75 FR 54654 - Agency Information Collection Activities; Proposals, Submissions, and Approvals
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... request (ICR) to the Office of Management and Budget (OMB) for review and approval in accordance with the... frequency of response, and estimated total burden may be obtained from the RegInfo.gov Web site at http... Department of Labor--Wage and Hour Division, Office of Management and Budget, Room 10235, Washington, DC...
How Within-District Spending Inequities Help Some Schools to Fail
ERIC Educational Resources Information Center
Roza, Marguerite; Hill, Paul Thomas
2004-01-01
School district budgets typically hide as much as they reveal. Superintendents are finding this as they discover huge deficits that nobody saw coming. District budgets are opaque by design, and they often mask important facts about resource allocation within a district, as well as about total spending. This paper reports the results of an original…
E.A. Davidson; A.D. Richardson; K.E. Savage; D.Y. Hollinger
2006-01-01
Annual budgets and fitted temperature response curves for soil respiration and ecosystem respiration provide useful information for partitioning annual carbon budgets of ecosystems, but they may not adequately reveal seasonal variation in the ratios of these two fluxes. Soil respiration (Rs) typically contributes 30-80% of...
Catic, Tarik; Lekic, Lana; Zah, Vlad; Tabakovic, Vedad
2017-01-01
Introduction: Diabetes is reaching epidemiological scales worldwide. Beside health implications diabetes bears significant financial impact on health systems. Different treatment options aiming to prevent diabetes complications are available. Dipeptidyl-peptidase-IV (DPP-4) inhibitors like linagliptin are usually add-on therapy to metformin in order to achieve glycemic control. Expenditure for oral antidiabetic medicines in Bosnia and Herzegovina (B&H) is low accounting for only 2.53% of the total drug market expenditure. Linagliptin is not reimbursed in B&H mainly due to it’s perception of high cost medication. Aim: To assess budget impact (BI) of introducing linagliptin into health insurance reimbursement list in B&H through development of the budget impact model (BIM). Material and methods: Budget impact model was developed using Microsoft Excel 2010 based on current legislation and practice in B&H. Local epidemiology data and data on drug consumption from government reports in 2014 were used. Two scenarios with three-year time horizon have been developed: 1) without and 2) with linagliptin reimbursed and compared. Results: Inclusion of linagliptin into reimbursement list in Canton Sarajevo and Canton Tuzla would have positive budget impact on national level of B&H resulting in total savings of 18,194€, 235,570€ and 699,472€, in 2016, 2017 and 2018, respectively. Conclusion: Introduction of linagliptin into reimbursement list would decrease total costs for DPP-4 inhibitors and is favorable for positive decision on reimbursement in B&H. Applying BIM in decision making would assure better allocation and planning of resources at any region or administrative level in B&H. PMID:29109662
Hedelius, Jacob K.; Viatte, Camille; Wunch, Debra; ...
2016-08-03
Bruker™ EM27/SUN instruments are commercial mobile solar-viewing near-IR spectrometers. They show promise for expanding the global density of atmospheric column measurements of greenhouse gases and are being marketed for such applications. They have been shown to measure the same variations of atmospheric gases within a day as the high-resolution spectrometers of the Total Carbon Column Observing Network (TCCON). However, there is little known about the long-term precision and uncertainty budgets of EM27/SUN measurements. In this study, which includes a comparison of 186 measurement days spanning 11 months, we note that atmospheric variations of X gas within a single day aremore » well captured by these low-resolution instruments, but over several months, the measurements drift noticeably. We present comparisons between EM27/SUN instruments and the TCCON using GGG as the retrieval algorithm. In addition, we perform several tests to evaluate the robustness of the performance and determine the largest sources of errors from these spectrometers. We include comparisons of X CO2, X CH4, X CO, and X N2O. Specifically we note EM27/SUN biases for January 2015 of 0.03, 0.75, –0.12, and 2.43 % for X CO2, X CH4, X CO, and X N2O respectively, with 1 σ running precisions of 0.08 and 0.06 % for X CO2 and X CH4 from measurements in Pasadena. We also identify significant error caused by nonlinear sensitivity when using an extended spectral range detector used to measure CO and N 2O.« less
Calvo, Roque; D’Amato, Roberto; Gómez, Emilio; Domingo, Rosario
2016-01-01
The development of an error compensation model for coordinate measuring machines (CMMs) and its integration into feature measurement is presented. CMMs are widespread and dependable instruments in industry and laboratories for dimensional measurement. From the tip probe sensor to the machine display, there is a complex transformation of probed point coordinates through the geometrical feature model that makes the assessment of accuracy and uncertainty measurement results difficult. Therefore, error compensation is not standardized, conversely to other simpler instruments. Detailed coordinate error compensation models are generally based on CMM as a rigid-body and it requires a detailed mapping of the CMM’s behavior. In this paper a new model type of error compensation is proposed. It evaluates the error from the vectorial composition of length error by axis and its integration into the geometrical measurement model. The non-explained variability by the model is incorporated into the uncertainty budget. Model parameters are analyzed and linked to the geometrical errors and uncertainty of CMM response. Next, the outstanding measurement models of flatness, angle, and roundness are developed. The proposed models are useful for measurement improvement with easy integration into CMM signal processing, in particular in industrial environments where built-in solutions are sought. A battery of implementation tests are presented in Part II, where the experimental endorsement of the model is included. PMID:27690052
Global Surface Net-Radiation at 5 km from MODIS Terra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Manish; Fisher, Joshua; Mallick, Kaniska
Reliable and fine resolution estimates of surface net-radiation are required for estimating latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine resolution estimates of net-radiation are not available and consequently it is challenging to develop multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and are relevant for policy and decision-making. We developed and evaluated a global net-radiation product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra. Comparison with net-radiation measurements from 154 globally distributedmore » sites (414 site-years) from the FLUXNET and Surface Radiation budget network (SURFRAD) showed that the net-radiation product agreed well with measurements across seasons and climate types in the extratropics (Wilmott's index ranged from 0.74 for boreal to 0.63 for Mediterranean sites). Mean absolute deviation between the MODIS and measured net-radiation ranged from 38.0 ± 1.8 W.m -2 in boreal to 72.0 ± 4.1 W.m -2 in the tropical climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with the net-radiation estimates from the coarse spatial (1° x 1°) but high temporal resolution gridded net-radiation product from the Clouds and Earth's Radiant Energy System (CERES). Our estimates agreed closely with the net-radiation estimates from the CERES. Difference between the two was less than 10W.m -2 in 94% of the total land area. MODIS net-radiation product will be a valuable resource for the science community studying turbulent fluxes and energy budget at the Earth's surface.« less
Global Surface Net-Radiation at 5 km from MODIS Terra
Verma, Manish; Fisher, Joshua; Mallick, Kaniska; ...
2016-09-06
Reliable and fine resolution estimates of surface net-radiation are required for estimating latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine resolution estimates of net-radiation are not available and consequently it is challenging to develop multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and are relevant for policy and decision-making. We developed and evaluated a global net-radiation product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra. Comparison with net-radiation measurements from 154 globally distributedmore » sites (414 site-years) from the FLUXNET and Surface Radiation budget network (SURFRAD) showed that the net-radiation product agreed well with measurements across seasons and climate types in the extratropics (Wilmott's index ranged from 0.74 for boreal to 0.63 for Mediterranean sites). Mean absolute deviation between the MODIS and measured net-radiation ranged from 38.0 ± 1.8 W.m -2 in boreal to 72.0 ± 4.1 W.m -2 in the tropical climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with the net-radiation estimates from the coarse spatial (1° x 1°) but high temporal resolution gridded net-radiation product from the Clouds and Earth's Radiant Energy System (CERES). Our estimates agreed closely with the net-radiation estimates from the CERES. Difference between the two was less than 10W.m -2 in 94% of the total land area. MODIS net-radiation product will be a valuable resource for the science community studying turbulent fluxes and energy budget at the Earth's surface.« less
Lizarraga, Joy S.; Ockerman, Darwin J.
2010-01-01
The U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority, the Evergreen Underground Water Conservation District, and the Goliad County Groundwater Conservation District, configured, calibrated, and tested a watershed model for a study area consisting of about 2,150 square miles of the lower San Antonio River watershed in Bexar, Guadalupe, Wilson, Karnes, DeWitt, Goliad, Victoria, and Refugio Counties in south-central Texas. The model simulates streamflow, evapotranspiration (ET), and groundwater recharge using rainfall, potential ET, and upstream discharge data obtained from National Weather Service meteorological stations and USGS streamflow-gaging stations. Additional time-series inputs to the model include wastewater treatment-plant discharges, withdrawals for cropland irrigation, and estimated inflows from springs. Model simulations of streamflow, ET, and groundwater recharge were done for 2000-2007. Because of the complexity of the study area, the lower San Antonio River watershed was divided into four subwatersheds; separate HSPF models were developed for each subwatershed. Simulation of the overall study area involved running simulations of the three upstream models, then running the downstream model. The surficial geology was simplified as nine contiguous water-budget zones to meet model computational limitations and also to define zones for which ET, recharge, and other water-budget information would be output by the model. The model was calibrated and tested using streamflow data from 10 streamflow-gaging stations; additionally, simulated ET was compared with measured ET from a meteorological station west of the study area. The model calibration is considered very good; streamflow volumes were calibrated to within 10 percent of measured streamflow volumes. During 2000-2007, the estimated annual mean rainfall for the water-budget zones ranged from 33.7 to 38.5 inches per year; the estimated annual mean rainfall for the entire watershed was 34.3 inches. Using the HSPF model it was estimated that for 2000-2007, less than 10 percent of the annual mean rainfall on the study watershed exited the watershed as streamflow, whereas about 82 percent, or an average of 28.2 inches per year, exited the watershed as ET. Estimated annual mean groundwater recharge for the entire study area was 3.0 inches, or about 9 percent of annual mean rainfall. Estimated annual mean recharge was largest in water-budget zone 3, the zone where the Carrizo Sand outcrops. In water-budget zone 3, the estimated annual mean recharge was 5.1 inches or about 15 percent of annual mean rainfall. Estimated annual mean recharge was smallest in water-budget zone 6, about 1.1 inches or about 3 percent of annual mean rainfall. The Cibolo Creek subwatershed and the subwatershed of the San Antonio River upstream from Cibolo Creek had the largest and smallest basin yields, about 4.8 inches and 1.2 inches, respectively. Estimated annual ET and annual recharge generally increased with increasing annual rainfall. Also, ET was larger in zones 8 and 9, the most downstream zones in the watershed. Model limitations include possible errors related to model conceptualization and parameter variability, lack of data to quantify certain model inputs, and measurement errors. Uncertainty regarding the degree to which available rainfall data represent actual rainfall is potentially the most serious source of measurement error.
1983-01-01
revolving account. The FY 1984 AVCAL funding is required to top off fuel at the beginning of the fiscal year and also to replace fuel surveyed < due to...Surface Missile Systems 375 Total Funding 2,905 W _nLeJI.rJ1n no. Managemen NTP Develop/Review 10 ILS Develop/Review 9 Training curriculum Review 8...of its inventory per year. -99 11) CalisProgram - This cost decrease is due o a anaement decision to postpone the Culture and Gender Workshops for one
Terrestrial Water Mass Load Changes from Gravity Recovery and Climate Experiment (GRACE)
NASA Technical Reports Server (NTRS)
Seo, K.-W.; Wilson, C. R.; Famiglietti, J. S.; Chen, J. L.; Rodell M.
2006-01-01
Recent studies show that data from the Gravity Recovery and Climate Experiment (GRACE) is promising for basin- to global-scale water cycle research. This study provides varied assessments of errors associated with GRACE water storage estimates. Thirteen monthly GRACE gravity solutions from August 2002 to December 2004 are examined, along with synthesized GRACE gravity fields for the same period that incorporate simulated errors. The synthetic GRACE fields are calculated using numerical climate models and GRACE internal error estimates. We consider the influence of measurement noise, spatial leakage error, and atmospheric and ocean dealiasing (AOD) model error as the major contributors to the error budget. Leakage error arises from the limited range of GRACE spherical harmonics not corrupted by noise. AOD model error is due to imperfect correction for atmosphere and ocean mass redistribution applied during GRACE processing. Four methods of forming water storage estimates from GRACE spherical harmonics (four different basin filters) are applied to both GRACE and synthetic data. Two basin filters use Gaussian smoothing, and the other two are dynamic basin filters which use knowledge of geographical locations where water storage variations are expected. Global maps of measurement noise, leakage error, and AOD model errors are estimated for each basin filter. Dynamic basin filters yield the smallest errors and highest signal-to-noise ratio. Within 12 selected basins, GRACE and synthetic data show similar amplitudes of water storage change. Using 53 river basins, covering most of Earth's land surface excluding Antarctica and Greenland, we document how error changes with basin size, latitude, and shape. Leakage error is most affected by basin size and latitude, and AOD model error is most dependent on basin latitude.
Secondary Forest Age and Tropical Forest Biomass Estimation Using TM
NASA Technical Reports Server (NTRS)
Nelson, R. F.; Kimes, D. S.; Salas, W. A.; Routhier, M.
1999-01-01
The age of secondary forests in the Amazon will become more critical with respect to the estimation of biomass and carbon budgets as tropical forest conversion continues. Multitemporal Thematic Mapper data were used to develop land cover histories for a 33,000 Square kM area near Ariquemes, Rondonia over a 7 year period from 1989-1995. The age of the secondary forest, a surrogate for the amount of biomass (or carbon) stored above-ground, was found to be unimportant in terms of biomass budget error rates in a forested TM scene which had undergone a 20% conversion to nonforest/agricultural cover types. In such a situation, the 80% of the scene still covered by primary forest accounted for over 98% of the scene biomass. The difference between secondary forest biomass estimates developed with and without age information were inconsequential relative to the estimate of biomass for the entire scene. However, in futuristic scenarios where all of the primary forest has been converted to agriculture and secondary forest (55% and 42% respectively), the ability to age secondary forest becomes critical. Depending on biomass accumulation rate assumptions, scene biomass budget errors on the order of -10% to +30% are likely if the age of the secondary forests are not taken into account. Single-date TM imagery cannot be used to accurately age secondary forests into single-year classes. A neural network utilizing TM band 2 and three TM spectral-texture measures (bands 3 and 5) predicted secondary forest age over a range of 0-7 years with an RMSE of 1.59 years and an R(Squared) (sub actual vs predicted) = 0.37. A proposal is made, based on a literature review, to use satellite imagery to identify general secondary forest age groups which, within group, exhibit relatively constant biomass accumulation rates.
NASA Technical Reports Server (NTRS)
Yang, R.; Houser, P.; Joiner, J.
1998-01-01
The surface ground temperature (Tg) is an important meteorological variable, because it represents an integrated thermal state of the land surface determined by a complex surface energy budget. Furthermore, Tg affects both the surface sensible and latent heat fluxes. Through these fluxes. the surface budget is coupled with the atmosphere above. Accurate Tg data are useful for estimating the surface radiation budget and fluxes, as well as soil moisture. Tg is not included in conventional synoptical weather station reports. Currently, satellites provide Tg estimates globally. It is necessary to carefully consider appropriate methods of using these satellite data in a data assimilation system. Recently, an Off-line Land surface GEOS Assimilation (OLGA) system was implemented at the Data Assimilation Office at NASA-GSFC. One of the goals of OLGA is to assimilate satellite-derived Tg data. Prior to the Tg assimilation, a thorough investigation of satellite- and model-derived Tg, including error estimates, is required. In this study we examine the Tg from the n Project (ISCCP DI) data and the OLGA simulations. The ISCCP data used here are 3-hourly DI data (2.5x2.5 degree resolution) for 1992 summer months (June, July, and August) and winter months (January and February). The model Tg for the same periods were generated by OLGA. The forcing data for this OLGA 1992 simulation were generated from the GEOS-1 Data Assimilation System (DAS) at Data Assimilation Office NASA-GSFC. We examine the discrepancies between ISCCP and OLGA Tg with a focus on its spatial and temporal characteristics, particularly on the diurnal cycle. The error statistics in both data sets, including bias, will be estimated. The impact of surface properties, including vegetation cover and type, topography, etc, on the discrepancies will be addressed.
NASA Astrophysics Data System (ADS)
Doytchinov, I.; Tonnellier, X.; Shore, P.; Nicquevert, B.; Modena, M.; Mainaud Durand, H.
2018-05-01
Micrometric assembly and alignment requirements for future particle accelerators, and especially large assemblies, create the need for accurate uncertainty budgeting of alignment measurements. Measurements and uncertainties have to be accurately stated and traceable, to international standards, for metre-long sized assemblies, in the range of tens of µm. Indeed, these hundreds of assemblies will be produced and measured by several suppliers around the world, and will have to be integrated into a single machine. As part of the PACMAN project at CERN, we proposed and studied a practical application of probabilistic modelling of task-specific alignment uncertainty by applying a simulation by constraints calibration method. Using this method, we calibrated our measurement model using available data from ISO standardised tests (10360 series) for the metrology equipment. We combined this model with reference measurements and analysis of the measured data to quantify the actual specific uncertainty of each alignment measurement procedure. Our methodology was successfully validated against a calibrated and traceable 3D artefact as part of an international inter-laboratory study. The validated models were used to study the expected alignment uncertainty and important sensitivity factors in measuring the shortest and longest of the compact linear collider study assemblies, 0.54 m and 2.1 m respectively. In both cases, the laboratory alignment uncertainty was within the targeted uncertainty budget of 12 µm (68% confidence level). It was found that the remaining uncertainty budget for any additional alignment error compensations, such as the thermal drift error due to variation in machine operation heat load conditions, must be within 8.9 µm and 9.8 µm (68% confidence level) respectively.
Megalla, Dina; Van Geel, Paul J; Doyle, James T
2016-09-01
A landfill gas to energy (LFGTE) facility in Ste. Sophie, Quebec was instrumented with sensors which measure temperature, oxygen, moisture content, settlement, total earth pressure, electrical conductivity and mounding of leachate. These parameters were monitored during the operating phase of the landfill in order to better understand the biodegradation and waste stabilization processes occurring within a LFGTE facility. Conceptual and numerical models were created to describe the heat transfer processes which occur within five waste lifts placed over a two-year period. A finite element model was created to simulate the temperatures within the waste and estimate the heat budget over a four and a half year period. The calibrated model was able to simulate the temperatures measured to date within the instrumented waste profile at the site. The model was used to evaluate the overall heat budget for the waste profile. The model simulations and heat budget provide a better understanding of the heat transfer processes occurring within the landfill and the relative impact of the various heat source/sink and storage terms. Aerobic biodegradation appears to play an important role in the overall heat budget at this site generating 36% of the total heat generated within the waste profile during the waste placement stages of landfill operations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wright, Scott A.; Grams, Paul E.
2010-01-01
This report describes numerical modeling simulations of sand transport and sand budgets for reaches of the Colorado River below Glen Canyon Dam. Two hypothetical Water Year 2011 annual release volumes were each evaluated with six hypothetical operational scenarios. The six operational scenarios include the current operation, scenarios with modifications to the monthly distribution of releases, and scenarios with modifications to daily flow fluctuations. Uncertainties in model predictions were evaluated by conducting simulations with error estimates for tributary inputs and mainstem transport rates. The modeling results illustrate the dependence of sand transport rates and sand budgets on the annual release volumes as well as the within year operating rules. The six operational scenarios were ranked with respect to the predicted annual sand budgets for Marble Canyon and eastern Grand Canyon reaches. While the actual WY 2011 annual release volume and levels of tributary inputs are unknown, the hypothetical conditions simulated and reported herein provide reasonable comparisons between the operational scenarios, in a relative sense, that may be used by decision makers within the Glen Canyon Dam Adaptive Management Program.
