Urban UV environment in a sub-tropical megacity - A measurement and modelling study
NASA Astrophysics Data System (ADS)
Wai, Ka-Ming; Yu, Peter K. N.; Chan, Pok-Man
The variations of solar total UV (UVA + UVB) exposure rates in a megacity featured with high-rise buildings during summer months were measured and relevant model predictions were evaluated. The maximum pedestrian-level total solar UV exposure rate was less than the un-obstructed exposure rate at any time, attributing to the prevailing reduction in the diffuse solar radiation due to the obstruction effects of distant buildings. Comparing with the measurements, our coupled model well captured the spatial and temporal variations of the reduction of UV exposure rates. By measurements, large reduction in the solar total UV exposure rate down to 12% of un-obstructed exposure rate due to the building obstruction effects was found, agreeing with our previous simulation results and results from an Australian megacity. On the other hand, building reflection from reflective curtain walls could reach 23% of the un-obstructed solar total UV exposure rate at the ground level. This implied improper building design creating additional harmful effects of solar UV radiation on the environment. The coupled model was also applied to predict the urban UV exposure rates during a tropical-cyclone induced aerosol episode. A well-evaluated urban solar UV model is an important tool for sustainable urban design.
Biologically based modeling of multimedia, multipathway, multiroute population exposures to arsenic
Georgopoulos, Panos G.; Wang, Sheng-Wei; Yang, Yu-Ching; Xue, Jianping; Zartarian, Valerie G.; Mccurdy, Thomas; Özkaynak, Halûk
2011-01-01
This article presents an integrated, biologically based, source-to-dose assessment framework for modeling multimedia/multipathway/multiroute exposures to arsenic. Case studies demonstrating this framework are presented for three US counties (Hunderton County, NJ; Pima County, AZ; and Franklin County, OH), representing substantially different conditions of exposure. The approach taken utilizes the Modeling ENvironment for TOtal Risk studies (MENTOR) in an implementation that incorporates and extends the approach pioneered by Stochastic Human Exposure and Dose Simulation (SHEDS), in conjunction with a number of available databases, including NATA, NHEXAS, CSFII, and CHAD, and extends modeling techniques that have been developed in recent years. Model results indicate that, in most cases, the food intake pathway is the dominant contributor to total exposure and dose to arsenic. Model predictions are evaluated qualitatively by comparing distributions of predicted total arsenic amounts in urine with those derived using biomarker measurements from the NHEXAS — Region V study: the population distributions of urinary total arsenic levels calculated through MENTOR and from the NHEXAS measurements are in general qualitative agreement. Observed differences are due to various factors, such as interindividual variation in arsenic metabolism in humans, that are not fully accounted for in the current model implementation but can be incorporated in the future, in the open framework of MENTOR. The present study demonstrates that integrated source-to-dose modeling for arsenic can not only provide estimates of the relative contributions of multipathway exposure routes to the total exposure estimates, but can also estimate internal target tissue doses for speciated organic and inorganic arsenic, which can eventually be used to improve evaluation of health risks associated with exposures to arsenic from multiple sources, routes, and pathways. PMID:18073786
Hines, Cynthia J; Christianson, Annette L; Jackson, Matthew V; Ye, Xiaoyun; Pretty, Jack R; Arnold, James E; Calafat, Antonia M
2018-06-13
Exposure to bisphenol A (BPA) can be assessed using external and internal exposure measures. We examined the relationship between two measures of external BPA exposure (air and hand-wipe samples) and one of internal exposure (total BPA in urine) for a group of US manufacturing workers. During 2013-2014, we recruited 78 workers from six US companies that made BPA or made products with BPA. We quantified BPA in seven urine samples, two full-shift air samples and in pre- and end-shift hand-wipe samples collected from workers over 2 consecutive days. We examined correlations between creatinine-corrected urinary concentrations of total BPA (total BPACR) and BPA levels in air and hand wipes using Pearson's correlation coefficient. We also applied mixed-effects regression models to examine the relationship between total BPACR with BPA in air (urine~air model) and with BPA in end-shift hand wipes (urine~hand model), separately and together (urine~air+hand model), after adjusting for covariates. End-shift total BPACR strongly correlated with BPA in air (rp = 0.79, P < 0.0001) and nearly as strongly with BPA in end-shift hand wipes (rp = 0.75, P < 0.0001). In mixed-effect models, BPA air concentration and end-shift hand-wipe BPA level were significantly and positively associated with end-shift total BPACR (P < 0.0001 each). We found a significant effect of the Day 1 BPA air concentration on Day 2 total BPACR (P = 0.0104). When BPA air concentration and end-shift hand-wipe BPA level were in the same model, the air concentration (P < 0.0001) was more significant than the hand-wipe level (P = 0.0106). BPA levels in air and end-shift hand wipes strongly correlated with total BPACR, suggesting that both inhalation and dermal contract were likely exposure routes; however, inhalation, on average, appeared to be a more dominant exposure route than dermal contact for these manufacturing workers.
The US EPA National Exposure Research Laboratory (NERL) is currently developing an integrated human exposure source-to-dose modeling system (HES2D). This modeling system will incorporate population exposure modules that use a probabilistic approach to predict population exposu...
The paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associa...
The Total Exposure Model (TEM) uses deterministic and stochastic methods to estimate the exposure of a person performing daily activities of eating, drinking, showering, and bathing. There were 250 time histories generated, by subject with activities, for the three exposure ro...
NASA Astrophysics Data System (ADS)
Miller, Shelly L.; Anderson, Melissa J.; Daly, Eileen P.; Milford, Jana B.
Four receptor-oriented source apportionment models were evaluated by applying them to simulated personal exposure data for select volatile organic compounds (VOCs) that were generated by Monte Carlo sampling from known source contributions and profiles. The exposure sources modeled are environmental tobacco smoke, paint emissions, cleaning and/or pesticide products, gasoline vapors, automobile exhaust, and wastewater treatment plant emissions. The receptor models analyzed are chemical mass balance, principal component analysis/absolute principal component scores, positive matrix factorization (PMF), and graphical ratio analysis for composition estimates/source apportionment by factors with explicit restriction, incorporated in the UNMIX model. All models identified only the major contributors to total exposure concentrations. PMF extracted factor profiles that most closely represented the major sources used to generate the simulated data. None of the models were able to distinguish between sources with similar chemical profiles. Sources that contributed <5% to the average total VOC exposure were not identified.
A series of case studies is presented focusing on multimedia/multipathway population exposures to arsenic, employing the Population Based Modeling approach of the MENTOR (Modeling Environment for Total Risks) framework. This framework considers currently five exposure routes: i...
Hydroquinone PBPK model refinement and application to dermal exposure.
Poet, Torka S; Carlton, Betsy D; Deyo, James A; Hinderliter, Paul M
2010-11-01
A physiologically based pharmacokinetic (PBPK) model for hydroquinone (HQ) was refined to include an expanded description of HQ-glucuronide metabolites and a description of dermal exposures to support route-to-route and cross-species extrapolation. Total urinary excretion of metabolites from in vivo rat dermal exposures was used to estimate a percutaneous permeability coefficient (K(p); 3.6×10(-5) cm/h). The human in vivo K(p) was estimated to be 1.62×10(-4) cm/h, based on in vitro skin permeability data in rats and humans and rat in vivo values. The projected total multi-substituted glutathione (which was used as an internal dose surrogate for the toxic glutathione metabolites) was modeled following an exposure scenario based on submersion of both hands in a 5% aqueous solution of HQ (similar to black and white photographic developing solution) for 2 h, a worst-case exposure scenario. Total multi-substituted glutathione following this human dermal exposure scenario was several orders of magnitude lower than the internal total glutathione conjugates in rats following an oral exposure to the rat NOEL of 20 mg/kg. Thus, under more realistic human dermal exposure conditions, it is unlikely that toxic glutathione conjugates (primarily the di- and, to a lesser degree, the tri-glutathione conjugate) will reach significant levels in target tissues. Copyright © 2010. Published by Elsevier Ltd.
The Modeling Environment for Total Risks studies (MENTOR) system, combined with an extension of the SHEDS (Stochastic Human Exposure and Dose Simulation) methodology, provide a mechanistically consistent framework for conducting source-to-dose exposure assessments of multiple pol...
The cumulative MeHg and PCBs exposure and risk of tribal ...
Studies have shown that the U.S. population continues to be exposed to methyl mercury (MeHg) and polychlorinated biphenyls (PCBs) due to the long half-life of those environmental contaminants. Fish intake of Tribal populations is much higher than the U.S. general population due to dietary habits and unique cultural practices. Large fish tissue concentration data sets from the Environmental Protections Agency’s (EPA’s) Office of Water, USGS’s EMMMA program, and other data sources, were integrated, analyzed, and combined with recent tribal fish intake data for exposure analyses using the dietary module within EPA’s SHEDS-Multimedia model. SHEDS-Multimedia is a physically-based, probabilistic model, which can simulate cumulative (multiple chemicals) or aggregate (single chemical) exposures over time for a population via various pathways of exposure for a variety of multimedia, multipathway environmental chemicals. Our results show that MeHg and total PCBs exposure of tribal populations from fish are about 3 to 10 and 5 to 15 times higher than the US general population, respectively, and that the estimated exposures pose potential health risks. The cumulative exposures of MeHg and total PCBs will be assessed to generate the joint exposure profiles for Tribal and US general populations. Model sensitivity analyses will identify the important contributions of the cumulative exposures of MeHg and total PCBs such as fish types, locations, and size, and key expos
Four receptor-oriented source apportionment models were applied to personal exposure measurements for toxic volatile organic compounds (VOCs). The measurements are from the total exposure assessment methodology studies conducted from 1980 to 1984 in New Jersey (NJ) and Califor...
Total Risk Integrated Methodology (TRIM) - TRIM.Expo
The Exposure Event module of TRIM (TRIM.Expo), similar to most human exposure models, provides an analysis of the relationships between various chemical concentrations in the environment and exposure levels of humans.
Sarazin, Philippe; Burstyn, Igor; Kincl, Laurel; Lavoué, Jérôme
2016-05-01
The Integrated Management Information System (IMIS) is the largest multi-industry source of exposure measurements available in North America. However, many have suspected that the criteria through which worksites are selected for inspection are related to exposure levels. We investigated associations between exposure levels and ancillary variables in IMIS in order to understand the predictors of high exposure within an enforcement context. We analyzed the association between nine variables (reason for inspection, establishment size, total amount of penalty, Occupational Safety and Health Administration (OSHA) plan, OSHA region, union status, inspection scope, year, and industry) and exposure levels in IMIS using multimodel inference for 77 agents. For each agent, we used two different types of models: (i) logistic models were used for the odds ratio (OR) of exposure being above the threshold limit value (TLV) and (ii) linear models were used for exposure concentrations restricted to detected results to estimate percent increase in exposure level, i.e. relative index of exposure (RIE). Meta-analytic methods were used to combine results for each variable across agents. A total of 511,047 exposure measurements were modeled for logistic models and 299,791 for linear models. Higher exposures were measured during follow-up inspections than planned inspections [meta-OR = 1.61, 95% confidence interval (CI): 1.44-1.81; meta-RIE = 1.06, 95% CI: 1.03-1.09]. Lower exposures were observed for measurements collected under state OSHA plans compared to measurements collected under federal OSHA (meta-OR = 0.82, 95% CI: 0.73-0.92; meta-RIE = 0.86, 95% CI: 0.81-0.91). A 'high' total historical amount of penalty relative to none was associated with higher exposures (meta-OR = 1.54, 95% CI: 1.40-1.71; meta-RIE = 1.18, 95% CI: 1.13-1.23). The relationships observed between exposure levels and ancillary variables across a vast majority of agents suggest that certain elements of OSHA's process of selecting worksites for inspection influence the exposure levels that OSHA inspectors encounter. Nonetheless, given the paucity of other sources of exposure data and the lack of a more demonstrably representative data source, our study considers the use of IMIS data for the estimation of exposures in the broader universe of worksites in the USA. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
A methodology for the assessment of inhalation exposure to aluminium from antiperspirant sprays.
Schwarz, Katharina; Pappa, Gerlinde; Miertsch, Heike; Scheel, Julia; Koch, Wolfgang
2018-04-01
Inhalative exposure can occur accidentally when using cosmetic spray products. Usually, a tiered approach is applied for exposure assessment, starting with rather conservative, simplistic calculation models that may be improved with measured data and more refined modelling. Here we report on an advanced methodology to mimic in-use conditions for antiperspirant spray products to provide a more accurate estimate of the amount of aluminium possibly inhaled and taken up systemically, thus contributing to the overall body burden. Four typical products were sprayed onto a skin surrogate in defined rooms. For aluminium, size-related aerosol release fractions, i.e. inhalable, thoracic and respirable, were determined by a mass balance method taking droplet maturation into account. These data were included into a simple two-box exposure model, allowing calculation of the inhaled aluminium dose over 12 min. Systemic exposure doses were calculated for exposure of the deep lung and the upper respiratory tract using the Multiple Path Particle Deposition Model (MPPD) model. The total systemically available dose of aluminium was in all cases found to be less than 0.5 µg per application. With this study it could be demonstrated that refinement of the input data of the two-box exposure model with measured data of released airborne aluminium is a valuable approach to analyse the contribution of antiperspirant spray inhalation to total aluminium exposure as part of the overall risk assessment. We suggest the methodology which can also be applied to other exposure modelling approaches for spray products, and further is adapted to other similar use scenarios.
Modeling Environment for Total Risk-4M
MENTOR-4M uses an integrated, mechanistically consistent, source-to-dose modeling framework to quantify simultaneous exposures and doses of individuals and populations to multiple contaminants. It is an implementation of the MENTOR system for exposures to Multiple contaminants fr...
Modeling Of In-Vehicle Human Exposure to Ambient Fine Particulate Matter
Liu, Xiaozhen; Frey, H. Christopher
2012-01-01
A method for estimating in-vehicle PM2.5 exposure as part of a scenario-based population simulation model is developed and assessed. In existing models, such as the Stochastic Exposure and Dose Simulation model for Particulate Matter (SHEDS-PM), in-vehicle exposure is estimated using linear regression based on area-wide ambient PM2.5 concentration. An alternative modeling approach is explored based on estimation of near-road PM2.5 concentration and an in-vehicle mass balance. Near-road PM2.5 concentration is estimated using a dispersion model and fixed site monitor (FSM) data. In-vehicle concentration is estimated based on air exchange rate and filter efficiency. In-vehicle concentration varies with road type, traffic flow, windspeed, stability class, and ventilation. Average in-vehicle exposure is estimated to contribute 10 to 20 percent of average daily exposure. The contribution of in-vehicle exposure to total daily exposure can be higher for some individuals. Recommendations are made for updating exposure models and implementation of the alternative approach. PMID:23101000
NASA Astrophysics Data System (ADS)
Masri, Shahir; Li, Lianfa; Dang, Andy; Chung, Judith H.; Chen, Jiu-Chiuan; Fan, Zhi-Hua (Tina); Wu, Jun
2018-03-01
Airborne exposures to polycyclic aromatic hydrocarbons (PAHs) are associated with adverse health outcomes. Because personal air measurements of PAHs are labor intensive and costly, spatial PAH exposure models are useful for epidemiological studies. However, few studies provide adequate spatial coverage to reflect intra-urban variability of ambient PAHs. In this study, we collected 39-40 weekly gas-phase PAH samples in southern California twice in summer and twice in winter, 2009, in order to characterize PAH source contributions and develop spatial models that can estimate gas-phase PAH concentrations at a high resolution. A spatial mixed regression model was constructed, including such variables as roadway, traffic, land-use, vegetation index, commercial cooking facilities, meteorology, and population density. Cross validation of the model resulted in an R2 of 0.66 for summer and 0.77 for winter. Results showed higher total PAH concentrations in winter. Pyrogenic sources, such as fossil fuels and diesel exhaust, were the most dominant contributors to total PAHs. PAH sources varied by season, with a higher fossil fuel and wood burning contribution in winter. Spatial autocorrelation accounted for a substantial amount of the variance in total PAH concentrations for both winter (56%) and summer (19%). In summer, other key variables explaining the variance included meteorological factors (9%), population density (15%), and roadway length (21%). In winter, the variance was also explained by traffic density (16%). In this study, source characterization confirmed the dominance of traffic and other fossil fuel sources to total measured gas-phase PAH concentrations while a spatial exposure model identified key predictors of PAH concentrations. Gas-phase PAH source characterization and exposure estimation is of high utility to epidemiologist and policy makers interested in understanding the health impacts of gas-phase PAHs and strategies to reduce emissions.
Masri, Shahir; Li, Lianfa; Dang, Andy; Chung, Judith H; Chen, Jiu-Chiuan; Fan, Zhi-Hua Tina; Wu, Jun
2018-03-01
Airborne exposures to polycyclic aromatic hydrocarbons (PAHs) are associated with adverse health outcomes. Because personal air measurements of PAHs are labor intensive and costly, spatial PAH exposure models are useful for epidemiological studies. However, few studies provide adequate spatial coverage to reflect intra-urban variability of ambient PAHs. In this study, we collected 39-40 weekly gas-phase PAH samples in southern California twice in summer and twice in winter, 2009, in order to characterize PAH source contributions and develop spatial models that can estimate gas-phase PAH concentrations at a high resolution. A spatial mixed regression model was constructed, including such variables as roadway, traffic, land-use, vegetation index, commercial cooking facilities, meteorology, and population density. Cross validation of the model resulted in an R 2 of 0.66 for summer and 0.77 for winter. Results showed higher total PAH concentrations in winter. Pyrogenic sources, such as fossil fuels and diesel exhaust, were the most dominant contributors to total PAHs. PAH sources varied by season, with a higher fossil fuel and wood burning contribution in winter. Spatial autocorrelation accounted for a substantial amount of the variance in total PAH concentrations for both winter (56%) and summer (19%). In summer, other key variables explaining the variance included meteorological factors (9%), population density (15%), and roadway length (21%). In winter, the variance was also explained by traffic density (16%). In this study, source characterization confirmed the dominance of traffic and other fossil fuel sources to total measured gas-phase PAH concentrations while a spatial exposure model identified key predictors of PAH concentrations. Gas-phase PAH source characterization and exposure estimation is of high utility to epidemiologist and policy makers interested in understanding the health impacts of gas-phase PAHs and strategies to reduce emissions.
Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model
2011-01-01
Background Human exposure to nanoparticles (NPs) and environmental bacteria can occur simultaneously. NPs induce inflammatory responses and oxidative stress but may also have immune-suppressive effects, impairing macrophage function and altering epithelial barrier functions. The purpose of this study was to assess the potential pulmonary effects of inhalation and instillation exposure to copper (Cu) NPs using a model of lung inflammation and host defense. Methods We used Klebsiella pneumoniae (K.p.) in a murine lung infection model to determine if pulmonary bacterial clearance is enhanced or impaired by Cu NP exposure. Two different exposure modes were tested: sub-acute inhalation (4 hr/day, 5 d/week for 2 weeks, 3.5 mg/m3) and intratracheal instillation (24 hr post-exposure, 3, 35, and 100 μg/mouse). Pulmonary responses were evaluated by lung histopathology plus measurement of differential cell counts, total protein, lactate dehydrogenase (LDH) activity, and inflammatory cytokines in bronchoalveolar lavage (BAL) fluid. Results Cu NP exposure induced inflammatory responses with increased recruitment of total cells and neutrophils to the lungs as well as increased total protein and LDH activity in BAL fluid. Both inhalation and instillation exposure to Cu NPs significantly decreased the pulmonary clearance of K.p.-exposed mice measured 24 hr after bacterial infection following Cu NP exposure versus sham-exposed mice also challenged with K.p (1.4 × 105 bacteria/mouse). Conclusions Cu NP exposure impaired host defense against bacterial lung infections and induced a dose-dependent decrease in bacterial clearance in which even our lowest dose demonstrated significantly lower clearance than observed in sham-exposed mice. Thus, exposure to Cu NPs may increase the risk of pulmonary infection. PMID:21943386
Modeling Environment for Total Risk-1A
MENTOR-1A uses an integrated, mechanistically consistent source-to-dose modeling framework to quantify inhalation exposure and dose for individuals and/or populations due to co-occurring air pollutants. It uses the "One Atmosphere" concept to characterize simultaneous exposures t...
Comparative Exposure Assessment of ESBL-Producing Escherichia coli through Meat Consumption
Pielaat, Annemarie; Smid, Joost H.; van Duijkeren, Engeline; Vennemann, Francy B. C.; Wijnands, Lucas M.; Chardon, Jurgen E.
2017-01-01
The presence of extended-spectrum β-lactamase (ESBL) and plasmidic AmpC (pAmpC) producing Escherichia coli (EEC) in food animals, especially broilers, has become a major public health concern. The aim of the present study was to quantify the EEC exposure of humans in The Netherlands through the consumption of meat from different food animals. Calculations were done with a simplified Quantitative Microbiological Risk Assessment (QMRA) model. The model took the effect of pre-retail processing, storage at the consumers home and preparation in the kitchen (cross-contamination and heating) on EEC numbers on/in the raw meat products into account. The contribution of beef products (78%) to the total EEC exposure of the Dutch population through the consumption of meat was much higher than for chicken (18%), pork (4.5%), veal (0.1%) and lamb (0%). After slaughter, chicken meat accounted for 97% of total EEC load on meat, but chicken meat experienced a relatively large effect of heating during food preparation. Exposure via consumption of filet americain (a minced beef product consumed raw) was predicted to be highest (61% of total EEC exposure), followed by chicken fillet (13%). It was estimated that only 18% of EEC exposure occurred via cross-contamination during preparation in the kitchen, which was the only route by which EEC survived for surface-contaminated products. Sensitivity analysis showed that model output is not sensitive for most parameters. However, EEC concentration on meat other than chicken meat was an important data gap. In conclusion, the model assessed that consumption of beef products led to a higher exposure to EEC than chicken products, although the prevalence of EEC on raw chicken meat was much higher than on beef. The (relative) risk of this exposure for public health is yet unknown given the lack of a modelling framework and of exposure studies for other potential transmission routes. PMID:28056081
Kheirbek, Iyad; Johnson, Sarah; Ross, Zev; Pezeshki, Grant; Ito, Kazuhiko; Eisl, Holger; Matte, Thomas
2012-07-31
Hazardous air pollutant exposures are common in urban areas contributing to increased risk of cancer and other adverse health outcomes. While recent analyses indicate that New York City residents experience significantly higher cancer risks attributable to hazardous air pollutant exposures than the United States as a whole, limited data exist to assess intra-urban variability in air toxics exposures. To assess intra-urban spatial variability in exposures to common hazardous air pollutants, street-level air sampling for volatile organic compounds and aldehydes was conducted at 70 sites throughout New York City during the spring of 2011. Land-use regression models were developed using a subset of 59 sites and validated against the remaining 11 sites to describe the relationship between concentrations of benzene, total BTEX (benzene, toluene, ethylbenzene, xylenes) and formaldehyde to indicators of local sources, adjusting for temporal variation. Total BTEX levels exhibited the most spatial variability, followed by benzene and formaldehyde (coefficient of variation of temporally adjusted measurements of 0.57, 0.35, 0.22, respectively). Total roadway length within 100 m, traffic signal density within 400 m of monitoring sites, and an indicator of temporal variation explained 65% of the total variability in benzene while 70% of the total variability in BTEX was accounted for by traffic signal density within 450 m, density of permitted solvent-use industries within 500 m, and an indicator of temporal variation. Measures of temporal variation, traffic signal density within 400 m, road length within 100 m, and interior building area within 100 m (indicator of heating fuel combustion) predicted 83% of the total variability of formaldehyde. The models built with the modeling subset were found to predict concentrations well, predicting 62% to 68% of monitored values at validation sites. Traffic and point source emissions cause substantial variation in street-level exposures to common toxic volatile organic compounds in New York City. Land-use regression models were successfully developed for benzene, formaldehyde, and total BTEX using spatial indicators of on-road vehicle emissions and emissions from stationary sources. These estimates will improve the understanding of health effects of individual pollutants in complex urban pollutant mixtures and inform local air quality improvement efforts that reduce disparities in exposure.
Downs, Nathan; Parisi, Alfio
2012-01-01
In this research, the erythemally effective UV measured using miniaturized polysulphone dosimeters to over 1250 individual body sites and collected over a 4-year period is presented relative to the total exposed skin surface area (SSA) of a life-size manikin model. A new term is also introduced, the mean exposure fraction (MEF). The MEF is used to weight modeled or measured horizontal plane UV exposures to the total unprotected SSA of an individual and is defined as the ratio of exposure per unit area received by the unprotected skin surfaces of the body relative to the exposure received on a horizontal plane. The MEF has been calculated for a range of solar zenith angles (SZA) to provide a sunburning energy data set weighted to the actual SSA of a typically clothed individual. For this research, the MEF was determined as 0.15, 0.26 and 0.41 in the SZA ranges 0°-30°, 30°-50° and 50°-80° providing information that can be used in a variety of different ambient, latitudinal and seasonal climates where total human body UV exposure information is not available. © 2011 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2011 The American Society of Photobiology.
Sakwari, Gloria; Mamuya, Simon H D; Bråtveit, Magne; Larsson, Lennart; Pehrson, Christina; Moen, Bente E
2013-03-01
Endotoxin exposure associated with organic dust exposure has been studied in several industries. Coffee cherries that are dried directly after harvest may differ in dust and endotoxin emissions to those that are peeled and washed before drying. The aim of this study was to measure personal total dust and endotoxin levels and to evaluate their determinants of exposure in coffee processing factories. Using Sidekick Casella pumps at a flow rate of 2l/min, total dust levels were measured in the workers' breathing zone throughout the shift. Endotoxin was analyzed using the kinetic chromogenic Limulus amebocyte lysate assay. Separate linear mixed-effects models were used to evaluate exposure determinants for dust and endotoxin. Total dust and endotoxin exposure were significantly higher in Robusta than in Arabica coffee factories (geometric mean 3.41 mg/m(3) and 10 800 EU/m(3) versus 2.10 mg/m(3) and 1400 EU/m(3), respectively). Dry pre-processed coffee and differences in work tasks explained 30% of the total variance for total dust and 71% of the variance for endotoxin exposure. High exposure in Robusta processing is associated with the dry pre-processing method used after harvest. Dust and endotoxin exposure is high, in particular when processing dry pre-processed coffee. Minimization of dust emissions and use of efficient dust exhaust systems are important to prevent the development of respiratory system impairment in workers.
DIETARY EXPOSURES OF YOUNG CHILDREN, PART 1: MODEL DEVELOPMENT AND STUDY DESIGN
Young children contact surfaces (hands, floors, etc.) that may be contaminated with pesticides. Thus, dietary exposures of young children are difficult to measure, but are needed to support the aggregate exposure assessments. Evaluation of dietary field protocols and a total die...
Edwards, Rufus; Turner, Jay R.; Argo, Yuma D.; Olkhanud, Purevdorj B.; Odsuren, Munkhtuul; Guttikunda, Sarath; Ochir, Chimedsuren; Smith, Kirk R.
2017-01-01
Introduction Winter air pollution in Ulaanbaatar, Mongolia is among the worst in the world. The health impacts of policy decisions affecting air pollution exposures in Ulaanbaatar were modeled and evaluated under business as usual and two more-strict alternative emissions pathways through 2024. Previous studies have relied on either outdoor or indoor concentrations to assesses the health risks of air pollution, but the burden is really a function of total exposure. This study combined projections of indoor and outdoor concentrations of PM2.5 with population time-activity estimates to develop trajectories of total age-specific PM2.5 exposure for the Ulaanbaatar population. Indoor PM2.5 contributions from secondhand tobacco smoke (SHS) were estimated in order to fill out total exposures, and changes in population and background disease were modeled. The health impacts were derived using integrated exposure-response curves from the Global Burden of Disease Study. Results Annual average population-weighted PM2.5 exposures at baseline (2014) were estimated at 59 μg/m3. These were dominated by exposures occurring indoors, influenced considerably by infiltrated outdoor pollution. Under current control policies, exposures increased slightly to 60 μg/m3 by 2024; under moderate emissions reductions and under a switch to clean technologies, exposures were reduced from baseline levels by 45% and 80%, respectively. The moderate improvement pathway decreased per capita annual disability-adjusted life year (DALY) and death burdens by approximately 40%. A switch to clean fuels decreased per capita annual DALY and death burdens by about 85% by 2024 with the relative SHS contribution increasing substantially. Conclusion This study demonstrates a way to combine estimated changes in total exposure, background disease and population levels, and exposure-response functions to project the health impacts of alternative policy pathways. The resulting burden analysis highlights the need for aggressive action, including the elimination of residential coal burning and the reduction of current smoking rates. PMID:29088256
Exposure to Externalizing Peers in Early Childhood: Homophily and Peer Contagion Processes.
ERIC Educational Resources Information Center
Hanish, Laura D.; Martin, Carol Lynn; Fabes, Richard A.; Leonard, Stacie; Herzog, Melissa
2005-01-01
Guided by a transactional model, we examined the predictors and effects of exposure to externalizing peers in a low-risk sample of preschoolers and kindergarteners. On the basis of daily observations of peer interactions, we calculated measures of total exposure to externalizing peers and measures of exposure to same- and other-sex externalizing…
Symposium Abstract: Exposure science has evolved from a time when the primary focus was on measurements of environmental and biological media and the development of enabling field and laboratory methods. The Total Exposure Assessment Method (TEAM) studies of the 1980s were class...
Donham, K J; Reynolds, S J; Whitten, P; Merchant, J A; Burmeister, L; Popendorf, W J
1995-03-01
Human respiratory health hazards for people working in livestock confinement buildings have been recognized since 1974. However, before comprehensive control programs can be implemented, more knowledge is needed of specific hazardous substances present in the air of these buildings, and at what concentrations they are harmful. Therefore, a medical epidemiological and exposure-response study was conducted on 207 swine producers using intensive housing systems (108 farms). Dose-response relationships between pulmonary function and exposures are reported here. Positive correlations were seen between change in pulmonary function over a work period and exposure to total dust, respirable dust, ammonia, respirable endotoxin, and the interactions of age-of-producer and dust exposure and years-of-working-in-the-facility and dust exposure. Relationships between baseline pulmonary function and exposures were not strong and therefore, not pursued in this study. The correlations between exposure and response were stronger after 6 years of exposure. Multiple regression models were used to identify total dust and ammonia as the two primary environmental predictors of pulmonary function decrements over a work period. The regression models were then used to determine exposure concentrations related to pulmonary function decrements suggestive of a health hazard. Total dust concentrations > or = 2.8 mg/m3 were predictive of a work period decrement of > or = 10% in FEV1. Ammonia concentrations of > or = 7.5 ppm were predictive of a > or = 3% work period decrement in FEV1. These predictive concentrations were similar to a previous dose-response study, which suggested 2.5 mg/m3 of total dust and 7 ppm of NH3 were associated with significant work period decrements. Therefore, dust > or = 2.8 mg/m3 and ammonia > or = 7.5 ppm should be considered reasonable evidence for guidelines regarding hazardous exposure concentrations in this work environment.
Woskie, Susan R; Bello, Dhimiter; Gore, Rebecca J; Stowe, Meredith H; Eisen, Ellen A; Liu, Youcheng; Sparer, Judy A; Redlich, Carrie A; Cullen, Mark R
2008-09-01
Because many occupational epidemiologic studies use exposure surrogates rather than quantitative exposure metrics, the UMass Lowell and Yale study of autobody shop workers provided an opportunity to evaluate the relative utility of surrogates and quantitative exposure metrics in an exposure response analysis of cross-week change in respiratory function. A task-based exposure assessment was used to develop several metrics of inhalation exposure to isocyanates. The metrics included the surrogates, job title, counts of spray painting events during the day, counts of spray and bystander exposure events, and a quantitative exposure metric that incorporated exposure determinant models based on task sampling and a personal workplace protection factor for respirator use, combined with a daily task checklist. The result of the quantitative exposure algorithm was an estimate of the daily time-weighted average respirator-corrected total NCO exposure (microg/m(3)). In general, these four metrics were found to be variable in agreement using measures such as weighted kappa and Spearman correlation. A logistic model for 10% drop in FEV(1) from Monday morning to Thursday morning was used to evaluate the utility of each exposure metric. The quantitative exposure metric was the most favorable, producing the best model fit, as well as the greatest strength and magnitude of association. This finding supports the reports of others that reducing exposure misclassification can improve risk estimates that otherwise would be biased toward the null. Although detailed and quantitative exposure assessment can be more time consuming and costly, it can improve exposure-disease evaluations and is more useful for risk assessment purposes. The task-based exposure modeling method successfully produced estimates of daily time-weighted average exposures in the complex and changing autobody shop work environment. The ambient TWA exposures of all of the office workers and technicians and 57% of the painters were found to be below the current U.K. Health and Safety Executive occupational exposure limit (OEL) for total NCO of 20 microg/m(3). When respirator use was incorporated, all personal daily exposures were below the U.K. OEL.
Sakwari, Gloria
2013-01-01
Introduction: Endotoxin exposure associated with organic dust exposure has been studied in several industries. Coffee cherries that are dried directly after harvest may differ in dust and endotoxin emissions to those that are peeled and washed before drying. The aim of this study was to measure personal total dust and endotoxin levels and to evaluate their determinants of exposure in coffee processing factories. Methods: Using Sidekick Casella pumps at a flow rate of 2l/min, total dust levels were measured in the workers’ breathing zone throughout the shift. Endotoxin was analyzed using the kinetic chromogenic Limulus amebocyte lysate assay. Separate linear mixed-effects models were used to evaluate exposure determinants for dust and endotoxin. Results: Total dust and endotoxin exposure were significantly higher in Robusta than in Arabica coffee factories (geometric mean 3.41mg/m3 and 10 800 EU/m3 versus 2.10mg/m3 and 1400 EU/m3, respectively). Dry pre-processed coffee and differences in work tasks explained 30% of the total variance for total dust and 71% of the variance for endotoxin exposure. High exposure in Robusta processing is associated with the dry pre-processing method used after harvest. Conclusions: Dust and endotoxin exposure is high, in particular when processing dry pre-processed coffee. Minimization of dust emissions and use of efficient dust exhaust systems are important to prevent the development of respiratory system impairment in workers. PMID:23028014
Trudel, David; Tlustos, Christina; Von Goetz, Natalie; Scheringer, Martin; Hungerbühler, Konrad
2011-01-01
Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants added to plastics, polyurethane foam, electronics, textiles, and other products. These products release PBDEs into the indoor and outdoor environment, thus causing human exposure through food and dust. This study models PBDE dose distributions from ingestion of food for Irish adults on congener basis by using two probabilistic and one semi-deterministic method. One of the probabilistic methods was newly developed and is based on summary statistics of food consumption combined with a model generating realistic daily energy supply from food. Median (intermediate) doses of total PBDEs are in the range of 0.4-0.6 ng/kg(bw)/day for Irish adults. The 97.5th percentiles of total PBDE doses lie in a range of 1.7-2.2 ng/kg(bw)/day, which is comparable to doses derived for Belgian and Dutch adults. BDE-47 and BDE-99 were identified as the congeners contributing most to estimated intakes, accounting for more than half of the total doses. The most influential food groups contributing to this intake are lean fish and salmon which together account for about 22-25% of the total doses.
Shin, H-M; McKone, T E; Bennett, D H
2017-07-01
We present a screening-level exposure-assessment method which integrates exposure from all plausible exposure pathways as a result of indoor residential use of cleaning products. The exposure pathways we considered are (i) exposure to a user during product use via inhalation and dermal, (ii) exposure to chemical residues left on clothing, (iii) exposure to all occupants from the portion released indoors during use via inhalation and dermal, and (iv) exposure to the general population due to down-the-drain disposal via inhalation and ingestion. We use consumer product volatilization models to account for the chemical fractions volatilized to air (f volatilized ) and disposed down the drain (f down-the-drain ) during product use. For each exposure pathway, we use a fate and exposure model to estimate intake rates (iR) in mg/kg/d. Overall, the contribution of the four exposure pathways to the total exposure varies by the type of cleaning activities and with chemical properties. By providing a more comprehensive exposure model and by capturing additional exposures from often-overlooked exposure pathways, our method allows us to compare the relative contribution of various exposure routes and could improve high-throughput exposure assessment for chemicals in cleaning products. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Dionisio, Kathie L; Chang, Howard H; Baxter, Lisa K
2016-11-25
Exposure measurement error in copollutant epidemiologic models has the potential to introduce bias in relative risk (RR) estimates. A simulation study was conducted using empirical data to quantify the impact of correlated measurement errors in time-series analyses of air pollution and health. ZIP-code level estimates of exposure for six pollutants (CO, NO x , EC, PM 2.5 , SO 4 , O 3 ) from 1999 to 2002 in the Atlanta metropolitan area were used to calculate spatial, population (i.e. ambient versus personal), and total exposure measurement error. Empirically determined covariance of pollutant concentration pairs and the associated measurement errors were used to simulate true exposure (exposure without error) from observed exposure. Daily emergency department visits for respiratory diseases were simulated using a Poisson time-series model with a main pollutant RR = 1.05 per interquartile range, and a null association for the copollutant (RR = 1). Monte Carlo experiments were used to evaluate the impacts of correlated exposure errors of different copollutant pairs. Substantial attenuation of RRs due to exposure error was evident in nearly all copollutant pairs studied, ranging from 10 to 40% attenuation for spatial error, 3-85% for population error, and 31-85% for total error. When CO, NO x or EC is the main pollutant, we demonstrated the possibility of false positives, specifically identifying significant, positive associations for copollutants based on the estimated type I error rate. The impact of exposure error must be considered when interpreting results of copollutant epidemiologic models, due to the possibility of attenuation of main pollutant RRs and the increased probability of false positives when measurement error is present.
NASA Astrophysics Data System (ADS)
Cattani, Giorgio; Gaeta, Alessandra; di Menno di Bucchianico, Alessandro; de Santis, Antonella; Gaddi, Raffaela; Cusano, Mariacarmela; Ancona, Carla; Badaloni, Chiara; Forastiere, Francesco; Gariazzo, Claudio; Sozzi, Roberto; Inglessis, Marco; Silibello, Camillo; Salvatori, Elisabetta; Manes, Fausto; Cesaroni, Giulia; The Viias Study Group
2017-05-01
The health effects of long-term exposure to ultrafine particles (UFPs) are poorly understood. Data on spatial contrasts in ambient ultrafine particles (UFPs) concentrations are needed with fine resolution. This study aimed to assess the spatial variability of total particle number concentrations (PNC, a proxy for UFPs) in the city of Rome, Italy, using land use regression (LUR) models, and the correspondent exposure of population here living. PNC were measured using condensation particle counters at the building facade of 28 homes throughout the city. Three 7-day monitoring periods were carried out during cold, warm and intermediate seasons. Geographic Information System predictor variables, with buffers of varying size, were evaluated to model spatial variations of PNC. A stepwise forward selection procedure was used to develop a "base" linear regression model according to the European Study of Cohorts for Air Pollution Effects project methodology. Other variables were then included in more enhanced models and their capability of improving model performance was evaluated. Four LUR models were developed. Local variation in UFPs in the study area can be largely explained by the ratio of traffic intensity and distance to the nearest major road. The best model (adjusted R2 = 0.71; root mean square error = ±1,572 particles/cm³, leave one out cross validated R2 = 0.68) was achieved by regressing building and street configuration variables against residual from the "base" model, which added 3% more to the total variance explained. Urban green and population density in a 5,000 m buffer around each home were also relevant predictors. The spatial contrast in ambient PNC across the large conurbation of Rome, was successfully assessed. The average exposure of subjects living in the study area was 16,006 particles/cm³ (SD 2165 particles/cm³, range: 11,075-28,632 particles/cm³). A total of 203,886 subjects (16%) lives in Rome within 50 m from a high traffic road and they experience the highest exposure levels (18,229 particles/cm³). The results will be used to estimate the long-term health effects of ultrafine particle exposure of participants in Rome.
Selemetas, Nikolaos; de Waal, Theo
2015-04-30
Fasciolosis caused by Fasciola hepatica (liver fluke) can cause significant economic and production losses in dairy cow farms. The aim of the current study was to identify important weather and environmental predictors of the exposure risk to liver fluke by detecting clusters of fasciolosis in Ireland. During autumn 2012, bulk-tank milk samples from 4365 dairy farms were collected throughout Ireland. Using an in-house antibody-detection ELISA, the analysis of BTM samples showed that 83% (n=3602) of dairy farms had been exposed to liver fluke. The Getis-Ord Gi* statistic identified 74 high-risk and 130 low-risk significant (P<0.01) clusters of fasciolosis. The low-risk clusters were mostly located in the southern regions of Ireland, whereas the high-risk clusters were mainly situated in the western part. Several climatic variables (monthly and seasonal mean rainfall and temperatures, total wet days and rain days) and environmental datasets (soil types, enhanced vegetation index and normalised difference vegetation index) were used to investigate dissimilarities in the exposure to liver fluke between clusters. Rainfall, total wet days and rain days, and soil type were the significant classes of climatic and environmental variables explaining the differences between significant clusters. A discriminant function analysis was used to predict the exposure risk to liver fluke using 80% of data for modelling and the remaining subset of 20% for post hoc model validation. The most significant predictors of the model risk function were total rainfall in August and September and total wet days. The risk model presented 100% sensitivity and 91% specificity and an accuracy of 95% correctly classified cases. A risk map of exposure to liver fluke was constructed with higher probability of exposure in western and north-western regions. The results of this study identified differences between clusters of fasciolosis in Ireland regarding climatic and environmental variables and detected significant predictors of the exposure risk to liver fluke. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fraser, S. A.; Wood, N. J.; Johnston, D. M.; Leonard, G. S.; Greening, P. D.; Rossetto, T.
2014-11-01
Evacuation of the population from a tsunami hazard zone is vital to reduce life-loss due to inundation. Geospatial least-cost distance modelling provides one approach to assessing tsunami evacuation potential. Previous models have generally used two static exposure scenarios and fixed travel speeds to represent population movement. Some analyses have assumed immediate departure or a common evacuation departure time for all exposed population. Here, a method is proposed to incorporate time-variable exposure, distributed travel speeds, and uncertain evacuation departure time into an existing anisotropic least-cost path distance framework. The method is demonstrated for hypothetical local-source tsunami evacuation in Napier City, Hawke's Bay, New Zealand. There is significant diurnal variation in pedestrian evacuation potential at the suburb level, although the total number of people unable to evacuate is stable across all scenarios. Whilst some fixed travel speeds approximate a distributed speed approach, others may overestimate evacuation potential. The impact of evacuation departure time is a significant contributor to total evacuation time. This method improves least-cost modelling of evacuation dynamics for evacuation planning, casualty modelling, and development of emergency response training scenarios. However, it requires detailed exposure data, which may preclude its use in many situations.
Fraser, Stuart A.; Wood, Nathan J.; Johnston, David A.; Leonard, Graham S.; Greening, Paul D.; Rossetto, Tiziana
2014-01-01
Evacuation of the population from a tsunami hazard zone is vital to reduce life-loss due to inundation. Geospatial least-cost distance modelling provides one approach to assessing tsunami evacuation potential. Previous models have generally used two static exposure scenarios and fixed travel speeds to represent population movement. Some analyses have assumed immediate departure or a common evacuation departure time for all exposed population. Here, a method is proposed to incorporate time-variable exposure, distributed travel speeds, and uncertain evacuation departure time into an existing anisotropic least-cost path distance framework. The method is demonstrated for hypothetical local-source tsunami evacuation in Napier City, Hawke's Bay, New Zealand. There is significant diurnal variation in pedestrian evacuation potential at the suburb level, although the total number of people unable to evacuate is stable across all scenarios. Whilst some fixed travel speeds approximate a distributed speed approach, others may overestimate evacuation potential. The impact of evacuation departure time is a significant contributor to total evacuation time. This method improves least-cost modelling of evacuation dynamics for evacuation planning, casualty modelling, and development of emergency response training scenarios. However, it requires detailed exposure data, which may preclude its use in many situations.
The intersection of aggregate-level lead exposure and crime.
Boutwell, Brian B; Nelson, Erik J; Emo, Brett; Vaughn, Michael G; Schootman, Mario; Rosenfeld, Richard; Lewis, Roger
2016-07-01
Childhood lead exposure has been associated with criminal behavior later in life. The current study aimed to analyze the association between elevated blood lead levels (n=59,645) and crime occurrence (n=90,433) across census tracts within St. Louis, Missouri. Longitudinal ecological study. Saint Louis, Missouri. Blood lead levels. Violent, Non-violent, and total crime at the census tract level. Spatial statistical models were used to account for the spatial autocorrelation of the data. Greater lead exposure at the census-tract level was associated with increased violent, non-violent, and total crime. In addition, we examined whether non-additive effects existed in the data by testing for an interaction between lead exposure and concentrated disadvantage. Some evidence of a negative interaction emerged, however, it failed to reach traditional levels of statistical significance (supplementary models, however, revealed a similar negative interaction that was significant). More precise measurements of lead exposure in the aggregate, produced additional evidence that lead is a potent predictor of criminal outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.
Chao, Linda L; Raymond, Morgan R; Leo, Cynthia K; Abadjian, Linda R
2017-10-01
To replicate and expand our previous findings of smaller hippocampal volumes in Gulf War (GW) veterans with predicted exposure to the Khamisiyah plume. Total hippocampal and hippocampal subfield volumes were quantified from 3 Tesla magnetic resonance images in 113 GW veterans, 62 of whom had predicted exposure as per the Department of Defense exposure models. Veterans with predicted exposure had smaller total hippocampal and CA3/dentate gyrus volumes compared with unexposed veterans, even after accounting for potentially confounding genetic and clinical variables. Among veterans with predicted exposure, memory performance was positively correlated with hippocampal volume and negatively correlated with estimated exposure levels and self-reported memory difficulties. These results replicate and extend our previous finding that low-level exposure to chemical nerve agents from the Khamisiyah pit demolition has detrimental, lasting effects on brain structure and function.
Eidemüller, Markus; Jacob, Peter; Lane, Rachel S. D.; Frost, Stanley E.; Zablotska, Lydia B.
2012-01-01
Lung cancer mortality after exposure to radon decay products (RDP) among 16,236 male Eldorado uranium workers was analyzed. Male workers from the Beaverlodge and Port Radium uranium mines and the Port Hope radium and uranium refinery and processing facility who were first employed between 1932 and 1980 were followed up from 1950 to 1999. A total of 618 lung cancer deaths were observed. The analysis compared the results of the biologically-based two-stage clonal expansion (TSCE) model to the empirical excess risk model. The spontaneous clonal expansion rate of pre-malignant cells was reduced at older ages under the assumptions of the TSCE model. Exposure to RDP was associated with increase in the clonal expansion rate during exposure but not afterwards. The increase was stronger for lower exposure rates. A radiation-induced bystander effect could be a possible explanation for such an exposure response. Results on excess risks were compared to a linear dose-response parametric excess risk model with attained age, time since exposure and dose rate as effect modifiers. In all models the excess relative risk decreased with increasing attained age, increasing time since exposure and increasing exposure rate. Large model uncertainties were found in particular for small exposure rates. PMID:22936975
Modeling Population Exposure to Ultrafine Particles in a Major Italian Urban Area
Spinazzè, Andrea; Cattaneo, Andrea; Peruzzo, Carlo; Cavallo, Domenico M.
2014-01-01
Average daily ultrafine particles (UFP) exposure of adult Milan subpopulations (defined on the basis of gender, and then for age, employment or educational status), in different exposure scenarios (typical working day in summer and winter) were simulated using a microenvironmental stochastic simulation model. The basic concept of this kind of model is that time-weighted average exposure is defined as the sum of partial microenvironmental exposures, which are determined by the product of UFP concentration and time spent in each microenvironment. In this work, environmental concentrations were derived from previous experimental studies that were based on microenvironmental measurements in the city of Milan by means of personal or individual monitoring, while time-activity patterns were derived from the EXPOLIS study. A significant difference was observed between the exposures experienced in winter (W: 28,415 pt/cm3) and summer (S: 19,558 pt/cm3). Furthermore, simulations showed a moderate difference between the total exposures experienced by women (S: 19,363 pt/cm3; W: 27,623 pt/cm3) and men (S: 18,806 pt/cm3; W: 27,897 pt/cm3). In addition, differences were found as a function of (I) age, (II) employment status and (III) educational level; accordingly, the highest total exposures resulted for (I) 55–59 years old people, (II) housewives and students and (III) people with higher educational level (more than 10 years of scholarity). Finally, significant differences were found between microenvironment-specific exposures. PMID:25321878
The Effects of Gamma and Proton Radiation Exposure on Hematopoietic Cell Counts in the Ferret Model
Sanzari, Jenine K.; Wan, X. Steven; Krigsfeld, Gabriel S.; Wroe, Andrew J.; Gridley, Daila S.; Kennedy, Ann R.
2014-01-01
Exposure to total-body radiation induces hematological changes, which can detriment one's immune response to wounds and infection. Here, the decreases in blood cell counts after acute radiation doses of γ-ray or proton radiation exposure, at the doses and dose-rates expected during a solar particle event (SPE), are reported in the ferret model system. Following the exposure to γ-ray or proton radiation, the ferret peripheral total white blood cell (WBC) and lymphocyte counts decreased whereas neutrophil count increased within 3 hours. At 48 hours after irradiation, the WBC, neutrophil, and lymphocyte counts decreased in a dose-dependent manner but were not significantly affected by the radiation type (γ-rays verses protons) or dose rate (0.5 Gy/minute verses 0.5 Gy/hour). The loss of these blood cells could accompany and contribute to the physiological symptoms of the acute radiation syndrome (ARS). PMID:25356435
Klepeis, N E
1999-01-01
Indirect exposure approaches offer a feasible and accurate method for estimating population exposures to indoor pollutants, including environmental tobacco smoke (ETS). In an effort to make the indirect exposure assessment approach more accessible to people in the health and risk assessment fields, this paper provides examples using real data from (italic>a(/italic>) a week-long personal carbon monoxide monitoring survey conducted by the author; and (italic>b(/italic>) the 1992 to 1994 National Human Activity Pattern Survey (NHAPS) for the United States. The indirect approach uses measurements of exposures in specific microenvironments (e.g., homes, bars, offices), validated microenvironmental models (based on the mass balance equation), and human activity pattern data obtained from questionnaires to predict frequency distributions of exposure for entire populations. This approach requires fewer resources than the direct approach to exposure assessment, for which the distribution of monitors to a representative sample of a given population is necessary. In the indirect exposure assessment approach, average microenvironmental concentrations are multiplied by the total time spent in each microenvironment to give total integrated exposure. By assuming that the concentrations encountered in each of 10 location categories are the same for different members of the U.S. population (i.e., the NHAPS respondents), the hypothetical contribution that ETS makes to the average 24-hr respirable suspended particle exposure for Americans working their main job is calculated in this paper to be 18 microg/m3. This article is an illustrative review and does not contain an actual exposure assessment or model validation. Images Figure 3 Figure 4 PMID:10350522
Zhang, Xin-Ying; Carpenter, David O; Song, Yong-Jin; Chen, Ping; Qin, Yaoming; Wei, Ni-Yu; Lin, Shan-Chun
2017-12-01
This study consisted of a site- and age-specific investigation linking children's blood lead level (BLL) to environmental exposures in a historic mining site in south China. A total of 151 children, aged 3-7 years, were included in this study. The geometric mean (GM) BLL was 8.22 μg/dl, indicating an elevated BLL. The Integrated Exposure Uptake Bio-Kinetic (IEUBK) model has proven useful at many sites for study of routes of exposure. Application of the IEUBK model to these children indicated that the GM difference between observed and predicted BLL levels was only 1.07 μg/dl. It was found that the key environmental exposure pathway was soil/dust intake, which contributed 86.3% to the total risk. Younger children had higher BLL than did older children. Therefore, of the various low risk-high benefit solutions, interventions for the children living near the site should be focused on the dust removal and soil remediation. Implementation of the China Eco-village Construction Plan and China New Rural Reconstruction Movement of the government may be a better solution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparison of Grouping Schemes for Exposure to Total Dust in Cement Factories in Korea.
Koh, Dong-Hee; Kim, Tae-Woo; Jang, Seung Hee; Ryu, Hyang-Woo; Park, Donguk
2015-08-01
The purpose of this study was to evaluate grouping schemes for exposure to total dust in cement industry workers using non-repeated measurement data. In total, 2370 total dust measurements taken from nine Portland cement factories in 1995-2009 were analyzed. Various grouping schemes were generated based on work process, job, factory, or average exposure. To characterize variance components of each grouping scheme, we developed mixed-effects models with a B-spline time trend incorporated as fixed effects and a grouping variable incorporated as a random effect. Using the estimated variance components, elasticity was calculated. To compare the prediction performances of different grouping schemes, 10-fold cross-validation tests were conducted, and root mean squared errors and pooled correlation coefficients were calculated for each grouping scheme. The five exposure groups created a posteriori by ranking job and factory combinations according to average dust exposure showed the best prediction performance and highest elasticity among various grouping schemes. Our findings suggest a grouping method based on ranking of job, and factory combinations would be the optimal choice in this population. Our grouping method may aid exposure assessment efforts in similar occupational settings, minimizing the misclassification of exposures. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Hybrid Air Quality Modeling Approach For Use in the Near ...
The Near-road EXposures to Urban air pollutant Study (NEXUS) investigated whether children with asthma living in close proximity to major roadways in Detroit, MI, (particularly near roadways with high diesel traffic) have greater health impacts associated with exposure to air pollutants than those living farther away. A major challenge in such health and exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related air pollutants and adverse health outcomes. This paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associated with local variations of emissions and meteorology, were estimated using a combination of the AERMOD and R-LINE dispersion models, local emission source information from the National Emissions Inventory, detailed road network locations and traffic activity, and meteorological data from the Detroit City Airport. The regional background contribution was estimated using a combination of the Community Multiscale Air Quality (CMAQ) model and the Space/Time Ordinary Kriging (STOK) model. To capture the near-road pollutant gradients, refined “mini-grids” of model recep
Dietary exposure from food to toxic inorganic arsenic (iAs) in the general U.S. population has not been well studied. The goal of this research was to quantify dietary arsenic As exposure and analyze the major contributors to total As (tAs) and iAs. Another objective was to com...
Permeation Resistance of Personal Protective Equipment Materials to Monomethyhydrazine
NASA Technical Reports Server (NTRS)
Waller, J. M.; Williams, J. H.
1997-01-01
Permeation resistance was determined by measuring the breakthrough time and time-averaged vapor transmission rate of monomethylhydrazine (MMH) through two types of personal protective equipment (PPE). The two types of PPE evaluated were the totally encapsulating ILC Dover Chemturion Model 1212 chemical protective suit with accessories, and the FabOhio polyvinyl chloride (PVC) splash garment. Two exposure scenarios were simulated: (1) a saturated vapor exposure for 2 hours (h), and (2) a brief MMH 'splash' followed by a 2-h saturated vapor exposure. Time-averaged MMH concentrations inside the totally-encapsulating suit were calculated by summation of the area-weighted contributions made by each suit component. Results show that the totally encapsulating suit provides adequate protection at the new 10 ppb Threshold Limit Value Time-Weighted Average (TLV-TWA). The permeation resistance of the PVC splash garment to MMH was poorer than any of the totally encapsulating suit materials tested. Breakthrough occurred soon after initial vapor or 'splash' exposure.
Collinearity and Causal Diagrams: A Lesson on the Importance of Model Specification.
Schisterman, Enrique F; Perkins, Neil J; Mumford, Sunni L; Ahrens, Katherine A; Mitchell, Emily M
2017-01-01
Correlated data are ubiquitous in epidemiologic research, particularly in nutritional and environmental epidemiology where mixtures of factors are often studied. Our objectives are to demonstrate how highly correlated data arise in epidemiologic research and provide guidance, using a directed acyclic graph approach, on how to proceed analytically when faced with highly correlated data. We identified three fundamental structural scenarios in which high correlation between a given variable and the exposure can arise: intermediates, confounders, and colliders. For each of these scenarios, we evaluated the consequences of increasing correlation between the given variable and the exposure on the bias and variance for the total effect of the exposure on the outcome using unadjusted and adjusted models. We derived closed-form solutions for continuous outcomes using linear regression and empirically present our findings for binary outcomes using logistic regression. For models properly specified, total effect estimates remained unbiased even when there was almost perfect correlation between the exposure and a given intermediate, confounder, or collider. In general, as the correlation increased, the variance of the parameter estimate for the exposure in the adjusted models increased, while in the unadjusted models, the variance increased to a lesser extent or decreased. Our findings highlight the importance of considering the causal framework under study when specifying regression models. Strategies that do not take into consideration the causal structure may lead to biased effect estimation for the original question of interest, even under high correlation.
NASA Astrophysics Data System (ADS)
Shin, Hyeong-Moo; McKone, Thomas E.; Bennett, Deborah H.
2013-04-01
Exposure to environmental chemicals results from multiple sources, environmental media, and exposure routes. Ideally, modeled exposures should be compared to biomonitoring data. This study compares the magnitude and variation of modeled polycyclic aromatic hydrocarbons (PAHs) exposures resulting from emissions to outdoor and indoor air and estimated exposure inferred from biomarker levels. Outdoor emissions result in both inhalation and food-based exposures. We modeled PAH intake doses using U.S. EPA's 2002 National Air Toxics Assessment (NATA) county-level emissions data for outdoor inhalation, the CalTOX model for food ingestion (based on NATA emissions), and indoor air concentrations from field studies for indoor inhalation. We then compared the modeled intake with the measured urine levels of hydroxy-PAH metabolites from the 2001-2002 National Health and Nutrition Examination Survey (NHANES) survey as quantifiable human intake of PAH parent-compounds. Lognormal probability plots of modeled intakes and estimated intakes inferred from biomarkers suggest that a primary route of exposure to naphthalene, fluorene, and phenanthrene for the U.S. population is likely inhalation from indoor sources. For benzo(a)pyrene, the predominant exposure route is likely from food ingestion resulting from multi-pathway transport and bioaccumulation due to outdoor emissions. Multiple routes of exposure are important for pyrene. We also considered the sensitivity of the predicted exposure to the proportion of the total naphthalene production volume emitted to the indoor environment. The comparison of PAH biomarkers with exposure variability estimated from models and sample data for various exposure pathways supports that both indoor and outdoor models are needed to capture the sources and routes of exposure to environmental contaminants.
Estimated effects of in utero cocaine exposure on language development through early adolescence.
Bandstra, Emmalee S; Morrow, Connie E; Accornero, Veronica H; Mansoor, Elana; Xue, Lihua; Anthony, James C
2011-01-01
The potential longitudinal effects of prenatal cocaine exposure (PCE) on language functioning were estimated from early childhood through early adolescence in a large, well-retained urban sample of 451 full-term children (242 cocaine-exposed, 209 non-cocaine-exposed) participating in the Miami Prenatal Cocaine Study (MPCS). The sample was enrolled prospectively at birth, with documentation of prenatal drug exposure status through maternal interview, and toxicology assays of maternal and infant urine, and infant meconium. Age-appropriate versions of the Clinical Evaluation of Language Fundamentals (CELF) were used to measure total, expressive, and receptive language at ages 3, 5, and 12years. Longitudinal latent growth curve (LLGC) modeling of the data revealed an association between PCE (measured dichotomously as yes/no) and lower functioning in expressive and total language scores, after considering other sources of variation including child's age at testing, sex, prenatal exposure to alcohol, marijuana, and tobacco, and additional medical and social-demographic covariates. Analyses of level of PCE showed a gradient, i.e. dose-dependent, relationship between PCE level and expressive, receptive, and total language scores in the models controlling for age, child's sex, and other prenatal drug exposures. With additional covariate control these findings were most stable for the total language score. The evidence supports an inference about an enduring stable cocaine-specific effect on children's language abilities, with no effect on language growth over time in the longitudinal trajectory of language development. Copyright © 2010 Elsevier Inc. All rights reserved.
Characterization of air manganese exposure estimates for residents in two Ohio towns
Colledge, Michelle A.; Julian, Jaime R.; Gocheva, Vihra V.; Beseler, Cheryl L.; Roels, Harry A.; Lobdell, Danelle T.; Bowler, Rosemarie M.
2016-01-01
This study was conducted to derive receptor-specific outdoor exposure concentrations of total suspended particulate (TSP) and respirable (dae ≤ 10 μm) air manganese (air-Mn) for East Liverpool and Marietta (Ohio) in the absence of facility emissions data, but where long-term air measurements were available. Our “site-surface area emissions method” used U.S. Environmental Protection Agency’s (EPA) AERMOD (AMS/EPA Regulatory Model) dispersion model and air measurement data to estimate concentrations for residential receptor sites in the two communities. Modeled concentrations were used to create ratios between receptor points and calibrated using measured data from local air monitoring stations. Estimated outdoor air-Mn concentrations were derived for individual study subjects in both towns. The mean estimated long-term air-Mn exposure levels for total suspended particulate were 0.35 μg/m3 (geometric mean [GM]) and 0.88 μg/m3 (arithmetic mean [AM]) in East Liverpool (range: 0.014–6.32 μg/m3) and 0.17 μg/m3 (GM) and 0.21 μg/m3 (AM) in Marietta (range: 0.03–1.61 μg/m3). Modeled results compared well with averaged ambient air measurements from local air monitoring stations. Exposure to respirable Mn particulate matter (PM10; PM <10 μm) was higher in Marietta residents. Implications Few available studies evaluate long-term health outcomes from inhalational manganese (Mn) exposure in residential populations, due in part to challenges in measuring individual exposures. Local long-term air measurements provide the means to calibrate models used in estimating long-term exposures. Furthermore, this combination of modeling and ambient air sampling can be used to derive receptor-specific exposure estimates even in the absence of source emissions data for use in human health outcome studies. PMID:26211636
Nilsen, Vegard; Wyller, John
2016-01-01
Dose-response models are essential to quantitative microbial risk assessment (QMRA), providing a link between levels of human exposure to pathogens and the probability of negative health outcomes. In drinking water studies, the class of semi-mechanistic models known as single-hit models, such as the exponential and the exact beta-Poisson, has seen widespread use. In this work, an attempt is made to carefully develop the general mathematical single-hit framework while explicitly accounting for variation in (1) host susceptibility and (2) pathogen infectivity. This allows a precise interpretation of the so-called single-hit probability and precise identification of a set of statistical independence assumptions that are sufficient to arrive at single-hit models. Further analysis of the model framework is facilitated by formulating the single-hit models compactly using probability generating and moment generating functions. Among the more practically relevant conclusions drawn are: (1) for any dose distribution, variation in host susceptibility always reduces the single-hit risk compared to a constant host susceptibility (assuming equal mean susceptibilities), (2) the model-consistent representation of complete host immunity is formally demonstrated to be a simple scaling of the response, (3) the model-consistent expression for the total risk from repeated exposures deviates (gives lower risk) from the conventional expression used in applications, and (4) a model-consistent expression for the mean per-exposure dose that produces the correct total risk from repeated exposures is developed. © 2016 Society for Risk Analysis.
Ng, Wai-Yin; Chau, Chi-Kwan
2014-01-15
This study evaluated the effectiveness of different configurations for two building design elements, namely building permeability and setback, proposed for mitigating air pollutant exposure problems in isolated deep canyons by using an indirect exposure approach. The indirect approach predicted the exposures of three different population subgroups (i.e. pedestrians, shop vendors and residents) by multiplying the pollutant concentrations with the duration of exposure within a specific micro-environment. In this study, the pollutant concentrations for different configurations were predicted using a computational fluid dynamics model. The model was constructed based on the Reynolds-Averaged Navier-Stokes (RANS) equations with the standard k-ε turbulence model. Fifty-one canyon configurations with aspect ratios of 2, 4, 6 and different building permeability values (ratio of building spacing to the building façade length) or different types of building setback (recess of a high building from the road) were examined. The findings indicated that personal exposures of shop vendors were extremely high if they were present inside a canyon without any setback or separation between buildings and when the prevailing wind was perpendicular to the canyon axis. Building separation and building setbacks were effective in reducing personal air exposures in canyons with perpendicular wind, although their effectiveness varied with different configurations. Increasing the permeability value from 0 to 10% significantly lowered the personal exposures on the different population subgroups. Likewise, the personal exposures could also be reduced by the introduction of building setbacks despite their effects being strongly influenced by the aspect ratio of a canyon. Equivalent findings were observed if the reduction in the total development floor area (the total floor area permitted to be developed within a particular site area) was also considered. These findings were employed to formulate a hierarchy decision making model to guide the planning of deep canyons in high density urban cities. © 2013 Elsevier B.V. All rights reserved.
Unthank, Joseph L; Miller, Steven J; Quickery, Ariel K; Ferguson, Ethan L; Wang, Meijing; Sampson, Carol H; Chua, Hui Lin; DiStasi, Matthew R; Feng, Hailin; Fisher, Alexa; Katz, Barry P; Plett, P Artur; Sandusky, George E; Sellamuthu, Rajendran; Vemula, Sasidhar; Cohen, Eric P; MacVittie, Thomas J; Orschell, Christie M
2015-11-01
The threat of radiation exposure from warfare or radiation accidents raises the need for appropriate animal models to study the acute and chronic effects of high dose rate radiation exposure. The goal of this study was to assess the late development of fibrosis in multiple organs (kidney, heart, and lung) in survivors of the C57BL/6 mouse model of the hematopoietic-acute radiation syndrome (H-ARS). Separate groups of mice for histological and functional studies were exposed to a single uniform total body dose between 8.53 and 8.72 Gy of gamma radiation from a Cs radiation source and studied 1-21 mo later. Blood urea nitrogen levels were elevated significantly in the irradiated mice at 9 and 21 mo (from ∼22 to 34 ± 3.8 and 69 ± 6.0 mg dL, p < 0.01 vs. non-irradiated controls) and correlated with glomerosclerosis (29 ± 1.8% vs. 64 ± 9.7% of total glomeruli, p < 0.01 vs. non-irradiated controls). Glomerular tubularization and hypertrophy and tubular atrophy were also observed at 21 mo post-total body irradiation (TBI). An increase in interstitial, perivascular, pericardial and peribronchial fibrosis/collagen deposition was observed from ∼9-21 mo post-TBI in kidney, heart, and lung of irradiated mice relative to age-matched controls. Echocardiography suggested decreased ventricular volumes with a compensatory increase in the left ventricular ejection fraction. The results indicate that significant delayed effects of acute radiation exposure occur in kidney, heart, and lung in survivors of the murine H-ARS TBI model, which mirrors pathology detected in larger species and humans at higher radiation doses focused on specific organs.
A simulation study to quantify the impacts of exposure ...
BackgroundExposure measurement error in copollutant epidemiologic models has the potential to introduce bias in relative risk (RR) estimates. A simulation study was conducted using empirical data to quantify the impact of correlated measurement errors in time-series analyses of air pollution and health.MethodsZIP-code level estimates of exposure for six pollutants (CO, NOx, EC, PM2.5, SO4, O3) from 1999 to 2002 in the Atlanta metropolitan area were used to calculate spatial, population (i.e. ambient versus personal), and total exposure measurement error.Empirically determined covariance of pollutant concentration pairs and the associated measurement errors were used to simulate true exposure (exposure without error) from observed exposure. Daily emergency department visits for respiratory diseases were simulated using a Poisson time-series model with a main pollutant RR = 1.05 per interquartile range, and a null association for the copollutant (RR = 1). Monte Carlo experiments were used to evaluate the impacts of correlated exposure errors of different copollutant pairs.ResultsSubstantial attenuation of RRs due to exposure error was evident in nearly all copollutant pairs studied, ranging from 10 to 40% attenuation for spatial error, 3–85% for population error, and 31–85% for total error. When CO, NOx or EC is the main pollutant, we demonstrated the possibility of false positives, specifically identifying significant, positive associations for copoll
NASA Astrophysics Data System (ADS)
Schmitz, Oliver; Beelen, Rob M. J.; de Bakker, Merijn P.; Karssenberg, Derek
2015-04-01
Constructing spatio-temporal numerical models to support risk assessment, such as assessing the exposure of humans to air pollution, often requires the integration of field-based and agent-based modelling approaches. Continuous environmental variables such as air pollution are best represented using the field-based approach which considers phenomena as continuous fields having attribute values at all locations. When calculating human exposure to such pollutants it is, however, preferable to consider the population as a set of individuals each with a particular activity pattern. This would allow to account for the spatio-temporal variation in a pollutant along the space-time paths travelled by individuals, determined, for example, by home and work locations, road network, and travel times. Modelling this activity pattern requires an agent-based or individual based modelling approach. In general, field- and agent-based models are constructed with the help of separate software tools, while both approaches should play together in an interacting way and preferably should be combined into one modelling framework, which would allow for efficient and effective implementation of models by domain specialists. To overcome this lack in integrated modelling frameworks, we aim at the development of concepts and software for an integrated field-based and agent-based modelling framework. Concepts merging field- and agent-based modelling were implemented by extending PCRaster (http://www.pcraster.eu), a field-based modelling library implemented in C++, with components for 1) representation of discrete, mobile, agents, 2) spatial networks and algorithms by integrating the NetworkX library (http://networkx.github.io), allowing therefore to calculate e.g. shortest routes or total transport costs between locations, and 3) functions for field-network interactions, allowing to assign field-based attribute values to networks (i.e. as edge weights), such as aggregated or averaged concentration values. We demonstrate the approach by using six land use regression (LUR) models developed in the ESCAPE (European Study of Cohorts for Air Pollution Effects) project. These models calculate several air pollutants (e.g. NO2, NOx, PM2.5) for the entire Netherlands at a high (5 m) resolution. Using these air pollution maps, we compare exposure of individuals calculated at their x, y location of their home, their work place, and aggregated over the close surroundings of these locations. In addition, total exposure is accumulated over daily activity patterns, summing exposure at home, at the work place, and while travelling between home and workplace, by routing individuals over the Dutch road network, using the shortest route. Finally, we illustrate how routes can be calculated with the minimum total exposure (instead of shortest distance).
Loh, Miranda M; Houseman, E Andres; Levy, Jonathan I; Spengler, John D; Bennett, Deborah H
2009-11-01
Many people spend time in stores and restaurants, yet there has been little investigation of the influence of these microenvironments on personal exposure. Relative to the outdoors, transportation, and the home, these microenvironments have high concentrations of several volatile organic compounds (VOCs). We developed a stochastic model to examine the effect of VOC concentrations in these microenvironments on total personal exposure for (1) non-smoking adults working in offices who spend time in stores and restaurants or bars and (2) non-smoking adults who work in these establishments. We also compared the effect of working in a smoking versus non-smoking restaurant or bar. Input concentrations for each microenvironment were developed from the literature whereas time activity inputs were taken from the National Human Activity Patterns Survey. Time-averaged exposures were simulated for 5000 individuals over a weeklong period for each analysis. Mean contributions to personal exposure from non-working time spent in stores and restaurants or bars range from <5% to 20%, depending on the VOC and time-activity patterns. At the 95th percentile of the distribution of the proportion of personal exposure attributable to time spent in stores and restaurants or bars, these microenvironments can be responsible for over half of a person's total exposure to certain VOCs. People working in restaurants or bars where smoking is allowed had the highest fraction of exposure attributable to their workplace. At the median, people who worked in stores or restaurants tended to have 20-60% of their total exposures from time spent at work. These results indicate that stores and restaurants can be large contributors to personal exposure to VOCs for both workers in those establishments and for a subset of people who visit these places, and that incorporation of these non-residential microenvironments can improve models of personal exposure distributions.
An Assessment of Potential Exposure and Risk from Estrogens in Drinking Water
Caldwell, Daniel J.; Mastrocco, Frank; Nowak, Edward; Johnston, James; Yekel, Harry; Pfeiffer, Danielle; Hoyt, Marilyn; DuPlessie, Beth M.; Anderson, Paul D.
2010-01-01
Background Detection of estrogens in the environment has raised concerns in recent years because of their potential to affect both wildlife and humans. Objectives We compared exposures to prescribed and naturally occurring estrogens in drinking water to exposures to naturally occurring background levels of estrogens in the diet of children and adults and to four independently derived acceptable daily intakes (ADIs) to determine whether drinking water intakes are larger or smaller than dietary intake or ADIs. Methods We used the Pharmaceutical Assessment and Transport Evaluation (PhATE) model to predict concentrations of estrogens potentially present in drinking water. Predicted drinking water concentrations were combined with default water intake rates to estimate drinking water exposures. Predicted drinking water intakes were compared to dietary intakes and also to ADIs. We present comparisons for individual estrogens as well as combined estrogens. Results In the analysis we estimated that a child’s exposures to individual prescribed estrogens in drinking water are 730–480,000 times lower (depending upon estrogen type) than exposure to background levels of naturally occurring estrogens in milk. A child’s exposure to total estrogens in drinking water (prescribed and naturally occurring) is about 150 times lower than exposure from milk. Adult margins of exposure (MOEs) based on total dietary exposure are about 2 times smaller than those for children. Margins of safety (MOSs) for an adult’s exposure to total prescribed estrogens in drinking water vary from about 135 to > 17,000, depending on ADI. MOSs for exposure to total estrogens in drinking water are about 2 times lower than MOSs for prescribed estrogens. Depending on the ADI that is used, MOSs for young children range from 28 to 5,120 for total estrogens (including both prescribed and naturally occurring sources) in drinking water. Conclusions The consistently large MOEs and MOSs strongly suggest that prescribed and total estrogens that may potentially be present in drinking water in the United States are not causing adverse effects in U.S. residents, including sensitive subpopulations. PMID:20194073
Jones, Rachael M; Simmons, Catherine; Boelter, Fred
2011-06-01
Drywall finishing is a dusty construction activity. We describe a mathematical model that predicts the time-weighted average concentration of respirable and total dusts in the personal breathing zone of the sander, and in the area surrounding joint compound sanding activities. The model represents spatial variation in dust concentrations using two-zones, and temporal variation using an exponential function. Interzone flux and the relationships between respirable and total dusts are described using empirical factors. For model evaluation, we measured dust concentrations in two field studies, including three workers from a commercial contracting crew, and one unskilled worker. Data from the field studies confirm that the model assumptions and parameterization are reasonable and thus validate the modeling approach. Predicted dust C(twa) were in concordance with measured values for the contracting crew, but under estimated measured values for the unskilled worker. Further characterization of skill-related exposure factors is indicated.
Assessment of Prenatal Exposure to Arsenic in Tenerife Island
Vall, Oriol; Gómez-Culebras, Mario; Garcia-Algar, Oscar; Joya, Xavier; Velez, Dinoraz; Rodríguez-Carrasco, Eva; Puig, Carme
2012-01-01
Introduction Increasing awareness of the potential chronic health effects of arsenic (As) at low exposure levels has motivated efforts to better understand impaired child development during pregnancy by biomarkers of exposure. The aims of this study were to evaluate the prenatal exposure to As by analysis of an alternative matrix (meconium), to examine its effects on neonatal outcomes and investigate the association with maternal lifestyle and dietary habits during pregnancy. Methods A transversal descriptive study was conducted in Tenerife (Spain). A total of 96 mother-child pairs participated in the study. A questionnaire on sociodemographic, lifestyle and dietary habits during pregnancy was administered the day after the delivery. Analysis of total As in meconium was performed by inductively coupled plasma-optical emission spectrometer. Results Total As was detected in 37 (38.5%) meconium samples. The univariate logistic regression model indicates that prenatal exposure to As was associated with a low intake of eggs per week (OR 0.56; CI (95%): 0.34–0.94) during pregnancy. Conversely, frequent intake of vegetables was associated with prenatal As exposure (OR: 1.19; CI (95%): 1.01–1.41) and frequent intake of processed meat (as bacon, Frankfurt’s sausage, and hamburger) shows a trend to As prenatal exposure (OR: 8.54; CI (95%): 0.80–90.89). The adjusted multivariate logistic regression model indicates that only frequent intake of vegetables maintains the association (OR: 1.31; CI (95%): 1.02–1.68). Conclusion The studied population presented a low As exposure and was not associated with neonatal effects. Maternal consumption of vegetables during pregnancy was associated with detectable meconium As levels; however the concentration detected in meconium was too low to be considered a major public health concern in this geographical area. PMID:23209747
Peters, Junenette L.; Suglia, Shakira Franco; Platts-Mills, Thomas A.E.; Hosen, Jacob; Gold, Diane R.; Wright, Rosalind J.
2009-01-01
Background While some evidence suggests that antigen sensitization may begin prenatally, the influence of maternal allergen exposure during pregnancy has not been fully elucidated. Objectives We examined the relationship between prenatal maternal aeroallergen exposure and cord blood total immunoglobulin E (IgE) and the potential mediating/indirect effect of maternal immune response. Methods This study was performed in 301 mother-infant pairs enrolled in the Asthma Coalition on Community, Environment, and Social Stress (ACCESS) project, a study examining the effects of prenatal and early life social and physical environmental exposures on urban asthma risk. Dust samples collected prenatally from mothers’ bedrooms were analyzed for cockroach and dust mite allergens. Cord blood was analyzed for total IgE and maternal serum collected during pregnancy for total and specific IgE. We assessed the relationship between prenatal exposure and cord blood total IgE and the potential mediation effect adjusting for maternal age, race, education, smoking status and dust collection season; and child’s gender and season of birth. Results In multivariate models, elevated prenatal dust mite levels (> 0.2 µg/g) increased cord blood IgE concentrations by 29% (p=0.08) and continuous dust mite concentration was associated with a significant non-linear increase in cord blood IgE (p=0.02). Elevated prenatal exposure to cockroach allergen (> 2 U/g) was not associated with cord blood IgE, but showed a significant indirect relationship through maternal total IgE (β=0.23; 95% CI: 0.08, 0.41). Conclusions These results demonstrate that maternal prenatal exposure to household allergens may impact cord blood IgE albeit the underlying mechanism may be allergen-specific. Clinical Implications Maternal prenatal inhalant allergen exposure may precipitate infant immune response although the pathway of the effect may differ by allergen. Capsule Summary Prenatal exposure to dust mite was associated with increased cord blood total IgE whereas the relationship between prenatal cockroach exposure and total cord blood IgE was only observed through the indirect effect of maternal allergic response. PMID:19361844
Ohtaki, Megu; Tonda, Tetsuji; Aihara, Kazuyuki
2015-10-01
We consider a two-phase Poisson process model where only early successive transitions are assumed to be sensitive to exposure. In the case where intensity transitions are low, we derive analytically an approximate formula for the distribution of time to event for the excess hazard ratio (EHR) due to a single point exposure. The formula for EHR is a polynomial in exposure dose. Since the formula for EHR contains no unknown parameters except for the number of total stages, number of exposure-sensitive stages, and a coefficient of exposure effect, it is applicable easily under a variety of situations where there exists a possible latency time from a single point exposure to occurrence of event. Based on the multistage hypothesis of cancer, we formulate a radiation carcinogenesis model in which only some early consecutive stages of the process are sensitive to exposure, whereas later stages are not affected. An illustrative analysis using the proposed model is given for cancer mortality among A-bomb survivors. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Traynor, Kirsten S.; Pettis, Jeffery S.; Tarpy, David R.; Mullin, Christopher A.; Frazier, James L.; Frazier, Maryann; Vanengelsdorp, Dennis
2016-09-01
This study measured part of the in-hive pesticide exposome by analyzing residues from live in-hive bees, stored pollen, and wax in migratory colonies over time and compared exposure to colony health. We summarized the pesticide burden using three different additive methods: (1) the hazard quotient (HQ), an estimate of pesticide exposure risk, (2) the total number of pesticide residues, and (3) the number of relevant residues. Despite being simplistic, these models attempt to summarize potential risk from multiple contaminations in real-world contexts. Colonies performing pollination services were subject to increased pesticide exposure compared to honey-production and holding yards. We found clear links between an increase in the total number of products in wax and colony mortality. In particular, we found that fungicides with particular modes of action increased disproportionally in wax within colonies that died. The occurrence of queen events, a significant risk factor for colony health and productivity, was positively associated with all three proxies of pesticide exposure. While our exposome summation models do not fully capture the complexities of pesticide exposure, they nonetheless help elucidate their risks to colony health. Implementing and improving such models can help identify potential pesticide risks, permitting preventative actions to improve pollinator health.
Traynor, Kirsten S.; Pettis, Jeffery S.; Tarpy, David R.; Mullin, Christopher A.; Frazier, James L.; Frazier, Maryann; vanEngelsdorp, Dennis
2016-01-01
This study measured part of the in-hive pesticide exposome by analyzing residues from live in-hive bees, stored pollen, and wax in migratory colonies over time and compared exposure to colony health. We summarized the pesticide burden using three different additive methods: (1) the hazard quotient (HQ), an estimate of pesticide exposure risk, (2) the total number of pesticide residues, and (3) the number of relevant residues. Despite being simplistic, these models attempt to summarize potential risk from multiple contaminations in real-world contexts. Colonies performing pollination services were subject to increased pesticide exposure compared to honey-production and holding yards. We found clear links between an increase in the total number of products in wax and colony mortality. In particular, we found that fungicides with particular modes of action increased disproportionally in wax within colonies that died. The occurrence of queen events, a significant risk factor for colony health and productivity, was positively associated with all three proxies of pesticide exposure. While our exposome summation models do not fully capture the complexities of pesticide exposure, they nonetheless help elucidate their risks to colony health. Implementing and improving such models can help identify potential pesticide risks, permitting preventative actions to improve pollinator health. PMID:27628343
Psychopathy, traumatic exposure, and lifetime posttraumatic stress.
Willemsen, Jochem; De Ganck, Julie; Verhaeghe, Paul
2012-06-01
This study examined two theoretical models on the interaction between psychopathy, traumatic exposure, and lifetime posttraumatic stress in a sample of 81 male detainees. In Model 1, the interpersonal and affective features of psychopathy were assumed to protect against posttraumatic stress. In Model 2, the lifestyle and antisocial traits of psychopathy were assumed to lead to a lifestyle that increases the risk of traumatic exposure and subsequent posttraumatic stress. The authors found significant negative bivariate associations between Psychopathy Checklist-Revised (PCL-R) total, Interpersonal and Affective facet scores, and posttraumatic stress. Model 1 was confirmed, as they found the interaction between the Affective facet and traumatic exposure had a significant negative effect on posttraumatic stress. Model 2 was rejected. The authors' findings confirm that the interpersonal and affective features of psychopathy are associated with an emotional deficit and that the affective features of psychopathy are crucial for understanding the relationship between psychopathy and anxiety.
NASA Astrophysics Data System (ADS)
Fraser, S. A.; Wood, N. J.; Johnston, D. M.; Leonard, G. S.; Greening, P. D.; Rossetto, T.
2014-06-01
Evacuation of the population from a tsunami hazard zone is vital to reduce life-loss due to inundation. Geospatial least-cost distance modelling provides one approach to assessing tsunami evacuation potential. Previous models have generally used two static exposure scenarios and fixed travel speeds to represent population movement. Some analyses have assumed immediate evacuation departure time or assumed a common departure time for all exposed population. In this paper, a method is proposed to incorporate time-variable exposure, distributed travel speeds, and uncertain evacuation departure time into an existing anisotropic least-cost path distance framework. The model is demonstrated for a case study of local-source tsunami evacuation in Napier City, Hawke's Bay, New Zealand. There is significant diurnal variation in pedestrian evacuation potential at the suburb-level, although the total number of people unable to evacuate is stable across all scenarios. Whilst some fixed travel speeds can approximate a distributed speed approach, others may overestimate evacuation potential. The impact of evacuation departure time is a significant contributor to total evacuation time. This method improves least-cost modelling of evacuation dynamics for evacuation planning, casualty modelling, and development of emergency response training scenarios.
Estimation of Particulate Mass and Manganese Exposure Levels among Welders
Hobson, Angela; Seixas, Noah; Sterling, David; Racette, Brad A.
2011-01-01
Background: Welders are frequently exposed to Manganese (Mn), which may increase the risk of neurological impairment. Historical exposure estimates for welding-exposed workers are needed for epidemiological studies evaluating the relationship between welding and neurological or other health outcomes. The objective of this study was to develop and validate a multivariate model to estimate quantitative levels of welding fume exposures based on welding particulate mass and Mn concentrations reported in the published literature. Methods: Articles that described welding particulate and Mn exposures during field welding activities were identified through a comprehensive literature search. Summary measures of exposure and related determinants such as year of sampling, welding process performed, type of ventilation used, degree of enclosure, base metal, and location of sampling filter were extracted from each article. The natural log of the reported arithmetic mean exposure level was used as the dependent variable in model building, while the independent variables included the exposure determinants. Cross-validation was performed to aid in model selection and to evaluate the generalizability of the models. Results: A total of 33 particulate and 27 Mn means were included in the regression analysis. The final model explained 76% of the variability in the mean exposures and included welding process and degree of enclosure as predictors. There was very little change in the explained variability and root mean squared error between the final model and its cross-validation model indicating the final model is robust given the available data. Conclusions: This model may be improved with more detailed exposure determinants; however, the relatively large amount of variance explained by the final model along with the positive generalizability results of the cross-validation increases the confidence that the estimates derived from this model can be used for estimating welder exposures in absence of individual measurement data. PMID:20870928
Ragettli, Martina S; Phuleria, Harish C; Tsai, Ming-Yi; Schindler, Christian; de Nazelle, Audrey; Ducret-Stich, Regina E; Ineichen, Alex; Perez, Laura; Braun-Fahrländer, Charlotte; Probst-Hensch, Nicole; Künzli, Nino
2015-01-01
Exposure during transport and at non-residential locations is ignored in most epidemiological studies of traffic-related air pollution. We investigated the impact of separately estimating NO2 long-term outdoor exposures at home, work/school, and while commuting on the association between this marker of exposure and potential health outcomes. We used spatially and temporally resolved commuter route data and model-based NO2 estimates of a population sample in Basel, Switzerland, to assign individual NO2-exposure estimates of increasing complexity, namely (1) home outdoor concentration; (2) time-weighted home and work/school concentrations; and (3) time-weighted concentration incorporating home, work/school and commute. On the basis of their covariance structure, we estimated the expectable relative differences in the regression slopes between a quantitative health outcome and our measures of individual NO2 exposure using a standard measurement error model. The traditional use of home outdoor NO2 alone indicated a 12% (95% CI: 11-14%) underestimation of related health effects as compared with integrating both home and work/school outdoor concentrations. Mean contribution of commuting to total weekly exposure was small (3.2%; range 0.1-13.5%). Thus, ignoring commute in the total population may not significantly underestimate health effects as compared with the model combining home and work/school. For individuals commuting between Basel-City and Basel-Country, ignoring commute may produce, however, a significant attenuation bias of 4% (95% CI: 4-5%). Our results illustrate the importance of including work/school locations in assessments of long-term exposures to traffic-related air pollutants such as NO2. Information on individuals' commuting behavior may further improve exposure estimates, especially for subjects having lengthy commutes along major transportation routes.
Occupational exposure due to naturally occurring radionuclide material in granite quarry industry.
Ademola, J A
2012-02-01
The potential occupational exposure in granite quarry industry due to the presence of naturally occurring radioactive material (NORM) has been investigated. The activity concentrations of (40)K, (226)Ra and (232)Th were determined using gamma-ray spectroscopy method. The annual effective dose of workers through different exposure pathways was determined by model calculations. The total annual effective dose varied from 21.48 to 33.69 μSv y(-1). Inhalation dose contributes the highest to the total effective dose. The results obtained were much lower than the intervention exemption levels (1.0 mSv y(-1)) given in the International Commission on Radiological Protection Publication 82.
ERIC Educational Resources Information Center
Burke, Ainsley K.; Galfalvy, Hanga; Everett, Benjamin; Currier, Dianne; Zelazny, Jamie; Oquendo, Maria A.; Melhem, Nadine M.; Kolko, David; Harkavy-Friedman, Jill M.; Birmaher, Boris; Stanley, Barbara; Mann, J. John; Brent, David A.
2010-01-01
Objective: Exposure to suicidal behavior in peers and relatives is thought to increase risk for suicidal behavior in vulnerable individuals, possibly as a result of imitation or modeling. This study examines exposure to suicidal behavior and likelihood of suicide attempt in a high-risk cohort of offspring of a depressed parent. Method: A total of…
The Health Impacts of Energy Policy Pathways in Ulaanbaatar, Mongolia: A Total Exposure Assessment
NASA Astrophysics Data System (ADS)
Hill, L. A.; Damdinsuren, Y.; Olkhanud, P. B.; Smith, K. R.; Turner, J. R.; Edwards, R.; Odsuren, M.; Ochir, C.
2015-12-01
Ulaanbaatar is home to nearly half of Mongolia's 2.8 million residents. The city's rapid growth, frigid winters, valley topography, and reliance on coal-fired stoves have led to some of the worst winter pollution levels in the world. To better understand this issue, we modeled integrated PM2.5exposures and related health impacts for various city-wide heating policies through 2024. This assessment is one of the first to employ a total exposure approach and results of the 2014 Comparative Risk Assessments of the Global Burden of Disease Project (CRA/GBD) in a policy-relevant energy study. Emissions related to heating, traffic, and power generation were considered under Business as Usual, Moderate Improvement, and Max Improvement scenarios. Calibrated outdoor models were combined with indoor models, local infiltration and time activity estimates, and demographic projections to estimate PM2.5exposures in 2014 and 2024. Indoor exposures were assigned by heating type, home type, and smoking status; outdoor exposures were assigned through geocoding. Population average annual exposures were calculated and applied to local disease rates and integrated exposure-response curves (2014 CRA/GBD) to arrive at annual projections of premature deaths and DALYs. We estimate 2014 annual average exposures at 68 μg/m3, dictated almost exclusively by indoor winter exposures. Under current trends, annual exposures increase 10% to 75 μg/m3 in 2024. This is in stark contrast to the moderate and max improvement scenarios, which lead to 2024 annual exposures that are 31%, and 68% lower, respectively. Under the Moderate scenario, 2024 per capita annual DALY and death burdens drop 26% and 22%, respectively, from 2014 levels. Under the Max scenario, 2024 per capita annual DALY and death burdens drop 71% and 66%, respectively, from 2014. SHS becomes a major contributor as emissions from other sectors decrease. Reductions are dominated by cardiovascular and lower respiratory diseases in children.
Woskie, S R; Smith, T J; Hallock, M F; Hammond, S K; Rosenthal, F; Eisen, E A; Kriebel, D; Greaves, I A
1994-01-01
The current metal-working fluid exposures at three locations that manufacture automotive parts were assessed in conjunction with epidemiological studies of the mortality and respiratory morbidity experiences of workers at these plants. A rationale is presented for selecting and characterizing epidemiologic exposure groups in this environment. More than 475 full-shift personal aerosol samples were taken using a two-stage personal cascade impactor with median size cut-offs of 9.8 microns and 3.5 microns, plus a backup filter. For a sample of 403 workers exposed to aerosols of machining or grinding fluids, the mean total exposure was 706 micrograms/m3 (standard error (SE) = 21 micrograms/m3). Among 72 assemblers unexposed to machining fluids, the mean total exposure was 187 +/- 10 (SE) micrograms/m3. An analysis of variance model identified factors significantly associated with exposure level and permitted estimates of exposure for workers in the unsampled machine type/metal-working fluid groups. Comparison of the results obtained from personal impactor samples with predictions from an aerosol-deposition model for the human respiratory tract showed high correlation. However, the amount collected on the impactor stage underestimates extrathoracic deposition and overestimates tracheobronchial and alveolar deposition, as calculated by the deposition model. When both the impactor concentration and the deposition-model concentration were used to estimate cumulative thoracic concentrations for the worklives of a subset of auto workers, there was no significant difference in the rank order of the subjects' cumulative concentration. However, the cumulative impactor concentration values were significantly higher than the cumulative deposition-model concentration values for the subjects.