Statistical analysis of modeling error in structural dynamic systems
NASA Technical Reports Server (NTRS)
Hasselman, T. K.; Chrostowski, J. D.
1990-01-01
The paper presents a generic statistical model of the (total) modeling error for conventional space structures in their launch configuration. Modeling error is defined as the difference between analytical prediction and experimental measurement. It is represented by the differences between predicted and measured real eigenvalues and eigenvectors. Comparisons are made between pre-test and post-test models. Total modeling error is then subdivided into measurement error, experimental error and 'pure' modeling error, and comparisons made between measurement error and total modeling error. The generic statistical model presented in this paper is based on the first four global (primary structure) modes of four different structures belonging to the generic category of Conventional Space Structures (specifically excluding large truss-type space structures). As such, it may be used to evaluate the uncertainty of predicted mode shapes and frequencies, sinusoidal response, or the transient response of other structures belonging to the same generic category.
Advancing Technology for Starlight Suppression via an External Occulter
NASA Technical Reports Server (NTRS)
Kasdin, N. J.; Spergel, D. N.; Vanderbei, R. J.; Lisman, D.; Shaklan, S.; Thomson, M.; Walkemeyer, P.; Bach, V.; Oakes, E.; Cady, E.;
2011-01-01
External occulters provide the starlight suppression needed for detecting and characterizing exoplanets with a much simpler telescope and instrument than is required for the equivalent performing coronagraph. In this paper we describe progress on our Technology Development for Exoplanet Missions project to design, manufacture, and measure a prototype occulter petal. We focus on the key requirement of manufacturing a precision petal while controlling its shape within precise tolerances. The required tolerances are established by modeling the effect that various mechanical and thermal errors have on scatter in the telescope image plane and by suballocating the allowable contrast degradation between these error sources. We discuss the deployable starshade design, representative error budget, thermal analysis, and prototype manufacturing. We also present our meteorology system and methodology for verifying that the petal shape meets the contrast requirement. Finally, we summarize the progress to date building the prototype petal.
Space shuttle entry and landing navigation analysis
NASA Technical Reports Server (NTRS)
Jones, H. L.; Crawford, B. S.
1974-01-01
A navigation system for the entry phase of a Space Shuttle mission which is an aided-inertial system which uses a Kalman filter to mix IMU data with data derived from external navigation aids is evaluated. A drag pseudo-measurement used during radio blackout is treated as an additional external aid. A comprehensive truth model with 101 states is formulated and used to generate detailed error budgets at several significant time points -- end-of-blackout, start of final approach, over runway threshold, and touchdown. Sensitivity curves illustrating the effect of variations in the size of individual error sources on navigation accuracy are presented. The sensitivity of the navigation system performance to filter modifications is analyzed. The projected overall performance is shown in the form of time histories of position and velocity error components. The detailed results are summarized and interpreted, and suggestions are made concerning possible software improvements.
Water budget analysis and management for Bangkok Metropolis, Thailand.
Singkran, Nuanchan
2017-09-01
The water budget of the Bangkok Metropolis system was analyzed using a material flow analysis model. Total imported flows into the system were 80,080 million m 3 per year (Mm 3 y -1 ) including inflows from the Chao Phraya and Mae Klong rivers and rainwater. Total exported flows out of the system were 78,528 Mm 3 y -1 including outflow into the lower Chao Phraya River and tap water (TW) distributed to suburbs. Total rates of stock exchange (1,552 Mm 3 y -1 ) were found in the processes of water recycling, TW distribution, domestic use, swine farming, aquaculture, and paddy fields. Only 21% of the total amount of wastewater (1,255 Mm 3 y -1 ) was collected, with insufficient treatment capacity of about 415 Mm 3 y -1 . Domestic and business (industrial and commercial sectors) areas were major point sources, whereas paddy fields were a major non-point source of wastewater. To manage Bangkok's water budget, critical measures have to be considered. Wastewater treatment capacity and efficiency of wastewater collection should be improved. On-site wastewater treatment plants for residential areas should be installed. Urban planning and land use zoning are suggested to control land use activities. Green technology should be supported to reduce wastewater from farming.
ERIC Educational Resources Information Center
Western Montana Coll., Dillon. Montana Rural Education Center.
This report presents data comparing budgets, levies, and enrollments of small, rural schools (Class "C") in Montana for fiscal year 1995-96. The average enrollment of 49 elementary schools was 136 students; the average enrollment of 50 high schools was 69. The average total enrollment of Class "C" schools was 195. Other data…
ERIC Educational Resources Information Center
Western Montana Coll., Dillon. Montana Rural Education Center.
This report presents data comparing budgets, levies, and enrollments of small, rural schools (Class "C") in Montana for fiscal year 1994-95. The average enrollment of 56 elementary schools was 136 students; the average enrollment of 56 high schools was 70 students. The average total enrollment of Class "C" schools was 190…
Overlay improvement by exposure map based mask registration optimization
NASA Astrophysics Data System (ADS)
Shi, Irene; Guo, Eric; Chen, Ming; Lu, Max; Li, Gordon; Li, Rivan; Tian, Eric
2015-03-01
Along with the increased miniaturization of semiconductor electronic devices, the design rules of advanced semiconductor devices shrink dramatically. [1] One of the main challenges of lithography step is the layer-to-layer overlay control. Furthermore, DPT (Double Patterning Technology) has been adapted for the advanced technology node like 28nm and 14nm, corresponding overlay budget becomes even tighter. [2][3] After the in-die mask registration (pattern placement) measurement is introduced, with the model analysis of a KLA SOV (sources of variation) tool, it's observed that registration difference between masks is a significant error source of wafer layer-to-layer overlay at 28nm process. [4][5] Mask registration optimization would highly improve wafer overlay performance accordingly. It was reported that a laser based registration control (RegC) process could be applied after the pattern generation or after pellicle mounting and allowed fine tuning of the mask registration. [6] In this paper we propose a novel method of mask registration correction, which can be applied before mask writing based on mask exposure map, considering the factors of mask chip layout, writing sequence, and pattern density distribution. Our experiment data show if pattern density on the mask keeps at a low level, in-die mask registration residue error in 3sigma could be always under 5nm whatever blank type and related writer POSCOR (position correction) file was applied; it proves random error induced by material or equipment would occupy relatively fixed error budget as an error source of mask registration. On the real production, comparing the mask registration difference through critical production layers, it could be revealed that registration residue error of line space layers with higher pattern density is always much larger than the one of contact hole layers with lower pattern density. Additionally, the mask registration difference between layers with similar pattern density could also achieve under 5nm performance. We assume mask registration excluding random error is mostly induced by charge accumulation during mask writing, which may be calculated from surrounding exposed pattern density. Multi-loading test mask registration result shows that with x direction writing sequence, mask registration behavior in x direction is mainly related to sequence direction, but mask registration in y direction would be highly impacted by pattern density distribution map. It proves part of mask registration error is due to charge issue from nearby environment. If exposure sequence is chip by chip for normal multi chip layout case, mask registration of both x and y direction would be impacted analogously, which has also been proved by real data. Therefore, we try to set up a simple model to predict the mask registration error based on mask exposure map, and correct it with the given POSCOR (position correction) file for advanced mask writing if needed.
Global payment for health services as a solution in the financial crisis in Europe.
Schrijvers, Guus
2012-10-01
In these financial difficult years many European governments used global ceilings to control costs of health services. Two scenarios are thinkable. The first is that all individual providers get a budget for their own costs: general practitioners, specialists, hospitals, nursing homes and mental health institutes. The second scenario is to work with global budgets for health care providers servicing a total population. Scientists and policy makers in Europe, North America and Asia need time to design new payment systems based on the idea of global budgeting, bundled payment and shared savings.
Carbon-Water-Energy Relations for Selected River Basins
NASA Technical Reports Server (NTRS)
Choudhury, B. J.
1998-01-01
A biophysical process-based model was run using satellite, assimilated and ancillary data for four years (1987-1990) to calculate components of total evaporation (transpiration, interception, soil and snow evaporation), net radiation, absorbed photosynthetically active radiation and net primary productivity over the global land surface. Satellite observations provided fractional vegetation cover, solar and photosynthetically active radiation incident of the surface, surface albedo, fractional cloud cover, air temperature and vapor pressure. The friction velocity and surface air pressure are obtained from a four dimensional data assimilation results, while precipitation is either only surface observations or a blended product of surface and satellite observations. All surface and satellite data are monthly mean values; precipitation has been disaggregated into daily values. All biophysical parameters of the model are prescribed according to published records. From these global land surface calculations results for river basins are derived using digital templates of basin boundaries. Comparisons with field observations (micrometeorologic, catchment water balance, biomass production) and atmospheric water budget analysis for monthly evaporation from six river basins have been done to assess errors in the calculations. Comparisons are also made with previous estimates of zonal variations of evaporation and net primary productivity. Efficiencies of transpiration, total evaporation and radiation use, and evaporative fraction for selected river basins will be presented.
Ayana, Essayas K; Worqlul, Abeyou W; Steenhuis, Tammo S
2015-08-01
Modeling of suspended sediment emission into freshwater lakes is challenging due to data gaps in developing countries. Existing models simulate sediment concentration at a gauging station upstream and none of these studies had modeled total suspended solids (TSS) emissions by inflowing rivers to freshwater lakes as there are no TSS measurements at the river mouth in the upper Blue Nile basin. In this study a 10year TSS time series data generated from remotely sensed MODIS/Terra images using established empirical relationship is applied to calibrate and validate a hydrology model for Lake Tana in Upper Blue Nile Basin. The result showed that at a monthly time scale TSS at the river mouth can be replicated with Nash-Sutcliffe efficiency (NS) of 0.34 for calibration and 0.21 for validation periods. Percent bias (PBIAS) and ratio of the root-mean-square error to the standard deviation of measured data (RSR) are all within range. Given the inaccessibility and costliness to measure TSS at river mouths to a lake the results found here are considered useful for suspended sediment budget studies in water bodies of the basin. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Maurer, Edwin P.; O'Donnell, Greg M.; Lettenmaier, Dennis P.; Roads, John O.
2001-08-01
The ability of the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis (NRA1) and the follow-up NCEP/Department of Energy (DOE) reanalysis (NRA2), to reproduce the hydrologic budgets over the Mississippi River basin is evaluated using a macroscale hydrology model. This diagnosis is aided by a relatively unconstrained global climate simulation using the NCEP global spectral model, and a more highly constrained regional climate simulation using the NCEP regional spectral model, both employing the same land surface parameterization (LSP) as the reanalyses. The hydrology model is the variable infiltration capacity (VIC) model, which is forced by gridded observed precipitation and temperature. It reproduces observed streamflow, and by closure is constrained to balance other terms in the surface water and energy budgets. The VIC-simulated surface fluxes therefore provide a benchmark for evaluating the predictions from the reanalyses and the climate models. The comparisons, conducted for the 10-year period 1988-1997, show the well-known overestimation of summer precipitation in the southeastern Mississippi River basin, a consistent overestimation of evapotranspiration, and an underprediction of snow in NRA1. These biases are generally lower in NRA2, though a large overprediction of snow water equivalent exists. NRA1 is subject to errors in the surface water budget due to nudging of modeled soil moisture to an assumed climatology. The nudging and precipitation bias alone do not explain the consistent overprediction of evapotranspiration throughout the basin. Another source of error is the gravitational drainage term in the NCEP LSP, which produces the majority of the model's reported runoff. This may contribute to an overprediction of persistence of surface water anomalies in much of the basin. Residual evapotranspiration inferred from an atmospheric balance of NRA1, which is more directly related to observed atmospheric variables, matches the VIC prediction much more closely than the coupled models. However, the persistence of the residual evapotranspiration is much less than is predicted by the hydrological model or the climate models.
AFGL Atmospheric Constituent Profiles (0.120km)
1986-05-15
compilations and (d) individual constituents. Each species is followed by the set of journal refer- ences which contributed either directly or indirectly to... enced materials; those publications that can be associated with particular molecules are so identified. 3. ERROR ESTIMATES/VARIABILITY The practical...budgets, J. Geophys. Res; 88, 10785-10807. (NO, NO 2 , HNO 3 , NO 3] Louisnard, N., Fergant, G., Girard, A., Gramont, L., Lado -Bordowsky, 0., Laurent, J
1993-04-01
determining effective group functioning, leader-group interaction , and decision making; (2) factors that determine effective, low error human performance...infectious disease and biological defense vaccines and drugs , vision, neurotxins, neurochemistry, molecular neurobiology, neurodegenrative diseases...Potential Rotor/Comprehensive Analysis Model for Rotor Aerodynamics-Johnson Aeronautics (FPR/CAMRAD-JA) code to predict Blade Vortex Interaction (BVI
JASMINE: Data analysis and simulation
NASA Astrophysics Data System (ADS)
Yamada, Yoshiyuki; Gouda, Naoteru; Yano, Taihei; Kobayashi, Yukiyasu; Sako, Nobutada; Jasmine Working Group
JASMINE will study the structure and evolution of the Milky Way Galaxy. To accomplish these objectives JASMINE will measure trigonometric parallaxes, positions and proper motions of about 10 million stars with a precision of 10 μas at z = 14 mag. In this paper methods for data analysis and error budgets, on-board data handling such as sampling strategy and data compression, and simulation software for end-to-end simulation are presented.
In Situ Metrology for the Corrective Polishing of Replicating Mandrels
2010-06-08
distribution is unlimited. 13. SUPPLEMENTARY NOTES Presented at Mirror Technology Days, Boulder, Colorado, USA, 7-9 June 2010. 14...ABSTRACT The International X-ray Observatory (IXO) will require mandrel metrology with extremely tight tolerances on mirrors with up to 1.6 meter radii...ideal. Error budgets for the IXO mirror segments are presented. A potential solution is presented that uses a voice-coil controlled gauging head, air
Mask characterization for CDU budget breakdown in advanced EUV lithography
NASA Astrophysics Data System (ADS)
Nikolsky, Peter; Strolenberg, Chris; Nielsen, Rasmus; Nooitgedacht, Tjitte; Davydova, Natalia; Yang, Greg; Lee, Shawn; Park, Chang-Min; Kim, Insung; Yeo, Jeong-Ho
2012-11-01
As the ITRS Critical Dimension Uniformity (CDU) specification shrinks, semiconductor companies need to maintain a high yield of good wafers per day and a high performance (and hence market value) of finished products. This cannot be achieved without continuous analysis and improvement of on-product CDU as one of the main drivers for process control and optimization with better understanding of main contributors from the litho cluster: mask, process, metrology and scanner. In this paper we will demonstrate a study of mask CDU characterization and its impact on CDU Budget Breakdown (CDU BB) performed for an advanced EUV lithography with 1D and 2D feature cases. We will show that this CDU contributor is one of the main differentiators between well-known ArFi and new EUV CDU budgeting principles. We found that reticle contribution to intrafield CDU should be characterized in a specific way: mask absorber thickness fingerprints play a role comparable with reticle CDU in the total reticle part of the CDU budget. Wafer CD fingerprints, introduced by this contributor, may or may not compensate variations of mask CD's and hence influence on total mask impact on intrafield CDU at the wafer level. This will be shown on 1D and 2D feature examples in this paper. Also mask stack reflectivity variations should be taken into account: these fingerprints have visible impact on intrafield CDs at the wafer level and should be considered as another contributor to the reticle part of EUV CDU budget. We observed also MEEF-through-field fingerprints in the studied EUV cases. Variations of MEEF may also play a role for the total intrafield CDU and may be taken into account for EUV Lithography. We characterized MEEF-through-field for the reviewed features, the results to be discussed in our paper, but further analysis of this phenomenon is required. This comprehensive approach to characterization of the mask part of EUV CDU characterization delivers an accurate and integral CDU Budget Breakdown per product/process and Litho tool. The better understanding of the entire CDU budget for advanced EUVL nodes achieved by Samsung and ASML helps to extend the limits of Moore's Law and to deliver successful implementation of smaller, faster and smarter chips in semiconductor industry.
NASA Astrophysics Data System (ADS)
Angling, Matthew J.; Elvidge, Sean; Healy, Sean B.
2018-04-01
The standard approach to remove the effects of the ionosphere from neutral atmosphere GPS radio occultation measurements is to estimate a corrected bending angle from a combination of the L1 and L2 bending angles. This approach is known to result in systematic errors and an extension has been proposed to the standard ionospheric correction that is dependent on the squared L1 / L2 bending angle difference and a scaling term (κ). The variation of κ with height, time, season, location and solar activity (i.e. the F10.7 flux) has been investigated by applying a 1-D bending angle operator to electron density profiles provided by a monthly median ionospheric climatology model. As expected, the residual bending angle is well correlated (negatively) with the vertical total electron content (TEC). κ is more strongly dependent on the solar zenith angle, indicating that the TEC-dependent component of the residual error is effectively modelled by the squared L1 / L2 bending angle difference term in the correction. The residual error from the ionospheric correction is likely to be a major contributor to the overall error budget of neutral atmosphere retrievals between 40 and 80 km. Over this height range κ is approximately linear with height. A simple κ model has also been developed. It is independent of ionospheric measurements, but incorporates geophysical dependencies (i.e. solar zenith angle, solar flux, altitude). The global mean error (i.e. bias) and the standard deviation of the residual errors are reduced from -1.3×10-8 and 2.2×10-8 for the uncorrected case to -2.2×10-10 rad and 2.0×10-9 rad, respectively, for the corrections using the κ model. Although a fixed scalar κ also reduces bias for the global average, the selected value of κ (14 rad-1) is only appropriate for a small band of locations around the solar terminator. In the daytime, the scalar κ is consistently too high and this results in an overcorrection of the bending angles and a positive bending angle bias. Similarly, in the nighttime, the scalar κ is too low. However, in this case, the bending angles are already small and the impact of the choice of κ is less pronounced.
Spatial sampling considerations of the CERES (Clouds and Earth Radiant Energy System) instrument
NASA Astrophysics Data System (ADS)
Smith, G. L.; Manalo-Smith, Natividdad; Priestley, Kory
2014-10-01
The CERES (Clouds and Earth Radiant Energy System) instrument is a scanning radiometer with three channels for measuring Earth radiation budget. At present CERES models are operating aboard the Terra, Aqua and Suomi/NPP spacecraft and flights of CERES instruments are planned for the JPSS-1 spacecraft and its successors. CERES scans from one limb of the Earth to the other and back. The footprint size grows with distance from nadir simply due to geometry so that the size of the smallest features which can be resolved from the data increases and spatial sampling errors increase with nadir angle. This paper presents an analysis of the effect of nadir angle on spatial sampling errors of the CERES instrument. The analysis performed in the Fourier domain. Spatial sampling errors are created by smoothing of features which are the size of the footprint and smaller, or blurring, and inadequate sampling, that causes aliasing errors. These spatial sampling errors are computed in terms of the system transfer function, which is the Fourier transform of the point response function, the spacing of data points and the spatial spectrum of the radiance field.
Optimal Inspection of Imports to Prevent Invasive Pest Introduction.
Chen, Cuicui; Epanchin-Niell, Rebecca S; Haight, Robert G
2018-03-01
The United States imports more than 1 billion live plants annually-an important and growing pathway for introduction of damaging nonnative invertebrates and pathogens. Inspection of imports is one safeguard for reducing pest introductions, but capacity constraints limit inspection effort. We develop an optimal sampling strategy to minimize the costs of pest introductions from trade by posing inspection as an acceptance sampling problem that incorporates key features of the decision context, including (i) simultaneous inspection of many heterogeneous lots, (ii) a lot-specific sampling effort, (iii) a budget constraint that limits total inspection effort, (iv) inspection error, and (v) an objective of minimizing cost from accepted defective units. We derive a formula for expected number of accepted infested units (expected slippage) given lot size, sample size, infestation rate, and detection rate, and we formulate and analyze the inspector's optimization problem of allocating a sampling budget among incoming lots to minimize the cost of slippage. We conduct an empirical analysis of live plant inspection, including estimation of plant infestation rates from historical data, and find that inspections optimally target the largest lots with the highest plant infestation rates, leaving some lots unsampled. We also consider that USDA-APHIS, which administers inspections, may want to continue inspecting all lots at a baseline level; we find that allocating any additional capacity, beyond a comprehensive baseline inspection, to the largest lots with the highest infestation rates allows inspectors to meet the dual goals of minimizing the costs of slippage and maintaining baseline sampling without substantial compromise. © 2017 Society for Risk Analysis.
76 FR 50186 - Submission for OMB Emergency Review
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
... (ICR) to the Office of Management and Budget (OMB) for review and clearance in accordance with the.... Agency Number: None. Affected Public: Nonprofit organizations and congregations. Total Respondents: 600. Frequency: One time. Average Time per Response: 40 hours. Estimated Total Burden Hours: 24,000 hours. Total...
75 FR 50780 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-17
... the following public information collection request (ICR) to the Office of Management and Budget (OMB... things, a description of the likely respondents, proposed frequency of response, and estimated total... of Respondents: 53. Total Annual Number of Responses: 1,437,897. Total Annual Burden Hours: 23,964...
Automated Detection and Annotation of Disturbance in Eastern Forests
NASA Astrophysics Data System (ADS)
Hughes, M. J.; Chen, G.; Hayes, D. J.
2013-12-01
Forest disturbances represent an important component of the terrestrial carbon budget. To generate spatially-explicit estimates of disturbance and regrowth, we developed an automated system to detect and characterize forest change in the eastern United States at 30 m resolution from a 28-year Landsat Thematic Mapper time-series (1984-2011). Forest changes are labeled as 'disturbances' or 'regrowth', assigned to a severity class, and attributed to a disturbance type: either fire, insects, harvest, or 'unknown'. The system generates cloud-free summertime composite images for each year from multiple summer scenes and calculates vegetation indices from these composites. Patches of similar terrain on the landscape are identified by segmenting the Normalized Burn Ratio image. The spatial variance within each patch, which has been found to be a good indicator of diffuse disturbances such as forest insect damage, is then calculated for each index, creating an additional set of indexes. To identify vegetation change and quantify its degree, the derivative through time is calculated for each index using total variance regularization to account for noise and create a piecewise-linear trend. These indexes and their derivatives detect areas of disturbance and regrowth and are also used as inputs into a neural network that classifies the disturbance type/agent. Disturbance and disease information from the US Forest Service Aerial Detection Surveys (ADS) geodatabase and disturbed plots from the US Forest Service Forest Inventory and Analysis (FIA) database provided training data for the neural network. Although there have been recent advances in discriminating between disturbance types in boreal forests, due to the larger number of forest species and cosmopolitan nature of overstory communities in eastern forests, separation remains difficult. The ADS database, derived from sketch maps and later digitized, commonly designates a single large area encompassing many smaller effected areas as disturbed, overestimating disturbance and creating ambiguity in the neural network. Even so, total classification error in a neighboring testing region is 22%. Most error comes labeling disturbances that are unknown in the training data as a known disturbance type. Confusion within known disturbance types is low, with 7% misclassification error for southern pine beetle, and 11% misclassification error for fire, which is likely due to over-estimates of disturbance extent in ADS polygons. Additionally, we used the Terrestrial Ecosystem Model (TEM) to quantify the carbon flux associated with a subset of selected disturbances of different severity and type. Early results show that combined disturbances resulted in a net carbon source of 1.27 kg/m2 between 1981 and 2010, which is about 8% of the total carbon storage in forests. This carbon loss offset much of the carbon sink effects resulting from elevated atmospheric CO2 and nitrogen deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Notz, Dirk; Jahn, Alexandra; Holland, Marika
A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic Coupled Model Intercomparison Project 6 (CMIP6)-endorsed Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice-related variables from climate-model simulations that allow for a better understanding and, ultimately, improvement of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice-related questions based on these simulations. Furthermore, the SIMIP protocol provides a standardmore » for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows for an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget, and the mass budget. Furthermore, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.« less
Notz, Dirk; Jahn, Alexandra; Holland, Marika; ...
2016-09-23
A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic Coupled Model Intercomparison Project 6 (CMIP6)-endorsed Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice-related variables from climate-model simulations that allow for a better understanding and, ultimately, improvement of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice-related questions based on these simulations. Furthermore, the SIMIP protocol provides a standardmore » for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows for an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget, and the mass budget. Furthermore, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.« less
High-frequency variations in Earth rotation and the planetary momentum budget
NASA Technical Reports Server (NTRS)
Rosen, Richard D.
1995-01-01
The major focus of the subject contract was on helping to resolve one of the more notable discrepancies still existing in the axial momentum budget of the solid Earth-atmosphere system, namely the disappearance of coherence between length-of-day (l.o.d.) and atmospheric angular momentum (AAM) at periods shorter than about a fortnight. Recognizing the importance of identifying the source of the high-frequency momentum budget anomaly, the scientific community organized two special measurement campaigns (SEARCH '92 and CONT '94) to obtain the best possible determinations of l.o.d. and AAM. An additional goal was to analyze newly developed estimates of the torques that transfer momentum between the atmosphere and its underlying surface to determine whether the ocean might be a reservoir of momentum on short time scales. Discrepancies between AAM and l.o.d. at sub-fortnightly periods have been attributed to either measurement errors in these quantities or the need to incorporate oceanic angular momentum into the planetary budget. Results from the SEARCH '92 and CONT '94 campaigns suggest that when special attention is paid to the quality of the measurements, better agreement between l.o.d. and AAM at high frequencies can be obtained. The mechanism most responsible for the high-frequency changes observed in AAM during these campaigns involves a direct coupling to the solid Earth, i.e, the mountain torque, thereby obviating a significant oceanic role.
Feedback controlled optics with wavefront compensation
NASA Technical Reports Server (NTRS)
Breckenridge, William G. (Inventor); Redding, David C. (Inventor)
1993-01-01
The sensitivity model of a complex optical system obtained by linear ray tracing is used to compute a control gain matrix by imposing the mathematical condition for minimizing the total wavefront error at the optical system's exit pupil. The most recent deformations or error states of the controlled segments or optical surfaces of the system are then assembled as an error vector, and the error vector is transformed by the control gain matrix to produce the exact control variables which will minimize the total wavefront error at the exit pupil of the optical system. These exact control variables are then applied to the actuators controlling the various optical surfaces in the system causing the immediate reduction in total wavefront error observed at the exit pupil of the optical system.
Diagnosing MJO Destabilization and Propagation with the Moisture and MSE Budgets
NASA Astrophysics Data System (ADS)
Maloney, Eric; Wolding, Brandon
2015-04-01
Novel diagnostics obtained as an extension of empirical orthogonal function analysis are used as a composting basis to gain insight into MJO dynamics through examination of reanalysis moisture and moist static energy budgets. The net effect of vertical moisture advection and cloud processes was found to be a modest positive feedback to column moisture anomalies during both enhanced and suppressed phases of the MJO. This positive feedback is regionally strengthened by anomalous surface fluxes of latent heat. The modulation of horizontal synoptic scale eddy mixing acts as a negative feedback to column moisture anomalies, while anomalous winds acting against the mean state moisture gradient aid in eastward propagation. These processes act in a systematic fashion across the Indian Ocean and oceanic regions of the Maritime Continent. The ability to approximately close the MSE budget serves an important role in constraining the moisture budget, whose residual is several times larger than the total and horizontal advective moisture tendencies. Comparison with TRMM precipitation anomalies suggests that the moisture budget residual results from an underestimation by ERAi of variations in both total precipitation and vertical moisture advection associated with the MJO. The results of this study support the concept of the MJO as a moisture-mode. This analysis is extended to examine the impact of boundary layer convergence driven by MJO SST anomalies on the vertically-integrated moisture budget. Results from a coupled version of the SP-CAM suggest that SST-driven moisture convergence anomalies are of a sufficient amplitude to be important for MJO propagation and destabilization, and may help explain why coupled models produce better simulations of the MJO than uncoupled models.
Saruta, Yuko; Puig-Junoy, Jaume
2016-06-01
Conventional intraoperative sentinel lymph node biopsy (SLNB) in breast cancer (BC) has limitations in establishing a definitive diagnosis of metastasis intraoperatively, leading to an unnecessary second operation. The one-step nucleic amplification assay (OSNA) provides accurate intraoperative diagnosis and avoids further testing. Only five articles have researched the cost and cost effectiveness of this diagnostic tool, although many hospitals have adopted it, and economic evaluation is needed for budget holders. We aimed to measure the budget impact in Japanese BC patients after the introduction of OSNA, and assess the certainty of the results. Budget impact analysis of OSNA on Japanese healthcare expenditure from 2015 to 2020. Local governments, society-managed health insurers, and Japan health insurance associations were the budget holders. In order to assess the cost gap between the gold standard (GS) and OSNA in intraoperative SLNB, a two-scenario comparative model that was structured using the clinical pathway of a BC patient group who received SLNB was applied. Clinical practice guidelines for BC were cited for cost estimation. The total estimated cost of all BC patients diagnosed by GS was US$1,023,313,850. The budget impact of OSNA in total health expenditure was -US$24,413,153 (-US$346 per patient). Two-way sensitivity analysis between survival rate (SR) of the GS and OSNA was performed by illustrating a cost-saving threshold: y ≅ 1.14x - 0.16 in positive patients, and y ≅ 0.96x + 0.029 in negative patients (x = SR-GS, y = SR-OSNA). Base inputs of the variables in these formulas demonstrated a cost saving. OSNA reduces healthcare costs, as confirmed by sensitivity analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, Raj K.; Berg, Larry K.; Pekour, Mikhail
The assumption of sub-grid scale (SGS) horizontal homogeneity within a model grid cell, which forms the basis of SGS turbulence closures used by mesoscale models, becomes increasingly tenuous as grid spacing is reduced to a few kilometers or less, such as in many emerging high-resolution applications. Herein, we use the turbulence kinetic energy (TKE) budget equation to study the spatio-temporal variability in two types of terrain—complex (Columbia Basin Wind Energy Study [CBWES] site, north-eastern Oregon) and flat (ScaledWind Farm Technologies [SWiFT] site, west Texas) using the Weather Research and Forecasting (WRF) model. In each case six-nested domains (three domains eachmore » for mesoscale and large-eddy simulation [LES]) are used to downscale the horizontal grid spacing from 10 km to 10 m using the WRF model framework. The model output was used to calculate the values of the TKE budget terms in vertical and horizontal planes as well as the averages of grid cells contained in the four quadrants (a quarter area) of the LES domain. The budget terms calculated along the planes and the mean profile of budget terms show larger spatial variability at CBWES site than at the SWiFT site. The contribution of the horizontal derivative of the shear production term to the total production shear was found to be 45% and 15% of the total shear, at the CBWES and SWiFT sites, respectively, indicating that the horizontal derivatives applied in the budget equation should not be ignored in mesoscale model parameterizations, especially for cases with complex terrain with <10 km scale.« less
Errors in clinical laboratories or errors in laboratory medicine?
Plebani, Mario
2006-01-01
Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes in pre- and post-examination steps must be minimized to guarantee the total quality of laboratory services.
ERIC Educational Resources Information Center
Western Montana Coll., Dillon. Montana Rural Education Center.
This report represents data collected by a mail survey comparing budgets, levies, and enrollments of small, rural schools (Class "C") in Montana for fiscal year 1991-1992. The average enrollment of 82 elementary schools was 128 students; the average enrollment of 82 high schools was 58. The average total enrollment of Class "C"…
1999-01-01
Motors, Honda , Toyota , and Nissan ). By learning from and applying the technologies developed elsewhere, NASA could greatly leverage its funding for...assessing risks to the shuttle. The committee believes that this tool has the potential to be very helpful in assessing and comparing the impact of...environmental regulations). Figure 2-2 shows how the S&PU budget compared to the total shuttle budget during four different years since 1985
NASA Astrophysics Data System (ADS)
Zhang, X.
2015-12-01
In the arid area, such as the Heihe watershed in Northwest China, agriculture is heavily dependent on the irrigation. Irrigation suggests human-induced hydro process, which modifies the local climate and water budget. In this study, we simulated the irrigation-induced changes in surface energy/moisture budgets and modifications on regional climate, using the WRF-NoahMP modle with an irrigation scheme. The irrigation scheme was implemented following the roles that soil moisture is assigned a saturated value once the mean soil moisture of all root layers is lower than 70% of fileld capacity. Across the growth season refering from May to September, the simulated mean irrigation amount of the 1181 cropland gridcells is ~900 mm, wihch is close to the field measurments of around 1000 mm. Such an irrigation largely modified the surface energy budget. Due to irrigation, the surface net solar radiation increased by ~76.7 MJ (~11 Wm-2) accouting for ~2.3%, surface latent and senbile heat flux increased by 97.7 Wm-2 and decreased by ~79.7 Wm-2 respectively; and local daily mean surface air temperature was thereby cooling by ~1.1°C. Corresponding to the surface energy changes, wind and circulation were also modified and regional water budget is therefore regulated. The total rainfall in the irrigation area increased due to more moisture from surface. However, the increased rainfall is only ~6.5mm (accounting for ~5% of background rainfall) which is much less than the increased evaporation of ~521.5mm from surface. The ~515mm of water accounting for 57% of total irrigation was transported outward by wind. The other ~385 mm accounting for 43% of total irrigation was transformed to be runoff and soil water. These results suggest that in the Heihe watershed irrigation largely modify local energy budget and cooling surface. This study also implicate that the existing irrigation may waste a large number of water. It is thereby valuable to develope effective irrigation scheme to save water resources.
Total Survey Error & Institutional Research: A Case Study of the University Experience Survey
ERIC Educational Resources Information Center
Whiteley, Sonia
2014-01-01
Total Survey Error (TSE) is a component of Total Survey Quality (TSQ) that supports the assessment of the extent to which a survey is "fit-for-purpose". While TSQ looks at a number of dimensions, such as relevance, credibility and accessibility, TSE is has a more operational focus on accuracy and minimising errors. Mitigating survey…
45 CFR 265.7 - How will we determine if the State is meeting the quarterly reporting requirements?
Code of Federal Regulations, 2012 CFR
2012-10-01
... computational errors and are internally consistent (e.g., items that should add to totals do so); (3) The State... from computational errors and are internally consistent (e.g., items that should add to totals do so... from computational errors and are internally consistent (e.g., items that should add to totals do so...
[Use of medical inpatient services by heavy users: a case of hypochondriasis].
Höfer, Peter; Ossege, Michael; Aigner, Martin
2012-01-01
Hypochondriasis is defined by ICD-10 and DSM-IV through the persistent preoccupation with the possibility of having one or more serious and progressive physical disorders. Patients suffering from hypochondriasis can be responsible for a high utilization of mental health system services. Data have shown that "Heavy User" require a disproportionate part of inpatient admissions and mental health budget costs. We assume that a psychotherapeutic approach, targeting a cognitive behavioral model in combination with neuropsychopharmacological treatment is useful. In our case report we present the "Heavy Using-Phenomenon" based on a patient hospitalized predominantly in neurological inpatient care facilities. From a medical point of view we want to point out to possible treatment errors, on the other hand we want to make aware of financial-socioeconomic factors leading to a massive burden on the global mental health budget.
Design Considerations of Polishing Lap for Computer-Controlled Cylindrical Polishing Process
NASA Technical Reports Server (NTRS)
Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian
2010-01-01
The future X-ray observatory missions, such as International X-ray Observatory, require grazing incidence replicated optics of extremely large collecting area (3 m2) in combination with angular resolution of less than 5 arcsec half-power diameter. The resolution of a mirror shell depends ultimately on the quality of the cylindrical mandrels from which they are being replicated. Mid-spatial-frequency axial figure error is a dominant contributor in the error budget of the mandrel. This paper presents our efforts to develop a deterministic cylindrical polishing process in order to keep the mid-spatial-frequency axial figure errors to a minimum. Simulation studies have been performed to optimize the operational parameters as well as the polishing lap configuration. Furthermore, depending upon the surface error profile, a model for localized polishing based on dwell time approach is developed. Using the inputs from the mathematical model, a mandrel, having conical approximated Wolter-1 geometry, has been polished on a newly developed computer-controlled cylindrical polishing machine. We report our first experimental results and discuss plans for further improvements in the polishing process.
FY 1984 Science Budget overview
NASA Astrophysics Data System (ADS)
Astronomy, engineering, and the physical sciences as a whole were among the best funded programs in the fiscal 1984 budget that President Ronald Reagan sent to Congress last week. In addition, science education got a shot in the arm: The Reagan proposal includes plans for the nation's universities to upgrade scientific instrumentation and to attract and support high caliber scientists and engineers.Reagan proposes that federal funding for research and development, including R&D facilities, total $47 billion in fiscal 1984, up 17% from the fiscal 1983 level. Defense research and development programs would be increased 29%; nondefense R&D would be increased 0.4%. Total basic research would be boosted 10%.
Understanding the Effectiveness of Carbon Dioxide Removal to Reduce the Impacts of Climate Change.
NASA Astrophysics Data System (ADS)
Scott, V.; Tett, S. F.; Brander, M.
2017-12-01
The current Nationally Determined Contributions to the Paris Agreement suggest exceeding the emissions budgets corresponding to the below 2°C and 1.5°C temperature targets. To address this the future application of Carbon Dioxide Removal (CDR) is proposed to recapture excess emissions at a later time, so keeping the total net emissions within budget. This assumes that the climate change impact of CO2 emitted now can be fully compensated by a matched CO2 removal in the future. However, the impacts from this pathway of emissions budget overshoot and subsequent recapture may differ from those resulting from a pathway where emissions are held within budget with no temporary overshoot. These pathway dependent impacts could give rise to different climatic and societal futures despite the total net emissions being the same. Using a low resolution fully coupled Earth System Model with an interactive carbon cycle, we present an investigation into the pathway dependence of climate change impacts and how these relate to the scale and duration of the emissions budget overshoot and subsequent recapture. From this we discuss the effectiveness of CDR in avoiding climate change impacts relative to more immediate emissions reductions. We consider how this relative effectiveness might be reflected in GHG accounting methods and national GHG accounts, and explore the implications for Article 2 of the Paris Agreement, where holding temperatures to the targets is recognised to "significantly reduce the risks and impacts of climate change".
NASA Astrophysics Data System (ADS)
Adachi, M.; Ito, A.; Ishida, A.; Kadir, W. R.; Ladpala, P.; Yamagata, Y.
2011-09-01
More reliable estimates of the carbon (C) stock within forest ecosystems and C emission induced by deforestation are urgently needed to mitigate the effects of emissions on climate change. A process-based terrestrial biogeochemical model (VISIT) was applied to tropical primary forests of two types (a seasonal dry forest in Thailand and a rainforest in Malaysia) and one agro-forest (an oil palm plantation in Malaysia) to estimate the C budget of tropical ecosystems in Southeast Asia, including the impacts of land-use conversion. The observed aboveground biomass in the seasonal dry tropical forest in Thailand (226.3 t C ha-1) and the rainforest in Malaysia (201.5 t C ha-1) indicate that tropical forests of Southeast Asia are among the most C-abundant ecosystems in the world. The model simulation results in rainforests were consistent with field data, except for the NEP, however, the VISIT model tended to underestimate C budget and stock in the seasonal dry tropical forest. The gross primary production (GPP) based on field observations ranged from 32.0 to 39.6 t C ha-1 yr-1 in the two primary forests, whereas the model slightly underestimated GPP (26.5-34.5 t C ha-1 yr-1). The VISIT model appropriately captured the impacts of disturbances such as deforestation and land-use conversions on the C budget. Results of sensitivity analysis showed that the proportion of remaining residual debris was a key parameter determining the soil C budget after the deforestation event. According to the model simulation, the total C stock (total biomass and soil C) of the oil palm plantation was about 35% of the rainforest's C stock at 30 yr following initiation of the plantation. However, there were few field data of C budget and stock, especially in oil palm plantation. The C budget of each ecosystem must be evaluated over the long term using both the model simulations and observations to understand the effects of climate and land-use conversion on C budgets in tropical forest ecosystems.