Total Human Exposure Risk Database and Advance Simulaiton Environment
THERdbASE is no longer supported by EPA and is no longer available as download.
THERdbASE is a collection of databases and models that are useful to assist in conducting assessments of human exposure to chemical pollutants, especial...
Shin, Hyeong-Moo; McKone, Thomas E; Sohn, Michael D; Bennett, Deborah H
2014-01-01
The work addresses current knowledge gaps regarding causes for correlations between environmental and biomarker measurements and explores the underappreciated role of variability in disaggregating exposure attributes that contribute to biomarker levels. Our simulation-based study considers variability in environmental and food measurements, the relative contribution of various exposure sources (indoors and food), and the biological half-life of a compound, on the resulting correlations between biomarker and environmental measurements. For two hypothetical compounds whose half-lives are on the order of days for one and years for the other, we generate synthetic daily environmental concentrations and food exposures with different day-to-day and population variability as well as different amounts of home- and food-based exposure. Assuming that the total intake results only from home-based exposure and food ingestion, we estimate time-dependent biomarker concentrations using a one-compartment pharmacokinetic model. Box plots of modeled R2 values indicate that although the R2 correlation between wipe and biological (e.g., serum) measurements is within the same range for the two compounds, the relative contribution of the home exposure to the total exposure could differ by up to 20%, thus providing the relative indication of their contribution to body burden. The novel method introduced in this paper provides insights for evaluating scenarios or experiments where sample, exposure, and compound variability must be weighed in order to interpret associations between exposure data.
Gille, Laure-Anne; Marquis-Favre, Catherine; Lam, Kin-Che
2017-11-30
Structural equation modeling was used to analyze partial and total in situ annoyance in combined transportation noise situations. A psychophysical total annoyance model and a perceptual total annoyance model were proposed. Results show a high contribution of Noise exposure and Noise sensitivity to Noise annoyance , as well as a causal relationship between noise annoyance and lower Dwelling satisfaction. Moreover, the Visibility of noise source may increase noise annoyance, even when the visible noise source is different from the annoying source under study. With regards to total annoyance due to road traffic noise combined with railway or aircraft noise, even though in both situations road traffic noise may be considered background noise and the other noise source event noise, the contribution of road traffic noise to the models is greater than railway noise and smaller than aircraft noise. This finding may be explained by the difference in sound pressure levels between these two types of combined exposures or by the aircraft noise level, which may also indicate the city in which the respondents live. Finally, the results highlight the importance of sample size and variable distribution in the database, as different results can be observed depending on the sample or variables considered.
Gille, Laure-Anne; Marquis-Favre, Catherine; Lam, Kin-Che
2017-01-01
Structural equation modeling was used to analyze partial and total in situ annoyance in combined transportation noise situations. A psychophysical total annoyance model and a perceptual total annoyance model were proposed. Results show a high contribution of Noise exposure and Noise sensitivity to Noise annoyance, as well as a causal relationship between noise annoyance and lower Dwelling satisfaction. Moreover, the Visibility of noise source may increase noise annoyance, even when the visible noise source is different from the annoying source under study. With regards to total annoyance due to road traffic noise combined with railway or aircraft noise, even though in both situations road traffic noise may be considered background noise and the other noise source event noise, the contribution of road traffic noise to the models is greater than railway noise and smaller than aircraft noise. This finding may be explained by the difference in sound pressure levels between these two types of combined exposures or by the aircraft noise level, which may also indicate the city in which the respondents live. Finally, the results highlight the importance of sample size and variable distribution in the database, as different results can be observed depending on the sample or variables considered. PMID:29189751
2013-04-24
established to minimize the potential of dermal irritation and dermatitis (6). Chromium exposure can lead to allergic contact dermatitis , irritant... dermatitis with skin contact . (5; 15; 25; 33; 47). Nickel is potentially the most common contact allergen among the general population. Some studies...thresholds - a review focusing on occluded nickel exposure. Contact Dermatitis 52:57-64 21. Fogh CL, Andersson KG. 2000. Modelling of skin exposure
Rumrich, Isabell Katharina; Hänninen, Otto
2015-01-01
Aims: To quantify the reduction potential of asthma in Finland achievable by adjusting exposures to selected environmental factors. Methods: A life table model for the Finnish population for 1986–2040 was developed and Years Lived with Disability caused by asthma and attributable to the following selected exposures were estimated: tobacco smoke (smoking and second hand tobacco smoke), ambient fine particles, indoor dampness and mould, and pets. Results: At baseline (2011) about 25% of the total asthma burden was attributable to the selected exposures. Banning tobacco was the most efficient mitigation action, leading to 6% reduction of the asthma burden. A 50% reduction in exposure to dampness and mould as well as a doubling in exposure to pets lead each to a 2% reduction. Ban of urban small scale wood combustion, chosen as a mitigation action to reduce exposure to fine particles, leads to a reduction of less than 1% of the total asthma burden. Combination of the most efficient mitigation actions reduces the total asthma burden by 10%. A more feasible combination of mitigation actions leads to 6% reduction of the asthma burden. Conclusions: The adjustment of environmental exposures can reduce the asthma burden in Finland by up to 10%. PMID:26067987
Rando, Roy J; Kwon, Cheol-Woong; Lefante, John J
2014-01-01
In the aftermath of Hurricane Katrina, which devastated the city of New Orleans in August 2005, restoration workers were at risk for respiratory illness from exposure to airborne particles and microbial agents. In support of an epidemiologic investigation of this risk, an exposure assessment for restoration work activities (demolition, trash & debris management, landscape restoration, sewer/waterline repair, and mold remediation) was performed from 2005 to 2012. For 2005 and 2006, Occupational Safety and Health Administration (OSHA) data (n = 730) for personal and area monitoring of total and respirable dust exposures of restoration workers were accessed and analyzed. The most significant exposures were for demolition work, with average respirable dust exposures in 2005 above the action level of 2.5 mg/m(3) and 17.6% of exposures exceeding the permissible exposure limit (PEL) (5 mg/m(3)). Additional personal and area monitoring for thoracic particulate matter was performed from 2007 to 2012 (n = 774) and samples were assayed for endotoxin and (1→3, 1→6)-β-D-glucan (n = 202). In order to integrate the OSHA data with the later monitoring data, three independent predictive models were developed to convert total and respirable dust measures into the equivalent thoracic dust. The three models were not statistically different and the modeling results were in good agreement with an overall coefficient of variation of 16% for the thoracic dust means across work activities estimated by each of the three models. Overall, thoracic dust exposure levels decreased by about an order of magnitude within the first year after Katrina and then more gradually declined and stabilized through 2012. Estimated average exposures to endotoxin and microbial glucan in 2005 were as high as 256 EU/m(3) and 118 μg/m(3), respectively, and likewise were seen to decrease dramatically and stabilize after 2005. The results of this exposure assessment support previously published reports of respiratory illness including sinusitis, toxic pneumonitis, and Katrina Cough among restoration workers in the years immediately after the hurricane.
Short-Term Effect of Coarse Particles on Daily Mortality Rate in A Tropical City, Kaohsiung, Taiwan.
Tsai, Shang-Shyue; Weng, Yi-Hao; Chiu, Ya-Wen; Yang, Chun-Yuh
2015-01-01
Many studies examined the short-term effects of air pollution on frequency of daily mortality over the past two decades. However, information on the relationship between exposure to levels of coarse particles (PM(2.5-10)) and daily mortality rate is relatively sparse due to limited availability of monitoring data and findings are inconsistent. This study was undertaken to determine whether an association exists between PM(2.5-10) levels and rate of daily mortality in Kaohsiung, Taiwan, a large industrial city with a tropical climate. Daily mortality rate, air pollution parameters, and weather data for Kaohsiung were obtained for the period 2006-2008. The relative risk (RR) of daily mortality occurrence was estimated using a time-stratified case-crossover approach, controlling for (1) weather variables, (2) day of the week, (3) seasonality, and (4) long-term time trends. For the single-pollutant model without adjustment for other pollutants, PM(2.5-10) exposure levels showed significant correlation with total mortality rate both on warm and cool days, with an interquartile range increase associated with a 14% (95% CI = 5-23%) and 12% (95% CI = 5-20%) rise in number of total deaths, respectively. In two-pollutant models, PM(2.5-10) exerted significant influence on total mortality frequency after inclusion of sulfur dioxide (SO(2)) on warm days. On cool days, PM(2.5-10) induced significant elevation in total mortality rate when SO(2) or ozone (O(3)) was added in the regression model. There was no apparent indication of an association between PM(2.5-10) exposure and deaths attributed to respiratory and circulatory diseases. This study provided evidence of correlation between short-term exposure to PM(2.5-10) and increased risk of death for all causes.
A hybrid modeling with data assimilation to evaluate human exposure level
NASA Astrophysics Data System (ADS)
Koo, Y. S.; Cheong, H. K.; Choi, D.; Kim, A. L.; Yun, H. Y.
2015-12-01
Exposure models are designed to better represent human contact with PM (Particulate Matter) and other air pollutants such as CO, SO2, O3, and NO2. The exposure concentrations of the air pollutants to human are determined by global and regional long range transport of global and regional scales from Europe and China as well as local emissions from urban and road vehicle sources. To assess the exposure level in detail, the multiple scale influence from background to local sources should be considered. A hybrid air quality modeling methodology combing a grid-based chemical transport model with a local plume dispersion model was used to provide spatially and temporally resolved air quality concentration for human exposure levels in Korea. In the hybrid modeling approach, concentrations from a grid-based chemical transport model and a local plume dispersion model are added to provide contributions from photochemical interactions, long-range (regional) transport and local-scale dispersion. The CAMx (Comprehensive Air quality Model with Extensions was used for the background concentrations from anthropogenic and natural emissions in East Asia including Korea while the road dispersion by vehicle emission was calculated by CALPUFF model. The total exposure level of the pollutants was finally assessed by summing the background and road contributions. In the hybrid modeling, the data assimilation method based on the optimal interpolation was applied to overcome the discrepancies between the model predicted concentrations and observations. The air quality data from the air quality monitoring stations in Korea. The spatial resolution of the hybrid model was 50m for the Seoul Metropolitan Ares. This example clearly demonstrates that the exposure level could be estimated to the fine scale for the exposure assessment by using the hybrid modeling approach with data assimilation.
2010-09-01
estimation of total exposure at any toxicological endpoint in the body. This effort is a significant contribution as it highlights future research needs...rigorous modeling of the nanoparticle transport by including physico-chemical properties of engineered particles. Similarly, toxicological dose-response...exposure risks as compared to larger sized particles of the same material. Although the toxicology of a base material may be thoroughly defined, the
Amount of Televised Alcohol Advertising Exposure and the Quantity of Alcohol Consumed by Youth.
Naimi, Timothy S; Ross, Craig S; Siegel, Michael B; DeJong, William; Jernigan, David H
2016-09-01
Although studies demonstrate that exposure to brand-specific alcohol advertising is associated with an increased likelihood of youth consuming particular brands, the relationship between quantity of brand-specific advertising exposure and quantity of brand-specific consumption has not been firmly established. Using the Alcohol Brand Research Among Underage Drinkers (ABRAND) national sample of 1,031 young drinkers (ages 13-20), this study examined the relationship between their aggregated past-year exposure to advertising (in adstock units, a measure based on gross rating points) for 61 alcohol brands that advertised on the 20 most popular nonsports television programs viewed by underage youth and their aggregated total consumption of those same brands during the past 30 days. Predictive models adjusted for other media exposure, predictors of youth's alcohol consumption, and the consumption of brands not advertised on the 20 shows. For the fully adjusted models, each 100 adstock unit increase in exposure (about 1 SD) was associated with an increase of 5.9 drinks (95% CI [0.9, 11.0 drinks]) consumed during the past 30 days among those with less than 300 units of advertising exposure, and an increase of 55.7 drinks (95% CI [13.9, 97.4 drinks]) among those with 300 or more adstock units of exposure. Among underage youth, the quantity of brand-specific advertising exposure is positively associated with the total quantity of consumption of those advertised brands, even after controlling for the consumption of non-advertised brands. Future research should examine exposure-consumption relationships longitudinally and in other media.
FACTORS INFLUENCING TOTAL DIETARY EXPOSURES OF YOUNG CHILDREN
A deterministic model was developed to identify the critical input parameters needed to assess dietary intakes of young children. The model was used as a framework for understanding the important factors in data collection and data analysis. Factors incorporated into the model i...
Modeling Environment for Total Risk-2E
MENTOR-2E uses an integrated, mechanistically consistent source-to-dose-to-response modeling framework to quantify inhalation exposure and doses resulting from emergency events. It is an implementation of the MENTOR system that is focused towards modeling of the impacts of rele...
Do fungi need to be included within environmental radiation protection assessment models?
Guillén, J; Baeza, A; Beresford, N A; Wood, M D
2017-09-01
Fungi are used as biomonitors of forest ecosystems, having comparatively high uptakes of anthropogenic and naturally occurring radionuclides. However, whilst they are known to accumulate radionuclides they are not typically considered in radiological assessment tools for environmental (non-human biota) assessment. In this paper the total dose rate to fungi is estimated using the ERICA Tool, assuming different fruiting body geometries, a single ellipsoid and more complex geometries considering the different components of the fruit body and their differing radionuclide contents based upon measurement data. Anthropogenic and naturally occurring radionuclide concentrations from the Mediterranean ecosystem (Spain) were used in this assessment. The total estimated weighted dose rate was in the range 0.31-3.4 μGy/h (5 th -95 th percentile), similar to natural exposure rates reported for other wild groups. The total estimated dose was dominated by internal exposure, especially from 226 Ra and 210 Po. Differences in dose rate between complex geometries and a simple ellipsoid model were negligible. Therefore, the simple ellipsoid model is recommended to assess dose rates to fungal fruiting bodies. Fungal mycelium was also modelled assuming a long filament. Using these geometries, assessments for fungal fruiting bodies and mycelium under different scenarios (post-accident, planned release and existing exposure) were conducted, each being based on available monitoring data. The estimated total dose rate in each case was below the ERICA screening benchmark dose, except for the example post-accident existing exposure scenario (the Chernobyl Exclusion Zone) for which a dose rate in excess of 35 μGy/h was estimated for the fruiting body. Estimated mycelium dose rate in this post-accident existing exposure scenario was close to the 400 μGy/h benchmark for plants, although fungi are generally considered to be less radiosensitive than plants. Further research on appropriate mycelium geometries and their radionuclide content is required. Based on the assessments presented in this paper, there is no need to recommend that fungi should be added to the existing assessment tools and frameworks; if required some tools allow a geometry representing fungi to be created and used within a dose assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Retzlaff, W. A.; Weinstein, D. A.; Laurence, J. A.; Gollands, B.
1996-01-01
Because of difficulties in directly assessing root responses of mature forest trees exposed to atmospheric pollutants, we have used the model TREGRO to analyze the effects of a 3- and a 10-year exposure to ozone (O(3)) on root dynamics of a simulated 160-year-old sugar maple (Acer saccharum Marsh.) tree. We used existing phenological, allometric, and growth data to parameterize TREGRO to produce a simulated 160-year-old tree. Simulations were based on literature values for sugar maple fine root production and senescence and the photosynthetic responses of sugar maple seedlings exposed to O(3) in open-top chambers. In the simulated 3-year exposure to O(3), 2 x ambient atmospheric O(3) concentrations reduced net carbon (C) gain of the 160-year-old tree. This reduction occurred in the C storage pools (total nonstructural carbohydrate, TNC), with most of the reduction occurring in coarse (woody) roots. Total fine root production and senescence were unaffected by the simulated 3-year exposure to O(3). However, extending the simulated O(3) exposure period to 10 years depleted the TNC pools of the coarse roots and reduced total fine root production. Similar reductions in TNC pools have been observed in forest-grown sugar maple trees exhibiting symptoms of stress. We conclude that modeling can aid in evaluating the belowground response of mature forest trees to atmospheric pollution stress and could indicate the potential for gradual deterioration of tree health under conditions of long-term stress, a situation similar to that underlying the decline of sugar maple trees.
von Goetz, N; Pirow, R; Hart, A; Bradley, E; Poças, F; Arcella, D; Lillegard, I T L; Simoneau, C; van Engelen, J; Husoy, T; Theobald, A; Leclercq, C
2017-04-01
In the most recent risk assessment for Bisphenol A for the first time a multi-route aggregate exposure assessment was conducted by the European Food Safety Authority. This assessment includes exposure via dietary sources, and also contributions of the most important non-dietary sources. Both average and high aggregate exposure were calculated by source-to-dose modeling (forward calculation) for different age groups and compared with estimates based on urinary biomonitoring data (backward calculation). The aggregate exposure estimates obtained by forward and backward modeling are in the same order of magnitude, with forward modeling yielding higher estimates associated with larger uncertainty. Yet, only forward modeling can indicate the relative contribution of different sources. Dietary exposure, especially via canned food, appears to be the most important exposure source and, based on the central aggregate exposure estimates, contributes around 90% to internal exposure to total (conjugated plus unconjugated) BPA. Dermal exposure via thermal paper and to a lesser extent via cosmetic products may contribute around 10% for some age groups. The uncertainty around these estimates is considerable, but since after dermal absorption a first-pass metabolism of BPA by conjugation is lacking, dermal sources may be of equal or even higher toxicological relevance than dietary sources. Copyright © 2017 Elsevier Inc. All rights reserved.
Trends in exposure to respirable crystalline silica (1986-2014) in Australian mining.
Peters, Susan; Vermeulen, Roel; Fritschi, Lin; Musk, Aw Bill; Reid, Alison; de Klerk, Nicholas
2017-08-01
Respirable crystalline silica (RCS) has been associated with severe health risks. Exposures in Western Australia (WA) have been typically high in hard-rock mining and have reduced substantially since the mid-1900s. We described trends in RCS exposure in WA miners over the past 30 years. A total of 79 445 reported personal RCS exposure measurements, covering the years 1986-2014, were examined. Mixed-effects models were applied to estimate RCS exposure levels, including spline terms to estimate a time trend. An overall downward trend of about -8% per year was observed for RCS exposures in WA mining. Highest RCS exposure levels were modeled for base metal mining and exploration settings. Drilling occupations were among the highest exposed jobs. RCS exposure levels have fallen considerably in the last three decades. However, there are still mining occupations that may need further attention to avoid adverse health effects in these workers. © 2017 Wiley Periodicals, Inc.
Prenatal Exposure to Perfluoroalkyl Substances and Behavioral Development in Children.
Quaak, Ilona; de Cock, Marijke; de Boer, Michiel; Lamoree, Marja; Leonards, Pim; van de Bor, Margot
2016-05-19
In recent years, prevalence rates of behavioral disorders in children have increased. One factor possibly implied in the etiology of behavioral disorders is exposure to perfluoroalkyl substances (PFASs). The use of PFASs is highly integrated into everyday life, and exposure is ubiquitous. Exposure to PFASs during early life may be particularly harmful, as it represents a critical time window for brain development. However, research in the area is limited, especially among preschool children. The objective of the current study was to explore the relationship between prenatal exposure to several PFASs and behavioral development at the age of 18 months. Data from the Dutch cohort LINC (Linking Maternal Nutrition to Child Health) were used. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were measured in cord plasma. The total exposure of PFASs was also calculated (ΣPFASs). Behavioral development was assessed with the Child Behavior Checklist 1.5-5 (CBCL 1.5-5). The CBCL scales "Attention Deficit Hyperactivity Disorder" (ADHD) and "Externalizing problems" were used for further analysis. Separate regression models were composed for each combination, in which exposure levels were classified in tertiles. Both whole population and sex-stratified analyses were performed. A family history of ADHD, the educational level, smoking or using alcohol or illicit drugs during pregnancy were considered as confounders. In total, data from 76 mother-child pairs was included. No significant associations were found between prenatal PFAS exposure and ADHD scores in the whole population and in the sex-stratified analyses. With regard to externalizing behavior, a significant negative association was found between the highest levels of ΣPFAS exposure and externalizing problem behavior in the whole population, but only in the crude model. After stratifying for sex, boys in the second and third tertile of exposure to PFOA presented significantly lower scores on the Externalizing Problem Scale than boys with the lowest exposure levels in the adjusted model. Girls exposed to higher levels of ΣPFAS exposure (T2) showed significantly lower scores on the Externalizing Problem Scale, in both crude and adjusted models. No significant associations with PFOS were found. RESULTS from the current study show that prenatal exposure to PFOA was negatively related to externalizing behavior in boys. RESULTS were different for boys and girls, emphasizing that mechanisms at work might be sex-dependent. However, results should be interpreted with caution as the sample size was small.
Modeling population exposures to outdoor sources of hazardous air pollutants.
Ozkaynak, Halûk; Palma, Ted; Touma, Jawad S; Thurman, James
2008-01-01
Accurate assessment of human exposures is an important part of environmental health effects research. However, most air pollution epidemiology studies rely upon imperfect surrogates of personal exposures, such as information based on available central-site outdoor concentration monitoring or modeling data. In this paper, we examine the limitations of using outdoor concentration predictions instead of modeled personal exposures for over 30 gaseous and particulate hazardous air pollutants (HAPs) in the US. The analysis uses the results from an air quality dispersion model (the ASPEN or Assessment System for Population Exposure Nationwide model) and an inhalation exposure model (the HAPEM or Hazardous Air Pollutant Exposure Model, Version 5), applied by the US. Environmental protection Agency during the 1999 National Air Toxic Assessment (NATA) in the US. Our results show that the total predicted chronic exposure concentrations of outdoor HAPs from all sources are lower than the modeled ambient concentrations by about 20% on average for most gaseous HAPs and by about 60% on average for most particulate HAPs (mainly, due to the exclusion of indoor sources from our modeling analysis and lower infiltration of particles indoors). On the other hand, the HAPEM/ASPEN concentration ratio averages for onroad mobile source exposures were found to be greater than 1 (around 1.20) for most mobile-source related HAPs (e.g. 1, 3-butadiene, acetaldehyde, benzene, formaldehyde) reflecting the importance of near-roadway and commuting environments on personal exposures to HAPs. The distribution of the ratios of personal to ambient concentrations was found to be skewed for a number of the VOCs and reactive HAPs associated with major source emissions, indicating the importance of personal mobility factors. We conclude that the increase in personal exposures from the corresponding predicted ambient levels tends to occur near locations where there are either major emission sources of HAPs or when individuals are exposed to either on- or nonroad sources of HAPs during their daily activities. These findings underscore the importance of applying exposure-modeling methods, which incorporate information on time-activity, commuting, and exposure factors data, for the purposes of assigning exposures in air pollution health studies.
Amount of Televised Alcohol Advertising Exposure and the Quantity of Alcohol Consumed by Youth
Naimi, Timothy S.; Ross, Craig S.; Siegel, Michael B.; DeJong, William; Jernigan, David H.
2016-01-01
Objective: Although studies demonstrate that exposure to brand-specific alcohol advertising is associated with an increased likelihood of youth consuming particular brands, the relationship between quantity of brand-specific advertising exposure and quantity of brand-specific consumption has not been firmly established. Method: Using the Alcohol Brand Research Among Underage Drinkers (ABRAND) national sample of 1,031 young drinkers (ages 13–20), this study examined the relationship between their aggregated past-year exposure to advertising (in adstock units, a measure based on gross rating points) for 61 alcohol brands that advertised on the 20 most popular nonsports television programs viewed by underage youth and their aggregated total consumption of those same brands during the past 30 days. Predictive models adjusted for other media exposure, predictors of youth’s alcohol consumption, and the consumption of brands not advertised on the 20 shows. Results: For the fully adjusted models, each 100 adstock unit increase in exposure (about 1 SD) was associated with an increase of 5.9 drinks (95% CI [0.9, 11.0 drinks]) consumed during the past 30 days among those with less than 300 units of advertising exposure, and an increase of 55.7 drinks (95% CI [13.9, 97.4 drinks]) among those with 300 or more adstock units of exposure. Conclusions: Among underage youth, the quantity of brand-specific advertising exposure is positively associated with the total quantity of consumption of those advertised brands, even after controlling for the consumption of non-advertised brands. Future research should examine exposure–consumption relationships longitudinally and in other media. PMID:27588530
Sørensen, Mette; Hjortebjerg, Dorrit; Eriksen, Kirsten T; Ketzel, Matthias; Tjønneland, Anne; Overvad, Kim; Raaschou-Nielsen, Ole
2015-12-01
Exposure to traffic noise and air pollution have both been associated with cardiovascular disease, though the mechanisms behind are not yet clear. We aimed to investigate whether the two exposures were associated with levels of cholesterol in a cross-sectional design. In 1993–1997, 39,863 participants aged 50–64 year and living in the Greater Copenhagen area were enrolled in a population-based cohort study. For each participant, non-fasting total cholesterol was determined in whole blood samples on the day of enrolment. Residential addresses 5-years preceding enrolment were identified in a national register and road traffic noise (Lden) were modeled for all addresses. For air pollution, nitrogen dioxide (NO2) was modeled at all addresses using a dispersion model and PM2.5 was modeled at all enrolment addresses using a land-use regression model. Analyses were done using linear regression with adjustment for potential confounders as well as mutual adjustment for the three exposures. Baseline residential exposure to the interquartile range of road traffic noise,NO2 and PM2.5 was associated with a 0.58 mg/dl (95% confidence interval: −0.09; 1.25), a 0.68 mg/dl (0.22; 1.16) and a 0.78 mg/dl (0.22; 1.34) higher level of total cholesterol in single pollutant models, respectively. In two pollutant models with adjustment for noise in air pollution models and vice versa, the association between air pollution and cholesterol remained for both air pollution variables (NO2: 0.72 (0.11; 1.34); PM2.5: 0.70 (0.12; 1.28) mg/dl), whereas there was no association for noise (−0.08mg/dl). In three-pollutant models (NO2, PM2.5 and road traffic noise), estimates for NO2 and PM2.5 were slightly diminished (NO2: 0.58 (−0.05; 1.22); PM2.5: 0.57 (−0.02; 1.17) mg/dl). Air pollution and possibly also road traffic noise may be associated with slightly higher levels of cholesterol, though associations for the two exposures were difficult to separate.
Short-term memory for pictures seen once or twice.
Martini, Paolo; Maljkovic, Vera
2009-06-01
The present study is concerned with the effects of exposure time, repetition, spacing and lag on old/new recognition memory for generic visual scenes presented in a RSVP paradigm. Early memory studies with verbal material found that knowledge of total exposure time at study is sufficient to accurately predict memory performance at test (the Total Time Hypothesis), irrespective of number of repetitions, spacing or lag. However, other studies have disputed such simple dependence of memory strength on total study time, demonstrating super-additive facilitatory effects of spacing and lag, as well as inhibitory effects, such as the Ranschburg effect, Repetition Blindness and the Attentional Blink. In the experimental conditions of the present study we find no evidence of either facilitatory or inhibitory effects: recognition memory for pictures in RSVP supports the Total Time Hypothesis. The data are consistent with an Unequal-Variance Signal Detection Theory model of memory that assumes the average strength and the variance of the familiarity of pictures both increase with total study time. The main conclusion is that the growth of visual scene familiarity with temporal exposure and repetition is a stochastically independent process.
Wang, Caihong; Wu, Caisheng; Zhang, Jinlan; Jin, Ying
2015-04-15
Prenylflavonoids are major active components of Epimedii wushanensis herba (EWH). The global pharmacokinetics of prenylflavonoids are unclear, as these compounds yield multiple, often unidentified metabolites. This study successfully elucidated the pharmacokinetic profiles of EWH extract and five EWH-derived prenylflavonoid monomers in rats. The study was a comprehensive analysis of metabolic pathways and pharmacokinetic markers. Major plasma compounds identified after oral administration of EWH-derived prototypes or extract included: (1) prenylflavonoid prototypes, (2) deglycosylated products, and (3) glucuronide conjugates. To select appropriate EWH-derived pharmacokinetic markers, a high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was established to simultaneously monitor 14 major compounds in unhydrolyzed plasma and 10 potential pharmacokinetic markers in hydrolyzed plasma. The pharmacokinetic profiles indicated that the glucuronide conjugates of icaritin were the principle circulating metabolites and that total icaritin accounted for ∼99% of prenylflavonoid exposure after administration of EWH-derived materials to rats. To further investigate icaritin as a prospective pharmacokinetic marker, correlation analysis was performed between total icaritin and its glucuronide conjugates, and a strong correlation (r > 0.5) was found, indicating that total icaritin content accurately reflected changes in the exposure levels of the glucuronide conjugates over time. Therefore, icaritin is a sufficient pharmacokinetic marker for evaluating dynamic prenylflavonoid exposure levels. Next, a mathematical model was developed based on the prenylflavonoid content of EWH and the exposure levels in rats, using icaritin as the pharmacokinetic marker. This model accurately predicted exposure levels in vivo, with similar predicted vs. experimental area under the curve (AUC)(0-96 h) values for total icaritin (24.1 vs. 32.0 mg/L h). Icaritin in hydrolyzed plasma can be used as a pharmacokinetic marker to reflect prenylflavonoid exposure levels, as well as the changes over time of its glucuronide conjugates. Crown Copyright © 2015. Published by Elsevier GmbH. All rights reserved.
Beaumelle, Léa; Gimbert, Frédéric; Hedde, Mickaël; Guérin, Annie; Lamy, Isabelle
2015-07-01
Subcellular fractionation of metals in organisms was proposed as a better way to characterize metal bioaccumulation. Here we report the impact of a laboratory exposure to a wide range of field-metal contaminated soils on the subcellular partitioning of metals in the earthworm Aporrectodea caliginosa. Soils moderately contaminated were chosen to create a gradient of soil metal availability; covering ranges of both soil metal contents and of several soil parameters. Following exposure, Cd, Pb and Zn concentrations were determined both in total earthworm body and in three subcellular compartments: cytosolic, granular and debris fractions. Three distinct proxies of soil metal availability were investigated: CaCl2-extractable content dissolved content predicted by a semi-mechanistic model and free ion concentration predicted by a geochemical speciation model. Subcellular partitionings of Cd and Pb were modified along the gradient of metal exposure, while stable Zn partitioning reflected regulation processes. Cd subcellular distribution responded more strongly to increasing soil Cd concentration than the total internal content, when Pb subcellular distribution and total internal content were similarly affected. Free ion concentrations were better descriptors of Cd and Pb subcellular distribution than CaCl2 extractable and dissolved metal concentrations. However, free ion concentrations and soil total metal contents were equivalent descriptors of the subcellular partitioning of Cd and Pb because they were highly correlated. Considering lowly contaminated soils, our results raise the question of the added value of three proxies of metal availability compared to soil total metal content in the assessment of metal bioavailability to earthworm. Copyright © 2015 Elsevier B.V. All rights reserved.
Birks, Laura Ellen; Struchen, Benjamin; Eeftens, Marloes; van Wel, Luuk; Huss, Anke; Gajšek, Peter; Kheifets, Leeka; Gallastegi, Mara; Dalmau-Bueno, Albert; Estarlich, Marisa; Fernandez, Mariana F; Meder, Inger Kristine; Ferrero, Amparo; Jiménez-Zabala, Ana; Torrent, Maties; Vrijkotte, Tanja G M; Cardis, Elisabeth; Olsen, Jørn; Valič, Blaž; Vermeulen, Roel; Vrijheid, Martine; Röösli, Martin; Guxens, Mònica
2018-08-01
Exposure to radiofrequency electromagnetic fields (RF-EMF) has rapidly increased and little is known about exposure levels in children. This study describes personal RF-EMF environmental exposure levels from handheld devices and fixed site transmitters in European children, the determinants of this, and the day-to-day and year-to-year repeatability of these exposure levels. Personal environmental RF-EMF exposure (μW/m 2 , power flux density) was measured in 529 children (ages 8-18 years) in Denmark, the Netherlands, Slovenia, Switzerland, and Spain using personal portable exposure meters for a period of up to three days between 2014 and 2016, and repeated in a subsample of 28 children one year later. The meters captured 16 frequency bands every 4 s and incorporated a GPS. Activity diaries and questionnaires were used to collect children's location, use of handheld devices, and presence of indoor RF-EMF sources. Six general frequency bands were defined: total, digital enhanced cordless telecommunications (DECT), television and radio antennas (broadcast), mobile phones (uplink), mobile phone base stations (downlink), and Wireless Fidelity (WiFi). We used adjusted mixed effects models with region random effects to estimate associations of handheld device use habits and indoor RF-EMF sources with personal RF-EMF exposure. Day-to-day and year-to-year repeatability of personal RF-EMF exposure were calculated through intraclass correlations (ICC). Median total personal RF-EMF exposure was 75.5 μW/m 2 . Downlink was the largest contributor to total exposure (median: 27.2 μW/m 2 ) followed by broadcast (9.9 μW/m 2 ). Exposure from uplink (4.7 μW/m 2 ) was lower. WiFi and DECT contributed very little to exposure levels. Exposure was higher during day (94.2 μW/m 2 ) than night (23.0 μW/m 2 ), and slightly higher during weekends than weekdays, although varying across regions. Median exposures were highest while children were outside (157.0 μW/m 2 ) or traveling (171.3 μW/m 2 ), and much lower at home (33.0 μW/m 2 ) or in school (35.1 μW/m 2 ). Children living in urban environments had higher exposure than children in rural environments. Older children and users of mobile phones had higher uplink exposure but not total exposure, compared to younger children and those that did not use mobile phones. Day-to-day repeatability was moderate to high for most of the general frequency bands (ICCs between 0.43 and 0.85), as well as for total, broadcast, and downlink for the year-to-year repeatability (ICCs between 0.49 and 0.80) in a small subsample. The largest contributors to total personal environmental RF-EMF exposure were downlink and broadcast, and these exposures showed high repeatability. Urbanicity was the most important determinant of total exposure and mobile phone use was the most important determinant of uplink exposure. It is important to continue evaluating RF-EMF exposure in children as device use habits, exposure levels, and main contributing sources may change. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rutt, Benjamin T; Oehlert, Mary E; Krieshok, Thomas S; Lichtenberg, James W
2018-04-01
Objective This study evaluated the effectiveness of cognitive processing therapy and prolonged exposure in conditions reflective of current clinical practice within the Veterans Health Administration. Method This study involved a retrospective review of 2030 charts. A total of 750 veterans from 10 U.S. states who received cognitive processing therapy or prolonged exposure in individual psychotherapy were included in the study (participants in cognitive processing therapy, N = 376; participants in prolonged exposure, N = 374). The main dependent variable was self-reported posttraumatic stress disorder symptoms as measured by total scores on the Posttraumatic Stress Disorder Checklist. The study used multilevel modeling to evaluate the absolute and relative effectiveness of both treatments and determine the relationship between patient-level variables and total Posttraumatic Stress Disorder Checklist scores during treatment. Results Cognitive processing therapy and prolonged exposure were equally effective at reducing total Posttraumatic Stress Disorder Checklist scores. Veterans who completed therapy reported significantly larger reductions in the Posttraumatic Stress Disorder Checklist than patients who did not complete therapy. There were no significant differences in the improvement of posttraumatic stress disorder symptoms with respect to age and three racial/ethnic groups (Caucasian, African American, and Hispanic). Conclusions Cognitive processing therapy and prolonged exposure were shown to be effective in conditions highly reflective of clinical practice and with a highly diverse sample of veterans. Challenges related to dropout from trauma focused therapy should continue to be researched.
Long-term human exposure to lead from different media and intake pathways.
Pizzol, Massimo; Thomsen, Marianne; Andersen, Mikael Skou
2010-10-15
Lead (Pb) is well known as an environmental pollutant: it can accumulate in various media, so actual lead exposure reflects both historical and present contaminations. Two main challenges then emerge: obtaining updated information to gain an overall picture of the sources of exposure, and predicting the resulting internal body exposure levels and effects that occur under long-term exposure conditions. In this paper, a modeling approach is used to meet these challenges with reference to Danish exposure conditions. Levels of lead content in various media have been coupled with data for lead intake and absorption in the human body, for both children and adults. An age-dependent biokinetic model allows then for determination of the blood lead levels resulting from chronic exposure. The study shows that the actual intake of lead is up to 27% of the Provisional Tolerable Daily Intake (PTDI) for children and around 8% for adults. It is confirmed that the critical route of exposure is via ingestion, accounting for 99% of total lead intake, while inhalation contributes only to 1% of total lead intake. The resulting lead levels in the blood after 2 years of exposure to actual contamination conditions have been estimated as up to 2.2μg/dl in children and almost 1μg/dl in adults. Impacts from lead can occur even at such levels. The role of historical and present sources to lead in the environment is discussed, and, for specific child and adult exposure scenarios, external-internal concentration relationships for the direct linkage between lead in environmental media and resulting concentrations of lead in blood are then presented. Copyright © 2010 Elsevier B.V. All rights reserved.
Thurston, George D; Ahn, Jiyoung; Cromar, Kevin R; Shao, Yongzhao; Reynolds, Harmony R; Jerrett, Michael; Lim, Chris C; Shanley, Ryan; Park, Yikyung; Hayes, Richard B
2016-04-01
Outdoor fine particulate matter (≤ 2.5 μm; PM2.5) has been identified as a global health threat, but the number of large U.S. prospective cohort studies with individual participant data remains limited, especially at lower recent exposures. We aimed to test the relationship between long-term exposure PM2.5 and death risk from all nonaccidental causes, cardiovascular (CVD), and respiratory diseases in 517,041 men and women enrolled in the National Institutes of Health-AARP cohort. Individual participant data were linked with residence PM2.5 exposure estimates across the continental United States for a 2000-2009 follow-up period when matching census tract-level PM2.5 exposure data were available. Participants enrolled ranged from 50 to 71 years of age, residing in six U.S. states and two cities. Cox proportional hazard models yielded hazard ratio (HR) estimates per 10 μg/m3 of PM2.5 exposure. PM2.5 exposure was significantly associated with total mortality (HR = 1.03; 95% CI: 1.00, 1.05) and CVD mortality (HR = 1.10; 95% CI: 1.05, 1.15), but the association with respiratory mortality was not statistically significant (HR = 1.05; 95% CI: 0.98, 1.13). A significant association was found with respiratory mortality only among never smokers (HR = 1.27; 95% CI: 1.03, 1.56). Associations with 10-μg/m3 PM2.5 exposures in yearly participant residential annual mean, or in metropolitan area-wide mean, were consistent with baseline exposure model results. Associations with PM2.5 were similar when adjusted for ozone exposures. Analyses of California residents alone also yielded statistically significant PM2.5 mortality HRs for total and CVD mortality. Long-term exposure to PM2.5 air pollution was associated with an increased risk of total and CVD mortality, providing an independent test of the PM2.5-mortality relationship in a new large U.S. prospective cohort experiencing lower post-2000 PM2.5 exposure levels. Thurston GD, Ahn J, Cromar KR, Shao Y, Reynolds HR, Jerrett M, Lim CC, Shanley R, Park Y, Hayes RB. 2016. Ambient particulate matter air pollution exposure and mortality in the NIH-AARP Diet and Health cohort. Environ Health Perspect 124:484-490; http://dx.doi.org/10.1289/ehp.1509676.
Shi, Jingyuan Jolie; Smith, Sandi W
2016-01-01
This study examined the effect of moderately repeated exposure (three times) to a fear appeal message on the Extended Parallel Processing Model (EPPM) variables of threat, efficacy, and behavioral intentions for the recommended behaviors in the message, as well as the proportions of systematic and message-related thoughts generated after each message exposure. The results showed that after repeated exposure to a fear appeal message about preventing melanoma, perceived threat in terms of susceptibility and perceived efficacy in terms of response efficacy significantly increased. The behavioral intentions of all recommended behaviors did not change after repeated exposure to the message. However, after the second exposure the proportions of both systematic and all message-related thoughts (relative to total thoughts) significantly decreased while the proportion of heuristic thoughts significantly increased, and this pattern held after the third exposure. The findings demonstrated that the predictions in the EPPM are likely to be operative after three exposures to a persuasive message.
NASA Astrophysics Data System (ADS)
Beckx, Carolien; Int Panis, Luc; Uljee, Inge; Arentze, Theo; Janssens, Davy; Wets, Geert
Traditional exposure studies that link concentrations with population data do not always take into account the temporal and spatial variations in both concentrations and population density. In this paper we present an integrated model chain for the determination of nation-wide exposure estimates that incorporates temporally and spatially resolved information about people's location and activities (obtained from an activity-based transport model) and about ambient pollutant concentrations (obtained from a dispersion model). To the best of our knowledge, it is the first time that such an integrated exercise was successfully carried out in a fully operational modus for all models under consideration. The evaluation of population level exposure in The Netherlands to NO 2 at different time-periods, locations, for different subpopulations (gender, socio-economic status) and during different activities (residential, work, transport, shopping) is chosen as a case-study to point out the new features of this methodology. Results demonstrate that, by neglecting people's travel behaviour, total average exposure to NO 2 will be underestimated by 4% and hourly exposure results can be underestimated by more than 30%. A more detailed exposure analysis reveals the intra-day variations in exposure estimates and the presence of large exposure differences between different activities (traffic > work > shopping > home) and between subpopulations (men > women, low socio-economic class > high socio-economic class). This kind of exposure analysis, disaggregated by activities or by subpopulations, per time of day, provides useful insight and information for scientific and policy purposes. It demonstrates that policy measures, aimed at reducing the overall (average) exposure concentration of the population may impact in a different way depending on the time of day or the subgroup considered. From a scientific point of view, this new approach can be used to reduce exposure misclassification.
Keogh, Ruth H; Daniel, Rhian M; VanderWeele, Tyler J; Vansteelandt, Stijn
2018-05-01
Estimation of causal effects of time-varying exposures using longitudinal data is a common problem in epidemiology. When there are time-varying confounders, which may include past outcomes, affected by prior exposure, standard regression methods can lead to bias. Methods such as inverse probability weighted estimation of marginal structural models have been developed to address this problem. However, in this paper we show how standard regression methods can be used, even in the presence of time-dependent confounding, to estimate the total effect of an exposure on a subsequent outcome by controlling appropriately for prior exposures, outcomes, and time-varying covariates. We refer to the resulting estimation approach as sequential conditional mean models (SCMMs), which can be fitted using generalized estimating equations. We outline this approach and describe how including propensity score adjustment is advantageous. We compare the causal effects being estimated using SCMMs and marginal structural models, and we compare the two approaches using simulations. SCMMs enable more precise inferences, with greater robustness against model misspecification via propensity score adjustment, and easily accommodate continuous exposures and interactions. A new test for direct effects of past exposures on a subsequent outcome is described.
FACTORS INFLUENCING TOTAL DIETARY EXPOSURE OF YOUNG CHILDREN
A deterministic model was developed to identify critical input parameters to assess dietary intake of young children. The model was used as a framework for understanding important factors in data collection and analysis. Factors incorporated included transfer efficiencies of pest...
Leaching of plastic additives to marine organisms.
Koelmans, Albert A; Besseling, Ellen; Foekema, Edwin M
2014-04-01
It is often assumed that ingestion of microplastics by aquatic species leads to increased exposure to plastic additives. However, experimental data or model based evidence is lacking. Here we assess the potential of leaching of nonylphenol (NP) and bisphenol A (BPA) in the intestinal tracts of Arenicola marina (lugworm) and Gadus morhua (North Sea cod). We use a biodynamic model that allows calculations of the relative contribution of plastic ingestion to total exposure of aquatic species to chemicals residing in the ingested plastic. Uncertainty in the most crucial parameters is accounted for by probabilistic modeling. Our conservative analysis shows that plastic ingestion by the lugworm yields NP and BPA concentrations that stay below the lower ends of global NP and BPA concentration ranges, and therefore are not likely to constitute a relevant exposure pathway. For cod, plastic ingestion appears to be a negligible pathway for exposure to NP and BPA. Copyright © 2013 Elsevier Ltd. All rights reserved.
Core food of the French food supply: second Total Diet Study.
Sirot, V; Volatier, J L; Calamassi-Tran, G; Dubuisson, C; Menard, C; Dufour, A; Leblanc, J C
2009-05-01
As first described in the 1980s, the core food intake model allows a precise assessment of dietary nutrient intake and dietary exposure to contaminants insofar as it reflects the eating habits of a target population and covers the most important foods in terms of consumption, selected nutrient and contaminant contribution. This model has been used to set up the sampling strategy of the second French Total Diet Study (TDS) with the aim of obtaining a realistic panorama of nutrient intakes and contaminant exposure for the whole population, useful for quantitative risk assessment. Data on consumption trends and eating habits from the second French individual food consumption survey (INCA2) as well as data from a 2004 purchase panel of French households (SECODIP) were used to identify the core foods to be sampled. A total of 116 core foods on a national scale and 70 core foods on a regional scale were selected according to (1) the consumption data for adults and children, (2) their consumer rates, and (3) their high contribution to exposure to one or more contaminants of interest. Foods were collected in eight French regions (36 cities) and prepared 'as consumed' to be analysed for their nutritional composition and contamination levels. A total of 20 280 different food products were purchased to make up the 1352 composite samples of core foods to be analysed for additives, environmental contaminants, pesticide residues, trace elements and minerals, mycotoxins and acrylamide. The establishment of such a sampling plan is essential for effective, high-quality monitoring of dietary exposure from a public health point of view.
Hall, B; Tozer, S; Safford, B; Coroama, M; Steiling, W; Leneveu-Duchemin, M C; McNamara, C; Gibney, M
2007-11-01
Access to reliable exposure data is essential to evaluate the toxicological safety of ingredients in cosmetic products. This study was carried out by European cosmetic manufacturers acting within the trade association Colipa, with the aim to construct a probabilistic European population model of exposure. The study updates, in distribution form, the current exposure data on daily quantities of six cosmetic products. Data were collected using a combination of market information databases and a controlled product use study. In total 44,100 households and 18,057 individual consumers in five European countries provided data using their own products. All product use occasions were recorded, including those outside of home. The raw data were analysed using Monte Carlo simulation and a European Statistical Population Model of exposure was constructed. A significant finding was an inverse correlation between frequency of product use and quantity used per application for body lotion, facial moisturiser, toothpaste and shampoo. Thus it is not appropriate to calculate daily exposure to these products by multiplying the maximum frequency value by the maximum quantity per event value. The results largely confirm the exposure parameters currently used by the cosmetic industry. Design of this study could serve as a model for future assessments of population exposure to chemicals in products other than cosmetics.
Lee, Eun Gyung; Harper, Martin; Bowen, Russell B; Slaven, James
2009-07-01
The current study evaluated the Control of Substances Hazardous to Health (COSHH) Essentials model for short-term task-based exposures and full-shift exposures using measured concentrations of three volatile organic chemicals at a small printing plant. A total of 188 exposure measurements of isopropanol and 187 measurements of acetone were collected and each measurement took approximately 60 min. Historically, collected time-weighted average concentrations (seven results) were evaluated for methylene chloride. The COSHH Essentials model recommended general ventilation control for both isopropanol and acetone. There was good agreement between the task-based exposure measurements and the COSHH Essentials predicted exposure range (PER) for cleaning and print preparation with isopropanol and for cleaning with acetone. For the other tasks and for full-shift exposures, agreement between the exposure measurements and the PER was either moderate or poor. However, for both isopropanol and acetone, our findings suggested that the COSHH Essentials model worked reasonably well because the probabilities of short-term exposure measurements exceeding short-term occupational exposure limits (OELs) or full-shift exposures exceeding the corresponding full-shift OELs were <0.05 under the recommended control strategy. For methylene chloride, the COSHH Essentials recommended containment control but a follow-up study was not able to be performed because it had already been replaced with a less hazardous substance (acetone). This was considered a more acceptable alternative to increasing the level of control.
Prenatal exposure to organophosphate pesticides and reciprocal social behavior in childhood.
Furlong, Melissa A; Engel, Stephanie M; Barr, Dana Boyd; Wolff, Mary S
2014-09-01
Prenatal exposure to organophosphate pesticides (OPs) has been associated with adverse neurodevelopmental outcomes in childhood, including low IQ, pervasive developmental disorder (PDD), attention problems and ADHD. Many of these disorders involve impairments in social functioning. Thus, we investigated the relationship between biomarkers of prenatal OP exposure and impaired reciprocal social behavior in childhood, as measured by the Social Responsiveness Scale (SRS). Using a multi-ethnic urban prospective cohort of mother-infant pairs in New York City recruited between 1998 and 2002 (n=404) we examined the relation between third trimester maternal urinary levels of dialkylphosphate (ΣDAP) OP metabolites and SRS scores among 136 children who returned for the 7-9year visit. Overall, there was no association between OPs and SRS scores, although in multivariate adjusted models, associations were heterogeneous by race and by sex. Among blacks, each 10-fold increase in total diethylphosphates (ΣDEP) was associated with poorer social responsiveness (β=5.1 points, 95% confidence interval (CI) 0.8, 9.4). There was no association among whites or Hispanics, or for total ΣDAP or total dimethylphosphate (ΣDMP) biomarker levels. Additionally, stratum-specific models supported a stronger negative association among boys for ΣDEPs (β=3.5 points, 95% CI 0.2, 6.8), with no notable association among girls. Our results support an association of prenatal OP exposure with deficits in social functioning among blacks and among boys, although this may be in part reflective of differences in exposure patterns. Copyright © 2014 Elsevier Ltd. All rights reserved.
Determinants of dust exposure in tunnel construction work.
Bakke, Berit; Stewart, Patricia; Eduard, Wijnand
2002-11-01
In tunnel construction work, dust is generated from rock drilling, rock bolting, grinding, scaling, and transport operations. Other important dust-generating activities are blasting rock and spraying wet concrete on tunnel walls for strength and finishing work. The aim of this study was to identify determinants of dust exposure in tunnel construction work and to propose control measures. Personal exposures to total dust, respirable dust, and alpha-quartz were measured among 209 construction workers who were divided into 8 job groups performing similar tasks: drill and blast workers, shaft drilling workers, tunnel boring machine workers, shotcreting operators, support workers, concrete workers, outdoor concrete workers, and electricians. Information on determinants was obtained from interviewing the workers, observation by the industrial hygienist responsible for the sampling, and the job site superintendent. Multivariate regression models were used to identify determinants associated with the dust exposures within the job groups. The geometric mean exposure to total dust, respirable dust, and alpha-quartz for all tunnel workers was 3.5 mg/m(3) (GSD = 2.6), 1.2 mg/m(3) (GSD = 2.4), and 0.035 mg/m(3) (GSD = 5.0), respectively. A total of 15 percent of the total dust measurements, 5 percent of the respirable dust, and 21 percent of the alpha-quartz exceeded the Norwegian OELs of 10 mg/m(3), 5 mg/m(3), and 0.1 mg/m(3), respectively. Job groups with highest geometric mean total dust exposure were shotcreting operators (6.8 mg/m(3)), tunnel boring machine workers (6.2 mg/m(3)), and shaft drilling workers (6.1 mg/m(3)). The lowest exposed groups to total dust were outdoor concrete workers (1.0 mg/m(3)), electricians (1.4 mg/m(3)), and support workers (1.9 mg/m(3)). Important determinants of exposure were job group, job site, certain tasks (e.g., drilling and scaling), the presence of a cab, and breakthrough of the tunnel. The use of ventilated, closed cabs appeared to be the single most important control measure for lowering exposures.
A conceptual framework for the collection of food products in a Total Diet Study.
Turrini, Aida; Lombardi-Boccia, Ginevra; Aureli, Federica; Cubadda, Francesco; D'Addezio, Laura; D'Amato, Marilena; D'Evoli, Laura; Darnerud, PerOla; Devlin, Niamh; Dias, Maria Graça; Jurković, Marina; Kelleher, Cecily; Le Donne, Cinzia; López Esteban, Maite; Lucarini, Massimo; Martinez Burgos, Maria Alba; Martínez-Victoria, Emilio; McNulty, Breige; Mistura, Lorenza; Nugent, Anne; Oktay Basegmez, Hatice Imge; Oliveira, Luisa; Ozer, Hayrettin; Perelló, Gemma; Pite, Marina; Presser, Karl; Sokolić, Darja; Vasco, Elsa; Volatier, Jean-Luc
2018-02-01
A total diet study (TDS) provides representative and realistic data for assessing the dietary intake of chemicals, such as contaminants and residues, and nutrients, at a population level. Reproducing the diet through collection of customarily consumed foods and their preparation as habitually eaten is crucial to ensure representativeness, i.e., all relevant foods are included and all potential dietary sources of the substances investigated are captured. Having this in mind, a conceptual framework for building a relevant food-shopping list was developed as a research task in the European Union's 7th Framework Program project, 'Total Diet Study Exposure' (TDS-Exposure), aimed at standardising methods for food sampling, analyses, exposure assessment calculations and modelling, priority foods, and selection of chemical contaminants. A stepwise approach following the knowledge translation (KT) model for concept analysis is proposed to set up a general protocol for the collection of food products in a TDS in terms of steps (characterisation of the food list, development of the food-shopping list, food products collection) and pillars (background documentation, procedures, and tools). A simple model for structuring the information in a way to support the implementation of the process, by presenting relevant datasets, forms to store inherent information, and folders to record the results is also proposed. Reproducibility of the process and possibility to exploit the gathered information are two main features of such a system for future applications.
Applications of measures of cumulative exposure to assessing air pollution health effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbey, D.E.; Euler, G.L.; Magie, A.R.
A method for assessing the health effects of long-term cumulative exposures to air pollutants or other environmental exposures is proposed and illustrated using self-reported symptoms of chronic obstructive pulmonary disease (COPD) for a population of 7,343 non-smokers. Using zip code by month, residence histories, and interpolated exposure estimates from the network of California air monitoring stations, two alternative exposure indices were calculated to estimate cumulative exposure over an 11-yr period above different threshold levels for each of four pollutants. The indices were used with multiple logistic regression models to form dose-response curves for relative risks adjusting for covariates. Statistically significantmore » effects were noted for total suspended particulates, total oxidants, sulfur dioxide, and passive smoking. A description is also given of how the indices are currently being used in a 10-yr follow-up of the study population. This follow-up study is utilizing data collected by the National Cancer Institute-funded Adventist Health Study and has mortality, cancer incidence, heart disease incidence, and change in self-reported COPD symptoms as outcomes.« less
Comparison of Biological Responses in Rats Under Various Cigarette Smoke Exposure Conditions
Tsuji, Hiroyuki; Fujimoto, Hitoshi; Matsuura, Daiki; Nishino, Tomoki; Lee, K Monica; Yoshimura, Hiroyuki
2013-01-01
A variety of exposure regimens of cigarette smoke have been used in animal models of lung diseases. In this study, we compared biological responses of smoke exposure in rats, using different smoke concentrations (wet total particulate matter [WTPM]), daily exposure durations, and total days of exposure. As a range-finding acute study, we first compared pulmonary responses between SD and F344 strains after a single nose-only exposure to mainstream cigarette smoke or LPS. Secondly, F344 rats were exposed to cigarette smoke for 2 or 13 weeks under the comparable daily exposure dose (WTPM concentration x daily exposure duration; according to Haber’s rule) but at a different WTPM concentration or daily exposure duration. Blood carboxylhemoglobin was increased linearly to the WTPM concentration, while urinary nicotine plus cotinine value was higher for the longer daily exposure than the corresponding shorter exposure groups. Gamma glutamyl transferase activity in bronchoalveolar lavage fluid (BALF) was increased dose dependently after 2 and 13 weeks of cigarette smoke exposure, while the neutrophil content in BALF was not increased notably. Smoke-exposed groups showed reduced body weight gain and increased relative lung and heart weights. While BALF parameters and the relative lung weights suggest pulmonary responses, histopathological examination showed epithelial lesions mainly in the upper respiratory organs (nose and larynx). Collectively, the results indicate that, under the employed study design, the equivalent daily exposure dose (exposure concentration x duration) induces equivalent pulmonary responses in rats. PMID:23914058
Burgoine, Thomas; Monsivais, Pablo
2013-06-27
Socio-ecological models of behaviour suggest that dietary behaviours are potentially shaped by exposure to the food environment ('foodscape'). Research on associations between the foodscape and diet and health has largely focussed on foodscapes around the home, despite recognition that non-home environments are likely to be important in a more complete assessment of foodscape exposure. This paper characterises and describes foodscape exposure of different types, at home, at work, and along commuting routes for a sample of working adults in Cambridgeshire, UK. Home and work locations, and transport habits for 2,696 adults aged 29-60 were drawn from the Fenland Study, UK. Food outlet locations were obtained from local councils and classified by type - we focus on convenience stores, restaurants, supermarkets and takeaway food outlets. Density of and proximity to food outlets was characterised at home and work. Commuting routes were modelled based on the shortest street network distance between home and work, with exposure (counts of food outlets) that accounted for travel mode and frequency. We describe these three domains of food environment exposure using descriptive and inferential statistics. For all types of food outlet, we found very different foodscapes around homes and workplaces (with overall outlet exposure at work 125% higher), as well as a potentially substantial exposure contribution from commuting routes. On average, work and commuting environments each contributed to foodscape exposure at least equally to residential neighbourhoods, which only accounted for roughly 30% of total exposure. Furthermore, for participants with highest overall exposure to takeaway food outlets, workplaces accounted for most of the exposure. Levels of relative exposure between home, work and commuting environments were poorly correlated. Relying solely on residential neighbourhood characterisation greatly underestimated total foodscape exposure in this sample, with levels of home exposure unrelated to levels of away from home exposure. Such mis-estimation is likely to be expressed in analyses as attenuated parameter estimates, suggesting a minimal 'environmental' contribution to outcomes of interest. Future work should aim to assess exposure more completely through characterising environments beyond the residential neighbourhood, where behaviours related to food consumption are likely to occur.
Gille, Laure-Anne; Marquis-Favre, Catherine; Morel, Julien
2016-09-01
An in situ survey was performed in 8 French cities in 2012 to study the annoyance due to combined transportation noises. As the European Commission recommends to use the exposure-response relationships suggested by Miedema and Oudshoorn [Environmental Health Perspective, 2001] to predict annoyance due to single transportation noise, these exposure-response relationships were tested using the annoyance due to each transportation noise measured during the French survey. These relationships only enabled a good prediction in terms of the percentages of people highly annoyed by road traffic noise. For the percentages of people annoyed and a little annoyed by road traffic noise, the quality of prediction is weak. For aircraft and railway noises, prediction of annoyance is not satisfactory either. As a consequence, the annoyance equivalents model of Miedema [The Journal of the Acoustical Society of America, 2004], based on these exposure-response relationships did not enable a good prediction of annoyance due to combined transportation noises. Local exposure-response relationships were derived, following the whole computation suggested by Miedema and Oudshoorn [Environmental Health Perspective, 2001]. They led to a better calculation of annoyance due to each transportation noise in the French cities. A new version of the annoyance equivalents model was proposed using these new exposure-response relationships. This model enabled a better prediction of the total annoyance due to the combined transportation noises. These results encourage therefore to improve the annoyance prediction for noise in isolation with local or revised exposure-response relationships, which will also contribute to improve annoyance modeling for combined noises. With this aim in mind, a methodology is proposed to consider noise sensitivity in exposure-response relationships and in the annoyance equivalents model. The results showed that taking into account such variable did not enable to enhance both exposure-response relationships and the annoyance equivalents model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Praveena, S M; Omar, N A
2017-11-15
Heavy metal in rice studies has attracted a greater concern worldwide. However, there have been limited studies on marketed rice samples although it represents a vital ingestion portion for a real estimation of human health risk. This study was aimed to determine both total and bioaccessible of trace elements and heavy metals (Cd, Cr, Cu, Co, Al, Zn, As, Pb and Fe) in 22 varieties of cooked rice using an inductively coupled plasma-optical emission spectroscopy. Both total and bioaccessible of trace elements and heavy metals were digested using closed-nitric acid digestion and Rijksinstituut voor Volksgezondheid en Milieu (RIVM) in vitro digestion model, respectively. Human health risks via Health Risk Assessment (HRA) were conducted to understand exposure risks involving adults and children representing Malaysian population. Zinc was the highest while As was the lowest contents for total and in their bioavailable forms. Four clusters were identified: (1) Pb, As, Co, Cd and Cr; (2) Cu and Al; (3) Fe and (4) Zn. For HRA, there was no any risks found from single element exposure. While potential carcinogenic health risks present for both adult and children from single As exposure (Life time Cancer Risk, LCR>1×10 -4 ). Total Hazard Quotient values for adult and children were 27.0 and 18.0, respectively while total LCR values for adult and children were 0.0049 and 0.0032, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dialkyl phosphate urinary metabolites and chromosomal abnormalities in human sperm.
Figueroa, Zaida I; Young, Heather A; Meeker, John D; Martenies, Sheena E; Barr, Dana Boyd; Gray, George; Perry, Melissa J
2015-11-01
The past decade has seen numerous human health studies seeking to characterize the impacts of environmental exposures, such as organophosphate (OP) insecticides, on male reproduction. Despite an extensive literature on OP toxicology, many hormone-mediated effects on the testes are not well understood. This study investigated environmental exposures to OPs and their association with the frequency of sperm chromosomal abnormalities (i.e., disomy) among adult men. Men (n=159) from a study assessing the impact of environmental exposures on male reproductive health were included in this investigation. Multi-probe fluorescence in situ hybridization (FISH) for chromosomes X, Y, and 18 was used to determine XX18, YY18, XY18 and total disomy in sperm nuclei. Urine was analyzed using gas chromatography coupled with mass spectrometry for concentrations of dialkyl phosphate (DAP) metabolites of OPs [dimethylphosphate (DMP); dimethylthiophosphate (DMTP); dimethyldithiophosphate (DMDTP); diethylphosphate (DEP); diethylthiophosphate (DETP); and diethyldithiophosphate (DEDTP)]. Poisson regression was used to model the association between OP exposures and disomy measures. Incidence rate ratios (IRRs) were calculated for each disomy type by exposure quartiles for most metabolites, controlling for age, race, BMI, smoking, specific gravity, total sperm concentration, motility, and morphology. A significant positive trend was seen for increasing IRRs by exposure quartiles of DMTP, DMDTP, DEP and DETP in XX18, YY18, XY18 and total disomy. A significant inverse association was observed between DMP and total disomy. Findings for total sum of DAP metabolites concealed individual associations as those results differed from the patterns observed for each individual metabolite. Dose-response relationships appeared nonmonotonic, with most of the increase in disomy rates occurring between the second and third exposure quartiles and without additional increases between the third and fourth exposure quartiles. This is the first epidemiologic study of this size to examine the relationship between environmental OP exposures and human sperm disomy outcomes. Our findings suggest that increased disomy rates were associated with specific DAP metabolites, suggesting that the impacts of OPs on testis function need further characterization in epidemiologic studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Fischer, Florian; Kraemer, Alexander
2016-02-05
Evidence of the adverse health effects attributable to second-hand smoke (SHS) exposure is available. This study aims to quantify the impact of SHS exposure on ischaemic heart diseases (IHD), chronic obstructive pulmonary diseases (COPD), and stroke in Germany. Therefore, this study estimated and forecasted the morbidity for the three outcomes in the German population. Furthermore, a health impact assessment was performed using DYNAMO-HIA, which is a generic software tool applying a Markov model. Overall 687,254 IHD cases, 231,973 COPD cases, and 288,015 stroke cases were estimated to be attributable to SHS exposure in Germany for 2014. Under the assumption that the population prevalence of these diseases and the prevalence of SHS exposure remain constant, the total number of cases will increase due to demographic aging. Assuming a total eradication of SHS exposure beginning in 2014 leads to an estimated reduction of 50% in cases, compared to the reference scenario in 2040 for all three diseases. The results highlight the relevance of SHS exposure because it affects several chronic disease conditions and has a major impact on the population's health. Therefore, public health campaigns to protect non-smokers are urgently needed.
Sauvé, Jean-François; Beaudry, Charles; Bégin, Denis; Dion, Chantal; Gérin, Michel; Lavoué, Jérôme
2012-09-01
A quantitative determinants-of-exposure analysis of respirable crystalline silica (RCS) levels in the construction industry was performed using a database compiled from an extensive literature review. Statistical models were developed to predict work-shift exposure levels by trade. Monte Carlo simulation was used to recreate exposures derived from summarized measurements which were combined with single measurements for analysis. Modeling was performed using Tobit models within a multimodel inference framework, with year, sampling duration, type of environment, project purpose, project type, sampling strategy and use of exposure controls as potential predictors. 1346 RCS measurements were included in the analysis, of which 318 were non-detects and 228 were simulated from summary statistics. The model containing all the variables explained 22% of total variability. Apart from trade, sampling duration, year and strategy were the most influential predictors of RCS levels. The use of exposure controls was associated with an average decrease of 19% in exposure levels compared to none, and increased concentrations were found for industrial, demolition and renovation projects. Predicted geometric means for year 1999 were the highest for drilling rig operators (0.238 mg m(-3)) and tunnel construction workers (0.224 mg m(-3)), while the estimated exceedance fraction of the ACGIH TLV by trade ranged from 47% to 91%. The predicted geometric means in this study indicated important overexposure compared to the TLV. However, the low proportion of variability explained by the models suggests that the construction trade is only a moderate predictor of work-shift exposure levels. The impact of the different tasks performed during a work shift should also be assessed to provide better management and control of RCS exposure levels on construction sites.
Georgopoulos, Panos G; Sasso, Alan F; Isukapalli, Sastry S; Lioy, Paul J; Vallero, Daniel A; Okino, Miles; Reiter, Larry
2009-02-01
A conceptual/computational framework for exposure reconstruction from biomarker data combined with auxiliary exposure-related data is presented, evaluated with example applications, and examined in the context of future needs and opportunities. This framework employs physiologically based toxicokinetic (PBTK) modeling in conjunction with numerical "inversion" techniques. To quantify the value of different types of exposure data "accompanying" biomarker data, a study was conducted focusing on reconstructing exposures to chlorpyrifos, from measurements of its metabolite levels in urine. The study employed biomarker data as well as supporting exposure-related information from the National Human Exposure Assessment Survey (NHEXAS), Maryland, while the MENTOR-3P system (Modeling ENvironment for TOtal Risk with Physiologically based Pharmacokinetic modeling for Populations) was used for PBTK modeling. Recently proposed, simple numerical reconstruction methods were applied in this study, in conjunction with PBTK models. Two types of reconstructions were studied using (a) just the available biomarker and supporting exposure data and (b) synthetic data developed via augmenting available observations. Reconstruction using only available data resulted in a wide range of variation in estimated exposures. Reconstruction using synthetic data facilitated evaluation of numerical inversion methods and characterization of the value of additional information, such as study-specific data that can be collected in conjunction with the biomarker data. Although the NHEXAS data set provides a significant amount of supporting exposure-related information, especially when compared to national studies such as the National Health and Nutrition Examination Survey (NHANES), this information is still not adequate for detailed reconstruction of exposures under several conditions, as demonstrated here. The analysis presented here provides a starting point for introducing improved designs for future biomonitoring studies, from the perspective of exposure reconstruction; identifies specific limitations in existing exposure reconstruction methods that can be applied to population biomarker data; and suggests potential approaches for addressing exposure reconstruction from such data.
Watkins, B M; Smith, G M; Little, R H; Kessler, J
1999-04-01
Recent developments in performance standards for proposed high level radioactive waste disposal at Yucca Mountain suggest that health risk or dose rate limits will likely be part of future standards. Approaches to the development of biosphere modeling and dose assessments for Yucca Mountain have been relatively lacking in previous performance assessments due to the absence of such a requirement. This paper describes a practical methodology used to develop a biosphere model appropriate for calculating doses from use of well water by hypothetical individuals due to discharges of contaminated groundwater into a deep well. The biosphere model methodology, developed in parallel with the BIOMOVS II international study, allows a transparent recording of the decisions at each step, from the specification of the biosphere assessment context through to model development and analysis of results. A list of features, events, and processes relevant to Yucca Mountain was recorded and an interaction matrix developed to help identify relationships between them. Special consideration was given to critical/potential exposure group issues and approaches. The conceptual model of the biosphere system was then developed, based on the interaction matrix, to show how radionuclides migrate and accumulate in the biosphere media and result in potential exposure pathways. A mathematical dose assessment model was specified using the flexible AMBER software application, which allows users to construct their own compartment models. The starting point for the biosphere calculations was a unit flux of each radionuclide from the groundwater in the geosphere into the drinking water in the well. For each of the 26 radionuclides considered, the most significant exposure pathways for hypothetical individuals were identified. For 14 of the radionuclides, the primary exposure pathways were identified as consumption of various crops and animal products following assumed agricultural use of the contaminated water derived from the deep well. Inhalation of dust (11 radionuclides) and external irradiation (1 radionuclide) were also identified as significant exposure modes. Contribution to the total flux to dose conversion factor from the drinking water pathway for each radionuclide was also assessed and for most radionuclides was found to be less than 10% of the total flux to dose conversion factor summed across all pathways. Some of the uncertainties related to the results were considered. The biosphere modeling results have been applied within an EPRI Total Systems Performance Assessment of Yucca Mountain. Conclusions and recommendations for future performance assessments are provided.
Valari, Myrto; Menut, Laurent; Chatignoux, Edouard
2011-02-01
Environmental epidemiology and more specifically time-series analysis have traditionally used area-averaged pollutant concentrations measured at central monitors as exposure surrogates to associate health outcomes with air pollution. However, spatial aggregation has been shown to contribute to the overall bias in the estimation of the exposure-response functions. This paper presents the benefit of adding features of the spatial variability of exposure by using concentration fields modeled with a chemistry transport model instead of monitor data and accounting for human activity patterns. On the basis of county-level census data for the city of Paris, France, and a Monte Carlo simulation, a simple activity model was developed accounting for the temporal variability between working and evening hours as well as during transit. By combining activity data with modeled concentrations, the downtown, suburban, and rural spatial patterns in exposure to nitrogen dioxide, ozone, and PM2.5 (particulate matter [PM] < or = 10 microm in aerodynamic diameter) were captured and parametrized. Exposures predicted with this model were used in a time-series study of the short-term effect of air pollution on total nonaccidental mortality for the 4-yr period from 2001 to 2004. It was shown that the time series of the exposure surrogates developed here are less correlated across co-pollutants than in the case of the area-averaged monitor data. This led to less biased exposure-response functions when all three co-pollutants were inserted simultaneously in the same regression model. This finding yields insight into pollutant-specific health effects that are otherwise masked by the high correlation among co-pollutants.
Birch, Sharla M.; Lenox, Mark W.; Kornegay, Joe N.; Shen, Li; Ai, Huisi; Ren, Xiaowei; Goodlett, Charles R.; Cudd, Tim A.; Washburn, Shannon E.
2015-01-01
Identification of facial dysmorphology is essential for the diagnosis of fetal alcohol syndrome (FAS); however, most children with fetal alcohol spectrum disorders (FASD) do not meet the dysmorphology criterion. Additional objective indicators are needed to help identify the broader spectrum of children affected by prenatal alcohol exposure. Computed tomography (CT) was used in a sheep model of prenatal binge alcohol exposure to test the hypothesis that quantitative measures of craniofacial bone volumes and linear distances could identify alcohol-exposed lambs. Pregnant sheep were randomly assigned to four groups: heavy binge alcohol, 2.5 g/kg/day (HBA); binge alcohol, 1.75 g/kg/day (BA); saline control (SC); and normal control (NC). Intravenous alcohol (BA; HBA) or saline (SC) infusions were given three consecutive days per week from gestation day 4–41, and a CT scan was performed on postnatal day 182. The volumes of eight skull bones, cranial circumference, and 19 linear measures of the face and skull were compared among treatment groups. Lambs from both alcohol groups showed significant reduction in seven of the eight skull bones and total skull bone volume, as well as cranial circumference. Alcohol exposure also decreased four of the 19 craniofacial measures. Discriminant analysis showed that alcohol-exposed and control lambs could be classified with high accuracy based on total skull bone volume, frontal, parietal, or mandibular bone volumes, cranial circumference, or interorbital distance. Total skull volume was significantly more sensitive than cranial circumference in identifying the alcohol-exposed lambs when alcohol-exposed lambs were classified using the typical FAS diagnostic cutoff of ≤10th percentile. This first demonstration of the usefulness of CT-derived craniofacial measures in a sheep model of FASD following binge-like alcohol exposure during the first trimester suggests that volumetric measurement of cranial bones may be a novel biomarker for binge alcohol exposure during the first trimester to help identify non-dysmorphic children with FASD. PMID:26496796
Iszatt, Nina; Stigum, Hein; Verner, Marc-André; White, Richard A; Govarts, Eva; Murinova, Lubica Palkovicova; Schoeters, Greet; Trnovec, Tomas; Legler, Juliette; Pelé, Fabienne; Botton, Jérémie; Chevrier, Cécile; Wittsiepe, Jürgen; Ranft, Ulrich; Vandentorren, Stéphanie; Kasper-Sonnenberg, Monika; Klümper, Claudia; Weisglas-Kuperus, Nynke; Polder, Anuschka; Eggesbø, Merete
2015-07-01
Infant exposure to persistent organic pollutants (POPs) may contribute to obesity. However, many studies so far have been small, focused on transplacental exposure, used an inappropriate measure to assess postnatal exposure through breastfeeding if any, or did not discern between prenatal and postnatal effects. We investigated prenatal and postnatal exposure to POPs and infant growth (a predictor of obesity). We pooled data from seven European birth cohorts with biomarker concentrations of polychlorinated biphenyl 153 (PCB-153) (n = 2,487), and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) (n = 1,864), estimating prenatal and postnatal POPs exposure using a validated pharmacokinetic model. Growth was change in weight-for-age z-score between birth and 24 months. Per compound, multilevel models were fitted with either POPs total exposure from conception to 24 months or prenatal or postnatal exposure. We found a significant increase in growth associated with p,p'-DDE, seemingly due to prenatal exposure (per interquartile increase in exposure, adjusted β = 0.12; 95% CI: 0.03, 0.22). Due to heterogeneity across cohorts, this estimate cannot be considered precise, but does indicate that an association with infant growth is present on average. In contrast, a significant decrease in growth was associated with postnatal PCB-153 exposure (β = -0.10; 95% CI: -0.19, -0.01). To our knowledge, this is the largest study to date of POPs exposure and infant growth, and it contains state-of-the-art exposure modeling. Prenatal p,p'-DDE was associated with increased infant growth, and postnatal PCB-153 with decreased growth at European exposure levels.
Melkonian, Stephanie; Argos, Maria; Hall, Megan N; Chen, Yu; Parvez, Faruque; Pierce, Brandon; Cao, Hongyuan; Aschebrook-Kilfoy, Briseis; Ahmed, Alauddin; Islam, Tariqul; Slavcovich, Vesna; Gamble, Mary; Haris, Parvez I; Graziano, Joseph H; Ahsan, Habibul
2013-01-01
We utilized data from the Health Effects of Arsenic Longitudinal Study (HEALS) in Araihazar, Bangladesh, to evaluate the association of steamed rice consumption with urinary total arsenic concentration and arsenical skin lesions in the overall study cohort (N=18,470) and in a subset with available urinary arsenic metabolite data (N=4,517). General linear models with standardized beta coefficients were used to estimate associations between steamed rice consumption and urinary total arsenic concentration and urinary arsenic metabolites. Logistic regression models were used to estimate prevalence odds ratios (ORs) and their 95% confidence intervals (CIs) for the associations between rice intake and prevalent skin lesions at baseline. Discrete time hazard models were used to estimate discrete time (HRs) ratios and their 95% CIs for the associations between rice intake and incident skin lesions. Steamed rice consumption was positively associated with creatinine-adjusted urinary total arsenic (β=0.041, 95% CI: 0.032-0.051) and urinary total arsenic with statistical adjustment for creatinine in the model (β=0.043, 95% CI: 0.032-0.053). Additionally, we observed a significant trend in skin lesion prevalence (P-trend=0.007) and a moderate trend in skin lesion incidence (P-trend=0.07) associated with increased intake of steamed rice. This study suggests that rice intake may be a source of arsenic exposure beyond drinking water.
MacVittie, Thomas J; Farese, Ann M; Jackson, William
2015-11-01
Well characterized animal models that mimic the human response to potentially lethal doses of radiation are required to assess the efficacy of medical countermeasures under the criteria of the U.S. Food and Drug Administration "animal rule." Development of a model requires the determination of the radiation dose response relationship and time course of mortality and morbidity across the hematopoietic acute radiation syndrome. The nonhuman primate, rhesus macaque, is a relevant animal model that may be used to determine the efficacy of medical countermeasures to mitigate major signs of morbidity and mortality at selected lethal doses of total body irradiation. A systematic review of relevant studies that determined the dose response relationship for the hematopoietic acute radiation syndrome in the rhesus macaque relative to radiation quality, dose rate, and exposure uniformity has never been performed. The selection of data cohorts was made from the following sources: Ovid Medline (1957-present), PubMed (1954-present), AGRICOLA (1976-present), Web of Science (1954-present), and U.S. HHS REPORT (2002 to present). The following terms were used: Rhesus, total body-irradiation, total body x irradiation, TBI, irradiation, gamma radiation, hematopoiesis, LD50/60, Macaca mulatta, whole-body irradiation, nonhuman primate, NHP, monkey, primates, hematopoietic radiation syndrome, mortality, and nuclear radiation. The reference lists of all studies, published and unpublished, were reviewed for additional studies. The total number of hits across all search sites was 3,001. There were a number of referenced, unpublished, non-peer reviewed government reports that were unavailable for review. Fifteen studies, 11 primary (n = 863) and four secondary (n = 153) studies [n = 1,016 total nonhuman primates (NHP), rhesus Macaca mulatta] were evaluated to provide an informative and consistent review. The dose response relationships (DRRs) were determined for uniform or non-uniform total body irradiation (TBI) with 250 kVp or 2 MeV x radiation, Co gamma radiation and reactor- and nuclear weapon-derived mixed gamma: neutron-radiation, delivered at various dose rates from a total body, bilateral, rotational, or unilateral exposure aspect. The DRRs established by a probit analysis vs. linear dose relationship were characterized by two main parameters or dependent variables: a slope and LD50/30. Respective LD50/30 values for studies that used 250 kVp x radiation (five primary studies combined, n = 338), 2 MeV x radiation, Co gamma radiation, and steady-state reactor-derived mixed gamma:neutron radiation for total body uniform exposures were 521 rad [498, 542], 671 rad [632, 715], 644 rad [613, 678], and 385 rad [357, 413]. The respective slopes were steep and ranged from 0.738 to 1.316. The DRR, LD50/30 values and slopes were also determined for total body, non-uniform, unilateral, pulse-rate exposures of mixed gamma:neutron radiation derived at reactor and nuclear weapon detonations. The LD50/30 values were, respectively, 395 rad [337, 432] and 412 rad [359, 460]. Secondary data sets of limited studies that did not describe a DRR were used to support the mid-to-high lethal dose range for the H-ARS and the threshold dose range for the concurrent acute GI ARS. The available evidence provided a reliable and extensive database that characterized the DRR for the H-ARS in young rhesus macaques exposed to 250 kVp uniform total body x radiation without the benefit of medical management. A less substantial but consistent database demonstrated the DRR for total body exposure of differing radiation quality, dose rate and non-uniform exposure. The DRR for the H-ARS is characterized by steep slopes and relative LD50/30 values that reflect the radiation quality, exposure aspect, and dose rate over a range in time from 1954-2012.
Workplace Determinants of Endotoxin Exposure in Dental Healthcare Facilities in South Africa
Singh, Tanusha S.; Bello, Braimoh; Mabe, Onnicah D.; Renton, Kevin; Jeebhay, Mohamed F.
2010-01-01
Objectives: Aerosols generated during dental procedures have been reported to contain endotoxin as a result of bacterial contamination of dental unit water lines. This study investigated the determinants of airborne endotoxin exposure in dental healthcare settings. Methods: The study population included dental personnel (n = 454) from five academic dental institutions in South Africa. Personal air samples (n = 413) in various dental jobs and water samples (n = 403) from dental handpieces and basin taps were collected. The chromogenic-1000 limulus amebocyte lysate assay was used to determine endotoxin levels. Exposure metrics were developed on the basis of individually measured exposures and average levels within each job category. Analysis of variance and multivariate linear regression models were constructed to ascertain the determinants of exposure in the dental group. Results: There was a 2-fold variation in personal airborne endotoxin from the least exposed (administration) to the most exposed (laboratory) jobs (geometric mean levels: 2.38 versus 5.63 EU m−3). Three percent of personal samples were above DECOS recommended exposure limit (50 EU m−3). In the univariate linear models, the age of the dental units explained the most variability observed in the personal air samples (R2 = 0.20, P < 0.001), followed by the season of the year (R2 = 0.11, P < 0.001). Other variables such as institution and total number of dental units per institution also explained a modest degree of variability. A multivariate model explaining the greatest variability (adjusted R2 = 0.40, P < 0.001) included: the age of institution buildings, total number of dental units per institution, ambient temperature, ambient air velocity, endotoxin levels in water, job category (staff versus students), dental unit model type and age of dental unit. Conclusions: Apart from job type, dental unit characteristics are important predictors of airborne endotoxin levels in this setting. PMID:20044586
Wang, Lijun; Liu, Cong; Meng, Xia; Niu, Yue; Lin, Zhijing; Liu, Yunning; Liu, Jiangmei; Qi, Jinlei; You, Jinling; Tse, Lap Ah; Chen, Jianmin; Zhou, Maigeng; Chen, Renjie; Yin, Peng; Kan, Haidong
2018-04-28
Ambient sulfur dioxide (SO 2 ) remains a major air pollutant in developing countries, but epidemiological evidence about its health effects was not abundant and inconsistent. To evaluate the associations between short-term exposure to SO 2 and cause-specific mortality in China. We conducted a nationwide time-series analysis in 272 major Chinese cities (2013-2015). We used the over-dispersed generalized linear model together with the Bayesian hierarchical model to analyze the data. Two-pollutant models were fitted to test the robustness of the associations. We conducted stratification analyses to examine potential effect modifications by age, sex and educational level. On average, the annual-mean SO 2 concentrations was 29.8 μg/m 3 in 272 cities. We observed positive and associations of SO 2 with total and cardiorespiratory mortality. A 10 μg/m 3 increase in two-day average concentrations of SO 2 was associated with increments of 0.59% in mortality from total non-accidental causes, 0.70% from total cardiovascular diseases, 0.55% from total respiratory diseases, 0.64% from hypertension disease, 0.65% from coronary heart disease, 0.58% from stroke, and 0.69% from chronic obstructive pulmonary disease. In two-pollutant models, there were no significant differences between single-pollutant model and two-pollutant model estimates with fine particulate matter, carbon monoxide and ozone, but the estimates decreased substantially after adjusting for nitrogen dioxide, especially in South China. The associations were stronger in warmer cities, in older people and in less-educated subgroups. This nationwide study demonstrated associations of daily SO 2 concentrations with increased total and cardiorespiratory mortality, but the associations might not be independent from NO 2 . Copyright © 2018 Elsevier Ltd. All rights reserved.
Wu, Jun; Tjoa, Thomas; Li, Lianfa; Jaimes, Guillermo; Delfino, Ralph J
2012-07-11
Exposure to polycyclic aromatic hydrocarbon (PAH) has been linked to various adverse health outcomes. Personal PAH exposures are usually measured by personal monitoring or biomarkers, which are costly and impractical for a large population. Modeling is a cost-effective alternative to characterize personal PAH exposure although challenges exist because the PAH exposure can be highly variable between locations and individuals in non-occupational settings. In this study we developed models to estimate personal inhalation exposures to particle-bound PAH (PB-PAH) using data from global positioning system (GPS) time-activity tracking data, traffic activity, and questionnaire information. We conducted real-time (1-min interval) personal PB-PAH exposure sampling coupled with GPS tracking in 28 non-smoking women for one to three sessions and one to nine days each session from August 2009 to November 2010 in Los Angeles and Orange Counties, California. Each subject filled out a baseline questionnaire and environmental and behavior questionnaires on their typical activities in the previous three months. A validated model was used to classify major time-activity patterns (indoor, in-vehicle, and other) based on the raw GPS data. Multiple-linear regression and mixed effect models were developed to estimate averaged daily and subject-level PB-PAH exposures. The covariates we examined included day of week and time of day, GPS-based time-activity and GPS speed, traffic- and roadway-related parameters, meteorological variables (i.e. temperature, wind speed, relative humidity), and socio-demographic variables and occupational exposures from the questionnaire. We measured personal PB-PAH exposures for 180 days with more than 6 h of valid data on each day. The adjusted R2 of the model was 0.58 for personal daily exposures, 0.61 for subject-level personal exposures, and 0.75 for subject-level micro-environmental exposures. The amount of time in vehicle (averaging 4.5% of total sampling time) explained 48% of the variance in daily personal PB-PAH exposure and 39% of the variance in subject-level exposure. The other major predictors of PB-PAH exposures included length-weighted traffic count, work-related exposures, and percent of weekday time. We successfully developed regression models to estimate PB-PAH exposures based on GPS-tracking data, traffic data, and simple questionnaire information. Time in vehicle was the most important determinant of personal PB-PAH exposure in this population. We demonstrated the importance of coupling real-time exposure measures with GPS time-activity tracking in personal air pollution exposure assessment.
The Diesel Exhaust in Miners Study: I. Overview of the Exposure Assessment Process
Stewart, Patricia A.; Coble, Joseph B.; Vermeulen, Roel; Schleiff, Patricia; Blair, Aaron; Lubin, Jay; Attfield, Michael; Silverman, Debra T.
2010-01-01
This report provides an overview of the exposure assessment process for an epidemiologic study that investigated mortality, with a special focus on lung cancer, associated with diesel exhaust (DE) exposure among miners. Details of several components are provided in four other reports. A major challenge for this study was the development of quantitative estimates of historical exposures to DE. There is no single standard method for assessing the totality of DE, so respirable elemental carbon (REC), a component of DE, was selected as the primary surrogate in this study. Air monitoring surveys at seven of the eight study mining facilities were conducted between 1998 and 2001 and provided reference personal REC exposure levels and measurements for other agents and DE components in the mining environment. (The eighth facility had closed permanently prior to the surveys.) Exposure estimates were developed for mining facility/department/job/year combinations. A hierarchical grouping strategy was developed for assigning exposure levels to underground jobs [based on job titles, on the amount of time spent in various areas of the underground mine, and on similar carbon monoxide (CO, another DE component) concentrations] and to surface jobs (based on the use of, or proximity to, diesel-powered equipment). Time trends in air concentrations for underground jobs were estimated from mining facility-specific prediction models using diesel equipment horsepower, total air flow rates exhausted from the underground mines, and, because there were no historical REC measurements, historical measurements of CO. Exposures to potentially confounding agents, i.e. respirable dust, silica, radon, asbestos, and non-diesel sources of polycyclic aromatic hydrocarbons, also were assessed. Accuracy and reliability of the estimated REC exposures levels were evaluated by comparison with several smaller datasets and by development of alternative time trend models. During 1998–2001, the average measured REC exposure level by facility ranged from 40 to 384 μg m−3 for the underground workers and from 2 to 6 μg m−3 for the surface workers. For one prevalent underground job, ‘miner operator’, the maximum annual REC exposure estimate by facility ranged up to 685% greater than the corresponding 1998–2001 value. A comparison of the historical CO estimates from the time trend models with 1976–1977 CO measurements not used in the modeling found an overall median relative difference of 29%. Other comparisons showed similar levels of agreement. The assessment process indicated large differences in REC exposure levels over time and across the underground operations. Method evaluations indicated that the final estimates were consistent with those from alternative time trend models and demonstrated moderate to high agreement with external data. PMID:20876233
The diesel exhaust in miners study: I. Overview of the exposure assessment process.
Stewart, Patricia A; Coble, Joseph B; Vermeulen, Roel; Schleiff, Patricia; Blair, Aaron; Lubin, Jay; Attfield, Michael; Silverman, Debra T
2010-10-01
This report provides an overview of the exposure assessment process for an epidemiologic study that investigated mortality, with a special focus on lung cancer, associated with diesel exhaust (DE) exposure among miners. Details of several components are provided in four other reports. A major challenge for this study was the development of quantitative estimates of historical exposures to DE. There is no single standard method for assessing the totality of DE, so respirable elemental carbon (REC), a component of DE, was selected as the primary surrogate in this study. Air monitoring surveys at seven of the eight study mining facilities were conducted between 1998 and 2001 and provided reference personal REC exposure levels and measurements for other agents and DE components in the mining environment. (The eighth facility had closed permanently prior to the surveys.) Exposure estimates were developed for mining facility/department/job/year combinations. A hierarchical grouping strategy was developed for assigning exposure levels to underground jobs [based on job titles, on the amount of time spent in various areas of the underground mine, and on similar carbon monoxide (CO, another DE component) concentrations] and to surface jobs (based on the use of, or proximity to, diesel-powered equipment). Time trends in air concentrations for underground jobs were estimated from mining facility-specific prediction models using diesel equipment horsepower, total air flow rates exhausted from the underground mines, and, because there were no historical REC measurements, historical measurements of CO. Exposures to potentially confounding agents, i.e. respirable dust, silica, radon, asbestos, and non-diesel sources of polycyclic aromatic hydrocarbons, also were assessed. Accuracy and reliability of the estimated REC exposures levels were evaluated by comparison with several smaller datasets and by development of alternative time trend models. During 1998-2001, the average measured REC exposure level by facility ranged from 40 to 384 μg m⁻³ for the underground workers and from 2 to 6 μg m⁻³ for the surface workers. For one prevalent underground job, 'miner operator', the maximum annual REC exposure estimate by facility ranged up to 685% greater than the corresponding 1998-2001 value. A comparison of the historical CO estimates from the time trend models with 1976-1977 CO measurements not used in the modeling found an overall median relative difference of 29%. Other comparisons showed similar levels of agreement. The assessment process indicated large differences in REC exposure levels over time and across the underground operations. Method evaluations indicated that the final estimates were consistent with those from alternative time trend models and demonstrated moderate to high agreement with external data.
Larson, Emily S; Conder, Jason M; Arblaster, Jennifer A
2018-06-01
Releases of Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) associated with Aqueous Film Forming Foams (AFFFs) have the potential to impact on-site and downgradient aquatic habitats. Dietary exposures of aquatic-dependent birds were modeled for seven PFASs (PFHxA, PFOA, PFNA, PFDA, PFHxS, PFOS, and PFDS) using five different scenarios based on measurements of PFASs obtained from five investigations of sites historically-impacted by AFFF. Exposure modeling was conducted for four avian receptors representing various avian feeding guilds: lesser scaup (Aythya affinis), spotted sandpiper (Actitis macularia), great blue heron (Ardea herodias), and osprey (Pandion haliaetus). For the receptor predicted to receive the highest PFAS exposure (spotted sandpiper), model-predicted exposure to PFOS exceeded a laboratory-based, No Observed Adverse Effect Level exposure benchmark in three of the five model scenarios, confirming that risks to aquatic-dependent avian wildlife should be considered for investigations of historic AFFF releases. Perfluoroalkyl sulfonic acids (PFHxS, PFOS, and PFDS) represented 94% (on average) of total PFAS exposures due to their prevalence in historical AFFF formulations, and increased bioaccumulation in aquatic prey items and partitioning to aquatic sediment relative to perfluoroalkyl carboxylic acids. Sediment-associated PFASs (rather than water-associated PFASs) were the source of the highest predicted PFAS exposures, and are likely to be very important for understanding and managing AFFF site-specific ecological risks. Additional considerations for research needs and site-specific ecological risk assessments are discussed with the goal of optimizing ecological risk-based decision making at AFFF sites and prioritizing research needs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Euthanasia and Lavage Mediated Effects on Bronchoalveolar Measures of Lung Injury and Inflammation.
Tighe, Robert M; Birukova, Anastasiya; Yeager, Michael J; Reece, Sky W; Gowdy, Kymberly M
2018-02-26
Accurate and reproducible assessments of experimental lung injury and inflammation are critical to basic and translational research. In particular, investigators use varied methods of bronchoalveolar lavage and euthanasia but their impact to assessments of injury and inflammation are unknown. To define potential effects, we compared methods of lavage and euthanasia in uninjured mice and following a mild lung injury model (ozone). C57BL/6J male mice age 8-10 weeks underwent BAL following euthanasia with ketamine/xylazine, carbon dioxide (C0 2 ), or isoflurane. BAL methods included 800-μL instilled and withdrawn three times, and 1 or 3 passive fill(s) and drainage to 20cm H20. Parallel experiments were performed 24hr following 3hr of ozone (O 3 ) exposure at 2 parts per million (ppm). BAL total cell counts/differentials and total protein/albumin were determined. Lung histology was evaluated for lung inflammation/injury. BAL cells were cultured and stimulated with PBS, phorbol myristate acetate (PMA) or lipopolysaccharide (LPS) for 4hr and supernatants were evaluated for cytokine content. In uninjured mice, we observed differences due to the lavage and euthanasia methods. The lavage method increased uninjured and O 3 exposure total cells and total protein/albumin with 800-μL instillation having the highest values. Isoflurane increased uninjured total BAL cells, while C0 2 euthanasia increased the uninjured total protein/albumin levels. These effects limited the ability to detect differences in BAL injury measures following O 3 exposure. In conclusion, the method of lavage and euthanasia affects measures of lung inflammation/injury and should be considered a variable in model assessment.
Influence of Activity on Transfer of Pesticides from Treated Formica ® in Foods
The children’s dietary intake model (CDIM) has been developed to predict total dietary intake of a child incorporating excess exposures due to handling of food prior to consumption (Akland et al., 2000; Melnyk et al., unpublished). The model includes three Terms added together t...
Martínez, M A; Rovira, J; Prasad Sharma, R; Nadal, M; Schuhmacher, M; Kumar, V
2018-05-30
Bisphenol A (BPA) and Di-(2-ethylhexyl) phthalate (DEHP) are two wide spread chemicals classified as endocrine disruptors (ED). The present study aims to estimate the non-dietary (dermal, non-dietary ingestion and inhalation) exposure to BPA and DEHP for a pregnant women cohort. In addition, to assess the prenatal exposure for the fetus, a physiologically based pharmacokinetic (PBPK) model was used. It was adapted for pregnancy in order to assess the internal dosimetry levels of EDs (BPA and DEHP) in the fetus. Estimates of exposure to BPA and DEHP from all pathways along with their relative importance were provided in order to establish which proportion of the total exposure came from diet and which came from non-dietary exposures. In this study, the different oral dosing scenarios (dietary and non-dietary) were considered keeping inhalation as a continuous exposure case. Total non-dietary mean values were 0.002 µg/kg bw /day (0.000; 0.004 µg/kg bw /day for 5th and 95th percentile, respectively) for BPA and 0.597 µg/kg bw /day (0.116 µg/kg bw /day and 1.506 µg/kg bw /day for 5th and 95th percentile, respectively) for DEHP. Indoor environments and especially dust ingestion were the main non-dietary contributors to the total exposure of BPA and DEHP with 60% and 81%. However, as expected, diet showed the higher contribution to total exposure with > 99.9% for BPA and 63% for DEHP. Although diet was considered the primary source of exposure to BPA and phthalates, it must be taken into account that with non-dietary sources the first-pass metabolism is lacking, so these may be of equal or even higher toxicological relevance than dietary sources. The present study is in the framework of "Health and environmental-wide associations based on large population surveys" (HEALS) project (FP7-603946). Copyright © 2018 Elsevier Inc. All rights reserved.
Young, Jim; Xiao, Yongling; Moodie, Erica E M; Abrahamowicz, Michal; Klein, Marina B; Bernasconi, Enos; Schmid, Patrick; Calmy, Alexandra; Cavassini, Matthias; Cusini, Alexia; Weber, Rainer; Bucher, Heiner C
2015-08-01
Patients with HIV exposed to the antiretroviral drug abacavir may have an increased risk of cardiovascular disease (CVD). There is concern that this association arises because of a channeling bias. Even if exposure is a risk, it is not clear how that risk changes as exposure cumulates. We assess the effect of exposure to abacavir on the risk of CVD events in the Swiss HIV Cohort Study. We use a new marginal structural Cox model to estimate the effect of abacavir as a flexible function of past exposures while accounting for risk factors that potentially lie on a causal pathway between exposure to abacavir and CVD. A total of 11,856 patients were followed for a median of 6.6 years; 365 patients had a CVD event (4.6 events per 1000 patient-years). In a conventional Cox model, recent--but not cumulative--exposure to abacavir increased the risk of a CVD event. In the new marginal structural Cox model, continued exposure to abacavir during the past 4 years increased the risk of a CVD event (hazard ratio = 2.06; 95% confidence interval: 1.43 to 2.98). The estimated function for the effect of past exposures suggests that exposure during the past 6-36 months caused the greatest increase in risk. Abacavir increases the risk of a CVD event: the effect of exposure is not immediate, rather the risk increases as exposure cumulates over the past few years. This gradual increase in risk is not consistent with a rapidly acting mechanism, such as acute inflammation.
Short daily exposure to hand-arm vibrations in Swedish car mechanics.
Barregård, Lars
2003-01-01
The aim of the study was to examine the daily exposure times to hand-arm vibrations in Swedish car mechanics, to test a method for estimating the exposure time without observing the workers for whole days, and to use the results for predicting the prevalence of vibration-induced white fingers (VWF) by the ISO 5349-model. Six garages were surveyed. In each garage, 5-10 car mechanics were observed in random order every 30 seconds throughout working days. The daily exposure time for each mechanic was estimated from the fraction of the observations that the mechanic was exposed. A total of 51 mechanics were observed, most of them on two different working days, yielding estimates for 95 days. The median effective exposure time was 10 minutes per day (95% confidence interval 5-15 minutes, arithmetic mean 14 minutes, maximum 80 minutes), and most of the exposure time was attributable to fastening and loosening nuts. The within-worker and between-worker variability was high (total sigma2 0.99, geometric standard deviation of 2.7). Using the observed exposure time and data on vibration levels of the main tools in Swedish car mechanics (average weighted acceleration level of 3.5 m/s2), the model in ISO-standard 5349 would predict that only three percent of the car mechanics will suffer from VWF after 20 years of exposure. In contrast, a recent survey of VWF showed the prevalence to be 25 percent. The precision of the observation method was estimated and was found to be good for the group daily mean. On the individual level the precision was only acceptable if the daily exposure time was > or = 40 minutes. In conclusion, the daily exposure time was short and the vibration level was limited. Nevertheless, hand-arm vibrations cause VWF in a significant number of car mechanics. The method of observing workers intermittently seemed to work well.
Incorporation of multiple cloud layers for ultraviolet radiation modeling studies
NASA Technical Reports Server (NTRS)
Charache, Darryl H.; Abreu, Vincent J.; Kuhn, William R.; Skinner, Wilbert R.
1994-01-01
Cloud data sets compiled from surface observations were used to develop an algorithm for incorporating multiple cloud layers into a multiple-scattering radiative transfer model. Aerosol extinction and ozone data sets were also incorporated to estimate the seasonally averaged ultraviolet (UV) flux reaching the surface of the Earth in the Detroit, Michigan, region for the years 1979-1991, corresponding to Total Ozone Mapping Spectrometer (TOMS) version 6 ozone observations. The calculated UV spectrum was convolved with an erythema action spectrum to estimate the effective biological exposure for erythema. Calculations show that decreasing the total column density of ozone by 1% leads to an increase in erythemal exposure by approximately 1.1-1.3%, in good agreement with previous studies. A comparison of the UV radiation budget at the surface between a single cloud layer method and a multiple cloud layer method presented here is discussed, along with limitations of each technique. With improved parameterization of cloud properties, and as knowledge of biological effects of UV exposure increase, inclusion of multiple cloud layers may be important in accurately determining the biologically effective UV budget at the surface of the Earth.
Barré, Tangui; Vieux, Florent; Perignon, Marlène; Cravedi, Jean-Pierre; Amiot, Marie-Josèphe; Micard, Valérie; Darmon, Nicole
2016-10-01
Dietary guidelines are designed to help meet nutritional requirements, but they do not explicitly or quantitatively account for food contaminant exposures. In this study, we aimed to test whether dietary changes needed to achieve nutritional adequacy were compatible with acceptable exposure to food contaminants. Data from the French national dietary survey were linked with food contaminant data from the French Total Diet Study to estimate the mean intake of 204 representative food items and mean exposure to 27 contaminants, including pesticides, heavy metals, mycotoxins, nondioxin-like polychlorinated biphenyls (NDL-PCBs) and dioxin-like compounds. For each sex, 2 modeled diets that departed the least from the observed diet were designed: 1) a diet respecting only nutritional recommendations (NUT model), and 2) a diet that met nutritional recommendations without exceeding Toxicological Reference Values (TRVs) and observed contaminant exposures (NUTOX model). Food, nutrient, and contaminant contents in observed diets and NUT and NUTOX diets were compared with the use of paired t tests. Mean observed diets did not meet all nutritional recommendations, but no contaminant was over 48% of its TRV. Achieving all the nutrient recommendations through the NUT model mainly required increases in fruit, vegetable, and fish intake and decreases in meat, cheese, and animal fat intake. These changes were associated with significantly increased dietary exposure to some contaminants, but without exceeding 57% of TRVs. The highest increases were found for NDL-PCBs (from 26% to 57% of TRV for women). Reaching nutritional adequacy without exceeding observed contaminant exposure (NUTOX model) was possible but required further departure from observed food quantities. Based on a broad range of nutrients and contaminants, this first assessment of compatibility between nutritional adequacy and toxicological exposure showed that reaching nutritional adequacy might increase exposure to food contaminants, but within tolerable levels. However, there are some food combinations that can meet nutritional recommendations without exceeding observed exposures. © 2016 American Society for Nutrition.
NASA Astrophysics Data System (ADS)
Feingold, B. J.; Benoit, G.; Rudel, R.
2006-12-01
Geographic Information Systems (GIS) has emerged as a powerful tool to assess current and historical exposure to environmental pollutants. GIS aids in the visualization and understanding of associations between exposure to contaminants and disease. This study is an example of the bridge between environmental science and public health and of how new technology such as GIS can be incorporated into these fields to strengthen both the research and the communication of scientific results. It attempts to validate a GIS-based aerial drift model which predicts the residential exposure to and boundaries of historical organochlorine pesticide (OCP) drift from applications on cranberry bogs, tree pest sprayings and others by analytically quantifying the historical pesticide deposition in a transect of lakes radiating from a distinct spray source. This model was previously used to assess historical residential exposure to OCPs in an environmental epidemiological case-control study of breast cancer incidence on Cape Cod, MA, where the incidence rate of the disease is significantly higher than in the rest of the state. The model's validation in this current study is essential to establishing its predictive ability and thus, its further use. Ground truthing of the model was done through the collection and analysis of sediment cores along a transect of five hydrologically independent kettle ponds radiating from a distinct OCP tree-pest spray area. Measurements of OCP concentrations, total carbon and total organic carbon were determined, and dating of the sediments was completed using 210Pb and verified using 137Cs. Each 50-cm core was sliced into 25 2- cm sections for the analyses, creating a fine-scale depositional history in each pond. Information gathered from each core allows for the determination of the extent and degree of dissipation of individual spray events of a known source area and determine how well the model fits the actual data.
The human early-life exposome (HELIX): project rationale and design.
Vrijheid, Martine; Slama, Rémy; Robinson, Oliver; Chatzi, Leda; Coen, Muireann; van den Hazel, Peter; Thomsen, Cathrine; Wright, John; Athersuch, Toby J; Avellana, Narcis; Basagaña, Xavier; Brochot, Celine; Bucchini, Luca; Bustamante, Mariona; Carracedo, Angel; Casas, Maribel; Estivill, Xavier; Fairley, Lesley; van Gent, Diana; Gonzalez, Juan R; Granum, Berit; Gražulevičienė, Regina; Gutzkow, Kristine B; Julvez, Jordi; Keun, Hector C; Kogevinas, Manolis; McEachan, Rosemary R C; Meltzer, Helle Margrete; Sabidó, Eduard; Schwarze, Per E; Siroux, Valérie; Sunyer, Jordi; Want, Elizabeth J; Zeman, Florence; Nieuwenhuijsen, Mark J
2014-06-01
Developmental periods in early life may be particularly vulnerable to impacts of environmental exposures. Human research on this topic has generally focused on single exposure-health effect relationships. The "exposome" concept encompasses the totality of exposures from conception onward, complementing the genome. The Human Early-Life Exposome (HELIX) project is a new collaborative research project that aims to implement novel exposure assessment and biomarker methods to characterize early-life exposure to multiple environmental factors and associate these with omics biomarkers and child health outcomes, thus characterizing the "early-life exposome." Here we describe the general design of the project. In six existing birth cohort studies in Europe, HELIX will estimate prenatal and postnatal exposure to a broad range of chemical and physical exposures. Exposure models will be developed for the full cohorts totaling 32,000 mother-child pairs, and biomarkers will be measured in a subset of 1,200 mother-child pairs. Nested repeat-sampling panel studies (n = 150) will collect data on biomarker variability, use smartphones to assess mobility and physical activity, and perform personal exposure monitoring. Omics techniques will determine molecular profiles (metabolome, proteome, transcriptome, epigenome) associated with exposures. Statistical methods for multiple exposures will provide exposure-response estimates for fetal and child growth, obesity, neurodevelopment, and respiratory outcomes. A health impact assessment exercise will evaluate risks and benefits of combined exposures. HELIX is one of the first attempts to describe the early-life exposome of European populations and unravel its relation to omics markers and health in childhood. As proof of concept, it will form an important first step toward the life-course exposome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKone, T.E.; Enoch, K.G.
2002-08-01
CalTOX has been developed as a set of spreadsheet models and spreadsheet data sets to assist in assessing human exposures from continuous releases to multiple environmental media, i.e. air, soil, and water. It has also been used for waste classification and for setting soil clean-up levels at uncontrolled hazardous wastes sites. The modeling components of CalTOX include a multimedia transport and transformation model, multi-pathway exposure scenario models, and add-ins to quantify and evaluate uncertainty and variability. All parameter values used as inputs to CalTOX are distributions, described in terms of mean values and a coefficient of variation, rather than asmore » point estimates or plausible upper values such as most other models employ. This probabilistic approach allows both sensitivity and uncertainty analyses to be directly incorporated into the model operation. This manual provides CalTOX users with a brief overview of the CalTOX spreadsheet model and provides instructions for using the spreadsheet to make deterministic and probabilistic calculations of source-dose-risk relationships.« less
2014-01-01
Background Exposure measurement error is a concern in long-term PM2.5 health studies using ambient concentrations as exposures. We assessed error magnitude by estimating calibration coefficients as the association between personal PM2.5 exposures from validation studies and typically available surrogate exposures. Methods Daily personal and ambient PM2.5, and when available sulfate, measurements were compiled from nine cities, over 2 to 12 days. True exposure was defined as personal exposure to PM2.5 of ambient origin. Since PM2.5 of ambient origin could only be determined for five cities, personal exposure to total PM2.5 was also considered. Surrogate exposures were estimated as ambient PM2.5 at the nearest monitor or predicted outside subjects’ homes. We estimated calibration coefficients by regressing true on surrogate exposures in random effects models. Results When monthly-averaged personal PM2.5 of ambient origin was used as the true exposure, calibration coefficients equaled 0.31 (95% CI:0.14, 0.47) for nearest monitor and 0.54 (95% CI:0.42, 0.65) for outdoor home predictions. Between-city heterogeneity was not found for outdoor home PM2.5 for either true exposure. Heterogeneity was significant for nearest monitor PM2.5, for both true exposures, but not after adjusting for city-average motor vehicle number for total personal PM2.5. Conclusions Calibration coefficients were <1, consistent with previously reported chronic health risks using nearest monitor exposures being under-estimated when ambient concentrations are the exposure of interest. Calibration coefficients were closer to 1 for outdoor home predictions, likely reflecting less spatial error. Further research is needed to determine how our findings can be incorporated in future health studies. PMID:24410940
Exposomics research using suspect screening and non ...
High-resolution mass spectrometry (HRMS) is used for suspect screening (SSA) and non-targeted analysis (NTA) in an attempt to characterize xenobiotic chemicals in various samples broadly and efficiently. These important techniques aid characterization of the exposome, the totality of human exposures, and provide critical information on thousands of chemicals in commerce for which exposure data are lacking. The Environmental Protection Agency (EPA) SSA and NTA capabilities consist of analytical instrumentation [liquid chromatography (LC) with time of flight (TOF) and quadrupole-TOF (Q-TOF) HRMS], workflows (feature extraction, formula generation, structure prediction, spectral matching, chemical confirmation), and tools (databases; models for predicting retention time, functional use, media occurrence, and media concentration; and schemes for ranking features and chemicals). Suspect screening (SSA) and non-targeted analysis (NTA) are used to characterize xenobiotic chemicals in various samples and aid characterization of the exposome, the totality of human exposures, and provide critical information on thousands of chemicals in commerce for which exposure data are lacking.
Tangir, Gali; Dekel, Rachel; Lavi, Tamar; Gewirtz, Abigail H; Zamir, Osnat
2017-08-01
This study explored the behavioral and emotional adjustment of Israeli school-age children who are exposed to political violence. Based on Bronfenbrenner's (1986) ecological model and ecological model of psychosocial trauma (Harvey, 2007), we examined the direct contribution of exposure, gender, maternal characteristics (mother's posttraumatic stress symptoms [PTSS], maternal care and maternal control), and community type (development town vs. kibbutz), to school-age children's adjustment. In addition, we examined whether maternal characteristics and community type moderated the association between exposure and adjustment. There were 121 mother-child dyads from the development town of Sderot (n = 62) and from the surrounding kibbutzim (n = 58) participated. Revealed that being a boy, living in Sderot, and mothers' higher PTSS, contributed directly to children's total difficulties (i.e., externalizing and internalizing problems), and that maternal control moderated the association between personal exposure and children's total difficulties. Furthermore, being a girl and mother's higher PTSS and higher maternal control contributed directly to children's PTSS. Mother's PTSS moderated the association between personal exposure and children's PTSS. Maternal care was not associated with children's adjustment. Both the child's gender and the type of community in which he or she lives are associated with maternal distress and children's adjustment to political violence. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Gulliver, John; Elliott, Paul; Henderson, John; Hansell, Anna L; Vienneau, Danielle; Cai, Yutong; McCrea, Adrienne; Garwood, Kevin; Boyd, Andy; Neal, Lucy; Agnew, Paul; Fecht, Daniela; Briggs, David; de Hoogh, Kees
2018-04-01
We established air pollution modelling to study particle (PM 10 ) exposures during pregnancy and infancy (1990-1993) through childhood and adolescence up to age ~15 years (1991-2008) for the Avon Longitudinal Study of Parents And Children (ALSPAC) birth cohort. For pregnancy trimesters and infancy (birth to 6 months; 7 to 12 months) we used local (ADMS-Urban) and regional/long-range (NAME-III) air pollution models, with a model constant for local, non-anthropogenic sources. For longer exposure periods (annually and the average of birth to age ~8 and to age ~15 years to coincide with relevant follow-up clinics) we assessed spatial contrasts in local sources of PM 10 with a yearly-varying concentration for all background sources. We modelled PM 10 (μg/m 3 ) for 36,986 address locations over 19 years and then accounted for changes in address in calculating exposures for different periods: trimesters/infancy (n = 11,929); each year of life to age ~15 (n = 10,383). Intra-subject exposure contrasts were largest between pregnancy trimesters (5 th to 95 th centile: 24.4-37.3 μg/m 3 ) and mostly related to temporal variability in regional/long-range PM 10 . PM 10 exposures fell on average by 11.6 μg/m 3 from first year of life (mean concentration = 31.2 μg/m 3 ) to age ~15 (mean = 19.6 μg/m 3 ), and 5.4 μg/m 3 between follow-up clinics (age ~8 to age ~15). Spatial contrasts in 8-year average PM 10 exposures (5 th to 95 th centile) were relatively low: 25.4-30.0 μg/m 3 to age ~8 years and 20.7-23.9 μg/m 3 from age ~8 to age ~15 years. The contribution of local sources to total PM 10 was 18.5%-19.5% during pregnancy and infancy, and 14.4%-17.0% for periods leading up to follow-up clinics. Main roads within the study area contributed on average ~3.0% to total PM 10 exposures in all periods; 9.5% of address locations were within 50 m of a main road. Exposure estimates will be used in a number of planned epidemiological studies. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Caparrós, Toni; Alentorn-Geli, Eduard; Myer, Gregory D; Capdevila, Lluís; Samuelsson, Kristian; Hamilton, Bruce; Rodas, Gil
2016-09-01
The objectives of this study were to determine the relationship among game performance, injury rate, and practice exposure in a professional male basketball team. A retroospective analysis of prospective collected data was conducted over seven consecutive seasons (2007/2008 to 2013/2014). Data collection included sports performance during competition (statistical evaluation), injury rate, and total exposure (games and practices). Over the surveillance period, 162 injuries (91 practice; 71 matches) occurred over 32,668 hours of exposure (556 games and 2005 practices). There was a strong positive correlation between: 1) exposure (total number of practices and hours of exposure) and the total number of injuries (r = 0.77; p = 0.04); 2) exposure (total hours of exposure and total hours of practice exposure) and performance (total team ranking) (r = 0.77 and p = 0.04, and r = 0.8 and p = 0.03, respectively); and 3) total number of injuries and performance (total team ranking) (r = 0.84; p = 0.02). While increasing practice and competition time is related to greater team performance, it also increases the number of injuries. However, higher injury rates were not associated with worse overall team performance. Efforts to reduce high-risk activity during practice, optimally replaced with injury prevention training, might help to reduce injury risk.
Dermal exposure and urinary 1-hydroxypyrene among asphalt roofing workers
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClean, M.D.; Rinehart, R.D.; Sapkota, A.
2007-07-01
The primary objective of this study was to identify significant determinants of dermal exposure to polycyclic aromatic compounds (PACs) among asphalt roofing workers and use urinary 1-hydroxyprene (1-OHP) measurements to evaluate the effect of dermal exposure on total absorbed dose. The study population included 26 asphalt roofing workers who performed three primary tasks: tearing off old roofs, putting down new roofs, and operating the kettle at ground level. During multiple consecutive work shifts, dermal patch samples were collected from the underside of each worker's wrists and were analyzed for PACs, pyrene, and benzo(a)pyrene (BAP). During the same work week, urinemore » samples were collected at pre-shift, post-shift, and bedtime each day and were analyzed for 1-OHP (205 urine samples). Linear mixed effects models were used to evaluate the dermal measurements for the purpose of identifying important determinants of exposure, and to evaluate urinary 1-OHP measurements for the purpose of identifying important determinants of total absorbed dose. Dermal exposures to PAC, pyrene, and BAP were found to vary significantly by roofing task and by the presence of an old coal tar pitch roof. For each of the three analytes, the adjusted mean dermal exposures associated with tear-off were approximately four times higher than exposures associated with operating the kettle. Exposure to coal tar pitch was associated with a 6-fold increase in PAC exposure, an 8-fold increase in pyrene exposure and a 35-fold increase in BAP exposure. The presence of coal tar pitch was the primary determinant of dermal exposure, particularly for exposure to BAP. However, the task-based differences that were observed while controlling for pitch suggest that exposure to asphalt also contributes to dermal exposures.« less
Economic costs of childhood lead exposure in low- and middle-income countries.
Attina, Teresa M; Trasande, Leonardo
2013-09-01
Children's blood lead levels have declined worldwide, especially after the removal of lead in gasoline. However, significant exposure remains, particularly in low- and middle-income countries. To date, there have been no global estimates of the costs related to lead exposure in children in developing countries. Our main aim was to estimate the economic costs attributable to childhood lead exposure in low- and middle-income countries. We developed a regression model to estimate mean blood lead levels in our population of interest, represented by each 1-year cohort of children < 5 years of age. We used an environmentally attributable fraction model to estimate lead-attributable economic costs and limited our analysis to the neurodevelopmental impacts of lead, assessed as decrements in IQ points. Our main outcome was lost lifetime economic productivity due to early childhood exposure. We estimated a total cost of $977 billions of international dollars in low- and middle-income countries, with economic losses equal to $134.7 billion in Africa [4.03% of gross domestic product (GDP)], $142.3 billion in Latin America and the Caribbean (2.04% of GDP), and $699.9 billion in Asia (1.88% of GDP). Our sensitivity analysis indicates a total economic loss in the range of $728.6-1162.5 billion. We estimated that, in low- and middle-income countries, the burden associated with childhood lead exposure amounts to 1.20% of world GDP in 2011. For comparison, in the United States and Europe lead-attributable economic costs have been estimated at $50.9 and $55 billion, respectively, suggesting that the largest burden of lead exposure is now borne by low- and middle-income countries.
Jones, Paul D.; Kannan, Kurunthachalam; Newsted, John L.; Tillitt, Donald E.; Williams, Lisa L.; Giesy, John P.
2001-01-01
Rainbow trout were fed a diet containing 1.8, 18, or 90 pg/g 3H-2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for up to 320 d. Concentrations of TCDD were determined in muscle, liver, and ovaries at 100, 150, 200, and 250 d. Concentrations of TCDD reached an apparent steady-state concentration in liver after 100 d of exposure, whereas concentrations in other tissues continued to increase until 150 d of exposure. The greatest portion of the total mass of TCDD was present in the muscle tissue with lesser proportions in other organs. As the ovaries developed before spawning, an increase occurred in the total mass of TCDD present in this tissue. The assimilation rate of TCDD during the initial 100 d of the exposure was determined to be between 10 and 30%. This is somewhat less than estimates derived based on both uptake and elimination constants determined during shorter exposures. Biomagnification factors (BMFs) were estimated for all tissues and exposure concentrations, and at all exposure periods. Lipid-normalized BMFs for muscle ranged from 0.38 to 1.51, which is consistent with the value of 1.0 predicted from fugacity theory. Uptake and depuration rate constants were determined and used to predict individual organ TCDD concentrations. Comparison with observed values indicated that the model could be used to predict tissue concentrations from the known concentrations of TCDD in food. This model will allow more refined risk assessments by predicting TCDD concentrations in sensitive tissues such as developing eggs.
Bioaccessibility and human health risk assessment of lead in soil from Daye City
NASA Astrophysics Data System (ADS)
Li, Q.; Li, F.; Xiao, M. S.; Cai, Y.; Xiong, L.; Huang, J. B.; Fu, J. T.
2018-01-01
Lead (Pb) in soil from 4 sampling sites of Daye City was studied. Bioaccessibilities of Pb in soil were determined by the method of simplified bioaccessible extraction test (SBET). Since traditional health risk assessment was built on the basis of metal total content, the risk may be overestimated. Modified human health risk assessment model considering bioaccessibility was built in this study. Health risk of adults and children exposure to Pb based on total contents and bioaccessible contents were evaluated. The results showed that bioaccessible content of Pb in soil was much lower than its total content, and the average bioaccessible factor (BF) was only 25.37%. The hazard indexes (HIs) for adults and children calculated by two methods were all lower than 1. It indicated that there were no no-carcinogenic risks of Pb for human in Daye. By comparing with the results, the average bioaccessible HIs for adults and children were lower than the total one, which was due to the lower hazard quotient (HQ). Proportions of non-carcinogenic risk exposure to Pb via different pathways have also changed. Particularly, the most main risk exposure pathway for adults turned from the oral ingestion to the inhalation.
Neurodevelopment in Early Childhood Affected by Prenatal Lead Exposure and Iron Intake.
Shah-Kulkarni, Surabhi; Ha, Mina; Kim, Byung-Mi; Kim, Eunjeong; Hong, Yun-Chul; Park, Hyesook; Kim, Yangho; Kim, Bung-Nyun; Chang, Namsoo; Oh, Se-Young; Kim, Young Ju; Kimʼs, Young Ju; Lee, Boeun; Ha, Eun-Hee
2016-01-01
No safe threshold level of lead exposure in children has been recognized. Also, the information on shielding effect of maternal dietary iron intake during pregnancy on the adverse effects of prenatal lead exposure on children's postnatal neurocognitive development is very limited. We examined the association of prenatal lead exposure and neurodevelopment in children at 6, 12, 24, and 36 months and the protective action of maternal dietary iron intake against the impact of lead exposure. The study participants comprise 965 pregnant women and their subsequent offspring of the total participants enrolled in the Mothers and Children's environmental health study: a prospective birth cohort study. Generalized linear model and linear mixed model analysis were performed to analyze the effect of prenatal lead exposure and mother's dietary iron intake on children's cognitive development at 6, 12, 24, and 36 months. Maternal late pregnancy lead was marginally associated with deficits in mental development index (MDI) of children at 6 months. Mothers having less than 75th percentile of dietary iron intake during pregnancy showed significant increase in the harmful effect of late pregnancy lead exposure on MDI at 6 months. Linear mixed model analyses showed the significant detrimental effect of prenatal lead exposure in late pregnancy on cognitive development up to 36 months in children of mothers having less dietary iron intake during pregnancy. Thus, our findings imply importance to reduce prenatal lead exposure and have adequate iron intake for better neurodevelopment in children.
Neurodevelopment in Early Childhood Affected by Prenatal Lead Exposure and Iron Intake
Shah-Kulkarni, Surabhi; Ha, Mina; Kim, Byung-Mi; Kim, Eunjeong; Hong, Yun-Chul; Park, Hyesook; Kim, Yangho; Kim, Bung-Nyun; Chang, Namsoo; Oh, Se-Young; Kim, Young Ju; Lee, Boeun; Ha, Eun-Hee
2016-01-01
Abstract No safe threshold level of lead exposure in children has been recognized. Also, the information on shielding effect of maternal dietary iron intake during pregnancy on the adverse effects of prenatal lead exposure on children's postnatal neurocognitive development is very limited. We examined the association of prenatal lead exposure and neurodevelopment in children at 6, 12, 24, and 36 months and the protective action of maternal dietary iron intake against the impact of lead exposure. The study participants comprise 965 pregnant women and their subsequent offspring of the total participants enrolled in the Mothers and Children's environmental health study: a prospective birth cohort study. Generalized linear model and linear mixed model analysis were performed to analyze the effect of prenatal lead exposure and mother's dietary iron intake on children's cognitive development at 6, 12, 24, and 36 months. Maternal late pregnancy lead was marginally associated with deficits in mental development index (MDI) of children at 6 months. Mothers having less than 75th percentile of dietary iron intake during pregnancy showed significant increase in the harmful effect of late pregnancy lead exposure on MDI at 6 months. Linear mixed model analyses showed the significant detrimental effect of prenatal lead exposure in late pregnancy on cognitive development up to 36 months in children of mothers having less dietary iron intake during pregnancy. Thus, our findings imply importance to reduce prenatal lead exposure and have adequate iron intake for better neurodevelopment in children. PMID:26825887
Characterization of a nose-only inhalation exposure system for hydrocarbon mixtures and jet fuels.
Martin, Sheppard A; Tremblay, Raphael T; Brunson, Kristyn F; Kendrick, Christine; Fisher, Jeffrey W
2010-04-01
A directed-flow nose-only inhalation exposure system was constructed to support development of physiologically based pharmacokinetic (PBPK) models for complex hydrocarbon mixtures, such as jet fuels. Due to the complex nature of the aerosol and vapor-phase hydrocarbon exposures, care was taken to investigate the chamber hydrocarbon stability, vapor and aerosol droplet compositions, and droplet size distribution. Two-generation systems for aerosolizing fuel and hydrocarbons were compared and characterized for use with either jet fuels or a simple mixture of eight hydrocarbons. Total hydrocarbon concentration was monitored via online gas chromatography (GC). Aerosol/vapor (A/V) ratios, and total and individual hydrocarbon concentrations, were determined using adsorbent tubes analyzed by thermal desorption-gas chromatography-mass spectrometry (TDS-GC-MS). Droplet size distribution was assessed via seven-stage cascade impactor. Droplet mass median aerodynamic diameter (MMAD) was between 1 and 3 mum, depending on the generator and mixture utilized. A/V hydrocarbon concentrations ranged from approximately 200 to 1300 mg/m(3), with between 20% and 80% aerosol content, depending on the mixture. The aerosolized hydrocarbon mixtures remained stable during the 4-h exposure periods, with coefficients of variation (CV) of less than 10% for the total hydrocarbon concentrations. There was greater variability in the measurement of individual hydrocarbons in the A-V phase. In conclusion, modern analytical chemistry instruments allow for improved descriptions of inhalation exposures of rodents to aerosolized fuel.
Occupational exposures and non-Hodgkin's lymphoma: Canadian case-control study.
Karunanayake, Chandima P; McDuffie, Helen H; Dosman, James A; Spinelli, John J; Pahwa, Punam
2008-08-07
The objective was to study the association between Non-Hodgkin's Lymphoma (NHL) and occupational exposures related to long held occupations among males in six provinces of Canada. A population based case-control study was conducted from 1991 to 1994. Males with newly diagnosed NHL (ICD-10) were stratified by province of residence and age group. A total of 513 incident cases and 1506 population based controls were included in the analysis. Conditional logistic regression was conducted to fit statistical models. Based on conditional logistic regression modeling, the following factors independently increased the risk of NHL: farmer and machinist as long held occupations; constant exposure to diesel exhaust fumes; constant exposure to ionizing radiation (radium); and personal history of another cancer. Men who had worked for 20 years or more as farmer and machinist were the most likely to develop NHL. An increased risk of developing NHL is associated with the following: long held occupations of faer and machinist; exposure to diesel fumes; and exposure to ionizing radiation (radium). The risk of NHL increased with the duration of employment as a farmer or machinist.
Grassian, Vicki H; O'shaughnessy, Patrick T; Adamcakova-Dodd, Andrea; Pettibone, John M; Thorne, Peter S
2007-03-01
Nanotechnology offers great promise in many industrial applications. However, little is known about the health effects of manufactured nanoparticles, the building blocks of nanomaterials. Titanium dioxide (TiO(2)) nanoparticles with a primary size of 2-5 nm have not been studied previously in inhalation exposure models and represent some of the smallest manufactured nanoparticles. The purpose of this study was to assess the toxicity of these nanoparticles using a murine model of lung inflammation and injury. The properties of TiO(2) nanoparticles as well as the characteristics of aerosols of these particles were evaluated. Mice were exposed to TiO(2) nanoparticles in a whole-body exposure chamber acutely (4 hr) or subacutely (4 hr/day for 10 days). Toxicity in exposed mice was assessed by enumeration of total and differential cells, determination of total protein, lactate dehydrogenase (LDH) activity and inflammatory cytokines in bronchoalveolar lavage (BAL) fluid. Lungs were also evaluated for histopathologic changes Mice exposed acutely to 0.77 or 7.22 mg/m(3) nanoparticles demonstrated minimal lung toxicity or inflammation. Mice exposed subacutely (8.88 mg/m(3)) and necropsied immediately and at week 1 or 2 postexposure had higher counts of total cells and alveolar macrophages in the BAL fluid compared with sentinels. However, mice recovered by week 3 postexposure. Other indicators were negative. Mice subacutely exposed to 2-5 nm TiO(2) nanoparticles showed a significant but moderate inflammatory response among animals at week 0, 1, or 2 after exposure that resolved by week 3 postexposure.
Contribution of inorganic arsenic sources to population exposure risk on a regional scale.
Chou, Wei-Chun; Chen, Jein-Wen; Liao, Chung-Min
2016-07-01
Chronic exposure to inorganic arsenic (iAs) in the human population is associated with various internal cancers and other adverse outcomes. The purpose of this study was to estimate a population-scale exposure risk attributable to iAs consumptions by linking a stochastic physiological-based pharmacokinetic (PBPK) model and biomonitoring data of iAs in urine. The urinary As concentrations were obtained from a total of 1,043 subjects living in an industrial area of Taiwan. The results showed that the study subjects had an iAs exposure risk of 27 % (the daily iAs intake for 27 % study subjects exceeded the WHO-recommended value, 2.1 μg iAs day(-1) kg(-1) body weight). Moreover, drinking water and cooked rice contributed to the iAs exposure risk by 10 and 41 %, respectively. The predicted risks in the current study were 4.82, 27.21, 34.69, and 64.17 %, respectively, among the mid-range of Mexico, Taiwan (this study), Korea, and Bangladesh reported in the literature. In conclusion, we developed a population-scale-based risk model that covered the broad range of iAS exposure by integrating stochastic PBPK modeling and reverse dosimetry to generate probabilistic distribution of As intake corresponding to urinary As measured from the cohort study. The model can also be updated as new urinary As information becomes available.
Phthalate exposure and semen quality in fertile US men.
Thurston, S W; Mendiola, J; Bellamy, A R; Levine, H; Wang, C; Sparks, A; Redmon, J B; Drobnis, E Z; Swan, S H
2016-07-01
Several experimental and observational studies have demonstrated the antiandrogenicity of several phthalates. However, there is limited evidence of an association between phthalate exposure in adult life and semen quality. The aim of this study was to examine phthalate exposure during adulthood in relation to semen quality in fertile US men. This multi-center cross-sectional study included 420 partners of pregnant women who attended a prenatal clinic in one of five US cities during 1999-2001. Nine phthalate metabolites [mono (2-ethylhexyl) phthalate (MEHP), mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono (2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono (2-ethyl-5-carboxypentyl) phthalate (MECPP)], as well as mono-n-butyl phthalate (MBP) and mono-isobutyl phthalate (MiBP), mono (three carboxypropyl) phthalate (MCPP), monobenzyl phthalate (MBzP), and monoethyl phthalate (MEP)] were measured in urine collected at the same time as the semen sample. We regressed natural log-transformed (ln) sperm concentration, ln(total sperm count), ln(total motile sperm count), percent motile spermatozoa, and percent spermatozoa with normal morphology on each of the nine natural log-transformed metabolite concentrations and on the molar-weighted sum of DEHP metabolites in separate models. We fit unadjusted models and models that adjusted for confounders determined a priori. In unadjusted models, ln(MiBP) was significantly and positively associated with motility and ln(MBzP) significantly negatively associated with ln(total sperm count). In adjusted linear models, urinary metabolite concentrations of DEHP, DBP, DEP, and DOP were not associated with any semen parameter. We found an inverse association between ln(MBzP) concentrations and sperm motility (β = -1.47, 95% CI: -2.61, -0.33), adjusted for ln(creatinine concentration), geographic location, age, race, smoking status, stress, recent fever, time from sample collection and time to complete analysis. Several sensitivity analyses confirmed the robustness of these associations. This study and the available literature suggest that impacts of adult exposure to phthalates at environmental levels on classical sperm parameters are likely to be small. © 2015 American Society of Andrology and European Academy of Andrology.
Inverse odds ratio-weighted estimation for causal mediation analysis.
Tchetgen Tchetgen, Eric J
2013-11-20
An important scientific goal of studies in the health and social sciences is increasingly to determine to what extent the total effect of a point exposure is mediated by an intermediate variable on the causal pathway between the exposure and the outcome. A causal framework has recently been proposed for mediation analysis, which gives rise to new definitions, formal identification results and novel estimators of direct and indirect effects. In the present paper, the author describes a new inverse odds ratio-weighted approach to estimate so-called natural direct and indirect effects. The approach, which uses as a weight the inverse of an estimate of the odds ratio function relating the exposure and the mediator, is universal in that it can be used to decompose total effects in a number of regression models commonly used in practice. Specifically, the approach may be used for effect decomposition in generalized linear models with a nonlinear link function, and in a number of other commonly used models such as the Cox proportional hazards regression for a survival outcome. The approach is simple and can be implemented in standard software provided a weight can be specified for each observation. An additional advantage of the method is that it easily incorporates multiple mediators of a categorical, discrete or continuous nature. Copyright © 2013 John Wiley & Sons, Ltd.
Yang, Lin-Sheng; Zhang, Xiu-Wu; Li, Yong-Hua; Li, Hai-Rong; Wang, Ying; Wang, Wu-Yi
2012-01-01
Cadmium (Cd)-contaminated rice is one of the most important sources of cadmium exposure in the general population from some Asian countries. This study was conducted to assess cadmium exposure from uncooked rice in rural mining areas based on the bioaccessible fraction of cadmium using an in vitro digestion model. The biotoxic effects of cadmium in uncooked rice from mining areas were much higher than those in the control area, based not only on their higher total concentration (52.49 vs. 7.93 μg kg(-1)), but also on their higher bioaccessibility (16.94% vs. 2.38%). In the mining areas, the bioaccessible fraction of cadmium in uncooked rice has a significant positive correlation with the total concentration of cadmium in rice and there was quarterly unsafe rice to the public in the mining areas. The results indicated that the in vitro digestion model could be a useful and economical tool for providing the solubilization or bioaccessibility of uncooked rice in the mining area. The results could be helpful in conducting future experiments of cooked rice in the vitro model.
Greenberg, N; Carel, R S; Derazne, E; Tiktinsky, A; Tzur, D; Portnov, B A
2017-01-01
Studies have provided extensive documentation that acutely elevated environmental exposures contribute to chronic health problems. However, only attention has been paid to the effects of modificate of exposure assessment methods in environmental health investigations, leading to uncertainty and gaps in our understanding of exposure- and dose-response relationships. The goal of the present study was to evaluate whether average or peak concentration exerts a greater influence on asthma outcome, and which of the exposure models may better explain various physiological responses generated by nitrogen dioxide (NO 2 ) or sulfur dioxide (SO 2 ) air pollutants. The effects of annual NO 2 and SO 2 exposures on asthma prevalence were determined in 137,040 17-year-old males in Israel, who underwent standard health examinations before induction to military service during 1999-2008. Three alternative models of cumulative exposure were used: arithmetic mean level (AM), average peak concentration (APC), and total number of air pollution exposure episodes (NEP). Air pollution data for NO 2 and SO 2 levels were linked to the residence of each subject and asthma prevalence was predicted using bivariate logistic regression. There was significant increased risk for asthma occurrence attributed to NO 2 exposure in all models with the highest correlations demonstrated using the APC model. Data suggested that exposure-response is better correlated with NO 2 peak concentration than with average exposure concentration in subjects with asthma. For SO 2 , there was a weaker but still significant exposure response association in all models. These differences may be related to differences in physiological responses including effects on different regions of the airways following exposure to these pollutants. NO 2 , which is poorly soluble in water, penetrates deep into the bronchial tree, producing asthmatic manifestations such as inflammation and increased mucus production as a result of high gaseous concentrations in the lung parenchyma. In contrast, SO 2 , which is highly water soluble, exerts its effects rapidly in the upper airways, leading to similar limited correlations at all levels of exposure with fewer asthmatic manifestations observed. These data indicate that differing exposure assessment methods may be needed to capture specific disease consequences associated with these air pollutants.
Soriano-Melgar, Lluvia de Abril Alexandra; Alcaraz-Meléndez, Lilia; Méndez-Rodríguez, Lía C; Puente, María Esther; Rivera-Cabrera, Fernando; Zenteno-Savín, Tania
2014-05-01
Ultraviolet type B (UV-B) radiation effects on medicinal plants have been recently investigated in the context of climate change, but the modifications generated by UV-B radiation might be used to increase the content of antioxidants, including phenolic compounds. To generate information on the effect of exposure to artificial UV-B radiation at different highdoses in the antioxidant content of damiana plants in an in vitro model. Damiana plantlets (tissue cultures in Murashige- Skoog medium) were irradiated with artificial UV-B at 3 different doses (1) 0.5 ± 0.1 mW cm-2 (high) for 2 h daily, (2) 1 ± 0,1 mW cm-2 (severe) for 2 h daily, or (3) 1 ± 0.1 mW cm-2 for 4 h daily during 3 weeks. The concentration of photosynthetic pigments (chlorophylls a and b, carotenoids), vitamins (C and E) and total phenolic compounds, the enzymatic activity of superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidases (POX, EC 1.11.1), as well as total antioxidant capacity and lipid peroxidation levels were quantified to assess the effect of high artificial UV-B radiation in the antioxidant content of in vitro damiana plants. Severe and high doses of artificial UV-B radiation modified the antioxidant content by increasing the content of vitamin C and decreased the phenolic compound content, as well as modified the oxidative damage of damiana plants in an in vitro model. UV-B radiation modified the antioxidant content in damiana plants in an in vitro model, depending on the intensity and duration of the exposure. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Addressing bystander exposure to agricultural pesticides in life cycle impact assessment.
Ryberg, Morten Walbech; Rosenbaum, Ralph K; Mosqueron, Luc; Fantke, Peter
2018-04-01
Residents living near agricultural fields may be exposed to pesticides drifting from the fields after application to different field crops. To address this currently missing exposure pathway in life cycle assessment (LCA), we developed a modeling framework for quantifying exposure of bystanders to pesticide spray drift from agricultural fields. Our framework consists of three parts addressing: (1) loss of pesticides from an agricultural field via spray drift; (2) environmental fate of pesticide in air outside of the treated field; and (3) exposure of bystanders to pesticides via inhalation. A comparison with measured data in a case study on pesticides applied to potato fields shows that our model gives good predictions of pesticide air concentrations. We compared our bystander exposure estimates with pathways currently included in LCA, namely aggregated inhalation and ingestion exposure mediated via the environment for the general population, and general population exposure via ingestion of pesticide residues in consumed food crops. The results show that exposure of bystanders is limited relative to total population exposure from ingestion of pesticide residues in crops, but that the exposure magnitude of individual bystanders can be substantially larger than the exposure of populations not living in the proximity to agricultural fields. Our framework for assessing bystander exposure to pesticide applications closes a relevant gap in the exposure assessment included in LCA for agricultural pesticides. This inclusion aids decision-making based on LCA as previously restricted knowledge about exposure of bystanders can now be taken into account. Copyright © 2018 Elsevier Ltd. All rights reserved.
Melkonian, Stephanie; Argos, Maria; Hall, Megan N.; Chen, Yu; Parvez, Faruque; Pierce, Brandon; Cao, Hongyuan; Aschebrook-Kilfoy, Briseis; Ahmed, Alauddin; Islam, Tariqul; Slavcovich, Vesna; Gamble, Mary; Haris, Parvez I.; Graziano, Joseph H.; Ahsan, Habibul
2013-01-01
Background We utilized data from the Health Effects of Arsenic Longitudinal Study (HEALS) in Araihazar, Bangladesh, to evaluate the association of steamed rice consumption with urinary total arsenic concentration and arsenical skin lesions in the overall study cohort (N=18,470) and in a subset with available urinary arsenic metabolite data (N=4,517). Methods General linear models with standardized beta coefficients were used to estimate associations between steamed rice consumption and urinary total arsenic concentration and urinary arsenic metabolites. Logistic regression models were used to estimate prevalence odds ratios (ORs) and their 95% confidence intervals (CIs) for the associations between rice intake and prevalent skin lesions at baseline. Discrete time hazard models were used to estimate discrete time (HRs) ratios and their 95% CIs for the associations between rice intake and incident skin lesions. Results Steamed rice consumption was positively associated with creatinine-adjusted urinary total arsenic (β=0.041, 95% CI: 0.032-0.051) and urinary total arsenic with statistical adjustment for creatinine in the model (β=0.043, 95% CI: 0.032-0.053). Additionally, we observed a significant trend in skin lesion prevalence (P-trend=0.007) and a moderate trend in skin lesion incidence (P-trend=0.07) associated with increased intake of steamed rice. Conclusions This study suggests that rice intake may be a source of arsenic exposure beyond drinking water. PMID:24260455
On the equivalence of case-crossover and time series methods in environmental epidemiology.
Lu, Yun; Zeger, Scott L
2007-04-01
The case-crossover design was introduced in epidemiology 15 years ago as a method for studying the effects of a risk factor on a health event using only cases. The idea is to compare a case's exposure immediately prior to or during the case-defining event with that same person's exposure at otherwise similar "reference" times. An alternative approach to the analysis of daily exposure and case-only data is time series analysis. Here, log-linear regression models express the expected total number of events on each day as a function of the exposure level and potential confounding variables. In time series analyses of air pollution, smooth functions of time and weather are the main confounders. Time series and case-crossover methods are often viewed as competing methods. In this paper, we show that case-crossover using conditional logistic regression is a special case of time series analysis when there is a common exposure such as in air pollution studies. This equivalence provides computational convenience for case-crossover analyses and a better understanding of time series models. Time series log-linear regression accounts for overdispersion of the Poisson variance, while case-crossover analyses typically do not. This equivalence also permits model checking for case-crossover data using standard log-linear model diagnostics.
Gouge, Brian; Ries, Francis J; Dowlatabadi, Hadi
2010-09-15
Macroscale emissions modeling approaches have been widely applied in impact assessments of mobile source emissions. However, these approaches poorly characterize the spatial distribution of emissions and have been shown to underestimate emissions of some pollutants. To quantify the implications of these limitations on exposure assessments, CO, NO(X), and HC emissions from diesel transit buses were estimated at 50 m intervals along a bus rapid transit route using a microscale emissions modeling approach. The impacted population around the route was estimated using census, pedestrian count and transit ridership data. Emissions exhibited significant spatial variability. In intervals near major intersections and bus stops, emissions were 1.6-3.0 times higher than average. The coincidence of these emission hot spots and peaks in pedestrian populations resulted in a 20-40% increase in exposure compared to estimates that assumed homogeneous spatial distributions of emissions and/or populations along the route. An additional 19-30% increase in exposure resulted from the underestimate of CO and NO(X) emissions by macroscale modeling approaches. The results of this study indicate that macroscale modeling approaches underestimate exposure due to poor characterization of the influence of vehicle activity on the spatial distribution of emissions and total emissions.
Morishima, Toshitaka; Imanaka, Yuichi; Otsubo, Tetsuya; Hayashida, Kenshi; Watanabe, Takashi; Tsuji, Ichiro
2013-01-01
Background The economic consequences of environmental tobacco smoke (ETS) have been simulated using models. We examined the individual-level association between ETS exposure and medical costs among Japanese nonsmoking women. Methods This population-based cohort study enrolled women aged 40 to 79 years living in a rural community. ETS exposure in homes at baseline was assessed with a self-administered questionnaire. We then collected health insurance claims data on direct medical expenditures from 1995 through 2007. Using generalized linear models with interaction between ETS exposure level and age stratum, average total monthly expenditure (inpatient plus outpatient care) per capita for nonsmoking women highly exposed and moderately exposed to ETS were compared with expenditures for unexposed women. We performed separate analyses for survivors and nonsurvivors. Results We analyzed data from 4870 women. After adjustment for potential confounding factors, survivors aged 70 to 79 who were highly exposed to ETS incurred higher expenditures than those who were not exposed. We found no significant difference in expenditures between moderately exposed and unexposed women. Total expenditures were not significantly associated with ETS exposure among survivors aged 40 to 69 or nonsurvivors of any age stratum. Conclusions We calculated individual-level excess medical expenditures attributable to household exposure to ETS among surviving older women. The findings provide direct evidence of the economic burden of ETS, which is helpful for policymakers who seek to achieve the economically attractive goal of eliminating ETS. PMID:23183111
Richardson, Elizabeth A; Shortt, Niamh K; Mitchell, Richard; Pearce, Jamie
2018-02-01
Birthweight is an important determinant of health across the life course. Maternal exposure to natural space has been linked to higher birthweight, but stronger evidence of a causal link is needed. We use a quasi-experimental sibling study design to investigate if change in the mother's exposure to natural space between births was related to birthweight, in urban Scotland. Amount (% area) of total natural space, total accessible (public) natural space, parks, woodlands and open water within 100 m of the mother's postcode was calculated for eligible births (n = 40 194; 1991-2010) in the Scottish Longitudinal Study (a semi-random 5.3% sample of the Scottish population). Associations between natural space and birthweight were estimated, using ordinary least squares and fixed effects models. Birthweight was associated with the total amount of natural space around the mother's home (+8.2 g for interquartile range increase), but was unrelated to specific types of natural space. This whole-sample relationship disappeared in the sibling analysis, indicating residual confounding. The sibling models showed effects for total natural space with births to women who already had children (+20.1 g), and to those with an intermediate level of education (+14.1 g). The importance of total natural space for birthweight suggests that benefits can be experienced near to as well as within natural space. Ensuring expectant mothers have good access to high quality neighbourhood natural space has the potential to improve the infant's start in life, and consequently their health trajectory over the life course. © The Author 2017; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association
Test of the stress sensitization model in adolescents following the pipeline explosion.
Shao, Di; Gao, Qing-Ling; Li, Jie; Xue, Jiao-Mei; Guo, Wei; Long, Zhou-Ting; Cao, Feng-Lin
2015-10-01
The stress sensitization model states that early traumatic experiences increase vulnerability to the adverse effects of subsequent stressful life events. This study examined the effect of stress sensitization on development of posttraumatic stress disorder (PTSD) symptoms in Chinese adolescents who experienced the pipeline explosion. A total of 670 participants completed self-administered questionnaires on demographic characteristics and degree of explosion exposure, the Childhood Trauma Questionnaire (CTQ), and the Posttraumatic Stress Disorder Checklist-Civilian Version (PCL-C). Associations among the variables were explored using MANOVA, and main effects and interactions were analyzed. Overall MANOVA tests with the PCL-C indicated significant differences for gender (F=6.86, p=.000), emotional abuse (F=6.79, p=.000), and explosion exposure (F=22.40, p=.000). There were significant interactions between emotional abuse and explosion exposure (F=3.98, p=.008) and gender and explosion exposure (F=2.93, p=.033). Being female, childhood emotional abuse, and a high explosion exposure were associated with high PTSD symptom levels. Childhood emotional abuse moderated the effect of explosion exposure on PTSD symptoms. Thus, stress sensitization influenced the development of PTSD symptoms in Chinese adolescents who experienced the pipeline explosion as predicted by the model. Copyright © 2015 Elsevier Inc. All rights reserved.
Avanasi, Raghavendhran; Shin, Hyeong-Moo; Vieira, Veronica M; Bartell, Scott M
2016-04-01
We recently utilized a suite of environmental fate and transport models and an integrated exposure and pharmacokinetic model to estimate individual perfluorooctanoate (PFOA) serum concentrations, and also assessed the association of those concentrations with preeclampsia for participants in the C8 Health Project (a cross-sectional study of over 69,000 people who were environmentally exposed to PFOA near a major U.S. fluoropolymer production facility located in West Virginia). However, the exposure estimates from this integrated model relied on default values for key independent exposure parameters including water ingestion rates, the serum PFOA half-life, and the volume of distribution for PFOA. The aim of the present study is to assess the impact of inter-individual variability and epistemic uncertainty in these parameters on the exposure estimates and subsequently, the epidemiological association between PFOA exposure and preeclampsia. We used Monte Carlo simulation to propagate inter-individual variability/epistemic uncertainty in the exposure assessment and reanalyzed the epidemiological association. Inter-individual variability in these parameters mildly impacted the serum PFOA concentration predictions (the lowest mean rank correlation between the estimated serum concentrations in our study and the original predicted serum concentrations was 0.95) and there was a negligible impact on the epidemiological association with preeclampsia (no change in the mean adjusted odds ratio (AOR) and the contribution of exposure uncertainty to the total uncertainty including sampling variability was 7%). However, when epistemic uncertainty was added along with the inter-individual variability, serum PFOA concentration predictions and their association with preeclampsia were moderately impacted (the mean AOR of preeclampsia occurrence was reduced from 1.12 to 1.09, and the contribution of exposure uncertainty to the total uncertainty was increased up to 33%). In conclusion, our study shows that the change of the rank exposure among the study participants due to variability and epistemic uncertainty in the independent exposure parameters was large enough to cause a 25% bias towards the null. This suggests that the true AOR of the association between PFOA and preeclampsia in this population might be higher than the originally reported AOR and has more uncertainty than indicated by the originally reported confidence interval. Copyright © 2016 Elsevier Inc. All rights reserved.
Genocide Exposure and Subsequent Suicide Risk: A Population-Based Study
Levine, Stephen Z.; Levav, Itzhak; Yoffe, Rinat; Becher, Yifat; Pugachova, Inna
2016-01-01
The association between periods of genocide-related exposures and suicide risk remains unknown. Our study tests that association using a national population-based study design. The source population comprised of all persons born during1922-1945 in Nazi-occupied or dominated European nations, that immigrated to Israel by 1965, were identified in the Population Register (N = 220,665), and followed up for suicide to 2014, totaling 16,953,602 person-years. The population was disaggregated to compare a trauma gradient among groups that immigrated before (indirect, n = 20,612, 9%); during (partial direct, n = 17,037, 8%); or after (full direct, n = 183,016, 83%) exposure to the Nazi era. Also, the direct exposure groups were examined regarding pre- or post-natal exposure periods. Cox regression models were used to compute Hazard Ratios (HR) of suicide risk to compare the exposure groups, adjusting for confounding by gender, residential SES and history of psychiatric hospitalization. In the total population, only the partial direct exposure subgroup was at greater risk compared to the indirect exposure group (HR = 1.73, 95% CI, 1.10, 2.73; P < .05). That effect replicated in six sensitivity analyses. In addition, sensitivity analyses showed that exposure at ages 13 plus among females, and follow-up by years since immigration were associated with a greater risk; whereas in utero exposure among persons with no psychiatric hospitalization and early postnatal exposure among males were at a reduced risk. Tentative mechanisms impute biopsychosocial vulnerability and natural selection during early critical periods among males, and feelings of guilt and entrapment or defeat among females. PMID:26901411
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallinger, K.; Huggins, A.; Warner, L.
1995-12-31
An Indirect Exposure Assessment (IEA) was conducted, under USEPA`s RCRA Combustion Strategy, as part of the Part B permitting process for a proposed hazardous waste incinerator. The IEA involved identification of constituents of concern, emissions estimations, air dispersion and deposition modeling, evaluation of site-specific exposure pathways/scenarios, and food chain modeling in order to evaluate potential human health and environmental risks. The COMPDEP model was used to determine ambient ground level concentrations and dry and wet deposition rates of constituents of concern. The air modeling results were input into 50th percentile (Central) and 95th percentile (High-End) exposure scenarios which evaluated directmore » exposure via inhalation, dermal contact, and soil ingestion pathways, and indirect exposure through the food chain. The indirect pathway analysis considered the accumulation of constituents in plants and animals used as food sources by local inhabitants. Local food consumption data obtained from the Puerto Rico USDA were combined with realistic present-day and future-use exposure scenarios such as residential use, pineapple farming, and subsistence farming to obtain a comprehensive evaluation of risk, Overall risk was calculated using constituent doses and toxicity factors associated with the various routes of exposure. Risk values for each exposure pathway were summed to determine total carcinogenic and non-carcinogenic hazard to exposed individuals. A population risk assessment was also conducted in order to assess potential risks to the population surrounding the facility. Results of the assessment indicated no acute effects from constituents of concern, and a high-end excess lifetime cancer risk of approximately 6 in a million with dioxins (as 2,3,7,8-TCDD) and arsenic dominating the risk estimate.« less
Statistical modelling of formaldehyde occupational exposure levels in French industries, 1986-2003.
Lavoué, Jérôme; Vincent, Raymond; Gérin, Michel
2006-04-01
Occupational exposure databanks (OEDBs) have been cited as sources of exposure data for exposure surveillance and exposure assessment in epidemiology. In 2003, an extract was made from COLCHIC, the French national OEDB, of all concentrations of formaldehyde. The data were analysed with extended linear mixed-effects models in order to identify influent variables and elaborate a multi-sector picture of formaldehyde exposures. Respectively, 1401 and 1448 personal and area concentrations were available for the analysis. The fixed effects of the personal and area models explained, respectively, 57 and 53% of the total variance. Personal concentrations were related to the sampling duration (short-term higher than TWA levels), decreased with the year of sampling (-9% per year) and were higher when local exhaust ventilation was present. Personal levels taken during planned visits and for occupational illness notification purpose were consistently lower than those taken during ventilation modification programmes or because the hygienist suspected the presence of significant risk or exposure. Area concentrations were related to the sampling duration (short-term higher than TWA levels), and decreased with the year of sampling (-7% per year) and when the measurement sampling flow increased. Significant within-facility (correlation coefficient 0.4-0.5) and within-sampling campaign correlation (correlation coefficient 0.8) was found for both area and personal data. The industry/task classification appeared to have the greatest influence on exposure variability while the sample duration and the sampling flow were significant in some cases. Estimates made from the models for year 2002 showed elevated formaldehyde exposure in the fields of anatomopathological and biological analyses, operation of gluing machinery in the wood industry, operation and monitoring of mixers in the pharmaceutical industry, and garages and warehouses in urban transit authorities.
Quan, Lijuan; Zhen, Rui; Yao, Benxian; Zhou, Xiao
2017-05-01
A total of 187 flood victims from Wuhu, a Chinese city affected most severely by a flood during July 2016, were selected to complete self-report measures of traumatic exposure, feelings of safety, fear, posttraumatic negative cognition, and posttraumatic stress disorder. The results found that traumatic exposure could directly predict posttraumatic stress disorder. Besides, traumatic exposure had indirect prediction on posttraumatic stress disorder through three ways, including a one-step path of negative self-cognition, a two-step path from feelings of safety to fear, and a three-step path from feelings of safety to negative self-cognition via fear. Implications and future directions are correspondingly discussed.
Monte Carlo simulations of the gamma-ray exposure rates of common rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haber, Daniel A.; Malchow, Russell L.; Burnley, Pamela C.
Monte Carlo simulations have been performed to model the gamma ray emission and attenuation properties of common rocks. In geologic materials, 40K, 238U, and 232Th are responsible for most gamma ray production. If the concentration of these radioelements and attenuation factors such as degree of water saturation are known, an estimate of the gamma-ray exposure rate can be made. The results show that there are no significant differences in gamma-ray screening between major rock types. If the total number of radionuclide atoms are held constant then the major controlling factor is density of the rock. Finally, the thickness of regolithmore » or soil overlying rock can be estimated by modeling the exposure rate if the radionuclide contents of both materials are known.« less
Monte Carlo simulations of the gamma-ray exposure rates of common rocks
Haber, Daniel A.; Malchow, Russell L.; Burnley, Pamela C.
2016-11-24
Monte Carlo simulations have been performed to model the gamma ray emission and attenuation properties of common rocks. In geologic materials, 40K, 238U, and 232Th are responsible for most gamma ray production. If the concentration of these radioelements and attenuation factors such as degree of water saturation are known, an estimate of the gamma-ray exposure rate can be made. The results show that there are no significant differences in gamma-ray screening between major rock types. If the total number of radionuclide atoms are held constant then the major controlling factor is density of the rock. Lastly, the thickness of regolithmore » or soil overlying rock can be estimated by modeling the exposure rate if the radionuclide contents of both materials are known.« less
Monte Carlo simulations of the gamma-ray exposure rates of common rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haber, Daniel A.; Malchow, Russell L.; Burnley, Pamela C.
Monte Carlo simulations have been performed to model the gamma ray emission and attenuation properties of common rocks. In geologic materials, 40K, 238U, and 232Th are responsible for most gamma ray production. If the concentration of these radioelements and attenuation factors such as degree of water saturation are known, an estimate of the gamma-ray exposure rate can be made. The results show that there are no significant differences in gamma-ray screening between major rock types. If the total number of radionuclide atoms are held constant then the major controlling factor is density of the rock. Lastly, the thickness of regolithmore » or soil overlying rock can be estimated by modeling the exposure rate if the radionuclide contents of both materials are known.« less
Xue, Jianping; Zartarian, Valerie; Tornero-Velez, Rogelio; Tulve, Nicolle S
2014-12-01
The U.S. EPA's SHEDS-Multimedia model was applied to enhance the understanding of children's exposures and doses to multiple pyrethroid pesticides, including major contributing chemicals and pathways. This paper presents combined dietary and residential exposure estimates and cumulative doses for seven commonly used pyrethroids, and comparisons of model evaluation results with NHANES biomarker data for 3-PBA and DCCA metabolites. Model input distributions were fit to publicly available pesticide usage survey data, NHANES, and other studies, then SHEDS-Multimedia was applied to estimate total pyrethroid exposures and doses for 3-5 year olds for one year variability simulations. For dose estimations we used a pharmacokinetic model and two approaches for simulating dermal absorption. SHEDS-Multimedia predictions compared well to NHANES biomarker data: ratios of 3-PBA observed data to SHEDS-Multimedia modeled results were 0.88, 0.51, 0.54 and 1.02 for mean, median, 95th, and 99th percentiles, respectively; for DCCA, the ratios were 0.82, 0.53, 0.56, and 0.94. Modeled time-averaged cumulative absorbed dose of the seven pyrethroids was 3.1 nmol/day (versus 8.4 nmol/day for adults) in the general population (residential pyrethroid use and non-use homes) and 6.7 nmol/day (versus 10.5 nmol/day for adults) in the simulated residential pyrethroid use population. For the general population, contributions to modeled cumulative dose by chemical were permethrin (60%), cypermethrin (22%), and cyfluthrin (16%); for residential use homes, contributions were cypermethrin (49%), permethrin (29%), and cyfluthrin (17%). The primary exposure route for 3-5 year olds in the simulated residential use population was non-dietary ingestion exposure; whereas for the simulated general population, dietary exposure was the primary exposure route. Below the 95th percentile, the major exposure pathway was dietary for the general population; non-dietary ingestion was the major pathway starting below the 70th percentile for the residential use population. The new dermal absorption methodology considering surface loading had some impact, but did not change the order of key pathways. Published by Elsevier Ltd.
Effects of the low Earth orbital environment on spacecraft materials
NASA Technical Reports Server (NTRS)
Leger, L. J.
1986-01-01
It is evident from space flights during the last three years that the low Earth orbital (LEO) environment interacts with spacecraft surfaces in significant ways. One manifestation of these interactions is recession of, in particular, organic-polymer-based surfaces presumably due to oxidation by atomic oxygen, the major component of the LEO environment. Three experiments have been conducted on Space Shuttle flights 5, 8 and 41-G to measure reaction rates and the effects of various parameters on reaction rates. Surface recession on these flights indicates reaction efficiencies approximately 3 x 10(-24) cu cm/atoms for unfilled organic polymers. Of the metals, silver and osmium are very reactive. Effects on spacecraft or experiment surfaces can be evaluated using the derived reaction efficiencies and a definition of the total exposure to atomic oxygen. This exposure is obtained using an ambient density model, solar activity data and spacecraft parameters of altitude, attitude and operational date. Oxygen flux on a given surface is obtained from the ambient density and spacecraft velocity and can then be integrated to provide the total exposure or fluence. Such information can be generated using simple computational programs and can be converted to various formats. Overall, the extent of damage is strongly dependent on the type of surface and total exposure time.
Klaper, R.; Carter, Barbara J.; Richter, C.A.; Drevnick, P.E.; Sandheinrich, M.B.; Tillitt, D.E.
2008-01-01
This study describes the use of a 15 000 gene microarray developed for the toxicological model species, Pimephales promelas, in investigating the impact of acute and chronic methylmercury exposures in male gonad and liver tissues. The results show significant differences in the individual genes that were differentially expressed in response to each treatment. In liver, a total of 650 genes exhibited significantly (P < 0.05) altered expression with greater than two-fold differences from the controls in response to acute exposure and a total of 267 genes were differentially expressed in response to chronic exposure. A majority of these genes were downregulated rather than upregulated. Fewer genes were altered in gonad than in liver at both timepoints. A total of 212 genes were differentially expressed in response to acute exposure and 155 genes were altered in response to chronic exposure. Despite the differences in individual genes expressed across treatments, the functional categories that altered genes were associated with showed some similarities. Of interest in light of other studies involving the effects of methylmercury on fish, several genes associated with apoptosis were upregulated in response to both acute and chronic exposures. Induction of apoptosis has been associated with effects on reproduction seen in the previous studies. This study demonstrates the utility of microarray analysis for investigations of the physiological effects of toxicants as well as the time-course of effects that may take place. In addition, it is the first publication to demonstrate the use of this new 15 000 gene microarray for fish biology and toxicology. ?? 2008 The Authors.
NASA Astrophysics Data System (ADS)
Greco, Susan L.; Wilson, Andrew M.; Spengler, John D.; Levy, Jonathan I.
Assessing the public health benefits from air pollution control measures is assisted by understanding the relationship between mobile source emissions and subsequent fine particulate matter (PM 2.5) exposure. Since this relationship varies by location, we characterized its magnitude and geographic distribution using the intake fraction (iF) concept. We considered emissions of primary PM 2.5 as well as particle precursors SO 2 and NO x from each of 3080 counties in the US. We modeled the relationship between these emissions and total US population exposure to PM 2.5, making use of a source-receptor matrix developed for health risk assessment. For primary PM 2.5, we found a median iF of 1.2 per million, with a range of 0.12-25. Half of the total exposure was reached by a median distance of 150 km from the county where mobile source emissions originated, though this spatial extent varied across counties from within the county borders to 1800 km away. For secondary ammonium sulfate from SO 2 emissions, the median iF was 0.41 per million (range: 0.050-10), versus 0.068 per million for secondary ammonium nitrate from NO x emissions (range: 0.00092-1.3). The median distance to half of the total exposure was greater for secondary PM 2.5 (450 km for sulfate, 390 km for nitrate). Regression analyses using exhaustive population predictors explained much of the variation in primary PM 2.5 iF ( R2=0.83) as well as secondary sulfate and nitrate iF ( R2=0.74 and 0.60), with greater near-source contribution for primary than for secondary PM 2.5. We conclude that long-range dispersion models with coarse geographic resolution are appropriate for risk assessments of secondary PM 2.5 or primary PM 2.5 emitted from mobile sources in rural areas, but that more resolved dispersion models are warranted for primary PM 2.5 in urban areas due to the substantial contribution of near-source populations.
Birch, Sharla M; Lenox, Mark W; Kornegay, Joe N; Shen, Li; Ai, Huisi; Ren, Xiaowei; Goodlett, Charles R; Cudd, Tim A; Washburn, Shannon E
2015-11-01
Identification of facial dysmorphology is essential for the diagnosis of fetal alcohol syndrome (FAS); however, most children with fetal alcohol spectrum disorders (FASD) do not meet the dysmorphology criterion. Additional objective indicators are needed to help identify the broader spectrum of children affected by prenatal alcohol exposure. Computed tomography (CT) was used in a sheep model of prenatal binge alcohol exposure to test the hypothesis that quantitative measures of craniofacial bone volumes and linear distances could identify alcohol-exposed lambs. Pregnant sheep were randomly assigned to four groups: heavy binge alcohol, 2.5 g/kg/day (HBA); binge alcohol, 1.75 g/kg/day (BA); saline control (SC); and normal control (NC). Intravenous alcohol (BA; HBA) or saline (SC) infusions were given three consecutive days per week from gestation day 4-41, and a CT scan was performed on postnatal day 182. The volumes of eight skull bones, cranial circumference, and 19 linear measures of the face and skull were compared among treatment groups. Lambs from both alcohol groups showed significant reduction in seven of the eight skull bones and total skull bone volume, as well as cranial circumference. Alcohol exposure also decreased four of the 19 craniofacial measures. Discriminant analysis showed that alcohol-exposed and control lambs could be classified with high accuracy based on total skull bone volume, frontal, parietal, or mandibular bone volumes, cranial circumference, or interorbital distance. Total skull volume was significantly more sensitive than cranial circumference in identifying the alcohol-exposed lambs when alcohol-exposed lambs were classified using the typical FAS diagnostic cutoff of ≤10th percentile. This first demonstration of the usefulness of CT-derived craniofacial measures in a sheep model of FASD following binge-like alcohol exposure during the first trimester suggests that volumetric measurement of cranial bones may be a novel biomarker for binge alcohol exposure during the first trimester to help identify non-dysmorphic children with FASD. Copyright © 2015 Elsevier Inc. All rights reserved.
Aerts, Sam; Deschrijver, Dirk; Verloock, Leen; Dhaene, Tom; Martens, Luc; Joseph, Wout
2013-10-01
In this study, a novel methodology is proposed to create heat maps that accurately pinpoint the outdoor locations with elevated exposure to radiofrequency electromagnetic fields (RF-EMF) in an extensive urban region (or, hotspots), and that would allow local authorities and epidemiologists to efficiently assess the locations and spectral composition of these hotspots, while at the same time developing a global picture of the exposure in the area. Moreover, no prior knowledge about the presence of radiofrequency radiation sources (e.g., base station parameters) is required. After building a surrogate model from the available data using kriging, the proposed method makes use of an iterative sampling strategy that selects new measurement locations at spots which are deemed to contain the most valuable information-inside hotspots or in search of them-based on the prediction uncertainty of the model. The method was tested and validated in an urban subarea of Ghent, Belgium with a size of approximately 1 km2. In total, 600 input and 50 validation measurements were performed using a broadband probe. Five hotspots were discovered and assessed, with maximum total electric-field strengths ranging from 1.3 to 3.1 V/m, satisfying the reference levels issued by the International Commission on Non-Ionizing Radiation Protection for exposure of the general public to RF-EMF. Spectrum analyzer measurements in these hotspots revealed five radiofrequency signals with a relevant contribution to the exposure. The radiofrequency radiation emitted by 900 MHz Global System for Mobile Communications (GSM) base stations was always dominant, with contributions ranging from 45% to 100%. Finally, validation of the subsequent surrogate models shows high prediction accuracy, with the final model featuring an average relative error of less than 2dB (factor 1.26 in electric-field strength), a correlation coefficient of 0.7, and a specificity of 0.96. Copyright © 2013 Elsevier Inc. All rights reserved.
"Total Deposition (TDEP) Maps" | Science Inventory | US EPA
The presentation provides an update on the use of a hybrid methodology that relies on measured values from national monitoring networks and modeled values from CMAQ to produce of maps of total deposition for use in critical loads and other ecological assessments. Additionally, comparisons of the deposition values from the hybrid approach are compared with deposition estimates from other methodologies. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.
2015-08-01
21 Figure 4. Data-based proportion of DDD , DDE and DDT in total DDx in fish and sediment by... DDD dichlorodiphenyldichloroethane DDE dichlorodiphenyldichloroethylene DDT dichlorodiphenyltrichloroethane DoD Department of Defense ERM... DDD ) at the other site. The spatially-explicit model consistently predicts tissue concentrations that closely match both the average and the
Beekhuizen, Johan; Heuvelink, Gerard B M; Huss, Anke; Bürgi, Alfred; Kromhout, Hans; Vermeulen, Roel
2014-11-01
With the increased availability of spatial data and computing power, spatial prediction approaches have become a standard tool for exposure assessment in environmental epidemiology. However, such models are largely dependent on accurate input data. Uncertainties in the input data can therefore have a large effect on model predictions, but are rarely quantified. With Monte Carlo simulation we assessed the effect of input uncertainty on the prediction of radio-frequency electromagnetic fields (RF-EMF) from mobile phone base stations at 252 receptor sites in Amsterdam, The Netherlands. The impact on ranking and classification was determined by computing the Spearman correlations and weighted Cohen's Kappas (based on tertiles of the RF-EMF exposure distribution) between modelled values and RF-EMF measurements performed at the receptor sites. The uncertainty in modelled RF-EMF levels was large with a median coefficient of variation of 1.5. Uncertainty in receptor site height, building damping and building height contributed most to model output uncertainty. For exposure ranking and classification, the heights of buildings and receptor sites were the most important sources of uncertainty, followed by building damping, antenna- and site location. Uncertainty in antenna power, tilt, height and direction had a smaller impact on model performance. We quantified the effect of input data uncertainty on the prediction accuracy of an RF-EMF environmental exposure model, thereby identifying the most important sources of uncertainty and estimating the total uncertainty stemming from potential errors in the input data. This approach can be used to optimize the model and better interpret model output. Copyright © 2014 Elsevier Inc. All rights reserved.
Chang, Moonhee; Park, Hyesook; Ha, Mina; Hong, Yun-Chul; Lim, Youn-Hee; Kim, Yangho; Kim, Young Ju; Lee, Dongheon; Ha, Eun-Hee
2017-09-01
BACKGROUNDVolatile organic compounds (VOCs) might restrict prenatal and postnatal growth. However, the effect of the exposure of prenatal VOCs on postnatal growth has not been studied sufficiently. Thus, we investigated the relationship between the exposure of total volatile organic compounds (TVOCs) during pregnancy and its effects on postnatal growth.METHODSA total of 383 pregnant participants were enrolled from 2006 to 2008. We investigated maternal characteristics using a questionnaire. Personal air samples of TVOCs were obtained in mid or late pregnancy. After these mothers had given birth, 360 singleton newborns were selected and postnatal follow-up data were collected at 6, 12, 24, and 36 months, as well as anthropometric factors including body weight. Multiple general linear and mixed models were applied for statistical analyses.RESULTSThe mean concentration of prenatal exposure to TVOCs was 284.2 μg/m 3 and that of formaldehyde was 81.6 μg/m 3 . The birth weight of newborns decreased significantly with prenatal TVOC exposure (β=-45.89, P=0.04). The adjusted mean body weight was 300 g lower in the high-TVOC group (⩾75th) compared with that in the low-exposure group (<75th).CONCLUSIONThese results indicate that elevated exposure to TVOCs during the prenatal period may adversely influence early postnatal growth.
Economic Costs of Childhood Lead Exposure in Low- and Middle-Income Countries
Trasande, Leonardo
2013-01-01
Background: Children’s blood lead levels have declined worldwide, especially after the removal of lead in gasoline. However, significant exposure remains, particularly in low- and middle-income countries. To date, there have been no global estimates of the costs related to lead exposure in children in developing countries. Objective: Our main aim was to estimate the economic costs attributable to childhood lead exposure in low- and middle-income countries. Methods: We developed a regression model to estimate mean blood lead levels in our population of interest, represented by each 1-year cohort of children < 5 years of age. We used an environmentally attributable fraction model to estimate lead-attributable economic costs and limited our analysis to the neurodevelopmental impacts of lead, assessed as decrements in IQ points. Our main outcome was lost lifetime economic productivity due to early childhood exposure. Results: We estimated a total cost of $977 billions of international dollars in low- and middle-income countries, with economic losses equal to $134.7 billion in Africa [4.03% of gross domestic product (GDP)], $142.3 billion in Latin America and the Caribbean (2.04% of GDP), and $699.9 billion in Asia (1.88% of GDP). Our sensitivity analysis indicates a total economic loss in the range of $728.6–1162.5 billion. Conclusions: We estimated that, in low- and middle-income countries, the burden associated with childhood lead exposure amounts to 1.20% of world GDP in 2011. For comparison, in the United States and Europe lead-attributable economic costs have been estimated at $50.9 and $55 billion, respectively, suggesting that the largest burden of lead exposure is now borne by low- and middle-income countries. Citation: Attina TM, Trasande L. 2013. Economic costs of childhood lead exposure in low- and middle-income countries. Environ Health Perspect 121:1097–1102; http://dx.doi.org/10.1289/ehp.1206424 PMID:23797342
Tufts, Jennifer B; Weathersby, Paul K; Rodriguez, Francisco A
2010-05-01
The purpose of this paper is to demonstrate the feasibility and utility of developing economic cost models for noise-induced hearing loss (NIHL). First, we outline an economic model of NIHL for a population of US Navy sailors with an "industrial"-type noise exposure. Next, we describe the effect on NIHL-related cost of varying the two central model inputs--the noise-exposure level and the duration of exposure. Such an analysis can help prioritize promising areas, to which limited resources to reduce NIHL-related costs should be devoted. NIHL-related costs borne by the US government were computed on a yearly basis using a finite element approach that took into account varying levels of susceptibility to NIHL. Predicted hearing thresholds for the population were computed with ANSI S3.44-1996 and then used as the basis for the calculation of NIHL-related costs. Annual and cumulative costs were tracked. Noise-exposure level and duration were systematically varied to determine their effects on the expected lifetime NIHL-related cost of a specific US Navy sailor population. Our nominal noise-exposure case [93 dB(A) for six years] yielded a total expected lifetime cost of US $13,472 per sailor, with plausible lower and upper bounds of US $2,500 and US $26,000. Starting with the nominal case, a decrease of 50% in exposure level or duration would yield cost savings of approximately 23% and 19%, respectively. We concluded that a reduction in noise level would be more somewhat more cost-effective than the same percentage reduction in years of exposure. Our economic cost model can be used to estimate the changes in NIHL-related costs that would result from changes in noise-exposure level and/or duration for a single military population. Although the model is limited at present, suggestions are provided for adapting it to civilian populations.
Farooqui, Zishaan; Bakulski, Kelly M; Power, Melinda C; Weisskopf, Marc G; Sparrow, David; Spiro, Avron; Vokonas, Pantel S; Nie, Linda H; Hu, Howard; Park, Sung Kyun
2017-01-01
Lead (Pb) exposure has been associated with poorer cognitive function cross-sectionally in aging adults, however the association between cumulative Pb exposure and longitudinal changes in cognition is little characterized. In a 1993-2007 subcohort of the VA Normative Aging Study (Mini-mental status exam (MMSE) n=741; global cognition summary score n=715), we used linear mixed effects models to test associations between cumulative Pb exposure (patella or tibia bone Pb) and repeated measures of cognition (MMSE, individual cognitive tests, and global cognition summary). Cox proportional hazard modeling assessed the risk of an MMSE score falling below 25. Among men 51-98 at baseline, higher patella Pb concentration (IQR: 21μg/g) was associated with -0.13 lower baseline MMSE (95% CI: -0.25, -0.004) and faster longitudinal MMSE decline (-0.016 units/year, 95% CI: -0.032, -0.0004) over 15 years. Each IQR increase in patella Pb was associated with increased risk of a MMSE score below 25 (HR=1.21, 95% CI: 0.99, 1.49; p=0.07). There were no significant associations between Pb and global cognition (both baseline and longitudinal change). Patella Pb was associated with faster longitudinal decline in Word List Total Recall in the language domain (0.014 units/year, 95% CI: -0.026, -0.001) and Word List Delayed Recall in the memory domain (0.014 units/year, 95% CI: -0.027, -0.002). We found weaker associations with tibia Pb. Cumulative Pb exposure is associated with faster declines in MMSE and Word List Total and Delayed Recall tests. These findings support the hypothesis that Pb exposure accelerates cognitive aging. Copyright © 2016 Elsevier Inc. All rights reserved.
Contribution of diet to aggregate arsenic exposures—An analysis across populations
Kurzius-Spencer, Margaret; Burgess, Jefferey L.; Harris, Robin B.; Hartz, Vern; Roberge, Jason; Huang, Shuang; Hsu, Chiu-Hsieh; O'Rourke, MK
2014-01-01
The relative contribution of dietary arsenic (As) to aggregate daily exposure has not been well-characterized, especially in relation to the current EPA maximum contaminant level (MCL) of 10 p.p.b. for As in drinking water. Our objectives were to: (1) model exposure to inorganic and total As among non-seafood eaters using subject-specific data, (2) compare the contribution of food, drinking and cooking water to estimated aggregate exposure in households with variable background tap water As levels, and (3) describe the upper distribution of potential dose at different thresholds of tap water As. Dietary As intake was modeled in regional study populations and NHANES 2003–2004 using dietary records in conjunction with published food As residue data. Water As was measured in the regional studies. Among subjects exposed to tap water As >10 p.p.b., aggregate inorganic exposure was 24.5–26.1 μg/day, with approximately 30% of intake from food. Among subjects living in homes with tap water As ≤10, 5 or 3 p.p.b., aggregate inorganic As exposure was 8.6–11.8 μg/day, with 54–85% of intake from food. Median inorganic As potential dose was 0.42–0.50 μg/kg BW/day in subjects exposed to tap water As >10 p.p.b. and less than half that among subjects exposed to tap water As ≤10 p.p.b. The majority of inorganic and total As exposure is attributable to diet in subjects with tap water As
NASA Astrophysics Data System (ADS)
Stout, D. M.; Mason, M. A.
A study was conducted in the US EPA Indoor Air Quality (IAQ) Research House to determine the spatial and temporal distribution of chlorpyrifos following a professional crack and crevice application in the kitchen. Following the application, measurements were made in the kitchen, den and master bedroom over 21 days. Airborne concentrations were collected using both polyurethane foam (PUF) and the OSHA versatile sampler composed of XAD and PUF media located in tandem. Measured airborne concentrations were similar for the two samplers and were higher in the three rooms following the application. The highest measured concentrations were reached during the initial 24-h following application; concentrations subsequently declined over the 21-day study period to levels slightly above background. Spatial and temporal distributions onto surfaces were measured using 10-cm 2 rayon deposition coupons located on the floor. Sections were cut from existing carpet to determine the total extractable residues. Chlorpyrifos was measured from all matrixes in the kitchen, den and bedroom and the data shows the transport of airborne residues from the point of application to remote locations in the house. The findings are compared and discussed relative to another study conducted in which total release aerosols containing chlorpyrifos were activated in the IAQ research house and the resulting distributions evaluated. For both studies dose estimates were constructed for the exposure pathways using the Stochastic Human Exposure and Dose Estimation Model for pesticides. The United States Environmental Protection Agency has been mandated to examine children's exposure to environmental pollutants such as pesticides. This research specifically reduces uncertainties associated with estimating children's potential exposures to residentially applied pesticides and provides inputs to further evaluate and validate residential exposure models which might be used to reduce exposures and perform risk assessments.
Appraisal of levels and patterns of occupational exposure to 1,3-butadiene.
Scarselli, Alberto; Corfiati, Marisa; Di Marzi, Davide; Iavicoli, Sergio
2017-09-01
Objectives 1,3-butadiene is classified as carcinogenic to human by inhalation and the association with leukemia has been observed in several epidemiological studies. The aim of this study was to evaluate data about occupational exposure levels to 1,3-butadiene in the Italian working force. Methods Airborne concentrations of 1,3-butadiene were extracted from the Italian database on occupational exposure to carcinogens in the period 1996-2015. Descriptive statistics were calculated for exposure-related variables. An analysis through linear mixed model was performed to determine factors influencing the exposure level. The probability of exceeding the exposure limit was predicted using a mixed-effects logistic model. Concurrent exposures with other occupational carcinogens were investigated using the two-step cluster analysis. Results The total number of exposure measurements selected was 23 885, with an overall arithmetic mean of 0.12 mg/m3. The economic sector with the highest number of measurements was manufacturing of chemicals (18 744). The most predictive variables of the exposure level resulted to be the occupational group and its interaction with the measurement year. The highest likelihood of exceeding the exposure limit was found in the manufacture of coke and refined petroleum products. Concurrent exposures were frequently detected, mainly with benzene, acrylonitrile and ethylene dichloride, and three main clusters were identified. Conclusions Exposure to 1,3-butadiene occurs in a wide variety of activity sectors and occupational groups. The use of several statistical analysis methods applied to occupational exposure databases can help to identify exposure situations at high risk for workers' health and better target preventive interventions and research projects.
Space Radiation Risk Assessment
NASA Astrophysics Data System (ADS)
Blakely, E.
Evaluation of potential health effects from radiation exposure during and after deep space travel is important for the future of manned missions To date manned missions have been limited to near-Earth orbits with the moon our farthest distance from earth Historical space radiation career exposures for astronauts from all NASA Missions show that early missions involved total exposures of less than about 20 mSv With the advent of Skylab and Mir total career exposure levels increased to a maximum of nearly 200 mSv Missions in deep space with the requisite longer duration of the missions planned may pose greater risks due to the increased potential for exposure to complex radiation fields comprised of a broad range of radiation types and energies from cosmic and unpredictable solar sources The first steps in the evaluation of risks are underway with bio- and physical-dosimetric measurements on both commercial flight personnel and international space crews who have experience on near-earth orbits and the necessary theoretical modeling of particle-track traversal per cell including the contributing effects of delta-rays in particle exposures An assumption for biologic effects due to exposure of radiation in deep space is that they differ quantitatively and qualitatively from that on earth The dose deposition and density pattern of heavy charged particles are very different from those of sparsely ionizing radiation The potential risks resulting from exposure to radiation in deep space are cancer non-cancer and genetic effects Radiation from
Niizuma, Shun; Matsui, Yoshihiko; Ohno, Koichi; Itoh, Sadahiko; Matsushita, Taku; Shirasaki, Nobutaka
2013-10-01
Drinking water quality standard (DWQS) criteria for chemicals for which there is a threshold for toxicity are derived by allocating a fraction of tolerable daily intake (TDI) to exposure from drinking water. We conducted physiologically based pharmacokinetic model simulations for chloroform and have proposed an equation for total oral-equivalent potential intake via three routes (oral ingestion, inhalation, and dermal exposures), the biologically effective doses of which were converted to oral-equivalent potential intakes. The probability distributions of total oral-equivalent potential intake in Japanese people were estimated by Monte Carlo simulations. Even when the chloroform concentration in drinking water equaled the current DWQS criterion, there was sufficient margin between the intake and the TDI: the probability that the intake exceeded TDI was below 0.1%. If a criterion that the 95th percentile estimate equals the TDI is regarded as both providing protection to highly exposed persons and leaving a reasonable margin of exposure relative to the TDI, then the chloroform drinking water criterion could be a concentration of 0.11mg/L. This implies a daily intake equal to 34% of the TDI allocated to the oral intake (2L/d) of drinking water for typical adults. For the highly exposed persons, inhalation exposure via evaporation from water contributed 53% of the total intake, whereas dermal absorption contributed only 3%. Copyright © 2013 Elsevier Inc. All rights reserved.
Wilson, Lydia J; Newhauser, Wayne D
2015-01-01
State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 minutes. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models. PMID:26040833
Jagetic, Lydia J; Newhauser, Wayne D
2015-06-21
State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 min. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models.
NASA Astrophysics Data System (ADS)
Slaba, Tony C.; Blattnig, Steve R.; Reddell, Brandon; Bahadori, Amir; Norman, Ryan B.; Badavi, Francis F.