Moran, P.W.; Cox, S.E.; Embrey, S.S.; Huffman, R.L.; Olsen, T.D.; Fradkin, S.C.
2012-01-01
Lake Crescent, in Olympic National Park in the northwest corner of Washington State is a deep-water lake renowned for its pristine water quality and oligotrophic nature. To examine the major sources and sinks of nutrients (as total nitrogen, total phosphorus, and dissolved nitrate), a study was conducted in the Lake Crescent watershed. The study involved measuring five major inflow streams, the Lyre River as the major outflow, recording weather and climatic data, coring lake bed sediment, and analyzing nutrient chemistry in several relevant media over 14 months. Water samples for total nitrogen, total phosphorous, and dissolved nitrate from the five inflow streams, the outlet Lyre River, and two stations in the lake were collected monthly from May 2006 through May 2007. Periodic samples of shallow water from temporary sampling wells were collected at numerous locations around the lake. Concentrations of nutrients detected in Lake Crescent and tributaries were then applied to the water budget estimates to arrive at monthly and annual loads from various environmental components within the watershed. Other sources, such as leaf litter, pollen, or automobile exhaust were estimated from annual values obtained from various literature sources. This information then was used to construct a nutrient budget for total nitrogen and total phosphorus. The nitrogen budget generally highlights vehicle traffic-diesel trucks in particular-along U.S. Highway 101 as a potential major anthropogenic source of nitrogen compounds in the lake. In contrast, contribution of nitrogen compounds from onsite septic systems appears to be relatively minor related to the other sources identified.
Water Budget for the Island of Kauai, Hawaii
Shade, Patricia J.
1995-01-01
A geographic information system model was created to calculate a monthly water budget for the island of Kauai. Ground-water recharge is the residual component of a monthly water budget calculated using long-term average rainfall, streamflow, and pan-evaporation data, applied irrigation-water estimates, and soil characteristics. The water-budget components are defined seasonally, through the use of the monthly water budget, and spatially by aquifer-system areas, through the use of the geographic information system model. The mean annual islandwide water-budget totals are 2,720 Mgal/d for rainfall plus irrigation; 1,157 Mgal/d for direct runoff; 911 Mgal/d for actual evapotranspiration; and 652 Mgal/d for ground-water recharge. Direct runoff is 43 percent, actual evapotranspiration is 33 percent, and ground-water recharge is 24 percent of rainfall plus irrigation. Ground-water recharge in the natural land-use areas is spatially distributed in a pattern similar to the rainfall distribution. Distinct seasonal variations in the water-budget components are apparent from the monthly water-budget calculations. Rainfall and ground-water recharge peak during the wet winter months with highs in January of 3,698 Mgal/d (million gallons per day) and 981 Mgal/d, respectively; a slight peak in July and August relative to June and September is caused by increased orographic rainfall. Recharge is lowest in June (454 Mgal/d) and November (461 Mgal/d).
Patterned wafer geometry grouping for improved overlay control
NASA Astrophysics Data System (ADS)
Lee, Honggoo; Han, Sangjun; Woo, Jaeson; Park, Junbeom; Song, Changrock; Anis, Fatima; Vukkadala, Pradeep; Jeon, Sanghuck; Choi, DongSub; Huang, Kevin; Heo, Hoyoung; Smith, Mark D.; Robinson, John C.
2017-03-01
Process-induced overlay errors from outside the litho cell have become a significant contributor to the overlay error budget including non-uniform wafer stress. Previous studies have shown the correlation between process-induced stress and overlay and the opportunity for improvement in process control, including the use of patterned wafer geometry (PWG) metrology to reduce stress-induced overlay signatures. Key challenges of volume semiconductor manufacturing are how to improve not only the magnitude of these signatures, but also the wafer to wafer variability. This work involves a novel technique of using PWG metrology to provide improved litho-control by wafer-level grouping based on incoming process induced overlay, relevant for both 3D NAND and DRAM. Examples shown in this study are from 19 nm DRAM manufacturing.
Poster - 49: Assessment of Synchrony respiratory compensation error for CyberKnife liver treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ming; Cygler,
The goal of this work is to quantify respiratory motion compensation errors for liver tumor patients treated by the CyberKnife system with Synchrony tracking, to identify patients with the smallest tracking errors and to eventually help coach patient’s breathing patterns to minimize dose delivery errors. The accuracy of CyberKnife Synchrony respiratory motion compensation was assessed for 37 patients treated for liver lesions by analyzing data from system logfiles. A predictive model is used to modulate the direction of individual beams during dose delivery based on the positions of internally implanted fiducials determined using an orthogonal x-ray imaging system and themore » current location of LED external markers. For each x-ray pair acquired, system logfiles report the prediction error, the difference between the measured and predicted fiducial positions, and the delivery error, which is an estimate of the statistical error in the model overcoming the latency between x-ray acquisition and robotic repositioning. The total error was calculated at the time of each x-ray pair, for the number of treatment fractions and the number of patients, giving the average respiratory motion compensation error in three dimensions. The 99{sup th} percentile for the total radial error is 3.85 mm, with the highest contribution of 2.79 mm in superior/inferior (S/I) direction. The absolute mean compensation error is 1.78 mm radially with a 1.27 mm contribution in the S/I direction. Regions of high total error may provide insight into features predicting groups of patients with larger or smaller total errors.« less
NASA Astrophysics Data System (ADS)
Duan, Y.; Wilson, A. M.; Barros, A. P.
2014-10-01
A diagnostic analysis of the space-time structure of error in Quantitative Precipitation Estimates (QPE) from the Precipitation Radar (PR) on the Tropical Rainfall Measurement Mission (TRMM) satellite is presented here in preparation for the Integrated Precipitation and Hydrology Experiment (IPHEx) in 2014. IPHEx is the first NASA ground-validation field campaign after the launch of the Global Precipitation Measurement (GPM) satellite. In anticipation of GPM, a science-grade high-density raingauge network was deployed at mid to high elevations in the Southern Appalachian Mountains, USA since 2007. This network allows for direct comparison between ground-based measurements from raingauges and satellite-based QPE (specifically, PR 2A25 V7 using 5 years of data 2008-2013). Case studies were conducted to characterize the vertical profiles of reflectivity and rain rate retrievals associated with large discrepancies with respect to ground measurements. The spatial and temporal distribution of detection errors (false alarm, FA, and missed detection, MD) and magnitude errors (underestimation, UND, and overestimation, OVR) for stratiform and convective precipitation are examined in detail toward elucidating the physical basis of retrieval error. The diagnostic error analysis reveals that detection errors are linked to persistent stratiform light rainfall in the Southern Appalachians, which explains the high occurrence of FAs throughout the year, as well as the diurnal MD maximum at midday in the cold season (fall and winter), and especially in the inner region. Although UND dominates the magnitude error budget, underestimation of heavy rainfall conditions accounts for less than 20% of the total consistent with regional hydrometeorology. The 2A25 V7 product underestimates low level orographic enhancement of rainfall associated with fog, cap clouds and cloud to cloud feeder-seeder interactions over ridges, and overestimates light rainfall in the valleys by large amounts, though this behavior is strongly conditioned by the coarse spatial resolution (5 km) of the terrain topography mask used to remove ground clutter effects. Precipitation associated with small-scale systems (< 25 km2) and isolated deep convection tends to be underestimated, which we attribute to non-uniform beam-filling effects due to spatial averaging of reflectivity at the PR resolution. Mixed precipitation events (i.e., cold fronts and snow showers) fall into OVR or FA categories, but these are also the types of events for which observations from standard ground-based raingauge networks are more likely subject to measurement uncertainty, that is raingauge underestimation errors due to under-catch and precipitation phase. Overall, the space-time structure of the errors shows strong links among precipitation, envelope orography, landform (ridge-valley contrasts), and local hydrometeorological regime that is strongly modulated by the diurnal cycle, pointing to three major error causes that are inter-related: (1) representation of concurrent vertically and horizontally varying microphysics; (2) non uniform beam filling (NUBF) effects and ambiguity in the detection of bright band position; and (3) spatial resolution and ground clutter correction.
NASA Astrophysics Data System (ADS)
Duan, Y.; Wilson, A. M.; Barros, A. P.
2015-03-01
A diagnostic analysis of the space-time structure of error in quantitative precipitation estimates (QPEs) from the precipitation radar (PR) on the Tropical Rainfall Measurement Mission (TRMM) satellite is presented here in preparation for the Integrated Precipitation and Hydrology Experiment (IPHEx) in 2014. IPHEx is the first NASA ground-validation field campaign after the launch of the Global Precipitation Measurement (GPM) satellite. In anticipation of GPM, a science-grade high-density raingauge network was deployed at mid to high elevations in the southern Appalachian Mountains, USA, since 2007. This network allows for direct comparison between ground-based measurements from raingauges and satellite-based QPE (specifically, PR 2A25 Version 7 using 5 years of data 2008-2013). Case studies were conducted to characterize the vertical profiles of reflectivity and rain rate retrievals associated with large discrepancies with respect to ground measurements. The spatial and temporal distribution of detection errors (false alarm, FA; missed detection, MD) and magnitude errors (underestimation, UND; overestimation, OVR) for stratiform and convective precipitation are examined in detail toward elucidating the physical basis of retrieval error. The diagnostic error analysis reveals that detection errors are linked to persistent stratiform light rainfall in the southern Appalachians, which explains the high occurrence of FAs throughout the year, as well as the diurnal MD maximum at midday in the cold season (fall and winter) and especially in the inner region. Although UND dominates the error budget, underestimation of heavy rainfall conditions accounts for less than 20% of the total, consistent with regional hydrometeorology. The 2A25 V7 product underestimates low-level orographic enhancement of rainfall associated with fog, cap clouds and cloud to cloud feeder-seeder interactions over ridges, and overestimates light rainfall in the valleys by large amounts, though this behavior is strongly conditioned by the coarse spatial resolution (5 km) of the topography mask used to remove ground-clutter effects. Precipitation associated with small-scale systems (< 25 km2) and isolated deep convection tends to be underestimated, which we attribute to non-uniform beam-filling effects due to spatial averaging of reflectivity at the PR resolution. Mixed precipitation events (i.e., cold fronts and snow showers) fall into OVR or FA categories, but these are also the types of events for which observations from standard ground-based raingauge networks are more likely subject to measurement uncertainty, that is raingauge underestimation errors due to undercatch and precipitation phase. Overall, the space-time structure of the errors shows strong links among precipitation, envelope orography, landform (ridge-valley contrasts), and a local hydrometeorological regime that is strongly modulated by the diurnal cycle, pointing to three major error causes that are inter-related: (1) representation of concurrent vertically and horizontally varying microphysics; (2) non-uniform beam filling (NUBF) effects and ambiguity in the detection of bright band position; and (3) spatial resolution and ground-clutter correction.
Budget Constraints Affect Male Rats’ Choices between Differently Priced Commodities
Kalenscher, Tobias
2015-01-01
Demand theory can be applied to analyse how a human or animal consumer changes her selection of commodities within a certain budget in response to changes in price of those commodities. This change in consumption assessed over a range of prices is defined as demand elasticity. Previously, income-compensated and income-uncompensated price changes have been investigated using human and animal consumers, as demand theory predicts different elasticities for both conditions. However, in these studies, demand elasticity was only evaluated over the entirety of choices made from a budget. As compensating budgets changes the number of attainable commodities relative to uncompensated conditions, and thus the number of choices, it remained unclear whether budget compensation has a trivial effect on demand elasticity by simply sampling from a different total number of choices or has a direct effect on consumers’ sequential choice structure. If the budget context independently changes choices between commodities over and above price effects, this should become apparent when demand elasticity is assessed over choice sets of any reasonable size that are matched in choice opportunities between budget conditions. To gain more detailed insight in the sequential choice dynamics underlying differences in demand elasticity between budget conditions, we trained N=8 rat consumers to spend a daily budget by making a number of nosepokes to obtain two liquid commodities under different price regimes, in sessions with and without budget compensation. We confirmed that demand elasticity for both commodities differed between compensated and uncompensated budget conditions, also when the number of choices considered was matched, and showed that these elasticity differences emerge early in the sessions. These differences in demand elasticity were driven by a higher choice rate and an increased reselection bias for the preferred commodity in compensated compared to uncompensated budget conditions, suggesting a budget context effect on relative valuation. PMID:26053764
Budget Constraints Affect Male Rats' Choices between Differently Priced Commodities.
van Wingerden, Marijn; Marx, Christine; Kalenscher, Tobias
2015-01-01
Demand theory can be applied to analyse how a human or animal consumer changes her selection of commodities within a certain budget in response to changes in price of those commodities. This change in consumption assessed over a range of prices is defined as demand elasticity. Previously, income-compensated and income-uncompensated price changes have been investigated using human and animal consumers, as demand theory predicts different elasticities for both conditions. However, in these studies, demand elasticity was only evaluated over the entirety of choices made from a budget. As compensating budgets changes the number of attainable commodities relative to uncompensated conditions, and thus the number of choices, it remained unclear whether budget compensation has a trivial effect on demand elasticity by simply sampling from a different total number of choices or has a direct effect on consumers' sequential choice structure. If the budget context independently changes choices between commodities over and above price effects, this should become apparent when demand elasticity is assessed over choice sets of any reasonable size that are matched in choice opportunities between budget conditions. To gain more detailed insight in the sequential choice dynamics underlying differences in demand elasticity between budget conditions, we trained N=8 rat consumers to spend a daily budget by making a number of nosepokes to obtain two liquid commodities under different price regimes, in sessions with and without budget compensation. We confirmed that demand elasticity for both commodities differed between compensated and uncompensated budget conditions, also when the number of choices considered was matched, and showed that these elasticity differences emerge early in the sessions. These differences in demand elasticity were driven by a higher choice rate and an increased reselection bias for the preferred commodity in compensated compared to uncompensated budget conditions, suggesting a budget context effect on relative valuation.
NASA Astrophysics Data System (ADS)
Sala, Stephan; Bönisch, Harald; Keber, Timo; Oram, Dave; Mills, Graham; Engel, Andreas
2014-05-01
Halogenated hydrocarbons play a major role as precursors for stratospheric ozone depletion. Released from the surface in the troposphere, the halocarbons reach the stratosphere via transport through the tropical tropopause layer. The contribution of the so called very short lived species (VSLS), having atmospheric lifetimes of less than half a year as sources gases for stratospheric bromine is significant. Source gas observations of long-lived bromine compounds and VSLS have so far not been able to explain the amount of bromine derived in the stratosphere from observations of BrO and modeling of the ratio of BrO to total bromine. Due to the short lifetimes and the high atmospheric variability, the representativeness of the available observations of VSLS source gases remains unclear, as these may vary with region and display seasonal variability. During the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project an extensive dataset with over 700 samples of ambient air of all halogen species relevant for the atmospheric budget of total organic bromine (long lived halocarbons: H-1301, H-1211, H-1202, H-2402 and CH3Br, very short lived substances: CHBr3, CH2Br2, CHBr2Cl, CHBrCl2 and CHBrCl) have been collected from onboard the FALCON aircraft in the West Pacific region. Measurements were performed with the newly developed fully-automated in-situ instrument GHOST-MS (Gas chromatograph for the Observation of Tracers - coupled with a Mass Spectrometer) by the Goethe University of Frankfurt and with the onboard whole-air sampler WASP with subsequent ground based state-of-the-art GC/MS analysis by the University of East Anglia. We will present the datasets, compare these to other observation, derive a bromine budget for the West Pacific and derive an estimate of the amount of bromine from VSLS reaching the stratosphere. Using the mean mixing ratios in the upper troposphere of the halocarbons mentioned above, the calculated budget of the total organic bromine is (20.01 ± 1.77) ppt and the total amount from VSLS is (4.35 ± 0.59) ppt. Regarding the entry of bromine in the stratosphere, the estimation of the bromine content at the LZRH gives a value of (18.54 ± 1.78) ppt and a value of (2.88 ± 0.60) ppt from VSLS, reflecting a fraction of 16% of the total bromine budget.
Daly, Rich
2011-11-21
Providers say the administration's growing emphasis on billing audits is pushing them to the limit and threatens to increase their costs. Many billing problems stem from simple errors, not fraud, they say. "When you get into the nuts and bolts of some of these programs you realize it's not as easy as taking the overpayment line out of the budget," says Michael Regier, of VHA.
2015-01-01
emissivity and the radiative intensity of the gas over a spectral band. The temperature is then calculated from the Planck function. The technique does not...pressure budget for cooling channels reduces pump horsepower and turbine inlet temperature DISTRIBUTION STATEMENT A – Approved for public release...distribution unlimited 4 Status of Modeling and Simulation • Existing data set for film cooling effectiveness consists of wall heat flux measurements • CFD
Preliminary study of GPS orbit determination accuracy achievable from worldwide tracking data
NASA Technical Reports Server (NTRS)
Larden, D. R.; Bender, P. L.
1982-01-01
The improvement in the orbit accuracy if high accuracy tracking data from a substantially larger number of ground stations is available was investigated. Observations from 20 ground stations indicate that 20 cm or better accuracy can be achieved for the horizontal coordinates of the GPS satellites. With this accuracy, the contribution to the error budget for determining 1000 km baselines by GPS geodetic receivers would be only about 1 cm.
Simultaneous orbit determination
NASA Technical Reports Server (NTRS)
Wright, J. R.
1988-01-01
Simultaneous orbit determination is demonstrated using live range and Doppler data for the NASA/Goddard tracking configuration defined by the White Sands Ground Terminal (WSGT), the Tracking and Data Relay Satellite (TDRS), and the Earth Radiation Budget Satellite (ERBS). A physically connected sequential filter-smoother was developed for this demonstration. Rigorous necessary conditions are used to show that the state error covariance functions are realistic; and this enables the assessment of orbit estimation accuracies for both TDRS and ERBS.
Low-Power Fault Tolerance for Spacecraft FPGA-Based Numerical Computing
2006-09-01
Ranganathan , “Power Management – Guest Lecture for CS4135, NPS,” Naval Postgraduate School, Nov 2004 [32] R. L. Phelps, “Operational Experiences with the...4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2...undesirable, are not necessarily harmful. Our intent is to prevent errors by properly managing faults. This research focuses on developing fault-tolerant
The role of impoundments in the sediment budget of the conterminous United States
Renwick, W.H.; Smith, S.V.; Bartley, J.D.; Buddemeier, R.W.