2013-07-01
Recent work has indicated that pion production and the associated electromagnetic (EM) cascade may be an important contribution to the total astronaut exposure in space. Recent extensions to the deterministic space radiation transport code, HZETRN, allow the production and transport of pions, muons, electrons, positrons, and photons. In this paper, the extended code is compared to the Monte Carlo codes, Geant4, PHITS, and FLUKA, in slab geometries exposed to galactic cosmic ray (GCR) boundary conditions. While improvements in the HZETRN transport formalism for the new particles are needed, it is shown that reasonable agreement on dose is found at larger shielding thicknesses commonly found on the International Space Station (ISS). Finally, the extended code is compared to ISS data on a minute-by-minute basis over a seven day period in 2001. The impact of pion/EM production on exposure estimates and validation results is clearly shown. The Badhwar-O'Neill (BO) 2004 and 2010 models are used to generate the GCR boundary condition at each time-step allowing the impact of environmental model improvements on validation results to be quantified as well. It is found that the updated BO2010 model noticeably reduces overall exposure estimates from the BO2004 model, and the additional production mechanisms in HZETRN provide some compensation. It is shown that the overestimates provided by the BO2004 GCR model in previous validation studies led to deflated uncertainty estimates for environmental, physics, and transport models, and allowed an important physical interaction (π/EM) to be overlooked in model development. Despite the additional π/EM production mechanisms in HZETRN, a systematic under-prediction of total dose is observed in comparison to Monte Carlo results and measured data.
Air pollution, health and social deprivation: A fine-scale risk assessment.
Morelli, Xavier; Rieux, Camille; Cyrys, Josef; Forsberg, Bertil; Slama, Rémy
2016-05-01
Risk assessment studies often ignore within-city variations of air pollutants. Our objective was to quantify the risk associated with fine particulate matter (PM2.5) exposure in 2 urban areas using fine-scale air pollution modeling and to characterize how this risk varied according to social deprivation. In Grenoble and Lyon areas (0.4 and 1.2 million inhabitants, respectively) in 2012, PM2.5 exposure was estimated on a 10×10m grid by coupling a dispersion model to population density. Outcomes were mortality, lung cancer and term low birth weight incidences. Cases attributable to air pollution were estimated overall and stratifying areas according to the European Deprivation Index (EDI), taking 10µg/m(3) yearly average as reference (counterfactual) level. Estimations were repeated assuming spatial homogeneity of air pollutants within urban area. Median PM2.5 levels were 18.1 and 19.6μg/m(3) in Grenoble and Lyon urban areas, respectively, corresponding to 114 (5.1% of total, 95% confidence interval, CI, 3.2-7.0%) and 491 non-accidental deaths (6.0% of total, 95% CI 3.7-8.3%) attributable to long-term exposure to PM2.5, respectively. Attributable term low birth weight cases represented 23.6% of total cases (9.0-37.1%) in Grenoble and 27.6% of cases (10.7-42.6%) in Lyon. In Grenoble, 6.8% of incident lung cancer cases were attributable to air pollution (95% CI 3.1-10.1%). Risk was lower by 8 to 20% when estimating exposure through background stations. Risk was highest in neighborhoods with intermediate to higher social deprivation. Risk assessment studies relying on background stations to estimate air pollution levels may underestimate the attributable risk. Copyright © 2016 Elsevier Inc. All rights reserved.
Martínez, M A; Rovira, J; Sharma, R Prasad; Nadal, M; Schuhmacher, M; Kumar, V
2017-10-01
Prenatal exposure to Endocrine disruptors (EDs), such as Bisphenol A (BPA) and di (2-ethylhexyl) phthalate (DEHP), has been associated with obesity and diabetes diseases in childhood, as well as reproductive, behavioral and neurodevelopment problems. The aim of this study was to estimate the prenatal exposure to BPA and DEHP through food consumption for pregnant women living in Tarragona County (Spain). Probabilistic calculations of prenatal exposure were estimated by integrated external and internal dosimetry modelling, physiologically based pharmacokinetic (PBPK) model, using a Monte-Carlo simulation. Physical characteristic data from the cohort, along with food intake information from the questionnaires (concentrations of BPA and DEHP in different food categories and the range of the different food ratios), were used to estimate the value of the total dietary intake for the Tarragona pregnancy cohort. The major contributors to the total dietary intake of BPA were canned fruits and vegetables, followed by canned meat and meat products. In turn, milk and dairy products, followed by ready to eat food (including canned dinners), were the most important contributors to the total dietary intake of DEHP. Despite the dietary variations among the participants, the intakes of both chemicals were considerably lower than their respective current tolerable daily intake (TDI) values established by the European Food Safety Authority (EFSA). Internal dosimetry estimates suggest that the plasma concentrations of free BPA and the most important DEHP metabolite, mono (2-ethylhexyl) phthalate (MEHP), in pregnant women were characterized by transient peaks (associated with meals) and short half-lives (< 2h). In contrast, fetal exposure was characterized by a low and sustained basal BPA and MEHP concentration due to a lack of metabolic activity in the fetus. Therefore, EDs may have a greater effect on developing organs in young children or in the unborn child. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Meng; Beelen, Rob; Stafoggia, Massimo; Raaschou-Nielsen, Ole; Andersen, Zorana Jovanovic; Hoffmann, Barbara; Fischer, Paul; Houthuijs, Danny; Nieuwenhuijsen, Mark; Weinmayr, Gudrun; Vineis, Paolo; Xun, Wei W; Dimakopoulou, Konstantina; Samoli, Evangelia; Laatikainen, Tiina; Lanki, Timo; Turunen, Anu W; Oftedal, Bente; Schwarze, Per; Aamodt, Geir; Penell, Johanna; De Faire, Ulf; Korek, Michal; Leander, Karin; Pershagen, Göran; Pedersen, Nancy L; Östenson, Claes-Göran; Fratiglioni, Laura; Eriksen, Kirsten Thorup; Sørensen, Mette; Tjønneland, Anne; Bueno-de-Mesquita, Bas; Eeftens, Marloes; Bots, Michiel L; Meliefste, Kees; Krämer, Ursula; Heinrich, Joachim; Sugiri, Dorothea; Key, Timothy; de Hoogh, Kees; Wolf, Kathrin; Peters, Annette; Cyrys, Josef; Jaensch, Andrea; Concin, Hans; Nagel, Gabriele; Tsai, Ming-Yi; Phuleria, Harish; Ineichen, Alex; Künzli, Nino; Probst-Hensch, Nicole; Schaffner, Emmanuel; Vilier, Alice; Clavel-Chapelon, Françoise; Declerq, Christophe; Ricceri, Fulvio; Sacerdote, Carlotta; Marcon, Alessandro; Galassi, Claudia; Migliore, Enrica; Ranzi, Andrea; Cesaroni, Giulia; Badaloni, Chiara; Forastiere, Francesco; Katsoulis, Michail; Trichopoulou, Antonia; Keuken, Menno; Jedynska, Aleksandra; Kooter, Ingeborg M; Kukkonen, Jaakko; Sokhi, Ranjeet S; Brunekreef, Bert; Katsouyanni, Klea; Hoek, Gerard
2014-05-01
Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only. The aim of this study was to examine the association of PM composition with cardiovascular mortality. We used data from 19 European ongoing cohorts within the framework of the ESCAPE (European Study of Cohorts for Air Pollution Effects) and TRANSPHORM (Transport related Air Pollution and Health impacts--Integrated Methodologies for Assessing Particulate Matter) projects. Residential annual average exposure to elemental constituents within particle matter smaller than 2.5 and 10 μm (PM2.5 and PM10) was estimated using Land Use Regression models. Eight elements representing major sources were selected a priori (copper, iron, potassium, nickel, sulfur, silicon, vanadium and zinc). Cohort-specific analyses were conducted using Cox proportional hazards models with a standardized protocol. Random-effects meta-analysis was used to calculate combined effect estimates. The total population consisted of 322,291 participants, with 9545 CVD deaths. We found no statistically significant associations between any of the elemental constituents in PM2.5 or PM10 and CVD mortality in the pooled analysis. Most of the hazard ratios (HRs) were close to unity, e.g. for PM10 Fe the combined HR was 0.96 (0.84-1.09). Elevated combined HRs were found for PM2.5 Si (1.17, 95% CI: 0.93-1.47), and S in PM2.5 (1.08, 95% CI: 0.95-1.22) and PM10 (1.09, 95% CI: 0.90-1.32). In a joint analysis of 19 European cohorts, we found no statistically significant association between long-term exposure to 8 elemental constituents of particles and total cardiovascular mortality. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chlorination Disinfection By-Products and Risk of Congenital Anomalies in England and Wales
Nieuwenhuijsen, Mark J.; Toledano, Mireille B.; Bennett, James; Best, Nicky; Hambly, Peter; de Hoogh, Cornelis; Wellesley, Diana; Boyd, Patricia A.; Abramsky, Lenore; Dattani, Nirupa; Fawell, John; Briggs, David; Jarup, Lars; Elliott, Paul
2008-01-01
Background Increased risk of various congenital anomalies has been reported to be associated with trihalomethane (THM) exposure in the water supply. Objectives We conducted a registry-based study to determine the relationship between THM concentrations and the risk of congenital anomalies in England and Wales. Methods We obtained congenital anomaly data from the National Congenital Anomalies System, regional registries, and the national terminations registry; THM data were obtained from water companies. Total THM (< 30, 30 to < 60, ≥60 μg/L), total brominated exposure (< 10, 10 to < 20, ≥20 μg/L), and bromoform exposure (< 2, 2 to < 4, ≥4 μg/L) were modeled at the place of residence for the first trimester of pregnancy. We included 2,605,226 live births, stillbirths, and terminations with 22,828 cases of congenital anomalies. Analyses using fixed- and random-effects models were performed for broadly defined groups of anomalies (cleft palate/lip, abdominal wall, major cardiac, neural tube, urinary and respiratory defects), a more restricted set of anomalies with better ascertainment, and for isolated and multiple anomalies. Data were adjusted for sex, maternal age, and socioeconomic status. Results We found no statistically significant trends across exposure categories for either the broadly defined or more restricted sets of anomalies. For the restricted set of anomalies with isolated defects, there were significant (p < 0.05) excess risks in the high-exposure categories of total THMs for ventricular septal defects [odds ratio (OR) = 1.43; 95% confidence interval (CI), 1.00–2.04] and of bromoform for major cardiovascular defects and gastroschisis (OR = 1.18; 95% CI, 1.00–1.39; and OR = 1.38; 95% CI, 1.00–1.92, respectively). Conclusion In this large national study we found little evidence for a relationship between THM concentrations in drinking water and risk of congenital anomalies. PMID:18288321
A review of the cohorts with environmental and occupational mineral fiber exposure.
Metintas, Selma; Ak, Guntulu; Metintas, Muzaffer
2018-04-20
The aim of the study was to examine factors associated with Malignant Mesothelioma (MM) incidence rate of the groups with occupational asbestos and environmental asbestos or erionite exposure in rural area. In this ecological study, a total of 21 cohort datasets (8 environmental and 13 occupational) were evaluated. Data were analyzed using a multiple linear regression analysis model. In environmental cohorts, the risk of MM incidence was higher in women and people exposed to erionite. In this cohort, the incidence rate of MM increased as the median exposure time increased, while the incidence decreased as the median cumulative exposure dose increased. In occupational cohorts, the incidence rate of MM was positively correlated with the median cumulative exposure dose. The risk of mesothelioma was lower in those exposed to tremolite than others. Environmental asbestos exposure is as important as occupational exposure to develop MM, and it has its own unique exposure features on the risk of MM.
Aberare, Ogbevire L; Okuonghae, Patrick; Mukoro, Nathaniel; Dirisu, John O; Osazuwa, Favour; Odigie, Elvis; Omoregie, Richard
2011-06-01
Deliberate and regular exposure to premium motor spirit fumes is common and could be a risk factor for liver disease in those who are occupationally exposed. A possible association between premium motor spirit fumes and plasma levels of triglyceride, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol using a rodent model could provide new insights in the pathology of diseases where cellular dysfunction is an established risk factor. The aim of this study was to evaluate the possible effect of premium motor spirit fumes on lipids and lipoproteins in workers occupationally exposed to premium motor spirit fumes using rodent model. Twenty-five Wister albino rats (of both sexes) were used for this study between the 4(th) of August and 7(th) of September, 2010. The rats were divided into five groups of five rats each. Group 1 rats were not exposed to premium motor spirit fumes (control group), group 2 rats were exposed for 1 hour daily, group 3 for 3 hours daily, group 4 for 5 hours daily and group 5 for 7 hours daily. The experiment lasted for a period of 4 weeks. Blood samples obtained from all the groups after 4 weeks of exposure were used for the estimation of plasma levels of triglyceride, total cholesterol, high density lipoprotein- cholesterol and low density lipoprotein- cholesterol. Results showed significant increase in means of plasma total cholesterol and low density lipoprotein levels (P<0.05). The mean triglyceride and total body weight were significantly lower (P<0.05) in the exposed group when compared with the unexposed. The plasma level of high density lipoprotein, the ratio of low density lipoprotein to high density lipoprotein and the ratio of total cholesterol to high density lipoprotein did not differ significantly in exposed subjects when compared with the control group. These results showed that frequent exposure to petrol fumes may be highly deleterious to the liver cells.
Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom
Qian, J; Hospodsky, D; Yamamoto, N; Nazaroff, W W; Peccia, J
2012-01-01
The role of human occupancy as a source of indoor biological aerosols is poorly understood. Size-resolved concentrations of total and biological particles in indoor air were quantified in a classroom under occupied and vacant conditions. Per-occupant emission rates were estimated through a mass-balance modeling approach, and the microbial diversity of indoor and outdoor air during occupancy was determined via rDNA gene sequence analysis. Significant increases of total particle mass and bacterial genome concentrations were observed during the occupied period compared to the vacant case. These increases varied in magnitude with the particle size and ranged from 3 to 68 times for total mass, 12–2700 times for bacterial genomes, and 1.5–5.2 times for fungal genomes. Emission rates per person-hour because of occupancy were 31 mg, 37 × 106 genome copies, and 7.3 × 106 genome copies for total particle mass, bacteria, and fungi, respectively. Of the bacterial emissions, ∼18% are from taxa that are closely associated with the human skin microbiome. This analysis provides size-resolved, per person-hour emission rates for these biological particles and illustrates the extent to which being in an occupied room results in exposure to bacteria that are associated with previous or current human occupants. Practical Implications Presented here are the first size-resolved, per person emission rate estimates of bacterial and fungal genomes for a common occupied indoor space. The marked differences observed between total particle and bacterial size distributions suggest that size-dependent aerosol models that use total particles as a surrogate for microbial particles incorrectly assess the fate of and human exposure to airborne bacteria. The strong signal of human microbiota in airborne particulate matter in an occupied setting demonstrates that the aerosol route can be a source of exposure to microorganisms emitted from the skin, hair, nostrils, and mouths of other occupants. PMID:22257156
Traffic-related air pollution and childhood obesity in an Italian birth cohort.
Fioravanti, Sara; Cesaroni, Giulia; Badaloni, Chiara; Michelozzi, Paola; Forastiere, Francesco; Porta, Daniela
2018-01-01
Air pollution is associated with several adverse health outcomes in children, such as respiratory illnesses and cognitive development impairment. There are suggestions of an effect of traffic-related air pollution on the occurrence of childhood obesity, but the results are not consistent. The aim of the study is to analyse whether air pollution and vehicular traffic exposure, during the first four years of life, influence obesity- related measures among 4 and 8-year-old children from a prospective birth cohort in Rome. A cohort of newborns, enrolled in 2003-2004 within the GASPII project, was followed at 4 and 8 years of age with parental interviews and clinical examinations. Air pollution was assessed at residential address using Land Use Regression models (for NO 2 , NOx, PM 10 , PM 2.5 , PMcoarse, PM2.5 absorbance and one traffic variable (Total traffic load of all roads in a 100m buffer)). The outcomes under study were body mass index (BMI Z-scores according to WHO recommendations, considered both categorical and continuous) measured at 4 and 8 years, and, waist circumference, waist-to-hip ratio, total and HDL cholesterol measured at 8 years. The associations were evaluated through both cross-sectional and longitudinal approaches, using logistic regression models, Generalized Estimating Equation models (GEE) and linear regression models, as appropriate. Moreover, Inverse Probability Weighting (IPW) methodology was used to account for selection bias at enrolment and at follow-up. A total of 719 infants were enrolled and 581 (80.8%) and 499 (69.4%) were followed at 4 and 8 years, respectively. The prevalence of overweight/obesity was 9.3% and 36.9% at 4 and 8 years. No evidence of an association was found between vehicular traffic and being overweight/obese. Similarly, there was no evidence of an association between exposure to air pollutants and all other ponderal excess parameters. The study shows no association between exposure to vehicular traffic and exposure to pollutants on obesity related parameters such as BMI, blood lipids and abdominal adiposity during childhood. Overall evidence of air pollution being obesogenic remains limited. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiao, Q.; Liu, Y.; Strickland, M. J.; Chang, H. H.; Kan, H.
2017-12-01
Background: Satellite remote sensing data have been employed for air pollution exposure assessment, with the intent of better characterizing exposure spatio-temproal variations. However, non-random missingness in satellite data may lead to exposure error. Objectives: We explored the differences in health effect estimates due to different exposure metrics, with and without satellite data, when analyzing the associations between maternal PM2.5 exposure and birth outcomes. Methods: We obtained birth registration records of 132,783 singleton live births during 2011-2014 in Shanghai. Trimester-specific and total pregnancy exposures were estimated from satellite PM2.5 predictions with missingness, gap-filled satellite PM2.5 predictions with complete coverage and regional average PM2.5 measurements from monitoring stations. Linear regressions estimated associations between birth weight and maternal PM2.5 exposure. Logistic regressions estimated associations between preterm birth and the first and second trimester exposure. Discrete-time models estimated third trimester and total pregnancy associations with preterm birth. Effect modifications by maternal age and parental education levels were investigated. Results: we observed statistically significant associations between maternal PM2.5 exposure during all exposure windows and adverse birth outcomes. A 10 µg/m3 increase in pregnancy PM2.5 exposure was associated with a 12.85 g (95% CI: 18.44, 7.27) decrease in birth weight for term births, and a 27% (95% CI: 20%, 36%) increase in the risk of preterm birth. Greater effects were observed between first and third trimester exposure and birth weight, as well as between first trimester exposure and preterm birth. Mothers older than 35 years and without college education tended to have higher associations with preterm birth. Conclusions: Gap-filled satellite data derived PM2.5 exposure estimates resulted in reduced exposure error and more precise health effect estimates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabilan, S.; Suffield, S. R.; Recknagle, K. P.
Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation–exhalation breathingmore » conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.« less
Switchenko, Jeffrey M; Bulka, Catherine; Ward, Kevin; Koff, Jean L; Bayakly, A Rana; Ryan, P Barry; Waller, Lance A; Flowers, Christopher R
2016-04-01
Benzene is a known occupational carcinogen associated with increased risk of hematologic cancers, but the relationships between quantity of passive benzene exposure through residential proximity to toxic release sites, duration of exposure, lag time from exposure to cancer development, and lymphoma risk remain unclear. We collected release data through the Environmental Protection Agency's Toxics Release Inventory (TRI) from 1989 to 2003, which included location of benzene release sites, years when release occurred, and amount of release. We also collected data on incident cases of non-Hodgkin lymphoma (NHL) from the Georgia Comprehensive Cancer Registry (GCCR) for the years 1999-2008. We constructed distance-decay surrogate exposure metrics and Poisson and negative binomial regression models of NHL incidence to quantify associations between passive exposure to benzene and NHL risk and examined the impact of amount, duration of exposure, and lag time on cancer development. Akaike's information criteria (AIC) were used to determine the scaling factors for benzene dispersion and exposure periods that best predicted NHL risk. Using a range of scaling factors and exposure periods, we found that increased levels of passive benzene exposure were associated with higher risk of NHL. The best fitting model, with a scaling factor of 4 kilometers (km) and exposure period of 1989-1993, showed that higher exposure levels were associated with increased NHL risk (Level 4 (1.1-160kilograms (kg)) vs. Level 1: risk ratio 1.56 [1.44-1.68], Level 5 (>160kg) vs. Level 1: 1.60 [1.48-1.74]). Higher levels of passive benzene exposure are associated with increased NHL risk across various lag periods. Additional epidemiological studies are needed to refine these models and better quantify the expected total passive benzene exposure in areas surrounding release sites. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Premature mortality in India due to PM2.5 and ozone exposure
NASA Astrophysics Data System (ADS)
Ghude, Sachin D.; Chate, D. M.; Jena, C.; Beig, G.; Kumar, R.; Barth, M. C.; Pfister, G. G.; Fadnavis, S.; Pithani, Prakash
2016-05-01
This bottom-up modeling study, supported by new population census 2011 data, simulates ozone (O3) and fine particulate matter (PM2.5) exposure on local to regional scales. It quantifies, present-day premature mortalities associated with the exposure to near-surface PM2.5 and O3 concentrations in India using a regional chemistry model. We estimate that PM2.5 exposure leads to about 570,000 (CI95: 320,000-730,000) premature mortalities in 2011. On a national scale, our estimate of mortality by chronic obstructive pulmonary disease (COPD) due to O3 exposure is about 12,000 people. The Indo-Gangetic region accounts for a large part (~42%) of the estimated mortalities. The associated lost life expectancy is calculated as 3.4 ± 1.1 years for all of India with highest values found for Delhi (6.3 ± 2.2 years). The economic cost of estimated premature mortalities associated with PM2.5 and O3 exposure is about 640 (350-800) billion USD in 2011, which is a factor of 10 higher than total expenditure on health by public and private expenditure.
2012-01-01
Background Documentation of posture measurement costs is rare and cost models that do exist are generally naïve. This paper provides a comprehensive cost model for biomechanical exposure assessment in occupational studies, documents the monetary costs of three exposure assessment methods for different stakeholders in data collection, and uses simulations to evaluate the relative importance of cost components. Methods Trunk and shoulder posture variables were assessed for 27 aircraft baggage handlers for 3 full shifts each using three methods typical to ergonomic studies: self-report via questionnaire, observation via video film, and full-shift inclinometer registration. The cost model accounted for expenses related to meetings to plan the study, administration, recruitment, equipment, training of data collectors, travel, and onsite data collection. Sensitivity analyses were conducted using simulated study parameters and cost components to investigate the impact on total study cost. Results Inclinometry was the most expensive method (with a total study cost of € 66,657), followed by observation (€ 55,369) and then self report (€ 36,865). The majority of costs (90%) were borne by researchers. Study design parameters such as sample size, measurement scheduling and spacing, concurrent measurements, location and travel, and equipment acquisition were shown to have wide-ranging impacts on costs. Conclusions This study provided a general cost modeling approach that can facilitate decision making and planning of data collection in future studies, as well as investigation into cost efficiency and cost efficient study design. Empirical cost data from a large field study demonstrated the usefulness of the proposed models. PMID:22738341
Trask, Catherine; Mathiassen, Svend Erik; Wahlström, Jens; Heiden, Marina; Rezagholi, Mahmoud
2012-06-27
Documentation of posture measurement costs is rare and cost models that do exist are generally naïve. This paper provides a comprehensive cost model for biomechanical exposure assessment in occupational studies, documents the monetary costs of three exposure assessment methods for different stakeholders in data collection, and uses simulations to evaluate the relative importance of cost components. Trunk and shoulder posture variables were assessed for 27 aircraft baggage handlers for 3 full shifts each using three methods typical to ergonomic studies: self-report via questionnaire, observation via video film, and full-shift inclinometer registration. The cost model accounted for expenses related to meetings to plan the study, administration, recruitment, equipment, training of data collectors, travel, and onsite data collection. Sensitivity analyses were conducted using simulated study parameters and cost components to investigate the impact on total study cost. Inclinometry was the most expensive method (with a total study cost of € 66,657), followed by observation (€ 55,369) and then self report (€ 36,865). The majority of costs (90%) were borne by researchers. Study design parameters such as sample size, measurement scheduling and spacing, concurrent measurements, location and travel, and equipment acquisition were shown to have wide-ranging impacts on costs. This study provided a general cost modeling approach that can facilitate decision making and planning of data collection in future studies, as well as investigation into cost efficiency and cost efficient study design. Empirical cost data from a large field study demonstrated the usefulness of the proposed models.
Caparrós, Toni; Alentorn-Geli, Eduard; Myer, Gregory D.; Capdevila, Lluís; Samuelsson, Kristian; Hamilton, Bruce; Rodas, Gil
2016-01-01
The objectives of this study were to determine the relationship among game performance, injury rate, and practice exposure in a professional male basketball team. A retroospective analysis of prospective collected data was conducted over seven consecutive seasons (2007/2008 to 2013/2014). Data collection included sports performance during competition (statistical evaluation), injury rate, and total exposure (games and practices). Over the surveillance period, 162 injuries (91 practice; 71 matches) occurred over 32,668 hours of exposure (556 games and 2005 practices). There was a strong positive correlation between: 1) exposure (total number of practices and hours of exposure) and the total number of injuries (r = 0.77; p = 0.04); 2) exposure (total hours of exposure and total hours of practice exposure) and performance (total team ranking) (r = 0.77 and p = 0.04, and r = 0.8 and p = 0.03, respectively); and 3) total number of injuries and performance (total team ranking) (r = 0.84; p = 0.02). While increasing practice and competition time is related to greater team performance, it also increases the number of injuries. However, higher injury rates were not associated with worse overall team performance. Efforts to reduce high-risk activity during practice, optimally replaced with injury prevention training, might help to reduce injury risk. Key points Increasing practice and competition time is related to greater team performance. Increasing practice and competition time increases the number of injuries. Higher injury rates were not associated with worse overall team performance. PMID:27803617
An FTIR investigation of isocyanate skin absorption using in vitro guinea pig skin.
Bello, Dhimiter; Smith, Thomas J; Woskie, Susan R; Streicher, Robert P; Boeniger, Mark F; Redlich, Carrie A; Liu, Youcheng
2006-05-01
Isocyanates may cause contact dermatitis, sensitization and asthma. Dermal exposure to aliphatic and aromatic isocyanates can occur in various exposure settings. The fate of isocyanates on skin is an important unanswered question. Do they react and bind to the outer layer of skin or do they penetrate through the epidermis as unreacted compounds? Knowing the kinetics of these processes is important in developing dermal exposure sampling or decontamination strategies, as well as understanding potential health implications such exposure may have. In this paper the residence time of model isocyanates on hairless guinea pig skin was investigated in vitro using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry. Model isocyanates tested were octyl isocyanate, polymeric hexamethylene diisocyanate isocyanurate (pHDI), polymeric isophorone diisocyanate isocyanurate (pIPDI) and methylenediphenyl diisocyanate (MDI). Isocyanates in ethyl acetate (30 microL) were spiked directly on the skin to give 0.2-1.8 micromol NCO cm(-2) (NCO = -N=C=O), and absorbance of the isocyanate group and other chemical groups of the molecule were monitored over time. The ATR-FTIR findings showed that polymeric isocyanates pHDI and pIPDI may remain on the skin as unreacted species for many hours, with only 15-20% of the total isocyanate group disappearing in one hour, while smaller compounds octyl isocyanate and MDI rapidly disappear from the skin surface (80+% in 30 min). Isocyanates most likely leave the skin surface by diffusion predominantly, with minimal reaction with surface proteins. The significance of these findings and their implications for dermal exposure sampling and isocyanate skin decontamination are discussed.
Controlling dust from concrete saw cutting.
Shepherd, Susan; Woskie, Susan
2013-01-01
Cutting concrete with gas-powered saws is ubiquitous in the construction industry and a source of exposure to respirable crystalline silica. Volunteers from the New England Laborers Training Center were recruited to participate in a field experiment examining dust reductions through the use of water, from a hose and from a sprayer, as a dust control. In four series of tests, reinforced concrete pipe was cut under both "dry" and "wet" control conditions. Overall, the geometric mean respirable dust concentration for "dry" cutting (14.396 mg/m³) exceeded both types of water-based controls by more than tenfold. Wet cutting reduced the respirable dust concentration by 85% compared with dry cutting when comparing tests paired by person and saw blade (n = 79 pairs). Using a respirable cyclone, a total of 178 samples were taken. Due to the high variability in dust exposure found in this and other studies of saw cutting, the data were examined for potential exposure determinants that contribute to that variability. Using mixed models, three fixed effects were statistically significant: control condition, worker experience, and location. A random effect for subject was included in the model to account for repeated measures. When each of the significant fixed effects was included with the random effect, it was apparent that inclusion of worker experience or location reduced the between-worker component of exposure variability, while inclusion of control condition (wet vs. dry) explained a large portion of the within-subject variability. Overall, the fixed effect variable for control condition explained the largest fraction of the total exposure variability.
Ribaroff, G A; Wastnedge, E; Drake, A J; Sharpe, R M; Chambers, T J G
2017-06-01
Animal models of maternal high fat diet (HFD) demonstrate perturbed offspring metabolism although the effects differ markedly between models. We assessed studies investigating metabolic parameters in the offspring of HFD fed mothers to identify factors explaining these inter-study differences. A total of 171 papers were identified, which provided data from 6047 offspring. Data were extracted regarding body weight, adiposity, glucose homeostasis and lipidaemia. Information regarding the macronutrient content of diet, species, time point of exposure and gestational weight gain were collected and utilized in meta-regression models to explore predictive factors. Publication bias was assessed using Egger's regression test. Maternal HFD exposure did not affect offspring birthweight but increased weaning weight, final bodyweight, adiposity, triglyceridaemia, cholesterolaemia and insulinaemia in both female and male offspring. Hyperglycaemia was found in female offspring only. Meta-regression analysis identified lactational HFD exposure as a key moderator. The fat content of the diet did not correlate with any outcomes. There was evidence of significant publication bias for all outcomes except birthweight. Maternal HFD exposure was associated with perturbed metabolism in offspring but between studies was not accounted for by dietary constituents, species, strain or maternal gestational weight gain. Specific weaknesses in experimental design predispose many of the results to bias. © 2017 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of World Obesity Federation.
Tennant, David Robin; Bruyninckx, Chris
2018-03-01
Consumer exposure assessments for food additives are incomplete without information about the proportions of foods in each authorised category that contain the additive. Such information has been difficult to obtain but the Mintel Global New Products Database (GNPD) provides information about product launches across Europe over the past 20 years. These data can be searched to identify products with specific additives listed on product labels and the numbers compared with total product launches for food and drink categories in the same database to determine the frequency of occurrence. There are uncertainties associated with the data but these can be managed by adopting a cautious and conservative approach. GNPD data can be mapped with authorised food categories and with food descriptions used in the EFSA Comprehensive European Food Consumption Surveys Database for exposure modelling. The data, when presented as percent occurrence, could be incorporated into the EFSA ANS Panel's 'brand-loyal/non-brand loyal exposure model in a quantitative way. Case studies of preservative, antioxidant, colour and sweetener additives showed that the impact of including occurrence data is greatest in the non-brand loyal scenario. Recommendations for future research include identifying occurrence data for alcoholic beverages, linking regulatory food codes, FoodEx and GNPD product descriptions, developing the use of occurrence data for carry-over foods and improving understanding of brand loyalty in consumer exposure models.
Franko, Jennifer; Jackson, Laurel G.; Meade, B. Jean; Anderson, Stacey E.
2011-01-01
The purpose of the studies in this paper was to evaluate the allergic potential, immunotoxicity, and irritancy of the occupationally relevant chemical, 1-chloro-4-(trifluoromethyl)benzene, also known as parachlorobenzotrifluoride (PCBTF), following dermal exposure in a murine model. Evaluation of the sensitization potential, conducted using the local lymph node assay (LLNA) at concentrations ranging from 50% to 100%, identified a dose-dependent increase in lymphocyte proliferation with a calculated EC3 value of 53.1%. While no elevations in total or specific IgE were observed after exposure to any concentration of the chemical, significant increases in IFN-γ protein production by stimulated draining lymphoid cells were observed, indicating a T-cell-mediated response. Dermal exposure to PCBTF was not found to alter the immune response to a T-cell-dependant antigen. These results demonstrate that PCBTF has the potential to induce allergic sensitization following dermal exposure and based on LLNA results would be classified as a weak sensitizer. PMID:21747864
Calls to Florida Poison Control Centers about mercury: Trends over 2003-2013.
Gribble, Matthew O; Deshpande, Aniruddha; Stephan, Wendy B; Hunter, Candis M; Weisman, Richard S
2017-11-01
The aim of this analysis was to contrast trends in exposure-report calls and informational queries (a measure of public interest) about mercury to the Florida Poison Control Centers over 2003-2013. Poison-control specialists coded calls to Florida Poison Control Centers by substance of concern, caller demographics, and whether the call pertained to an exposure event or was an informational query. For the present study, call records regarding mercury were de-identified and provided along with daily total number of calls for statistical analysis. We fit Poisson models using generalized estimating equations to summarize changes across years in counts of daily calls to Florida Poison Control Centers, adjusting for month. In a second stage of analysis, we further adjusted for the total number of calls each day. We also conducted analyses stratified by age of the exposed. There was an overall decrease over 2003-2013 in the number of total calls about mercury [Ratio per year: 0.89, 95% CI: (0.88, 0.90)], and calls about mercury exposure [Ratio per year: 0.84, 95% CI: (0.83, 0.85)], but the number of informational queries about mercury increased over this time [Ratio per year: 1.15 (95% CI: 1.12, 1.18)]. After adjusting for the number of calls of that type each day (e.g., call volume), the associations remained similar: a ratio of 0.88 (95% CI: 0.87, 0.89) per year for total calls, 0.85 (0.83, 0.86) for exposure-related calls, and 1.17 (1.14, 1.21) for informational queries. Although, the number of exposure-related calls decreased, informational queries increased over 2003-2013. This might suggest an increased public interest in mercury health risks despite a decrease in reported exposures over this time period. Copyright © 2017 Elsevier Inc. All rights reserved.
High-Throughput Analysis of Ovarian Cycle Disruption by Mixtures of Aromatase Inhibitors
Golbamaki-Bakhtyari, Nazanin; Kovarich, Simona; Tebby, Cleo; Gabb, Henry A.; Lemazurier, Emmanuel
2017-01-01
Background: Combining computational toxicology with ExpoCast exposure estimates and ToxCast™ assay data gives us access to predictions of human health risks stemming from exposures to chemical mixtures. Objectives: We explored, through mathematical modeling and simulations, the size of potential effects of random mixtures of aromatase inhibitors on the dynamics of women's menstrual cycles. Methods: We simulated random exposures to millions of potential mixtures of 86 aromatase inhibitors. A pharmacokinetic model of intake and disposition of the chemicals predicted their internal concentration as a function of time (up to 2 y). A ToxCast™ aromatase assay provided concentration–inhibition relationships for each chemical. The resulting total aromatase inhibition was input to a mathematical model of the hormonal hypothalamus–pituitary–ovarian control of ovulation in women. Results: Above 10% inhibition of estradiol synthesis by aromatase inhibitors, noticeable (eventually reversible) effects on ovulation were predicted. Exposures to individual chemicals never led to such effects. In our best estimate, ∼10% of the combined exposures simulated had mild to catastrophic impacts on ovulation. A lower bound on that figure, obtained using an optimistic exposure scenario, was 0.3%. Conclusions: These results demonstrate the possibility to predict large-scale mixture effects for endocrine disrupters with a predictive toxicology approach that is suitable for high-throughput ranking and risk assessment. The size of the effects predicted is consistent with an increased risk of infertility in women from everyday exposures to our chemical environment. https://doi.org/10.1289/EHP742 PMID:28886606
2009-05-01
demonstrated to degrade a specific kidney segment (proximal tubule and glomerulus, respectively). In this study a total of seventeen protein biomarkers were...exposure. Two experimental nephrotoxins were interrogated, D-serine and puromycin, each previously demonstrated to degrade a specific kidney segment...to degradation during isolation from sample render it unlikely to develop into a fieldable, self-contained assay system within the near future
Low birth weight and air pollution in California: Which sources and components drive the risk?
Laurent, Olivier; Hu, Jianlin; Li, Lianfa; Kleeman, Michael J; Bartell, Scott M; Cockburn, Myles; Escobedo, Loraine; Wu, Jun
2016-01-01
Intrauterine growth restriction has been associated with exposure to air pollution, but there is a need to clarify which sources and components are most likely responsible. This study investigated the associations between low birth weight (LBW, <2500g) in term born infants (≥37 gestational weeks) and air pollution by source and composition in California, over the period 2001-2008. Complementary exposure models were used: an empirical Bayesian kriging model for the interpolation of ambient pollutant measurements, a source-oriented chemical transport model (using California emission inventories) that estimated fine and ultrafine particulate matter (PM2.5 and PM0.1, respectively) mass concentrations (4km×4km) by source and composition, a line-source roadway dispersion model at fine resolution, and traffic index estimates. Birth weight was obtained from California birth certificate records. A case-cohort design was used. Five controls per term LBW case were randomly selected (without covariate matching or stratification) from among term births. The resulting datasets were analyzed by logistic regression with a random effect by hospital, using generalized additive mixed models adjusted for race/ethnicity, education, maternal age and household income. In total 72,632 singleton term LBW cases were included. Term LBW was positively and significantly associated with interpolated measurements of ozone but not total fine PM or nitrogen dioxide. No significant association was observed between term LBW and primary PM from all sources grouped together. A positive significant association was observed for secondary organic aerosols. Exposure to elemental carbon (EC), nitrates and ammonium were also positively and significantly associated with term LBW, but only for exposure during the third trimester of pregnancy. Significant positive associations were observed between term LBW risk and primary PM emitted by on-road gasoline and diesel or by commercial meat cooking sources. Primary PM from wood burning was inversely associated with term LBW. Significant positive associations were also observed between term LBW and ultrafine particle numbers modeled with the line-source roadway dispersion model, traffic density and proximity to roadways. This large study based on complementary exposure metrics suggests that not only primary pollution sources (traffic and commercial meat cooking) but also EC and secondary pollutants are risk factors for term LBW. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Cohort study of ischemic heart disease among 1817 workers in a foundry].
Lu, Yang; Zhang, Min
2012-09-01
To determine the risk of ischemic heart disease among foundry workers and the exposure-response relationship between the risk and foundry work and cumulative exposure to silica dust, and to establish a regression model to predict the risk for developing ischemic heart disease by a given length of employment and exposure to silica dust in foundry workers. Cohort study was conducted, following-up workers in an automobile foundry employed for more than one year during January 1, 1980 to December 31, 1996 as cohort members. In total, 30 years were followed to December 31, 2009. In cohort, workers exposed to pouring, sand preparation, cast shakeout and finishing, melting, overhead crane operation, moulding and core-making were in foundry group, and auxiliary workers at the same factory, such as electricians, fitters, and inspectors were in control group. The risk of ischemic heart disease among foundry workers and the exposure-response relationship between the risk and foundry work and cumulative exposure to silica dust were analyzed with cox regression model using SPSS software, and a logistic regression model was established for prediction of risk for developing ischemic heart disease at a given length of employment and exposure to silica dust in foundry workers. Totally, 1817 workers were followed-up for 45 553.05 person-years during 30 years, with 156 cases of ischemic heart disease and incidence of 342.46 per 100 000 person-years. And the average age at onset was 51.46 years and duration of employment at onset was 21.61 years. Results showed that male, smoking, alcohol drinking, age and duration of employment were risk factors for ischemic heart disease. Risk of ischemic heart disease in foundry workers positively correlated with cumulative silica exposure, and the risk of ischemic heart disease increased by 75.8 percent (RR = 1.758, 95% CI 1.221-2.532) with cumulative silica exposure of 1 mg/m3 x year, adjusted for smoking. And risk of ischemic heart disease was significantly higher in the exposed group than that in the control one. Compared with control group workers, risk of ischemic heart disease increased by 1.048 folds, 1.395 folds, 70.4 percent, 97.0 percent and 1.270 folds among workers exposed to sand preparation, cast shakeout and finishing, melting, moulding and core-making, respectively, adjusted for smoking. Based on the predictive of model, risk for developing ischemic heart disease increased with the length of employment and exposure to silica dust in foundry workers. Workers in foundry face high risk of ischemic heart disease. Risk of ischemic heart disease varies by job, which is higher in workers exposed to sand preparation, cast shakeout and finishing, melting, moulding and core-making. Both foundry work and cumulative exposure to silica are risk factors. The model for prediction of risk for developing ischemic heart disease at a given length of employment and exposure to silica dust in foundry workers resulted in a valid exposure-response relationship.
Respiratory Effects and Systemic Stress Response Following ...
Previous studies have demonstrated that exposure to the pulmonary irritant ozone causes myriad systemic metabolic and pulmonary effects attributed to sympathetic and hypothalamus-pituitary-adrenal (HPA) axis activation, which are exacerbated in metabolically impaired models. We examined respiratory and systemic effects following exposure to a sensory irritant acrolein to elucidate the systemic and pulmonary consequences in healthy and diabetic rat models. Male Wistar and Goto Kakizaki (GK) rats, a nonobese type II diabetic Wistar-derived model, were exposed by inhalation to 0, 2, or 4 ppm acrolein, 4 h/d for 1 or 2 days. Exposure at 4 ppm significantly increased pulmonary and nasal inflammation in both strains with vascular protein leakage occurring only in the nose. Acrolein exposure (4 ppm) also caused metabolic impairment by inducing hyperglycemia and glucose intolerance (GK > Wistar). Serum total cholesterol (GKs only), low-density lipoprotein (LDL) cholesterol (both strains), and free fatty acids (GK > Wistar) levels increased; however, no acrolein-induced changes were noted in branched-chain amino acid or insulin levels. These responses corresponded with a significant increase in corticosterone and modest but insignificant increases in adrenaline in both strains, suggesting activation of the HPA axis. Collectively, these data demonstrate that acrolein exposure has a profound effect on nasal and pulmonary inflammation, as well as glucose and lipid metabolis
Modeling Flight Attendants’ Exposures to Pesticide in Disinsected Aircraft Cabins
Zhang, Yong; Isukapalli, Sastry; Georgopoulos, Panos; Weisel, Clifford
2014-01-01
Aircraft cabin disinsection is required by some countries to kill insects that may pose risks to public health and native ecological systems. A probabilistic model has been developed by considering the microenvironmental dynamics of the pesticide in conjunction with the activity patterns of flight attendants, to assess their exposures and risks to pesticide in disinsected aircraft cabins under three scenarios of pesticide application. Main processes considered in the model are microenvironmental transport and deposition, volatilization, and transfer of pesticide when passengers and flight attendants come in contact with the cabin surfaces. The simulated pesticide airborne mass concentration and surface mass loadings captured measured ranges reported in the literature. The medians (means±standard devitions) of daily total exposures intakes were 0.24 (3.8±10.0), 1.4 (4.2±5.7) and 0.15 (2.1±3.2) μg/(day kg BW) for scenarios of Residual Application, Preflight and Top-of-Descent spraying, respectively. Exposure estimates were sensitive to parameters corresponding to pesticide deposition, body surface area and weight, surface-to-body transfer efficiencies, and efficiency of adherence to skin. Preflight spray posed 2.0 and 3.1 times higher pesticide exposure risk levels for flight attendants in disinsected aircraft cabins than Top-of-Descent spray and Residual Application, respectively. PMID:24251734
Model methodology for estimating pesticide concentration extremes based on sparse monitoring data
Vecchia, Aldo V.
2018-03-22
This report describes a new methodology for using sparse (weekly or less frequent observations) and potentially highly censored pesticide monitoring data to simulate daily pesticide concentrations and associated quantities used for acute and chronic exposure assessments, such as the annual maximum daily concentration. The new methodology is based on a statistical model that expresses log-transformed daily pesticide concentration in terms of a seasonal wave, flow-related variability, long-term trend, and serially correlated errors. Methods are described for estimating the model parameters, generating conditional simulations of daily pesticide concentration given sparse (weekly or less frequent) and potentially highly censored observations, and estimating concentration extremes based on the conditional simulations. The model can be applied to datasets with as few as 3 years of record, as few as 30 total observations, and as few as 10 uncensored observations. The model was applied to atrazine, carbaryl, chlorpyrifos, and fipronil data for U.S. Geological Survey pesticide sampling sites with sufficient data for applying the model. A total of 112 sites were analyzed for atrazine, 38 for carbaryl, 34 for chlorpyrifos, and 33 for fipronil. The results are summarized in this report; and, R functions, described in this report and provided in an accompanying model archive, can be used to fit the model parameters and generate conditional simulations of daily concentrations for use in investigations involving pesticide exposure risk and uncertainty.
A murine inhalation model to characterize pulmonary exposure to dry Aspergillus fumigatus conidia.
Buskirk, Amanda D; Green, Brett J; Lemons, Angela R; Nayak, Ajay P; Goldsmith, W Travis; Kashon, Michael L; Anderson, Stacey E; Hettick, Justin M; Templeton, Steven P; Germolec, Dori R; Beezhold, Donald H
2014-01-01
Most murine models of fungal exposure are based on the delivery of uncharacterized extracts or liquid conidia suspensions using aspiration or intranasal approaches. Studies that model exposure to dry fungal aerosols using whole body inhalation have only recently been described. In this study, we aimed to characterize pulmonary immune responses following repeated inhalation of conidia utilizing an acoustical generator to deliver dry fungal aerosols to mice housed in a nose only exposure chamber. Immunocompetent female BALB/cJ mice were exposed to conidia derived from Aspergillus fumigatus wild-type (WT) or a melanin-deficient (Δalb1) strain. Conidia were aerosolized and delivered to mice at an estimated deposition dose of 1×105 twice a week for 4 weeks (8 total). Histopathological and immunological endpoints were assessed 4, 24, 48, and 72 hours after the final exposure. Histopathological analysis showed that conidia derived from both strains induced lung inflammation, especially at 24 and 48 hour time points. Immunological endpoints evaluated in bronchoalveolar lavage fluid (BALF) and the mediastinal lymph nodes showed that exposure to WT conidia led to elevated numbers of macrophages, granulocytes, and lymphocytes. Importantly, CD8+ IL17+ (Tc17) cells were significantly higher in BALF and positively correlated with germination of A. fumigatus WT spores. Germination was associated with specific IgG to intracellular proteins while Δalb1 spores elicited antibodies to cell wall hydrophobin. These data suggest that inhalation exposures may provide a more representative analysis of immune responses following exposures to environmentally and occupationally prevalent fungal contaminants.
Werumeus Buning, Jorien; Touw, Daan J; Brummelman, Pauline; Dullaart, Robin P F; van den Berg, Gerrit; van der Klauw, Melanie M; Kamp, Jasper; Wolffenbuttel, Bruce H R; van Beek, André P
2017-06-01
This study aimed at comparing pharmacokinetics of two different doses of hydrocortisone (HC) in patients with secondary adrenal insufficiency (SAI). Forty-six patients with SAI participated in this randomized double-blind crossover study. Patients received two different doses of HC (0.2-0.3mg HC/kg body weight/day and 0.4-0.6mg HC/kg body weight/day). One- and two-compartment population models for plasma free cortisol, plasma total cortisol and salivary cortisol were parameterized. The individual pharmacokinetic parameters clearance (CL), volume of distribution (V d ), elimination half-life (t 1/2 ), maximum concentration (C max ), and area under the curve (AUC) were calculated. The one-compartment models gave a better description of the data compared to the two-compartment models. Weight-adjusted dosing reduced variability in cortisol exposure with comparable AUCs between weight groups. However, there was large inter-individual variation in CL and V d of plasma free cortisol, plasma total cortisol and salivary cortisol. As a consequence, AUC 24h varied more than 10 fold. Cortisol exposure was increased with the higher dose, but this was dose proportional only for free cortisol concentrations and not for total cortisol. Cortisol concentrations after a doubling of the dose were only dose proportional for free cortisol. HC pharmacokinetics can differ up to 10-fold inter-individually and individual adjustment of treatment doses may be necessary. Doubling of the HC dose in fast metabolizers (patients that showed relative low AUC and thus high clearance compared to other patients), does not result in significantly enhanced exposure during large parts of the day and these patients may need other management strategies. Copyright © 2017 Elsevier Inc. All rights reserved.
Behera, G; Sutar, P P; Aditya, S
2017-11-01
The commercially available dry turmeric powder at 10.34% d.b. moisture content was decontaminated using microwaves at high power density for short time. To avoid the loss of moisture from turmeric due to high microwave power, the drying kinetics were modelled and considered during optimization of microwave decontamination process. The effect of microwave power density (10, 33.5 and 57 W g -1 ), exposure time (10, 20 and 30 s) and thickness of turmeric layer (1, 2 and 3 mm) on total plate, total yeast and mold (YMC) counts, color change (∆E), average final temperature of the product (T af ), water activity (a w ), Page model rate constant (k) and total moisture loss (ML) was studied. The perturbation analysis was carried out for all variables. It was found that to achieve more than one log reduction in yeast and mold count, a substantial reduction in moisture content takes place leading to the reduced output. The microwave power density significantly affected the YMC, T af and a w of turmeric powder. But the thickness of sample and microwave exposure time showed effect only on T af , a w and ML. The colour of turmeric and Page model rate constant were not significantly changed during the process as anticipated. The numerical optimization was done at 57.00 W g -1 power density, 1.64 mm thickness of sample layer and 30 s exposure time. It resulted into 1.6 × 10 7 CFU g -1 YMC, 82.71 °C T af , 0.383 a w and 8.41% (d.b.) final moisture content.
Ross, Kathryn C; Dempsey, Delia A; St Helen, Gideon; Delucchi, Kevin; Benowitz, Neal L
2016-06-01
African American (AA) smokers experience greater tobacco-related disease burden than Whites, despite smoking fewer cigarettes per day (CPD). Understanding factors that influence daily nicotine intake in AA smokers is an important step toward decreasing tobacco-related health disparities. One factor of interest is smoking topography, or the study of puffing behavior. (i) to create a model using puff characteristics, nicotine dependence, and nicotine metabolism to predict daily nicotine exposure, and (ii) to compare puff characteristics and nicotine intake from two cigarettes smoked at different times to ensure the reliability of the puff characteristics included in our model. Sixty AA smokers smoked their preferred brand of cigarette at two time points through a topography device. Plasma nicotine, expired CO, and changes in subjective measures were measured before and after each cigarette. Total nicotine equivalents (TNE) was measured from 24-hour urine collected during ad libitum smoking. In a model predicting daily nicotine exposure, total puff volume, CPD, sex, and menthol status were significant predictors (R(2) = 0.44, P < 0.001). Total puff volume was significantly greater and inter-puff intervals were significantly shorter after ad lib smoking compared with the first cigarette of the day, but puffing behaviors for both cigarettes were highly correlated (r range = 0.69-0.89, P < 0.001) within-subjects. This is the first study, to our knowledge, to show that puff characteristics of individual cigarettes are predictive of daily nicotine intake. These findings enhance our understanding of the relationship between smoking behavior and nicotine intake in AA smokers. Cancer Epidemiol Biomarkers Prev; 25(6); 936-43. ©2016 AACR. ©2016 American Association for Cancer Research.
Parameterization models for pesticide exposure via crop consumption.
Fantke, Peter; Wieland, Peter; Juraske, Ronnie; Shaddick, Gavin; Itoiz, Eva Sevigné; Friedrich, Rainer; Jolliet, Olivier
2012-12-04
An approach for estimating human exposure to pesticides via consumption of six important food crops is presented that can be used to extend multimedia models applied in health risk and life cycle impact assessment. We first assessed the variation of model output (pesticide residues per kg applied) as a function of model input variables (substance, crop, and environmental properties) including their possible correlations using matrix algebra. We identified five key parameters responsible for between 80% and 93% of the variation in pesticide residues, namely time between substance application and crop harvest, degradation half-lives in crops and on crop surfaces, overall residence times in soil, and substance molecular weight. Partition coefficients also play an important role for fruit trees and tomato (Kow), potato (Koc), and lettuce (Kaw, Kow). Focusing on these parameters, we develop crop-specific models by parametrizing a complex fate and exposure assessment framework. The parametric models thereby reflect the framework's physical and chemical mechanisms and predict pesticide residues in harvest using linear combinations of crop, crop surface, and soil compartments. Parametric model results correspond well with results from the complex framework for 1540 substance-crop combinations with total deviations between a factor 4 (potato) and a factor 66 (lettuce). Predicted residues also correspond well with experimental data previously used to evaluate the complex framework. Pesticide mass in harvest can finally be combined with reduction factors accounting for food processing to estimate human exposure from crop consumption. All parametric models can be easily implemented into existing assessment frameworks.
Ko, N-Y; Yeh, S-H; Tsay, S-L; Ma, H-J; Chen, C-H; Pan, S-M; Feng, M-C; Chiang, M-C; Lee, Y-W; Chang, L-H; Jang, J-F
2011-04-01
Nurses are at significant risk from occupationally acquired bloodborne virus infections following a needlestick and sharps injury. This study aimed to apply the theory of planned behaviour (TPB) to predict nurses' intention to comply with occupational post-exposure management. A cross-sectional survey was applied to select registered nurses who worked in human immunodeficiency virus (HIV)-designated hospitals. An anonymous, self-administered questionnaire based on the TPB was distributed to 1630 nurses and 1134 (69.5%) questionnaires were returned. From these, a total of 802 nurses (71%) reported blood and body fluid exposure incidents during 2003-2005 and this group was used for analysis. Only 44.6% of the 121 exposed nurses who were prescribed post-exposure prophylaxis (PEP) by infectious disease doctors returned to the clinic for interim monitoring, and only 56.6% of exposed nurses confirmed their final serology status. Structural equation modelling was used to test the TPB indicating perceived behavioural control (the perception of the difficulty or ease of PEP management, β=0.58), subjective norm (the perception of social pressure to adhere to PEP, β=0.15), and attitudes (β=0.12) were significant direct effects on nurses' intention to comply with post-exposure management. The hypothesised model test indicated that the model fitted with the expected relationships and directions of theoretical constructs [χ(2) (14, N=802)=23.14, P=0.057, GFI=0.987, RMSEA=0.039]. The TPB model constructs accounted for 54% of the variance in nurses' intention to comply with post-exposure management. The TPB is an appropriate model for predicting nurses' intention to comply with post-exposure management. Healthcare facilities should have policies to decrease the inconvenience of follow-up to encourage nurses to comply with post-exposure management. Copyright © 2010 the Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Early Childhood Media Exposure and Self-Regulation: Bi-Directional Longitudinal Associations.
Cliff, Dylan P; Howard, Steven J; Radesky, Jenny S; McNeill, Jade; Vella, Stewart A
2018-04-26
To investigate: i) prospective associations between media exposure (television viewing, computers, and electronic games) at 2 years and self-regulation at 4 and 6 years, and ii) bi-directional associations between media exposure and self-regulation at 4 and 6 years. We hypothesized that media exposure and self-regulation would display a negative prospective association and subsequent bi-directional inverse associations. Data from the nationally-representative Longitudinal Study of Australian Children (LSAC) when children were aged 2 (n=2786) and 4/6 years (n=3527) were used. Primary caregivers reported children's weekly electronic media exposure. A composite measure of self-regulation was computed from caregivers-, teacher-, and observer-report data. Associations were examined using linear regression and cross-lagged panel models, accounting for covariates. Lower television viewing and total media exposure at 2 years were associated with higher self-regulation at 4 years (both β -0.02; 95% confidence interval [CI] -0.03, -0.01). Lower self-regulation at 4 years was also significantly associated with higher television viewing (β -0.15; 95% CI -0.21, -0.08), electronic game use (β -0.05; 95% CI -0.09, -0.01), and total media exposure (β -0.19; 95% CI -0.29, -0.09) at 6 years. However, media exposure at 4 years was not associated with self-regulation at 6 years. Although media exposure duration at 2 years was associated with later self-regulation, and self-regulation at 4 years was associated with later media exposure, associations were of small magnitude. More research is needed examining content quality, social context, and mobile media use and child self-regulation. Copyright © 2018. Published by Elsevier Inc.
Dermal uptake of phthalates from clothing: Comparison of model to human participant results.
Morrison, G C; Weschler, C J; Bekö, G
2017-05-01
In this research, we extend a model of transdermal uptake of phthalates to include a layer of clothing. When compared with experimental results, this model better estimates dermal uptake of diethylphthalate and di-n-butylphthalate (DnBP) than a previous model. The model predictions are consistent with the observation that previously exposed clothing can increase dermal uptake over that observed in bare-skin participants for the same exposure air concentrations. The model predicts that dermal uptake from clothing of DnBP is a substantial fraction of total uptake from all sources of exposure. For compounds that have high dermal permeability coefficients, dermal uptake is increased for (i) thinner clothing, (ii) a narrower gap between clothing and skin, and (iii) longer time intervals between laundering and wearing. Enhanced dermal uptake is most pronounced for compounds with clothing-air partition coefficients between 10 4 and 10 7 . In the absence of direct measurements of cotton cloth-air partition coefficients, dermal exposure may be predicted using equilibrium data for compounds in equilibrium with cellulose and water, in combination with computational methods of predicting partition coefficients. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Rivkin, Michael J; Davis, Peter E; Lemaster, Jennifer L; Cabral, Howard J; Warfield, Simon K; Mulkern, Robert V; Robson, Caroline D; Rose-Jacobs, Ruth; Frank, Deborah A
2008-04-01
The objective of this study was to use volumetric MRI to study brain volumes in 10- to 14-year-old children with and without intrauterine exposure to cocaine, alcohol, cigarettes, or marijuana. Volumetric MRI was performed on 35 children (mean age: 12.3 years; 14 with intrauterine exposure to cocaine, 21 with no intrauterine exposure to cocaine) to determine the effect of prenatal drug exposure on volumes of cortical gray matter; white matter; subcortical gray matter; cerebrospinal fluid; and total parenchymal volume. Head circumference was also obtained. Analyses of each individual substance were adjusted for demographic characteristics and the remaining 3 prenatal substance exposures. Regression analyses adjusted for demographic characteristics showed that children with intrauterine exposure to cocaine had lower mean cortical gray matter and total parenchymal volumes and smaller mean head circumference than comparison children. After adjustment for other prenatal exposures, these volumes remained smaller but lost statistical significance. Similar analyses conducted for prenatal ethanol exposure adjusted for demographics showed significant reduction in mean cortical gray matter; total parenchymal volumes; and head circumference, which remained smaller but lost statistical significance after adjustment for the remaining 3 exposures. Notably, prenatal cigarette exposure was associated with significant reductions in cortical gray matter and total parenchymal volumes and head circumference after adjustment for demographics that retained marginal significance after adjustment for the other 3 exposures. Finally, as the number of exposures to prenatal substances grew, cortical gray matter and total parenchymal volumes and head circumference declined significantly with smallest measures found among children exposed to all 4. CONCLUSIONS; These data suggest that intrauterine exposures to cocaine, alcohol, and cigarettes are individually related to reduced head circumference; cortical gray matter; and total parenchymal volumes as measured by MRI at school age. Adjustment for other substance exposures precludes determination of statistically significant individual substance effect on brain volume in this small sample; however, these substances may act cumulatively during gestation to exert lasting effects on brain size and volume.
Starling, Anne P.; Engel, Stephanie M.; Whitworth, Kristina W.; Richardson, David B.; Stuebe, Alison M.; Daniels, Julie L.; Haug, Line Småstuen; Eggesbø, Merete; Becher, Georg; Sabaredzovic, Azemira; Thomsen, Cathrine; Wilson, Ralph E.; Travlos, Gregory S.; Hoppin, Jane A.; Baird, Donna D.; Longnecker, Matthew P.
2013-01-01
Background Perfluoroalkyl substances (PFASs) are widespread and persistent environmental pollutants. Previous studies, primarily among non-pregnant individuals, suggest positive associations between PFAS levels and certain blood lipids. If there is a causal link between PFAS concentrations and elevated lipids during pregnancy, this may suggest a mechanism by which PFAS exposure leads to certain adverse pregnancy outcomes, including preeclampsia. Methods This cross-sectional analysis included 891 pregnant women enrolled in the Norwegian Mother and Child (MoBa) Cohort Study in 2003–2004. Non-fasting plasma samples were obtained at mid-pregnancy and analyzed for nineteen PFASs. Total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein cholesterol, and triglycerides were measured in plasma. Linear regression was used to quantify associations between each PFAS exposure and each lipid outcome. A multiple PFAS model was also fitted. Results Seven PFASs were quantifiable in >50% of samples. Perfluorooctane sulfonate (PFOS) concentration was associated with total cholesterol, which increased 4.2 mg/dL per interquartile shift (95% CI=0.8, 7.7) in adjusted models. Five of the seven PFASs studied were positively associated with HDL cholesterol, and all seven had elevated HDL associated with the highest quartile of exposure. Perfluoroundecanoic acid showed the strongest association with HDL: HDL increased 3.7 mg/dL per interquartile shift (95% CI=2.5, 4.9). Conclusion Plasma concentrations of PFASs were positively associated with HDL cholesterol, and PFOS was positively associated with total cholesterol in this sample of pregnant Norwegian women. While elevated HDL is not an adverse outcome per se, elevated total cholesterol associated with PFASs during pregnancy could be of concern if causal. PMID:24189199
Starling, Anne P; Engel, Stephanie M; Whitworth, Kristina W; Richardson, David B; Stuebe, Alison M; Daniels, Julie L; Haug, Line Småstuen; Eggesbø, Merete; Becher, Georg; Sabaredzovic, Azemira; Thomsen, Cathrine; Wilson, Ralph E; Travlos, Gregory S; Hoppin, Jane A; Baird, Donna D; Longnecker, Matthew P
2014-01-01
Perfluoroalkyl substances (PFASs) are widespread and persistent environmental pollutants. Previous studies, primarily among non-pregnant individuals, suggest positive associations between PFAS levels and certain blood lipids. If there is a causal link between PFAS concentrations and elevated lipids during pregnancy, this may suggest a mechanism by which PFAS exposure leads to certain adverse pregnancy outcomes, including preeclampsia. This cross-sectional analysis included 891 pregnant women enrolled in the Norwegian Mother and Child (MoBa) Cohort Study in 2003-2004. Non-fasting plasma samples were obtained at mid-pregnancy and analyzed for nineteen PFASs. Total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein cholesterol, and triglycerides were measured in plasma. Linear regression was used to quantify associations between each PFAS exposure and each lipid outcome. A multiple PFAS model was also fitted. Seven PFASs were quantifiable in >50% of samples. Perfluorooctane sulfonate (PFOS) concentration was associated with total cholesterol, which increased 4.2mg/dL per inter-quartile shift (95% CI=0.8, 7.7) in adjusted models. Five of the seven PFASs studied were positively associated with HDL cholesterol, and all seven had elevated HDL associated with the highest quartile of exposure. Perfluoroundecanoic acid showed the strongest association with HDL: HDL increased 3.7 mg/dL per inter-quartile shift (95% CI=2.5, 4.9). Plasma concentrations of PFASs were positively associated with HDL cholesterol, and PFOS was positively associated with total cholesterol in this sample of pregnant Norwegian women. While elevated HDL is not an adverse outcome per se, elevated total cholesterol associated with PFASs during pregnancy could be of concern if causal. © 2013.
Berger, Kimberly; Gunier, Robert B; Chevrier, Jonathan; Calafat, Antonia M; Ye, Xiaoyun; Eskenazi, Brenda; Harley, Kim G
2018-05-24
Environmental phenols and parabens are commonly used in personal care products and other consumer products and human exposure to these chemicals is widespread. Although human and animal studies suggest an association between exposure to phenols and parabens and thyroid hormone levels, few studies have investigated the association of in utero exposure to these chemicals and thyroid hormones in pregnant women and their neonates. We measured four environmental phenols (triclosan, benzophenone-3, and 2,4- and 2,5-dichlorophenol), and three parabens (methyl-, propyl-, and butyl paraben) in urine collected from mothers at two time points during pregnancy as part of the CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas) study. We measured free thyroxine (T4), total T4, and thyroid-stimulating hormone (TSH) in serum of the pregnant women (N = 454) and TSH in their neonates (N = 365). We examined potential confounding by a large number of additional chemical exposures and used Bayesian Model Averaging (BMA) to select the most influential chemicals to include in regression models. We observed negative associations of prenatal urinary concentrations of propyl paraben and maternal TSH (β for two-fold increase = -3.26%, 95% CI: -5.55, -0.90) and negative associations of 2,4-dichlorophenol and maternal free T4 (β for two-fold increase = -0.05, 95% CI: -0.08, -0.02), after controlling for other chemical exposures. We observed negative associations of triclosan with maternal total T4 after controlling for demographic variables, but this association became non-significant after controlling for other chemicals (β for two-fold increase = -0.05, 95% CI: -0.11, 0.00). We found evidence that environmental phenols and parabens are associated with lower TSH and free T4 in pregnant women after controlling for related chemical exposures. Copyright © 2018 Elsevier Inc. All rights reserved.
Occurrence, sources and human exposure assessment of SCCPs in indoor dust of northeast China.
Liu, Li-Hua; Ma, Wan-Li; Liu, Li-Yan; Huo, Chun-Yan; Li, Wen-Long; Gao, Chong-Jing; Li, Hai-Ling; Li, Yi-Fan; Chan, Hing Man
2017-06-01
Short-chain chlorinated paraffins (SCCPs) are widely used chemicals in household products and might cause adverse human health effects. However, limited information is available on the occurrence of SCCPs in indoor environments and their exposure risks on humans. In this study the concentrations, profiles and human exposure of SCCPs in indoor dust from five different indoor environments, including commercial stores, residential apartments, dormitories, offices and laboratories were characterized. The SCCPs levels ranged from 10.1 to 173.0 μg/g, with the median and mean concentration of 47.2 and 53.6 μg/g, respectively. No significant difference was found on concentrations among the five microenvironments. The most abundant compounds in indoor dust samples were homologues of C 13 group, Cl 7 group and N 20 (N is the total number of C and Cl) group. In the five microenvironments, commercial stores were more frequently exposed to shorter carbon chained and higher chlorinated homologues. Three potential sources for SCCPs were identified by the multiple linear regression of factor score model and correspondence analysis. The major sources of SCCPs in indoor dust were technical mixtures of CP-42 (42% chlorine, w/w) and CP-52 b (52% chlorine, w/w). The total daily exposure doses and hazard quotients (HQ) were calculated by the human exposure models, and they were all below the reference doses and threshold values, respectively. Monte Carlo simulation was applied to predict the human exposure risk of SCCPs. Infants and toddlers were at risk of SCCPs based on predicted HQ values, which were exceeded the threshold for neoplastic effects in the worst case. Our results on the occurrences, sources and human exposures of SCCPs will be useful to provide a better understanding of SCCPs behaviors in indoor environment in China, and to support environmental risk evaluation and regulation of SCCPs in the world. Copyright © 2017. Published by Elsevier Ltd.
Media-portrayed idealized images, self-objectification, and eating behavior.
Monro, Fiona J; Huon, Gail F
2006-11-01
This study examined the effects of media-portrayed idealized images on young women's eating behavior. The study compared the effects for high and low self-objectifiers. 72 female university students participated in this experiment. Six magazine advertisements featuring idealized female models were used as the experimental stimuli, and the same six advertisements with the idealized body digitally removed became the control stimuli. Eating behavior was examined using a classic taste test that involved both sweet and savory food. Participants' restraint status was assessed. We found that total food intake after exposure was the same in the body present and absent conditions. There were also no differences between high and low self-objectifiers' total food intake. However, for the total amount of food consumed and for sweet food there were significant group by condition interaction effects. High self-objectifiers ate more food in the body present than the body absent condition. In contrast, low self-objectifiers ate more food in the body absent than in the body present condition. Restraint status was not found to moderate the relationship between exposure to idealized images the amount of food consumed. Our results indicate that exposure to media-portrayed idealized images can lead to changes in eating behavior and highlight the complexity of the association between idealized image exposure and eating behavior. These results are discussed in terms of their implications for the prevention of dieting-related disorders.
Exposure assessment of microwave ovens and impact on total exposure in WLANs
Plets, David; Verloock, Leen; Van Den Bossche, Matthias; Tanghe, Emmeric; Joseph, Wout; Martens, Luc
2016-01-01
In situ exposure of electric fields of 11 microwave ovens is assessed in an occupational environment and in an office. Measurements as a function of distance without load and with a load of 275 ml of tap water were performed at distances of <1 m. The maximal measured field was 55.2 V m−1 at 5 cm from the oven (without load), which is 2.5 and 1.1 times below the International Commission on Non-Ionizing Radiation Protection reference level for occupational exposure and general public exposure, respectively. For exposure at distances of >1 m, a model of the electric field in a realistic environment is proposed. In an office scenario, switching on a microwave oven increases the median field strength from 91 to 145 mV m−1 (+91 %) in a traditional Wireless Local Area Network (WLAN) deployment and from 44 to 92 mV m−1 (+109 %) in an exposure-optimised WLAN deployment. PMID:25956787
Claus Henn, Birgit; Austin, Christine; Coull, Brent A; Schnaas, Lourdes; Gennings, Chris; Horton, Megan K; Hernández-Ávila, Mauricio; Hu, Howard; Téllez-Rojo, Martha Maria; Wright, Robert O; Arora, Manish
2018-02-01
Associations between manganese (Mn) and neurodevelopment may depend on dose and exposure timing, but most studies cannot measure exposure variability over time well. We apply temporally informative tooth-matrix biomarkers to uncover windows of susceptibility in early life when Mn is associated with visual motor ability in childhood. We also explore effect modification by lead (Pb) and child sex. Participants were drawn from the ELEMENT (Early Life Exposures in MExico and NeuroToxicology) longitudinal birth cohort studies. We reconstructed dose and timing of prenatal and early postnatal Mn and Pb exposures for 138 children by analyzing deciduous teeth using laser ablation-inductively coupled plasma-mass spectrometry. Neurodevelopment was assessed between 6 and 16 years of age using the Wide Range Assessment of Visual Motor Abilities (WRAVMA). Mn associations with total WRAVMA scores and subscales were estimated with multivariable generalized additive mixed models. We examined Mn interactions with Pb and child sex in stratified models. Levels of dentine Mn were highest in the second trimester and declined steeply over the prenatal period, with a slower rate of decline after birth. Mn was positively associated with visual spatial and total WRAVMA scores in the second trimester, among children with lower (< median) tooth Pb levels: one standard deviation (SD) increase in ln-transformed dentine Mn at 150 days before birth was associated with a 0.15 [95% CI: 0.04, 0.26] SD increase in total score. This positive association was not observed at high Pb levels. In contrast to the prenatal period, significant negative associations were found in the postnatal period from ~ 6 to 12 months of age, among boys only: one SD increase in ln-transformed dentine Mn was associated with a 0.11 [95% CI: - 0.001, - 0.22] to 0.16 [95% CI: - 0.04, - 0.28] SD decrease in visual spatial score. Using tooth-matrix biomarkers with fine scale temporal profiles of exposure, we found discrete developmental windows in which Mn was associated with visual-spatial abilities. Our results suggest that Mn associations are driven in large part by exposure timing, with beneficial effects found for prenatal levels and toxic effects found for postnatal levels. Copyright © 2017 Elsevier Inc. All rights reserved.
Investigating the American Time Use Survey from an exposure modeling perspective.
George, Barbara Jane; McCurdy, Thomas
2011-01-01
This paper describes an evaluation of the US Bureau of Labor Statistics' American Time Use Survey (ATUS) for potential use in modeling human exposures to environmental pollutants. The ATUS is a large, on-going, cross-sectional survey of where Americans spend time and what activities they undertake in those locations. The data are reported as a series of sequential activities over a 24-h time period--a "diary day"--starting at 0400 hours. Between 12,000 and 13,000 surveys are obtained each year and the Bureau has plans to continue ATUS for the foreseeable future. The ATUS already has about 73,000 diary days of data, more than twice as many as that which currently exists in the US Environmental Protection Agency's (EPA) "Consolidated Human Activity Database" (CHAD) that the Agency uses for exposure modeling purposes. There are limitations for using ATUS in modeling human exposures to environmental pollutants. The ATUS does not report the location for a number of activities regarded as "personal." For 2006, personal activities with missing location information totaled 572 min/day, on average, for survey participants: about 40% of their day. Another limitation is that ATUS does not distinguish between indoor and outdoor activities at home, two of the traditional locational demarcations used in human exposure modeling. This lack of information affects exposure estimates to both indoor and outdoor air pollutants and potentially affects non-dietary ingestion estimates for children, which can vary widely depending on whether or not a child is indoors. Finally, a detailed analysis of the work travel activity in a subsample from ATUS 2006 indicates that the coding scheme is not fully consistent with a CHAD-based exposure modeling approach. For ATUS respondents in this subsample who reported work as an activity, roughly 48% of their days were missing work travel at one or both ends of the work shift or reported within work-shift travel inconsistently. An extensive effort would be needed to recode work travel data from ATUS for EPA's exposure modeling purposes.
Fujimura, Kei E; Demoor, Tine; Rauch, Marcus; Faruqi, Ali A; Jang, Sihyug; Johnson, Christine C; Boushey, Homer A; Zoratti, Edward; Ownby, Dennis; Lukacs, Nicholas W; Lynch, Susan V
2014-01-14
Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development, and dog ownership is associated with a distinct house dust microbial exposure. Here, we demonstrate, using murine models, that exposure of mice to dog-associated house dust protects against ovalbumin or cockroach allergen-mediated airway pathology. Protected animals exhibited significant reduction in the total number of airway T cells, down-regulation of Th2-related airway responses, as well as mucin secretion. Following dog-associated dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild-type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii-mediated protection was associated with significant reductions in the total number and proportion of activated CD11c(+)/CD11b(+) and CD11c(+)/CD8(+) cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct gastrointestinal microbiome composition. Moreover, the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults.
Development of a Sampler for Total Aerosol Deposition in the Human Respiratory Tract
Koehler, Kirsten A.; Clark, Phillip; Volckens, John
2009-01-01
Studies that seek to associate reduced human health with exposure to occupational and environmental aerosols are often hampered by limitations in the exposure assessment process. One limitation involves the measured exposure metric itself. Current methods for personal exposure assessment are designed to estimate the aspiration of aerosol into the human body. Since a large proportion of inhaled aerosol is subsequently exhaled, a portion of the aspirated aerosol will not contribute to the dose. This leads to variable exposure misclassification (for heterogenous exposures) and increased uncertainty in health effect associations. Alternatively, a metric for respiratory deposition would provide a more physiologically relevant estimate of risk. To address this challenge, we have developed a method to estimate the deposition of aerosol in the human respiratory tract using a sampler engineered from polyurethane foam. Using a semi-empirical model based on inertial, gravitational, and diffusional particle deposition, a foam was engineered to mimic aerosol total deposition in the human respiratory tract. The sampler is comprised of commercially available foam with fiber diameter = 49.5 μm (equivalent to industry standard 100 PPI foam) of 8 cm thickness operating at a face velocity of 1.3 m s−1. Additionally, the foam sampler yields a relatively low-pressure drop, independent of aerosol loading, providing uniform particle collection efficiency over time. PMID:19638392
Fujimura, Kei E.; Demoor, Tine; Rauch, Marcus; Faruqi, Ali A.; Jang, Sihyug; Johnson, Christine C.; Boushey, Homer A.; Zoratti, Edward; Ownby, Dennis; Lukacs, Nicholas W.; Lynch, Susan V.
2014-01-01
Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development, and dog ownership is associated with a distinct house dust microbial exposure. Here, we demonstrate, using murine models, that exposure of mice to dog-associated house dust protects against ovalbumin or cockroach allergen-mediated airway pathology. Protected animals exhibited significant reduction in the total number of airway T cells, down-regulation of Th2-related airway responses, as well as mucin secretion. Following dog-associated dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild-type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii-mediated protection was associated with significant reductions in the total number and proportion of activated CD11c+/CD11b+ and CD11c+/CD8+ cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct gastrointestinal microbiome composition. Moreover, the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults. PMID:24344318
Naphthalene distributions and human exposure in Southern California
NASA Astrophysics Data System (ADS)
Lu, Rong; Wu, Jun; Turco, Richard P.; Winer, Arthur M.; Atkinson, Roger; Arey, Janet; Paulson, Suzanne E.; Lurmann, Fred W.; Miguel, Antonio H.; Eiguren-Fernandez, Arantzazu
The regional distribution of, and human exposure to, naphthalene are investigated for Southern California. A comprehensive approach is taken in which advanced models are linked for the first time to quantify population exposure to the emissions of naphthalene throughout Southern California. Naphthalene is the simplest and most abundant of the polycyclic aromatic hydrocarbons found in polluted urban environments, and has been detected in both outdoor and indoor air samples. Exposure to high concentrations of naphthalene may have adverse health effects, possibly causing cancer in humans. Among the significant emission sources are volatilization from naphthalene-containing products, petroleum refining, and combustion of fossil fuels and wood. Gasoline and diesel engine exhaust, with related vaporization from fuels, are found to contribute roughly half of the daily total naphthalene burden in Southern California. As part of this study, the emission inventory for naphthalene has been verified against new field measurements of the naphthalene-to-benzene ratio in a busy traffic tunnel in Los Angeles, supporting the modeling work carried out here. The Surface Meteorology and Ozone Generation (SMOG) airshed model is used to compute the spatial and temporal distributions of naphthalene and its photooxidation products in Southern California. The present simulations reveal a high degree of spatial variability in the concentrations of naphthalene-related species, with large diurnal and seasonal variations as well. Peak naphthalene concentrations are estimated to occur in the early morning hours in the winter season. The naphthalene concentration estimates obtained from the SMOG model are employed in the Regional Human Exposure (REHEX) model to calculate population exposure statistics. Results show average hourly naphthalene exposures in Southern California under summer and winter conditions of 270 and 430 ng m -3, respectively. Exposure to significantly higher concentrations may occur for individuals close to local sources, or in naphthalene "hotspots" revealed by simulations and observations. Such levels of naphthalene exposure may be used to gauge the potential health impacts of long-term naphthalene exposure. Results are also given for the distributions of 1,4-naphthoquinone, a naphthalene reaction product that may have significant health effects.
Exposure to hexavalent chromium in welders: Results of the WELDOX II field study.
Pesch, Beate; Lehnert, Martin; Weiss, Tobias; Kendzia, Benjamin; Menne, Eleonore; Lotz, Anne; Heinze, Evelyn; Behrens, Thomas; Gabriel, Stefan; Schneider, Wolfgang; Brüning, Thomas
2018-03-12
Exposure to hexavalent chromium (Cr(VI)) has been primarily studied in chromate production. Here, we measured personal exposure to respirable Cr(VI) together with airborne and urinary Cr and Ni in welders to explore levels and associations between various measures of exposure. Shift concentrations of Cr(VI), Cr, and Ni were measured in respirable welding fumes in 50 men who used either gas metal arc welding (GMAW) (n = 24) or tungsten inert gas welding (TIG) (n = 19) as their major technique. Cr and Ni were determined in pre- and post-shift urine samples. Concentrations below the limit of quantification (LOQ) were multiply imputed. Spearman correlation coefficients (rs) were calculated with 95% confidence intervals (CIs) to explore associations between the exposure variables, and regression models were applied to estimate the effect of the parent metal on the urinary concentration. Regarding the respirable Cr(VI), 62% of the measurements were below the LOQ, the 75th percentile was 0.50 µg m-3, and 8 out of 50 (16%) welders exceeded 1 µg m-3. The highest shift concentration that occurred as a result of shielded metal arc welding (SMAW) was 180 µg m-3. The Cr(VI) content in total Cr ranged from 4 to 82% (median 20%), although the concentration correlated with total Cr (rs 0.55, 95% CI 0.46; 0.64). The correlation between Cr(VI) and Ni was weaker (rs 0.42, 95% CI 0.34; 0.51) than that between total Cr and Ni in welding fumes (rs 0.83, 95% CI 0.74; 0.92). Both Cr(VI) and total Cr influenced the urinary Cr concentrations in post-shift samples (P = 0.0008 and P ≤ 0.0001, respectively). The airborne shift exposure was a weaker determinant than the Cr content in pre-shift urine samples, which strongly correlated with post-shift urinary Cr (rs 0.78, 95% CI 0.69; 0.87). The Cr(VI) content in total Cr varied considerably in welding fumes. The majority of welders using GMAW or TIG presented with shift concentrations of respirable Cr(VI) below 1 µg m-3. However, very high Cr(VI) concentrations may occur, for example in SMAW. The urinary concentration of total Cr, cannot be used to precisely determine the shift concentration of respirable Cr(VI) in welders.
Haloacetic acids in drinking water and risk for stillbirth
King, W; Dodds, L; Allen, A; Armson, B; Fell, D; Nimrod, C
2005-01-01
Aims: To investigate the effects of haloacetic acid (HAA) compounds in drinking water on stillbirth risk. Methods: A population based case-control study was conducted in Nova Scotia and Eastern Ontario, Canada. Estimates of daily exposure to total and specific HAAs were based on household water samples and questionnaire information on water consumption at home and work. Results: The analysis included 112 stillbirth cases and 398 live birth controls. In analysis without adjustment for total THM exposure, a relative risk greater than 2 was observed for an intermediate exposure category for total HAA and dichloroacetic acid measures. After adjustment for total THM exposure, the risk estimates for intermediate exposure categories were diminished, the relative risk associated with the highest category was in the direction of a protective effect, and all confidence intervals included the null value. Conclusions: No association was observed between HAA exposures and stillbirth risk after controlling for THM exposures. PMID:15657195
Hickman, Laura J; Jaycox, Lisa H; Setodji, Claude M; Kofner, Aaron; Schultz, Dana; Barnes-Proby, Dionne; Harris, Racine
2013-04-01
The study explores whether and how lifetime violence exposure is related to a set of negative symptoms: child internalizing and externalizing behavior problems, child trauma symptoms, and parenting stress. Using a large sample of violence-exposed children recruited to participate in intervention research, the study employs different methods of measuring that exposure. These include total frequency of all lifetime exposure, total frequency of lifetime exposure by broad category (i.e., assault, maltreatment, sexual abuse, and witnessing violence), and polyvictimization defined as exposure to multiple violence categories. The results indicate that only polyvictimization, constructed as a dichotomous variable indicating two or more categories of lifetime exposure, emerged as a consistent predictor of negative symptoms. The total lifetime frequency of all violence exposure was not associated with negative symptoms, after controlling for the influence of polyvictimization. Likewise, in the presence of a dichotomous polyvictimization indicator the total lifetime frequency of exposure to a particular violence category was unrelated to symptoms overall, with the exception of trauma symptoms and experiences of sexual abuse. Taken together, these findings suggest that total lifetime exposure is not particularly important to negative symptoms, nor is any particular category of exposure after controlling for polyvictimization, with the single exception of sexual abuse and trauma symptoms. Instead, it is the mix of exposure experiences that predict negative impacts on children in this sample. Further research is needed to continue to explore and test these issues.
Jankowska, Marta M; Natarajan, Loki; Godbole, Suneeta; Meseck, Kristin; Sears, Dorothy D; Patterson, Ruth E; Kerr, Jacqueline
2017-07-01
Background: Environmental factors may influence breast cancer; however, most studies have measured environmental exposure in neighborhoods around home residences (static exposure). We hypothesize that tracking environmental exposures over time and space (dynamic exposure) is key to assessing total exposure. This study compares breast cancer survivors' exposure to walkable and recreation-promoting environments using dynamic Global Positioning System (GPS) and static home-based measures of exposure in relation to insulin resistance. Methods: GPS data from 249 breast cancer survivors living in San Diego County were collected for one week along with fasting blood draw. Exposure to recreation spaces and walkability was measured for each woman's home address within an 800 m buffer (static), and using a kernel density weight of GPS tracks (dynamic). Participants' exposure estimates were related to insulin resistance (using the homeostatic model assessment of insulin resistance, HOMA-IR) controlled by age and body mass index (BMI) in linear regression models. Results: The dynamic measurement method resulted in greater variability in built environment exposure values than did the static method. Regression results showed no association between HOMA-IR and home-based, static measures of walkability and recreation area exposure. GPS-based dynamic measures of both walkability and recreation area were significantly associated with lower HOMA-IR ( P < 0.05). Conclusions: Dynamic exposure measurements may provide important evidence for community- and individual-level interventions that can address cancer risk inequities arising from environments wherein breast cancer survivors live and engage. Impact: This is the first study to compare associations of dynamic versus static built environment exposure measures with insulin outcomes in breast cancer survivors. Cancer Epidemiol Biomarkers Prev; 26(7); 1078-84. ©2017 AACR . ©2017 American Association for Cancer Research.
Avanasi, Raghavendhran; Shin, Hyeong-Moo; Vieira, Verónica M; Savitz, David A; Bartell, Scott M
2016-01-01
Uncertainty in exposure estimates from models can result in exposure measurement error and can potentially affect the validity of epidemiological studies. We recently used a suite of environmental models and an integrated exposure and pharmacokinetic model to estimate individual perfluorooctanoate (PFOA) serum concentrations and assess the association with preeclampsia from 1990 through 2006 for the C8 Health Project participants. The aims of the current study are to evaluate impact of uncertainty in estimated PFOA drinking-water concentrations on estimated serum concentrations and their reported epidemiological association with preeclampsia. For each individual public water district, we used Monte Carlo simulations to vary the year-by-year PFOA drinking-water concentration by randomly sampling from lognormal distributions for random error in the yearly public water district PFOA concentrations, systematic error specific to each water district, and global systematic error in the release assessment (using the estimated concentrations from the original fate and transport model as medians and a range of 2-, 5-, and 10-fold uncertainty). Uncertainty in PFOA water concentrations could cause major changes in estimated serum PFOA concentrations among participants. However, there is relatively little impact on the resulting epidemiological association in our simulations. The contribution of exposure uncertainty to the total uncertainty (including regression parameter variance) ranged from 5% to 31%, and bias was negligible. We found that correlated exposure uncertainty can substantially change estimated PFOA serum concentrations, but results in only minor impacts on the epidemiological association between PFOA and preeclampsia. Avanasi R, Shin HM, Vieira VM, Savitz DA, Bartell SM. 2016. Impact of exposure uncertainty on the association between perfluorooctanoate and preeclampsia in the C8 Health Project population. Environ Health Perspect 124:126-132; http://dx.doi.org/10.1289/ehp.1409044.
A reassessment of Galileo radiation exposures in the Jupiter magnetosphere.
Atwell, William; Townsend, Lawrence; Miller, Thomas; Campbell, Christina
2005-01-01
Earlier particle experiments in the 1970s on Pioneer-10 and -11 and Voyager-1 and -2 provided Jupiter flyby particle data, which were used by Divine and Garrett to develop the first Jupiter trapped radiation environment model. This model was used to establish a baseline radiation effects design limit for the Galileo onboard electronics. Recently, Garrett et al. have developed an updated Galileo Interim Radiation Environment (GIRE) model based on Galileo electron data. In this paper, we have used the GIRE model to reassess the computed radiation exposures and dose effects for Galileo. The 34-orbit 'as flown' Galileo trajectory data and the updated GIRE model were used to compute the electron and proton spectra for each of the 34 orbits. The total ionisation doses of electrons and protons have been computed based on a parametric shielding configuration, and these results are compared with previously published results.
Early-life exposure to combustion-derived particulate matter causes pulmonary immunosuppression
Saravia, Jordy; You, Dahui; Thevenot, Paul; Lee, Greg I.; Shrestha, Bishwas; Lomnicki, Slawo; Cormier, Stephania A.
2013-01-01
Elevated levels of combustion-derived particulate matter (CDPM) are a risk factor for the development of lung diseases such as asthma. Studies have shown that CDPM exacerbates asthma, inducing acute lung dysfunction and inflammation; however, the impact of CDPM exposure on early immunological responses to allergens remains unclear. To determine the effects of early-life CDPM exposure on allergic asthma development in infants, we exposed infant mice to CDPM and then induced a mouse model of asthma using house dust mite (HDM) allergen. Mice exposed to CDPM+HDM failed to develop a typical asthma phenotype including airway hyperresponsiveness, Th2-inflammation, Muc5ac expression, eosinophilia, and HDM-specific Ig compared to HDM-exposed mice. Although HDM-specific IgE was attenuated, total IgE was two-fold higher in CDPM+HDM mice compared to HDM-mice. We further demonstrate that CDPM exposure during early life induced an immunosuppressive environment in the lung, concurrent with increases in tolerogenic dendritic cells and Tregs, resulting in suppression of Th2 responses. Despite having early immunosuppression, these mice develop severe allergic inflammation when challenged with allergen as adults. These findings demonstrate a mechanism whereby CDPM exposure modulates adaptive immunity, inducing specific-antigen tolerance while amplifying total IgE, and leading to a predisposition to develop asthma upon rechallenge later in life. PMID:24172848
NASA Astrophysics Data System (ADS)
Brokamp, Cole; Jandarov, Roman; Rao, M. B.; LeMasters, Grace; Ryan, Patrick
2017-02-01
Exposure assessment for elemental components of particulate matter (PM) using land use modeling is a complex problem due to the high spatial and temporal variations in pollutant concentrations at the local scale. Land use regression (LUR) models may fail to capture complex interactions and non-linear relationships between pollutant concentrations and land use variables. The increasing availability of big spatial data and machine learning methods present an opportunity for improvement in PM exposure assessment models. In this manuscript, our objective was to develop a novel land use random forest (LURF) model and compare its accuracy and precision to a LUR model for elemental components of PM in the urban city of Cincinnati, Ohio. PM smaller than 2.5 μm (PM2.5) and eleven elemental components were measured at 24 sampling stations from the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). Over 50 different predictors associated with transportation, physical features, community socioeconomic characteristics, greenspace, land cover, and emission point sources were used to construct LUR and LURF models. Cross validation was used to quantify and compare model performance. LURF and LUR models were created for aluminum (Al), copper (Cu), iron (Fe), potassium (K), manganese (Mn), nickel (Ni), lead (Pb), sulfur (S), silicon (Si), vanadium (V), zinc (Zn), and total PM2.5 in the CCAAPS study area. LURF utilized a more diverse and greater number of predictors than LUR and LURF models for Al, K, Mn, Pb, Si, Zn, TRAP, and PM2.5 all showed a decrease in fractional predictive error of at least 5% compared to their LUR models. LURF models for Al, Cu, Fe, K, Mn, Pb, Si, Zn, TRAP, and PM2.5 all had a cross validated fractional predictive error less than 30%. Furthermore, LUR models showed a differential exposure assessment bias and had a higher prediction error variance. Random forest and other machine learning methods may provide more accurate exposure assessment.
Brokamp, Cole; Jandarov, Roman; Rao, M B; LeMasters, Grace; Ryan, Patrick
2017-02-01
Exposure assessment for elemental components of particulate matter (PM) using land use modeling is a complex problem due to the high spatial and temporal variations in pollutant concentrations at the local scale. Land use regression (LUR) models may fail to capture complex interactions and non-linear relationships between pollutant concentrations and land use variables. The increasing availability of big spatial data and machine learning methods present an opportunity for improvement in PM exposure assessment models. In this manuscript, our objective was to develop a novel land use random forest (LURF) model and compare its accuracy and precision to a LUR model for elemental components of PM in the urban city of Cincinnati, Ohio. PM smaller than 2.5 μm (PM2.5) and eleven elemental components were measured at 24 sampling stations from the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). Over 50 different predictors associated with transportation, physical features, community socioeconomic characteristics, greenspace, land cover, and emission point sources were used to construct LUR and LURF models. Cross validation was used to quantify and compare model performance. LURF and LUR models were created for aluminum (Al), copper (Cu), iron (Fe), potassium (K), manganese (Mn), nickel (Ni), lead (Pb), sulfur (S), silicon (Si), vanadium (V), zinc (Zn), and total PM2.5 in the CCAAPS study area. LURF utilized a more diverse and greater number of predictors than LUR and LURF models for Al, K, Mn, Pb, Si, Zn, TRAP, and PM2.5 all showed a decrease in fractional predictive error of at least 5% compared to their LUR models. LURF models for Al, Cu, Fe, K, Mn, Pb, Si, Zn, TRAP, and PM2.5 all had a cross validated fractional predictive error less than 30%. Furthermore, LUR models showed a differential exposure assessment bias and had a higher prediction error variance. Random forest and other machine learning methods may provide more accurate exposure assessment.
Brokamp, Cole; Jandarov, Roman; Rao, M.B.; LeMasters, Grace; Ryan, Patrick
2017-01-01
Exposure assessment for elemental components of particulate matter (PM) using land use modeling is a complex problem due to the high spatial and temporal variations in pollutant concentrations at the local scale. Land use regression (LUR) models may fail to capture complex interactions and non-linear relationships between pollutant concentrations and land use variables. The increasing availability of big spatial data and machine learning methods present an opportunity for improvement in PM exposure assessment models. In this manuscript, our objective was to develop a novel land use random forest (LURF) model and compare its accuracy and precision to a LUR model for elemental components of PM in the urban city of Cincinnati, Ohio. PM smaller than 2.5 μm (PM2.5) and eleven elemental components were measured at 24 sampling stations from the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). Over 50 different predictors associated with transportation, physical features, community socioeconomic characteristics, greenspace, land cover, and emission point sources were used to construct LUR and LURF models. Cross validation was used to quantify and compare model performance. LURF and LUR models were created for aluminum (Al), copper (Cu), iron (Fe), potassium (K), manganese (Mn), nickel (Ni), lead (Pb), sulfur (S), silicon (Si), vanadium (V), zinc (Zn), and total PM2.5 in the CCAAPS study area. LURF utilized a more diverse and greater number of predictors than LUR and LURF models for Al, K, Mn, Pb, Si, Zn, TRAP, and PM2.5 all showed a decrease in fractional predictive error of at least 5% compared to their LUR models. LURF models for Al, Cu, Fe, K, Mn, Pb, Si, Zn, TRAP, and PM2.5 all had a cross validated fractional predictive error less than 30%. Furthermore, LUR models showed a differential exposure assessment bias and had a higher prediction error variance. Random forest and other machine learning methods may provide more accurate exposure assessment. PMID:28959135
Lin, Cheng-Hui; Wu, Man-Ru; Li, Ching-Hao; Cheng, Hui-Wen; Huang, Shih-Hsuan; Tsai, Chi-Hao; Lin, Fan-Li; Ho, Jau-Der; Kang, Jaw-Jou; Hsiao, George; Cheng, Yu-Wen
2017-05-01
Blue light-induced phototoxicity plays an important role in retinal degeneration and might cause damage as a consequence of smartphone dependency. Here, we investigated the effects of periodic exposure to blue light-emitting diode in a cell model and a rat retinal damage model. Retinal pigment epithelium (RPE) cells were subjected to blue light in vitro and the effects of blue light on activation of key apoptotic pathways were examined by measuring the levels of Bcl-2, Bax, Fas ligand (FasL), Fas-associated protein with death domain (FADD), and caspase-3 protein. Blue light treatment of RPE cells increased Bax, cleaved caspase-3, FasL, and FADD expression, inhibited Bcl-2 and Bcl-xL accumulation, and inhibited Bcl-2/Bax association. A rat model of retinal damage was developed with or without continuous or periodic exposure to blue light for 28 days. In this rat model of retinal damage, periodic blue light exposure caused fundus damage, decreased total retinal thickness, caused atrophy of photoreceptors, and injured neuron transduction in the retina. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Dumas-Campagna, Josée; Tardif, Robert; Charest-Tardif, Ginette; Haddad, Sami
2014-02-01
Uncertainty exists regarding the validity of a previously developed physiologically-based pharmacokinetic model (PBPK) for inhaled ethanol in humans to predict the blood levels of ethanol (BLE) at low level exposures (<1000 ppm). Thus, the objective of this study is to document the BLE resulting from low levels exposures in order to refine/validate this PBPK model. Human volunteers were exposed to ethanol vapors during 4 h at 5 different concentrations (125-1000 ppm), at rest, in an inhalation chamber. Blood and exhaled air were sampled. Also, the impact of light exercise (50 W) on the BLE was investigated. There is a linear relationship between the ethanol concentrations in inhaled air and (i) BLE (women: r²= 0.98/men: r²= 0.99), as well as (ii) ethanol concentrations in the exhaled air at end of exposure period (men: r²= 0.99/women: r²= 0.99). Furthermore, the exercise resulted in a net and significant increase of BLE (2-3 fold). Overall, the original model predictions overestimated the BLE for all low exposures performed in this study. To properly simulate the toxicokinetic data, the model was refined by adding a description of an extra-hepatic biotransformation of high affinity and low capacity in the richly perfused tissues compartment. This is based on the observation that total clearance observed at low exposure levels was much greater than liver blood flow. The results of this study will facilitate the refinement of the risk assessment associated with chronic inhalation of low levels of ethanol in the general population and especially among workers.
Groth, Caroline; Banerjee, Sudipto; Ramachandran, Gurumurthy; Stenzel, Mark R; Sandler, Dale P; Blair, Aaron; Engel, Lawrence S; Kwok, Richard K; Stewart, Patricia A
2017-01-01
In April 2010, the Deepwater Horizon oil rig caught fire and exploded, releasing almost 5 million barrels of oil into the Gulf of Mexico over the ensuing 3 months. Thousands of oil spill workers participated in the spill response and clean-up efforts. The GuLF STUDY being conducted by the National Institute of Environmental Health Sciences is an epidemiological study to investigate potential adverse health effects among these oil spill clean-up workers. Many volatile chemicals were released from the oil into the air, including total hydrocarbons (THC), which is a composite of the volatile components of oil including benzene, toluene, ethylbenzene, xylene, and hexane (BTEXH). Our goal is to estimate exposure levels to these toxic chemicals for groups of oil spill workers in the study (hereafter called exposure groups, EGs) with likely comparable exposure distributions. A large number of air measurements were collected, but many EGs are characterized by datasets with a large percentage of censored measurements (below the analytic methods' limits of detection) and/or a limited number of measurements. We use THC for which there was less censoring to develop predictive linear models for specific BTEXH air exposures with higher degrees of censoring. We present a novel Bayesian hierarchical linear model that allows us to predict, for different EGs simultaneously, exposure levels of a second chemical while accounting for censoring in both THC and the chemical of interest. We illustrate the methodology by estimating exposure levels for several EGs on the Development Driller III, a rig vessel charged with drilling one of the relief wells. The model provided credible estimates in this example for geometric means, arithmetic means, variances, correlations, and regression coefficients for each group. This approach should be considered when estimating exposures in situations when multiple chemicals are correlated and have varying degrees of censoring. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Obesity increases oesophageal acid exposure
El‐Serag, Hashem B; Ergun, Gulchin A; Pandolfino, John; Fitzgerald, Stephanie; Tran, Thomas; Kramer, Jennifer R
2007-01-01
Background Obesity has been associated with gastro‐oesophageal reflux disease (GERD); however, the mechanism by which obesity may cause GERD is unclear. Aim To examine the association between oesophageal acid exposure and total body or abdominal anthropometric measures. Methods A cross‐sectional study of consecutive patients undergoing 24 h pH‐metry was conducted. Standardised measurements of body weight and height as well as waist and hip circumference were obtained. The association between several parameters of oesophageal acid exposures and anthropometric measures were examined in univariate and multivariate analyses. Results 206 patients (63% women) with a mean age of 51.4 years who were not on acid‐suppressing drugs were enrolled. A body mass index (BMI) of >30 kg/m2 (compared with BMI<25 kg/m2) was associated with a significant increase in acid reflux episodes, long reflux episodes (>5 min), time with pH<4, and a calculated summary score. These significant associations have affected total, postprandial, upright and supine pH measurements. Waist circumference was also associated with oesophageal acid exposure, but was not as significant or consistent as BMI. When adjusted for waist circumference by including it in the same model, the association between BMI>30 kg/m2 and measures of oesophageal acid exposure became attenuated for all, and not significant for some, thus indicating that waist circumference may mediate a large part of the effect of obesity on oesophageal acid exposure. Conclusions Obesity increases the risk of GERD, at least partly, by increasing oesophageal acid exposure. Waist circumference partly explains the association between obesity and oesophageal acid exposure. PMID:17127706
Traffic-related particulate air pollution exposure in urban areas
NASA Astrophysics Data System (ADS)
Borrego, C.; Tchepel, O.; Costa, A. M.; Martins, H.; Ferreira, J.; Miranda, A. I.
In the last years, there has been an increase of scientific studies confirming that long- and short-term exposure to particulate matter (PM) pollution leads to adverse health effects. The development of a methodology for the determination of accumulated human exposure in urban areas is the main objective of the current work, combining information on concentrations at different microenvironments and population time-activity pattern data. A link between a mesoscale meteorological and dispersion model and a local scale air quality model was developed to define the boundary conditions for the local scale application. The time-activity pattern of the population was derived from statistical information for different sub-population groups and linked to digital city maps. Finally, the hourly PM 10 concentrations for indoor and outdoor microenvironments were estimated for the Lisbon city centre, which was chosen as the case-study, based on the local scale air quality model application for a selected period. This methodology is a first approach to estimate population exposure, calculated as the total daily values above the thresholds recommended for long- and short-term health effects. Obtained results reveal that in Lisbon city centre a large number of persons are exposed to PM levels exceeding the legislated limit value.
Population exposure to heat-related extremes: Demographic change vs climate change
NASA Astrophysics Data System (ADS)
Jones, B.; O'Neill, B. C.; Tebaldi, C.; Oleson, K. W.
2014-12-01
Extreme heat events are projected to increase in frequency and intensity in the coming decades [1]. The physical effects of extreme heat on human populations are well-documented, and anticipating changes in future exposure to extreme heat is a key component of adequate planning/mitigation [2, 3]. Exposure to extreme heat depends not only on changing climate, but also on changes in the size and spatial distribution of the human population. Here we focus on systematically quantifying exposure to extreme heat as a function of both climate and population change. We compare exposure outcomes across multiple global climate and spatial population scenarios, and characterize the relative contributions of each to population exposure to extreme heat. We consider a 2 x 2 matrix of climate and population output, using projections of heat extremes corresponding to RCP 4.5 and RCP 8.5 from the NCAR community land model, and spatial population projections for SSP 3 and SSP 5 from the NCAR spatial population downscaling model. Our primary comparison is across RCPs - exposure outcomes from RCP 4.5 versus RCP 8.5 - paying particular attention to how variation depends on the choice of SSP in terms of aggregate global and regional exposure, as well as the spatial distribution of exposure. We assess how aggregate exposure changes based on the choice of SSP, and which driver is more important, population or climate change (i.e. does that outcome vary more as a result of RCP or SSP). We further decompose the population component to analyze the contributions of total population change, migration, and changes in local spatial structure. Preliminary results from a similar study of the US suggests a four-to-six fold increase in total exposure by the latter half of the 21st century. Changes in population are as important as changes in climate in driving this outcome, and there is regional variation in the relative importance of each. Aggregate population growth, as well as redistribution of the population across larger US regions, strongly affects outcomes while smaller-scale spatial patterns of population change have smaller effects. [1] Collins, M. et al. (2013) Contribution of WG I to the 5th AR of the IPCC[2] Romero-Lankao, P. et al (2014) Contribution of WG II to the 5th AR of the IPCC[3] Walsh, J. et al. (2014) The 3rd National Climate Assessment
Pietrofesa, Ralph A; Turowski, Jason B; Arguiri, Evguenia; Milovanova, Tatyana N; Solomides, Charalambos C; Thom, Stephen R; Christofidou-Solomidou, Melpo
2013-09-30
Spaceflight missions may require crewmembers to conduct Extravehicular Activities (EVA) for repair, maintenance or scientific purposes. Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours (5-8 hours), and may be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health and therefore, pose a threat to the success of the mission. We have developed a murine model of combined, hyperoxia and radiation exposure (double-hit) in the context of evaluating countermeasures to oxidative lung damage associated with space flight. In the current study, our objective was to characterize the early and chronic effects of repeated single and double-hit challenge on lung tissue using a novel murine model of repeated exposure to low-level total body radiation and hyperoxia. This is the first study of its kind evaluating lung damage relevant to space exploration in a rodent model. Mouse cohorts (n=5-15/group) were exposed to repeated: a) normoxia; b) >95% O 2 (O 2 ); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O 2 and IR (O 2 +IR) given 3 times per week for 4 weeks. Lungs were evaluated for oxidative damage, active TGFβ1 levels, cell apoptosis, inflammation, injury, and fibrosis at 1, 2, 4, 8, 12, 16, and 20 weeks post-initiation of exposure. Mouse cohorts exposed to all challenge conditions displayed decreased bodyweight compared to untreated controls at 4 and 8 weeks post-challenge initiation. Chronic oxidative lung damage to lipids (malondialdehyde levels), DNA (TUNEL, cleaved Caspase 3, cleaved PARP positivity) leading to apoptotic cell death and to proteins (nitrotyrosine levels) was elevated all treatment groups. Importantly, significant systemic oxidative stress was also noted at the late phase in mouse plasma, BAL fluid, and urine. Importantly, however, late oxidative damage across all parameters that we measured was significantly higher than controls in all cohorts but was exacerbated by the combined exposure to O 2 and IR. Additionally, impaired levels of arterial blood oxygenation were noted in all exposure cohorts. Significant but transient elevation of lung tissue fibrosis ( p <0.05), determined by lung hydroxyproline content, was detected as early as 2 week in mice exposed to challenge conditions and persisted for 4-8 weeks only. Interestingly, active TGFβ1 levels in +BAL fluid was also transiently elevated during the exposure time only (1-4 weeks). Inflammation and lung edema/lung injury was also significantly elevated in all groups at both early and late time points, especially the double-hit group. We have characterized significant, early and chronic lung changes consistent with oxidative tissue damage in our murine model of repeated radiation and hyperoxia exposure relevant to space travel. Lung tissue changes, detectable several months after the original exposure, include significant oxidative lung damage (lipid peroxidation, DNA damage and protein nitrosative stress) and increased pulmonary fibrosis. These findings, along with increased oxidative stress in diverse body fluids and the observed decreases in blood oxygenation levels in all challenge conditions (whether single or in combination), lead us to conclude that in our model of repeated exposure to oxidative stressors, chronic tissue changes are detected that persist even months after the exposure to the stressor has ended. This data will provide useful information in the design of countermeasures to tissue oxidative damage associated with space exploration.
Pietrofesa, Ralph A; Turowski, Jason B; Arguiri, Evguenia; Milovanova, Tatyana N; Solomides, Charalambos C; Thom, Stephen R; Christofidou-Solomidou, Melpo
2013-01-01
Background Spaceflight missions may require crewmembers to conduct Extravehicular Activities (EVA) for repair, maintenance or scientific purposes. Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours (5-8 hours), and may be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health and therefore, pose a threat to the success of the mission. We have developed a murine model of combined, hyperoxia and radiation exposure (double-hit) in the context of evaluating countermeasures to oxidative lung damage associated with space flight. In the current study, our objective was to characterize the early and chronic effects of repeated single and double-hit challenge on lung tissue using a novel murine model of repeated exposure to low-level total body radiation and hyperoxia. This is the first study of its kind evaluating lung damage relevant to space exploration in a rodent model. Methods Mouse cohorts (n=5-15/group) were exposed to repeated: a) normoxia; b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) given 3 times per week for 4 weeks. Lungs were evaluated for oxidative damage, active TGFβ1 levels, cell apoptosis, inflammation, injury, and fibrosis at 1, 2, 4, 8, 12, 16, and 20 weeks post-initiation of exposure. Results Mouse cohorts exposed to all challenge conditions displayed decreased bodyweight compared to untreated controls at 4 and 8 weeks post-challenge initiation. Chronic oxidative lung damage to lipids (malondialdehyde levels), DNA (TUNEL, cleaved Caspase 3, cleaved PARP positivity) leading to apoptotic cell death and to proteins (nitrotyrosine levels) was elevated all treatment groups. Importantly, significant systemic oxidative stress was also noted at the late phase in mouse plasma, BAL fluid, and urine. Importantly, however, late oxidative damage across all parameters that we measured was significantly higher than controls in all cohorts but was exacerbated by the combined exposure to O2 and IR. Additionally, impaired levels of arterial blood oxygenation were noted in all exposure cohorts. Significant but transient elevation of lung tissue fibrosis (p<0.05), determined by lung hydroxyproline content, was detected as early as 2 week in mice exposed to challenge conditions and persisted for 4-8 weeks only. Interestingly, active TGFβ1 levels in +BAL fluid was also transiently elevated during the exposure time only (1-4 weeks). Inflammation and lung edema/lung injury was also significantly elevated in all groups at both early and late time points, especially the double-hit group. Conclusion We have characterized significant, early and chronic lung changes consistent with oxidative tissue damage in our murine model of repeated radiation and hyperoxia exposure relevant to space travel. Lung tissue changes, detectable several months after the original exposure, include significant oxidative lung damage (lipid peroxidation, DNA damage and protein nitrosative stress) and increased pulmonary fibrosis. These findings, along with increased oxidative stress in diverse body fluids and the observed decreases in blood oxygenation levels in all challenge conditions (whether single or in combination), lead us to conclude that in our model of repeated exposure to oxidative stressors, chronic tissue changes are detected that persist even months after the exposure to the stressor has ended. This data will provide useful information in the design of countermeasures to tissue oxidative damage associated with space exploration. PMID:24358450
Modeling indoor particulate exposures in inner city school classrooms
Gaffin, Jonathan M.; Petty, Carter R.; Hauptman, Marissa; Kang, Choong-Min; Wolfson, Jack M.; Awad, Yara Abu; Di, Qian; Lai, Peggy S.; Sheehan, William J.; Baxi, Sachin; Coull, Brent A.; Schwartz, Joel D.; Gold, Diane R.; Koutrakis, Petros; Phipatanakul, Wanda
2016-01-01
Outdoor air pollution penetrates buildings and contributes to total indoor exposures. We investigated the relationship of indoor to outdoor particulate matter in inner-city school classrooms. The School Inner City Asthma Study investigates the effect of classroom-based environmental exposures on students with asthma in the northeast United States. Mixed-effects linear models were used to determine the relationships between indoor PM2.5 and BC and their corresponding outdoor concentrations, and to develop a model for predicting exposures to these pollutants. The indoor-outdoor sulfur ratio was used as an infiltration factor of outdoor fine particles. Weeklong concentrations of PM2.5 and BC in 199 samples from 136 classrooms (30 school buildings) were compared to those measured at a central monitoring site averaged over the same timeframe. Mixed effects regression models found significant random intercept and slope effects, which indicate that: 1) there are important PM2.5 sources in classrooms; 2) the penetration of outdoor PM2.5 particles varies by school, and 3) the site-specific outside PM2.5 levels (inferred by the models) differ from those observed at the central monitor site. Similar results were found for BC except for lack of indoor sources. The fitted predictions from the sulfur-adjusted models were moderately predictive of observed indoor pollutant levels (Out of sample correlations: PM2.5: r2 = 0.68, BC; r2 = 0.61). Our results suggest that PM2.5 has important classroom sources, which vary by school. Furthermore, using these mixed effects models, classroom exposures can be accurately predicted for dates when central site measures are available but indoor measures are not available. PMID:27599884
In utero arsenic exposure induces early onset of atherosclerosis in ApoE−/− mice
Srivastava, Sanjay; D’Souza, Stanley E.; Sen, Utpal; States, J. Christopher
2007-01-01
Consumption of arsenic contaminated drinking water has been linked to higher rates of coronary disease, stroke, and peripheral arterial disease. Recent evidence suggests that early life exposures may play a significant role in the onset of chronic adult diseases. To investigate the potential for in utero exposure to accelerate the onset of cardiovascular disease we exposed pregnant ApoE-knockout (ApoE−/−) mice to arsenic in their drinking water and examined the aortic trees of their male offspring for evidence of early disease 10 and 16 weeks after birth. Mice were maintained on normal chow after weaning. ApoE−/− mice are a commonly used model for atherogenesis and spontaneously develop atherosclerotic disease. Mice exposed to arsenic in utero showed a >2-fold increase in lesion formation in the aortic roots as well as the aortic arch compared to control mice at both 10 and 16 weeks of age. The mice exposed to arsenic also had a 20 – 40% decrease in total triglycerides, but no change in total cholesterol, phospholipids and total abundance of VLDL or HDL particles. Subfractionation of VLDL particles showed a decrease in large VLDL particles. In addition, the arsenic exposed mice showed a vasorelaxation defect in response to acetylcholine suggesting disturbance of endothelial cell signalling. These results indicate that in utero arsenic exposure induces an early onset of atherosclerosis in ApoE−/− mice without a hyperlipidemic diet and support the hypothesis that in utero arsenic exposure may be atherogenic in humans. PMID:17317095
Protective factors can mitigate behavior problems after prenatal cocaine and other drug exposures.
Bada, Henrietta S; Bann, Carla M; Whitaker, Toni M; Bauer, Charles R; Shankaran, Seetha; Lagasse, Linda; Lester, Barry M; Hammond, Jane; Higgins, Rosemary
2012-12-01
We determined the role of risk and protective factors on the trajectories of behavior problems associated with high prenatal cocaine exposure (PCE)/polydrug exposure. The Maternal Lifestyle Study enrolled 1388 children with or without PCE, assessed through age 15 years. Because most women using cocaine during pregnancy also used other substances, we analyzed for the effects of 4 categories of prenatal drug exposure: high PCE/other drugs (OD), some PCE/OD, OD/no PCE, and no PCE/no OD. Risks and protective factors at individual, family, and community levels that may be associated with behavior outcomes were entered stepwise into latent growth curve models, then replaced by cumulative risk and protective indexes, and finally by a combination of levels of risk and protective indexes. Main outcome measures were the trajectories of externalizing, internalizing, total behavior, and attention problems scores from the Child Behavior Checklist (parent). A total of 1022 (73.6%) children had known outcomes. High PCE/OD significantly predicted externalizing, total, and attention problems when considering the balance between risk and protective indexes. Some PCE/OD predicted externalizing and attention problems. OD/no PCE also predicted behavior outcomes except for internalizing behavior. High level of protective factors was associated with declining trajectories of problem behavior scores over time, independent of drug exposure and risk index scores. High PCE/OD is a significant risk for behavior problems in adolescence; protective factors may attenuate its detrimental effects. Clinical practice and public health policies should consider enhancing protective factors while minimizing risks to improve outcomes of drug-exposed children.
Zeidler-Erdely, Patti C.; Antonini, James M.; Meighan, Terence G.; Young, Shih-Houng; Eye, Tracy J.; Hammer, Mary Ann; Erdely, Aaron
2016-01-01
Pulmonary toxicity studies often use bronchoalveolar lavage (BAL) to investigate potential adverse lung responses to a particulate exposure. The BAL cellular fraction is counted, using automated (i.e. Coulter Counter®), flow cytometry or manual (i.e. hemocytometer) methods, to determine inflammatory cell influx. The goal of the study was to compare the different counting methods to determine which is optimal for examining BAL cell influx after exposure by inhalation or intratracheal instillation (ITI) to different particles with varying inherent pulmonary toxicities in both rat and mouse models. General findings indicate that total BAL cell counts using the automated and manual methods tended to agree after inhalation or ITI exposure to particle samples that are relatively nontoxic or at later time points after exposure to a pneumotoxic particle when the response resolves. However, when the initial lung inflammation and cytotoxicity was high after exposure to a pneumotoxic particle, significant differences were observed when comparing cell counts from the automated, flow cytometry and manual methods. When using total BAL cell count for differential calculations from the automated method, depending on the cell diameter size range cutoff, the data suggest that the number of lung polymorphonuclear leukocytes (PMN) varies. Importantly, the automated counts, regardless of the size cutoff, still indicated a greater number of total lung PMN when compared with the manual method, which agreed more closely with flow cytometry. The results suggest that either the manual method or flow cytometry would be better suited for BAL studies where cytotoxicity is an unknown variable. PMID:27251196
Potential Sources of Bisphenol A in the Neonatal Intensive Care Unit
Mendonca, Kaitlin; Hauser, Russ; Calafat, Antonia M.; Ye, Xiaoyun; Meeker, John D.; Ackerman, Robin; Cullinane, Judi; Faller, Josephine; Ringer, Steven
2013-01-01
OBJECTIVES: To determine whether nutritional intake and medical devices are bisphenol A (BPA) exposure sources among premature infants in the NICU. METHODS: Mothers and their premature infants cared for in the NICU for the past 3 days were recruited for this exposure assessment study. Forty-three mothers contributed 1 nutrition sample (breast milk or formula) to characterize the infant’s intake. Two urine samples (before and after feeding) were collected from each of 55 infants. Medical device use was categorized as “low” or “high” based on the number and invasiveness of devices used. BPA urinary concentrations used as a biomarker to estimate BPA exposure were measured by online solid-phase extraction, high performance liquid chromatography, isotope dilution, tandem mass spectrometry. Nonparametric equivalence tests, intraclass correlations, and hierarchical linear mixed-effects models were conducted. RESULTS: Breast milk and formula samples did not differ in total BPA concentration nor did infants’ median urinary concentration of total BPA before or after feedings. However, the median urinary total BPA concentration among infants who required the use of 4 or more medical devices in the past 3 days was significantly higher (36.6 µg/L) than among infants who required the use of 0 to 3 devices (13.9 µg/L). The calculated BPA exposures are lower than the US Environmental Protection Agency reference dose, but considerably higher (16- to 32-fold) than among infants or children from the general population. CONCLUSIONS: The number of medical devices used in the past 3 days, but not nutritional intake, was positively associated with exposure to BPA. PMID:23420909
Zeidler-Erdely, Patti C; Antonini, James M; Meighan, Terence G; Young, Shih-Houng; Eye, Tracy J; Hammer, Mary Ann; Erdely, Aaron
2016-08-01
Pulmonary toxicity studies often use bronchoalveolar lavage (BAL) to investigate potential adverse lung responses to a particulate exposure. The BAL cellular fraction is counted, using automated (i.e. Coulter Counter®), flow cytometry or manual (i.e. hemocytometer) methods, to determine inflammatory cell influx. The goal of the study was to compare the different counting methods to determine which is optimal for examining BAL cell influx after exposure by inhalation or intratracheal instillation (ITI) to different particles with varying inherent pulmonary toxicities in both rat and mouse models. General findings indicate that total BAL cell counts using the automated and manual methods tended to agree after inhalation or ITI exposure to particle samples that are relatively nontoxic or at later time points after exposure to a pneumotoxic particle when the response resolves. However, when the initial lung inflammation and cytotoxicity was high after exposure to a pneumotoxic particle, significant differences were observed when comparing cell counts from the automated, flow cytometry and manual methods. When using total BAL cell count for differential calculations from the automated method, depending on the cell diameter size range cutoff, the data suggest that the number of lung polymorphonuclear leukocytes (PMN) varies. Importantly, the automated counts, regardless of the size cutoff, still indicated a greater number of total lung PMN when compared with the manual method, which agreed more closely with flow cytometry. The results suggest that either the manual method or flow cytometry would be better suited for BAL studies where cytotoxicity is an unknown variable.
CTIO Infrared Imager Exposure Time Calculator Note: ISPI throughput values updated 12 March 2005 S/N ratio 10 Exposure Time 1 (seconds) Calculate S/N for specified Total Integration Time Calculate Total Integration Time to reach Desired S/N Submit Exposure Calculation Request [CTIO Home] [CTIO IR
Impacts of environment on human diseases: a web service for the human exposome
NASA Astrophysics Data System (ADS)
Karssenberg, Derek; Vaartjes, Ilonca; Kamphuis, Carlijn; Strak, Maciek; Schmitz, Oliver; Soenario, Ivan; de Jong, Kor
2017-04-01
The exposome is the totality of human environmental exposures from conception onwards. Identifying the contribution of the exposome to human diseases and health is a key issue in health research. Examples include the effect of air pollution exposure on cardiovascular diseases, the impact of disease vectors (mosquitos) and surface hydrology exposure on malaria, and the effect of fast food restaurant exposure on obesity. Essential to health research is to disentangle the effects of the exposome and genome on health. Ultimately this requires quantifying the totality of all human exposures, for each individual in the studied human population. This poses a massive challenge to geoscientists, as environmental data are required at a high spatial and temporal resolution, with a large spatial and temporal coverage representing the area inhabited by the population studied and the time span representing several decades. Then, these data need to be combined with space-time paths of individuals to calculate personal exposures for each individual in the population. The Global and Geo Health Data Centre is taking this challenge by providing a web service capable of enriching population data with exposome information. Our web service can generate environmental information either from archived national (up to 5 m spatial and 1 h temporal resolution) and global environmental information or generated on the fly using environmental models running as microservices. On top of these environmental data services runs an individual exposure service enabling health researchers to select different spatial and temporal aggregation methods and to upload space-time paths of individuals. These are then enriched with personal exposures and eventually returned to the user. We illustrate the service in an example of individual exposures to air pollutants calculated from hyper resolution air pollution data and various approaches to estimate space-time paths of individuals.
Sun, J; Lucas, R M; Harrison, S; van der Mei, I; Armstrong, B K; Nowak, M; Brodie, A; Kimlin, M G
2014-12-01
Despite the widespread use of ambient ultraviolet radiation (UVR) as a proxy measure of personal exposure to UVR, the relationship between the two is not well-defined. This paper examines the effects of season and latitude on the relationship between ambient UVR and personal UVR exposure. We used data from the AusD Study, a multi-centre cross-sectional study among Australian adults (18-75 years), where personal UVR exposure was objectively measured using polysulphone dosimeters. Data were analysed for 991 participants from 4 Australian cities of different latitude: Townsville (19.3°S), Brisbane (27.5°S), Canberra (35.3°S) and Hobart (42.8°S). Daily personal UVR exposure varied from 0.01 to 21 Standard Erythemal Doses (median = 1.1, IQR: 0.5-2.1), on average accounting for 5% of the total available ambient dose. There was an overall positive correlation between ambient UVR and personal UVR exposure (r = 0.23, p < 0.001). However, the correlations varied according to season and study location: from strong correlations in winter (r = 0.50) and at high latitudes (Hobart, r = 0.50; Canberra, r = 0.39), to null or even slightly negative correlations, in summer (r = 0.01) and at low latitudes (Townsville, r = -0.06; Brisbane, r = -0.16). Multiple regression models showed significant effect modification by season and location. Personal exposure fraction of total available ambient dose was highest in winter (7%) and amongst Hobart participants (7%) and lowest in summer (1%) and in Townsville (4%). These results suggest season and latitude modify the relationship between ambient UVR and personal UVR exposure. Ambient UVR may not be a good indicator for personal exposure dose under some circumstances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, H.; Perera, F.; Pac, A.
2008-11-15
Current understanding on health effects of long-term polycyclic aromatic hydrocarbon (PAH) exposure is limited by lack of data on time-varying nature of the pollutants at an individual level. In a cohort of pregnant women in Krakow, Poland, we examined the contribution of temporal, spatial, and behavioral factors to prenatal exposure to airborne PAHs within each trimester and developed a predictive model of PAH exposure over the entire gestational period. The observed personal, indoor, and outdoor B(a)P levels we observed in Krakow far exceed the recommended Swedish guideline value for B(a)P of 0.1 ng/m{sup 3}. Based on simultaneously monitored levels, themore » outdoor PAH level alone accounts for 93% of total variability in personal exposure during the heating season. Living near the Krakow bus depot, a crossroad, and the city, center and time spent outdoors or commuting were not associated with higher personal exposure. During the nonheating season only, a 1-hr increase in environmental tobacco smoke (ETS) exposure was associated with a 10-16% increase in personal exposure to the nine measured PAHs. A 1{degree}C decrease in ambient temperature was associated with a 3-5% increase in exposure to benz(a)anthracene, benzo(k)fluoranthene, and dibenz(a,h)anthracene, after accounting for the outdoor concentration. A random effects model demonstrated that mean personal exposure at a given gestational period depends on the season, residence location, and ETS. Considering that most women reported spending < 3 hr/day outdoors, most women in the study were exposed to outdoor-originating PAHs within the indoor setting. Cross-sectional, longitudinal monitoring supplemented with questionnaire data allowed development of a gestation-length model of individual-level exposure with high precision and validity.« less
Lead exposure potentiates predatory attack behavior in the cat.
Li, Wenjie; Han, Shenggao; Gregg, Thomas R; Kemp, Francis W; Davidow, Amy L; Louria, Donald B; Siegel, Allan; Bogden, John D
2003-07-01
Epidemiologic studies have demonstrated that environmental lead exposure is associated with aggressive behavior in children; however, numerous confounding variables limit the ability of these studies to establish a causal relationship. The study of aggressive behavior using a validated animal model was used to test the hypothesis that there is a causal relationship between lead exposure and aggression in the absence of confounding variables. We studied the effects of lead exposure on a feline model of aggression: predatory (quiet biting) attack of an anesthetized rat. Five cats were stimulated with a precisely controlled electrical current via electrodes inserted into the lateral hypothalamus. The response measure was the predatory attack threshold current (i.e., the current required to elicit an attack response on 50% of the trials). Blocks of trials were administered in which predatory attack threshold currents were measured three times a week for a total of 6-10 weeks, including before, during, and after lead exposure. Lead was incorporated into cat food "treats" at doses of 50-150 mg/kg/day. Two of the five cats received a second period of lead exposure. Blood lead concentrations were measured twice a week and were <1, 21-77, and <20 micro g/dL prior to, during, and after lead exposure, respectively. The predatory attack threshold decreased significantly during initial lead exposure in three of five cats and increased after the cessation of lead exposure in four of the five cats (P<0.01). The predatory attack thresholds and blood lead concentrations for each cat were inversely correlated (r=-0.35 to -0.74). A random-effects mixed model demonstrated a significant (P=0.0019) negative association between threshold current and blood lead concentration. The data of this study demonstrate that lead exposure enhances predatory aggression in the cat and provide experimental support for a causal relationship between lead exposure and aggressive behavior in humans.
Leffondré, Karen; Abrahamowicz, Michal; Siemiatycki, Jack
2003-12-30
Case-control studies are typically analysed using the conventional logistic model, which does not directly account for changes in the covariate values over time. Yet, many exposures may vary over time. The most natural alternative to handle such exposures would be to use the Cox model with time-dependent covariates. However, its application to case-control data opens the question of how to manipulate the risk sets. Through a simulation study, we investigate how the accuracy of the estimates of Cox's model depends on the operational definition of risk sets and/or on some aspects of the time-varying exposure. We also assess the estimates obtained from conventional logistic regression. The lifetime experience of a hypothetical population is first generated, and a matched case-control study is then simulated from this population. We control the frequency, the age at initiation, and the total duration of exposure, as well as the strengths of their effects. All models considered include a fixed-in-time covariate and one or two time-dependent covariate(s): the indicator of current exposure and/or the exposure duration. Simulation results show that none of the models always performs well. The discrepancies between the odds ratios yielded by logistic regression and the 'true' hazard ratio depend on both the type of the covariate and the strength of its effect. In addition, it seems that logistic regression has difficulty separating the effects of inter-correlated time-dependent covariates. By contrast, each of the two versions of Cox's model systematically induces either a serious under-estimation or a moderate over-estimation bias. The magnitude of the latter bias is proportional to the true effect, suggesting that an improved manipulation of the risk sets may eliminate, or at least reduce, the bias. Copyright 2003 JohnWiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Trimoreau, E.; Archambault, B.; Brind'Amour, A.; Lepage, M.; Guitton, J.; Le Pape, O.
2013-11-01
Essential fish habitat suitability (EFHS) models and geographic information system (GIS) were combined to describe nursery habitats for three flatfish species (Solea solea, Pleuronectes platessa, Dicologlossa cuneata) in the Bay of Biscay (Western Europe), using physical parameters known or suspected to influence juvenile flatfish spatial distribution and density (i.e. bathymetry, sediment, estuarine influence and wave exposure). The effects of habitat features on juvenile distribution were first calculated from EFHS models, used to identify the habitats in which juvenile are concentrated. The EFHS model for S. solea confirmed previous findings regarding its preference for shallow soft bottom areas and provided new insights relating to the significant effect of wave exposure on nursery habitat suitability. The two other models extended these conclusions with some discrepancies among species related to their respective niches. Using a GIS, quantitative density maps were produced from EFHS models predictions. The respective areas of the different habitats were determined and their relative contributions (density × area) to the total amount of juveniles were calculated at the scale of stock management, in the Bay of Biscay. Shallow and muddy areas contributed to 70% of total juvenile relative abundance whereas only representing 16% of the coastal area, suggesting that they should be considered as essential habitats for these three flatfish species. For S. solea and P. platessa, wave exposure explained the propensity for sheltered areas, where concentration of juveniles was higher. Distribution maps of P. platessa and D. cuneata juveniles also revealed opposite spatial and temporal trends which were explained by the respective biogeographical distributions of these two species, close to their southern and northern limit respectively, and by their responses to hydroclimatic trends.
Kuo, Janice R; Kaloupek, Danny G; Woodward, Steven H
2012-10-01
Data from animal models demonstrate a link between stress exposure and hypertrophic changes in the amygdala; however, studies of adults with posttraumatic stress disorder (PTSD) have failed to find analogous structural alterations. To compare amygdala volumes between a sample of combat veterans with and without PTSD (analysis 1) and examine whether our observation of larger amygdala volume in individuals with PTSD could be accounted for by the presence of trauma exposure in childhood and the severity of combat exposure in adulthood (analysis 2). Cross-sectional magnetic resonance imaging. Veterans Affairs Palo Alto Health Care System Inpatient Trauma Recovery Program and Veterans Affairs New England Health Care System Outpatient PTSD program. Ninety-nine combat-exposed veterans from the Vietnam Conflict or the Persian Gulf War who had been exposed to substantial military operational stress. Amygdala volume adjusted for total cerebral volume, Life Events Checklist, and the Combat Exposure Scale. Analysis 1 indicated that combat-exposed individuals with PTSD exhibited larger total amygdala volume compared with their non-PTSD counterparts (99 individuals, P = .047). Analysis 2 indicated that greater severity of combat exposure (87 individuals, P = .02), as well as the interaction between the presence of early life trauma and the severity of combat exposure (87 individuals, P = .008), were significantly associated with smaller total amygdala volume. The PTSD diagnosis continued to explain larger amygdala volume (87 individuals, P = .006). Posttraumatic stress disorder is associated with enlarged amygdala volume, above the variance accounted for by a history of early life trauma and severity of adult trauma exposure. The discrepancy between our and prior findings may be explained by variability in these trauma indices in previous investigations. These findings support additional study of amygdala structure in human stress disorders and further delineation of the role of early and adult trauma on associated neurologic changes.
Massarsky, Andrey; Jayasundara, Nishad; Bailey, Jordan M; Oliveri, Anthony N; Levin, Edward D; Prasad, G L; Di Giulio, Richard T
2015-01-01
Cigarette smoke has been associated with a number of pathologies; however, the mechanisms leading to developmental effects are yet to be fully understood. The zebrafish embryo is regarded as a 'bridge model'; however, not many studies examined its applicability to cigarette smoke toxicity. This study examined the effects of total particulate matter (TPM) from 3R4F reference cigarettes on the early development of zebrafish (Danio rerio). Zebrafish embryos were exposed to two concentrations of TPM (0.4 and 1.4 μg/mL equi-nicotine units) or nicotine at equivalent doses. The exposures began at 2h post-fertilization (hpf) and lasted until 96 hpf. Several physiological parameters were assessed during or after the exposure. We show that TPM increased mortality, delayed hatching, and increased the incidence of deformities in zebrafish. TPM exposure also increased the incidence of hemorrhage and disrupted the angiogenesis of the major vessels in the brain. Moreover, TPM exposure reduced the larval body length, decreased the heart rate, and reduced the metabolic rate. Biomarkers of xenobiotic metabolism and oxidative stress were also affected. TPM-exposed zebrafish also differed behaviorally: at 24 hpf the embryos had a higher frequency of spontaneous contractions and at 144 hpf the larvae displayed swimming hyperactivity. This study demonstrates that TPM disrupts several aspects of early development in zebrafish. The effects reported for TPM were not attributable to nicotine, since embryos treated with nicotine alone did not differ significantly from the control group. Collectively, our work illustrates the utility of zebrafish as an alternative model to evaluate the toxic effects of cigarette smoke constituents. Copyright © 2015 Elsevier Inc. All rights reserved.
Merchant, Nathan D; Pirotta, Enrico; Barton, Tim R; Thompson, Paul M
2016-01-01
We review recent work that developed new techniques for underwater noise assessment that integrate acoustic monitoring with automatic identification system (AIS) shipping data and time-lapse video, meteorological, and tidal data. Two sites were studied within the Moray Firth Special Area of Conservation (SAC) for bottlenose dolphins, where increased shipping traffic is expected from construction of offshore wind farms outside the SAC. Noise exposure varied markedly between the sites, and natural and anthropogenic contributions were characterized using multiple data sources. At one site, AIS-operating vessels accounted for total cumulative sound exposure (0.1-10 kHz), suggesting that noise modeling using the AIS would be feasible.
Yang, Fang; Salmon, Charles T; Pang, Joyce S; Cheng, Wendy J Y
2015-02-01
The study tested a moderated mediation model to examine the mechanisms underlying the link between media exposure and adolescent smoking intention by utilizing a modification of cultivation theory. A total of 12,586 non-current smoker adolescents in California were included in the analysis. Results showed that media exposure was positively related to smoking intention via perceived prevalence of peer smoking when friend disapproval of cigarette use was low. This study contributes to a better understanding of the mechanisms regarding the media effects on smoking intention, but the findings should be interpreted with caution due to the small effect size. © The Author(s) 2013.
NASA Astrophysics Data System (ADS)
Petrov, Vladislav; Ivanov, Alexandr; Barteneva, Svetlana; Snigiryeva, Galina; Shafirkin, Alexandr
Earth modeling of crewmember exposure should be performed for correct estimating radiation hazard during the flight. Such modeling was planned in a monkey experiment for investigating consequences of exposure to a man during an interplanetary flight. It should reflect a chronic impact of galactic cosmic rays and acute and fractional irradiation specified for solar cosmic rays and radiation belts respectively. Due to the difficulty of modeling a chronic impact with the help of a charged particles accelerator it can be used the gamma source. While irradiating big animal groups during a long-term period of time it is preferably to replace chronic irradiation by an equal fractional one. In this case the chosen characteristics of fractional irradiation should ensure the appearances of radiobiological consequences equal to the ones caused by the modeled chronic exposure. So for developing an exposure scheme in the monkey experiment (with Macaca -Rhesus) the model of the acting residual dose, that takes into account repair and recovery processes in the exposed body was used. The total dose value was in the limits from 2.32 Gy up to 3.5 Gy depending on the exposure character. The acting residual dose in all versions of exposure was 2.0 Gy for every monkey. While performing the experiment all the requirements of bioethics for the work with animals were observed. The objects of interest were genomic damages in lymphocytes of monkey's peripheral blood. The data about the CAF during the exposure and at various time moments after exposure particularly directly after the completion of chronicle and fractional irradiation were analyzed. CAF -dose of acute single gamma-irradiation in the range 0 -1.5Gy relationship (calibration curve) was defined in vitro. In addition the rate of the aberrant cells elimination within three months after the irradiation completion was estimated. On the basis of the obtained CAF data we performed verification of applicability of cytogenetic analysis for estimating the monkey gamma -dose exposure in the experiment It was obtained that this method permits to estimate the acting residual dose with accuracy of 30
Sha, Chenyuan; Wang, Xuemei; Lin, Yuanyuan; Fan, Yifan; Chen, Xi; Hang, Jian
2018-08-15
Sustainable urban design is an effective way to improve urban ventilation and reduce vehicular pollutant exposure to urban residents. This paper investigated the impacts of urban open space and 'lift-up' building design on vehicular CO (carbon monoxide) exposure in typical three-dimensional (3D) urban canopy layer (UCL) models under neutral atmospheric conditions. The building intake fraction (IF) represents the fraction of total vehicular pollutant emissions inhaled by residents when they stay at home. The building daily CO exposure (E t ) means the extent of human beings' contact with CO within one day indoor at home. Computational fluid dynamics (CFD) simulations integrating with these two concepts were performed to solve turbulent flow and assess vehicular CO exposure to urban residents. CFD technique with the standard k-ε model was successfully validated by wind tunnel data. The initial numerical UCL model consists of 5-row and 5-column (5×5) cubic buildings (building height H=street width W=30m) with four approaching wind directions (θ=0°, 15°, 30°, 45°). In Group I, one of the 25 building models is removed to attain urban open space settings. In Group II, the first floor (Lift-up1), or second floor (Lift-up2), or third floor (Lift-up3) of all buildings is elevated respectively to create wind pathways through buildings. Compared to the initial case, urban open space can slightly or significantly reduce pollutant exposure for urban residents. As θ=30° and 45°, open space settings are more effective to reduce pollutant exposure than θ=0° and 15°.The pollutant dilution near or surrounding open space and in its adjacent downstream regions is usually enhanced. Lift-up1 and Lift-up2 experience much greater pollutant exposure reduction in all wind directions than Lift-up3 and open space. Although further investigations are still required to provide practical guidelines, this study is one of the first attempts for reducing urban pollutant exposure by improving urban design. Copyright © 2018. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickbut, R.M.; Huszai, C.M.; Lay, P.W.
1995-12-31
The uptake, biotransformation, and elimination of {sup 3}H-benzo[a]pyrene (B[a]P) by the gammarid amphipod Leptocheirus plumulosus was evaluated in laboratory exposures. Rapid uptake (i.e. within 2.5 h) of sediment-associated B[a]P was observed, and during the exposures organism body burdens were dominated by organic extractable (e.g. parent compound) components, with aqueous soluble and bound metabolites constituting a much smaller fraction of the total body burden. However, upon discontinuation of exposure of the organisms to B[a]P, organic extractable compounds were more rapidly eliminated by L. plumulosus than the aqueous extractable and bound contaminant pools. Uptake and elimination of B[a]P were adequately modeled assumingmore » first order kinetics, with the exception of the early stages of exposure. The rapid uptake during the first few hours of exposure of Leptocheirus to sediment-associated B[a]P may be due to sorption of B[a]P to the exoskeleton of the organism. This hypothesis is under further investigation. Uptake and elimination of B[a]P metabolite pools by L. plumulosus was best modeled assuming a fraction of the metabolite pool was irreversibly bound or slowly eliminated.« less
Air pollution and nonmalignant respiratory mortality in 16 cohorts within the ESCAPE project.
Dimakopoulou, Konstantina; Samoli, Evangelia; Beelen, Rob; Stafoggia, Massimo; Andersen, Zorana Jovanovic; Hoffmann, Barbara; Fischer, Paul; Nieuwenhuijsen, Mark; Vineis, Paolo; Xun, Wei; Hoek, Gerard; Raaschou-Nielsen, Ole; Oudin, Anna; Forsberg, Bertil; Modig, Lars; Jousilahti, Pekka; Lanki, Timo; Turunen, Anu; Oftedal, Bente; Nafstad, Per; Schwarze, Per E; Penell, Johanna; Fratiglioni, Laura; Andersson, Niklas; Pedersen, Nancy; Korek, Michal; De Faire, Ulf; Eriksen, Kirsten Thorup; Tjønneland, Anne; Becker, Thomas; Wang, Meng; Bueno-de-Mesquita, Bas; Tsai, Ming-Yi; Eeftens, Marloes; Peeters, Petra H; Meliefste, Kees; Marcon, Alessandro; Krämer, Ursula; Kuhlbusch, Thomas A J; Vossoughi, Mohammad; Key, Timothy; de Hoogh, Kees; Hampel, Regina; Peters, Annette; Heinrich, Joachim; Weinmayr, Gudrun; Concin, Hans; Nagel, Gabriele; Ineichen, Alex; Jacquemin, Bénédicte; Stempfelet, Morgane; Vilier, Alice; Ricceri, Fulvio; Sacerdote, Carlotta; Pedeli, Xanthi; Katsoulis, Michalis; Trichopoulou, Antonia; Brunekreef, Bert; Katsouyanni, Klea
2014-03-15
Prospective cohort studies have shown that chronic exposure to particulate matter and traffic-related air pollution is associated with reduced survival. However, the effects on nonmalignant respiratory mortality are less studied, and the data reported are less consistent. We have investigated the relationship of long-term exposure to air pollution and nonmalignant respiratory mortality in 16 cohorts with individual level data within the multicenter European Study of Cohorts for Air Pollution Effects (ESCAPE). Data from 16 ongoing cohort studies from Europe were used. The total number of subjects was 307,553. There were 1,559 respiratory deaths during follow-up. Air pollution exposure was estimated by land use regression models at the baseline residential addresses of study participants and traffic-proximity variables were derived from geographical databases following a standardized procedure within the ESCAPE study. Cohort-specific hazard ratios obtained by Cox proportional hazard models from standardized individual cohort analyses were combined using metaanalyses. We found no significant associations between air pollution exposure and nonmalignant respiratory mortality. Most hazard ratios were slightly below unity, with the exception of the traffic-proximity indicators. In this study of 16 cohorts, there was no association between air pollution exposure and nonmalignant respiratory mortality.
Exposures to Transit and Other Sources of Noise among New York City Residents
Neitzel, Richard L.; Gershon, Robyn R. M.; McAlexander, Tara P.; Magda, Lori A.; Pearson, Julie M.
2015-01-01
To evaluate the contributions of common noise sources to total annual noise exposures among urban residents and workers, we estimated exposures associated with five common sources (use of mass transit, occupational and non-occupational activities, MP3 player and stereo use, and time at home and doing other miscellaneous activities) among a sample of over 4500 individuals in New York City (NYC). We then evaluated the contributions of each source to total noise exposure and also compared our estimated exposures to the recommended 70 dBA annual exposure limit. We found that one in ten transit users had noise exposures in excess of the recommended exposure limit from their transit use alone. When we estimated total annual exposures, 90% of NYC transit users and 87% of nonusers exceeded the recommended limit. MP3 player and stereo use, which represented a small fraction of the total annual hours for each subject on average, was the primary source of exposure among the majority of urban dwellers we evaluated. Our results suggest that the vast majority of urban mass transit riders may be at risk of permanent, irreversible noise-induced hearing loss and that, for many individuals, this risk is driven primarily by exposures other than occupational noise. PMID:22088203
2014-01-01
Residential exposure can dominate total exposure for commercial chemicals of health concern; however, despite the importance of consumer exposures, methods for estimating household exposures remain limited. We collected house dust and indoor air samples in 49 California homes and analyzed for 76 semivolatile organic compounds (SVOCs)—phthalates, polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and pesticides. Sixty chemicals were detected in either dust or air and here we report 58 SVOCs detected in dust for the first time. In dust, phthalates (bis(2-ethylhexyl) phthalate, benzyl butyl phthalate, di-n-butyl phthalate) and flame retardants (PBDE 99, PBDE 47) were detected at the highest concentrations relative to other chemicals at the 95th percentile, while phthalates were highest at the median. Because SVOCs are found in both gas and condensed phases and redistribute from their original source over time, partitioning models can clarify their fate indoors. We use empirical data to validate air-dust partitioning models and use these results, combined with experience in SVOC exposure assessment, to recommend residential exposure measurement strategies. We can predict dust concentrations reasonably well from measured air concentrations (R2 = 0.80). Partitioning models and knowledge of chemical Koa elucidate exposure pathways and suggest priorities for chemical regulation. These findings also inform study design by allowing researchers to select sampling approaches optimized for their chemicals of interest and study goals. While surface wipes are commonly used in epidemiology studies because of ease of implementation, passive air sampling may be more standardized between homes and also relatively simple to deploy. Validation of passive air sampling methods for SVOCs is a priority. PMID:25488487
Children who witness violence, and parent report of children's behavior.
Augustyn, Marilyn; Frank, Deborah A; Posner, Michael; Zuckerman, Barry
2002-08-01
To examine how much distress children report in response to violence that they have witnessed and how this is associated with parental reports of children's behavior. As part of a study of in utero exposure to cocaine, children completed the Levonn interview for assessing children's symptoms of distress in response to witnessing violence. The children's caregivers completed the Exposure to Violence Interview (EVI), a caretaker-report measure of the child's exposure to violent events during the last 12 months. The EVI was analyzed as a 3-level variable: no exposure, low exposure, and high exposure. The caregivers also completed the Children's Behavior Checklist (CBCL). Of 94 six-year-old children, 58% had no exposure to violence, 36% had low exposure to violence, and 6% had high exposure to violence, according to caretaker reports. The children's median+/-SD Levonn score was 64 (SD +/- 19.3). The mean SD +/- CBCL total T-score was 53 (SD +/- 10.2). In multiple regression analyses with gender, low and high exposure on EVI, Levonn, and prenatal cocaine exposure status as predictors, the Levonn score explained 4.8% of total variance in children's CBCL internalizing scores, 9.1% of the total variance in CBCL externalizing score, and 12.2% of the total variance in CBCL total score (P =.04, P =.004, and P<.001, respectively). After accounting for the caretaker's report of the level of the child's exposure to violence, the child's own report significantly increased the amount of variance in predicting child behavior problems with the CBCL. These findings indicate that clinicians and researchers should elicit children's own accounts of exposure to violence in addition to the caretakers' when attempting to understand children's behavior.
Factors limiting mallard brood survival in prairie pothole landscapes
Krapu, Gary L.; Pietz, Pamela J.; Brandt, David A.; Cox, Robert R.
2000-01-01
In order to estimate mallard (Anas platyrhynchos) production from managed and unmanaged lands, waterfowl biologists need measurable predictors of brood survival. We evaluated effects of percent of seasonal basins holding water (WETSEAS), percent of upland landscape in perennial cover (PERNCOVER), rainfall (RAIN), daily minimum ambient temperature (TMIN), hatch date (HATCHDATE), brood age (BA; 0-7 or 8-30 days), age of brood females, and brood size on mallard brood survival in prairie pothole landscapes, and developed a predictive model using factors found to have significant effects. Sixteen of 56 radiomarked broods experienced total loss during 1,250 exposure days. Our final fitted model of brood survival contained only main effects of WETSEAS, HATCHDATE, and RAIN. Total brood loss during the first 30 days of exposure was 11.2 times more likely for broods hatched on areas with 59% WETSEAS. Total brood loss was 5.2 times more likely during rainy conditions than during dry periods, and the hazard of total brood loss increased by 5% for each 1-day delay in hatching between 17 May and 12 August. High survival of mallard broods in landscapes where most seasonal basins contain water underscores the importance of maintaining seasonal wetlands as a major component of wetland complexes managed for mallard production. Because early hatched broods have higher survival, we also suggest that waterfowl managers focus their efforts on enhancing nest success of early laid clutches, especially in wet years.
Shang, De-Wei; Li, Li-Jun; Wang, Xi-Pei; Wen, Yu-Guan; Ren, Yu-Peng; Guo, Wei; Li, Wen-Biao; Li, Liang; Zhou, Tian-Yan; Lu, Wei; Wang, Chuan-Yue
2014-06-01
The aim of this study was to characterize the relationship between accumulated exposure of clozapine and changes in Positive and Negative Syndrome Scale (PANSS) score in Chinese patients with schizophrenia by pharmacokinetic/pharmacodynamic (PK/PD) modeling. Sparse clozapine PK data and PANSS scores were collected from 2 clinical studies of Chinese inpatients with schizophrenia. Two other rich PK data sets were included for more accurate assessment of clozapine PK characteristics. The relationship between clozapine-accumulated exposure and PANSS score was investigated using linear, log-linear, E(max), and sigmoid models, and each model was evaluated using visual predictive condition and normalized prediction distribution error methods. Simulations based on the final PK/PD model were preformed to investigate the effect of clozapine on PANSS scores under different dose regimens. A total of 1391 blood clozapine concentrations from 198 subjects (180 patients and 18 healthy volunteers) and 576 PANSS scores from 137 patients were included for PK and PK/PD analysis. A first-order 2-compartment PK model with covariates gender and smoking status influencing systemic clearance adequately described the PK profile of clozapine. The decrease in total PANSS score during treatment was best characterized using cumulated clozapine area under the curve (AUC) data in the E(max) model. The maximum decrease in PANSS during clozapine treatment (Emax) was 55.4%, and the cumulated AUC(50) (cAUC(50)) required to attain half of E(max) was 296 mg·L(-1)·h(-1)·d(-1). The simulations demonstrated that the accelerated dose titration and constant dose regimens achieved a similar maximum drug response but with a slower relief of symptoms in dose titration regimen. The PK/PD model can describe the clinical response as measured by decreasing PANSS score during treatment and may be useful for optimizing the dose regimen for individual patients.
Wang, Yuke; Moe, Christine L.; Null, Clair; Raj, Suraja J.; Baker, Kelly K.; Robb, Katharine A.; Yakubu, Habib; Ampofo, Joseph A.; Wellington, Nii; Freeman, Matthew C.; Armah, George; Reese, Heather E.; Peprah, Dorothy; Teunis, Peter F. M.
2017-01-01
Abstract. Lack of adequate sanitation results in fecal contamination of the environment and poses a risk of disease transmission via multiple exposure pathways. To better understand how eight different sources contribute to overall exposure to fecal contamination, we quantified exposure through multiple pathways for children under 5 years old in four high-density, low-income, urban neighborhoods in Accra, Ghana. We collected more than 500 hours of structured observation of behaviors of 156 children, 800 household surveys, and 1,855 environmental samples. Data were analyzed using Bayesian models, estimating the environmental and behavioral factors associated with exposure to fecal contamination. These estimates were applied in exposure models simulating sequences of behaviors and transfers of fecal indicators. This approach allows us to identify the contribution of any sources of fecal contamination in the environment to child exposure and use dynamic fecal microbe transfer networks to track fecal indicators from the environment to oral ingestion. The contributions of different sources to exposure were categorized into four types (high/low by dose and frequency), as a basis for ranking pathways by the potential to reduce exposure. Although we observed variation in estimated exposure (108–1016 CFU/day for Escherichia coli) between different age groups and neighborhoods, the greatest contribution was consistently from food (contributing > 99.9% to total exposure). Hands played a pivotal role in fecal microbe transfer, linking environmental sources to oral ingestion. The fecal microbe transfer network constructed here provides a systematic approach to study the complex interaction between contaminated environment and human behavior on exposure to fecal contamination. PMID:29031283
Prenatal mercury exposure and infant birth weight in the Norwegian Mother and Child Cohort Study.
Vejrup, Kristine; Brantsæter, Anne Lise; Knutsen, Helle K; Magnus, Per; Alexander, Jan; Kvalem, Helen E; Meltzer, Helle M; Haugen, Margaretha
2014-09-01
To examine the association between calculated maternal dietary exposure to Hg in pregnancy and infant birth weight in the Norwegian Mother and Child Cohort Study (MoBa). Exposure was calculated with use of a constructed database of Hg in food items and reported dietary intake during pregnancy. Multivariable regression models were used to explore the association between maternal Hg exposure and infant birth weight, and to model associations with small-for-gestational-age offspring. The study is based on data from MoBa. The study sample consisted of 62 941 women who answered a validated FFQ which covered the habitual diet during the first five months of pregnancy. Median exposure to Hg was 0·15 μg/kg body weight per week and the contribution from seafood intake was 88 % of total Hg exposure. Women in the highest quintile compared with the lowest quintile of Hg exposure delivered offspring with 34 g lower birth weight (95 % CI -46 g, -22 g) and had an increased risk of giving birth to small-for-gestational-age offspring, adjusted OR = 1·19 (95 % CI 1·08, 1·30). Although seafood intake was positively associated with increased birth weight, stratified analyses showed negative associations between Hg exposure and birth weight within strata of seafood intake. Although seafood intake in pregnancy is positively associated with birth weight, Hg exposure is negatively associated with birth weight. Seafood consumption during pregnancy should not be avoided, but clarification is needed to identify at what level of Hg exposure this risk might exceed the benefits of seafood.
Development of PBPK Models for Gasoline in Adult and ...
Concern for potential developmental effects of exposure to gasoline-ethanol blends has grown along with their increased use in the US fuel supply. Physiologically-based pharmacokinetic (PBPK) models for these complex mixtures were developed to address dosimetric issues related to selection of exposure concentrations for in vivo toxicity studies. Sub-models for individual hydrocarbon (HC) constituents were first developed and calibrated with published literature or QSAR-derived data where available. Successfully calibrated sub-models for individual HCs were combined, assuming competitive metabolic inhibition in the liver, and a priori simulations of mixture interactions were performed. Blood HC concentration data were collected from exposed adult non-pregnant (NP) rats (9K ppm total HC vapor, 6h/day) to evaluate performance of the NP mixture model. This model was then converted to a pregnant (PG) rat mixture model using gestational growth equations that enabled a priori estimation of life-stage specific kinetic differences. To address the impact of changing relevant physiological parameters from NP to PG, the PG mixture model was first calibrated against the NP data. The PG mixture model was then evaluated against data from PG rats that were subsequently exposed (9K ppm/6.33h gestation days (GD) 9-20). Overall, the mixture models adequately simulated concentrations of HCs in blood from single (NP) or repeated (PG) exposures (within ~2-3 fold of measured values of
Li, Xiaowei; Liu, Qing; Liu, Liping; Wu, Yongning
2012-05-01
To assess the distribution of dietary lead exposure in different age-gender groups of Chinese residents by using the data from China Total Diet Study, and combining the new risk assessment and the PTWI withdrawn by JECFA. Methods Combining the lead concentrations of dietary samples with the food consumption data from China Total Diet Study in 2007 to obtain the distribution of dietary intake and dietary source of lead in different age-gender population groups. Dietary lead exposure of different age-gender population groups in China was in the range of 48.7 -116.7 microg/d. The status of higher lead exposure in younger age groups was not optimistic, as the mean and median margins of exposure (MOE) have been less than 1.0 (0.1 - 0.3). The main sources of dietary lead were cereals and vegetables, which covering 57% of total lead exposure. Lowering the dietary lead exposure of Chinese residents is necessary, especially of infants and children.
Sonar-induced temporary hearing loss in dolphins
Mooney, T. Aran; Nachtigall, Paul E.; Vlachos, Stephanie
2009-01-01
There is increasing concern that human-produced ocean noise is adversely affecting marine mammals, as several recent cetacean mass strandings may have been caused by animals' interactions with naval ‘mid-frequency’ sonar. However, it has yet to be empirically demonstrated how sonar could induce these strandings or cause physiological effects. In controlled experimental studies, we show that mid-frequency sonar can induce temporary hearing loss in a bottlenose dolphin (Tursiops truncatus). Mild-behavioural alterations were also associated with the exposures. The auditory effects were induced only by repeated exposures to intense sonar pings with total sound exposure levels of 214 dB re: 1 μPa2 s. Data support an increasing energy model to predict temporary noise-induced hearing loss and indicate that odontocete noise exposure effects bear trends similar to terrestrial mammals. Thus, sonar can induce physiological and behavioural effects in at least one species of odontocete; however, exposures must be of prolonged, high sound exposures levels to generate these effects. PMID:19364712
Choi, Jason H; Mendelsohn, Alan L; Weisleder, Adriana; Cates, Carolyn Brockmeyer; Canfield, Caitlin; Seery, Anne; Dreyer, Benard P; Tomopoulos, Suzy
2018-03-01
To determine whether educational media as actually used by low-income families promote parent-child cognitive stimulation activities. We performed secondary analysis of the control group of a longitudinal cohort of mother-infant dyads enrolled postpartum in an urban public hospital. Educational media exposure (via a 24-hour recall diary) and parent-child activities that may promote cognitive stimulation in the home (using StimQ) were assessed at 6, 14, 24, and 36 months. Data from 149 mother-child dyads, 93.3% Latino, were analyzed. Mean (standard deviation) educational media exposure at 6, 14, 24, and 36 months was, respectively, 25 (40), 42 (58), 39 (49), and 39 (50) minutes per day. In multilevel model analyses, prior educational media exposure had small positive relationship with subsequent total StimQ scores (β = 0.11, P = .03) but was nonsignificant (β = 0.08, P = .09) after adjusting for confounders (child: age, gender, birth order, noneducational media exposure, language; mother: age, ethnicity, marital status, country of origin, language, depressive symptoms). Educational media did predict small increases in verbal interactions and toy provision (adjusted models, respectively: β = 0.13, P = .02; β = 0.11; P = .03). In contrast, more consistent relationships were seen for models of the relationship between prior StimQ (total, verbal interactions and teaching; adjusted models, respectively: β = 0.20, P = .002; β = 0.15, P = .006; β = 0.20, P = .001) and predicted subsequent educational media. Educational media as used by this sample of low-income families does not promote cognitive stimulation activities important for early child development or activities such as reading and teaching. Copyright © 2017 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
The Children's Total Exposure to Persistent Pesticides and Other Persistent Pollutant (CTEPP) study is one of the largest aggregate exposure studies of young children in the United States. The CTEPP study examines the exposures of about 260 preschool children and their primary ad...
2013-01-01
status epilepticus (SE)], which are due to elevated acetylcholine levels in the peripheral and central nervous system (for reviews see Bajgar, 2005... status epilepticus . 133 at W alter R eed A rm y Institute of R esearch on January 10, 2013 jpet.aspetjournals.org D ow nloaded from an unexpected...induced generalized seizures and reduces the total duration of status epilepticus (SE) in the 24- hour period after soman exposure. (A) Administration of
2016-10-01
Righting Reflex of rats following double blast exposure. 0 4 8 12 16 20 R ig ht in g Re fle x (m in ut es ) PLACEBO FISH OIL Total Lived Died...experiments. Funding Support: Geneva Foundation contractor – WRAIR Name: Joseph B. Long, Ph.D. Project Role: Co-Investigator – WRAIR Researcher...Funding Support: Clinical Research Management contractor Name: Andrew B. Batuure Project Role: Technician - WRAIR Researcher Identifier (e.g. ORCID
Annoyance from Road Traffic, Trains, Airplanes and from Total Environmental Noise Levels.
Ragettli, Martina S; Goudreau, Sophie; Plante, Céline; Perron, Stéphane; Fournier, Michel; Smargiassi, Audrey
2015-12-29
There is a lack of studies assessing the exposure-response relationship between transportation noise and annoyance in North America. Our aims were to investigate the prevalence of noise annoyance induced by road traffic, trains and airplanes in relation to distance to transportation noise sources, and to total environmental noise levels in Montreal, Canada; annoyance was assessed as noise-induced disturbance. A telephone-based survey among 4336 persons aged >18 years was conducted. Exposure to total environmental noise (A-weighted outdoor noise levels-LAeq24h and day-evening-night equivalent noise levels-Lden) for each study participant was determined using a statistical noise model (land use regression-LUR) that is based on actual outdoor noise measurements. The proportion of the population annoyed by road traffic, airplane and train noise was 20.1%, 13.0% and 6.1%, respectively. As the distance to major roads, railways and the Montreal International Airport increased, the percentage of people disturbed and highly disturbed due to the corresponding traffic noise significantly decreased. When applying the statistical noise model we found a relationship between noise levels and disturbance from road traffic and total environmental noise, with Prevalence Proportion Ratios (PPR) for highly disturbed people of 1.10 (95% CI: 1.07-1.13) and 1.04 (1.02-1.06) per 1 dB(A) Lden, respectively. Our study provides the first comprehensive information on the relationship between transportation noise levels and disturbance in a Canadian city. LUR models are still in development and further studies on transportation noise induced annoyance are consequently needed, especially for sources other than road traffic.
Radiofrequency-electromagnetic field exposures in kindergarten children.
Bhatt, Chhavi Raj; Redmayne, Mary; Billah, Baki; Abramson, Michael J; Benke, Geza
2017-09-01
The aim of this study was to assess environmental and personal radiofrequency-electromagnetic field (RF-EMF) exposures in kindergarten children. Ten children and 20 kindergartens in Melbourne, Australia participated in personal and environmental exposure measurements, respectively. Order statistics of RF-EMF exposures were computed for 16 frequency bands between 88 MHz and 5.8 GHz. Of the 16 bands, the three highest sources of environmental RF-EMF exposures were: Global System for Mobile Communications (GSM) 900 MHz downlink (82 mV/m); Universal Mobile Telecommunications System (UMTS) 2100MHz downlink (51 mV/m); and GSM 900 MHz uplink (45 mV/m). Similarly, the three highest personal exposure sources were: GSM 900 MHz downlink (50 mV/m); UMTS 2100 MHz downlink, GSM 900 MHz uplink and GSM 1800 MHz downlink (20 mV/m); and Frequency Modulation radio, Wi-Fi 2.4 GHz and Digital Video Broadcasting-Terrestrial (10 mV/m). The median environmental exposures were: 179 mV/m (total all bands), 123 mV/m (total mobile phone base station downlinks), 46 mV/m (total mobile phone base station uplinks), and 16 mV/m (Wi-Fi 2.4 GHz). Similarly, the median personal exposures were: 81 mV/m (total all bands), 62 mV/m (total mobile phone base station downlinks), 21 mV/m (total mobile phone base station uplinks), and 9 mV/m (Wi-Fi 2.4 GHz). The measurements showed that environmental RF-EMF exposure levels exceeded the personal RF-EMF exposure levels at kindergartens.
Chen, Kai; Zhou, Lian; Chen, Xiaodong; Bi, Jun; Kinney, Patrick L
2017-05-01
Few multicity studies have addressed the health effects of ozone in China due to the scarcity of ozone monitoring data. A critical scientific and policy-relevant question is whether a threshold exists in the ozone-mortality relationship. Using a generalized additive model and a univariate random-effects meta-analysis, this research evaluated the relationship between short-term ozone exposure and daily total mortality in seven cities of Jiangsu Province, China during 2013-2014. Spline, subset, and threshold models were applied to further evaluate whether a safe threshold level exists. This study found strong evidence that short-term ozone exposure is significantly associated with premature total mortality. A 10μg/m 3 increase in the average of the current and previous days' maximum 8-h average ozone concentration was associated with a 0.55% (95% posterior interval: 0.34%, 0.76%) increase of total mortality. This finding is robust when considering the confounding effect of PM 2.5 , PM 10 , NO 2 , and SO 2 . No consistent evidence was found for a threshold in the ozone-mortality concentration-response relationship down to concentrations well below the current Chinese Ambient Air Quality Standard (CAAQS) level 2 standard (160μg/m 3 ). Our findings suggest that ozone concentrations below the current CAAQS level 2 standard could still induce increased mortality risks in Jiangsu Province, China. Continuous air pollution control measures could yield important health benefits in Jiangsu Province, China, even in cities that meet the current CAAQS level 2 standard. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Kai; Zhou, Lian; Chen, Xiaodong; Bi, Jun; Kinney, Patrick L.
2017-01-01
Background Few multicity studies have addressed the health effects of ozone in China due to the scarcity of ozone monitoring data. A critical scientific and policy-relevant question is whether a threshold exists in the ozone-mortality relationship. Methods Using a generalized additive model and a univariate random-effects meta-analysis, this research evaluated the relationship between short-term ozone exposure and daily total mortality in seven cities of Jiangsu Province, China during 2013–2014. Spline, subset, and threshold models were applied to further evaluate whether a safe threshold level exists. Results This study found strong evidence that short-term ozone exposure is significantly associated with premature total mortality. A 10 μg/m3 increase in the average of the current and previous days’ maximum 8-h average ozone concentration was associated with a 0.55% (95% posterior interval: 0.34%, 0.76%) increase of total mortality. This finding is robust when considering the confounding effect of PM2.5, PM10, NO2, and SO2. No consistent evidence was found for a threshold in the ozone-mortality concentration-response relationship down to concentrations well below the current Chinese Ambient Air Quality Standard (CAAQS) level 2 standard (160 μg/m3). Conclusions Our findings suggest that ozone concentrations below the current CAAQS level 2 standard could still induce increased mortality risks in Jiangsu Province, China. Continuous air pollution control measures could yield important health benefits in Jiangsu Province, China, even in cities that meet the current CAAQS level 2 standard. PMID:28231551
Rylander, Charlotta; Sandanger, Torkjel Manning; Nøst, Therese Haugdahl; Breivik, Knut; Lund, Eiliv
2015-10-01
The number of studies on persistent organic pollutants (POPs) and type 2 diabetes mellitus (T2DM) is growing steadily. Although concentrations of many POPs in humans have decreased substantially, only some studies consider temporal and inter-individual changes in POP concentrations when assessing exposure. Here we combined plasma measurements with mechanistic modeling to generate complementary exposure measures to our single blood draw after disease diagnosis. Blood was collected between 2003-2006 from 106 subjects with T2DM and 106 age-matched controls, and POP concentrations were compared after adjustment for relevant risk factors and multiple testing. Area under the curve (AUC) of PCB-153 from birth until age 18, representing early-life exposure, and AUC from birth until time of diagnosis were generated as well as examples of life-time exposure trajectories using a mechanistic exposure model. The rank sum of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs, OR=16.9 (95% CI: 3.05-93.6)) as well as β-hexachlorocyclohexane (β-HCH, OR=203.8 (95% CI: 11.5-3620)) and 1, 1-dichloro-2,2-bis(p-chlorophenyl) ethylene (p,p'-DDE, OR=11.3 (95% CI: 2.55-49.9)) were associated with T2DM. Neither of the AUCs reflecting early life exposure and total life-time exposure at the time of diagnosis were associated with the disease. The predicted life course trajectories display clear differences within and between individuals in the past and suggest that a single blood draw provide limited information on POP exposure earlier in life. The predicted AUCs for PCB-153 did not support the positive association between T2DM and measured blood concentration of certain POPs. This may suggest that the model is either too simplistic and/or that strength of the association may vary through life and with time to/past diagnosis. Copyright © 2015 Elsevier Inc. All rights reserved.
A biomonitor for tracking changes in the availability of lakewater cadmium over space and time
Hare, L.; Tessier, A.; Croteau, M.-N.
2008-01-01
Determining the exposure of organisms to contaminants is a key component of Ecological Risk Assessments (ERAs). Effective estimates of exposure consider not only the total concentrations of contaminants in an organism's surroundings but also the availability of the contaminants to organisms. Contaminant availability can be inferred from mechanistic models and verified by measurements of contaminant concentrations in organisms. We evaluated the widespread lake-dwelling insect Chaoborus as a potential biomonitor for use in exposure assessments for three metals: cadmium (Cd), copper (Cu), and zinc (Zn). We show that larvae of this midge maintain constant their concentrations of the essential metals Cu and Zn and thus cannot be used to monitor them. In contrast, larval Cd concentrations varied widely both among lakes and in a given lake over time. We were able to relate these variations in biomonitor Cd to changes in lakewater Cd and pH using the Free Ion Activity Model (FIAM). Our results suggest that Chaoborus larvae could be used as an effective tool for estimating the Cd exposure of organisms in lakes for the purposes of ERAs.
The Pregnancy Exposome: Multiple Environmental Exposures in the INMA-Sabadell Birth Cohort.
Robinson, Oliver; Basagaña, Xavier; Agier, Lydiane; de Castro, Montserrat; Hernandez-Ferrer, Carles; Gonzalez, Juan R; Grimalt, Joan O; Nieuwenhuijsen, Mark; Sunyer, Jordi; Slama, Rémy; Vrijheid, Martine
2015-09-01
The "exposome" is defined as "the totality of human environmental exposures from conception onward, complementing the genome" and its holistic approach may advance understanding of disease etiology. We aimed to describe the correlation structure of the exposome during pregnancy to better understand the relationships between and within families of exposure and to develop analytical tools appropriate to exposome data. Estimates on 81 environmental exposures of current health concern were obtained for 728 women enrolled in The INMA (INfancia y Medio Ambiente) birth cohort, in Sabadell, Spain, using biomonitoring, geospatial modeling, remote sensors, and questionnaires. Pair-wise Pearson's and polychoric correlations were calculated and principal components were derived. The median absolute correlation across all exposures was 0.06 (5th-95th centiles, 0.01-0.54). There were strong levels of correlation within families of exposure (median = 0.45, 5th-95th centiles, 0.07-0.85). Nine exposures (11%) had a correlation higher than 0.5 with at least one exposure outside their exposure family. Effectively all the variance in the data set (99.5%) was explained by 40 principal components. Future exposome studies should interpret exposure effects in light of their correlations to other exposures. The weak to moderate correlation observed between exposure families will permit adjustment for confounding in future exposome studies.
[Evaluation of the risk on hearing loss at soldiers].
Konopka, Wiesław; Olszewski, Jurek; Straszyński, Piotr
2006-01-01
Noise produced by weapons may be harmful to soldiers during military service. Exposure to impulse noise during compulsory military service depends on the number of shots, explosion impulses, distance of injured ear from causal firearm as well as on the use of hearing protectors. Weapons produce impulse noises, which are characterized by peak pressure level and frequency. The purpose of this work was to calculate and estimate risk on hearing at soldiers during one year of the military service. The study comparised three groups of soldiers with different kind of exposure to noise divided according total noise exposure. In order to evaluate the amount of the exposure to impulse noise the total level of noise and the spectrum analysis were performed for all types of weapons, which were used during military service. The equivalent continuous A-weighted sound pressure level, L A eq, Te [dB], maximum A-weighted sound pressure level, L A max [dB] and C weighted peak sound pressure level, L C peak [dB] were measured. The highest total exposure to noise concerned group I (2222,9 kPa(2)/s for right ear and 22212,8 kPa(2)/s for left one) with total exposure time 248,3 minutes. In the II group estimated total exposure to noise was 611,8 kPa(2)/s for right ear and 743,6 kPa(2)/s for left one. In the III group least exposed to noise, estimated total exposure to noise was 103 kPa(2)/s for right ear and 109 kPa(2)/s for left one with total time exposure 17,8 minutes. Difference between groups is dependent on kind of military service. Estimated exposure to weapons noise may prevent soldiers before hearing loss. We did not notice differences between sites of ears.
Lubaczewski, Shannon; Ramaker, Sara; England, Richard D.; Wajsbrot, Dalia B.; Abbas, Richat; Findling, Robert L.
2018-01-01
Abstract Objective: To evaluate the short-term efficacy and safety of desvenlafaxine versus placebo in the treatment of children and adolescents with major depressive disorder (MDD). Methods: Outpatient children (7–11 years) and adolescents (12–17 years) who met DSM-IV-TR criteria for MDD and had screening and baseline Children's Depression Rating Scale-Revised (CDRS-R) total scores >40 were randomly assigned to 8 weeks of treatment with placebo, low exposure desvenlafaxine (20, 30, or 35 mg/day based on baseline weight), or higher exposure desvenlafaxine (25, 35, or 50 mg/day based on baseline weight). The primary efficacy endpoint was change from baseline in CDRS-R total score at week 8, analyzed using a mixed-effects model for repeated measures. Secondary efficacy assessments included Clinical Global Impressions-Severity and Clinical Global Impressions-Improvement scales. Safety assessments included adverse events and the Columbia-Suicide Severity Rating Scale. Results: The safety population included 363 patients (children, n = 109; adolescents, n = 254). No statistical separation from placebo was observed for either desvenlafaxine group for CDRS-R total score or for any secondary efficacy endpoint. At week 8, adjusted mean (standard error) changes from baseline in CDRS-R total score for the desvenlafaxine low exposure, desvenlafaxine high exposure, and placebo groups were −23.7 (1.1), −24.4 (1.1), and −22.9 (1.1), respectively. The incidence of adverse events was similar among groups. Conclusion: Low and high exposure desvenlafaxine groups did not demonstrate efficacy for the treatment of MDD in children and adolescents in this double-blind, placebo-controlled trial. Desvenlafaxine (20–50 mg/day) was generally safe and well tolerated with no new safety signals identified in pediatric patients with MDD in this study. PMID:29185786
Andersen, Zorana Jovanovic; de Nazelle, Audrey; Mendez, Michelle Ann; Garcia-Aymerich, Judith; Hertel, Ole; Tjønneland, Anne; Overvad, Kim; Raaschou-Nielsen, Ole; Nieuwenhuijsen, Mark J
2015-06-01
Physical activity reduces, whereas exposure to air pollution increases, the risk of premature mortality. Physical activity amplifies respiratory uptake and deposition of air pollutants in the lung, which may augment acute harmful effects of air pollution during exercise. We aimed to examine whether benefits of physical activity on mortality are moderated by long-term exposure to high air pollution levels in an urban setting. A total of 52,061 subjects (50-65 years of age) from the Danish Diet, Cancer, and Health cohort, living in Aarhus and Copenhagen, reported data on physical activity in 1993-1997 and were followed until 2010. High exposure to air pollution was defined as the upper 25th percentile of modeled nitrogen dioxide (NO2) levels at residential addresses. We associated participation in sports, cycling, gardening, and walking with total and cause-specific mortality by Cox regression, and introduced NO2 as an interaction term. In total, 5,534 subjects died: 2,864 from cancer, 1,285 from cardiovascular disease, 354 from respiratory disease, and 122 from diabetes. Significant inverse associations of participation in sports, cycling, and gardening with total, cardiovascular, and diabetes mortality were not modified by NO2. Reductions in respiratory mortality associated with cycling and gardening were more pronounced among participants with moderate/low NO2 [hazard ratio (HR) = 0.55; 95% CI: 0.42, 0.72 and 0.55; 95% CI: 0.41, 0.73, respectively] than with high NO2 exposure (HR = 0.77; 95% CI: 0.54, 1.11 and HR = 0.81; 95% CI: 0.55, 1.18, p-interaction = 0.09 and 0.02, respectively). In general, exposure to high levels of traffic-related air pollution did not modify associations, indicating beneficial effects of physical activity on mortality. These novel findings require replication in other study populations.
Exposure to alcohol advertisements and teenage alcohol-related problems.
Grenard, Jerry L; Dent, Clyde W; Stacy, Alan W
2013-02-01
This study used prospective data to test the hypothesis that exposure to alcohol advertising contributes to an increase in underage drinking and that an increase in underage drinking then leads to problems associated with drinking alcohol. A total of 3890 students were surveyed once per year across 4 years from the 7th through the 10th grades. Assessments included several measures of exposure to alcohol advertising, alcohol use, problems related to alcohol use, and a range of covariates, such as age, drinking by peers, drinking by close adults, playing sports, general TV watching, acculturation, parents' jobs, and parents' education. Structural equation modeling of alcohol consumption showed that exposure to alcohol ads and/or liking of those ads in seventh grade were predictive of the latent growth factors for alcohol use (past 30 days and past 6 months) after controlling for covariates. In addition, there was a significant total effect for boys and a significant mediated effect for girls of exposure to alcohol ads and liking of those ads in 7th grade through latent growth factors for alcohol use on alcohol-related problems in 10th grade. Younger adolescents appear to be susceptible to the persuasive messages contained in alcohol commercials broadcast on TV, which sometimes results in a positive affective reaction to the ads. Alcohol ad exposure and the affective reaction to those ads influence some youth to drink more and experience drinking-related problems later in adolescence.
Noise and sleep on board vessels in the Royal Norwegian Navy
Sunde, Erlend; Bråtveit, Magne; Pallesen, Ståle; Moen, Bente Elisabeth
2016-01-01
Previous research indicates that exposure to noise during sleep can cause sleep disturbance. Seamen on board vessels are frequently exposed to noise also during sleep periods, and studies have reported sleep disturbance in this occupational group. However, studies of noise and sleep in maritime settings are few. This study's aim was to examine the associations between noise exposure during sleep, and sleep variables derived from actigraphy among seamen on board vessels in the Royal Norwegian Navy (RNoN). Data were collected on board 21 RNoN vessels, where navy seamen participated by wearing an actiwatch (actigraph), and by completing a questionnaire comprising information on gender, age, coffee drinking, nicotine use, use of medication, and workload. Noise dose meters were used to assess noise exposure inside the seamen's cabin during sleep. Eighty-three sleep periods from 68 seamen were included in the statistical analysis. Linear mixed-effects models were used to examine the association between noise exposure and the sleep variables percentage mobility during sleep and sleep efficiency, respectively. Noise exposure variables, coffee drinking status, nicotine use status, and sleeping hours explained 24.9% of the total variance in percentage mobility during sleep, and noise exposure variables explained 12.0% of the total variance in sleep efficiency. Equivalent noise level and number of noise events per hour were both associated with increased percentage mobility during sleep, and the number of noise events was associated with decreased sleep efficiency. PMID:26960785
An Experimental Characterization System for Deep Ultra-Violet (UV) Photoresists
NASA Astrophysics Data System (ADS)
Drako, Dean M.; Partlo, William N.; Oldham, William G.; Neureuther, Andrew R.
1989-08-01
A versatile system designed specifically for experimental automated photoresist characterization has been constructed utilizing an excimer laser source for exposure at 248nm. The system was assembled, as much as possible, from commercially available components in order to facilitate its replication. The software and hardware are completely documented in a University of California-Berkeley Engineering Research Lab Memo. An IBM PC-AT compatible computer controls an excimer laser, operates a Fourier Transform Infrared (FTIR) Spectrometer, measures and records the energy of each laser pulse (incident, reflected, and transmitted), opens and closes shutters, and operates two linear stages for sample movement. All operations (except FTIR data reduction) are managed by a control program written in the "C" language. The system is capable of measuring total exposure dose, performing bleaching measurements, creating and recording exposure pulse sequences, and generating exposure patterns suitable for multiple channel monitoring of the development. The total exposure energy, energy per pulse, and pulse rate are selectable over a wide range. The system contains an in-situ Fourier Transform Infrared Spectrometer for qualitative and quantitative analysis of the photoresist baking and exposure processes (baking is not done in-situ). FIIR may be performed in transmission or reflection. The FTIR data will form the basis of comprehensive multi-state resist models. The system's versatility facilitates the development of new automated and repeatable experiments. Simple controlling software, utilizing the provided interface sub-routines, can be written to control new experiments and collect data.
Exposure to Alcohol Advertisements and Teenage Alcohol-Related Problems
Dent, Clyde W.; Stacy, Alan W.
2013-01-01
OBJECTIVE: This study used prospective data to test the hypothesis that exposure to alcohol advertising contributes to an increase in underage drinking and that an increase in underage drinking then leads to problems associated with drinking alcohol. METHODS: A total of 3890 students were surveyed once per year across 4 years from the 7th through the 10th grades. Assessments included several measures of exposure to alcohol advertising, alcohol use, problems related to alcohol use, and a range of covariates, such as age, drinking by peers, drinking by close adults, playing sports, general TV watching, acculturation, parents’ jobs, and parents’ education. RESULTS: Structural equation modeling of alcohol consumption showed that exposure to alcohol ads and/or liking of those ads in seventh grade were predictive of the latent growth factors for alcohol use (past 30 days and past 6 months) after controlling for covariates. In addition, there was a significant total effect for boys and a significant mediated effect for girls of exposure to alcohol ads and liking of those ads in 7th grade through latent growth factors for alcohol use on alcohol-related problems in 10th grade. CONCLUSIONS: Younger adolescents appear to be susceptible to the persuasive messages contained in alcohol commercials broadcast on TV, which sometimes results in a positive affective reaction to the ads. Alcohol ad exposure and the affective reaction to those ads influence some youth to drink more and experience drinking-related problems later in adolescence. PMID:23359585
PBPK-Based Probabilistic Risk Assessment for Total Chlorotriazines in Drinking Water
Breckenridge, Charles B.; Campbell, Jerry L.; Clewell, Harvey J.; Andersen, Melvin E.; Valdez-Flores, Ciriaco; Sielken, Robert L.
2016-01-01
The risk of human exposure to total chlorotriazines (TCT) in drinking water was evaluated using a physiologically based pharmacokinetic (PBPK) model. Daily TCT (atrazine, deethylatrazine, deisopropylatrazine, and diaminochlorotriazine) chemographs were constructed for 17 frequently monitored community water systems (CWSs) using linear interpolation and Krieg estimates between observed TCT values. Synthetic chemographs were created using a conservative bias factor of 3 to generate intervening peaks between measured values. Drinking water consumption records from 24-h diaries were used to calculate daily exposure. Plasma TCT concentrations were updated every 30 minutes using the PBPK model output for each simulated calendar year from 2006 to 2010. Margins of exposure (MOEs) were calculated (MOE = [Human Plasma TCTPOD] ÷ [Human Plasma TCTEXP]) based on the toxicological point of departure (POD) and the drinking water-derived exposure to TCT. MOEs were determined based on 1, 2, 3, 4, 7, 14, 28, or 90 days of rolling average exposures and plasma TCT Cmax, or the area under the curve (AUC). Distributions of MOE were determined and the 99.9th percentile was used for risk assessment. MOEs for all 17 CWSs were >1000 at the 99.9th percentile. The 99.9th percentile of the MOE distribution was 2.8-fold less when the 3-fold synthetic chemograph bias factor was used. MOEs were insensitive to interpolation method, the consumer’s age, the water consumption database used and the duration of time over which the rolling average plasma TCT was calculated, for up to 90 days. MOEs were sensitive to factors that modified the toxicological, or hyphenated appropriately no-observed-effects level (NOEL), including rat strain, endpoint used, method of calculating the NOEL, and the pharmacokinetics of elimination, as well as the magnitude of exposure (CWS, calendar year, and use of bias factors). PMID:26794141
PBPK-Based Probabilistic Risk Assessment for Total Chlorotriazines in Drinking Water.
Breckenridge, Charles B; Campbell, Jerry L; Clewell, Harvey J; Andersen, Melvin E; Valdez-Flores, Ciriaco; Sielken, Robert L
2016-04-01
The risk of human exposure to total chlorotriazines (TCT) in drinking water was evaluated using a physiologically based pharmacokinetic (PBPK) model. Daily TCT (atrazine, deethylatrazine, deisopropylatrazine, and diaminochlorotriazine) chemographs were constructed for 17 frequently monitored community water systems (CWSs) using linear interpolation and Krieg estimates between observed TCT values. Synthetic chemographs were created using a conservative bias factor of 3 to generate intervening peaks between measured values. Drinking water consumption records from 24-h diaries were used to calculate daily exposure. Plasma TCT concentrations were updated every 30 minutes using the PBPK model output for each simulated calendar year from 2006 to 2010. Margins of exposure (MOEs) were calculated (MOE = [Human Plasma TCTPOD] ÷ [Human Plasma TCTEXP]) based on the toxicological point of departure (POD) and the drinking water-derived exposure to TCT. MOEs were determined based on 1, 2, 3, 4, 7, 14, 28, or 90 days of rolling average exposures and plasma TCT Cmax, or the area under the curve (AUC). Distributions of MOE were determined and the 99.9th percentile was used for risk assessment. MOEs for all 17 CWSs were >1000 at the 99.9(th)percentile. The 99.9(th)percentile of the MOE distribution was 2.8-fold less when the 3-fold synthetic chemograph bias factor was used. MOEs were insensitive to interpolation method, the consumer's age, the water consumption database used and the duration of time over which the rolling average plasma TCT was calculated, for up to 90 days. MOEs were sensitive to factors that modified the toxicological, or hyphenated appropriately no-observed-effects level (NOEL), including rat strain, endpoint used, method of calculating the NOEL, and the pharmacokinetics of elimination, as well as the magnitude of exposure (CWS, calendar year, and use of bias factors). © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology.