2005-01-01
Previous work on sediment budgets for U.S. agricultural regions has concluded that most sediment derived from accelerated erosion is still on the landscape, primarily in colluvial and alluvial deposits. Here we examine the role of small impoundments in the subcontinental sediment budget. A recent inventory based on a 30-m satellite imagery reveals approximately 2.6 million ponds, while extrapolation from a sample of 1:24,000 topographic quadrangles suggests the total may be as large as 8-9 million. These ponds capture an estimated 21% of the total drainage area of the conterminous U.S., representing 25% of total sheet and rill erosion. We estimate the total sedimentation in these small impoundments using three different methods; these estimates range from 0.43 to 1.78 ?? 109 m3 yr-1. Total sedimentation in ???43,000 reservoirs from the National Inventory of Dams is estimated at 1.67 ?? 109 m3 yr-1. Total USLE erosion in 1992 was 2.4 ?? 109 m3 yr-1, and export to coastal areas is estimated at 0.6 ?? 109 m3 yr-1. Total sedimentation in impoundments is large in relation to upland erosion, in apparent contradiction to previous studies that have identified colluvial and alluvial deposition as the primary sinks. Several alternative hypotheses that could help explain this result are proposed. Regardless of which of these alternatives may prove to be the most significant in any given setting, it is clear that most sedimentation is now taking place in subaqueous rather than subaerial environments, and that small impoundments are a major sediment sink. ?? 2005 Elsevier B.V. All rights reserved.
Height-Error Analysis for the FAA-Air Force Replacement Radar Program (FARR)
1991-08-01
7719 Figure 1-7 CLIMATOLOGY ERRORS BY MONWTH PERCENT FREQUENCY TABLE OF ERROR BY MONTH ERROR MONTH Col Pc IJAl IFEB )MA IA R IAY JJ’N IJUL JAUG (SEP...MONTH Col Pct IJAN IFEB IMPJ JAPR 1 MM IJUN IJUL JAUG ISEP J--T IN~ IDEC I Total ----- -- - - --------------------------.. . -.. 4...MONTH ERROR MONTH Col Pct IJAN IFEB IM4AR IAPR IMAY jJum IJU JAUG ISEP JOCT IN JDEC I Total . .- 4
Kelly, Brian P.; Pickett, Linda L.; Hansen, Cristi V.; Ziegler, Andrew C.
2013-01-01
The Equus Beds aquifer is a primary water-supply source for Wichita, Kansas and the surrounding area because of shallow depth to water, large saturated thickness, and generally good water quality. Substantial water-level declines in the Equus Beds aquifer have resulted from pumping groundwater for agricultural and municipal needs, as well as periodic drought conditions. In March 2006, the city of Wichita began construction of the Equus Beds Aquifer Storage and Recovery project to store and later recover groundwater, and to form a hydraulic barrier to the known chloride-brine plume near Burrton, Kansas. In October 2009, the U.S. Geological Survey, in cooperation with the city of Wichita, began a study to determine groundwater flow in the area of the Wichita well field, and chloride transport from the Arkansas River and Burrton oilfield to the Wichita well field. Groundwater flow was simulated for the Equus Beds aquifer using the three-dimensional finite-difference groundwater-flow model MODFLOW-2000. The model simulates steady-state and transient conditions. The groundwater-flow model was calibrated by adjusting model input data and model geometry until model results matched field observations within an acceptable level of accuracy. The root mean square (RMS) error for water-level observations for the steady-state calibration simulation is 9.82 feet. The ratio of the RMS error to the total head loss in the model area is 0.049 and the mean error for water-level observations is 3.86 feet. The difference between flow into the model and flow out of the model across all model boundaries is -0.08 percent of total flow for the steady-state calibration. The RMS error for water-level observations for the transient calibration simulation is 2.48 feet, the ratio of the RMS error to the total head loss in the model area is 0.0124, and the mean error for water-level observations is 0.03 feet. The RMS error calculated for observed and simulated base flow gains or losses for the Arkansas River for the transient simulation is 7,916,564 cubic feet per day (91.6 cubic feet per second) and the RMS error divided by (/) the total range in streamflow (7,916,564/37,461,669 cubic feet per day) is 22 percent. The RMS error calculated for observed and simulated streamflow gains or losses for the Little Arkansas River for the transient simulation is 5,610,089 cubic feet per day(64.9 cubic feet per second) and the RMS error divided by the total range in streamflow (5,612,918/41,791,091 cubic feet per day) is 13 percent. The mean error between observed and simulated base flow gains or losses was 29,999 cubic feet per day (0.34 cubic feet per second) for the Arkansas River and -1,369,250 cubic feet per day (-15.8 cubic feet per second) for the Little Arkansas River. Cumulative streamflow gain and loss observations are similar to the cumulative simulated equivalents. Average percent mass balance difference for individual stress periods ranged from -0.46 to 0.51 percent. The cumulative mass balance for the transient calibration was 0.01 percent. Composite scaled sensitivities indicate the simulations are most sensitive to parameters with a large areal distribution. For the steady-state calibration, these parameters include recharge, hydraulic conductivity, and vertical conductance. For the transient simulation, these parameters include evapotranspiration, recharge, and hydraulic conductivity. The ability of the calibrated model to account for the additional groundwater recharged to the Equus Beds aquifer as part of the Aquifer Storage and Recovery project was assessed by using the U.S. Geological Survey subregional water budget program ZONEBUDGET and comparing those results to metered recharge for 2007 and 2008 and previous estimates of artificial recharge. The change in storage between simulations is the volume of water that estimates the recharge credit for the aquifer storage and recovery system. The estimated increase in storage of 1,607 acre-ft in the basin storage area compared to metered recharge of 1,796 acre-ft indicates some loss of metered recharge. Increased storage outside of the basin storage area of 183 acre-ft accounts for all but 6 acre-ft or 0.33 percent of the total. Previously estimated recharge credits for 2007 and 2008 are 1,018 and 600 acre-ft, respectively, and a total estimated recharge credit of 1,618 acre-ft. Storage changes calculated for this study are 4.42 percent less for 2007 and 5.67 percent more for 2008 than previous estimates. Total storage change for 2007 and 2008 is 0.68 percent less than previous estimates. The small difference between the increase in storage from artificial recharge estimated with the groundwater-flow model and metered recharge indicates the groundwater model correctly accounts for the additional water recharged to the Equus Beds aquifer as part of the Aquifer Storage and Recovery project. Small percent differences between inflows and outflows for all stress periods and all index cells in the basin storage area, improved calibration compared to the previous model, and a reasonable match between simulated and measured long-term base flow indicates the groundwater model accurately simulates groundwater flow in the study area. The change in groundwater level through recent years compared to the August 1940 groundwater level map has been documented and used to assess the change of storage volume of the Equus Beds aquifer in and near the Wichita well field for three different areas. Two methods were used to estimate changes in storage from simulation results using simulated change in groundwater levels in layer 1 between stress periods, and using ZONEBUDGET to calculate the change in storage in the same way the effects of artificial recharge were estimated within the basin storage area. The three methods indicate similar trends although the magnitude of storage changes differ. Information about the change in storage in response to hydrologic stresses is important for managing groundwater resources in the study area. The comparison between the three methods indicates similar storage change trends are estimated and each could be used to determine relative increases or decreases in storage. Use of groundwater level changes that do not include storage changes that occur in confined or semi-confined parts of the aquifer will slightly underestimate storage changes; however, use of specific yield and groundwater level changes to estimate storage change in confined or semi-confined parts of the aquifer will overestimate storage changes. Using only changes in shallow groundwater levels would provide more accurate storage change estimates for the measured groundwater levels method. The value used for specific yield is also an important consideration when estimating storage. For the Equus Beds aquifer the reported specific yield ranges between 0.08 and 0.35 and the storage coefficient (for confined conditions) ranges between 0.0004 and 0.16. Considering the importance of the value of specific yield and storage coefficient to estimates of storage change over time, and the wide range and substantial overlap for the reported values for specific yield and storage coefficient in the study area, further information on the distribution of specific yield and storage coefficient within the Equus Beds aquifer in the study area would greatly enhance the accuracy of estimated storage changes using both simulated groundwater level, simulated groundwater budget, or measured groundwater level methods.
NASA Astrophysics Data System (ADS)
Palanisamy, H.; Cazenave, A. A.
2017-12-01
The global mean sea level budget is revisited over two time periods: the entire altimetry era, 1993-2015 and the Argo/GRACE era, 2003-2015 using the version '0' of sea level components estimated by the SLBC-CCI teams. The SLBC-CCI is an European Space Agency's project on sea level budget closure using CCI products. Over the entire altimetry era, the sea level budget was performed as the sum of steric and mass components that include contributions from total land water storage, glaciers, ice sheets (Greenland and Antarctica) and total water vapor content. Over the Argo/GRACE era, it was performed as the sum of steric and GRACE based ocean mass. Preliminary budget analysis performed over the altimetry era (1993-2015) results in a trend value of 2.83 mm/yr. On comparison with the observed altimetry-based global mean sea level trend over the same period (3.03 ± 0.5 mm/yr), we obtain a residual of 0.2 mm/yr. In spite of a residual of 0.2 mm/yr, the sea level budget result obtained over the altimetry era is very promising as this has been performed using the version '0' of the sea level components. Furthermore, uncertainties are not yet included in this study as uncertainty estimation for each sea level component is currently underway. Over the Argo/GRACE era (2003-2015), the trend estimated from the sum of steric and GRACE ocean mass amounts to 2.63 mm/yr while that observed by satellite altimetry is 3.37 mm/yr, thereby leaving a residual of 0.7 mm/yr. Here an ensemble GRACE ocean mass data (mean of various available GRACE ocean mass data) was used for the estimation. Using individual GRACE data results in a residual range of 0.5 mm/yr -1.1 mm/yr. Investigations are under way to determine the cause of the vast difference between the observed sea level and the sea level obtained from steric and GRACE ocean mass. One main suspect is the impact of GRACE data gaps on sea level budget analysis due to lack of GRACE data over several months since 2011. The current action plan of the project is to work on an accurate closure of the sea level budget using both the above performed methodologies. We also intend to provide a standardized uncertainty estimation and to correctly identify the causes leading to sea level budget non-closure if that is the case.
Defense: FY2013 Authorization and Appropriations
2012-07-13
overturn several cost- cutting initiatives incorporated in the Administration’s budget, including proposed reductions in the Air Force Reserve and the...additional $1.2 trillion, the BCA will trigger automatic reductions that would cut the Administration’s current DOD base budget plan by whatever amount is...needed to cover the defense share of the shortfall between whatever cuts Congress does agree to and the required total reduction of $2.1 trillion
Li, Peng; Huang, Chuanhe; Liu, Qin
2014-01-01
In vehicular ad hoc networks, roadside units (RSUs) placement has been proposed to improve the the overall network performance in many ITS applications. This paper addresses the budget constrained and delay-bounded placement problem (BCDP) for roadside units in vehicular ad hoc networks. There are two types of RSUs: cable connected RSU (c-RSU) and wireless RSU (w-RSU). c-RSUs are interconnected through wired lines, and they form the backbone of VANETs, while w-RSUs connect to other RSUs through wireless communication and serve as an economical extension of the coverage of c-RSUs. The delay-bounded coverage range and deployment cost of these two cases are totally different. We are given a budget constraint and a delay bound, the problem is how to find the optimal candidate sites with the maximal delay-bounded coverage to place RSUs such that a message from any c-RSU in the region can be disseminated to the more vehicles within the given budget constraint and delay bound. We first prove that the BCDP problem is NP-hard. Then we propose several algorithms to solve the BCDP problem. Simulation results show the heuristic algorithms can significantly improve the coverage range and reduce the total deployment cost, compared with other heuristic methods. PMID:25436656
Nguyen, John T; Rich, Josiah D; Brockmann, Bradley W; Vohr, Fred; Spaulding, Anne; Montague, Brian T
2015-08-01
Hepatitis C virus (HCV) infection continues to disproportionately affect incarcerated populations. New HCV drugs present opportunities and challenges to address HCV in corrections. The goal of this study was to evaluate the impact of the treatment costs for HCV infection in a state correctional population through a budget impact analysis comparing differing treatment strategies. Electronic and paper medical records were reviewed to estimate the prevalence of hepatitis C within the Rhode Island Department of Corrections. Three treatment strategies were evaluated as follows: (1) treating all chronically infected persons, (2) treating only patients with demonstrated fibrosis, and (3) treating only patients with advanced fibrosis. Budget impact was computed as the percentage of pharmacy and overall healthcare expenditures accrued by total drug costs assuming entirely interferon-free therapy. Sensitivity analyses assessed potential variance in costs related to variability in HCV prevalence, genotype, estimated variation in market pricing, length of stay for the sentenced population, and uptake of newly available regimens. Chronic HCV prevalence was estimated at 17% of the total population. Treating all sentenced inmates with at least 6 months remaining of their sentence would cost about $34 million-13 times the pharmacy budget and almost twice the overall healthcare budget. Treating inmates with advanced fibrosis would cost about $15 million. A hypothetical 50% reduction in total drug costs for future therapies could cost $17 million to treat all eligible inmates. With immense costs projected with new treatment, it is unlikely that correctional facilities will have the capacity to treat all those afflicted with HCV. Alternative payment strategies in collaboration with outside programs may be necessary to curb this epidemic. In order to improve care and treatment delivery, drug costs also need to be seriously reevaluated to be more accessible and equitable now that HCV is more curable.
A Dynamic Nutrient Budget of Subsystem Interactions in a Salt Marsh Estuary
NASA Astrophysics Data System (ADS)
Childers, Daniel L.; McKellar, Henry N.; Dame, Richard F.; Sklar, Fred H.; Blood, Elizabeth R.
1993-02-01
In tidal salt marsh estuaries, the different habitats of the ecosystem interact primarily through the tidal creek water column. These interactions include nutrient and materials exchanges with the salt marsh, oyster reefs, creek bottoms, and adjacent uplands. Nutrient budgets are often used to synthesize these kinds of subsystem exchange data, and are usually based on annual totals without accounting for nutrient variability at finer temporal resolutions. In this paper, we present a dynamic budget of carbon (C), nitrogen (N), and phosphorus (P) for the North Inlet estuary, South Carolina that synthesizes subsystem flux data in a new way. We have developed a dynamic budget that uses a tidal hydrology model to generate daily areas of inundated intertidal habitat (i.e. vegetated marsh and oyster reef) from tidal heights calculated hourly and combines them with flux data to determine a net daily input to, or removal from, the water column. Daily surpluses or deficits of each nutrient were compared with daily rates of change in observed tidally-averaged nutrient concentrations. Particular emphasis was placed on evaluating budget output from the intertidal subsystems. We compared our total annual budgets to values from syntheses of two North Inlet flux studies. Although areas of marsh inundated were 150-200 times greater than areas of oyster reef inundated, interactions per unit volume of estuarine water column were comparable in magnitude for soluble reactive P (SRP), particulate organic C (POC), and dissolved organic C (DOC). The marsh dominated the ammonium (NH +4) and nitrate + nitrite (NN) exchanges in the summer but the NH +4 and POC output were particularly sensitive to changes in oyster reef area. Winter and spring DOC release by the marsh coincided closely (in timing and magnitude) with the peak in DOC concentrations observed in the North Inlet estuary, suggesting that forest stream inputs of DOC are not nearly as important as has been hypothesized. Comparison of our budget predictions to a previous synthesis of the same subsytem flux data confirmed the power of using tidal hydrology to estimate subsystem interactions between sampling times. These comparisons also emphasized the importance of (1) water column processes to NH +4 dynamics (2) subtidal benthic fluxes to DOC dynamics, and (3) external inputs to NN dynamics. By incorporating our best current knowledge of estuary-wide subsystem areas, the dynamic budget also allowed us to link subsystem flux data to the results of a study quantifying exchanges between the estuary and the coastal ocean. That comparison indicated the shortcomings of any site-specific extrapolation to whole-system conclusions where a homogeneous ecosystem must be assumed. We used the differences between our total annual C, N, and P budgets and reported exports of those constituents from the system to generate hypotheses and suggest future research efforts both at North Inlet and southeastern salt marsh estuaries in general.
Comprehensive characterization of atmospheric organic carbon at a forested site
NASA Astrophysics Data System (ADS)
Hunter, James F.; Day, Douglas A.; Palm, Brett B.; Yatavelli, Reddy L. N.; Chan, Arthur W. H.; Kaser, Lisa; Cappellin, Luca; Hayes, Patrick L.; Cross, Eben S.; Carrasquillo, Anthony J.; Campuzano-Jost, Pedro; Stark, Harald; Zhao, Yunliang; Hohaus, Thorsten; Smith, James N.; Hansel, Armin; Karl, Thomas; Goldstein, Allen H.; Guenther, Alex; Worsnop, Douglas R.; Thornton, Joel A.; Heald, Colette L.; Jimenez, Jose L.; Kroll, Jesse H.
2017-10-01
Atmospheric organic compounds are central to key chemical processes that influence air quality, ecological health, and climate. However, longstanding difficulties in predicting important quantities such as organic aerosol formation and oxidant lifetimes indicate that our understanding of atmospheric organic chemistry is fundamentally incomplete, probably due in part to the presence of organic species that are unmeasured using standard analytical techniques. Here we present measurements of a wide range of atmospheric organic compounds--including previously unmeasured species--taken concurrently at a single site (a ponderosa pine forest during summertime) by five state-of-the-art mass spectrometric instruments. The combined data set provides a comprehensive characterization of atmospheric organic carbon, covering a wide range in chemical properties (volatility, oxidation state, and molecular size), and exhibiting no obvious measurement gaps. This enables the first construction of a measurement-based local organic budget, highlighting the high emission, deposition, and oxidation fluxes in this environment. Moreover, previously unmeasured species, including semivolatile and intermediate-volatility organic species (S/IVOCs), account for one-third of the total organic carbon, and (within error) provide closure on both OH reactivity and potential secondary organic aerosol formation.
The Hubble Constant from Supernovae
NASA Astrophysics Data System (ADS)
Saha, Abhijit; Macri, Lucas M.
The decades-long quest to obtain a precise and accurate measurement of the local expansion rate of the universe (the Hubble Constant or H0) has greatly benefited from the use of supernovae (SNe). Starting from humble beginnings (dispersions of ˜ 0.5 mag in the Hubble flow in the late 1960s/early 1970s), the increasingly more sophisticated understanding, classification, and analysis of these events turned type Ia SNe into the premiere choice for a secondary distance indicator by the early 1990s. While some systematic uncertainties specific to SNe and to Cepheid-based distances to the calibrating host galaxies still contribute to the H0 error budget, the major emphasis over the past two decades has been on reducing the statistical uncertainty by obtaining ever-larger samples of distances to SN hosts. Building on early efforts with the first-generation instruments on the Hubble Space Telescope, recent observations with the latest instruments on this facility have reduced the estimated total uncertainty on H0 to 2.4 % and shown a path to reach a 1 % measurement by the end of the decade, aided by Gaia and the James Webb Space Telescope.
The Role of Integrated Modeling in the Design and Verification of the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Mosier, Gary E.; Howard, Joseph M.; Johnston, John D.; Parrish, Keith A.; Hyde, T. Tupper; McGinnis, Mark A.; Bluth, Marcel; Kim, Kevin; Ha, Kong Q.
2004-01-01
The James Web Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2011. System-level verification of critical optical performance requirements will rely on integrated modeling to a considerable degree. In turn, requirements for accuracy of the models are significant. The size of the lightweight observatory structure, coupled with the need to test at cryogenic temperatures, effectively precludes validation of the models and verification of optical performance with a single test in 1-g. Rather, a complex series of steps are planned by which the components of the end-to-end models are validated at various levels of subassembly, and the ultimate verification of optical performance is by analysis using the assembled models. This paper describes the critical optical performance requirements driving the integrated modeling activity, shows how the error budget is used to allocate and track contributions to total performance, and presents examples of integrated modeling methods and results that support the preliminary observatory design. Finally, the concepts for model validation and the role of integrated modeling in the ultimate verification of observatory are described.
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.; Browning, P. A.