Farooqui, Zishaan; Bakulski, Kelly M.; Power, Melinda C.; Weisskopf, Marc G.; Sparrow, David; Spiro, Avron; Vokonas, Pantel S.; Nie, Huiling; Hu, Howard; Park, Sung Kyun
2016-01-01
Background Lead (Pb) exposure has been associated with poorer cognitive function cross-sectionally in aging adults, however the association between cumulative Pb exposure and longitudinal changes in cognition is little characterized. Methods In a 1993–2007 subcohort of the VA Normative Aging Study (Mini-mental status exam (MMSE) n=741; global cognition summary score n=715), we used linear mixed effects models to test associations between cumulative Pb exposure (patella or tibia bone Pb) and repeated measures of cognition (MMSE, individual cognitive tests, and global cognition summary). Cox proportional hazard modeling assessed the risk of an MMSE score falling below 25. Results Among men 51–98 at baseline, higher patella Pb concentration (IQR: 21 µg/g) was associated with −0.13 lower baseline MMSE (95% CI: −0.25, −0.004) and faster longitudinal MMSE decline (−0.016 units/year, 95% CI: −0.032, −0.0004) over 15 years. Each IQR increase in patella Pb was associated with increased risk of a MMSE score below 25 (HR=1.21, 95% CI: 0.99, 1.49; p=0.07). There were no significant associations between Pb and global cognition (both baseline and longitudinal change). Patella Pb was associated with faster longitudinal decline in Word List Total Recall in the language domain (0.014 units/year, 95% CI: −0.026, −0.001) and Word List Delayed Recall in the memory domain (0.014 units/year, 95% CI: −0.027, −0.002). We found weaker associations with tibia Pb. Conclusions Cumulative Pb exposure is associated with faster declines in MMSE and Word List Total and Delayed Recall tests. These findings support the hypothesis that Pb exposure accelerates cognitive aging. PMID:27770710
Effects of copper particles on a model septic system's function and microbial community.
Taylor, Alicia A; Walker, Sharon L
2016-03-15
There is concern surrounding the addition of nanoparticles into consumer products due to toxicity potential and the increased risk of human and environmental exposures to these particles. Copper nanoparticles are found in many common consumer goods; therefore, the disposal and subsequent interactions between potentially toxic Cu-based nanoparticles and microbial communities may have detrimental impacts on wastewater treatment processes. This study investigates the effects of three copper particles (micron- and nano-scale Cu particles, and a nano-scale Cu(OH)2-based fungicide) on the function and operation of a model septic tank. Septic system analyses included water quality evaluations and microbial community characterizations to detect changes in and relationships between the septic tank function and microbial community phenotype/genotype. As would be expected for optimal wastewater treatment, biological oxygen demand (BOD5) was reduced by at least 63% during nano-scale Cu exposure, indicating normal function. pH was reduced to below the optimum anaerobic fermentation range during the micro Cu exposure, suggesting incomplete degradation of organic waste may have occurred. The copper fungicide, Cu(OH)2, caused a 57% increase in total organic carbon (TOC), which is well above the typical range for septic systems and also corresponded to increased BOD5 during the majority of the Cu(OH)2 exposure. The changes in TOC and BOD5 demonstrate that the system was improperly treating waste. Overall, results imply individual exposures to the three Cu particles caused distinct disruptions in septic tank function. However, it was observed that the system was able to recover to typical operating conditions after three weeks post-exposure. These results imply that during periods of Cu introduction, there are likely pulses of improper removal of total organic carbon and significant changes in pH not in the optimal range for the system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Compact modeling of total ionizing dose and aging effects in MOS technologies
Esqueda, Ivan S.; Barnaby, Hugh J.; King, Michael Patrick
2015-06-18
This paper presents a physics-based compact modeling approach that incorporates the impact of total ionizing dose (TID) and stress-induced defects into simulations of metal-oxide-semiconductor (MOS) devices and integrated circuits (ICs). This approach utilizes calculations of surface potential (ψs) to capture the charge contribution from oxide trapped charge and interface traps and to describe their impact on MOS electrostatics and device operating characteristics as a function of ionizing radiation exposure and aging effects. The modeling approach is demonstrated for bulk and silicon-on-insulator (SOI) MOS device. The formulation is verified using TCAD simulations and through the comparison of model calculations and experimentalmore » I-V characteristics from irradiated devices. The presented approach is suitable for modeling TID and aging effects in advanced MOS devices and ICs.« less
Computational Fluid Dynamics Modeling of Bacillus anthracis ...
Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict
Association between organophosphate pesticides exposure and thyroid hormones in floriculture workers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacasana, Marina, E-mail: marina.lacasana.easp@juntadeandalucia.e; CIBER de Epidemiologia y Salud Publica; Lopez-Flores, Inmaculada
The ability of organophosphate pesticides to disturb thyroid gland function has been demonstrated by experimental studies on animal, but evidence of such effects on human remains scarce. The aim of this study was to assess the association between exposure to organophosphate compounds and serum levels of thyroid hormones in floriculture workers. A longitudinal study was conducted on 136 male subjects from the State of Mexico and Morelos, Mexico, occupationally exposed to organophosphate pesticides, during agricultural periods of high (rainy season) and low (dry season) levels of pesticide application. Using a structured questionnaire, a survey was carried out on sociodemographic characteristics,more » anthropometry, clinical history, alcohol and tobacco consumption, residential chemical exposure, and occupational history. Urine and blood samples were taken the day after pesticide application to determine urine dialkylphosphate (DAP) levels, serum levels of TSH, total T{sub 3}, total T{sub 4}, serum PON1 activity, and serum p,p'-DEE levels. The analysis of the association between DAP levels and thyroid hormonal profile was carried out using multivariate generalized estimating equation (GEE) models. Our results showed an increase in both TSH and T{sub 4} hormones in serum associated with a increase in total dimethylphosphate levels (SIGMADMP) in urine (p-trend < 0.001) and a decrease in total T{sub 3} serum levels with an increase of SIGMADMP levels in the urine (p-trend = 0.053). These results suggest that exposure to organophosphate pesticides may be responsible of increasing TSH and T{sub 4} serum hormone levels and decreasing T{sub 3} serum hormone levels, therefore supporting the hypothesis that organophosphate pesticides act as endocrine disruptors in humans.« less
Association between organochlorine pesticide exposure and thyroid hormones in floriculture workers.
Blanco-Muñoz, Julia; Lacasaña, Marina; López-Flores, Inmaculada; Rodríguez-Barranco, Miguel; González-Alzaga, Beatriz; Bassol, Susana; Cebrian, Mariano E; López-Carrillo, Lizbeth; Aguilar-Garduño, Clemente
2016-10-01
Several studies have suggested that exposure to DDT may be related to changes in thyroid hormone levels in animals and humans, even though results across studies are inconsistent. The aim of this study was to assess the association between exposure to p,p'-DDE (a stable metabolite of DDT) and serum levels of thyroid hormones in floriculture workers. A longitudinal study was conducted on 136 male subjects from the States of Mexico and Morelos, Mexico, who were occupationally exposed to pesticides, during agricultural periods of high (rainy season) and low (dry season) levels of pesticide application. Using a structured questionnaire, a survey was carried out on socio-demographic characteristics, anthropometry, clinical history, alcohol and tobacco consumption, residential chemical exposure, and occupational history. Blood and urine samples were collected to determine serum levels of TSH, total T3, total T4, and p,p'-DDE, and metabolites of organophosphate pesticides (OP), respectively. The analysis of the associations between p,p'-DDE levels and thyroid hormone profile adjusting by potential confounding variables including urinary OP metabolites was carried out using multivariate generalized estimating equation (GEE) models. Our results showed that the geometric means of p,p'-DDE levels were 6.17 ng/ml and 4.71 ng/ml in the rainy and dry seasons, respectively. We observed positive associations between the serum levels of p,p'-DDE and those of total T3 (β=0.01, 95% CI: -0.009, 0.03), and total T4 (β=0.08, 95% CI:0.03, 0.14) and negative but no significant changes in TSH in male floricultural workers, supporting the hypothesis that acts as thyroid disruptor in humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind
2012-01-01
Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m3) and were lowest in winter (median, 26 CFU/m3). Indoor bacteria peaked in spring (median, 2,165 CFU/m3) and were lowest in summer (median, 240 CFU/m3). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates. PMID:23001651
Longitudinal investigation of exposure to arsenic, cadmium, and lead in drinking water.
Ryan, P B; Huet, N; MacIntosh, D L
2000-08-01
Arsenic, cadmium, and lead have been associated with various forms of cancer, nephrotoxicity, central nervous system effects, and cardiovascular disease in humans. Drinking water is a well-recognized pathway of exposure to these metals. To improve understanding of the temporal dimension of exposure to As, Cd, and Pb in drinking water, we obtained 381 samples of tap and/or tap/filtered water and self-reported rates of drinking water consumption from 73 members of a stratified random sample in Maryland. Data were collected at approximately 2-month intervals from September 1995 through September 1996. Concentrations of As (range < 0.2-13.8 microg/L) and Pb (< 0.1-13.4 microg/L) were within the ranges reported for the United States, as were the rates of drinking water consumption (median < 0.1-4.1 L/day). Cd was present at a detectable level in only 8.1% of the water samples. Mean log-transformed concentrations and exposures for As and Pb varied significantly among sampling cycles and among respondents, as did rates of drinking water consumption, according to a generalized linear model that accounted for potential correlation among repeated measures from the same respondent. We used the intraclass correlation coefficient of reliability to attribute the total variance observed for each exposure metric to between-person and within-person variability. Between-person variability was estimated to account for 67, 81, and 55% of the total variance in drinking water consumption, As exposure (micrograms per day), and Pb exposure (micrograms per day), respectively. We discuss these results with respect to their implications for future exposure assessment research, quantitative risk assessment, and environmental epidemiology.
Diaz, Edgar A.; Chung, Yeonseung; Papapostolou, Vasileios; Lawrence, Joy; Long, Mark S.; Hatakeyama, Vivian; Gomes, Brenno; Calil, Yasser; Sato, Rodrigo; Koutrakis, Petros; Godleski, John J.
2013-01-01
The study presented here is a laboratory pilot study using diluted car exhaust from a single vehicle to assess differences in toxicological response between primary emissions and secondary products resulting from atmospheric photochemical reactions of gas phase compounds with O3, OH and other radicals. Sprague-Dawley rats were exposed for five hours to either filtered room air (Sham) or one of two different atmospheres: 1. Diluted Car Exhaust (P) + Mt. Saint Helens Ash (MSHA); 2. P+MSHA+SOA (Secondary Organic Aerosol, formed during simulated photochemical aging of diluted exhaust). Primary and secondary gases were removed using a non-selective diffusion denuder. Continuous respiratory data was collected during the exposure, and broncho-alveolar lavage (BAL) and complete blood counts (CBC) were performed 24 hours after exposure. ANOVA models were used to assess the exposure effect and to compare those effects across different exposure types. Total average exposures were 363±66 μg/m3 P+MSHA and 212±95 μg/m3 P+MSHA+SOA. For both exposures, we observed decreases in breathing rate, tidal and minute volumes (TV, MV) and peak and median flows (PIF, PEF and EF50) along with increases in breathing cycle times (Ti, Te) compared to sham. These results indicate that the animals are changing their breathing pattern with these test atmospheres. Exposure to P+MSHA+SOA produced significant increases in Total Cells, Macrophages and Neutrophils in the BAL and in-vivo chemiluminescence of the lung. There were no significant differences in CBC parameters. Our data suggest that simulated atmospheric photochemistry, producing SOA in the P+MSHA+SOA exposures, enhanced the toxicity of vehicular emissions. PMID:22486346
Diaz, Edgar A; Chung, Yeonseung; Papapostolou, Vasileios; Lawrence, Joy; Long, Mark S; Hatakeyama, Vivian; Gomes, Brenno; Calil, Yasser; Sato, Rodrigo; Koutrakis, Petros; Godleski, John J
2012-04-01
The study presented here is a laboratory pilot study using diluted car exhaust from a single vehicle to assess differences in toxicological response between primary emissions and secondary products resulting from atmospheric photochemical reactions of gas phase compounds with O₃, OH and other radicals. Sprague Dawley rats were exposed for 5 h to either filtered room air (sham) or one of two different atmospheres: (i) diluted car exhaust (P)+Mt. Saint Helens Ash (MSHA); (ii) P+MSHA+secondary organic aerosol (SOA, formed during simulated photochemical aging of diluted exhaust). Primary and secondary gases were removed using a nonselective diffusion denuder. Continuous respiratory data was collected during the exposure, and bronchoalveolar lavage (BAL) and complete blood counts (CBC) were performed 24 h after exposure. ANOVA models were used to assess the exposure effect and to compare those effects across different exposure types. Total average exposures were 363 ± 66 μg/m³ P+MSHA and 212 ± 95 µg/m³ P+MSHA+SOA. For both exposures, we observed decreases in breathing rate, tidal and minute volumes (TV, MV) and peak and median flows (PIF, PEF and EF50) along with increases in breathing cycle times (Ti, Te) compared to sham. These results indicate that the animals are changing their breathing pattern with these test atmospheres. Exposure to P+MSHA+SOA produced significant increases in total cells, macrophages and neutrophils in the BAL and in vivo chemiluminescence of the lung. There were no significant differences in CBC parameters. Our data suggest that simulated atmospheric photochemistry, producing SOA in the P+MSHA+SOA exposures, enhanced the toxicity of vehicular emissions.
Environmental and biological monitoring of benzene during self-service automobile refueling.
Egeghy, P P; Tornero-Velez, R; Rappaport, S M
2000-01-01
Although automobile refueling represents the major source of benzene exposure among the nonsmoking public, few data are available regarding such exposures and the associated uptake of benzene. We repeatedly measured benzene exposure and uptake (via benzene in exhaled breath) among 39 self-service customers using self-administered monitoring, a technique rarely used to obtain measurements from the general public (130 sets of measurements were obtained). Benzene exposures averaged 2.9 mg/m(3) (SD = 5.8 mg/m(3); median duration = 3 min) with a range of < 0.076-36 mg/m(3), and postexposure breath levels averaged 160 microg/m(3) (SD = 260 microg/m(3)) with a range of < 3.2-1,400 microg/m(3). Log-transformed exposures and breath levels were significantly correlated (r = 0.77, p < 0.0001). We used mixed-effects statistical models to gauge the relative influences of environmental and subject-specific factors on benzene exposure and breath levels and to investigate the importance of various covariates obtained by questionnaire. Model fitting yielded three significant predictors of benzene exposure, namely, fuel octane grade (p = 0.0011), duration of exposure (p = 0.0054), and season of the year (p = 0.032). Likewise, another model yielded three significant predictors of benzene concentration in breath, specifically, benzene exposure (p = 0.0001), preexposure breath concentration (p = 0.0008), and duration of exposure (p = 0.038). Variability in benzene concentrations was remarkable, with 95% of the estimated values falling within a 274-fold range, and was comprised entirely of the within-person component of variance (representing exposures of the same subject at different times of refueling). The corresponding range for benzene concentrations in breath was 41-fold and was comprised primarily of the within-person variance component (74% of the total variance). Our results indicate that environmental rather than interindividual differences are primarily responsible for benzene exposure and uptake during automobile refueling. The study also demonstrates that self-administered monitoring can be efficiently used to measure environmental exposures and biomarkers among the general public. PMID:11133401
Keshvari, J; Kivento, M; Christ, A; Bit-Babik, G
2016-04-21
This paper presents the results of two computational large scale studies using highly realistic exposure scenarios, MRI based human head and hand models, and two mobile phone models. The objectives are (i) to study the relevance of age when people are exposed to RF by comparing adult and child heads and (ii) to analyze and discuss the conservativeness of the SAM phantom for all age groups. Representative use conditions were simulated using detailed CAD models of two mobile phones operating between 900 MHz and 1950 MHz including configurations with the hand holding the phone, which were not considered in most previous studies. The peak spatial-average specific absorption rate (psSAR) in the head and the pinna tissues is assessed using anatomically accurate head and hand models. The first of the two mentioned studies involved nine head-, four hand- and two phone-models, the second study included six head-, four hand- and three simplified phone-models (over 400 configurations in total). In addition, both studies also evaluated the exposure using the SAM phantom. Results show no systematic differences between psSAR induced in the adult and child heads. The exposure level and its variation for different age groups may be different for particular phones, but no correlation between psSAR and model age was found. The psSAR from all exposure conditions was compared to the corresponding configurations using SAM, which was found to be conservative in the large majority of cases.
NASA Astrophysics Data System (ADS)
Keshvari, J.; Kivento, M.; Christ, A.; Bit-Babik, G.
2016-04-01
This paper presents the results of two computational large scale studies using highly realistic exposure scenarios, MRI based human head and hand models, and two mobile phone models. The objectives are (i) to study the relevance of age when people are exposed to RF by comparing adult and child heads and (ii) to analyze and discuss the conservativeness of the SAM phantom for all age groups. Representative use conditions were simulated using detailed CAD models of two mobile phones operating between 900 MHz and 1950 MHz including configurations with the hand holding the phone, which were not considered in most previous studies. The peak spatial-average specific absorption rate (psSAR) in the head and the pinna tissues is assessed using anatomically accurate head and hand models. The first of the two mentioned studies involved nine head-, four hand- and two phone-models, the second study included six head-, four hand- and three simplified phone-models (over 400 configurations in total). In addition, both studies also evaluated the exposure using the SAM phantom. Results show no systematic differences between psSAR induced in the adult and child heads. The exposure level and its variation for different age groups may be different for particular phones, but no correlation between psSAR and model age was found. The psSAR from all exposure conditions was compared to the corresponding configurations using SAM, which was found to be conservative in the large majority of cases.
Fromme, Hermann; Körner, Wolfgang; Shahin, Nabil; Wanner, Antonia; Albrecht, Michael; Boehmer, Sigrun; Parlar, Harun; Mayer, Richard; Liebl, Bernhard; Bolte, Gabriele
2009-11-01
Polybrominated diphenyl ethers (PBDE) are used as flame retardants in a wide variety of products. As part of the Integrated Exposure Assessment Survey (INES), this study aimed to characterize the exposure of an adult German population using duplicate diet samples, which were collected daily over seven consecutive days, and indoor air and house dust measurements. Our study population consisted of 27 female and 23 male healthy subjects, aged 14-60 years, all of whom resided in 34 homes in southern Bavaria. In these 34 residences the air was sampled using glass fiber filters and polyurethane foams and the dust was collected from used vacuum cleaner bags. The median (95th percentile) daily dietary intake of six Tetra- to HeptaBDE congeners was 1.2 ng/kg b.w. (3.3 ng/kg b.w.) or 67.8 ng/day (208 ng/day) (calculated from the 7-day median values of each study subject). Concentrations in indoor air and dust (cumulative Tri- to DecaBDE congener readings) ranged from 8.2 to 477 pg/m(3) (median: 37.8 pg/m(3)) and 36.6 to 1580 ng/g (median: 386 ng/g), respectively. For some congeners, we identified a significant correlation between air and dust levels. The median (95th percentile) blood concentration of total Tetra- to HexaBDE congener readings was 5.6 (13.2)ng/g lipid. No significant sex differences were observed, but higher blood concentrations were found in younger participants. Using a simplified toxicokinetic model to predict the body burden from exposure doses led to results that were of the same order of magnitude as the measured blood concentrations. Based on these measurements and given our exposure assumptions, we estimated for the total tetra- to heptabrominated congener count an average (high) comprehensive total daily intake of 1.2 ng/kg b.w. (2.5 ng/kg b.w.). Overall, our results suggest that dietary exposure is the dominant intake pathway at least in our study population, responsible for 97% (average intake) and 95% (high intake) of the total intake of an adult population.
Windows of lead exposure sensitivity, attained height, and body mass index at 48 months.
Afeiche, Myriam; Peterson, Karen E; Sánchez, Brisa N; Schnaas, Lourdes; Cantonwine, David; Ettinger, Adrienne S; Solano-González, Maritsa; Hernández-Avila, Mauricio; Hu, Howard; Téllez-Rojo, Martha M
2012-06-01
To examine longitudinal associations of prenatal, infancy, and early childhood lead exposure during sensitive periods with height and body mass index (BMI). A total of 773 participants were recruited between 1994 and 2005 in Mexico City. Lead exposure history categories were constructed for the prenatal period (maternal patellar lead concentration) and for infancy and childhood (mean child blood lead concentration at birth to 24 months and 30-48 months, respectively). Linear regression models were used to study lead exposure history with height and BMI at 48 months. Mean height at age 48 months was significantly lower in children with a blood lead level exceeding the median during infancy (-0.84 cm; 95% CI, -1.42 to -0.25) than in children with a level below the median. Prenatal lead exposure was not associated with height at 48 months. Results for attained BMI generally trended in the same direction as for height. Our findings suggest an effect of lead exposure early in life on height attainment at 48 months, with the exposure window of greatest sensitivity in infancy. Copyright © 2012 Mosby, Inc. All rights reserved.
Wilker, Elissa H; Preis, Sarah R; Beiser, Alexa S; Wolf, Philip A; Au, Rhoda; Kloog, Itai; Li, Wenyuan; Schwartz, Joel; Koutrakis, Petros; DeCarli, Charles; Seshadri, Sudha; Mittleman, Murray A
2015-05-01
Long-term exposure to ambient air pollution is associated with cerebrovascular disease and cognitive impairment, but whether it is related to structural changes in the brain is not clear. We examined the associations between residential long-term exposure to ambient air pollution and markers of brain aging using magnetic resonance imaging. Framingham Offspring Study participants who attended the seventh examination were at least 60 years old and free of dementia and stroke were included. We evaluated associations between exposures (fine particulate matter [PM2.5] and residential proximity to major roadways) and measures of total cerebral brain volume, hippocampal volume, white matter hyperintensity volume (log-transformed and extensive white matter hyperintensity volume for age), and covert brain infarcts. Models were adjusted for age, clinical covariates, indicators of socioeconomic position, and temporal trends. A 2-μg/m(3) increase in PM2.5 was associated with -0.32% (95% confidence interval, -0.59 to -0.05) smaller total cerebral brain volume and 1.46 (95% confidence interval, 1.10 to 1.94) higher odds of covert brain infarcts. Living further away from a major roadway was associated with 0.10 (95% confidence interval, 0.01 to 0.19) greater log-transformed white matter hyperintensity volume for an interquartile range difference in distance, but no clear pattern of association was observed for extensive white matter. Exposure to elevated levels of PM2.5 was associated with smaller total cerebral brain volume, a marker of age-associated brain atrophy, and with higher odds of covert brain infarcts. These findings suggest that air pollution is associated with insidious effects on structural brain aging even in dementia- and stroke-free persons. © 2015 American Heart Association, Inc.
Batscheider, Ariane; Zakrzewska, Sylwia; Heinrich, Joachim; Teuner, Christina M; Menn, Petra; Bauer, Carl Peter; Hoffmann, Ute; Koletzko, Sibylle; Lehmann, Irina; Herbarth, Olf; von Berg, Andrea; Berdel, Dietrich; Krämer, Ursula; Schaaf, Beate; Wichmann, H-Erich; Leidl, Reiner
2012-10-02
Although the negative health consequences of the exposure to second hand tobacco smoke during childhood are already known, evidence on the economic consequences is still rare. The aim of this study was to estimate excess healthcare costs of exposure to tobacco smoke in German children. The study is based on data from two birth cohort studies of 3,518 children aged 9-11 years with information on healthcare utilisation and tobacco smoke exposure: the GINIplus study (German Infant Study On The Influence Of Nutrition Intervention Plus Environmental And Genetic Influences On Allergy Development) and the LISAplus study (Influence of Life-Style Factors On The Development Of The Immune System And Allergies In East And West Germany Plus The Influence Of Traffic Emissions And Genetics). Direct medical costs were estimated using a bottom-up approach (base year 2007). We investigated the impact of tobacco smoke exposure in different environments on the main components of direct healthcare costs using descriptive analysis and a multivariate two-step regression analysis. Descriptive analysis showed that average annual medical costs (physician visits, physical therapy and hospital treatment) were considerably higher for children exposed to second-hand tobacco smoke at home (indoors or on patio/balcony) compared with those who were not exposed. Regression analysis confirmed these descriptive trends: the odds of positive costs and the amount of total costs are significantly elevated for children exposed to tobacco smoke at home after adjusting for confounding variables. Combining the two steps of the regression model shows smoking attributable total costs per child exposed at home of €87 [10-165] (patio/balcony) and €144 [6-305] (indoors) compared to those with no exposure. Children not exposed at home but in other places showed only a small, but not significant, difference in total costs compared to those with no exposure. This study shows adverse economic consequences of second-hand smoke in children depending on proximity of exposure. Tobacco smoke exposure seems to affect healthcare utilisation in children who are not only exposed to smoke indoors but also if parents reported exclusively smoking on patio or balcony. Preventing children from exposure to second-hand tobacco smoke might thus be desirable not only from a health but also from an economic perspective.
McCool, Judith P; Cameron, Linda D; Petrie, Keith J
2005-06-01
To assess a theoretical model of adolescents' exposure to films, perceptions of smoking imagery in film, and smoking intentions. A structured questionnaire was completed by 3041 Year 8 (aged 12 years) and Year 12 (aged 16 years) students from 25 schools in Auckland, New Zealand. The survey assessed the relationships among exposure to films, attitudes about smoking imagery, perceptions of smoking prevalence and its acceptability, and expectations of smoking in the future. Measures included exposure to films, perceived pervasiveness of, and nonchalant attitudes about smoking imagery, identification of positive smoker stereotypes in films, perceived smoking prevalence, judgment of smoking acceptability, and smoking expectations. Path analytic techniques, using multiple regression analyses, were used to test the pattern of associations identified by the media interpretation model. Hierarchical regression analyses revealed that film exposure predicted higher levels of perceived smoking prevalence, perceived imagery pervasiveness, and nonchalant attitudes about smoking imagery. Nonchalant attitudes, identification of positive smoker stereotypes, and perceived smoking prevalence predicted judgments of smoking acceptability. Acceptability judgments, identification of positive stereotypes, and perceived smoking prevalence were all positively associated with smoking expectations. The media interpretation model accounted for 24% of the variance in smoking expectations within the total sample. Smoking imagery in film may play a role in the development of smoking intentions through inflating the perception of smoking prevalence and presenting socially attractive images.
Eppler, Adam R; Fitzgerald, Christopher; Dorner, Stephen C; Aguilar-Villalobos, Manuel; Rathbun, Stephen L; Adetona, Olorunfemi; Naeher, Luke P
2013-01-01
Measurement of biological indicators of physiological change may be useful in evaluating the effectiveness of stove models, which are intended to reduce indoor smoke exposure and potential health effects. We examined changes in exhaled carbon monoxide (CO), percentage carboxy-hemoglobin, and total hemoglobin in response to the installation of a chimney stove model by the Juntos National Program in Huayatan, Peru in 2008. Biomarkers were measured in a convenience sample comprising 35 women who met requirements for participation, and were measured before and three weeks after installation of a chimney stove. The relationships between exposure to indoor smoke and biomarker measurements were also analyzed using simple linear regression models. Exhaled CO reduced from 6.71 ppm (95% CI 5.84-7.71) to 3.14 ppm (95% CI 2.77-3.66) three weeks after stove installation (P < 0.001) while % COHb reduced from 1.76% (95% CI 1.62-1.91) to 1.18% (95% CI 1.12-1.25; P < 0.001). Changes in exhaled CO and % COHb from pre- to post-chimney stove installation were not correlated with corresponding changes in exposure to CO and PM2.5 even though the exposures also reduced after stove installation. Exhaled CO and % COHb both showed improvement with reduction in concentration after the installation of the chimney cook stoves, indicating a positive physiological response subsequent to the intervention.
2016-01-01
Total knee replacement (TKR) is a procedure used to treat knee arthropathy. Patients’ dissatisfaction is still relevant (literature reports dissatisfaction rates as high as 40%). The anterior cruciate ligament is usually removed while performing a total knee arthroplasty, thus changing knee biomechanics. As patients’ mean age to surgery is decreasing, bicruciate retaining models, which preserve normal biomechanics, may be useful in increasing patients’ outcomes. Limited data concerning bicruciate retaining arthroplasty is available; although clinical results are encouraging, there are concerns regarding surgical exposure, anterior cruciate integrity evaluation, and implant fixation. PMID:27162778
Berger-Preiss, Edith; Koch, Wolfgang; Gerling, Susanne; Kock, Heiko; Appel, Klaus E
2009-09-01
Five commercially available insect sprays were applied in a model room. Spraying was performed in accordance with the manufacturers' instructions and in an overdosed manner in order to simulate worst-case conditions or an unforeseeable misuse. In addition, we examined electro-vaporizers. The Respicon aerosol monitoring system was applied to determine inhalation exposure. During normal spraying (10 seconds) and during the following 2-3 minutes, exposure concentrations ranged from 70 to 590 microg/m3 for the pyrethroids tetramethrin, d-phenothrin, cyfluthrin, bioallethrin, and the pyrethrins. Calculated inhalable doses were 2-16 microg. A concentration of approximately 850 microg chlorpyrifos/m(3) (inhalable dose: approximately 20 microg) was determined when the "Contra insect fly spray" was applied. Highest exposure concentrations (1100-2100 microg/m3) were measured for piperonyl butoxide (PBO), corresponding to an inhalation intake of 30-60microg. When simulating worst-case conditions, exposure concentrations of 200-3400microg/m3 and inhalable doses of 10-210microg were determined for the various active substances. Highest concentrations (4800-8000 microg/m3) were measured for PBO (inhalable: 290-480 microg). By applying the electro-vaporizer "Nexa Lotte" plug-in mosquito killer concentrations for d-allethrin were in the range of 5-12microg/m3 and 0.5-2 microg/m3 for PBO while with the "Paral" plug-in mosquito killer concentrations of 0.4-5microg/m3 for pyrethrins and 1-7 microg/m3 for PBO were measured. Potential dermal exposures were determined using exposure pads. Between 80 and 1000microg active substance (tetramethrin, phenothrin, cyfluthrin, bioallethrin, pyrethrins, chlorpyrifos) were deposited on the clothing of the total body surface area of the spray user. Highest levels (up to 3000 microg) were determined for PBO. Worst-case uses of the sprays led to 5-9 times higher concentrations. Also a 2-hour stay nearby an operating electro-vaporizer led to a contamination of the clothing (total amounts on the whole body were 450 microg d-allethrin and 50 microg PBO for "Nexa Lotte" plug-in mosquito killer and 80 microg pyrethrins and 190 microg PBO for "Paral" plug-in mosquito killer). Human biomonitoring data revealed urine concentrations of the metabolite (E)-trans-chrysanthemum dicarboxylic acid ((E)-trans-CDCA) between 1.7 microg/l and 7.1 microg/l after 5 minutes of exposure to the different sprays. Also the use of electro-vaporizers led to (E)-trans-CDCA concentrations in the urine in the range of 1.0 microg/l to 6.2 microg/l (1-3 hours exposure period). The exposure data presented can be used for performing human risk assessment when these biocidal products were applied indoors. The airborne concentrations of the non-volatile active chemical compounds could be predicted from first principles using a deterministic exposure model (SprayExpo).
Messing, Karen; Stock, Susan R; Tissot, France
2009-03-01
Several studies have reported male-female differences in the prevalence of symptoms of work-related musculoskeletal disorders (MSD), some arising from workplace exposure differences. The objective of this paper was to compare two strategies analyzing a single dataset for the relationships between risk factors and MSD in a population-based sample with a wide range of exposures. The 1998 Québec Health and Social Survey surveyed 11 735 respondents in paid work and reported "significant" musculoskeletal pain in 11 body regions during the previous 12 months and a range of personal, physical, and psychosocial risk factors. Five studies concerning risk factors for four musculoskeletal outcomes were carried out on these data. Each included analyses with multiple logistic regression (MLR) performed separately for women, men, and the total study population. The results from these gender-stratified and unstratified analyses were compared. In the unstratified MLR models, gender was significantly associated with musculoskeletal pain in the neck and lower extremities, but not with low-back pain. The gender-stratified MLR models identified significant associations between each specific musculoskeletal outcome and a variety of personal characteristics and physical and psychosocial workplace exposures for each gender. Most of the associations, if present for one gender, were also found in the total population. But several risk factors present for only one gender could be detected only in a stratified analysis, whereas the unstratified analysis added little information. Stratifying analyses by gender is necessary if a full range of associations between exposures and MSD is to be detected and understood.
Caldwell, Kevin K.; Sheema, S.; Paz, Rodrigo D; Samudio-Ruiz, Sabrina L.; Laughlin, Mary H.; Spence, Nathan E.; Roehlk, Michael J; Alcon, Sara N.; Allan, Andrea M.
2009-01-01
Prenatal ethanol exposure is associated with an increased incidence of depressive disorders in patient populations. However, the mechanisms that link prenatal ethanol exposure and depression are unknown. Several recent studies have implicated reduced brain-derived neurotrophic factor (BDNF) levels in the hippocampal formation and frontal cortex as important contributors to the etiology of depression. In the present studies, we sought to determine whether prenatal ethanol exposure is associated with behaviors that model depression, as well as with reduced BDNF levels in the hippocampal formation and/or medial frontal cortex, in a mouse model of fetal alcohol spectrum disorder (FASD). Compared to control adult mice, prenatal ethanol-exposed adult mice displayed increased learned helplessness behavior and increased immobility in the Porsolt forced swim test. Prenatal ethanol exposure was associated with decreased BDNF protein levels in the medial frontal cortex, but not the hippocampal formation, while total BDNF mRNA and BDNF transcripts containing exon III, IV or VI were reduced in both the medial frontal cortex and the hippocampal formation of prenatal ethanol-exposed mice. These results identify reduced BDNF levels in the medial frontal cortex and hippocampal formation as potential mediators of depressive disorders associated with FASD. PMID:18558427
Mortality Attributable to Secondhand Smoke Exposure in Spain (2011).
López, Maria J; Pérez-Ríos, Mónica; Schiaffino, Anna; Fernández, Esteve
2016-05-01
The objective of this study was to assess the mortality attributable to secondhand smoke (SHS) exposure among never-smokers in Spain in 2011, after the implementation of the Spanish smoking law. Data on SHS exposure were obtained from a computer-assisted telephone survey carried out in a representative sample of the adult Spanish population. We included the two main diseases widely associated with SHS exposure: lung cancer and ischaemic heart disease. The relative risks for these diseases were selected from previously published meta-analyses. The number of deaths attributable to SHS was calculated by applying the population attributable fraction to mortality not attributable to active smoking in 2011. The analyses were stratified by sex, age and setting of exposure (home, workplace, and both combined). In addition, a sensitivity analysis was performed for distinct scenarios. In 2011, a total of 586 deaths in men and 442 deaths in women would be attributable to SHS exposure. The total number of deaths from lung cancer attributable to SHS exposure would be 124, while the total number of deaths from ischaemic heart disease would be 904. The inclusion of ex-smokers or SHS exposure in leisure time in the study would considerably increase the total number of attributable deaths (by 20% and 130%, respectively). The total number of deaths attributable to SHS exposure at home and at work in Spain would be 1028 in 2011. Efforts are still needed to reduce the current prevalence of exposure-mainly due to exposure in nonregulated settings such as homes or cars and some outdoor spaces-and the associated morbidity and mortality. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Paunescu, A-C; Attoui, M; Bouallala, S; Sunyer, J; Momas, I
2017-07-01
This study aimed to measure in French children personal exposure concentrations of black carbon (BC) and ultrafine particles (UFP) and to quantify the contribution of different microenvironments (home, school, places of extracurricular activities, transport) to their total exposure. It was conducted on 96 9-year-old children from the PARIS birth cohort. BC and UFP were continuously measured by portable devices (microAeth ® AE51 and DiSCmini ® ) for a minimum of 24 hours, while participating families simultaneously filled in a space-time-activities-budget questionnaire. BC exposure concentration was higher during trips (principally metro/train and bus), while UFP exposure concentration was higher during indoor activities (mainly eating at restaurants) and in trips. The most important UFP peaks were measured at home, especially during cooking. Home and school together accounted for much of the total exposure, 83.8% for BC and 85.3% for UFP. The contribution of transport to total exposure was 12.4% for BC and 9.7% for UFP, while extracurricular activities were responsible for 3.8% and 5% of the total exposure to BC and UFP, respectively. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Haloacetic acids in drinking water and risk for stillbirth.
King, W D; Dodds, L; Allen, A C; Armson, B A; Fell, D; Nimrod, C
2005-02-01
Trihalomethanes (THMs) occurring in public drinking water sources have been investigated in several epidemiological studies of fetal death and results support a modest association. Other classes of disinfection by-products found in drinking water have not been investigated. To investigate the effects of haloacetic acid (HAA) compounds in drinking water on stillbirth risk. A population based case-control study was conducted in Nova Scotia and Eastern Ontario, Canada. Estimates of daily exposure to total and specific HAAs were based on household water samples and questionnaire information on water consumption at home and work. The analysis included 112 stillbirth cases and 398 live birth controls. In analysis without adjustment for total THM exposure, a relative risk greater than 2 was observed for an intermediate exposure category for total HAA and dichloroacetic acid measures. After adjustment for total THM exposure, the risk estimates for intermediate exposure categories were diminished, the relative risk associated with the highest category was in the direction of a protective effect, and all confidence intervals included the null value. No association was observed between HAA exposures and stillbirth risk after controlling for THM exposures.
Nelson, Suchitra; Albert, Jeffrey M.
2013-01-01
Mediators are intermediate variables in the causal pathway between an exposure and an outcome. Mediation analysis investigates the extent to which exposure effects occur through these variables, thus revealing causal mechanisms. In this paper, we consider the estimation of the mediation effect when the outcome is binary and multiple mediators of different types exist. We give a precise definition of the total mediation effect as well as decomposed mediation effects through individual or sets of mediators using the potential outcomes framework. We formulate a model of joint distribution (probit-normal) using continuous latent variables for any binary mediators to account for correlations among multiple mediators. A mediation formula approach is proposed to estimate the total mediation effect and decomposed mediation effects based on this parametric model. Estimation of mediation effects through individual or subsets of mediators requires an assumption involving the joint distribution of multiple counterfactuals. We conduct a simulation study that demonstrates low bias of mediation effect estimators for two-mediator models with various combinations of mediator types. The results also show that the power to detect a non-zero total mediation effect increases as the correlation coefficient between two mediators increases, while power for individual mediation effects reaches a maximum when the mediators are uncorrelated. We illustrate our approach by applying it to a retrospective cohort study of dental caries in adolescents with low and high socioeconomic status. Sensitivity analysis is performed to assess the robustness of conclusions regarding mediation effects when the assumption of no unmeasured mediator-outcome confounders is violated. PMID:23650048
Wang, Wei; Nelson, Suchitra; Albert, Jeffrey M
2013-10-30
Mediators are intermediate variables in the causal pathway between an exposure and an outcome. Mediation analysis investigates the extent to which exposure effects occur through these variables, thus revealing causal mechanisms. In this paper, we consider the estimation of the mediation effect when the outcome is binary and multiple mediators of different types exist. We give a precise definition of the total mediation effect as well as decomposed mediation effects through individual or sets of mediators using the potential outcomes framework. We formulate a model of joint distribution (probit-normal) using continuous latent variables for any binary mediators to account for correlations among multiple mediators. A mediation formula approach is proposed to estimate the total mediation effect and decomposed mediation effects based on this parametric model. Estimation of mediation effects through individual or subsets of mediators requires an assumption involving the joint distribution of multiple counterfactuals. We conduct a simulation study that demonstrates low bias of mediation effect estimators for two-mediator models with various combinations of mediator types. The results also show that the power to detect a nonzero total mediation effect increases as the correlation coefficient between two mediators increases, whereas power for individual mediation effects reaches a maximum when the mediators are uncorrelated. We illustrate our approach by applying it to a retrospective cohort study of dental caries in adolescents with low and high socioeconomic status. Sensitivity analysis is performed to assess the robustness of conclusions regarding mediation effects when the assumption of no unmeasured mediator-outcome confounders is violated. Copyright © 2013 John Wiley & Sons, Ltd.
Plipat, Nottasorn; Spicknall, Ian H; Koopman, James S; Eisenberg, Joseph Ns
2013-12-17
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of healthcare-associated infections. An important control strategy is hand hygiene; however, non-compliance has been a major problem in healthcare settings. Furthermore, modeling studies have suggested that the law of diminishing return applies to hand hygiene. Other additional control strategies such as environmental cleaning may be warranted, given that MRSA-positive individuals constantly shed contaminated desquamated skin particles to the environment. We constructed and analyzed a deterministic environmental compartmental model of MRSA fate, transport, and exposure between two hypothetical hospital rooms: one with a colonized patient, shedding MRSA; another with an uncolonized patient, susceptible to exposure. Healthcare workers (HCWs), acting solely as vectors, spread MRSA from one patient room to the other. Although porous surfaces became highly contaminated, their low transfer efficiency limited the exposure dose to HCWs and the uncolonized patient. Conversely, the high transfer efficiency of nonporous surfaces allows greater MRSA transfer when touched. In the colonized patient's room, HCW exposure occurred more predominantly through the indirect (patient to surfaces to HCW) mode compared to the direct (patient to HCW) mode. In contrast, in the uncolonized patient's room, patient exposure was more predominant in the direct (HCW to patient) mode compared to the indirect (HCW to surfaces to patient) mode. Surface wiping decreased MRSA exposure to the uncolonized patient more than daily surface decontamination. This was because wiping allowed higher cleaning frequency and cleaned more total surface area per day. Environmental cleaning should be considered as an integral component of MRSA infection control in hospitals. Given the previously under-appreciated role of surface contamination in MRSA transmission, this intervention mode can contribute to an effective multiple barrier approach in concert with hand hygiene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Dan; Wang, Jun; Wang, Limin
We report a new approach for electrochemical quantification of enzymatic inhibition and phosphorylation for biomonitoring of exposure to organophosphorus (OP) pesticides and nerve agents based on a magnetic beads (MBs) immunosensing platform. The principle of this approach is based on the combination of MBs immuno-capture based enzyme activity assay and competitive immunoassay of total amount of enzyme for simultaneous detection of enzyme inhibition and phosphorylation in biological fluids. Butyrylcholinesterase (BChE) was chosen as a model enzyme. In competitive immunoassay, the target total BChE in a sample (mixture of OP-inhibited BChE and active BChE) competes with the BChE modified on themore » MBs to bind to the limited anti-BChE antibody labeled with quantum dots (QDs-anti-BChE), and followed by electrochemical stripping analysis of the bound QDs conjugate on the MBs. This assay shows a linear response over the total BChE concentration range of 0.1~20 nM. Simultaneously, real time BChE activity was measured on an electrochemical carbon nanotube-based sensor coupled with microflow injection system after immuno-capture by MBs-anti-BChE conjugate. Therefore, the formed phosphorylated adduct (OP-BChE) can be estimated by the difference values of the total amount BChE (including active and OP-inhibited) and active BChE from established calibration curves. This approach not only eliminates the difficulty in screening of low-dose OP exposure (less than 20% inhibition of BChE) because of individual variation of BChE values, but also avoids the drawback of the scarce availability of OP-BChE antibody. It is sensitive enough to detect 0.5 nM OP-BChE, which is less than 2% BChE inhibition. This method offers a new method for rapid, accurate, selective and inexpensive quantification of phosphorylated adducts and enzyme inhibition for biomonitoring of OP and nerve agent exposures.« less
In this study, an in vitro synthetic gastrointestinal extraction protocol was used to estimate bioaccessibility of different arsenicals present in seventeen rice samples of various grain types that were collected across the US. The across matrix average for total arsenic was 209...
Empirical model for conveniently predicting total and regional lung deposition of inhaled aerosols
Accurate estimate of a dose of inhaled aerosols is a key factor for estimating potential health risks to exposure to ambient pollutant particulate matter on the one hand, and the therapeutic efficacy of inhaled drug aerosols on the other hand. Particle deposition in the lung is d...
Seoudi, Hani; Laporta, Matthew; Griffen, Margaret; Rizzo, Anne; Pullarkat, Ranjit
2013-08-15
Retrospective chart review. To evaluate the outcomes of anterior exposure of the thoracic and lumbar spine by an acute care surgery service. Spine surgeons typically require an "approach surgeon" to provide anterior exposure of the thoracic and lumbar spine. We hypothesized that a dedicated acute care surgery service can perform those operations with acceptable morbidity and mortality. A retrospective review of 161 trauma and nontrauma patients was performed. All cases were performed at a level I trauma center with a dedicated acute care surgery service. In-hospital morbidity and mortality were evaluated. A brief description of the operative techniques used by our group is also provided. Of the 161 patients, 59 (37%) were trauma patients. Ninety-three patients (58%) had anterolateral retroperitoneal exposure of the thoracic and lumbar spine. Sixty-eight patients (42%) had anterior retroperitoneal midline exposure of the lumbar and lumbosacral spine. Total morbidity was 9.3% (7.4% for trauma patients and 1.8% for non trauma patients). Morbidity was highest in patients who had anterolateral exposure of the thoracic and lumbar spine (6.8%). Morbidity in patients who had midline exposure of L4 to S1 was 0%. Total mortality was 1.2% (3.3% for trauma patients and 0% for nontrauma patients). The acute care surgery service gained 3141 physician work relative value units (RVU) by performing those operations. Anterior exposure of the thoracic and lumbar spine both for trauma and nontrauma related indications can be performed with acceptable morbidity and mortality by a dedicated acute care surgery service. Morbidity and mortality were higher in trauma patients and in those who underwent thoracolumbar procedures. Patients who had midline exposure of L4 to S1 for degenerative disc disease had the lowest morbidity. 4.
Predictors of 2,4-dichlorophenoxyacetic acid exposure among herbicide applicators
BHATTI, PARVEEN; BLAIR, AARON; BELL, ERIN M.; ROTHMAN, NATHANIEL; LAN, QING; BARR, DANA B.; NEEDHAM, LARRY L.; PORTENGEN, LUTZEN; FIGGS, LARRY W.; VERMEULEN, ROEL
2009-01-01
To determine the major factors affecting the urinary levels of 2,4-dichlorophenoxyacetic acid (2,4-D) among county noxious weed applicators in Kansas, we used a regression technique that accounted for multiple days of exposure. We collected 136 12-h urine samples from 31 applicators during the course of two spraying seasons (April to August of 1994 and 1995). Using mixed-effects models, we constructed exposure models that related urinary 2,4-D measurements to weighted self-reported work activities from daily diaries collected over 5 to 7 days before the collection of the urine sample. Our primary weights were based on an earlier pharmacokinetic analysis of turf applicators; however, we examined a series of alternative weighting schemes to assess the impact of the specific weights and the number of days before urine sample collection that were considered. The derived models accounting for multiple days of exposure related to a single urine measurement seemed robust with regard to the exact weights, but less to the number of days considered; albeit the determinants from the primary model could be fitted with marginal losses of fit to the data from the other weighting schemes that considered a different numbers of days. In the primary model, the total time of all activities (spraying, mixing, other activities), spraying method, month of observation, application concentration, and wet gloves were significant determinants of urinary 2,4-D concentration and explained 16% of the between-worker variance and 23% of the within-worker variance of urinary 2,4-D levels. As a large proportion of the variance remained unexplained, further studies should be conducted to try to systematically assess other exposure determinants. PMID:19319162
The Pilot Study of Children's Total Exposure to Persistent Pesticides and Other Persistent Organic Pollutants (CTEPP) investigated the aggregate exposures of 257 preschool children and their primary adult caregivers to pollutants commonly detected in their everyday environments. ...
Analysis of excimer laser radiant exposure effect toward corneal ablation volume at LASIK procedure
NASA Astrophysics Data System (ADS)
Adiati, Rima Fitria; Rini Rizki, Artha Bona; Kusumawardhani, Apriani; Setijono, Heru; Rahmadiansah, Andi
2016-11-01
LASIK (Laser Asissted In Situ Interlamelar Keratomilieusis) is a technique for correcting refractive disorders of the eye such as myopia and astigmatism using an excimer laser. This procedure use photoablation technique to decompose corneal tissues. Although preferred due to its efficiency, permanency, and accuracy, the inappropriate amount radiant exposure often cause side effects like under-over correction, irregular astigmatism and problems on surrounding tissues. In this study, the radiant exposure effect toward corneal ablation volume has been modelled through several processes. Data collecting results is laser data specifications with 193 nm wavelength, beam diameter of 0.065 - 0.65 cm, and fluence of 160 mJ/cm2. For the medical data, the myopia-astigmatism value, cornea size, corneal ablation thickness, and flap data are taken. The first modelling step is determining the laser diameter between 0.065 - 0.65 cm with 0.45 cm increment. The energy, power, and intensity of laser determined from laser beam area. Number of pulse and total energy is calculated before the radiant exposure of laser is obtained. Next is to determine the parameters influence the ablation volume. Regression method used to create the equation, and then the spot size is substituted to the model. The validation used is statistic correlation method to both experimental data and theory. By the model created, it is expected that any potential complications can be prevented during LASIK procedures. The recommendations can give the users clearer picture to determine the appropriate amount of radiant exposure with the corneal ablation volume necessary.
Cotton dust and endotoxin exposure-response relationships in cotton textile workers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, S.M.; Christiani, D.C.; Eisen, E.A.
Endotoxin exposure has been implicated in the etiology of lung disease in cotton workers. We investigated this potential relationship in 443 cotton workers from 2 factories in Shanghai and 439 control subjects from a nearby silk mill. A respiratory questionnaire was administered and pre- and postshift forced expiratory volume (FVC) and flow in one second (FEV1) were determined for each worker. Multiple area air samples were analyzed for total elutriated dust concentration (range: 0.15 to 2.5 mg/m3) and endotoxin (range: 0.002 to 0.55 microgram U.S. Reference Endotoxin/m3). The cotton worker population was stratified by current and cumulative dust or endotoxinmore » exposure. Groups were compared for FEV1, FVC, FEV1/FVC%, % change in FEV1 over the shift (delta FEV1%), and prevalences of chronic bronchitis and byssinosis, and linear and logistic regression models were constructed. No dose-response relationships were demonstrated comparing dust concentration to any pulmonary function or symptom variable. A dose-response trend was seen with the current endotoxin level and FEV1, delta FEV1%, and the prevalence of byssinosis and chronic bronchitis, except for the highest exposure level group in which a reversal of the trend was seen. The regression coefficients for current endotoxin exposure were significant (p less than 0.05) in the models for FEV1 and chronic bronchitis but not in the models for delta FEV1% (i.e., acute change in FEV1) or byssinosis prevalence. The coefficient for dust level was never significant in the models.« less
Daniels, Robert D.; Bertke, Stephen; Dahm, Matthew M.; Yiin, James H.; Kubale, Travis L.; Hales, Thomas R.; Baris, Dalsu; Zahm, Shelia H.; Beaumont, James J.; Waters, Kathleen M.; Pinkerton, Lynne E.
2015-01-01
Objectives To examine exposure–response relationships between surrogates of firefighting exposure and select outcomes among previously studied US career firefighters. Methods Eight cancer and four non-cancer outcomes were examined using conditional logistic regression. Incidence density sampling was used to match each case to 200 controls on attained age. Days accrued in firefighting assignments (exposed-days), run totals (fire-runs) and run times (fire-hours) were used as exposure surrogates. HRs comparing 75th and 25th centiles of lagged cumulative exposures were calculated using loglinear, linear, log-quadratic, power and restricted cubic spline general relative risk models. Piecewise constant models were used to examine risk differences by time since exposure, age at exposure and calendar period. Results Among 19 309 male firefighters eligible for the study, there were 1333 cancer deaths and 2609 cancer incidence cases. Significant positive associations between fire-hours and lung cancer mortality and incidence were evident. A similar relation between leukaemia mortality and fire-runs was also found. The lung cancer associations were nearly linear in cumulative exposure, while the association with leukaemia mortality was attenuated at higher exposure levels and greater for recent exposures. Significant negative associations were evident for the exposure surrogates and colorectal and prostate cancers, suggesting a healthy worker survivor effect possibly enhanced by medical screening. Conclusions Lung cancer and leukaemia mortality risks were modestly increasing with firefighter exposures. These findings add to evidence of a causal association between firefighting and cancer. Nevertheless, small effects merit cautious interpretation. We plan to continue to follow the occurrence of disease and injury in this cohort. PMID:25673342
Gebbink, Wouter A; Berger, Urs; Cousins, Ian T
2015-01-01
Contributions of direct and indirect (via precursors) pathways of human exposure to perfluorooctane sulfonic acid (PFOS) isomers and perfluoroalkyl carboxylic acids (PFCAs) are estimated using a Scenario-Based Risk Assessment (SceBRA) modelling approach. Monitoring data published since 2008 (including samples from 2007) are used. The estimated daily exposures (resulting from both direct and precursor intake) for the general adult population are highest for PFOS and perfluorooctanoic acid (PFOA), followed by perfluorohexanoic acid (PFHxA) and perfluorodecanoic acid (PFDA), while lower daily exposures are estimated for perfluorobutanoic acid (PFBA) and perfluorododecanoic acid (PFDoDA). The precursor contributions to the individual perfluoroalkyl acid (PFAA) daily exposures are estimated to be 11-33% for PFOS, 0.1-2.5% for PFBA, 3.7-34% for PFHxA, 13-64% for PFOA, 5.2-66% for PFDA, and 0.7-25% for PFDoDA (ranges represent estimated precursor contributions in a low- and high-exposure scenario). For PFOS, direct intake via diet is the major exposure pathway regardless of exposure scenario. For PFCAs, the dominant exposure pathway is dependent on perfluoroalkyl chain length and exposure scenario. Modelled PFOS and PFOA concentrations in human serum using the estimated intakes from an intermediate-exposure scenario are in agreement with measured concentrations in different populations. The isomer pattern of PFOS resulting from total intakes (direct and via precursors) is estimated to be enriched with linear PFOS (84%) relative to technical PFOS (70% linear). This finding appears to be contradictory to the observed enrichment of branched PFOS isomers in recent human serum monitoring studies and suggests that either external exposure is not fully understood (e.g. there are unknown precursors, missing or poorly quantified exposure pathways) and/or that there is an incomplete understanding of the isomer-specific human pharmacokinetic processes of PFOS, its precursors and intermediates. Copyright © 2014. Published by Elsevier Ltd.
Pietrofesa, Ralph A; Solomides, Charalambos C; Christofidou-Solomidou, Melpo
Spaceflight missions may require crewmembers to conduct extravehicular activities (EVA). Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours and be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health. We have developed a mouse model of total body radiation and hyperoxia exposure and identified acute damage of lung tissues. In the current study we evaluated the usefulness of dietary flaxseed (FS) as a countermeasure agent for such double-hit exposures. We evaluated lung tissue changes 2 weeks post-initiation of exposure challenges. Mouse cohorts (n=5/group) were pre-fed diets containing either 0% FS or 10% FS for 3 weeks and exposed to: a) normoxia (Untreated); b) >95% O 2 (O 2 ); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O 2 and IR (O 2 +IR) 3 times per week for 2 consecutive weeks, where 8-hour hyperoxia treatments were spanned by normoxic intervals. At 2 weeks post challenge, while control-diet fed mice developed significant lung injury and inflammation across all challenges, FS protected lung tissues by decreasing bronchoalveolar lavage fluid (BALF) neutrophils (p<0.003) and protein levels, oxidative tissue damage, as determined by levels of malondialdehyde (MDA) (p<0.008) and nitrosative stress as determined by nitrite levels. Lung hydroxyproline levels, a measure of lung fibrosis, were significantly elevated in mice fed 0% FS (p<0.01) and exposed to hyperoxia/radiation or the combination treatment, but not in FS-fed mice. FS also decreased levels of a pro-inflammatory, pro-fibrogenic cytokine (TGF-β1) gene expression levels in lung. Flaxseed mitigated adverse effects in lung of repeat exposures to radiation/hyperoxia. This data will provide useful information in the design of countermeasures to early tissue oxidative damage associated with space exploration.
Pietrofesa, Ralph A.; Solomides, Charalambos C.; Christofidou-Solomidou, Melpo
2015-01-01
Background Spaceflight missions may require crewmembers to conduct extravehicular activities (EVA). Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours and be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health. We have developed a mouse model of total body radiation and hyperoxia exposure and identified acute damage of lung tissues. In the current study we evaluated the usefulness of dietary flaxseed (FS) as a countermeasure agent for such double-hit exposures. Methods We evaluated lung tissue changes 2 weeks post-initiation of exposure challenges. Mouse cohorts (n=5/group) were pre-fed diets containing either 0% FS or 10% FS for 3 weeks and exposed to: a) normoxia (Untreated); b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) 3 times per week for 2 consecutive weeks, where 8-hour hyperoxia treatments were spanned by normoxic intervals. Results At 2 weeks post challenge, while control-diet fed mice developed significant lung injury and inflammation across all challenges, FS protected lung tissues by decreasing bronchoalveolar lavage fluid (BALF) neutrophils (p<0.003) and protein levels, oxidative tissue damage, as determined by levels of malondialdehyde (MDA) (p<0.008) and nitrosative stress as determined by nitrite levels. Lung hydroxyproline levels, a measure of lung fibrosis, were significantly elevated in mice fed 0% FS (p<0.01) and exposed to hyperoxia/radiation or the combination treatment, but not in FS-fed mice. FS also decreased levels of a pro-inflammatory, pro-fibrogenic cytokine (TGF-β1) gene expression levels in lung. Conclusion Flaxseed mitigated adverse effects in lung of repeat exposures to radiation/hyperoxia. This data will provide useful information in the design of countermeasures to early tissue oxidative damage associated with space exploration. PMID:25705570
Williams, Benjamin B.; Dong, Ruhong; Nicolalde, Roberto J.; Matthews, Thomas P.; Gladstone, David J.; Demidenko, Eugene; Zaki, Bassem I.; Salikhov, Ildar K.; Lesniewski, Piotr N.; Swartz, Harold M.
2014-01-01
Purpose The ability to estimate individual exposures to radiation following a large attack or incident has been identified as a necessity for rational and effective emergency medical response. In vivo electron paramagnetic resonance (EPR) spectroscopy of tooth enamel has been developed to meet this need. Materials and methods A novel transportable EPR spectrometer, developed to facilitate tooth dosimetry in an emergency response setting, was used to measure upper incisors in a model system, in unirradiated subjects, and in patients who had received total body doses of 2 Gy. Results A linear dose response was observed in the model system. A statistically significant increase in the intensity of the radiation-induced EPR signal was observed in irradiated versus unirradiated subjects, with an estimated standard error of dose prediction of 0.9 + 0.3 Gy. Conclusions These results demonstrate the current ability of in vivo EPR tooth dosimetry to distinguish between subjects who have not been irradiated and those who have received exposures that place them at risk for acute radiation syndrome. Procedural and technical developments to further increase the precision of dose estimation and ensure reliable operation in the emergency setting are underway. With these developments EPR tooth dosimetry is likely to be a valuable resource for triage following potential radiation exposure of a large population. PMID:21696339
Pinichka, Chayut; Bundhamcharoen, Kanitta; Shibuya, Kenji
2015-05-14
Ambient ozone (O3) pollution has increased globally since preindustrial times. At present, O3 is one of the major air pollution concerns in Thailand, and is associated with health impacts such as chronic obstructive pulmonary disease (COPD). The objective of our study is to estimate the burden of disease attributed to O3 in 2009 in Thailand based on empirical evidence. We estimated disability-adjusted life years (DALYs) attributable to O3 using the comparative risk assessment framework in the Global Burden of Diseases (GBD) study. We quantified the population attributable fraction (PAF), integrated from Geographic Information Systems (GIS)-based spatial interpolation, the population distribution of exposure, and the exposure-response coefficient to spatially characterize exposure to ambient O3 pollution on a national scale. Exposure distribution was derived from GIS-based spatial interpolation O3 exposure model using Pollution Control Department Thailand (PCD) surface air pollution monitor network sources. Relative risk (RR) and population attributable fraction (PAF) were determined using health impact function estimates for O3. PAF (%) of COPD attributable to O3 were determined by region: at approximately, Northern=2.1, Northeastern=7.1, Central=9.6, Eastern=1.75, Western=1.47 and Southern=1.74. The total COPD burden attributable to O3 for Thailand in 2009 was 61,577 DALYs. Approximately 0.6% of the total DALYs in Thailand is male: 48,480 DALYs; and female: 13,097 DALYs. This study provides the first empirical evidence on the health burden (DALYs) attributable to O3 pollution in Thailand. Varying across regions, the disease burden attributable to O3 was 0.6% of the total national burden in 2009. Better empirical data on local specific sites, e.g. urban and rural areas, alternative exposure assessment, e.g. land use regression (LUR), and a local concentration-response coefficient are required for future studies in Thailand.
Optimizing cost-efficiency in mean exposure assessment - cost functions reconsidered
2011-01-01
Background Reliable exposure data is a vital concern in medical epidemiology and intervention studies. The present study addresses the needs of the medical researcher to spend monetary resources devoted to exposure assessment with an optimal cost-efficiency, i.e. obtain the best possible statistical performance at a specified budget. A few previous studies have suggested mathematical optimization procedures based on very simple cost models; this study extends the methodology to cover even non-linear cost scenarios. Methods Statistical performance, i.e. efficiency, was assessed in terms of the precision of an exposure mean value, as determined in a hierarchical, nested measurement model with three stages. Total costs were assessed using a corresponding three-stage cost model, allowing costs at each stage to vary non-linearly with the number of measurements according to a power function. Using these models, procedures for identifying the optimally cost-efficient allocation of measurements under a constrained budget were developed, and applied on 225 scenarios combining different sizes of unit costs, cost function exponents, and exposure variance components. Results Explicit mathematical rules for identifying optimal allocation could be developed when cost functions were linear, while non-linear cost functions implied that parts of or the entire optimization procedure had to be carried out using numerical methods. For many of the 225 scenarios, the optimal strategy consisted in measuring on only one occasion from each of as many subjects as allowed by the budget. Significant deviations from this principle occurred if costs for recruiting subjects were large compared to costs for setting up measurement occasions, and, at the same time, the between-subjects to within-subject variance ratio was small. In these cases, non-linearities had a profound influence on the optimal allocation and on the eventual size of the exposure data set. Conclusions The analysis procedures developed in the present study can be used for informed design of exposure assessment strategies, provided that data are available on exposure variability and the costs of collecting and processing data. The present shortage of empirical evidence on costs and appropriate cost functions however impedes general conclusions on optimal exposure measurement strategies in different epidemiologic scenarios. PMID:21600023
Optimizing cost-efficiency in mean exposure assessment--cost functions reconsidered.
Mathiassen, Svend Erik; Bolin, Kristian
2011-05-21
Reliable exposure data is a vital concern in medical epidemiology and intervention studies. The present study addresses the needs of the medical researcher to spend monetary resources devoted to exposure assessment with an optimal cost-efficiency, i.e. obtain the best possible statistical performance at a specified budget. A few previous studies have suggested mathematical optimization procedures based on very simple cost models; this study extends the methodology to cover even non-linear cost scenarios. Statistical performance, i.e. efficiency, was assessed in terms of the precision of an exposure mean value, as determined in a hierarchical, nested measurement model with three stages. Total costs were assessed using a corresponding three-stage cost model, allowing costs at each stage to vary non-linearly with the number of measurements according to a power function. Using these models, procedures for identifying the optimally cost-efficient allocation of measurements under a constrained budget were developed, and applied on 225 scenarios combining different sizes of unit costs, cost function exponents, and exposure variance components. Explicit mathematical rules for identifying optimal allocation could be developed when cost functions were linear, while non-linear cost functions implied that parts of or the entire optimization procedure had to be carried out using numerical methods.For many of the 225 scenarios, the optimal strategy consisted in measuring on only one occasion from each of as many subjects as allowed by the budget. Significant deviations from this principle occurred if costs for recruiting subjects were large compared to costs for setting up measurement occasions, and, at the same time, the between-subjects to within-subject variance ratio was small. In these cases, non-linearities had a profound influence on the optimal allocation and on the eventual size of the exposure data set. The analysis procedures developed in the present study can be used for informed design of exposure assessment strategies, provided that data are available on exposure variability and the costs of collecting and processing data. The present shortage of empirical evidence on costs and appropriate cost functions however impedes general conclusions on optimal exposure measurement strategies in different epidemiologic scenarios.
Tian, Zhexi; Kim, Seung-Kyu; Shoeib, Mahiba; Oh, Jeong-Eun; Park, Jong-Eun
2016-05-15
A wide range of per- and polyfluoroalkyl substances (PFASs), including fluorotelomer alcohols (FTOHs), perfluorooctane sulfonamidoethanols (FOSEs), perfluoroalkyl carboxylic acids (PFCAs), and perfluoroalkane sulfonic acids (PFSAs), were measured in fifteen house dust and two nonresidential indoor dust of Korea. Total concentrations of PFASs in house dust ranged from 29.9 to 97.6 ng g(-1), with a dominance of perfluorooctane sulfonic acid (PFOS), followed by 8:2 FTOH, N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE), perfluoroctanoic acid (PFOA). In a typical exposure scenario, the estimated daily intakes (EDIs) of total PFASs via house dust ingestion were 2.83 ng d(-1) for toddlers and 1.13 ng d(-1) for adults, which were within the range of the mean EDIs reported from several countries. For PFOA and PFOS exposure via house dust ingestion, indirect exposure (via precursors) was a minor contributor, accounting for 5% and 12%, respectively. An aggregated exposure (hereafter, overall-EDIs) of PFOA and PFOS occurring via all pathways, estimated using data compiled from the literature, were 53.6 and 14.8 ng d(-1) for toddlers, and 20.5 and 40.6 ng d(-1) for adults, respectively, in a typical scenario. These overall-EDIs corresponded to 82% (PFOA) and 92% (PFOS) of a pharmacokinetic model-based EDIs estimated from adults' serum data. Direct dietary exposure was a major contributor (>89% of overall-EDI) to PFOS in both toddlers and adults, and PFOA in toddlers. As for PFOA exposure of adults, however direct exposure via tap water drinking (37%) and indirect exposure via inhalation (22%) were as important as direct dietary exposure (41%). House dust-ingested exposure (direct+indirect) was responsible for 5% (PFOS in toddlers) and <1% (PFOS in adults, and PFOA in both toddlers and adults) of the overall-EDIs. In conclusion, house-dust ingestion was a minor contributor in this study, but should not be ignored for toddlers' PFOS exposure due to its significance in the worst-case scenario. Copyright © 2016 Elsevier B.V. All rights reserved.
Goldsmith, M-R; Grulke, C M; Brooks, R D; Transue, T R; Tan, Y M; Frame, A; Egeghy, P P; Edwards, R; Chang, D T; Tornero-Velez, R; Isaacs, K; Wang, A; Johnson, J; Holm, K; Reich, M; Mitchell, J; Vallero, D A; Phillips, L; Phillips, M; Wambaugh, J F; Judson, R S; Buckley, T J; Dary, C C
2014-03-01
Consumer products are a primary source of chemical exposures, yet little structured information is available on the chemical ingredients of these products and the concentrations at which ingredients are present. To address this data gap, we created a database of chemicals in consumer products using product Material Safety Data Sheets (MSDSs) publicly provided by a large retailer. The resulting database represents 1797 unique chemicals mapped to 8921 consumer products and a hierarchy of 353 consumer product "use categories" within a total of 15 top-level categories. We examine the utility of this database and discuss ways in which it will support (i) exposure screening and prioritization, (ii) generic or framework formulations for several indoor/consumer product exposure modeling initiatives, (iii) candidate chemical selection for monitoring near field exposure from proximal sources, and (iv) as activity tracers or ubiquitous exposure sources using "chemical space" map analyses. Chemicals present at high concentrations and across multiple consumer products and use categories that hold high exposure potential are identified. Our database is publicly available to serve regulators, retailers, manufacturers, and the public for predictive screening of chemicals in new and existing consumer products on the basis of exposure and risk. Published by Elsevier Ltd.
Assessing exposure to violence in urban youth.
Selner-O'Hagan, M B; Kindlon, D J; Buka, S L; Raudenbush, S W; Earls, F J
1998-02-01
This study reports on the development of a structured interview, My Exposure to Violence (My ETV), that was designed to assess child and youth exposure to violence. Eighty participants between the ages of 9 and 24 were assessed. Data from My ETV were fit to a Rasch model for rating scales, a technique that generates interval level measures and allows the characterization of both chronic and acute exposure. Results indicated that the fit statistics for six scales, covering both lifetime and past year victimization, witnessing of violence, and total exposure, were all good. These scales were found to have high internal consistency (r = .68 to .93) and test-retest reliability (r = .75 to .94). Evidence of construct validity was provided by the item analysis, which revealed a theoretically sensible ordering of item extremity, and also by analysis of bivariate associations. As expected, younger subjects generally reported less exposure to violence than did older subjects, males reported more exposure than did females, African-American subjects reported higher levels of exposure than did White subjects, violent offenders reported more exposure than did non-offenders, and those living in high crime areas reported more exposure than did those residing in low crime areas. Future areas of investigation and the potential contribution to studies of antisocial behavior and post-traumatic stress disorder are discussed.
A Quantitative ADME-base Tool for Exploring Human ...
Exposure to a wide range of chemicals through our daily habits and routines is ubiquitous and largely unavoidable within modern society. The potential for human exposure, however, has not been quantified for the vast majority of chemicals with wide commercial use. Creative advances in exposure science are needed to support efficient and effective evaluation and management of chemical risks, particularly for chemicals in consumer products. The U.S. Environmental Protection Agency Office of Research and Development is developing, or collaborating in the development of, scientifically-defensible methods for making quantitative or semi-quantitative exposure predictions. The Exposure Prioritization (Ex Priori) model is a simplified, quantitative visual dashboard that provides a rank-ordered internalized dose metric to simultaneously explore exposures across chemical space (not chemical by chemical). Diverse data streams are integrated within the interface such that different exposure scenarios for “individual,” “population,” or “professional” time-use profiles can be interchanged to tailor exposure and quantitatively explore multi-chemical signatures of exposure, internalized dose (uptake), body burden, and elimination. Ex Priori has been designed as an adaptable systems framework that synthesizes knowledge from various domains and is amenable to new knowledge/information. As such, it algorithmically captures the totality of exposure across pathways. It
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisbrod, A.V.; Shea, D.; Moore, M.J.
1995-12-31
The goals of this project were: (1) to determine the level of organochlorine exposure to pilot whales; (2) to identify tissue and individual bioaccumulation patterns, and (3) to develop a predictive model to approximate contaminant bioaccumulation into blubber. Samples from eighteen pilot whales beached in 1990--91 on Cape Cod, MA were analyzed by GC/ECD and GC/MS for polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAHs). Individual congeners and total PCBs were identified and found to be high (ppm range) in several individuals. Blubber and liver differences in metabolizable PCB congeners correlate with differences in CYP 1A abundance and activity inmore » mature vs. immature animals. ANOVA and cluster analyses were performed to identify specific bioaccumulation patterns. Pod or exposure conditions appear to be the most important factor in bioaccumulation in these whales. Maturity level, gender, and metabolizability also seem to influence bioaccumulation in various tissues. These patterns were applied in the development of a steady state mass balance model, which focuses on exposure differences rather than metabolic and gender influences. Using a range of environmental contaminant concentrations for seawater, plankton, squid and fish, the model`s low range of output values best approximated blubber residues.« less
Lead remediation and changes in human lead exposure: some physiological and biokinetic dimensions.
Mushak, Paul
2003-02-15
This paper presents a qualitative and quantitative analysis of the various aspects of lead remediation effectiveness with particular reference to human health risk assessment. One of the key elements of lead remediation efforts at such sites as those under the Superfund program deals with populations at elevated exposure and toxicity risk in the proximity of, or at, the site of remediation, especially remediation workers, workers at other tasks on sites that were remediated down to some action level of lead concentration in soils, and groups at risk in nearby communities. A second element has to do with how one measures or models lead exposure changes with special reference to baseline and post-remediation conditions. Various biomarkers of lead exposure can be employed, but their use requires detailed knowledge of what results using each means. The most commonly used approach is measurement of blood lead (Pb-B). Recognized limitations in the use of Pb-B has led to the use of predictive Pb exposure models, which are less vulnerable to the many behavioral, physiological, and environmental parameters that can distort isolated or 'single shot' Pb-B testings. A third aspect covered in this paper presents various physiological factors that affect the methods by which one evaluates Pb remediation effectiveness. Finally, this article offers an integrated look at how lead remediation actions directed at one lead source or pathway affect the total lead exposure picture for human populations at elevated lead exposure and toxicity risk.
Job Tasks as Determinants of Thoracic Aerosol Exposure in the Cement Production Industry.
Notø, Hilde; Nordby, Karl-Christian; Skare, Øivind; Eduard, Wijnand
2017-12-15
The aims of this study were to identify important determinants and investigate the variance components of thoracic aerosol exposure for the workers in the production departments of European cement plants. Personal thoracic aerosol measurements and questionnaire information (Notø et al., 2015) were the basis for this study. Determinants categorized in three levels were selected to describe the exposure relationships separately for the job types production, cleaning, maintenance, foreman, administration, laboratory, and other jobs by linear mixed models. The influence of plant and job determinants on variance components were explored separately and also combined in full models (plant&job) against models with no determinants (null). The best mixed models (best) describing the exposure for each job type were selected by the lowest Akaike information criterion (AIC; Akaike, 1974) after running all possible combination of the determinants. Tasks that significantly increased the thoracic aerosol exposure above the mean level for production workers were: packing and shipping, raw meal, cement and filter cleaning, and de-clogging of the cyclones. For maintenance workers, time spent with welding and dismantling before repair work increased the exposure while time with electrical maintenance and oiling decreased the exposure. Administration work decreased the exposure among foremen. A subjective tidiness factor scored by the research team explained up to a 3-fold (cleaners) variation in thoracic aerosol levels. Within-worker (WW) variance contained a major part of the total variance (35-58%) for all job types. Job determinants had little influence on the WW variance (0-4% reduction), some influence on the between-plant (BP) variance (from 5% to 39% reduction for production, maintenance, and other jobs respectively but an 79% increase for foremen) and a substantial influence on the between-worker within-plant variance (30-96% for production, foremen, and other workers). Plant determinants had little influence on the WW variance (0-2% reduction), some influence on the between-worker variance (0-1% reduction and 8% increase), and considerable influence on the BP variance (36-58% reduction) compared to the null models. Some job tasks contribute to low levels of thoracic aerosol exposure and others to higher exposure among cement plant workers. Thus, job task may predict exposure in this industry. Dust control measures in the packing and shipping departments and in the areas of raw meal and cement handling could contribute substantially to reduce the exposure levels. Rotation between low and higher exposed tasks may contribute to equalize the exposure levels between high and low exposed workers as a temporary solution before more permanent dust reduction measures is implemented. A tidy plant may reduce the overall exposure for almost all workers no matter of job type. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Risk analysis: divergent models and convergent interpretations
NASA Technical Reports Server (NTRS)
Carnes, B. A.; Gavrilova, N.
2001-01-01
Material presented at a NASA-sponsored workshop on risk models for exposure conditions relevant to prolonged space flight are described in this paper. Analyses used mortality data from experiments conducted at Argonne National Laboratory on the long-term effects of external whole-body irradiation on B6CF1 mice by 60Co gamma rays and fission neutrons delivered as a single exposure or protracted over either 24 or 60 once-weekly exposures. The maximum dose considered was restricted to 1 Gy for neutrons and 10 Gy for gamma rays. Proportional hazard models were used to investigate the shape of the dose response at these lower doses for deaths caused by solid-tissue tumors and tumors of either connective or epithelial tissue origin. For protracted exposures, a significant mortality effect was detected at a neutron dose of 14 cGy and a gamma-ray dose of 3 Gy. For single exposures, radiation-induced mortality for neutrons also occurred within the range of 10-20 cGy, but dropped to 86 cGy for gamma rays. Plots of risk relative to control estimated for each observed dose gave a visual impression of nonlinearity for both neutrons and gamma rays. At least for solid-tissue tumors, male and female mortality was nearly identical for gamma-ray exposures, but mortality risks for females were higher than for males for neutron exposures. As expected, protracting the gamma-ray dose reduced mortality risks. Although curvature consistent with that observed visually could be detected by a model parameterized to detect curvature, a relative risk term containing only a simple term for total dose was usually sufficient to describe the dose response. Although detectable mortality for the three pathology end points considered typically occurred at the same level of dose, the highest risks were almost always associated with deaths caused by tumors of epithelial tissue origin.
Aufderheide, Michaela; Emura, Makito
2017-07-05
3D constructs composed of differentiated immortalized primary normal human bronchial epithelial (NHBE) cells (CL-1548) were repeatedly exposed at the air-liquid interface to non-lethal concentrations of mainstream cigarette smoke (4 cigarettes a day, 5days/week, 8 repetitions in total) and e-cigarette vapor (50 puffs a day, 5 days/week, 8 repetitions in total) to build up a permanent burden on the cells. Samples were taken after 4, 6 and 8 times of repeated smoke exposure and the cultures were investigated using histopathological methods Compared to the clean air-exposed cultures (process control) and incubator control, the aerosol-exposed cultures showed a reduction of ciliated, mucus-producing and club cells. At the end of the exposure phase, we even found metaplastic areas positive for CK13 antibody in the cultures exposed to mainstream cigarette smoke and e-liquid vapor, commonly seen in squamous cells as a marker for non-cornified squamous epithelium. The control cultures (incubator cells) showed no comparable phenotypical changes. In conclusion, our in vitro model presents a valuable tool to study the induction of phenotypical changes after exposure to hazardous airborne material. Copyright © 2017. Published by Elsevier GmbH.
Santo, Glaucia Dal; Grotto, Alan; Boligon, Aline A; Da Costa, Bárbara; Rambo, Cassiano L; Fantini, Emily A; Sauer, Elisa; Lazzarotto, Luan M V; Bertoncello, Kanandra T; Júnior, Osmar Tomazelli; Garcia, Solange C; Siebel, Anna M; Rosemberg, Denis B; Magro, Jacir Dal; Conterato, Greicy M M; Zanatta, Leila
2018-04-01
Oxidative stress and DNA damage are involved in the glyphosate-based herbicide toxicity. Uncaria tomentosa (UT; Rubiaceae) is a plant species from South America containing bioactive compounds with known beneficial properties. The objective of this work was to evaluate the antioxidant and antigenotoxic potential of UT extract in a model of acute exposure to glyphosate-Roundup® (GR) in zebrafish (Danio rerio). We showed that UT (1.0 mg/mL) prevented the decrease of brain total thiols, the increase of lipid peroxidation in both brain and liver, and the decrease of liver GPx activity caused after 96 h of GR (5.0 mg/L) exposure. In addition, UT partially protected against the increase of micronucleus frequency induced by GR exposure in fish brain. Overall, our results indicate that UT protects against damage induced by a glyphosate-based herbicide by providing antioxidant and antigenotoxic effects, which may be related to the phenolic compounds identified in the extract.
Air Pollution and Nonmalignant Respiratory Mortality in 16 Cohorts within the ESCAPE Project
Dimakopoulou, Konstantina; Samoli, Evangelia; Beelen, Rob; Stafoggia, Massimo; Andersen, Zorana Jovanovic; Hoffmann, Barbara; Fischer, Paul; Nieuwenhuijsen, Mark; Vineis, Paolo; Xun, Wei; Hoek, Gerard; Raaschou-Nielsen, Ole; Oudin, Anna; Forsberg, Bertil; Modig, Lars; Jousilahti, Pekka; Lanki, Timo; Turunen, Anu; Oftedal, Bente; Nafstad, Per; Schwarze, Per E.; Penell, Johanna; Fratiglioni, Laura; Andersson, Niklas; Pedersen, Nancy; Korek, Michal; De Faire, Ulf; Eriksen, Kirsten Thorup; Tjønneland, Anne; Becker, Thomas; Wang, Meng; Bueno-de-Mesquita, Bas; Tsai, Ming-Yi; Eeftens, Marloes; Peeters, Petra H.; Meliefste, Kees; Marcon, Alessandro; Krämer, Ursula; Kuhlbusch, Thomas A.J.; Vossoughi, Mohammad; Key, Timothy; de Hoogh, Kees; Hampel, Regina; Peters, Annette; Heinrich, Joachim; Weinmayr, Gudrun; Concin, Hans; Nagel, Gabriele; Ineichen, Alex; Jacquemin, Bénédicte; Stempfelet, Morgane; Vilier, Alice; Ricceri, Fulvio; Sacerdote, Carlotta; Pedeli, Xanthi; Katsoulis, Michalis; Trichopoulou, Antonia; Brunekreef, Bert
2014-01-01
Rationale: Prospective cohort studies have shown that chronic exposure to particulate matter and traffic-related air pollution is associated with reduced survival. However, the effects on nonmalignant respiratory mortality are less studied, and the data reported are less consistent. Objectives: We have investigated the relationship of long-term exposure to air pollution and nonmalignant respiratory mortality in 16 cohorts with individual level data within the multicenter European Study of Cohorts for Air Pollution Effects (ESCAPE). Methods: Data from 16 ongoing cohort studies from Europe were used. The total number of subjects was 307,553. There were 1,559 respiratory deaths during follow-up. Measurements and Main Results: Air pollution exposure was estimated by land use regression models at the baseline residential addresses of study participants and traffic-proximity variables were derived from geographical databases following a standardized procedure within the ESCAPE study. Cohort-specific hazard ratios obtained by Cox proportional hazard models from standardized individual cohort analyses were combined using metaanalyses. We found no significant associations between air pollution exposure and nonmalignant respiratory mortality. Most hazard ratios were slightly below unity, with the exception of the traffic-proximity indicators. Conclusions: In this study of 16 cohorts, there was no association between air pollution exposure and nonmalignant respiratory mortality. PMID:24521254
Respiratory Effects and Systemic Stress Response Following ...
Previous studies have demonstrated that exposure to ozone, a pulmonary irritant, causes myriad systemic metabolic and pulmonary effects that are attributed to neuronal and hypothalamus-pituitary-adrenal (HPA) axis activation, which are exacerbated in metabolically-impaired models. In order to elucidate the systemic consequences and the contribution of the HPA axis in mediating metabolic and respiratory effects of acrolein, a sensory irritant, we examined pulmonary, nasal, and systemic effects in rats following exposure. Male, 10 week old Wistar and Goto Kakizaki (GK) rats, a non-obese type II diabetic Wistar-derived model, were exposed to 0, 2 or 4 ppm acrolein, 4h/day for 1 or 2 days. Acrolein exposure at 4 ppm significantly increased pulmonary and nasal damage in both strains as demonstrated by increased inspiratory and expiratory times indicating labored breathing, elevated biomarkers of injury, and neutrophilic inflammation. Overall, at both time points acrolein exposure caused noticeably more damage in the nasal passages as opposed to the lung with vascular protein leakage occurring only in the nose. Acrolein exposure (4 ppm) also led to metabolic impairment by inducing hyperglycemia and glucose intolerance (GK>Wistar) as indicated by glucose tolerance testing. In addition, serum total cholesterol (GKs only), LDL cholesterol (both strains), and free fatty acids (GK>Wistar) levels increased; however, no acrolein-induced changes were noted in branched-c
Acute Radiation Syndrome Severity Score System in Mouse Total-Body Irradiation Model.
Ossetrova, Natalia I; Ney, Patrick H; Condliffe, Donald P; Krasnopolsky, Katya; Hieber, Kevin P
2016-08-01
Radiation accidents or terrorist attacks can result in serious consequences for the civilian population and for military personnel responding to such emergencies. The early medical management situation requires quantitative indications for early initiation of cytokine therapy in individuals exposed to life-threatening radiation doses and effective triage tools for first responders in mass-casualty radiological incidents. Previously established animal (Mus musculus, Macaca mulatta) total-body irradiation (γ-exposure) models have evaluated a panel of radiation-responsive proteins that, together with peripheral blood cell counts, create a multiparametic dose-predictive algorithm with a threshold for detection of ~1 Gy from 1 to 7 d after exposure as well as demonstrate the acute radiation syndrome severity score systems created similar to the Medical Treatment Protocols for Radiation Accident Victims developed by Fliedner and colleagues. The authors present a further demonstration of the acute radiation sickness severity score system in a mouse (CD2F1, males) TBI model (1-14 Gy, Co γ-rays at 0.6 Gy min) based on multiple biodosimetric endpoints. This includes the acute radiation sickness severity Observational Grading System, survival rate, weight changes, temperature, peripheral blood cell counts and radiation-responsive protein expression profile: Flt-3 ligand, interleukin 6, granulocyte-colony stimulating factor, thrombopoietin, erythropoietin, and serum amyloid A. Results show that use of the multiple-parameter severity score system facilitates identification of animals requiring enhanced monitoring after irradiation and that proteomics are a complementary approach to conventional biodosimetry for early assessment of radiation exposure, enhancing accuracy and discrimination index for acute radiation sickness response categories and early prediction of outcome.
Pozzebon, Alberto; Duso, Carlo; Tirello, Paola; Ortiz, Paulina Bermudez
2011-03-01
Knowledge of the impact of insecticides on Tetranychus urticae Koch and its predator Phytoseiulus persimilis Athias-Henriot is crucial for IPM. This study evaluates the effect of thiamethoxam on T. urticae and its predator by considering different routes of exposure (topical, residual and contaminated food exposures) and their combinations. Thiamethoxam effects on T. urticae were higher when residual and contaminated food exposures were considered. The total effect was higher than 90% where contaminated food exposure was involved. On P. persimilis, the total effect was higher in residual and contaminated prey exposures compared with topical exposure, and all combinations of routes of exposure attained a total effect higher than 90%. Thiamethoxam was found to be toxic to T. urticae and P. persimilis; however, the impact of the insecticide depended on the routes of exposure and their combinations. Lethal and sublethal effects occurred in residual and contaminated food exposures, while only sublethal effects occurred in topical exposure of predators and prey. The toxicity of thiamethoxam on prey and predator increased with the number of exposure routes involved. By limiting exposure to thiamethoxam to ingestion of contaminated food only, the impact of the pesticide was more favourable to P. persimilis than to its prey. Copyright © 2010 Society of Chemical Industry.
Koštiaková, Vladimíra; Moleti, Arturo; Wimmerová, Soňa; Jusko, Todd A; Palkovičová Murínová, Ľubica; Sisto, Renata; Richterová, Denisa; Kováč, Ján; Čonka, Kamil; Patayová, Henrieta; Tihányi, Juraj; Trnovec, Tomáš
2016-10-01
The study aim was to identify the timing of sensitive windows for ototoxicity related to perinatal exposure to PCBs. A total of 351 and 214 children from a birth cohort in eastern Slovakia underwent otoacoustic testing at 45 and 72 months, respectively, and distortion product otoacoustic emissions (DPOAEs) at 11 frequencies were recorded. Cord and child 6-, 16-, 45-, and 72- month blood samples were analyzed for PCB 153 concentration. The PCB 153 concentration-time profiles were approximated with a system model to calculate area under the PCB*time curves (AUCs) for specific time intervals (3 and 6 months for 45 and 72 months data, respectively). DPOAE amplitudes were correlated (Spearman) with cord serum PCB and AUCs, markers of prenatal and postnatal exposure, respectively. Two exposure critical windows were identified in infants, the first related to prenatal and early postnatal and the second to postnatal exposure to PCBs. Our data have shown tonotopicity, sexual dimorphism, and asymmetry in ototoxicity of PCBs. Copyright © 2016. Published by Elsevier Ltd.
Yorifuji, Takashi; Tsuda, Toshihide
2016-07-03
Severe methylmercury exposure occurred in Minamata, Japan. Only a limited number of epidemiological studies related to that exposure have been carried out. The evidence that methylmercury is cardiotoxic is very limited, and these studies provide only minimal support for that hypothesis. We therefore analyzed the data both from an investigation in Minamata and neighboring communities in 1971 and an investigation in 1974 in another area simultaneously. We included a total of 3,751 participants. We examined the association of residential area with neurological signs or blood pressure using logistic regression or multiple linear regression models, adjusting for sex and age. We found that the prevalence of neurological signs and symptoms was elevated in the Minamata area (high-exposure), followed by the Goshonoura area (medium-exposure). Moreover, blood pressure was elevated in residents of the Minamata area.
Annoyance from Road Traffic, Trains, Airplanes and from Total Environmental Noise Levels
Ragettli, Martina S.; Goudreau, Sophie; Plante, Céline; Perron, Stéphane; Fournier, Michel; Smargiassi, Audrey
2015-01-01
There is a lack of studies assessing the exposure-response relationship between transportation noise and annoyance in North America. Our aims were to investigate the prevalence of noise annoyance induced by road traffic, trains and airplanes in relation to distance to transportation noise sources, and to total environmental noise levels in Montreal, Canada; annoyance was assessed as noise-induced disturbance. A telephone-based survey among 4336 persons aged >18 years was conducted. Exposure to total environmental noise (A-weighted outdoor noise levels—LAeq24h and day-evening-night equivalent noise levels—Lden) for each study participant was determined using a statistical noise model (land use regression—LUR) that is based on actual outdoor noise measurements. The proportion of the population annoyed by road traffic, airplane and train noise was 20.1%, 13.0% and 6.1%, respectively. As the distance to major roads, railways and the Montreal International Airport increased, the percentage of people disturbed and highly disturbed due to the corresponding traffic noise significantly decreased. When applying the statistical noise model we found a relationship between noise levels and disturbance from road traffic and total environmental noise, with Prevalence Proportion Ratios (PPR) for highly disturbed people of 1.10 (95% CI: 1.07–1.13) and 1.04 (1.02–1.06) per 1 dB(A) Lden, respectively. Our study provides the first comprehensive information on the relationship between transportation noise levels and disturbance in a Canadian city. LUR models are still in development and further studies on transportation noise induced annoyance are consequently needed, especially for sources other than road traffic. PMID:26729143
Suárez, Liliana; Mesías, Stephanie; Iglesias, Verónica; Silva, Claudio; Cáceres, Dante D; Ruiz-Rudolph, Pablo
2014-05-01
The objective of this study was to compare personal exposure to particulate matter (fine and ultrafine particles) in commuters using different transport modes (bicycle, bus, car and subway) in a busy, assigned route in downtown Santiago, Chile. Volunteers carrying personal samplers completed scheduled commutes during the morning rush hours, while central site measurements were conducted in parallel. A total of 137 valid commutes were assessed. The impact of central site, traffic and other variables was explored with regression models. PM2.5 personal concentrations were equal to or slightly above central site measurements, while UFP personal concentrations were above them. Regression models showed impacts of both background levels and traffic emissions on personal PM2.5 and UFP exposure. Traffic impacts varied with transport modes. Estimates of traffic impacts on personal PM2.5 exposure were 2.0, 13.0, 16.9 and 17.5 μg m(-3), for car, bicycle, subway and bus, respectively; while for UFP exposure were 8400, 16 200, 25 600 and 30 100 counts per cm(3), for subway, car, bicycle and bus, respectively. After controlling the central site and transport mode, higher temperatures increased PM2.5 exposure and decreased UFP ones, while the wind direction affected UFP personal exposure. In conclusion, we found significant impacts of both central site background measurements and traffic emissions on personal exposure of volunteer commuters in an assigned route in Santiago, with impacts varying with transport modes.
Media exposure and oral health outcomes among adults.