1983-01-01
Contributions of divergent and rotational wind components to the synoptic-scale kinetic energy balance are described using rawinsonde data at 3 and 6 h intervals from NASA's fourth Atmospheric Variability experiment. Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclosed storm-induced, upper level wind maxima located poleward of convection. Although small in magnitude, the divergent wind component played an important role in the cross-contour generation and horizontal flux divergence of kinetic energy. The importance of V(D) appears directly related to the presence and intensity of convection. Although K(D) usually comprised less than 10 percent of the total kinetic energy content, generation of kinetic energy by V(D) was a major factor in the creation of upper-level wind maxima to the north of the storm complexes. Omission of the divergent wind apparently would lead to serious misrepresentations of the energy balance. A random error analysis is presented to assess confidence limits in the various energy parameters.
Intuitive Tools for the Design and Analysis of Communication Payloads for Satellites
NASA Technical Reports Server (NTRS)
Culver, Michael R.; Soong, Christine; Warner, Joseph D.
2014-01-01
In an effort to make future communications satellite payload design more efficient and accessible, two tools were created with intuitive graphical user interfaces (GUIs). The first tool allows payload designers to graphically design their payload by using simple drag and drop of payload components onto a design area within the program. Information about each picked component is pulled from a database of common space-qualified communication components sold by commerical companies. Once a design is completed, various reports can be generated, such as the Master Equipment List. The second tool is a link budget calculator designed specifically for ease of use. Other features of this tool include being able to access a database of NASA ground based apertures for near Earth and Deep Space communication, the Tracking and Data Relay Satellite System (TDRSS) base apertures, and information about the solar system relevant to link budget calculations. The link budget tool allows for over 50 different combinations of user inputs, eliminating the need for multiple spreadsheets and the user errors associated with using them. Both of the aforementioned tools increase the productivity of space communication systems designers, and have the colloquial latitude to allow non-communication experts to design preliminary communication payloads.
Automatic performance budget: towards a risk reduction
NASA Astrophysics Data System (ADS)
Laporte, Philippe; Blake, Simon; Schmoll, Jürgen; Rulten, Cameron; Savoie, Denis
2014-08-01
In this paper, we discuss the performance matrix of the SST-GATE telescope developed to allow us to partition and allocate the important characteristics to the various subsystems as well as to describe the process in order to verify that the current design will deliver the required performance. Due to the integrated nature of the telescope, a large number of parameters have to be controlled and effective calculation tools must be developed such as an automatic performance budget. Its main advantages consist in alleviating the work of the system engineer when changes occur in the design, in avoiding errors during any re-allocation process and recalculate automatically the scientific performance of the instrument. We explain in this paper the method to convert the ensquared energy (EE) and the signal-to-noise ratio (SNR) required by the science cases into the "as designed" instrument. To ensure successful design, integration and verification of the next generation instruments, it is of the utmost importance to have methods to control and manage the instrument's critical performance characteristics at its very early design steps to limit technical and cost risks in the project development. Such a performance budget is a tool towards this goal.
Moucheraud, Corrina; Sparkes, Susan; Nakamura, Yoriko; Gage, Anna; Atun, Rifat; Bossert, Thomas J
2016-05-01
Launched in 2003, the US President's Emergency Plan for AIDS Relief (PEPFAR) is the largest disease-focused assistance program in the world. We analyzed PEPFAR budgets for governance and systems for the period 2004-14 to ascertain whether PEPFAR's stated emphasis on strengthening health systems has been manifested financially. The main outcome variable in our analysis, the first of its kind using these data, was the share of PEPFAR's total annual budget for a country that was designated for governance and systems. The share of planned PEPFAR funding for governance and systems increased from 14.9 percent, on average, in 2004 to 27.5 percent in 2013, but it declined in 2014 to 20.8 percent. This study shows that the size of a country's PEPFAR budget was negatively associated with the share allocated for governance and systems (compared with other budget program areas); it also shows that there was no significant relationship between budgets for governance and systems and HIV prevalence. It is crucial for the global health policy community to better understand how such investments are allocated and used for health systems strengthening. Project HOPE—The People-to-People Health Foundation, Inc.
Embedded Model Error Representation and Propagation in Climate Models
NASA Astrophysics Data System (ADS)
Sargsyan, K.; Ricciuto, D. M.; Safta, C.; Thornton, P. E.
2017-12-01
Over the last decade, parametric uncertainty quantification (UQ) methods have reached a level of maturity, while the same can not be said about representation and quantification of structural or model errors. Lack of characterization of model errors, induced by physical assumptions, phenomenological parameterizations or constitutive laws, is a major handicap in predictive science. In particular, e.g. in climate models, significant computational resources are dedicated to model calibration without gaining improvement in predictive skill. Neglecting model errors during calibration/tuning will lead to overconfident and biased model parameters. At the same time, the most advanced methods accounting for model error merely correct output biases, augmenting model outputs with statistical error terms that can potentially violate physical laws, or make the calibrated model ineffective for extrapolative scenarios. This work will overview a principled path for representing and quantifying model errors, as well as propagating them together with the rest of the predictive uncertainty budget, including data noise, parametric uncertainties and surrogate-related errors. Namely, the model error terms will be embedded in select model components rather than as external corrections. Such embedding ensures consistency with physical constraints on model predictions, and renders calibrated model predictions meaningful and robust with respect to model errors. Besides, in the presence of observational data, the approach can effectively differentiate model structural deficiencies from those of data acquisition. The methodology is implemented in UQ Toolkit (www.sandia.gov/uqtoolkit), relying on a host of available forward and inverse UQ tools. We will demonstrate the application of the technique on few application of interest, including ACME Land Model calibration via a wide range of measurements obtained at select sites.
NASA Astrophysics Data System (ADS)
Xia, Youlong; Cosgrove, Brian A.; Mitchell, Kenneth E.; Peters-Lidard, Christa D.; Ek, Michael B.; Kumar, Sujay; Mocko, David; Wei, Helin
2016-01-01
This paper compares the annual and monthly components of the simulated energy budget from the North American Land Data Assimilation System phase 2 (NLDAS-2) with reference products over the domains of the 12 River Forecast Centers (RFCs) of the continental United States (CONUS). The simulations are calculated from both operational and research versions of NLDAS-2. The reference radiation components are obtained from the National Aeronautics and Space Administration Surface Radiation Budget product. The reference sensible and latent heat fluxes are obtained from a multitree ensemble method applied to gridded FLUXNET data from the Max Planck Institute, Germany. As these references are obtained from different data sources, they cannot fully close the energy budget, although the range of closure error is less than 15% for mean annual results. The analysis here demonstrates the usefulness of basin-scale surface energy budget analysis for evaluating model skill and deficiencies. The operational (i.e., Noah, Mosaic, and VIC) and research (i.e., Noah-I and VIC4.0.5) NLDAS-2 land surface models exhibit similarities and differences in depicting basin-averaged energy components. For example, the energy components of the five models have similar seasonal cycles, but with different magnitudes. Generally, Noah and VIC overestimate (underestimate) sensible (latent) heat flux over several RFCs of the eastern CONUS. In contrast, Mosaic underestimates (overestimates) sensible (latent) heat flux over almost all 12 RFCs. The research Noah-I and VIC4.0.5 versions show moderate-to-large improvements (basin and model dependent) relative to their operational versions, which indicates likely pathways for future improvements in the operational NLDAS-2 system.
NASA Technical Reports Server (NTRS)
Xia, Youlong; Peters-Lidard, Christa D.; Cosgrove, Brian A.; Mitchell, Kenneth E.; Peters-Lidard, Christa; Ek, Michael B.; Kumar, Sujay V.; Mocko, David M.; Wei, Helin
2015-01-01
This paper compares the annual and monthly components of the simulated energy budget from the North American Land Data Assimilation System phase 2 (NLDAS-2) with reference products over the domains of the 12 River Forecast Centers (RFCs) of the continental United States (CONUS). The simulations are calculated from both operational and research versions of NLDAS-2. The reference radiation components are obtained from the National Aeronautics and Space Administration Surface Radiation Budget product. The reference sensible and latent heat fluxes are obtained from a multitree ensemble method applied to gridded FLUXNET data from the Max Planck Institute, Germany. As these references are obtained from different data sources, they cannot fully close the energy budget, although the range of closure error is less than 15%formean annual results. The analysis here demonstrates the usefulness of basin-scale surface energy budget analysis for evaluating model skill and deficiencies. The operational (i.e., Noah, Mosaic, and VIC) and research (i.e., Noah-I and VIC4.0.5) NLDAS-2 land surface models exhibit similarities and differences in depicting basin-averaged energy components. For example, the energy components of the five models have similar seasonal cycles, but with different magnitudes. Generally, Noah and VIC overestimate (underestimate) sensible (latent) heat flux over several RFCs of the eastern CONUS. In contrast, Mosaic underestimates (overestimates) sensible (latent) heat flux over almost all 12 RFCs. The research Noah-I and VIC4.0.5 versions show moderate-to-large improvements (basin and model dependent) relative to their operational versions, which indicates likely pathways for future improvements in the operational NLDAS-2 system.
Suspended sediment fluxes in a tidal wetland: Measurement, controlling factors, and error analysis
Ganju, N.K.; Schoellhamer, D.H.; Bergamaschi, B.A.
2005-01-01
Suspended sediment fluxes to and from tidal wetlands are of increasing concern because of habitat restoration efforts, wetland sustainability as sea level rises, and potential contaminant accumulation. We measured water and sediment fluxes through two channels on Browns Island, at the landward end of San Francisco Bay, United States, to determine the factors that control sediment fluxes on and off the island. In situ instrumentation was deployed between October 10 and November 13, 2003. Acoustic Doppler current profilers and the index velocity method were employed to calculate water fluxes. Suspended sediment concentrations (SSC) were determined with optical sensors and cross-sectional water sampling. All procedures were analyzed for their contribution to total error in the flux measurement. The inability to close the water balance and determination of constituent concentration were identified as the main sources of error; total error was 27% for net sediment flux. The water budget for the island was computed with an unaccounted input of 0.20 m 3 s-1 (22% of mean inflow), after considering channel flow, change in water storage, evapotranspiration, and precipitation. The net imbalance may be a combination of groundwater seepage, overland flow, and flow through minor channels. Change of island water storage, caused by local variations in water surface elevation, dominated the tidalty averaged water flux. These variations were mainly caused by wind and barometric pressure change, which alter regional water levels throughout the Sacramento-San Joaquin River Delta. Peak instantaneous ebb flow was 35% greater than peak flood flow, indicating an ebb-dominant system, though dominance varied with the spring-neap cycle. SSC were controlled by wind-wave resuspension adjacent to the island and local tidal currents that mobilized sediment from the channel bed. During neap tides sediment was imported onto the island but during spring tides sediment was exported because the main channel became ebb dominant Over the 34-d monitoring period 14,000 kg of suspended sediment were imported through the two channels. The water imbalance may affect the sediment balance if the unmeasured water transport pathways are capable of transporting large amounts of sediment. We estimate a maximum of 2,800 kg of sediment may have been exported through unmeasured pathways, giving a minimum net import of 11,200 kg. Sediment flux measurements provide insight on tidal to fortnightly marsh sedimentation processes, especially in complex systems where sedimentation is spatially and temporally variable. ?? 2005 Estuarine Research Federation.
45 CFR 98.100 - Error Rate Report.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND... rates, which is defined as the percentage of cases with an error (expressed as the total number of cases with an error compared to the total number of cases); the percentage of cases with an improper payment...
Personal protective equipment for the Ebola virus disease: A comparison of 2 training programs.
Casalino, Enrique; Astocondor, Eugenio; Sanchez, Juan Carlos; Díaz-Santana, David Enrique; Del Aguila, Carlos; Carrillo, Juan Pablo
2015-12-01
Personal protective equipment (PPE) for preventing Ebola virus disease (EVD) includes basic PPE (B-PPE) and enhanced PPE (E-PPE). Our aim was to compare conventional training programs (CTPs) and reinforced training programs (RTPs) on the use of B-PPE and E-PPE. Four groups were created, designated CTP-B, CTP-E, RTP-B, and RTP-E. All groups received the same theoretical training, followed by 3 practical training sessions. A total of 120 students were included (30 per group). In all 4 groups, the frequency and number of total errors and critical errors decreased significantly over the course of the training sessions (P < .01). The RTP was associated with a greater reduction in the number of total errors and critical errors (P < .0001). During the third training session, we noted an error frequency of 7%-43%, a critical error frequency of 3%-40%, 0.3-1.5 total errors, and 0.1-0.8 critical errors per student. The B-PPE groups had the fewest errors and critical errors (P < .0001). Our results indicate that both training methods improved the student's proficiency, that B-PPE appears to be easier to use than E-PPE, that the RTP achieved better proficiency for both PPE types, and that a number of students are still potentially at risk for EVD contamination despite the improvements observed during the training. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Forcing and Responses of the Surface Energy Budget at Summit, Greenland
NASA Astrophysics Data System (ADS)
Miller, Nathaniel B.
Energy exchange at the Greenland Ice Sheet surface governs surface temperature variability, a factor critical for representing increasing surface melt extent, which portends a rise in global sea level. A comprehensive set of cloud, tropospheric, near-surface and sub-surface measurements at Summit Station is utilized to determine the driving forces and subsequent responses of the surface energy budget (SEB). This budget includes radiative, turbulent, and ground heat fluxes, and ultimately controls the evolution of surface temperature. At Summit Station, clouds radiatively warm the surface in all months with an annual average cloud radiative forcing value of 33 W m -2, largely driven by the occurrence of liquid-bearing clouds. The magnitude of the surface temperature response is dependent on how turbulent and ground heat fluxes modulate changes to radiative forcing. Relationships between forcing terms and responding surface fluxes show that changes in the upwelling longwave radiation compensate for 65-85% (50- 60%) of the total change in radiative forcing in the winter (summer). The ground heat flux is the second largest response term (16% annually), especially during winter. Throughout the annual cycle, the sensible heat flux response is comparatively constant (9%) and latent heat flux response is only 1.5%, becoming more of a factor in modulating surface temperature responses during the summer. Combining annual cycles of these responses with cloud radiative forcing results, clouds warm the surface by an estimated 7.8°C annually. A reanalysis product (ERA-I), operational model (CFSv2), and climate model (CESM) are evaluated utilizing the comprehensive set of SEB observations and process-based relationships. Annually, surface temperatures in each model are warmer than observed with overall poor representation of the coldest surface temperatures. Process-based relationships between different SEB flux terms offer insight into how well a modeling framework represents physical processes and the ability to distinguish errors in forcing versus those in physical representation. Such relationships convey that all three models underestimate the response of surface temperatures to changes in radiative forcing. These results provide a method to expose model deficiencies and indicate the importance of representing surface, sub-surface and boundary-layer processes when portraying cloud impacts on surface temperature variability.
NASA Astrophysics Data System (ADS)
Joetzjer, E.; Pillet, M.; Ciais, P.; Barbier, N.; Chave, J.; Schlund, M.; Maignan, F.; Barichivich, J.; Luyssaert, S.; Hérault, B.; von Poncet, F.; Poulter, B.
2017-07-01
Despite advances in Earth observation and modeling, estimating tropical biomass remains a challenge. Recent work suggests that integrating satellite measurements of canopy height within ecosystem models is a promising approach to infer biomass. We tested the feasibility of this approach to retrieve aboveground biomass (AGB) at three tropical forest sites by assimilating remotely sensed canopy height derived from a texture analysis algorithm applied to the high-resolution Pleiades imager in the Organizing Carbon and Hydrology in Dynamic Ecosystems Canopy (ORCHIDEE-CAN) ecosystem model. While mean AGB could be estimated within 10% of AGB derived from census data in average across sites, canopy height derived from Pleiades product was spatially too smooth, thus unable to accurately resolve large height (and biomass) variations within the site considered. The error budget was evaluated in details, and systematic errors related to the ORCHIDEE-CAN structure contribute as a secondary source of error and could be overcome by using improved allometric equations.
40-Gb/s PAM4 with low-complexity equalizers for next-generation PON systems
NASA Astrophysics Data System (ADS)
Tang, Xizi; Zhou, Ji; Guo, Mengqi; Qi, Jia; Hu, Fan; Qiao, Yaojun; Lu, Yueming
2018-01-01
In this paper, we demonstrate 40-Gb/s four-level pulse amplitude modulation (PAM4) transmission with 10 GHz devices and low-complexity equalizers for next-generation passive optical network (PON) systems. Simple feed-forward equalizer (FFE) and decision feedback equalizer (DFE) enable 20 km fiber transmission while high-complexity Volterra algorithm in combination with FFE and DFE can extend the transmission distance to 40 km. A simplified Volterra algorithm is proposed for reducing computational complexity. Simulation results show that the simplified Volterra algorithm reduces up to ∼75% computational complexity at a relatively low cost of only 0.4 dB power budget. At a forward error correction (FEC) threshold of 10-3 , we achieve 31.2 dB and 30.8 dB power budget over 40 km fiber transmission using traditional FFE-DFE-Volterra and our simplified FFE-DFE-Volterra, respectively.
Faye, A; Diousse, P; Seck, I; Diongue, M; Ndiaye, P; Diagne-Camara, M; Tal-Dia, A; Dia, La
2010-04-01
The SESAME plan has been implemented at the Thies Regional Hospital Center (TRHC) for one year. The purpose of this study was to analyze the financial implications of the plan on the hospital budget for the sustainability of care for persons aged 60 and over. This descriptive study included analysis of budget data from October 2006 to September 2007 plus information obtained by interviewing the accountant and head of SESAME plan. The number of patients managed, sources of CHRT funding, grants from various SESAME plan partners, and expenditures for each partner were determined. The weight of the SESAME plan in the CHRT operating budget was determined by calculating the ratio of the overall cost of care for elderly persons in relation to the hospital's revenues and SESAME grants. During the study period, the CHRT received a total of 17375 elderly persons including 89% with no pension or social security. The institute pension scheme (IPRES) covered 21% of the plan as compared to 79% for the state. Utilization plan grants in relation to funding source was 41% for IPRES and 124% for the State. The total cost of services provided to beneficiaries of the SESAME plan exceeded the aggregate amount by 26 083 847 CFA francs. The weight of the SESAME plan in the operating cost of the CHRT was 17%. Prefinancing a plan to cover elderly care in hospitals should be sufficient to prevent deficits from impacting negatively on the operating budget of the hospital.
Ye, Jiali; Leep, Carolyn; Newman, Sarah
2015-01-01
To provide an overview of budget cuts, job losses, and program reductions among local health departments (LHDs) and to examine the association between LHD infrastructure characteristics and the likelihood of budget cuts. Data from 4 waves of the economic surveillance survey (July-August 2009, September-November 2010, January-February 2012, and January-March 2013) conducted by the National Association of County & City Health Officials were analyzed to assess cuts to budgets, jobs, and programs since 2009. Data from the 2013 National Profile of Local Health Departments survey were used to assess the infrastructural characteristics associated with budget cuts. When asked in early 2013, more than a quarter of LHDs (26.9%) reported a reduced budget, continuing the trend of a substantial proportion of LHDs experiencing financial hardship in recent years. The percentages of LHDs that made cuts to programmatic areas fluctuated from year to year but have never been lower than 40%. Maternal and child health services were among areas most often cut during all 4 time points of the survey. Governance type, total expenditures, and percentage of revenues from local sources were significantly associated with LHD budget cuts. Cuts in LHD budgets, staff, and activities have been widespread for a period that lasted long after the official end of the Great Recession. There is a great need for substantive and consistent funding to ensure the retention of the workforce and the delivery of essential public health services.