Zini, Avraham; Sgan-Cohen, Harold D; Vered, Yuval
2013-02-01
To assess the impact of media exposure on oral health outcomes among Jewish adults in Jerusalem, Israel, by means of a conceptual hierarchical model. A cross-sectional study was conducted using a stratified sample of 254 adults 35 to 44 years (mean age, 38.63 years) in Jerusalem, Israel. Media exposure was operationally categorized by type and frequency. Behavioral data included toothbrushing, dental attendance, oral hygiene aids use, plaque level, sugar consumption, and smoking. Clinical outcomes were assessed according to the decayed/missing/filled teeth (DMFT) index and the community periodontal index (CPI). Results were analyzed by chi-square test, independent test, one-way ANOVA, and linear and multiple logistic regression models. A total of 254 examinees consisted of 127 men and 127 mean (married couples). High type and high frequency of media exposure, as compared with other modes, revealed statistically significant higher caries experience (DMFT, 13.10), higher level of untreated decay (D, 1.67), and lower periodontal health (CPI [0], 0.39). A conceptual hierarchical regression model identified that the relationship described was mediated by sociodemographic determinants (education) and behavioral determinants (dental attendance and plaque level). Media exposure should be observed by community health program planners and general practitioners to examine the type and frequency of the messages. They also need to react on time to balanced bad advertising and add a good message at the community. This pragmatic approach could lead to better use of the media and improve oral health behavior and outcomes.
Lubin, Jay H; Cook, Michael B; Pandeya, Nirmala; Vaughan, Thomas L; Abnet, Christian C; Giffen, Carol; Webb, Penelope M; Murray, Liam J; Casson, Alan G; Risch, Harvey A; Ye, Weimin; Kamangar, Farin; Bernstein, Leslie; Sharp, Linda; Nyrén, Olof; Gammon, Marilie D; Corley, Douglas A; Wu, Anna H; Brown, Linda M; Chow, Wong-Ho; Ward, Mary H; Freedman, Neal D; Whiteman, David C
2012-06-01
Cigarette smoking is associated with esophageal adenocarcinoma (EAC), esophagogastric junctional adenocarcinoma (EGJA) and esophageal squamous cell carcinoma (ESCC), and alcohol consumption with ESCC. However, no analyses have examined how delivery rate modifies the strength of odds ratio (OR) trends with total exposure, i.e., the impact on the OR for a fixed total exposure of high exposure rate for short duration compared with low exposure rate for long duration. The authors pooled data from 12 case-control studies from the Barrett's Esophagus and Esophageal Adenocarcinoma Consortium (BEACON), including 1242 (EAC), 1263 (EGJA) and 954 (ESCC) cases and 7053 controls, modeled joint ORs for cumulative exposure and exposure rate for cigarette smoking and alcohol consumption, and evaluated effect modification by sex, body mass index (BMI), age and self-reported acid reflux. For smoking, all sites exhibited inverse delivery rate effects, whereby ORs with pack-years increased, but trends weakened with increasing cigarettes/day. None of the examined factors modified associations, except for ESCC where younger ages at diagnosis enhanced smoking effects (P<0.01). For EAC and EGJA, ORs with drink-years exhibited inverse associations in <5 drinks/day consumers and no association in heavier consumers. For ESCC, ORs with drink-years increased, with trends strengthening with greater drinks/day. There was no significant effect modification, except for EAC and EGJA where acid reflux mitigated the inverse associations (P=0.02). For ESCC, younger ages at diagnosis enhanced drinking-related ORs (P<0.01). Patterns of ORs by pack-years and drink-years, delivery rate effects and effect modifiers revealed common as well as distinct etiologic elements for these diseases. Published by Elsevier Ltd.
Schneberger, David; Aulakh, Gurpreet; Channabasappa, Shankaramurthy; Singh, Baljit
2016-01-01
Exposure to animal barn air is an occupational hazard that causes lung dysfunction in barn workers. Respiratory symptoms experienced by workers are typically associated with endotoxin and TLR4 signalling, but within these environments gram negative bacteria constitute only a portion of the total microbial population. In contrast, unmethylated DNA can be found in all bacteria, some viruses, and mold. We hypothesized that in such environments TLR9, which binds unmethylated DNA, contributes to the overall immune responses in the lung. Using a mouse model, wild-type and TLR9(-/-) mice were exposed to chicken barn air for 1, 5, or 20 days. Blood serum and bronchiolar lavage fluid was tested against a panel of six TLR9-induced cytokines (IL-1β, IL-6, IL-10, IL-12, TNFα, and IFNγ) for changes in expression. Bronchiolar lavage fluid (BAL) was also tested for macrophage as well as monocyte migration. There were significant decreases in serum TNFα after a single day exposure in TLR9(-/-) mice. BAL concentrations of TNFα and IFNγ, as well as TNFα in serum in TLR9(-/-) mice were also reduced after barn exposure for 5 days. After 20 days of exposure IFNγ was significantly reduced in lavage of TLR9(-/-) mice. Myeloperoxidase (MPO) accumulation in the lung was reduced at 20 days of exposure in TLR9(-/-) mice, as was total lavage cell counts. However, Masson's staining revealed no apparent lung histological differences between any of the treatment groups. Taken together our data show TLR9 plays a partial role in lung inflammation induced following exposure to chicken barn air potentially through binding of unmethylated DNA.
Morakinyo, Ayodele Olufemi; Iranloye, Bolanle Olubusola; Ogunsola, Oluseyi Abimbola
2018-04-01
We aimed to evaluate the effects of a single (acute) and repeated (chronic) exposure to forced-swimming stressor on glucose tolerance, insulin sensitivity, lipid profile and glycogen content in male rats. Thirty adult male Sprague-Dawley rats (12 weeks old) were divided randomly into five groups: control group, single exposure (SE) to forced-swim stressor, repeated exposure to forced-swim stressor for 7 days (RE7), 14 days (RE14) and 28 days (RE28). Glucose tolerance test and Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) were undertaken on fasting rats to obtain glucose and insulin profiles. ELISA was performed to assess plasma insulin and corticosterone levels. Total cholesterol, triglyceride, high- and low-density lipoproteins, hepatic and skeletal glycogen content were also determined. Repeated exposure to stressor induced glucose intolerance and insulin resistance in the experimental rats. Results showed that all RE groups exhibited a significantly higher area under the curve compared with others (p=0.0001); similarly, HOMA-IR increased (p=0.0001) in all RE groups compared with control. Prolonged exposure to stressor significantly increased the plasma insulin and corticosterone levels but decreased the glycogen content in the liver and skeletal muscle when compared with the control group. Additionally, chronic stressor significantly increased the total cholesterol and triglyceride levels, however, acute stressor produced significantly elevated high-density lipoproteins level. In conclusion, repeated exposure to forced-swimming stressor induced glucose intolerance and insulin resistance in rats by disrupting the insulin sensitivity as well as heightening the glycogenolysis in the liver and skeletal muscle. Acute stressor was unable to cause glucose intolerance and insulin resistance but it appears that may have a positive effect on the lipid metabolism.
Liu, Wei; Huang, Chen; Hu, Yu; Fu, Qingyan; Zou, Zhijun; Sun, Chanjuan; Shen, Li; Wang, Xueying; Cai, Jiao; Pan, Jun; Huang, Yanmin; Chang, Jing; Sun, Yuexia; Sundell, Jan
2016-01-01
Associations of ambient air pollutants with respiratory health are inconsistent. We analyzed the associations of gestational and early life exposures to air pollutants with doctor-diagnosed asthma, allergic rhinitis, and pneumonia in children. We selected 3358 preschool children who did not alter residences after birth from a cross-sectional study in 2011-2012 in Shanghai, China. Parents reported children's respiratory health history, home environment, and family lifestyle behaviors. We collected daily concentrations of sulphur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter with an aerodynamic diameter ≤10μm (PM10) during the child's total lifetime (2006-2012) for each district where the children lived. We analyzed the associations using logistic regression models. After adjusting for covariates and the other studied pollutants, we found that exposure to NO2 (increment of 20μg/m(3)) during the first year of life was significantly associated with asthma [odds ratio (OR)=1.77; 95% confidence interval (CI): 1.29-2.43] and allergic rhinitis (OR=1.67; 95% CI: 1.07-2.61). Exposure to NO2 during gestation, the first two and three years, and over total lifetimewas all consistently associated with increased odds of allergic rhinitis. Quartiles of NO2 concentration during different exposure periods showed a slight dose-response relationship with the studied diseases. These diseases had significant associations with pollutant mixtures that included NO2, but had no significant association with exposures to SO2 and PM10 individually or in mixtures. Gestational and early life exposures to ambient NO2 are risk factors for childhood respiratory diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
McGovern, Toby K; Powell, William S; Day, Brian J; White, Carl W; Govindaraju, Karuthapillai; Karmouty-Quintana, Harry; Lavoie, Normand; Tan, Ju Jing; Martin, James G
2010-10-06
Exposure to chlorine (Cl2) causes airway injury, characterized by oxidative damage, an influx of inflammatory cells and airway hyperresponsiveness. We hypothesized that Cl2-induced airway injury may be attenuated by antioxidant treatment, even after the initial injury. Balb/C mice were exposed to Cl2 gas (100 ppm) for 5 mins, an exposure that was established to alter airway function with minimal histological disruption of the epithelium. Twenty-four hours after exposure to Cl2, airway responsiveness to aerosolized methacholine (MCh) was measured. Bronchoalveolar lavage (BAL) was performed to determine inflammatory cell profiles, total protein, and glutathione levels. Dimethylthiourea (DMTU;100 mg/kg) was administered one hour before or one hour following Cl2 exposure. Mice exposed to Cl2 had airway hyperresponsiveness to MCh compared to control animals pre-treated and post-treated with DMTU. Total cell counts in BAL fluid were elevated by Cl2 exposure and were not affected by DMTU treatment. However, DMTU-treated mice had lower protein levels in the BAL than the Cl2-only treated animals. 4-Hydroxynonenal analysis showed that DMTU given pre- or post-Cl2 prevented lipid peroxidation in the lung. Following Cl2 exposure glutathione (GSH) was elevated immediately following exposure both in BAL cells and in fluid and this change was prevented by DMTU. GSSG was depleted in Cl2 exposed mice at later time points. However, the GSH/GSSG ratio remained high in chlorine exposed mice, an effect attenuated by DMTU. Our data show that the anti-oxidant DMTU is effective in attenuating Cl2 induced increase in airway responsiveness, inflammation and biomarkers of oxidative stress.
NASA Technical Reports Server (NTRS)
Cela, Carlos J.; Loizos, Kyle; Lazzi, Gianluca; Hamilton, Douglas; Lee, Raphael C.
2011-01-01
Recent research has shown that space explorers engaged in Extra Vehicular Activities (EVAs) may be exposed, under certain conditions, to undesired electrical currents. This work focuses on determining whether these undesired induced electrical currents could be responsible for involuntary neuromuscular activity in the subjects, possibly caused by either large diameter peripheral nerve activation or reflex activity from cutaneous afferent stimulation. An efficient multiresolution variant of the admittance method along with a millimeter-resolution model of a male human body were used to calculate induced electric fields, resistance between contact electrodes used to simulate the potential exposure condition, and currents induced in the human body model. Results show that, under realistic exposure conditions using a 15V source, current density magnitudes and total current injected are well above previously reported startle reaction thresholds. This indicates that, under the considered conditions, the subjects could experience involuntary motor response.
Cardiometabolic profiles of adolescents and young adults exposed to the World Trade Center Disaster.
Trasande, Leonardo; Koshy, Tony T; Gilbert, Joseph; Burdine, Lauren K; Marmor, Michael; Han, Xiaoxia; Shao, Yongzhao; Chemtob, Claude; Attina, Teresa M; Urbina, Elaine M
2018-01-01
Few studies have examined the possible cardiometabolic consequences of World Trade Center-related exposures on children who lived and/or attended school near the disaster site. Our objective was to compare cardiometabolic profiles of participants in the World Trade Center Health Registry (WTCHR) with a matched comparison group. We evaluated WTCHR enrollees who resided in New York City and were born between September 11, 1993 and September 10, 2001, and a matched comparison group. We assessed exposure to dust cloud, home dust, as well as traumatic exposure, and associations with blood pressure, arterial wall stiffness, body mass index (BMI), total cholesterol, triglycerides, HDL, and LDL. A total of 402 participants completed the study, 222 in the comparison group and 180 in the WTCHR group. In multivariable regression analysis, after adjusting for relevant confounders we detected a weak association between participation in the WTCHR group and lower BMI (-1.12kg/m 2 , 95% CI -2.11, -0.12; p = 0.03), which became non-significant after adjusting for multiple comparisons. With respect to traumatic and psychosocial exposures, the only association that persisted in our multivariable model, below our predefined level of significance, was between post-traumatic stress disorder and higher BMI (2.06kg/m2, 95% CI 0.37, 3.74; p = 0.02). Our findings do not support an association between self-reported exposures to the WTC disaster and adverse cardiometabolic profile. However, further longitudinal studies may better inform the full extent of WTC-related conditions associated with exposure to the disaster. Copyright © 2017 Elsevier Inc. All rights reserved.
[The effect of ambient PM(10) on sperm quality in Wuhan].
Wang, X C; Tian, X J; Ye, B; Ma, L; Zhang, Y; Yang, J
2018-01-06
Objective: To investigate the effect of exposure to particulate matter ≤10 μm in aerodynamic diameter (PM(10)) on sperm quality in different stages of sperm development. Methods: This cross-sectional study included 1 827 patients attending the reproductive medicine center in Renmin Hospital of Wuhan University during April 2013 to January 2015. Air pollution data from January 2013 to January 2015 was obtained from the database of Wuhan Municipal Environmental Protection Bureau. The generalized linear model was employed to assess the association between each exposure variables and sperm parameters for several exposure windows (0-9, 10-14, 15-69, 70-90, 0-90 days before sampling) . Results: The average levels of PM(10) was (116.2±71.6) μg/m(3) during the research period. Sperm volume was (75.4±49.1) ×10(6)/ml in sample population, (29.4±16.2) % in progressive motility and (51.8±21.6) % in total motility. Exposure to PM(10) was inversely associated with sperm concentration (β:-0.319; 95% CI: -0.529,-0.046) during 70-90 lag days. PM(10) exposure during the 0-90 lag days was significantly associated with progressive motility (β:-0.312; 95% CI: -0.527,-0.097) and total motility (β:-0.347; 95% CI: -0.636,-0.059) after adjusted for age, education level, BMI, smoking, abstinence time, temperature, humidity and season. Conclusion: Exposure to PM(10) was associated with statistically significant decrements in sperm concentration and motility, and the adverse impact on sperm concentration was significantly in early phases of spermatogenesis.
Beelen, Rob; Raaschou-Nielsen, Ole; Stafoggia, Massimo; Andersen, Zorana Jovanovic; Weinmayr, Gudrun; Hoffmann, Barbara; Wolf, Kathrin; Samoli, Evangelia; Fischer, Paul; Nieuwenhuijsen, Mark; Vineis, Paolo; Xun, Wei W; Katsouyanni, Klea; Dimakopoulou, Konstantina; Oudin, Anna; Forsberg, Bertil; Modig, Lars; Havulinna, Aki S; Lanki, Timo; Turunen, Anu; Oftedal, Bente; Nystad, Wenche; Nafstad, Per; De Faire, Ulf; Pedersen, Nancy L; Östenson, Claes-Göran; Fratiglioni, Laura; Penell, Johanna; Korek, Michal; Pershagen, Göran; Eriksen, Kirsten Thorup; Overvad, Kim; Ellermann, Thomas; Eeftens, Marloes; Peeters, Petra H; Meliefste, Kees; Wang, Meng; Bueno-de-Mesquita, Bas; Sugiri, Dorothea; Krämer, Ursula; Heinrich, Joachim; de Hoogh, Kees; Key, Timothy; Peters, Annette; Hampel, Regina; Concin, Hans; Nagel, Gabriele; Ineichen, Alex; Schaffner, Emmanuel; Probst-Hensch, Nicole; Künzli, Nino; Schindler, Christian; Schikowski, Tamara; Adam, Martin; Phuleria, Harish; Vilier, Alice; Clavel-Chapelon, Françoise; Declercq, Christophe; Grioni, Sara; Krogh, Vittorio; Tsai, Ming-Yi; Ricceri, Fulvio; Sacerdote, Carlotta; Galassi, Claudia; Migliore, Enrica; Ranzi, Andrea; Cesaroni, Giulia; Badaloni, Chiara; Forastiere, Francesco; Tamayo, Ibon; Amiano, Pilar; Dorronsoro, Miren; Katsoulis, Michail; Trichopoulou, Antonia; Brunekreef, Bert; Hoek, Gerard
2014-03-01
Few studies on long-term exposure to air pollution and mortality have been reported from Europe. Within the multicentre European Study of Cohorts for Air Pollution Effects (ESCAPE), we aimed to investigate the association between natural-cause mortality and long-term exposure to several air pollutants. We used data from 22 European cohort studies, which created a total study population of 367,251 participants. All cohorts were general population samples, although some were restricted to one sex only. With a strictly standardised protocol, we assessed residential exposure to air pollutants as annual average concentrations of particulate matter (PM) with diameters of less than 2.5 μm (PM2.5), less than 10 μm (PM10), and between 10 μm and 2.5 μm (PMcoarse), PM2.5 absorbance, and annual average concentrations of nitrogen oxides (NO2 and NOx), with land use regression models. We also investigated two traffic intensity variables-traffic intensity on the nearest road (vehicles per day) and total traffic load on all major roads within a 100 m buffer. We did cohort-specific statistical analyses using confounder models with increasing adjustment for confounder variables, and Cox proportional hazards models with a common protocol. We obtained pooled effect estimates through a random-effects meta-analysis. The total study population consisted of 367,251 participants who contributed 5,118,039 person-years at risk (average follow-up 13.9 years), of whom 29,076 died from a natural cause during follow-up. A significantly increased hazard ratio (HR) for PM2.5 of 1.07 (95% CI 1.02-1.13) per 5 μg/m(3) was recorded. No heterogeneity was noted between individual cohort effect estimates (I(2) p value=0.95). HRs for PM2.5 remained significantly raised even when we included only participants exposed to pollutant concentrations lower than the European annual mean limit value of 25 μg/m(3) (HR 1.06, 95% CI 1.00-1.12) or below 20 μg/m(3) (1.07, 1.01-1.13). Long-term exposure to fine particulate air pollution was associated with natural-cause mortality, even within concentration ranges well below the present European annual mean limit value. European Community's Seventh Framework Program (FP7/2007-2011). Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, R.S.; Calafiore, D.C.; Hasselblad, V.
1985-01-01
In early 1976, a survey of persistent co gh and plegma (PCP) prevalence was conducted in 5623 young adults in four Utah communities. Over the previous five years, community specific mean sulfur dioxide levels had been 11, 18, 36, and 115 ug/mT. Corresponding mean suspended sulfate levels had been 5, 7, 8, and 14 g/mT No intercommunity exposure gradient of total suspended particulates or suspended nitrates was observed. In mothers, PCP prevalence among non-smokers was 4.2% in the high-exposure community and about 2.0% in all other communities. In smoking mothers, PCP prevalence was 21.8% in the high-exposure community and aboutmore » 15.0% elsewhere. In fathers, PCP prevalence among non-smokers was about 8.0% in the high-exposure community and averaged about 3.0% elsewhere. In smoking fathers, PCP prevalence was less strongly associated with sulfur oxide exposure. PCP prevalence rates estimated in a categorical logistic regression model were qualitatively consistent with the prevalences presented above.« less
Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDerm™).
Wills, John W; Hondow, Nicole; Thomas, Adam D; Chapman, Katherine E; Fish, David; Maffeis, Thierry G; Penny, Mark W; Brown, Richard A; Jenkins, Gareth J S; Brown, Andy P; White, Paul A; Doak, Shareen H
2016-09-09
The rapid production and incorporation of engineered nanomaterials into consumer products alongside research suggesting nanomaterials can cause cell death and DNA damage (genotoxicity) makes in vitro assays desirable for nanosafety screening. However, conflicting outcomes are often observed when in vitro and in vivo study results are compared, suggesting more physiologically representative in vitro models are required to minimise reliance on animal testing. BASF Levasil® silica nanoparticles (16 and 85 nm) were used to adapt the 3D reconstructed skin micronucleus (RSMN) assay for nanomaterials administered topically or into the growth medium. 3D dose-responses were compared to a 2D micronucleus assay using monocultured human B cells (TK6) after standardising dose between 2D / 3D assays by total nanoparticle mass to cell number. Cryogenic vitrification, scanning electron microscopy and dynamic light scattering techniques were applied to characterise in-medium and air-liquid interface exposures. Advanced transmission electron microscopy imaging modes (high angle annular dark field) and X-ray spectrometry were used to define nanoparticle penetration / cellular uptake in the intact 3D models and 2D monocultured cells. For all 2D exposures, significant (p < 0.002) increases in genotoxicity were observed (≥100 μg/mL) alongside cell viability decreases (p < 0.015) at doses ≥200 μg/mL (16 nm-SiO2) and ≥100 μg/mL (85 nm-SiO2). In contrast, 2D-equivalent exposures to the 3D models (≤300 μg/mL) caused no significant DNA damage or impact on cell viability. Further increasing dose to the 3D models led to probable air-liquid interface suffocation. Nanoparticle penetration / cell uptake analysis revealed no exposure to the live cells of the 3D model occurred due to the protective nature of the skin model's 3D cellular microarchitecture (topical exposures) and confounding barrier effects of the collagen cell attachment layer (in-medium exposures). 2D monocultured cells meanwhile showed extensive internalisation of both silica particles causing (geno)toxicity. The results establish the importance of tissue microarchitecture in defining nanomaterial exposure, and suggest 3D in vitro models could play a role in bridging the gap between in vitro and in vivo outcomes in nanotoxicology. Robust exposure characterisation and uptake assessment methods (as demonstrated) are essential to interpret nano(geno)toxicity studies successfully.
Ferguson, Kelly K; Chen, Yin-Hsiu; VanderWeele, Tyler J; McElrath, Thomas F; Meeker, John D; Mukherjee, Bhramar
2017-03-01
Mediation analysis is useful for understanding mechanisms and has been used minimally in the study of the environment and disease. We examined mediation of the association between phthalate exposure during pregnancy and preterm birth by oxidative stress. This nested case-control study of preterm birth ( n = 130 cases, 352 controls) included women who delivered in Boston, Massachusestts, from 2006 through 2008. Phthalate metabolites and 8-isoprostane, an oxidative stress biomarker, were measured in urine from three visits in pregnancy. We applied four counterfactual mediation methods: method 1, utilizing exposure and mediator averages; method 2, using averages but allowing for an exposure-mediator interaction; method 3, incorporating longitudinal measurements of the exposure and mediator; and method 4, using longitudinal measurements and allowing for an exposure-mediator interaction. We observed mediation of the associations between phthalate metabolites and all preterm birth by 8-isoprostane, with the greatest estimated proportion mediated observed for spontaneous preterm births specifically. Fully utilizing repeated measures of the exposure and mediator improved precision of indirect (i.e., mediated) effect estimates, and including an exposure-mediator interaction increased the estimated proportion mediated. For example, for mono(2-ethyl-carboxy-propyl) phthalate (MECPP), a metabolite of di(2-ethylhexyl) phthalate (DEHP), the percent of the total effect mediated by 8-isoprostane increased from 47% to 60% with inclusion of an exposure-mediator interaction term, in reference to a total adjusted odds ratio of 1.67 or 1.48, respectively. This demonstrates mediation of the phthalate-preterm birth relationship by oxidative stress, and the utility of complex regression models in capturing mediated associations when repeated measures of exposure and mediator are available and an exposure-mediator interaction may exist. Citation: Ferguson KK, Chen YH, VanderWeele TJ, McElrath TF, Meeker JD, Mukherjee B. 2017. Mediation of the relationship between maternal phthalate exposure and preterm birth by oxidative stress with repeated measurements across pregnancy. Environ Health Perspect 125:488-494; http://dx.doi.org/10.1289/EHP282.
Melin, Johanna; Parra-Guillen, Zinnia P; Hartung, Niklas; Huisinga, Wilhelm; Ross, Richard J; Whitaker, Martin J; Kloft, Charlotte
2018-04-01
Optimisation of hydrocortisone replacement therapy in children is challenging as there is currently no licensed formulation and dose in Europe for children under 6 years of age. In addition, hydrocortisone has non-linear pharmacokinetics caused by saturable plasma protein binding. A paediatric hydrocortisone formulation, Infacort ® oral hydrocortisone granules with taste masking, has therefore been developed. The objective of this study was to establish a population pharmacokinetic model based on studies in healthy adult volunteers to predict hydrocortisone exposure in paediatric patients with adrenal insufficiency. Cortisol and binding protein concentrations were evaluated in the absence and presence of dexamethasone in healthy volunteers (n = 30). Dexamethasone was used to suppress endogenous cortisol concentrations prior to and after single doses of 0.5, 2, 5 and 10 mg of Infacort ® or 20 mg of Infacort ® /hydrocortisone tablet/hydrocortisone intravenously. A plasma protein binding model was established using unbound and total cortisol concentrations, and sequentially integrated into the pharmacokinetic model. Both specific (non-linear) and non-specific (linear) protein binding were included in the cortisol binding model. A two-compartment disposition model with saturable absorption and constant endogenous cortisol baseline (Baseline cort ,15.5 nmol/L) described the data accurately. The predicted cortisol exposure for a given dose varied considerably within a small body weight range in individuals weighing <20 kg. Our semi-mechanistic population pharmacokinetic model for hydrocortisone captures the complex pharmacokinetics of hydrocortisone in a simplified but comprehensive framework. The predicted cortisol exposure indicated the importance of defining an accurate hydrocortisone dose to mimic physiological concentrations for neonates and infants weighing <20 kg. EudraCT number: 2013-000260-28, 2013-000259-42.
Wagner, Christian; Pan, Yuzhuo; Hsu, Vicky; Grillo, Joseph A; Zhang, Lei; Reynolds, Kellie S; Sinha, Vikram; Zhao, Ping
2015-01-01
The US Food and Drug Administration (FDA) has seen a recent increase in the application of physiologically based pharmacokinetic (PBPK) modeling towards assessing the potential of drug-drug interactions (DDI) in clinically relevant scenarios. To continue our assessment of such approaches, we evaluated the predictive performance of PBPK modeling in predicting cytochrome P450 (CYP)-mediated DDI. This evaluation was based on 15 substrate PBPK models submitted by nine sponsors between 2009 and 2013. For these 15 models, a total of 26 DDI studies (cases) with various CYP inhibitors were available. Sponsors developed the PBPK models, reportedly without considering clinical DDI data. Inhibitor models were either developed by sponsors or provided by PBPK software developers and applied with minimal or no modification. The metric for assessing predictive performance of the sponsors' PBPK approach was the R predicted/observed value (R predicted/observed = [predicted mean exposure ratio]/[observed mean exposure ratio], with the exposure ratio defined as [C max (maximum plasma concentration) or AUC (area under the plasma concentration-time curve) in the presence of CYP inhibition]/[C max or AUC in the absence of CYP inhibition]). In 81 % (21/26) and 77 % (20/26) of cases, respectively, the R predicted/observed values for AUC and C max ratios were within a pre-defined threshold of 1.25-fold of the observed data. For all cases, the R predicted/observed values for AUC and C max were within a 2-fold range. These results suggest that, based on the submissions to the FDA to date, there is a high degree of concordance between PBPK-predicted and observed effects of CYP inhibition, especially CYP3A-based, on the exposure of drug substrates.
Emulsion chamber observations of primary cosmic-ray electrons in the energy range 30-1000 GeV
NASA Technical Reports Server (NTRS)
Nishimura, J.; Fujii, M.; Taira, T.; Aizu, E.; Hiraiwa, H.; Kobayashi, T.; Niu, K.; Ohta, I.; Golden, R. L.; Koss, T. A.
1980-01-01
The results of a series of emulsion exposures, beginning in Japan in 1968 and continued in the U.S. since 1975, which have yielded a total balloon-altitude exposure of 98,700 sq m sr s, are presented. The data are discussed in terms of several models of cosmic-ray propagation. Interpreted in terms of the energy-dependent leaky-box model, the spectrum results suggest a galactic electron residence time of 1.0(+2.0, -0.5) x 10 to the 7th yr, which is consistent with results from Be-10 observations. Finally, the possibility that departures from smooth power law behavior in the spectrum due to individual nearby sources will be observable in the energy range above 1 TeV is discussed.
Cross-sectional study of social behaviors in preschool children and exposure to flame retardants.
Lipscomb, Shannon T; McClelland, Megan M; MacDonald, Megan; Cardenas, Andres; Anderson, Kim A; Kile, Molly L
2017-03-09
Children are exposed to flame retardants from the built environment. Brominated diphenyl ethers (BDE) and organophosphate-based flame retardants (OPFRs) are associated with poorer neurocognitive functioning in children. Less is known, however, about the association between these classes of compounds and children's emotional and social behaviors. The objective of this study was to determine if flame retardant exposure was associated with measurable differences in social behaviors among children ages 3-5 years. We examined teacher-rated social behaviors measured using the Social Skills Improvement Rating Scale (SSIS) and personal exposure to flame retardants in children aged 3-5 years who attended preschool (n = 72). Silicone passive samplers worn for 7 days were used to assess personal exposure to 41 compounds using gas chromatography-mass spectrophotometer. These concentrations were then summed into total BDE and total OPFR exposure prior to natural log transformation. Separate generalized additive models were used to evaluate the relationship between seven subscales of the SSIS and lnΣBDE or lnΣOPFR adjusting for other age, sex, adverse social experiences, and family context. All children were exposed to a mixture of flame retardant compounds. We observed a dose dependent relationship between lnΣOPFR and two subscales where children with higher exposures were rated by their preschool teachers as having less responsible behavior (p = 0.07) and more externalizing behavior problems (p = 0.03). Additionally, children with higher lnΣBDE exposure were rated by teachers as less assertive (p = 0.007). We observed a cross-sectional association between children's exposure to flame retardant compounds and teacher-rated social behaviors among preschool-aged children. Children with higher flame retardant exposures exhibited poorer social skills in three domains that play an important role in a child's ability to succeed academically and socially.
LIGHT EXPOSURE AMONG ADOLESCENTS WITH DELAYED SLEEP PHASE DISORDER: A PROSPECTIVE COHORT STUDY
Auger, R. Robert; Burgess, Helen J.; Dierkhising, Ross A.; Sharma, Ruchi G.; Slocumb, Nancy L.
2012-01-01
Our study objective was to compare light exposure and sleep parameters between adolescents with delayed sleep phase disorder (n=16, 15.3 ± 1.8 years) and unaffected controls (n=22, 13.7 ± 2.4 years) using a prospective cohort design. Participants wore wrist actigraphs with photosensors for 14 days. Mean hourly lux levels from 20:00-05:00 h and 05:00-14:00 h were examined, in addition to the 9-hour intervals prior to sleep onset and after sleep offset. Sleep parameters were compared separately, and were also included as covariates within models that analyzed associations with specified light intervals. Additional covariates included group and school night status. Adolescent subjects with delayed sleep phase disorder received more evening (p<0.02, 22:00-02:00 h) and less morning light (p<0.05, 08:00-09:00 h and 10:00-12:00 h) than controls, but had less pre-sleep exposure with adjustments for the time of sleep onset (p<0.03, fifth-seventh hours prior to onset hour). No differences were identified with respect to the sleep offset interval. Increased total sleep time and later sleep offset times were associated with decreased evening (p<0.001 and p=0.02, respectively) and morning (p=0.01 and p<0.001, respectively) exposure, and later sleep onset times were associated with increased evening exposure (p<0.001). Increased total sleep time also correlated with increased exposure during the 9 hours before sleep-onset (p=0.01), and a later sleep onset time corresponded with decreased exposure during the same interval (p<0.001). Outcomes persisted regardless of school night status. In conclusion, light exposure interpretation requires adjustments for sleep timing among adolescents with delayed sleep phase disorder. Pre- and post-sleep exposure do not appear to contribute directly to phase delays. Sensitivity to morning light may be reduced among adolescents with delayed sleep phase disorder. PMID:22080736
Adolescent ethanol exposure: does it produce long-lasting electrophysiological effects?
Ehlers, Cindy L; Criado, José R
2010-02-01
This review discusses evidence for long-lasting neurophysiological changes that may occur following exposure to ethanol during adolescent development in animal models. Adolescence is the time that most individuals first experience ethanol exposure, and binge drinking is not uncommon during adolescence. If alcohol exposure is neurotoxic to the developing brain during adolescence, not unlike it is during fetal development, then understanding how ethanol affects the developing adolescent brain becomes a major public health issue. Adolescence is a critical time period when cognitive, emotional, and social maturation occurs and it is likely that ethanol exposure may affect these complex processes. To study the effects of ethanol on adolescent brain, animal models where the dose and time of exposure can be carefully controlled that closely mimic the human condition are needed. The studies reviewed provide evidence that demonstrates that relatively brief exposure to high levels of ethanol, via ethanol vapors, during a period corresponding to parts of adolescence in the rat is sufficient to cause long-lasting changes in functional brain activity. Disturbances in waking electroencephalogram and a reduction in the P3 component of the event-related potential (ERP) have been demonstrated in adult rats that were exposed to ethanol vapor during adolescence. Adolescent ethanol exposure was also found to produce long-lasting reductions in the mean duration of slow-wave sleep (SWS) episodes and the total amount of time spent in SWS, a finding consistent with a premature aging of sleep. Further studies are necessary to confirm these findings, in a range of strains, and to link those findings to the neuroanatomical and neurochemical mechanisms potentially underlying the lasting effects of adolescent ethanol exposure. 2010 Elsevier Inc. All rights reserved.
Valentino, Sarah A; Tarrade, Anne; Aioun, Josiane; Mourier, Eve; Richard, Christophe; Dahirel, Michèle; Rousseau-Ralliard, Delphine; Fournier, Natalie; Aubrière, Marie-Christine; Lallemand, Marie-Sylvie; Camous, Sylvaine; Guinot, Marine; Charlier, Madia; Aujean, Etienne; Al Adhami, Hala; Fokkens, Paul H; Agier, Lydiane; Boere, John A; Cassee, Flemming R; Slama, Rémy; Chavatte-Palmer, Pascale
2016-07-26
Airborne pollution is a rising concern in urban areas. Epidemiological studies in humans and animal experiments using rodent models indicate that gestational exposure to airborne pollution, in particular diesel engine exhaust (DE), reduces birth weight, but effects depend on exposure duration, gestational window and nanoparticle (NP) concentration. Our aim was to evaluate the effects of gestational exposure to diluted DE on feto-placental development in a rabbit model. Pregnant females were exposed to diluted (1 mg/m(3)), filtered DE (NP diameter ≈ 69 nm) or clean air (controls) for 2 h/day, 5 days/week by nose-only exposure (total exposure: 20 days in a 31-day gestation). DE exposure induced early signs of growth retardation at mid gestation with decreased head length (p = 0.04) and umbilical pulse (p = 0.018). Near term, fetal head length (p = 0.029) and plasma insulin and IGF1 concentrations (p = 0.05 and p = 0.019) were reduced. Placental function was also affected, with reduced placental efficiency (fetal/placental weight) (p = 0.049), decreased placental blood flow (p = 0.009) and fetal vessel volume (p = 0.002). Non-aggregated and "fingerprint" NP were observed at various locations, in maternal blood space, in trophoblastic cells and in the fetal blood, demonstrating transplacental transfer. Adult female offspring were bred with control males. Although fetoplacental biometry was not affected near term, second generation fetal metabolism was modified by grand-dam exposure with decreased plasma cholesterol (p = 0.008) and increased triglyceride concentrations (p = 0.015). Repeated daily gestational exposure to DE at levels close to urban pollution can affect feto-placental development in the first and second generation.
Piñol, S; Sala, A; Guzman, C; Marcos, S; Joya, X; Puig, C; Velasco, M; Velez, D; Vall, O; Garcia-Algar, O
2015-11-01
Arsenic is a highly toxic element that pollutes groundwater, being a major environmental problem worldwide, especially in the Bengal Basin. About 40% of patients in our outpatient clinics come from those countries, and there is no published data about their arsenic exposure. This study compares arsenic exposure between immigrant and native children. A total of 114 children (57 natives, 57 immigrants), aged 2 months to 16 years, were recruited and sociodemographic and environmental exposure data were recorded. Total arsenic in urine, hair, and nails and arsenic-speciated compounds in urine were determined. We did not find significant differences in total and inorganic arsenic levels in urine and hair, but in organic arsenic monomethylarsenic acid (MMA) and dimethylarsinous acid (DMA) in urine and in total arsenic in nails. However, these values were not in the toxic range. There were significant differences between longer than 5 years exposure and less than 5 years exposure (consumption of water from tube wells), with respect to inorganic and organic MMA arsenic in urine and total arsenic in nails. There was partial correlation between the duration of exposure and inorganic arsenic levels in urine. Immigrant children have higher arsenic levels than native children, but they are not toxic. At present, there is no need for specific arsenic screening or follow-up in immigrant children recently arrived in Spain from exposure high-risk countries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. A. Wasiolek
The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the referencemore » biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).« less
Development of a Consumer Product Ingredient Database for ...
Consumer products are a primary source of chemical exposures, yet little structured information is available on the chemical ingredients of these products and the concentrations at which ingredients are present. To address this data gap, we created a database of chemicals in consumer products using product Material Safety Data Sheets (MSDSs) publicly provided by a large retailer. The resulting database represents 1797 unique chemicals mapped to 8921 consumer products and a hierarchy of 353 consumer product “use categories” within a total of 15 top-level categories. We examine the utility of this database and discuss ways in which it will support (i) exposure screening and prioritization, (ii) generic or framework formulations for several indoor/consumer product exposure modeling initiatives, (iii) candidate chemical selection for monitoring near field exposure from proximal sources, and (iv) as activity tracers or ubiquitous exposure sources using “chemical space” map analyses. Chemicals present at high concentrations and across multiple consumer products and use categories that hold high exposure potential are identified. Our database is publicly available to serve regulators, retailers, manufacturers, and the public for predictive screening of chemicals in new and existing consumer products on the basis of exposure and risk. The National Exposure Research Laboratory’s (NERL’s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts resear
Pellicle transmission uniformity requirements
NASA Astrophysics Data System (ADS)
Brown, Thomas L.; Ito, Kunihiro
1998-12-01
Controlling critical dimensions of devices is a constant battle for the photolithography engineer. Current DUV lithographic process exposure latitude is typically 12 to 15% of the total dose. A third of this exposure latitude budget may be used up by a variable related to masking that has not previously received much attention. The emphasis on pellicle transmission has been focused on increasing the average transmission. Much less, attention has been paid to transmission uniformity. This paper explores the total demand on the photospeed latitude budget, the causes of pellicle transmission nonuniformity and examines reasonable expectations for pellicle performance. Modeling is used to examine how the two primary errors in pellicle manufacturing contribute to nonuniformity in transmission. World-class pellicle transmission uniformity standards are discussed and a comparison made between specifications of other components in the photolithographic process. Specifications for other materials or parameters are used as benchmarks to develop a proposed industry standard for pellicle transmission uniformity.
Li, Tianyuan; Chang, Qing; Yuan, Xuyin; Li, Jizhou; Ayoko, Godwin A; Frost, Ray L; Chen, Hongyan; Zhang, Xinjian; Song, Yinxian; Song, Wenzhi
2017-06-21
Consumption of crops grown in cadmium-contaminated soils is an important Cd exposure route to humans. The present study utilizes statistical analysis and in vitro digestion experiments to uncover the transfer processes of Cd from soils to the human body through rice consumption. Here, a model was created to predict the levels of bioaccessible Cd in rice grains using phytoavailable Cd quantities in the soil. During the in vitro digestion, a relatively constant ratio between the total and bioaccessible Cd in rice was observed. About 14.89% of Cd in soils was found to be transferred into rice grains and up to 3.19% could be transferred from rice grains to the human body. This model was able to sufficiently predict rice grain cadmium concentrations based on CaCl 2 extracted zinc and cadmium concentrations in soils (R 2 = 0.862). The bioaccessible Cd concentration in rice grains was also able to be predicted using CaCl 2 extracted cadmium from soil (R 2 = 0.892). The models established in this study demonstrated that CaCl 2 is a suitable indicator of total rice Cd concentrations and bioaccessible rice grain Cd concentrations. The chain model approach proposed in this study can be used for the fast and accurate evaluation of human Cd exposure through rice consumption based on the soil conditions in contaminated regions.
Setton, Eleanor M; Keller, C Peter; Cloutier-Fisher, Denise; Hystad, Perry W
2008-01-01
Background Chronic exposure to traffic-related air pollution is associated with a variety of health impacts in adults and recent studies show that exposure varies spatially, with some residents in a community more exposed than others. A spatial exposure simulation model (SESM) which incorporates six microenvironments (home indoor, work indoor, other indoor, outdoor, in-vehicle to work and in-vehicle other) is described and used to explore spatial variability in estimates of exposure to traffic-related nitrogen dioxide (not including indoor sources) for working people. The study models spatial variability in estimated exposure aggregated at the census tracts level for 382 census tracts in the Greater Vancouver Regional District of British Columbia, Canada. Summary statistics relating to the distributions of the estimated exposures are compared visually through mapping. Observed variations are explored through analyses of model inputs. Results Two sources of spatial variability in exposure to traffic-related nitrogen dioxide were identified. Median estimates of total exposure ranged from 8 μg/m3 to 35 μg/m3 of annual average hourly NO2 for workers in different census tracts in the study area. Exposure estimates are highest where ambient pollution levels are highest. This reflects the regional gradient of pollution in the study area and the relatively high percentage of time spent at home locations. However, for workers within the same census tract, variations were observed in the partial exposure estimates associated with time spent outside the residential census tract. Simulation modeling shows that some workers may have exposures 1.3 times higher than other workers residing in the same census tract because of time spent away from the residential census tract, and that time spent in work census tracts contributes most to the differences in exposure. Exposure estimates associated with the activity of commuting by vehicle to work were negligible, based on the relatively short amount of time spent in this microenvironment compared to other locations. We recognize that this may not be the case for pollutants other than NO2. These results represent the first time spatially disaggregated variations in exposure to traffic-related air pollution within a community have been estimated and reported. Conclusion The results suggest that while time spent in the home indoor microenvironment contributes most to between-census tract variation in estimates of annual average exposures to traffic-related NO2, time spent in the work indoor microenvironment contributes most to within-census tract variation, and time spent in transit by vehicle makes a negligible contribution. The SESM has potential as a policy evaluation tool, given input data that reflect changes in pollution levels or work flow patterns due to traffic demand management and land use development policy. PMID:18638398
Bruns, Cristin M; Baum, Scott T; Colman, Ricki J; Dumesic, Daniel A; Eisner, Joel R; Jensen, Michael D; Whigham, Leah D; Abbott, David H
2008-01-01
Introduction Prenatally androgenized (PA) female rhesus monkeys share metabolic abnormalities in common with PCOS women. Early gestation exposure (E) results in insulin resistance, impaired pancreatic beta-cell function and type 2 diabetes, while late gestation exposure (L) results in supranormal insulin sensitivity that declines with increasing body mass index (BMI). Objective To determine whether PA females have altered body fat distribution. Design Five EPA, 5 LPA, and 5 control adult female monkeys underwent somatometrics, dual x-ray absorptiometry (DXA) and abdominal computed tomography (CT). Five control and 5 EPA females underwent an intravenous glucose tolerance test to assess the relationship between body composition and glucoregulation. Results There were no differences in age, weight, BMI, or somatometrics. LPA females had ∼20% greater DXA-determined total fat and percent body fat, as well as total and percent abdominal fat than EPA or control females (p≤0.05). LPA females also had ∼40% more CT-determined non-visceral abdominal fat than EPA or control females (p≤0.05). The volume of visceral fat was similar among the 3 groups. EPA (R2=0.94, p≤0.01) and LPA (R2=0.53, p=0.16) females had a positive relationship between visceral fat and BMI, although not significant for LPA females. Conversely, control females had a positive relationship between non-visceral fat and BMI (R2=0.98, p≤0.001). There was a positive relationship between basal insulin and total body (R2=0.95, p≤0.007), total abdominal (R2=0.81, p≤0.04), and visceral (R2=0.82, p≤0.03) fat quantities in EPA, but not control females. Conclusions Prenatal androgenization in female rhesus monkeys induces adiposity-dependent visceral fat accumulation, and late gestation androgenization causes increased total body and non-visceral fat mass. Early gestation androgenization induces visceral fat-dependent hyperinsulinemia. The relationship between the timing of prenatal androgen exposure and body composition phenotypes in this nonhuman primate model for PCOS may provide insight into the heterogeneity of metabolic defects found in PCOS women. PMID:17471299
Bruns, C M; Baum, S T; Colman, R J; Dumesic, D A; Eisner, J R; Jensen, M D; Whigham, L D; Abbott, D H
2007-10-01
Prenatally androgenized (PA) female rhesus monkeys share metabolic abnormalities in common with polycystic ovary syndrome (PCOS) women. Early gestation exposure (E) results in insulin resistance, impaired pancreatic beta-cell function and type 2 diabetes, while late gestation exposure (L) results in supranormal insulin sensitivity that declines with increasing body mass index (BMI). To determine whether PA females have altered body fat distribution. Five early-treated PA (EPA), five late-treated PA (LPA) and five control adult female monkeys underwent somatometrics, dual-X-ray absorptiometry (DXA) and abdominal computed tomography (CT). Five control and five EPA females underwent an intravenous glucose tolerance test to assess the relationship between body composition and glucoregulation. There were no differences in age, weight, BMI or somatometrics. LPA females had approximately 20% greater DXA-determined total fat and percent body fat, as well as total and percent abdominal fat than EPA or control females (P< or =0.05). LPA females also had approximately 40% more CT-determined non-visceral abdominal fat than EPA or control females (P< or =0.05). The volume of visceral fat was similar among the three groups. EPA (R (2)=0.94, P< or =0.01) and LPA (R (2)=0.53, P=0.16) females had a positive relationship between visceral fat and BMI, although not significant for LPA females. Conversely, control females had a positive relationship between non-visceral fat and BMI (R (2)=0.98, P< or =0.001). There was a positive relationship between basal insulin and total body (R (2)=0.95, P< or =0.007), total abdominal (R (2)=0.81, P< or =0.04) and visceral (R (2)=0.82, P< or =0.03) fat quantities in EPA, but not control females. Prenatal androgenization in female rhesus monkeys induces adiposity-dependent visceral fat accumulation, and late gestation androgenization causes increased total body and non-visceral fat mass. Early gestation androgenization induces visceral fat-dependent hyperinsulinemia. The relationship between the timing of prenatal androgen exposure and body composition phenotypes in this nonhuman primate model for PCOS may provide insight into the heterogeneity of metabolic defects found in PCOS women.
This work summarizes advancements made that allow for better estimation of resting metabolic rate (RMR) and subsequent estimation of ventilation rates (i.e., total ventilation (VE) and alveolar ventilation (VA)) for individuals of both genders and all ages. ...
Illicit Drug Exposure and Family Factors in Early Hong Kong Chinese Adolescents
ERIC Educational Resources Information Center
Mak, Kwok Kei; Day, Jeffrey R.
2012-01-01
A total of 4,746 Hong Kong students, aged 14-15, participated in the 2000-2001 Health Related Behavior Survey. Results produced by the logistic regression models revealed that non-private housing was significantly associated with ever-use of ecstasy in boys. Moreover, girls in non-private housing were significantly more likely to have been…
Mahong, Bancha; Roytrakul, Suttiruk; Phaonaklop, Narumon; Wongratana, Janewit; Yokthongwattana, Kittisak
2012-03-01
Oxygenic photosynthetic organisms often suffer from excessive irradiance, which cause harmful effects to the chloroplast proteins and lipids. Photoprotection and the photosystem II repair processes are the mechanisms that plants deploy to counteract the drastic effects from irradiance stress. Although the protective and repair mechanisms seemed to be similar in most plants, many species do confer different level of tolerance toward high light. Such diversity may originate from differences at the molecular level, i.e., perception of the light stress, signal transduction and expression of stress responsive genes. Comprehensive analysis of overall changes in the total pool of proteins in an organism can be performed using a proteomic approach. In this study, we employed 2-DE/LC-MS/MS-based comparative proteomic approach to analyze total proteins of the light sensitive model unicellular green alga Chlamydomonas reinhardtii in response to excessive irradiance. Results showed that among all the differentially expressed proteins, several heat-shock proteins and molecular chaperones were surprisingly down-regulated after 3-6 h of high light exposure. Discussions were made on the possible involvement of such down regulation and the light sensitive nature of this model alga.
Rygg, Alex; Hindle, Michael; Longest, P Worth
2016-04-01
The objective of this study was to use a recently developed nasal dissolution, absorption, and clearance (DAC) model to evaluate the extent to which suspended drug particle size influences nasal epithelial drug absorption for a spray product. Computational fluid dynamics (CFD) simulations of mucociliary clearance and drug dissolution were used to calculate total and microscale epithelial absorption of drug delivered with a nasal spray pump. Ranges of suspended particle sizes, drug solubilities, and partition coefficients were evaluated. Considering mometasone furoate as an example, suspended drug particle sizes in the range of 1-5 μm did not affect the total nasal epithelial uptake. However, the microscale absorption of suspended drug particles with low solubilities was affected by particle size and this controlled the extent to which the drug penetrated into the distal nasal regions. The nasal-DAC model was demonstrated to be a useful tool in determining the nasal exposure of spray formulations with different drug particle sizes and solubilities. Furthermore, the model illustrated a new strategy for topical nasal drug delivery in which drug particle size is selected to increase the region of epithelial surface exposure using mucociliary clearance while minimizing the drug dose exiting the nasopharynx.
Fernandez-Piquer, Judith; Bowman, John P; Ross, Tom; Estrada-Flores, Silvia; Tamplin, Mark L
2013-07-01
Vibrio parahaemolyticus can accumulate and grow in oysters stored without refrigeration, representing a potential food safety risk. High temperatures during oyster storage can lead to an increase in total viable bacteria counts, decreasing product shelf life. Therefore, a predictive tool that allows the estimation of both V. parahaemolyticus populations and total viable bacteria counts in parallel is needed. A stochastic model was developed to quantitatively assess the populations of V. parahaemolyticus and total viable bacteria in Pacific oysters for six different supply chain scenarios. The stochastic model encompassed operations from oyster farms through consumers and was built using risk analysis software. Probabilistic distributions and predictions for the percentage of Pacific oysters containing V. parahaemolyticus and high levels of viable bacteria at the point of consumption were generated for each simulated scenario. This tool can provide valuable information about V. parahaemolyticus exposure and potential control measures and can help oyster companies and regulatory agencies evaluate the impact of product quality and safety during cold chain management. If coupled with suitable monitoring systems, such models could enable preemptive action to be taken to counteract unfavorable supply chain conditions.
Daniels, Robert D; Bertke, Stephen; Dahm, Matthew M; Yiin, James H; Kubale, Travis L; Hales, Thomas R; Baris, Dalsu; Zahm, Shelia H; Beaumont, James J; Waters, Kathleen M; Pinkerton, Lynne E
2015-10-01
To examine exposure-response relationships between surrogates of firefighting exposure and select outcomes among previously studied US career firefighters. Eight cancer and four non-cancer outcomes were examined using conditional logistic regression. Incidence density sampling was used to match each case to 200 controls on attained age. Days accrued in firefighting assignments (exposed-days), run totals (fire-runs) and run times (fire-hours) were used as exposure surrogates. HRs comparing 75th and 25th centiles of lagged cumulative exposures were calculated using loglinear, linear, log-quadratic, power and restricted cubic spline general relative risk models. Piecewise constant models were used to examine risk differences by time since exposure, age at exposure and calendar period. Among 19,309 male firefighters eligible for the study, there were 1333 cancer deaths and 2609 cancer incidence cases. Significant positive associations between fire-hours and lung cancer mortality and incidence were evident. A similar relation between leukaemia mortality and fire-runs was also found. The lung cancer associations were nearly linear in cumulative exposure, while the association with leukaemia mortality was attenuated at higher exposure levels and greater for recent exposures. Significant negative associations were evident for the exposure surrogates and colorectal and prostate cancers, suggesting a healthy worker survivor effect possibly enhanced by medical screening. Lung cancer and leukaemia mortality risks were modestly increasing with firefighter exposures. These findings add to evidence of a causal association between firefighting and cancer. Nevertheless, small effects merit cautious interpretation. We plan to continue to follow the occurrence of disease and injury in this cohort. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
The Children's Total Exposure to Persistent Pesticides and Other Persistent Organic Pollutants (CTEPP) study was designed by the U.S. EPA to collect data on young children's exposures to pesticides and other pollutants in their everyday environments in support of the Food Quality...
The objectives of this field study are to determine the distributions of total human exposures to multi-media pollutants in the classes of metals, pesticides, and volatile organic compounds (VOCs) by studying a proportionate-based sample of the total population (with a nested des...
Bone metabolism of male rats chronically exposed to cadmium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brzoska, Malgorzata M.; Moniuszko-Jakoniuk, Janina
2005-09-15
Recently, based on a female rat model of human exposure, we have reported that low-level chronic exposure to cadmium (Cd) has an injurious effect on the skeleton. The purpose of the current study was to investigate whether the exposure may also affect bone metabolism in a male rat model and to estimate the gender-related differences in the bone effect of Cd. Young male Wistar rats received drinking water containing 0, 1, 5, or 50 mg Cd/l for 12 months. The bone effect of Cd was evaluated using bone densitometry and biochemical markers of bone turnover. Renal handling of calcium (Ca)more » and phosphate, and serum concentrations of vitamin D metabolites, calcitonin, and parathormone were estimated as well. At treatment with 1 mg Cd/l, corresponding to the low environmental exposure in non-Cd-polluted areas, the bone mineral content (BMC) and density (BMD) at the femur and lumbar spine (L1-L5) and the total skeleton BMD did not differ compared to control. However, from the 6th month of the exposure, the Z score BMD indicated osteopenia in some animals and after 12 months the bone resorption very clearly tended to an increase. The rats' exposure corresponding to human moderate (5 mg Cd/l) and especially relatively high (50 mg Cd/l) exposure dose- and duration-dependently disturbed the processes of bone turnover and bone mass accumulation leading to formation of less dense than normal bone tissue. The effects were accompanied by changes in the serum concentration of calciotropic hormones and disorders in Ca and phosphate metabolism. It can be concluded that low environmental exposure to Cd may be only a subtle risk factor for skeletal demineralization in men. The results together with our previous findings based on an analogous model using female rats give clear evidence that males are less vulnerable to the bone effects of Cd compared to females.« less
Quartana, Phillip J; Wilk, Joshua E; Balkin, Thomas J; Hoge, Charles W
2015-05-01
To characterize the indirect associations of combat exposure with post-deployment physical symptoms through shared associations with post-traumatic stress disorder (PTSD), depression and insomnia symptoms. Surveys were administered to a sample of U.S. soldiers (N = 587) three months after a 15-month deployment to Iraq. A multiple indirect effects model was used to characterize direct and indirect associations between combat exposure and physical symptoms. Despite a zero-order correlation between combat exposure and physical symptoms, the multiple indirect effects analysis did not provide evidence of a direct association between these variables. Evidence for a significant indirect association of combat exposure and physical symptoms was observed through PTSD, depression, and insomnia symptoms. In fact, 92% of the total effect of combat exposure on physical symptoms scores was indirect. These findings were evident even after adjusting for the physical injury and relevant demographics. This is the first empirical study to suggest that PTSD, depression and insomnia collectively and independently contribute to the association between combat exposure and post-deployment physical symptoms. Limitations, future research directions, and potential policy implications are discussed. Published by Elsevier Inc.
Sedman, R M; Polisini, J M; Esparza, J R
1994-01-01
Potential public health effects associated with exposure to metal emissions from hazardous waste incinerators through noninhalation pathways were evaluated. Instead of relying on modeling the movement of toxicants through various environmental media, an approach based on estimating changes from baseline levels of exposure was employed. Changes in soil and water As, Cd, Hg, Pb, Cr, and Be concentrations that result from incinerator emissions were first determined. Estimates of changes in human exposure due to direct contact with shallow soil or the ingestion of surface water were then ascertained. Projected changes in dietary intakes of metals due to incinerator emissions were estimated based on changes from baseline dietary intakes that are monitored in U.S. Food and Drug Administration total diet studies. Changes from baseline intake were deemed to be proportional to the projected changes in soil or surface water metal concentrations. Human exposure to metals emitted from nine hazardous waste incinerators were then evaluated. Metal emissions from certain facilities resulted in tangible human exposure through noninhalation pathways. However, the analysis indicated that the deposition of metals from ambient air would result in substantially greater human exposure through noninhalation pathways than the emissions from most of the facilities. PMID:7925180
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Yuan-Horng; Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan; Charles, Chou C.-K.
Epidemiological studies have reported associations between particulate matter (PM) and cardiovascular effects, and diabetes mellitus (DM) patients might be susceptible to these effects. The chief chronic injuries resulting from DM are small vascular injuries (micro-vascular complications) or large blood vessel injuries (macro-vascular complications). However, toxicological data regarding the effects of PM on DM-related cardiovascular complications is limited. Our objective was to investigate whether subchronic PM exposure alters glucose homeostasis and causes cardiovascular complications in a type 1 DM rat model. We constructed a real world PM{sub 2.5} exposure system, the Taipei Air Pollution Exposure System for Health Effects (TAPES), tomore » continuously deliver non-concentrated PM for subchronic exposure. A type 1 DM rat model was induced using streptozotocin. Between December 22, 2009 and April 9, 2010, DM rats were exposed to PM or to filtered air (FA) using TAPES in Taipei, Taiwan, 24 h/day, 7 days/week, for a total of 16 weeks. The average concentrations (mean [SD]) of PM{sub 2.5} in the exposure and control chambers of the TAPES were 13.30 [8.65] and 0.13 [0.05] μg/m{sup 3}, respectively. Glycated hemoglobin A1c (HbA1c) was significantly elevated after exposure to PM compared with exposure to FA (mean [SD], 7.7% [3.1%] vs. 4.7% [1.0%], P < 0.05). Interleukin 6 and fibrinogen levels were significantly increased after PM exposure. PM caused focal myocarditis, aortic medial thickness, advanced glomerulosclerosis, and accentuation of tubular damage of the kidney (tubular damage index: 1.76 [0.77] vs. 1.15 [0.36], P < 0.001). PM exposure might induce the macro- and micro-vascular complications in DM through chronic hyperglycemia and systemic inflammation. - Highlights: • The study demonstrated cardiovascular and renal effects of PM in a rat model of DM. • TAPES is a continuous, real world, long-term PM exposure system. • HbA1c, a marker of glycemic homeostasis, was elevated in DM rats exposed to PM. • Inflammatory markers, IL-6 and fibrinogen, were increased in DM rats exposed to PM. • PM caused myocarditis, aortic medial thickness, and kidney damages in DM rats.« less
Grewal, Navneet; Kudupudi, Vinod; Grewal, Sukrit
2013-07-01
The aim of this study was to investigate the remineralization potential of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on enamel eroded by cola drinks. A total of 30 healthy subjects were selected from a random sample of 1200 children and divided into two groups of 15 each wherein calcium and phosphorus analyses and scanning electron microscope (SEM) analysis was carried out to investigate the remineralization of enamel surface. A total of 30 non-carious premolar teeth were selected from the human tooth bank (HTB) to prepare the in-situ appliance. Three enamel slabs were prepared from the same. One enamel slab was used to obtain baseline values and the other two were embedded into the upper palatal appliances prepared on the subjects' maxillary working model. The subjects wore the appliance after which 30 ml cola drink exposure was given. After 15 days, the slabs were removed and subjected to respective analysis. Means of all the readings of soluble calcium and phosphorous levels at baseline,post cola-drink exposure and post cpp-acp application were subjected to statistical analysis SPSS11.5 version. Comparison within groups and between groups was carried out using ANOVA and F-values at 1% level of significance. Decrease in calcium solubility of enamel in the CPP-ACP application group as compared to post-cola drink exposure group (P < 0.05) was seen. Distinctive change in surface topography of enamel in the post-CPP-ACP application group as compared to post-cola drink exposure group was observed. CPP-ACP significantly promoted remineralization of enamel eroded by cola drinks as revealed by significant morphological changes seen in SEM magnification and spectrophotometric analyses.
Manens, Line; Grison, Stéphane; Bertho, Jean-Marc; Lestaevel, Philippe; Guéguen, Yann; Benderitter, Marc; Aigueperse, Jocelyne; Souidi, Maâmar
2016-01-01
The presence of 137Cesium (137Cs) in the environment after nuclear accidents at Chernobyl and more recently Fukushima Daiichi raises many health issues for the surrounding populations chronically exposed through the food chain. To mimic different exposure situations, we set up a male rat model of exposure by chronic ingestion of a 137Cs concentration likely to be ingested daily by residents of contaminated areas (6500 Bq.l−1) and tested contaminations lasting 9 months for adult, neonatal and fetal rats. We tested plasma and serum biochemistry to identify disturbances in general indicators (lipids, proteins, carbohydrates and electrolytes) and in biomarkers of thyroid, heart, brain, bone, kidney, liver and testis functions. Analysis of the general indicators showed increased levels of cholesterol (+26%), HDL cholesterol (+31%), phospholipids B (+15%) and phosphorus (+100%) in the postnatal group only. Thyroid, heart, brain, bone and kidney functions showed no blood changes in any model. The liver function evaluation showed changes in total bilirubin (+67%) and alkaline phosphatase (–11%) levels, but only for the rats exposed to 137Cs intake in adulthood. Large changes in 17β-estradiol (–69%) and corticosterone (+36%) levels affected steroidogenesis, but only in the adult model. This study showed that response profiles differed according to age at exposure: lipid metabolism was most radiosensitive in the postnatal model, and steroid hormone metabolism was most radiosensitive in rats exposed in adulthood. There was no evidence of deleterious effects suggesting a potential impact on fertility or procreation. PMID:27466399
NASA Astrophysics Data System (ADS)
Vette, A. F.; Bereznicki, S.; Sobus, J.; Norris, G.; Williams, R.; Batterman, S.; Breen, M.; Isakov, V.; Perry, S.; Heist, D.; Community Action Against Asthma Steering Committee
2010-12-01
There has been growing interest in improving local-scale (< 1-km) exposure assessments to better understand the impact of local sources of air pollutants on adverse health outcomes. This paper describes two research studies aimed at understanding the impact of local sources contributing to spatial gradients at the neighborhood-scale in Detroit, MI. The first study, the Detroit Exposure and Aerosol Research Study (DEARS), was designed to assess the variability in concentrations of air pollutants derived from local and regional sources on community, neighborhood and personal exposures to air pollutants. Homes were identified at random in six different neighborhoods throughout Wayne County, MI that varied proximally to local industrial and mobile sources. Data were collected in summer (July-August) and winter (January-March) at a total of 135 homes over a three-year period (2004-2007). For five consecutive days at each home in summer and winter concurrent samples were collected of personal exposures, residential indoor and outdoor concentrations, and at a community monitoring site. The samples were analyzed for PM2.5 (mass and composition), air toxics, O3 and NO2. The second study is on-going and focuses on characterizing the impacts of mobile sources on near-road air quality and exposures among a cohort of asthmatic children. The Near-road EXposures and effects from Urban air pollutants Study (NEXUS) is designed to examine the relationship between near-road exposures to traffic-related air pollutants (BC, CO, NOx and PM components) and respiratory health of asthmatic children who live close to major roadways. The study will investigate the effects of traffic-associated exposures on exaggerated airway responses, biomolecular responses of inflammatory and oxidative stress, and how these exposures affect the frequency and severity of adverse respiratory outcomes. The study will also examine different near-road exposure assessment metrics, including monitoring and modeling techniques. Concentrations of traffic-related air pollutants will be measured and modeled indoors and outdoors of the children’s homes. Measurements will be made in a subset of homes each during fall 2010 and early spring 2011. High-time resolution measurements will be made of the chemical composition of traffic-related pollutants in the gas and particle phases adjacent to selected roadways. These data will be used to quantify the impact of traffic on the observed air quality data. Air pollutant dispersion and exposure models will be used in combination with measured data to estimate indoor/outdoor concentrations and personal exposures. Near-road spatial concentration patterns will be estimated at the children’s residences and schools across the study domain using dispersion modeling. These data will be used as input for an individual-level exposure model to estimate personal exposures from meteorology and questionnaire data on indoor sources, residential characteristics and operation, and time-location-activity patterns.
NASA Astrophysics Data System (ADS)
Gerosa, Giacomo; Fusaro, Lina; Monga, Robert; Finco, Angelo; Fares, Silvano; Manes, Fausto; Marzuoli, Riccardo
2015-07-01
Young plants of Holm oak (Quercus ilex) were exposed in non-limiting water conditions to four different levels of ozone (O3) concentrations in Open-Top Chambers during one growing season to evaluate biomass losses on roots, stems and leaves in relation to O3 exposure (AOT40) and phytotoxical ozone dose (POD1) absorbed. The exposure-effect and dose-effect relationships for the total biomass were statistically significant and indicated a reduction of 4% and 5.2% of the total biomass for each increase step of 10000 ppb h of AOT40 and 10 mmol m-2 of POD1, respectively. The results indicate a critical level for Holm oak protection of 7 mmol m-2 of POD1, which corresponds to 4% of total biomass reduction. The linear regressions based on the POD1 were significant for roots and stem biomass losses, but not significant for leaf biomass. The biomass loss rate at increasing POD1 was higher for roots than for stems and leaves, suggesting that stem growth under high levels of O3 is less affected than root growth. Because of the scarcity of data from the Mediterranean area, these results can be relevant for the O3 risk assessment models and for the definition of new O3 critical levels for forests in Europe.
Carver, F M; Shibley, I A; Miles, D S; Pennington, J S; Pennington, S N
1999-10-01
Fetal exposure to ethanol is associated with growth retardation of the developing central nervous system. We have previously described a chick model to study the molecular mechanism of ethanol effects on glucose metabolism in ovo. Total membrane fractions were prepared from day 4, day 5, and day 7 chick embryos exposed in ovo to ethanol or to vehicle. By Western blotting analysis, ethanol exposure caused a mean 7- to 10-fold increase in total GLUT-1 and a 2-fold increase in total GLUT-3. However, glucose uptake by ethanol-treated cells increased by only 10%. Analysis of isolated plasma (PM) and intracellular (IM) membranes from day 5 cranial tissue revealed a mean 25% decrease in GLUT-1 in the PM and a 66% increase in the IM in the ethanol group vs. control. The amount of PM GLUT-3 was unchanged but that of IM GLUT-3 was significantly decreased. The data suggest that GLUT-3 cell surface expression may be resistant to the suppressive effects of ethanol in the developing brain of ethanol-treated embryos. The overall increase in GLUT-1 may reflect a deregulation of the transporter induced by ethanol exposure. The increased IM localization and decreased amount of PM GLUT-1 may be a mechanism used by the ethanol-treated cell to maintain normal glucose uptake despite the overall increased level of the transporter.
Paul, David S.; Hernández-Zavala, Araceli; Walton, Felecia S.; Adair, Blakely M.; dina, Jiří D; Matoušek, Tomáš; Stýblo, Miroslav
2009-01-01
Previous epidemiologic studies found increased prevalences of type 2 diabetes mellitus in populations exposed to high levels of inorganic arsenic (iAs) in drinking water. Although results of epidemiologic studies in low-exposure areas or occupational settings have been inconclusive, laboratory research has shown that exposures to iAs can produce effects that are consistent with type 2 diabetes. The current paper reviews the results of laboratory studies that examined the effects of iAs on glucose metabolism and describes new experiments in which the diabetogenic effects of iAs exposure were reproduced in a mouse model. Here, weanling male C57BL/6 mice drank deionized water with or without the addition of arsenite (25 or 50 ppm As) for 8 weeks. Intraperitoneal glucose tolerance tests revealed impaired glucose tolerance in mice exposed to 50 ppm As, but not to 25 ppm As. Exposure to 25 and 50 ppm As in drinking-water resulted in proportional increases in the concentration of iAs and its metabolites in the liver and in organs targeted by type 2 diabetes, including pancreas, skeletal muscle and adipose tissue. Dimethylarsenic was the predominant form of As in the tissues of mice in both 25 and 50 ppm groups. Notably, the average concentration of total speciated arsenic in livers from mice in the 50 ppm group was comparable to the highest concentration of total arsenic reported in the livers of Bangladeshi residents who had consumed water with an order of magnitude lower level of iAs. These data suggest that mice are less susceptible than humans to the diabetogenic effects of chronic exposure to iAs due to a more efficient clearance of iAs or its metabolites from target tissues. PMID:17336358
Assessment of general public exposure to LTE and RF sources present in an urban environment.
Joseph, Wout; Verloock, Leen; Goeminne, Francis; Vermeeren, Günter; Martens, Luc
2010-10-01
For the first time, in situ electromagnetic field exposure of the general public to fields from long term evolution (LTE) cellular base stations is assessed. Exposure contributions due to different radiofrequency (RF) sources are compared with LTE exposure at 30 locations in Stockholm, Sweden. Total exposures (0.2-2.6 V/m) satisfy the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels (from 28 V/m for frequency modulation (FM), up to 61 V/m for LTE) at all locations. LTE exposure levels up to 0.8 V/m were measured, and the average contribution of the LTE signal to the total RF exposure equals 4%.
Hankey, Steve; Lindsey, Greg; Marshall, Julian D
2017-04-01
Providing infrastructure and land uses to encourage active travel (i.e., bicycling and walking) are promising strategies for designing health-promoting cities. Population-level exposure to air pollution during active travel is understudied. Our goals were a ) to investigate population-level patterns in exposure during active travel, based on spatial estimates of bicycle traffic, pedestrian traffic, and particulate concentrations; and b ) to assess how those exposure patterns are associated with the built environment. We employed facility-demand models (active travel) and land use regression models (particulate concentrations) to estimate block-level ( n = 13,604) exposure during rush-hour (1600-1800 hours) in Minneapolis, Minnesota. We used the model-derived estimates to identify land use patterns and characteristics of the street network that are health promoting. We also assessed how exposure is correlated with indicators of health disparities (e.g., household income, proportion of nonwhite residents). Our work uses population-level rates of active travel (i.e., traffic flows) rather than the probability of walking or biking (i.e., "walkability" or "bikeability") to assess exposure. Active travel often occurs on high-traffic streets or near activity centers where particulate concentrations are highest (i.e., 20-42% of active travel occurs on blocks with high population-level exposure). Only 2-3% of blocks (3-8% of total active travel) are "sweet spots" (i.e., high active travel, low particulate concentrations); sweet spots are located a ) near but slightly removed from the city-center or b ) on off-street trails. We identified 1,721 blocks (~ 20% of local roads) where shifting active travel from high-traffic roads to adjacent low-traffic roads would reduce exposure by ~ 15%. Active travel is correlated with population density, land use mix, open space, and retail area; particulate concentrations were mostly unchanged with land use. Public health officials and urban planners may use our findings to promote healthy transportation choices. When designing health-promoting cities, benefits (physical activity) as well as hazards (air pollution) should be evaluated.
Developmental fluoride neurotoxicity: a systematic review and meta-analysis.
Choi, Anna L; Sun, Guifan; Zhang, Ying; Grandjean, Philippe
2012-10-01
Although fluoride may cause neurotoxicity in animal models and acute fluoride poisoning causes neurotoxicity in adults, very little is known of its effects on children's neurodevelopment. We performed a systematic review and meta-analysis of published studies to investigate the effects of increased fluoride exposure and delayed neurobehavioral development. We searched the MEDLINE, EMBASE, Water Resources Abstracts, and TOXNET databases through 2011 for eligible studies. We also searched the China National Knowledge Infrastructure (CNKI) database, because many studies on fluoride neurotoxicity have been published in Chinese journals only. In total, we identified 27 eligible epidemiological studies with high and reference exposures, end points of IQ scores, or related cognitive function measures with means and variances for the two exposure groups. Using random-effects models, we estimated the standardized mean difference between exposed and reference groups across all studies. We conducted sensitivity analyses restricted to studies using the same outcome assessment and having drinking-water fluoride as the only exposure. We performed the Cochran test for heterogeneity between studies, Begg's funnel plot, and Egger test to assess publication bias, and conducted meta-regressions to explore sources of variation in mean differences among the studies. The standardized weighted mean difference in IQ score between exposed and reference populations was -0.45 (95% confidence interval: -0.56, -0.35) using a random-effects model. Thus, children in high-fluoride areas had significantly lower IQ scores than those who lived in low-fluoride areas. Subgroup and sensitivity analyses also indicated inverse associations, although the substantial heterogeneity did not appear to decrease. The results support the possibility of an adverse effect of high fluoride exposure on children's neurodevelopment. Future research should include detailed individual-level information on prenatal exposure, neurobehavioral performance, and covariates for adjustment.
[Navigated drilling for femoral head necrosis. Experimental and clinical results].
Beckmann, J; Tingart, M; Perlick, L; Lüring, C; Grifka, J; Anders, S
2007-05-01
In the early stages of osteonecrosis of the femoral head, core decompression by exact drilling into the ischemic areas can reduce pain and achieve reperfusion. Using computer aided surgery, the precision of the drilling can be improved while simultaneously lowering radiation exposure time for both staff and patients. We describe the experimental and clinical results of drilling under the guidance of the fluoroscopically-based VectorVision navigation system (BrainLAB, Munich, Germany). A total of 70 sawbones were prepared mimicking an osteonecrosis of the femoral head. In two experimental models, bone only and obesity, as well as in a clinical setting involving ten patients with osteonecrosis of the femoral head, the precision and the duration of radiation exposure were compared between the VectorVision system and conventional drilling. No target was missed. For both models, there was a statistically significant difference in terms of the precision, the number of drilling corrections as well as the radiation exposure time. The average distance to the desired midpoint of the lesion of both models was 0.48 mm for navigated drilling and 1.06 mm for conventional drilling, the average drilling corrections were 0.175 and 2.1, and the radiation exposure time less than 1 s and 3.6 s, respectively. In the clinical setting, the reduction of radiation exposure (below 1 s for navigation compared to 56 s for the conventional technique) as well as of drilling corrections (0.2 compared to 3.4) was also significant. Computer guided drilling using the fluoroscopically based VectorVision navigation system shows a clearly improved precision with a enormous simultaneous reduction in radiation exposure. It is therefore recommended for clinical routine.
[Accumulative effects and long-term persistence of subliminal mere exposure].
Kawakami, Naoaki; Yoshida, Fujio
2011-10-01
We examined the accumulative effects and long-term persistence of subliminal mere exposure. An accumulative exposure condition (100 exposures distributed over five days) and a massed exposure condition (100 exposures in one day) were used in a Go/No-go Association Task (GNAT), with assessments of likability from Time 1 (just after) to Time 6 (after three months). First, a single stimulus was shown subliminally for a total of 100 times. The results indicated that mere exposure effects occurred equally often at Time 1. However, after Time 2, likability gradually decreased under the massed exposure condition, while it did not decrease under the accumulative exposure condition until Time 6. Second, in order to investigate the effect of multiple exposure, five stimuli belonging to a common category were shown 20 times each, for a total of 100 times. An ANOVA suggested that massed exposure had an instantaneous effect on likability, whereas accumulative exposure had a long-term persistence effect. Also, multiple exposures strengthened the mere exposure effect.
77 FR 76840 - Minimum Capital Ratios; Issuance of Directives
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... Advanced Measurement Approaches * * * * * Part I. General Provisions Section 1. Purpose, Applicability... total on-balance sheet foreign exposure at the most recent year-end equal to $10 billion or more (where total on-balance sheet foreign exposure equals total cross-border claims less claims with head office or...
Microarray analysis of miRNA expression profiles following whole body irradiation in a mouse model.
Aryankalayil, Molykutty J; Chopra, Sunita; Makinde, Adeola; Eke, Iris; Levin, Joel; Shankavaram, Uma; MacMillan, Laurel; Vanpouille-Box, Claire; Demaria, Sandra; Coleman, C Norman
2018-06-19
Accidental exposure to life-threatening radiation in a nuclear event is a major concern; there is an enormous need for identifying biomarkers for radiation biodosimetry to triage populations and treat critically exposed individuals. To identify dose-differentiating miRNA signatures from whole blood samples of whole body irradiated mice. Mice were whole body irradiated with X-rays (2 Gy-15 Gy); blood was collected at various time-points post-exposure; total RNA was isolated; miRNA microarrays were performed; miRNAs differentially expressed in irradiated vs. unirradiated controls were identified; feature extraction and classification models were applied to predict dose-differentiating miRNA signature. We observed a time and dose responsive alteration in the expression levels of miRNAs. Maximum number of miRNAs were altered at 24-h and 48-h time-points post-irradiation. A 23-miRNA signature was identified using feature selection algorithms and classifier models. An inverse correlation in the expression level changes of miR-17 members, and their targets were observed in whole body irradiated mice and non-human primates. Whole blood-based miRNA expression signatures might be used for predicting radiation exposures in a mass casualty nuclear incident.
Human Life History Strategies.
Chua, Kristine J; Lukaszewski, Aaron W; Grant, DeMond M; Sng, Oliver
2017-01-01
Human life history (LH) strategies are theoretically regulated by developmental exposure to environmental cues that ancestrally predicted LH-relevant world states (e.g., risk of morbidity-mortality). Recent modeling work has raised the question of whether the association of childhood family factors with adult LH variation arises via (i) direct sampling of external environmental cues during development and/or (ii) calibration of LH strategies to internal somatic condition (i.e., health), which itself reflects exposure to variably favorable environments. The present research tested between these possibilities through three online surveys involving a total of over 26,000 participants. Participants completed questionnaires assessing components of self-reported environmental harshness (i.e., socioeconomic status, family neglect, and neighborhood crime), health status, and various LH-related psychological and behavioral phenotypes (e.g., mating strategies, paranoia, and anxiety), modeled as a unidimensional latent variable. Structural equation models suggested that exposure to harsh ecologies had direct effects on latent LH strategy as well as indirect effects on latent LH strategy mediated via health status. These findings suggest that human LH strategies may be calibrated to both external and internal cues and that such calibrational effects manifest in a wide range of psychological and behavioral phenotypes.
Analysis of Ingredient Lists to Quantitatively Characterize ...
The EPA’s ExpoCast program is developing high throughput (HT) approaches to generate the needed exposure estimates to compare against HT bioactivity data generated from the US inter-agency Tox21 and the US EPA ToxCast programs. Assessing such exposures for the thousands of chemicals in consumer products requires data on product composition. This is a challenge since quantitative product composition data are rarely available. We developed methods to predict the weight fractions of chemicals in consumer products from weight fraction-ordered chemical ingredient lists, and curated a library of such lists from online manufacturer and retailer sites. The probabilistic model predicts weight fraction as a function of the total number of reported ingredients, the rank of the ingredient in the list, the minimum weight fraction for which ingredients were reported, and the total weight fraction of unreported ingredients. Weight fractions predicted by the model compared very well to available quantitative weight fraction data obtained from Material Safety Data Sheets for products with 3-8 ingredients. Lists were located from the online sources for 5148 products containing 8422 unique ingredient names. A total of 1100 of these names could be located in EPA’s HT chemical database (DSSTox), and linked to 864 unique Chemical Abstract Service Registration Numbers (392 of which were in the Tox21 chemical library). Weight fractions were estimated for these 864 CASRN. Using a
2009-01-01
Background Airports represent a complex source type of increasing importance contributing to air toxics risks. Comprehensive atmospheric dispersion models are beyond the scope of many applications, so it would be valuable to rapidly but accurately characterize the risk-relevant exposure implications of emissions at an airport. Methods In this study, we apply a high resolution atmospheric dispersion model (AERMOD) to 32 airports across the United States, focusing on benzene, 1,3-butadiene, and benzo [a]pyrene. We estimate the emission rates required at these airports to exceed a 10-6 lifetime cancer risk for the maximally exposed individual (emission thresholds) and estimate the total population risk at these emission rates. Results The emission thresholds vary by two orders of magnitude across airports, with variability predicted by proximity of populations to the airport and mixing height (R2 = 0.74–0.75 across pollutants). At these emission thresholds, the population risk within 50 km of the airport varies by two orders of magnitude across airports, driven by substantial heterogeneity in total population exposure per unit emissions that is related to population density and uncorrelated with emission thresholds. Conclusion Our findings indicate that site characteristics can be used to accurately predict maximum individual risk and total population risk at a given level of emissions, but that optimizing on one endpoint will be non-optimal for the other. PMID:19426510
The Citizen CATE Experiment: Techniques to Determine Totality Coverage and Clouded Data Removal.
NASA Astrophysics Data System (ADS)
McKay, Myles A.; Ursache, Andrei; Penn, Matthew; Citizen CATE Experiment 2017 Team
2018-01-01
August 21, 2017, the Citizen Continental-America Telescopic Eclipse(CATE) Experiment observed the 2017 total solar eclipse using a network of 68 identical telescopes and camera systems along the path of totality. The result from the observation was over 90% of all sites collected totality data on the day of the eclipse. Since the volunteers had to remove the solar filter manually, there is an uncertainty between the time of totality and data acquired during totality. Some sites also experienced cloudy weather which obscured the eclipse in some of the exposures but had small breaks in the clouds during the observation, collecting clear totality data. Before we can process and analyze the eclipse data, we must carefully determine which frames cover the time of totality for each site and remove exposures with clouds blocking the FOV. In this poster, we will discuss the techniques we used to determine the extent of totality from each location using the logged GPS data and the removal of totality exposure with clouds.
[Effects decomposition in mediation analysis: a numerical example].
Zugna, Daniela; Richiardi, Lorenzo
2018-01-01
Mediation analysis aims to decompose the total effect of the exposure on the outcome into a direct effect (unmediated) and an indirect effect (mediated by a mediator). When the interest also lies on understanding whether the exposure effect differs in different sub-groups of study population or under different scenarios, the mediation analysis needs to be integrated with interaction analysis. In this setting it is necessary to decompose the total effect not only into two components, the direct and indirect effects, but other two components linked to interaction. The interaction between the exposure and the mediator in their effect on the outcome could indeed act through the effect of the exposure on the mediator or through the mediator when the mediator is not totally explained by the exposure. We describe options for decomposition, proposed in literature, of the total effect and we illustrate them through a hypothetical example of the effect of age at diagnosis of cancer on survival, mediated and unmediated by the therapeutical approach, and a numerical example.
1987-10-01
Ranch Hand Enlisted Flyers ... .......... ... R-14 R-1O Cross Tabulation of Pleurisy - (Abnormal, Total) by- Exposure Index Category-by-Age Category-by...by-Pack-Year Category for Ranch Hand Enlisted Groundcrew ........... .. R-19 R-15 Cross Tabulation of Pleurisy - (Abnormal, Total) by- Exposure Index
Zhang, Jinming; Fang, Shona C; Mittleman, Murray A; Christiani, David C; Cavallari, Jennifer M
2013-10-02
Although it has been well recognized that exposure to secondhand tobacco smoke (SHS) is associated with cardiovascular mortality, the mechanisms and time course by which SHS exposure may lead to cardiovascular effects are still being explored. Non-smoking workers were recruited from a local union and monitored inside a union hall while exposed to SHS over approximately 6 hours. Participants were fitted with a continuous electrocardiographic monitor upon enrollment which was removed at the end of a 24-hr monitoring period. A repeated measures study design was used where resting ECGs and blood samples were taken from individuals before SHS exposure (baseline), immediately following SHS exposure (post) and the morning following SHS exposure (next-morning).Inflammatory markers, including high sensitivity C-reactive protein (CRP) and white blood cell count (WBC) were analyzed. Heart rate variability (HRV) was analyzed from the ECG recordings in time (SDNN, rMSSD) and frequency (LF, HF) domain parameters over 5-minute periods. SHS exposure was quantified using a personal fine particulate matter (PM2.5) monitor.Linear mixed effects regression models were used to examine within-person changes in inflammatory and HRV parameters across the 3 time periods. Exposure-response relationships with PM2.5 were examined using mixed effects models. All models were adjusted for age, BMI and circadian variation. A total of 32 male non-smokers were monitored between June 2010 and June 2012. The mean PM2.5 from SHS exposure was 132 μg/m3. Immediately following SHS exposure, a 100 μg/m3 increase in PM2.5 was associated with declines in HRV (7.8% [standard error (SE) =3%] SDNN, 8.0% (SE = 3.9%) rMSSD, 17.2% (SE = 6.3%) LF, 29.0% (SE = 10.1%) HF) and increases in WBC count 0.42 (SE = 0.14) k/μl. Eighteen hours following SHS exposure, a 100 μg/m3 increase in PM2.5 was associated with 24.2% higher CRP levels. Our study suggest that short-term SHS exposure is associated with significantly lower HRV and higher levels of inflammatory markers. Exposure-associated declines in HRV were observed immediately following exposure while higher levels of CRP were not observed until 18 hours following exposure. Cardiovascular autonomic and inflammation responses may contribute to the pathophysiologic pathways that link SHS exposure with adverse cardiovascular outcomes.
Lehl, G; Bansal, K; Sekhon, R
1999-12-01
A preliminary study was conducted on 50 children in the age group of 4-12 years, who were divided into two groups on the basis of decayed, missing and filled teeth (DMFT) i.e. Group A (1-3) and Group B (> 3). A 5-day diet diary was evaluated and Sweet Score, Total Sugar Exposure, At Meal Sugar Exposures and Between Meal Sugar Exposure were calculated. There was statistically significant difference between the two groups in relation to Sweet Score and Total sugar Exposures. Between Meal Sugar Exposure and At Meal sugar exposure did not differ significantly.
Villanueva, Cristina M; Gracia-Lavedan, Esther; Julvez, Jordi; Santa-Marina, Loreto; Lertxundi, Nerea; Ibarluzea, Jesús; Llop, Sabrina; Ballester, Ferran; Fernández-Somoano, Ana; Tardón, Adonina; Vrijheid, Martine; Guxens, Mònica; Sunyer, Jordi
2018-01-01
Disinfection by-products (DBPs) constitute a complex mixture of prevalent chemicals in drinking water and there is evidence of neurotoxicity for some of them. We evaluated the association between estimates of DBP exposure during pregnancy and child neuropsychological outcomes at 1 and 4-5years of age. We conducted a population-based mother-child cohort study in Spain with recruitment at first trimester of gestation (INMA Project, 2003-2008). Neuropsychological development was measured at 1year of age using the Bayley Scales of Infant Development and at 4-5years with the McCarthy Scales of Children's Abilities. Modeled tap water concentrations of trihalomethanes (THM) were combined with personal ingestion, showering and bathing habits to estimate exposure as ingestion uptake, all route (showering, bathing, ingestion) uptake (μg/day) and crude levels (μg/l) in the residence. Chloroform, brominated THMs (bromodichloromethane, dibromochloromethane, bromoform) and total THMs (chloroform and brominated THMs) were analysed separately. Nine haloacetic acids levels were available in one of the areas. Linear regression was used to estimate associations in 1855 subjects adjusting for covariables. The median concentration of total THMs, chloroform, brominated THMs, total haloacetic acids, dichloroacetic acid, and trichloroacetic acid were, respectively 30.3μg/L, 9.4μg/L, 11.6μg/L, 10.5μg/L, 2.7μg/L, and 3.1μg/L. The associations between THM exposure and neuropsychological outcomes were null, except for total and brominated THM uptake though all routes and the general cognitive score at 4-5years, with a decrease in -0.54 points (95%CI -1.03, -0.05) and -0.64 (95%CI -1.16, -0.12), respectively, for doubling total and brominated THM uptake. A positive association found between dichloroacetic acid and the mental score at 1year did not persist at 4-5years. Minor associations observed between DBP exposure during gestation and child neuropsychological development at 1year disappeared at 4-5years. Although a suggestive association is identified for exposure to brominated THMs and the cognitive score at 4-5years, chance cannot be ruled out. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lyons, Michael A.; Yang, Raymond S.H.; Mayeno, Arthur N.; Reisfeld, Brad
2008-01-01
Background One problem of interpreting population-based biomonitoring data is the reconstruction of corresponding external exposure in cases where no such data are available. Objectives We demonstrate the use of a computational framework that integrates physiologically based pharmacokinetic (PBPK) modeling, Bayesian inference, and Markov chain Monte Carlo simulation to obtain a population estimate of environmental chloroform source concentrations consistent with human biomonitoring data. The biomonitoring data consist of chloroform blood concentrations measured as part of the Third National Health and Nutrition Examination Survey (NHANES III), and for which no corresponding exposure data were collected. Methods We used a combined PBPK and shower exposure model to consider several routes and sources of exposure: ingestion of tap water, inhalation of ambient household air, and inhalation and dermal absorption while showering. We determined posterior distributions for chloroform concentration in tap water and ambient household air using U.S. Environmental Protection Agency Total Exposure Assessment Methodology (TEAM) data as prior distributions for the Bayesian analysis. Results Posterior distributions for exposure indicate that 95% of the population represented by the NHANES III data had likely chloroform exposures ≤ 67 μg/L in tap water and ≤ 0.02 μg/L in ambient household air. Conclusions Our results demonstrate the application of computer simulation to aid in the interpretation of human biomonitoring data in the context of the exposure–health evaluation–risk assessment continuum. These results should be considered as a demonstration of the method and can be improved with the addition of more detailed data. PMID:18709138
Camargo Moreno, Maria; Mooney, Sandra M; Middleton, Frank A
2017-01-01
Prenatal ethanol exposure can produce structural and functional deficits in the brain and result in Fetal Alcohol Spectrum Disorder (FASD). In rodent models acute exposure to a high concentration of alcohol causes increased apoptosis in the developing brain. A single causal molecular switch that signals for this increase in apoptosis has yet to be identified. The protein p53 has been suggested to play a pivotal role in enabling cells to engage in pro-apoptotic processes, and thus figures prominently as a hub molecule in the intracellular cascade of responses elicited by alcohol exposure. In the present study we examined the effect of ethanol-induced cellular and molecular responses in primary somatosensory cortex (SI) and hippocampus of 7-day-old wild-type (WT) and p53-knockout (KO) mice. We quantified apoptosis by active caspase-3 immunohistochemistry and ApopTag™ labeling, then determined total RNA expression levels in laminae of SI and hippocampal subregions. Immunohistochemical results confirmed increased incidence of apoptotic cells in both regions in WT and KO mice following ethanol exposure. The lack of p53 was not protective in these brain regions. Molecular analyses revealed a heterogeneous response to ethanol exposure that varied depending on the subregion, and which may go undetected using a global approach. Gene network analyses suggest that the presence or absence of p53 alters neuronal function and synaptic modifications following ethanol exposure, in addition to playing a classic role in cell cycle signaling. Thus, p53 may function in a way that underlies the intellectual and behavioral deficits observed in FASD.
Embryonic exposure to sodium arsenite perturbs vascular development in zebrafish.