NASA Astrophysics Data System (ADS)
Yamada, Y.; Gouda, N.; Yano, T.; Kobayashi, Y.; Niwa, Y.; Niwa
2008-07-01
Japan Astrometry Satellite Mission for Infrared Exploration (JASMINE) aims to construct a map of the Galactic bulge with a 10 μas accuracy. We use z-band CCD or K-band array detector to avoid dust absorption, and observe about 10 × 20 degrees area around the Galactic bulge region. In this poster, we show the observation strategy, reduction scheme, and error budget. We also show the basic design of the software for the end-to-end simulation of JASMINE, named JASMINE Simulator.
The AFGL (Air Force Geophysics Laboratory) Absolute Gravity System’s Error Budget Revisted.
1985-05-08
also be induced by equipment not associated with the system. A systematic bias of 68 pgal was observed by the Istituto di Metrologia "G. Colonnetti...Laboratory Astrophysics, Univ. of Colo., Boulder, Colo. IMGC: Istituto di Metrologia "G. Colonnetti", Torino, Italy Table 1. Absolute Gravity Values...measurements were made with three Model D and three Model G La Coste-Romberg gravity meters. These instruments were operated by the following agencies
Geostationary Operational Environmental Satellite (GOES-N report). Volume 2: Technical appendix
NASA Technical Reports Server (NTRS)
1992-01-01
The contents include: operation with inclinations up to 3.5 deg to extend life; earth sensor improvements to reduce noise; sensor configurations studied; momentum management system design; reaction wheel induced dynamic interaction; controller design; spacecraft motion compensation; analog filtering; GFRP servo design - modern control approach; feedforward compensation as applied to GOES-1 sounder; discussion of allocation of navigation, inframe registration and image-to-image error budget overview; and spatial response and cloud smearing study.
NASA Technical Reports Server (NTRS)
McCorkel, Joel; Thome, Kurtis; Hair, Jason; McAndrew, Brendan; Jennings, Don; Rabin, Douglas; Daw, Adrian; Lundsford, Allen
2012-01-01
The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission key goals include enabling observation of high accuracy long-term climate change trends, use of these observations to test and improve climate forecasts, and calibration of operational and research sensors. The spaceborne instrument suites include a reflected solar spectroradiometer, emitted infrared spectroradiometer, and radio occultation receivers. The requirement for the RS instrument is that derived reflectance must be traceable to Sl standards with an absolute uncertainty of <0.3% and the error budget that achieves this requirement is described in previo1L5 work. This work describes the Solar/Lunar Absolute Reflectance Imaging Spectroradiometer (SOLARIS), a calibration demonstration system for RS instrument, and presents initial calibration and characterization methods and results. SOLARIS is an Offner spectrometer with two separate focal planes each with its own entrance aperture and grating covering spectral ranges of 320-640, 600-2300 nm over a full field-of-view of 10 degrees with 0.27 milliradian sampling. Results from laboratory measurements including use of integrating spheres, transfer radiometers and spectral standards combined with field-based solar and lunar acquisitions are presented. These results will be used to assess the accuracy and repeatability of the radiometric and spectral characteristics of SOLARIS, which will be presented against the sensor-level requirements addressed in the CLARREO RS instrument error budget.
The next generation in optical transport semiconductors: IC solutions at the system level
NASA Astrophysics Data System (ADS)
Gomatam, Badri N.
2005-02-01
In this tutorial overview, we survey some of the challenging problems facing Optical Transport and their solutions using new semiconductor-based technologies. Advances in 0.13um CMOS, SiGe/HBT and InP/HBT IC process technologies and mixed-signal design strategies are the fundamental breakthroughs that have made these solutions possible. In combination with innovative packaging and transponder/transceiver architectures IC approaches have clearly demonstrated enhanced optical link budgets with simultaneously lower (perhaps the lowest to date) cost and manufacturability tradeoffs. This paper will describe: *Electronic Dispersion Compensation broadly viewed as the overcoming of dispersion based limits to OC-192 links and extending link budgets, *Error Control/Coding also known as Forward Error Correction (FEC), *Adaptive Receivers for signal quality monitoring for real-time estimation of Q/OSNR, eye-pattern, signal BER and related temporal statistics (such as jitter). We will discuss the theoretical underpinnings of these receiver and transmitter architectures, provide examples of system performance and conclude with general market trends. These Physical layer IC solutions represent a fundamental new toolbox of options for equipment designers in addressing systems level problems. With unmatched cost and yield/performance tradeoffs, it is expected that IC approaches will provide significant flexibility in turn, for carriers and service providers who must ultimately manage the network and assure acceptable quality of service under stringent cost constraints.
Optomechanical design of the vacuum compatible EXCEDE's mission testbed
NASA Astrophysics Data System (ADS)
Bendek, Eduardo A.; Belikov, Ruslan; Lozi, Julien; Schneider, Glenn; Thomas, Sandrine; Pluzhnik, Eugene; Lynch, Dana
2014-08-01
In this paper we describe the opto-mechanical design, tolerance error budget an alignment strategies used to build the Starlight Suppression System (SSS) for the Exoplanetary Circumstellar Environments and Disk Explorer (EXCEDE) NASA's mission. EXCEDE is a highly efficient 0.7m space telescope concept designed to directly image and spatially resolve circumstellar disks with as little as 10 zodis of circumstellar dust, as well as large planets. The main focus of this work was the design of a vacuum compatible opto-mechanical system that allows remote alignment and operation of the main components of the EXCEDE. SSS, which are: a Phase Induced Amplitude Apodization (PIAA) coronagraph to provide high throughput and high contrast at an inner working angle (IWA) equal to the diffraction limit (IWA = 1.2 l/D), a wavefront (WF) control system based on a Micro-Electro-Mechanical-System deformable mirror (MEMS DM), and low order wavefront sensor (LOWFS) for fine pointing and centering. We describe in strategy and tolerance error budget for this system, which is especially relevant to achieve the theoretical performance that PIAA coronagraph can offer. We also discuss the vacuum cabling design for the actuators, cameras and the Deformable Mirror. This design has been implemented at the vacuum chamber facility at Lockheed Martin (LM), which is based on successful technology development at the Ames Coronagraph Experiment (ACE) facility.
NASA Astrophysics Data System (ADS)
Bassam, S.; Ren, J.
2017-12-01
Predicting future water availability in watersheds is very important for proper water resources management, especially in semi-arid regions with scarce water resources. Hydrological models have been considered as powerful tools in predicting future hydrological conditions in watershed systems in the past two decades. Streamflow and evapotranspiration are the two important components in watershed water balance estimation as the former is the most commonly-used indicator of the overall water budget estimation, and the latter is the second biggest component of water budget (biggest outflow from the system). One of the main concerns in watershed scale hydrological modeling is the uncertainties associated with model prediction, which could arise from errors in model parameters and input meteorological data, or errors in model representation of the physics of hydrological processes. Understanding and quantifying these uncertainties are vital to water resources managers for proper decision making based on model predictions. In this study, we evaluated the impacts of different climate change scenarios on the future stream discharge and evapotranspiration, and their associated uncertainties, throughout a large semi-arid basin using a stochastically-calibrated, physically-based, semi-distributed hydrological model. The results of this study could provide valuable insights in applying hydrological models in large scale watersheds, understanding the associated sensitivity and uncertainties in model parameters, and estimating the corresponding impacts on interested hydrological process variables under different climate change scenarios.
The Future of Theater Missile Defense
1994-06-01
fiscal years, and all costs are expressed in constant 1995 dollars of budget authority. Numbers in text and tables may not add to totals because of...plan goes too far. Others think that it does not go far enough. This Congressional Budget Office (CBO) paper analyzes the costs and capabilities of...compliance issues that the plan may raise with the Anti-Ballistic Missile Treaty. Finally, it analyzes the costs and effects of several alternatives to the
Water Budgets of the Walker River Basin and Walker Lake, California and Nevada
Lopes, Thomas J.; Allander, Kip K.
2009-01-01
The Walker River is the main source of inflow to Walker Lake, a closed-basin lake in west-central Nevada. The only outflow from Walker Lake is evaporation from the lake surface. Between 1882 and 2008, upstream agricultural diversions resulted in a lake-level decline of more than 150 feet and storage loss of 7,400,000 acre-feet. Evaporative concentration increased dissolved solids from 2,500 to 17,000 milligrams per liter. The increase in salinity threatens the survival of the Lahontan cutthroat trout, a native species listed as threatened under the Endangered Species Act. This report describes streamflow in the Walker River basin and an updated water budget of Walker Lake with emphasis on the lower Walker River basin downstream from Wabuska, Nevada. Water budgets are based on average annual flows for a 30-year period (1971-2000). Total surface-water inflow to the upper Walker River basin upstream from Wabuska was estimated to be 387,000 acre-feet per year (acre-ft/yr). About 223,000 acre-ft/yr (58 percent) is from the West Fork of the Walker River; 145,000 acre-ft/yr (37 percent) is from the East Fork of the Walker River; 17,000 acre-ft/yr (4 percent) is from the Sweetwater Range; and 2,000 acre-ft/yr (less than 1 percent) is from the Bodie Mountains, Pine Grove Hills, and western Wassuk Range. Outflow from the upper Walker River basin is 138,000 acre-ft/yr at Wabuska. About 249,000 acre-ft/yr (64 percent) of inflow is diverted for irrigation, transpired by riparian vegetation, evaporates from lakes and reservoirs, and recharges alluvial aquifers. Stream losses in Antelope, Smith, and Bridgeport Valleys are due to evaporation from reservoirs and agricultural diversions with negligible stream infiltration or riparian evapotranspiration. Diversion rates in Antelope and Smith Valleys were estimated to be 3.0 feet per year (ft/yr) in each valley. Irrigated fields receive an additional 0.8 ft of precipitation, groundwater pumpage, or both for a total applied-water rate of 3.8 ft/yr. The average corrected total evapotranspiration rate for alfalfa is 3.2 ft/yr so about 0.6 ft/yr (15 percent) flushes salts from the soil. The diversion rate in Bridgeport Valley was estimated to be 1.1 ft/yr and precipitation is 1.3 ft/yr. The total applied-water rate of 2.4 ft/yr is used to irrigate pasture grass. The total applied water rate in the East Fork of the Walker River and Mason Valley was estimated to be 4.8 ft/yr in each valley. The higher rate likely is due to appreciable infiltration, riparian evapotranspiration, or both. Assuming a diversion rate of 3.0 ft/yr, stream loss due to infiltration and riparian evapotranspiration is about 3,000 acre-ft/yr along the East Fork of the Walker River and 14,000 acre-ft/yr in Mason Valley. In the lower Walker River basin, overall and groundwater budgets were calculated for Wabuska to Schurz, Nev., and Schurz to Walker Lake. An overall water budget was calculated for the combined reaches. Imbalances in the water budgets range from 1 to 7 percent, which are insignificant statistically, so the water budgets balance. Total inflow to the Wabuska-Walker Lake reach from the river and others sources is 140,000 acre-ft/yr. Stream and subsurface discharge into the northern end of Walker Lake totals 110,000 acre-ft/yr. About 30,000 acre-ft/yr is lost on the Walker River Indian Reservation from agricultural evapotranspiration, evapotranspiration by native and invasive vegetation, domestic pumpage, and subsurface outflow from the basin through Double Spring and the Wabuska lineament. Alfalfa fields in the upper Walker River basin are lush and have an average corrected total evapotranspiration rate of 3.2 ft/yr. Alfalfa fields on the Walker River Indian Reservation are not as lush and have a total corrected evapotranspiration rate of 1.6-2.1 ft/yr, which partly could be due to alkaline soils that were submerged by Pleistocene Lake Lahontan. The total applied-water rate is 7.0 ft/yr, almost twice the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
The record of two days of hearings on the President's budget requests for 1987 includes statements by members of the Senate Committee on Energy and Natural Resources and testimony by Energy Secretary John Herrington, Interior Secretary Donald Hodel, and representatives of the Agriculture Department and the Federal Energy Regulatory Commission. The committee's jurisdiction covers $9.8 billion of the proposed budget, which is a 25% decrease from the previous year. There was concern that the one-year drop, equal to the total decrease of the previous five years, would be disruptive to energy programs. Secretaries Herrington and Hodel argued in support ofmore » the budget proposals, and joined other administration spokesmen in support of lowering federal expenditures. Four appendices present responses and additional supporting documentation.« less
Brodszky, Valentin; Rencz, Fanni; Péntek, Márta; Baji, Petra; Lakatos, Péter L; Gulácsi, László
2016-01-01
To estimate the budget impact of the introduction of biosimilar infliximab for the treatment of Crohn's disease (CD) in Bulgaria, the Czech Republic, Hungary, Poland, Romania and Slovakia. A 3-year, prevalence-based budget impact analysis for biosimilar infliximab to treat CD was developed from third-party payers' perspective. The model included various scenarios depending on whether interchanging originator infliximab with biosimilar infliximab was allowed or not. Total cost savings achieved in biosimilar scenario 1 (interchanging not allowed) and BSc2 (interchanging allowed in 80% of the patients) were estimated to €8.0 million and €16.9 million in the six countries. Budget savings may cover the biosimilar infliximab therapy for 722-1530 additional CD patients. Introduction of biosimilar infliximab to treat CD may offset the inequity in access to biological therapy for CD between Central and Eastern European countries.
NASA Technical Reports Server (NTRS)
Mahan, J. R.; Tira, N. E.; Lee, Robert B., III; Keynton, R. J.
1989-01-01
The Earth Radiation Budget Experiment consists of an array of radiometric instruments placed in earth orbit by the National Aeronautics and Space Administration to monitor the longwave and visible components of the earth's radiation budget. Presented is a dynamic electrothermal model of the active cavity radiometer used to measure the earth's total radiative exitance. Radiative exchange is modeled using the Monte Carlo method and transient conduction is treated using the finite element method. Also included is the feedback circuit which controls electrical substitution heating of the cavity. The model is shown to accurately predict the dynamic response of the instrument during solar calibration.
Atmospheric energetics in regions of intense convective activity
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.
1977-01-01
Synoptic-scale budgets of kinetic and total potential energy are computed using 3- and 6-h data at nine times from NASA's fourth Atmospheric Variability Experiment (AVE IV). Two intense squall lines occurred during the period. Energy budgets for areas that enclose regions of intense convection are shown to have systematic changes that relate to the life cycles of the convection. Some of the synoptic-scale energy processes associated with the convection are found to be larger than those observed in the vicinity of mature cyclones. Volumes enclosing intense convection are found to have large values of cross-contour conversion of potential to kinetic energy and large horizontal export of kinetic energy. Although small net vertical transport of kinetic energy is observed, values at individual layers indicate large upward transport. Transfer of kinetic energy from grid to subgrid scales of motion occurs in the volumes. Latent heat release is large in the middle and upper troposphere and is thought to be the cause of the observed cyclic changes in the budget terms. Total potential energy is found to be imported horizontally in the lower half of the atmosphere, transported aloft, and then exported horizontally. Although local changes of kinetic energy and total potential energy are small, interaction between volumes enclosing convection with surrounding larger volumes is quite large.
NASA Astrophysics Data System (ADS)
Yahiro, Takehisa; Sawamura, Junpei; Dosho, Tomonori; Shiba, Yuji; Ando, Satoshi; Ishikawa, Jun; Morita, Masahiro; Shibazaki, Yuichi
2018-03-01
One of the main components of an On-Product Overlay (OPO) error budget is the process induced wafer error. This necessitates wafer-to-wafer correction in order to optimize overlay accuracy. This paper introduces the Litho Booster (LB), standalone alignment station as a solution to improving OPO. LB can execute high speed alignment measurements without throughput (THP) loss. LB can be installed in any lithography process control loop as a metrology tool, and is then able to provide feed-forward (FF) corrections to the scanners. In this paper, the detailed LB design is described and basic LB performance and OPO improvement is demonstrated. Litho Booster's extendibility and applicability as a solution for next generation manufacturing accuracy and productivity challenges are also outlined
Astrometry for New Reductions: The ANR method
NASA Astrophysics Data System (ADS)
Robert, Vincent; Le Poncin-Lafitte, Christophe
2018-04-01
Accurate positional measurements of planets and satellites are used to improve our knowledge of their orbits and dynamics, and to infer the accuracy of the planet and satellite ephemerides. With the arrival of the Gaia-DR1 reference star catalog and its complete release afterward, the methods for ground-based astrometry become outdated in terms of their formal accuracy compared to the catalog's which is used. Systematic and zonal errors of the reference stars are eliminated, and the astrometric process now dominates in the error budget. We present a set of algorithms for computing the apparent directions of planets, satellites and stars on any date to micro-arcsecond precision. The expressions are consistent with the ICRS reference system, and define the transformation between theoretical reference data, and ground-based astrometric observables.
Active Optics: stress polishing of toric mirrors for the VLT SPHERE adaptive optics system.
Hugot, Emmanuel; Ferrari, Marc; El Hadi, Kacem; Vola, Pascal; Gimenez, Jean Luc; Lemaitre, Gérard R; Rabou, Patrick; Dohlen, Kjetil; Puget, Pascal; Beuzit, Jean Luc; Hubin, Norbert
2009-05-20
The manufacturing of toric mirrors for the Very Large Telescope-Spectro-Polarimetric High-Contrast Exoplanet Research instrument (SPHERE) is based on Active Optics and stress polishing. This figuring technique allows minimizing mid and high spatial frequency errors on an aspherical surface by using spherical polishing with full size tools. In order to reach the tight precision required, the manufacturing error budget is described to optimize each parameter. Analytical calculations based on elasticity theory and finite element analysis lead to the mechanical design of the Zerodur blank to be warped during the stress polishing phase. Results on the larger (366 mm diameter) toric mirror are evaluated by interferometry. We obtain, as expected, a toric surface within specification at low, middle, and high spatial frequencies ranges.
The Error in Total Error Reduction
Witnauer, James E.; Urcelay, Gonzalo P.; Miller, Ralph R.
2013-01-01
Most models of human and animal learning assume that learning is proportional to the discrepancy between a delivered outcome and the outcome predicted by all cues present during that trial (i.e., total error across a stimulus compound). This total error reduction (TER) view has been implemented in connectionist and artificial neural network models to describe the conditions under which weights between units change. Electrophysiological work has revealed that the activity of dopamine neurons is correlated with the total error signal in models of reward learning. Similar neural mechanisms presumably support fear conditioning, human contingency learning, and other types of learning. Using a computational modelling approach, we compared several TER models of associative learning to an alternative model that rejects the TER assumption in favor of local error reduction (LER), which assumes that learning about each cue is proportional to the discrepancy between the delivered outcome and the outcome predicted by that specific cue on that trial. The LER model provided a better fit to the reviewed data than the TER models. Given the superiority of the LER model with the present data sets, acceptance of TER should be tempered. PMID:23891930
9 CFR 318.309 - Finished product inspection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... microbiological contamination; (2) An FSIS-approved total quality control system; (3) Alternative documented... associated with microbial contamination, where there is no approved total quality control system, or where... Office of Management and Budget under control number 0583-0015) [51 FR 45619, Dec. 19, 1986, as amended...
A source-channel coding approach to digital image protection and self-recovery.
Sarreshtedari, Saeed; Akhaee, Mohammad Ali
2015-07-01
Watermarking algorithms have been widely applied to the field of image forensics recently. One of these very forensic applications is the protection of images against tampering. For this purpose, we need to design a watermarking algorithm fulfilling two purposes in case of image tampering: 1) detecting the tampered area of the received image and 2) recovering the lost information in the tampered zones. State-of-the-art techniques accomplish these tasks using watermarks consisting of check bits and reference bits. Check bits are used for tampering detection, whereas reference bits carry information about the whole image. The problem of recovering the lost reference bits still stands. This paper is aimed at showing that having the tampering location known, image tampering can be modeled and dealt with as an erasure error. Therefore, an appropriate design of channel code can protect the reference bits against tampering. In the present proposed method, the total watermark bit-budget is dedicated to three groups: 1) source encoder output bits; 2) channel code parity bits; and 3) check bits. In watermark embedding phase, the original image is source coded and the output bit stream is protected using appropriate channel encoder. For image recovery, erasure locations detected by check bits help channel erasure decoder to retrieve the original source encoded image. Experimental results show that our proposed scheme significantly outperforms recent techniques in terms of image quality for both watermarked and recovered image. The watermarked image quality gain is achieved through spending less bit-budget on watermark, while image recovery quality is considerably improved as a consequence of consistent performance of designed source and channel codes.
NASA Astrophysics Data System (ADS)
Senten, C.; de Mazière, M.; Dils, B.; Hermans, C.; Kruglanski, M.; Neefs, E.; Scolas, F.; Vandaele, A. C.; Vanhaelewyn, G.; Vigouroux, C.; Carleer, M.; Coheur, P. F.; Fally, S.; Barret, B.; Baray, J. L.; Delmas, R.; Leveau, J.; Metzger, J. M.; Mahieu, E.; Boone, C.; Walker, K. A.; Bernath, P. F.; Strong, K.
2008-07-01
Ground-based high spectral resolution Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique to obtain information on the total column abundances and on the vertical distribution of various constituents in the atmosphere. This work presents results from two FTIR measurement campaigns in 2002 and 2004, held at Ile de La Réunion (21° S, 55° E). These campaigns represent the first FTIR observations carried out at a southern (sub)tropical site. They serve the initiation of regular, long-term FTIR monitoring at this site in the near future. To demonstrate the capabilities of the FTIR measurements at this location for tropospheric and stratospheric monitoring, a detailed report is given on the retrieval strategy, information content and corresponding full error budget evaluation for ozone (O3), methane (CH4), nitrous oxide (N2O), carbon monoxide (CO), ethane (C2H6), hydrogen chloride (HCl), hydrogen fluoride (HF) and nitric acid (HNO3) total and partial column retrievals. Moreover, we have made a thorough comparison of the capabilities at sea level altitude (St.-Denis) and at 2200 m a.s.l. (Maïdo). It is proved that the performances of the technique are such that the atmospheric variability can be observed, at both locations and in distinct altitude layers. Comparisons with literature and with correlative data from ozone sonde and satellite (i.e., ACE-FTS, HALOE and MOPITT) measurements are given to confirm the results. Despite the short time series available at present, we have been able to detect the seasonal variation of CO in the biomass burning season, as well as the impact of particular biomass burning events in Africa and Madagascar on the atmospheric composition above Ile de La Réunion. We also show that differential measurements between St.-Denis and Maïdo provide useful information about the concentrations in the boundary layer.
NASA Astrophysics Data System (ADS)
Matvienko, G. G.; Belan, B. D.; Panchenko, M. V.; Romanovskii, O. A.; Sakerin, S. M.; Kabanov, D. M.; Turchinovich, S. A.; Turchinovich, Yu. S.; Eremina, T. A.; Kozlov, V. S.; Terpugova, S. A.; Pol'kin, V. V.; Yausheva, E. P.; Chernov, D. G.; Zuravleva, T. B.; Bedareva, T. V.; Odintsov, S. L.; Burlakov, V. D.; Arshinov, M. Yu.; Ivlev, G. A.; Savkin, D. E.; Fofonov, A. V.; Gladkikh, V. A.; Kamardin, A. P.; Belan, D. B.; Grishaev, M. V.; Belov, V. V.; Afonin, S. V.; Balin, Yu. S.; Kokhanenko, G. P.; Penner, I. E.; Samoilova, S. V.; Antokhin, P. N.; Arshinova, V. G.; Davydov, D. K.; Kozlov, A. V.; Pestunov, D. A.; Rasskazchikova, T. M.; Simonenkov, D. V.; Sklyadneva, T. K.; Tolmachev, G. N.; Belan, S. B.; Shmargunov, V. P.; Rostov, A. P.; Tikhomirova, O. V.; Shefer, N. A.; Safatov, A. S.; Kozlov, A. S.; Malyshkin, S. B.; Maksimova, T. A.
2014-11-01
The main aim of the work was complex experimental measurements of microphysical, chemical, and optical parameters of aerosol particles in the surface air layer and free atmosphere. From the measurement data, the entire set of aerosol optical parameters was retrieved, required for radiation calculations. Three measurement runs were carried out in 2013 within the experiment: in spring, when the aerosol generation maximum is observed, in summer (July), when the altitude of the atmospheric boundary layer is the highest, and in the late summer - early autumn, when the second nucleation period is recorded. The following instruments were used in the experiment: diffusion aerosol spectrometers (DAS), GRIMM photoelectric counters, angle-scattering nephelometers, aethalometer, SP-9/6 sun photometer, RE 318 Sun-Sky radiometer (AERONET), MS-53 pyrheliometer, MS-802 pyranometer, ASP aureole photometer, SSP scanning photometer, TU-134 Optik flying laboratory, Siberian lidar station, stationary multiwave lidar complex LOZA-M, spectrophotometric complex for measuring total ozone and NO2, multivariable instrument for measuring atmospheric parameters, METEO-2 USM, 2.4 AEHP-2.4m station for satellite data receive. Results of numerical calculations of solar down-fluxes on the Earth's surface were compared with the values measured in clear air in the summer periods in 2010—2012 in a background region of Siberian boreal zone. It was shown that the relative differences between model and experimental values of direct and total radiation do not exceed 1% and 3%, respectively, with accounting for instrumental errors and measurement error of atmospheric parameters. Thus, independent data on optical, meteorological, and microphysical atmospheric parameters allow mutual intercalibration and supplement and, hence, provide for qualitatively new data, which can explain physical nature of processes that form the vertical structure of the aerosol filed.
Hurley, J; Card, R
1996-01-01
Since 1990 payment for physician services in the fee-for-service sector has shifted from an open-ended system to fixed global budgets. This shift has created a new economic context for practising medicine in Canada. A global cap creates a conflict between physicians' individual economic self-interest and their collective interest in constraining total billings within the capped budget. These types of incentive problems occur in managing what are known in economics as "common-property resources." Analysts studying common-property resources have documented several management principles associated with successful, long-run use of such resources in the face of these conflicting incentives. These management principles include early defining the boundaries of the common-property resource, explicitly specifying rules for using the resource, developing collective decision-making arrangements and monitoring mechanisms, and creating low-cost conflict-resolution mechanisms. The authors argue that global physician budgets can usefully be viewed as common-property-resources. They describe some of the key management principles and note some implications for physicians and the provincial and territorial medical associations as they adapt to global budgets. PMID:8612251
The influence of non-CO2 forcings on cumulative carbon emissions budgets
NASA Astrophysics Data System (ADS)
Tokarska, Katarzyna B.; Gillett, Nathan P.; Arora, Vivek K.; Lee, Warren G.; Zickfeld, Kirsten
2018-03-01
Carbon budgets provide a useful tool for policymakers to help meet the global climate targets, as they specify total allowable carbon emissions consistent with limiting warming to a given temperature threshold. Non-CO2 forcings have a net warming effect in the Representative Concentration Pathways (RCP) scenarios, leading to reductions in remaining carbon budgets based on CO2 forcing alone. Carbon budgets consistent with limiting warming to below 2.0 °C, with and without accounting for the effects of non-CO2 forcings, were assessed in inconsistent ways by the Intergovernmental Panel on Climate Change (IPCC), making the effects of non-CO2 forcings hard to identify. Here we use a consistent approach to compare 1.5 °C and 2.0 °C carbon budgets with and without accounting for the effects of non-CO2 forcings, using CO2-only and RCP8.5 simulations. The median allowable carbon budgets for 1.5 °C and 2.0 °C warming are reduced by 257 PgC and 418 PgC, respectively, and the uncertainty ranges on the budgets are reduced by more than a factor of two when accounting for the net warming effects of non-CO2 forcings. While our overall results are consistent with IPCC, we use a more robust methodology, and explain the narrower uncertainty ranges of carbon budgets when non-CO2 forcings are included. We demonstrate that most of the reduction in carbon budgets is a result of the direct warming effect of the non-CO2 forcings, with a secondary contribution from the influence of the non-CO2 forcings on the carbon cycle. Such carbon budgets are expected to play an increasingly important role in climate change mitigation, thus understanding the influence of non-CO2 forcings on these budgets and their uncertainties is critical.
Homogeneous studies of transiting extrasolar planets - III. Additional planets and stellar models
NASA Astrophysics Data System (ADS)
Southworth, John
2010-11-01
I derive the physical properties of 30 transiting extrasolar planetary systems using a homogeneous analysis of published data. The light curves are modelled with the JKTEBOP code, with special attention paid to the treatment of limb darkening, orbital eccentricity and error analysis. The light from some systems is contaminated by faint nearby stars, which if ignored will systematically bias the results. I show that it is not realistically possible to account for this using only transit light curves: light-curve solutions must be constrained by measurements of the amount of contaminating light. A contamination of 5 per cent is enough to make the measurement of a planetary radius 2 per cent too low. The physical properties of the 30 transiting systems are obtained by interpolating in tabulated predictions from theoretical stellar models to find the best match to the light-curve parameters and the measured stellar velocity amplitude, temperature and metal abundance. Statistical errors are propagated by a perturbation analysis which constructs complete error budgets for each output parameter. These error budgets are used to compile a list of systems which would benefit from additional photometric or spectroscopic measurements. The systematic errors arising from the inclusion of stellar models are assessed by using five independent sets of theoretical predictions for low-mass stars. This model dependence sets a lower limit on the accuracy of measurements of the physical properties of the systems, ranging from 1 per cent for the stellar mass to 0.6 per cent for the mass of the planet and 0.3 per cent for other quantities. The stellar density and the planetary surface gravity and equilibrium temperature are not affected by this model dependence. An external test on these systematic errors is performed by comparing the two discovery papers of the WASP-11/HAT-P-10 system: these two studies differ in their assessment of the ratio of the radii of the components and the effective temperature of the star. I find that the correlations of planetary surface gravity and mass with orbital period have significance levels of only 3.1σ and 2.3σ, respectively. The significance of the latter has not increased with the addition of new data since Paper II. The division of planets into two classes based on Safronov number is increasingly blurred. Most of the objects studied here would benefit from improved photometric and spectroscopic observations, as well as improvements in our understanding of low-mass stars and their effective temperature scale.
NASA Astrophysics Data System (ADS)
Whelan, M.; LaFranchi, B. W.; Bambha, R.; Michelsen, H. A.; Fischer, M. L.; Graven, H. D.; Baker, I. T.; Guilderson, T.; Campbell, J. E.
2016-12-01
Direct measurement and attribution of carbon exchange over urban areas is challenging because of the heterogeneity of the landscape and errors introduced by flux source partitioning. One important contribution to uncertainty is the influence of the urban biosphere on the regional carbon budget. Atmospheric observations of carbonyl sulfide (COS) are an emerging tool for estimating gross primary productivity: COS is consumed in plant leaves by parallel pathways to CO2 uptake, without the additional complexity of an analogous respiration term. This study makes use of COS measurements to better understand fluctuations in total CO2 concentrations over an urban region due to the balance of photosynthesis and respiration. In situ ground-based observations of trace gas concentrations were made from a tower in Livermore, CA, USA, and interpreted with WRF-STILT back trajectories and gridded data sets (e.g. VULCAN, a new anthropogenic COS inventory), supplemented with biosphere models (SiB, CASA-GFED3). CO2, 14CO2, and CO observations were used to first parse the contribution of fossil fuel emissions to total CO2. Changes in the remainder CO2 was differentiated as the sum of biosphere components with associated uncertainties. This approach could be used to better validate carbon emissions reduction measures and ecosytem-based carbon capture projects on the regional scale.
Forward to the Future: Estimating River Discharge with McFLI
NASA Astrophysics Data System (ADS)
Gleason, C. J.; Durand, M. T.; Garambois, P. A.
2016-12-01
The global surface water budget is still poorly understood, and improving our understanding of freshwater budgets requires coordination between in situ observations, models, and remote sensing. The upcoming launch of the NASA/CNES Surface Water and Ocean Topography (SWOT) satellite has generated considerable excitement as a new tool enabling hydrologists to tackle some of the most pressing questions facing their discipline. One question in particular which SWOT seems well suited to answer is river discharge (flow rate) estimation in ungauged basins: SWOT's anticipated measurements of river surface height and area have ushered in a new technique in hydrology- what we are here calling Mass conserved Flow Law Inversions, or McFLI. McFLI algorithms leverage classic hydraulic flow expressions (e.g. Manning's Equation, hydraulic geometry) within mass conserved river reaches to construct a simplified but still underconstrained system of equations to be solved for an unknown discharge. Most existing McFLI techniques have been designed to take advantage of SWOT's measurements and Manning's Equation: SWOT will observe changes in cross sectional area and river surface slope over time, so the McFLI need only solve for baseflow area and Manning's roughness coefficient. Recently published preliminary results have indicated that McFLI can be a viable tool in a global hydrologist's toolbox (discharge errors less than 30% as compared to gauges are possible in most cases). Therefore, we here outline the progress to date for McFLI techniques, and highlight three key areas for future development: 1) Maximize the accuracy and robustness of McFLI by incorporating ancillary data from satellites, models, and in situ observations. 2) Develop new McFLI techniques using novel or underutilized flow laws. 3) Systematically test McFLI to define different inversion classes of rivers with well-defined error budgets based on geography and available data for use in gauged and ungauged basins alike.
Greenhouse gas budgets of managed European grasslands
NASA Astrophysics Data System (ADS)
Ammann, C.; Horváth, L.; Jones, S. K.
2012-04-01
Greenhouse gas exchange of grasslands are directly and indirectly related to the respective carbon (C) and nitrogen (N) budget. Within the framework of the NitroEurope project we investigated the greenhouse gas, carbon, and nitrogen budgets of four European grassland systems over several years: Easter Bush (UK), Oensingen intensive and extensive (CH), and Bugac (HU). They span contrasting climatic conditions, management types (grazing, cutting) and intensity. While Easter Bush (pasture) and Oensingen int. (meadow) were intensively managed and received a considerable amount of fertiliser, the unfertilised sites Bugac (pasture) and Oensingen ext. (meadow) depended on atmospheric N input (wet and dry deposition) and biological N fixation. The experimental results of the four sites were also compared to published GHG fluxes of other European grasslands. While the ecosystem CO2 exchange was measured on the field scale with the eddy covariance method, the soil fluxes of the other greenhouse gases CH4 and N2O have been detected generally by means of static chambers (only occasional application of eddy covariance). The emission of CH4 by grazing ruminant resulting from enteric fermentation was estimated by animal type specific emission factors. For characterizing the total GHG effect of the grassland sites, the contributions of the different GHGs were normalised to CO2-equivalents. Except for Oensingen ext., all sites showed positive C budgets (sequestration). The observed positive correlation between C and N sequestration (with a ratio between 10 and 20) agrees with studies reported in the literature. The magnitude of N2O emission depended mainly on management intensity (fertiliser input) and on the soil moisture conditions. Whereas for the Oensingen and the Bugac sites, the total GHG budget was dominated by the carbon budget, for Easter Bush the combined effect of N2O and CH4 emission (including animal enteric fermentation) was in the same order of magnitude as the carbon sequestration leading to a strong compensation of the GHG effects. However, if digestion of harvested biomass is also attributed to the GHG budget of the non-grazed meadows, they become dominated by CH4 emission from enteric fermentation. The results show that the comparison of GHG budgets of grazed and non-grazed grasslands is difficult and needs clearly defined system boundaries.
Carbon budget over 12 years in a production crop under temperate climate
NASA Astrophysics Data System (ADS)
Buysse, Pauline; Bodson, Bernard; Debacq, Alain; De Ligne, Anne; Heinesch, Bernard; Manise, Tanguy; Moureaux, Christine; Aubinet, Marc
2017-04-01
Carbon dioxide (CO2) exchanges between crops and the atmosphere are influenced by both climatic and crop management drivers. The investigated crop, situated at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site) in Belgium and managed for more than 70 years using conventional farming practices, was monitored over three complete sugar beet (or maize)/winter wheat/potato/winter wheat rotation cycles from 2004 to 2016. Continuous eddy-covariance measurements and regular biomass samplings were performed in order to obtain the daily and seasonal Net Ecosystem Exchange (NEE), Gross Primary Productivity, Total Ecosystem Respiration, Net Primary Productivity, and Net Biome Production (NBP). Meteorological data and crop management practices were also recorded. The main objectives were to analyze the CO2 flux responses to climatic drivers and to establish the C budget of the cropland. Crop type significantly influenced the measured CO2 fluxes. In addition to crop season duration, which had an obvious impact on cumulated NEE values for each crop type, the CO2 flux response to photosynthetic photon flux density, vapor pressure deficit and temperature differed between crop types, while no significant response to soil water content was observed in any of them. Besides, a significant positive relationship between crop residue amount and ecosystem respiration was observed. Over the 12 years, NEE was negative (-4.34 ± 0.21 kg C m-2) but NBP was positive (1.05 ± 0.30 kg C m-2), i.e. as soon as all lateral carbon fluxes - dominated by carbon exportation - are included in the budget, the site behaves as a carbon source. Intercrops were seen to play a major role in the carbon budget, being mostly due to the long time period it represented (59 % of the 12 year time period). An in-depth analysis of intercrop periods and, more specifically, growing cover crops (mustard in the case of our study), is developed in a companion poster (ref. abstract EGU2017-12216, session SSS9.14/BG9.46/CL3.13). Although in line with preceding studies, the large C loss rate observed at LTO (NBP = + 87 ± 25 kg C m-2 yr-1) raises several questions as it corresponds to 1.8 % of the C stock in the top soil: is it realistic? Wouldn't it be affected by an undetected systematic error? If correct, could soil properties be preserved on the long term? This result at least calls for extensive C stock inventory for (in)validation.
NASA Astrophysics Data System (ADS)
Van-Wierts, S.; Bernatchez, P.
2012-04-01
Coastal erosion is an important issue within the St-Lawrence estuary and gulf, especially in zones of unconsolidated material. Wide beaches are important coastal environments; they act as a buffer against breaking waves by absorbing and dissipating their energy, thus reducing the rate of coastal erosion. They also offer protection to humans and nearby ecosystems, providing habitat for plants, animals and lifeforms such as algae and microfauna. Conventional methods, such as aerial photograph analysis, fail to adequately quantify the morphosedimentary behavior of beaches at the scale of a hydrosedimentary cells. The lack of reliable and quantitative data leads to considerable errors of overestimation and underestimation of sediment budgets. To address these gaps and to minimize acquisition costs posed by airborne LiDAR survey, a mobile terrestrial LiDAR has been set up to acquire topographic data of the coastal zone. The acquisition system includes a LiDAR sensor, a high precision navigation system (GPS-INS) and a video camera. Comparison of LiDAR data with 1050 DGPS control points shows a vertical mean absolute error of 0.1 m in beach areas. The extracted data is used to calculate sediment volumes, widths, slopes, and a sediment budget index. A high accuracy coastal characterization is achieved through the integration of laser data and video. The main objective of this first project using this system is to quantify the impact of rigid coastal protective structures on sediment budget and beach morphology. Results show that the average sediment volume of beaches located before a rock armour barrier (12 m3/m) were three times narrower than for natural beaches (35,5 m3/m). Natural beaches were also found to have twice the width (25.4 m) of the beaches bordering inhabited areas (12.7 m). The development of sediment budget index for beach areas is an excellent proxy to quickly identify deficit areas and therefore the coastal segments most at risk of erosion. The obtained LiDAR coverage also revealed that beach profiles made at an interval of more than 200 m on diversified coasts lead to results significantly different from reality. However, profile intervals have little impact on long uniform beaches.