McCollum, Catherine W; Hans, Charu; Shah, Shishir; Merchant, Fatima A; Gustafsson, Jan-Åke; Bondesson, Maria
2014-07-01
Exposure to arsenic in its inorganic form, arsenite, causes adverse effects to many different organs and tissues. Here, we have investigated arsenite-induced adverse effects on vascular tissues in the model organism zebrafish, Danio rerio. Zebrafish embryos were exposed to arsenite at different exposure windows and the susceptibility to vascular tissue damage was recorded at 72hours post fertilization (hpf). Intersegmental vessel sprouting and growth was most perturbed by exposure to arsenite during the 24-48hpf window, while disruption in the condensation of the caudal vein plexus was more often observed at the 48-72hpf exposure window, reflecting when these structures develop during normal embryogenesis. The vascular growth rate was decreased by arsenite exposure, and deviated from that of control embryos at around 24-26.5hpf. We further mapped changes in expression of key regulators of angiogenesis and vasculogenesis. Downregulation of vascular endothelial growth factor receptor 1/fms-related tyrosine kinase 1 (vegfr1/flt1) expression was evident already at 24hpf, coinciding with the decreased vascular growth rate. At later time points, matrix metalloproteinase 9 (mmp9) expression was upregulated, suggesting that arsenite affects the composition of the extracellular matrix. In total, the expression of eight key factors involved in different aspects of vascularization was significantly altered by arsenic exposure. In conclusion, our results show that arsenite is a potent vascular disruptor in the developing zebrafish embryo, a finding that calls for an evaluation of arsenite as a developmental vascular toxicant in mammalian model systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Community Violence Exposure and Positive Youth Development in Urban Youth
Deatrick, Janet A.; Kassam-Adams, Nancy; Richmond, Therese S.
2011-01-01
Youth in urban environments are exposed to community violence, yet some do well and continue on a positive developmental trajectory. This study investigated the relationships between lifetime community violence exposure (including total, hearing about, witnessing, and victimization), family functioning, and positive youth development (PYD) among 110 urban youth ages 10–16 years (54% female) using a paper and pen self-report survey. This cross-sectional study was part of an interdisciplinary community-based participatory research effort in West/Southwest Philadelphia. Almost 97% of the sample reported some type of community violence exposure. Controlling for presence of mother in the home and presence of father in the home, separate linear regression models for PYD by each type of community violence exposure indicated that gender and family functioning were significantly associated with PYD. None of the types of community violence exposure were significant in the models. Significant interactions between gender and presence of mother in the home and gender and family functioning helped better explain these relationships for some of the types of community violence exposure. Presence of mother was associated with higher PYD for girls, but not for boys. Boys with poor family functioning had lower PYD than girls with poor family functioning. This study helps to better delineate relationships between CVE and PYD by adding new knowledge to the literature on the role of family functioning. Points of intervention should focus on families, with attention to parental figures in the home and overall family functioning. PMID:21461763
Between-country comparison of whole-body SAR from personal exposure data in Urban areas.
Joseph, Wout; Frei, Patrizia; Röösli, Martin; Vermeeren, Günter; Bolte, John; Thuróczy, György; Gajšek, Peter; Trček, Tomaž; Mohler, Evelyn; Juhász, Péter; Finta, Viktoria; Martens, Luc
2012-12-01
In five countries (Belgium, Switzerland, Slovenia, Hungary, and the Netherlands), personal radio frequency electromagnetic field measurements were performed in different microenvironments such as homes, public transports, or outdoors using the same exposure meters. From the mean personal field exposure levels (excluding mobile phone exposure), whole-body absorption values in a 1-year-old child and adult male model were calculated using a statistical multipath exposure method and compared for the five countries. All mean absorptions (maximal total absorption of 3.4 µW/kg for the child and 1.8 µW/kg for the adult) were well below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) basic restriction of 0.08 W/kg for the general public. Generally, incident field exposure levels were well correlated with whole-body absorptions (SAR(wb) ), although the type of microenvironment, frequency of the signals, and dimensions of the considered phantom modify the relationship between these exposure measures. Exposure to the television and Digital Audio Broadcasting band caused relatively higher SAR(wb) values (up to 65%) for the 1-year-old child than signals at higher frequencies due to the body size-dependent absorption rates. Frequency Modulation (FM) caused relatively higher absorptions (up to 80%) in the adult male. Copyright © 2012 Wiley Periodicals, Inc.
Ghanbari, Masoud; Mortazavi, Seyed Bagher; Khavanin, Ali; Khazaei, Mozafar
2013-04-01
There is tremendous concern regarding the possible adverse effects of cell phone microwaves. Contradictory results, however, have been reported for the effects of these waves on the body. In the present study, the effect of cell phone microwaves on sperm parameters and total antioxidant capacity was investigated with regard to the duration of exposure and the frequency of these waves. This experimental study was performed on 28 adult male Wistar rats (200-250 g). The animals were randomly assigned to four groups (n=7): i. control; ii. two-week exposure to cell phone-simulated waves; iii. three-week exposure to cell phonesimulated waves; and iv. two-week exposure to cell phone antenna waves. In all groups, sperm analysis was performed based on standard methods and we determined the mean sperm total antioxidant capacity according to the ferric reducing ability of plasma (FRAP) method. Data were analyzed by one-way ANOVA followed by Tukey's test using SPSS version 16 software. The results indicated that sperm viability, motility, and total antioxidant capacity in all exposure groups decreased significantly compared to the control group (p<0.05). Increasing the duration of exposure from 2 to 3 weeks caused a statistically significant decrease in sperm viability and motility (p<0.05). Exposure to cell phone waves can decrease sperm viability and motility in rats. These waves can also decrease sperm total antioxidant capacity in rats and result in oxidative stress.
Townsend, M C; Enterline, P E; Sussman, N B; Bonney, T B; Rippey, L L
1985-12-01
A cross-sectional study of 1,142 male employees at the Arkansas Operations of a large aluminum production company examined the effect on pulmonary function of chronic exposure to total dust produced in the mining and refining of bauxite and the production of alumina chemicals. Never smokers, ex-smokers, and current smokers were analyzed separately. Among never smokers, a pattern of decreasing FEV1 was observed in relation to increasing duration and cumulative total dust exposure. Among never smokers with cumulative total dust exposures of greater than or equal to 100 mg/m3 yr and greater than or equal to 20 yr of exposure, there was a mean reduction from the predicted FEV1 of 0.29 to 0.39 L, in addition to a 3- to 4-fold excess of observed/expected numbers of subjects with FEV1 less than 80% of predicted. These results were observed relative to an external and an internal comparison group. Among current smokers, the deviations from predicted and the excess numbers of subjects with FEV1 less than 80% of predicted were larger in all exposure groups than for the never smokers. However, the quality of the smoking data was inadequate to allow separation of the effects of smoking and dust exposure.
Limited inflammatory response in rats after acute exposure to a silicon carbide nanoaerosol
NASA Astrophysics Data System (ADS)
Laloy, J.; Lozano, O.; Alpan, L.; Masereel, B.; Toussaint, O.; Dogné, J. M.; Lucas, S.
2015-08-01
Inhalation represents the major route of human exposure to manufactured nanomaterials (NMs). Assessments are needed about the potential risks of NMs from inhalation on different tissues and organs, especially the respiratory tract. The aim of this limited study is to determine the potential acute pulmonary toxicity in rats exposed to a dry nanoaerosol of silicon carbide (SiC) nanoparticles (NPs) in a whole-body exposure (WBE) model. The SiC nanoaerosol is composed of a bimodal size distribution of 92.8 and 480 nm. The exposure concentration was 4.91 mg/L, close to the highest recommended concentration of 5 mg/L by the Organisation for Economic Co-operation and Development. Rats were exposed for 6 h to a stable and reproducible SiC nanoaerosol under real-time measurement conditions. A control group was exposed to the filtered air used to create the nanoaerosol. Animals were sacrificed immediately, 24 or 72 h after exposure. The bronchoalveolar lavage fluid from rat lungs was recovered. Macrophages filled with SiC NPs were observed in the rat lungs. The greatest load of SiC and macrophages filled with SiC were observed on the rat lungs sacrificed 24 h after acute exposure. A limited acute inflammatory response was found up to 24 h after exposure characterized by a lactate dehydrogenase and total protein increase or presence of inflammatory cells in pulmonary lavage. For this study a WBE model has been developed, it allows the simultaneous exposure of six rats to a nanoaerosol and six rats to clean-filtered air. The nanoaerosol was generated using a rotating brush system (RBG-1000) and analyzed with an electrical low pressure impactor in real time.
Zheng, Jiajia; Huynh, Trang; Gasparon, Massimo; Ng, Jack; Noller, Barry
2013-12-01
Lead from historical mining and mineral processing activities may pose potential human health risks if materials with high concentrations of bioavailable lead minerals are released to the environment. Since the Joint Expert Committee on Food Additives of Food and Agriculture Organization/World Health Organization withdrew the Provisional Tolerable Weekly Intake of lead in 2011, an alternative method was required for lead exposure assessment. This study evaluated the potential lead hazard to young children (0-7 years) from a historical mining location at a semi-arid area using the U.S. EPA Integrated Exposure Uptake Biokinetic (IEUBK) Model, with selected site-specific input data. This study assessed lead exposure via the inhalation pathway for children living in a location affected by lead mining activities and with specific reference to semi-arid conditions and made comparison with the ingestion pathway by using the physiologically based extraction test for gastro-intestinal simulation. Sensitivity analysis for major IEUBK input parameters was conducted. Three groups of input parameters were classified according to the results of predicted blood concentrations. The modelled lead absorption attributed to the inhalation route was lower than 2 % (mean ± SE, 0.9 % ± 0.1 %) of all lead intake routes and was demonstrated as a less significant exposure pathway to children's blood, compared with ingestion. Whilst dermal exposure was negligible, diet and ingestion of soil and dust were the dominant parameters in terms of children's blood lead prediction. The exposure assessment identified the changing role of dietary intake when house lead loadings varied. Recommendations were also made to conduct comprehensive site-specific human health risk assessment in future studies of lead exposure under a semi-arid climate.
Erickson, Michelle A; Jude, Joseph; Zhao, Hengjiang; Rhea, Elizabeth M; Salameh, Therese S; Jester, William; Pu, Shelley; Harrowitz, Jenna; Nguyen, Ngan; Banks, William A; Panettieri, Reynold A; Jordan-Sciutto, Kelly L
2017-09-01
Accumulating evidence suggests that O 3 exposure may contribute to CNS dysfunction. Here, we posit that inflammatory and acute-phase proteins in the circulation increase after O 3 exposure and systemically convey signals of O 3 exposure to the CNS. To model acute O 3 exposure, female Balb/c mice were exposed to 3 ppm O 3 or forced air for 2 h and were studied after 6 or 24 h. Of 23 cytokines and chemokines, only KC/CXCL1 was increased in blood 6 h after O 3 exposure. The acute-phase protein serum amyloid A (A-SAA) was significantly increased by 24 h, whereas C-reactive protein was unchanged. A-SAA in blood correlated with total leukocytes, macrophages, and neutrophils in bronchoalveolar lavage from O 3 -exposed mice. A-SAA mRNA and protein were increased in the liver. We found that both isoforms of A-SAA completely crossed the intact blood-brain barrier, although the rate of SAA2.1 influx was approximately 5 times faster than that of SAA1.1. Finally, A-SAA protein, but not mRNA, was increased in the CNS 24 h post-O 3 exposure. Our findings suggest that A-SAA is functionally linked to pulmonary inflammation in our O 3 exposure model and that A-SAA could be an important systemic signal of O 3 exposure to the CNS.-Erickson, M. A., Jude, J., Zhao, H., Rhea, E. M., Salameh, T. S., Jester, W., Pu, S., Harrowitz, J., Nguyen, N., Banks, W. A., Panettieri, R. A., Jr., Jordan-Sciutto, K. L. Serum amyloid A: an ozone-induced circulating factor with potentially important functions in the lung-brain axis. © FASEB.
Dermatopathology effects of simulated solar particle event radiation exposure in the porcine model.
Sanzari, Jenine K; Diffenderfer, Eric S; Hagan, Sarah; Billings, Paul C; Gridley, Daila S; Seykora, John T; Kennedy, Ann R; Cengel, Keith A
2015-07-01
The space environment exposes astronauts to risks of acute and chronic exposure to ionizing radiation. Of particular concern is possible exposure to ionizing radiation from a solar particle event (SPE). During an SPE, magnetic disturbances in specific regions of the Sun result in the release of intense bursts of ionizing radiation, primarily consisting of protons that have a highly variable energy spectrum. Thus, SPE events can lead to significant total body radiation exposures to astronauts in space vehicles and especially while performing extravehicular activities. Simulated energy profiles suggest that SPE radiation exposures are likely to be highest in the skin. In the current report, we have used our established miniature pig model system to evaluate the skin toxicity of simulated SPE radiation exposures that closely resemble the energy and fluence profile of the September, 1989 SPE using either conventional radiation (electrons) or proton simulated SPE radiation. Exposure of animals to electron or proton radiation led to dose-dependent increases in epidermal pigmentation, the presence of necrotic keratinocytes at the dermal-epidermal boundary and pigment incontinence, manifested by the presence of melanophages in the derm is upon histological examination. We also observed epidermal hyperplasia and a reduction in vascular density at 30 days following exposure to electron or proton simulated SPE radiation. These results suggest that the doses of electron or proton simulated SPE radiation results in significant skin toxicity that is quantitatively and qualitatively similar. Radiation-induced skin damage is often one of the first clinical signs of both acute and non-acute radiation injury where infection may occur, if not treated. In this report, histopathology analyses of acute radiation-induced skin injury are discussed. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Kreuzer, M; Straif, K; Marsh, J W; Dufey, F; Grosche, B; Nosske, D; Sogl, M
2012-03-01
'Dusty occupations' and exposure to low-dose radiation have been suggested as potential risk factors for stomach cancer. Data from the German uranium miner cohort study are used to further evaluate this topic. The cohort includes 58 677 miners with complete information on occupational exposure to dust, arsenic and radiation dose based on a detailed job-exposure matrix. A total of 592 stomach cancer deaths occurred in the follow-up period from 1946 to 2003. A Poisson regression model stratified by age and calendar year was used to calculate the excess relative risk (ERR) per unit of cumulative exposure to fine dust or from cumulative absorbed dose to stomach from α or low-LET (low linear energy transfer) radiation. For arsenic exposure, a binary quadratic model was applied. After adjustment for each of the three other variables, a statistically non-significant linear relationship was observed for absorbed dose from low-LET radiation (ERR/Gy=0.30, 95% CI -1.26 to 1.87), α radiation (ERR/Gy=22.5, 95% CI -26.5 to 71.5) and fine dust (ERR/dust-year=0.0012, 95% CI -0.0020 to 0.0043). The relationship between stomach cancer and arsenic exposure was non-linear with a 2.1-fold higher RR (95% CI 0.9 to 3.3) in the exposure category above 500 compared with 0 dust-years. Positive statistically non-significant relationships between stomach cancer and arsenic dust, fine dust and absorbed dose from α and low-LET radiation were found. Overall, low statistical power due to low doses from radiation and dust are of concern.
Phthalate esters and childhood asthma: A systematic review and congener-specific meta-analysis.
Li, Ming-Chieh; Chen, Chi-Hsien; Guo, Yue Leon
2017-10-01
Exposure to phthalate esters (PAEs) has been associated with childhood asthma, but the congener-specific effects of PAEs on childhood asthma were unclear. We aimed to systematically review and meta-analyze observational studies on the associations between specific effects of PAEs and the risk of childhood asthma. Relevant studies were identified by searching three databases up to October 20, 2016. The reference lists of the retrieved articles were also reviewed. We included observational studies that reported risk estimates with 95% confidence intervals (CIs) for the associations between phthalate exposure and the risk of childhood asthma. Fixed-effects models were generally applied to calculate pooled risk estimates. When heterogeneity was present, random-effects models were applied. A total of nine studies featuring 43 data points were included in our final meta-analyses. Results indicated that the benzyl butyl phthalate (BBzP) exposure had a significant association with the risk of childhood asthma. The Odd Ratios (ORs) were from 1.39 to 1.41 for different combination strategies. Subgroup analyses by different exposure period or samples used showed that prenatal exposure to BBzP had a stronger association with the risk of childhood asthma (OR = 1.38, 95% CI = 1.09-1.75), compared to those with postnatal exposure. Besides, the association was evident when the phthalate exposure was measured from dust samples. The OR for the associations between di-2-ethylhexyl phthalate (DEHP) in dust and childhood asthma was 2.71 (95% CI = 1.39-5.28), and 2.08 (95% CI = 1.10-3.92) for BBzP. Our study suggested a positive association between DEHP and BBzP exposure and childhood asthma. Future studies are warranted to identify the underlying mechanisms of the association. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of low-level prenatal lead exposure on child IQ at 4 and 8 years in a UK birth cohort study.
Taylor, Caroline M; Kordas, Katarzyna; Golding, Jean; Emond, Alan M
2017-09-01
The association between childhood exposure to lead (Pb) and deficits in cognitive function is well established. The association with prenatal exposure, however, is not well understood, even though the potential adverse effects are equally important. To evaluate the association between low prenatal exposure to lead and IQ in children, to determine whether there were sex differences in the associations, and to evaluate the moderation effect of prenatal Pb exposure on child IQ. Whole blood samples from pregnant women enrolled in ALSPAC (n=4285) and from offspring at age 30 months (n=235) were analysed for Pb. Associations between prenatal blood lead concentrations (B-Pb) and child IQ at age 4 and 8 years (WPPSI and WISC-III, respectively) were examined in adjusted regression models. There was no association of prenatal lead exposure with child IQ at 4 or 8 years old in adjusted regression models, and no moderation of the association between child B-Pb and IQ. However, there was a positive association for IQ at age 8 years in girls with a predicted increase in IQ (points) per 1μg/dl of: verbal 0.71, performance 0.57, total 0.73. In boys, the coefficients tended to be negative (-0.15, -0.42 and -0.29 points, respectively). Prenatal lead exposure was not associated with adverse effects on child IQ at age 4 or 8 years in this study. There was, however, some evidence to suggest that boys are more susceptible than girls to prenatal exposure to lead. Further investigation in other cohorts is required. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Implementation of smoke-free homes in Poland.
Kaleta, Dorota; Fronczak, Adam; Usidame, Bukola; Dziankowska-Zaborszczyk, Elżbieta; Makowiec-Dąbrowska, Teresa; Wojtysiak, Piotr
2016-01-01
Exposure to environmental tobacco smoke (ETS) constitutes a threat to the health of many people. In order to diminish ETS exposure, countries (including Poland) implemented legal restrictions of smoking in public places and worksites. Currently more attention is also paid to reduce overall and residential ETS exposure by voluntary smoke-free home policy adoption. The aim of current analysis was to evaluate the prevalence and determinants of implementing smoking bans at place of residence among economically active males and females in Poland. Data from cross-sectional, household study - Global Adult Tobacco Survey (GATS 2009-2010) were analyzed. The logistic regression model was applied for appropriate calculations. Out of 3696 studied subjects only 37.1% adopted total smoking ban within the home. Decreased likelihood of adopting total smoking bans was associated with current smoker status, low education attainment, lack of awareness on adverse health consequences of ETS, low level of support for tobacco control policies, and cohabitation with a smoker in both genders. Having smoke-free homes was also linked with age in women, place of residence and work smoking policy in indoor areas in men. Targeted activities to encourage adopting voluntary smoke-free rules among groups least likely to implement 100% smoking bans in the home and activities to decrease social acceptance of smoking in the presence of nonsmokers, children, pregnant woman are urgently needed. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Occupational exposures and lung cancer risk among Minnesota taconite mining workers.
Allen, Elizabeth M; Alexander, Bruce H; MacLehose, Richard F; Nelson, Heather H; Ryan, Andrew D; Ramachandran, Gurumurthy; Mandel, Jeffrey H
2015-09-01
To examine the association between employment duration, elongate mineral particle (EMP) exposure, silica exposure and the risk of lung cancer in the taconite mining industry. We conducted a nested case-control study of lung cancer within a cohort of Minnesota taconite iron mining workers employed by any of the mining companies in operation in 1983. Lung cancer cases were identified by vital records and cancer registry data through 2010. Two age-matched controls were selected from risk sets of cohort members alive and lung cancer free at the time of case diagnosis. Calendar time-specific exposure estimates were made for every job and were used to estimate workers' cumulative exposures. ORs and 95% CIs were estimated using conditional logistic regression. We evaluated total lung cancer risk and risk of histological subtype by total work duration and by cumulative EMP, and silica exposure by quartile of the exposure distribution. A total of 1706 cases and 3381 controls were included in the analysis. After adjusting for work in haematite mining, asbestos exposure and sex, the OR for total duration of employment was 0.99 (95% CI 0.96 to 1.01). The ORs for quartile 4 versus 1 of EMP and silica exposure were 0.82 (95% CI 0.57 to 1.19) and 0.97 (95% CI 0.70 to 1.35), respectively. The risk of each histological subtype of lung cancer did not change with increasing exposure. This study suggests that the estimated taconite mining exposures do not increase the risk of developing lung cancer. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Occupational Exposures and Lung Cancer Risk among Minnesota Taconite Mining Workers
Allen, Elizabeth M; Alexander, Bruce H; MacLehose, Richard F; Nelson, Heather H; Ryan, Andrew D; Ramachandran, Gurumurthy; Mandel, Jeffrey H
2015-01-01
Objective To examine the association between employment duration, elongate mineral particle (EMP) exposure, and silica exposure and the risk of lung cancer in the taconite mining industry. Methods We conducted a nested case control study of lung cancer within a cohort of Minnesota taconite iron mining workers employed by any of the mining companies in operation in 1983. Lung cancer cases were identified by vital records and cancer registry data through 2010. Two age-matched controls were selected from risk sets of cohort members alive and lung cancer free at the time of case diagnosis. Calendar time-specific exposure estimates were made for every job and were used to estimate workers’ cumulative exposures. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using conditional logistic regression. We evaluated total lung cancer risk and risk of histological subtype by total work duration and by cumulative EMP and silica exposure by quartile of the exposure distribution. Results A total of 1,706 cases and 3,381 controls were included in the analysis. After adjusting for work in hematite mining, asbestos exposure, and sex, the OR for total duration of employment was 0.99 (95% CI: 0.96–1.01). The ORs for quartile 4 versus 1 of EMP and silica exposure were 0.82 (95% CI: 0.57–1.19) and 0.97 (95% CI: 0.70–1.35) respectively. The risk of each histological subtype of lung cancer did not change with increasing exposure. Conclusions This study suggests that the estimated taconite mining exposures do not increase the risk for the development of lung cancer. PMID:25977445
Characterization of inhalation exposure to jet fuel among U.S. Air Force personnel.
Merchant-Borna, Kian; Rodrigues, Ema G; Smith, Kristen W; Proctor, Susan P; McClean, Michael D
2012-07-01
Jet propulsion fuel-8 (JP-8) is the primary jet fuel used by the US military, collectively consuming ~2.5 billion gallons annually. Previous reports suggest that JP-8 is potentially toxic to the immune, respiratory, and nervous systems. The objectives of this study were to evaluate inhalation exposure to JP-8 constituents among active duty United States Air Force (USAF) personnel while performing job-related tasks, identify significant predictors of inhalation exposure to JP-8, and evaluate the extent to which surrogate exposure classifications were predictive of measured JP-8 exposures. Seventy-three full-time USAF personnel from three different air force bases were monitored during four consecutive workdays where personal air samples were collected and analyzed for benzene, ethylbenzene, toluene, xylenes, total hydrocarbons (THC), and naphthalene. The participants were categorized a priori into high- and low-exposure groups, based on their exposure to JP-8 during their typical workday. Additional JP-8 exposure categories included job title groups and self-reported exposure to JP-8. Linear mixed-effects models were used to evaluate predictors of personal air concentrations. The concentrations of THC in air were significantly different between a priori exposure groups (2.6 mg m(-3) in high group versus 0.5 mg m(-3) in low, P < 0.0001), with similar differences observed for other analytes in air. Naphthalene was strongly correlated with THC (r = 0.82, P < 0.0001) and both were positively correlated with the relative humidity of the work environment. Exposures to THC and naphthalene varied significantly by job categories based on USAF specialty codes and were highest among personnel working in fuel distribution/maintenance, though self-reported exposure to JP-8 was an even stronger predictor of measured exposure in models that explained 72% (THC) and 67% (naphthalene) of between-worker variability. In fact, both self-report JP-8 exposure and a priori exposure groups explained more between-worker variability than job categories. Personal exposure to JP-8 varied by job and was positively associated with the relative humidity. However, self-reported exposure to JP-8 was an even stronger predictor of measured exposure than job title categories, suggesting that self-reported JP-8 exposure is a valid surrogate metric of exposure when personal air measurements are not available.
Baliatsas, Christos; van Kamp, Irene; Bolte, John; Kelfkens, Gert; van Dijk, Christel; Spreeuwenberg, Peter; Hooiveld, Mariette; Lebret, Erik; Yzermans, Joris
2016-09-15
The number of mobile phone base station(s) (MPBS) has been increasing to meet the rapid technological changes and growing needs for mobile communication. The primary objective of the present study was to test possible changes in prevalence and number of NSS in relation to MPBS exposure before and after increase of installed MPBS antennas. A retrospective cohort study was conducted, comparing two time periods with high contrast in terms of number of installed MPBS. Symptom data were based on electronic health records from 1069 adult participants, registered in 9 general practices in different regions in the Netherlands. All participants were living within 500m from the nearest bases station. Among them, 55 participants reported to be sensitive to MPBS at T1. A propagation model combined with a questionnaire was used to assess indoor exposure to RF-EMF from MPBS at T1. Estimation of exposure at T0 was based on number of antennas at T0 relative to T1. At T1, there was a >30% increase in the total number of MPBS antennas. A higher prevalence for most NSS was observed in the MPBS-sensitive group at T1 compared to baseline. Exposure estimates were not associated with GP-registered NSS in the total sample. Some significant interactions were observed between MPBS-sensitivity and exposure estimates on risk of symptoms. Using clinically defined outcomes and a time difference of >6years it was demonstrated that RF-EMF exposure to MPBS was not associated with the development of NSS. Nonetheless, there was some indication for a higher risk of NSS for the MPBS-sensitive group, mainly in relation to exposure to UMTS, but this should be interpreted with caution. Results have to be verified by future longitudinal studies with a particular focus on potentially susceptible population subgroups of large sample size and integrated exposure assessment. Copyright © 2016 Elsevier B.V. All rights reserved.
Meyer-Baron, Monika; Knapp, Guido; Schäper, Michael; van Thriel, Christoph
2015-01-01
While the health impact of high exposures to pesticides is acknowledged, the impact of chronic exposures in the absence of acute poisonings is controversial. A systematic analysis of dose-response relationships is still missing. Its absence may provoke alternative explanations for altered performances. Consequently, opportunities for health prevention in the occupational and environmental field may be missed. Objectives were (1) quantification of the neurotoxic impact of pesticides by an analysis of functional alterations in workers measured by neuropsychological performance tests, (2) estimates of dose-response relationships on the basis of exposure duration, and (3) exploration of susceptible subgroups. The meta-analysis employed a random effects model to obtain overall effects for individual performance tests. Twenty-two studies with a total of 1758 exposed and 1260 reference individuals met the inclusion criteria. At least three independent outcomes were available for twenty-six performance variables. Significant performance effects were shown in adults and referred to both cognitive and motor performances. Effect sizes ranging from dRE=-0.14 to dRE=-0.67 showed consistent outcomes for memory and attention. Relationships between effect sizes and exposure duration were indicated for individual performance variables and the total of measured performances. Studies on adolescents had to be analyzed separately due to numerous outliers. The large variation among outcomes hampered the analysis of the susceptibility in this group, while data on female workers was too scant for the analysis. Relationships exist between the impact of pesticides on performances and exposure duration. A change in test paradigms would help to decipher the impact more specifically. The use of biomarkers appropriate for lower exposures would allow a better prevention of neurotoxic effects due to occupational and environmental exposure. Intervention studies in adolescents seem warranted to specify their risk. Copyright © 2014 Elsevier Inc. All rights reserved.
Neophytou, Andreas M.; Noth, Elizabeth M.; Liu, Sa; Costello, Sadie; Hammond, S. Katharine; Cullen, Mark R.; Eisen, Ellen A.
2016-01-01
Ischemic heart disease (IHD) has been linked to exposures to airborne particles with an aerodynamic diameter <2.5 μm (PM2.5) in the ambient environment and in occupational settings. Routine industrial exposure monitoring, however, has traditionally focused on total particulate matter (TPM). To assess potential benefits of PM2.5 monitoring, we compared the exposure-response relationships between both PM2.5 and TPM and incidence of IHD in a cohort of active aluminum industry workers. To account for the presence of time varying confounding by health status we applied marginal structural Cox models in a cohort followed with medical claims data for IHD incidence from 1998 to 2012. Analyses were stratified by work process into smelters (n = 6,579) and fabrication (n = 7,432). Binary exposure was defined by the 10th-percentile cut-off from the respective TPM and PM2.5 exposure distributions for each work process. Hazard Ratios (HR) comparing always exposed above the exposure cut-off to always exposed below the cut-off were higher for PM2.5, with HRs of 1.70 (95% confidence interval (CI): 1.11–2.60) and 1.48 (95% CI: 1.02–2.13) in smelters and fabrication, respectively. For TPM, the HRs were 1.25 (95% CI: 0.89–1.77) and 1.25 (95% CI: 0.88–1.77) for smelters and fabrication respectively. Although TPM and PM2.5 were highly correlated in this work environment, results indicate that, consistent with biologic plausibility, PM2.5 is a stronger predictor of IHD risk than TPM. Cardiovascular risk management in the aluminum industry, and other similar work environments, could be better guided by exposure surveillance programs monitoring PM2.5. PMID:27249060
Hankey, Steve; Lindsey, Greg; Marshall, Julian D.
2016-01-01
Background: Providing infrastructure and land uses to encourage active travel (i.e., bicycling and walking) are promising strategies for designing health-promoting cities. Population-level exposure to air pollution during active travel is understudied. Objectives: Our goals were a) to investigate population-level patterns in exposure during active travel, based on spatial estimates of bicycle traffic, pedestrian traffic, and particulate concentrations; and b) to assess how those exposure patterns are associated with the built environment. Methods: We employed facility–demand models (active travel) and land use regression models (particulate concentrations) to estimate block-level (n = 13,604) exposure during rush-hour (1600–1800 hours) in Minneapolis, Minnesota. We used the model-derived estimates to identify land use patterns and characteristics of the street network that are health promoting. We also assessed how exposure is correlated with indicators of health disparities (e.g., household income, proportion of nonwhite residents). Our work uses population-level rates of active travel (i.e., traffic flows) rather than the probability of walking or biking (i.e., “walkability” or “bikeability”) to assess exposure. Results: Active travel often occurs on high-traffic streets or near activity centers where particulate concentrations are highest (i.e., 20–42% of active travel occurs on blocks with high population-level exposure). Only 2–3% of blocks (3–8% of total active travel) are “sweet spots” (i.e., high active travel, low particulate concentrations); sweet spots are located a) near but slightly removed from the city-center or b) on off-street trails. We identified 1,721 blocks (~ 20% of local roads) where shifting active travel from high-traffic roads to adjacent low-traffic roads would reduce exposure by ~ 15%. Active travel is correlated with population density, land use mix, open space, and retail area; particulate concentrations were mostly unchanged with land use. Conclusions: Public health officials and urban planners may use our findings to promote healthy transportation choices. When designing health-promoting cities, benefits (physical activity) as well as hazards (air pollution) should be evaluated. Citation: Hankey S, Lindsey G, Marshall JD. 2017. Population-level exposure to particulate air pollution during active travel: planning for low-exposure, health-promoting cities. Environ Health Perspect 125:–534; http://dx.doi.org/10.1289/EHP442 PMID:27713109
Jeanjean, Maxime; Bind, Marie-Abele; Roux, Jonathan; Ongagna, Jean-Claude; de Sèze, Jérôme; Bard, Denis; Leray, Emmanuelle
2018-05-01
Triggers of multiple sclerosis (MS) relapses are essentially unknown. PM 10 exposure has recently been associated with an increased risk of relapses. We further explore the short-term associations between PM 10 , NO 2 , benzene (C 6 H 6 ), O 3 , and CO exposures, and the odds of MS relapses' occurrence. Using a case-crossover design, we studied 424 MS patients living in the Strasbourg area, France between 2000 and 2009 (1783 relapses in total). Control days were chosen to be ± 35 days relative to the case (relapse) day. Exposure was modeled through ADMS-Urban software at the census block scale. We consider single-pollutant and multi-pollutant conditional logistic regression models coupled with a distributed-lag linear structure, stratified by season ("hot" vs. "cold"), and adjusted for meteorological parameters, pollen count, influenza-like epidemics, and holidays. The single-pollutant analyses indicated: 1) significant associations between MS relapse incidence and exposures to NO 2 , PM 10 , and O 3 , and 2) seasonality in these associations. For instance, an interquartile range increase in NO 2 (lags 0-3) and PM 10 exposure were associated with MS relapse incidence (OR = 1.08; 95%CI: [1.03-1.14] and OR = 1.06; 95%CI: [1.01-1.11], respectively) during the "cold" season (i.e., October-March). We also observed an association with O 3 and MS relapse incidence during "hot" season (OR = 1.16; 95%CI: [1.07-1.25]). C 6 H 6 and CO were not significantly related to MS relapse incidence. However, using multi-pollutant models, only O 3 remained significantly associated with the odds of relapse triggering during "hot" season. We observed significant single-pollution associations between the occurrence of MS relapses and exposures to NO 2 , O 3 and PM 10 , only O 3 remained significantly associated with occurrence of MS relapses in the multi-pollutant model. Copyright © 2018. Published by Elsevier Inc.
The scientific jigsaw puzzle: Fitting the pieces of the low-level radiation debate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyea, Jan
2012-05-01
Quantitative risk estimates from exposure to ionizing radiation are dominated by analysis of the one-time exposures received by the Japanese survivors at Hiroshima and Nagasaki. Three recent epidemiologic studies suggest that the risk from protracted exposure is no lower, and in fact may be higher, than from single exposures. There is near-universal acceptance that epidemiologic data demonstrates an excess risk of delayed cancer incidence above a dose of 0.1 sievert (Sv), which, for the average American, is equivalent to 40 years of unavoidable exposure from natural background radiation. Model fits, both parametric and nonparametric, to the atomic-bomb data support amore » linear no-threshold model, below 0.1 Sv. On the basis of biologic arguments, the scientific establishment in the United States and many other countries accepts this dose-model down to zero-dose, but there is spirited dissent. The dissent may be irrelevant for developed countries, given the increase in medical diagnostic radiation that has occurred in recent decades; a sizeable percentage of this population will receive cumulative doses from the medical profession in excess of 0.1 Sv, making talk of a threshold or other sublinear response below that dose moot for future releases from nuclear facilities or a dirty bomb. The risks from both medical diagnostic doses and nuclear accident doses can be computed using the linear dose-response model, with uncertainties assigned below 0.1 Sv in a way that captures alternative scientific hypotheses. Then, the important debate over low-level radiation exposures, namely planning for accident response and weighing benefits and risks of technologies, can proceed with less distraction. One of the biggest paradoxes in the low-level radiation debate is that an individual risk can be a minor concern, while the societal risk-the total delayed cancers in an exposed population-can be of major concern.« less
Giesbrecht, Gerald F; Ejaredar, Maede; Liu, Jiaying; Thomas, Jenna; Letourneau, Nicole; Campbell, Tavis; Martin, Jonathan W; Dewey, Deborah
2017-05-19
Animal models show that prenatal bisphenol A (BPA) exposure leads to sexually dimorphic disruption of the neuroendocrine system in offspring, including the hypothalamic-pituitary-adrenal (HPA) neuroendocrine system, but human data are lacking. In humans, prenatal BPA exposure is associated with sex-specific behavioural problems in children, and HPA axis dysregulation may be a biological mechanism. The objective of the current study was to examine sex differences in associations between prenatal maternal urinary BPA concentration and HPA axis function in 3 month old infants. Mother-infant pairs (n = 132) were part of the Alberta Pregnancy Outcomes and Nutrition study, a longitudinal birth cohort recruited (2010-2012) during pregnancy. Maternal spot urine samples collected during the 2nd trimester were analyzed for total BPA and creatinine. Infant saliva samples collected prior to and after a blood draw were analyzed for cortisol. Linear growth curve models were used to characterize changes in infant cortisol as a function of prenatal BPA exposure. Higher maternal BPA was associated with increases in baseline cortisol among females (β = 0.13 log μg/dL; 95% CI: 0.01, 0.26), but decreases among males (β = -0.22 log μg/dL; 95% CI: -0.39, -0.05). In contrast, higher BPA was associated with increased reactivity in males (β = .30 log μg/dL; 95% CI: 0.04, 0.56) but decreased reactivity in females (β = -0.15 log μg/dL; 95% CI: -0.35, 0.05). Models adjusting for creatinine yielded similar results. Prenatal BPA exposure is associated with sex-specific changes in infant HPA axis function. The biological plausibility of these findings is supported by their consistency with evidence in rodent models. Furthermore, these data support the hypotheses that sexually dimorphic changes in children's behaviour following prenatal BPA exposure are mediated by sexually dimorphic changes in HPA axis function.
NASA Astrophysics Data System (ADS)
Gariazzo, Claudio; Pelliccioni, Armando; Bolignano, Andrea
2016-04-01
A dynamic city-wide air pollution exposure assessment study has been carried out for the urban population of Rome, Italy, by using time resolved population distribution maps, derived by mobile phone traffic data, and modelled air pollutants (NO2, O3 and PM2.5) concentrations obtained by an integrated air dispersion modelling system. More than a million of persons were tracked during two months (March and April 2015) for their position within the city and its surroundings areas, with a time resolution of 15 min and mapped over an irregular grid system with a minimum resolution of 0.26 × 0.34 Km2. In addition, demographics information (as gender and age ranges) were available in a separated dataset not connected with the total population one. Such BigData were matched in time and space with air pollution model results and then used to produce hourly and daily resolved cumulative population exposures during the studied period. A significant mobility of population was identified with higher population densities in downtown areas during daytime increasing of up to 1000 people/Km2 with respect to nigh-time one, likely produced by commuters, tourists and working age population. Strong variability (up to ±50% for NO2) of population exposures were detected as an effect of both mobility and time/spatial changing in pollutants concentrations. A comparison with the correspondent stationary approach based on National Census data, allows detecting the inability of latter in estimating the actual variability of population exposure. Significant underestimations of the amount of population exposed to daily PM2.5 WHO guideline was identified for the Census approach. Very small differences (up to a few μg/m3) on exposure were detected for gender and age ranges population classes.
Traffic-related air pollution, particulate matter, and autism.
Volk, Heather E; Lurmann, Fred; Penfold, Bryan; Hertz-Picciotto, Irva; McConnell, Rob
2013-01-01
Autism is a heterogeneous disorder with genetic and environmental factors likely contributing to its origins. Examination of hazardous pollutants has suggested the importance of air toxics in the etiology of autism, yet little research has examined its association with local levels of air pollution using residence-specific exposure assignments. To examine the relationship between traffic-related air pollution, air quality, and autism. This population-based case-control study includes data obtained from children with autism and control children with typical development who were enrolled in the Childhood Autism Risks from Genetics and the Environment study in California. The mother's address from the birth certificate and addresses reported from a residential history questionnaire were used to estimate exposure for each trimester of pregnancy and first year of life. Traffic-related air pollution was assigned to each location using a line-source air-quality dispersion model. Regional air pollutant measures were based on the Environmental Protection Agency's Air Quality System data. Logistic regression models compared estimated and measured pollutant levels for children with autism and for control children with typical development. Case-control study from California. A total of 279 children with autism and a total of 245 control children with typical development. Crude and multivariable adjusted odds ratios (AORs) for autism. Children with autism were more likely to live at residences that had the highest quartile of exposure to traffic-related air pollution, during gestation (AOR, 1.98 [95% CI, 1.20-3.31]) and during the first year of life (AOR, 3.10 [95% CI, 1.76-5.57]), compared with control children. Regional exposure measures of nitrogen dioxide and particulate matter less than 2.5 and 10 μm in diameter (PM2.5 and PM10) were also associated with autism during gestation (exposure to nitrogen dioxide: AOR, 1.81 [95% CI, 1.37-3.09]; exposure to PM2.5: AOR, 2.08 [95% CI, 1.93-2.25]; exposure to PM10: AOR, 2.17 [95% CI, 1.49-3.16) and during the first year of life (exposure to nitrogen dioxide: AOR, 2.06 [95% CI, 1.37-3.09]; exposure to PM2.5: AOR, 2.12 [95% CI, 1.45-3.10]; exposure to PM10: AOR, 2.14 [95% CI, 1.46-3.12]). All regional pollutant estimates were scaled to twice the standard deviation of the distribution for all pregnancy estimates. Exposure to traffic-related air pollution, nitrogen dioxide, PM2.5, and PM10 during pregnancy and during the first year of life was associated with autism. Further epidemiological and toxicological examinations of likely biological pathways will help determine whether these associations are causal.
Sabers, Anne; Bertelsen, Freja C B; Scheel-Krüger, Jørgen; Nyengaard, Jens R; Møller, Arne
2014-09-19
The aim of this study was to test the hypothesis that long-term fetal valproic acid (VPA) exposure at doses relevant to the human clinic interferes with normal brain development. Pregnant rats were given intraperitoneal injections of VPA (20mg/kg or 100mg/kg) continuously during the last 9-12 days of pregnancy and during the lactation period until sacrifice on the 23rd postnatal day. Total number of neocortical neurons was estimated using the optical fractionator and frontal cortical thicknesses were sampled in VPA exposed pups compared with an unexposed control group. We found that pups exposed to 20mg/kg and 100mg/kg doses of VPA had statistically significant higher total number of neurons in neocortex by 15.8% and 12.3%, respectively (p<0.05) compared to controls amounting to 15.5×10(6) neocortical neurons (p<0.01). There was no statistical difference between the two VPA groups. Pups exposed to100mg/kg, but not to 20mg/kg VPA displayed a significant (p<0.05) broader (7.5%) of frontal cortical thickness compared to controls. Our results support the hypothesis that fetal exposure of VPA may interfere with normal brain development by disturbing neocortical organization, resulting in overgrowth of frontal lobes and increased neuronal cell numbers. The results indirectly suggest that prenatal VPA may contribute as a causative factor in the brain developmental disturbances equivalent to those seen in human autism spectrum disorders. We therefore suggest that this version of the VPA model may provide a translational model of autism. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Qunfang; Zhu, Yifang
2010-01-01
Increasing evidence has demonstrated toxic effects of vehicular emitted ultrafine particles (UFPs, diameter < 100 nm), with the highest human exposure usually occurring on and near roadways. Children are particularly at risk due to immature respiratory systems and faster breathing rates. In this study, children's exposure to in-cabin air pollutants, especially UFPs, was measured inside four diesel-powered school buses. Two 1990 and two 2006 model year diesel-powered school buses were selected to represent the age extremes of school buses in service. Each bus was driven on two routine bus runs to study school children's exposure under different transportation conditions in South Texas. The number concentration and size distribution of UFPs, total particle number concentration, PM 2.5, PM 10, black carbon (BC), CO, and CO 2 levels were monitored inside the buses. The average total particle number concentrations observed inside the school buses ranged from 7.3 × 10 3 to 3.4 × 10 4 particles cm -3, depending on engine age and window position. When the windows were closed, the in-cabin air pollutants were more likely due to the school buses' self-pollution. The 1990 model year school buses demonstrated much higher air pollutant concentrations than the 2006 model year ones. When the windows were open, the majority of in-cabin air pollutants came from the outside roadway environment with similar pollutant levels observed regardless of engine ages. The highest average UFP concentration was observed at a bus transfer station where approximately 27 idling school buses were queued to load or unload students. Starting-up and idling generated higher air pollutant levels than the driving state. Higher in-cabin air pollutant concentrations were observed when more students were on board.
NASA Technical Reports Server (NTRS)
Vasilkov, Alexander; Krotkov, Nickolay; Herman, Jay; McClain, Charles; Arrigo, Kevin; Robinson, Wayne
1999-01-01
The global stratospheric ozone-layer depletion results In an increase in biologically harmful ultraviolet (UV) radiation reaching the surface and penetrating to ecologically significant depths in natural waters. Such an increase can be estimated on a global scale by combining satellite estimates of UV irradiance at the ocean surface from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument with the SeaWIFS satellite ocean-color measurements in the visible spectral region. In this paper we propose a model of seawater optical properties in the UV spectral region based on the Case I water model in the visible range. The inputs to the model are standard monthly SeaWiFS products: chlorophyll concentration and the diffuse attenuation coefficient at 490nm. Penetration of solar UV radiation to different depths in open ocean waters is calculated using the RT (radiative transfer) quasi-single scattering approximation (QSSA). The accuracy of the QSSA approximation in the water is tested using more accurate codes. The sensitivity study of the underwater UV irradiance to atmospheric and oceanic optical properties have shown that the main environmental parameters controlling the absolute levels of the UVB (280-320nm) and DNA-weighted irradiance underwater are: solar-zenith angle, cloud transmittance, water optical properties, and total ozone. Weekly maps of underwater UV irradiance and DNA-weighted exposure are calculated using monthly-mean SeaWiFS chlorophyll and diffuse attenuation coefficient products, daily SeaWiFS cloud fraction data, and the TOMS-derived surface UV irradiance daily maps. The final products include global maps of weekly-average UVB irradiance and DNA-weighted daily exposures at 3m and 10m, and depths where the UVB irradiance and DNA-weighted dose rate at local noon are equal to 10% of their surface values.
NASA Astrophysics Data System (ADS)
Stolarski, David J.; Cain, Clarence P.; Schuster, Kurt J.; Imholte, Michelle; Carothers, Val C.; Buffington, Gavin D.; Edwards, Michael; Thomas, Robert J.; Rockwell, Benjamin A.
2005-04-01
To assess the retinal hazards related to simultaneous exposure from two lasers of separate wavelengths, the retinal effects of 5-second laser irradiation from 532 nm and 647 nm were determined in non-human primates. A total of six eyes were exposed using equal amounts of power to determine the damage levels. The results were combined with those of previous, two-wavelength studies done by our group and compared to damage models developed in our lab. The data were also compared to the calculations resulting from use of the currently accepted method of predicting hazards from simultaneous lasing.
Skylab program payload integration. TO27 sample array
NASA Technical Reports Server (NTRS)
Muscari, J. A.; Westcott, P. A.
1974-01-01
The objective of the TO27 sample array was to determine the change in optical properties of various transmissive windows, mirrors, and diffraction gratings caused by the deposition of contaminants found about the orbital assembly. The expected information to be obtained from the total TO27 sample array program is as follows: (1) effect of space contaminants on transmittance, reflectance, grating efficiency, and polarization; (2) variations in deposition of contaminants due to substrate, solar radiation, period of exposure, direction of exposure, and geometry effects; (3) identification of contaminants and source of evolution; (4) time of contaminant evolution and lingering time; and (5) guidelines for a model of spacecraft contamination.
Factoring vs linear modeling in rate estimation: a simulation study of relative accuracy.
Maldonado, G; Greenland, S
1998-07-01
A common strategy for modeling dose-response in epidemiology is to transform ordered exposures and covariates into sets of dichotomous indicator variables (that is, to factor the variables). Factoring tends to increase estimation variance, but it also tends to decrease bias and thus may increase or decrease total accuracy. We conducted a simulation study to examine the impact of factoring on the accuracy of rate estimation. Factored and unfactored Poisson regression models were fit to follow-up study datasets that were randomly generated from 37,500 population model forms that ranged from subadditive to supramultiplicative. In the situations we examined, factoring sometimes substantially improved accuracy relative to fitting the corresponding unfactored model, sometimes substantially decreased accuracy, and sometimes made little difference. The difference in accuracy between factored and unfactored models depended in a complicated fashion on the difference between the true and fitted model forms, the strength of exposure and covariate effects in the population, and the study size. It may be difficult in practice to predict when factoring is increasing or decreasing accuracy. We recommend, therefore, that the strategy of factoring variables be supplemented with other strategies for modeling dose-response.
OBSERVATIONS OF HIGH-ENERGY COSMIC-RAY ELECTRONS FROM 30 GeV TO 3 TeV WITH EMULSION CHAMBERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, T.; Komori, Y.; Yoshida, K.
2012-12-01
We have performed a series of cosmic-ray electron observations using balloon-borne emulsion chambers since 1968. While we previously reported the results from subsets of the exposures, the final results of the total exposures up to 2001 are presented here. Our successive experiments have yielded a total exposure of 8.19 m{sup 2} sr day at altitudes of 4.0-9.4 g cm{sup -2}. The performance of the emulsion chambers was examined by accelerator beam tests and Monte Carlo simulations, and the on-board calibrations were carried out by using the flight data. In this work, we present the cosmic-ray electron spectrum in the energymore » range from 30 GeV to 3 TeV at the top of the atmosphere, which is well represented by a power-law function with an index of -3.28 {+-} 0.10. The observed data can also be interpreted in terms of diffusive propagation models. The evidence of cosmic-ray electrons up to 3 TeV suggests the existence of cosmic-ray electron sources at distances within {approx}1 kpc and times within {approx}1 Multiplication-Sign 10{sup 5} yr ago.« less
Drinking water disinfection by-products and time to pregnancy.
MacLehose, Richard F; Savitz, David A; Herring, Amy H; Hartmann, Katherine E; Singer, Philip C; Weinberg, Howard S
2008-05-01
Laboratory evidence suggests tap water disinfection by-products (DBPs) could have an effect very early in pregnancy, typically before clinical detectability. Undetected early losses would be expected to increase the reported number of cycles to clinical pregnancy. We investigated the association between specific DBPs (trihalomethanes, haloacetic acids, brominated-trihalomethanes, brominated-haloacetic acids, total organic halides, and bromodichloromethane) and time to pregnancy among women who enrolled in a study of drinking water and reproductive outcomes. We quantified exposure to DBPs through concentrations in tap water, quantity ingested through drinking, quantity inhaled or absorbed while showering or bathing, and total integrated exposure. The effect of DBPs on time to pregnancy was estimated using a discrete time hazard model. Overall, we found no evidence of an increased time to pregnancy among women who were exposed to higher levels of DBPs. A modestly decreased time to pregnancy (ie, increased fecundability) was seen among those exposed to the highest level of ingested DBPs, but not for tap water concentration, the amount absorbed while showering or bathing, or the integrated exposure. Our findings extend those of a recently published study suggesting a lack of association between DBPs and pregnancy loss.
Spector, June T; Krenz, Jennifer; Calkins, Miriam; Ryan, Dawn; Carmona, Jose; Pan, Mengjie; Zemke, Anna; Sampson, Paul D
2018-02-01
We sought to evaluate potential mediators of the relationship between heat exposure and traumatic injuries in outdoor agricultural workers. Linear mixed models were used to estimate associations between maximum work-shift Wet Bulb Globe Temperature (WBGT max ) and post-shift vigilance (reaction time) and postural sway (total path length) in a cross-sectional sample of 46 Washington State tree fruit harvesters in August-September 2015. The mean (SD) WBGT max was 27.4 (3.2)°C in August and 21.2 (2.0)°C in September. The mean pre-work-shift participant urine specific gravity indicated minimal dehydration. Twenty-four percent of participants exhibited possible excessive sleepiness. There was no association between WBGT max and post-shift reaction time or total path length. Heat exposure was not associated with impaired vigilance or balance in this study, in which the overall mean (SD) WBGT max was 25.9 (4.2)°C. However, the study identified opportunities to ensure adequate pre-work-shift hydration and to optimize sleep and work-shift timing in order to reduce occupational injury and heat-related illness risk. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anyenda, Enoch Olando; Higashi, Tomomi; Kambayashi, Yasuhiro; Nguyen, Thao Thi Thu; Michigami, Yoshimasa; Fujimura, Masaki; Hara, Johsuke; Tsujiguchi, Hiromasa; Kitaoka, Masami; Asakura, Hiroki; Hori, Daisuke; Yamada, Yohei; Hayashi, Koichiro; Hayakawa, Kazuichi; Nakamura, Hiroyuki
2016-08-09
Information on potential cough triggers including environmental irritants is vital for successful management of chronic cough in patients. We investigated the relationship between ambient levels of particulate polycyclic aromatic hydrocarbons (PAH), nitrogen dioxide (NO₂) and sulphur dioxide (SO₂) exposures with cough prevalence. Eighty-three adult patients, who had been physician diagnosed with at least asthma, cough variant asthma and/or atopic cough, were divided into asthma and non-asthma groups. They recorded daily cough symptoms during 4 January-30 June 2011 study period while daily samples of total suspended particles were simultaneously collected by use of glass fiber filters and the particulate PAH content determined by high performance liquid chromatography coupled with a fluorescence detector. Ambient concentrations of NO₂ and SO₂ were obtained from a local monitoring site. Logistic regression models using generalized estimating equations were used to determine population-averaged estimates of association between cough prevalence and ambient pollutant exposures for the two groups. Fully adjusted odds ratios from single pollutant models were 1.083 (95% confidence interval (CI): 1.029, 1.140) and 1.097 (95% CI: 1.016, 1.185) per 0.57 ng/m³ for lag2 PAH exposure, while only for asthma group had significant associations with NO₂ and SO₂ exposures for both lag2 and lag02. Similar associations were observed in multipollutant models. This finding suggests that ambient PAH, NO₂, and SO₂ exposure even at low levels is related to cough prevalence in adult chronic cough patients and may be considered as aggravating factor during clinical management of the condition.
Adverse Childhood Experiences and Criminal Extremity: New Evidence for Sexual Homicide.
DeLisi, Matt; Beauregard, Eric
2018-03-01
Adverse childhood experiences are associated with a wide range of behavioral, health, and psychiatric deficits and have recently been used to study the development of serious offending careers. Unfortunately, this research paradigm has largely ignored forensic populations. This study utilized the adverse childhood experiences framework to examine the associations between exposure to violence, victimization, and total adverse childhood experiences on sexual homicide using a sample of 616 incarcerated adult male sexual offenders from Canada 85 of whom committed sexual homicide. Epidemiological tables of odds revealed that a gradient of adverse childhood experiences was associated with sexual homicide, but that the most significant risks were for offenders who had the most extensive abuse histories. In adjusted models, exposure to violence, victimization, and total adverse childhood experiences increased the odds of sexual homicide by 334%, 249%, and 546%, respectively. These effects intensified in models adjusted for childhood enuresis, cruelty to animals, parental abandonment, deviant sexual behaviors, poor self-image, and sexual problems to 559%, 326%, and 849%, respectively. The adverse childhood experiences framework is a systematic way to organize the criminogenic developmental sequela in sexual homicide. © 2017 American Academy of Forensic Sciences.
Deuterium retention and release behaviours of tungsten and deuterium co-deposited layers
NASA Astrophysics Data System (ADS)
Qiao, L.; Zhang, H. W.; Xu, J.; Chai, L. Q.; Hu, M.; Wang, P.
2018-04-01
Tungsten (W) layer deposited in argon and deuterium atmosphere by magnetron sputtering was used as a model system to study the deuterium (D) retention and release behavior in co-deposited W layer. After deposition several selected samples were exposed in deuterium plasma at 370 K with a flux of 4.0 × 1021 D/(m2 s) up to a fluence of 1.1 × 1025 D/m2. Structures of co-deposited W layers are investigated by field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD), and the corresponding D retention and release behaviors are studied as functions of deposition and exposure parameters using thermal desorption spectroscopy (TDS). Two main D release peaks were detected from TDS spectra located near 600 and 800 K in these W and D co-deposited layers, and total deuterium retention increased linearly as a function of W layer's thickness. After deuterium plasma exposure, the total D retention amount in W layer increases significantly and D release peak shifts to lower temperature. Clearly, despite the high density of defects expected in co-deposited W layers, the initial deuterium retention before exposure to the deuterium plasma is low even for the samples with a W&D layer. But due to the high densities of defects, during the deuterium plasma exposure the deuterium retention increases faster for co-deposited layer than for the bulk W sample.
[Metal accumulation and MTLP induction in the digestive glands of Perna viridis exposed to Cu].
Li, Chun-Di; Yan, Wen; Long, Ai-Min; Ma, Fu-Jun; Chen, Shao-Yong
2007-08-01
Mussels have been proposed as appropriate biomonitors of marine pollution, especially for monitoring metallic pollution based on variations of metallothionein as biomarkers. Under 2 exposure levels (12.7 microg/L, 63.5 microg/L), Cu accumulation and metallothionein-like protein (MTLP) induction by mussel (Perna viridis) digestive glands were investigated and simulated into dynamic models in the present work, and the soluble and total Cu burden of digestive glands were also determined. Calculated mean Cu uptake rates by mussel target organ were 2.045 and 7.028 microg x (g x d)(-1) respectively, and the theoretical equilibrium kinetic BCFs of Cu were 2074 and 1619 correspondingly. And within the exposure duration, different changing trends of ratio of soluble Cu to total Cu in digestive glands were observed in the two groups. The MTLP level of control samples was (0.551 +/- 0.037) mg/g, and the counterparts are 0.407 - 0.699 mg/g, 0.826 - 0.942 mg/g respectively when mussels were exposed to 12.7 microg/L and 63.5 microg/L Cu solutions. Statistically significant MTLP induction (p < 0.001) was observed under higher exposure level. MTLP contents in digestive glands increased with the exposure Cu concentration and body accumulation of metal. There is a significantly negative exponential rise relationship (p < 0.000 1) between MTLP and Cu concentrations accumulated in the digestive glands of mussels.
Hsu, Wan-Ling; Tatsukawa, Yoshimi; Neriishi, Kazuo; Yamada, Michiko; Cologne, John; Fujiwara, Saeko
2010-01-01
In studying the late health effects of atomic-bomb (A-bomb) survivors, earlier findings were that white blood cell (WBC) count increased with radiation dose in cross-sectional studies. However, a persistent effect of radiation on WBC count and other risk factors has yet to be confirmed. The objectives of the present study were 1) to examine the longitudinal relationship between A-bomb radiation dose and WBC and differential WBC counts among A-bomb survivors and 2) to investigate the potential confounding risk factors (such as age at exposure and smoking status) as well as modification of the radiation dose-response. A total of 7,562 A-bomb survivors in Hiroshima and Nagasaki were included in this study from 1964-2004. A linear mixed model was applied using the repeated WBC measurements. During the study period, a secular downward trend of WBC count was observed. Radiation exposure was a significant risk factor for elevated WBC and differential WBC counts over time. A significant increase of WBC counts among survivors with high radiation dose (> 2 Gy) was detected in men exposed below the age of 20 and in women regardless of age at exposure. Effects on WBC of low dose radiation remain unclear, however. Cigarette smoking produced the most pronounced effect on WBC counts and its impact was much larger than that of radiation exposure.
FDTD computation of temperature elevation in the elderly for far-field RF exposures.
Nomura, Tomoki; Laakso, Ilkka; Hirata, Akimasa
2014-03-01
Core temperature elevation and perspiration in younger and older adults is investigated for plane-wave exposure at whole-body averaged specific absorption rate of 0.4 W kg(-1). Numeric Japanese male model is considered together with a thermoregulatory response formula proposed in the authors' previous study. The frequencies considered were at 65 MHz and 2 GHz where the total power absorption in humans becomes maximal for the allowable power density prescribed in the international guidelines. From the computational results used here, the core temperature elevation in the older adult model was larger than that in the younger one at both frequencies. The reason for this difference is attributable to the difference of sweating, which is originated from the difference in the threshold activating the sweating and the decline in sweating in the legs.
Manganese Exposure from Drinking Water and Children’s Classroom Behavior in Bangladesh
Khan, Khalid; Factor-Litvak, Pam; Wasserman, Gail A.; Liu, Xinhua; Ahmed, Ershad; Parvez, Faruque; Slavkovich, Vesna; Levy, Diane; Mey, Jacob; van Geen, Alexander
2011-01-01
Background: Evidence of neurological, cognitive, and neuropsychological effects of manganese (Mn) exposure from drinking water (WMn) in children has generated widespread public health concern. At elevated exposures, Mn has been associated with increased levels of externalizing behaviors, including irritability, aggression, and impulsivity. Little is known about potential effects at lower exposures, especially in children. Moreover, little is known regarding potential interactions between exposure to Mn and other metals, especially arsenic (As). Objectives: We conducted a cross-sectional study of 201 children to investigate associations of Mn and As in tube well water with classroom behavior among elementary school children, 8–11 years of age, in Araihazar, Bangladesh. Methods: Data on exposures and behavioral outcomes were collected from the participants at the baseline of an ongoing longitudinal study of child intelligence. Study children were rated by their school teachers on externalizing and internalizing items of classroom behavior using the standardized Child Behavior Checklist-Teacher’s Report Form (CBCL-TRF). Results: Log-transformed WMn was positively and significantly associated with TRF internalizing [estimated β = 0.82; 95% confidence interval (CI), 0.08–1.56; p = 0.03], TRF externalizing (estimated β = 2.59; 95% CI, 0.81–4.37; p =0.004), and TRF total scores (estimated β = 3.35; 95% CI, 0.86–5.83; p = 0.008) in models that adjusted for log-transformed water arsenic (WAs) and sociodemographic covariates. We also observed a positive monotonic dose–response relationship between WMn and TRF externalizing and TRF total scores among the participants of the study. We did not find any significant associations between WAs and various scales of TRF scores. Conclusion: These observations reinforce the growing concern regarding the neurotoxicologic effects of WMn in children. PMID:21493178
van Veldhoven, Karin; Keski-Rahkonen, Pekka; Barupal, Dinesh K; Villanueva, Cristina M; Font-Ribera, Laia; Scalbert, Augustin; Bodinier, Barbara; Grimalt, Joan O; Zwiener, Christian; Vlaanderen, Jelle; Portengen, Lützen; Vermeulen, Roel; Vineis, Paolo; Chadeau-Hyam, Marc; Kogevinas, Manolis
2018-02-01
Exposure to disinfection by-products (DBPs) in drinking water and chlorinated swimming pools are associated with adverse health outcomes, but biological mechanisms remain poorly understood. Evaluate short-term changes in metabolic profiles in response to DBP exposure while swimming in a chlorinated pool. The PISCINA-II study (EXPOsOMICS project) includes 60 volunteers swimming 40min in an indoor pool. Levels of most common DBPs were measured in water and in exhaled breath before and after swimming. Blood samples, collected before and 2h after swimming, were used for metabolic profiling by liquid-chromatography coupled to high-resolution mass-spectrometry. Metabolome-wide association between DBP exposures and each metabolic feature was evaluated using multivariate normal (MVN) models. Sensitivity analyses and compound annotation were conducted. Exposure levels of all DBPs in exhaled breath were higher after the experiment. A total of 6,471 metabolic features were detected and 293 features were associated with at least one DBP in exhaled breath following Bonferroni correction. A total of 333 metabolic features were associated to at least one DBP measured in water or urine. Uptake of DBPs and physical activity were strongly correlated and mutual adjustment reduced the number of statistically significant associations. From the 293 features, 20 could be identified corresponding to 13 metabolites including compounds in the tryptophan metabolism pathway. Our study identified numerous molecular changes following a swim in a chlorinated pool. While we could not explicitly evaluate which experiment-related factors induced these associations, molecular characterization highlighted metabolic features associated with exposure changes during swimming. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Barón, Anna E.; Asdigian, Nancy L.; Gonzalez, Victoria; Aalborg, Jenny; Terzian, Tamara; Stiegmann, Regan A.; C.Torchia, Enrique; Berwick, Marianne; Dellavalle, Robert P.; G.Morelli, Joseph; Mokrohisky, Stefan T.; Crane, Lori A.; Box, Neil F.
2014-01-01
Background Melanocytic nevi (moles) and freckles are well known biomarkers of melanoma risk, and they are influenced by similar ultraviolet (UV) light exposures and genetic susceptibilities to those that increase melanoma risk. Nevertheless, the selective interactions between UV exposures and nevus and freckling genes remain largely undescribed. Methods We conducted a longitudinal study from ages 6 through 10 in 477 Colorado children who had annual information collected for sun exposure, sun protection behaviors, and full body skin exams. MC1R and HERC2/OCA2 rs12913832 were genotyped and linear mixed models were used to identify main and interaction effects. Results All measures of sun exposure (chronic, sunburns and waterside vacations) contributed to total nevus counts, and cumulative chronic exposure acted as the major driver of nevus development. Waterside vacations strongly increased total nevus counts in children with rs12913832 blue eye color alleles and facial freckling scores in those with MC1R red hair color variants. Sunburns increased numbers of larger nevi (≥2 mm) in subjects with certain MC1R and rs12913832 genotypes. Conclusions Complex interactions between different UV exposure profiles and genotype combinations determine nevus numbers and size, and the degree of facial freckling. Impact Our findings emphasize the importance of implementing sun-protective behavior in childhood regardless of genetic make-up; although children with particular genetic variants may benefit from specifically targeted preventive measures to counteract their inherent risk of melanoma. Moreover, we demonstrate, for the first time, that longitudinal studies are a highly powered tool to uncover new gene-environment interactions that increase cancer risk. PMID:25410285
Diet and toenail arsenic concentrations in a New Hampshire population with arsenic-containing water.
Cottingham, Kathryn L; Karimi, Roxanne; Gruber, Joann F; Zens, M Scot; Sayarath, Vicki; Folt, Carol L; Punshon, Tracy; Morris, J Steven; Karagas, Margaret R
2013-11-16
Limited data exist on the contribution of dietary sources of arsenic to an individual's total exposure, particularly in populations with exposure via drinking water. Here, the association between diet and toenail arsenic concentrations (a long-term biomarker of exposure) was evaluated for individuals with measured household tap water arsenic. Foods known to be high in arsenic, including rice and seafood, were of particular interest. Associations between toenail arsenic and consumption of 120 individual diet items were quantified using general linear models that also accounted for household tap water arsenic and potentially confounding factors (e.g., age, caloric intake, sex, smoking) (n = 852). As part of the analysis, we assessed whether associations between log-transformed toenail arsenic and each diet item differed between subjects with household drinking water arsenic concentrations <1 μg/L versus ≥1 μg/L. As expected, toenail arsenic concentrations increased with household water arsenic concentrations. Among the foods known to be high in arsenic, no clear relationship between toenail arsenic and rice consumption was detected, but there was a positive association with consumption of dark meat fish, a category that includes tuna steaks, mackerel, salmon, sardines, bluefish, and swordfish. Positive associations between toenail arsenic and consumption of white wine, beer, and Brussels sprouts were also observed; these and most other associations were not modified by exposure via water. However, consumption of two foods cooked in water, beans/lentils and cooked oatmeal, was more strongly related to toenail arsenic among those with arsenic-containing drinking water (≥1 μg/L). This study suggests that diet can be an important contributor to total arsenic exposure in U.S. populations regardless of arsenic concentrations in drinking water. Thus, dietary exposure to arsenic in the US warrants consideration as a potential health risk.
Barón, Anna E; Asdigian, Nancy L; Gonzalez, Victoria; Aalborg, Jenny; Terzian, Tamara; Stiegmann, Regan A; Torchia, Enrique C; Berwick, Marianne; Dellavalle, Robert P; Morelli, Joseph G; Mokrohisky, Stefan T; Crane, Lori A; Box, Neil F
2014-12-01
Melanocytic nevi (moles) and freckles are well known biomarkers of melanoma risk, and they are influenced by similar UV light exposures and genetic susceptibilities to those that increase melanoma risk. Nevertheless, the selective interactions between UV exposures and nevus and freckling genes remain largely undescribed. We conducted a longitudinal study from ages 6 through 10 years in 477 Colorado children who had annual information collected for sun exposure, sun protection behaviors, and full body skin exams. MC1R and HERC2/OCA2 rs12913832 were genotyped and linear mixed models were used to identify main and interaction effects. All measures of sun exposure (chronic, sunburns, and waterside vacations) contributed to total nevus counts, and cumulative chronic exposure acted as the major driver of nevus development. Waterside vacations strongly increased total nevus counts in children with rs12913832 blue eye color alleles and facial freckling scores in those with MC1R red hair color variants. Sunburns increased the numbers of larger nevi (≥2 mm) in subjects with certain MC1R and rs12913832 genotypes. Complex interactions between different UV exposure profiles and genotype combinations determine nevus numbers and size, and the degree of facial freckling. Our findings emphasize the importance of implementing sun-protective behavior in childhood regardless of genetic make-up, although children with particular genetic variants may benefit from specifically targeted preventive measures to counteract their inherent risk of melanoma. Moreover, we demonstrate, for the first time, that longitudinal studies are a highly powered tool to uncover new gene-environment interactions that increase cancer risk. ©2014 American Association for Cancer Research.
Cost of near-roadway and regional air pollution-attributable childhood asthma in Los Angeles County
Brandt, Sylvia; Perez, Laura; Künzli, Nino; Lurmann, Fred; Wilson, John; Pastor, Manuel; McConnell, Rob
2014-01-01
Background Emerging evidence suggests that near-roadway air pollution (NRP) exposure causes childhood asthma. Associated costs are not well documented. Objective We estimated the cost of childhood asthma attributable to residential NRP exposure and regional ozone (O3) and nitrogen dioxide (NO2) in Los Angeles County. We developed a novel approach to apportion the costs between these exposures under different pollution scenarios. Methods We integrated results from a study of willingness to pay to reduce the burden of asthma with studies of health care utilization and charges to estimate the costs of an asthma case and exacerbation. We applied those costs to the number of asthma cases and exacerbations due to regional pollution in 2007 and to hypothetical scenarios of a 20% reduction in regional pollution in combination with a 20% reduction or increase in the proportion of the total population living within 75m of a major roadway. Results Cost of air pollution-related asthma in Los Angeles County in 2007 was $441 million for O3 and $202 million for NO2 in 2010 dollars. Cost of routine care (care in absence of exacerbation) accounted for 18% of the combined NRP and O3 cost and 39% of the combined NRP and NO2 cost—costs not recognized in previous analyses. NRP-attributable asthma accounted for 43% (O3) to 51% (NO2) of the total annual cost of exacerbations and routine care associated with pollution. Hypothetical scenarios showed that costs from increased NRP exposure may offset savings from reduced regional pollution. Conclusions Our model disaggregates the costs of regional pollution and NRP exposure and illustrates how they might vary under alternative exposure scenarios. The cost of air pollution is a substantial burden on families and an economic loss for society. PMID:25439228
Rahman, Faid; Ismail, Ahmad; Omar, Hishamuddin; Hussin, Mohamed Zakaria
2017-01-01
The Milky stork is listed as an endangered species endemic to the Southeast Asia region. In Malaysia, the population is currently being reintroduced back into the wild. However, the increase of anthropogenic activity throughout the coastal area might expose the population to hazardous chemicals such as heavy metals. This study highlights the contamination of cadmium (Cd) and lead (Pb) in the Milky stork's diet. Additionally, this is the first time an integrated exposure model being used to assess heavy metal exposure risk to the population. Lead level (5.5-7.98 mg kg -1 ) in particular was relatively high compared to Cd (0.08-0.33 mg kg -1 ). This was probably related to the different niches occupied by the species in the aquatic environment. The results further show that the predicted exposure doses (through intake of both food and water) for all metals are much lower than the Tolerable Daily Intake (TDI) values. The total exposure dose for Cd was 0.11 mg kg -1 d -1 with TDI value of 0.54 mg kg -1 d -1 while Pb total exposure dose was 0.31 mg kg -1 d -1 with TDI value of 0.64 mg kg -1 d -1 . Several possible factors that could lead to the observed pattern were discussed. In conclusion, there is an urgent need to improve the current habitat quality to protect the endangered species. The authors also emphasized on the protection of remaining Milky stork's habitats i.e. mudflats and mangroves and the creation of buffer zone to mitigate the negative impacts that may arise from pollution activity.
Batterman, Stuart; Su, Feng-Chiao; Li, Shi; Mukherjee, Bhramar; Jia, Chunrong
2015-01-01
INTRODUCTION Emission sources of volatile organic compounds (VOCs) are numerous and widespread in both indoor and outdoor environments. Concentrations of VOCs indoors typically exceed outdoor levels, and most people spend nearly 90% of their time indoors. Thus, indoor sources generally contribute the majority of VOC exposures for most people. VOC exposure has been associated with a wide range of acute and chronic health effects; for example, asthma, respiratory diseases, liver and kidney dysfunction, neurologic impairment, and cancer. Although exposures to most VOCs for most persons fall below health-based guidelines, and long-term trends show decreases in ambient emissions and concentrations, a subset of individuals experience much higher exposures that exceed guidelines. Thus, exposure to VOCs remains an important environmental health concern. The present understanding of VOC exposures is incomplete. With the exception of a few compounds, concentration and especially exposure data are limited; and like other environmental data, VOC exposure data can show multiple modes, low and high extreme values, and sometimes a large portion of data below method detection limits (MDLs). Field data also show considerable spatial or interpersonal variability, and although evidence is limited, temporal variability seems high. These characteristics can complicate modeling and other analyses aimed at risk assessment, policy actions, and exposure management. In addition to these analytic and statistical issues, exposure typically occurs as a mixture, and mixture components may interact or jointly contribute to adverse effects. However most pollutant regulations, guidelines, and studies remain focused on single compounds, and thus may underestimate cumulative exposures and risks arising from coexposures. In addition, the composition of VOC mixtures has not been thoroughly investigated, and mixture components show varying and complex dependencies. Finally, although many factors are known to affect VOC exposures, many personal, environmental, and socioeconomic determinants remain to be identified, and the significance and applicability of the determinants reported in the literature are uncertain. To help answer these unresolved questions and overcome limitations of previous analyses, this project used several novel and powerful statistical modeling and analysis techniques and two large data sets. The overall objectives of this project were (1) to identify and characterize exposure distributions (including extreme values), (2) evaluate mixtures (including dependencies), and (3) identify determinants of VOC exposure. METHODS VOC data were drawn from two large data sets: the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study (1999–2001) and the National Health and Nutrition Examination Survey (NHANES; 1999–2000). The RIOPA study used a convenience sample to collect outdoor, indoor, and personal exposure measurements in three cities (Elizabeth, NJ; Houston, TX; Los Angeles, CA). In each city, approximately 100 households with adults and children who did not smoke were sampled twice for 18 VOCs. In addition, information about 500 variables associated with exposure was collected. The NHANES used a nationally representative sample and included personal VOC measurements for 851 participants. NHANES sampled 10 VOCs in common with RIOPA. Both studies used similar sampling methods and study periods. Specific Aim 1 To estimate and model extreme value exposures, extreme value distribution models were fitted to the top 10% and 5% of VOC exposures. Health risks were estimated for individual VOCs and for three VOC mixtures. Simulated extreme value data sets, generated for each VOC and for fitted extreme value and lognormal distributions, were compared with measured concentrations (RIOPA observations) to evaluate each model’s goodness of fit. Mixture distributions were fitted with the conventional finite mixture of normal distributions and the semi-parametric Dirichlet process mixture (DPM) of normal distributions for three individual VOCs (chloroform, 1,4-DCB, and styrene). Goodness of fit for these full distribution models was also evaluated using simulated data. Specific Aim 2 Mixtures in the RIOPA VOC data set were identified using positive matrix factorization (PMF) and by toxicologic mode of action. Dependency structures of a mixture’s components were examined using mixture fractions and were modeled using copulas, which address correlations of multiple components across their entire distributions. Five candidate copulas (Gaussian, t, Gumbel, Clayton, and Frank) were evaluated, and the performance of fitted models was evaluated using simulation and mixture fractions. Cumulative cancer risks were calculated for mixtures, and results from copulas and multivariate lognormal models were compared with risks based on RIOPA observations. Specific Aim 3 Exposure determinants were identified using stepwise regressions and linear mixed-effects models (LMMs). RESULTS Specific Aim 1 Extreme value exposures in RIOPA typically were best fitted by three-parameter generalized extreme value (GEV) distributions, and sometimes by the two-parameter Gumbel distribution. In contrast, lognormal distributions significantly underestimated both the level and likelihood of extreme values. Among the VOCs measured in RIOPA, 1,4-dichlorobenzene (1,4-DCB) was associated with the greatest cancer risks; for example, for the highest 10% of measurements of 1,4-DCB, all individuals had risk levels above 10−4, and 13% of all participants had risk levels above 10−2. Of the full-distribution models, the finite mixture of normal distributions with two to four clusters and the DPM of normal distributions had superior performance in comparison with the lognormal models. DPM distributions provided slightly better fit than the finite mixture distributions; the advantages of the DPM model were avoiding certain convergence issues associated with the finite mixture distributions, adaptively selecting the number of needed clusters, and providing uncertainty estimates. Although the results apply to the RIOPA data set, GEV distributions and mixture models appear more broadly applicable. These models can be used to simulate VOC distributions, which are neither normally nor lognormally distributed, and they accurately represent the highest exposures, which may have the greatest health significance. Specific Aim 2 Four VOC mixtures were identified and apportioned by PMF; they represented gasoline vapor, vehicle exhaust, chlorinated solvents and disinfection byproducts, and cleaning products and odorants. The last mixture (cleaning products and odorants) accounted for the largest fraction of an individual’s total exposure (average of 42% across RIOPA participants). Often, a single compound dominated a mixture but the mixture fractions were heterogeneous; that is, the fractions of the compounds changed with the concentration of the mixture. Three VOC mixtures were identified by toxicologic mode of action and represented VOCs associated with hematopoietic, liver, and renal tumors. Estimated lifetime cumulative cancer risks exceeded 10−3 for about 10% of RIOPA participants. The dependency structures of the VOC mixtures in the RIOPA data set fitted Gumbel (two mixtures) and t copulas (four mixtures). These copula types emphasize dependencies found in the upper and lower tails of a distribution. The copulas reproduced both risk predictions and exposure fractions with a high degree of accuracy and performed better than multivariate lognormal distributions. Specific Aim 3 In an analysis focused on the home environment and the outdoor (close to home) environment, home VOC concentrations dominated personal exposures (66% to 78% of the total exposure, depending on VOC); this was largely the result of the amount of time participants spent at home and the fact that indoor concentrations were much higher than outdoor concentrations for most VOCs. In a different analysis focused on the sources inside the home and outside (but close to the home), it was assumed that 100% of VOCs from outside sources would penetrate the home. Outdoor VOC sources accounted for 5% (d-limonene) to 81% (carbon tetrachloride [CTC]) of the total exposure. Personal exposure and indoor measurements had similar determinants depending on the VOC. Gasoline-related VOCs (e.g., benzene and methyl tert-butyl ether [MTBE]) were associated with city, residences with attached garages, pumping gas, wind speed, and home air exchange rate (AER). Odorant and cleaning-related VOCs (e.g., 1,4-DCB and chloroform) also were associated with city, and a residence’s AER, size, and family members showering. Dry-cleaning and industry-related VOCs (e.g., tetrachloroethylene [or perchloroethylene, PERC] and trichloroethylene [TCE]) were associated with city, type of water supply to the home, and visits to the dry cleaner. These and other relationships were significant, they explained from 10% to 40% of the variance in the measurements, and are consistent with known emission sources and those reported in the literature. Outdoor concentrations of VOCs had only two determinants in common: city and wind speed. Overall, personal exposure was dominated by the home setting, although a large fraction of indoor VOC concentrations were due to outdoor sources. City of residence, personal activities, household characteristics, and meteorology were significant determinants. Concentrations in RIOPA were considerably lower than levels in the nationally representative NHANES for all VOCs except MTBE and 1,4-DCB. Differences between RIOPA and NHANES results can be explained by contrasts between the sampling designs and staging in the two studies, and by differences in the demographics, smoking, employment, occupations, and home locations. A portion of these differences are due to the nature of the convenience (RIOPA) and representative (NHANES) sampling strategies used in the two studies. CONCLUSIONS Accurate models for exposure data, which can feature extreme values, multiple modes, data below the MDL, heterogeneous interpollutant dependency structures, and other complex characteristics, are needed to estimate exposures and risks and to develop control and management guidelines and policies. Conventional and novel statistical methods were applied to data drawn from two large studies to understand the nature and significance of VOC exposures. Both extreme value distributions and mixture models were found to provide excellent fit to single VOC compounds (univariate distributions), and copulas may be the method of choice for VOC mixtures (multivariate distributions), especially for the highest exposures, which fit parametric models poorly and which may represent the greatest health risk. The identification of exposure determinants, including the influence of both certain activities (e.g., pumping gas) and environments (e.g., residences), provides information that can be used to manage and reduce exposures. The results obtained using the RIOPA data set add to our understanding of VOC exposures and further investigations using a more representative population and a wider suite of VOCs are suggested to extend and generalize results. PMID:25145040
Space-flight simulations of calcium metabolism using a mathematical model of calcium regulation
NASA Technical Reports Server (NTRS)
Brand, S. N.
1985-01-01
The results of a series of simulation studies of calcium matabolic changes which have been recorded during human exposure to bed rest and space flight are presented. Space flight and bed rest data demonstrate losses of total body calcium during exposure to hypogravic environments. These losses are evidenced by higher than normal rates of urine calcium excretion and by negative calcium balances. In addition, intestinal absorption rates and bone mineral content are assumed to decrease. The bed rest and space flight simulations were executed on a mathematical model of the calcium metabolic system. The purpose of the simulations is to theoretically test hypotheses and predict system responses which are occurring during given experimental stresses. In this case, hypogravity occurs through the comparison of simulation and experimental data and through the analysis of model structure and system responses. The model reliably simulates the responses of selected bed rest and space flight parameters. When experimental data are available, the simulated skeletal responses and regulatory factors involved in the responses agree with space flight data collected on rodents. In addition, areas within the model that need improvement are identified.
Total leisure noise exposure and its association with hearing loss among adolescents.
Dehnert, Knut; Raab, Ulla; Perez-Alvarez, Carmelo; Steffens, Thomas; Bolte, Gabriele; Fromme, Hermann; Twardella, Dorothee
2015-01-01
To investigate total leisure noise exposure among adolescents and to assess its association with hearing. Based on self-reported time spent on 19 leisure activities and associated mean sound pressure levels reported in the literature, total leisure noise exposure was evaluated and compared to noise at work limits (> 85 dB(A) = hazardous) in a cross-sectional survey. Tympanometry and pure-tone audiometry was performed in sound isolated rooms. The study sample consists of 2143 pupils attending grade nine in any school in a German city 2009-2011 (mean age: 15.4 years; range: 13-19 years). Audiometric data were available for 1837 (85.8%) pupils (53.9% girls). 41.9% of the 2143 adolescents who had provided self-reported data on leisure activities associated with noise exposure were estimated to be hazardously exposed to leisure time noise. The interaction of gender with total leisure time noise exposure was not significant. No association between leisure time noise exposure and audiometric notches could be detected. While hearing loss seems seldom in this age group, a high proportion of adolescents aged 15-16 years are exposed to noise levels during leisure time bearing long-term risks of hearing loss.
Wyatt, Lauren; Ortiz, Ernesto J; Feingold, Beth; Berky, Axel; Diringer, Sarah; Morales, Ana Maria; Jurado, Elvis Rojas; Hsu-Kim, Heileen; Pan, William
2017-12-15
Artisanal and small-scale gold mining (ASGM) is a primary contributor to global mercury and its rapid expansion raises concern for human exposure. Non-occupational exposure risks are presumed to be strongly tied to environmental contamination; however, the relationship between environmental and human mercury exposure, how exposure has changed over time, and risk factors beyond fish consumption are not well understood in ASGM settings. In Peruvian riverine communities ( n = 12), where ASGM has increased 4-6 fold over the past decade, we provide a large-scale assessment of the connection between environmental and human mercury exposure by comparing total mercury contents in human hair (2-cm segment, n = 231) to locally caught fish tissue, analyzing temporal exposure in women of child bearing age (WCBA, 15-49 years, n = 46) over one year, and evaluating general mercury exposure risks including fish and non-fish dietary items through household surveys and linear mixed models. Calculations of an individual's oral reference dose using the total mercury content in locally-sourced fish underestimated the observed mercury exposure for individuals in many communities. This discrepancy was particularly evident in communities upstream of ASGM, where mercury levels in river fish, water, and sediment measurements from a previous study were low, yet hair mercury was chronically elevated. Hair from 86% of individuals and 77% of children exceeded a USEPA (U.S. Environmental Protection Agency) provisional level (1.2 µg/g) that could result in child developmental impairment. Chronically elevated mercury exposure was observed in the temporal analysis in WCBA. If the most recent exposure exceeded the USEPA level, there was a 97% probability that the individual exceeded that level 8-10 months of the previous year. Frequent household consumption of some fruits (tomato, banana) and grains (quinoa) was significantly associated with 29-75% reductions in hair mercury. Collectively, these data demonstrate that communities located hundreds of kilometers from ASGM are vulnerable to chronically elevated mercury exposure. Furthermore, unexpected associations with fish mercury contents and non-fish dietary intake highlight the need for more in-depth analyses of exposure regimes to identify the most vulnerable populations and to establish potential interventions.
Wyatt, Lauren; Ortiz, Ernesto J.; Feingold, Beth; Berky, Axel; Diringer, Sarah; Morales, Ana Maria; Jurado, Elvis Rojas; Hsu-Kim, Heileen; Pan, William
2017-01-01
Artisanal and small-scale gold mining (ASGM) is a primary contributor to global mercury and its rapid expansion raises concern for human exposure. Non-occupational exposure risks are presumed to be strongly tied to environmental contamination; however, the relationship between environmental and human mercury exposure, how exposure has changed over time, and risk factors beyond fish consumption are not well understood in ASGM settings. In Peruvian riverine communities (n = 12), where ASGM has increased 4–6 fold over the past decade, we provide a large-scale assessment of the connection between environmental and human mercury exposure by comparing total mercury contents in human hair (2-cm segment, n = 231) to locally caught fish tissue, analyzing temporal exposure in women of child bearing age (WCBA, 15–49 years, n = 46) over one year, and evaluating general mercury exposure risks including fish and non-fish dietary items through household surveys and linear mixed models. Calculations of an individual’s oral reference dose using the total mercury content in locally-sourced fish underestimated the observed mercury exposure for individuals in many communities. This discrepancy was particularly evident in communities upstream of ASGM, where mercury levels in river fish, water, and sediment measurements from a previous study were low, yet hair mercury was chronically elevated. Hair from 86% of individuals and 77% of children exceeded a USEPA (U.S. Environmental Protection Agency) provisional level (1.2 µg/g) that could result in child developmental impairment. Chronically elevated mercury exposure was observed in the temporal analysis in WCBA. If the most recent exposure exceeded the USEPA level, there was a 97% probability that the individual exceeded that level 8–10 months of the previous year. Frequent household consumption of some fruits (tomato, banana) and grains (quinoa) was significantly associated with 29–75% reductions in hair mercury. Collectively, these data demonstrate that communities located hundreds of kilometers from ASGM are vulnerable to chronically elevated mercury exposure. Furthermore, unexpected associations with fish mercury contents and non-fish dietary intake highlight the need for more in-depth analyses of exposure regimes to identify the most vulnerable populations and to establish potential interventions. PMID:29244775
Eze, Ikenna C.; Schaffner, Emmanuel; Vienneau, Danielle; Héritier, Harris; Endes, Simon; Rudzik, Franziska; Thiesse, Laurie; Pieren, Reto; Schindler, Christian; Schmidt-Trucksäss, Arno; Brink, Mark; Cajochen, Christian; Marc Wunderli, Jean; Röösli, Martin; Probst-Hensch, Nicole
2017-01-01
Background: The impact of different transportation noise sources and noise environments on arterial stiffness remains unknown. Objectives: We evaluated the association between residential outdoor exposure to annual average road, railway, and aircraft noise levels, total noise intermittency (IR), and total number of noise events (NE) and brachial-ankle pulse wave velocity (baPWV) following a cross-sectional design. Methods: We measured baPWV (meters/second) in 2,775 participants (49–81 y old) at the second follow-up (2010–2011) of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA). We assigned annual average road, railway, and aircraft noise levels (Ldensource), total day- and nighttime NEtime and IRtime (percent fluctuation=0%, none or constant noise; percent fluctuation=100%, high fluctuation) at the most exposed façade using 2011 Swiss noise models. We applied multivariable linear mixed regression models to analyze associations. Results: Medians [interquartile ranges (IQRs)] were baPWV=13.4 (3.1) m/s; Ldenair (57.6% exposed)=32.8 (8.0) dB; Ldenrail (44.6% exposed)=30.0 (8.1) dB; Ldenroad (99.7% exposed): 54.2 (10.6) dB; NEnight=123 (179); NEday=433 (870); IRnight=73% (27); and IRday=63.8% (40.3). We observed a 0.87% (95% CI: 0.31, 1.43%) increase in baPWV per IQR of Ldenrail, which was greater with IRnight>80% or with daytime sleepiness. We observed a nonsignificant positive association between Ldenroad and baPWV in urban areas and a negative tendency in rural areas. NEnight, but not NEday, was associated with baPWV. Associations were independent of the other noise sources and air pollution. Conclusions: Long-term exposure to railway noise, particularly in an intermittent nighttime noise environment, and to nighttime noise events, mainly related to road noise, may affect arterial stiffness, a major determinant of cardiovascular disease. Ascertaining noise exposure characteristics beyond average noise levels may be relevant to better understand noise-related health effects. https://doi.org/10.1289/EHP1136 PMID:28934719
Urinary 1-hydroxypyrene concentrations in coke oven workers
Wu, M. T.; Mao, I. F.; Ho, C. K.; Wypij, D.; Lu, P. L.; Smith, T. J.; Chen, M. L.; Christiani, D. C.
1998-01-01
OBJECTIVES: To investigate the relation of individual occupational exposure to total particulates benzene soluble fraction (BSF) of ambient air with urinary 1-hydroxypyrene (1-OHP) concentrations among coke oven workers in Taiwan. METHODS: 80 coke oven workers and 50 referents were monitored individually for the BSF of breathing zone air over three consecutive days. Exposures were categorised as high, medium, or low among coke oven workers based on exposure situations. The high exposure group (n = 18) worked over the oven. The medium and low exposure groups (n = 41 and n = 21) worked at the side of the oven for > 4 hours and < 4 hours a day, respectively. Urine was collected before the shift on the morning of day 1 and after the shift on the afternoon of day 3 to find the change of 1-OHP concentrations across the shift. RESULTS: The median (range) changes of urinary 1-OHP concentrations across the shift for various exposure situations (microgram/g creatinine) were as follows: high 182 (7 to 3168); medium 9 (-8 to 511); low 7 (-6 to 28); and referents 0.2 (-2 to 72). This change of urinary 1-OHP was highly associated with individual occupational exposure to the BSF in air (r = 0.74 and 0.64, p < 0.001). The regression model showed significant effects of individual exposures to the BSF and alcohol consumption on urinary postshift 1-OHP after adjusting for preshift 1-OHP in the total population (n = 130). More exposure to the BSF led to higher postshift 1-OHP (p < 0.001); current drinkers of > 120 g/week had lower urinary postshift 1-OHP than never and former drinkers (p = 0.01). A 10-fold increase in the average BSF in air resulted in about a 2.5-fold increase in postshift 1-OHP among the 80 coke oven workers. CONCLUSION: Urinary 1-OHP concentrations can be used as a good biomarker to assess individual exposure to the BSF in air. Alcohol drinking may modify the toxicokinetic pathway of the BSF; the effects of alcohol should be investigated further in occupational studies. PMID:9816379